
Open System Services
Shell and Utilities
Reference Manual

Abstract

This manual documents the HP NonStop Open System Services (OSS) shell and
utilities. It is written for general users, programmers, system administrators, and
operators.

Product Version

N.A.

Supported Release Version Updates (RVUs)

This manual supports J06.03 and all subsequent J-series RVUs, H06.08 and all
subsequent H-series RVUs, and G06.29 and all subsequent G-series RVUs until
otherwise indicated by its replacement publication.

Part Number Published

527188-021 August 2013

Document History
Part Number Product Version Published

527188-017 N/A February 2011
527188-018 N/A August 2011
527188-019 N/A February 2012
527188-020 N/A August 2012
527188-021 N/A August 2013

Contents_____________________________

What is New in This Manual . ix

New Commands and Utilities x

Changed Commands x

About This Manual . xi

Audience . xi

Purpose . xi

Document Usage xi

Reference Page Format xii

Related Documents xiii

Reference Section Numbers xiv

Synopsis Format and Conventions xv

Obsolescent Flags xvi

General Typographic and Keying Conventions xvi

Standard Key Sequences xvii

Unsupported OSS Utilities xvii

Section 1. User Commands (a - b) 1-1
add_define . 1-2
alias . 1-5
apropos . 1-6
ar . 1-7
at . 1-14
atq . 1-18
atrm . 1-20
awk . 1-21
banner . 1-27
basename . 1-28
batch . 1-29
bc . 1-31
bg . 1-36
break . 1-37

Section 2. User Commands (c) 2-1
c89 . 2-2
c99 . 2-36
cal . 2-64
cancel . 2-65
cat . 2-67
cd . 2-69

527188-021 Hewlett-Packard Company iii

OSS Shell and Utilities Reference Manual

chgrp . 2-70
chmod . 2-72
chown . 2-78
cksum . 2-81
clear . 2-83
cmp . 2-84
cobol . 2-85
comm . 2-94
command . 2-98
compress . 2-99
continue . 2-101
cp . 2-102
cpio . 2-108
crontab . 2-111
csplit . 2-114
cut . 2-116

Section 3. User Commands (d - f) 3-1
date . 3-2
dc . 3-5
del_define . 3-9
df . 3-10
diff . 3-11
dircmp . 3-14
dirname . 3-16
dspcat . 3-17
dspmsg . 3-19
du . 3-21
echo . 3-23
ecobol . 3-25
ed . 3-43
egrep . 3-51
eld . 3-56
enoft . 3-81
env . 3-107
eval . 3-108
ex . 3-109
exec . 3-121
exit . 3-122
expand . 3-123
export . 3-124
expr . 3-125
false . 3-127
fc . 3-128
fg . 3-130
fgrep . 3-131
file . 3-137
find . 3-140
flex . 3-147
fold . 3-157
ftp . 3-159

Section 4. User Commands (g - j) 4-1
gencat . 4-2
genxlt . 4-7
getacl . 4-10

iv Hewlett-Packard Company 527188-021

Contents

getconf . 4-13
getfilepriv . 4-20
getopts . 4-22
gname . 4-24
grep . 4-26
gtacl . 4-32
hash . 4-48
head . 4-49
history . 4-50
iconv . 4-51
id . 4-54
info_define . 4-55
initfilepriv . 4-57
ipcrm . 4-58
ipcs . 4-60
jobs . 4-65
join . 4-66

Section 5. User Commands (k - l) 5-1
kill . 5-2
ksh . 5-7
ld . 5-32
let . 5-48
lex . 5-49
line . 5-60
ln . 5-61
locale . 5-64
logger . 5-68
logname . 5-70
lp . 5-71
lpstat . 5-76
ls . 5-79

Section 6. User Commands (m - o) 6-1
make . 6-2
man . 6-11
mkcatdefs . 6-14
mkdir . 6-17
mkfifo . 6-19
more . 6-20
mv . 6-26
nawk . 6-31
newgrp . 6-37
nice . 6-38
nl . 6-40
nld . 6-43
nm . 6-51
nmcobol . 6-55
noft . 6-73
nohup . 6-89
od . 6-91
osh . 6-95

Section 7. User Commands (p - r) 7-1
pack . 7-2
paste . 7-4

527188-021 Hewlett-Packard Company v

OSS Shell and Utilities Reference Manual

patch . 7-7
pathchk . 7-11
pax . 7-12
pinstall . 7-23
pname . 7-27
pr . 7-29
print . 7-32
printf . 7-33
ps . 7-37
pwd . 7-46
read . 7-47
readonly . 7-49
reset_define . 7-50
return . 7-52
rm . 7-53
rmdir . 7-57
rsh . 7-58
run . 7-60
runcat . 7-64
runv . 7-65

Section 8. User Commands (s) 8-1
sed . 8-2
set . 8-8
setacl . 8-11
setfilepriv . 8-15
set_define . 8-18
sh . 8-21
shift . 8-46
show_define . 8-47
sleep . 8-49
sort . 8-50
split . 8-58
strings . 8-60
strip . 8-62
stty . 8-64
su . 8-68
sum . 8-70

Section 9. User Commands (t - u) 9-1
tail . 9-2
tar . 9-5
tee . 9-8
telnet . 9-9
test . 9-10
time . 9-13
times . 9-14
touch . 9-15
tr . 9-18
trap . 9-21
true . 9-22
tty . 9-23
type . 9-24
typeset . 9-25
umask . 9-27
unalias . 9-29

vi Hewlett-Packard Company 527188-021

Contents

uname . 9-30
uncompress . 9-31
unexpand . 9-33
uniq . 9-34
unpack . 9-36
unset . 9-38
uudecode . 9-39
uuencode . 9-40

Section 10. User Commands (v - z) 10-1
vi . 10-2
vproc . 10-17
wait . 10-23
wall . 10-24
wc . 10-25
whatis . 10-27
whence . 10-28
who . 10-29
whoami . 10-31
xargs . 10-32
yacc . 10-36
zcat . 10-45

Section 11. File Format Reference Pages 11-1
charmap . 11-2
hosts . 11-6
hosts.equiv . 11-7
ipnodes . 11-8
locale . 11-10
netrc . 11-29
networks . 11-30
.proto . 11-31
protocols . 11-33
queuedefs . 11-34
resolv.conf . 11-36
.rhosts . 11-37
services . 11-39

Section 12. Administrator Commands and Files 12-1
copyoss . 12-2
cron . 12-5
dig . 12-8
dnssec-keygen . 12-14
dnssec-signzone . 12-17
dnssec_lwresd . 12-20
dnssec_named . 12-22
dnssec_nsupdate 12-24
dnssec_rndc . 12-27
ftpserver . 12-29
inetd . 12-35
lwresd . 12-40
merge_whatis . 12-42
named . 12-44
newusers . 12-46
nsupdate . 12-49
Pcleanup . 12-52

527188-021 Hewlett-Packard Company vii

OSS Shell and Utilities Reference Manual

pcleanup . 12-54
portmap . 12-55
rexecd . 12-60
rndc . 12-62
rpcinfo . 12-64
rshd . 12-71
useradd . 12-72
userdel . 12-76
usermod . 12-77

Permuted Index . Pindex-1

Index . Index-1

viii Hewlett-Packard Company 527188-021

Contents

LIST OF TABLES

Table 3−1. Supported Magic Values 3-137

Table 5−1. Controlling locale Utility Output 5-65

Table 5−2. Categories and Keywords for the locale Utility 5-65

Table 11−1. The Portable Character Set 11-2

527188-021 Hewlett-Packard Company ix

What is New in This Manual

This section describes changes made to the Open System Services Shell and Utilities
Reference Manual since the last edition (527188-020).

Unless otherwise indicated in the text, discussions of native mode behavior, processes,
and so forth apply to both the TNS/R code that runs on systems running G-series RVUs
and to the TNS/E code that runs on systems running J-series RVUs or H-series RVUs.
Discussions of TNS or accelerated code behavior in the OSS environment apply only to
systems running G-series RVUs; systems running J-series RVUs or H-series RVUs do
not support TNS or accelerated code execution in the OSS environment.

Unless otherwise indicated in the text, all text that applies to systems running H06.14
and later H-series RVUs also applies to systems running J06.03 and later J-series RVUs.

This manual contains information about some of the following G-series development
tools. For servers running H-series RVUs, these tools are supported only in H06.05 and
subsequent H-series RVUs:

• TNS/R native C compiler

• TNS/R native C++ compiler

• TNS/R native C++ runtime library version 2

• SQL/MP for TNS/R native C

• SQL/MP Compilation Agent for TNS/R programs

• NMCOBOL compiler and nmcobol frontend

• ld

• nld

• noft

• TNS/R native pTAL

If your server is running the H06.03 or H06.04 RVU, continue to use the HP Enterprise
Toolkit—NonStop Edition or servers running G-series RVUs for development tasks that
require these tools. If your server is running J06.03 or later J-series RVUs, these tools
are supported.

Beginning with the J06.14 and H06.25 RVUs, the OSS Core Utilities product (T1202)
provides support for additional Open Source utilities. Except for edits to include

527188-021 Hewlett-Packard Company ix

OSS Shell and Utilities Reference Manual

NonStop-specific information, the OSS Core Utilities reference pages are passed through
without changes to their Open Source original content. These reference pages are
available in the /usr/coreutils/share/man directory; they are not available from HP in
book form and not included in Open System Services reference manuals. For more
information, see the Open System Service Management and Operations Guide, the Open
System Services User’s Guide, and the individual reference pages.

New Commands and Utilities

The following commands have been added to improve OSS usability:

• useradd

• userdel

• usermod

• newusers

Changed Commands

The following commands have been changed to correct errors:

• cp

• gtacl

• man

• su

x Hewlett-Packard Company 527188-021

About This Manual

HP NonStop Open System Services (OSS) is partially derived from the Open Software
Foundation OSF/1 product version 1.2. The Open System Services Shell and Utilities
Reference Manual contains reference pages for OSS user commands and utilities.

Unless otherwise indicated in the text, discussions of native mode behavior, processes, |
and so forth apply to both the TNS/R code that runs on systems running G-series RVUs |
and to the TNS/E code that runs on systems running J-series RVUs or H-series RVUs. |
Discussions of TNS or accelerated code behavior in the OSS environment apply only to |
systems running G-series RVUs; systems running J-series RVUs or H-series RVUs do |
not support TNS or accelerated code execution in the OSS environment. |

Unless otherwise indicated in the text, all text that applies to systems running H06.14 |
and later H-series RVUs also applies to systems running J06.03 and later J-series RVUs.

Audience

The Open System Services Shell and Utilities Reference Manual is intended for general
users of OSS as well as system and application programmers.

Purpose

The Open System Services Shell and Utilities Reference Manual provides a complete
description of OSS commands. It is intended primarily as a reference and not as a
tutorial.

Document Usage

This document contains 12 sections:

527188-021 Hewlett-Packard Company xi

OSS Shell and Utilities Reference Manual

• Sections 1 through 10 contain reference pages for all user commands and utilities
included in the basic OSS product set.

• Section 11 contains reference pages for file formats related to the commands and
utilities.

• Section 12 contains miscellaneous reference pages, usually intended for
administrator use.

The reference pages are organized alphabetically within each section.

If you are not sure of the name of the command you want, you can find help in the table
of contents, index, and permuted index. The permuted index is created from the
descriptions in the NAME section of each reference page (see Reference Page Format);
use it by searching for any term that might appear in a brief description of the desired
command’s purpose.

Reference Page Format

The top area of each reference page in the Open System Services Shell and Utilities
Reference Manual includes the name of the command described on that page. If more
than one command is described, all command names are included.

Each reference page is organized into sections. The sections generally appear in the
same order, but some appear in all reference pages and some are optional.

NAME Provides a brief description of the purpose of the command or
commands described.

SYNOPSIS Summarizes the syntax of the command and elaborates on the
brief description of its use and function found in the NAME
section.

FLAGS Lists and describes the command’s required or optional flags,
if any.

DESCRIPTION Describes the command more fully than the NAME and
SYNOPSIS sections.

SUBCOMMANDS Describes in detail the command’s subcommands, if any.

EXAMPLES Provides examples of ways in which the command is
typically used.

FILES Lists any OSS system files that are read, employed, referred
to, or written to by the command, or that are otherwise
relevent to its use.

NOTES Provides additional information about the command that is
not of general interest.

xii Hewlett-Packard Company 527188-021

About This Manual

CAUTIONS Cautions users about circumstances to be avoided when using
the command, or about loss of data that might result if the
command is used incorrectly.

DIAGNOSTICS Provides information useful for diagnosing errors that might
result when the command is used.

EXIT VALUES Lists and describes exit values returned by the command.

RELATED INFORMATION Lists OSS commands, functions, file formats, and special
files employed by the command, that have a purpose related
to that of the command, or that are otherwise of interest
within the context of the command. This section can also list
related documents.

STANDARDS CONFORMANCE Summarizes features that are fully described in
previous subsections and are flagged as implementation-
defined or HP extensions to XPG4.

The POSIX standards leave some features to the
implementing vendor to define. These features are flagged as
implementation-defined. Features that HP has included that
are not in an XPG4 specification are flagged as HP extensions
to the XPG4 or XPG4 Version 2 specification.

Related Documents

For information about OSS commands and utilities, library calls, system calls, and
guidelines for general usage, see these manuals:

• Accelerator Manual

• Binder Manual

• C/C++ Programmer’s Guide

• HP COBOL Manual for TNS/E Programs

• HP COBOL Manual for TNS and TNS/R Programs

• Common Run-Time Environment (CRE) Programmer’s Guide

• eld Manual (TNS/E systems only)

• enoft Manual (TNS/E systems only)

• ld Manual

• Native Inspect Manual (TNS/E systems only)

• nld Manual

• noft Manual

• Object Code Accelerator (OCA) Manual

527188-021 Hewlett-Packard Company xiii

OSS Shell and Utilities Reference Manual

• Open System Services Porting Guide

• Open System Services Programmer’s Guide

• Open System Services Library Calls Reference Manual

• Open System Services System Calls Reference Manual

• Open System Services User’s Guide

• rld Manual

• Software Internationalization Guide

• TCP/IP and TCP/IPv6 Programming Manual

If you are working in or with the Guardian environment, see the Guardian Procedure
Calls Reference Manual and its related manuals.

If you are using the Guardian C run-time library, see the Guardian Native C Library
Calls Reference Manual.

Reference Section Numbers

Some topics in the reference pages have more than one reference page file, and the
reference section number indicates which set of information to display. For example,
iconv has a reference page for the iconv() function in section 3 and a reference page for
the iconv command in section 1.

Reference section numbers are included under the RELATED INFORMATION
heading and in the heading at the top of every reference page. The following table shows
the correspondence between reference section numbers and OSS manuals.

Section Content Manual___

(1) User commands OSS Shell and Utilities Reference Manual

(2) System calls OSS System Calls Reference Manual

(3) Library calls OSS Library Calls Reference Manual
OSS System Calls Reference Manual
(SPT_*() functions only)

(4) File formats and OSS System Calls Reference Manual
OSS Library Calls Reference Manual
OSS Shell and Utilities Reference Manual

data structures

(5) Miscellaneous topics and OSS System Calls Reference Manual
OSS Library Calls Reference Manual
OSS Shell and Utilities Reference Manual

environment variables

xiv Hewlett-Packard Company 527188-021

About This Manual

(6) Games Not supplied by HP

(7) Special files OSS System Calls Reference Manual

(8) Administrator commands OSS Shell and Utilities Reference Manual

Synopsis Format and Conventions

The SYNOPSIS section of each reference page summarizes the ways a command is
invoked. The following list describes the conventions used in these summaries.

• Command names and all flags, required and optional, are always shown in bold type.

• Arguments, to the command itself or to its flags, are always shown in italic type.

• Optional items, including both flags and arguments, appear in brackets: for example,
[file]. Brackets are not always nested; therefore, an optional argument to an optional
flag appears in its own pair of brackets, following the flag in its pair of brackets. For
example, [-a] [file] indicates an optional flag -a with its optional argument file, as
opposed to [-a file], which indicates an optional flag -a and its required argument file.
The lack of nesting for brackets might incorrectly imply that the argument could be
specified without the flag; when in doubt, consult the FLAGS section of the
reference page.

• In general, flags that do not take arguments and are not mutually exclusive are
grouped together (in a pare of brackets if they are optional). For example:

-aj[k]v In gereral, flags that have related arguments are shown separately. For
example:

[-cCdfFnqvV] [-b maxbits]

• Beyond the preceding grouping requirements, flags appear in alphabetical order (U.S.
English), with uppercase letters following lowercase letters—for example, -aAjkKv.

• Command arguments appear in the order required by the command, if any.
Mandatory arguments appear before optional arguments unless the command
requires otherwise.

• Operands of indeterminate number are indicated by an ellipsis following the flag
name—for example, [-a file ...].

• Because some flags are separated from their operands by spaces, a diagram might be
unclear as to whether an operand is an operand to the command or to a required flag.
When in doubt, consult the FLAGS section of the reference page.

• When two or three flags or operands are mutually exclusive (that is, they cannot be
used together) they are separated by vertical bars — for example, -a | -j, or [-k file |
directory].

• When a greater number of items are mutually exclusive, or some other aspect of the
command’s use creates greater than normal complexity, more than one diagram is
provided.

527188-021 Hewlett-Packard Company xv

OSS Shell and Utilities Reference Manual

Obsolescent Flags

Obsolescent flags (that is, flags that have been replaced by new flags that reflect future
trends in conformance) are documented. The new flags supersede the obsolescent flags,
but the obsolescent flags are still supported.

General Typographic and Keying Conventions

This document uses several typographic conventions. (See also Synopsis Format and
Conventions.)

Bold Bold words or characters represent system elements that you
must use literally, such as commands, flags, pathnames, and
variable names. Bold type is always used to represent user
input; anything to be typed or entered by the user is
represented in bold type. (The EXAMPLES section is an
exception; in that section, constant width type represents
user input.)

Italic Italic words or characters represent variable values. When
italic type appears in user input examples, it represents a
portion of the input that varies according to the situation or
the user’s choice.

Constant width System output in command examples in the EXAMPLES
section is represented by constant width typeface. In
addition, constant width is used in descriptive text to
represent system messages.

Keystrokes Keystrokes are indicated by the name of the key to be pressed
in angle brackets in bold type: for example, <Return> or
<Tab>. Key names vary from one keyboard to the next; for
example, the <Esc> key might appear on your keyboard as
<Escape> and <Ctrl> as <Control>. If you are unable find
some of the keys referred to on your keyboard, consult your
hardware documentation or system administrator.

When two keys are to be pressed at the same time, they are
shown together within the brackets, separated by a hyphen:
for example, <Ctrl-c>, indicates that you should hold down
the <Ctrl> key and press the <c> key. (Control characters in
system output are represented as ˆC, ˆX, and so on.)

In general, the <Delete> and <Erase> keys generate different
codes, but are functionally equivalent. While <Delete> is
usually mapped to ASCII code 127, represented by ˆ?, and
<Erase> is usually mapped to the ASCII backspace
character, ˆH, either can be mapped to another code on a
particular keyboard or system. If these keys do not have the

xvi Hewlett-Packard Company 527188-021

About This Manual

results described, consult the stty and tset reference pages or
your system administrator.

Standard Key Sequences

Some standard keystroke sequences are used for general purposes. For example, the
Interrupt key sequence interrupts and cancels the current action, without proceeding
further; you might use it to stop a command that is displaying output you do not want on
your screen.

The actual keys used are the same on most systems, but they are not universal. For
example, the Interrupt key sequence is usually <Ctrl-c>, but not always.

The reference pages in this manual refer to these key sequences by name. In some cases,
the customary keystroke is given. For the two most common sequences, the customary
keystrokes are not given. The End-of-File key sequence, used to end user input or
otherwise complete an action, is usually <Ctrl-d>. The Interrupt sequence, used to
interrupt or cancel the current action, is usually <Ctrl-c>.

Use these keystrokes for the End-of-File and Interrupt key sequences, and the keystrokes
listed in the text for the others. If these keystrokes do not have the desired effect, consult
the stty and tset reference pages or your system administrator.

Unsupported OSS Utilities

Unsupported OSS utilities are utilities that HP has released, but not tested. HP does not
guarantee the behavior or performance of these utilities and is not obligated to fix
problems associated with them.

The unsupported utilities are in /bin/unsupported. Any documentation for the
unsupported utilities also would be in /bin/unsupported. To access reference pages for
unsupported utilities with the man command, add the path /bin/unsupported to your
MANPATH or specify it as an alternative path using the -M flag with the man
command:

man -M /bin/unsupported -k keyword

A reference page for an unsupported utility includes text stating that the utility is
unsupported. Not all of the unsupported utilities are documented by reference pages.

527188-021 Hewlett-Packard Company xvii

Section 1. User Commands (a - b)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the Letters a through b.

527188-021 Hewlett-Packard Company 1−1

add_define(1) OSS Shell and Utilities Reference Manual

NAME
add_define - Creates one or more DEFINEs for the current OSS shell

SYNOPSIS
add_define

{define_name1}...
[-like=define_name2]
[attribute_specs]...

FLAGS
-like=define_name2

Creates a DEFINE with the attributes and values of the specified define_name2 and
modified by the specified attribute_specs clauses. If the -like flag is not specified, the
DEFINE created has the attributes and values of the working attribute set modified by
the specified attribute_specs clauses.

DESCRIPTION
The add_define command is specific to HP and an OSS shell built-in command. It creates
DEFINES for the OSS shell and is similiar to the TACL ADD DEFINE command.

The add_define command accepts Guardian attributes. As a result, input must follow Guardian
conventions.

Operands
define_name1

Specifies the name of the DEFINE to be created. The name can be 2 through 24 char-
acters long. The first character must be an equal sign (=), and the second must be a
letter. If neither the -like flag nor the attribute_specs parameter is specified, the
DEFINE is created with the attributes and value
of the working attribute set.

attribute_specs
Specifies the names of one or more valid DEFINE attributes and the values they are to
have. If the -like flag is specified, a DEFINE is created with the attributes and values of
the specified DEFINE and modified by the clauses specified by attribute_specs. If the
-like flag is not specified, a DEFINE is created with the attributes and values of the
working attribute set and modified by the specified attribute_specs. attribute_specs is
defined as:

class={catalog | defaults | map | search | sort |
spool | subsort | tape}
{class_attributes}...

Class Attributes
Certain characters are special in the OSS environment and must be preceded by an escape char-
acter or they will not be accepted by the add_define command. For a detailed description of the
valid class attributes, refer to the ADD DEFINE and SET DEFINE commands in the TACL Refer-
ence Manual.

The add_define command accepts Guardian attributes for setting up the Guardian environment.
As a result, input must follow Guardian conventions.

For class=catalog (a CATALOG DEFINE), you must use the escape character in class-attributes
as follows:

subvol=\$a123

For class=defaults (a DEFAULTS DEFINE), you must use the escape character in class-
attributes

1−2 Hewlett-Packard Company 527188-021

User Commands (a - b) add_define(1)

as follows:

volume=\$oss.joe
swap=\$null
catalog=\$system.catalog

For class=map (a MAP DEFINE), you must use the escape character in class-attributes
as follows:

file=\$volume.subvolume.file

For class=search (a SEARCH DEFINE), you must use the escape character in class-attributes
as follows:

subvol0=\(a,b,c,d\)
relsubvol0=\\foxii.\$coral.i
subvol2=\(\$data.y2,y22\)

For class=sort (a SORT DEFINE), you must use the escape character in class-attributes
as follows:

scratch=\\foxii.\$oss.joe.scratch
swap=\\foxii.\$oss.joe.swap
program=\\foxii.\$oss.joe.suprsort
cpus=\(1,2\)
notcpus=\(0,3\)
subsorts=\(=subsort1,-subsort2\)

For class=spool (a SPOOL DEFINE), you must use the escape character in class-attributes
as follows:

loc=\\kt22.\$s.#a

For class=subsort (a SUBSORT DEFINE), you must use the escape character in class-attributes
as follows:

scratch=\\foxii.\$oss.joe.scratch
swap=\\foxii.\$oss.joe.swap
program=\\foxii.\$oss.joe.suprsort

For class=tape (a TAPE DEFINE), you must use the escape character in class-attributes
as follows:

device=\$device
volume=\(v1,v2\)
system=\\foxii

EXAMPLES
1. To make the name =PLUTO represent the file name \\FAR.\$OFF.WORLDS.PLUTO

enter:

add_define =PLUTO file=\\FAR.\$OFF.WORLDS.PLUTO

2. To set up a TAPE DEFINE named =S2 that describes a tape file on the IBM standard,
enter:

add_define =S2 class=tape labels=ibm fileid=\$TAPE

527188-021 Hewlett-Packard Company 1−3

add_define(1) OSS Shell and Utilities Reference Manual

3. To create a new DEFINE named PLUTO2 that has the characteristics of the DEFINE
named =PLUTO, enter:

add_define =PLUTO2 -like ==PLUTO

EXIT VALUES
The following exit values are returned:

0 DEFINEs were created successfully.

>0 An error occurred.

NOTES
The add_define command is a shell built-in command. It differs from the regular commands in
that it does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: del_define(1), info_define(1), reset_define(1), set_define(1), show_define(1).

STANDARDS CONFORMANCE
The add_define command is an HP extension to the XPG4 Version 2 specification.

1−4 Hewlett-Packard Company 527188-021

User Commands (a - b) alias(1)

NAME
alias - Defines and lists aliases

SYNOPSIS
alias [-tx] [name[=value ...]]

FLAGS
-t Sets or lists tracked aliases.

-x Sets or prints exported aliases.

DESCRIPTION
The alias command with no arguments prints the list of aliases in the form name=value on stan-
dard output, where name is the name of an alias and value is the current definition of that alias.

If a name and value of the form name=value are specified an alias is defined for each name
whose value is given.

A trailing space in value causes the next word to be checked for alias substitution.

The -t flag is used to set and list tracked aliases. The value of a tracked alias is the full pathname
corresponding to the given name. The value becomes undefined when the value of PATH is
reset but the aliases remained tracked. If the -t flag is not specified, the name and value of the
alias is printed for each name in the argument list for which no value is given.

The -x flag is used to set or print exported aliases. An exported alias is defined for scripts
invoked by name.

EXAMPLES
1. The following command lists all of the aliases in the current shell.

alias

EXIT VALUES
Exit status is nonzero if a name is given without a value and no alias was defined.

NOTES
The alias command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1), unalias(1).

527188-021 Hewlett-Packard Company 1−5

apropos(1) OSS Shell and Utilities Reference Manual

NAME
apropos - Locates reference pages by keyword

SYNOPSIS
apropos keyword ...

The apropos command shows which reference pages contain instances of any of the given
keywords in their purpose lines.

DESCRIPTION
In looking for keywords, apropos considers each word separately and ignores the case of letters.
Words that are part of other words are also considered; thus, when looking for the word compile,
apropos will also find all instances of compiler. The keyword argument can also be a regular
expression. For more information, see the grep reference page.

If the output of the apropos command begins with a name and reference section number, you can
enter man section name. For example, if the output of the apropos command is printf(3), you
can enter man 3 printf to obtain the reference page on the printf() function.

The apropos command works just like the man command with the -k flag.

EXAMPLES
To find reference pages with the keyword password in the purpose line, enter:

apropos password

FILES
/usr/share/man/whatis Keyword database.

RELATED INFORMATION
Commands: grep(1), man(1), whatis(1).

1−6 Hewlett-Packard Company 527188-021

User Commands (a - b) ar(1)

NAME
ar - Creates and maintains archive files and libraries

SYNOPSIS
ar -d [-v] [-l] archive file ...

ar -m [-aAbilv] [position_name] archive file ...

ar -p [-v] [-s] archive [file ...]

ar -q [-clv] archive [file ...]

ar -r [-cuv] [-abil] [position_name] archive file ...

ar -t [-v] [-s] [-Wfiletype] archive [file ...]

ar -Wobey obey_file

ar -x [-v] [-sCT] archive [file ...]

FLAGS
In an ar command, you can list selected flags together in one group on the command line, with
no spaces between them. You can precede this single flag list with a - (dash), but it is not
required.

You must specify at least one flag from the required-flag set dmpqrtx. You can also specify any
number of optional flags from the set abcilsuvCT. If you select a positioning flag (a, b, or i), you
must also specify the name of a file within the library (position_name) immediately following the
flag list and separated from it by a space.

-a Positions new files in the archive after the file identified by the position_name
operand.

-A Suppresses warning messages about optional access control list (ACL) entries.
The ar utility does not archive optional ACL entries. If this flag is not set, a
warning message is issued for each file that has optional ACL entries. For more
information about ACLs, see the acl(5) reference page.

-b Positions new files in the archive before the file identified by the position_name
operand.

-c Suppresses the diagnostic message written to the standard error file by default
when the archive file archive is created.

-C Prevents extracted files from replacing like-named files in the file system. This
flag is useful with the -T flag to prevent truncated filenames from replacing files
with the same prefix.

-d Deletes the named files from the archive.

-i Positions new files in the archive before the file identified by the position_name
operand. (This flag is equivalent to the -b flag.)

-l Creates temporary files in the local current working directory, rather than in the
directory specified by the environment variable TMPDIR.

-m Moves the named files to some other position in the archive. By default, this flag
moves the named files to the end of the archive. Use the positioning flags (a, b,
or i) to specify a position other than the default position.

527188-021 Hewlett-Packard Company 1−7

ar(1) OSS Shell and Utilities Reference Manual

-p Writes the contents of the named files from archive to the standard output file. If
no files are specified, the contents of all files in the archive are written in the
order they occur in the archive.

-q Quickly appends the named files to the end of the archive file. The ar command
does not check whether the appended files already exist in the archive. ar is use-
ful if you want to bypass the search process that is otherwise done when a large
archive is created piece by piece.

-r Replaces or adds files to an archive. If the archive named in the archive operand
does not exist, a new archive file is created and a diagnostic message is written
to the standard error file (unless the -c flag is specified). If no files are specified
and the archive exists, no changes are made to the archive. Files that replace
existing files do not change the order of the archive. Files that do not replace
existing files are appended to the end of the archive.

-s Forces the regeneration of the archive symbol table even if ar is not invoked
with a flag that modifies the archive file contents.

-t Writes a table of contents for the library to the standard output file. The files
specified by the file operands are included in the written list. If no file operands
are specified, all files in the archive given by the archive operand are included in
the order of the archive.

-T Allows truncation of names of files whose archive names are longer than 255
characters. By default, extracting a file with a name that is too long is an error: a
diagnostic message is written, and the file is not extracted.

-u Updates older files by copying to the archive only those files that have changed
since they were last entered into the archive. When used with the -r flag, -u
allows files in the archive to be replaced only by files having more recent
modification times.

-v Writes to the standard output file a verbose description of a library. When the -v
flag is used with flags -d, -r, or -x, it writes a file-by-file description of the
archive operations as they are performed.

When -v is used with the -p flag, it writes the name of the file to the standard out-
put file before it writes the file to the standard output file.

When -v is used with the -t flag, it writes a detailed list of information about each
file, including access, ownership, size, and time, to the standard output file.

-Wfiletype Displays the file type. When specified with -tv flags, it displays [elf-non PIC]
for TNS/R native object files that are not position-independent code (non-PIC),
[elf PIC] for TNS/R PIC native linkfiles or native load files, [tnse 32-bit] for
TNS/E native object files of 32-bit data model, [tnse 64-bit] for TNS/E native
object files of 64-bit data model, [tnse neutral] for TNS/E native object files of
neutral data model, [tns] for TNS and accelerated object files, or nothing for
other file types such as text files. Use this flag when ar cannot generate the sym-
bol table because native linkfiles or loadfiles are mixed with TNS or accelerated
object files, or when TNS/E native object files of 32-bit and 64-bit data models
are mixed.

1−8 Hewlett-Packard Company 527188-021

User Commands (a - b) ar(1)

-Wobey obey_file
Indicates that a flag and a list of files to be processed should be read from the file
obey_file rather than from the command line. The -Wobey flag cannot be used
on the command line when any other flag is used on the command line. Use the
-Wobey flag to speed up execution of ar when more than one file must be pro-
cessed.

The file obey_file must be either a Guardian EDIT file or an OSS text file. In the
file obey_file, you must specify one and only one flag from the required-flag set
dmpqrtx. You can also specify any number of optional flags from the set abcil-
suvCT. If you select one of the positioning flags (a, b, or i), you must also
specify the name of a file within the library (position_name) immediately follow-
ing the flag list and separated from it by a space.

-x Extracts the files identified in the file operands from the archive specified in the
archive operand. The contents of the archive file are not changed. If no file
operands are specified, all files in the archive are extracted. If the filename of a
file to be extracted from the archive is longer than the name length supported for
the target directory, an error results and, unless -T has also been specified, the
file is not extracted. If -T has also been specified, the file is extracted and given
a truncated filename. The modification time of each extracted file is set to the
time the file is extracted from the archive.

DESCRIPTION
The ar command creates and maintains groups of one or more named files as a single archive
(library) file written in ar archive format. After an archive file has been created, new files can be
added to the archive file, and existing files can be extracted from it, deleted, or replaced.

The ar command accepts the following as archive members:

• All OSS files

• Guardian TNS code files

• Accelerated object files

• Guardian C text files (file code 180 files)

• TNS/R (PIC and non-PIC) native object files

• TNS/E native linkfiles or loadfiles

You can mix one or more object file formats in one archive file. However, such an archive file
cannot be used by the Binder or the nld, ld, or eld utility.

If an archive file contains only files in a single object file format, an archive symbol table is
created as the first file member of the archive file. The format of this table depends upon the
linker utility for the corresponding object file format. This table is maintained by ar and used by
the Binder (for TNS and accelerated object files), the nld utility (for TNS/R native non-PIC
object files), the ld utility (for TNS/R native PIC object files), and the eld utility (for TNS/E
native PIC files) to search the archive file and extract archive members from it.

When the ar utility is used to create or update the content of such an archive, the symbol table is
rebuilt automatically. The -s flag forces the symbol table to be rebuilt.

An archive file embedded as a member of another archive file is not used by the Binder or the nld
utility, the ld utility, or the eld utility.

All file operands can be pathnames. However, files within archive files are given a filename,
which is the last component of the pathname used when the file was entered into the archive file.

527188-021 Hewlett-Packard Company 1−9

ar(1) OSS Shell and Utilities Reference Manual

Multiple files within the archive file can be identically named. In these cases, each file and
position_name operand matches only the first archive file having a name that is the same as the
last component of the file or position_name operand.

An archive file can be created for the OSS, Guardian, or a target-independent execution environ-
ment. An OSS archive file is made up of OSS and target-independent object files. A Guardian
archive file is made up of Guardian and target-independent object files. A target-independent
archive file is made up of target-independent object files.

Text files are always target-environment independent.

If ar detects mixing of OSS and Guardian environment object files, it issues a warning message
but does not prevent you from creating an archive file of mixed environments. It is your respon-
sibility to ensure that procedures used for resolving references work in the target environment;
otherwise, program execution results in runtime errors.

If ar detects mixing of TNS/E native object files of 32-bit and TNS/E 64-bit data models, it
issues a warning message, but does not prevent you from creating an archive file.

The file structure of archive files is defined in the ar.h header file.

Operands
ar supports the following operands:

archive The pathname of the archive file to be created or modified.

The maximum size of an archive file is 1,024,491,520 bytes. If operations on the
archive file cause the file to exceed that size limit, the ar command returns an
error message and the archive file becomes corrupted because ar cannot create
the symbol table information.

file The pathname of a file to be processed. Only the last component of a pathname
is used in comparing the filename with names of files in the archive file. If two
or more file operands have the same last component in their pathname
(basename), they are all archived as separate members with the same name. ar
does not truncate valid filenames of files added to or replaced in the archive file.

position_name The name of a file within the archive file; used for relative positioning. See flags
-m and -r.

Environment Variables
The following environment variable affects the execution of ar.

TMPDIR Determines the pathname that overrides the default directory for temporary files,
if any.

This utility supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

Input Files
The input file identified in the archive operand must be a file in the format created by the com-
mand ar -r.

Standard Output
Standard output depends on the flags used with ar.

• If the -d flag is used with the -v flag, the standard output format is:

"d - %s \n", file

where file is the file operand specified on the command line.

1−10 Hewlett-Packard Company 527188-021

User Commands (a - b) ar(1)

• If the -p flag is used with the -v flag, ar precedes the contents of each file with:

"\n%s\n\n", file

where file is the file operand specified on the command line if file operands were
specified, or the name of the file in the archive if the file operands were not specified.

• If the -r flag is used with the -v flag and the file specified in the file operand is already in
the archive, the standard output is:

"r - %s\n", file

where file is the file operand specified on the command line.

• If the file specified in the file operand is being added to the archive and the -r flag is
used, the standard output is:

"a - %s\n", file

where file is the file operand specified on the command line if file operands were
specified, or the name of the file within the archive file if the file operands were not
specified.

• If the -t flag is used, ar writes the names of the files to the standard output file in the for-
mat:

"%s\n", file

where file is the file operand specified on the command line if file operands were
specified, or the name of the file within the archive file if the file operands were not
specified.

• If the -t flag is used with the -v flag the standard output is:

"%s %u/%u %u %s %d %d:%d %d %s\n", member-node, user-ID, group-ID,
number-of-bytes-in-member, abbreviated-month, day-of-the-month, hour, minute, year,
file

Where:

file is the file operand specified on the command line if file operands were
specified, or the name of the file within the archive file if the file operands were
not specified.

member-node
is formatted the same as the file-node string in the output of the ls command,
except for the first character, the entry-type, which is not used. The string
represents the file mode of the archive member at the time it was added to, or
replaced within, the archive file.

user-ID is the OSS user ID (UID) associated with the file at the time it was added to, or
replaced within, the archive file.

group-ID
is the group ID (GID) associated with the file at the time it was added to, or
replaced within, the archive file.

number-of-bytes-in-member
is the size of the file in bytes at the time it was added to, or replaced within, the
archive file.

The following output entries record the last modification time of a file when the file was
most recently added or replaced in the archive file.

527188-021 Hewlett-Packard Company 1−11

ar(1) OSS Shell and Utilities Reference Manual

abbreviated-month
is equivalent to the %b format in the output of the date command.

day-of-the-month
is equivalent to the %e format in the date command.

hour is equivalent to the %H format in the date command.

minute is equivalent to the %M format in the date command.

year is equivalent to the %Y format in the date command.

• If the -x flag is used with the -v flag, the standard output format is:

"x - %s\n", file

where file is the file operand specified on the command line if file operands were
specified, or the name of the file within the archive file if the file operands were not
specified.

Standard Error
Messages from the ar command are only diagnostic messages. The diagnostic message about
creating a new archive file when the -c flag is not specified does not modify the exit status.

Output Files
Output is the normal archive file name with string "!arch\n" at the beginning.

EXAMPLES
1. The command

ar -rcv newlib a1.o a2.o a3.o a4.o

creates an archive file named newlib (if an archive file by that name does not already
exist) with the files a1.o, a2.o, a3.o, and a4.o as its members. If newlib already
exists and some of the files named a1.o, a2.o, a3.o, and a4.o are in the archive,
these files are replaced by the new files. Files that are not current members of the
archive are added to the end of the archive file. The -v flag causes a file-by-file replace-
ment or addition message to be displayed on the terminal when each operation is ini-
tiated.

2. The command

ar -tv newlib

displays a detailed table of contents of the archive newlib.

3. The command

ar -x oldlib x.o y.o

extracts member files x.o and y.o from the archive oldlib.

4. The command

ar -rb abc.o oldlib x.o y.o

adds new member files x.o and y.o to the archive file oldlib. The new files are
inserted in front of the existing member abc.o.

5. The command

ar -dv libmylib f1.0 f2.0

deletes files f1.0 and f2.0 from the archive libmylib.

1−12 Hewlett-Packard Company 527188-021

User Commands (a - b) ar(1)

FILES
ar.h Describes the file structure of archive files.

DIAGNOSTICS
ar: creating archive archive.

Informative message. The archive file specified in the command did not exist and
has been created.

ar: archive contains a mix of 32-bit and 64-bit data models
Warning message. The ar utility detected a mixing of TNS/E native object files
of 32-bit and TNS/E 64-bit data models, but did not prevent you from creating an
archive file.

ar: archive: Guardian or User Defined Error 43
The ar utility cannot obtain disk space for a file extent.

ar: archive: Guardian or User Defined Error 45
The resulting file size exceeds 1,024,491,520 bytes and the file is not a valid
archive file.

EXIT VALUES
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

RELATED INFORMATION
Commands: c89(1), c99(1), eld(1), ld(1), make(1), nld(1), nm(1), strip(1).

Files: ar(4).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions and UNIX exten-
sions. The -W flags are HP extensions to the specification.

527188-021 Hewlett-Packard Company 1−13

at(1) OSS Shell and Utilities Reference Manual

NAME
at - Runs commands at a user-specified later time

SYNOPSIS
at [-c | -s | -k]

[-f file] [-q queuename]
when [date] [+increment]
[command | file] ...

at [-c | -s | -k]
[-f file] [-q queuename]
-t time

at -l [-o] [-q queuename] [user ...]

at -l [job_number ...]

at -r [[-Fi] job_number ...] | [-u user]

at -n [user]

FLAGS
-c Requests that csh be used for executing this job. csh is not currently supported. In the

current implementation, ksh will be used.

-f file Specifies the file to be used as input instead of the standard input file.

-F Suppresses delete verification.

-i Specifies interactive delete.

-k Requests that ksh be used for executing this job.

-l [job_number ...]
Reports the scheduled jobs for the invoking user. If the job_number argument is
specified, at reports only the information for the specified jobs.

If a user with appropriate privileges issues the command with this flag, all of the
queued at commands are listed with the name of the user who issued each one. The
user with appropriate privileges can also request a report of scheduled jobs for only one
specified user.

-n [user] Requests the number of files in the queue for the current user. A user with appropriate
privileges can specify a different user with the user argument.

-o Lists jobs in scheduled order. This flag is useful only when used with the -l flag.

-q queuename
Specifies the queue you want to use. When used with the -l flag, this flag limits the
search to the specified queue. A queue name can be specified by a, b, or e, as
described in DESCRIPTION. Queue a is the default queue.

-r job_number ...
Removes a job previously scheduled by at or batch, where job_number is the number
assigned by at or batch. If you do not have appropriate privileges, you can remove
only your own jobs. The atrm command is available to users with appropriate
privileges to remove jobs issued by other users or all jobs issued by a specific user.
This flag can also be used in combination with the -i, -f, and -u flags.

1−14 Hewlett-Packard Company 527188-021

User Commands (a - b) at(1)

-s Requests that the Bourne shell be used for executing this job. In the current implemen-
tation, ksh will be used.

-t time Submits the job to be run at the specified time. The time argument must be in the for-
mat described for the touch command: [[cc]yy]MMddhhmm[.ss]. (For more informa-
tion, refer to the touch(1) reference page.)

-u user Deletes all jobs for the specified user. This flag must be used with the -r flag as fol-
lows:

at -r -u user

DESCRIPTION
The at command reads from the standard input file or accepts as arguments the names of com-
mands to be run at a later time. The at command allows you to specify when the commands are
to be run.

If a file specified on an at command line is executable (that is, has the x permission for the user
executing the command), at assumes that it is a command and that the job consists only of this
command. If the file is not executable, at assumes that you want its contents to be the instruc-
tions for the job (same as BSD at). If at cannot find the file at all, the specification is passed to
the date parser. If the specification is not recognized by the date parser, the user receives the
error message Unknown word.

Variables in the shell environment, the current directory, umask, and ulimit are retained when
the commands are run. Open file descriptors, traps, and priority are lost.

You can use at if your login name appears in the /usr/lib/cron/at.allow file. If that file does not
exist, at checks the /usr/lib/cron/at.deny file to determine if your login name is denied access to
at. The at.allow and at.deny files contain one login name per line.

If neither file exists, only a user with appropriate privileges can submit a job. If the at.allow file
does exist, the login name of a user with appropriate privileges must be included in it for that
user to be able to use the command.

Operands
when The required when operand can be one of the following:

• The at command recognizes a number followed by an optional suffix. at
interprets 1-digit and 2-digit numbers as hours. It interprets 4-digit
numbers as hours and minutes.

The LC_TIME environment variable specifies the order of hours and
minutes. The default order is the hour followed by the minute. You can
also separate hours and minutes with a : (colon). The default order is
hour:minute.

In addition, you can specify a suffix of am, pm, or utc. If you do not
specify am or pm, at uses a 24-hour clock. The suffix utc indicates that
the time is UTC (Coordinated Universal Time).

• The at command also recognizes the following keywords as special
times: noon, midnight, now, A for a.m., P for p.m., N for noon, and M
for midnight. The LC_TIME environment variable controls the addi-
tional keywords that at recognizes.

527188-021 Hewlett-Packard Company 1−15

at(1) OSS Shell and Utilities Reference Manual

date You can specify the date operand as either a month name and a day number (and
possibly a year number preceded by a comma), or a day of the week.

The LC_TIME environment variable specifies the order of the month name and
day number (by default, month followed by day). at recognizes two special
days, today and tomorrow, by default. today is the default date if the specified
time is later than the current hour; tomorrow is the default date if the specified
time is earlier than the current hour.

If the specified month is less than the current month (and a year is not given),
next year is the default year.

+increment The optional increment operand can be one of the following:

• A + (plus sign) followed by a number and one of the following words:
minute[s], hour[s], day[s], week[s], month[s], or year[s] (or their
nonEnglish equivalents).

• The special word next followed by one of the following words:
minute[s], hour[s], day[s], week[s], month[s], or year[s] (or their
nonEnglish equivalents).

job_number Job numbers are specified as follows:

user.xxxxxxxxx.y

user Identifies the user who scheduled the job.

xxxxxxxxx Is a 9-digit number indicating the encoded time for the job.

y Indicates the job type or queue name as follows:

a at job

b batch job

e ksh job

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES,
LC_TIME, and NLSPATH environment variables.

EXAMPLES
1. To schedule a command from a terminal, enter a command similar to one of the follow-

ing:

at 5 pm Friday runme
at now next week runme
at now + 2 days runme

Note that the preceding commands can be scheduled as shown only if runme is in the
current directory.

2. To run cal at 3:00 in the afternoon on January 24, enter any one of the following com-
mands:

echo cal | at 3:00 pm January 24
echo cal | at 3pm Jan 24
echo cal | at 1500 jan 24

1−16 Hewlett-Packard Company 527188-021

User Commands (a - b) at(1)

3. To list the jobs you have sent to be run later, enter:

at -l

4. To cancel a job, enter:

at -r super.super.586748399.a

This cancels job super.super.586748399.a.

FILES
/var/adm/cron Main cron directory.

/usr/lib/cron/at.allow List of allowed users.

/usr/lib/cron/at.deny List of denied users.

/var/spool/cron/atjobs Queue.

NOTES
The at utility does not accept jobs submitted from processes whose login user ID is different
from the real user ID.

CAUTIONS
It is recommended that you do not use unspecified queues (queues other than a, b, and e). The
results of such use are unspecified.

EXIT VALUES
The at command returns the following exit values:

0 (zero) The at utility successfully submitted, removed, or listed one or more jobs.

>0 An error occurred.

RELATED INFORMATION
Commands: atq(1), atrm(1), batch(1), cron(8), kill(1), ps(1), sh(1), touch(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions, except for the fol-
lowing features:

• The -m flag is not supported.

• The SHELL and TZ environment variables are not used.

The following features are HP extensions to the XPG4 Version 2 specification:

• The -c, -F, -i, -k, -s, and -u flags are supported.

527188-021 Hewlett-Packard Company 1−17

atq(1) OSS Shell and Utilities Reference Manual

NAME
atq - Prints the queue of jobs waiting to be run

SYNOPSIS
atq [-c | -n] [-q queuename] [user ...]

FLAGS
-c Sorts the queue by the time that the at command was issued.

-n Prints only the number of files currently in the queue.

-q queuename
Specifies the queue you want to use.

DESCRIPTION
The atq command prints the queue of jobs waiting to be run at a later date. These jobs were
created with the at command.

If no flags are specified in the atq command, the queue is sorted in the order that the jobs will be
executed. If the user has appropriate privileges and one or more user names are provided, only
jobs belonging to those users are displayed. If no user names are provided, then a list of all jobs
submitted is displayed.

If flags are specified, the list of jobs belonging to the user who invoked the atq command is
displayed.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXAMPLES
To look at the queue created by the at command, enter:

atq

If there are jobs in the queue, a message similar to the following is displayed for each job:

super.super.62169200.a Tue Sep 12 11:00:00 1990

The .a extension specifies an at job.

FILES
/var/adm/cron Main cron directory.

/usr/lib/cron/at.allow List of allowed users.

/usr/lib/cron/at.deny List of denied users.

/var/spool/cron/atjobs Queue.

EXIT VALUES
The atq command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

1−18 Hewlett-Packard Company 527188-021

User Commands (a - b) atq(1)

RELATED INFORMATION
Commands: at(1), atrm(1), batch(1), cron(8).

STANDARDS CONFORMANCE
This command is an extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 1−19

atrm(1) OSS Shell and Utilities Reference Manual

NAME
atrm - Removes jobs queued by the at command

SYNOPSIS
atrm [-f | -i] -a [| job_number ... | user ...]

FLAGS
-a Removes all jobs belonging to the user invoking atrm. If this flag is specified by a

user with appropriate privileges, all jobs on the queue are removed.

-f Suppresses the printing of information about the jobs being removed.

-i Prompts the user before a job is removed; a response of y, or the locale’s equivalent of
y, causes the job to be removed.

DESCRIPTION
The atrm command removes jobs that were put in a queue by the at command. If one or more
job numbers are specified, atrm attempts to remove only those jobs.

If one or more user names are specified, all jobs belonging to those users are removed. This form
of invoking atrm is can be used only if you have appropriate privileges.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXAMPLES
To remove job number super.super.62169200.a, created by user super.super, from the queue
created by the at command, enter:

atrm super.super.62169200.a

Note that .a specifies an at job for sh. (The .e extension specifies an at job for ksh.)

FILES
/var/adm/cron Main cron directory.

/usr/lib/cron/at.allow List of allowed users.

/usr/lib/cron/at.deny List of denied users.

/var/spool/cron/atjobs Queue.

EXIT VALUES
The atrm command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: at(1), atq(1), batch(1), cron(8).

STANDARDS CONFORMANCE
This command is an extension to the XPG4 Version 2 specification.

1−20 Hewlett-Packard Company 527188-021

User Commands (a - b) awk(1)

NAME
awk - Manipulates text and matches patterns in files

SYNOPSIS
awk -f program [-Fcharacter] [file ...]

awk [-Fcharacter] statement ... [file ...]

FLAGS
-Fcharacter

Uses character as the field separator character (a space by default).

-f program
Searches for the patterns and performs the actions found in the file program.

DESCRIPTION
The awk command provides a flexible text-manipulation language suitable for simple report gen-
eration. It is a more powerful tool for text manipulation than either sed or grep.

The awk command:

• Performs convenient numeric processing.

• Allows variables within actions.

• Allows general selection of patterns.

• Allows control flow in the actions.

• Does not require any compiling of programs.

Pattern-matching and action statements can be specified either on the command line or in a pro-
gram file. In either case, awk first reads all matching and action statements, then reads a line of
input and compares it to each specified pattern. If the line matches a specified pattern, awk per-
forms the specified actions and writes the result to standard output. When it has compared the
current input line to all patterns, it reads the next line.

The awk command reads input files in the order stated on the command line. If you specify a
filename as a - (dash) or do not specify a filename, awk reads standard input.

Enclose pattern-action statements on the command line in ’’ (single quotes) to protect them from
interpretation by the shell. Consecutive pattern-action statements on the same command line
must be separated by a ; (semicolon), within one set of quotes. Consecutive pattern-action state-
ments in an awk program file must appear on separate lines.

You can assign values to variables on the awk command line as follows:

variable=value

The awk command treats input lines as fields separated by spaces, tabs, or a field separator you
set with the FS variable. (Consecutive spaces are recognized as a single separator.) Fields are
referenced as $1, $2, and so on. $0 refers to the entire line.

527188-021 Hewlett-Packard Company 1−21

awk(1) OSS Shell and Utilities Reference Manual

Pattern-Action Statements
Pattern-action statements follow the form:

pattern {action}

If a pattern lacks a corresponding action, awk writes the entire line that contains the pattern to
standard output. If an action lacks a corresponding pattern, awk applies the action to every line.

Actions
An action is a sequence of statements that follow C language syntax. These statements can
include:

if (expression) statement [else statement]

while (expression) statement

for (expression;expression;expression) statement

for (variable in array) statement

break

continue

{ [statement ...] }

variable=expression

print [expression_list] [>file] [| command]

printf format[,expression_list] [>file | >>file | | command]

next

exit [expression]

delete array [expression]

Statements can end with a semicolon, a newline character, or the right brace enclosing the action.

Expressions can have string or numeric values and are built using the operators +, -, , /, %, and ˆ
(exponentiation), a space for string concatenation, and the C operators ++, --, +=, -=, , /=, %=, ˆ=,
*=, >, >=, <, <=, ==, !=, and ?:.

Because the actions process fields, input white space is not preserved in the output.

The file and command arguments can be literal names or expressions enclosed in parentheses.
Identical string values in different statements refer to the same open file.

The print statement writes its arguments to standard output (or to a file if > file or >> file is
present), separated by the current output field separator and terminated by the current output
record separator.

The printf statement writes its arguments to standard output (or to a file if >file or >>file is
present, or to a pipe if | command is present), separated by the current output field separator, and
terminated by the output record separator. file and command can be literal names or
parenthesized expressions. Identical string values in different statements denote the same open
file. You can redirect the output into a file using the print ... > file or printf (...) > file state-
ments. The printf statement formats its expression list according to the format of the printf()
subroutine.

1−22 Hewlett-Packard Company 527188-021

User Commands (a - b) awk(1)

Variables
Variables can be scalars, array elements (denoted x[i]), or fields.

Variable names can consist of uppercase and lowercase alphabetic letters, the underscore charac-
ter, the digits (0 to 9), and extended characters. Variable names cannot begin with a digit.

Variables are initialized to the null string. Array subscripts can be any string; they do not have to
be numeric. This approach allows for a form of associative memory. Enclose string constants in
expressions in "" (double quotes). Multiple subscripts such as [i,j,k] are permitted; the consti-
tuents are concatenated and separated by the value of SUBSEP (see the description in the fol-
lowing list).

There are several variables with special meaning to awk. They include:

ARGC Argument count, assignable.

ARGV Argument array, assignable; nonnull members are interpreted as filenames.

FS Input field separator (default is a space). If it is a space, then any number of spaces and
tabs can separate fields.

NF The number of fields in the current input line (record), with a limit of 99.

NR The number of the current input line (record).

FNR The number of the current input line (record) in the current file.

FILENAME
The name of the current input file.

RS Input record separator (default is a newline character).

OFS The output field separator (default is a space).

ORS The output record separator (default is a newline character).

OFMT The output format for numbers (default % .6g).

SUBSEP
Separates multiple subscripts (default is 031).

Functions
Functions are defined at the position of a pattern-action statement, as follows:

function foo(a, b, c) { ... ; return x }

Arguments are passed by value if scalar and by reference if array name; functions can be called
recursively. Arguments are local to the function; all other variables are global.

There are several built-in functions that can be used in awk actions. (For information about regu-
lar expressions as referred to in this subsection, see the grep(1) refeernce page.)

length(argument)
Returns the length, in characters, of argument, or of the entire line if there is no argu-
ment.

blength(argument)
Returns the length, in bytes, of argument, or of the entire line if there is no argument.

527188-021 Hewlett-Packard Company 1−23

awk(1) OSS Shell and Utilities Reference Manual

close(argument)
Closes the file or pipe expression. Note that you must enclose a filename in double
quotes when redirecting output with the awk command; otherwise, it is treated as an
awk variable. For example:

print "Hello" > "/tmp/junk"
close ("/tmp/junk")

exp(number)
Takes the exponential of its argument.

rand Returns a random number on (0, 1).

srand(number)
Sets seed for rand. The default is the time of day.

log(number)
Takes the base e logarithm of its argument.

sqrt(number)
Takes the square root of its argument.

int(number)
Takes the integer part of its argument.

substr(string,position,number)
Returns the substring number characters long of string, beginning at position.

index(string,string2)
Returns the position in string where string2 occurs, or 0 (zero) if it does not occur.

match(string,regular_expression)
Returns the position in string where regular_expression occurs, or 0 (zero) if it does
not occur. The RSTART and RLENGTH built-in variables are set to the position and
length, in bytes, of the matched string.

split(string,a,[regular_expression])
Splits string into array elements a[1], a[2], . . ., a[number], and returns number. The
separation is done with the specified regular expression or with the FS field separator if
regular_expression is not given.

sub(regular_expression,string2,[string])
Substitutes string2 for the first occurrence of the regular expression regular_expression
in string. If string is not given, the entire line is used.

gsub(regular_expression,string2,[string])
Same as sub except that all occurrences of the regular expression are replaced; both
sub and gsub return the number of replacements.

sprintf(fmt,expression1,
expression2, ...)" Formats the expressions according to the printf format string fmt and
returns the resulting string.

system(command)
Executes command and returns its exit status.

The getline function sets $0 to the next input record from the current input file; getline < file sets
$0 to the next record from file. getline x sets variable x instead. Finally, command | getline
pipes the output of command into getline. Each call of getline returns the next line of output

1−24 Hewlett-Packard Company 527188-021

User Commands (a - b) awk(1)

from command. In all cases, getline returns 1 for a successful input, 0 (zero) for End-of-File, and
-1 for an error.

Patterns
Patterns are arbitrary Boolean combinations of patterns and relational expressions (the !, |, and &
operators and parentheses for grouping). You must start and end regular expressions with
slashes. You can use regular expressions as described for the grep command, including the fol-
lowing special characters:

+ One or more occurrences of the pattern.

? Zero or one occurrence of the pattern.

� Either of two statements.

() Grouping of expressions.

Isolated regular expressions in a pattern apply to the entire line. Regular expressions can occur
in relational expressions. Any string (constant or variable) can be used as a regular expression,
except in the position of an isolated regular expression in a pattern.

If two patterns are separated by a comma, the action is performed on all lines between an
occurrence of the first pattern and the next occurrence of the second.

Regular expressions can contain extended (multibyte) characters with one exception: range con-
structs in character class specifications using brackets cannot contain multibyte extended charac-
ters. Individual instances of extended (multibyte) characters can appear within brackets; how-
ever, extended characters are treated as separate one-byte characters.

Inclusion of extended characters in ranges is determined by the collating sequence as defined by
the current locale. The wild-card characters , +, and ? match characters and character strings, not
bytes.

There are two types of relational expressions you can use. The first type has the form:

expression match_operator pattern

where match_operator is either: ˜ (for contains) or !˜ (for does not contain).

The second type has the form:

expression relational_operator expression

where relational_operator is any of the six C relational operators: <, >, <=, >=, ==, and !=. A
conditional can be an arithmetic expression, a relational expression, or a Boolean combination of
these expressions.

You can use the BEGIN and END special patterns to capture control before the first and after the
last input line is read, respectively. BEGIN must be the first pattern; END must be the last.
BEGIN and END do not combine with other patterns.

You have two ways to designate a character other than white space to separate fields. You can
use the -Fcharacter flag on the command line, or you can start program with the following
sequence:

BEGIN { FS = c }

Either action changes the field separator to c.

527188-021 Hewlett-Packard Company 1−25

awk(1) OSS Shell and Utilities Reference Manual

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number, add 0 (zero) to it. To force it to be treated as a string, append a null string
("").

EXAMPLES
1. To display the lines of a file longer than 72 bytes, enter:

awk ’length >72’ chapter1

This command selects each line of the file chapter1 that is longer than 72 bytes. awk
then writes these lines to standard output because no action is specified.

2. To display all lines between the words start and stop, enter:

awk ’/start/,/stop/’ chapter1

3. To run an awk program (sum2.awk) that processes a file (chapter1), enter:

awk -f sum2.awk chapter1

4. To print the first two fields of a file named filename in reverse order, enter:

awk ’{ print $2, $1 }’ filename

5. The following awk program prints the first two fields of the input file in reverse order,
with input fields separated by a comma and a space, then adds up the first column and
prints the sum and average:

BEGIN { FS = ",[]*|[]+" }
{ print $2, $1}
{ s += $1 }

END { print "sum is", s, "average is", s/NR }

RELATED INFORMATION
Commands: grep(1), nawk(1), sed(1).

Functions: printf(3).

Files: locale(4).

1−26 Hewlett-Packard Company 527188-021

User Commands (a - b) banner(1)

NAME
banner - Creates a large banner

SYNOPSIS
banner message

DESCRIPTION
The banner command prints the specified message in large letters on the standard output file.

Each line in the banner can be up to 10 uppercase or lowercase characters long. On output, all
characters appear in uppercase, with the lowercase input characters appearing smaller than the
uppercase input characters. The banner command displays only ASCII characters.

EXAMPLES
1. To display a one-word banner, enter:

banner SMILE

2. To display more than one word on a line, enclose the text in quotes, for example:

banner "Out to" Lunch

This command displays Out to on one line and Lunch on the next line.

RELATED INFORMATION
Commands: echo(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with the following exceptions:

• Only one message string is allowed.

• The format of the output is specified.

527188-021 Hewlett-Packard Company 1−27

basename(1) OSS Shell and Utilities Reference Manual

NAME
basename - Returns specified parts of pathnames

SYNOPSIS
basename string [suffix]

DESCRIPTION
The basename command reads the string specified on the command line, deletes the portion
from the beginning to the last / (slash), and writes the base filename to standard output. If suffix
is specified on the command line and suffix appears in string, the string is returned with the suffix
removed.

The basename command is generally used inside command substitutions within a shell pro-
cedure to specify an output filename that is some variation of a specified input filename.

EXAMPLES
1. To display the base filename of a shell variable, enter:

basename $WORKFILE

This command displays the base filename of the value assigned to the WORKFILE
shell variable. If WORKFILE is set to /u/gabe/program.c, then program.c is
displayed.

2. To construct, in a shell script, a filename that is the same as another filename except for
its suffix, enter:

OFILE=‘basename $1 .c‘.o

This command assigns to OFILE the value of the first positional parameter ($1), but
with its .c suffix changed to .o. If $1 is /u/jim/program.c, then OFILE becomes
program.o.

RELATED INFORMATION
Commands: dirname(1), sh(1).

1−28 Hewlett-Packard Company 527188-021

User Commands (a - b) batch(1)

NAME
batch - Runs commands at a system-determined later time

SYNOPSIS
batch

DESCRIPTION
The batch command reads from the standard input file the names of commands to be run at a
later time. The batch command runs these jobs when the system load level permits.

The batch command is equivalent to the following at command:

at -q b now

Queue b is an at queue for batch jobs.

The user redirects the errors and output from these jobs.

Variables in the shell environment, the current directory, umask, and ulimit are retained when
the commands are run. Open file descriptors, traps, and priority are lost.

You can use batch if your login name appears in the /usr/lib/cron/at.allow file. If that file does
not exist, batch checks the /usr/lib/cron/at.deny file to determine if your login name is denied
access to batch. The at.allow and at.deny files contain one login name per line.

If neither file exists, only a user with appropriate privileges can submit a job. If the at.allow file
does exist, the login name of a user with appropriate privileges must be included in it for that
user to be able to use the command.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES,
LC_TIME, and NLSPATH environment variables.

EXAMPLES
To execute a command when the system load level permits, enter:

batch
cat infile > outfile
<EOF>

where <EOF> is the End-of-File character.

FILES
/var/adm/cron Main cron directory.

/usr/lib/cron/at.allow List of allowed users.

/usr/lib/cron/at.deny List of denied users.

/var/spool/cron/atjobs Queue.

NOTES
The batch utility does not accept jobs submitted from processes whose login user ID is different
from the real user ID.

EXIT VALUES
The batch command returns the following exit values:

0 (zero) The batch utility successfully finished its processing.

>0 An error occurred. The job will not be scheduled.

527188-021 Hewlett-Packard Company 1−29

batch(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: at(1), atq(1), atrm(1), cron(8), kill(1), ps(1), sh(1).

STANDARDS CONFORMANCE
This commmand conforms to the XPG4 Version 2 specification with extensions, except for the
following features:

• Mail notification does not occur.

• The SHELL and TZ environment variables are not used.

1−30 Hewlett-Packard Company 527188-021

User Commands (a - b) bc(1)

NAME
bc - Arbitrary-precision arithmetic language processor

SYNOPSIS
bc [-cl] [file ...]

The bc command is an interactive program that provides unlimited precision arithmetic. It is
a preprocessor for the dc command.

FLAGS
-c Compiles file, but does not invoke dc.

-l Includes a library of mathematical functions and initializes scale to 20, instead of the
default of 0 (zero).

DESCRIPTION
The bc command invokes dc automatically, unless the -c (compile only) flag is specified. If the
-c flag is specified, the output from bc goes to the standard output.

The bc command lets you specify an input and output base in decimal, octal, or hexadecimal
with the ibase and obase keywords (the default is decimal). The command also has a scaling
provision for decimal point notation through the scale keyword. The syntax for bc is similar to
that of the C language.

The bc command takes input first from the specified file. This input file can contain additional
functions besides internal functions such as sqrt and length, and functions included in the math
library. When bc reaches the end of the input file, it reads standard input.

The following are valid items that can be used in the input file and for standard input. In the fol-
lowing description of syntax for bc, letter means one of the ASCII letters a-z.

The combination of a \ (backslash) character immediately followed by a newline character
delimits lexical tokens with the following exceptions:

• When it is interpreted as a literal newline character in STRING tokens

• When it is ignored as part of a multiline NUMBER token

Comments
Comments are enclosed in /* and */.

Names
Simple variables: letter

Array elements: letter[expression]

The words ibase, obase, and scale

Other Operands
Arbitrarily long numbers with optional sign and decimal point.

(expression)

sqrt (expression)

length (expression) Number of significant decimal digits

scale (expression) Number of digits to right of decimal point

letter (expression,...,expression)

527188-021 Hewlett-Packard Company 1−31

bc(1) OSS Shell and Utilities Reference Manual

Operators
+ - * / % ˆ (% is remainder; ˆ is power)

++ -- (prefix and suffix; apply to names)

== <= >= != <>

= =+ =- =* =/ =% ˆ=

+= -= *= /= %=

Statements
expression

{statement;...;statement}

if (expression) statement

while (expression) statement

for (expression;expression;expression) statement

(null statement)

break

quit

The statement following a for or while statement must begin on the same line.

Function Definitions
define letter (letter,...,letter) {

auto letter,...,letter
statement;...statement
return (expression)

}

Functions in -l Math Library
s(x) sine

c(x) cosine

e(x) exponential

l(x) log

a(x) arctangent

j(n,x) Bessel function

General Syntax
All function parameters are passed by value.

The value of a statement that is an expression is displayed unless the main operator is an assign-
ment. A semicolon or newline character separates statements. Assignments to scale control the
number of decimal places printed on output and maintained during multiplication, division, and
exponentiation. Assignments to ibase or obase set the input and output number radix, respec-
tively.

The same letter may refer to an array, a function, and a simple variable simultaneously.
Automatic variables are pushed down during function calls. All other variables are global to the
program. When you use arrays as function parameters, or define them as automatic variables,
empty brackets must follow the array name.

1−32 Hewlett-Packard Company 527188-021

User Commands (a - b) bc(1)

All for statements must have all three expressions.

The quit statement is interpreted immediately, not when bc is evaluating statements.

EXAMPLES
When you enter bc expressions directly from the keyboard, press the End-of-File key sequence to
end the bc session and return to the shell command line.

1. To use bc as a calculator, proceed as follows:

Enter:

bc
1/4

The system responds as follows:

0

Enter:

scale = 1 /* Keep 1 decimal place */
1/4

The system responds as follows:

0.2

Enter:

scale = 3 /* Keep 3 decimal places */
1/4

The system responds as follows:

0.250

Enter:

16+63/5

The system responds as follows:

28.600

Enter:

(16+63)/5

The system responds as follows:

15.800

Enter:

71/6

The system responds as follows:

11.833

527188-021 Hewlett-Packard Company 1−33

bc(1) OSS Shell and Utilities Reference Manual

Enter:

1/6

The system responds as follows:

0.166

You may type the comments (enclosed in /* */), but they are provided only for your
information. The bc command displays the value of each expression when you press
<Return>, except for assignments. Exit by typing quit followed by <return>

2. To convert numbers from one base to another, proceed as follows:

Enter:

bc
obase = 16 /* Display numbers in Hexadecimal */
ibase = 8 /* Input numbers in Octal */
12

The system responds as follows:

A

Enter:

123

The system responds as follows:

53

Enter:

123456

The system responds as follows:

A72E

3. To write and run C-like programs, proceed as follows:

Create the following file prog.bc:

/* compute the factorial of n */

define f(n) {
auto i, r;

r = 1;
for (i=2; i<=n; i++) r =* i;
return (r);

}

Note that the statement following a for or while statement must begin on the same line.

1−34 Hewlett-Packard Company 527188-021

User Commands (a - b) bc(1)

Enter:

bc -l prog.bc

This statement interprets the bc program saved in prog.bc, then reads more bc command
statements from standard input (the keyboard). Starting the bc command with the -l flag
makes the math library available. This example uses the e (exponential) function from
the math library, and f is defined in the program prog.bc.

Enter:

e(2) /* e squared */

The system responds as follows:

7.38905609893065022723

Enter:

f(5) /* 5 factorial */

The system responds as follows:

120

Enter:

f(10) /* 10 factorial */

The system responds as follows:

3628800

4. To convert an infix expression to Reverse Polish Notation (RPN), enter:

Enter:

bc -c
(a * b) % (3 + 4 * c)

The system responds as follows:

lalb* 3 4lc*+%ps.

This statement compiles the bc infix-notation expression into an expression that the dc
command can interpret. dc evaluates extended RPN expressions. In the compiled out-
put, the lowercase l before each variable name is the dc subcommand to load the value of
the variable onto the stack. The p displays the value on top of the stack, and the s. dis-
cards the top value by storing it in register . (dot). You can save the RPN expression in a
file for dc to evaluate later by redirecting the standard output of this command.

FILES
/usr/lib/lib.b Mathematical library.

/bin/dc Desk calculator proper; uses bc as preprocessor.

RELATED INFORMATION
Commands: dc(1).

527188-021 Hewlett-Packard Company 1−35

bg(1) OSS Shell and Utilities Reference Manual

NAME
bg - Causes processes to run in the background

SYNOPSIS
bg [job ...]

DESCRIPTION
The bg command causes stopped processes specified as job to run in the background. If no pro-
cess is specified as job, the most recently stopped process is restarted as a background process.
(See Jobs for a description of the format of job.)

EXAMPLES
1. The following command restarts, as a background process, the previously stopped job

whose job number is 149.

bg %149

NOTES
The bg command is a shell built-in command. It differs from the regular commands in that it does
not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: jobs(1), sh(1).

1−36 Hewlett-Packard Company 527188-021

User Commands (a - b) break(1)

NAME
break - Exits from for, while, until, or select loop

SYNOPSIS
break [n]

DESCRIPTION
Exits from the enclosing for, while, until, or select loop, if any. If n is specified, breaks at the
nth enclosing level.

EXAMPLES
1. The following shell script demonstrates the use of the break command to exit from a

loop:

for x in 1 2 3 4 5
do
if [$x != 3]
then
print $x
else
break
fi
done

EXIT VALUES
If an invalid argument is specified, the exit value is greater than 0 (zero).

NOTES
• Parameter assignment lists that precede the command remain in effect when the com-

mand completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The break command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

527188-021 Hewlett-Packard Company 1−37

Section 2. User Commands (c)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the letter c.

527188-021 Hewlett-Packard Company 2−1

c89(1) OSS Shell and Utilities Reference Manual

NAME
c89 - Compiles C and C++ programs using the native compilers

SYNOPSIS
c89

[-c | -Wnolink]
[[-D name[="value"]] ...] [-E] [-g]
[-I directory ...]
[-L directory ...] [-o outfile] [-O] [-s]
[-U name]
[-Wallow_cplusplus_comments]
[-Wallow_extern_explicit_instantiation]
[-Wansistreams]
[-Wbasename]
[-WBdllsonly | -WBdynamic | -WBstatic]
[-Wbitfield_container=value]
[-Wbuild_neutral_library]
[-WC]
[-Wc99lite]
[-Wcall_shared | -Wnon_shared | -Wshared]
[-Wcodecov]
[-Wcolumns=c]
[-Wcplusplus]
[-WDname[="value"]]
[-Wdryrun]
[-Weld=args]
[-Weld_obey=file]
[-Wenv=env]
[-Werrors=e]
[-W[no]extensions]
[-Wextern_data={no_gp | gp_ok}]
[-Wfieldalign=align]
[-Wforce_static_typeinfo]
[-Wforce_static_vtbl]
[-Wforce_vtbl | -Wsuppress_vtbl]
[-Wglobalized]
[-WH]
[-Wheap=n[b | w | p]
[-Whelp | -Wusage]
[-Whighpin={on | off}]
[-Whighrequesters={on | off}]
[-WIEEE_float | -WTandem_float]
[-Wilp32 | -Wlp64]
[-W[no]include_whole]
[-W[no]inline]
[-Winline_compiler_generated_functions]
[-Winline_limit=n]
[-Winline_string_literals]
[-W[no]innerlist]
[-W[no]inspect]
[-Wkr]

[-Wld="args"]
[-Wld_obey="file"]
[-Wlines=l]

2−2 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

[-W[no]list]
[-WM]
[-W[no]map]
[-Wmigration_check]
[-Wmigration_check=32to64]
[-WmoduleCatalog="catalog_spec"]
[-WmoduleGroup[="[group_spec"]]]
[-WmoduleSchema="schema_spec"]
[-WmoduleTableSet[="[tableset_spec"]]]
[-WmoduleVersion[="[version_spec"]]]
[-Wmultibyte_char]
[-Wmxcmp[="args"]]
[-Wmxcmp_add="args"]
[-Wmxcmp_files="file"[,...]]
[-Wmxcmp_querydefault="attr_name=attr_value"[,...]]
[-Wnld="args"]
[-Wnld_obey="file"]
[-Wnoexceptions]
[-Wnomain]
[-Wnostdinc]
[-Wnostdlib]
[-WOlimit=value]
[-Woptfile="filename"]
[-Woptimize="opt"]
[-W[no]optional_lib]
[-W[no]overflow_traps]
[-WP]
[-Wpool_string_literals]
[-Wprofdir=name]
[-Wprofgen]
[-Wprofuse[=filename]]
[-Wr]
[-W[no]reexport]
[-Wrefalign=ref]
[-WRefMemFuncsOnly]
[-W[no]remarks]
[-Wrunnamed]
[-WRVU={g-series-rvu | h-series-rvu}]
[-W[no]saveabend]
[-Wsavetemps]
[-Wsql[="args"]]
[-Wsqlcomp[="args"]]
[-Wsqlmx[="args"]]
[-Wsqlmxadd[="args"]]
[-Wsrl]
[-W[no]stdfiles]
[-W[no]suppress]
[-Wsyntax]
[-Wsystype={guardian | oss}]

[-Wtarget=platform]
[-Wtimestamp=value]
[-Wu="symbol_name"]
[-Wv]

527188-021 Hewlett-Packard Company 2−3

c89(1) OSS Shell and Utilities Reference Manual

[-Wverbose]
[-Wversion1 | -Wversion2 | -Wversion3]
[-Ww]
[-W[no]warn[=w [,w] ...]]
[-Wx]
operand . . .

FLAGS
-c | -Wnolink

Compiles the specified C or C++ source files but suppresses linking, even if another
flag specifies linking.

You cannot specify the -c flag if you use the -Wshared flag.

-D name[="value"]
Defines the preprocessor symbol name as value. It is equivalent to a #define directive
in the source. If no value is given, name is defined as 1. The -D flag has lower pre-
cedence than the -U flag. Thus, if name is specified in both a -U and a -D flag, name is
undefined regardless of the order of the flags.

Use this flag to define compiler feature-test macros.

When the NonStop SQL/MX preprocessor is invoked, all -D specifications are
automatically passed to the preprocessor as the preprocessor’s -d options.

-E Preprocesses the specified source files. No compilation or linking is performed. Out-
put is sent to the standard output file and contains #line directives.

If the -Wsql flag is specified, embedded NonStop SQL/MP statements are processed.
If the -Wsqlmx flag is specified, embedded NonStop SQL/MX statements are pro-
cessed.

The -WH and -WM flags override the -E flag.

-g Produces in the object or executable files information (symbol tables) used for sym-
bolic debugging.

-I directory
Adds directory to the list of directories searched to locate #include files with relative
pathnames. (Relative pathnames do not begin with a slash, ’/’). #include filenames
enclosed in double quotes are searched for first in the directory of the file with the
#include directive, then in directories named with -I flags, and last in the standard
include directories. #include filenames enclosed in angle brackets (<>) are searched
for first in directories named with -I flags and then in the standard include directories.
Refer to the Standard Include Directories subsection for details.

-L directory
Adds directory to the list of directories searched to locate libraries specified by
operands of the form -l library. See the Operands subsection for details.

-o outfile Uses the pathname outfile instead of the default pathname a.out for the name of the
output object file.

If only one source file is specified and the -c flag is specified, the generated output is
placed into outfile. Only one -o flag can be specified. The file specified cannot be an
SQL preprocessing output file.

If a single source file is compiled and linked in one invocation of c89, and if the outfile
is the same name as that of the input object file, c89 issues a warning message and
places the output in a temporary file.

2−4 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

-O Sets the compiler to optimization level 2. This flag is equivalent to a -Woptimize=2
flag.

-s Strips symbolic information not required for proper execution from object and execut-
able files. The resulting object file cannot be debugged using a symbolic debugger.
This flag is ignored if the -Wr flag is also specified.

-U name Removes any initial definition of the preprocessor symbol name. The -U flag has
higher precedence than the -D flag. If name is specified in both a -U and a -D flag,
name is undefined regardless of the order of the flags.

-Wallow_cplusplus_comments
Directs the compiler to allow comments that use the C++ comment style in C source
files.

-Wallow_extern_explicit_instantiation
Allows an extern storage attribute to be applied to an explicit template instantiation.
This flag suppresses the instantiation of the template. If this flag is omitted, the tem-
plate is instantiated.

-Wansistreams
Generates a Guardian program that opens text files as type 180 instead of type 101 if
-Wsystype=guardian is specified. (By default Guardian programs open text files as
type 101.) This flag is ignored when -Wsystype=oss is used. OSS programs can open
text files only as type 180.

-Wbasename
Directs the compiler to place only the last part of the source file name, known as the
basename, into the dynamic information (DYN) file when the instrumented process
runs.

If you use the -Wbasename option and the -Wprofgen option to compile a source file,
you also must use the -Wbasename option when you use the -Wprofuse option to
compile this source file. When you use the -Wbasename option, the source file is not
required to be in the same location as it was when you compiled the file using the
-Wprofgen option, but the basename must be the same.

If you did not use both the -Wbasename and the -Wprofgen options when you com-
piled this source file, do not specify the -Wbasename flag when you compile this
source file with the -Wprofuse flag. If you do not use the -Wbasename flag, when you
compile the source file and specify the -Wprofuse flag, the source file must be in the
same location as it was when you used the -Wprofgen flag to compile the file.

This flag is valid only for TNS/E-targeted compilations. For more information about
profile-guided optimization and the rules for using the -Wbasename flag, see the Code
Profiling Utilities Manual.

-WBdllsonly
Tells the ld or eld linker to limit searches to position-independent code (PIC) files that
are dynamic-link libraries (DLLs) when resolving the file names specified for the -l
operands and -L flags.

If a file name is qualified, the linker searches for a DLL with that name.

If a filename is unqualified, in each search path, the linker first searches for a DLL with
the file name as specified in the -l operand or -L flag. If the linker cannot find a DLL,
the file name is unqualified, and the search path is not in the Guardian file system (/G),
then the linker prefixes lib and suffixes .so to the file name and searches again. If the
linker still cannot find the DLL, it searches the path again with the same prefix but with

527188-021 Hewlett-Packard Company 2−5

c89(1) OSS Shell and Utilities Reference Manual

.srl as the suffix. For more information on search paths, see the Finding Libraries
subsection of the ld(1) or eld(1) reference page under DESCRIPTION.

When a DLL cannot be found, the linker issues an error message unless its
-allow_missing_libs flag is specified.

The -WBdllsonly, -WBdynamic, and -WBstatic flags are search control toggles.
Multiple flags can be specified in a single linker invocation; the behavior specified
remains in effect until another flag in the set is specified. Thus, you can search for both
DLLs and archive files for some -l operands and -L flags and search for just archive
files for others. The default library search control is -WBdynamic.

-WBdynamic
Specifies that the linker utility uses dynamic linking when searching for libraries
specified in subsequent operands of the form -l library. Dynamic linking is in effect
until a -WBstatic flag is specified. -WBdynamic is the default setting. Refer to the
Dynamic and Static Linking subsection for details.

-WBstatic
Specifies that the linker utility uses static linking when searching for libraries specified
in subsequent operands of the form -l library. Static linking is in effect until a
-WBdynamic flag is specified. -WBdynamic, not -WBstatic, is the default setting.
Refer to the Dynamic and Static Linking subsection for details.

-Wbitfield_container=value
Directs the compiler to accept larger and more flexible bit fields where value is one of
the following:

int Directs the compiler to pack bit fields into 32-bit ints. In this mode,
the compiler will not accept bit fields larger than 32 bits. The compiler
returns an error for any bit field declared to be of type long long
(unless the -Wextensions flag is also specified). The compiler returns
warnings for other non-standard integer types.

long Directs the compiler to pack bit fields whose base type is larger than
32-bits into 64-bit ints. All other bit fields will be packed into 32-bit
ints. In this mode, the compiler accepts the long long and long bit-
field types and up to 64 bits in length. The compiler returns warnings
for other non-standard integer types.

all Directs the compiler to pack all bit fields into ints defined by their base
type. The compiler will accept any integer type for a bit field. This
mode provides additional compatibility with the various methods other
compilers may use to pack bit fields.

The default value is int except when the -Wlp64 flag is specified, in which case the
default becomes long.

Note: The above rules apply to bit fields declared in auto or platform (the
default) structs. Any bit field declared in a shared2 struct will continue
to follow shared2 rules. Bit fields in shared2 structs can never be larger
than 32-bits. Bit fields declared in shared8 structs can be larger than
32-bits (if the value is long or long), but the compiler will emit a warn-
ing. Bit fields in shared8 structs will be packed as before except that bit
fields larger than 32-bits will be packed into 64-bit containers.
This flag is supported on systems running J06.13 or later J-series RVUs
or H06.24 or later H-series RVUs only.

2−6 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

-Wbuild_neutral_library
Specifies that the compiler should issue an error message when it encounters any
exported or imported interface in a DLL that depends on types marked as being incom-
patible with the neutral C++ dialect.

This flag is valid only for TNS/E-targeted C++ compilations and only when the -Wver-
sion2 or -Wversion3 flag is also used.

-WC Retains comments when preprocessing files. Comments are removed from preproces-
sor output by default.

-Wc99lite
Enables selected c99 features. This flag:

• Must not be used with the -Wsql or the Wkr flag.

• Has an effect only when you compile C source code. It has no effect when you
compile C++ source code and no diagnostic message is issued when you use
this flag when you compile C++ source code.

• Has an effect only if you also specify either the -Wtarget=ipf flag or the
-Wtarget=tns/e flag. If you specify the -Wtarget=mips or the -Wtarget=tns/r
flag, the compiler issues a warning message.

If you want to use c99 features not offered through the -Wc99lite option, you can use
the c99 utility. For more information about c99 utility, see the c99(1) reference page.

-Wcall_shared | -Wnon_shared | -Wshared
Directs the compiler to create a specific type of object file:

-Wcall_shared Specifies that the object file should be a PIC file; the ld or eld linker is
invoked. If the -c flag is also specified, the file is a linkfile. Otherwise,
the file is an executable object file (loadfile).

This is the default behavior for a TNS/E-targeted compilation.

You cannot use this flag if you use the -Wsrl flag.

-Wnon_shared
Specifies that the object file should not be a PIC file; the nld linker is
invoked. You can use this flag only for a TNS/R-targeted compilation;
this flag is ignored when specified for a TNS/E-targeted compilation.

This is the default behavior for a TNS/R-targeted compilation.

-Wshared Specifies that the file should be a PIC DLL; the ld or eld linker is
invoked. You cannot use this flag if you use the -c or -Wsrl flag.

-Wcodecov
Directs the compiler to create an instrumented object file and to create or add to an
existing SPI file. This flag has an effect only if you also specify either the
-Wtarget=ipf flag or the -Wtarget=tns/e flag.

The first time the -Wcodecov flag is used to compile a program, the compiler creates a
Static Profiling Information (SPI) file. This file is one of the input files for the Code
Coverage tool. If the program is compiled in an OSS directory:

• The default name for the SPI file is pgopti.spi.

527188-021 Hewlett-Packard Company 2−7

c89(1) OSS Shell and Utilities Reference Manual

• If the default file is not write-accessible, the name of the SPI file created is
tpopti.spi.

• A lock file called pgopti.spl. When compilation is complete, the compiler
deletes this file.

If the program is compiled in a Guardian directory:

• The default name for the SPI file is pgospi.

• If the default file is not write-accessible, the name of the SPI file created is
tpgospi.

• A lock file called pgospl. When compilation is complete, the compiler deletes
this file.

If the SPI file already exists when the program is compiled with the -Wcodecov flag,
the compiler updates or adds information to the existing SPI file. If more than one SPI
file exists for the same program, you must concatenate the files manually before you
can use the resulting file as input to the Code Coverage Tool.

For more information about the Code Coverage Tool, see the Code Profiling Utilities
Manual.

-Wcolumns=c
Specifies the maximum number of columns in input source files to process. c is in the
range 20 through 32767. Text in columns beyond column c is ignored.

-Wcplusplus
Directs c89 to assume that files with a .c or .i suffix contain C++ source code, and
defines the feature-test macro _ _cplusplus. If linking occurs, this flag directs the
linker utility to search the C++ standard run-time library.

If this flag is omitted and none of the operand filenames end in .C, .cpp, .cc, or .cxx,
then source files are compiled as C files only and, if -c is not specified, are only linked
with the C standard library. See Standard Libraries for details.

-WDname[="value"]
Specifies a macro that is defined only during the NonStop SQL/MX preprocessing step.
See the HP NonStop SQL/MX Programming Manual for C and COBOL for details
about its -d flag=[value] option. This flag can be specified more than once.

Note that all -D values that are supplied to c89 are automatically passed as -d options
to the NonStop SQL/MX preprocessor.

This flag is ignored unless the -Wsqlmx flag is also specified.

-Wdryrun
Verifies the syntax and semantics of flags and operands specified to c89 and enables the
-Wv flag. No compilation system components are run.

-Weld="args"
Passes the arguments specified in args to the eld utility after any other arguments are
passed. This flag is valid only for TNS/E-targeted compilations.

Use this flag to pass arguments to eld when creating a PIC file. c89 does not check the
validity of eld arguments.

2−8 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

You can only use this flag when you use one of the following flags:

-Wcall_shared or -Wshared

This flag is ignored when the command does not initiate linking.

-Weld_obey="file"
Directs the eld utility to read additional command-line arguments from the command
file specified in the file argument. The arguments are processed as if they had been
passed directly to eld in place of file. c89 does not verify the existence or readability
of file.

The -Weld_obey flag is valid only for TNS/E-targeted compilations. You can only use
this flag if you use one of the following flags:

-Wcall_shared or -Wshared

This flag is ignored when the command does not initiate linking.

-Wenv=env
Specifies the run-time environment. env can be one of common, embedded, library,
or libspace. The default value is common.

-Werrors=e
Stops compiling when e errors have been encountered.

-W[no]extensions
Enables [disables] HP extensions. If -Wextensions is specified, c89 also defines the
_TANDEM_SOURCE feature-test macro. The default value is -Wnoextensions.

-Wextern_data={no_gp | gp_ok}
Determines the addressing method for external data references (objects declared
extern). The default value is no_gp. This flag applies to TNS/R-targeted compilations
only.

Setting gp_ok specifies that external data references use GP-relative addressing.
GP-relative addressing can increase program performance. gp_ok cannot be specified
for native user libraries or when the -Wcall_shared or -Wshared flag is used.

-Wfieldalign=align
Specifies the field alignment for structures. align can be one of auto, cshared2,
shared2, shared8, or platform. The default value is auto. You cannot specify a
struct tag with this flag.

-Wforce_static_typeinfo
Specifies that the typeinfo variables are to be static in the object file. This flag applies
only to variables that are not part of an exported or imported class.

-Wforce_static_vtbl
Specifies that the virtual function tables that are created by the compiler are to be static
in the object file and are not exported. This flag applies only to variables that are not
part of an exported or imported class.

-Wforce_vtbl | -Wsuppress_vtbl
Controls whether virtual function tables are created in cases where the compiler cannot
determine the need for the tables.

The virtual function table for a class is defined in a compilation if the compilation con-
tains a definition of the first noninline, nonpure virtual function of the class. For
classes that contain no such function, the default behavior is to define the virtual func-
tion table (but to define it as a local static entity).

527188-021 Hewlett-Packard Company 2−9

c89(1) OSS Shell and Utilities Reference Manual

The flag -Wsuppress_vtbl suppresses the definition of the virtual function tables for
such classes, and the flag -Wforce_vtbl forces the definition of the virtual function
table for such classes. The -Wsuppress_vtbl flag is valid only for C++ compilations.

The -Wforce_vtbl flag forces definition of virtual function tables in cases where the
heuristic used by the compiler to decide on definition of virtual function tables pro-
vides no guidance. The -Wforce_vtbl flag differs from the default behavior in that it
does not force the definition to be local. The -Wforce_vtbl flag is valid only for C++
compilations.

-Wglobalized
Specifies that the code generated by the compiler is preemptable. By default, com-
pilers generate code that is not preemptable. Preemptable code allows named refer-
ences in a DLL to resolve to externally-defined code and data items instead of to
resolve to its own internally-defined code and data items. Preemptable code is less
efficient than code that is not preemptable, and is only needed in a few instances when
creating a DLL.

This flag has an effect only if you also specify either the -Wtarget=ipf flag or the
-Wtarget=tns/e flag.

-WH Preprocesses the specified source files and prints the names of header files, as opened,
to the standard error file. No compilation or linking is performed. Unlike the -WP
flag, no preprocessed files with .i (for C) or .ii (for C++) suffixes are produced.

The -WH flag overrides the -E and -WP flags.

-Wheap=n[b | w | p]
Specifies the value that the linker should use for the HEAP_MAX attribute of the out-
put file. n can be any positive value that gives a size valid for the NonStop server node
on which the file is used.

The size can be specified in units of:

b Bytes; this is the default unit

w Words

p Pages

-Whelp | -Wusage
Displays help information on how to run c89. No compilation system components are
run.

-Whighpin={on | off }
Directs the linker utility to set the HIGHPIN attribute to on or off in the output object
files. This attribute specifies whether the object file will run at a high PIN or a low
PIN. If -Wsystype=guardian is used, the default setting is -Whighpin=off. If
-Wsystype=oss is used, the default setting is -Whighpin=on. This flag is set only if an
executable object file is produced.

-Whighrequesters={on | off }
Directs the linker utility to set the HIGHREQUESTERS attribute to on or off in the
output object file. This attribute specifies whether the object file supports requests
from requesters running at a high PIN. The object file must contain the main() func-
tion. If -Wsystype=guardian is used, the default setting is -Whighrequesters=off. If
-Wsystype=oss is used, the default setting is -Whighrequesters=on. This flag is set
only if an executable object file is produced.

2−10 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

-WIEEE_float | -WTandem_float
Specifies the floating-point format to be used by the compiler for values of type float or
type double. The differences between the two formats are summarized in the float(4)
reference page.

IEEE floating-point values can include NaN and infinity, and the sign of 0.0 (zero) can
be either positive or negative. Refer to the fp_class(3) reference page for a description
of IEEE value classes.

Guardian functions are available to convert between floating-point formats. For a dis-
cussion of floating-point conversions, see to the Guardian Programmer’s Guide.

On systems with processors that support IEEE Std 754-1985 floating-point format data,
the compiler uses that format when -WIEEE_float is specified. Specifying
-WTandem_float selects HP’s proprietary Tandem floating-point format.

On systems without processors that support IEEE Std 754-1985 floating-point format
data, the -WIEEE_float flag is not available. Use of the -WIEEE_float flag on such
systems produces an error diagnostic.

The -WIEEE_float flag cannot be used when the -Wsql or -Wsqlcomp flag is
specified.

The default setting is -WTandem_float for TNS/R-targeted compilations and
-WIEEE_float for TNS/E-targeted compilations.

-Wilp32 | -Wlp64
Specifies the data model to be used: 32-bit (ilp32) or 64-bit (lp64). The default data
model is ilp32. The following c89 options are not allowed with -Wlp64: -Wsql,
-Wsystype=guardian, or -Wversion2. For more information about data models, see
the C/C++ Programmer’s Guide.

-W[no]include_whole
Tells the ld or eld linker whether to include in the loadfile all linkable archive members
of all archive libraries encountered after this flag is specified.

Specifying -Winclude_whole begins this linking action. When -Wnoinclude_whole
behavior is in effect, archive searches are controlled by the existence of undefined
symbols. Archives are searched in the order specified on the command line. Symbols
are marked as undefined by compilers or by the user through the -Wu flag or the ld
linker -u flag. When an archive member is found that resolves an undefined symbol,
the member´s symbols are merged into the external symbol table for the loadfile being
created. After the merge, the undefined symbol that triggered the merge is resolved
(marked as defined). The same merge might resolve other undefined symbols or result
in more undefined symbols.

You can stop the linking action of -Winclude_whole by specifying the
-Wnoinclude_whole flag later in the command line or an obey file.

These flags can be specified as many times as needed in the command stream. Provid-
ing either flag overrides the current setting, so that the linker actions can be controlled
on a library-by-library basis.

The default setting is -Wnoinclude_whole.

-W[no]inline
Enables [disables] the generation of inline code for C++ functions declared inline and
for C++ member functions declared within their class. This flag does not affect C code
nor does the compiler generate inline functions for other reasons. The default setting is
-Winline.

527188-021 Hewlett-Packard Company 2−11

c89(1) OSS Shell and Utilities Reference Manual

-Winline_compiler_generated_functions
Allows all compiler-generated functions to be inline. Specifying this flag does not
guarantee that a function can be inlined. If this flag is omitted, compiler-generated
functions are not inlined and are exported.

-Winline_limit=n
Specifies the maximum number of lines that the compiler can inline, where n is an
integer in the range 0 through 2147483647. Specifying the value 0 (zero) means there
is no limit.

The -Winline_limit flag is valid only for TNS/R-targeted C++ compilations.

-Winline_string_literals
Allows the compiler to generate an inline function when a function takes the address of
a string literal. Specifying this flag does not guarantee that a function can be inlined.
If a function is inlined by this specification, its program will not conform to section
7.1.2 of the 1998 ISO C++ standard.

-W[no]innerlist
Enables [disables] the generation of instruction code mnemonics in the listing text
immediately following each corresponding statement. This flag is ignored unless
-Wnosuppress is specified. The default setting is -Wnoinnerlist.

-W[no]inspect
Designates [does not designate] the symbolic debugger as the default debugger for the
output object file. Use this flag with the -g flag. The default setting is -Wnoinspect.
This flag is set only if an executable object file is produced.

-Wkr Directs the C compiler to process C source files according to the traditional Kernighan
and Ritchie C or Common C rules, instead of according to ISO/ANSI Standard C.

-Wld="args"
Passes the arguments specified in args to the ld utility after any other arguments are
passed. This flag is valid only for TNS/R-targeted compilations.

Use this flag to pass arguments to ld when creating a PIC file. c89 does not check the
validity of ld arguments.

You can only use this flag when you use one of the following flags:

-Wcall_shared or -Wshared

This flag is ignored when the command does not initiate linking.

-Wld_obey="file"
Directs the ld utility to read additional command-line arguments from the command
file specified in the file argument. The arguments are processed as if they had been
passed directly to ld in place of file. c89 does not verify the existence or readability of
file.

This flag is valid only for TNS/R-targeted compilations. This flag does not invoke ld.
If the ld utility is not invoked, this flag is ignored. Use this flag to pass arguments to ld
when creating a PIC TNS/R native program or dynamic-link library (DLL).

You can only use this flag if you use one of the following flags:

-Wcall_shared or -Wshared

This flag is ignored when the command does not initiate linking.

2−12 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

-Wlines=l
Specifies the maximum number of lines on a listing page, if a listing is generated. l
must be in the range 10 through 32767.

-W[no]list
Temporarily enables [disables] the generation of listing text. Both the -Wlist and
-Wnolist flags are ignored unless -Wnosuppress is specified. The default setting is
-Wlist.

-WM Preprocesses the specified source files and prints a list of files that the specified source
files depend on to the standard output file. The list can be used with the make utility.
No compilation or linking is performed. Unlike the -WP flag, no preprocessed files
with .i (for C) or .ii (for C++) suffixes are produced.

-W[no]map
Enables [disables] the generation of identifier maps in the listing. This flag is ignored
unless the -Wnosuppress flag is specified. The default setting is -Wnomap.

-Wmigration_check
Directs the compiler to perform a migration check on C++ version 2 source files
specified on the command line. The check uses the compiler and header files provided
in Release Version Update (RVU) G06.20 and later to issue warnings where classes or
member functions are used that changed or became obsolete for C++ version 3.

This flag is only valid for C++ version 2 compiles; therefore, when this flag is
specified, the -Wversion2 flag must also be specified. When this flag is used, no other
compiler warning messages are output and no object file is produced.

If listings are not enabled, migration warnings are output only to the standard error file.
If listings are enabled, migration warnings are sent to both the standard error file and
the listing file.

-Wmigration_check=32to64
Directs the compiler to emit additional warnings that detect valid C/C++ code that
potentially may behave in an unexpected manner when code designed for ilp32 is com-
piled using the lp64 data model. The -Wmigration_check=32to64 flag does not
require the -Wlp64 flag.

-WmoduleCatalog="catalog_spec"
Specifies a NonStop SQL/MX module catalog name. The specified string is used only
if the input file does not contain an SQL/MX module directive or its module directive
does not specify a catalog name. The string cannot contain more than 128 characters.

This flag is valid only for preprocessor release 2.0 and newer.

-WmoduleGroup[="[group_spec"]]
Specifies a string for a NonStop SQL/MX module group specification to use as a prefix
to the module name. The specified string is used only if the input file does not contain
an SQL/MX module directive or its module directive does not specify a group name.
The string cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

-WmoduleSchema="schema_spec"
Specifies a NonStop SQL/MX module schema name. The specified string is used only
if the input file does not contain an SQL/MX module directive or its module directive
does not specify a schema name. The string cannot contain more than 128 characters.

This flag is valid only for preprocessor release 2.0 and newer.

527188-021 Hewlett-Packard Company 2−13

c89(1) OSS Shell and Utilities Reference Manual

-WmoduleTableSet[="[tableset_spec"]]
Specifies a string for a NonStop SQL/MX tableset specification to use as the first suffix
to the module name. The specified string is used only if the input file does not contain
an SQL/MX module directive or its module directive does not specify a tableset name.
The string cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

-WmoduleVersion[="[version_spec"]]
Specifies a string for a NonStop SQL/MX tableset specification to use as the second
suffix to the externally qualified module name that is written to the module file. The
string cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

-Wmultibyte_char
Directs the compiler to allow multibyte character sequences in comments, string
literals, and character constants.

-Wmxcmp[="args"]
Invokes the NonStop SQL/MX compiler to process any file operands of the form file.m
and any module definition files produced when the NonStop SQL/MX preprocessor
was invoked. If the C or C++ compilation detects any errors in the source code, the
NonStop SQL/MX compiler is not invoked.

If a value is supplied for args, it must be one of the following:

replace Directs the NonStop SQL/MX compiler to replace the existing module
or create a new one. The default action does not replace an existing
module.

warn Directs the NonStop SQL/MX compiler to generate a warning rather
than an error if a table does not exist at compilation time.

verbose Directs the NonStop SQL/MX compiler to display summary informa-
tion as well as error and warning messages.

If more than one value is specified for args, the values must be separated by commas
without white space.

If the -Wmxcmp flag is specified more than once, only the last occurrence has an
effect. If the -Wmxcmp flag is specified with any of the options that prevent compila-
tion (-E, -WH, -WM, -WP, or -Wsyntax), the -Wmxcmp flag is ignored.

If the -Wmxcmp flag is specified, the -Wsql and -Wsqlcomp flags cannot be used.

-Wmxcmp_add="args"
Specifies a string to pass to the NonStop SQL/MX compiler without validation or
change.

-Wmxcmp_files="file"[,...]
Passes MDF files specified to mxcmp in release 1 compilation mode. Passes all
specified files without the .m extension to mxCompileUserModule in release 2 com-
pilation mode.

-Wmxcmp_querydefault="attr_name=attr_value"[,...]
Specifies attribute settings (CONTROL QUERY DEFAULT settings) to pass to the
NonStop SQL/MX compiler. These attribute settings override any corresponding
entries in the SYSTEM_DEFAULTS table.

2−14 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

-Wnld="args"
Passes the arguments specified in args to the nld utility after any other arguments are
passed. This flag is valid only for TNS/R-targeted compilations.

This flag does not invoke nld. If the nld utility is not invoked, this flag is ignored. Use
this flag to pass arguments to nld when creating a TNS/R native non-PIC program or
user library. c89 does not check the validity of nld arguments.

You cannot use this flag if you use the following flags:

-Wcall_shared or -Wshared

-Wnld_obey="file"
Directs the nld utility to read additional command-line arguments from the command
file specified in the file argument. The arguments are processed as if they had been
passed directly to nld in place of file. c89 does not verify the existence or readability
of file.

This flag is valid only for TNS/R-targeted compilations. This flag does not invoke nld.
If the nld utility is not invoked, this flag is ignored. Use this flag to pass arguments to
nld when creating a TNS/R native non-PIC program or user library.

You cannot use this flag if you use any of the following flags:

-Wcall_shared or -Wshared

-Wnoexceptions
Disables support for exceptions and exception handling. This flag can improve appli-
cation performance by removing unneeded processing steps when an application does
not use exceptions or perform exception handling.

This flag affects only C++ programs compiled with the version 2 or version 3 dialect of
C++; it is ignored for C programs and C++ programs compiled using the version 1
dialect.

-Wnomain
Specifies that the object file should be linked without a main() function. This flag
prevents the compiler from specifying to the linker those modules and libraries that
provide customary run-time support for C or C++ programs. The resulting file has no
_MAIN function and no standard run-time libraries unless those are specified
separately in a file identified by the:

• -Weld_obey=file flag or in an obey file used by the eld utility

• -Wld_obey=file flag or in an obey file used by the ld utility

• -Wnld_obey=file flag or in an obey file used by the nld utility

-Wnostdinc
Suppresses the searching of the standard include directories to locate included files.
Refer to the Standard Include Directories subsection for details.

-Wnostdlib
Suppresses the searching of the standard library directories to locate libraries. Refer to
the Standard Library Directories subsection for details.

527188-021 Hewlett-Packard Company 2−15

c89(1) OSS Shell and Utilities Reference Manual

-WOlimit=value
Specifies the maximum decimal number of basic blocks of a routine that the global
optimizer will optimize. When a routine has more basic blocks than this number, it is
not optimized and a warning message is printed.

When the -WOlimit flag is specified, either the -O or -Woptimize=2 flags must also be
specified.

When the -WOlimit flag is not specified, an optimized routine can contain at most
2500 basic blocks. When a routine has more basic blocks than this number, it is not
optimized but a warning message is not printed.

The -WOlimit flag is only valid for TNS/R-targeted compilations.

-Woptfile="filename"
Specifies an optimizer file, which contains a list of functions that are to be optimized at
the level specified in the file. The optimizer file can raise or lower the optimize level
for the given functions.

Functions in the module that are not listed in the optimizer file are compiled at the level
given in the -Woptimize flag, or, if no -Woptimize flag is specified, at the default
optimize level.

Each line of the optimizer file can contain only one function name and the optimize
level (0, 1, or 2) that you want for that function. The function name must be the inter-
nal name used for linking; for C++ programs, the mangled name must be used.

-Woptimize=opt
Specifies the optimization level. opt must be 0, 1, or 2. The default value is 1. -O is
equivalent to -Woptimize=2.

-W[no]optional_lib
Indicates whether a library specified in the command stream should be considered
optional when the ld or eld linker creates a loadfile.

When -Wnooptional_lib behavior is in effect, any library specified in a -l or -lib flag is
included in the .liblist section of the loadfile being created. When -Woptional_lib
behavior is in effect, a specified library can be omitted from the .liblist section of the
loadfile being created if omitting it would not affect how symbolic references are
resolved.

These flags can be specified as many times as needed in the command stream. Provid-
ing either flag overrides the current setting, so that the linker actions can be controlled
on a library-by-library basis.

If a library is specified more than once, and at least one specification occurs when
-Wnooptional_lib is in effect, the library is included in the .liblist section of the
loadfile being created.

The default behavior is -Wnooptional_lib.

-W[no]overflow_traps
Enables [disables] overflow traps. The default setting is -Wnooverflow_traps.

-WP Preprocesses the specified source files. No compilation or linking is performed. Out-
put is placed in corresponding files with .i (for C) or .ii (for C++) suffixes in the current
working directory.

If the -Wsql flag is specified, embedded NonStop SQL/MP statements are processed.
If the -Wsqlmx flag is specified, embedded NonStop SQL/MX statements are pro-
cessed.

2−16 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

The -E, -WH, and -WM flags override the -WP flag.

-Wpool_string_literals
Specifies that, within a compilation unit, multiple occurences of the same string literal
should occupy the same storage space. This flag applies to C++ compilations only; it
is ignored when C++ is not used.

The default assignment for multiple occurrences of a string literal gives them separate
storage space.

-Wprofdir=name
Specifies the location in which to create the dynamic information (DYN) file when the
-Wprofgen flag directs the compiler to generate instrumented code. If the application
is to run in the Guardian environment, name must be a string that specifies a valid
Guardian subvolume. Otherwise, name must be a string that specifies a valid OSS
directory. If an invalid name is specified, no profiling information will saved.

If this flag is not specified, the DYN file is created in the default Guardian subvolume
or the current OSS working directory for the process.

If object files that were compiled with different profdir locations are linked together,
when the application is run, the DYN file is created in the location specified by one of
profdir flags. However, it is not possible to predict which profdir location will be
used.

This flag is valid only for TNS/E-targeted compilations. For more information about
profile-guided optimization, see the Code Profiling Utilities Manual.

-Wprofgen
Directs the compiler to generate instrumented code, used for profile-guided optimiza-
tion. All or part of an application can be instrumented by turning this flag on or off for
individual compilations of object files. These object files can be linked into programs
or DLLs.

Instrumented code references symbols defined in the public DLL named zpgodll.
When you link any program or DLL that contains instrumented code, the zpgodll DLL
must be specified at link time. The zpgodll DLL is automatically linked when you
specify the -Wcodecov or -Wprofgen flags.

When you use the -Wprofgen flag and you use the compiler to automatically invoke
the eld linker to build a program or DLL, the compiler passes the -l pgo option to eld.

HP recommends that you do not combine code that has been compiled with the
-Wcodecov flag with code that has been compiled with the -Wprofgen flag in the same
application.

This flag is valid only for TNS/E-targeted compilations. For more information about
profile-guided optimization, see the Code Profiling Utilities Manual.

-Wprofuse[=filename]
Directs the compiler to generate optimized code based on information in a dynamic
profiling information (DPI) file. This flag cannot be specified with either the
-Wcodecov or the -Wprofgen flags.

The DPI file is always in the current Guardian subvolume or OSS directory. You can
specify the name of the DPI file using the filename variable. If you do not specify a
filename, the name of the DPI file defaults to:

• pgopti.dpi if the compilation is done in an OSS directory that is not a Guardian
subvolume.

527188-021 Hewlett-Packard Company 2−17

c89(1) OSS Shell and Utilities Reference Manual

• pgodpi if the current OSS working directory is a Guardian subvolume.

This flag is valid only for TNS/E-targeted compilations. For more information about
profile-guided optimization, see the Code Profiling Utilities Manual.

-Wr Passes the -r option to the linker, which directs the linker to create a linkable object file
instead of an executable object file (the default).

-W[no]reexport
Tells the ld or eld linker whether to mark any library specified in a -l operand or -L flag
after this flag for reexport in its libList entry in the loadfile being created. Specifying
-Wnoreexport leaves the library unmarked; specifying -Wreexport marks the library.
Reexport is a run-time attribute that is used by the rld loader to decide what DLLs it
needs to load.

-Wnoreexport is the default action.

These flags can be specified as many times as needed in the command stream. Provid-
ing either flag overrides the current setting, so that the linker actions can be controlled
on a library-by-library basis.

-Wrefalign=ref
Specifies the global reference alignment for pointers. ref can be either 2 or 8. The
default value is 8.

-WRefMemFuncsOnly
Specifies that the compiler provide debug information for referenced member functions
only. If this flag is not used, the compiler provides debug information for all member
functions in a class. This flag can be used to reduce the size of the debug region. You
must also specify the -g flag for this flag to have an effect.

-W[no]remarks
Enables [disables] compiler remark messages. Remark messages are informative diag-
nostics that are less severe than warnings and errors. The default setting is -Wnore-
marks.

-Wrunnamed
Directs the linker utility to set the RUNNAMED ON attribute in the output object file.
This attribute specifies that the object file runs as a named process. The default attri-
bute setting is RUNNAMED OFF. The RUNNAMED ON attribute is set only if an
executable object file is produced.

-WRVU={g-series-rvu|h-series-rvu}
Sets the value of the _H_SERIES_RVU or the _G_SERIES_RVU feature test macro.
These feature test macros are used in HP NonStop standard header files to determine
whether declarations that depend on a specific RVU are available. No checking is per-
formed to determine whether the specified RVU actually exists. The default value for
this flag is the G-series RVU or the H-series RVU in which the compiler was last
released. If you are running the G-series version of the c89() command, specify the
equivalent H-series RVU. If you are running the G-series version of the c89() com-
mand, you can specify a G-series RVU for the -WRVU flag only. If you are running
the J-series or H-series version of the c89() command, you can specify either a G-
series RVU or an H-series RVU for the -WRVU flag.
If you specify a G-series RVU:

• You must specify the value in the form G06.nn—for example
-WRVU=G06.28.

2−18 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

• For a C module compilation, this option causes the compiler to issue an error,
instead of a warning, for implicitly declared functions.

If you specify an H-series RVU:

• You must specify the value in the form H06.nn—for example
-WRVU=H06.05.

• The -Wtarget flag is not required, but if you do specify it, you must specify
TNS/E for the value. If you specify TNS/E for the value of the -Wtarget flag,
but you specify a G-series RVU for the value of the -WRVU flag, the -WRVU
flag is ignored. If you specify TNS/R for the value of the -Wtarget flag, but
you specify an H-series RVU for the value of the -WRVU flag, the -WRVU
flag is ignored.

• For a C module compilation, this option causes the compiler to issue an error,
instead of a warning, for implicitly declared functions.

-W[no]saveabend
Specifies that a saveabend (process snapshot) file is [is not] created if the program ter-
minates abnormally. The default setting is -Wnosaveabend. This flag is meaningful
only if an executable object file is produced.

-Wsavetemps
Saves all temporary and intermediate files created by compilation system components.
Use the -Wv flag to display the filenames.

-Wsql[="args"]
Enables NonStop SQL/MP support when processing C source files. It has no effect on
C++ source files. The C source files are processed by the C SQL processor (sqlcfe).
Arguments specified in args are passed to the processor without being checked for
validity. This flag sets the -Wextensions flag. If this is a TNS/E-targeted compilation,
specifying this flag also implicitly sets -Wtandem_float.

The -Wsql flag cannot be used when the -WIEEE_float, -Wmxcmp, or -Wsqlmx flag
is specified.

-Wsqlcomp[="args"]
Invokes the NonStop SQL/MP compiler (sqlcomp) if not suppressed by another flag.
A file that has already been linked can be processed by the NonStop SQL/MP com-
piler; for example:

c89 -Wsqlcomp -c exefile

Arguments specified in args are passed to the NonStop SQL/MP compiler without
being checked for validity. NonStop SQL/MP compiler error messages are sent to the
standard error file. Note that C++ does not support embedded SQL.

-Wsqlmx[="args"]
Invokes the NonStop SQL/MX mxsqlc preprocessor before compilation for any file
operands of the form file.sql, file.ec, file.eC, file.ecpp, file.ecxx, or file.ec++. If an argu-
ment is specified, it must be one of the following:

listing Directs the preprocessor to write its diagnostic messages to a file
named file.eL in addition to the standard error file, where file is the
name of the primary source file.

527188-021 Hewlett-Packard Company 2−19

c89(1) OSS Shell and Utilities Reference Manual

noansi_varchars
Directs the preprocessor to turn off generation of ANSI varchar data.

This option is valid only for preprocessor release 1.8 and newer.

noline Directs the preprocessor to suppress generation of #line directives in
the preprocessed output source file that it creates.

null_terminate
Directs the preprocessor to terminate host variable strings with a
NULL before fetch operations into them.

This option is valid only for preprocessor release 1.8 and newer.

preprocess_only
Directs the preprocessor to suppress all steps after preprocessing.

This option is valid only for preprocessor release 2.0 and newer.

process_includes
Directs the SQL/MX preprocessor to process one level of include files.
This setting applies only to include files for SQL definitions; it does
not apply to include file processing performed by the C/C++ compiler.

refrain_r2 Directs the SQL/MX preprocessor to use only the rules and features
that apply to preprocessors prior to release 2.0. The default action is to
use only the rules and features that apply to preprocessors beginning
with release 2.0.

This option is valid only for preprocessor release 2.0 and newer.

IEEE_float Directs the SQL/MX preprocessor to use IEEE floating-point format
instead of Tandem floating-point format. This option is valid only for
preprocessor release 2.0 and newer.

For preprocessors before release 2.0, the default floating-point format
is the same as that of the c89 compiler (Tandem format on G-series
systems, IEEE format on H-series systems). For preprocessors begin-
ning with release 2.0, the default floating-point format is IEEE format.

If more than one argument is specified, the arguments must be separated by commas
without any white space.

The -Wsqlmx flag cannot be specified when the -Wsql or -Wsqlcomp flag is specified.

-Wsqlmxadd[="args"]
Specifies a string to pass to the SQL/MX preprocessor without validation or change.

-Wsrl Directs the compiler to generate a TNS/R native user library file (a special shared run-
time library, or SRL, file), instead of an executable file. If the -Wsrl flag is specified to
create a native user library, a -Wnld=-ul flag is also required.

This flag is valid only for TNS/R-targeted compilations. You cannot specify this flag if
you specify the -Wcall_shared or -Wshared flag.

-W[no]stdfiles
Generates a Guardian program that opens [does not open] the standard input, output,
and error files by default. You can specify this flag only if -Wsystype=guardian is
also specified. The default setting is -Wstdfiles.

2−20 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

-W[no]suppress
Disables [enables] the generation of listings. The listing is placed in a file in the
current working directory with the same name as the source, but with a suffix of .L.
The default setting is -Wsuppress.

-Wsyntax
Performs only a syntax check. No code is generated.

-Wsystype={guardian | oss }
Specifies the target execution environment. This flag selects definitions used during
compilation, program startup code, default libraries, and system routines used during
linking. The default setting is -Wsystype=oss. (To run files compiled for a Guardian
TNS/R target execution environment, you must set the file code to 700 with a FUP
ALTER filename, CODE 700 command from a TACL prompt. To run files compiled
for a Guardian TNS/E target execution environment, you must set the file code to 800
with a FUP ALTER filename, CODE 800 command from a TACL prompt.)

-Wtarget=platform
Specifies the system architecture for which code should be generated. The possible
values are:

-Wtarget=tns/r
Generate native mode code for a G-series (MIPS RISC) server. This is
the default specification on G-series nodes.

-Wtarget=tns/e
Generate native mode code for an H-series (Itanium EPIC) server.
This is the default specification on H-series nodes.

The -Wtarget flag is supported for systems running H-series RVUs only.

-Wtimestamp=value
Provides a creation timestamp for the NonStop SQL/MX preprocessor that is written to
the two output files created by the preprocessor. See the HP NonStop SQL/MX Pro-
gramming Manual for C and COBOL for details about the form for the value allowed
for the timestamp. If this option is specified more than once, only the last occurrence
has an effect. Note that c89 does not check that value is valid; it relies on the NonStop
SQL/MX preprocessor to validate this argument.

This flag is ignored unless the -Wsqlmx flag is also specified.

-Wu="symbol_name"
Tells the ld or eld linker to add symbol_name as an undefined symbol. This causes the
linker to search for this symbol in any archive libraries that are specified after this flag
on the command line or in an obey file.

The search constraint specified by the -Wu flag is overridden by use of the
-Winclude_whole flag.

-Wv Echoes the command line to the standard error file as each component of the compila-
tion system is run.

-Wverbose
Echoes the command line to the standard error file as each component of the compila-
tion system is run and causes additional output and listings from the SQL compiler to
be sent to the standard output file. SQL compiler error messages are sent to the stan-
dard error file.

527188-021 Hewlett-Packard Company 2−21

c89(1) OSS Shell and Utilities Reference Manual

-Wversion1 | -Wversion2 | -Wversion3
Specifies which C++ dialect to compile.

-Wversion1 specifies the original version, released with D40. This is the default for
systems with a Release Version Update (RVU) prior to G06.00. This value is only
valid for TNS/R-targeted C++ compilations.

-Wversion2 specifies the dialect released with D45. This version supports such
features as the bool type, namespaces, and exceptions.

-Wversion3 specifies the dialect released with G06.20. This version supports an
ANSI/ISO Standard C++ Library corresponding to ISO/IEC IS 14882. This is the
default for TNS/R systems beginning with RVU G06.00 and for TNS/E systems begin-
ning with RVU H06.01.

These three dialects are not compatible.

All modules of a C++ program must be compiled and linked using the same dialect.

-Ww Suppresses the printing of compiler warning messages. This flag overrides any
-Wwarn or -Wnowarn flags.

-W[no]warn[=w [,w] ...]
For each w value that appears, this flag enables [disables] the compiler warning mes-
sage specified by w.

Declaring a w value enables [disables] the specified message. Specifying -Wwarn
[-Wnowarn] by itself enables [disables] all compiler warning messages.

If -Wwarn=w is specified, then -Wnowarn must also be specified or the -Wwarn=w
flag is ignored. If -Wnowarn=w is specified, then -Wwarn need not be specified.

If white space is present after the commas, the list of warning message numbers should
be enclosed in quotation marks.

-Wwarn is the default specification for this flag. -Ww overrides the -W[no]warn flag.

-Wx Strips part of the symbol table from the output object file but keeps information neces-
sary for the object file to be used as input to a linker utility again. This flag is typically
used with -Wr.

Multiple instances of the -D, -I, and -U flags and of the -l operands can be specified.

The position of -l library operands within a list of flags affects the order in which the libraries are
searched.

The order of specifying the -I and -L flags is significant.

Quotation marks around string values in flags are optional but recommended to avoid errors
caused by shell substitutions or deletions.

Refer to the C/C++ Programmer’s Guide for details.

DESCRIPTION
c89 is a driver program for the native C and C++ language compilation system. This reference
page describes using c89 in the OSS environment.

c89 performs simple validation of the flags and operands from the arguments on its command
line and, depending on those arguments, invokes components of the language compilation sys-
tem. c89 does not verify the existence of files it passes to compilation system components. It
does verify that the operand suffix identifies a valid operand to pass to compilation system com-
ponents. c89 and the components it runs issue messages to the standard error file.

2−22 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

c89 performs the following steps:

1. If the corresponding -W flag is specified, invokes an SQL preprocessor to process any
embedded SQL statements in C or C++ source files, creating C only, C++ only, or
module definition files as appropriate.

2. Compiles any specified C and C++ source files or source files produced by Step 1 into
object files.

3. If the -Wmxcmp flag is specified, invokes the NonStop SQL/MX compiler to process
files created by Step 1 or specified as module definition files in the command.

4. Links the object files together with any libraries specified on the command line. (This
occurs if no flags that prevent linking are specified and the source files are compiled
without errors.)

5. If the -Wsqlcomp flag is specified, invokes the NonStop SQL/MP compiler to process
files created by Step 1 or specified in the command.

6. Writes an executable object file or library to the file specified by a -o flag (if present) or
to the file a.out.

Libraries can be:

• Archives, with a suffix of .a

• DLLs, with a suffix of .so

• TNS/R native user libraries

• TNS/R native SRLs, with a suffix of .srl

The default executable file in the Guardian file system is aout in the subvolume from which c89
is invoked.

If only a single source file is given and no flags that suppress linking are specified, then the file is
compiled into an object file and linked into an executable object file. If the executable file is
created successfully, the object file is removed.

c89 places object files (loadfiles) in the current working directory with the same base name as the
corresponding source file, but with a suffix of .o.

c89 also names several temporary or intermediate files that are created during the compilation
process. Like the output object file, c89 places these files in the current working directory. c89
removes these temporary or intermediate files unless the -Wsavetemps flag is specified.

If -Wsystype=oss is set, the C and C++ compilers define the predefined feature-test macros
_OSS_TARGET and _XOPEN_SOURCE. If -Wsystype=guardian is set, the C and C++ com-
pilers define the predefined feature-test macros _GUARDIAN_TARGET and
_TANDEM_SOURCE. These macros are used in the standard header files to determine the exe-
cution environment of a program. The feature-test macros can also be defined with a -D flag.
Because these macros are defined internally, not by c89, the macros are not defined when
-Wdryrun or -Wv are used.

527188-021 Hewlett-Packard Company 2−23

c89(1) OSS Shell and Utilities Reference Manual

Dynamic and Static Linking
The -WBdllsonly and -WBdynamic flags specify dynamic linking. The -WBstatic flag specifies
static linking. In dynamic linking:

• The nld utility first searches for a shared run-time library (SRL). If an SRL cannot be
found, nld then searches for an archive file. If neither of these files are found, an error is
issued. In static linking, nld searches for an archive file but does not search for an SRL.

• The ld or eld utility first searches for a dynamic-link library (DLL). If a DLL cannot be
found, the linker then searches for an archive file. If neither of these files are found, an
error is issued. In static linking, the linker searches for an archive file but does not
search for a DLL.

If the archive file cannot be found, an error is issued.

Dynamic and static linking are not exact opposites. Dynamic linking accepts either an SRL or
DDL or an archive, but static linking accepts only an archive.

Unlike other c89 flags, multiple -WBdllsonly, -WBdynamic, and -WBstatic flags can be
specified in a single c89 invocation. Thus, it is possible to perform dynamic linking for some -l
operands and static linking for others.

The -WBdllsonly, -WBdynamic, and -WBstatic flags specified to c89 affect linking arguments
specified in -Weld, -Weld_obey, -Wld, -Wnld, -Wld_obey, or -Wnld_obey flags. Each
specification remains in effect until another is encountered. To change how a linker performs
linking for such arguments, you can specify eld, ld, or nld flags that control linking within the
argument list. All linkers perform dynamic linking by default. Refer to the eld(1), ld(1), or
nld(1) reference page for more information.

Handling of Files in the Guardian File System
Files in the Guardian file system can be accessed using OSS pathname syntax
(/G/volume/subvol/fileID).

c89 requires that files in the Guardian file system be identified with a suffix as is done in the OSS
file system. Because Guardian filenames do not allow the .suffix format, the period is dropped
and the suffix becomes the last character of the filename. However, the .suffix format must be
used when specifying the file to c89.

Thus, the Guardian file system file $VOL.SUBVOL.FILEC, which identifies a C source file, is
specified to c89 as /G/VOL/SUBVOL/FILE.c. Likewise, c89 generates an object file
$VOL.SUBVOL.FILEO that can be specified to c89 again as /G/VOL/SUBVOL/FILE.o.

The default executable object file when the current working directory is in the Guardian file sys-
tem is aout.

Predefined Preprocessor Symbols and Macros
c89 defines the following preprocessor symbols and feature-test macros:

_ _cplusplus
Directs the preprocessor to process the source text as C++ source code. c89 defines
this symbol if the -Wcplusplus flag is specified or the name of an OSS source file ends
in a C++ suffix (.ii, .C, .cpp, .c++, .cxx, .cc, .eC, .ecpp, .ec++, .ecc, or .ecxx).

_TANDEM_SOURCE
Makes visible to the preprocessor identifiers required or permitted by extensions made
by HP. c89 defines this feature-test macro if the -Wextensions flag is specified.

2−24 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

_XOPEN_SOURCE
Makes visible to the preprocessor identifiers required or permitted by extensions made
by the XPG4 specification. c89 defines this feature-test macro by default unless the
-Wsystype=guardian flag is specified.

There are other feature-test macros defined by the compiler itself, not by c89. These feature-test
macros do not appear in the output of -Wv and -Wdryrun flags. Refer to the C/C++
Programmer’s Guide for further information on feature-test macros.

Operands
An operand is in the form of:

• A pathname

• -l library

• -WBdllsonly

• -WBdynamic

• -WBstatic

At least one operand of the pathname form must be specified. The following operands are sup-
ported:

file A file that has been linked but has not been processed by the NonStop SQL/MP com-
piler

file.a An archive library of object files typically produced by the ar command and passed
directly to a linker utility

file.c A C language source file to be preprocessed, compiled, and optionally linked; embed-
ded NonStop SQL/MP information might be present

file.C A C++ language source file to be preprocessed, compiled, and optionally linked

file.cc A C++ language source file to be preprocessed, compiled, and optionally linked

file.cpp A C++ language source file to be preprocessed, compiled, and optionally linked

file.cxx A C++ language source file to be preprocessed, compiled, and optionally linked

file.c++ A C++ language source file to be preprocessed, compiled, and optionally linked

file.ec A C language source file containing embedded NonStop SQL/MP information or Non-
Stop SQL/MX information to be preprocessed, compiled, and optionally linked

file.eC A C++ language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

file.ecc A C++ language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

file.ecpp A C++ language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

527188-021 Hewlett-Packard Company 2−25

c89(1) OSS Shell and Utilities Reference Manual

file.ecxx A C++ language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

file.i A preprocessed C source file to be compiled and optionally linked

file.ii A preprocessed C++ source file to be compiled and optionally linked

file.m A module definition file (MDF) containing NonStop SQL/MX information for a
corresponding C source file

file.o An object file passed directly to a linker utility

file.so A dynamic-link library (DLL) containing position-independent code (PIC) for use by
the eld, ld, or rld utility

file.sql A C language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

file.srl A shared run-time library passed directly to the nld utility

-l library A file to be searched by a linker utility to resolve current unresolved external refer-
ences; ld or eld searches for files named liblibrary.so and liblibrary.a, nld searches for
files named liblibrary.srl and liblibrary.a

A library is searched when its name is encountered, so the placement of -l is
significant. See the Standard Libraries subsection for more details.

-WBdllsonly
Specifies that the linker utility uses dynamic linking when searching for dynamic-link
libraries specified in subsequent -l operands; placement of this operand is significant
(refer to the Dynamic and Static Linking subsection for details)

-WBdynamic
Specifies that the linker utility uses dynamic linking when searching for libraries
specified in subsequent -l operands; placement of this operand is significant (refer to
the Dynamic and Static Linking subsection for details)

-WBstatic
Specifies that the linker utility uses static linking when searching for libraries specified
in subsequent -l operands. Placement of this operand is significant. Refer to the
Dynamic and Static Linking subsection for details.

Input Files
An input file is one of the following:

• A text file containing a C language or C++ language source program

• An object file in the format produced by the command c89 -c

• A library of object files in the format produced by archiving zero or more object files
using the ar command

• A linkfile or loadfile produced by the eld or ld utility

• An executable file produced by the nld utility

2−26 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

• A module definition file created by the NonStop SQL/MX preprocessor.

When the -Wsql flag is specified, C source files that contain embedded NonStop SQL/MP infor-
mation can have names suffixed with .c or .ec. When the -Wsqlmx flag is specified, c89 uses the
source file filename extension to determine the language mode (C or C++) and the names of the
source files created by the NonStop SQL/MX preprocessor.

The name of a created source file is the name of the primary source file plus one of the following
extension transformations:

• If the primary source file suffix is .ec or .sql and the -Wcpluplus flag is not specified, the
created source file has the suffix .c and uses the C language mode.

• If the primary source file suffix is .ec or .sql and the -Wcplusplus flag is also specified,
the created source file has the suffix .cpp and uses the C++ language mode.

• If the primary source file suffix is .eC, .ecpp, .ec++, .ecc, or .ecxx, the created source file
has the suffix .C, .cpp, .c++, .cc, or .cxx, resapectively, and uses the C++ language mode.

When c89 is passed a file name suffixed with .C, .cpp, .c++, .cc, or .cxx, that file is not passed to
the NonStop SQL/MX preprocessor. Such files are assumed to contain only C or C++ statements
without embedded NonStop SQL/MX information.

Output Files
An output file can be a preprocessed source file, an object file, or an executable file.

Standard Output File
The standard output file is empty unless a -E, -WM, or -WP flag is specified. If one of these
flags is specified, preprocessed source code is sent to the standard output file. When -WH is
used, the standard output file contains a line indicating which file is currently being operated
upon.

Standard Error File
The standard error file contains diagnostic and informational messages from c89 and the compi-
lation components it calls. If more than one source file operand is specified, then for each such
file the format "%s: \n",file is used to print the name of the source file before it is processed.

Standard Libraries
The c89 utility recognizes the following -l operands for standard libraries.

-l c Contains all library functions provided by HP that are specified in the XPG4 Version 2
(X/Open UNIX) specification, including those functions listed as residing in the
math.h header file.

-l C Contains the correct C++ run-time libraries, based on the value of the -Wversionn flag.
If the -Wversionn flag is omitted, the default version C++ library is used.

When you specify the -Wcplusplus and -Wversionn flags, you need not specify -l C;
all needed libraries are automatically linked. For TNS/R programs, this includes the
cppinit[n].o and main function (_MAIN). When you specify the -Wversion2 flag,
cppinit.o is linked for a nonPIC program or cppinit2.o is linked for a PIC program.
When you specify the -Wversion3 flag, cppinit3.o is linked for a nonPIC program or
cppinit4.o is linked for a PIC program.

527188-021 Hewlett-Packard Company 2−27

c89(1) OSS Shell and Utilities Reference Manual

-l l Contains all functions required by the C language output of the lex utility that are not
made available through the -l c operand.

-l m Contains all functions referenced in the math.h header file.

-l y Contains all functions required by the C language output of the yacc utility that are not
made available through the -l c operand.

In the absence of flags that inhibit invocation of a linker utility, such as -c and -E, c89 directs the
linker to search the standard C library after all other object files and libraries are searched.

If a C++ source file operand or a -Wcpluscplus flag is specified, c89 directs the linker to search
the C++ run-time library before it searches the standard C library. If you want the libraries to be
searched in a specific order or linking options to be processed in a specified order, you should
start the appropriate linker (eld, ld, or nld) directly from the OSS shell and not use the c89 com-
mand to do the linking.

Libraries residing in the Guardian file system cannot be specified as -l operands because of the
naming convention. They can be specified in the desired order with the -Weld, -Wld, or -Wnld
flag.

Standard Include Directories
The standard include directory contains the standard C and C++ header files. c89 passes a -I flag
naming this directory as the last -I flag when processing source files. In the OSS environment,
the directory is /usr/include.

Standard Library Directories
The standard library directories contain the TNS/R native shared run-time libraries (SRLs) used
by the nld utility or the dynamic-link libraries (DLLs) used by the eld or ld utility to resolve
external references.

In the OSS environment, a linker first searches the directory that contains the current version of
the operating system image (the active /G/system/sysnn directory). The linker then searches the
/lib, /usr/lib, and /usr/local/lib directories.

The value of the COMP_ROOT environment variable is added to the beginning of /lib, /usr/lib,
and /user/local/lib. By default, the value of COMP_ROOT is null in the OSS environment.

See the eld(1) or ld(1) reference page for more information about controlling the search order for
a PIC file linker.

Default Flags
If no flags are specified, c89 behaves as if the following flags were specified:

-Wsystype=oss -o a.out -Wenv=common -Wfieldalign=auto
-Wrefalign=8 -Woptimize=1 -Wansistreams -Winline
-WTandem_float (TNS/R-targeted compilations) or
-WIEEE_float (TNS/E-targeted compilations)
-Wlist -Wnoinnerlist -Wsuppress -Wstdfiles -Wnomap
-Wnoextensions -Wnooverflow_traps -Wnoremarks
-Wnoinspect -Wnosaveabend -WBdynamic
-Wnon_shared (TNS/R-targeted compilations) or
-Wcall_shared (TNS/E-targeted compilations)
-Wnoincludewhole -Wnoreexport -Wnooptionl_lib
-Wversion3
-Wwarn
-Wextern_data=no_gp (TNS/R-targeted compilations)
-D_XOPEN_SOURCE -I/usr/include -L/lib -L/usr/lib
-L/usr/local/lib -lc

2−28 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

Environment Variables
The following environment variables affect the execution of c89.

AS1 Determines the pathname of the as1 assembler component of the C and C++ compilers.
/usr/lib/as1 is the default location for the OSS environment.

This environment variable is used for TNS/R-targeted compilations only.

CCOMBE
Determines the pathname of the ccombe component of the C and C++ compilers.
/usr/cmplr/ccombe is the default location for the OSS environment.

This environment variable is used for TNS/E-targeted compilations only.

CFE Determines the pathname of the cfe language preprocessor component of the C and
C++ compilers. /usr/lib/cfe is the default location for the OSS environment.

This environment variable is used for TNS/R-targeted compilations only.

COMP_ROOT
Changes the default pathnames for:

• The c89 compilation system components

• The standard include directory

• The standard library directories

In the OSS environment, the string specified in COMP_ROOT is added to the begin-
ning of the default pathnames.

If a component’s environment variable is set explicitly, the COMP_ROOT environ-
ment variable does not modify that component’s environment variable.

ELD Determines the pathname of the eld utility invoked by c89. /usr/bin/eld is the default
location for the OSS environment.

This environment variable is only used for TNS/E-targeted compilations.

LD Determines the pathname of the ld utility invoked by c89. /usr/bin/ld is the default
location for the OSS environment.

This environment variable is only used for TNS/R-targeted compilations.

MXCMP
Determines the pathname of the NonStop SQL/MX release 1 compiler.
/G/system/system/mxcmp is the default.

MXCMPUM
Determines the pathname of the NonStop SQL/MX release 2 compiler.
/usr/tandem/sqlmx/bin/mxCompileUserModule is the default.

MXSQLC
Determines the pathname of the C/C++ NonStop SQL/MX preprocessor, mxsqlc.
/usr/tandem/sqlmx/bin/mxsqlc is the default.

NLD Determines the pathname of the nld utility invoked by c89. /usr/bin/nld is the default
location for the OSS environment.

This environment variable is only used for TNS/R-targeted compilations.

527188-021 Hewlett-Packard Company 2−29

c89(1) OSS Shell and Utilities Reference Manual

SQLCFE
Determines the pathname of the native C NonStop SQL/MP processor, sqlcfe.
/usr/lib/sqlcfe is the default location for the OSS environment.

This environment variable is used for TNS/R-targeted compilations only.

SQLCOMP
Determines the pathname of the native NonStop SQL/MP compiler, sqlcomp.
$SYSTEM.SYSTEM.SQLCOMP is the default location for the OSS environment.
The value of SQLCOMP must be a Guardian filename.

SQLMX_PREPROCESSOR_VERSION
Indicates the preprocessor rules and features to be used. Specifying the value 800
causes rules and features associated with release 1.8 to be used; the mxcmp compiler
is used and only MDF files and annotated source files are produced, while rules and
features associated with release 2.0 and later are ignored. Specifying a value of 1200
or larger or not specifying a value causes rules and features associated with release 2.0
and later to be used; the mxCompileUserModule compiler is used and annotated
source files that contain embedded module definitions are produced instead of MDF
files, while restrictions associated with release 1.8 or earlier are ignored.

TMPDIR
Determines the pathname that overrides the default directory for temporary files
created by c89 and the components it invokes. By default, temporary files are stored in
the /tmp directory. If TMPDIR is set to a directory that does not exist or is not write-
able, c89 uses the default directory as described on the tempnam(3) reference page.

UGEN Determines the pathname of the ugen assembler component of the C and C++ com-
pilers. /usr/lib/ugen is the default location for the OSS environment.

This environment variable is used for TNS/R-targeted compilations only.

UOPT Determines the pathname of the uopt optimizer component of the C and C++ com-
pilers. /usr/lib/uopt is the default location for the OSS environment.

This environment variable is used for TNS/R-targeted compilations only.

Use the COMP_ROOT environment variable instead of specifying each compilation system
component’s environment variable, if possible.

EXAMPLES
1. The command

c89 test1.c

compiles the source file test1.c and links the object file into an executable file a.out in
the current working directory.

2. The command

c89 -Wnowarn -Wwarn=262 test1.c

compiles the source file test1.c and links the object file into an executable file a.out in
the current working directory. All compiler warning messages except message number
262 are disabled.

2−30 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

3. The command

c89 -c /home/me/app/test1.c

compiles the source file /home/me/app/test1.c into the object file test1.o in the current
working directory.

4. The command

c89 -g -o test2 x.c y.c z.c
-Wnostdinc
-I/dev/product/app/src
-I/new/usr/include
-lclient -lserver
-L/dev/product/lib
-L/new/usr/lib

compiles the source files x.c, y.c, and z.c and links their respective object files x.o, y.o,
and z.o into the executable file test2. Symbolic information is generated by the compiler
and retained by the linker utility for debugging.

Included files are searched for in the directories /dev/product/app/src and
/new/usr/include; /usr/include is not searched. nld searches for the libraries
libclient.srl and libserver.srl in the directories /dev/product/lib and /new/usr/lib before
searching in the directories /G/system/sysnn, /lib, /usr/lib, and /usr/local/lib.

5. The command

c89 -g -o test2 x.c y.c z.c
-Wcall_shared
-Wnostdinc
-I/dev/product/app/src
-I/new/usr/include
-lclient -lserver
-L/dev/product/lib
-L/new/usr/lib

compiles the source files x.c, y.c, and z.c and links their respective object files x.o, y.o,
and z.o into the loadfile test2. Symbolic information is generated by the compiler and
retained by the linker utility for debugging.

Included files are searched for in the directories /dev/product/app/src and
/new/usr/include; /usr/include is not searched. ld searches for the libraries libclient.so
and libserver.so in the directories /dev/product/lib and /new/usr/lib before searching in
the directories /G/system/sysnn, /lib, /usr/lib, and /usr/local/lib.

6. The command

c89 -o test3 -O -DTYPE=3
-I/usr/friend
-I/usr/myself/headers
foo.c bar.o baz.c

compiles the source files foo.c and baz.c and links their respective object files with bar.o
into the object file test3.o. The preprocessor symbol TYPE is defined to 3, and full
optimization is performed by the compiler. The compiler looks for included files in the
directory /usr/friend, then in /usr/myself/headers, then in /usr/include.

527188-021 Hewlett-Packard Company 2−31

c89(1) OSS Shell and Utilities Reference Manual

7. The command

c89 -Wsql=release2,sqlmap -c file.c

compiles file.c with NonStop SQL/MP support enabled. The listing includes an SQL
map. The NonStop SQL/MP processor is run, expecting NonStop SQL/MP release 2
features. The NonStop SQL/MP compiler is not run. A -Wsqlcomp flag would run the
NonStop SQL/MP compiler. Note that there is no white space after the comma in the
-Wsql flag.

8. The command

c89 -Wsqlmx -Wmxcmp -o sqlprog.exe sqlprog.ec

causes the following steps to be performed:

a. c89 invokes the NonStop SQL/MX preprocessor, mxsqlc. mxsqlc takes the file
sqlprog.ec (consisting of a single C module with embedded NonStop SQL/MX
information) as input and produces two files: sqlprog.c and sqlprog.m.
sqlprog.c is the C-only equivalent of sqlprog.ec; that is, NonStop SQL/MX
statements are translated to the appropriate C code. sqlprog.m is the
corresponding MDF.

b. If there are no errors in Step a, c89 invokes the C compiler to compile sqlprog.c,
creating the object file sqlprog.o.

c. If there are no errors in Step b, c89 invokes the NonStop SQL/MX compiler to
process the MDF file sqlprog.m.

d. If there are no errors in Step c, c89 invokes nld to link sqlprog.o with the C stan-
dard library and produce the executable file sqlprog.exe.

9. The command

c89 -c -Wsqlmx file1.eC file2.ecc file3.ec++

uses the mxsqlc preprocessor on several C++ source files and also compiles them, but
does not link the results. If no errors are detected in either the preprocessing or compila-
tion steps, the following files are created: file1.m, file1.C, file2.m, file2.cc, file3.m,
file3.c++, file1.o, file2.o, file3.o.

10. The command

c89 -Wsqlmx -E file.ec > file-cpp.c

uses the mxsqlc preprocessor to expand embedded SQL statements and invokes the Non-
Stop SQL/MX preprocessor to create a single source file containing only C statements.

11. The command

c89 -c -Wsqlmx file1.C file2.ecc file3.ec++ file4.cpp

illustrates mixing C++ source files, with and without NonStop SQL/MX information, on
a single command line. Only source files that have names with one of the SQL extension
suffixes invoke the mxsqlc preprocessor. However, all files are compiled but not linked.
If no errors are detected in either the preprocessing or compilation steps, the following
files are created: file2.m, file2.cc, file3.m, file3.c++, file1.o, file2.o, file3.o, file4.o.

2−32 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

12. The command

c89 -Wmxcmp -Wmxcmp_files=test1.m,test1.o

SQL-compiles the MDF file test1.m using the NonStop SQL/MX mxcmp compiler and
processes the file test1.o using the NonStop SQL/MX mxCompileUserModule without
also linking it.

13. The following command on a TNS/R system

c89 -Wsrl -Wnld=-ul -o mylib mylib.c

compiles the source file mylib.c and links the object file to create a native user library, a
special shared run-time (SRL) library. The file is named mylib in the current working
directory.

14. The command

c89 file.c -lc -WBstatic -l archive -WBdynamic -l native

compiles the source file file.c and links the object file into an executable file a.out in the
current working directory. The linker performs dynamic linking by searching first for the
file libc.srl and then libc.a. The linker then performs static linking by searching for the
file libarchive.a. The linker then performs dynamic linking by searching first for the file
libnative.srl and then libnative.a.

15. The command

c89 file.c -lc -Wcall_shared -WBstatic
-l archive -WBdynamic
-l native

compiles the source file file.c and links the object file into loadfile a.out in the current
working directory. eld or ld performs dynamic linking by searching first for the file
libc.so and then libc.a. The linker then performs static linking by searching for the file
libarchive.a. The linker then performs dynamic linking by searching first for the file
libnative.so and then libnative.a.

16. The command

c89 -Wsqlcomp -c exefile

invokes the NonStop SQL/MP compiler to process the already linked file exefile.

17. The command

c89 -Wmxcmp -c module.m

invokes the NonStop SQL/MX compiler to process the module definition file module.m.

FILES
/usr/bin/c89

Native c89 in the OSS environment.

/G/system/sysnn/zcppcdll
C++ run-time library function object code for J-series and H-series processes; linked
automatically when you compile and link C++ surce files or when you specify the
-Wcplusplus flag.

527188-021 Hewlett-Packard Company 2−33

c89(1) OSS Shell and Utilities Reference Manual

/G/system/sysnn/zcpp2dll
C++ run-time library function object code for J-series and H-series processes; linked
automatically when you compile and link C++ surce files or when you specify the
-Wcplusplus flag.

/G/system/sysnn/zcpp3dll
C++ run-time library function object code for J-series and H-series processes; linked
automatically when you compile and link C++ surce files or when you specify the
-Wcplusplus flag.

/G/system/sysnn/zcresrl
Common Run-Time Environment (CRE) function object code for G-series processes;
linked automatically.

/G/system/sysnn/zcredll
Common Run-Time Environment (CRE) function object code for H-series processes;
linked automatically.

/G/system/sysnn/zcrtlsrl
C run-time library function object code for G-series processes; linked automatically.

/G/system/sysnn/zcrtldll
C run-time library function object code for H-series processes; linked automatically.

/G/system/sysnn/zicnvsrl
Function object code for G-series processes; linked automatically.

/G/system/sysnn/zicnvdll
Function object code for H-series processes; linked automatically.

/G/system/sysnn/zi18nsrl
Internationalization function object code for G-series processes; linked automatically.

/G/system/sysnn/zi18ndll
Internationalization function object code for H-series processes; linked automatically.

/G/system/sysnn/zosscsrl
Function object code for G-series processes; linked automatically.

/G/system/sysnn/zosscdll
Function object code for H-series processes; linked automatically.

/G/system/sysnn/zossesrl
Function object code for G-series processes; linked automatically.

/G/system/sysnn/zossedll
Function object code for H-series processes; linked automatically.

/G/system/sysnn/zossfsrl
Function object code for G-series processes; linked automatically.

/G/system/sysnn/zossfdll
Function object code for H-series processes; linked automatically.

/G/system/sysnn/zossksrl
Function object code for G-series processes; linked automatically.

2−34 Hewlett-Packard Company 527188-021

User Commands (c) c89(1)

/G/system/sysnn/zosskdll
Function object code for H-series processes; linked automatically.

/G/system/sysnn/zpgodll
Symbols referenced by instrumented code for J-series and H-series processes; must be
linked when you link a program or DLL that contains instrumented code; linked
automatically when you specify the -Wcodecov or -Wprofgen flags.

/G/system/sysnn/zsecsrl
Security function object code for G-series processes; linked automatically.

/G/system/sysnn/zsecdll
Security function object code for H-series processes; linked automatically.

/G/system/sysnn/zstfnsrl
Function object code for G-series processes; linked automatically.

DIAGNOSTICS
If c89 encounters a compilation error that prevents an object file from being created, it writes a
diagnostic message to the standard error file and continues to compile other source code
operands. However, it does not perform program linking and returns a nonzero exit status.

If the linking is unsuccessful, c89 writes a diagnostic message to the standard error file and
returns a nonzero exit status.

EXIT VALUES
The following exit values are returned:

0 (zero) Successful completion.

>0 An error occurred.

RELATED INFORMATION
Commands: ar(1), c99(1), eld(1), ld(1), nld(1), strip(1).

Functions: fp_class(3), tempnam(3).

Files: float(4).

STANDARDS CONFORMANCE
All -W options are HP extensions to the POSIX and XOPEN standards.

527188-021 Hewlett-Packard Company 2−35

c99(1) OSS Shell and Utilities Reference Manual

NAME
c99 - Compiles C99-compliant C and C++ programs using the TNS/E native compilers

SYNOPSIS
c99

[-c | -Wnolink]
[[-D name[="value"]] ...] [-E] [-g]
[-I directory ...]
[-L directory ...] [-o outfile] [-Ooptlevel] [-s]
[-U name]
[-Wallow_extern_explicit_instantiation]
[-Wansistreams]
[-Wbasename]
[-WBdllsonly | -WBdynamic | -WBstatic]
[-Wbitfield_container=value]
[-Wbuild_neutral_library]
[-WC]
[-Wcall_shared | -Wshared]
[-Wcodecov]
[-Wcolumns=c]
[-Wcplusplus]
[-WDname[="value"]]
[-Wdryrun]
[-Weld=args]
[-Weld_obey=file]
[-Wenv=env]
[-Werrors=e]
[-W[no]extensions]
[-Wfieldalign=align]
[-Wforce_static_typeinfo]
[-Wforce_static_vtbl]
[-Wforce_vtbl | -Wsuppress_vtbl]
[-Wglobalized]
[-WH]
[-Wheap=n[b | w | p]
[-Whelp | -Wusage]
[-Whighpin={on | off}]
[-Whighrequesters={on | off}]
[-WIEEE_float | -WTandem_float]
[-Wilp32 | -Wlp64]
[-W[no]include_whole]
[-W[no]inline]
[-Winline_compiler_generated_functions]
[-Winline_string_literals]
[-W[no]innerlist]
[-W[no]inspect]
[-Wlines=l]
[-W[no]list]
[-WM]
[-W[no]map]

[-Wmigration_check=32to64]
[-WmoduleCatalog="catalog_spec"]
[-WmoduleGroup[="[group_spec"]]]
[-WmoduleSchema="schema_spec"]

2−36 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

[-WmoduleTableSet[="[tableset_spec"]]]
[-WmoduleVersion[="[version_spec"]]]
[-Wmultibyte_char]
[-Wmxcmp[="args"]]
[-Wmxcmp_add="args"]
[-Wmxcmp_files="file"[,...]]
[-Wmxcmp_querydefault="attr_name=attr_value"[,...]]
[-Wnoexceptions]
[-Wnomain]
[-Wnostdinc]
[-Wnostdlib]
[-Woptfile="filename"]
[-W[no]optional_lib]
[-W[no]overflow_traps]
[-WP]
[-Wpool_string_literals]
[-Wprofdir=name]
[-Wprofgen]
[-Wprofuse[=filename]]
[-Wr]
[-W[no]reexport]
[-Wrefalign=ref]
[-WRefMemFuncsOnly]
[-W[no]remarks]
[-Wrunnamed]
[-WRVU={h-series-rvu}]
[-W[no]saveabend]
[-Wsavetemps]
[-Wsqlmx[="args"]]
[-Wsqlmxadd[="args"]]
[-W[no]stdfiles]
[-W[no]suppress]
[-Wsyntax]
[-Wsystype={guardian | oss}]
[-Wtarget=platform]
[-Wtimestamp=value]
[-Wu="symbol_name"]
[-Wv]
[-Wverbose]
[-Wversion3]
[-Ww]
[-W[no]warn[=w [,w] ...]]
[-Wx]
operand . . .

FLAGS
-c | -Wnolink

Compiles the specified C or C++ source files but suppresses linking, even if another
flag specifies linking.

You cannot specify the -c flag if you use the -Wshared flag.

527188-021 Hewlett-Packard Company 2−37

c99(1) OSS Shell and Utilities Reference Manual

-D name[="value"]
Defines the preprocessor symbol name as value. It is equivalent to a #define directive
in the source. If no value is given, name is defined as 1. The -D flag has lower pre-
cedence than the -U flag. Thus, if name is specified in both a -U and a -D flag, name is
undefined regardless of the order of the flags.

Use this flag to define compiler feature-test macros.

When the NonStop SQL/MX preprocessor is invoked, all -D specifications are
automatically passed to the preprocessor as the preprocessor’s -d options.

-E Preprocesses the specified source files. No compilation or linking is performed. Out-
put is sent to the standard output file and contains #line directives.

If the -Wsqlmx flag is specified, embedded NonStop SQL/MX statements are pro-
cessed.

The -WH and -WM flags override the -E flag.

-g Produces in the object or executable files information (symbol tables) used for sym-
bolic debugging.

-I directory
Adds directory to the list of directories searched to locate #include files with relative
pathnames. (Relative pathnames do not begin with a slash, ’/’). #include filenames
enclosed in double quotes are searched for first in the directory of the file with the
#include directive, then in directories named with -I flags, and last in the standard
include directories. #include filenames enclosed in angle brackets (<>) are searched
for first in directories named with -I flags and then in the standard include directories.
Refer to the Standard Include Directories subsection for details.

-L directory
Adds directory to the list of directories searched to locate libraries specified by
operands of the form -l library. See the Operands subsection for details.

-o outfile Uses the pathname outfile instead of the default pathname a.out for the name of the
output object file.

If only one source file is specified and the -c flag is specified, the generated output is
placed into outfile. Only one -o flag can be specified. The file specified cannot be an
SQL preprocessing output file.

If a single source file is compiled and linked in one invocation of c99, and if the outfile
is the same name as that of the input object file, c99 issues a warning message and
places the output in a temporary file.

-Ooptlevel
Sets the compiler to the optimization level specified by optlevel, where optlevel is 0
(zero), 1, or 2. If this flag is not set, the application is compiled at optimization level 1.
If -O is specified without a value for optlevel, the application is compiled at optimiza-
tion level 2. This option is equivalent to the c89 -Woptimize=n option.

-s Strips symbolic information not required for proper execution from object and execut-
able files. The resulting object file cannot be debugged using a symbolic debugger.
This flag is ignored if the -Wr flag is also specified.

2−38 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

-U name Removes any initial definition of the preprocessor symbol name. The -U flag has
higher precedence than the -D flag. If name is specified in both a -U and a -D flag,
name is undefined regardless of the order of the flags.

-Wallow_extern_explicit_instantiation
Allows an extern storage attribute to be applied to an explicit template instantiation.
This flag suppresses the instantiation of the template. If this flag is omitted, the tem-
plate is instantiated.

-Wansistreams
Generates a Guardian program that opens text files as type 180 instead of type 101 if
-Wsystype=guardian is specified. (By default Guardian programs open text files as
type 101.) This flag is ignored when -Wsystype=oss is used. OSS programs can open
text files only as type 180.

-Wbasename
Directs the compiler to place only the last part of the source file name, known as the
basename, into the dynamic information (DYN) file when the instrumented process
runs.

If you use the -Wbasename option and the -Wprofgen option to compile a source file,
you also must use the -Wbasename option when you use the -Wprofuse option to
compile this source file. When you use the -Wbasename option, the source file is not
required to be in the same location as it was when you compiled the file using the
-Wprofgen option, but the basename must be the same.

If you did not use both the -Wbasename and the -Wprofgen options when you com-
piled this source file, do not specify the -Wbasename flag when you compile this
source file with the -Wprofuse flag. If you do not use the -Wbasename flag, when you
compile the source file and specify the -Wprofuse flag, the source file must be in the
same location as it was when you used the -Wprofgen flag to compile the file.

For more information about profile-guided optimization and the rules for using the
-Wbasename flag, see the Code Profiling Utilities Manual.

-WBdllsonly
Tells the eld linker to limit searches to position-independent code (PIC) files that are
dynamic-link libraries (DLLs) when resolving the file names specified for the -l
operands and -L flags.

If a file name is qualified, the linker searches for a DLL with that name.

If a filename is unqualified, in each search path, the linker first searches for a DLL with
the file name as specified in the -l operand or -L flag. If the linker cannot find a DLL,
the file name is unqualified, and the search path is not in the Guardian file system (/G),
then the linker prefixes lib and suffixes .so to the file name and searches again. If the
linker still cannot find the DLL, it searches the path again with the same prefix but with
.srl as the suffix. For more information on search paths, see the Finding Libraries
subsection of the eld(1) reference page under DESCRIPTION.

When a DLL cannot be found, the linker issues an error message unless its
-allow_missing_libs flag is specified.

The -WBdllsonly, -WBdynamic, and -WBstatic flags are search control toggles.
Multiple flags can be specified in a single linker invocation; the behavior specified
remains in effect until another flag in the set is specified. Thus, you can search for both
DLLs and archive files for some -l operands and -L flags and search for just archive
files for others. The default library search control is -WBdynamic.

527188-021 Hewlett-Packard Company 2−39

c99(1) OSS Shell and Utilities Reference Manual

-WBdynamic
Specifies that the linker utility uses dynamic linking when searching for libraries
specified in subsequent operands of the form -l library. Dynamic linking is in effect
until a -WBstatic flag is specified. -WBdynamic is the default setting. Refer to the
Dynamic and Static Linking subsection for details.

-WBstatic
Specifies that the linker utility uses static linking when searching for libraries specified
in subsequent operands of the form -l library. Static linking is in effect until a
-WBdynamic flag is specified. -WBdynamic, not -WBstatic, is the default setting.
Refer to the Dynamic and Static Linking subsection for details.

-Wbitfield_container=value
Directs the compiler to accept larger and more flexible bit fields where value is one of
the following:

int Directs the compiler to pack bit fields into 32-bit ints. In this mode,
the compiler will not accept bit fields larger than 32 bits. The compiler
returns an error for any bit field declared to be of type long long
(unless the -Wextensions flag is also specified). The compiler returns
warnings for other non-standard integer types.

long Directs the compiler to pack bit fields whose base type is larger than
32-bits into 64-bit ints. All other bit fields will be packed into 32-bit
ints. In this mode, the compiler accepts the long long and long bit-
field types and up to 64 bits in length. The compiler returns warnings
for other non-standard integer types.

all Directs the compiler to pack all bit fields into ints defined by their base
type. The compiler will accept any integer type for a bit field. This
mode provides additional compatibility with the various methods other
compilers may use to pack bit fields.

The default value is int except when the -Wlp64 flag is specified, in which case the
default becomes long.

Note: The above rules apply to bit fields declared in auto or platform (the
default) structs. Any bit field declared in a shared2 struct will continue
to follow shared2 rules. Bit fields in shared2 structs can never be larger
than 32-bits. Bit fields declared in shared8 structs can be larger than
32-bits (if the value is long or long), but the compiler will emit a warn-
ing. Bit fields in shared8 structs will be packed as before except that bit
fields larger than 32-bits will be packed into 64-bit containers.
This flag is supported on systems running J06.13 or later J-series RVUs
or H06.24 or later H-series RVUs only.

-Wbuild_neutral_library
Specifies that the compiler should issue an error message when it encounters any
exported or imported interface in a DLL that depends on types marked as being incom-
patible with the neutral C++ dialect.

-WC Retains comments when preprocessing files. Comments are removed from preproces-
sor output by default.

2−40 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

-Wcall_shared | -Wshared
Directs the compiler to create a specific type of object file:

-Wcall_shared Specifies that the object file should be a PIC file; the eld linker is
invoked. If the -c flag is also specified, the file is a linkfile. Otherwise,
the file is an executable object file (loadfile).

This is the default behavior.

-Wshared Specifies that the file should be a PIC DLL; the eld linker is invoked.
You cannot use this flag if you use the -c flag.

-Wcodecov
Directs the compiler to create an instrumented object file and to create or add to an
existing SPI file. This flag has an effect only if you also specify either the
-Wtarget=ipf flag or the -Wtarget=tns/e flag.

The first time the -Wcodecov flag is used to compile a program, the compiler creates a
Static Profiling Information (SPI) file. This file is one of the input files for the Code
Coverage tool. If the program is compiled in an OSS directory:

• The default name for the SPI file is pgopti.spi.

• If the default file is not write-accessible, the name of the SPI file created is
tpopti.spi.

• A lock file called pgopti.spl. When compilation is complete, the compiler
deletes this file.

If the program is compiled in a Guardian directory:

• The default name for the SPI file is pgospi.

• If the default file is not write-accessible, the name of the SPI file created is
tpgospi.

• A lock file called pgospl. When compilation is complete, the compiler deletes
this file.

If the SPI file already exists when the program is compiled with the -Wcodecov flag,
the compiler updates or adds information to the existing SPI file. If more than one SPI
file exists for the same program, you must concatenate the files manually before you
can use the resulting file as input to the Code Coverage Tool.

For more information about the Code Coverage Tool, see the Code Profiling Utilities
Manual.

-Wcolumns=c
Specifies the maximum number of columns in input source files to process. c is in the
range 20 through 32767. Text in columns beyond column c is ignored.

-Wcplusplus
Directs c99 to assume that files with a .c or .i suffix contain C++ source code, and
defines the feature-test macro _ _cplusplus. If linking occurs, this flag directs the
linker utility to search the C++ standard run-time library.

If this flag is omitted and none of the operand filenames end in .C, .cpp, .cc, or .cxx,
then source files are compiled as C files only and, if -c is not specified, are only linked
with the C standard library. See Standard Libraries for details.

527188-021 Hewlett-Packard Company 2−41

c99(1) OSS Shell and Utilities Reference Manual

-WDname[="value"]
Specifies a macro that is defined only during the NonStop SQL/MX preprocessing step.
See the HP NonStop SQL/MX Programming Manual for C and COBOL for details
about its -d flag=[value] option. This flag can be specified more than once.

Note that all -D values that are supplied to c99 are automatically passed as -d options
to the NonStop SQL/MX preprocessor.

This flag is ignored unless the -Wsqlmx flag is also specified.

-Wdryrun
Verifies the syntax and semantics of flags and operands specified to c99 and enables the
-Wv flag. No compilation system components are run.

-Weld="args"
Passes the arguments specified in args to the eld utility after any other arguments are
passed.

Use this flag to pass arguments to eld when creating a PIC file. c99 does not check the
validity of eld arguments.

You can only use this flag when you use one of the following flags:

-Wcall_shared or -Wshared

This flag is ignored when the command does not initiate linking.

-Weld_obey="file"
Directs the eld utility to read additional command-line arguments from the command
file specified in the file argument. The arguments are processed as if they had been
passed directly to eld in place of file. c99 does not verify the existence or readability
of file.

You can only use this flag if you use one of the following flags:

-Wcall_shared or -Wshared

This flag is ignored when the command does not initiate linking.

-Wenv=env
Specifies the run-time environment. env can be one of common, embedded, library,
or libspace. The default value is common.

-Werrors=e
Stops compiling when e errors have been encountered.

-W[no]extensions
Enables [disables] HP extensions. If -Wextensions is specified, c99 also defines the
_TANDEM_SOURCE feature-test macro. The default value is -Wnoextensions.

-Wfieldalign=align
Specifies the field alignment for structures. align can be one of auto, cshared2,
shared2, shared8, or platform. The default value is auto. You cannot specify a
struct tag with this flag.

-Wforce_static_typeinfo
Specifies that the typeinfo variables are to be static in the object file. This flag applies
only to variables that are not part of an exported or imported class.

2−42 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

-Wforce_static_vtbl
Specifies that the virtual function tables that are created by the compiler are to be static
in the object file and are not exported. This flag applies only to variables that are not
part of an exported or imported class.

The -Wforce_static_vtbl flag is valid only for TNS/R-targeted C++ compilations.

-Wforce_vtbl | -Wsuppress_vtbl
Controls whether virtual function tables are created in cases where the compiler cannot
determine the need for the tables.

The virtual function table for a class is defined in a compilation if the compilation con-
tains a definition of the first noninline, nonpure virtual function of the class. For
classes that contain no such function, the default behavior is to define the virtual func-
tion table (but to define it as a local static entity).

The flag -Wsuppress_vtbl suppresses the definition of the virtual function tables for
such classes, and the flag -Wforce_vtbl forces the definition of the virtual function
table for such classes. The -Wsuppress_vtbl flag is valid only for C++ compilations.

The -Wforce_vtbl flag forces definition of virtual function tables in cases where the
heuristic used by the compiler to decide on definition of virtual function tables pro-
vides no guidance. The -Wforce_vtbl flag differs from the default behavior in that it
does not force the definition to be local. The -Wforce_vtbl flag is valid only for C++
compilations.

-Wglobalized
Specifies that the code generated by the compiler is preemptable. By default, com-
pilers generate code that is not preemptable. Preemptable code allows named refer-
ences in a DLL to resolve to externally-defined code and data items instead of to
resolve to its own internally-defined code and data items. Preemptable code is less
efficient than code that is not preemptable, and is only needed in a few instances when
creating a DLL.

-WH Preprocesses the specified source files and prints the names of header files, as opened,
to the standard error file. No compilation or linking is performed. Unlike the -WP
flag, no preprocessed files with .i (for C) or .ii (for C++) suffixes are produced.

The -WH flag overrides the -E and -WP flags.

-Wheap=n[b | w | p]
Specifies the value that the linker should use for the HEAP_MAX attribute of the out-
put file. n can be any positive value that gives a size valid for the NonStop server node
on which the file is used.

The size can be specified in units of:

b Bytes; this is the default unit

w Words

p Pages

-Whelp | -Wusage
Displays help information on how to run c99. No compilation system components are
run.

527188-021 Hewlett-Packard Company 2−43

c99(1) OSS Shell and Utilities Reference Manual

-Whighpin={on | off }
Directs the linker utility to set the HIGHPIN attribute to on or off in the output object
files. This attribute specifies whether the object file will run at a high PIN or a low
PIN. If -Wsystype=guardian is used, the default setting is -Whighpin=off. If
-Wsystype=oss is used, the default setting is -Whighpin=on. This flag is set only if an
executable object file is produced.

-Whighrequesters={on | off }
Directs the linker utility to set the HIGHREQUESTERS attribute to on or off in the
output object file. This attribute specifies whether the object file supports requests
from requesters running at a high PIN. The object file must contain the main() func-
tion. If -Wsystype=guardian is used, the default setting is -Whighrequesters=off. If
-Wsystype=oss is used, the default setting is -Whighrequesters=on. This flag is set
only if an executable object file is produced.

-WIEEE_float | -WTandem_float
Specifies the floating-point format to be used by the compiler for values of type float or
type double. The differences between the two formats are summarized in the float(4)
reference page.

IEEE floating-point values can include NaN and infinity, and the sign of 0.0 (zero) can
be either positive or negative. Refer to the fp_class(3) reference page for a description
of IEEE value classes.

Guardian functions are available to convert between floating-point formats. For a dis-
cussion of floating-point conversions, see to the Guardian Programmer’s Guide.

On systems with processors that support IEEE Std 754-1985 floating-point format data,
the compiler uses that format when -WIEEE_float is specified. Specifying
-WTandem_float selects HP’s proprietary Tandem floating-point format.

On systems without processors that support IEEE Std 754-1985 floating-point format
data, the -WIEEE_float flag is not available. Use of the -WIEEE_float flag on such
systems produces an error diagnostic.

The default setting is -WIEEE_float.

-Wilp32 | -Wlp64
Specifies the data model to be used: 32-bit (ilp32) or 64-bit (lp64). The default data
model is ilp32. The following c89 option is not allowed with -Wlp64:
-Wsystype=guardian. For more information about data models, see the C/C++
Programmer’s Guide.

-W[no]include_whole
Tells the linker whether to include in the loadfile all linkable archive members of all
archive libraries encountered after this flag is specified.

Specifying -Winclude_whole begins this linking action. When -Wnoinclude_whole
behavior is in effect, archive searches are controlled by the existence of undefined
symbols. Archives are searched in the order specified on the command line. Symbols
are marked as undefined by compilers or by the user through the -Wu flag. When an
archive member is found that resolves an undefined symbol, the member´s symbols are
merged into the external symbol table for the loadfile being created. After the merge,
the undefined symbol that triggered the merge is resolved (marked as defined). The
same merge might resolve other undefined symbols or result in more undefined sym-
bols.

You can stop the linking action of -Winclude_whole by specifying the
-Wnoinclude_whole flag later in the command line or an obey file.

2−44 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

These flags can be specified as many times as needed in the command stream. Provid-
ing either flag overrides the current setting, so that the linker actions can be controlled
on a library-by-library basis.

The default setting is -Wnoinclude_whole.

-W[no]inline
Enables [disables] the generation of inline code for C++ functions declared inline and
for C++ member functions declared within their class. This flag does not affect C code
nor does the compiler generate inline functions for other reasons. The default setting is
-Winline.

-Winline_compiler_generated_functions
Allows all compiler-generated functions to be inline. Specifying this flag does not
guarantee that a function can be inlined. If this flag is omitted, compiler-generated
functions are not inlined and are exported.

-Winline_string_literals
Allows the compiler to generate an inline function when a function takes the address of
a string literal. Specifying this flag does not guarantee that a function can be inlined.
If a function is inlined by this specification, its program will not conform to section
7.1.2 of the 1998 ISO C++ standard.

-W[no]innerlist
Enables [disables] the generation of instruction code mnemonics in the listing text
immediately following each corresponding statement. This flag is ignored unless
-Wnosuppress is specified. The default setting is -Wnoinnerlist.

-W[no]inspect
Designates [does not designate] the symbolic debugger as the default debugger for the
output object file. Use this flag with the -g flag. The default setting is -Wnoinspect.
This flag is set only if an executable object file is produced.

-Wlines=l
Specifies the maximum number of lines on a listing page, if a listing is generated. l
must be in the range 10 through 32767.

-W[no]list
Temporarily enables [disables] the generation of listing text. Both the -Wlist and
-Wnolist flags are ignored unless -Wnosuppress is specified. The default setting is
-Wlist.

-WM Preprocesses the specified source files and prints a list of files that the specified source
files depend on to the standard output file. The list can be used with the make utility.
No compilation or linking is performed. Unlike the -WP flag, no preprocessed files
with .i (for C) or .ii (for C++) suffixes are produced.

-W[no]map
Enables [disables] the generation of identifier maps in the listing. This flag is ignored
unless the -Wnosuppress flag is specified. The default setting is -Wnomap.

-Wmigration_check=32to64
Directs the compiler to emit additional warnings that detect valid C/C++ code that
potentially may behave in an unexpected manner when code designed for ilp32 is com-
piled using the lp64 data model. The -Wmigration_check=32to64 flag does not
require the -Wlp64 flag.

527188-021 Hewlett-Packard Company 2−45

c99(1) OSS Shell and Utilities Reference Manual

-WmoduleCatalog="catalog_spec"
Specifies a NonStop SQL/MX module catalog name. The specified string is used only
if the input file does not contain an SQL/MX module directive or its module directive
does not specify a catalog name. The string cannot contain more than 128 characters.

This flag is valid only for preprocessor release 2.0 and newer.

-WmoduleGroup[="[group_spec"]]
Specifies a string for a NonStop SQL/MX module group specification to use as a prefix
to the module name. The specified string is used only if the input file does not contain
an SQL/MX module directive or its module directive does not specify a group name.
The string cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

-WmoduleSchema="schema_spec"
Specifies a NonStop SQL/MX module schema name. The specified string is used only
if the input file does not contain an SQL/MX module directive or its module directive
does not specify a schema name. The string cannot contain more than 128 characters.

This flag is valid only for preprocessor release 2.0 and newer.

-WmoduleTableSet[="[tableset_spec"]]
Specifies a string for a NonStop SQL/MX tableset specification to use as the first suffix
to the module name. The specified string is used only if the input file does not contain
an SQL/MX module directive or its module directive does not specify a tableset name.
The string cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

-WmoduleVersion[="[version_spec"]]
Specifies a string for a NonStop SQL/MX tableset specification to use as the second
suffix to the externally qualified module name that is written to the module file. The
string cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

-Wmultibyte_char
Directs the compiler to allow multibyte character sequences in comments, string
literals, and character constants.

-Wmxcmp[="args"]
Invokes the NonStop SQL/MX compiler to process any file operands of the form file.m
and any module definition files produced when the NonStop SQL/MX preprocessor
was invoked. If the C or C++ compilation detects any errors in the source code, the
NonStop SQL/MX compiler is not invoked.

If a value is supplied for args, it must be one of the following:

replace Directs the NonStop SQL/MX compiler to replace the existing module
or create a new one. The default action does not replace an existing
module.

warn Directs the NonStop SQL/MX compiler to generate a warning rather
than an error if a table does not exist at compilation time.

2−46 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

verbose Directs the NonStop SQL/MX compiler to display summary informa-
tion as well as error and warning messages.

If more than one value is specified for args, the values must be separated by commas
without white space.

If the -Wmxcmp flag is specified more than once, only the last occurrence has an
effect. If the -Wmxcmp flag is specified with any of the options that prevent compila-
tion (-E, -WH, -WM, -WP, or -Wsyntax), the -Wmxcmp flag is ignored.

-Wmxcmp_add="args"
Specifies a string to pass to the NonStop SQL/MX compiler without validation or
change.

-Wmxcmp_files="file"[,...]
Passes MDF files specified to mxcmp in release 1 compilation mode. Passes all
specified files without the .m extension to mxCompileUserModule in release 2 com-
pilation mode.

-Wmxcmp_querydefault="attr_name=attr_value"[,...]
Specifies attribute settings (CONTROL QUERY DEFAULT settings) to pass to the
NonStop SQL/MX compiler. These attribute settings override any corresponding
entries in the SYSTEM_DEFAULTS table.

-Wnoexceptions
Disables support for exceptions and exception handling. This flag can improve appli-
cation performance by removing unneeded processing steps when an application does
not use exceptions or perform exception handling.

-Wnomain
Specifies that the object file should be linked without a main() function. This flag
prevents the compiler from specifying to the linker those modules and libraries that
provide customary run-time support for C or C++ programs. The resulting file has no
_MAIN function and no standard run-time libraries unless those are specified
separately in a file identified by the -Weld_obey=file flag.

-Wnostdinc
Suppresses the searching of the standard include directories to locate included files.
Refer to the Standard Include Directories subsection for details.

-Wnostdlib
Suppresses the searching of the standard library directories to locate libraries. Refer to
the Standard Library Directories subsection for details.

-Woptfile="filename"
Specifies an optimizer file, which contains a list of functions that are to be optimized at
the level specified in the file. The optimizer file can raise or lower the optimize level
for the given functions.

Functions in the module that are not listed in the optimizer file are compiled at the
default optimize level.

Each line of the optimizer file can contain only one function name and the optimize
level (0, 1, or 2) that you want for that function. The function name must be the inter-
nal name used for linking; for C++ programs, the mangled name must be used.

527188-021 Hewlett-Packard Company 2−47

c99(1) OSS Shell and Utilities Reference Manual

-W[no]optional_lib
Indicates whether a library specified in the command stream should be considered
optional when the linker creates a loadfile.

When -Wnooptional_lib behavior is in effect, any library specified in a -l or -lib flag is
included in the .liblist section of the loadfile being created. When -Woptional_lib
behavior is in effect, a specified library can be omitted from the .liblist section of the
loadfile being created if omitting it would not affect how symbolic references are
resolved.

These flags can be specified as many times as needed in the command stream. Provid-
ing either flag overrides the current setting, so that the linker actions can be controlled
on a library-by-library basis.

If a library is specified more than once, and at least one specification occurs when
-Wnooptional_lib is in effect, the library is included in the .liblist section of the
loadfile being created.

The default behavior is -Wnooptional_lib.

-W[no]overflow_traps
Enables [disables] overflow traps. The default setting is -Wnooverflow_traps.

-WP Preprocesses the specified source files. No compilation or linking is performed. Out-
put is placed in corresponding files with .i (for C) or .ii (for C++) suffixes in the current
working directory.

If the -Wsqlmx flag is specified, embedded NonStop SQL/MX statements are pro-
cessed.

The -E, -WH, and -WM flags override the -WP flag.

-Wpool_string_literals
Specifies that, within a compilation unit, multiple occurences of the same string literal
should occupy the same storage space. This flag applies to C++ compilations only; it
is ignored when C++ is not used.

The default assignment for multiple occurrences of a string literal gives them separate
storage space.

-Wprofdir=name
Specifies the location in which to create the dynamic information (DYN) file when the
-Wprofgen flag directs the compiler to generate instrumented code. If the application
is to run in the Guardian environment, name must be a string that specifies a valid
Guardian subvolume. Otherwise, name must be a string that specifies a valid OSS
directory. If an invalid name is specified, no profiling information will saved.

If this flag is not specified, the DYN file is created in the default Guardian subvolume
or the current OSS working directory for the process.

If object files that were compiled with different profdir locations are linked together,
when the application is run, the DYN file is created in the location specified by one of
profdir flags. However, it is not possible to predict which profdir location will be
used.

For more information about profile-guided optimization, see the Code Profiling Utili-
ties Manual.

2−48 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

-Wprofgen
Directs the compiler to generate instrumented code, used for profile-guided optimiza-
tion. All or part of an application can be instrumented by turning this flag on or off for
individual compilations of object files. These object files can be linked into programs
or DLLs.

Instrumented code references symbols defined in the public DLL named zpgodll.
When you link any program or DLL that contains instrumented code, the zpgodll DLL
must be specified at link time. The zpgodll DLL is automatically linked when you
specify the -Wcodecov or -Wprofgen flags.

When you use the -Wprofgen flag and you use the compiler to automatically invoke
the eld linker to build a program or DLL, the compiler passes the -l pgo option to eld.

HP recommends that you do not combine code that has been compiled with the
-Wcodecov flag with code that has been compiled with the -Wprofgen flag in the same
application.

For more information about profile-guided optimization, see the Code Profiling Utili-
ties Manual.

-Wprofuse[=filename]
Directs the compiler to generate optimized code based on information in a dynamic
profiling information (DPI) file. This flag cannot be specified with either the
-Wcodecov or the -Wprofgen flags.

The DPI file is always in the current Guardian subvolume or OSS directory. You can
specify the name of the DPI file using the filename variable. If you do not specify a
filename, the name of the DPI file defaults to:

• pgopti.dpi if the compilation is done in an OSS directory that is not a Guardian
subvolume.

• pgodpi if the current OSS working directory is a Guardian subvolume.

For more information about profile-guided optimization, see the Code Profiling Utili-
ties Manual.

-Wr Passes the -r option to the linker, which directs the linker to create a linkable object file
instead of an executable object file (the default).

-W[no]reexport
Tells the linker whether to mark any library specified in a -l operand or -L flag after this
flag for reexport in its libList entry in the loadfile being created. Specifying
-Wnoreexport leaves the library unmarked; specifying -Wreexport marks the library.
Reexport is a run-time attribute that is used by the rld loader to decide what DLLs it
needs to load.

-Wnoreexport is the default action.

These flags can be specified as many times as needed in the command stream. Provid-
ing either flag overrides the current setting, so that the linker actions can be controlled
on a library-by-library basis.

-Wrefalign=ref
Specifies the global reference alignment for pointers. ref can be either 2 or 8. The
default value is 8.

527188-021 Hewlett-Packard Company 2−49

c99(1) OSS Shell and Utilities Reference Manual

-WRefMemFuncsOnly
Specifies that the compiler provide debug information for referenced member functions
only. If this flag is not used, the compiler provides debug information for all member
functions in a class. This flag can be used to reduce the size of the debug region. You
must also specify the -g flag for this flag to have an effect.

-W[no]remarks
Enables [disables] compiler remark messages. Remark messages are informative diag-
nostics that are less severe than warnings and errors. The default setting is
-Wnoremarks.

-Wrunnamed
Directs the linker utility to set the RUNNAMED ON attribute in the output object file.
This attribute specifies that the object file runs as a named process. The default attri-
bute setting is RUNNAMED OFF. The RUNNAMED ON attribute is set only if an
executable object file is produced.

-WRVU={fh-series-rvu}
Sets the value of the _H_SERIES_RVU feature test macro. These feature test macros
are used in HP NonStop standard header files to determine whether declarations that
depend on a specific RVU are available. No checking is performed to determine
whether the specified RVU actually exists. The default value for this flag is the H-
series RVU in which the compiler was last released. To specify a specific J-series
RVU, specify the equivalent H-series RVU.

If you specify an H-series RVU:

• You must specify the value in the form H06.nn—for example
-WRVU=H06.05.

• The -Wtarget flag is not required, but if you do specify it, you must specify
tns/e for the value.

• For a C module compilation, this option causes the compiler to issue an error,
instead of a warning, for implicitly declared functions.

-W[no]saveabend
Specifies that a saveabend (process snapshot) file is [is not] created if the program ter-
minates abnormally. The default setting is -Wnosaveabend. This flag is meaningful
only if an executable object file is produced.

-Wsavetemps
Saves all temporary and intermediate files created by compilation system components.
Use the -Wv flag to display the filenames.

-Wsqlmx[="args"]
Invokes the NonStop SQL/MX mxsqlc preprocessor before compilation for any file
operands of the form file.sql, file.ec, file.eC, file.ecpp, file.ecxx, or file.ec++. If an argu-
ment is specified, it must be one of the following:

listing Directs the preprocessor to write its diagnostic messages to a file
named file.eL in addition to the standard error file, where file is the
name of the primary source file.

2−50 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

noansi_varchars
Directs the preprocessor to turn off generation of ANSI varchar data.

This option is valid only for preprocessor release 1.8 and newer.

noline Directs the preprocessor to suppress generation of #line directives in
the preprocessed output source file that it creates.

null_terminate
Directs the preprocessor to terminate host variable strings with a
NULL before fetch operations into them.

This option is valid only for preprocessor release 1.8 and newer.

preprocess_only
Directs the preprocessor to suppress all steps after preprocessing.

This option is valid only for preprocessor release 2.0 and newer.

process_includes
Directs the SQL/MX preprocessor to process one level of include files.
This setting applies only to include files for SQL definitions; it does
not apply to include file processing performed by the C/C++ compiler.

refrain_r2 Directs the SQL/MX preprocessor to use only the rules and features
that apply to preprocessors prior to release 2.0. The default action is to
use only the rules and features that apply to preprocessors beginning
with release 2.0.

This option is valid only for preprocessor release 2.0 and newer.

IEEE_float Directs the SQL/MX preprocessor to use IEEE floating-point format
instead of Tandem floating-point format. This option is valid only for
preprocessor release 2.0 and newer.

For preprocessors before release 2.0, the default floating-point format
is the same as that of the c99 compiler (IEEE format). For preproces-
sors beginning with release 2.0, the default floating-point format is
IEEE format.

If more than one argument is specified, the arguments must be separated by commas
without any white space.

-Wsqlmxadd[="args"]
Specifies a string to pass to the SQL/MX preprocessor without validation or change.

-W[no]stdfiles
Generates a Guardian program that opens [does not open] the standard input, output,
and error files by default. You can specify this flag only if -Wsystype=guardian is
also specified. The default setting is -Wstdfiles.

-W[no]suppress
Disables [enables] the generation of listings. The listing is placed in a file in the
current working directory with the same name as the source, but with a suffix of .L.
The default setting is -Wsuppress.

527188-021 Hewlett-Packard Company 2−51

c99(1) OSS Shell and Utilities Reference Manual

-Wsyntax
Performs only a syntax check. No code is generated.

-Wsystype={guardian | oss }
Specifies the target execution environment. This flag selects definitions used during
compilation, program startup code, default libraries, and system routines used during
linking. The default setting is -Wsystype=oss. To run files compiled for a Guardian
TNS/E target execution environment, you must set the file code to 800 with a FUP
ALTER filename, CODE 800 command from a TACL prompt.)

-Wtarget=platform
Specifies the system architecture for which code should be generated. The supported
values are -Wtarget=ipf and -Wtarget=tns/e.

-Wtimestamp=value
Provides a creation timestamp for the NonStop SQL/MX preprocessor that is written to
the two output files created by the preprocessor. See the HP NonStop SQL/MX Pro-
gramming Manual for C and COBOL for details about the form for the value allowed
for the timestamp. If this option is specified more than once, only the last occurrence
has an effect. Note that c99 does not check that value is valid; it relies on the NonStop
SQL/MX preprocessor to validate this argument.

This flag is ignored unless the -Wsqlmx flag is also specified.

-Wu="symbol_name"
Tells the linker to add symbol_name as an undefined symbol. This causes the linker to
search for this symbol in any archive libraries that are specified after this flag on the
command line or in an obey file.

The search constraint specified by the -Wu flag is overridden by use of the
-Winclude_whole flag.

-Wv Echoes the command line to the standard error file as each component of the compila-
tion system is run.

-Wverbose
Echoes the command line to the standard error file as each component of the compila-
tion system is run and causes additional output and listings from the SQL compiler to
be sent to the standard output file. SQL compiler error messages are sent to the stan-
dard error file.

-Wversion3
Specifies which C++ dialect to compile.

-Wversion3 specifies the dialect released with G06.20. This version supports an
ANSI/ISO Standard C++ Library corresponding to ISO/IEC IS 14882. This is the
default. The c99 utility does not support earlier dialects.

All modules of a C++ program must be compiled and linked using the same dialect.

-Ww Suppresses the printing of compiler warning messages. This flag overrides any
-Wwarn or -Wnowarn flags.

-W[no]warn[=w [,w] ...]
For each w value that appears, this flag enables [disables] the compiler warning mes-
sage specified by w.

Declaring a w value enables [disables] the specified message. Specifying -Wwarn
[-Wnowarn] by itself enables [disables] all compiler warning messages.

2−52 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

If -Wwarn=w is specified, then -Wnowarn must also be specified or the -Wwarn=w
flag is ignored. If -Wnowarn=w is specified, then -Wwarn need not be specified.

If white space is present after the commas, the list of warning message numbers should
be enclosed in quotation marks.

-Wwarn is the default specification for this flag. -Ww overrides the -W[no]warn flag.

-Wx Strips part of the symbol table from the output object file but keeps information neces-
sary for the object file to be used as input to a linker utility again. This flag is typically
used with -Wr.

Multiple instances of the -D, -I, and -U flags and of the -l operands can be specified.

The position of -l library operands within a list of flags affects the order in which the libraries are
searched.

The order of specifying the -I and -L flags is significant.

Quotation marks around string values in flags are optional but recommended to avoid errors
caused by shell substitutions or deletions.

Refer to the C/C++ Programmer’s Guide for details.

DESCRIPTION
c99 is a driver program for the native C and C++ language compilation system. The c99 utility
compiles C and C++ programs using the native TNS/E compilers. Source files must comply with
the C99 (ISO/IEC 9899:1999) standard, but are permitted to use HP extensions if you specify the
-Wextensions flag. For source files that comply with the C89 standard or for programs that
require the compiler to process C source files traditional Kernighan and Ritchie C or Common C
rules, instead of according to ISO/ANSI Standard C, use the c89 utility with the -Wkr flag.

This reference page describes using c99 in the OSS environment.

c99 performs simple validation of the flags and operands from the arguments on its command
line and, depending on those arguments, invokes components of the language compilation sys-
tem. c99 does not verify the existence of files it passes to compilation system components. It
does verify that the operand suffix identifies a valid operand to pass to compilation system com-
ponents. c99 and the components it runs issue messages to the standard error file.

c99 performs the following steps:

1. If the corresponding -W flag is specified, invokes the SQL/MX preprocessor to process
any embedded SQL statements in C or C++ source files, creating C only, C++ only, or
module definition files as appropriate.

2. Compiles any specified C and C++ source files or source files produced by Step 1 into
object files.

3. If the -Wmxcmp flag is specified, invokes the NonStop SQL/MX compiler to process
files created by Step 1 or specified as module definition files in the command.

4. Links the object files together with any libraries specified on the command line. (This
occurs if no flags that prevent linking are specified and the source files are compiled
without errors.)

5. Writes an executable object file or library to the file specified by a -o flag (if present) or
to the file a.out.

527188-021 Hewlett-Packard Company 2−53

c99(1) OSS Shell and Utilities Reference Manual

Libraries can be:

• Archives, with a suffix of .a

• DLLs, with a suffix of .so

The default executable file in the Guardian file system is aout in the subvolume from which c99
is invoked.

If only a single source file is given and no flags that suppress linking are specified, then the file is
compiled into an object file and linked into an executable object file. If the executable file is
created successfully, the object file is removed.

c99 places object files (loadfiles) in the current working directory with the same base name as the
corresponding source file, but with a suffix of .o.

c99 also names several temporary or intermediate files that are created during the compilation
process. Like the output object file, c99 places these files in the current working directory. c99
removes these temporary or intermediate files unless the -Wsavetemps flag is specified.

If -Wsystype=oss is set, the C and C++ compilers define the predefined feature-test macros
_OSS_TARGET and _XOPEN_SOURCE. If -Wsystype=guardian is set, the C and C++ com-
pilers define the predefined feature-test macros _GUARDIAN_TARGET and
_TANDEM_SOURCE. These macros are used in the standard header files to determine the exe-
cution environment of a program. The feature-test macros can also be defined with a -D flag.
Because these macros are defined internally, not by c99, the macros are not defined when
-Wdryrun or -Wv are used.

Dynamic and Static Linking
The -WBdllsonly and -WBdynamic flags specify dynamic linking. The -WBstatic flag specifies
static linking. In dynamic linking, the eld utility first searches for a dynamic-link library (DLL).
If a DLL cannot be found, the linker then searches for an archive file. If neither of these files are
found, an error is issued. In static linking, the linker searches for an archive file but does not
search for a DLL.

If the archive file cannot be found, an error is issued.

Dynamic and static linking are not exact opposites. Dynamic linking accepts either a DDL or an
archive, but static linking accepts only an archive.

Unlike other c99 flags, multiple -WBdllsonly, -WBdynamic, and -WBstatic flags can be
specified in a single c99 invocation. Thus, it is possible to perform dynamic linking for some -l
operands and static linking for others.

The -WBdllsonly, -WBdynamic, and -WBstatic flags specified to c99 affect linking arguments
specified in -Weld, or -Weld_obey flags. Each specification remains in effect until another is
encountered. To change how a linker performs linking for such arguments, you can specify eld
flags that control linking within the argument list. All linkers perform dynamic linking by
default. Refer to the eld(1) reference page for more information.

Handling of Files in the Guardian File System
Files in the Guardian file system can be accessed using OSS pathname syntax
(/G/volume/subvol/fileID).

c99 requires that files in the Guardian file system be identified with a suffix as is done in the OSS
file system. Because Guardian filenames do not allow the .suffix format, the period is dropped
and the suffix becomes the last character of the filename. However, the .suffix format must be
used when specifying the file to c99.

Thus, the Guardian file system file $VOL.SUBVOL.FILEC, which identifies a C source file, is
specified to c99 as /G/VOL/SUBVOL/FILE.c. Likewise, c99 generates an object file

2−54 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

$VOL.SUBVOL.FILEO that can be specified to c99 again as /G/VOL/SUBVOL/FILE.o.

The default executable object file when the current working directory is in the Guardian file sys-
tem is aout.

Predefined Preprocessor Symbols and Macros
c99 defines the following preprocessor symbols and feature-test macros:

_ _cplusplus
Directs the preprocessor to process the source text as C++ source code. c99 defines
this symbol if the -Wcplusplus flag is specified or the name of an OSS source file ends
in a C++ suffix (.ii, .C, .cpp, .c++, .cxx, .cc, .eC, .ecpp, .ec++, .ecc, or .ecxx).

_TANDEM_SOURCE
Makes visible to the preprocessor identifiers required or permitted by extensions made
by HP. c99 defines this feature-test macro if the -Wextensions flag is specified.

_XOPEN_SOURCE
Makes visible to the preprocessor identifiers required or permitted by extensions made
by the XPG4 specification. c99 defines this feature-test macro by default unless the
-Wsystype=guardian flag is specified.

There are other feature-test macros defined by the compiler itself, not by c99. These feature-test
macros do not appear in the output of -Wv and -Wdryrun flags. Refer to the C/C++
Programmer’s Guide for further information on feature-test macros.

Operands
An operand is in the form of:

• A pathname

• -l library

• -WBdllsonly

• -WBdynamic

• -WBstatic

At least one operand of the pathname form must be specified. The following operands are sup-
ported:

file.a An archive library of object files typically produced by the ar command and passed
directly to a linker utility

file.c A C language source file to be preprocessed, compiled, and optionally linked

file.C A C++ language source file to be preprocessed, compiled, and optionally linked

file.cc A C++ language source file to be preprocessed, compiled, and optionally linked

file.cpp A C++ language source file to be preprocessed, compiled, and optionally linked

file.cxx A C++ language source file to be preprocessed, compiled, and optionally linked

527188-021 Hewlett-Packard Company 2−55

c99(1) OSS Shell and Utilities Reference Manual

file.c++ A C++ language source file to be preprocessed, compiled, and optionally linked

file.ec A C language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

file.eC A C++ language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

file.ecc A C++ language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

file.ecpp A C++ language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

file.ecxx A C++ language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

file.i A preprocessed C source file to be compiled and optionally linked

file.ii A preprocessed C++ source file to be compiled and optionally linked

file.m A module definition file (MDF) containing NonStop SQL/MX information for a
corresponding C source file

file.o An object file passed directly to a linker utility

file.so A dynamic-link library (DLL) containing position-independent code (PIC) for use by
the eld or rld utility

file.sql A C language source file containing embedded NonStop SQL/MX information to be
preprocessed, compiled, and optionally linked

-l library A file to be searched by a linker utility to resolve current unresolved external refer-
ences; eld searches for files named liblibrary.so and liblibrary.a,

A library is searched when its name is encountered, so the placement of -l is
significant. See the Standard Libraries subsection for more details.

-WBdllsonly
Specifies that the linker utility uses dynamic linking when searching for dynamic-link
libraries specified in subsequent -l operands; placement of this operand is significant
(refer to the Dynamic and Static Linking subsection for details)

-WBdynamic
Specifies that the linker utility uses dynamic linking when searching for libraries
specified in subsequent -l operands; placement of this operand is significant (refer to
the Dynamic and Static Linking subsection for details)

-WBstatic
Specifies that the linker utility uses static linking when searching for libraries specified
in subsequent -l operands. Placement of this operand is significant. Refer to the
Dynamic and Static Linking subsection for details.

Input Files
An input file is one of the following:

• A text file containing a C language or C++ language source program

• An object file in the format produced by the command c99 -c

2−56 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

• A library of object files in the format produced by archiving zero or more object files
using the ar command

• A linkfile or loadfile produced by the eld utility

• A module definition file created by the NonStop SQL/MX preprocessor.

When the -Wsqlmx flag is specified, c99 uses the source file filename extension to determine the
language mode (C or C++) and the names of the source files created by the NonStop SQL/MX
preprocessor.

The name of a created source file is the name of the primary source file plus one of the following
extension transformations:

• If the primary source file suffix is .ec or .sql and the -Wcpluplus flag is not specified, the
created source file has the suffix .c and uses the C language mode.

• If the primary source file suffix is .ec or .sql and the -Wcplusplus flag is also specified,
the created source file has the suffix .cpp and uses the C++ language mode.

• If the primary source file suffix is .eC, .ecpp, .ec++, .ecc, or .ecxx, the created source file
has the suffix .C, .cpp, .c++, .cc, or .cxx, resapectively, and uses the C++ language mode.

When c99 is passed a file name suffixed with .C, .cpp, .c++, .cc, or .cxx, that file is not passed to
the NonStop SQL/MX preprocessor. Such files are assumed to contain only C or C++ statements
without embedded NonStop SQL/MX information.

Output Files
An output file can be a preprocessed source file, an object file, or an executable file.

Standard Output File
The standard output file is empty unless a -E, -WM, or -WP flag is specified. If one of these
flags is specified, preprocessed source code is sent to the standard output file. When -WH is
used, the standard output file contains a line indicating which file is currently being operated
upon.

Standard Error File
The standard error file contains diagnostic and informational messages from c99 and the compi-
lation components it calls. If more than one source file operand is specified, then for each such
file the format "%s: \n",file is used to print the name of the source file before it is processed.

Standard Libraries
The c99 utility recognizes the following -l operands for standard libraries.

-l c Contains all library functions provided by HP that are specified in the XPG4 Version 2
(X/Open UNIX) specification, including those functions listed as residing in the
math.h header file.

-l C Contains the correct C++ run-time libraries, based on the value of the -Wversionn flag.
If the -Wversionn flag is omitted, the default version C++ library is used.

When you specify the -Wcplusplus and -Wversionn flags, you need not specify -l C;
all needed libraries are automatically linked. When you specify the -Wversion3 flag,
cppinit3.o is linked for a nonPIC program or cppinit4.o is linked for a PIC program.

527188-021 Hewlett-Packard Company 2−57

c99(1) OSS Shell and Utilities Reference Manual

-l l Contains all functions required by the C language output of the lex utility that are not
made available through the -l c operand.

-l m Contains all functions referenced in the math.h header file.

-l y Contains all functions required by the C language output of the yacc utility that are not
made available through the -l c operand.

In the absence of flags that inhibit invocation of a linker utility, such as -c and -E, c99 directs the
linker to search the standard C library after all other object files and libraries are searched.

If a C++ source file operand or a -Wcpluscplus flag is specified, c99 directs the linker to search
the C++ run-time library before it searches the standard C library. If you want the libraries to be
searched in a specific order or linking options to be processed in a specified order, you should
start the appropriate linker (eld) directly from the OSS shell and not use the c99 command to do
the linking.

Libraries residing in the Guardian file system cannot be specified as -l operands because of the
naming convention. They can be specified in the desired order with the -Weld flag.

Standard Include Directories
The standard include directory contains the standard C and C++ header files. c99 passes a -I flag
naming this directory as the last -I flag when processing source files. In the OSS environment,
the directory is /usr/include.

Standard Library Directories
The standard library directories contain the dynamic-link libraries (DLLs) used by the eld utility
to resolve external references.

In the OSS environment, a linker first searches the directory that contains the current version of
the operating system image (the active /G/system/sysnn directory). The linker then searches the
/lib, /usr/lib, and /usr/local/lib directories.

The value of the COMP_ROOT environment variable is added to the beginning of /lib, /usr/lib,
and /user/local/lib. By default, the value of COMP_ROOT is null in the OSS environment.

See the eld(1) reference page for more information about controlling the search order for a PIC
file linker.

Default Flags
If no flags are specified, c99 behaves as if the following flags were specified:

-Wsystype=oss -o a.out -Wenv=common -Wfieldalign=auto
-Wrefalign=8 -Wansistreams -Winline
-WIEEE_float
-Wlist -Wnoinnerlist -Wsuppress -Wstdfiles -Wnomap
-Wnoextensions -Wnooverflow_traps -Wnoremarks
-Wnoinspect -Wnosaveabend -WBdynamic
-Wcall_shared
-Wnoincludewhole -Wnoreexport -Wnooptionl_lib
-Wversion3
-Wwarn
-D_XOPEN_SOURCE -I/usr/include -L/lib -L/usr/lib
-L/usr/local/lib -lc

2−58 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

Environment Variables
The following environment variables affect the execution of c99.

CCOMBE
Determines the pathname of the ccombe component of the C and C++ compilers.
/usr/cmplr/ccombe is the default location for the OSS environment.

COMP_ROOT
Changes the default pathnames for:

• The c99 compilation system components

• The standard include directory

• The standard library directories

In the OSS environment, the string specified in COMP_ROOT is added to the begin-
ning of the default pathnames.

If a component’s environment variable is set explicitly, the COMP_ROOT environ-
ment variable does not modify that component’s environment variable.

ELD Determines the pathname of the eld utility invoked by c99. /usr/bin/eld is the default
location for the OSS environment.

MXCMP
Determines the pathname of the NonStop SQL/MX release 1 compiler.
/G/system/system/mxcmp is the default.

MXCMPUM
Determines the pathname of the NonStop SQL/MX release 2 compiler.
/usr/tandem/sqlmx/bin/mxCompileUserModule is the default.

MXSQLC
Determines the pathname of the C/C++ NonStop SQL/MX preprocessor, mxsqlc.
/usr/tandem/sqlmx/bin/mxsqlc is the default.

SQLMX_PREPROCESSOR_VERSION
Indicates the preprocessor rules and features to be used. Specifying the value 800
causes rules and features associated with release 1.8 to be used; the mxcmp compiler
is used and only MDF files and annotated source files are produced, while rules and
features associated with release 2.0 and later are ignored. Specifying a value of 1200
or larger or not specifying a value causes rules and features associated with release 2.0
and later to be used; the mxCompileUserModule compiler is used and annotated
source files that contain embedded module definitions are produced instead of MDF
files, while restrictions associated with release 1.8 or earlier are ignored.

TMPDIR
Determines the pathname that overrides the default directory for temporary files
created by c99 and the components it invokes. By default, temporary files are stored in
the /tmp directory. If TMPDIR is set to a directory that does not exist or is not write-
able, c99 uses the default directory as described on the tempnam(3) reference page.

EXAMPLES
1. The command

c99 test1.c

compiles the source file test1.c and links the object file into an executable file
a.out in the current working directory.

527188-021 Hewlett-Packard Company 2−59

c99(1) OSS Shell and Utilities Reference Manual

2. The command

c99 -Wnowarn -Wwarn=262 test1.c

compiles the source file test1.c and links the object file into an executable file
a.out in the current working directory. All compiler warning messages except
message number 262 are disabled.

3. The command

c99 -c /home/me/app/test1.c

compiles the source file /home/me/app/test1.c into the object file test1.o in the
current working directory.

4. The command

c99 -g -o test2 x.c y.c z.c
-Wnostdinc
-I/dev/product/app/src
-I/new/usr/include
-lclient -lserver
-L/dev/product/lib
-L/new/usr/lib

compiles the source files x.c, y.c, and z.c and links their respective object files
x.o, y.o, and z.o into the executable file test2. Symbolic information is gen-
erated by the compiler and retained by the linker utility for debugging.

Included files are searched for in the directories /dev/product/app/src and
/new/usr/include; /usr/include is not searched. The linker searches for the
libraries libclient.srl and libserver.srl in the directories /dev/product/lib and
/new/usr/lib before searching in the directories /G/system/sysnn, /lib, /usr/lib,
and /usr/local/lib.

5. The command

c99 -g -o test2 x.c y.c z.c
-Wcall_shared
-Wnostdinc
-I/dev/product/app/src
-I/new/usr/include
-lclient -lserver
-L/dev/product/lib
-L/new/usr/lib

compiles the source files x.c, y.c, and z.c and links their respective object files
x.o, y.o, and z.o into the loadfile test2. Symbolic information is generated by
the compiler and retained by the linker utility for debugging.

Included files are searched for in the directories /dev/product/app/src and
/new/usr/include; /usr/include is not searched. The linker searches for the
libraries libclient.so and libserver.so in the directories /dev/product/lib and
/new/usr/lib before searching in the directories /G/system/sysnn, /lib, /usr/lib,
and /usr/local/lib.

6. The command

c99 -o test3 -O -DTYPE=3
-I/usr/friend
-I/usr/myself/headers
foo.c bar.o baz.c

2−60 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

compiles the source files foo.c and baz.c and links their respective object files
with bar.o into the object file test3.o. The preprocessor symbol TYPE is
defined to 3, and full optimization is performed by the compiler. The compiler
looks for included files in the directory /usr/friend, then in
/usr/myself/headers, then in /usr/include.

7. The command

c99 -c -Wsqlmx file1.eC file2.ecc file3.ec++

uses the mxsqlc preprocessor on several C++ source files and also compiles
them, but does not link the results. If no errors are detected in either the
preprocessing or compilation steps, the following files are created: file1.m,
file1.C, file2.m, file2.cc, file3.m, file3.c++, file1.o, file2.o, file3.o.

8. The command

c99 -Wsqlmx -E file.ec > file-cpp.c

uses the mxsqlc preprocessor to expand embedded SQL statements and
invokes the NonStop SQL/MX preprocessor to create a single source file con-
taining only C statements.

9. The command

c99 -c -Wsqlmx file1.C file2.ecc file3.ec++ file4.cpp

illustrates mixing C++ source files, with and without NonStop SQL/MX infor-
mation, on a single command line. Only source files that have names with one
of the SQL extension suffixes invoke the mxsqlc preprocessor. However, all
files are compiled but not linked. If no errors are detected in either the prepro-
cessing or compilation steps, the following files are created: file2.m, file2.cc,
file3.m, file3.c++, file1.o, file2.o, file3.o, file4.o.

10. The command

c99 -Wmxcmp -Wmxcmp_files=test1.m,test1.o

SQL-compiles the MDF file test1.m using the NonStop SQL/MX mxcmp
compiler and processes the file test1.o using the NonStop SQL/MX mxCom-
pileUserModule without also linking it.

11. The command

c99 file.c -lc -WBstatic -l archive -WBdynamic -l native

compiles the source file file.c and links the object file into an executable file
a.out in the current working directory. The linker performs dynamic linking by
searching first for the file libc.srl and then libc.a. The linker then performs
static linking by searching for the file libarchive.a. The linker then performs
dynamic linking by searching first for the file libnative.srl and then
libnative.a.

12. The command

c99 file.c -lc -Wcall_shared -WBstatic
-l archive -WBdynamic
-l native

compiles the source file file.c and links the object file into loadfile a.out in the
current working directory. The linker performs dynamic linking by searching
first for the file libc.so and then libc.a. The linker then performs static linking
by searching for the file libarchive.a. The linker then performs dynamic

527188-021 Hewlett-Packard Company 2−61

c99(1) OSS Shell and Utilities Reference Manual

linking by searching first for the file libnative.so and then libnative.a.

13. The command

c99 -Wmxcmp -c module.m

invokes the NonStop SQL/MX compiler to process the module definition file
module.m.

FILES
/usr/bin/c99

Native c99 in the OSS environment.

/G/system/sysnn/zcppcdll
C++ run-time library function object code for J-series and H-series
processes; linked automatically when you compile and link C++ surce files
or when you specify the -Wcplusplus flag.

/G/system/sysnn/zcpp3dll
C++ run-time library function object code for J-series and H-series
processes; linked automatically when you compile and link C++ surce files
or when you specify the -Wcplusplus flag.

/G/system/sysnn/zcredll
Common Run-Time Environment (CRE) function object code for J-series
and H-series processes; linked automatically.

/G/system/sysnn/zcrtldll
C run-time library function object code for J-series and H-series processes;
linked automatically.

/G/system/sysnn/zicnvdll
Function object code for J-series and H-series processes; linked automati-
cally.

/G/system/sysnn/zi18ndll
Internationalization function object code for J-series and H-series processes;
linked automatically.

/G/system/sysnn/zosscdll
Function object code for J-series and H-series processes; linked automati-
cally.

/G/system/sysnn/zossedll
Function object code for J-series and H-series processes; linked automati-
cally.

/G/system/sysnn/zossfdll
Function object code for J-series and H-series processes; linked automati-
cally.

/G/system/sysnn/zosskdll
Function object code for J-series and H-series processes; linked automati-
cally.

2−62 Hewlett-Packard Company 527188-021

User Commands (c) c99(1)

/G/system/sysnn/zpgodll
Symbols referenced by instrumented code for J-series and H-series
processes; must be linked when you link a program or DLL that contains
instrumented code; linked automatically when you specify the -Wcodecov or
-Wprofgen flags.

/G/system/sysnn/zsecdll
Security function object code for J-series and H-series processes; linked
automatically.

DIAGNOSTICS
If c99 encounters a compilation error that prevents an object file from being created, it writes a
diagnostic message to the standard error file and continues to compile other source code
operands. However, it does not perform program linking and returns a nonzero exit status.

If the linking is unsuccessful, c99 writes a diagnostic message to the standard error file and
returns a nonzero exit status.

EXIT VALUES
The following exit values are returned:

0 (zero) Successful completion.

>0 An error occurred.

RELATED INFORMATION
Commands: ar(1), c89(1), eld(1), strip(1).

Functions: fp_class(3), tempnam(3).

Files: float(4).

STANDARDS CONFORMANCE
All -W options are HP extensions to the POSIX and XOPEN standards.

527188-021 Hewlett-Packard Company 2−63

cal(1) OSS Shell and Utilities Reference Manual

NAME
cal - Displays a calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
The cal command writes to the standard output file a Gregorian calendar for the specified month
or year.

If you provide two operands, cal assumes the first to be month and the second to be year. The
month operand specifies the month for which you want the calendar, and it must be a number in
the range 1 through 12 for January through December, respectively. The year operand specifies
the year for which you want the calendar, and it must be a number in the range 1 through 9999.
Because cal can display a calendar for any year in this range, enter a full 4-digit year (for exam-
ple, 1993) rather than just the last two digits.

If you provide only one operand, cal assumes that operand to be year (even if it is in the range 1
through 12) and displays a calendar for all 12 months of that year.

If you do not provide any operands, cal displays a calendar for the current month of the current
year.

Environment Variables
The cal command checks the LC_TIME environment variable and uses the correct headers for
the current locale. If LC_TIME is not set, cal checks the value of LANG. If neither variable is
set, you receive English headers.

EXAMPLES
1. To display a calendar for February 1999, enter:

cal 2 1999

2. To print a calendar for the entire year of 1999, enter:

cal 1999 � print

3. To display a calendar for the year 84 of the Common Era, enter:

cal 84

EXIT VALUES
The cal command returns the following exit values:

0 (zero) The cal utility successfully finished its processing.

>0 An error occurred.

RELATED INFORMATION
Files: locale(4).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions, except for the fol-
lowing features:

• The SHELL and TZ environment variables are not used.

2−64 Hewlett-Packard Company 527188-021

User Commands (c) cancel(1)

NAME
cancel - Removes job requests from the line printer spooling queue

SYNOPSIS
cancel [request-ID ...] location ...

The cancel command removes one or more requests from a printer’s spool queue.

DESCRIPTION
Because the spooling directory is protected from users, using the cancel command is normally
the way a user can remove a request.

Users can cancel jobs they initiated. Superusers with special privileges can cancel jobs initiated
by other users.

You can remove an individual request from a queue by specifying its request ID. (You can obtain
the request ID by using the lp command.)

The argument location specifies a spooler location where the job request to be removed resides.
If no ID is specified, all the jobs initiated by the user that reside in the specified location are can-
celed. If location is not specified, the system default location is used.

The cancel command does not return a message if there are no requests in the queue that match
the request list.

The cancel command kills an active daemon, if necessary, before removing any spooling files. If
a daemon is killed, a new one is automatically restarted upon completion of file removals.

You cannot use cancel to remove another user’s job unless you have superuser privileges.

cancel can remove only jobs in the READY or HOLD state (see the reference page for the lpstat
command). When a job request is under the control of another process, such as a PRINT process,
cancel has no effect.

Environment Variables
LANG Provides a default value for the internationalization variables that are unset

or null. If the LANG variable is unset or null, the corresponding value from
the implementation-specific default locale is used. If any of the internation-
alization variables contain an invalid setting, the cancel command behaves
as if none of the variables have been defined.

LC_ALL
When set with a nonempty string, overrides the values of all other interna-
tionalization variables.

LC_CTYPE
Determines the locale for the interpretation of sequences of bytes of text data
as characters (for example, single-byte as opposed to multibyte characters in
arguments and input files).

LC_MESSAGES
Determines the locale to be used to affect the format and contents of diagnos-
tic messages written to the standard error file and informative messages writ-
ten to the standard output file.

NLSPATH
Determines the location of message catalogs for processing the
LC_MESSAGES variable.

527188-021 Hewlett-Packard Company 2−65

cancel(1) OSS Shell and Utilities Reference Manual

EXAMPLES
1. To remove a job whose request ID is 123 in the default print queue, enter:

cancel 123

2. To remove a job whose request ID is 123 in the print queue for printer1, enter:

cancel 123 -Pprinter1

NOTES
Because race conditions are possible in the update of the lock file, the currently active request
may be incorrectly identified.

EXIT VALUES
The following exit values are returned by the cancel command:

0 Completion was successful.

>0 An error occurred.

RELATED INFORMATION
Commands: lp(1), lpstat(1).

2−66 Hewlett-Packard Company 527188-021

User Commands (c) cat(1)

NAME
cat - Concatenates or displays files

SYNOPSIS
cat [-benrstuv] [- | file] ...

The cat command reads each specified file in sequence and writes it to standard output.

FLAGS
-b Omits line numbers from blank lines when -n is specified. If you specify the

-b flag, the -n flag is automatically invoked with it.

-e Same as the -v flag with a $ (dollar sign) character displayed at the end of
each line.

-n Displays output lines preceded by line numbers, numbered sequentially from
1.

-r Replaces multiple consecutive empty lines with one empty line, so there is
never more than one empty line between lines containing characters.

-s Does not display a message if cat cannot find an input file. (Silent option.)

-t Same as the -v flag, with the tab character printed as <Ctrl-i> (ˆI).

-u Does not buffer output. Writes bytes from the input file to standard output
without delay as each is read.

-v Displays nonprinting characters so they are visible.

DESCRIPTION
The cat command is frequently used with > (redirection symbol) to concatenate the specified
files and write them to the specified destination. (See CAUTIONS.) cat is also used with >> to
append a file to another file.

If you do not specify a file or if you specify - (dash) instead of file, cat reads from standard input.
The cat command accepts multiple occurrences of - (dash) as a file argument.

EXAMPLES
1. To display the file notes, enter:

cat notes

If the file is longer than one screenful, it scrolls by too quickly to read. To
display a file one page at a time, use the more command.

2. To concatenate several files, enter:

cat section1.1 section1.2 section1.3 > section1

This creates a file named section1 that is a copy of section1.1 followed by sec-
tion1.2 and section1.3.

3. To suppress error messages about files that do not exist, enter:

cat -s section2.1 section2.2 section2.3 > section2

If section2.1 does not exist, this command concatenates section2.2 and sec-
tion2.3. Note that the message goes to standard error, so it does not appear in
the output file. The result is the same if you do not use the -s flag except that
cat displays the error message:

cat: cannot open section2.1

527188-021 Hewlett-Packard Company 2−67

cat(1) OSS Shell and Utilities Reference Manual

You may want to suppress this message with the -s flag when you use the cat
command in shell procedures.

4. To append one file to the end of another, enter:

cat section1.4 >> section1

The >> in this command specifies that a copy of section1.4 be added to the end
of section1. If you want to replace the file, use a single > symbol.

5. To add text to the end of a file, enter:

cat >> notes
Get milk on the way home
<Ctrl-y>

Get milk on the way home is added to the end of notes. When you use this
syntax, the cat command waits for you to enter text. Press the End-of-File key
sequence (<Ctrl-y> above) to indicate you are finished.

6. To concatenate several files with text entered from the keyboard, enter:

cat section3.1 - section3.3 > section3

This concatenates section3.1, text from the keyboard, and section3.3 to create
the file section3.

7. To concatenate several files with output from another command, enter:

ls | cat section4.1 - > section4

This command copies section4.1 and then the output of the ls command to the
file section4.

8. To get two pieces of input from the terminal (when standard input is a terminal)
with a single command invocation, enter:

cat start - middle - end > file1

If standard input is a regular file, however, the preceding command is
equivalent to the following:

cat start - middle /dev/null end > file1

The commands are equivalent because the entire contents of the file would be
consumed by cat the first time - (dash) was used as a file argument. An End-
of-File condition would then be detected immediately when - appeared the
second time.

CAUTIONS
Do not redirect output to one of the input files using the > (redirection symbol). If you do this,
you lose the original data in the input file because the shell truncates it before cat can read it.
(See also the sh command.)

RELATED INFORMATION
Commands: more(1), pr(1), sh(1).

2−68 Hewlett-Packard Company 527188-021

User Commands (c) cd(1)

NAME
cd - Changes the current directory

SYNOPSIS
cd argument

DESCRIPTION
The cd command changes the current directory to argument, where argument is a pathname.

If argument is a - (dash), the directory is changed to the previous directory.

The HOME shell parameter is the default argument. The PWD parameter is set to the current
directory. The CDPATH shell parameter defines the search path for the directory containing
argument.

Separate alternative directory names with a : (colon). The default path is a null string, specifying
the home directory. Note that the current directory is specified by a full pathname.

If argument begins with a / (slash), the search path is not used. Otherwise, each directory in the
path is searched for argument.

EXAMPLES
1. The following command changes to the directory one level above the current

directory.

cd ..

2. The following command changes to a directory named mywork that is one
level beneath the user’s home directory.

cd mywork

NOTES
The cd command is a shell built-in command. It differs from the regular commands in that it does
not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: pwd(1), sh(1).

527188-021 Hewlett-Packard Company 2−69

chgrp(1) OSS Shell and Utilities Reference Manual

NAME
chgrp - Changes the group ownership of a file or directory

SYNOPSIS
chgrp [-W NOG] [-W NOE] [-fhR] group file ...

The chgrp command changes the group associated with the specified file or directory to
group.

FLAGS
-f Suppresses all error reporting.

-h Changes the group ownership of a symbolic link, instead of the file to which
the symbolic link points. When you use this flag, the chgrp command does
not affect the file pointed to by the symbolic link. If you use the -R flag with
this flag, recursion does not take place.

-R Causes chgrp to descend recursively through its directory arguments, setting
the specified group ID. If chgrp fails to change the group ID of a particular
file in the hierarchy, it continues to process the remaining files. If chgrp can-
not read or process a directory in the hierarchy, it continues to process the
other parts of the hierarchy. When symbolic links are encountered and the -h
flag is not used, the group ownership of the parent file or directory changes,
but the group ownership of linked files or directories does not change. If you
use the -h flag with this flag, recursion does not take place.

HP Extensions
-W NOG Specifies that the /G directory should be omitted when the initial direc-

tory is root and the recursive flag (-R) is used. This flag is ignored
when the initial directory is not /, /E, or /E/system or when recursion
does not occur.

-W NOE Specifies that the /E directory should be omitted when the initial direc-
tory is root and the recursive flag (-R) is used. This flag is ignored
when the initial directory is not root or when recursion does not occur.

Specify both the -W NOG and -W NOE flags to omit both the /G and /E directories.

DESCRIPTION
The effective user of the process must match the owner of the file.

Users can change the group of a file to a group that they belong to (their effective group or one of
their supplementary groups). If you do not own the file and do not belong to the new group, you
must have superuser authority to change the group name or group ID.

The group argument must be either a valid group name or a valid group ID that exists in the
group database. If a numeric group operand exists in the group database as a group name, the
group ID number associated with that group name is used as the group ID.

Access Control Lists (ACLs)
A user can allow or deny specific individuals and groups access to a file by using the access con-
trol list (ACL) for the file. When using the chgrp() function in conjunction with ACLs, if the
new owner and/or group of a file have optional ACL entries corresponding to user:uid:perm or
group:gid:perm in the ACL for a file, those entries remain in the ACL but no longer have any
effect because they are superseded by the user::perm or group::perm entries in the ACL.

Access control lists (ACLs) are not supported for symbolic links.

2−70 Hewlett-Packard Company 527188-021

User Commands (c) chgrp(1)

For more information about ACLs, see the acl(5) reference page.

Environment Variables
The following environment variables affect the execution of the chgrp command:

UTILSGE Specifies that HP extensions to the root directory should be omitted
when the initial directory is root and a recursive operation occurs in an
OSS shell command. Application programs that test this variable
might also honor its settings.

The UTILSGE value can be any of the following:

NOE Omit the /E directory.

NOG Omit the /G directory.

NOG:NOE Omit both the /G and /E directories.

The effect of assigning a value to the UTILSGE environment variable
is the same as specifying the -W NOG or -W NOE flag in the com-
mand.

EXAMPLES
1. To change the group ownership of the file or directory named proposals to

staff, enter:

chgrp staff proposals

The group access permissions for proposals now apply to staff. See the
chmod(1) reference page for details.

2. To recursively change the group ownership of all OSS files on the local node to
the SUPER group, enter:

chgrp -W NOG -W NOE -R SUPER /

NOTES
Because /G and /E both appear in your local root directory, you should be very careful when
using OSS shell commands on or from the root directory. OSS shell commands that perform
recursive actions make no distinction between Guardian and OSS files or between local and
remote files. You can use the -W NOE and -W NOG flags or the UTILSGE environment vari-
able to exclude objects in the Guardian file system or objects accessible through the Expand pro-
duct.

RELATED INFORMATION
Commands: chmod(1), chown(1), ls(1).

Functions: chmod(2), chown(2).

STANDARDS CONFORMANCE
The -W NOE and -W NOG flags and the UTILSGE environment variable are HP extensions to
the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 2−71

chmod(1) OSS Shell and Utilities Reference Manual

NAME
chmod - Changes permissions and other file mode settings

SYNOPSIS
chmod [-fR] absolute_mode file ...

chmod [-W NOG] [-W NOE] [-fhR] [who] +permission ... | -permission ... | =permis-
sion ... file ...

FLAGS
-f Does not report an error if the chmod command fails to change the mode on

a file.

-h Changes the mode of a symbolic link, instead of the file to which the sym-
bolic link points. When you use this flag, the chmod command does not
affect the file pointed to by the symbolic link. If the symbolic link refers to a
directory and the both the -R and -h flags are used, the ownership of the sym-
bolic link is changed, but ownership of the directory to which the symbolic
link refers remains unchanged and recursion into that directory does not
occur.

-R Causes chmod to descend recursively through its directory arguments, set-
ting the mode for each file as described in Symbolic Mode and Absolute
Mode in the DESCRIPTION section. If chmod is unable to change the
mode of a particular file, or unable to read or search a particular directory, it
continues processing through the hierarchy. When the chmod command
encounters a symbolic link:

• If the symbolic link refers to a file, the owner of the file is changed.

• If the symbolic link refers to a directory, the owner of the directory is
changed, but recursion into the directory does not occur.

• If the symbolic link refers to a directory and the both the -R and -h
flags are used, the ownership of the symbolic link is changed, but
ownership of the directory to which the symbolic link refers remains
unchanged and recursion into that directory does not occur.

HP Extensions
-W NOG Specifies that the /G directory should be omitted when the initial direc-

tory is root and the recursive flag (-R) is used. This flag is ignored
when the initial directory is not /, /E, or /E/system or when recursion
does not occur.

-W NOE Specifies that the /E directory should be omitted when the initial direc-
tory is root and the recursive flag (-R) is used. This flag is ignored
when the initial directory is not root or when recursion does not occur.

Specify both the -W NOG and -W NOE flags to omit both the /G and /E directories.

DESCRIPTION
You can use either symbolic mode or absolute mode to specify the desired permission settings.
Symbolic mode is more portable but does not offer all of the options of absolute mode.

To change the file access permissions of a file or directory, the effective user ID of the process
must match the super ID or the owner of the file, or the effective user ID of the process or one of
its group affiliations must qualify it for membership in the Safeguard SECURITY-OSS-

2−72 Hewlett-Packard Company 527188-021

User Commands (c) chmod(1)

ADMINISTRATOR group.

If chmod is invoked by a process whose effective user ID does not equal the super ID or file
owner, the set-user-ID and set-group-ID bits of the file mode (04000 and 02000, respectively) are
cleared.

Access Control Lists (ACLs)
When you execute the chmod command, you can change the effective permissions granted by
optional entries in the ACL for a file. In particular, using the chmod command to remove read,
write, and execute permissions from a file owner, owning group, and all others works as
expected, because the chmod command affects the class entry in the ACL, limiting any access
that can be granted to additional users or groups through optional ACL entries. To verify the
effect, use getacl command on the file after the chmod command completes and note that all
optional (nondefault) ACL entries with nonzero permissions also have the comment
effective:---.

To set the permission bits of access control list entries, use the setacl command instead of the
chmod command.

ACLs are not supported for symbolic links.

Symbolic Mode
Symbolic mode has the form:

[who] operation permission[, operation permission ...]

The who argument specifies whether you are defining permissions for a user, group, or all others,
or any combination of these. The operation argument specifies whether the permission is being
added, removed, or assigned absolutely. The permission argument identifies the operation that
the specified users can perform on file.

Valid options for the who argument are as follows:

a User, group, and all others (same effect as the combination ugo)

g Group

o All others

u User (owner)

If the who argument is omitted, the default value is a, but the setting of the file creation
mask, umask (see the reference page for sh(1)), is applied.

Valid options for the operation argument are as follows:

- Removes specified permissions.

+ Adds specified permissions.

= Clears the selected permission field and sets it to the specified code. If you
do not specify a permission code following =, the chmod command removes
all permissions from the selected field.

Valid options for the permission argument are as follows:

r Read permission.

w Write permission.

527188-021 Hewlett-Packard Company 2−73

chmod(1) OSS Shell and Utilities Reference Manual

x Execute permission for files, search permission for directories.

X Execute permission only if file is a directory or if at least one execute bit
(S_IXUSR, S_IXGRP, or S_IXOTH) is set.

s Set-user-ID or set-group-ID permission.

This permission bit sets the effective user ID or group ID to that of the owner
or group owner of file whenever the file is run. Use this permission setting
with the u or g option to allow temporary or restricted access to files not nor-
mally accessible to other users. An s appears in the user or group execute
position of a long listing (see the reference page for the ls command) to show
that the file runs with set-user-ID or set-group-ID permission.

Note that the command chmod o+s has no effect (the set-user-ID-on-
execution and set-group-ID-on-execution bits are not modified).

t Save text permission.

In some versions of the UNIX system, setting this permission bit causes the
text segment of a program to remain in virtual memory after its first use.
Such systems therefore do not transfer the program code of frequently
accessed programs into the paging area.

You can specify this permission for OSS files, but it has no effect. The letter
t appears in the execute position of the all others option to indicate that the
file has this bit (the sticky bit) set.

If a directory has this bit set, then deletion in it is restricted. An entry in a
sticky directory can be removed or renamed by a user only if the user has
write permission for the directory and the user is the owner of the file, the
owner of the directory, or has appropriate permissions.

The u, g, and o options indicate that permission is to be taken from the current mode.
Omitting permission is useful only with = to remove all permissions. For example,
entering the following command clears all permission fields for the user and resets
them all to those of the group for file1:

u=g file1

All permission bits not explicitly specified are cleared.

You can specify multiple symbolic modes, separated with commas. Do not separate
items in this list with spaces. Operations are performed in the order they appear from
left to right.

Absolute Mode
Absolute mode lets you use octal notation to set each bit in the permission code. The chmod
command sets the permissions to the permission_code you provide. permission_code is con-
structed by combining with logical OR the following values:

01000000
Sets the trust bit for a TNS/E native loadfile regardless of whether an I/O
buffer is in a shared memory segment (the S_TRUSTSHARED bit). On a
server running an H-series RVU, only a user with appropriate privileges (the
super ID) can use this setting. This bit is ignored on a server running a G-
series RVU.

2−74 Hewlett-Packard Company 527188-021

User Commands (c) chmod(1)

00400000
Sets the trust bit for a TNS/E native load file for cases where an I/O buffer is
not in a shared memory segment (the S_TRUST bit). On a server running an
H-series RVU, only a user with appropriate privileges (the super ID) can use
this setting. This bit is ignored on a server running a G-series RVU.

00004000
Sets user ID on execution (the S_ISUID bit).

00002000
Sets group ID on execution (the S_ISGID bit).

00001000
Sets sticky bit:

• Retains memory image after execution (executable file).

• Restricts file removal (directory).

00000400
Permits read by owner (the S_IRUSR bit).

00000200
Permits write by owner (the S_IWUSR bit).

00000100
Permits execute or search by owner (the S_IXUSR bit).

00000040
Permits read by group (the S_IRGRP bit).

00000020
Permits write by group (the S_IWGRP bit).

00000010
Permits execute or search by group (the S_IXGRP bit).

00000004
Permits read by others (the S_IROTH bit).

00000002
Permits write by others (the S_IWOTH bit).

00000001
Permits execute or search by others (the S_IXOTH bit).

Use on Guardian Objects
The chmod command does not work on files in the /G directory. Once a file has been created in
/G, you cannot change its permissions with the chmod command.

To avoid errors when using the chmod command from the root directory (/), use the -W NOG
flag to prevent an attempt to access files in /G.

Environment Variables
The following environment variables affect the execution of the chmod command:

UTILSGE Specifies that HP extensions to the root directory should be omitted
when the initial directory is root and a recursive operation occurs in an
OSS shell command. Application programs that test this variable

527188-021 Hewlett-Packard Company 2−75

chmod(1) OSS Shell and Utilities Reference Manual

might also honor its settings.

The UTILSGE value can be any of the following:

NOE Omit the /E directory.

NOG Omit the /G directory.

NOG:NOE Omit both the /G and /E directories.

The effect of assigning a value to the UTILSGE environment variable
is the same as specifying the -W NOG or -W NOE flag in the com-
mand.

EXAMPLES
1. To add a type of permission to several files, enter:

chmod g+w chap1 chap2

This command adds write permission for group members to the files chap1 and
chap2.

2. To make several permission changes at once, enter:

chmod go-w+x mydir

This command denies group members and others the permission to create or
delete files in the directory mydir (go-w) and allows them to search mydir or
use it in a pathname (go+x). This command is equivalent to the following
command sequence:

chmod g-w mydir
chmod o-w mydir
chmod g+x mydir
chmod o+x mydir

3. To permit only the owner to use a shell procedure as a command, enter:

chmod u=rwx,go= cmd

This command gives read, write, and execute permission to the user who owns
the file (u=rwx). It also denies the group and others the permission to access
cmd in any way (go=).

4. To use set-ID modes, enter:

chmod ug+s cmd

When the file cmd is executed, this command causes the effective user and
group IDs to be set to those that own the file cmd. Only the effective IDs asso-
ciated with the subprocess that runs cmd are changed. The effective IDs of the
shell session remain unchanged.

This feature allows you to permit restricted access to important files. Suppose
the file cmd has the set-user-ID mode enabled and is owned by a user called
dbms. dbms is not actually a person but might be associated with a database
management system. The user betty does not have permission to access any of
dbms’s data files. However, she does have permission to execute cmd. When
she does so, her effective user ID is temporarily changed to dbms, so that the
cmd program can access the data files owned by dbms.

2−76 Hewlett-Packard Company 527188-021

User Commands (c) chmod(1)

This way betty can use cmd to access the data files, but she cannot acciden-
tally damage them with the standard shell commands.

5. To use the absolute mode form of the chmod command, enter:

chmod 644 text

This command sets read and write permission for the owner, and it sets read-
only mode for the group and all others.

NOTES
Because /G and /E both appear in your local root directory, you should be very careful when
using OSS shell commands on or from the root directory. OSS shell commands that perform
recursive actions make no distinction between Guardian and OSS files or between local and
remote files. You can use the -W NOG and -W NOE flags or the UTILSGE environment vari-
able to exclude objects in the Guardian file system or objects accessible through the Expand pro-
duct.

RELATED INFORMATION
Commands: chgrp(1), chown(1), getacl(1), ls(1), setacl(1), sh(1).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• To change the file access permissions of a file or directory, the effective user
ID of the process must match the super ID or the owner of the file, or the
effective user ID or one of the group affiliations for the process must qualify
the process for membership in the Safeguard SECURITY-OSS-
ADMINISTRATOR group.

• The -W NOG and -W NOE flags and the UTILSGE environment variable are
used.

527188-021 Hewlett-Packard Company 2−77

chown(1) OSS Shell and Utilities Reference Manual

NAME
chown - Changes the owner of files or directories

SYNOPSIS
chown [-W NOG] [-W NOE] [-fhR] owner[:group] file ...

FLAGS
-f Turns off error reporting.

-h Changes the ownership of a symbolic link instead of the file to which
the symbolic link points. When you use this flag, the chown command
does not affect the file pointed to by the symbolic link. If the symbolic
link refers to a directory and the both the -R and -h flags are used, the
ownership of the symbolic link is changed, but ownership of the direc-
tory to which the symbolic link refers remains unchanged and recur-
sion into that directory does not occur.

-R Causes chown to descend recursively through its directory arguments,
setting the specified owner (and group, if specified). If chown fails to
change the owner or group of a particular file, or cannot read or search
a particular directory, it continues processing through the hierarchy.
When the chmod command encounters a symbolic link:

• If the symbolic link refers to a file, the owner of the file is
changed.

• If the symbolic link refers to a directory, the owner of the
directory is changed, but recursion into the directory does not
occur.

• If the symbolic link refers to a directory and the -h option is
used, the ownership of the symbolic link is changed, but own-
ership of the directory to which the symbolic link refers
remains unchanged and recursion into the directory does not
occur.

HP Extensions
-W NOG Specifies that the /G directory should be omitted when the initial direc-

tory is root and the recursive flag (-R) is used. This flag is ignored
when the initial directory is not /, /E, or /E/system or when recursion
does not occur.

-W NOE Specifies that the /E directory should be omitted when the initial direc-
tory is root and the recursive flag (-R) is used. This flag is ignored
when the initial directory is not root or when recursion does not occur.

Specify both the -W NOG and -W NOE flags to omit both the /G and /E directories.

DESCRIPTION
The chown command changes the owner of the specified files or directories to the specified user-
name or user ID.

A user with super ID priviledges can use the chown command to change the owner of a file.

The owner argument must be a valid username or a valid numerical user ID. The optional group
argument must be a valid group name or a valid numerical group ID. Only a process running
with an effective user ID equal to the super ID or with a user ID or group affiliation qualifying for

2−78 Hewlett-Packard Company 527188-021

User Commands (c) chown(1)

membership in the Safeguard SECURITY-OSS-ADMINISTRATOR group can use the chown
command to change the owner of a file.

Only a process that has an effective user ID equal to the super ID or to the file owner, or that has
an effective user ID or group affiliation qualifying for membership in the Safeguard
SECURITY-OSS-ADMINISTRATOR group can use the chown command to change the group
of a file. However, processes that have an effective user ID equal to the file owner can only
change the group of a file to a group to which they belong (their effective group or one of their
supplementary groups).

If the chown command is invoked by a process whose effective user ID does not equal the super
ID, the set-user-ID and set-group-ID bits of the file mode (04000 and 02000, respectively) are
cleared.

Access Control Lists (ACLs)
A user can use the ACL for a file to allow or deny specific individuals and groups access to a file.
When you use the chown() function with ACLs, if the new owner and/or group of a file have
optional ACL entries corresponding to user:uid:perm or group:gid:perm in the ACL for a file,
those entries remain in the ACL but no longer have any effect because they are superseded by the
user::perm or group::perm entries in the ACL.

ACLs are not supported for symbolic links.

For more information about ACLs, see the acl(5) reference page.

Environment Variables
The following environment variables affect the execution of the chown command:

UTILSGE Specifies that HP extensions to the root directory should be omitted
when the initial directory is root and a recursive operation occurs in an
OSS shell command. Application programs that test this variable
might also honor its settings.

The UTILSGE value can be any of the following:

NOE Omit the /E directory.

NOG Omit the /G directory.

NOG:NOE Omit both the /G and /E directories.

The effect of assigning a value to the UTILSGE environment variable
is the same as specifying the -W NOG or -W NOE flag in the com-
mand.

EXAMPLES
1. To change the owner of the file program.c, to steffan enter:

chown steffan program.c

The user access permissions for program.c now apply to steffan. As the
owner, steffan can use the chmod command to permit or deny the other users
access to program.c. (See the chmod(1) reference page for details.)

2. To recursively change the owner of all OSS files on the local node to the user-
name GROUP1.USER1 without affecting local Guardian files, enter:

chown -W NOG -W NOE -R GROUP1.USER1 /

or

527188-021 Hewlett-Packard Company 2−79

chown(1) OSS Shell and Utilities Reference Manual

export UTILSGE=NOG:NOE
chown -R GROUP1.USER1 /

NOTES
Because /G and /E both appear in your local root directory, you should be very careful when
using OSS shell commands on or from the root directory. OSS shell commands that perform
recursive actions make no distinction between Guardian and OSS files or between local and
remote files. You can use the -W NOG and -W NOE flags or the UTILSGE environment vari-
able to exclude objects in the Guardian file system or objects accessible through the Expand pro-
duct.

RELATED INFORMATION
Commands: chgrp(1), chmod(1), ls(1).

Functions: chmod(2), setacl(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
HP extensions to the XPG4 Version 2 specification are:

• To change the file access permissions of a file or directory, the effective user
ID of the process must match the super ID or the owner of the file, or the
effective user ID or one of the group affiliations for the process must qualify
the process for membership in the Safeguard SECURITY-OSS-
ADMINISTRATOR group.

• The -W NOG and -W NOE flags and the UTILSGE environment variable are
used.

2−80 Hewlett-Packard Company 527188-021

User Commands (c) cksum(1)

NAME
cksum - Displays the checksum and byte count of a file

SYNOPSIS
cksum [file ...]

DESCRIPTION
The cksum command reads the files specified by the file argument and calculates a 32-bit check-
sum Cyclic Redundancy Check (CRC) and the byte count for each file. If no files are specified,
the standard input file is read. The checksum, number of bytes, and filename are written to the
standard output file. If standard input is used, no pathname is printed.

The cksum command can be used to compare a suspect file copied or communicated over noisy
transmission lines against an exact copy of a trusted file. The comparison made by the cksum
command may not be cryptographically secure; however, it is unlikely that an accidentally dam-
aged file will produce the same checksum as the original file.

The checksum of a program can change. The first time a program is executed after the system is
cold loaded, external references are resolved. This changes the contents of the program file and
hence its contents.

The cksum command uses a different algorithm than the sum command to calculate the 32-bit
checksum CRC. The cksum command uses a CRC algorithm based on the Ethernet standard
frame check. In addition, the sum block count is an octet count in cksum.

The CRC checksum is obtained in the following way:

The encoding is defined by the generating polynomial:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Mathematically, the CRC value corresponding to a given file is defined by the following pro-
cedure:

1. The n bits to be evaluated are considered to be the coefficients of a mod 2 poly-
nomial M(x) of degree n-1. These n bits are the bits from the file, with the most
significant bit being the most significant bit of the first octet of the file and the
last bit being the least significant bit of the last octet, padded with zero bits (if
necessary) to achieve an integral number of octets, followed by one or more
octets representing the length of the file as a binary value, least significant
octet first. The smallest number of octets capable of representing this integer is
used.

2. M(x) is multiplied by x32 (that is, shifted left 32 bits) and divided by G(x) using
mod 2 division, producing a remainder R(x) of degree less than or equal to 31.

3. The coefficients of R(x) are considered to be a 32-bit sequence.

4. The bit sequence is complemented and the result is the CRC.

EXAMPLES
To display the checksum and the size, in bytes, of file1 and file2, enter:

cksum file1 file2

3995432187 1390 file1
3266927833 20912 file2

This output shows that the checksum of the file1 file is 3995432187 and it contains 1390 bytes,
and that the checksum of the file2 file is 3266927833 and it contains 20912 bytes.

527188-021 Hewlett-Packard Company 2−81

cksum(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: wc(1).

2−82 Hewlett-Packard Company 527188-021

User Commands (c) clear(1)

NAME
clear - Clears terminal screen

SYNOPSIS
clear

DESCRIPTION
The clear command clears your terminal screen, if possible. It checks the ENV file for the termi-
nal type and then uses the termcap database to determine how to perform this operation.

FILES
/etc/termcap

RELATED INFORMATION
Files: termcap(4).

527188-021 Hewlett-Packard Company 2−83

cmp(1) OSS Shell and Utilities Reference Manual

NAME
cmp - Compares two files

SYNOPSIS
cmp [-l | -s] file1 file2

The cmp command compares two files.

FLAGS
-l Prints the byte number (in decimal) and the differing bytes (in octal) for each

difference.

-s Does not print data for differing files; returns only an exit value.

DESCRIPTION
If the file1 or file2 argument is specified as a - (dash), the standard input file is used. By default,
the cmp command prints no information if the files are the same. If the files differ, cmp prints
the byte and line number where the difference occurred. The cmp command also specifies
whether one file is an initial subsequence of the other (that is, if the cmp command reads an
End-of-File character in one file before finding any differences). Normally, you use the cmp
command to compare nontext files and the diff command to compare text files.

Note that bytes and lines reported by cmp are numbered from 1. The first differing byte number
is from file1, and the second is from file2.

EXAMPLES
1. To determine whether two files are identical, enter:

cmp prog.o.bak prog.o

The preceding command compares the files prog.o.bak and prog.o. If the files
are identical, a message is not displayed. If the files differ, the location of the
first difference is displayed as follows:

prog.o.bak prog.o differ: char 5, line 1

If the message cmp: EOF on prog.o.bak is displayed, the first part of
prog.o is identical to prog.o.bak, but there is additional data in prog.o. If the
message cmp: EOF on prog.o is displayed, prog.o.bak that is identical to
prog.o but that also contains additional data.

2. To display each pair of bytes that differ, enter:

cmp -l prog.o.bak prog.o

This command compares the files and then displays the byte number (in
decimal) and the differing bytes (in octal) for each difference. For example, if
the fifth byte is octal 101 in file prog.o.bak and 141 in file prog.o, then the
cmp command displays:

5 101 141
.
.

EXIT VALUES
Exit value 0 (zero) is returned for identical files, 1 for differing files, and 2 for an inaccessible
file, a missing argument, or some other error.

RELATED INFORMATION
Commands: comm(1), diff(1).

2−84 Hewlett-Packard Company 527188-021

User Commands (c) cobol(1)

NAME
cobol - Compiles COBOL85 TNS programs

SYNOPSIS
cobol [-c] [-g] [-L directory] ... [-O[optlevel]]

[-o outfile] [-s]
[-Waxcel[="args"]]
[-WBdynamic]
[-WBstatic]
[-Wbind[="args"]]
[-Wcobol="args"]
[-Wcopylib=pathname]
[-Wnobind]
[-Wrunlib=pathname]
[-Wsql[="args"]]
[-Wverbose]
operand ...

FLAGS
-c Performs compilation of the specified source files but supresses the binding

phase. This flag does not delete any object files that are produced.

-g Produces symbols information for symbolic debugging in the object or exe-
cutable files. This is equivalent to specifying the SYMBOLS and INSPECT
directives to the COBOL85 compiler.

-L directory
Changes the algorithm for searching the libraries named in the -l arguments
to look in the directory named by the directory pathname before looking in
the default directories /lib, /nonnative/usr/lib, /usr/lib, and /usr/local/lib.
Directories named in -L options are searched in the order specified. At least
ten instances of this option are supported in a single cobol command line. If
a directory specified by -L contains files named libc.a, libm.a, libl.a, or
liby.a, these files are used as libraries instead of the libraries in the default
directories.

-o outfile Uses the pathname outfile instead of the default pathname a.out for the exe-
cutable file produced. If -o is used with the -c flag, outfile is used to name the
object file instead of the standard naming convention.

-O [optlevel]
Specifies the optimization level to be used for the program file. A 0 optlevel
argument specifies an OPTIMIZE 0 COBOL85 compiler directive. A 1
optlevel argument specifies an OPTIMIZE 1 COBOL85 compiler directive.
A 2 optlevel argument or no argument specifies an OPTIMIZE 2 COBOL85
compiler directive and processes the program file with the Accelerator,
axcel. If a -O flag is not specified, an OPTIMIZE 1 COBOL85 compiler
directive is specified.

-s Strips symbolic and other information not required for proper execution from
object and executable files. If both the -g and -s flags are used, symbolic
information is kept in the object files but is stripped from the executable file.
Do not specify the -s and
-Wsql flags in the same cobol invocation because the NonStop SQL/MP
compiler requires the symbols region to be present. Strip the file in a
separate cobol invocation after the SQL compilation.

527188-021 Hewlett-Packard Company 2−85

cobol(1) OSS Shell and Utilities Reference Manual

-Waxcel[="args"]
Invokes the Accelerator, axcel, and passes to it the argument string enclosed
in quotation marks. Refer to the Accelerator Manual for a description of the
arguments that can be passed to the Accelerator.

-WBdynamic
Specifies that dynamic binding is performed. In dynamic binding, the Binder
resolves references to library functions using a shared runtime library, such
as lib.so, but does not bind the functions into the program. Final resolution
of references is performed at run time. Dynamic binding is the default
action.

-WBstatic
Specifies that static binding is performed. In static binding, the Binder
resolves references to library functions using a user library, such as libc.a,
and binds the functions into the program. Dynamic binding is the default
action.

-Wbind[="args"]
Invokes the Binder and passes to it the argument string enclosed in quotation
marks. Dynamic binding is the default action. Refer to the Binder Manual
for a description of the arguments that can be passed to the Binder.

-Wcobol="args"
Passes to the COBOL85 compiler the directives in the argument string
enclosed in quotation marks. This string follows any directives generated by
other flags.

-Wcopylib=pathname
Specifies pathname as the source file to use as the default COPY library for
any COPY statement in the source program that does not specify a library.

-Wnobind
Suppresses invocation of the Binder. This flag is used when the Accelerator
or NonStop SQL/MP compiler is to be invoked without having to rebind the
program file.

-Wrunlib = pathname
Specifies a user library to be used at run time. The user library must be
specified as a member of the Guardian file system in an OSS pathname of the
form /G/volume/subvolume/file-identifier.

-Wsql[="args"]
Invokes the NonStop SQL/MP compiler, sqlcomp, and passes to it the argu-
ment string enclosed in quotation marks. Refer to the NonStop SQL/MP Pro-
gramming Manual for COBOL85 for a description of the arguments that can
be passed to the NonStop SQL/MP compiler. Do not specify the -s and -
Wsql flags in the same cobol invocation because the NonStop SQL/MP com-
piler requires the symbols region to be present. Strip the file in a separate
cobol invocation after the SQL compilation.

-Wverbose
Displays more detailed information during the program generation process
from the COBOL85 compiler, Binder, Accelerator, or NonStop SQL/MP
compiler.

2−86 Hewlett-Packard Company 527188-021

User Commands (c) cobol(1)

Multiple instances of the -L and -l flags can be specified.

Do not include a space before or after the "=" (equal sign).

The position of -l library arguments within a list of flags affects the order in which
libraries are searched.

The order of specifying the -l and -L flags is significant.

DESCRIPTION
The cobol utility is the interface to the COBOL85 compilation system; it accepts source code
conforming to the ISO COBOL85 standard. The system conceptually consists of a COBOL85
compiler and Binder, with additional program components supporting NonStop SQL/MP compi-
lation (sqlcomp), and object code acceleration (axcel). The files specified in the operand list are
operated on by the appropriate program components of the compilation system, depending on the
command line flags and the type of file operands.

If the -c flag is specified, for all pathname operands of the form file.cbl, the files $(basename
pathname.c).o are created as the result of successful compilation.

If -c is not specified, the object files created after successful compilation are combined into a pro-
gram file by the bind operation. Object files created are not deleted after successful generation of
the executable program file.

If no flags are present to prevent program binding (such as -c or -Wnobind, and if all file
operands compile and link without error, the resulting executable file is written according to the
-o outfile flag (if present) or to the file a.out.

The executable file is created according to OSS file creation rules, except that the file permis-
sions are set to S_IRWXO | S_IRWXG | S_IRWXU and the bits specified by the umask of the
process are cleared.

HP Extensions
The -W flags are HP-specific flags supporting the HP compilation environment. The argument
strings following these flags are passed to the program components unchanged, along with
default argument strings and argument strings corresponding to cobol command line flags mean-
ingful to the program components. Do not specify conflicting instructions in -W flag argument
strings or cobol command line flags. The results of conflicting instructions are undefined.

Operands
An operand is either a pathname or in the form -l library. At least one operand of the pathname
form must be specified. The following operands are supported:

file.cbl A COBOL85 language source file to be compiled and optionally linked.

file.cob A COBOL85 language source file to be compiled and optionally linked.

file.a A library of object files typically produced by the ar command, and passed
directly to the Binder.

file.o An object file produced by the command cobol -c and passed directly to the
Binder.

file.so A shared runtime library produced by the Binder. The shared runtime library
is used by the Binder to resolve external references.

527188-021 Hewlett-Packard Company 2−87

cobol(1) OSS Shell and Utilities Reference Manual

-l library In the static binding mode, search for the library named liblibrary.a. In the
dynamic binding mode, search for the library named liblibrary.so. If
liblibrary.so is not found, liblibrary.a is used.

A library is searched when its name is encountered, so the placement of -l is
significant.

Input Files
Input files are one of the following:

• A text file containing a COBOL85 language source program

• An object file in the format produced by the command cobol -c

• A library of object files in the format produced by archiving zero or more
object files using the ar command

• A library of object files produced by the Binder

• An executable file produced by the Binder

Output Files
Output files are object files or executable files (or both).

Standard Output
The standard output is a text file that contains the compiler listing, if generated.

Standard Error
Standard error is used for diagnostic and informational messages. If more than one file operand
is specified, for each such file, "%s: \n",<file> might be written. These messages precede
the processing of each input file.

Environment Variables
The environment variables listed below affect the execution of cobol. The cobol utility and its
program components do not support locale variables.

AXCEL Determines the pathname of the Accelerator invoked by cobol. By default,
the program axcel in the directory /G/system/system is used.

BIND Determines the pathname of the Binder invoked by cobol. By default, the
program bind in the directory /G/system/system is used.

SQLCOMP
Determines the pathname of the NonStop SQL/MP compiler invoked by
cobol. By default, the program sqlcomp in the directory /G/system/system
is used.

Operations
cobol is the driver program of the COBOL85 language compilation system. It accepts COBOL85
source files and generates binary files executable in the OSS environment. Depending on user-
specified flags, input file operands, and completion code at each stage, cobol invokes one or more
components of the compilation system. A program-generation process can involve the following
steps:

1. Each COBOL85 source module is compiled into an object module by the
COBOL85 compiler.

2−88 Hewlett-Packard Company 527188-021

User Commands (c) cobol(1)

2. Object modules are bound together, with additional library routines if neces-
sary, by the Binder into a single program file, unless flag -c or -Wnobind is
specified. In this case, processing stops after compilation of source modules.

3. If the program is to be run on TNS/R systems, the user can accelerate the pro-
gram with the Accelerator to obtain maximum performance.

4. If the program contains embedded SQL statements, it needs to be compiled by
the NonStop SQL/MP compiler as the final step.

With the exception of the cobol utility, all components are invoked as Guardian
processes. cobol provides terminal emulation (input from and output to) the control-
ling terminal for these processes, if necessary. For Guardian processes that do not use
cobol for terminal emulation or are not interactive, the stop/continue type of OSS job
control is not supported.

The Binder is invoked with a command file containing the following commands:

MODE NOUPSHIFT
SELECT CHECK PARAMETER STRONG
SELECT FILESYS OSS
SET SYSTYPE OSS
ADD * FROM <object created by COBOL85 compiler or input object
file>
SELECT SEARCH <library specified by -l flag>
SELECT IMPORT LIBRARY <shared runtime library if found in
dynamic binding mode>
SET HIGHPIN ON
SET HIGHREQUESTERS ON
SELECT LIST * OFF
SELECT RUNNABLE OBJECT ON
<SET INSPECT ON if -g flag>
SET SAVEABEND ON
SET HEAP 32 PAGES
<argument string from -Wbind options>
SELECT SEARCH <standard C library, libc.a or libc.so>
BUILD <filename from -o option or a.out>!
<STRIP filename if -s option>

Standard Libraries
The following libraries are available for COBOL85 programs that call OSS functions.

-l c Contains all library functions specified in the POSIX.1 specification, except
for those functions listed as residing in the math.h header file. The presence
of this operand is not required to cause a search of this library if the target
execution environment is the OSS environment.

-l C Contains the C++ runtime library. Bind this library before the standard C
runtime library.

-l m Contains all functions referenced in the math.h header file.

527188-021 Hewlett-Packard Company 2−89

cobol(1) OSS Shell and Utilities Reference Manual

-l l Contains all functions required by the C language output of lex utility that
are not made available through the -l c operand.

-l y Contains all functions required by the C language output of yacc utility that
are not made available through the -l c operand.

-l gwc Contains the C runtime library for the Guardian environment, using the wide
data-model.

In the absence of flags that inhibit invocation of the Binder, such as -c, -E, or Wno-
bind, cobol passes an -l c operand to the Binder as the last -l operand, causing the stan-
dard C library to be searched after all other object files and libraries are loaded.

Handling of Guardian Libraries
The cobol command tries to determine the type of a Guardian file from its content. Text input
files are assumed to be COBOL85 language source files.

The object file for a Guardian source file is named according to the following convention:

• The object file uses the same filename with the letter "o" appended to the end.
For example, the object file xyzo is generated from the source file xyz.

• If a valid filename cannot be generated using the rule above, a filename
returned from tmpnam is used, and a message informs the user of the new
filename.

Libraries residing in Guardian directories cannot be specified as -l operands because of
the naming convention. They can be specified in the desired order with -Wbind flags.

The default executable file in a Guardian file system is aout in the directory from
which cobol is invoked.

Differences Between Static and Dynamic Binding
In static binding, the Binder resolves references to library functions by binding into the program
the functions from a user library, such as libc.a. In dynamic binding, the Binder resolves refer-
ences to library functions by using information found in a shared runtime library, such as libc.so.
Final resolution of references are not done until run time. Dynamic binding produces smaller
program files and uses fewer system resources than static binding. By default, cobol performs
dynamic binding.

A shared library must have a file extension of .so. Such a file can either be an actual shared
library file created by the Binder or an OSS text file containing only one line of text in the form
"SRL=srlpath" where srlpath is the OSS pathname of the actual shared library file.

In dynamic binding, if a library is specified by an operand of the form llibrary, cobol searches for
a file liblibrary.so in a directory in the library search paths. If the file is found in the directory,
cobol issues the Binder command SET IMPORT LIBRARY srlpath, where srlpath is the path-
name of the actual shared library file. If the file is not found in the directory, cobol searches for a
file liblibrary.a in the same directory. If a file is found, cobol issues the Binder command
SELECT SEARCH libpath to perform a static binding of the library. If neither file is found, cobol
repeats the search for the library in the next directory in the library search paths.

In static binding, cobol only searches for liblibrary.a from directories in the library search paths.

Static libraries can be used for dynamic binding. The Binder resolves external references using
all the specified static libraries before using the shared runtime library. A program can only have
one shared runtime library. cobol issues warnings if more than one shared runtime library is
specified.

The standard C runtime library, libc.a or libc.so is used in dynamic binding only if no other

2−90 Hewlett-Packard Company 527188-021

User Commands (c) cobol(1)

shared runtime libraries are used.

By default, the shared runtime library used during binding (the model library) is the shared run-
time library used during execution (the runtime library), unless a different library is specified by
the -Wrunlib flag.

The shared runtime library must be in the Guardian file system name space. If a shared runtime
library is in the OSS file system name space, you must supply a library in the Guardian name
space either using the -Wrunlib flag during program generation or through the LIB option of the
TACL RUN command during program execution.

Refer to the Binder Manual for more details on using shared runtime libraries.

Using the c89 and cobol Utilities
OSS COBOL85 programs can contain COBOL85 modules and C modules. Compile COBOL85
modules using the cobol utility and C modules using the c89 utility. To produce a program con-
taining COBOL85 and C modules, first compile all the modules written in either COBOL85 or C.
You can also bind these modules together or with other libraries at this time, but do not
accelerate or SQL-compile the modules. After you have compiled all the modules of one
language, compile the modules written in the other language, specifying any necessary binding,
accelerating, or SQL-compiling options.

For example, to produce an executable object file made up of COBOL85 modules cobol1.cbl
and cobol2.cbl and C modules c1.c and c2.c, you can first run the C compiler using the c89
utility with:

c89 -c -o cprog.o c1.c c2.c

This directs c89 to compile the two modules but not to bind them. The output object file is
cprog.o.

You can then invoke the cobol utility to compile the two COBOL85 modules, bind the
COBOL85 compiler output with the previously produced C object file and the standard C library,
and run the Accelerator to produce the executable object myprog with:

cobol -o myprog -O cprog.o cobol1.cbl cobol2.cbl

Refer to the C/C++ Programmer’s Guide and the Open System Services Programmer’s Guide for
details on writing and compiling C programs in the OSS environment.

EXAMPLES
1. The command

cobol test1.cbl

compiles the source file test1.cbl and binds the object file into a program
file a.out.

2. The command

cobol -c test1.cbl

compiles the source file test1.cbl into an object file test1.o.

3. The command

cobol -g -o test2 x.cbl y.cbl z.cbl

compiles source files x.cbl, y.cbl, and z.cbl and binds the object files
into a program file test2. Symbolic information is generated by the compiler
and retained by the Binder for debugging.

527188-021 Hewlett-Packard Company 2−91

cobol(1) OSS Shell and Utilities Reference Manual

4. The command

cobol -o test3 -O 2 -WBstatic x1.cbl x2.o x3.cbl -l mylib

compiles source files x1.cbl and x3.cbl and binds the object files together
with x2.o into program file test3. Static binding has been specified, so the
Binder tries to resolve references using the library mylib.a before using the
standard library libc.a. The -O 2 flag causes optimization during compilation
and invocation of the Accelerator on the program file.

5. The command

cobol -o xyz -Wbind="set heap 64" -Wsql x.o y.o z.o

binds the object files x.o, y.o, and z.o into a program file xyz. The
Binder sets the heap size of the program to 64 pages. The NonStop SQL/MP
compiler, sqlcomp, is then invoked on xyz to compile xyz.

6. The command

cobol -Wnobind -Waxcel xyz

invokes the Accelerator, axcel, on object or program file xyz without going
through the binding process.

7. The command

cobol -Wnobind -Wsql="catalog \$abc.def" xyz

invokes the NonStop SQL/MP compiler, sqlcomp, on program file xyz
without going through the binding process. In addition to the input filename
xyz, the catalog option is passed to the NonStop SQL/MP compiler.

8. The command

cobol -o testprog -L . -L /usr/test/lib testprog.cbl -l tdm

compiles the COBOL85 language source program testprog.cbl and binds
the object file with the library specified in the -l operand. It also binds the
object file with a shared runtime library, if found. If a shared runtime library is
not found, it uses the standard C runtime library. The Binder produces a pro-
gram file named testprog. By default, dynamic linking is selected. cobol
searches for the library specified by the -l flags and the -l tdm operand in the
following order and selects the first one found:

libtdm.so in the current directory (-L .)

libtdm.a in the current directory (-L .)

libtdm.so in /usr/test/lib (-L /usr/test/lib)

libtdm.a in /usr/test/lib (-L /usr/test/lib)

libtdm.so in /lib (by default)

libtdm.a in /lib (by default)

libtdm.so in /nonnative/usr/lib (by default)

libtdm.a in /nonnative/usr/lib (by default)

libtdm.so in /usr/lib (by default)

2−92 Hewlett-Packard Company 527188-021

User Commands (c) cobol(1)

libtdm.a in /usr/lib (by default)

libtdm.so in /usr/local/lib (by default)

libtdm.a in /usr/local/lib (by default)

EXIT VALUES
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

DIAGNOSTICS
If cobol encounters a compilation error that causes an object file to not be created, it writes a
diagnostic message to standard error and continues to compile other source code operands.
However, it does not perform program binding and returns a nonzero exit status. If the binding is
unsuccessful, cobol writes a diagnostic message to standard error and returns a nonzero exit
status.

RELATED INFORMATION
Commands: ar(1), c89(1), ecobol(1), nmcobol(1), strip(1).

STANDARDS CONFORMANCE
The -W flags are HP extensions.

527188-021 Hewlett-Packard Company 2−93

comm(1) OSS Shell and Utilities Reference Manual

NAME
comm - Compares two sorted files

SYNOPSIS
comm [-123] file1 file2

The comm command reads file1 and file2 and writes three columns to the standard output
file, showing which lines are common to both files and which are unique to each file.

FLAGS
-1 Suppresses output of the first column (lines only in file1).

-2 Suppresses output of the second column (lines only in file2).

-3 Suppresses output of the third column (lines common to file1 and file2).

The command comm -123 produces no output.

DESCRIPTION
The leftmost column of the standard output file includes lines that are only in file1. The middle
column includes lines that are only in file2. The rightmost column includes lines that are in both
file1 and file2. Columns are separated by tab characters.

If you specify - (dash) in place of one of the filenames, the comm command reads the standard
input file.

The file1 and file2 arguments should be sorted according to the collating sequence specified by
the LC_COLLATE environment variable (see the reference page for the sort command), or the
comm command fails.

EXAMPLES
In the following examples, file file1 contains the following sorted list of North American cities:

Anaheim
Baltimore
Boston
Chicago
Cleveland
Dallas
Detroit
Kansas City
Milwaukee
Minneapolis
New York
Oakland
Seattle
Toronto

2−94 Hewlett-Packard Company 527188-021

User Commands (c) comm(1)

File file2 contains this sorted list:

Atlanta
Chicago
Cincinnati
Denver
Houston
Los Angeles
Miami
Montreal
New York
Philadelphia
Pittsburgh
San Diego
San Francisco
St. Louis

1. To display the lines unique to each file and common to the two files, enter:

comm file1 file2

This command results in the following output:

Anaheim
Atlanta

Baltimore
Boston

Chicago
Cincinnati

Cleveland
Dallas

Denver
Detroit

Houston
Kansas City

Los Angeles
Miami

Milwaukee
Minneapolis

Montreal
New York

Oakland
Philadelphia
Pittsburgh
San Diego
San Francisco

Seattle
St. Louis

Toronto

The leftmost column contains lines only in file1, the middle column contains
lines only in file2, and the rightmost column contains lines common to both
files.

527188-021 Hewlett-Packard Company 2−95

comm(1) OSS Shell and Utilities Reference Manual

2. To display any one or two of the three output columns, include the appropriate
flags to suppress the columns you do not want. For example, the following
command displays lines that appear only in file1 and only in file2:

comm -3 file1 file2

Anaheim
Atlanta

Baltimore
Boston

Cincinnati
Cleveland
Dallas

Denver
Detroit

Houston
Kansas City

Los Angeles
Miami

Milwaukee
Minneapolis

Montreal
Oakland

Philadelphia
Pittsburgh
San Diego
San Francisco

Seattle
St. Louis

Toronto

3. The following command displays lines that appear only in file2:

comm -13 file1 file2

Atlanta
Cincinnati
Denver
Houston
Los Angeles
Miami
Montreal
Philadelphia
Pittsburgh
San Diego
San Francisco
St. Louis

4. The following command displays only those lines that appear in both file1 and
file2:

comm -12 file1 file2

Chicago
New York

2−96 Hewlett-Packard Company 527188-021

User Commands (c) comm(1)

RELATED INFORMATION
Commands: cmp(1), diff(1), sort(1), uniq(1).

Files: locale(4).

527188-021 Hewlett-Packard Company 2−97

command(1) OSS Shell and Utilities Reference Manual

NAME
command - Treats command arguments as a simple command

SYNOPSIS
command [-p] command_name [argument ...]

The command command causes the shell to treat the arguments to command as a simple
command and suppresses the default shell function lookup.

FLAGS
-p Performs the command search using a default value for the path that is

guaranteed to find all of the standard utilities.

DESCRIPTION
The command command allows you to run the following commands:

• User-defined commands whose names correspond to shell built-in commands.

• System commands whose names correspond to shell built-in commands.

The command_name argument specifies the name of a utility. The one or more
optional arguments to command_name specify strings treated as arguments to the
specified utility.

EXAMPLES
To ensure execution of the simple command pwd instead of the pwd shell built-in command,
enter:

command -p pwd

The preceding command displays the full pathname of the current directory and does not per-
petuate a display of the current directory location created by links, as the shell built-in command
might do.

EXIT VALUES
127 An error occurred in the command command, or the utility specified by the

command_name argument could not be invoked.

If no error occurs, the exit status of command is that of the command invoked by the
arguments to command.

2−98 Hewlett-Packard Company 527188-021

User Commands (c) compress(1)

NAME
compress - Compresses or decompresses data

SYNOPSIS
compress [-CdfFnqvV] [-b maxbits] [file ...]

compress [-cCdfFnqvV] [-b maxbits] [file]

FLAGS
-b maxbits

Specifies the maximum number of bits to use to replace common substrings
in the file. The default value for the maxbits argument is 16, with values of 9
through 16 acceptable. First, the algorithm uses 9-bit codes 257 through 512.
Then it uses 10-bit codes, continuing until the maxbits limit is reached. (This
action is not permitted with the uncompress command.)

After the maxbits limit is reached, the compress command periodically
checks the compression ratio. If the ratio increases, compress continues to
use the existing code dictionary. However, if the compression ratio
decreases, compress discards the table of substrings and rebuilds it from the
beginning. This strategy allows the algorithm to adapt to the next block of
the file.

-c Makes the compress command write to the standard output file; no input
files are changed and no .Z file is created. The nondestructive behavior of
the zcat command is identical to that of compress -cd.

-C Produces output compatible with BSD compress revision 2.0.

-d Specifies decompression (uncompressing) the specified file.

-f or -F For both compressing and decompressing files (except when this command is
run in the background under the /usr/bin/sh file), this flag suppresses the
prompt as to whether an existing file given by the file operand should be
overwritten. For compressing files only, this flag forces the compression of
file even if the file does not actually get smaller or the corresponding file.Z
already exists.

-n Specifies that no header is added or expected. This flag might be useful for
decompressing old files.

-q Specifies a quiet operation. This flag is the default action; diagnostics are
displayed only if the -v flag is specified.

-v For a compression operation, prints the percentage reduction of each file. For
a decompression operation, this flag prints the percentage expansion of each
file.

-V Displays the version number and any options with which the program was
compiled.

DESCRIPTION
The compress command reduces the size of the specified files using adaptive Lempel-Ziv cod-
ing.

For compress, whenever possible, each file is replaced by one with the extension .Z that has the
same ownership modes, access, and modification times. Note that the filename extension used by
compress is different from that used by pack command compression (.z extension). If no files

527188-021 Hewlett-Packard Company 2−99

compress(1) OSS Shell and Utilities Reference Manual

are specified or if the file operand is a - (dash), the standard input file is compressed and written
to the standard output file. If appending the .Z extension to the filename would make the name
exceed NAME_MAX bytes, the compress command fails.

Compressed files can be restored to their original form using the uncompress or zcat command
or using the compress command with the -d flag.

The amount of compression obtained depends on the size of the input file, the number of bits per
code, and the distribution of common substrings. Typically, files containing source code or plain
text are reduced by 50 to 60 percent.

If the file has an access control list (ACL), the ACL is preserved when the file is compressed.
For more information about ACLs, see the acl(5) reference page.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXAMPLES
To compress the file folder and print the percentage reduction, enter:

compress -v folder

The system responds with a message like:

folder: Compression: 43.94% -- replaced with folder.Z

EXIT VALUES
The compress command returns the following exit values:

0 (zero) The compress utility successfully finished its processing.

1 An error occurred. The input file remains unmodified.

2 One or more files were not compressed because they would have
increased in size (and the -f flag was not specified).

>2 An error occurred. The input file remains unmodified.

RELATED INFORMATION
Commands: uncompress(1), zcat(1).

STANDARDS CONFORMANCE
The following features are HP extensions to the XPG4 Version 2 specification:

• The -C, -F, -q, and -V flags are supported.

2−100 Hewlett-Packard Company 527188-021

User Commands (c) continue(1)

NAME
continue - Resumes a for, while, until, or select loop

SYNOPSIS
continue [n]

DESCRIPTION
The continue command resumes the next iteration of the enclosing for, while, until, or select
loop. If n is specified, resumes at the nth enclosing level.

EXAMPLES
1. The following shell script demonstrates the use of the continue command to

resume a loop:

for x in 1 2 3 4 5
do
if [$x != 3]
then
print $x
else
continue
fi
done

EXIT VALUES
If an invalid argument is specified, the exit value is greater than 0 (zero).

NOTES
• Parameter assignment lists that precede the command remain in effect when the

command completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The continue command is a shell built-in command. It differs from the regular com-
mands in that it does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in com-
mands are in the reference page for sh(1).

RELATED INFORMATION
Commands: break(1), sh(1)..

527188-021 Hewlett-Packard Company 2−101

cp(1) OSS Shell and Utilities Reference Manual

NAME
cp - Copies files

SYNOPSIS
cp [-fip] [-W clobber] source_file target_file

cp [-fip] [-W clobber] source_file ... destination_directory

cp [-fLip] [-r | -R] [-W clobber] [-W NOG] [-W NOE] [source_file | source_directory]
... destination_directory

FLAGS
-f Tries to unlink the destination file and proceed if a file descriptor for a

destination file cannot be obtained.

-L Forces cp to follow symbolic links; useful with the -R flag, which does
not follow symbolic links by default.

-i Requests confirmation when the copy operation requires a destination
file to be overwritten by a source file. An answer beginning with y, or the
locale’s equivalent of y, causes the cp command to overwrite the desti-
nation file and continue. Any other answer prevents overwriting of the
file.

-p Preserves for the copy the modification time, access time, file mode, user
ID, and group ID of the source, as allowed by permissions. If the user ID
and group ID cannot be preserved, no error message is displayed and the
exit value is not altered. If the original is set-user ID or set-group ID,
and either the user ID or the group ID cannot be preserved, the set-user-
ID and set-group-ID bits are not preserved in the copy’s permissions.

The -p flag cannot preserve owner ID or group ID information when
copying a file to a remote system.

-r Copies the source directory and all of the subdirectories within it. This
flag is identical to the -R flag except that special files are not treated
differently from regular files (that is, -r follows symbolic links).

If you are using the -r flag to copy the contents of one directory to
another, and if the source directory contains subdirectories that do not
exist in the destination directory, the subdirectories are created. Created
directories have the same mode as the corresponding source directory,
unmodified by the process’s file mode creation mask (umask).

This flag has been proposed for obsolescence in a future revision of the
Single UNIX standard. Use the -R flag instead to ensure portability.

-R Copies the source directory and all of the subdirectories within it. Spe-
cial file types, such as symbolic links and block and character devices,
are re-created instead of copied.

If you are using the -R flag to copy the contents of one directory to
another, and if the source directory contains subdirectories that do not
exist in the destination directory, the subdirectories are created. Created
directories have the same mode as the corresponding source directory,
unmodified by the process’s file mode creation mask (umask).

2−102 Hewlett-Packard Company 527188-021

User Commands (c) cp(1)

HP Extensions
-L Overrides the default behavior of the -R flag so that cp follows symbolic

links.

-W clobber Allows the existing target Guardian file to be overwritten using the data
from the source file. This operation retains the following attributes of
the target file:

• The file code

• The type of unstructured file (odd unstructured or even unstruc-
tured)

• The buffering attribute (BUFFERED or NOBUFFERED)

• The security attributes (RWEP)

You must set any other file attributes, as needed.

If the target file is protected by Safeguard and you use the -W clobber
flag, the Safeguard protection might be lost or changed. The cp com-
mand issues a warning when used with the -W clobber flag on a file pro-
tected by Safeguard.

When the -W clobber flag is used, the -p, -W NOG, and -W NOE flags
and the UTILSGE environment variable are ignored.

For more information about using this utility on Guardian files, see "Use
on Guardian Objects."

-W NOG Specifies that the /G directory should be omitted when the initial direc-
tory is root (/) and a recursive flag (-R or -r) is used. This flag is ignored
when the initial directory is not /, /E, or /E/system or when recursion
does not occur.

-W NOE Specifies that the /E directory should be omitted when the initial direc-
tory is root (/) and a recursive flag (-R or -r) is used. This flag is ignored
when the initial directory is not root (/) or when recursion does not
occur.

Specify both the -W NOG and -W NOE flags to omit both the /G and /E directories.

DESCRIPTION
The cp command copies a source file or directory to a destination file or directory

In the first form given in SYNOPSIS, the cp command copies the contents of source_file into
target_file. If target_file exists, its contents are overwritten provided the user has write permis-
sion on target_file’s parent directory.

In the second form, two or more files are copied to the destination directory.

In the third form, source directories, including all subdirectories and files within them, are copied
to the destination.

A destination directory must exist in order for a source directory or source file to be copied to it.

Appropriate permissions are always required for file creation or overwriting.

If the destination directory exists, the source directory or files are copied into the destination with
their original names.

If the destination exists, and both the source and destination are files, the source file overwrites

527188-021 Hewlett-Packard Company 2−103

cp(1) OSS Shell and Utilities Reference Manual

the destination file, permissions allowing.

If the destination does not exist and the source is a file, the destination is considered a file, and
the source is copied to it.

If the source and destination are either both directories or both files and they have the same
name, an error occurs and the copy fails.

Use With Access Control Lists (ACLs)
If the file being copied has an ACL, typically the new file created by the cp command retains the
ACL. However, if the cp command is executed remotely from a system that does not support
OSS ACLs, then the ACL for the file is not copied to the destination file. If destination fileset
supports OSS ACLs, the destination file might inherit ACL entries from the parent directory of
the destination file. If the destination fileset does not support OSS ACLs, the destination files do
not have ACLs. For more information about ACLs, see the acl(5) reference page.

For G-series RVUs, H06.19 and earlier H-series RVUs, or J06.08 and earlier J-series RVUs, the
OSS Network File System (NFS) cannot access OSS objects that have OSS ACLs that contain
optional ACL entries.

For J06.09 and later J-series RVUs and H06.20 and later H-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects that have OSS ACLs that contain optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains
the object, however:

• The cp command does not copy any ACLs associated with the object.

• The permissions used when an object is created by the cp command depend on
the value of the NFSPERMMAP attribute for the fileset on the system that con-
tained the original file.

For more information about NFS and ACLs, see the acl(5) reference page.

This table describes the impact of ACLs on the permissions used when a new file or
directory is created by the cp command and the cp command is not issued from NFS.
Cases not included in the table represent impossible situations.

cp Source Source Dest. Impact of
Command Fileset File/Dir Filesset ACLs on
Supports Supports Has Opt. Supports Permissions
ACLs ACLs ACLs ACLs of New File/Dir___
Y/N Y/N N N None
Y/N Y/N N Y See Note 2
Y/N Y Y N See Notes 1 and 3
N Y Y Y See Notes 1 and 2
Y Y Y Y See Note 4___�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Note 1: The optional ACLs for the source file or directory are not copied to the
destination file or directory.

Note 2: If the destination parent directory has default ACL entries, those default
ACL entries are inherited by the new file or directory (see the acl(5)
reference page).

Note 3: If you use the -p flag, the file permissions are copied to the destination
file or directory and the class entry permissions in the ACL are used for
the destination file or directory group permissions. Otherwise, the per-
missions for the destination file or directory are set using the non-ACL

2−104 Hewlett-Packard Company 527188-021

User Commands (c) cp(1)

descriptions.

Note 4: If you use the -p flag, all ACL entries for the source file or directory are
copied to the destination file or directory. Otherwise, the permissions for
the destination file or directory are set using the non-ACL descriptions.

Use on Guardian Objects
Specify Guardian files with the /G pathname convention.

Only unstructured Guardian files are supported. If both the source and destination are Guardian
files, the file attributes specific to Guardian (such as extent sizes, file code, and file type) are
preserved. Thus if a type 101 EDIT Guardian file is copied within the Guardian volume, the tar-
get file is also a type 101 EDIT file, with all the line number information preserved. In addition,
if the -p flag is specified, other Guardian file attributes (such as user ID, file security, and times-
tamps) are preserved in the same manner they are preserved with the TACL command FUP DUP.

If you are copying a Guardian file to the OSS file hierarchy, only the content of the Guardian file
is copied: the Guardian file attributes are not preserved. Likewise, if you are copying an OSS
file to the Guardian file hierarchy, the target file is created as an unstructured Guardian file. Thus
if you copy a Guardian type 101 EDIT file to the OSS file hierarchy and then copy it back to the
Guardian file hierarchy, it will no longer be a Guardian type 101 EDIT file.

If a source file and destination file are determined to be the same, a diagnostic message is written
to the standard error file.

Because of the differences between the Guardian and OSS file systems, the following anomalies
can occur when OSS files are copied to a Guardian destination.

• A destination pathname can contain illegal /G filename characters, even after it
has been transformed into a /G pathname. As a result, the destination file cannot
be created on the Guardian destination, and the copy operation fails.

• A destination pathname might be transformed into a /G pathname that is quite
different from its original pathname. For example, the OSS filename abcde.fghi
is converted into the /G filename ABCDEFGH. In this example, the copy
operation succeeds but the name of the newly created destination file might
cause confusion if it is not anticipated.

• OSS filenames that are similar to each other might be converted into the same /G
filename when copied to the Guardian file system.

• If a source directory contains more than two levels of directories (the maximum
that the Guardian file system currently supports), the entire source subtree cannot
be copied completely to the Guardian target; only the directories at supported
levels are copied.

Environment Variables
The following environment variables affect the execution of the cp command:

UTILSGE Specifies that HP extensions to the root directory should be omitted
when the initial directory is root (/) and a recursive option (-r or -R) is
used in an OSS shell command. Application programs that test this vari-
able might also honor its settings.

The UTILSGE value can be any of the following:

NOE Omit the /E directory.

527188-021 Hewlett-Packard Company 2−105

cp(1) OSS Shell and Utilities Reference Manual

NOG Omit the /G directory.

NOG:NOE Omit both the /G and /E directories.

The effect of assigning a value to the UTILSGE environment variable is
the same as specifying the -W NOG or -W NOE flag in the command.

EXAMPLES
a. To copy one file to another, enter:

cp file1 file2

If the file2 file exists (and is writable), its contents are replaced by the contents
of the file1 file.

b. To copy files to a directory, enter:

cp file1 file2 dir1

The directory dir1 must exist.

c. To copy all files in a directory and preserve their modification times, enter:

cp -p dir1/* dir2

d. To copy a directory tree to another directory, enter:

cp -R dir1 dir2

The dir1 directory tree is created in the directory dir2.

e. To copy all files with a name ending in the letter c from the current OSS direc-
tory to Guardian $VOL.SUBVOL, enter:

cp . /*c /G/vol/subvol

The Guardian filenames resulting from this copy are truncated to the first eight
characters. Characters in the OSS filenames that are illegal to the Guardian file
system are skipped during the renaming process. The specified target volume
must exist in the Guardian environment.

f. To copy a Guardian file to an OSS directory, enter:

cp /G/vol/subvol/file /usr/bin

g. To copy the files in an OSS directory named /usr/u/rose to the Guardian volume
/G/vol, enter:

cp -r /usr/u/rose /G/vol

If /usr/u/rose contains file1 (a plain text file) and also rose1 (a subdirectory), the
cp command creates the subvolume rose in /G/vol and copies only the file file1.
The subtree rose1 is not copied. The destination volume must exist in the Guar-
dian environment.

h. To copy all OSS files on remote node node1 to remote node node2, enter:

cp -r -W NOG /E/node1 /E/node2

This command creates the directory tree named node1 within the root directory
of node2.

2−106 Hewlett-Packard Company 527188-021

User Commands (c) cp(1)

i. To copy all OSS files on the local node to the remote node node1, enter:

cp -r -W NOG -W NOE / /E/node1

NOTES
Because /G and /E both appear in your local root directory, you should be very careful when
using OSS shell commands on or from the root directory. OSS shell commands that perform
recursive actions make no distinction between Guardian and OSS files or between local and
remote files. You can use the -W NOG and -W NOE flags or the UTILSGE environment vari-
able to exclude objects in the Guardian file system or objects accessible through the Expand pro-
duct.

RELATED INFORMATION
Commands: mv(1).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The -L and -W flags and the UTILSGE environment variable are HP extensions to the XPG4
Version 2 specification.

527188-021 Hewlett-Packard Company 2−107

cpio(1) OSS Shell and Utilities Reference Manual

NAME
cpio - Copies files to and from archive storage

SYNOPSIS
cpio -o[aABcv]

cpio -i[ABcdfmrtuv] [pattern ...]

cpio -p[aAdlmuv] directory

FLAGS
The -i, -o, and -p flags are described in the DESCRIPTION section of this reference page.

-a Resets the access times of copied files to the current time. (When the -l flag is
also specified, the access times of the linked files are not reset.)

-A Suppresses warning messages about optional access control list (ACL) entries.
The cpio utility does not archive optional ACL entries. If this flag is not set, a
warning message is issued for each file that has optional ACL entries. For
more information about ACLs, see the acl(5) reference page.

-B Performs block input/output, 5120 bytes to a record.

-c Writes header information in ASCII character form. Specify this flag when
POSIX compliance is required and when you are creating or restoring archives
for or from another system. Archives written with -c must also be read with -c.
Use this flag to read archives written by pax.

-d Creates directories as needed.

-f Copies all files except those matching pattern (cpio -i only).

-l Links files rather than copying them, whenever possible. This flag can be used
only with cpio -p.

-m Retains previous file modification time. This flag is ineffective when copying
directories.

-r Causes cpio to ask whether you want to rename each file before copying it. If
you do not want to change the filename, enter the current filename or press
only Return. In this last case, cpio does not copy the file.

-t Prints a table of contents of the input. Printing the table of contents does not
copy any files.

-u Copies unconditionally. Otherwise, a file from the archive with the same name
as an existing file in the file system is copied only if the archived file is the
newer one.

-v Lists filenames. If you use this with the -t flag, the output looks similar to that
of the ls -l command.

DESCRIPTION
The cpio command is used to save and restore data from traditional-format cpio archives.

2−108 Hewlett-Packard Company 527188-021

User Commands (c) cpio(1)

cpio -o (Copy Out)
This command reads file pathnames from the standard input file and copies these files to the stan-
dard output file along with pathnames and status information. Output is padded to a 512-byte
boundary.

cpio -i (Copy In)
This command reads an archive file created by the cpio -o command from the standard input file
and copies from it the files with names that match pattern. These files are copied into the current
directory tree. Permissions of the new files are the same as the permissions associated with the
files copied using cpio -o. The owner and group of the new files are those of the current user,
unless that user has appropriate privileges; if the user has appropriate privileges, cpio retains the
owner and group of the files copied using cpio -o. Only a user with appropriate privileges can
extract block special or character special files from an archive.

You can list more than one pattern operand using the filename notation described in the sh(1)
reference page. Note, however, that in the cpio command the special characters * (asterisk), ?
(question mark), and [] (brackets) match the / (slash) in pathnames, in addition to their use as
described for the sh command. The default pattern is *, which selects all files in the archive. In
an expression such as [a-z], the dash means "through" according to the current collating
sequence. The collating sequence is determined by the LC_COLLATE environment variable.

cpio -p (Directory Copy)
This command reads file pathnames from the standard input file and copies these files into the
directory named by directory. The specified directory must already exist. If these pathnames
include directory names and if these directories do not already exist, you must use the -d flag to
cause the directories to be created.

Note that you can copy special files only if you have appropriate privileges. Pathnames cannot
exceed 128 bytes. Avoid giving cpio pathnames made up of many uniquely linked files, because
cpio might not have enough memory to keep track of them and could lose linking information.

For filesets that support OSS access control lists (ACLs), this command also copies any ACL
entries associated with the file, so that the copied file has the same ACL entries as the source file.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_COLLATE, LC_CTYPE,
LC_MESSAGES, LC_TIME, NLSPATH, and TZ environment variables.

CAUTIONS
When redirecting the output from cpio to a special file (device), redirect it to the raw device and
not the block device. Because writing to a block device is done asynchronously, there is no way
to know whether the end of the device has been reached.

EXIT VALUES
The exit values for cpio are as follows:

0 (zero) The command executed successfully.

>0 An error occurred. If a file or directory cannot be created or overwritten, cpio
continues with the next file in the archive or the next file to be added to the
archive.

527188-021 Hewlett-Packard Company 2−109

cpio(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: ar(1), find(1), ls(1), pax(1), sh(1).

Files: cpio(4), locale(4).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

2−110 Hewlett-Packard Company 527188-021

User Commands (c) crontab(1)

NAME
crontab - Submits a schedule of commands to cron

SYNOPSIS
crontab [file]

crontab -l | -v | -e

crontab -r

The crontab command copies the specified file, or the standard input file if you do not
specify a file, into a directory that holds all users’ crontab files. The cron command runs
commands according to the instructions in the crontab files.

FLAGS
-e Edits a copy of your crontab entry. If the crontab entry does not exist, cron-

tab creates an empty entry to edit. The -e flag invokes the editor specified by
the EDITOR environment variable, or it uses /bin/vi by default. crontab
installs the new entry when editing is complete.

-l Lists the contents of your crontab file.

-r Removes the crontab file from the crontab directory.

-v Displays the name of your crontab file and the date and time at which you sub-
mitted it using crontab.

DESCRIPTION
The crontab command replaces your crontab file, which is contained in the
/var/spool/cron/crontabs system directory, with the crontab file you specify. In your crontab
file you have to redirect the output to the standard output or standard error file.

You can use the crontab command if your login name appears in the /var/adm/cron/cron.allow
file. If that file does not exist, the crontab command checks the /var/adm/cron/cron.deny file to
determine if your login name should be denied access to crontab. The cron.allow and
cron.deny files contain one login name per line. If neither file exists, you can submit a job only
if you are operating with appropriate privileges.

Each crontab file entry consists of a line with six fields, separated by spaces and tabs, that con-
tain, respectively:

a. The minute (0 to 59) at which the command sequence executes.

b. The hour (0 to 23) of command execution.

c. The day of the month (1 to 31) of command execution.

d. The month of the year (1 to 12) of command execution.

e. The day of the week (0 to 6 for Sunday to Saturday) of command execution.

f. The shell command to be executed.

Each of these fields can contain:

• A number in the specified range.

527188-021 Hewlett-Packard Company 2−111

crontab(1) OSS Shell and Utilities Reference Manual

• Two numbers separated by a dash to indicate an inclusive range.

• A list of numbers, separated by commas, which selects all numbers in the list.

• An asterisk, meaning all legal values.

Days can be specified by two fields (day of the month and day of the week). If you
specify both as a list of elements, both are adhered to. For example, the following entry:

0 0 1,15 * 1 command

would run command at midnight on the first and fifteenth days of each month, as well as
every Monday. To specify days by only one field, the other field should contain an *
(asterisk).

The cron program runs the command named in the sixth field at the selected date and
time. If you include a % (percent sign) in the sixth field, cron treats everything that pre-
cedes it (in that field) as the command invocation, and makes all that follows it available
to the standard input file, unless you escape the percent sign (\%) or double quote it
("%"). A % (percent sign) in the sixth field is translated to a newline character.

The shell runs only the first line of the command field (up to a % or End-of-Line). All
other lines are made available to the command as the standard input file.

Blank lines and lines whose first nonblank character is # (pound sign) are treated as com-
ments and ignored by cron.

The cron program invokes a subshell from your $HOME directory. It will not run your
.profile file. If you schedule a command to run when you are not logged in and you want
to have commands in your .profile run, you must explicitly do so in the crontab file.
(For a more detailed discussion of how you can invoke sh, see the sh command.)

Environment Variables
The cron program supplies a default environment for every shell, defining HOME, LOGNAME,
SHELL (=/bin/sh), and PATH (=:/bin:/bin/unsupported:/usr/bin).

This command supports the use of the EDITOR, LANG, LC_ALL, LC_CTYPE,
LC_MESSAGES, and NLSPATH environment variables.

EXAMPLES
The following examples show valid crontab file entries.

a. To write the time to the file every hour on the hour, enter:

0 * * * * echo The hour is ‘date‘. >/datefile

This example uses command substitution. (For more information, see the sh
command.)

b. To run cal at 6:30 a.m. every Monday, Wednesday, and Friday, enter:

30 6 * * 1,3,5 cal > /calfile

c. To define text for the standard input file to a command, enter:

0 16 10-31 12 5 wall %HAPPY HOLIDAYS% Drive safely%

This writes a message at 4:00 p.m. each Friday between December 10 and 31 to
all users logged in.

The text following the first % (percent sign) defines the standard input file to the

2−112 Hewlett-Packard Company 527188-021

User Commands (c) crontab(1)

wall command as follows:

HAPPY HOLIDAYS
Drive safely

FILES
/var/spool/cron/crontabs Directory containing the crontab files

/var/adm/cron/cron.allow List of allowed users

/var/adm/cron/cron.deny List of denied users

$HOME/.profile User profile

NOTES
a. When entries are made to a crontab file, all previous entries are erased.

b. If cron.allow exists, a login name with appropriate privileges be listed for that
user to be able to use the command.

EXIT VALUES
The crontab utility returns the following exit values:

0 (zero) The crontab utility successfully finished its processing.

>0 An error occurred. Your crontab entry is not submitted, edited, or listed.

RELATED INFORMATION
Commands: cron(8), sh(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions. The following
features are HP extensions to the XPG4 Version 2 specification:

• The -v flag is supported.

527188-021 Hewlett-Packard Company 2−113

csplit(1) OSS Shell and Utilities Reference Manual

NAME
csplit - Splits files by context

SYNOPSIS
csplit [-f prefix] [-ks] [-n number] [file | -] argument ...

The csplit command reads the specified file and separates it into segments defined by the
specified arguments.

FLAGS
-f prefix Specifies the prefix name (xx by default) for the created file segments. If the

prefix argument would create a filename larger than NAME_MAX bytes, an
error results, the csplit command exits with a diagnostic message, and no files
are created.

-k Keeps created file segments intact in the event of an error.

-n number
Uses number decimal digits to form filenames for the file segments. The
default value is 2.

-s Suppresses the display of character counts.

DESCRIPTION
If you specify - (dash) in place of the input filename, the csplit command reads from the standard
input file.

By default, csplit writes the file segments to files named xx00 ...xxn, where n is the number of
arguments listed on the command line. By default, these new files get the following segments of
file:

00 From the start of file up to, but not including, the line referenced by the first
argument.

01 From the line referenced by the first argument up to the line referenced by the
second argument.

n+1 From the line referenced by the last argument to the end of file.

The csplit command does not alter the original file.

The specified arguments can be a combination of the following:

/pattern/[offset]
Creates a file using the contents of the lines from the current line up to, but not
including, the line that results from the evaluation of the regular expression
with an offset, if included. The offset argument can be any integer (positive or
negative) that represents a number of lines.

%pattern%[offset]
Has the same effect as /pattern/ except no segment file is created.

+number

-number Move forward or backward the specified number of lines from the line matched
by an immediately preceding pattern argument.

line_number
Creates a file containing the segment from the current line up to, but not
including, line_number, which becomes the current line.

2−114 Hewlett-Packard Company 527188-021

User Commands (c) csplit(1)

{number}
Repeats the preceding argument the specified number of times. This number
can follow any of the pattern or line_number arguments. If it follows a pattern
argument, the csplit command reuses that pattern the specified number of
times. If it follows a line_number argument, csplit splits the file from that
point every line_number of lines for number times.

Place within quotation marks all pattern arguments that contain spaces or other charac-
ters special to the shell. Patterns may not contain embedded newline characters.

See the reference page for the grep command for information about creating patterns. In
an expression such as [a-z], the dash means "through" according to the current collating
sequence. The collating sequence is determined by the value of the LC_COLLATE
environment variable.

EXAMPLES
a. To split the text of a book into a separate file for each chapter, enter:

csplit book "/ˆChapter *[0-9]/" {9}

This command creates files named xx00, xx01, xx02,...,xx09, and xx10, which
contain individual chapters of the file book. The file xx00 contains the front
matter that comes before the first chapter. The {9} after the pattern causes the
csplit command to create individual chapters up until file xx09; the remainder of
book is then placed in file xx10.

b. To specify the prefix for the created filenames, enter:

csplit -f chap book "/ˆChapter *[0-9]/" {9}

This command splits book into files named chap00, chap01,...chap9, and
chap10.

RELATED INFORMATION
Commands: ed(1), sh(1), split(1).

Files: locale(4).

527188-021 Hewlett-Packard Company 2−115

cut(1) OSS Shell and Utilities Reference Manual

NAME
cut - Displays selected parts from each line of a file

SYNOPSIS
cut -b list [-n] [file ...]

cut -c list [file ...]

cut -f list [-d character] [-s] [file ...]

The cut command locates the specified parts in each line of the specified file and writes the
characters in them to the standard output file.

FLAGS
-b list Cuts selections based on a list of bytes. Each selected byte is output, unless

you also specify the -n flag. For example, if you specify -b 1-72, the cut com-
mand writes out the first 72 bytes in each line of the file.

-c list Cuts selections based on a list of characters.

-d character
Uses the specified character as the field delimiter (separator) when you specify
the -f flag. You must quote characters with special meaning to the shell, such
as the space character. Any character can be used as character. The default
field delimiter is a tab character.

-f list Specifies a list of fields assumed to be separated in the file by a field delimiter
character, specified by the -d flag or the tab character by default. For example,
if you specify -f 1,7, the cut command writes out only the first and seventh
fields of each line. If a line contains no field delimiters, cut passes them
through intact (useful for table subheadings) unless you specify the -s flag.

-n Does not split characters. When specified with the -b flag, each element in list
of the form low-high (hyphen-separated numbers) is modified as follows:

• If the byte selected by low is not the first byte of a character, low is
decremented to select the first byte of the character originally selected
by low.

• If the byte selected by high is not the last byte of a character, high is
decremented to select the last byte of the character prior to the charac-
ter originally selected by high, or 0 (zero) if there is no prior character.

If the resulting range element has high equal to 0 (zero) or low greater
than high, the list element is dropped from list for that input line
without causing an error.

Each element in list of the form low- is treated as previously described with
high set to the number of bytes in the current line, not including the terminat-
ing newline character. Each element in list of the form -high is treated as pre-
viously described with low set to 1. Each element in list of the form number (a
single number) is treated as previously described with low set to number and
high set to number.

-s Suppresses lines that do not contain delimiter characters (use only with the -f
flag). Unless you include this flag, lines with no delimiters are passed through.

DESCRIPTION
If you do not specify a file or if you specify a - (dash), the cut command reads the standard input
file.

2−116 Hewlett-Packard Company 527188-021

User Commands (c) cut(1)

You must specify the -b flag (to select bytes), the -c flag (to select characters), or the -f flag (to
select fields). The list argument (see the -b, -c, and -f flags) must be a space-separated or
comma-separated list of positive numbers and ranges. Ranges can be in three forms:

• Two positive numbers separated by a - (dash), as in the form low-high, which
represents all fields from the first number to the second number.

• A positive number preceded by a - (dash), as in the form -high, which represents
all fields from field number 1 to that number.

• A positive number followed by a - (dash), as in the form low-, which represents
that number to the last field, inclusive.

The elements in list can be repeated, can overlap, and can be specified in any order.

Some sample list specifications are as follows:

1,4,7 or 1 4 7
First, fourth, and seventh bytes or fields.

1-3,8 First through third and eighth bytes or fields.

-5,10 First through fifth and tenth bytes or fields.

3- Third through last bytes or fields.

The fields specified by list can be a fixed number of byte positions, or the length can vary
from line to line and be marked with a field delimiter character, such as a tab character.

You can also use the grep command to make horizontal cuts through a file and the paste
command to put the files back together. To change the order of columns in a file, use the
cut and paste commands.

EXAMPLES
To display several fields of each line of a file, enter:

cut -f 1,5 -d : /etc/passwd

This command displays the login name and full username fields of the system password file.
These are the first and fifth fields (-f 1,5) separated by colons (-d :).

So, if the /etc/passwd file looks like this:

su:UHuj9Pgdvz0J":0:0:User with special privileges:/:
daemon:*:1:1::/etc:
bin:*:2:2::/usr/bin:
sys:*:3:3::/usr/src:
adm:*:4:4:System Administrator:/usr/adm:
pierre:*:200:200:Pierre Harper:/u/pierre:
joan:*:202:200:Joan Brown:/u/joan:

Then cut -f 1,5 -d : /etc/passwd produces this output:

su:User with special privileges
daemon:
bin:
sys:
adm:System Administrator
pierre:Pierre Harper
joan:Joan Brown

527188-021 Hewlett-Packard Company 2−117

cut(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: grep(1), paste(1).

2−118 Hewlett-Packard Company 527188-021

Section 3. User Commands (d - f)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the letters d through f.

527188-021 Hewlett-Packard Company 3−1

date(1) OSS Shell and Utilities Reference Manual

NAME
date - Display the date and time

SYNOPSIS
date [-u] [+format]

The date command displays the date and time.

FLAGS
-u Performs operations as if the TZ environment variable was set to the string UTC0 or

its equivalent historical value GMT0. Otherwise, the date command uses the time
zone indicated by the TZ environment variable or the system default time zone if that
variable is not set.

DESCRIPTION
The date command writes the current date and time to the standard output file if called with no
flags or with a flag list that begins with a + (plus sign). Do not use the date command to change
or set the date and time; use Guardian utilities instead.

The LC_TIME variable, if it is defined, controls the ordering of the day and month numbers in
the date specifications. The default order is mmddHHMM.SSyy, where:

• mm is the month number (01=January).

• dd is the number of the day in the month.

• HH is the hour in the day (using a 24-hour clock).

• MM is the minute number.

• SS is the number of seconds.

• yy is the last two numbers of the year.

The yymmddHHMM[.SS] format cannot be used if the year is in the range 01-12 (this is how the
date command differentiates between the two formats).

If the locale defines ordering such that the day is specified before the month, the format is
ddmmHHMM[.SS[yy]], yyddmmHHMM[.SS], or ddmmHHMM[yy].

The current month, day, hour, and year are default values. The system operates in Coordinated
Universal Time (UTC).

If you follow keyword date with a + (plus sign) and a field descriptor, you can control the output
of the command. You must precede each field descriptor with a % (percent sign). The system
replaces the field descriptor with the specified value. Enter a literal % as %%. The date com-
mand copies any other characters to the standard output file without change. date always ends
the string with a newline character. Output fields are fixed size (zero-padded if necessary).

The date command prints out a usage message on any unrecognized flags or input.

Field Descriptors
a Displays the locale’s abbreviated weekday name (Sun through Sat or the nonEnglish

equivalent).

A Displays the locale’s full weekday name.

b Displays the locale’s abbreviated month name.

B Displays the locale’s full month name.

3−2 Hewlett-Packard Company 527188-021

User Commands (d - f) date(1)

c Displays the locale’s appropriate time and date representation.

C Displays the locale’s century (the year divided by 100 and truncated to an integer) as a
decimal number (00 through 99).

d Displays the day of the month as a decimal number (01 through 31).

D Displays the date in the format mm/dd/yy (the default format) or as specified by the
LC_TIME environment variable, if defined.

e Displays the day of the month as a decimal number (1 through 31 in a 2-digit field with
leading space fill).

Ec Specifies the locale’s alternative appropriate date and time representation.

EC Specifies the name of the base year (period) in the locale’s alternative representation.

Ex Specifies the locale’s alternative date representation.

Ey Specifies the offset from the display of the %EC field discriptor (year only) in the
locale’s alternative representation.

EY Specifies the full alternative year representation.

h Is a synonym for the %b field descriptor.

H Displays the hour as a decimal number (00 through 23).

I Displays the hour as a decimal number (01 through 12).

j Displays the day of the year as a decimal number (001 through 366).

m Displays the month of the year as a decimal number (01 through 12).

M Displays the minute as a decimal number (00 through 59).

n Inserts a newline character.

N Represents the alternative era name.

o Represents the alternative era year.

Od Specifies the day of the month using the locale’s alternative numeric symbols.

Oe Specifies the day of the month using the locale’s alternative numeric symbols.

OH Specifies the hour (24-hour clock) using the locale’s alternative numeric symbols.

OI Specifies the hour (12-hour clock) using the locale’s alternative numeric symbols.

Om Specifies the month using the locale’s alternative numeric symbols.

OM Specifies the minutes using the locale’s alternative numeric symbols.

OS Specifies the seconds using the locale’s alternative numeric symbols.

OU Specifies the week number of the year (with Sunday as the first day of the week) using
the locale’s alternative numeric symbols.

Ow Specifies the weekday as a number in the locale’s alternative representation
(Sunday = 0).

527188-021 Hewlett-Packard Company 3−3

date(1) OSS Shell and Utilities Reference Manual

OW Specifies the week number of the year (with Monday as the first day of the week) using
the locale’s alternative numeric symbols.

Oy Specifies the year (offset from the display of the %C field descriptor) in alternative
representation.

p Displays the locale’s equivalent of either AM or PM.

r Displays the time (12-hour clock) using AM/PM notation (or the nonhown in this
nonEnglish equivalent) in the format hh:mm:ss AM or hh:mm:ss PM. In the OSS locale,
this is equivalent to the field descriptors %I: %m: %S %p.

S Displays the seconds as a decimal number (00 through 61).

t Inserts a tab character.

T Displays the time in 24-hour clock format (00 through 23) as hh:mm:ss (the default
format) or as specified by the LC_TIME environment variable, if defined.

U Displays the week number of the year (Sunday is the first day of the week) as a decimal
number (00 through 53).

w Displays the day of the week as a decimal number (Sunday = 0).

W Displays the week number of the year (Monday is the first day of the week) as a
decimal number (00 through 53).

x Displays the locale’s appropriate date representation.

X Displays the locale’s appropriate time representation.

y Displays the last two numbers of the year as a decimal number (00 through 99).

Y Displays the full year as a decimal number.

Z Displays the time zone name or no characters if the time zone cannot be determined.

%% Inserts a % character.

EXAMPLES
1. To display the current date and time, enter:

date

The output might look like the following:

Thu Apr 9 13:21:30 EDT 1992

2. To display the date and time in a specified format, enter:

date +"%r %d %h %y (%a)"

This displays the date (assume the year is 1992) as:

01:21:30 PM 09 Apr 92 (Thu)

RELATED INFORMATION
Files: locale(4).

STANDARDS CONFORMANCE
The date and time are set through the Guardian environment.

3−4 Hewlett-Packard Company 527188-021

User Commands (d - f) dc(1)

NAME
dc - Performs integer arithmetic with arbitrary precision

SYNOPSIS
dc [file]

DESCRIPTION
The dc command is an arbitrary-precision arithmetic calculator. dc takes its input from file or the
standard input file until it reads an End-of-File character. It writes to the standard output file. dc
operates on integers by default, but you can use subcommands to specify an input base, an output
base, and a number of fractional digits to be maintained.

The bc command is a preprocessor for the dc command. The bc command provides infix nota-
tion and a syntax similar to the C language, which implements functions and reasonable control
structures for programs.

SUBCOMMANDS
number Pushes the specified value onto the stack. number is an unbroken string consisting of

the digits 0 through 9. To specify a negative number, precede number with _ (under-
score). A number can contain a decimal point.

+ - * / % ˆ
Adds (+), subtracts (-), multiplies (*), divides (/), remainders (%), or exponentiates (ˆ)
the top two values on the stack. dc pops the top two values off the stack and pushes the
result on the stack in their place.

! Interprets the rest of the line as a system command.

? Executes a line of input from the standard input file.

c Cleans the stack: pops all values on the stack.

d Duplicates the top value on the stack.

f Displays all values on the stack.

i Pops the top value on the stack and uses that value as the number radix for further
input.

I Pushes the input base onto the stack.

k Pops the top value on the stack and uses that value as a nonnegative scale factor. The
appropriate number of places is displayed on output and is maintained during multipli-
cation, division, and exponentiation. The interaction of scale factor, input base, and
output base is reasonable if all are changed together.

lx Pushes the value in register x onto the stack. Register x is not changed. All registers
start with 0 (zero) value.

Lx Treats x as a stack and pops its top value onto the main stack.

o Pops the top value on the stack and uses that value as the number radix for further out-
put.

O Pushes the output base onto the stack.

527188-021 Hewlett-Packard Company 3−5

dc(1) OSS Shell and Utilities Reference Manual

p Prints the top value on the stack. The top value remains unchanged.

P Interprets the top value on the stack as an ASCII string, prints it, and removes it.

q Exits the program. If dc is executing a string, it pops the recursion level by two.

Q Pops the top value on the stack and pop the string execution level by that value.

sx Pops the top value on the stack and stores it in a register named x, where x can be any
single-byte character.

Sx Treats x as a stack: pops the top value on the main stack and pushes that value onto
stack x.

v Replaces the top value on the stack by its square root. Any existing fractional part of
the argument is used, but otherwise the scale factor is ignored.

x Treats the top value on the stack as a character string and executes it as a string of dc
commands.

X Replaces the top value on the stack by its scale factor.

z Pushes the number of elements in the stack onto the stack.

Z Replaces the top value on the stack with the number of digits in that value.

[string] Puts string onto the stack.

<x Pops the top two values on the stack and compares them. Register x is executed if the
stated relationship is TRUE.

;: Are used for array operations.

EXAMPLES
1. To use dc as a calculator, proceed as follows:

Enter:

1 4 / p [Divide 1 by 4]

The system responds as follows:

0

Enter:

1 k [Keep 1 decimal place]s.
1 4 / p

The system responds as follows:

0.2

Enter:

3 k [Keep 3 decimal places]s.
1 4 / p

The system responds as follows:

0.250

3−6 Hewlett-Packard Company 527188-021

User Commands (d - f) dc(1)

Enter:

16 63 5 / + p [Divide 63 by 5, add the result to 16]

The system responds as follows:

28.600

Enter:

16 63 5 + / p [Add 63 and 5, divide the result by 16]

The system responds as follows:

0.235

You can type the comments (enclosed in brackets) into the command, but they are pro-
vided only for your information.

When you enter dc expressions directly from the keyboard, press the End-of-File key
sequence to end the dc session and return to the shell command line.

2. To load and run a dc program file, proceed as follows:

Enter:

dc prog.dc
5 lf x p [5 factorial]s.

The system responds as follows:

120

Enter:

10 lf x p [10 factorial]s.

The system responds as follows:

3628800

This command interprets the dc program saved in prog.dc then reads from thestandard
input file. The lf x evaluates the function stored in register f, which could be defined in
the program file prog.dc as:

[f: compute the factorial of n]s.

[(n = the top of the stack)]s.

[If 1>n do b; If 1<n do r]s.
[d 1 >b d 1 <r] sf

[Return f(n) = 1]s.
[d - 1 +] sb

[Return f(n) = n * f(n-1)]s.
[d 1 - lf x *] sr

You can create dc program files with a text editor or with the -c (compile) flag of the bc
command. When you enter dc expressions directly from the keyboard, press the End-of-
File key sequence to end the dc session and return to the shell command line.

527188-021 Hewlett-Packard Company 3−7

dc(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: bc(1).

Files: locale(4).

STANDARDS CONFORMANCE
This command is an extension to the XPG4 Version 2 specification.

3−8 Hewlett-Packard Company 527188-021

User Commands (d - f) del_define(1)

NAME
del_define - Deletes one or more DEFINEs from the current OSS shell

SYNOPSIS
del_define {{define-name}... | all}

FLAGS
all Specifies that all existing DEFINEs except =_DEFAULTS are to be deleted.

DESCRIPTION
The del_define command is specific to OSS and an OSS shell built-in command. It deletes
DEFINEs from the OSS shell.

The del_define command affects only DEFINEs for the current shell process. It is similiar to the
TACL DELETE DEFINE command. Refer to the DELETE DEFINE command in the TACL
Reference Manual.

define-name
Specifies the name of the DEFINE to be deleted. The name can be 2 through 24 char-
acters long. The first character must be an equal sign (=) and the second must be a
letter. The =_DEFAULTS DEFINE cannot be deleted.

EXAMPLES
1. To delete the DEFINE named =DFILE, enter:

del_define =DFILE

2. To delete all defines in the current OSS shell (except =_DEFAULTS), enter:

del_define all

EXIT VALUES
The following exit values are returned:

0 DEFINEs were deleted successfully.

>0 An error occurred.

NOTES
The del_define command is a shell built-in command. It differs from the regular commands in
that it does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: add_define(1), info_define(1), set_define(1), show_define(1).

STANDARDS CONFORMANCE
The del_define command is an HP extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 3−9

df(1) OSS Shell and Utilities Reference Manual

NAME
df - Displays statistics of filesets

SYNOPSIS
df [-k] [[fileset] ...]

FLAGS
-k Causes disk space numbers to be reported in 1024-byte (1-kilobyte) blocks. By

default, all numbers are reported in 512-byte blocks.

DESCRIPTION
The df command displays the amount of used and available disk space on the fileset specified as
fileset. It also displays the status (started, stopped, or unknown), how much of the total capacity
of the fileset has been used, and the mount point of the fileset.

The value specified as fileset must be a fileset name as defined in the OSS Monitor subsystem of
the Subsystem Control Facility (SCF). Valid values for fileset are not case-sensitive. If more
than 15 values are specified for fileset, only the first 15 specified are displayed.

If no fileset name is specified, only statistics for the first 15 filesets are displayed. If more than 15
filesets exist, the df command displays a warning message.

EXAMPLES
Entering the command df with no flags on a node with 16 filesets displays:

WARNING: MORE THAN 15 FILESETS ARE PRESENT
Filesystem State 512-blocks Used Avail Capacity Mounted on
DSAP STOPPED - - - - /dsap
R1 STOPPED - - - - /home/ali
R2 STOPPED - - - - /home/ali
R27 STOPPED - - - - /home/ali
R28 STOPPED - - - - /home/ali
R29 STOPPED - - - - /home/ali
R3 STOPPED - - - - /home/ali
R30 STOPPED - - - - /home/ali
R31 STOPPED - - - - /home/ali
R32 STOPPED - - - - /home/ali
R33 STOPPED - - - - /home/ali
R34 STOPPED - - - - /home/ali
R35 STOPPED - - - - /home/ali
R9 STOPPED - - - - /home/ali
ROOT STARTED 69927952 69620808 307144 100% /

RELATED INFORMATION
Commands: du(1).

Functions: fstatvfs(2).

STANDARDS CONFORMANCE
The HP implementation does not support the -P or -t flag.

The HP implementation does not allow the specification of filenames.

3−10 Hewlett-Packard Company 527188-021

User Commands (d - f) diff(1)

NAME
diff - Compares text files

SYNOPSIS
diff [-c | -C number | -e | -f | -n] [-br] directory1 directory2

diff [-c | -C number | -e | -f | -n] [-b] file1 file2

FLAGS
The -c, -C, -e, -f, and -n flags are mutually exclusive.

The -r flag can be specified only with directory comparisons.

The -b flag can be used in combination with any other flags and in both file and directory com-
parisons.

-b Causes trailing spaces and tabs (blanks) to be ignored, and other strings of spaces and
tabs to be considered to be identical.

-c Produces a listing with the default number of lines of context (3 lines). The output lists
the files being compared and their last modification dates, then lists the differing lines.
Lines that are changed from one file to the other are marked in both files with an ! (exc-
lamation point). Changes that lie within the specified number of lines of each other are
grouped together on output.

-C number
Produces output that provides the number of lines of context specified by the number
argument (where number is a positive decimal integer).

-e Produces a script of a, c, d, and s commands for the editor ed, which can re-create file2
from file1. In connection with -e, the following shell program can help maintain multi-
ple versions of a file. Only an ancestral file ($1) and a chain of version-to-version ed
scripts ($2, $3, ...) made by the diff command need be on hand. A "latest version"
appears on the standard output, as shown below:

(shift; cat $*; echo ’1,$p’) | ed - $1

Extra commands are added to the output when comparing directories with -e; the result
is an sh script for converting text files common to the directories from their state in
directory1 to their state in directory2.

-f Produces a script similar to that of -e, but not useful with the ed editor, and in the oppo-
site order.

-r Checks files in common subdirectories recursively.

DESCRIPTION
Input Options

If neither the file1 nor the file2 argument is a directory, then either can be given as - (dash), in
which case the standard input is used. If file1 is a directory and file2 is a file, or vice versa, a file
in the specified directory with the same name as the specified file is used.

If both arguments are directories, the diff command sorts the contents of the directories by name,
and then runs the regular diff file algorithm on text files that are different. Binary files that differ,
common subdirectories, and files that appear in only one directory are also listed.

527188-021 Hewlett-Packard Company 3−11

diff(1) OSS Shell and Utilities Reference Manual

Output Options
There are several choices for output format. The default output format contains lines of these
forms:

number1 a number2,number3
number1,number2 d number3
number1,number2 c number3,number4

These lines resemble ed commands to convert file1 into file2. a indicates that a line or lines were
added to one of the files; d indicates that a line or lines were deleted; and c indicates that a line
or lines were changed. The numbers after the letters pertain to file2. In fact, by exchanging a for
d and reading backward, one can ascertain how to convert file2 into file1. As in the editor ed,
identical pairs where number1 = number2 or number3 = number4 are abbreviated as a single
number.

Following each of these lines are all the lines affected in the first file, flagged by < (left angle
bracket), then all the lines that are affected in the second file, flagged by > (right angle bracket).

Except in rare circumstances, the diff command finds the smallest sufficient set of file
differences.

EXAMPLES
1. To compare two files, enter:

diff chap1.bak chap1

This command displays the differences between the files chap1.bak and chap1.

2. To compare two files, ignoring differences in the amount of white space, enter:

diff -b prog.c.bak prog.c

If two lines differ only in the number of spaces and tabs between words, then the diff
command considers them to be the same.

3. To create a file containing commands that the ed command can use to reconstruct one file
from another, enter:

diff -e ch2 ch2.old > new.old.ed

This command creates a file named new.to.old.ed that contains the ed subcommands to
change file chap2 back into the version of the text found in file chap2.old. In most
cases, new.to.old.ed is a much smaller file than chap2.old.

4. You can save disk space by deleting the file chap2.old, and you can reconstruct the file at
any time by entering:

(cat new.old.ed ; echo ’1,$p’) | ed - ch2 > ch2.old

The commands in parentheses add 1,$p to the end of the editing commands sent to the ed
editor. The 1,$p causes the ed command to write the file to standard output after editing
it. This modified command sequence is then piped to the ed command (| ed), and the
editor reads it as standard input. The - flag causes the ed command to not display the file
size and other extra information, because it would be mixed with the text of file
chap2.old.

NOTES
Editing scripts that are produced by the -e or -f flags cannot create lines that consist of a single .
(dot) character.

3−12 Hewlett-Packard Company 527188-021

User Commands (d - f) diff(1)

Block, character, or FIFO special files cannot be used with the diff command because they cause
the command to exit.

Because /G and /E both appear in your local root directory, you should be very careful when
using OSS shell commands on or from the root directory. OSS shell commands that perform
recursive actions make no destinction between Guardian and OSS files or between local and
remote files.

EXIT VALUES
An exit value of 0 (zero) indicates no differences; a value of 1 indicates differences were found,
and value greater than 1 indicates an error.

RELATED INFORMATION
Commands: comm(1), ed(1), pr(1).

527188-021 Hewlett-Packard Company 3−13

dircmp(1) OSS Shell and Utilities Reference Manual

NAME
dircmp - Compares two directories

SYNOPSIS
dircmp [-d] [-s] directory1 directory2

FLAGS
-d Displays, for each common filename, the differing contents of the two files, if any. The

display format is the same as that of the diff command.

-s Suppresses listing of the names of identical files.

DESCRIPTION
The dircmp command reads directory1 and directory2, compares their contents, and writes the
results to the standard output file.

First, dircmp compares the filenames in each directory. When the same filename appears in
both, dircmp compares the contents of the two files.

In the output, dircmp lists the files unique to each directory. It then lists the files with identical
names but different contents. If entered without a flag, dircmp also lists files that have both
identical names and identical contents.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_COLLATE, LC_CTYPE,
LC_MESSAGES, and NLSPATH environment variables.

EXAMPLES
1. To summarize the differences between the files in two directories, enter:

dircmp proj.ver1 proj.ver2

This command displays a summary of the differences between the directories proj.ver1
and proj.ver2. The summary lists separately the files found only in one directory or the
other, and those found in both. If a file is found in both directories, that file is listed. If
the files are identical, dircmp displays identical; otherwise, dircmp displays dif-
ferent.

2. To show the details of the differences between files, enter:

dircmp -d -s proj.ver1 proj.ver2

The -s flag suppresses information about identical files. The -d flag displays a diff listing
for each of the differing files found in both directories.

NOTES
In most cases, diff -r, rather than dircmp, is preferred.

EXIT VALUES
The following exit values are returned:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: cmp(1), diff(1).

3−14 Hewlett-Packard Company 527188-021

User Commands (d - f) dircmp(1)

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

527188-021 Hewlett-Packard Company 3−15

dirname(1) OSS Shell and Utilities Reference Manual

NAME
dirname - Returns specified parts of pathnames

SYNOPSIS
dirname string

DESCRIPTION
The dirname command reads the string specified on the command line, deletes from the last
/ (slash) to the end of the line, and writes the remaining pathname to standard output.

The dirname command is generally used inside command substitutions within a shell procedure
to specify an output filename that is some variation of a specified input filename.

EXAMPLES
1. To construct the name of a file located in the same directory as another, enter:

AOUTFILE=‘dirname $TEXTFILE‘/a.out

This command sets the AOUTFILE shell variable to the name of an a.out file in the
same directory as TEXTFILE. If TEXTFILE is /u/fran/prog.c, then the value of dir-
name $TEXTFILE is /u/fran, and AOUTFILE becomes /u/fran/a.out.

RELATED INFORMATION
Commands: basename(1), sh(1).

3−16 Hewlett-Packard Company 527188-021

User Commands (d - f) dspcat(1)

NAME
dspcat - Displays all or part of a message catalog

SYNOPSIS
dspcat [-g] catalog_name

[set_number [message_number]]

FLAGS
-g formats the output so that it can be used as input to the gencat utility. You can-

not use the message_number operand with the -g flag.

Operands
catalog_name identifies a file containing a message catalog. If you omit this operand, dspcat

searches for the message catalog in the set of directories specified by the
NLSPATH environment variable.

set_number specifies a set in the catalog.

message_number
specifies a message in the set. You cannot use the message_number operand
with the -g flag. You must specify set_number if you specify message_number.

DESCRIPTION
The dspcat utility displays all or part of a message catalog. If you include all three operands,
dspcat displays the specified message. If you do not include message_number, dspcat displays
all the messages in the set. If you specify only catalog_name, dspcat displays all messages in
the catalog. If you specify an invalid message_number or an invalid set_number, dspcatdisplays
an error message.

Environment Variables
These environment variables affect the execution of the dspcat utility: LANG, LC_ALL,
LC_CTYPE, LC_MESSAGES, and NLSPATH.

EXAMPLES
To display message number 2 in set number 1 of test.cat, enter:

dspcat test.cat 1 2

DIAGNOSTICS
The dspcat utility generates these errors:

Usage: dspcat [-g] catname [set#] [msg#]
dspcat: Invalid set number.\n
No message id allowed with -g option.
dspcat: Invalid set number.\n
dspcat: Invalid msg number.\n
Usage: dspcat [-g] catname [set#] [msg#]
Unable to open specified catalog \%d set(s).\n
dspcat: Invalid set - catalog only has \%d set(s).\n
dspcat: Invalid set - set \%d not found.\n
dspcat: Invalid message - message \%d not found.\n

RELATED INFORMATION
Commands: gencat(1), mkcatdefs(1).

527188-021 Hewlett-Packard Company 3−17

dspcat(1) OSS Shell and Utilities Reference Manual

STANDARDS CONFORMANCE
The dspcat utility is an HP extension to the XPG4 Version 2 specification.

3−18 Hewlett-Packard Company 527188-021

User Commands (d - f) dspmsg(1)

NAME
dspmsg - Writes a message from a message catalog to standard output

SYNOPSIS
dspmsg [-s set_number]

catalog_name
message_number
[’default_message’]
[argument . . .]

FLAGS
-s set_number specifies a set in the message catalog; the default set number is 1, if not specified

by -s set_number.

Operands
catalog_name specifies the message catalog.

message_number
specifies the message to be written to standard output.

default_message
specifies the message to be written if dspmsg cannot find the specified message;
default_message is optional.

argument supplies optional arguments to substitute into the message catalog or into the
default message; there is no limit to the number of arguments.

DESCRIPTION
The dspmsg utility writes a message from a message catalog to standard output. You must
specify the message catalog (catalog_name) and the message (message_number) to be written.
You can specify the set number with the -s flag, or let dspmsg default to set number 1.

The dspmsg utility allows an unlimited number of string arguments for substituting into the
specified message if it contains either the %s or the %n$s printf() function conversion
specifications.

If dspmsg cannot find the specified message it writes the optionally specified default_message.
If dspmsg cannot find the specified message and you do not supply a default, a system-generated
error message is written. You must enclose the default message in single quotes if you are using
the %n$s notation for message inserts.

You can follow the default message with optional arguments to substitute into the catalog mes-
sage or the default message. Missing arguments for conversion specifications are replaced by
null strings.

Environment Variables
These environment variables affect the execution of the dspmsg utility: LANG, LC_ALL,
LC_CTYPE, LC_MESSAGES, NLSPATH.

EXAMPLES
To display the set number 1, message number 2, of the catalog test.cat, enter:

dspmsg -s 1 test.cat 2 ’Message not found’

If you have not assigned message text to message number 2, dspmsg displays the default mes-
sage Message not found.

527188-021 Hewlett-Packard Company 3−19

dspmsg(1) OSS Shell and Utilities Reference Manual

DIAGNOSTICS
The dspmsg utility generates these errors:

\nNone or all arguments must use \%n$ format
\n$ missing from \%n$ format
\nNone or all arguments must use \%n$ format
\nInvalid argument index
\nInvalid format specifier

RELATED INFORMATION
Commands: gencat(1), mkcatdefs(1).

STANDARDS CONFORMANCE
The dspmsg utility is an HP extension to the XPG4 Version 2 specification.

3−20 Hewlett-Packard Company 527188-021

User Commands (d - f) du(1)

NAME
du - Displays a summary of disk usage

SYNOPSIS
du [-a | -s] [-klrx] [-Wuser=username] [file ...]

FLAGS
-a Displays disk use for each file. Without -a, du does not report on files, unless they are

listed on the command line.

-k Displays the file sizes in units of 1024 bytes, instead of the default 512-byte units.

-l Allocates blocks, in files with multiple links, evenly among the links. By default, a file
with two or more links is counted only once.

-r Displays an error message when du encounters an inaccessible directory, or an inac-
cessible file when used with -a. This is the default action.

-s Displays only the grand total for each of the specified files, but not for any subdirec-
tories.

-x When evaluating file sizes, evaluates only those files that have the same device as the
file specified by file. In other words, du does not cross mount points.

When two flags are mutually exclusive (such as -a and -s), the last flag you enter on the com-
mand line takes precedence.

HP Extension
-Wuser=username

Specifies that only the files or directories owned by that user are listed.

DESCRIPTION
The du command displays the number of blocks in all directories (listed recursively) within each
specified directory. When the -a flag is specified, du reports the number of blocks in individual
files. The block count includes the indirect blocks of each file and is in 512-byte units, indepen-
dent of the cluster size used by the system. If no file or directory name is provided, the du com-
mand uses the current directory.

The size of the file space allocated to a directory is defined as the sum total of the space allocated
to all files in the file hierarchy rooted in the directory, plus the space allocated to the directory
itself.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXAMPLES
1. To display the disk usage of a directory tree and each of its subtrees, enter:

du /u/fran

This displays the number of disk blocks in the /u/fran directory and each of its subdirec-
tories.

2. To display the disk usage of each file, enter:

du -a /u/fran

This displays the number of disk blocks contained in each file and subdirectory of
/u/fran. The number shown beside a directory name is the disk usage of that directory
tree. The number shown beside the name of a regular file is the disk usage of that file

527188-021 Hewlett-Packard Company 3−21

du(1) OSS Shell and Utilities Reference Manual

alone.

3. To display only the total disk usage of a directory tree, enter:

du -s /u/fran

This displays only the sum total disk usage of /u/fran and the files it contains (-s).

4. To display only total disk usage used by user grp.ram of a directory tree, enter:

du -s -Wuser=grp.ram /u/fran

NOTES
If too many files are distinctly linked, du counts the excess files more than once.

When du cannot execute the stat() function on files or cannot read or execute stat() on direc-
tories, it reports an error condition and the final exit status is affected. Files with multiple links
are counted and written for only one entry.

EXIT VALUES
The du command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: df(1), ls(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

The following features are HP extensions to the XPG4 Version 2 specification:

• The -l and -Wuser flags are supported.

3−22 Hewlett-Packard Company 527188-021

User Commands (d - f) echo(1)

NAME
echo - Writes arguments to standard output

SYNOPSIS
echo [string ...]

DESCRIPTION
The echo command writes the string specified by the string argument to the standard output file.

The arguments are separated by spaces, and a newline character follows the last string. Use echo
to produce diagnostic messages in command files and to send data into a pipe. If there are no
arguments, echo outputs a newline character.

The echo command recognizes the following special characters:

\a Displays an alert character.

\b Displays a backspace character.

\c Suppresses the newline character. All characters following \c in the arguments are
ignored.

\f Displays a formfeed character.

\n Displays a newline character.

\r Displays a carriage-return character.

\t Displays a tab character.

\v Displays a vertical tab character.

\\ Displays a backslash character.

\number Displays an 8-bit character whose value is the 0-, 1-, 2-, or 3-digit octal number given
by the number argument. The first digit of number must be a 0 (zero).

EXAMPLES
1. To write a message to standard output, enter:

echo Please insert diskette . . .

2. To display a message containing special characters as listed in DESCRIPTION, enclose
the message in quotes, as follows:

echo "\n\n\nI’m at lunch.\nI’ll be back at 1 p.m."

This command skips three lines and displays the messages:

I’m at lunch.
I’ll be back at 1 p.m.

Note that you must enclose the message in quotation marks if it contains escape
sequences such as \n. Otherwise, the shell treats the \ (backslash) as an escape character.
The previous command line, entered without the quotation marks, results in the follow-
ing output:

nnnI’m at lunch.nI’ll be back at 1 p.m.

3. To use echo with pattern-matching characters, enter:

echo The back-up files are: *.bak

527188-021 Hewlett-Packard Company 3−23

echo(1) OSS Shell and Utilities Reference Manual

This command displays the message The back-up files are: and then displays the
filenames in the current directory ending with .bak.

4. To add a single line of text to a file, enter:

echo Remember to set the shell search path to $PATH. >>notes

This command adds the message to the end of the file notes after the shell substitutes the
value of the PATH shell variable.

5. To write a message to the standard error output (shell built-in command only), enter:

echo Error: file already exists. >&2

Use this command in shell procedures to write error messages. If the >&2 is omitted,
then the message is written to the standard output file.

NOTES
The OSS echo command has both a shell built-in version and a regular version. The two versions
have the same features and functionality. The only difference between the two versions is that
the shell built-in version does not start a new shell process when it is invoked. Both versions are
described in the reference page for echo. The shell built-in version is the default. To specify the
regular version, use the full pathname: /bin/echo For more information about shell built-in com-
mands, refer to the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

3−24 Hewlett-Packard Company 527188-021

User Commands (d - f) ecobol(1)

NAME
ecobol - Compiles TNS/E native COBOL85 programs

SYNOPSIS
ecobol

[-c | -Wnolink]
[-g]
[-L directory] ...
[-l library] ...
[-O [optlevel]]
[-o outfile]
[-s]
[-Wansistreams]
[-Wcall_shared | -Wshared]
[-WBdllsonly | -WBdynamic | -WBstatic]
[-Wcobol="arg[,...]"]
[-Wcodecov]
[-Wcolumns=n]
[-Wcopylib=pathname1]
[-Wdryrun]
[-Weld="arg[,...]"]
[-Weld_obey="pathname2"]
[-Werrors=n]
[-Wglobalized]
[-Wheap=n[b | w | p]
[-Whelp | -Wusage]
[-Whighpin={on | off}]
[-Whighrequesters={on | off}]
[-W[no]include_whole]
[-W[no]innerlist]
[-W[no]inspect]
[-Wlines=n]
[-W[no]list]
[-W[no]map]
[-Wmigration_check]
[-WmoduleCatalog="catalog_spec"]
[-WmoduleGroup[="[group_spec]"]]
[-WmoduleSchema="schema_spec"]
[-WmoduleTableSet[="[tableset_spec]"]]
[-WmoduleVersion[="[version_spec]"]]
[-Wmxcmp[="arg[,...]"]]
[-Wmxcmp_add="arg[,...]"]
[-Wmxcmp_files="file[,...]"]
[-Wmxcmp_querydefault="attr_name=attr_value[,...]"]
[-Wnostdlib]
[-Woptimize=n]
[-W[no]optional_lib]
[-Wr]
[-W[no]reexport]
[-Wrunnamed]
[-W[no]saveabend]
[-Wsavetemps]
[-Wsettog=n[, n] ...]
[-Wsql[="arg[,...]"]]

527188-021 Hewlett-Packard Company 3−25

ecobol(1) OSS Shell and Utilities Reference Manual

[-Wsqlcomp[="arg[,...]"]]
[-Wsqlmx[="arg[,...]"]]
[-Wsqlmxadd="arg[,...]"]
[-W[no]suppress]
[-Wstandard={1985 | 2002 }]
[-Wsyntax]
[-Wsystype={guardian | oss}]
[-Wtimestamp=value]
[-Wu="symbol_name"]
[-Wv]
[-Wverbose]
[-Ww]
[-Wx]
operand ...

FLAGS
-c | -Wnolink Performs compilation of the specified source files but suppresses the linking

phase. This flag does not delete any object files that are produced.

For source files of the form file.cbl, creates object files with names of the form
file.o in the current directory.

Use this flag when an SQL compiler is to be invoked without having to rebuild the
executable file.

-g Produces symbols information for symbolic debugging in the object or executable
files. This is equivalent to specifying the SYMBOLS and INSPECT directives to
the ECOBOL compiler.

-L directory Changes the algorithm for searching the libraries named in the -l flags to look in
the directory named by the directory pathname before looking in the default direc-
tories /lib, /usr/lib, and /usr/local/lib. Directories named in -L options are
searched in the order specified.

The order of specifying the -l and -L flags is significant. If the -L flag is specified,
it should be specified before specifying any of the following flags, to affect the
processing of -l flags related to those flags:

-WBdllsonly, -WBdynamic, or -WBstatic
-Wshared

-l library Specifies the filename of a library file to be used for linking. This flag can be
specified more than once in a command line and is normally used following
specification of -WBdllsonly, -WBdynamic, -WBstatic, or -Wshared.

In static linking mode, specifying this flag instructs the linker to search for the
library named liblibrary.a. In dynamic linking mode, specifying this flag instructs
the linker to search for the library named liblibrary.dll or liblibrary.so; if
liblibrary.dll or liblibrary.so is not found, use liblibrary.a.

The position of -l library operands within a list of flags affects the order in which
libraries are searched.

The order of specifying the -l and -L flags is also significant. If the -L flag is
specified, it should be specified before specifying any of the following flags, to
affect the processing of -l flags related to those flags:

-WBdllsonly, -WBdynamic, or -WBstatic
-Wshared

3−26 Hewlett-Packard Company 527188-021

User Commands (d - f) ecobol(1)

-O [optlevel] Specifies the optimization level to be used for the program file using one of the
following values:

0 Specifies an OPTIMIZE 0 ECOBOL compiler directive

1 Specifies an OPTIMIZE 1 ECOBOL compiler directive

2 or no optlevel value
Specifies an OPTIMIZE 2 ECOBOL compiler directive

If a -O flag is not specified, an OPTIMIZE 1 ECOBOL compiler directive is
specified.

-o outfile Uses the pathname outfile instead of the default pathname a.out for the executable
file produced.

-s Strips symbolic and other information not required for proper execution from
object and executable files. If both the -g and -s flags are used, symbolic informa-
tion is kept in the object files but is stripped from the executable file. Do not
specify the -s and -Wsql flags in the same ecobol invocation.

-Wansistreams
Generates a program that opens text files as file code 180 files instead of file code
101 (EDIT) files when a program is compiled for the Guardian environment and
includes C or C++ modules compiled with the c89 or c99 flag
-Wsystype=guardian. (By default Guardian C or C++ modules open text files as
file code 101 files.) This flag is ignored if -Wsystype=oss is specified. OSS C or
C++ modules can open text files only as file code 180 files.

-WBdllsonly | -WBdynamic | -WBstatic
Specifies the type of linking to be performed:

-WBdllsonly Specifies that the eld linker should limit searches to position-
independent code (PIC) files that are dynamic-link libraries
(DLLs) when resolving the file names specified for the -l and -L
flags.

If a file name is qualified, eld searches for a DLL with that name.

If a filename is unqualified, in each search path, eld first searches
for a DLL with the file name as specified in the -l or -L flag. If
eld cannot find a DLL, the file name is unqualified, and the search
path is not in the Guardian file system (/G), then eld prefixes lib
and suffixes .so to the file name and searches again. If eld still
cannot find the DLL, it searches the path again with the same
prefix but with .dll as the suffix. For more information on search
paths, see the Finding Libraries subsection of the eld(1) refer-
ence page under DESCRIPTION.

When a DLL cannot be found, eld issues an error message unless
its -allow_missing_libs flag is specified.

The -WBdllsonly, -WBdynamic, and -WBstatic flags are search
control toggles. Multiple flags can be specified in a single eld
invocation; the behavior specified remains in effect until another
flag in the set is specified. Thus, you can search for both DLLs
and archive files for some -l and -L flags and search for just
archive files for others. The default library search control is
-WBdynamic.

527188-021 Hewlett-Packard Company 3−27

ecobol(1) OSS Shell and Utilities Reference Manual

-WBdynamic Specifies that the linker utility should use dynamic linking when
searching for libraries specified in subsequent operands of the
form -l library. Dynamic linking is in effect until a -WBstatic
flag is specified. -WBdynamic is the default setting. Refer to the
Differences Between Dynamic and Static Linking subsection
for details.

-WBstatic Specifies that the linker utility should use static linking when
searching for libraries specified in subsequent operands of the
form -l library. Static linking is in effect until a -WBdynamic
flag is specified. -WBdynamic, not -WBstatic, is the default set-
ting. Refer to the Differences Between Dynamic and Static
Linking subsection for details.

You cannot use these flags if you use the -c or -Wnolink flag.

-Wcall_shared | -Wshared
Specifies the kind of linked file that should be created:

-Wcall_shared Directs the compiler to create a position-independent code (PIC)
program loadfile using the eld linker. If you also specify the -c or
-Wnolink flag, the file created is a PIC linkfile instead.

This is the default behavior.

-Wshared Directs the compiler to create a PIC dynamic-link library (DLL)
using the eld linker.

-Wcobol="arg[,...]"
Passes to the ECOBOL compiler the directives in the argument string enclosed in
quotation marks. If more than one value is specified, they must be separated by
commas without any white space. This string follows any directives generated by
other flags. If you repeat this flag, arguments are passed to the compiler in the
order specified.

-Wcodecov Directs the compiler to create an instrumented object file and to create or add to
an existing SPI file. This flag has an effect only if you also specify either the
-Wtarget=ipf flag or the -Wtarget=tns/e flag.

The first time the -Wcodecov flag is used to compile a program, the compiler
creates a Static Profiling Information (SPI) file. This file is one of the input files
for the Code Coverage tool. If the program is compiled in an OSS directory:

• The default name for the SPI file is pgopti.spi.

• If the default file is not write-accessible, the name of the SPI file created is
tpopti.spi.

• A lock file called pgopti.spl. When compilation is complete, the compiler
deletes this file.

If the program is compiled in a Guardian directory:

• The default name for the SPI file is pgospi.

• If the default file is not write-accessible, the name of the SPI file created is
tpgospi.

3−28 Hewlett-Packard Company 527188-021

User Commands (d - f) ecobol(1)

• A lock file called pgospl. When compilation is complete, the compiler
deletes this file.

If the SPI file already exists when the program is compiled with the -Wcodecov
flag, the compiler updates or adds information to the existing SPI file. If more
than one SPI file exists for the same program, you must concatenate the files
manually before you can use the resulting file as input to the Code Coverage Tool.

For more information about the Code Coverage Tool, see the Code Coverage Tool
Reference Manual.

-Wcolumns=n Sets the maximum number of columns for an input file to n, where n is a number in
the range 12 through 32767. If n is greater than 132, 132 is used. The compiler
ignores text in columns beyond n.

-Wcopylib="pathname1"
Specifies pathname1 as the source file to use as the default COPY library for any
COPY statement in the source program that does not specify a library. If you
repeat this flag, the last file specified is the default COPY library. The default is to
look for a file called COPYLIB in the current working directory.

-Wdryrun Verifies the syntax and semantics of the flags and operands that were specified and
enables the -Wv flag. No compilation system components are run.

-Weld="arg[,...]"
Passes to the eld utility the directives in the argument string enclosed in quotation
marks after any other arguments are passed. If more than one value is specified,
they must be separated by commas without any white space. If you repeat this
flag, arguments are passed to the eld utility in the order specified.

This flag is ignored when linking is suppressed.

-Weld_obey="pathname2"
Passes pathname2 (a file of eld utility commands) to the eld utility.

This flag is ignored when linking is suppressed.

-Werrors=n Stops compiling when n errors have been encountered.

-Wglobalized Specifies that the code generated by the compiler is preemptable. By default,
compilers generate code that is not preemptable. Preemptable code allows named
references in a DLL to resolve to externally-defined code and data items instead
of to resolve to its own internally-defined code and data items. Preemptable code
is less efficient than code that is not preemptable, and is only needed in a few
instances when creating a DLL.

This flag has an effect only if you also specify either the -Wtarget=ipf flag or the
-Wtarget=tns/e flag.

-Wheap=n[b | w | p]
Specifies the value that the linker should use for the HEAP_MAX attribute of the
output file. n can be any positive hexadecimal value that gives a size valid for the
NonStop server node on which the file is used. The size can be specified in units
of:

b Bytes; this is the default unit

527188-021 Hewlett-Packard Company 3−29

ecobol(1) OSS Shell and Utilities Reference Manual

w Words

p Pages

-Whelp | -Wusage
Displays information on how to run the ecobol utility. No compilation system
components are run.

-Whighpin={on | off }
Directs the linker to set the HIGHPIN attribute to on or off in the output object
files. This attribute specifies whether the object file will run at a high PIN or a low
PIN.

If the program is compiled for execution in the Guardian environment, the default
setting is -Whighpin=off. If the program is compiled for execution in the OSS
environment, the default setting is -Whighpin=on. This flag is set only if an exe-
cutable object file is produced.

-Whighrequesters={on | off }
Directs the linker to set the HIGHREQUESTERS attribute to on or off in the out-
put object file. This attribute specifies whether the object file supports requests
from requesters running at a high PIN.

The object file must contain a COBOL main program. If the COBOL main pro-
gram was compiled with the ecobol -Wsystype=guardian flag set, the default set-
ting is -Whighrequesters=off. If the COBOL main program was compiled with
the ecobol -Wsystype=oss flag set, the default setting is -Whighrequesters=on.
This flag is set only if an executable object file is produced.

-W[no]include_whole
Tells the eld linker whether to include in the loadfile all linkable archive members
of all archive libraries encountered after this flag is specified.

Specifying -Winclude_whole begins this linking action. When
-Wnoinclude_whole behavior is in effect, archive searches are controlled by the
existence of undefined symbols. Archives are searched in the order specified on
the command line. Symbols are marked as undefined by compilers or by the user
through the -Wu flag or the eld linker -u flag. When an archive member is found
that resolves an undefined symbol, the member´s symbols are merged into the
external symbol table for the loadfile being created. After the merge, the
undefined symbol that triggered the merge is resolved (marked as defined). The
same merge might resolve other undefined symbols or result in more undefined
symbols.

You can stop the linking action of -Winclude_whole by specifying the
-Wnoinclude_whole flag later in the command line or an obey file.

These flags can be specified as many times as needed in the command stream.
Providing either flag overrides the current setting, so that the linker actions can be
controlled on a library-by-library basis.

The default setting is -Wnoinclude_whole.

-W[no]innerlist
Enables [disables] the generation of instruction code mnemonics in the compiler
listing immediately following each corresponding statement. This flag works only
if the -Wnosuppress flag is specified. The default is -Wnoinnerlist.

3−30 Hewlett-Packard Company 527188-021

User Commands (d - f) ecobol(1)

-W[no]inspect Designates [does not designate] the Native Inspect debugger as the default
debugger for the output object file. Use this flag with the -g flag. The default set-
ting is -Wnoinspect. This flag is set only if an executable object file is produced.

-Wlines=n Sets the maximum number of lines on a listing page to n, if a listing is generated.
n is a number in the range 10 through 32767.

-W[no]list Temporarily enables [disables] the generation of the compiler listing. This flag
works only if the -Wnosuppress flag is specified. The default is -Wlist.

-W[no]map Temporarily enables [disables] the generation of identifier maps in the compiler
listing. This flag works only if the -Wnosuppress flag is specified. The default is
-Wnomap.

-Wmigration_check
When used with the -Wstandard=1985 flag, causes the compiler to issue a warning
message when it encounters a user-defined COBOL word that is a reserved word
in the COBOL-2002 standard. The default is not to issue migration warning mes-
sages.

-WmoduleCatalog="catalog_spec"
Specifies a NonStop SQL/MX module catalog name. The specified string is used
only if the input file does not contain an SQL/MX module directive or its module
directive does not specify a catalog name. The string cannot contain more than
128 characters.

This flag is valid only for preprocessor release 2.0 and newer.

-WmoduleGroup[="[group_spec]"]
Specifies a string for a module group specification to use as a prefix to the module
name. The specified string is used only if the input file does not contain an
SQL/MX module directive or its module directive does not specify a group name.
The string cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

-WmoduleSchema="schema_spec"
Specifies a NonStop SQL/MX module schema name. The specified string is used
only if the input file does not contain an SQL/MX module directive or its module
directive does not specify a schema name. The string cannot contain more than
128 characters.

This flag is valid only for preprocessor version 2.0 and newer.

-WmoduleTableSet[="[tableset_spec]"]
Specifies a string for a tableset specification to use as the first suffix to the module
name. The specified string is used only if the input file does not contain an
SQL/MX module directive or its module directive does not specify a tableset
name The string cannot contain more than 31 characters.

This flag is valid only for preprocessor version 1.8 and newer.

-WmoduleVersion[="[version_spec]"]
Specifies a string for a tableset specification to use as the second suffix to the
externally qualified module name that is written to the module file. The string
cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

527188-021 Hewlett-Packard Company 3−31

ecobol(1) OSS Shell and Utilities Reference Manual

-Wmxcmp[="arg[,...]"]
Invokes the NonStop SQL/MX compiler after the NonStop SQL/MX preprocessor
is invoked.

If a value is supplied for arg, it must be one of the following:

replace Directs the NonStop SQL/MX compiler to replace the existing
module or create a new one. The default action does not replace
an existing module.

warn Directs the NonStop SQL/MX compiler to generate a warning
rather than an error if a table does not exist at compilation time.

verbose Directs the NonStop SQL/MX compiler to display summary infor-
mation as well as error and warning messages.

If the -Wmxcmp flag is specified more than once, only the last occurrence has an
effect. If the -Wmxcmp flag is specified without the -Wsqlmx flag, and if a file
specified for operand has a name of the form file.m, that file is passed to the Non-
Stop SQL/MX compiler.

If the -Wmxcmp flag is specified, you cannot use the -Wsql or -Wsqlcomp flag.
The -Wmxcmp flag is ignored when a flag, such as -Wsyntax, that prevents com-
pilation is specified.

-Wmxcmp_add="arg[,...]"
Specifies a string to pass to the NonStop SQL/MX compiler without validation or
change. If more than one value is specified, they must be separated by commas
without any white space.

-Wmxcmp_files="file[,...]"
Passes MDF files specified to mxcmp in release 1 compilation mode. Passes all
specified files without the .m extension to mxCompileUserModule in release 2
compilation mode.

-Wmxcmp_querydefault="attr_name=attr_value[,...]"
Specifies attribute settings (CONTROL QUERY DEFAULT settings) to pass to
the NonStop SQL/MX compiler. These attribute settings override any
corresponding entries in the SYSTEM_DEFAULTS table.

-Wnostdlib Suppresses the searching of the standard library directories to locate libraries for
any C or C++ modules in the program. Refer to the Standard Library Direc-
tories subsection of the c89 or c99 reference page for details.

-Woptimize=n Sets the optimization level to n. n is one of the following:

0 Disables all optimizations and therefore yields code with rela-
tively poor performance. Optimization level 0 is useful when you
are developing and debugging your program and is recommended
for serious debugging. Statements are well-defined when debug-
ging; breakpoints and stepping occurs in a manner that the user
would expect when viewing the related source.

1 Generates partially optimized code sequences. Object code com-
piled at optimization level 1 can be symbolically debugged with
the Visual Inspect debugger; however, statement boundaries
might be blurred. The Visual Inspect debugger chooses a sensible
location when a user requests a breakpoint on a source statement,

3−32 Hewlett-Packard Company 527188-021

User Commands (d - f) ecobol(1)

but its definition of statement boundaries does not always coin-
cide directly with source statements. The debugger emits a warn-
ing when a process is held at a statement for which the code asso-
ciated with a previous source statement has not yet executed.

2 Generates fully optimized code sequences. Machine-level debug-
ging might be required, because symbolic debugging capability
will be limited.

The default is 1.

-W[no]optional_lib
Indicates whether a library specified in the command stream should be considered
optional when the eld linker creates a loadfile.

When -Wnooptional_lib behavior is in effect, any library specified in a -l or -lib
flag is included in the .liblist section of the loadfile being created. When
-Woptional_lib behavior is in effect, a specified library can be omitted from the
.liblist section of the loadfile being created if omitting it would not affect how
symbolic references are resolved.

These flags can be specified as many times as needed in the command stream.
Providing either flag overrides the current setting, so that the linker actions can be
controlled on a library-by-library basis.

If a library is specified more than once, and at least one specification occurs when
-Wnooptional_lib is in effect, the library is included in the .liblist section of the
loadfile being created.

The default behavior is -Wnooptional_lib.

-W[no]reexport
Tells the eld linker whether to mark any library specified in an -l or -L flag after
this flag for reexport in its libList entry in the loadfile being created. Specifying
-Wnoreexport leaves the library unmarked; specifying -Wreexport marks the
library. Reexport is a run-time attribute that is used by the rld loader to decide
what DLLs it needs to load.

-Wnoreexport is the default action.

These flags can be specified as many times as needed in the command stream.
Providing either flag overrides the current setting, so that the linker actions can be
controlled on a library-by-library basis.

-Wrunnamed Directs the linker to set the RUNNAMED ON attribute in the current object file.
This attribute specifies that the object file runs as a named process. The default is
RUNNAMED OFF.

-W[no]saveabend
Specifies that a process snapshot (saveabend) file is [not] created if the program
terminates abnormally. The default is -Wnosaveabend.

-Wsavetemps Saves all temporary and intermediate files created by compilation system com-
ponents. Use the -Wv flag to display the filenames.

-Wsettog=n[, n] ...
Specifies a numeric toggle in the range 1 through 15 that is defined only during the
NonStop SQL/MX preprocessing step. See the HP NonStop SQL/MX Program-
ming Manual for C and COBOL for details about the NonStop SQL/MX -d toggle
option.

527188-021 Hewlett-Packard Company 3−33

ecobol(1) OSS Shell and Utilities Reference Manual

All -Wsettog values that are supplied to ecobol are automatically passed as -d
options to the NonStop SQL/MX preprocessor. The -d options control the pro-
cessing of ?IF directives by the preprocessor; the options do not pass ?SETTOG
directives to the ECOBOL compiler.

This flag is ignored unless the -Wsqlmx flag is also specified. This flag can be
specified more than once.

-Wsql[="arg[,...]"]
Enables NonStop SQL/MP support when processing COBOL85 source files, using
the arguments in the argument string enclosed in quotation marks. If more than
one value is specified, they must be separated by commas without any white
space. Refer to the NonStop SQL/MP Programming Manual for COBOL85 for a
description of the arguments that can be passed to the NonStop SQL/MP compiler.
If no errors occur, -Wsql also runs the SQLCOMP compiler after the link step.

If you specify the -Wsql flag, you cannot use the -s, -Wmxcmp, or -Wsqlmx flag.

-Wsqlcomp[="arg[,...]"]
Runs the NonStop SQL/MP SQLCOMP compiler after the link step, using the
arguments specified. If more than one value is specified, they must be separated
by commas without any white space.

If you specify the -Wsqlcomp flag, you cannot use the -Wmxcmp or -Wsqlmx
flag.

-Wsqlmx[="arg[,...]"]
Invokes the NonStop SQL/MX mxsqlco preprocessor, using the arguments
specified. If an arg value is specified, it must be one of the following; if more than
one value is specified, they must be separated by commas without any white
space:

ansi_format Directs the preprocessor to assume ANSI fixed format for the
source file that it reads.

double_quotes Directs the preprocessor to accept SQL string literals delimited by
double quotes in addition to literals delimited by single quotes.

listing Directs the preprocessor to write its diagnostic messages to a file
named file.eL, where file is the name of the primary source file.

preprocess_only
Directs the preprocessor to suppress all steps after preprocessing.

This option is valid only for preprocessor release 2.0 and newer.

refrain_r2 Directs the SQL/MX preprocessor to use only the rules and
features that apply to preprocessors prior to release 2.0. The
default action is to use only the rules and features that apply to
preprocessors beginning with release 2.0.

This option is valid only for preprocessor release 2.0 and newer.

If you specify the -Wsqlmx flag, you cannot use the -Wsql or -Wsqlcomp flag.

-Wsqlmxadd="arg[,...]"
Specifies a string to pass to the SQL/MX preprocessor without validation or
change. If more than one value is specified, they must be separated by commas
without any white space.

3−34 Hewlett-Packard Company 527188-021

User Commands (d - f) ecobol(1)

-W[no]suppress
Disables [enables] the generation of identifier maps in the compiler listing. The
compiler listing is written to standard output. The default is -Wsuppress.

-Wstandard={1985 | 2002 }
Specifies the COBOL standard the compiler should use. The default is 1985,
which specifies that the compiler follow the COBOL-1985 standard. When 2002
is specified, the compiler reserves all the COBOL words that are reserved words
in the COBOL-2002 standard. The compiler does not support all COBOL-2002
features. For a list of the features supported, see the COBOL Manual for TNS/E
Programs.

-Wsyntax Checks the syntax of the source program, but does not generate any code.

-Wsystype={guardian | oss }
Specifies the target execution environment. This flag selects definitions used dur-
ing compilation, program startup code, default libraries, and system routines used
during linking. The default setting is -Wsystype=oss. (To run files compiled for a
Guardian target execution environment, you must set the file code to 800 with a
FUP ALTER filename, CODE 800 command from a TACL prompt.)

-Wtimestamp=value
Provides a creation timestamp for the NonStop SQL/MX preprocessor that is writ-
ten to the two output files created by the preprocessor. See the HP NonStop
SQL/MX Programming Manual for C and COBOL for details about the formats
allowed for value. If this flag is specified more than once, only the last occurrence
has an effect. Note that ecobol does not check that value is valid; it relies on the
NonStop SQL/MX preprocessor to validate this argument.

This flag is ignored unless the -Wsqlmx flag is also specified.

-Wu="symbol_name"
Tells the eld linker to add symbol_name as an undefined symbol. This causes eld
to search for this symbol in any archive libraries that are specified after this flag
on the command line or in an obey file.

The search constraint specified by the -Wu flag is overridden by use of the
-Winclude_whole flag.

-Wv Echoes to the standard error file the command line as each component of the com-
pilation system is run.

-Wverbose Displays detailed information from the ECOBOL compiler and linker utility.

-Ww Suppresses the printing of compiler warning messages.

-Wx Strips part of the symbol table from the output object file, but keeps information
necessary for the object file to be used as input to the linker utility.

Do not include a space before or after the = (equal sign).

Quotation marks around string values in flags are optional but recommended to avoid errors
caused by shell substitutions or deletions.

527188-021 Hewlett-Packard Company 3−35

ecobol(1) OSS Shell and Utilities Reference Manual

DESCRIPTION
The ecobol utility is the interface to the ECOBOL compilation system; it accepts source code con-
forming to the ISO COBOL85 standard. The system consists of an ECOBOL compiler and a
linker utility (eld), with additional program components supporting SQL.

ecobol performs simple validation of the flags and operands on its command line and, depending
on those items, invokes components of the language compilation system. ecobol does not verify
the existence of files it passes to compilation system components. It does verify that operand
identifies valid files to pass to compilation system components. ecobol and the components it runs
issue messages to the standard error file.

ecobol performs the following steps:

1. If the -Wsqlmx flag is specified, invokes the NonStop SQL/MX preprocessor to prepro-
cess any COBOL source files that contain embedded NonStop SQL/MX statements to
create either of the following:

• COBOL source files with module definitions (using the release 2 module manage-
ment method)

• COBOL-only source files and module definition files (MDFs) (using the release 1
module management method)

2. Compiles any specified COBOL source files or source files produced by Step 1 into object
files.

3. If the -Wmxcmp flag is specified, invokes the NonStop SQL/MX compiler to compile any
module definitions or MDFs.

4. Links the object files together with any libraries specified on the command line. This step
occurs if no flags that prevent linking (such as -c or -Wnolink) are specified and if the
source files are compiled without errors.

5. If the -Wsqlcomp flag is specified, invokes the NonStop SQL/MP compiler to process any
embedded NonStop SQL/MP statements in files created by Step 1 or specified in the com-
mand.

6. Writes an executable object file or dynamic link library (DLL) specified by the -o flag (if
present) or to the file a.out.

The files specified in the operand list are operated on by the appropriate program components of
the compilation system, depending on the command line flags and the type of file operands.

If the -c flag is specified, then for all pathname operands of the form file.cbl, the files $(basename
pathname.c).o are created as the result of successful compilation.

If -c is not specified, the object files created after successful compilation are combined by the link
operation into a program file, dynamic-link library (DLL), or user library. When linking is per-
formed and either the -Wsqlmx or -Wmxcmp flag is specified, the list of libraries searched
automatically includes zclidll. Object files created are not deleted after successful generation of
the executable program file.

The executable file is created according to OSS file creation rules, except that the file permissions
are set to S_IRWXO | S_IRWXG | S_IRWXU and the bits specified by the umask value of the
process are cleared.

3−36 Hewlett-Packard Company 527188-021

User Commands (d - f) ecobol(1)

HP Extensions
The -W flags are specific to HP for supporting the HP compilation environment. The argument
strings within these flags are passed to the program components unchanged, along with default
argument strings and argument strings corresponding to ecobol command line flags meaningful to
the program components. Do not specify conflicting instructions in -W flag argument strings or
ecobol command line flags. The results of conflicting instructions are undefined.

Operands
An operand is a pathname. At least one pathname must be specified. The following operands are
supported:

file.a A library of object files typically produced by the ar command, and passed
directly to the linker utility.

file.cbl A COBOL85 language source file to be compiled and optionally linked. Embed-
ded NonStop SQL/MP information might be present.

file.cob A COBOL85 language source file to be compiled and optionally linked. Embed-
ded NonStop SQL/MP information might be present.

file.ECBL A COBOL85 language source file that contains embedded NonStop SQL/MX
statements to be compiled and optionally linked.

file.ecbl A COBOL85 language source file that contains embedded NonStop SQL/MX
statements to be compiled and optionally linked.

file.ECOB A COBOL85 language source file that contains embedded NonStop SQL/MX
statements to be compiled and optionally linked.

file.ecob A COBOL85 language source file that contains embedded NonStop SQL/MX
statements to be compiled and optionally linked.

file.m A module definition file (MDF) containing NonStop SQL/MX information for a
corresponding COBOL source file.

file.o An object file produced by a previous ECOBOL compilation, to be passed directly
to the linker utility.

Input Files
Input files are one of the following:

• A text file containing a COBOL85 language source program

• An object file in the format produced by the command ecobol -c

• A library of object files in the format produced by archiving zero or more object files using
the ar command

• A library of object files produced by the eld utility

When -Wsqlmx is specified, ecobol uses the source file extension to determine whether a file
requires preprocessing and the names of the source files created by the NonStop SQL/MX prepro-
cessor. The name of the source file created is the name of the primary source file with the follow-
ing transformation to the file extension:

• Each source file with the extension .ecbl or .ecob is given to the mxsqlco program for
preprocessing. The resulting source files have the extensions .cbl and .m, where the file
named file.cbl contains the COBOL source to be compiled and the file named file.m con-
tains the corresponding module definition file (MDF).

527188-021 Hewlett-Packard Company 3−37

ecobol(1) OSS Shell and Utilities Reference Manual

• Source files with the extensions .cbl or .cob are not given to the mxsqlco program; these
files are assumed to contain no embedded SQL statements.

Files created by the NonStop SQL/MX preprocessor overwrite any existing files with the same
name in the current working directory.

Output Files
Output files are object files, executable files, log files, NonStop SQL/MX module definition files
created by the NonStop SQL/MX preprocessor, or all four. Log files have names of the form
file.eL. Module definition files have names of the form file.m.

Standard Output
The standard output file is a text file that contains the compiler listing, if generated.

Standard Error
The standard error file is used for diagnostic and informational messages. If more than one file
operand is specified, then for each such file, "%s: \n",file might be written. These messages
precede the processing of each input file.

Environment Variables
The following environment variables affect the execution of ecobol. The ecobol utility and its
program components do not support locale variables.

COMP_ROOT
Changes the default pathnames for the ecobol compilation system components. In
the OSS environment, the string specified in COMP_ROOT is added to the
beginning of the default pathnames. If a component’s environment variable is set
explicitly, the COMP_ROOT environment variable does not modify the
component’s environment variable.

ECOBFE Determines the pathname of the ecobol compiler. /G/system/system/ecobfe is the
default.

ELD Determines the pathname of the eld utility invoked by ecobol. /usr/bin/eld is the
default location for the OSS environment.

MXCMP Determines the pathname of the NonStop SQL/MX release 1 compiler.
/G/system/system/mxcmp is the default.

MXCMPUM Determines the pathname of the NonStop SQL/MX release 2 compiler.
/usr/tandem/sqlmx/bin/mxCompileUserModule is the default.

MXSQLCO Determines the pathname of the NonStop SQL/MX preprocessor, mxsqlco.
/usr/tandem/sqlmx/bin/mxsqlco is the default.

SQLCOMP Determines the pathname of the NonStop SQL/MP compiler invoked by ecobol.
/G/system/system/sqlcomp is the default.

SQLCIO Determines the pathname of the object file for the NonStop SQL/MX application
program interface to the ECOBOL compiler. /usr/tandem/lib/sqlci.o is the
default.

SQLMX_PREPROCESSOR_VERSION
Indicates the preprocessor rules and features to be used. Specifying the value 800
causes rules and features associated with release 1.8 to be used; the mxcmp com-
piler is used and only MDF files and annotated source files are produced, while
rules and features associated with release 2.0 and later are ignored. Specifying a
value of 1200 or larger or not specifying a value causes rules and features associ-
ated with release 2.0 and later to be used; the mxCompileUserModule compiler

3−38 Hewlett-Packard Company 527188-021

User Commands (d - f) ecobol(1)

is used and annotated source files that contain embedded module definitions are
produced instead of MDF files, while restrictions associated with release 1.8 or
earlier are ignored.

TMPDIR Determines the pathname that overrides the default directory for temporary files
created by ecobol and components it invokes. By default, temporary files are
stored in the /tmp directory. If TMPDIR is set to a directory that does not exist
or is not writable, ecobol uses the default directory as described on the temp-
nam(3) reference page.

Processes
With the exception of the ECOBFE and SQLCOMP processes, which is invoked as a Guardian
process, all components are invoked as OSS processes.

Standard Libraries
The following libraries are available for COBOL85 programs in the OSS environment.

-l cob Contains COBOL library and utility routines described in the COBOL Manual for
TNS/E Programs.

-l cre Contains C run-time library routines.

-l cli Contains SQL/MX support routines.

In the absence of flags that inhibit invocation of a linker utility, such as -c or -Wnolink, ecobol
passes -l cob and -l cre operands to the linker utility, causing the COBOL and CRE libraries to be
searched. If the -Wsqlmx or -Wmxcmp flags are present, ecobol also passes a -l cli operand to
the linker utility, causing the SQL/MX support library to be searched.

If you want the libraries to be searched in a specific order or you want linking options to be pro-
cessed in a specific order, you should invoke the linker using the eld command from the OSS shell
and not use ecobol to do the linking.

Differences Between Static and Dynamic Linking
The -WBdllsonly and -WBdynamic operands specify dynamic linking. The -WBstatic operand
specifies static linking.

In dynamic linking, the eld utility first searches for a dynamic-link library (DLL). If a DLL cannot
be found, the linker utility searches for an archive file. If no archive file can be found, an error is
issued.

In static linking, the linker utility searches for an archive file but does not search for a DLL. If the
archive file cannot be found, an error is issued.

Dynamic and static linking are not exact opposites. Dynamic linking accepts either a DDL or an
archive file, but static linking accepts only an archive file.

Unlike ecobol flags, multiple -WBdllsonly, -WBdynamic, and -WBstatic operands can be
specified in a single ecobol invocation; thus, it is possible to perform dynamic linking for some -l
operands and static linking for others.

-WBdllsonly, -WBdynamic and -WBstatic operands specified to ecobol are temporarily overrid-
den by linking arguments specified in the -Weld or-Weld_obey flags.

Refer to the eld(1) reference page for more information.

527188-021 Hewlett-Packard Company 3−39

ecobol(1) OSS Shell and Utilities Reference Manual

Using the c89 or c99 and ecobol Utilities
OSS COBOL85 programs can contain COBOL85 modules and C modules. Compile COBOL85
modules using the ecobol utility and C modules using the c89 or the c99 utility. To produce a pro-
gram containing COBOL85 and C modules, first compile all the modules written in either
COBOL85 or C. You can also link these modules together or with other libraries at this time, but
do not SQL-compile the modules. After you have compiled all the modules of one language, com-
pile the modules written in the other language, specifying any necessary linking or SQL-compiling
options.

For example, to produce an executable object file made up of COBOL85 modules cobol1.cbl and
cobol2.cbl and C modules c1.c and c2.c, you can first run the C compiler using the c89 utility
with:

c89 -c -o cprog.o c1.c c2.c

This command directs c89 to compile the two modules but not link them. The output object file is
cprog.o.

You can then invoke the ecobol utility to compile the two COBOL85 modules and link the
ECOBOL compiler output with the previously produced C object file and the standard C library to
produce the executable object myprog with:

ecobol -o myprog cprog.o cobol1.cbl cobol2.cbl

Refer to the C/C++ Programmer’s Guide and the Open System Services Programmer’s Guide for
details on writing and compiling C programs in the OSS environment.

EXAMPLES
1. The command

ecobol test1.cbl

compiles the source file test1.cbl and links the object file into a program file a.out.

2. The command

ecobol -c test1.cbl

compiles the source file test1.cbl into an object file test1.o.

3. The command

ecobol -g -o test2 x.cbl y.cbl z.cbl

compiles source files x.cbl, y.cbl, and z.cbl and links the object files into a program file
test2. Symbolic information is generated by the compiler and retained by the linker utility
for debugging.

4. The command

ecobol -o xyz -Wsqlmx x.o y.o z.o

links the object files x.o, y.o, and z.o into a program file xyz. The NonStop SQL/MX com-
piler is then invoked to compile xyz.

5. The command

ecobol -Wnolink -Wsql="catalog \$abc.def" xyz

invokes the NonStop SQL/MP compiler, sqlcomp, on program file xyz without going
through the linking process. In addition to the input filename xyz, the catalog option is
passed to the NonStop SQL/MP compiler.

3−40 Hewlett-Packard Company 527188-021

User Commands (d - f) ecobol(1)

6. The command

ecobol -o testprog -L . -L /usr/test/lib testprog.cbl -l tdm

compiles the COBOL85 language source program testprog.cbl and links the object file
with the library specified in the -l operand. It also links the object file with a DLL, if
found. If a DLL is not found, it uses the standard C run-time library. The eld utility pro-
duces a program file named testprog.

By default, dynamic linking is selected. ecobol searches directories for the library tdm
specified by the -l flag in the following order and selects the first copy found:

libtdm.so in the current directory (-L .)

libtdm.a in the current directory (-L .)

libtdm.so in /usr/test/lib (-L /usr/test/lib)

libtdm.a in /usr/test/lib (-L /usr/test/lib)

libtdm.so in /lib (by default)

libtdm.a in /lib (by default)

libtdm.so in /nonnative/usr/lib (by default)

libtdm.a in /nonnative/usr/lib (by default)

libtdm.so in /usr/lib (by default)

libtdm.a in /usr/lib (by default)

libtdm.so in /usr/local/lib (by default)

libtdm.a in /usr/local/lib (by default)

7. The command

ecobol -Wsqlmx -Wmxcmp -o sqlprog.exe sqlprog.ecbl

processes the single COBOL module named sqlprog.ecbl containing embedded NonStop
SQL/MX statements using the release 2 compilation method as follows:

a. The NonStop SQL/MX preprocessor is invoked to process the source file. The
preprocessor creates the file sqlprog.cbl. The file sqlprog.cbl is the COBOL-only
equivalent of sqlprog.ecbl; that is, the preprocessor translates all embedded Non-
Stop SQL/MX statements to the appropriate COBOL code.

b. If no errors occurred in Step a, the ECOBOL compiler processes the file
sqlprog.cbl to create the file sqlprog.o.

c. If no errors occurred in Step b, the NonStop SQL/MX compiler is invoked to pro-
cess the module definitions.

d. If no errors occurred in Step c, eld is invoked to link the file sqlprog.o with the
standard COBOL library and produces the executable file sqlprog.exe.

8. The command

ecobol -c -Wsqlmx file1.ecob file2.ecob file3.ecob

preprocesses the three specified files and also compiles them, but does not link the result-
ing object files. Using the release 2 module management method, if no errors are detected
during either preprocessing or compilation, the following files are created: file1.cob,

527188-021 Hewlett-Packard Company 3−41

ecobol(1) OSS Shell and Utilities Reference Manual

file2.cob, file3.cob, file1.o, file2.o, and file3.o.

9. The command

ecobol -c -Wsqlmx file1.cbl file2.ecbl file3.ecob file4.cob

mixes COBOL source files with and without embedded NonStop SQL/MX statements.
All files are compiled but not linked. Using the release 2 module management method, if
no errors are detected during either preprocessing or compilation, the following files are
created: file2.cob, file3.cob, file1.o, file2.o, file3.o, file4.o.

10. The command

ecobol -Wmxcmp -Wmxcmp_files="test1.m,test1.o"

SQL-compiles the MDF file test1.m using the NonStop SQL/MX mxcmp compiler and
processes the file test1.o using the NonStop SQL/MX mxCompileUserModule without
also linking it.

DIAGNOSTICS
If ecobol encounters a compilation error that prevents an object file from being created, it writes a
diagnostic message to the standard error file and continues to compile other source code operands;
however, it does not perform program linking and returns a nonzero exit status. If the linking is
unsuccessful, cobol writes a diagnostic message to the standard error file and returns a nonzero
exit status.

EXIT VALUES
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

RELATED INFORMATION
Commands: ar(1), c89(1), c99(1), eld(1), nmcobol(1), strip(1).

Functions: tempnam(3).

STANDARDS CONFORMANCE
The ecobol utility is an HP extension to the XPG4 Version 2 specification.

3−42 Hewlett-Packard Company 527188-021

User Commands (d - f) ed(1)

NAME
ed - Edits a file line by line

SYNOPSIS
ed [-p string] [-s] [file]

The ed command invokes a line-editing program that works on one file at a time by copying it into
a temporary edit buffer and making changes to that copy.

FLAGS
-p string Sets the ed prompt to string. The default value for string is null (no prompt).

-s Suppresses byte counts that the editor displays with the e, E, r, and w subcommands,
suppresses diagnostic messages for the e, E, and q subcommands, and suppresses the !
(exclamation point) prompt after a !system_command. The same things are suppressed
when you call ed with a filename.

Note that if you quit without writing the file, you do not get an error message. (Gen-
erally, before ending the program, the q subcommand checks to determine whether the
buffer was written to a file since the last time it was changed. If not, q displays the ?
message.)

DESCRIPTION
The ed command does not alter the file itself until you use the write subcommand. You can
specify on the command line the file you want to edit, or you can use ed subcommands to read a
file into the buffer. When ed reads a new file into the buffer, the contents of that file replace the
buffer’s previous contents, if any.

The ed Modes
The ed program operates in one of two modes, command mode and text mode. In command mode,
ed recognizes and executes subcommands. In text mode, ed adds text to the file buffer, but does
not recognize subcommands. You enter text mode by using the a, c, or i subcommand. To leave
text mode, enter . (dot) alone at the beginning of a line.

Subcommand Syntax
An ed subcommand consists of zero, one, or two addresses, followed by a single-character sub-
command, possibly followed by arguments to that subcommand. These addresses specify one or
more lines in the buffer. Because every subcommand has default addresses, you frequently do not
need to specify addresses.

Pattern Matching
The ed command supports a limited form of special pattern-matching characters that you can use
as regular expressions (REs) to construct pattern strings. You can use these patterns in addresses
to specify lines and in some subcommands to specify portions of a line.

For information about regular expressions (REs), see the reference page for the grep command.

Addressing
There are three types of ed addresses: line number addresses, addresses relative to the current
line, and pattern addresses.

The current line is the point of reference in the buffer and is represented by a . (dot). When you
start the ed program, the current line is the last line in the buffer. As you edit a file, the current
line changes to the last line affected by a subcommand. The current line is the default address for
several ed commands. (See SUBCOMMANDS to find out how each subcommand affects the
current line.)

Subcommands for determining and changing the current line are described in the section SUB-
COMMANDS. The following are guidelines for constructing addresses:

527188-021 Hewlett-Packard Company 3−43

ed(1) OSS Shell and Utilities Reference Manual

• . (dot) addresses the current line.

• $ addresses the last line of the buffer.

• n addresses the nth line of the buffer.

• ´x addresses the line marked with a lowercase letter, x, by the k subcommand.

• /pattern/ addresses the next line that contains a matching string. The search begins with
the line after the current line and stops when it finds a match for the pattern. If necessary,
the search moves to the end of the buffer, wraps around to the beginning of the buffer, and
continues until it either finds a match or returns to the current line.

• ?pattern? addresses the previous line that contains a match for the pattern. The ?pattern?
construct, like /pattern/, can search the entire buffer, but it does so in the opposite direc-
tion.

• An address followed by +number or -number specifies an address plus or minus the indi-
cated number of lines. The + (plus sign) is optional.

• An address that begins with + or - specifies a line relative to the current line. For example,
-5 is the equivalent of .-5 (five lines above the current line).

• An address that ends with - or + specifies the line immediately before (-) or immediately
after (+) the addressed line. Used alone, the + character addresses the line immediately
before the current line. The + character addresses the line immediately after the current
line; however, the + character is optional. The + and - characters have a cumulative
effect; for example, the address --*O addresses the line two lines above the current line.

•• For convenience, a , (comma) stands for the address pair 1,$ (first line through last line)
and a ; (semicolon) stands for the pair .,$ (current line through last line).

Commands that do not accept addresses regard the presence of an address as an error. Commands
that do accept addresses can use either given or default addresses. When given more addresses
than it accepts, a command uses the last (rightmost) ones.

In most cases, a , (comma) separates addresses (for example 2,8). A ; (semicolon) can also
separate addresses. A ; between addresses causes the ed command to set the current line to the
first address and then calculate the second address (for example, to set the starting line for a search
based on guidelines 5 and 6). In a pair of addresses, the first must be numerically smaller than the
second.

The ed Limits
The following is a list of ed command size limitations:

• 64 bytes per filename.

• 512 bytes per line.

• 256 bytes per global subcommand list.

• 128-kilobyte buffer size. (Note that the buffer not only contains the original file but also
editing information. Each line occupies one word in the buffer.)

The maximum number of lines depends on the amount of memory available to you. The maximum
file size depends on the amount of physical data storage (disk or tape drive) available or on the
maximum number of lines permitted in user memory.

SUBCOMMANDS

3−44 Hewlett-Packard Company 527188-021

User Commands (d - f) ed(1)

In most cases, only one ed subcommand can be entered on a line. The exceptions to this rule are
the n, p, and l subcommands, which can be added to any subcommand except e, E, f, q, Q, r, w, or
!.

The e, E, f, r, and w subcommands accept filenames as arguments. The ed command stores the
last filename used with a subcommand as a default filename. The next e, E, f, r, or w subcommand
given without a filename uses the default filename.

The ed command responds to an error condition with one of two messages: ? (question mark) or
?file. When the ed command receives an INT signal, it displays a ? and returns to command
mode. When ed reads a file, it discards NULL characters and all characters after the last newline
character.

Unless otherwise noted, all subcommands work by default on the current line; an address is
optional. If you specify an address, you do not type the brackets.

When used as an address, a . (dot) refers to the current line. When a . (dot) is shown in the first
position on an otherwise blank line, it terminates text mode and returns to command mode. text
denotes user input in text mode. Note that address need not be a number; it can be a regular
expression of the form /RE/,/RE/ or /RE/;/RE/.

[address]a

text

. The a (append) subcommand adds text to the buffer after the addressed line. Enter a .
(dot) to return to command mode. The a subcommand sets the current line to the last
inserted line or, if no lines were inserted, to the addressed line. Address 0 causes the a
subcommand to add text to the beginning of the buffer.

[address1,address2]c

text

. The c (change) subcommand deletes the addressed lines, then replaces them with new
input. Enter a . (dot) to return to command mode. The c subcommand sets the current
line to the last new line of input or, if there were none, to the first line that was not
deleted.

[address1,address2]d
The d (delete) subcommand removes the addressed lines from the buffer. The line after
the last line deleted becomes the current line. If the deleted lines were originally at the
end of the buffer, the new last line becomes the current line.

e file The e (edit) subcommand first deletes any contents from the buffer, then loads another
file into the buffer, sets the current line to the last line of the buffer, and displays the
number of bytes read in to the buffer. If the buffer was changed since its contents were
last saved (with the w subcommand), e displays ? before it clears the buffer.

The e subcommand stores file as the default filename to be used, if necessary, by subse-
quent e, E, r, or w subcommands. (See the f subcommand.)

When the ! (exclamation point) character replaces file, e takes the rest of the line as a
shell (sh) command and reads the command output. The e subcommand does not store
the name of the shell command as a default filename.

E file The E (Edit) subcommand works like the e subcommand, with one exception: E does
not check for changes made to the buffer since the last w subcommand.

527188-021 Hewlett-Packard Company 3−45

ed(1) OSS Shell and Utilities Reference Manual

f [file] The f (filename) subcommand changes the default filename (the stored name of the last
file used) to file, if file is given. If file is not given, the f subcommand prints the default
filename.

[address1,address2]g/pattern/subcommand_list
The g (global) subcommand first marks every line that matches the pattern. Then, for
each marked line, this subcommand sets the current line to that line and executes
subcommand_list. Place a single subcommand, or the first subcommand of a list, on the
same line with the g subcommand; place subsequent subcommands on separate lines.
Except for the last line, end each of these lines with a \ (backslash).

The subcommand_list can include the a, i, and c subcommands and their input. If the
last command in subcommand_list is normally the . (dot) that ends input mode, the .
(dot) is optional. If there is no subcommand_list, the ed subcommand displays the
current line. The subcommand_list cannot include the g, G, v, V, or ! subcommands.

The g subcommand is similar to the v subcommand, which executes subcommand_list
for every line that does not contain a match for the pattern. Note that the g subcommand
defaults to the entire file, not to the current line.

[address1,address2]G/pattern/
The interactive G (Global) subcommand first marks every line that matches the pattern,
then displays the first marked line, sets the current line to that line, and waits for a sub-
command. G accepts any but the following ed subcommands: a, c, g, G, i, v, V, and !.
After the subcommand finishes, G displays the next marked line, and so on. G takes a
newline character as a null subcommand. & (ampersand) causes G to execute the previ-
ous subcommand again, if there is one. Note that subcommands executed within the G
subcommand can address and change any lines in the buffer. The G subcommand can
be terminated by pressing the Interrupt key sequence. Note that this subcommand
defaults to the entire file, not to the current line.

h The h (help) subcommand displays a short message that explains the reason for the most
recent ? notification. The current line number is unchanged.

H The H (Help) subcommand causes the ed command to enter a mode in which help mes-
sages (see the h subcommand) are displayed for all subsequent ? notifications. The H
subcommand toggles this mode, and it is initially set to "off." The current line number is
unchanged.

[address]i

text

. The i (insert) subcommand inserts text before the addressed line and sets the current line
to the last inserted line. Enter . (dot) to return to command mode. If no lines are
inserted, i sets the current line to the addressed line. This subcommand differs from the
a subcommand only in the placement of the input text. Address 0 is not legal for the i
subcommand.

[address1,address1+1]j
The j (join) subcommand joins contiguous lines by removing the intervening newline
characters. If given only one address, j does nothing. (For splitting lines, see the s sub-
command.) Note that lines that exceed the line length limit cannot be joined. If lines
are joined, the current line number is set to the address of the joined line; otherwise, the
current line number is unchanged.

[address]kx
The k (mark) subcommand marks the addressed line with name x, which must be a

3−46 Hewlett-Packard Company 527188-021

User Commands (d - f) ed(1)

lowercase letter. The address ’x (single quotation mark before the marking character)
then addresses this line. The k subcommand does not change the current line. Note that
marks attached to lines are deleted with the line.

[address1,address2]l
The l (list) subcommand displays the addressed lines. The l subcommand wraps long
lines and, unlike the p subcommand, represents nonprinting characters as 3-digit octal
numbers with a \ (backslash) preceding each byte in the character. The following char-
acters, however, are written as escape sequences:

\\ Backslash

\a Alert

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

A $ (dollar sign) character is placed at the end of each line so that a real (literal) $ at the
end of a line cannot be misinterpreted.

An l subcommand can be appended to any ed subcommand except e, E, f, q, Q, r, w, or
!.

[address1,address2]maddress3
The m (move) subcommand repositions the addressed lines. The first moved line fol-
lows the line addressed by address3. Address 0 for address3 causes m to move the
addressed lines to the beginning of the file. The line specified by address3 cannot be
one of the lines to be moved. The m subcommand sets the current line to the last moved
line.

[address1,address2]n
The n (number) subcommand displays the addressed lines, each preceded by its line
number and a tab character (displayed as spaces); the n subcommand leaves the current
line at the last line displayed. An n subcommand can be appended to any ed subcom-
mand except e, E, f, q, Q, r, w, or !.

[address1,address2]p
The p (print) subcommand displays the addressed lines and sets the current line to the
last line displayed. A p subcommand can be appended to any ed subcommand except e,
E, f, q, Q, r, w, or !. For example, the subcommand dp deletes the current line and
displays the new current line.

P The P (Prompt) subcommand turns the ed prompt string * or the string specified by the -
p flag on or off. Initially, P is off.

q The q (quit) subcommand exits the ed program. Before ending the program, q checks to
determine whether the buffer was written to a file since the last time it was changed. If
not, q displays the ? message. Note that you do not get more than one prompt in a row;
a second consecutive q quits the ed program without displaying a prompt.

527188-021 Hewlett-Packard Company 3−47

ed(1) OSS Shell and Utilities Reference Manual

Q The Q (Quit) subcommand exits the ed program without checking for changes to the
buffer since the last w subcommand (compare with the q subcommand).

[address]r file
The r (read) subcommand reads a file into the buffer after the addressed line; r does not
delete the previous contents of the buffer. When entered without file, r reads the default
file, if any, into the buffer (see the e and f subcommands). r does not change the default
filename. Address 0 causes r to read a file in at the beginning of the buffer. After it
reads a file successfully, r displays the number of bytes read into the buffer and sets the
current line to the last line read.

If ! (exclamation point) replaces file in a r subcommand, r takes the rest of the line as an
OSS shell (sh) command whose output is to be read. The r subcommand does not store
the names of shell commands as default filenames.

[address1,address2]s/pattern/replacement/flags
The s (substitute) subcommand searches each addressed line for a string that matches the
pattern and then replaces the string with the specified replacement string. Without a
number n or the global indicator g, s replaces only the first matching string on each
addressed line. With n, s replaces the nth occurrence of pattern on the addressed line.
With the g indicator, s replaces every occurrence of the matching string on each
addressed line.

If s does not find a match for the pattern, it returns the error message ?. Any character
except a space or a newline character can separate (delimit) the pattern and replacement
arguments. The s subcommand sets the current line to the last line changed.

An & (ampersand) in the replacement string is a special symbol that has the same value
as the pattern string. So, for example, the subcommand s/out/&ing/ has the same effect
as the subcommand s/out/outing/ and replaces out with outing on the current line. A
backslash before the ampersand (\&) removes this special meaning of & in replacement .

The % (percent sign), when used by itself as replacement, causes s to use the previous
replacement again. The % character does not have this special meaning if it is part of a
longer replacement or if it is preceded by a \ (backslash).

Lines can be split by substituting newline characters into them. In replacement, the
sequence \<Return> quotes the newline character (not displayed) and moves the cursor
to the next line for the remainder of the string.

The value of flags can be the following:

count Substitutes for the countth occurrence only of the regular expression that is
found on each addressed line.

g Substitutes globally for all nonoverlapping instances of the regular expression,
instead of just substituting for the first instance.

l Displays the final line in which a substitution was made in the format specified
for the l subcommand.

n Displays the final line in which a substitution was made in the format specified
for the n subcommand.

p Displays the final line in which a substitution was made in the format specified
for the p subcommand.

[address1,address2]taddress3
The t (transfer) subcommand inserts a copy of the addressed lines after address3. The t

3−48 Hewlett-Packard Company 527188-021

User Commands (d - f) ed(1)

subcommand accepts address 0 (for inserting lines at the beginning of the buffer). The t
subcommand sets the current line to the last line copied.

u The u (undo) subcommand restores the buffer to the state it was in before it was last
modified by an ed subcommand. The subcommands that u can undo are a, c, d, g, G, i, j,
m, r, s, t, u, v, and V. All changes made to the buffer by a g, G, v, or V global subcom-
mand are undone as a single change. The current line number is set to the value it had
before the command being undone started.

[address1,address2]v/pattern/subcommand_list
The v subcommand executes the subcommands in subcommand_list for each line that
does not contain a match for the pattern. The v subcommand is a complement for the
global subcommand g, which executes subcommand_list for every line that does contain
a match for the pattern.

[address1,address2]V/pattern/
The V subcommand first marks every line that does not match the pattern, then displays
the first marked line, sets the current line to that line, and waits for a subcommand. The
V subcommand complements the G subcommand, which marks the lines that do match
the pattern.

[address1,address2]w file
The w (write) subcommand copies the addressed lines from the buffer to the file named
in file. If the file does not exist, the w subcommand creates it with permission mode 666
(read and write permission for everyone), unless the umask command setting specifies
another file creation mode. (For information about file permissions, see the description
of the builtin command umask in the reference page for sh and the reference page for
the chmod command.)

The w subcommand does not change the default filename (unless file is the first filename
used since you invoked ed). If you do not provide a filename, ed uses the default
filename, if any (see the e, E, and f subcommands). The w subcommand does not
change the current line.

If the ed command successfully writes the file, it displays the number of characters writ-
ten. When ! (exclamation point) replaces file, ed takes the rest of the line as a shell (sh)
command whose output is to be read; w does not save shell command names as default
filenames (the same effect as !). The use of the write subcommand with ! (exclamation
point) is not considered the last w subcommand that wrote the entire buffer. Thus, this
alone does not prevent the warning to the user if an attempt is made to destroy the editor
buffer through the e or q subcommands.

The address 0 is not a legal address for the w subcommand. Therefore, it is not possible
to create an empty file with the ed command.

[address]=
Without an address, the = (equal sign) subcommand displays the current line number.
With the address $, = (equal sign) displays the number of the last line in the buffer. The
= subcommand does not change the current line and cannot be included in a g or v sub-
command list.

!system_command
The ! (exclamation point) subcommand allows system commands to be run from within
the ed program. Anything following ! on an ed subcommand line is interpreted as a sys-
tem command. Within the text of that command string, ed replaces the unescaped char-
acter %with the current filename, if there is one.

When the ! is used as the first character of a shell command (after the ! that runs a

527188-021 Hewlett-Packard Company 3−49

ed(1) OSS Shell and Utilities Reference Manual

subshell), the ed command replaces the ! character with the previous system command;
for example, the command !! repeats the previous system command. If the command
interpreter (the sh command) expands the command string, ed echoes the expanded line.
The ! subcommand does not change the current line. If any replacements of % or ! are
performed, the modified line is written to the standard output file before the command is
executed.

number

+number

-number The ed command interprets a number alone on a line as an address and displays the
addressed line. Addresses can be absolute (line numbers or $) or relative to the current
line (+number or -number). Entering a newline character (a blank line) is equivalent to
+1p and is useful for stepping forward through the buffer one line at a time.

EXIT VALUES
The ed editor returns a value of 0 (zero) if execution is successfully completed; if an error occurs,
a value greater than 0 (zero) is returned.

RELATED INFORMATION
Commands: chmod(1), edit(1), grep(1), sed(1), sh(1), stty(1), vi(1).

Functions: regexp(3).

3−50 Hewlett-Packard Company 527188-021

User Commands (d - f) egrep(1)

NAME
egrep - Searches a file for a pattern that is a full regular expression

SYNOPSIS
egrep

[-c | -l]
[-bhinqsvx]
{ pattern ... | -e pattern ... | -f pattern_file ... }
[file ...]

FLAGS
While most flags can be combined, some combinations result in one flag overriding another. For
example, if you specify both the -n and -l flags, the output includes only filenames (as specified by
the -l flag) and thus does not include line numbers (as specified by the -n flag).

-b Precedes each line by the block number of the block in which it was found. Use this flag
to help find disk block numbers by context.

-c Displays only a count of matching lines.

-e pattern ...
Specifies a pattern. This flag works the same as a simple pattern but is useful when the
pattern begins with a - (dash).

-f pattern_file ...
Specifies a file that contains patterns. Each pattern terminates with a newline character.

-h Suppresses reporting of filenames when multiple files are processed.

-i Ignores the case of letters in locating pattern; that is, uppercase and lowercase letters in
the input are considered to be identical.

-l Lists the name of each file that has lines matching pattern. Each filename is listed only
once; filenames are separated by newline characters.

-n Precedes each line with its relative line number in the file.

-q Suppresses all output except error messages. This flag is useful for easily determining
whether a pattern or string exists in a group of files. When searching several files, it pro-
vides a performance improvement, because it can quit as soon as it finds the first match,
and it requires less care by the user in choosing the set of files to supply as arguments,
because it exits with a 0 (zero) exit status if it detects a match, even if the egrep com-
mand detected an access or read error on earlier file arguments.

-s Suppresses error messages about inaccessible files.

-v Displays all lines except those that match the specified pattern. This flag is useful for
filtering unwanted lines out of a file.

-x Displays lines that match the pattern exactly with no additional characters.

DESCRIPTION
The egrep command searches the specified files (the standard input file by default) for lines con-
taining characters that match the specified pattern and then write matching lines to the standard
output file.

The egrep command is an obsolescent version of the command grep -E, which searches for pat-
terns that are full regular expressions, except for \(and \), and with the addition of the following
rules:

527188-021 Hewlett-Packard Company 3−51

egrep(1) OSS Shell and Utilities Reference Manual

• A regular expression followed by a + (plus sign) matches one or more occurrences of the
regular expression.

• A regular expression followed by a ? (question mark) matches zero or one occurrence of
the regular expression.

• Two regular expressions separated by a | (vertical bar) or by a newline character match
either expression.

• A regular expression can be enclosed in () (parentheses) for grouping.

The order of precedence of operators is as follows:

• [= =] [: :] [. .] (collation-related bracket symbols)

• \<special_character> (escaped characters)

• [] (bracket expressions)

• () (grouping)

• * + ? {m, n} (single-character-ERE duplication)

• concatenation

• ˆ $ (anchoring)

• | (alternation)

Regular Expressions (REs)
Regular expressions (REs) cannot contain newline characters, because these signal a new pattern.
The following REs match a single character:

character
An ordinary character (one other than one of the special pattern-matching characters)
matches itself.

. A . (dot) matches any single character except the newline character.

[string] A string enclosed in [] (brackets) matches any one character in that string. In addition,
certain pattern-matching characters have special meanings within brackets:

^ If the first character of string is a ˆ (circumflex), the RE [ˆstring] matches any
character except the characters in string and the newline character. A ˆ has
this special meaning only if it occurs first in the string.

- You can use a - (dash) to indicate a range of consecutive characters. The char-
acters that fall within a range are determined by the current collating
sequence, which is defined by the LC_COLLATE environment variable. For
example, [a-d] is equivalent to [abcd] in the traditional ASCII collating
sequence.

A range can include a multicharacter collating element enclosed within
bracket-period delimiters ([. .]). The bracket-period delimiters in the RE syn-
tax distinguish multicharacter collating elements from a list of the individual
characters that make up the element.

A collating sequence can define equivalence classes for characters. An
equivalence class is a set of collating elements that all sort to the same primary
location. They are enclosed within bracket-equal delimiters ([= =]). An

3−52 Hewlett-Packard Company 527188-021

User Commands (d - f) egrep(1)

equivalence class generally is designed to deal with primary-secondary sort-
ing. For example, if e, è, and ê belong to the same equivalence class, then
[[=e=]fg], [[=è=]fg], and [[=ê=]fg] are each equivalent to [eèêfg].

The - (dash) character loses its special meaning if it occurs first ([-string]), if it
immediately follows an initial circumflex ([ˆ-string]), or if it appears last
([string-]) in the string.

] When the] (right bracket) is the first character in the string ([]string]) or when
it immediately follows an initial circumflex ([ˆ]string]), it is treated as a part of
the string rather than as the string terminator.

\special_character
A \ (backslash) followed by a special pattern-matching character matches the special
character itself (as a literal character). These special pattern-matching characters are as
follows:

. * [\ Always special, except when they appear within [] (brackets).

^ Special at the beginning of an entire pattern or when it immediately follows
the left bracket of a pair of brackets ([ˆ...]).

$ Special at the end of an entire pattern.

[: :] A character class name enclosed in bracket-colon delimiters matches any of the set of
characters in the named class. Members of each of the sets are determined by the current
setting of the LC_CTYPE environment variable. The supported classes are alpha,
upper, lower, digit, xdigit, space, print, punct, graph, and cntrl. Here is an example
of how to specify one of these classes:

[[:lower:]]

This matches any lowercase character for the current locale.

Forming Patterns
The following rules describe how to form patterns from REs:

• An RE that consists of a single, ordinary character matches that same character in a string.

• An RE followed by an * (asterisk) matches zero or more occurrences of the character that
the RE matches. For example, the following pattern:

ab*cd

matches each of the following strings:

acd
abcd
abbcd
abbbcd

but not the following string:

abd

If there is any choice, the leftmost longest matching string is chosen. For example, given
the following string:

122333444

the pattern .* matches 122333444, the pattern .*3 matches 122333, and the pattern .*2

527188-021 Hewlett-Packard Company 3−53

egrep(1) OSS Shell and Utilities Reference Manual

matches 122.

• An RE followed by:

\{number\}
Matches exactly number occurrences of the character matched by the RE.

\{number,\}
Matches at least number occurrences of the character matched by the RE.

\{number1,number2\}
Matches any number of occurrences of the character matched by the RE from
number1 to number2, inclusive.

The values of number1 and number2 must be integers in the range 0 through
255. Whenever a choice exists, this pattern matches as many occurrences as
possible.

Note that if number is 0 (zero), pattern matches zero occurrences of pattern. For
example:

$ echo abc | grep ’aX\{0\}bX\{0\}cX\{0\}’

abc
$

• You can combine REs into patterns that match strings containing the same sequence of
characters. For example, AB*CD matches the string ABCD, and [A-Za-z]*[0-9]*
matches any string that contains any combination of ASCII alphabetic characters (includ-
ing none), followed by any combination of numerals (including none).

• The character sequence \(pattern\) matches pattern and saves it into a numbered holding
space. Using this sequence, up to nine patterns can be saved on a line. Counting from left
to right on the line, the first pattern saved is placed in the first holding space, the second
pattern saved is placed in the second holding space, and so on.

The character sequence \n matches the nth saved pattern, which is placed in the nth hold-
ing space. (The value of n is an integer in the range 1 through 9.) Thus, the following pat-
tern:

\(A\)\(B\)C\2\1

matches the string ABCBA. You can nest patterns to be saved in holding spaces.
Whether the enclosed patterns are nested or in a series, \n refers to the nth occurrence,
counting from the left, of the delimiting characters, \).

Restricting What Patterns Match
A pattern can be restricted to match either from the beginning of a line, up to the end of the line, or
the entire line:

• A ˆ (circumflex) at the beginning of a pattern causes the pattern to match only a string that
begins in the first character position on a line.

• A $ (dollar sign) at the end of a pattern causes that pattern to match only if the last
matched character is the last character (not including the newline character) on a line.

3−54 Hewlett-Packard Company 527188-021

User Commands (d - f) egrep(1)

• The construction ˆpattern$ restricts the pattern to matching only an entire line.

EXAMPLES
1. To display all lines in a file that begin with an ASCII letter, enter:

egrep ’ˆ[a-zA-Z]’ pgm.s

2. To display all lines that contain ASCII letters in parentheses or digits in parentheses (with
spaces optionally preceding and following the letters or digits), but not letter-digit combi-
nations in parentheses, enter:

egrep \
’\(*([a-zA-Z]*⏐⏐[0-9]*) *\)’ my.txt

This command displays lines in my.txt such as (y) or (783902), but not (alpha19c).

3. To display all lines that do not match a pattern, enter:

egrep -v ’ˆ#’

This displays all lines that do not begin with a # (number sign).

4. To display all lines that contain uppercase characters, enter:

w
egrep ’[[:upper:]]’ pgm.s

EXIT VALUES
The egrep command returns the following exit values:

0 (zero) A match was found.

1 No match was found.

2 A syntax error occurred or a file was inaccessible, even if matches were found.

RELATED INFORMATION
Commands: ed(1), ex(1), grep(1), sed(1), sh(1).

Files: locale(4).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification.

The following features are HP extensions to the XPG4 Version 2 specification:

• The -b, -h, -q, and -x flags are supported.

527188-021 Hewlett-Packard Company 3−55

eld(1) OSS Shell and Utilities Reference Manual

NAME
eld - Runs the TNS/E native linker utility for position-independent code

SYNOPSIS
eld

[-alf filename1]
[{ -all | -include_whole }

| { -no_include_whole | -none }]
[-allow_duplicate_procs]
[-allow_missing_libs]
[-allow_multiple_mains]
[-ansistreams]
[-bdllsonly | -bdynamic | -bstatic]
[-bglobalized]
[-blocalized]
[-bsymbolic | -bsemi_globalized]
[-call_shared | { -dll | -shared } | -r]
[-change attribute_name attribute_value filename3]
[-check_registry filename4]
[-cross_dll_cleanup]
[-d address1]
[-data_resident]
[{ -dllname | -soname } DLL_name]
[-e symbol_name1]
[{ -export | -exported_symbol } symbol_name2]
[-export_all]
[{ -export_not | -hidden_symbol } symbol_name3]
[-first_l pathname1]
[{ -fl | -obey } location1]
[-grow_data_amount number1]
[-grow_text_amount number2]
[-grow_limit number3]
[-grow_percent number4]
[-import_lib filename5]
[-import_lib_stripped filename6]
[-instance_data keyword]
[{ -l | -lib } filename7]
[{ -L | -libvol } pathname2]
[-libname Guardian_filename]
[-limit_runtime_paths]
[-local_libname filename8]
[-m | -map]
[-make_implicit_lib]
[-make_import_lib filename9]
[-must_preset]
[-must_use_iname]
[-must_use_oname]
[-must_use_rname]
[-no_optional_lib | -optional_lib]
[-no_reexport | -reexport]
[-nostdfiles | -no_stdfiles]
[-nostdlib | -no_stdlib]
[-noverbose | -no_verbose]
[-o filename10]

3−56 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

[-public_registry filename11]
[-rename old_name new_name]
[{ -rld_l | -rpath } path_list1]
[-rld_first_l path_list2]
[{ -s | -x }]
[-set attribute_name attribute_value]
[-show_multiple_defs]
[-stdin]
[-strip filename12]
[-t address2]
[-temp_i filename13]
[-temp_o filename14]
[-temp_r filename15]
[-u symbol_name4]
[-ul]
[-unres_symbols { error | ignore | warn }]
[-update_code]
[-update_registry filename16]
[-verbose]
[-warn]
[-warn_common]
[-y symbol_name5]
[filename17] ...

FLAGS
-alf filename1 Tells ld to adjust a load file by rebasing or rebinding the loadfile filename1.

Defined globalized symbols are updated if necessary in the adjusted load file. The
update timestamp of the new loadfile is set to the current date and time if any
changes are made to the file.

If you do not use the -o flag or if the -o flag specifies the same filename as
filename1, the new loadfile has the same name as the existing loadfile.

If you do not use the -t flag, the new loadfile is rebound if necessary to the
libraries specified by the -libvol flag, but not rebased.

The -alf flag resolves symbolic references similar to the way eld resolves them
when it is creating a new loadfile from a set of linkfiles. However, with the -alf
flag, if you do not specify your preference for the treatment of unresolved refer-
ences with a flag such as -unres_symbols, the default comes from what was
specified for the -set rld_unresolved flag when the loadfile was originally built by
eld.

If you specify the -t flag then the existing loadfile is rebased. Otherwise, the -alf
processing does not change the preferred addresses of the loadfile.

Flags such as -must_preset have the same meanings as when eld originally
creates a loadfile.

When you use this flag, you can use only the following flags in the same com-
mand:

-allow_missing_libs
-check_registry
-first_l
-fl or -obey
-L or -libvol

527188-021 Hewlett-Packard Company 3−57

eld(1) OSS Shell and Utilities Reference Manual

-local_libname
-must_use_oname and -must_use_rname
-must_preset
-nostdlib or -no_stdlib
-noverbose, -no_verbose, -verbose, and -warn
-o
-public_registry
-rld_first_l and -rld_l
-stdin
-t
-temp_o and -temp_r
-unres_symbols
-update_code and -update_registry

{-all | -include_whole } | { -no_include_whole | -none}
Tells eld whether to include in the loadfile all linkable archive members of all
archive libraries encountered after this flag is specified.

Specifying -all or -include_whole begins this linking action. When -none or
-no_include_whole behavior is in effect, archive searches are controlled by the
existence of undefined symbols. Archives are searched in the order specified on
the command line. Symbols are marked as undefined by compilers or by the user
through the -u flag.

When an archive member is found that resolves an undefined symbol, that member
is used by eld as if it had been specified as a linkfile in the command line or obey
file. That linkfile might lead to more undefined symbols, more members might be
found in the same archive to resolve them, and so forth.

You can stop the linking action of -all or -include_whole by specifying the
-no_include_whole or -none flag later in the command line or obey file.

These flags can be specified as many times as needed in the command line or obey
file. Providing a flag overrides the current setting, so that the linker actions can be
controlled on a library-by-library basis.

The default setting is -none.

-allow_duplicate_procs
Tells eld to unconditionally accept multiple copies of a procedure. The only
check made is that all copies of the procedure have the same procedure attributes
(other than the RESIDENT, PRIVILEDGED, or OPT_LEVEL attributes); for
example, it is acceptable if they have different sizes. The first copy of the dupli-
cated procedure is the one that is kept, unless there are both RESIDENT and not
RESIDENT copies; eld always keeps the first RESIDENT copy. When building
an executable file, no space is allocated for the unused copies.

The default action is to accept multiple copies of only procedures specifically
marked as duplicatable by C++.

-allow_missing_libs
Tells eld not to consider it an error when it cannot find an archive or a dynamic-
link library (DLL) after searching for the name specified by a -l or -lib flag.
Instead, a warning message is issued and processing continues.

The default action when a needed DLL or archive cannot be found is to stop con-
sidering the condition an error.

3−58 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

-allow_multiple_mains
Directs eld not to issue an error message if more than one procedure has the
MAIN attribute. All main procedures are included in the output file. Only the first
procedure having the MAIN attribute is listed as the main entry point in the file
header.

The default action is to report an error when more than one procedure has the
MAIN attribute.

-ansistreams Specifies that C run-time library functions create files of file code 180 (C text as
binary) instead of file code 101 (EDIT). The type of files created can also be set
with the ANSISTREAMS C and C++ compiler pragma.

See the C/C++ Programmer’s Guide for more information.

-bdllsonly | -bdynamic | -bstatic
Tells eld what type of file to look for in each directory when eld searches for the
file names specified for the -l or -lib flags. The three possible values are:

-bdllsonly Tells eld to search only for DLLs when it needs to search for the
file name specified in the -l or -lib flag.

If the file name is unqualified, in each directory searched, eld first
tries to open a file with the name specified for the -l or -lib flag. If
eld cannot find a file with the specified name and the searched
directory is not in the Guardian file system (/G), eld prefixes lib
and suffixes .so to the file name and attempts to open a file with
that modified name. As its final attempt to find the file, eld
attempts to open a file that has the specified name prefixed with z
and suffixed with dll.

An error occurs if the opened file does not contain a DLL.

-bdynamic Directs eld to search for DLLs and archive files when it needs to
search for the file name specified in the -l or -lib flag.

If the file name is unqualified, in each directory searched, eld first
tries to open a file with the name specified for the -l or -lib flag. If
eld cannot find a file with the specified name and the searched
directory is not in the Guardian file system (/G), eld prefixes lib
and suffixes .so to the file name and attempts to open a file with
that modified name. If eld still cannot find the file and the
searched directory is not in the Guardian file system (/G), it
prefixes the specified name with the lib prefix but with .a as the
suffix and attempts to open a file with that modified name. As its
final attempt to find the file, eld attempts to open a file that has the
specified name prefixed with z and suffixed with dll.

An error occurs if:

• eld finds a DLL in a file whose name has the form
libfilename7.a

• eld finds an archive in a file whose name has the form
libfilename7.so or zfilename7dll

• eld finds a linkfile rather than a DLL or an archive

527188-021 Hewlett-Packard Company 3−59

eld(1) OSS Shell and Utilities Reference Manual

-bstatic Directs eld to search only for archive files when it needs to search
for the file name specified in the -l or -lib flag.

If the file name is unqualified, in each directory searched, eld first
tries to open a file with the name specified for the -l or -lib flag).
If eld cannot find a file with the specified name and the search
path is not in the Guardian file system (/G), then eld prefixes lib
and suffixes .a to the file name and attempts to open a file with
that modified name.

An error occurs if the opened file does not contain an archive.

For more information on search paths, see the Finding Libraries subsection of
this reference page under DESCRIPTION.

When a specified file cannot be found, eld issues an error message unless the
-allow_missing_libs flag is specified.

The -bdllsonly, -bdynamic, and -bstatic flags are search control toggles. Multi-
ple flags can be specified in a single eld invocation; the behavior specified
remains in effect until another flag in the set is specified. Thus, you can search for
both DLLs and archive files for some -l and -lib flags and search for just archive
files for others.

The default library search control is -bdynamic.

-bglobalized Controls creation of the searchList for resolving the symbols in the loadfile. This
flag causes the system to use the following sequence:

• For link-time resolutions:

1. The loadfile itself

2. The user library, if the loadfile is a program and has a user library

3. Breadth-first transitive closure of DLLs on the libList

4. Implicit libraries

• For load-time resolutions:

1. The main program

2. The user library

3. Breadth-first transitive closure of DLLs on the libList

4. Implicit libraries

You cannot use this flag when you use the -blocalized, -bsemi_localized, or
-bsymbolic flag. The default action is the action for the -blocalized flag.

3−60 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

-blocalized Controls creation of the searchList for resolving symbols in the loadfile. This flag
causes the system to use the following sequence for both link-time and load-time
resolutions:

1. The loadfile itself

2. The user library, if the loadfile is a program and has a user library

3. Breadth-first transitive closure of re-exported libList-specified DLLs

4. Implicit libraries

This is the default eld action.

You cannot use this flag when you use the -bglobalized, -bsemi_localized, or
-bsymbolic flag.

-bsymbolic | -bsemi_globalized
Controls creation of the searchList for resolving symbols in the loadfile. This flag
causes the system to use the following sequence:

• For link-time resolutions:

1. The loadfile itself

2. The user library, if the loadfile is a program and has a user library

3. Breadth-first transitive closure of DLLs on the libList

4. Implicit libraries

• For load-time resolutions:

1. The loadfile itself

2. The main program

3. The user library

4. Breadth-first transitive closure of DLLs on the libList

5. Implicit libraries

This is the same search order as for -bglobalized. However, when the searchList
is created at load time, the loadfile is placed before the program at the beginning
of the searchList.

You cannot use this flag when you use the -bglobalized or -blocalized flag. The
default action is the action for the -blocalized flag.

-call_shared | { -dll | -shared } | -r
Tells eld what type of file to create as filename11. The possible values are:

-call_shared The file is to be a program loadfile. This is the default eld action.

You cannot use this flag when you use the -dll or -shared flag or
the -r flag.

527188-021 Hewlett-Packard Company 3−61

eld(1) OSS Shell and Utilities Reference Manual

-dll | -shared The file is to be a DLL.

You cannot use this flag when you use the -call_shared or -r flag.

-r The file is to be a linkfile. If there is only one input file, the new
linkfile has the same fingerprint as the input file.

You cannot use this flag when you use the -call_shared, -dll, or
-shared flag.

-change attribute_name attribute_value filename3
Changes the value of the run-time attribute specified in attribute_name to the
value specified in attribute_value in the existing file specified by filename3. See
the -set flag for a description of attribute_name and attribute_value.

For a linkfile, you can only change the value for FLOATTYPE and
DATA_MODEL. The value for LIBNAME can only be changed for program
files. If LIBNAME is specified with a null value ("") for attribute_value, the
existing user library name is removed from the program file filename3.

The INCOMPLETE attribute only applies to an import library; the -change flag
can be used to turn it ON but cannot be used to turn it off.

You cannot specify other loadfile filenames or flags other than the following with
the -change flag:

-noverbose, -verbose, or -warn
-fl or -obey
-stdin

The resulting loadfile has the same eld timestamp as before.

-check_registry filename4
Tells eld to check the -range entry in the private DLL registry identified as
filename4 for an address range for the file specified as filename11 and verify that
the DLL being created can fit into the range found.

If neither the -check_registry flag nor the -update_registry flag is specified, eld
does not use a private DLL registry.

You must also use the -dll flag when you use this flag. You cannot use the follow-
ing flags when you use the -check_registry flag:

-d or -t
-grow_data_amount, -grow_limit, -grow_percent, or -grow_text_amount
-update_registry

-cross_dll_cleanup
Discards a procedure in an input linkfile if a procedure of the same name exists in
one of the other DLLs you specified. The reference to the symbol is resolved to
the copy of the symbol that is in the DLL.

Without the use of the -cross_dll_cleanup flag, input linkfiles can contain multi-
ple copies of the same global procedure, all marked STO_MULTIPLE_DEF_OK,
and eld discards the code for all except one copy of the procedure.

When the -cross_dll_cleanup flag is used and a procedure of the same name is
found in a DLL, eld discards the code for even the last copy of the procedure, and
instead resolves references to the procedure to the copy found in the DLL. Using
this flag allows you to reduce the size of the loadfile (program or DLL) you create.

When this flag is used, all the input linkfiles must have been compiled using the -
Wglobalized flag.

3−62 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

For best results, list the DLLs that are indirectly used by this loadfile in addition to
the DLLs that are directly used by this loadfile.

This flag is available on systems running H06.21 or a later H-series RVU, J06.10
or a later J-series RVU, or systems that have installed SPR T0608H01_AAL.

-d address1 Specifies the hexadecimal virtual address at which the data constant segment
starts. When creating a program file, the default value for address1 is 08000000.
When creating an explicit DLL, the default value is set to the next multiple of 64
kilobytes after the end of the text segment. When creating an implicit DLL, the
default value is set to the next multiple of 128 kilobytes after the end of the text
segment.

The value specified for address1 is always hexadecimal and can optionally be
prefixed by 0H. The specified value is automatically rounded up to a multiple of
128K bytes if eld is building an implicit DLL, or to a multiple of 64K bytes if eld
is building any other type of file. If no more than 8 hexadecimal digits are
specified, the number specified is sign-extended to 16 digits.

If you use this flag, you must also use the -t flag.

If you are building a DLL and do not use the -d flag, eld begins the data segment
at the next 64K boundary after the end of the text segment. The -d flag can be
used to place the data segment at some other address, rather than directly after its
text segment. You should do this only if there is a special need to do so; HP
recommends using the default placement whenever possible.

You cannot use this flag if you use the -check_registry or -update_registry flags.

-data_resident Specifies that the loadfile being created can contain both resident code and vari-
able data.

When you create a loadfile with both resident code and variable data, you must
either specify the -data_resident flag or the -instance_data flag with one of the
values data2, data2hidden, or data2protected. Otherwise, an error occurs and
no loadfile is created.

When you use the -data_resident flag, eld also sets the
EF_TANDEM_DATA_RESIDENT bit in the e_flags field of the file header.
This is a special flag that can be used when building a proto-process.

{-dllname | -soname } DLL_name
Tells eld the DLL name to store in the DLL being created. When this DLL is
specified in the link step of another loadfile, the DLL name stored in this DLL is
placed in the libList of the loadfile for later use by rld or the eld -alf flag when
searching for DLLs.

If the DLL being created will reside in the Guardian file system, DLL_name must
conform to Guardian filename rules. If the DLL being created will reside in the
OSS file system, DLL_name must conform to OSS pathname rules. If you want
the DLL to be able to reside in either file system, use an unqualified Guardian file
identifier as both its DLL_name and its OSS filename.

If you specify both a DLL_name and the -o flag, the output loadfile file name is
determined by the -o specification and DLL_name is saved in the DLL being
created. HP recommends that you do not do this unless there is a specific need to
do so; making DLL_name differ from the DLL’s file name can cause problems,
especially when the DLL needs to reside in both the OSS and Guardian file sys-
tems.

If you specify DLL_name but do not use the -o flag, the output loadfile file name

527188-021 Hewlett-Packard Company 3−63

eld(1) OSS Shell and Utilities Reference Manual

uses the DLL_name value.

If you do not specify DLL_name but use the -o flag, the output loadfile unqualified
filename is used as the DLL name stored in the DLL being created; that is, only
the unqualified part (rightmost part) of the output file pathname is used.

If you omit both a DLL_name and the -o flag, the output loadfile filename and
DLL_name in the libList both default to a.out. HP recommends against using this
default value because it is too generic to allow for proper administration of files.

-e symbol_name1
Specifies a function identifier. The specified function is the entry point, that is, the
point at which to begin executing the program when the program is loaded.

You should use this flag only when linking a program that will execute without
standard run-time support facilities and without linking a module such as
CCPLMAIN (in the Guardian file system) or ccplmain.o (in the OSS file system)
that contains a function with the MAIN attribute. Do not use this flag for libraries.

{ -export | -exported_symbol } symbol_name2
Tells eld to mark symbol_name2 for export in the output loadfile in addition to
those normally marked. This flag can be used with the -export_not or
-hidden_symbol flag to create sets of symbols to be exported.

The same symbol cannot be specified as symbol_name2 in an -export flag and as
symbol_name3 in an -export_not flag.

The default action when the -ul flag is not used is to export only those symbols
marked by a compiler as requiring export.

-export_all Tells eld to mark as exported all symbols in the dynamic symbol table of the out-
put loadfile except for the following:

• Linker-defined symbols other than _MCB (for the master control block)

• Procedures whose names begin with __sti__ (global constructors),
__std__ (global destructors), __INIT__ (initialization functions), or
__TERM__ (termination functions)

This flag can be used with the -export_not or -hidden_symbol flag to create a
subset of symbols to be exported.

The default action when the -ul flag is not used is to export only those symbols
marked by a compiler as requiring export.

{ -export_not | -hidden_symbol } symbol_name3
Tells eld not to mark symbol_name3 for export in the output loadfile. This flag
can be used with the -export_all flag to create sets of symbols to be exported.

The same symbol cannot be specified as symbol_name3 in an -export_not flag
and as symbol_name2 in an -export flag.

The default action when the -ul flag is not used is to export only those symbols
marked by a compiler as requiring export.

-first_l pathname1
Tells eld to use the specified pathname when searching for libraries. pathname1 is
used in library searches before the public libraries are searched.

pathname1 is either the relative or absolute pathname of an OSS directory.

eld does not verify the names of locations specified in the -first_l flag.

3−64 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

This flag can be specified more than once in a command line or an obey file. If
you specify it more than once, the specified pathnames are searched in the order
specified.

See the Finding Libraries subsection under DESCRIPTION for details about
the effect of this flag on search order.

{-fl | -obey } location1
Specifies the name of an eld command file containing eld command tokens (such
as filenames and command flag specifications).

The command file must be a C text file or an EDIT file. Tokens in the file can be
separated by spaces, tabs, or ends of lines. Tokens can contain double quotation
marks (") to group items into a single string, consistent with OSS shell usage.
Within the command file, two hyphens indicate a comment that extends to the end
of the current line.

Command files can be nested. There is no limit to the depth of nesting. Direct or
indirect recursive nesting is allowed; eld keeps a stack of command file names
encountered while processing the -fl or -obey flag and ignores any nested -fl or
-obey flag that specifies a file name currently on the stack.

You can specify this flag as often as you want in the command line or an obey file.
Each specification is processed when encountered.

-grow_data_amount number1
Specifies the absolute amount in bytes of slack space to be reserved in virtual
memory to allow for the growth of the data segment. The number specified is
assumed to be decimal unless prefixed by 0x; the 0x prefix allows you to specify
the number of bytes in hexadecimal.

This flag is used with the -update_registry flag. When eld makes the entry in the
private DLL registry, the -grow_data_amount flag tells it to record a larger size
for the data segment than is actually present in the DLL being built. The amount
specified for -grow_data_amount tells how much larger to make the data seg-
ment. When this registry is used to choose addresses for other DLLs, the linker
will not put them directly after this one in virtual memory, but rather leave space
for future versions of this DLL to be larger.

The value specified for this flag might be overridden by the value used for the
-grow_percent flag. The default value is 0 bytes.

When you use this flag, you must also use the -update_registry flag. You cannot
use this flag with the -grow_limit flag.

-grow_text_amount number2
Specifies the absolute amount in bytes of slack space to be reserved in virtual
memory to allow for the growth of the text segment. The number specified is
assumed to be decimal unless prefixed by 0x; the 0x prefix allows you to specify
the number of bytes in hexadecimal.

This flag is used with the -update_registry flag. When eld makes the entry in the
private DLL registry, the -grow_text_amount flag tells it to record a larger size
for the text segment than is actually present in the DLL being built. The amount
specified for -grow_text_amount tells how much larger to make the text segment.
When this registry is used to choose addresses for other DLLs, the linker will not
put them directly after this one in virtual memory, but rather leave space for future
versions of this DLL to be larger.

The value specified for this flag might be overridden by the value used for the

527188-021 Hewlett-Packard Company 3−65

eld(1) OSS Shell and Utilities Reference Manual

-grow_percent flag. The default value is 0 bytes.

When you use this flag, you must also use the -update_registry flag. You cannot
use this flag with the -grow_limit flag.

-grow_limit number3
Specifies the absolute amount in bytes of slack space to be reserved in virtual
memory to allow for the growth of the data and text segments. The number
specified is assumed to be decimal unless prefixed by 0x; the 0x prefix allows you
to specify the number of bytes in hexadecimal.

This flag is used with the -update_registry flag. When eld makes the entry in the
private DLL registry, the -grow_limit flag tells the total size to record for the DLL
being built. When this registry is used to choose addresses for other DLLs, the
linker will not put them directly after this one in virtual memory, but rather leave
space for future versions of this DLL to be larger.

The default value is 0 bytes.

When you use this flag, you must also use the -update_registry flag. When you
use this flag, you cannot use the -grow_data_amount, -grow_text_amount, or
-grow_percent flag.

-grow_percent number4
Specifies the relative amount of slack space to be reserved in virtual memory to
allow for the growth of the data and text segments.

This flag is used with the -update_registry flag. When eld makes the entry in the
private DLL registry, the -grow_percent flag tells a percentage to add to the sizes
of each of the text and data segments, when calculating the total size to record for
the DLL being built.

eld calculates an amount to use for a data segment, based on the
-grow_data_amount flag, then calculates an amount to use based on the
-grow_percent flag. The larger of the two amounts is used as the size for a data
segment. The amount used is rounded up to a multiple of 64KB (or 128KB for an
implicit DLL).

eld calculates an amount to use for a text segment, based on the
-grow_text_amount flag, then calculates an amount to use based on the
-grow_percent flag. The larger of the two amounts is used as the size for a text
segment. The amount used is rounded up to a multiple of 64KB (or 128KB for an
implicit DLL).

When this registry is used to choose addresses for other DLLs, the linker will not
put them directly after this one in virtual memory, but rather leave space for future
versions of this DLL to be larger.

The default value is 10 percent.

When you use this flag, you must also use the -update_registry flag. You cannot
use this flag with the -grow_limit flag.

-import_lib filename5
Tells eld to create an import library named filename5 in addition to creating a new
DLL.

The new import library can be incomplete. The import library contains symbols
for use by debugging utilities only if the new DLL also contains them.

You cannot use this flag when you use the -import_lib_stripped or
-make_implicit_lib flag.

3−66 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

-import_lib_stripped filename6
Tells eld to create an import library named filename6 in addition to creating a new
DLL.

The new import library can be incomplete. The import library will not contain
symbols for use by debugging utilities, regardless of whether the new DLL con-
tains them.

You cannot use this flag when you use the -import_lib or -make_implicit_lib
flag.

-instance_data keyword
Tells the linker whether to create one or two data segments, and whether to require
that the loadfile contain no data that must go into the data variable segment if two
segments are created.

The value of keyword can be:

data1 Create only one data segment for constant and variable data. The
segment can be both read and written without restriction.

data1constant Flag as an error any situation where the loadfile contains the kind
of data that would go into the data variable segment if eld was
told to create two data segments.

This is the only permitted value when the -make_implicit_lib
flag is used.

data2 Create both a data constant segment and a data variable segment.
The data constant segment is read-only after being updated by the
runtime loader; the data variable segment can be both read and
written without restriction.

data2hidden Create both a data constant segment and a data variable segment.
The data constant segment is read-only after being updated by the
runtime loader; only privileged code can read or write the data
variable segment.

data2protected
Create both a data constant segment and a data variable segment.
The data constant segment is read-only after being updated by the
runtime loader; only privileged code can write the data variable
segment but read access is unrestricted.

The data2protected value is not supported on systems running
H06.21 or later H-series RVUs or J06.10 or later J-series RVUs.

The default value for keyword is data1.

If you are creating a loadfile with both resident code and variable data, then you
must either specify the -data_resident flag or the -instance_data flag with one of
the values data2, data2hidden, or data2protected.

You cannot specify this flag if you use the -r flag.

{ -l | -lib } filename7
Specifies the name of a DLL or archive file to use to resolve external references
from the file being linked. If you specify a three or four-character abbreviation
(containing only letters or numbers) for an unqualified filename, eld will search
for it using the naming rules described for the -bdllsonly, -bdynamic, and -static
flags.

527188-021 Hewlett-Packard Company 3−67

eld(1) OSS Shell and Utilities Reference Manual

The -l flag must be specified in lowercase type. -l is a synonym for -lib.

If you specify the -verbose flag, eld writes to its output listing the locations where
it found a DLL or archive file.

Other flags affect how filename7 is used. See the Finding Libraries subsection
under DESCRIPTION for details.

{ -L | -libvol } pathname2
Tells eld to use the specified pathname when searching for libraries. pathname2 is
used in library searches after the public libraries are searched.

pathname2 is either the relative or absolute pathname of an OSS directory.

eld does not verify the names of locations specified in the -libvol or -L flag.

This flag can be specified more than once in a command line or an obey file. If
you specify it more than once, the specified pathnames are searched in the order
specified.

See the Finding Libraries subsection under DESCRIPTION for details about
the effect of this flag on search order.

-libname Guardian_filename
Stores the specified name within the program being built, to tell the operating sys-
tem that this is the name of the user library to load into memory along with this
program. Guardian_filename must be a Guardian file identifier qualified with a
disk name and subvolume name; that is, of the form $disk.subvol.fileID. Use an
escape character before the special character $ in the name so that the OSS shell
does not process it, or enclose the entire flag specification in quotation marks.

The -set and -change flags can also associate a native user library with an execut-
able native program.

The value specified for Guardian_filename cannot be the Guardian name of an
OSS file.

-limit_runtime_paths
Tells eld to mark the loadfile so that rld will omit certain locations when search-
ing for DLLs to resolve symbols. See Finding Libraries in the DESCRIPTION
section of this reference page for more information.

The default action is to search all locations described in Finding Libraries.

-local_libname filename8
Specifies the name of a user library that can be used to resolve references at link
time in the program being created.

If this flag is omitted, eld uses the value specified for -set libname as the user
library. If this flag is specified and the -set libname flag is omitted, then the value
of filename8 is also stored within the program as the user library name and there-
fore must name a file in the Guardian filesystem (/G); eld converts this name to
meet the -set libname syntax requirements for a Guardian filename.

If the user library cannot be found or cannot be opened, a warning message is
issued and the program file is not preset at link time.

-m | -map Tells eld to produce a memory map of the program or DLL being created.

The default behavior does not produce a memory map.

3−68 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

-make_implicit_lib
Specifies that eld should mark the DLL being created as an implicit library. The
default action does not mark the DLL as an impicit library.

You cannot use this flag when you use the -import_lib flag.

-make_import_lib filename9
Tells eld to make filename9 a DLL import library using the DLL files specified
elsewhere in the same command line or obey file.

You use this flag to make an import library that represents a:

• Single explicit DLL

• Set of implicit DLLs

If one or more DLLs are specified in the command line or obey file and they are
all implicit DLLs, then eld creates an import library to represent them. If there is
only one DLL in the command line or obey file and it is not an implicit DLL, then
eld makes the import library to represent it. If there are multiple DLLs in the
command line or obey file and they are not all implicit DLLs, an error occurs.

If you are creating an import library to represent a set of implicit DLLs, (all of the
specified DLLs have the implicit bit set in their headers), then you can also use a
private DLL registry. The value specified for filename9 is used as the entry name
for the implicit libraries in the private DLL registry.

To use this flag, at least one DLL file must be specified somewhere in the com-
mand line or obey file.

-must_preset Tells eld to treat the situation as an error when presetting fails. If this flag is omit-
ted, the linker continues.

-must_use_iname
Tells eld to treat the situation as an error when it cannot delete an existing file to
create an import library file of the same name.

The default behavior is to issue a warning message.

-must_use_oname
Tells eld to treat the situation as an error when it cannot delete an existing file to
create the new object file created from a set of linkfiles, or the output file of the
-alf or -strip flags, with the same name.

The default behavior is to issue a warning message.

-must_use_rname
Tells eld to treat the situation as an error when it cannot delete an existing file to
create a private DLL registry file of the same name.

The default behavior is to issue a warning message.

-no_optional_lib | -optional_lib
Specifies whether a DLL specified in the command line or obey file should be con-
sidered optional when creating a loadfile.

When -no_optional_lib behavior is in effect, any specified library is included in
the .liblist section of the loadfile being created. When -optional_lib behavior is in
effect, a specified library can be omitted from the .liblist section of the loadfile
being created if omitting it would not affect how symbolic references are resolved.
For example, a DLL can be omitted when all of the following are true:

527188-021 Hewlett-Packard Company 3−69

eld(1) OSS Shell and Utilities Reference Manual

• The DDL does not export symbols that resolve any references in the
loadfile being created

• The DLL does not cause other DLLs to be added to the search list, where
the other DLLs resolve references in the loadfile being created

• The DLL does not cause other DLLs to be placed in a different order
within the search list when those DLLs resolve references in the loadfile
being created

These flags can be specified as many times as needed in the command line or obey
file. Providing either flag overrides the current setting, so that the linker actions
can be controlled on a library-by-library basis.

If a library is specified more than once, eld uses the specification in effect for the
first instance of the DLL that it processes and ignores the other specifications.

The default behavior is -no_optional_lib.

-no_reexport | -reexport
Tells eld whether to mark any DLL specified in a -l or -lib flag after this flag for
reexport in its libList entry in the loadfile being created. Specifying
-no_reexport leaves the library unmarked; specifying -reexport marks the
library. Reexport affects how eld does its transitive closure on searches and is
used by rld to decide how to fix-up symbolic references.

-no_reexport is the default action.

These flags can be specified as many times as needed in the command line or obey
file. Providing either flag overrides the current setting, so that the linker actions
can be controlled on a library-by-library basis.

-nostdfiles | -no_stdfiles
Specifies that C run-time library functions do not automatically open the standard
input and standard output files.

-nostdlib | -no_stdlib
Prevents eld from searching the standard library locations for DLLs and archive
files.

-noverbose | -no_verbose
Prevents eld from writing warning and informational messages to its output list-
ing. Only error messages and output specifically requested by other options
appears in the listing.

The default value is -no_verbose.

If you specify more than one of the flags -warn, -verbose, and -noverbose or
-no_verbose in the command line or an obey file, eld displays an inconsistent
usage error message.

-o filename10 Specifies the filename of the output loadfile. filename10 can be the same as an
input file name.

When filename10 is the same as an existing file and linking is successful, eld
deletes the existing file and then writes the output file. An error occurs if you do
not have permission to delete the existing file and the -must_use_oname flag is
also specified. (See the description of the -temp_o flag in this reference page for a
description of the behavior when the -must_use_oname flag is not specified.)

If you do not specify a -o flag, the default output loadfile filename depends on

3−70 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

whether a -dllname or -soname flag is specified. filename10 can also become the
DLL name used for the file in the libList. See the description of the -dllname flag
in this reference page for more information.

-public_registry filename11
Tells eld to use the file identified as filename11 as the public DLL registry file.

If this flag is omitted, ld searches as follows to find the name of the public DLL
registry file to use:

1. Its own directories, where it looks for a file named zreg (normally
/usr/bin/zreg or /usr/lib/zreg)

2. Current data obtained from the operating system using definitions in
/usr/include/dpublib.h

-rename old_name new_name
Changes the symbol name of an externally visible procedure or data item.
old_name is the name of the procedure or data item to rename. new_name is the
new name to give the procedure or data item. See the eld Manual for details.

{ -rld_l | -rpath } path_list1
Tells eld to set search paths in the loadfile for later use with the -alf flag or by the
rld loader. path_list1 identifies paths to be searched after using the loadfile loca-
tion and before using the rld default locations.

path_list1 contains one or more pathname entries, separated by a colon (:). A
pathname can be either an absolute OSS directory pathname or a fully qualified
Guardian subvolume name.

This flag can be specified more than once in a command line or an obey file. Mul-
tiple path_list1 specifications are concatenated into a single loadfile entry.

See the Finding Libraries subsection under DESCRIPTION for details about
the effect of this flag on search order.

-rld_first_l path_list2
Tells eld to set search paths in the loadfile for later use with the -alf flag or by the
rld loader. path_list2 identifies paths to be searched after using the location
specified by -first_l and before using the public libraries.

path_list2 contains one or more pathname entries, separated by a colon (:). A
pathname can be either an absolute OSS directory pathname or a fully qualified
Guardian subvolume name.

This flag can be specified more than once in a command line or an obey file. Mul-
tiple path_list2 specifications are concatenated into a single loadfile entry.

See the Finding Libraries subsection under DESCRIPTION for details about
the effect of this flag on search order.

-s | -x Omits symbol information used for symbolic debugging from the output linkfile or
loadfile being created. A file stripped of all symbol information cannot be sym-
bolically debugged with the Visual Inspect or Native Inspect debugger.

You can use this flag only when creating a file. To strip all symbol information
from an existing loadfile, use the -strip flag.

527188-021 Hewlett-Packard Company 3−71

eld(1) OSS Shell and Utilities Reference Manual

-set attribute_name attribute_value
Sets the value of the run-time attribute specified in attribute_name to the value
specified in attribute_value when creating a loadfile. Use the -change flag to
change a run-time attribute in an existing loadfile.

Each attribute_name has a corresponding range of accepted attribute_values as
follows:

• CPPDIALECT or CPLUSPLUSDIALECT is:

CPPNEUTRAL or NEUTRAL

If CPPDIALECT or CPLUSPLUSDIALECT is not specified, the value
used comes from the input linkfiles.

• DATA_MODEL is one of the following:

ilp32
lp64
neutral

If DATA_MODEL is not specified, the value used comes from the input
linkfiles. This attribute is supported for systems running H06.24 or later
H-series RVUs or J06.13 or later J-series RVUs only.

• FLOAT_LIB_OVERRULE is either ON or OFF. The default value is
OFF. (A FLOAT_TYPE_OVERRULE value of ON is ignored for
DLLs; this attribute only has meaning for programs.)

• FLOATTYPE is one of the following:

IEEE_FLOAT
NEUTRAL_FLOAT
TANDEM_FLOAT

If FLOATTYPE is not specified, the value used comes from the input
linkfiles.

• HEAP_MAX, MAINSTACK_MAX, [PROCESS_]SUBTYPE, and
SPACE_GUARANTEE are unsigned numbers. The default value is 0
(zero). For HEAP_MAX, MAINSTACK_MAX, and
SPACE_GUARANTEE, the number of bytes specified is assumed to be
decimal unless prefixed by 0x; the 0x prefix allows you to specify the size
in hexadecimal.

• HIGHPIN, HIGHREQUESTER[S] or HIGHREQUESTOR[S], and
INSPECT are either ON or OFF. The default value is ON.

• INCOMPLETE is either ON or omitted. This attribute can only be set
when creating an import library. If it is not set, then the import library is
complete. (The default value is omitted, so that a created import library is
complete.)

• INTERPOSE_USER_LIBRARY is either ON or OFF. This attribute
can be set only for a DLL; at run time, this attribute is disregarded unless
the DLL is loaded as a user library. The default value is OFF.

3−72 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

• LIBNAME is the Guardian filename of a user library file, specified as
described for the -libname flag. The default value is none.

• RUNNAMED and SAVEABEND are either ON or OFF. The default
value is OFF.

• RLD_UNRESOLVED is ERROR, IGNORE, or WARN. The default
value is ERROR.

• USER_BUFFERS is either ON or OFF. The default value is OFF.

• SYSTYPE is either oss or guardian. The default value is determined by
the file system that contains the output file. For users of this reference
page, the default value is probably oss. (If the output loadfile is created in
the Guardian file system through the /G directory, the default is guar-
dian.)

See the eld Manual for a description of each run-time attribute.

-show_multiple_defs
Tells eld to produce a listing of any symbols with multiple definitions within the
input linkfiles.

The default action does not display instances of multiple definitions.

-stdin Reads the contents of the standard input file at the place in the command line
where the flag is specified.

-strip filename12
Removes information used for symbolic debugging from an existing loadfile with
the name filename12. A file stripped of all symbol information cannot be symboli-
cally debugged with the Visual Inspect or Native Inspect debugger.

You can use this flag only on an existing loadfile. To strip all symbol information
when creating a loadfile, use the -s or -x flag.

You cannot specify other loadfile filenames or flags other than the following with
the -strip flag:

-noverbose, -verbose, or -warn
-fl or -obey
-must_use_oname
-stdin
-temp_o

The resulting file has the same eld timestamp as before.

-t address2 Specifies the hexadecimal virtual address at which the text area starts. The default
values for address2 are:

• 70000000 for user programs

• 78000000 for a DLL when no DLL registry is used

The value specified for address2 is always hexadecimal and can optionally be
prefixed by 0H. The specified value is automatically rounded up to a multiple of
128 kilobytes for a implicit DLL library or 64 kilobytes for other types of
loadfiles. If no more than 8 hexadecimal digits are specified, the number specified
is sign-extended to 16 digits.

You cannot use this flag if you use the -check_registry or -update_registry flags.

527188-021 Hewlett-Packard Company 3−73

eld(1) OSS Shell and Utilities Reference Manual

You should not use this flag if you want the DLL address to be determined from a
DLL registry file under your control.

-temp_i filename13
Tells eld to save its import library work with the specified file name until it has
successfully rewritten the final file.

If an unqualified filename is used, eld saves the file in the directory where
filename10 is located.

If the -temp_i flag is not used and eld finishes creation of a new temporary file but
cannot remove an existing file with the same name as the specified import library
file, eld leaves the temporary file in the same directory as the output file and gives
it a unique filename beginning with the letters ZLD.

This flag can be used only when the -import_lib, -import_lib_stripped, or
-make_import_lib flag is used.

-temp_o filename14
Tells eld to save its output for the new object file created from a set of linkfiles, or
the output file of the -alf or -strip flags, with the specified file name until it has
successfully rewritten the final file.

If an unqualified filename is used and a new object file is being created or the
-strip flag is used, eld saves the file in the directory where filename10 is located.
If an unqualified filename and an output file is being created when the -alf flag is
used, eld saves the file in the directory where filename1 is located.

If the -temp_o flag is not used and eld finishes creation of a new temporary file
but cannot remove an existing file with the same name as the specified output file,
eld leaves the temporary file in the same directory as the output file and gives it a
unique filename beginning with the letters ZLD.

-temp_r filename15
Tells eld to save its private registry update work with the specified file name until
it has successfully rewritten the final file.

If an unqualified filename is used, eld saves the file in the directory where
filename10 is located.

If the -temp_r flag is not used and eld finishes creation of a new temporary file
but cannot remove an existing file with the same name as the specified registry
file, eld leaves the temporary file in the same directory as the output file and gives
it a unique filename beginning with the letters ZLD.

-u symbol_name4
Tells eld to add symbol_name4 as an undefined symbol. This causes eld to search
for this symbol in any archive libraries that are specified on the command line or
in an obey file.

-ul Creates a user library. Specify this flag when linking modules to create a DLL as
a native user library.

When you specify the -ul flag, the exported symbols are those described as
exported by the -export_all flag, unless you also use the -export_not or
-hidden_symbol flag.

3−74 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

-unres_symbols { error | ignore | warn }
Tells eld what action to take when a needed symbol cannot be resolved:

error Issue an error message.

This is the default action. The -error_unresolved flag is recog-
nized as a synonym for this specification.

ignore Ignore the missing symbol reference.

warn Issue a warning message.

The -warn_unresolved flag is recognized as a synonym for this
specification.

Other flag specifications override these flags. If you specify more than one of
these flags in the command line or an obey file, eld displays an inconsistent usage
error message.

-update_code Tells eld to update relocation sites in the code segment when the -alf flag is also
used.

-update_registry filename16
Tells eld to update the -range entry in the private DLL registry identified as
filename16 with the address range for the file specified as filename10.

If no -range entry is found, a range entry is appended to the registry file content.

If neither the -check_registry nor -update_registry flag is specified, eld does not
use a private DLL registry.

You must also use the -dll flag when you use this flag.

-verbose Directs eld to write error, warning, and informational messages to its output list-
ing, along with output specified by other options.

The default value is -no_verbose.

If you specify more than one of the flags -warn, -verbose, and -noverbose or
-no_verbose in the command line or an obey file, eld displays an inconsistent
usage error message.

-warn Directs eld to write only error and warning messages to its output listing, along
with output specified by other options.

The default value is -no_verbose.

If you specify more than one of the flags -warn, -verbose, and -noverbose or
-no_verbose in the command line or an obey file, eld displays an inconsistent
usage error message.

-warn_common
Directs eld to issue a warning message when a common symbol is combined with
another common symbol that has the same name but a different size.

This flag is supported for systems running H06.21 or later H-series RVUs or
J06.10 or later J-series RVUs only.

527188-021 Hewlett-Packard Company 3−75

eld(1) OSS Shell and Utilities Reference Manual

-y symbol_name5
Tells eld to report which linkfiles define and use the symbol symbol_name5. The
linkfiles are listed in the order encountered.

This information can be useful if a previous eld command produced error or warn-
ing messages about a symbol being either undefined or defined more than once.

Operands
filename17 Specifies one or more files for the eld utility to process.

The files used can be:

• Linkfiles that eld will combine into a new linkfile or loadfile

• DLLs that eld will use to resolve references in a new loadfile that it is
creating, or in a loadfile being processed by the -alf flag

• DLLs that are input to the -make_import_lib flag

This operand is required for all flags except the alf, -change, and -strip flags.

DESCRIPTION
The eld utility links one or more TNS/E native position-independent code (PIC) linkfiles to pro-
duce an executable or nonexecutable native PIC loadfile. You can also modify existing loadfiles
using eld. You can invoke eld directly or, if you are creating a C or C++ program, you can use the
c89 or the c99 utility to invoke eld automatically for you.

Flag Names
Names of flags obey the following rules:

• If a flag name is one letter and the flag takes a value, the space between the flag name and
the value is optional

• Flag names and keyword values are not case sensitive, except for the separate -l and -L
flags

If no flags or operands are used, the eld command displays usage help in its output listing.

Input Files
eld cannot process a linkfile that contains a code section larger than 16 megabytes. This size res-
triction is imposed by the Itanium standard.

Output Files
eld creates loadfiles on the host platform with an OSS file mode of 777 (rwxrwxrwx), which is
then ANDed with the umask value of the user creating the file. eld creates all other object files
with an OSS file mode of 666 (r-xr-xr-x), which is then ANDed with the umask value of the user
creating the file.

Any text file created by ld in the Guardian file system has a file code of 180. You can use the
CTOEDIT utility to convert such files to code 101 files for viewing with TEDIT.

Loadfiles or linkfiles created in the Guardian file system have a Guardian file code of 800.

Maintaining DLL Registry Files
A DLL registry file is a C text file that contains attribute information associated with a set of
DLLs. The file contains:

• An optional -dllarea specification that defines the first and last addresses of the virtual
memory area that is to be assigned to all DLLs. This specification has the form:

-dllarea dllarea_start_address dllarea_end_address

3−76 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

where both values are expressed in hexadecimal. If either value contains no more than 8
digits, it is automatically sign-extended to 16 digits. If dllarea_start_address is less than
dllarea_end_address, new addresses are assigned in ascending order; otherwise, new
addresses are assigned in descending order. The larger of the two address values is nonin-
clusive while the smaller address is inclusive.

The default values are:

dllarea_start_address
0x080000000

dllarea_end_address
0x070000000

• A -range specification for each DLL in the set of DLLs. This specification has the form:

-range dll_file_name dll_start_address dll_max_size

where:

dll_file_name is a loadfile filename (the -o flag filename10 value or its equivalent)

dll_start_address
is the first location of the text space (which can be set using the -t flag)

dll_max_size includes the text space, the data space, and space for growth

The address range for a DLL begins at dll_start_address and extends through
dll_start_address+dll_max_size. Range specifications that do not overlap allow for faster
loading of DLLs. Overlapping range specifications must be created using a text editor.

Fields can be separated by spaces or tabs. Two successive hyphens indicate a comment that
extends to the end of the current line.

The eld linker appends new -range specifcations and can maintain existing -range specifications.
The -dllarea specification must be created using a text editor.

Saving Temporary Files
eld creates temporary working files while it processes command line or obey file information.
These temporary working files are given names of the form ZLDAFnnn (for all files except import
libraries and private DLL registry files), ZLDAInnn (for import libraries), or ZLDARnnn (for
private DLL registry files), where:

nnn is a unique sequentially assigned decimal number, beginning with 000

To create a final permanent file with the same name as an existing file, eld must first remove the
existing file. If eld processing is interrupted when removing and recreating the final file, the work-
ing file is preserved as a file named ZLDnnn.

The temp_i, -temp_o, or -temp_r flag allows you to save the completed working file as a tem-
porary regular file with a known filename before the original file is removed. The temporary file is
itself removed after the final permanent file is completely written.

Finding Libraries
If you specify an absolute or relative pathname for a flag’s filenamen value, no search occurs. eld
opens the specified file to see if it is a linkfile, an archive, or a DLL. If the file cannot be opened,
an error occurs.

If you specify an unqualified filename (a filename value that does not contain a / character) for the
-l or -lib flag, the OSS version of eld attempts to find the file. eld searches for libraries in the fol-
lowing locations when resolving the values specified for the -l or -lib flags:

527188-021 Hewlett-Packard Company 3−77

eld(1) OSS Shell and Utilities Reference Manual

1. Locations specified by the current -first_l flag

2. Public libraries (installed by the system operator) * **

3. Locations specified by the current -libvol and -L flags

4. Default locations in the OSS environment when building a 32-bit or neutral object:
/lib:/usr/lib:/usr/local/lib:/G/SYSTEM/ZDLL * **

Default locations in the OSS environment when building a 64-bit object:
/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/local/lib:/G/SYSTEM/ZDLL * **

The value of the COMP_ROOT environment variable is added to the beginning of /lib,
/usr/lib, /usr/local/lib, /lib64, /usr/lib64, and /usr/local/lib64. By default, the value of
COMP_ROOT is null in the OSS environment.

The steps marked by an asterisk (*) are skipped when the -nostdlib or -no_stdlib flag is in effect,
and the steps marked by two asterisks (**) are skipped only when the -bstatic flag is used.
Archive libraries encountered in steps marked by ** are reported as errors.

eld searches in each location for libraries by name. eld tries to open the specified file. If it cannot,
it modifies the supplied value and tries to open a file with the modified name. (Unqualified names
specified in the Guardian file system, /G, are not modified; eld uses only the supplied value.) The
prefix lib and the following suffixes are added to the specified name to create the modified name:

.so To find a DLL, unless the -bstatic flag is in effect

.a To find an archive file, unless the -dllsonly flag is in effect

To find a DLL, the prefix z and the suffix dll are also tried unless the -bstatic flag is in effect.

When the -alf flag is used, the OSS version of eld searches for DLLs in the following locations:

1. Locations specified by the current -first_l flag

2. Locations specified by the current -rld_first_l flag

3. Public libraries (installed by the system operator) *

4. The directory containing the loadfile (which might be a program or a DLL) **

5. The files specified by L

6. Locations specified by the current -rld_l or -rpath flag

7. Default locations when the current loadfile is a 32-bit or neutral loadfile:
/lib:/usr/lib:/usr/local/lib:/G/SYSTEM/ZDLL * **

Default locations when the current loadfile is a 64-bit loadfile:
/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/local/lib:/G/SYSTEM/ZDLL * **

The value of the COMP_ROOT environment variable is added to the beginning of /lib,
/usr/lib, /usr/local/lib, /lib64, /usr/lib64, and /usr/local/lib64. By default, the value of
COMP_ROOT is null in the OSS environment.

The steps marked by an asterisk (*) are skipped when the -nostdlib or -no_stdlib flag is in effect.
When the -limit_runtime_paths flag has been used for the loadfile, the following are omitted
from rld’s search:

• The steps marked by two asterisks (**) in the previously described search order

3−78 Hewlett-Packard Company 527188-021

User Commands (d - f) eld(1)

• Paths indicated by the TACL DEFINEs _RLD_FIRST_LIB_PATH and
_RLD_LIB_PATH.

For More Information
eld is not an interactive tool like Binder. For more information on using eld, see the eld Manual.
For more information on run-time library use, see the rld Manual.

EXAMPLES
1. The following example:

eld objecta objectb -o objectc

links together the input linkfiles named objecta and objectb to create a program named
objectc.

2. The following example:

eld -dll -o objecta objectb

creates a DLL whose DLL name is objecta and whose filename is objecta from the
linkfile named objectb.

3. The following example:

eld obj1.o obj2.o -ul -o lib

links the linkfiles named obj1.o and obj2.o together into a user library named lib.

4. The following example:

eld obj3.o obj4.o -o prog -libname \$A.B.C

links linkfiles named obj3.o and obj4.o together into a loadfile named prog. When prog
runs, it has a user library with the Guardian name $A.B.C. The backslash (\) prevents the
shell from misinterpreting the dollar sign ($).

5. The following example:

eld obj6.o obj7.o -o prog -set systype guardian

links the linkfiles named obj6.o and obj7.o into a loadfile named prog that you intend to
run as a Guardian process.

6. The following example:

eld -change highpin off exeobj

changes the value of the HIGHPIN attribute in the loadfile exeobj to OFF.

7. The following is an example of a valid private DLL registry file:

-- Specify the overall domain area that DLLs
-- can reside in (high to low)
-dllarea 0x68000000 0x60000000
-- Set up two DLLs that overlap each other
-- (one entry manually inserted)
-range $SYSTEM.ZDLL.ABC 0x67D00000 0x100000
-range /bin/usr/don/libmy.lib 0x67D00000 0x300000

527188-021 Hewlett-Packard Company 3−79

eld(1) OSS Shell and Utilities Reference Manual

FILES
/usr/bin/zimpimp

First default for the import library that represents the implicit DLLs

/usr/lib/zimpimp
Alternate default for the import library that represents the implicit DLLs

/usr/bin/zreg First default for the public DLL registry file

/usr/lib/zreg Alternate default for the public DLL registry file

NOTES
In the Guardian version of eld, MAP DEFINE names can be used to identify Guardian files wher-
ever the ELD command allows entry of a filename. The OSS version of eld does not support the
use of MAP DEFINEs. However, OSS filenames used with eld cannot begin with = because eld
uses the = character to identify MAP DEFINEs for expansion into Guardian filenames.

EXIT VALUES
The eld command returns one of the following values:

0 (zero) No errors or warning conditions were detected.

1 One or more error or warning conditions were detected.

RELATED INFORMATION
Commands: c89(1), c99(1), enoft(1), ld(1), nld(1), noft(1).

Files: float(4).

STANDARDS CONFORMANCE
The eld command is an HP extension to the Single UNIX specification and performs functions
comparable to the UNIX ld command.

3−80 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

NAME
enoft - Reads and displays information from TNS/E native object files

SYNOPSIS
enoft

[-break key on keyboard]
[-CD [dir_pathname1]]

[{ -CLOSE | -CL } { * | filenum | filename }]
[-COMMENT [text]]
[-COMP [ref_objfile] target_objfile [DETAIL | D]]
[-DBGINFO { proc_addr | proc_spec }]
[{ -DEMANGLE | -DE } proc_spec]
[{ -DIR | -FILES } [dir_pathname2]]
[{ -DUMPADDRESS | -DA } scope [IN format_spec]]
[{ -DUMPALL | -ALL } [* | LIST]]
[{ -DUMPCODE | -DC }

[{ BRIEF | B } | IN format_spec]]
[{ -DUMPDATA | -DD }

[{ BRIEF | B } | IN format_spec]]
[{ -DUMPOFFSET | -DO } scope

[IN format_spec]]
[{ -DUMPPROC | -DP } proc_spec [scope]

[IN format_spec]]
[{ -DUMPSECTION | -DS }

[* [DETAIL | D] | sect_name | sect_num]
[IN format_spec]]

[-DWARF [* | ABBREV |
INFO | LINE [ORDINAL] | LOC]

[-DYNAMIC]
[-ENV]
[{ -EXIT | -E | -QUIT | -Q }]
[{ -FC | -! } [hist_num | -hist_offset | text]]
[{ -FILE | -F } ref_objfile]
[-FILEHDR]
[-FUNCDESC | -FD]
[-GOT]
[-HASH]
[-HASHVAL]
[{ -HELP | ? } [flag | help_topic]]
[{ -HISTORY | -H } [hist_num]]
[-LAYOUT [CODE | DATA | *]]
[-LIBLIST]
[-LIC]
[{ -LISTATTRIBUTE | -LA } [DETAIL | D]]
[{ -LISTCOMPILERS | -LC } [DETAIL | D]]
[{ -LISTDATA | -LD }]
[{ -LISTDEBUG | -LDE }

[* | { PROC | P } | {DATA | D }]
[DETAIL | D]]

[{ -LISTEXPORTS | -LE }]
[{ -LISTFOPEN | -LFO }]
[{ -LISTOPTIMIZE | -LO }

[0 | 1 | 2 | * |
{ EXCLUDE | E } | { BRIEF | B } }]

527188-021 Hewlett-Packard Company 3−81

enoft(1) OSS Shell and Utilities Reference Manual

[{ -LISTPROC | -LP } { proc_spec | * }
[{ EXCLUDE | E } | { SUBPROC | SP } |

{ NOSUBPROC | NSP }] [{ DETAIL | D }]]
[{ -LISTSOURCE | -LS }

[* | sourcendx | pathname3 | file_num1]
[{ DETAIL | D }]]

[{ -LISTUNREFERENCED | -LUR }
{ { PROC | P } | { DATA | D } | * }
[{ DETAIL | D }]]

[{ -LISTUNRESOLVED | -LU }
[{ PROC | P } | { DATA | D } | *]
[{ DETAIL | D }]]

[-LOG [OFF | pathname4 [ASCII]]]
[-NOEXIT]
[-OBEY pathname5]
[-OUT [OFF | pathname6 [ASCII]]]
[{ -PROCINFO | PI }]
[-PROGHDRS]
[-RELOC]
[-RESET [set_cmd | *]]
[-RTDU [{ SOURCE | OBJECT | * } [DETAIL | D]]]
[-SECTHDRS]
[-SET [set_cmd [value]]]
[-SHOW [set_cmd | *]]
[-STRTAB [* | DYNSTR | DYNSTR2 | PROCNAMES |

RTDU | SHSTRTAB | STRTAB | UNWIND]
[{ -SYMTAB | -SYMBOLS } [* | { EXPORT | E } |

{ PROC | P } | { DATA | D }]
[-TANDEMINFO | -TDM]
[-UNWIND]
[{ -UNWINDINFO | UWI }

[{ * | proc_spec } [DETAIL | D]]
[{ -XREFPROC | -XP } { proc_spec | * }

[CALLEDBY | CALLS | BOTH]
[{ DETAIL | D }]]
. . .

[ref_objfile]

FLAGS
-CD [dir_pathname1]

Changes the working directory enoft uses to search for relative pathnames. The
specified pathname can be absolute or relative; relative pathnames are resolved
using the current working directory.

Files in the Guardian file system can be used if a fully or partially qualified subvo-
lume name is used in OSS pathname format (/G/vol/subvol). A subvolume on
another node can be specified using the OSS pathname format for Expand-
connected nodes (for example, a Guardian subvolume is specified as
/E/ode/G/vol/subvol). When dir_pathname1 is omitted, the default is the current
working directory.

This flag is the equivalent of the enoft VOLUME command used in the Guardian
environment. A valid value for pathname_prefix in the Guardian environment is a
fully or partially qualified subvolume name and the default is the current volume

3−82 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

and subvolume.

{ -CLOSE | -CL } { * | filenum | filename }
Closes the specified files:

* Closes all open files.

filenum Closes the file specified by the number filenum.

filename Closes the file specified by filename.

Closinig a log file or out file has the same effect as using the -LOG OFF or
-LOUT OFF flag.

-COMMENT [text]
Allows comments in enoft command files. Comments are not displayed in output.

-COMP [ref_objfile] target_objfile [DETAIL | D]
Compares the two specified object files for major differences, including file
headers and program headers. DWARF symbol tables are not compared.

If ref_objfile is not specified, the current object file is used to compare with
target_objfile.

DETAIL or D provides additional, detailed information.

-DBGINFO { proc_addr | proc_spec }
Lists compilation source and debug file information for a given procedure name,
index, or address. When proc_addr is used, the line number and instruction bun-
dle address are also listed. If neither proc_addr nor proc_spec are specified, all
procedures are listed.

proc_addr
Specifies the hexadecimal value of a code section address to be listed.
This value must have the form 0xxxxxxxxx, where x is a hexadecimal
digit. If the value specified is not on a 16-byte alignment boundary,
enoft rounds the address down to the beginning of the address bundle.
If line number information for the bundle is not available, enoft displays
information from the nearest preceding bundle with line number infor-
mation. Demangled names are listed when possible.

proc_spec
Specifies the procedure name or procedure number. Procedure names
are case-sensitive. proc_spec is one of the following:

proc_name
Limits the scope to the specified procedure and subpro-
cedures. The demangled form of the procedure name cannot
be used because enoft does not support blank spaces in the
name.

proc_num
Specifies the procedure number. This number specifies the
ordering in the object file’s procedure table. Use the
-LISTPROC flag to list each procedure number.

This command is used for loadfiles and import libraries.

527188-021 Hewlett-Packard Company 3−83

enoft(1) OSS Shell and Utilities Reference Manual

{ -DEMANGLE | -DE } proc_spec
Displays the C++ symbol name specified by proc_spec in demangled format. An
object file does not need to be open before using this flag.

proc_spec
Specifies the procedure name or procedure number. Procedure names
are case-sensitive. proc_spec is one of the following:

proc_name
Limits the scope to the specified procedure and subpro-
cedures. The demangled form of the procedure name cannot
be used because enoft does not support blank spaces in the
name.

proc_num
Specifies the procedure number. This number specifies the
ordering in the object file’s procedure table. Use the -LIST-
PROC flag to list each procedure number.

{ -DIR | -FILES } [dir_pathname2]
Lists the files in the specified directory. The specified pathname can be absolute
or relative; relative pathnames are resolved using the current working directory.

Files in the Guardian file system can be listed if a fully or partially qualified sub-
volume name is used in OSS pathname format (/G/vol/subvol). A subvolume on
another node can be specified using the OSS pathname format for Expand-
connected nodes (for example, a Guardian subvolume is specified as
/E/ode/G/vol/subvol). When dir_pathname2 is omitted, the default is the current
working directory.

{-DUMPALL | -ALL } [* | LIST]
Displays all nonzero size sections in the object file, including the file, program,
and section headers. The sections are displayed in the order of their relative file
offsets. When you do not specify an option, the display is similar to the output of
the -LAYOUT flag but shows the section contents.

Unlike the -DUMPSECTION * DETAIL flag, output stops when an underlying
dump command fails (for example, when a data error occurs).

* Also lists the layout of the sections, a list of common file attri-
butes, compiler information, various symbols, optimization levels,
procedures, and source files.

If the -DUMPALL flag is used on an OSS shell command line,
the flag specification must be enclosed in quotation marks when
the * specifier is used.

LIST Only lists the file, program, and section headers, the layout of the
sections, a list of common file attributes, compiler information,
various symbols, optimization levels, procedures, and source files.

{-DUMPADDRESS | -DA } scope [IN format_spec]
Displays code and data from a virtual address inside an object file’s memory
space. scope is the following:

start_address [range_spec]

3−84 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

start_address
Specifies the starting virtual address. The value specified is assumed to
be in decimal format unless prefixed by 0x to make it hexadecimal for-
mat. For ICODE or INNERLIST displays, start_address must be on a
16-byte boundary; for all other formats, enoft rounds the specified
address down to the beginning of the bundle to be displayed.

range_spec
Specifies the amount of information to display. range_spec is one of the
following:

TO end_address
Is the ending virual address. The value specified is assumed
to be in decimal format unless prefixed by 0x to make it hexa-
decimal format. For ICODE or INNERLIST displays,
end_address must be on a 16-byte boundary; for all other for-
mats, enoft rounds the specified address down to the begin-
ning of the next bundle.

Valid values must be within the same section as the
start_address. If the scope of the output is limited by another
flag to a single procedure, only values within that procedure
are valid.

If you omit TO end_address, only one 4-byte or 16-byte unit
is displayed.

FOR number [{ BYTES | B } | {UNITS | U }]
Is the number of bytes or units (4-byte or 16-byte groups) to
display. Valid values for number can be in decimal or hexade-
cimal format. The value specified is assumed to be in decimal
format unless prefixed by 0x to make it hexadecimal format.

If BYTES, B, UNITS, or U is omitted, the number displayed
is the specified multiple of an 8-bit value, depending on the
part of the object file being displayed; code instructions in a
code section are displayed in multiples of 16-byte bundles,
while all other data is displayed in multiples of 4 bytes.

FOR * [{ BYTES | B } | {UNITS | U }]
Displays information to the end of the procedure, subpro-
cedure, or section. If BYTES, B, UNITS, or U is omitted,
code instructions in a code section are displayed in multiples
of 16-byte bundles, while all other data is displayed in multi-
ples of 4 bytes.

If you use the -DUMPADDRESS flag on an OSS shell com-
mand line, the flag specification must be enclosed in quotation
marks when you use the FOR * specifier.

527188-021 Hewlett-Packard Company 3−85

enoft(1) OSS Shell and Utilities Reference Manual

IN format_spec
Specifies how the information is to be formatted. format_spec is one of
the following:

ASCII | A Displays portions of the object file in ASCII format.

DECIMAL | D
Displays portions of the object file in decimal format.

HEX | H Displays portions of the object file in hexadecimal for-
mat.

ICODE | IC Displays portions of the object file in disassembled pro-
gram code. This is the default format.

INNERLIST | IN
Displays portions of the object file in disassembled code
and displays the source code interspersed with the assem-
bler. This option can be used only for dumping text.

READABLE | R
Displays portions of the object file in an applicable for-
mat based on the item type and part of the object file
being displayed. This is the default action.

{-DUMPCODE | -DC } [{ BRIEF | B } | IN format_spec]
Displays all code from the .gateway, .plt, .text, and .restext sections of an object
file.

Specifying the BRIEF or B option is the same as specifying the -LAYOUT
CODE flag.

Valid values for format_spec are identical to those of the -DUMPADDRESS flag.
If you omit IN format_spec, the display is formatted in ICODE format.

{-DUMPDATA | -DD } [{ BRIEF | B } | IN format_spec]
Displays all initialized user data from the .data, .sdata, .rdata, and .rconst sec-
tions of an object file.

Specifying the BRIEF or B option is the same as specifying the -LAYOUT
DATA flag.

Valid values for format_spec are identical to those of the -DUMPADDRESS flag.
If you omit IN format_spec, the display is formatted in HEX format.

{-DUMPOFFSET | -DO } scope [IN format_spec]
Displays code and data from a physical offset within an object file. Valid values
for scope are identical to those of the -DUMPADDRESS flag, except that the
addresses are physical offsets within the file instead of virtual addresses. Valid
values for format_spec are identical to those of the -DUMPADDRESS flag.

{-DUMPPROC | -DP } proc_spec [scope] [IN format_spec]
Displays the contents of a procedure or part of a procedure.

proc_spec
Specifies the procedure name or procedure number. Procedure names
are case-sensitive in C and C++ but not in other languages. proc_spec
is one of the following:

3−86 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

proc_name
Limits the scope to the specified procedure and subpro-
cedures.

If proc_name is not completely specified, enoft resolves the
name and lists conforming procedure names with numbers;
wildcard matching (for example, *partial_name or
partial_name*) can be used to search for items containing a
match to the given pattern but only the first match found is
displayed.

The demangled form of the procedure name cannot be used
because enoft does not support blank spaces in the name.

proc_name.subproc_name[[.subprocname]...]]
Limits the scope to the specified subprocedure. If proc_name
or subproc_name is not completely specified, enoft resolves
the name and lists conforming subprocedure names with
numbers.

This option is not valid for C or C++ programs. For EpTAL
programs, only one level of subprocedure can be specified.
For COBOL programs, more than one level can be specified.

subproc_name[[.subprocname]...]]
Limits the scope to the specified subprocedure. If
subproc_name is not completely specified, enoft resolves the
name and lists conforming subprocedure names with numbers.

This option is not valid for C or C++ programs. For EpTAL
programs, only one level of subprocedure can be specified.
For COBOL programs, more than one level can be specified.
Only the first subprocedure with the specified name is
displayed.

proc_num
Specifies the procedure number. This number specifies the
ordering in the object file’s procedure table. Use the -LIST-
PROC flag to list each procedure number.

scope Specifies addresses in a form that is identical to that of the
-DUMPADDRESS flag, except that the addresses are virtual offsets
within the file instead of virtual addresses.

IN format_spec
Specifies how the information is to be formatted. Valid values for
format_spec are identical to those of the -DUMPADDRESS flag.

{-DUMPSECTION | -DS } [* [DETAIL | D] | sect_name | sect_num] [IN format_spec]
Displays the specified section of the object file. If you omit all options, the default
display lists the sections in the file.

Valid display options are:

* Displays all sections of the object file except the file, program,
and section headers. If DETAIL or D is also specified, only
nonzero size sections are displayed.

If you use the -DUMPSECTION flag on an OSS shell command

527188-021 Hewlett-Packard Company 3−87

enoft(1) OSS Shell and Utilities Reference Manual

line, the flag specification must be enclosed in quotation marks
when you use the * specifier.

sect_name Specifies any valid section name, as displayed by the
-SECTHDRS or -LAYOUT flag.

sect_num Specifies any valid section number, as displayed by the
-SECTHDRS flag.

IN format_spec
Specifies how the information is to be formatted. format_spec is
one of the following:

ASCII | A Displays portions of the object file in ASCII for-
mat.

DECIMAL | D
Displays portions of the object file in decimal for-
mat.

HEX | H Displays portions of the object file in hexadecimal
format.

ICODE | IC Displays portions of the object file in disassembled
program code. This is the default format.

INNERLIST | IN
Displays portions of the object file in disassembled
code and displays the sourc e code interspersed
with the assembler. This option can be used only
for dumping text.

READABLE | R
Displays portions of the object file in the format
most appropriate to the type of data. This is the
default action.

-DWARF [* | ABBREV | INFO | LINE [ORDINAL] | LOC]
Displays the contents of the Debugging With Attribute Record Format (DWARF)
debugging symbol table sections of an object file. These sections provide the
symbolic information used by the Visual Inspect and Native Inspect debuggers.

* Displays the contents of the .debug_info, .debug_abbrev, and
.debug_line sections.

ABBREV Displays only the contents of the .debug_abbrev section.

INFO Displays only the contents of the .debug_info section, as con-
strained by the -SET SCOPEPROC flag.

LINE [ORDINAL]
Displays only the contents of the line number table (.debug_line)
section. If a .debug_line_nsk section exists to support the use of
Guardian EDIT utility line numbers, that section is displayed
instead. To force display of .debug_line instead of
.debug_line_nsk, specify the ORDINAL option.

3−88 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

LOC Displays only the contents of the .debug_loc section.

-DYNAMIC Displays the .dynamic section of a loadfile or import library.

-ENV Displays the current settings of the enoft environment.

{-FILE | -F } ref_objfile
Specifies the name of the target object file you want to use with enoft. ref_objfile
can be a simple filename or an absolute or relative pathname.

A subsequent -FILE flag closes the current object file and opens the newly
specified object file.

-FILEHDR Displays the contents of the Executable and Linking Format (ELF) file header
from the beginning of the object file.

-FUNCDESC | -FD
Displays the contents of the .IA_64.pltoff and .fptr function descriptor sections of
a loadfile.

-GOT Displays the global offset table section of a loadfile.

-HASH Displays the contents of the .hash and .hash.gblzd sections of a loadfile.

-HASHVAL Displays the contents of the .hasval and .hashval.gblzd sections of a loadfile.

{-HELP | ? } [flag | help_topic]
Displays descriptions and syntax for enoft flags and operands. If no value is
specified for flag or help_topic, enoft displays a single line description of each
enoft flag. This information can be directed to an output file or log file.

flag Displays information about the specified flag, including syntax.
flag can be any valid command name or command abbreviation.

help_topic Specifies one of the following enoft topics for which you want
detailed information:

CMD_TYPE
CMD_ENTRY
OBJECT_FILES
FORMAT_SPEC
PROC_SPEC
SCOPE_RANGE
SOURCE_SPEC

-LAYOUT [CODE | DATA | *]
Lists the parts of an object file in order by file offset, along with their virtual
addresses.

CODE Lists only code sections.

DATA Lists only data sections.

* Lists both code and data sections. If you omit an option for this
flag, this is the default action.

527188-021 Hewlett-Packard Company 3−89

enoft(1) OSS Shell and Utilities Reference Manual

-LIBLIST Displays the .liblist section of a loadfile or import library. This flag is an alias for
specification of the -DUMPSECTION flag with the section_name value of .lib-
list.

-LIC Displays the library import characterization (LIC) section .lic of a preset loadfile.
This flag is an alias for specification of the -DUMPSECTION flag with the
section_name value of .lic.

{-LISTATTRIBUTE | -LA } [{ DETAIL | D }]
Lists common file and process attributes associated with an object file. DETAIL
or D provides additional, detailed information about the debugging sections of the
file.

{-LISTCOMPILERS | -LC } [{ DETAIL | D }]
Lists version information about the native compiler components and eld utility
used to create an object file. DETAIL or D provides additional, detailed informa-
tion.

{ -LISTDATA | -LD }
This flag is an alias for the -SYMTAB DATA flag. It lists all data symbols from
the .dynsym and .dynsym.gblzd sections in a loadfile or import library, and the
.symtab section in a linkfile.
[DETAIL | D]]

{ -LISTDEBUG | -LDE } [* | { PROC | P } | {DATA | D }] [DETAIL | D]]
Lists all names in the .debug_info symbols table that meets variable (data) or sub-
program (subprogram, subroutine, or alternate entry point) criteria. Specifying
PROC, P, DATA,or D restricts the content of the listing to procedures or data; the
default is *, meaning all. DETAIL or D provides additional, detailed information.

{ -LISTEXPORTS | -LE }
This flag is an alias for the -SYMTAB EXPORT flag. This flag lists all exported
symbols that are global and defined from the .dynsym and .dynsym.gblzd sec-
tions in a loadfile or import library. Symbols available only to other linkfiles and
local to loadfiles (not exported) are not listed.

{n-LISTFOPEN | -LFO }
Lists the file numbers and filenames of all open files including object files, log
files, and out files.

{-LISTOPTIMIZE | -LO } [0 | 1 | 2 | * | { EXCLUDE | E } | { BRIEF | B }]
Lists procedures based on their optimization level. If no option is specified, all
procedures in the object file are displayed, sorted by optimization level.

0, 1, or 2 List only procedures with an optimization level corresponding to the
specified number.

* List all procedures sorted by optimization level. If the -LISTOPTIM-
IZE flag is used on an OSS shell command line, the flag specification
must be enclosed in quotation marks when the * specifier is used.

EXCLUDE | E
List all procedures sorted by optimization level but does not display
information for symbols generated by a compiler or not found in a
debug_info section.

3−90 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

BRIEF | B
Limit the display to counts of symbols matching the scope.

{-LISTPROC | -LP } { proc_spec | * }
[{ EXCLUDE | E } | { SUBPROC | SP } | { NOSUBPROC | NSP }]
[{ DETAIL | D }]
Lists procedures and their subprocedures.

proc_spec Specifies the procedure name or procedure number. Procedure
names are case-sensitive in C and C++ but not in other
languages. proc_spec is one of the following:

proc_name
Limits the scope to the specified procedure and sub-
procedures. If proc_name is not completely specified,
enoft resolves the name and lists conforming pro-
cedure names with numbers. Wildcard matching (for
example, *partial_name or partial_name*) can be
used to search for items containing a match to the
given pattern.

The demangled form of the procedure name cannot be
used because enoft does not support blank spaces in
the name.

proc_name.subproc_name[[.subproc_name]...]
Limits the scope to the specified subprocedure. If
proc_name or subproc_name is not completely
specified, enoft resolves the name and lists conforming
subprocedure names with numbers.

This option is not valid for C or C++ programs. For
EpTAL programs, only one level of subprocedure can
be specified. For COBOL programs, more than one
level can be specified.

subproc_name[[.subproc_name]...]
Limits the scope to the specified subprocedure. If
subproc_name is not completely specified, enoft
resolves the name and lists conforming subprocedure
names with numbers.

This option is not valid for C or C++ programs. For
EpTAL programs, only one level of subprocedure can
be specified. For COBOL programs, more than one
level can be specified. Only the first subprocedure
with the specified name is displayed.

proc_num
Specifies the procedure number. This number specifies
the ordering in the object file’s procedure table. Use
the -LISTPROC flag to list each procedure number.

527188-021 Hewlett-Packard Company 3−91

enoft(1) OSS Shell and Utilities Reference Manual

* Specifies all procedures in the current scope. If the -LIST-
PROC flag is used on an OSS shell command line, the flag
specification must be enclosed in quotation marks when the *
specifier is used.

The content of the display can be controlled with the following options:

EXCLUDE | E Suppresses display of information for symbols generated by a
compiler or not found in a .debug_info section.

SUBPROC | SP
Does not list parent procedures along with subprocedures. If pro-
cedure P contains subprocedure S, a -LISTPROC S SUBPROC
flag lists only S and not P, even though S is contained within P.

NOSUBPROC | NSP
Does not list subprocedures along with parent procedures. If pro-
cedure P contains subprocedure S, a -LISTPROC P NOSUB-
PROC flag lists only P and not S, even though S is contained
within P.

DETAIL | D Provides additional, detailed information about procedures and
subprocedures.

{-LISTSOURCE | -LS } [sourcendx | pathname3 | file_num1 | *]
[{ DETAIL | D }]
Lists compilation unit entries in the object file for a unit index value, for a source
file, or for all source files used. If only one procedure is dumped, then the -LIST-
SOURCE flag dumps the entry for the source file containing the procedure.

sourcendx Narrows the scope to a single compilation unit within the object
file. sourcendx must be a valid index value. Use the -LIST-
SOURCE flag to determine valid values.

pathname3 Narrows the scope to a single named source file. pathname3 must
be a fully qualified OSS pathname or a fully qualified Guardian
filename.

file_num1 Specifies the file number. This number is determined by the order
of procedures in the object files’s procedure table.

* Specifies that you want information for all procedures. This is the
default action.

If the -LISTSOURCE flag is used on an OSS shell command
line, the flag specification must be enclosed in quotation marks
when the * specifier is used.

DETAIL | D Displays additional, detailed information about the procedures.

{-LISTUNREFERENCED | -LUR } { { PROC | P } | { DATA | D } | * } [{ DETAIL | D }]
Lists the undefined and unreferenced symbols in an object file; this flag is only
valid for pTAL object files. These symbols must be linked before the object file
can be executed.

PROC | P Displays unresolved procedures.

3−92 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

DATA | D Displays unresolved data items.

* Displays all unresolved items. When you do not specify an option,
this is the default behavior.

If the -LISTUNREFERENCED flag is used on an OSS shell com-
mand line, the flag specification must be enclosed in quotation
marks when the * specifier is used.

DETAIL | D Displays additional, detailed information such as the type of each
symbol. For C++ functions, DETAIL provides the "demangled"
(original) names as well as the "mangled" internal equivalents.

{-LISTUNRESOLVED | -LU } [{ PROC | P } | { DATA | D } | *] [{ DETAIL | D }]
Lists the undefined names in an object file. These references must be resolved
before the file can be executed.

PROC | P Displays unresolved procedures.

DATA | D Displays unresolved data items.

* Displays unresolved procedures and data items. When you do not
specify an option, this is the default behavior.

If the -LISTUNRESOLVED flag is used on an OSS shell com-
mand line, the flag specification must be enclosed in quotation
marks when the * specifier is used.

DETAIL | D Displays detailed name information.

-LOG [OFF | pathname4 [ASCII]]
Writes a copy of the current session’s input and output to a file.

OFF Closes the current log file and stops all logging. This is the default
action.

pathname4 Identifies the file to receive the copy of the command lines and out-
put. If the file does not exist, enoft creates it. If the file already
exists, enoft appends output to the end of the file.

ASCII Creates the log file as a file code 180 file in C text (ASCII) format
instead of creating it as a code 101 file in its default EDIT file for-
mat. This option is valid only for use in the Guardian environment;
the default log file format in the OSS environment is ASCII text.

-NOEXIT Runs enoft in interactive mode. After executing any commands preceding it on
the command line, this flag causes enoft to issue a prompt and wait for additional
input. Commands following -NOEXIT on the command line are ignored. Any
previous commands that cannot apply to interactive mode are ignored; for exam-
ple, -SET LINES is ignored.

The NOEXIT command is ignored while in interactive mode.

-OBEY pathname5
Directs enoft to read command lines from the file specified in pathname5. In the
Guardian file system, the specified file must be an EDIT file (file code 101). The
specified file can call other OBEY files; OBEY files can be nested to any depth.
The specified file cannot call itself and files it calls cannot call it or themselves;
OBEY files cannot be recursive.

527188-021 Hewlett-Packard Company 3−93

enoft(1) OSS Shell and Utilities Reference Manual

-OUT [OFF | pathname6 [ASCII]
Directs the input and output listings to a specified file.

OFF Turns off redirection to a file and reverts to the original output file.
This is the default action.

pathname6 Specifies the partially or fully qualified name of the file. If the file
does not exist, enoft creates it. If the file already exists, enoft
appends output to the end of the file.

ASCII Creates the log file as a file code 180 file in C text (ASCII) format
instead of creating it as a code 101 file in its default EDIT file for-
mat. This option is valid only for use in the Guardian environ-
ment; the default log file format in the OSS environment is ASCII
text.

-PROCINFO | PI
Displays the contents of the .procinfo section of a linkfile. This flag is an alias for
specification of the -DUMPSECTION flag with the section_name value of .pro-
cinfo.

-PROGHDRS Displays the contents of the program headers for a loadfile or import library.

-RELOC Displays the relocation tables in an object file. These tables are in sections with
names that begin with .rela.

-RESET [set_cmd | *]
Resets the target object file attributes previously specified with the -SET flag to
their default values.

set_cmd Is one of the following target object file attributes:

CASE
DEMANGLE
FORMAT
HISTORYBUFFER
HISTORYWINDOW
LINES
SCOPEPROC
SCOPESOURCE
SORT

* Specifies that all target object file attributes are reset to their
default values. If you use the -RESET flag without specifying any
value, this is the default action.

If you use the -RESET flag on an OSS shell command line, the flag
specification must be enclosed in quotation marks when you use
the * specifier.

Refer to the description of the -SET flag for descriptions of these object file attri-
butes.

-RTDU [{ SOURCE | OBJECT | * } [DETAIL | D]]
Displays the header information for the run-time data unit (RTDU) sections of the
object file. Linkfiles have only a .source.rtdu section, while loadfiles have both
.source.rtdu and .object.rtdu sections.

If SOURCE is specified, only the .source.rtdu section is displayed. If OBJECT

3−94 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

is specified, only the .object.rtdu section is displayed. If * is specified or all
options are omitted, all available sections are displayed.

If DETAIL or D is specified, the memory content of the RTDU section for each
record is also displayed.

-SECTHDRS Displays the contents of the section headers for a loadfile.

-SET [set_cmd [value]]
Sets an enoft target object file attribute to the specified value. If you do not
specify value, enoft displays the current value used for the set_cmd attribute. If
you do not specify set_cmd, enoft displays the current settings for all attributes.

The -SET flag can be abbreviated by combining it with letters that abbreviate
set_cmd attribute names; these abbreviated flags are shown in the following list of
valid set_cmd attribute names:

{CASE | -SC } { ON | OFF }
Specifies the case sensitivity of the enoft environment.

ON Turns on case sensitivity in the enoft environment.

OFF Turns off case sensitivity in the enoft environment.
This is the default setting.

If case sensitivity is turned off, some file and procedure
names might not be correctly matched when commands
or flags are entered.

If the target object file contains C or C++ code, enoft automati-
cally turns on case sensitivity when the file is opened. For object
files containing code from a mix of C or C++ and other languages,
if the procedure or source scope for a flag or command is res-
tricted to a source file that does not contain C or C++ code, case
sensitivity is turned off but reverts to on when the scope restric-
tion is removed.

{FORMAT | -SF } { { ASCII | A } | { DECIMAL | D }
| { HEX | H} | { ICODE | IC } | { INNERLIST | IN } |
{ READABLE | R } }
Specifies the format used to display the object file.

ASCII | A Displays portions of the object file in ASCII for-
mat.

DECIMAL | D
Displays portions of the object file in decimal for-
mat.

HEX | H Displays portions of the object file in hexadecimal
format.

ICODE | IC Displays portions of the object file in disassembled
program code.

527188-021 Hewlett-Packard Company 3−95

enoft(1) OSS Shell and Utilities Reference Manual

INNERLIST | IN
Displays portions of the object file in disassembled
program code and displays the source code inter-
spersed with the assembler. This option can be
used only for text dumps.

READABLE | R
Displays portions of the object file in an applicable
format based on the item type and part of the
object file being displayed. This is the default
action.

Specifying IN format_spec in another flag overrides the setting of
this attribute.

{HISTORYBUFFER | -SHB } number
Specifies the number of command lines in memory that are to be
available to the !, FC, or HISTORY subcommands. If the HIS-
TORYBUFFER attribute is not specified, the default value is 50
command lines.

Valid values for number are in the range from 0 (zero) to 65535.
If number is greater than the current buffer size, enoft is unable to
retrieve command lines that have already left the history buffer.
If number is smaller than the current buffer size, the command
lines lost from the buffer are not retrievable.

The HISTORYBUFFER setting is only meaningful when you
use enoft interactively.

{HISTORYWINDOW | -SHW } number
Specifies the number of command lines displayed with the HIS-
TORY subcommand.

Valid values for number are in the range from 0 (zero) to 50. If
the HISTORYWINDOW attribute is not specified, the default
value is 10 command lines.

The HISTORYWINDOW setting is only meaningful when you
use enoft interactively.

{ LINES | -SL } number
Specifies the number of lines of output to display before pausing
so that an area of output does not scroll out of the terminal or
emulator display memory. A single line of output from enoft can
result in multiple lines of output on a screen, so more lines than
are specified by number might be displayed.

Valid values for number are in the range 0 (zero) through 65535.
If the LINES attribute is not specified, the default value for
number is zero. A zero value causes output to continue until all
results are displayed.

This flag is ignored when entered on a command line. It is pri-
marily for interactive use.

3−96 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

{ SCOPEPROC | -SSP } { proc_spec | * }
Narrows the scope to a single procedure or subprocedure. This is
helpful when trying to find unique items within a procedure or
subprocedure and when trying to limit output to a range within a
single scope.

The setting of this attribute takes precedence over any other value
of proc_spec used in the same command.

proc_spec
Specifies the procedure name or procedure number. Pro-
cedure names are case-sensitive in C and C++ but not in
other languages. proc_spec is one of the following:

proc_name
Limits the scope to the specified procedure
and subprocedures. If proc_name is not com-
pletely specified, enoft resolves the name and
lists conforming procedure names with
numbers; wildcard matching (for example,
partial_name or partial_name) can be used
to search for items containing a match to the
given pattern.

The demangled form of the procedure name
cannot be used because enoft does not sup-
port blank spaces in the name.

proc_name.subproc_name[[.subproc_name]...]
Limits the scope to the specified subpro-
cedure. If proc_name or subproc_name is not
completely specified, enoft resolves the name
and lists conforming subprocedure names
with numbers.

This option is not valid for C or C++ pro-
grams. For EpTAL programs, only one level
of subprocedure can be specified. For
COBOL programs, more than one level can
be specified.

subproc_name[[.subproc_name]...]
Limits the scope to the specified subpro-
cedure. If subproc_name is not completely
specified, enoft resolves the name and lists
conforming subprocedure names with
numbers.

This option is not valid for C or C++ pro-
grams. For EpTAL programs, only one level
of subprocedure can be specified. For
COBOL programs, more than one level can
be specified. Only the first subprocedure with
the specified name is displayed.

527188-021 Hewlett-Packard Company 3−97

enoft(1) OSS Shell and Utilities Reference Manual

proc_num
Specifies the procedure number. This number
specifies the ordering in the object file’s pro-
cedure table. Use the -LISTPROC flag to list
each procedure number.

* Eliminates any scope limitations and allows you to view
the entire object file. If you use the -SET
SCOPEPROC flag on an OSS shell command line, the
flag specification must be enclosed in quotation marks
when you use the * specifier.

{ SCOPESOURCE | -SSS } { sourcendx | pathname7 | file_num2 | * }
Narrows the scope to a single compilation unit or source file,
which is helpful when trying to find unique items within a source
file, as well as limiting the output to a range within the designated
scope.

sourcendx Narrows the scope to a single compilation unit within
the object file. sourcendx must be a valid index
value. Use the -LISTSOURCE flag to determine
valid values.

pathname7 Narrows the scope to a single named source file for
the object file. pathname7 must be a fully qualified
OSS pathname or a fully qualified Guardian filename.
Wildcard matching (for example, *partial_name or
partial_name*) can be used to search for items con-
taining a match to the given pattern.

file_num2 Specifies the file number. This number specifies the
ordering of file use in the object file. Use the
-LISTSOURCE flag to list each file number.

* Eliminates any scope limitations present and opens
selections to the entire object file. This is the default
action.

If you use the -SET SCOPESOURCE flag on an
OSS shell command line, the flag specification must
be enclosed in quotation marks when you use the *
specifier.

The setting of this attribute takes precedence over any other
source file pathname or file number used in the same command.

{ SORT | -ST } { { ALPHA | A } | { LOC | L } | { NONE | N } }
Specifies the sorting order of the output.

ALPHA | A
Sorts enoft output in alphabetic order.

LOC | L Sorts enoft output in virtual address order.

3−98 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

NONE | N
Sorts enoft output in numeric order determined in the
relevant table. The default value is NONE.

-SHOW [* | set_cmd]
Displays the current value of the specified enoft program environment parameter
and the target object file parameter.

The * specifier indicates that all of the attributess should be displayed. This is the
default action.

If you use the -SHOW flag on an OSS shell command line, the flag specification
must be enclosed in quotation marks when you use the * specifier.

-STRTAB [* | DYNSTR | DYNSTR2 | PROCNAMES
| RTDU | SHSTRTAB | STRTAB | UNWIND]
Displays the contents of string tables in the object file.

* Displays all available string tables in the object file. If you omit
an option for this flag, this is the default action.

DYNSTR Displays the .dynstr section pointed to from the .dynsym section.

DYNSTR2 Displays the .dynstr2 section pointed to from the .dynamic, .lib-
list, and .dynsym.gblzd sections.

PROCNAMES
Displays the .procnames section pointed to from the .procinfo
section.

RTDU Displays the .rtdu section.

SHSTRTAB Displays the .shstrtab section.

STRTAB Displays the .strtab section pointed to from the .symtab section.

UNWIND Displays the .unwind.strings section pointed to from the .unwind
section.

{-SYMTAB | -SYMBOLS} [* | { EXPORT | E } | { PROC | P } | { DATA | D }]
Displays the specified contents of the .symtab table and of the .dynsym and
.dynsym.gblzd tables for a loadfile or import library.

* Specifies all exported, data, and code symbols in the tables. If
you use the -SYMTAB or -SYMBOLS flag on an OSS shell com-
mand line, the flag specification must be enclosed in quotation
marks when you use the * specifier.

EXPORT or E Specifies only exported symbols that are global and defined.

PROC or P Specifies only code symbols.

DATA or D Specifies only data symbols.

-TANDEMINFO | -TDM
Displays the contents of the .tandem_info section of a loadfile or import library.
The information displayed includes the export digest for a DLL. This flag is an
alias for specification of the -DUMPSECTION flag with the section_name value
of .tandem_info.

527188-021 Hewlett-Packard Company 3−99

enoft(1) OSS Shell and Utilities Reference Manual

-UNWIND Displays the contents of the .IA_64.unwind sections of stack unwinding informa-
tion for a linkfile or loadfile.

{-UNWINDINFO | UWI} [{ * | proc_spec } [DETAIL | D]]
Displays the contents of the .IA_64.unwind_info sections of stack unwinding
information in both linkfiles and loadfiles.

DETAIL or D provides additional, detailed information.

proc_spec
Specifies the procedure name or procedure number. Procedure names
are case-sensitive in C and C++ but not in other languages. proc_spec
is one of the following:

proc_name
Limits the scope to the specified procedure and subpro-
cedures. If proc_name is not completely specified, enoft
resolves the name and lists conforming procedure names with
numbers. Wildcard matching (for example, *partial_name or
partial_name*) can be used to search for items containing a
match to the given pattern.

The demangled form of the procedure name cannot be used
because enoft does not support blank spaces in the name.

proc_name.subproc_name[[.subproc_name]...]
Limits the scope to the specified subprocedure. If proc_name
or subproc_name is not completely specified, enoft resolves
the name and lists conforming subprocedure names with
numbers.

This option is not valid for C or C++ programs. For EpTAL
programs, only one level of subprocedure can be specified.
For COBOL programs, more than one level can be specified.

subproc_name[[.subproc_name]...]
Limits the scope to the specified subprocedure. If
subproc_name is not completely specified, enoft resolves the
name and lists conforming subprocedure names with numbers.

This option is not valid for C or C++ programs. For EpTAL
programs, only one level of subprocedure can be specified.
For COBOL programs, more than one level can be specified.
Only the first subprocedure with the specified name is
displayed.

proc_num
Specifies the procedure number. This number specifies the
ordering in the object file’s procedure table. Use the -LIST-
PROC flag to list each procedure number.

3−100 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

{-XREFPROC | -XP } { proc_spec | * }
[CALLEDBY | CALLS | BOTH] [{ DETAIL | D }]
Displays an alphabetical cross-reference listing of procedures.

proc_spec Specifies the procedure name or procedure number. Procedure
names are case-sensitive in C and C++ but not in other languages.
proc_spec is one of the following:

proc_name
Limits the scope to the specified procedure and subpro-
cedures. If proc_name is not completely specified, enoft
resolves the name and lists conforming procedure names
with numbers. Wildcard matching (for example,
partial_name or partial_name) can be used to search
for items containing a match to the given pattern.

The demangled form of the procedure name cannot be
used because enoft does not support blank spaces in the
name.

proc_name.subproc_name[[.subproc_name]...]
Limits the scope to the specified subprocedure. If
proc_name or subproc_name is not completely specified,
enoft resolves the name and lists conforming subpro-
cedure names with numbers.

This option is not valid for C or C++ programs. For
EpTAL programs, only one level of subprocedure can be
specified. For COBOL programs, more than one level
can be specified.

subproc_name[[.subproc_name]...]
Limits the scope to the specified subprocedure. If
subproc_name is not completely specified, enoft resolves
the name and lists conforming subprocedure names with
numbers.

This option is not valid for C or C++ programs. For
EpTAL programs, only one level of subprocedure can be
specified. For COBOL programs, more than one level
can be specified. Only the first subprocedure with the
specified name is displayed.

proc_num
Specifies the procedure number. This number specifies
the ordering in the object file’s procedure table. Use the
-LISTPROC flag to list each procedure number.

* Specifies all procedures in the current scope. If you use the
-XREFPROC flag on an OSS shell command line, the flag
specification must be enclosed in quotation marks when you use
the * specifier.

527188-021 Hewlett-Packard Company 3−101

enoft(1) OSS Shell and Utilities Reference Manual

CALLEDBY Lists each procedure and the procedures that call it. A scope set-
ting restricts the procedures that are the children of the given pro-
cedure. If you omit an option for this flag, this is the default action.

CALLS Lists each procedure and the procedures that it calls. A scope set-
ting restricts the procedures that are the parents of the given pro-
cedure.

BOTH Lists the information for both CALLEDBY and CALLS.

DETAIL | D Lists the called or calling procedures referenced by the indicated
procedures and the addresses where the calls are made. For C++
procedures, this option also provides the original external ("deman-
gled") names as well as the internal ("mangled") equivalents used.

The virtual addresses of the call sites are shown with the DETAIL option
specified. A SORT setting affects both lists and sublists of procedures.

Operands
ref_objfile Specifies the target object file. This operand is required unless you use the -FILE

flag.

DESCRIPTION
The enoft utility reads and displays information from TNS/E native object files. enoft enables you
to:

• Determine the optimization level of procedures in a file.

• Display object code with corresponding source code.

• Display specific sections of a loadfile, linkfile, or library. Using this capability requires
knowledge of the structure and content of TNS/E object files, as described in the eld and
rld Manual.

• List dynamic-link library (DLL) references in an object file.

• List object file attributes.

You can display the following object file components with enoft:

• Various file headers

• Program text and data segments

• Symbol table and relocation tables

These enoft capabilities are useful when developing and debugging programs.

The enoft utility can be used from the command line or interactively to examine object files. To
use enoft interactively, enter the enoft command without specifying any flags; you can then
specify the flags interactively as subcommands in the manner described in the SUBCOMMANDS
subsection of this reference page. Alternatively, enoft launches and runs as an interactive process
if the -NOEXIT flag is specified on the command line.

To use enoft from a command file, capture the flags listed in the FLAGS subsection of this refer-
ence page or the subcommands listed in the SUBCOMMANDS subsection of this reference page.
Capture one flag or subcommand per line in the command file and then specify the command file
as the standard input file to the enoft command using a redirection operator. Output can also be
redirected to a file. The effective syntax for the enoft command in this instance is:

3−102 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

enoft < command_file [> output_file]

For complete information on using enoft, refer to the enoft Manual.

SUBCOMMANDS
enoft supports all flags listed in the SYNOPSIS section as subcommands for interactive use. Such
subcommands consist of the flag without the prefixed dash (-).

The following subcommands are primarily for interactive use. These subcommands can be
entered as OSS shell command line flags when prefixed by a dash (-) but are only meaningful
when used interactively:

break key on keyboard
Interrupts the processing of the current subcommand as soon as possible without
corrupting any enoft internal tables. The enoft utility resumes operation with the
next subcommand line.

CD [dir_pathname1]
Changes current working directory to the specified directory.

{ DIR | FILES } [dir_pathname2]
Lists the files in the specified directory.

EXIT | E | QUIT | Q
Stops the enoft process.

FC [hist_num | -hist_offset | text]
Allows you to edit or repeat a previously executed subcommand line.

hist_num Specifies the number of a previously entered subcommand line.
The default value is the previously entered subcommand line.

-hist_offset Specifies a negative offset from the current subcommand line.
The flag entered before the FC subcommand is -1.

text Is a string of characters.

{ HISTORY | H } [hist_num]
Displays previously entered subcommand lines. hist_num specifies the number of
subcommand lines to be displayed. The default value is 10 subcommand lines.

{ LINES | -SL } number
Specifies the number of lines of output to display before pausing so that an area of
output does not scroll out of the terminal or emulator display memory. A single
line of output from enoft can result in multiple lines of output on a screen, so more
lines than are specified by number might be displayed.

Valid values for number are in the range 0 (zero) through 65535. If the LINES
attribute is not specified, the default value for number is zero. A zero value causes
output to continue until all results are displayed.

NOTES
As an alternative syntax, enoft allows subcommands to be entered without the dash (-) that nor-
mally begins a command flag. When the dash is omitted, each subcommand after the first must be
separated from the next subcommand in the command line by a semi-colon (;). Because semi-
colons have significance to the OSS shell, they must be preceded by a backslash character or that
portion of the command line must be enclosed in quotation marks; for example:

enoft file /usr/subdir/hello.out\; set format innerlist\; dumpcode

527188-021 Hewlett-Packard Company 3−103

enoft(1) OSS Shell and Utilities Reference Manual

or

enoft "file /usr/subdir/hello.out; set format innerlist; dumpcode"

EXAMPLES
1. To find the names of procedures in a source file named sample.c:

enoft -FILE sample.o -SET SCOPESOURCE sample.c
"-LISTPROC *"

or
enoft -F sample.o -SSS sample.c "-LP *"

2. To find all the procedures that are called by source file sample.c:

enoft -FILE sample.o -SET SCOPESOURCE sample.c
"-XREFPROC * CALLEDBY"

or
enoft -F sample.o -SSS sample.c "-XP * CALLEDBY"

3. To look at the optimization levels for source file sample.c:

enoft -FILE sample.o -SET SCOPESOURCE sample.c
"-LISTOPTIMIZE *"

or
enoft -F sample.o -SSS sample.c "-LO *"

4. To look at the optimization level for a single procedure:

enoft -FILE sample.o -SET SCOPEPROC procedure-name
"-LISTOPTIMIZE *"

or
enoft -F sample.o -SSP procedure-name "-LO *"
or
enoft -FILE sample.o -LISTPROC procedure-name DETAIL
or
enoft -F sample.o -LP procedure-name D

5. To look at source file numbers for sample.o:

enoft -FILE sample.o "-LISTSOURCE *"

6. To look at procedure numbers:

enoft -F sample.o "-LP *"

7. To see the instructions for a procedure:

enoft -FILE sample.o
-DUMPPROC procedure-name IN ICODE

or
enoft -F sample.o -DP procedure-name IN IC

8. To look at a particular 20 bytes referenced by one of those instructions in hexadecimal:

enoft -FILE sample.o
-DUMPADDRESS 0x00000390 FOR 20 BYTES IN HEX

or
enoft -F sample.o -0x00000390 FOR 20 B IN H

3−104 Hewlett-Packard Company 527188-021

User Commands (d - f) enoft(1)

9. To look at the first 30 bytes in an object file in ASCII:

enoft -FILE sample.o
-DUMPOFFSET 0x0 FOR 30 BYTES IN ASCII

or
enoft -F sample.o -DO 0x0 FOR 30 B IN A

10. To see all the data items external to the object file that need to be linked in and where they
are used in alphabetic order:

enoft -FILE sample.o -SET SORT ALPHA
-LISTUNRESOLVED DATA DETAIL

or
enoft -F sample.o -ST A -LU DATA D

11. To find the data model of the object named sample.o:

enoft -FILE sample.o
-FILEHDR

The data model is supported for systems running H06.24 or later H-series RVUs or J06.13
or later J-series RVUs only.

DIAGNOSTICS
enoft sends all diagnostic messages to standard output. Each diagnostic message has a unique
message number. The following ranges of errors are reported:

Fatal errors Fatal errors occur when memory cannot be allocated. Such messages are in the
range from 1 to 999 and are prefixed by FATAL ERROR ***. Fatal errors always
cause enoft to terminate with an exit value of 1.

Data errors Data errors occur when an object file is incomplete or damaged or the specified
command cannot be applied to the object type. Such messages are in the range
from 1000 to 1999 and are prefixed by DATA ERROR ***.

Syntax Errors Syntax errors occur when enoft cannot recognize a specified command or process
the syntax used correctly. Such messages are in the range from 3000 to 3999 and
are prefixed by SYNTAX ERROR ***.

Warnings Warnings occur when enoft continues processing based upon its own assumptions
about user intent. Such messages are in the range from 2000 to 2999 and are
prefixed by WARNING ***.

EXIT VALUES
The enoft utility returns:

0 To indicate normal completion, usually in response to an EXIT, E, QUIT, or Q
command.

1 To indicate fatal termination.

RELATED INFORMATION
Commands: eld(1).

527188-021 Hewlett-Packard Company 3−105

enoft(1) OSS Shell and Utilities Reference Manual

STANDARDS CONFORMANCE
The enoft command is an HP extension to the XPG4 Version 2 specification.

3−106 Hewlett-Packard Company 527188-021

User Commands (d - f) env(1)

NAME
env - Displays or sets environment variables

SYNOPSIS
env [-i] [-] [name=value ...] [command] [argument ...]

FLAGS
-i Invokes command with the environment specified by the arguments; the env command

ignores the inherited environment.

- Invokes command with the environment specified by the arguments; the env command
ignores the inherited environment. (Obsolescent)

DESCRIPTION
The env command lets you get and change your current environment and then run the specified
command with the changed environment. Changes in the form name=value are added to the
current environment before the command is run. If the -i flag is used, the current environment is
ignored, and the command runs with only the changed environment. Changes are only in effect
while the specified command is running.

If command is not specified, the env command displays your current environment one name=value
pair per line.

EXAMPLES
1. To replace one environment with another one, enter:

env - PATH=$PATH IDIR=/u/jim/include LIBDIR=/u/jim/lib make

This command runs the make command in an environment that consists only of these
definitions for the PATH, IDIR, and LIBDIR parameters. You must redefine PATH so
that the shell can find the make command.

When make is finished, the original environment takes effect again.

EXIT VALUES
The env command exits with the following values:

0 (zero) The env command completed successfully.

1-125 An error occurred in the env command.

126 The specified utility was found but could not be invoked.

127 The specified utility could not be found.

RELATED INFORMATION
Commands: sh(1).

Functions: exec(2).

527188-021 Hewlett-Packard Company 3−107

eval(1) OSS Shell and Utilities Reference Manual

NAME
eval - Executes arguments as commands

SYNOPSIS
eval [argument ...]

DESCRIPTION
The arguments to eval are read as input to the shell, and the resulting commands are executed.
eval concatenates the arguments and separates each with a space character.

EXAMPLES
In the following example, values are assigned to variables, and these variables are used as argu-
ments to the eval command. The results of the eval command are printed to the screen by using
the print command.

x=5 y=x
z=’$’$x
print $y
x
eval y=’$’$x
print $y
5

NOTES
• Parameter assignment lists that precede the command remain in effect when the command

completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The eval command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands are
in the reference page for sh(1).

RELATED INFORMATION
Commands: exec(1), sh(1).

3−108 Hewlett-Packard Company 527188-021

User Commands (d - f) ex(1)

NAME
ex - Edits lines in a file interactively

SYNOPSIS
ex [-c subcommand] [-Rsv] [-wnumber] [+subcommand] [-] [file ...]

ex [-c subcommand] [-Rsv] [-t tag] [file ...]

ex [-c subcommand] -r[file] [-Rsv] [file]

The ex command is a line-oriented text editor that is a subset of the vi screen editor.

FLAGS
-c subcommand

Executes the specified ex subcommand (command) before displaying the file for which
the editor was invoked.

-r[file] Recovers file after an editor or system crash. If you do not specify file, a list of all saved
files is displayed.

-R Sets the readonly option, preventing you from altering the file.

-s Does not display the filename or the : prompt upon entering ex. (Silent mode.)

-ttag Loads the file that contains tag and positions the editor at tag. To use this flag, you must
first create a database of function names and locations using the ctags command. (OSS
does not support the ctags command. However, it does support ctags files.)

-v Invokes the visual editor. When the -v flag is specified, an enlarged set of subcommands
are available, including screen editing and cursor movement features. See vi.

-wnumber
Sets the default window size to number lines. This flag is useful only if used with the -v
flag.

- Suppresses all interactive user feedback. If you use this flag, file input/output errors do
not generate an error message.

+subcommand
Begins the edit with the specified editor subcommand. When subcommand is not
entered, a + (plus sign) sets the current line to the bottom of the file. Normally ex sets
the current line to the last line of the file, or to some specified tag or pattern. (Obsoles-
cent)

DESCRIPTION
The ex editor is similar to ed, but is more powerful, providing multiline displays and access to a
screen editing mode. You may prefer to call vi directly to have environment variables set for
screen editing. Also edit, a limited subset of ex, is available for novices or casual use.

The file argument specifies the file or files to be edited. If you supply more than one file, the ex
editor edits each file in the specified order.

To determine how your tty can perform more efficiently, ex uses the tty capability database ter-
minfo and the type of tty you are using from the TERM environment variable.

The ex editor has the following features:

• You can view text in files. The z subcommand lets you access windows of text, and you
can scroll through text by pressing <Ctrl-d> and <Ctrl-u> (visual (-v) mode only).

527188-021 Hewlett-Packard Company 3−109

ex(1) OSS Shell and Utilities Reference Manual

• The undo subcommand allows you to reverse the last subcommand, even if it is an undo
subcommand. Thus, you can switch back and forth between the latest change in the edit
file and the last prior file status and view the effect of a subcommand without that effect
being permanent. Commands that affect the external environment cannot be undone, how-
ever. The ex command displays changed lines and indicates when more than a few lines
are affected by a subcommand. The undo subcommand causes all marks to be lost on
lines changed and then restored if the marked lines were changed. It does not clear the
buffer modified condition.

• You can retrieve your work (except changes that were in the buffer) if the system or the
editor crashes by reentering the editor with the -r flag and the filename.

• You can edit a sequence or group of files. You can use the next subcommand to edit each
file on the command line in turn, or to specify a list of filenames to edit (using the shell
pattern matching syntax). The wildcard character % (percent sign) represents the name of
the current edit file and can be used to form filenames.

• You can copy and move text within a file and between files (see the co, d, ya, and pu sub-
commands). You use a group of buffers (that have the names of the ASCII letter a to z) to
move text. You can temporarily place text in these buffers and copy or reinsert it in a file,
or you can carry it over to another file. The buffers are cleared when you quit the editor.
The editor does not notify you if text is placed in a buffer and not used before exiting the
editor.

• You can use patterns that match words. A pattern can be a fixed character string or a regu-
lar expression.

A regular expression is a string constructed of special pattern-matching characters. Using
a regular expression to locate text in a file gives you more flexibility than trying to locate a
fixed character string. For more information about regular expressions, see grep.

Editing Modes
Command mode

When you start the ex editor, it is in command mode. Enter ex subcommands at the :
(colon) prompt.

Text entry mode
Entered by a, i, and c. In this state, you can enter text. Entry state ends normally with a
line that has only a . (period) on it or ends abruptly if you press the Interrupt key
sequence.

Visual and open mode
To use visual mode, use the following syntax:

line vi [type] [count]

Enters visual mode at the specified line. The type argument is optional, and can be a -
(dash) or . (dot), as in the z subcommand, to specify the position of the specified line on
the screen window. (The default is to place the line at the top of the screen window.)
The count argument specifies an initial window size; the default is the value of the win-
dow option. The Q subcommand exits visual mode. For more information, see vi.

The o command opens a one-line window. All three commands share the input state of
the vi editor. Press <Esc> to exit text entry mode. To return to the ex command state at
the current line, enter Q while in command mode.

3−110 Hewlett-Packard Company 527188-021

User Commands (d - f) ex(1)

The ex Limits
The ex editor has the following maximum limits:

• 2048 bytes per line

• 256 bytes per global command list

• 128 bytes in the previous inserted and deleted text

• 128 bytes in a shell escape command

• 128 bytes in a string-valued option

• 32 bytes in a tag name

• 128 map macros with 2048 bytes total

SUBCOMMANDS
The ex subcommands affect the current line unless you specify otherwise. For information about
how to address lines in a file, see edit and vi. For a complete description of edit options, see Set-
ting Options on the vi reference page.

The ex Subcommands
ab[brev] word abbrev

Adds the specified abbreviation to the current abbreviation list.

[line] a[ppend][!]
Enters input mode and places text after the specified line. To place the text at the begin-
ning of the buffer, specify line 0. The ! (exclamation point) toggles the autoindent editor
option setting for the execution of this subcommand.

ar[gs] Writes the argument list (the list of arguments on start-up) with the current argument
inside [and] (left and right brackets). The argument list can later be replaced by the
arguments of the next subcommand.

[range] c[hange][!] [count]
Enters input mode and replaces the lines in range with the input text. The current line is
the last line input. The ! (exclamation point) toggles the autoindent editor option set-
ting for the execution of this subcommand.

chd[ir][!] [directory]

cd[!] [directory]
Changes the current working directory to directory. If the current buffer has been
modified since the last write, the subcommand issues a warning and fails. You can over-
ride this warning by appending a ! (exclamation point) to the subcommand name.

[range] co[py] line [flags]

[range] t line [flags]
Places a copy of the lines in range after the specified line. Line 0 causes the lines to be
placed at the beginning of the buffer.

[range] d[elete] [buffer] [count] [flags]
Deletes the specified lines from the buffer. If you specify a named buffer, the deleted
text is placed there; otherwise, the deleted text is placed in the unnamed buffer. The
current line is the line following the deleted lines, or the last line if the deleted lines
were at the end.

527188-021 Hewlett-Packard Company 3−111

ex(1) OSS Shell and Utilities Reference Manual

e[dit][!] [+line] [file]

ex[!] [+line] [file]
Edits file. If the current buffer has been modified since the last write, the subcommand
writes a warning and terminates. You can override this action by appending the ! (excla-
mation point) character to the subcommand (for example, e! file).

If the +line argument is specified, the current line is the specified position, where line
can be a number (or $) or can be specified as /pattern or ?pattern. Preceding the pattern
with a / (slash) starts a search from the beginning of the file. Preceding the pattern with
a ? (question mark) starts a search from the end of the file. This subcommand is affected
by the autowrite and writeany editor options.

f[ile] [file]
Writes the current pathname, the number of lines, and the current position (if no file
argument was specified). If file is specified, ex changes the current filename to file
without changing the contents of the buffer or the previous current file.

[range] g[lobal] /pattern/ [subcommands]

[range] v /pattern/ [subcommands]
Marks the lines within the given range that match (g) or do not match (v) the given pat-
tern. Then executes the ex subcommands with the current line set to each marked line.

You can specify multiple subcommands, one per line, by escaping each newline charac-
ter with a \ (backslash). If the subcommands argument is not specified, each line is writ-
ten. For the append, change, and insert subcommands, the input text is included as part
of the global subcommand; in this case, you can omit the terminating period if it ends
subcommands. The visual subcommand can be specified as part of subcommands. In
this mode, input is taken from the terminal. Entering a Q from visual mode selects the
next line matching the pattern and re-enters visual mode, until the list is exhausted.

You cannot use the global subcommand itelf and the undo subcommand in the subcom-
mands argument. The autoprint, autoindent, and report editor options are inhibited for
the duration of the g or v subcommand.

[line] i[nsert][!]
Enters input mode and places the input text before the specified line. The ! (exclamation
point) toggles the autoindent editor option setting for the execution of this subcom-
mand.

[range] j[oin][!] [count] [flags]
Joins the text from the specified lines together into one line. In the POSIX locale, when
the last character on the first line of a pair of lines to be joined is a . (period), two spaces
are added following the period; when the last character of the first line is a space or
when the first character on the second line of the pair is a) (right parenthesis), no spaces
are added; otherwise, one space is added following the last character of the first line.
Extra spaces at the start of a line are discarded.

Appending a ! (exclamation point) character to the join subcommand causes a simpler
join with no whitespace processing, independent of the current locale.

[range] l[ist] [count] [flags]
Writes the addressed lines; nonprintable characters are written as multicharacter
sequences. The end of the line is marked with a $ (dollar sign).

Long lines are folded. The current line is the last line written.

3−112 Hewlett-Packard Company 527188-021

User Commands (d - f) ex(1)

map[!] [x rhs]
Defines macros for use in visual mode. The first argument must be a single character or
the sequence #digit (one of the terminal’s numbered function keys). When this character
or function key is entered in visual mode, the action is as if the corresponding rhs had
been entered. If the ! (exclamation point) character is appended to the subcommand
name map, the mapping is effective during input mode rather than command mode.
This allows x to have two different macro definitions at the same time: one for command
mode and one for input mode. Nonprintable characters, except for the Tab character,
require escaping with <Ctrl-V> (or <Ctrl-Q>) to be entered in the arguments. On cer-
tain block mode terminals, the mapping need not occur immediately (for example, it
might occur after the terminal transmits a group of characters to the system), but it
modifies the file as if it occurred immediately.

The map subcommand with no arguments writes all of the macros currently defined. If !
(exclamation point) is appended to the subcommand, only the macros effective during
input mode are written; otherwise, only the macros effective during command mode are
written.

[line] ma[rk] x

[line] k x Gives the specified line the specified mark x, which must be a single lowercase letter of
the POSIX locale. The current line position is not affected. The expression ’x can then
be used as an address in any subcommand requiring one. For example, the following
subcommand deletes all of the lines from the current one to the marked line:

.,’xd

In addition, see the vi ‘‘ and ’’ subcommands for uses of the mark in visual mode. If the
’x subcommand is used in nonvisual mode, the character marked is the first nonspace
character of the current line; otherwise, the character marked is the character at the
current column of the current line.

[range] m[ove] line
Moves the specified lines (range) after the target line (line). The current line is the first
of the moved lines.

n[ext][!] [file ...]
Edits the next file from the argument list. If the current buffer has been modified since
the last write, the subcommand writes a warning and terminates. You can override this
action by appending the ! (exclamation point) character to the subcommand name (n!).
You can replace the argument list by specifying a new one as arguments to this subcom-
mand. Editing then starts with the first file on this new list. The current line is reset as
described for the edit subcommand. This subcommand is affected by the autowrite and
writeany editor options.

[range] nu[mber] [count] [flags]

[range] # [count] [flags]
Writes the selected lines, each preceded with its line number in decimal. Nonprintable
characters, except for <Tab>, are expanded as specified by the print subcommand.

The only meaningful flag is l, which allows additional expanded writing of tabs and
End-of-Line characters by the list subcommand. The current line is the last line written.

527188-021 Hewlett-Packard Company 3−113

ex(1) OSS Shell and Utilities Reference Manual

[line] o[pen] /pattern/ [flags]
Enters open mode, which is equivalent to visual mode with a one-line window. All
visual mode subcommands are available. If a match is found for the optional regular
expression in line, the cursor is placed at the start of the matching pattern. The visual
mode subcommand Q (see vi) exits open mode.

pre[serve]
Saves the current buffer in a form that can later be recovered by using ex -r or by using
the recover subcommand. After the file has been preserved, a mail message is sent to
the user. This message can be read by invoking mailx. The message contains the name
of the file, the time of preservation, and an ex subcommand for recovering the file.
Additional information can be included in the mail message.

[range] p[rint] [count] [flags]
Writes the addressed lines. Nonprintable characters, except for the Tab character, are
written as multicharacter sequences.

Long lines are folded. The only meaningful flags are # and l. The current line is the last
line written.

[line] pu[t] [buffer]
Puts back deleted or yanked lines after the specified line. A buffer can be specified; oth-
erwise, the text in the unnamed buffer (where deleted or yanked text is placed by
default) is restored. The current line is the first line put back.

q[uit][!] Terminates the editing session. If the current buffer has been modified since the last
write, the subcommand writes a warning and terminates. You can override this warning
and force an exit, discarding changes, by appending the character ! to the subcommand
name.

[line] r[ead][!] [file]
Places a copy of the specified file in the current buffer after the target line (line 0 places
text at the beginning). If no file is named, the current file is the default. If there is no
current file, the specified file becomes the current file. If there is neither current file nor
file argument, the subcommand fails.

The current line is the last line read. In visual mode, the current line is the first line read.
If file is preceded by !, file is taken to be an operating system command and passed to the
program named in the SHELL environment variable. The resulting output is read in to
the buffer. You can override the special meaning of ! by escaping it with a \ (backslash)
character.

rec[over] file
Attempts to recover file if it was saved as the result of a preserve subcommand, the
receipt of a signal, or a system or editor crash. The current line is reset as described for
the read subcommand.

rew[ind][!]
Rewinds the argument list; that is, sets the current file to the first file in the argument list.
This is equivalent to a next subcommand with the current argument list as its argument.
If the current buffer has been modified since the last write, the subcommand writes a
warning and terminates. You can override the action by appending the ! (exclamation
point) character to the subcommand name (rew!). The current line is reset as described
for the read editor subcommand. This subcommand is affected by the autowrite and
writeany editor options.

3−114 Hewlett-Packard Company 527188-021

User Commands (d - f) ex(1)

se[t] [option[=[value]] ... [nooption ...] [option? ...] [all]
When no arguments are specified, writes those options whose values have been changed
from the default settings; when the argument all is specified, writes all of the option
values.

Specifying an option name followed by the ? character causes the current value of that
option to be written. The ? can be separated from the option name by zero or more
spaces. The ? is necessary only for Boolean valued options. Boolean options can be
given values by the form se option to turn them on or se nooption to turn them off; string
and numeric options can be assigned by the form se option=value. Spaces in strings can
be included as they are by preceding each such character with a \ (backslash). More
than one option can be set or listed by a single set subcommand by specifying multiple
arguments, each separated from the next by one or more spaces.

sh[ell] Invokes the program named in the SHELL environment variable with the argument -i
(interactive mode). You can resume editing when the program exits.

so[urce] file
Reads and executes subcommands from the file specified by the mandatory file argu-
ment. Such source subcommands can be nested.

[range] s[ubstitute] [/pattern/repl/[options] [count] [flags]
Replaces the first instance of pattern by the string repl on each specified line. If the
/pattern/repl/ argument is not present, the /pattern/repl/ from the previous substitute
subcommand is used.

If options includes the letter g (global), all nonoverlapping instances of the pattern in the
line are substituted. If the option letter c (confirm) is included, then before each substi-
tution the line is written with ˆ characters written on the following line, adjacent to and
identifying the pattern to be replaced; an affirmative response causes the substitution to
be done, while any other input causes it to abort. An affirmative response consists of a
line with the affirmative response (as defined by the current locale) at the beginning of
the line. Such a line is subject to editing in the same way as the command line (the / or :
line at the bottom of the screen).

The current line is the last line substituted. When the c option is used, typing the Inter-
rupt character or receiving the SIGINT signal stops the substitute operation, and ex
returns to command mode. All substitutions completed before the interrupt occurred are
retained and none are made after that point. The current line is the last line substituted.

This subcommand is affected by the LC_MESSAGES environment variable and the
wrapscan option.

su[spend][!]

st[op][!] Allows control to return to the invoking process; ex suspends itself as if it had received
the SIGTSTP signal. The suspension occurs only if job control is enabled in the invok-
ing shell.

Following either suspend or stop with the character ! affects the operation of the
autowrite editor option for this subcommand only.

The current suspend character (see stty) also causes the suspension.

ta[g][!] tagstring
Searches for the tag string, which can be in a different file. If the tag is in a different file,
the new file is opened for editing. If the current buffer has been modified since the last
write, the subcommand writes a warning and terminates. You can override the action by
appending the ! character to the subcommand name. The current line is reset to the line

527188-021 Hewlett-Packard Company 3−115

ex(1) OSS Shell and Utilities Reference Manual

indicated by the tag. This subcommand is affected by the autowrite, tags, and writeany
editor options.

The tag subcommand searches for tagstring in the tag file referred to by the tags editor
option until a reference to tagstring is found. The file pointed to by this reference is
loaded into the buffer, and the current line is set to the first occurrence of the pattern
specified in the tags file associated with the supplied tagstring. If the tags file contained
a line number reference, the current line is set to that line. If the pattern or line number
is not found, the subcommand writes an error message. If a file referred to by the tags
editor option does not exist or is not readable, the subcommand also writes an error mes-
sage.

una[bbrev] word
Deletes word from the list of abbreviations, as described by the abbrev subcommand.

u[ndo] Reverses the changes made by the previous editing subcommand (one that changes the
contents of the buffer). For this purpose, global and visual are considered single sub-
commands. An undo can itself be reversed. Commands that affect the external environ-
ment, such as write, edit, and next cannot be undone.

unm[ap][!] x
If no ! (exclamation point) is specified, removes the command-mode macro definition for
x; otherwise, removes the input-mode macro definition for x. See the map subcommand.

[line] vi[sual] [type] [count] [flags]
Enters visual mode with the current line set to line. The type argument is optional, and
can be a - (minus sign), . (period), + (plus sign), or ˆ (circumflex), as in the z subcom-
mand, to specify the position of the specified line on the screen window. (The default is
to place the line at the top of the screen window.) The count argument specifies the
number of lines that is initially written; the default is the value of the window editor
option. The Q subcommand exits visual mode. (For more information about the Q sub-
command, see the vi reference page.)

[range] w[rite][!] [>>] [file]

[range] w[rite] [!] [file]

[range] wq[!] [>>] [file]
Writes the specified lines (the whole buffer, if range is not specified) out to the file
represented by pathname file, writing to standard output the number of lines and bytes
written.

If file is specified and is not the current file, and the file named by file exists, then the
write fails. If the current file has been changed by the file subcommand and that file
exists, the write fails. In either case, you can force the write by appending the ! (excla-
mation point) character to the subcommand name. You can append to an existing file by
appending >> to the subcommand name.

If the file argument is preceded by a ! (exclamation point) character, the program named
in the SHELL environment variable is invoked with file as its second argument, and the
specified lines are passed as standard input to the subcommand. The ! in this usage must
be separated from the write subcommand by at least one space character. You can over-
ride the special meaning of ! by escaping it with a \ (backslash) character. This subcom-
mand is affected by the writeany and readonly editor options.

The subcommand wq is equivalent to a w followed by a q; wq! is equivalent to w! fol-
lowed by q. If the current buffer has no pathname associated with it, the write subcom-
mand fails.

3−116 Hewlett-Packard Company 527188-021

User Commands (d - f) ex(1)

[range] x[it][!] [file]
Performs a write subcommand if any changes have been made to the current buffer since
the last write to any file.

Unless the subcommand fails because an attempt to write lines to a file did not succeed,
the ex program exits after an x subcommand. This subcommand is affected by the wri-
teany and readonly editor options.

[range] ya[nk] [buffer] [count]
Places the specified lines in the named buffer. If no buffer is specified, the unnamed
buffer is used (where the most recently deleted or yanked text is placed by default).

[line] z [type] [count] [flags]
If type is omitted, count lines following the specified line are written. The default for
count is the value of the window editor option. The type argument changes the position
at which line is written on the screen by affecting the number of lines written before and
after line.

If type is specified, it is one of the following:

- (dash) Places line at the bottom of the screen.

+ (plus sign)
Places line at the top of the screen.

. (period) Places line in the middle.

^(circumflex)
Writes out count lines starting count*2 lines before the addressed line; the net
effect of this is that a zˆ subcommand following another z subcommand writes
the previous page.

= (equal sign)
Centers the addressed line on the screen with a line of - (dash) characters writ-
ten immediately before and after it. The number of preceding and following
lines of text written are reduced to account for these lines of hyphens.

In all cases, the current line is the last line written, with the exception of the = type,
which causes the current line to be that addressed in the subcommand.

! subcommand

[range]! subcommand
Passes the remainder of the line after the ! (exclamation point) character to the program
named in the SHELL environment variable for execution. A warning is issued if the
buffer has been changed since the last write. A single ! character is written when the
subcommand completes. The current line position is not affected.

Within the text of subcommand, % (percent sign) and # (number sign) are expanded as
pathnames (the current and alternative pathnames, respectively), and ! is replaced with
the text of the previous ! subcommand. (Thus, !! repeats the previous ! subcommand.) If
any such expansion is performed, the expanded line is echoed.

You can override the special meanings of %, #, and ! by escaping them with a \
(backslash) character. This subcommand is affected by the autowrite and writeany edi-
tor options.

In the second form of the ! subcommand, the remainder of the line after the ! is passed to
the program named in the SHELL environment variable, as described previously. The
specified lines are provided to the program as standard input; the resulting output

527188-021 Hewlett-Packard Company 3−117

ex(1) OSS Shell and Utilities Reference Manual

replaces the specified lines.

[range] < [count] [flags]
Shifts the specified lines to the left; the number of character positions to be shifted is
determined by the shiftwidth editor option. Only leading spaces are lost in shifting;
other characters are not affected. The current line is the last line changed.

[range] > [count] [flags]
Shifts the specified lines to the right, by inserting spaces, using tabs where possible, as
determined by the shiftwidth editor option. Empty lines are not changed. The current
line is the last line changed.

[range] & [options] [count] [flags]

[range] s[ubstitute] [options] [count] [flags]

[range] [options] [count] [flags]
Repeats the previous substitute subcommand, as if & were replaced by the previous
s/pattern/repl/ subcommand. (The same effect can be obtained by omitting the
/pattern/repl/ string in the substitute subcommand.) The version of the subcommand
using (tilde) is the same as & and s, but the pattern used is the last regular expression
used in any subcommand, not necessarily the one used in the last substitute subcom-
mand. For example, in the following sequence, the (tilde) is equivalent to
s/green/blue/:

s/red/blue/
/green

[line] = [flags]
Writes the line number of the specified line (the default is the last line). The current line
position is not affected.

<Ctrl-d>
Writes the next n lines, where n is the value of the editor option scroll. The subcom-
mand is invoked with the End-of-File character. The current line is the last line written.

@@ buffer

* buffer Executes each line of the named buffer as an ex subcommand. If no buffer is specified,
or is specified as @@ or *, the last buffer executed is used. If there is no last buffer, an
error occurs.

Displays addressed lines with line numbers

" Starts comment

<Return>
Displays next line

The ex Subcommand Addresses
$ The last line

+ The next line

- The previous line

+n The nth line forward

3−118 Hewlett-Packard Company 527188-021

User Commands (d - f) ex(1)

-n The nth previous line

% The first through last lines

number Line number

. The current line

x-number The numberth line before line x

x,y Lines x through y

´m The line marked with m

´´ The previous context

/pattern$ The next line with pattern at end of line

/ˆpattern The next line with pattern at start of line

/pattern The next line with pattern

?pattern The previous line with pattern

Scanning Pattern Formation
^ The beginning of the line

$ The end of the line

. Any character

\< The beginning of the word

\> The end of the word

[string] Any character in string

[ˆstring] Any character not in string

[x-y] Any character between x and y, inclusive

* Any number of the preceding character

The replacement part of the last substitute subcommand.

/(pattern\) A regular expression pattern can be enclosed in escaped parentheses to identify
them for substitution actions.

FILES
/bin/exrecover The recover subcommand.

/bin/expreserve The preserve subcommand.

.exrc or $HOME/.exrc Editor start-up file.

/tmp/Exnnnnn Editor temporary file.

/tmp/Rxnnnnn Names buffer temporary file.

/var/preserve Preservation directory.

527188-021 Hewlett-Packard Company 3−119

ex(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: ed(1), grep(1), vi(1).

Files: terminfo(4).

The TERM environment variable.

3−120 Hewlett-Packard Company 527188-021

User Commands (d - f) exec(1)

NAME
exec - Executes arguments as commands

SYNOPSIS
exec [argument ...]

DESCRIPTION
If argument is specified and is a valid command name, it is executed in place of the shell without
creating a new process. Input/output arguments can affect the current process. If no arguments
are given, the effect of exec is to modify file descriptors as prescribed by the input/output redirec-
tion list. Any file descriptor numbers greater than 2 that are opened with this mechanism are
closed when invoking another program.

EXAMPLES
1. The following command executes the program my_program:

exec my_program

EXIT VALUES
If a command is specified, exec does not return to the shell; instead, the exit status of the process is
the exit status of the program implementing the command that overlaid the shell.

If the command specified by the arguments is not found, the exit status is 127.

If the command is found, but it is not an executable utility, the exit status is 126.

If a redirection error occurs, the shell exits with a value in the range 1-125; otherwise, exec returns
an exit status of 0 (zero).

NOTES
• Parameter assignment lists that precede the command remain in effect when the command

completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The exec command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands are
in the reference page for sh(1).

RELATED INFORMATION
Commands: eval(1), sh(1).

527188-021 Hewlett-Packard Company 3−121

exit(1) OSS Shell and Utilities Reference Manual

NAME
exit - Causes the shell to exit

SYNOPSIS
exit [n]

DESCRIPTION
The exit command causes the shell to exit with the exit status specified by n. If n is omitted, the
exit status is that of the last command executed. An End-of-File also causes the shell to exit,
unless the shell has the ignoreeof option (see set) turned on.

EXAMPLES
1. The following command exits the OSS shell with a value of true.

exit 0

EXIT VALUES
If n is not specified, the exit status will be the exit value of the last command executed, or 0 (zero)
if no command was executed.

NOTES
• Parameter assignment lists that precede the command remain in effect when the command

completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The exit command is a shell built-in command. It differs from the regular commands in that it does
not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands are
in the reference page for sh(1).

RELATED INFORMATION
Commands: set(1), sh(1).

3−122 Hewlett-Packard Company 527188-021

User Commands (d - f) expand(1)

NAME
expand - Replace tab or space characters

SYNOPSIS
Current syntax

expand [-t tablist] [file ...]

Obsolescent syntax
expand [-tabstop | -tab1,tab2,...,tabn] [file ...]

The expand command changes tab characters to spaces in the named files or in the standard input
file, and writes the result to the standard output file.

FLAGS
-t tablist Specifies the tab stops. The tablist argument consists of a single positive decimal

integer or multiple positive decimal integers, separated by spaces or commas, in ascend-
ing order. If a single number is specified, tabs are set tablist column positions apart
instead of the default width (8). If multiple numbers are specified, tabs are set at those
specific column positions. Tabbing to tab stop position n thus causes the next character
output to be in the (n+1)th column position on that line.

If the expand command has to process a tab character at a position beyond the last of
those specified in a multiple tab stop list, the tab character is replaced by a single space
in the output.

-tabstop Sets tab stops tabstop spaces apart instead of the default distance (8). (Obsolescent.)

-tab1, tab2, ..., tabn
Sets tab stops at specified columns. Columns are measured in bytes. (Obsolescent.)

DESCRIPTION
Backspace characters are preserved in the output and decrement the column count for tab calcula-
tions. The column position count cannot be decremented below zero. The expand command is
useful for preprocessing character files (before sorting, looking at specific columns, and so on) that
contain tab characters.

EXAMPLES
1. To replace tab characters in file with spaces, enter:

expand file

RELATED INFORMATION
Commands: unexpand(1).

527188-021 Hewlett-Packard Company 3−123

export(1) OSS Shell and Utilities Reference Manual

NAME
export - Allows values of variables to be used by other commands

SYNOPSIS
export [name[=value ...]]

export -p

FLAGS
-p Writes the names and values of all exported variables.

DESCRIPTION
The export command marks the name and value, specified as the name and value arguments, for
automatic export to the shell environment.

If -p is specified, export writes the names and values of all exported variables to standard output.
The command export -p allows portable access to the value that can be saved and then later
restored by using, for example, a . (dot) script. The shell formats the output, including proper use
of quoting, so that it is suitable for reinput to the shell, as commands that achieve the same export-
ing results.

EXAMPLES
1. The following example defines a umask value of 066 and exports this value to the shell

where it will be used for all new files and directories created during the shell process.

export umask=066

2. The following command lists all exported variables and their values in effect for the
current shell process.

export -p

NOTES
• Parameter assignment lists that precede the command remain in effect when the command

completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

• Words, following a command specified as command, that are in the format of a parameter
assignment are expanded with the same rules as a parameter assignment. This means that
 (tilde) substitution is performed after the = (equal sign). Word splitting and filename
generation are not performed.

The export command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands are
in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

3−124 Hewlett-Packard Company 527188-021

User Commands (d - f) expr(1)

NAME
expr - Evaluates arguments as expressions

SYNOPSIS
expr expression

DESCRIPTION
The expr command reads an expression, evaluates it, and writes the result to the standard output
file. Within the expression argument, you must separate each term with spaces, precede characters
special to the shell with a \ (backslash), and quote strings containing spaces or other special char-
acters. Note that expr returns 0 (zero) to indicate a zero value, rather than the null string. Integers
can be preceded by a unary minus sign. Internally, integers are treated as 32-bit, two’s comple-
ment numbers.

The operators and keywords are described in the following listing. Characters that need to be
escaped are preceded by a \ (backslash). The list is in order of increasing precedence, with equal
precedence operators grouped within {} (braces).

expression1 \| expression2
Returns expression1 if it is neither null nor 0 (zero); otherwise, returns expression2.

expression1 \ & expression2
Returns expression1 if neither expression1 nor expression2 is null nor 0 (zero); other-
wise, returns 0 (zero).

expression1 { =, \>, \>=, \<, \<=, != } expression2
Returns the result of an integer comparison if both expressions are integers; otherwise,
returns the result of a string comparison.

expression1 {+, - } expression2
Adds or subtracts integer-valued arguments.

expression1 { *, /, % } expression2
Multiplies, divides, or provides the remainder from the division of integer-valued argu-
ments.

expression1 : expression2
Compares expression1 with expression2, which must be a regular expression, with syn-
tax as described for the grep command, except that all patterns are anchored to the
beginning of the string, so ˆ (circumflex) (which anchors a pattern to the beginning of a
line) is not a special character in this context.

Normally, the matching operator returns the number of characters matched. Alterna-
tively, you can use the \(...\) symbols in expression2 to return a portion of expression1.

(expression)
Provides expression grouping.

To avoid unpredictable results when using a range expression to match a class of characters, use a
character class expression rather than a standard range expression. For information about charac-
ter class expressions, see the discussion of this topic in the grep command reference page.

Each part of an expression is composed of separate arguments, so use of spaces is required. For
example, enter the following command line instead of expr 1+2:

expr 1 + 2

527188-021 Hewlett-Packard Company 3−125

expr(1) OSS Shell and Utilities Reference Manual

EXAMPLES
1. To increment a shell variable, enter:

COUNT=‘expr $COUNT + 1‘

This command adds 1 to the COUNT shell variable (see the sh command reference page
for details).

2. To find the length of a shell variable, enter:

RES=‘expr "$VAR" : ".*"‘

Note that the VAR variable is placed within double quotation marks to avoid problems
where VAR is NULL or contains embedded spaces. The regular expression is also quoted
to avoid expansion by the shell.

3. To use part of a shell variable, enter:

RES=‘expr "$VAR" : "-*\(.*\)"‘

This removes leading - (dashes), if any, from the VAR variable. If the \(\) characters are
omitted, the RES variable would contain the length of VAR.

4. Special considerations:

RES=‘expr "x$VAR" : "x-*\(.*\)"‘

This command succeeds even if the VAR variable has the value - (dash).

RES=‘expr "x$VAR" = "x="

This succeeds even if the VAR variable has the value = (equal sign).

EXIT VALUES
The expr command returns the following exit values:

0 The expression is neither null nor 0 (zero).

1 The expression is null or 0 (zero).

2 The expression is invalid.

>2 An error occurred.

RELATED INFORMATION
Commands: grep(1), sh(1), test(1).

3−126 Hewlett-Packard Company 527188-021

User Commands (d - f) false(1)

NAME
false - Returns a standard exit value

SYNOPSIS
false

DESCRIPTION
The false command returns a nonzero exit value. This command is usually used in input to the sh
command.

EXAMPLES
This procedure displays the date and time once a minute. To stop it, press the Interrupt key
sequence.

EXIT VALUES
The nonzero value returned by false may vary from system to system.

RELATED INFORMATION
Commands: sh(1), true(1).

527188-021 Hewlett-Packard Company 3−127

fc(1) OSS Shell and Utilities Reference Manual

NAME
fc - Lists, edits, or reexecutes commands

SYNOPSIS
fc [-r] [-e editor] [first [last]]

fc -l[-nr] [first [last]]

fc -s[old=new] [first]

fc -e -[old=new] [first] (Obsolescent)

FLAGS
-e editor Uses the specified editor to edit the commands. The value in the FCEDIT variable is

used as a default when -e is not specified. If FCEDIT is null or unset, ed is used as the
editor.

-l Lists the commands rather than invokes an editor on them. The commands are written in
the sequence indicated by the first and last arguments, as affected by -r, with each com-
mand preceded by the command number.

-n Suppresses command numbers when listing with -l.

-r Reverses the order of the commands listed with -l or editor (with neither
-l or -s). An obsolescent version of -r is fc -e -.

-s Reexecutes the command without invoking an editor.

DESCRIPTION
The fc command lists or edits and reexecutes commands previously entered to an interactive shell.

The parameters first and last specify a range of commands to be listed or edited, where first and
last are the names of previously executed commands or the numbers of commands in the list pro-
duced by the history command. A negative number is used as an offset to the current command
number.

If last is not specified, then it will be set to first. If first is not specified, the previous command is
the default for editing. The old=new argument replaces the first occurrence of a command name
old in the commands to be reexecuted by the string new.

The number of previous commands that can be accessed is determined by the value of the HIST-
SIZE variable.

EXAMPLES
1. The following command reexecutes the command whose number in the history log

corresponds to the number given for the argument.

fc -s argument

2. The following command opens the vi editor on the command in the history log that
corresponds to the number given for the argument.

fc -e vi argument

NOTES
The fc command is a shell built-in command. It differs from the regular commands in that it does
not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands are
in the reference page for sh(1).

RELATED INFORMATION

3−128 Hewlett-Packard Company 527188-021

User Commands (d - f) fc(1)

Commands: history(1), sh(1).

527188-021 Hewlett-Packard Company 3−129

fg(1) OSS Shell and Utilities Reference Manual

NAME
fg - Brings processes to the foreground

SYNOPSIS
fg [job]

DESCRIPTION
The fg command brings each process specified as job to the foreground. See the reference page
for the jobs command for information on the format of job.

EXAMPLES
1. The following command restarts, as a foreground process, the stopped background

process whose job number is 149.

fg %149

NOTES
The fg command is a shell built-in command. It differs from the regular commands in that it does
not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands are
in the reference page for sh(1).

RELATED INFORMATION
Commands: jobs(1), sh(1).

3−130 Hewlett-Packard Company 527188-021

User Commands (d - f) fgrep(1)

NAME
fgrep - Searches a file for a fixed-string pattern

SYNOPSIS
fgrep

[-c | -l]
[-bhinqsvx]
{ pattern ... | -e pattern ... | -f pattern_file ... }
[file ...]

FLAGS
While most flags can be combined, some combinations result in one flag overriding another. For
example, if you specify both the -n and -l flags, the output includes only filenames (as specified by
the -l flag) and thus does not include line numbers (as specified by the -n flag).

-b Precedes each line by the block number of the block in which it was found. Use this flag
to help find disk block numbers by context.

-c Displays only a count of matching lines.

-e pattern ...
Specifies a pattern. This flag works the same as a simple pattern but is useful when the
pattern begins with a - (dash).

-f pattern_file ...
Specifies a file that contains patterns. Each pattern terminates with a newwline charac-
ter.

-h Suppresses reporting of filenames when multiple files are processed.

-i Ignores the case of letters in locating pattern; that is, uppercase and lowercase letters in
the input are considered to be identical.

-l Lists the name of each file that has lines matching pattern. Each filename is listed only
once; filenames are separated by newline characters.

-n Precedes each line with its relative line number in the file.

-q Suppresses all output except error messages. This flag is useful for easily determining
whether a pattern or string exists in a group of files. When searching several files, it pro-
vides a performance improvement, because it can quit as soon as it finds the first match,
and it requires less care by the user in choosing the set of files to supply as arguments,
because it exits with a 0 (zero) exit status if it detects a match, even if the fgrep com-
mand detected an access or read error on earlier file arguments.

-s Suppresses error messages about inaccessible files.

-v Displays all lines except those that match the specified pattern. This flag is useful for
filtering unwanted lines out of a file.

-x Displays lines that match the pattern exactly with no additional characters.

DESCRIPTION
The fgrep command searches the specified files (the standard input file by default) for lines con-
taining characters that match the specified pattern and then writes the matching lines to the stan-
dard output file.

The fgrep command is an obsolescent version of the command grep -F, which searches for pat-
terns that are fixed strings.

527188-021 Hewlett-Packard Company 3−131

fgrep(1) OSS Shell and Utilities Reference Manual

Command Usage
The fgrep command precedes the matched line with the name of the file containing it if you
specify more than one file (except when the -h flag is specified).

Lines are limited to 2048 bytes; longer lines are broken into multiple lines of 2048 or fewer bytes.

Running the fgrep command on a nontext file (for example, an .o file) produces unpredictable
results and is discouraged.

Regular Expressions (REs)
Regular expressions (REs) cannot contain newline characters, because these signal a new pattern.
The following REs match a single character:

character
An ordinary character (one other than one of the special pattern-matching characters)
matches itself.

. A . (dot) matches any single character except the newline character.

[string] A string enclosed in [] (brackets) matches any one character in that string. In addition,
certain pattern-matching characters have special meanings within brackets:

^ If the first character of string is a ˆ (circumflex), the RE [ˆstring] matches any
character except the characters in string and the newline character. A ˆ has
this special meaning only if it occurs first in the string.

- You can use a - (dash) to indicate a range of consecutive characters. The char-
acters that fall within a range are determined by the current collating
sequence, which is defined by the LC_COLLATE environment variable. For
example, [a-d] is equivalent to [abcd] in the traditional ASCII collating
sequence.

A range can include a multicharacter collating element enclosed within
bracket-period delimiters ([. .]). The bracket-period delimiters in the RE syn-
tax distinguish multicharacter collating elements from a list of the individual
characters that make up the element.

A collating sequence can define equivalence classes for characters. An
equivalence class is a set of collating elements that all sort to the same primary
location. They are enclosed within bracket-equal delimiters ([= =]). An
equivalence class generally is designed to deal with primary-secondary sort-
ing. For example, if e, è, and ê belong to the same equivalence class, then
[[=e=]fg], [[=è=]fg], and [[=ê=]fg] are each equivalent to [eèêfg].

The - (dash) character loses its special meaning if it occurs first ([-string]), if it
immediately follows an initial circumflex ([ˆ-string]), or if it appears last
([string-]) in the string.

] When the] (right bracket) is the first character in the string ([]string]) or when
it immediately follows an initial circumflex ([ˆ]string]), it is treated as a part of
the string rather than as the string terminator.

3−132 Hewlett-Packard Company 527188-021

User Commands (d - f) fgrep(1)

\special_character
A \ (backslash) followed by a special pattern-matching character matches the special
character itself (as a literal character). These special pattern-matching characters are as
follows:

. * [\ Always special, except when they appear within [] (brackets).

^ Special at the beginning of an entire pattern or when it immediately follows
the left bracket of a pair of brackets ([ˆ...]).

$ Special at the end of an entire pattern.

[: :] A character class name enclosed in bracket-colon delimiters matches any of the set of
characters in the named class. Members of each of the sets are determined by the current
setting of the LC_CTYPE environment variable. The supported classes are alpha,
upper, lower, digit, xdigit, space, print, punct, graph, and cntrl. Here is an example
of how to specify one of these classes:

[[:lower:]]

This matches any lowercase character for the current locale.

Forming Patterns
The following rules describe how to form patterns from REs:

• An RE that consists of a single, ordinary character matches that same character in a string.

• An RE followed by an * (asterisk) matches zero or more occurrences of the character that
the RE matches. For example, the following pattern:

ab*cd

matches each of the following strings:

acd
abcd
abbcd
abbbcd

but not the following string:

abd

If there is any choice, the leftmost longest matching string is chosen. For example, given
the following string:

122333444

the pattern .* matches 122333444, the pattern .*3 matches 122333, and the pattern .*2
matches 122.

527188-021 Hewlett-Packard Company 3−133

fgrep(1) OSS Shell and Utilities Reference Manual

• An RE followed by:

\{number\}
Matches exactly number occurrences of the character matched by the RE.

\{number,\}
Matches at least number occurrences of the character matched by the RE.

\{number1,number2\}
Matches any number of occurrences of the character matched by the RE from
number1 to number2, inclusive.

The values of number1 and number2 must be integers in the range 0 through
255. Whenever a choice exists, this pattern matches as many occurrences as
possible.

Note that if number is 0 (zero), pattern matches zero occurrences of pattern. For
example:

$ echo abc | grep ’aX\{0\}bX\{0\}cX\{0\}’

abc
$

• You can combine REs into patterns that match strings containing the same sequence of
characters. For example, AB*CD matches the string ABCD, and [A-Za-z]*[0-9]*
matches any string that contains any combination of ASCII alphabetic characters (includ-
ing none), followed by any combination of numerals (including none).

• The character sequence \(pattern\) matches pattern and saves it into a numbered holding
space. Using this sequence, up to nine patterns can be saved on a line. Counting from left
to right on the line, the first pattern saved is placed in the first holding space, the second
pattern saved is placed in the second holding space, and so on.

The character sequence \n matches the nth saved pattern, which is placed in the nth hold-
ing space. (The value of n is an integer in the range 1 through 9.) Thus, the following pat-
tern:

\(A\)\(B\)C\2\1

matches the string ABCBA. You can nest patterns to be saved in holding spaces.
Whether the enclosed patterns are nested or in a series, \n refers to the nth occurrence,
counting from the left, of the delimiting characters, \).

Restricting What Patterns Match
A pattern can be restricted to match either from the beginning of a line, up to the end of the line, or
the entire line:

• A ˆ (circumflex) at the beginning of a pattern causes the pattern to match only a string that
begins in the first character position on a line.

• A $ (dollar sign) at the end of a pattern causes that pattern to match only if the last
matched character is the last character (not including the newline character) on a line.

• The construction ˆpattern$ restricts the pattern to matching only an entire line.

3−134 Hewlett-Packard Company 527188-021

User Commands (d - f) fgrep(1)

EXAMPLES
1. To search several files for a string of characters, enter:

fgrep ’strcpy’ *.c

This searches for the string strcpy in all files in the current directory with names ending in
.c.

2. To count the number of lines that match a pattern, enter:

fgrep -c ’{’ pgm.c
fgrep -c ’}’ pgm.c

This displays the number of lines in pgm.c that contain left and right braces.

If you do not put more than one { or } on a line in your C programs, and if the braces are
properly balanced, then the two numbers displayed will be the same.

3. To display all lines in a file that begin with an ASCII letter, enter:

fgrep -e ’ˆ[a-zA-Z]’ pgm.s

Note that because the fgrep command searches only for fixed strings and does not inter-
pret pattern-matching characters, the following command searches only for the literal
string ˆ[a-zA-Z] in file pgm.s:

fgrep ’ˆ[a-zA-Z]’ pgm.s

4. To display all lines that do not match a pattern, enter:

fgrep -v ’ˆ#’

This displays all lines that do not begin with a # (number sign).

5. To display the names of files that contain a pattern, enter:

fgrep -l ’rose’ *.list

This searches the files in the current directory whose names end with .list and displays the
names of those files that contain at least one line containing the string rose.

6. To display all lines that contain uppercase characters, enter:

fgrep ’[[:upper:]]’ pgm.s

EXIT VALUES
The fgrep command returns the following exit values:

0 (zero) A match was found.

1 No match was found.

2 A syntax error occurred or a file was inaccessible, even if matches were found.

RELATED INFORMATION
Commands: ed(1), egrep(1), grep(1), sed(1), sh(1).

Files: locale(4).

527188-021 Hewlett-Packard Company 3−135

fgrep(1) OSS Shell and Utilities Reference Manual

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification.

The following features are HP extensions to the XPG4 Version 2 specification:

• The -b, -h, -q, and -s flags are supported.

3−136 Hewlett-Packard Company 527188-021

User Commands (d - f) file(1)

NAME
file - Determines file type from file content

SYNOPSIS
file file ...

DESCRIPTION
The file command reads files, performs a series of tests on each one, and attempts to classify them
by type. file then writes the file types to standard output.

The file utility uses the following steps to determine the type of a file:

• Uses the stat() function to determine if the file operand is a regular file or a special file
such as a directory, a named pipe (FIFO), or a file in the Guardian file system.

• Checks regular files to determine if they are HP-generated object files.

• Examines the first 512 bytes of object files other than HP object files to determine the file
type; uses the /etc/magic file to check for magic values.

• Invokes a Guardian procedure call for Guardian text files to retrieve the Guardian specific
file attributes, file type, and file code.

If a file appears to be plain text, file examines the first 512 bytes and tries to determine what kind
of text it is. If the first 512 bytes only contain ASCII characters, file returns either ASCII text or
English text. If the file contains other characters (that is, European or Asian xtended charac-
ters), file returns data. If a file does not appear to be plain text, file attempts to distinguish a
binary data file from a text file that contains extended characters.

/etc/magic File
The file command uses the /etc/magic file to identify files that have a magic number (that is, con-
tain a string constant that indicates type).

The following magic values are supported:

Table 3−1. Supported Magic Values

__
Byte Offset Value Type Magic Value Printed String__
0 short 070707 cpio archive
0 string 070707 ASCII cpio archive
0 string %! PostScript document
0 string <MakerFile FrameMaker document
0 string <MIFFile FrameMaker MIF file
0 string <MML FrameMaker MML file
0 string !<arch> archive
257 string ustar tar archive
40 string SunBin Sun binary__��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

You can add other magic values to the /etc/magic file.

Use on Guardian Objects
Specify Guardian files with the /G pathname convention.

The file command uses the stat() function to determine the file type. Guardian processes with sub-
type 30 are identified as character special files. Guardian pathnames consisting of only /G,
volume names, or subvolume names are identified as directory. Guardian nondisk devices and
processes that are not of subtype 30 are identified as block special.

For disk files, the file utility checks the file format and returns its type. The file utility can only
detect object files created by HP compilers and tools. Object files generated by other sources are

527188-021 Hewlett-Packard Company 3−137

file(1) OSS Shell and Utilities Reference Manual

flagged as unknown format.

For text files, the file utility examines the file data and tries to determine what kind of text it con-
tains. The string empty is printed for any file type that has no data.

Standard Output
The type value for each file operand is printed to standard output in the following format:

"%s: %s\n", file, type[,type]...

where type contains one of the following strings:

__
File Type Strings__
OSS and Guardian
files that are not
disk files

block special, character special,
directory, fifo, strings

__
Empty regular
OSS files

empty

__
Regular HP object
files

Archive member, axcel region, binder
region, ELF object format, executable,
Guardian Archive, Guardian COFF
object format, Guardian target,
library, NonStop OSS target, TNS/E PIC
object file, TNS/R object file, TNS/R
PIC object file, OSS archive, process
snapshot, shared runtime library, sym-
bol region, TNS object format, uses
shared runtime library__

Regular text files ASCII text, assembler program text,
commands text, C program text, data or
International Language text, English
text, FORTRAN program text, English
text, EQN, input text, [nr/tr]off, SCCS,
TBL__

Files in the Guar-
dian file system

entry-sequenced, file codes, key-
sequenced, relative, SQL object,
unstructured__

Files with magic
values, cpio or tar
format files

archive, CPIO archive, FrameMaker docu-
ment, FrameMaker MIF file, FrameMaker
MML file, PostScript document, Sun
Binary, TAR archive__

All other files unknown format__�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

EXAMPLES
1. To show the file type of a Guardian text file, enter:

file /G/vol/subvol/file

This command displays the pathname of the file followed by the file type.

3−138 Hewlett-Packard Company 527188-021

User Commands (d - f) file(1)

FILES
/etc/magic File type database.

RELATED INFORMATION
Commands: ls(1).

Files: locale(4).

STANDARDS CONFORMANCE
This command has extensions to the XPG4 Version 2 specification in order to support files in the
Guardian environment.

527188-021 Hewlett-Packard Company 3−139

find(1) OSS Shell and Utilities Reference Manual

NAME
find - Finds files matching an expression

SYNOPSIS
find pathname ... [-W NOG] [-W NOE] [expression ...]

FLAGS
HP Extensions

-W NOG Specifies that the /G directory should be omitted when the initial directory is root.
This flag is ignored when the initial directory is not /, /E, or /E/system.

-W NOE Specifies that the /E directory should be omitted when the initial directory is root.
This flag is ignored when the initial directory is not root.

Specify both the -W NOG and -W NOE flags to omit both the /G and /E directories.

DESCRIPTION
The find command recursively searches the directory tree for each specified pathname, seeking
files that match a Boolean expression written using terms given later. The output from find
depends on the terms used in expression.

Expressions
In the following descriptions, the argument number is a decimal integer that can be specified as
+number (more than number), -number (less than number), or number (exactly number).

The first argument that starts with a - (dash) or is a ! (exclamation point) or a ((left parenthesis)
and all subsequent arguments are interpreted as an expression.

-acl [aclpatt | =aclpatt | opt]
TRUE if the access control list (ACL) of the file matches the ACL pattern aclpatt or
contains optional ACL entries. See "Access Control Lists (ACLs)."

-name pattern
TRUE if pattern matches the basename of a filename. You can use pattern-matching
characters, provided they are quoted.

-perm [-]mode
TRUE if the file permission code of the file exactly matches mode (see the reference
page for the chmod command). If the optional - (dash) is present, this expression evalu-
ates to TRUE if at least these permissions are set. If the - is omitted, the expression
evaluates to TRUE when the file permission bits exactly match the value of the resulting
template.

The mode argument can be up to three octal digits. This argument is used to represent
file mode bits. It is identical in format to the symbolic mode argument described for the
chmod command and is interpreted as follows:

• To start, a template is assumed with all file mode bits cleared.

• The symbol + (plus sign) sets the appropriate mode bits in the template, whereas
a symbol of - (minus sign) clears the appropriate bits. A - (minus sign) cannot
be the first character of mode because it could create ambiguity with the optional
leading - (dash). Because the initial mode is all bits off, there are no symbolic
modes that need to use - (minus sign) as the first character.

3−140 Hewlett-Packard Company 527188-021

User Commands (d - f) find(1)

• The symbol = (equal sign) sets the appropriate mode bits without regard to the
contents of the process’s file mode creation mask.

-perm [-]octal_number
If the - (dash) is omitted, TRUE when the file permission bits exactly match the value of
the octal number octal_number and only the bits corresponding to the octal mask 07777
are compared. (For more information, see the description of the octal mode on the
chmod command’s reference page.) If octal_number is preceded by a - (dash), the
expression evaluates as TRUE if at least all of the bits specified in octal_number that
are also set in the octal mask 07777 are set.

-priv { PRIVSETID | PRIVSOARFOPEN }
(J06.11 or later J-series RVUs or H06.22 or later H-series RVUs only)
TRUE when the file has the specified privilege. For example, the flag:

-priv PRIVSETID

is TRUE for files that have the PRIVSETID privilege.

-prune Always TRUE. This expression prunes the search tree at the file. That is, if the current
pathname is a directory, the find command does not descend into that directory. If the -
depth expression is specified, the -prune expression has no effect.

-type type
TRUE if the file type is of the specified type as follows:

c Character special file

d Directory

f Plain file

l Symbolic link

p FIFO (a named pipe)

s Socket file (H-series and J-series RVUs only)

-links number
TRUE if the file has number links. The argument number is a decimal integer that can
be specified as +number (more than number), -number (less than number), or number
(exactly number). See the reference page for the ln command.

-user user
TRUE if the file belongs to user.

-nouser TRUE if the file belongs to a user ID for which the getpwuid() function returns null.

-group group
TRUE if the file belongs to group.

-nogroup
TRUE if the file belongs to a group ID for which the getgrgid() function returns null.

-size number[c | k]
TRUE if the file is number blocks long (512 bytes per block). For this comparison, the
file size is rounded up to the nearest block. If the c argument is present, the expression
evaluates to TRUE if the file is number bytes long. If the k argument is present, the
expression evaluates to TRUE if the file is number kilobytes long. For this comparison,
the file size is rounded up to the nearest kilobyte.

527188-021 Hewlett-Packard Company 3−141

find(1) OSS Shell and Utilities Reference Manual

The argument number is a decimal integer that can be specified as +number (more than
number), -number (less than number), or number (exactly number).

-atime number
TRUE if the file was accessed in the past number days. The argument number is a
decimal integer that can be specified as +number (more than number), -number (less
than number), or number (exactly number). For example -atime 3 is TRUE if the file
was accessed any time in the period from 72 to 48 hours ago.

-mtime number
TRUE if the file was modified in the past number days. The argument number is a
decimal integer that can be specified as +number (more than number), -number (less
than number), or number (exactly number).

-ctime number
TRUE if the file inode was changed in the past number days. The argument number is a
decimal integer that can be specified as +number (more than number), -number (less
than number), or number (exactly number).

-exec command
TRUE if the command runs and returns a 0 (zero) value as exit status. The end of com-
mand must be punctuated by a quoted or escaped ; (semicolon). The command parame-
ter { } is replaced by the current pathname. If shell quoting is used in command, each
word in the command must be quoted separately. Also, the characters ; (semicolon) and
{ } (braces) must appear as separate words on a command line.

The current directory for the invocation of command is the same as the current directory
when the find command was started.

-ok command
Equivalent to the -exec expression, except that the find command first asks you whether
it should start command. If your response begins with y, or the locale’s equivalent of a
y, command is started. If the response is negative, command is not invoked and the
expression evaluates as FALSE. The end of command must be punctuated by a quoted
or escaped semicolon. If shell quoting is used in command, each word in the command
must be quoted separately. Also, the characters ; (semicolon) and { } (braces) must
appear as separate words on a command line.

-print Always TRUE; causes the current pathname to be displayed. The find command
assumes a -print expression, unless the -exec, ls, or -ok expressions are present.

-newer file
TRUE if the current file was modified more recently than the file indicated by file.

-depth Always TRUE. This expression causes the descent of the directory hierarchy to be done
so that all entries in a directory are affected before the directory itself. This expression
can be useful when find is used with the pax utility to transfer files contained in direc-
tories without write permission.

If the -depth expression is not specified, all entries in a directory are affected after the
directory itself. If -depth is specified, it applies to the entire expression, even if the -
depth primary would not normally be evaluated.

\(expression \)
TRUE if expression is TRUE.

3−142 Hewlett-Packard Company 527188-021

User Commands (d - f) find(1)

-ls Always TRUE; causes the pathname argument to be printed together with its associated
statistics. These include, respectively, inode number, size in kilobytes (1024 bytes), pro-
tection mode, number of hard links, user, group, size in bytes, and modification time. If
the file is a special file, the size field contains the major and minor device numbers. If the
file is a symbolic link, the pathname of the linked-to file is printed, preceded by ->. The
format of the -ls flag is identical to that of ls -gilds (note that formatting is done inter-
nally, without executing ls.)

-xdev Always TRUE; causes the find command to not traverse down into a file system
different from the one on which the current pathname resides. If any -xdev expression is
specified, it applies to the entire expression even if the -xdev expression would not nor-
mally be evaluated.

The primaries can be combined using the following operators (in descending order of
precedence):

(expression)
TRUE if expression is TRUE.

! expression
The negation of a primary (! is the unary not operator).

expression [-a] expression
Concatenation of primaries (the and operation is implied by the juxtaposition of two pri-
maries or can be explicitly stated as -a). The second expression is not evaluated if the first
expression is FALSE.

expression -o expression
Alternation of primaries (-o is the or operator). The second expression is not evaluated if
the first expression is TRUE.

If no expression is present, -print is used as the expression; otherwise, if the given expression
does not contain any of the expressions -exec, -ok, or -print, the given expression is effectively
replaced by the following:

(expression) -print

The -user, -group, and -newer expressions each evaluate their respective arguments only once.

To avoid unpredictable results when using a range expression to match a class of characters, use a
character class expression rather than a standard range expression. For information about charac-
ter class expressions, see the reference page for the grep command.

Access Control Lists (ACLs)
The -acl expression enables the user to search for access control list (ACL) entries. The expression
TRUE if the file’s access control list matches an access control list pattern or contains optional
ACL entries (see the acl(5) reference page). The -acl expression has three forms:

-acl aclpatt Match all files that have ACLs that include all (zero or more) pattern entries
specified by the aclpatt pattern.

-acl =aclpatt Match a file only if its ACL includes all (zero or more) pattern entries specified by
the aclpatt pattern, and every entry in its ACL is matched by at least one pattern
entry specified in the aclpatt pattern.

-acl opt Match all files that have ACLs that include optional ACL entries.

By default, -acl is TRUE for files that have access control lists that include all the access control
list patterns in aclpatt. The ACL for a file can also contain unmatched entries.

527188-021 Hewlett-Packard Company 3−143

find(1) OSS Shell and Utilities Reference Manual

If aclpatt begins with =, the remainder of the string must match all entries in the access control list
of the file.

An aclpatt consists either of a type field, an ID field, and a mode field, or a type field and a mode
field. The fields are separated by colons. You can specify multiple comma-separated aclpatts.

The type field is one of user, group, class, other or *, optionally preceded by default:. The
literals user, group, class, other, and default can be abbreviated to u, g, c, o, and d, respectively.
A type field of * matches any of the preceding types. If the type field is class, other, or *, the ID
field is not allowed (for example, -acl *:rwx).

The ID field is either a numeric user or group ID, a user or group ID string from the system user
authentication database or group database, respectively, or *, which matches any ID.

The mode field consists of a string of three characters. The first character is either r, indicating
that read permission is granted; -, indicating that read permission is denied; or ?, which matches
either state of read permission. The second character is either w, -, or ?, which similarly indicate
the state of write permission; and the third character is either x, -, or ?, which indicates the state of
execute permission.

As a special case, if aclpatt is the value opt, the expression is true for files with optional access
control list entries.

Environment Variables
The following environment variables affect the execution of the find command:

UTILSGE Specifies that HP extensions to the root directory should be omitted when the ini-
tial directory is root and a recursive operation occurs in an OSS shell command.
Application programs that test this variable might also honor its settings.

The UTILSGE value can be any of the following:

NOE Omit the /E directory.

NOG Omit the /G directory.

NOG:NOE Omit both the /G and /E directories.

The effect of assigning a value to the UTILSGE environment variable is the same
as specifying the -W NOG or -W NOE flag in the command.

EXAMPLES
1. To list all files in the file system with a given base filename, enter:

find / -name .profile

This command searches the entire file system and writes the complete pathnames of all
files named .profile. The / (slash) tells the find command to search the root directory and
all of its subdirectories. This search may take a while, so it is best to limit the search by
specifying the directories where you think the files might be.

2. To list the files with a specific permission code in the current directory tree, enter:

find . -perm 0600

This command lists the names of the files that have only owner-read and owner-write per-
mission. The . (dot) tells the find command to search the current directory and its sub-
directories. See the reference page for the chmod command for details about permission
codes. Alternatively, you could enter the following:

find . -perm u+rw

3−144 Hewlett-Packard Company 527188-021

User Commands (d - f) find(1)

3. To search several directories for files with certain permission codes, enter:

find manual clients proposals -perm -0600

This command lists the names of the files that have owner-read and owner-write permis-
sion and possibly other permissions. The directories manual, clients, and proposals, and
their subdirectories, are searched. Note that the expression -perm 0600 in the previous
example selects only files with permission codes that match 0600 exactly. In this exam-
ple, the expression -perm -0600 selects files with permission codes that allow at least the
accesses indicated by 0600. This command also matches the permission codes 0622 and
2744.

4. To search for files on the local node that have the PRIVSETID privilege, enter:

find /bin -priv PRIVSETID -print

5. To search for regular files with multiple links, enter:

find . -type f -links +1

This lists the names of the ordinary files (-type f) that have more than one link (-links +1).
Note that every directory has at least two links: the entry in its parent directory and its
own . (dot) entry. See the reference page for the ln command for details about multiple
file links.

6. To search for the file f1 among the OSS files on the remote node node1, enter:

export UTILSGE=NOG
find /E/node1 -name f1 -print

7. To search for the file f1 among the OSS files on the local node, enter:

find / -W NOG -W NOE -name f1 -print

8. To find all files not owned by user karl that have access control lists with at least one entry
associated with karl, and one entry for no specific user in group bin with the read bit on
and the write bit off, enter:

find / ! -user karl -acl u:karl:???,g:bin:r-? -print

9. To find all files that have a read bit set in any access control list entry, enter:

find / -acl *:r?? -print

10. To find all files that have the write bit unset and execute bit set in every access control list
entry, enter:

find / -acl =*:?-x -print

11. To find all files that have optional access control list entries, enter:

find / -acl opt -print

NOTES
Because /G and /E both appear in your local root directory, you should be very careful when using
OSS shell commands on or from the root directory. OSS shell commands that perform recursive
actions make no distinction between Guardian and OSS files or between local and remote files.
You can use the -W NOG and -W NOE flags or the UTILSGE environment variable to exclude
objects in the Guardian file system or objects accessible through the Expand product.

527188-021 Hewlett-Packard Company 3−145

find(1) OSS Shell and Utilities Reference Manual

EXIT VALUES
The find command returns a 0 (zero) if all the paths are visited without error. The find command
returns a nonzero value if it encounters an error.

RELATED INFORMATION
Commands: chmod(1), getfilepriv(1), grep(1), ln(1), setacl(1), setfilepriv(1), sh(1), test(1).

Functions: stat(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The -W NOG and -W NOE flags and the UTILSGE environment variable are HP extensions to
the XPG4 Version 2 specification.

3−146 Hewlett-Packard Company 527188-021

User Commands (d - f) flex(1)

NAME
flex - Generates a C language lexical analyzer

SYNOPSIS
flex [-bcdfinpstvFILT8] -C[efmF] [-Sskeleton] [file ...]

FLAGS
-b Generates backtracking information to file lex.backtrack. This is a list of scanner states

that require backtracking and the input characters on which they backtrack. By adding
rules, you can remove backtracking states. If all backtracking states are eliminated and
the -f or -F flag is used, the generated scanner will run faster.

-d Makes the generated scanner run in debug mode. Whenever a pattern is recognized and
the global yy_lex_debug is nonzero (which is the default value), the scanner writes to
the standard error file a line of the form:

--accepting rule at line 53 ("the matched text")

The line number refers to the location of the rule in the file defining the scanner (the
input to the flex command). Messages are also generated when the scanner backtracks,
accepts the default rule, reaches the end of its input buffer (or encounters a NULL), or
reaches an End-of-File.

-f Specifies full table (no table compression is done). The result is large but fast. This flag
is equivalent to -Cf.

-i Instructs the flex command to generate a case-insensitive scanner. The case of letters
given in the flex input patterns is ignored, and tokens in the input are matched regardless
of case. The matched text given in the yytext variable will have the original case (as
read by the scanner).

-p Generates a performance report to the standard error file. This identifies features of the
flex input file that will cause a loss of performance in the resulting scanner.

-s Causes the default rule (that unmatched scanner input is echoed to the standard output
file to be suppressed. If the scanner encounters input that does not match any of its
rules, it aborts with an error.

-t Instructs the flex command to write the scanner it generates to the standard output file
instead of to the file lex.yy.c.

-v Specifies that the flex command should write to the standard error file a summary of
statistics regarding the scanner it generates.

-F Specifies that the fast scanner table representation should be used. This representation is
about as fast as the full table representation (the -f flag), and for some sets of patterns it
will be considerably smaller (and for others, larger). This flag is equivalent to the -CF
flag.

-I Instructs the flex command to generate an interactive scanner; that is, a scanner that
stops immediately rather than looking ahead if it knows that the currently scanned text
cannot be part of a longer rule’s match. Note that the -I flag cannot be used with full or
fast tables; that is, with the -f, -F, -Cf, or -CF flags.

-L Instructs the flex command not to generate #line directives in the file lex.yy.c. The
default action is to generate such directives so error messages in the actions will be
correctly located with respect to the original flex input files.

527188-021 Hewlett-Packard Company 3−147

flex(1) OSS Shell and Utilities Reference Manual

-T Makes the flex command run in trace mode. It generates a lot of messages to the stan-
dard output file concerning the form of the input and the resultant nondeterministic and
deterministic finite automata. This flag is mostly for use in maintaining the flex com-
mand.

-8 Instructs the flex command to generate an 8-bit scanner (the default scanner is a 7-bit
scanner).

-C[efmF]
Controls the degree of table compression. The default setting is -Cem, which provides
the highest degree of table compression. Faster-executing scanners can be traded off at
the cost of larger tables with the following generally being true:

Slowest and smallest

-Cem
-Cm
-Ce
-C
-C{f,F}e
-C{f,F}

Fastest and largest

-C flags are not cumulative; whenever the flag is encountered, the previous -C settings
are forgotten. The -f or -F and -Cm flags do not make sense together; there is no oppor-
tunity for meta-equivalence classes if the table is not being compressed. Otherwise, the
flags may be freely mixed.

-C Specifies that the scanner tables should be compressed and neither
equivalence classes nor meta-equivalence classes should be used.

-Ce Directs the flex command to construct equivalence classes; for example,
sets of characters that have identical lexical properties. Equivalence
classes usually give dramatic reductions in the final table/object file
sizes (typically a factor of 2 to 5) and are inexpensive in terms of cost
versus performance (one array look-up per character scanned).

-Cm Directs the flex command to construct meta-equivalence classes, which
are sets of equivalence classes (or characters, if equivalence classes are
not being used) that are commonly used together. Meta-equivalence
classes are often a benefit when using compressed tables, but they have
a moderate performance impact (one or two "if" tests and one array
look-up per character scanned).

-Cf Specifies that the full scanner tables should be generated; the flex com-
mand should not compress the tables by taking advantage of similar
transition functions for different states.

-CF Specifies that the alternative fast scanner representation should be used.

3−148 Hewlett-Packard Company 527188-021

User Commands (d - f) flex(1)

-Sskeleton
Overrides the default skeleton file from which the command constructs its scanners.
This is useful for flex maintenance or development.

-c Specifies table-compression options. (Obsolescent)

-n Suppresses the statistics summaries that the -v flag typically generates. (Obsolescent.)

DESCRIPTION
The lex and flex commands have the same functionality.

The flex command is a tool for generating scanners: programs that recognize lexical patterns in
text. flex reads the given input files, or its standard input file if no filenames are given or if a file
operand is - (dash), for a description of a scanner to generate. The description is in the form of
pairs of regular expressions and C code, called rules. flex generates as output a C source file,
named lex.yy.c, which defines a routine yylex(). This file is compiled and linked with the -ll
library to produce an executable. When the executable is run, it scans its input and the regular
expressions in its rules looking for the best match (longest input). When it has selected a rule it
executes the associated C code, which has access to the matched input sequence (commonly
referred to as a token). This process then repeats until input is exhausted.

flex treats multiple input files as one.

Syntax for flex Input
This subsection contains a description of the flex input files, which are normally named with a .l
suffix. It provides a listing of the special values, macros, and functions recognized by the flex com-
mand.

The flex input file consists of three sections, separated by a line with just %% in it:

[definitions]
%%
[rules]
[%%
[user_functions]]

where

definitions Contains declarations to simplify the scanner specification and declarations of
start states, which are explained below.

rules Describes what the scanner is to do.

user_functions Contains user-supplied functions, which are copied directly to file lex.yy.c.

With the exception of the first %% sequence, all sections are optional. The minimal scanner,
%%, copies its input to the standard output file.

Each line in the definitions section can be:

name regexp Defines name to expand to regexp. name is a word beginning with a letter or an
underscore (_) followed by zero or more letters, digits, underscores, or dashes (-
). In the regular-expression parts of the rules section, the command substitutes
regexp wherever you refer to {name} (name within braces).

%x state [state ...] or %s state [state ...]
Defines names for states used in the rules section. A rule can be made condition-
ally active based on the current scanner state. Multiple lines defining states can
appear, and each can contain multiple state names, separated by white space. The
name of a state follows the same syntax as that of regexp names except that

527188-021 Hewlett-Packard Company 3−149

flex(1) OSS Shell and Utilities Reference Manual

dashes (-) are not permitted. Unlike regexp names, state names share the C
#define namespace. In the rules section, states are recognized as <state> (state
within angle brackets).

The %x directive names exclusive states. When a scanner is in an exclusive state,
only rules prefixed with that state are active. Inclusive states are named with the
%s directive.

%{ or %} When placed on lines by themselves, enclose C code to be passed verbatim into
the global definitions of the output file. Such lines commonly include preproces-
sor directives and declarations of external variables and functions.

space or tab Appear at the beginning of lines in the definitions section that are to be passed
directly into the lex.yy.c output file, as part of the initial global definitions.

The rules section follows the definitions, separated by a line consisting of %%. The rules section
contains rules for matching input and taking actions, in the following format:

pattern [action]

pattern starts in the first column of the line and extends until the first nonescaped white space
character. The command attempts to find the pattern that matches the longest input sequence and
execute the associated action. If two or more patterns match the same input, the one that appears
first in the rules section is chosen. If no action exists, the matched input is discarded. If no pat-
tern matches the input, the default action is to copy it to the standard output file.

All action code is placed in the yylex() function. Text (C code or declarations) placed at the
beginning of the rules section is copied to the beginning of the yylex() function and can be used in
actions. This text must begin with a space or a tab (to distinguish it from rules). In addition, any
input (beginning with a space or within %{ and %} delimiter lines) appearing at the beginning of
the rules section before any rules are specified is written to file lex.yy.c after the declarations of
variables for the yylex() function and before the first line of code in yylex().

Elements of each rule are:

state A pattern can begin with a comma-separated list of state names enclosed by angle
brackets (< state [,state...] >). These states are entered through the BEGIN state-
ment. If a pattern begins with a state, the scanner can recognize it only when in
that state. The initial state is 0 (zero).

regexp A pattern can be a regular expression to match against the input stream. The reg-
ular expressions in the flex command provide a rich character-matching syntax.

The following characters, shown in order of decreasing precedence, have special
meanings:

x Matches the character x.

"" (double quotes)
Enclose characters and treat them as literal strings. For example, "*+"
is treated as the asterisk character followed by the plus character.

\str (backslash)
If str is one of the characters a, b, f, n, r, t, or v, then represents the
ANSI C interpretation (for example, \n is a newline). If str is a string of
octal digits, it is interpreted as a character with octal value str. If str is a
string of hexadecimal digits with a leading x, it is interpreted as a char-
acter with that value. Otherwise, it is interpreted literally with no spe-
cial meaning. For example, x*yz represents the four characters x*yz.

3−150 Hewlett-Packard Company 527188-021

User Commands (d - f) flex(1)

[] (brackets)
Represent a character class in the enclosed range ([.-.]) or the enclosed
list ([...]). The dash character (-) is used to define a range of characters
from the ASCII value or the 8-bit class of the character that comes
before the dash to the ASCII value or the 8-bit class of the character that
follows the dash. For example, [abcx-z] matches a, b, c, x, y, or z.

The circumflex (ˆ), when it appears as the first character in a character
class, indicates the complement of the set of characters within that class.
For example, [ˆabc] matches any character except a, b, or c, including
special characters like newline. Similarly, [ˆa-zA-Z] is any character
that is not a letter.

() (parentheses)
Group regular expressions. For example, (ab) is considered as a single
regular expression.

{ } (braces)
When enclosing numbers, indicate a number of consecutive occurrences
of the expression that comes before it. For example, (ab){1,5} indicates
a match for from 1 to 5 occurrences of the string ab.

When enclosing a name, the name represents a regular expression
defined in the definitions section. For example, {digit} will be replaced
with the defined regular expression for digit. Note that the expansion
takes place as if the definition were enclosed in parentheses.

. (dot) Matches any single character except newline.

? (question mark)
Matches zero or one of the preceding expressions. For example, ab?c
matches both ac and abc.

* (asterisk)
Matches zero or more of the preceding expressions. For example, a* is
zero or more consecutive a characters. The utility of matching zero
occurrences is more obvious in complicated expressions. For example,
the expression [A-Za-z][A-Za-z0-9]* indicates all alphanumeric strings
with a leading alphabetic character, including strings that are only one
alphabetic character.

+ (plus sign)
Matches one or more of the preceding expressions. For example,
[a-z]+ is all strings of lowercase letters.

xy (concatenation)
Matches the expression x followed by the expression y.

� (vertical bar)
Matches either the preceding expression or the following expression.
For example, ab�cd matches either ab or cd.

x/y (slash)
Matches expression x only if expression y (trailing context) immediately
follows it. For example, ab/cd matches the string ab but only if fol-
lowed by cd. Only one trailing context is permitted per pattern.

527188-021 Hewlett-Packard Company 3−151

flex(1) OSS Shell and Utilities Reference Manual

^ (circumflex)
When it appears at the beginning of the pattern, matches the beginning
of a line. For example, ˆabc matches the string abc if it is found at the
beginning of a line.

$ (dollar sign)
When it appears at the end of a pattern, matches the end of a line. It is
equivalent to /\n. For example, abc$ matches the string abc if it is
found at the end of a line.

<<EOF>>
Matches an End-of-File.

<x> (angle bracket)
Identifies a state name (see earlier description of state) and can appear
only at the beginning of a pattern. For example, <done><<EOF>>
matches an End-of-File, but only if it is in the state done.

In addition, the following rules apply for bracket expressions:

Equivalence class expressions
These represent the set of collating elements in an equivalence
class and are enclosed within bracket-equal delimiters ([= =]).
An equivalence class generally is designed to deal with primary-
secondary sorting; that is, for languages like French that define
groups of characters as sorting to the same primary location, and
then have a tie-breaking, secondary sort. For example, if a, à (a
accent grave), and â (a circumflex) belong to the same
equivalence class, then [[=a=]b], [[=à=]b], and [[=â=]b] are each
equivalent to [aàâb].

NOTE: If you are viewing this reference page online using the
man command, the special characters are not displayed. See this
reference page in the Open System Services Shell and Utilities
Reference Manual.

Character class expressions
These represent the set of characters in the current locale belong-
ing to the named ctype class. These are expressed as a ctype class
name enclosed in bracket-colon delimiters ([: :]).

In the C or OSS locale, the following character class expressions
are supported: [:alpha:], [:upper:], [:lower:], [:digit:],
[:alnum:], [:xdigit:], [:space:], [:print:], [:punct:], [:graph:],
and [:cntrl:].

Other locales may define additional character classes.

Letters and digits never have special meanings. A character such as ˆ or -, which
has a special meaning in particular contexts, refers simply to itself when found
outside that context. Spaces and tabs must be escaped to appear in a regular
expression; otherwise they indicate the end of the expression.

3−152 Hewlett-Packard Company 527188-021

User Commands (d - f) flex(1)

action Each pattern in a rule has a corresponding action, which can be any arbitrary C
statement. The pattern ends at the first nonescaped white space character; the
remainder of the line is its action. If the action is empty, then when the pattern is
matched, the input that matched it is discarded.

If the action contains a {, then the action scans till the balancing } is found, and
the action may cross multiple lines. Using a return statement in an action returns
from yylex().

An action consisting solely of a vertical bar (|) means same as the action for the
next rule.

flex variables that can be used within actions are:

yytext Is a string (char *) containing the current matched input. It
cannot be modified.

yyleng Is the length (int) of the current matched input. It cannot be
modified.

yyin Is a stream (FILE *) that the lex and flex commands reads from
the standard input file by default. It can be changed, but
because of the buffering flex uses, changing the stream makes
sense only before scanning begins. Once scanning terminates
because an End-of-File was found, void yyrestart (FILE
*new_file) can be called to point yyin at a new input file. Alter-
natively, yyin can be changed whenever a new or different
buffer is selected (see yy_switch_to_buffer()).

yyout Is a stream (FILE *) to which ECHO output is written (the
standard output file by default). It can be changed by the user.

YY_CURRENT_BUFFER
Returns the current buffer (YY_BUFFER_STATE) used for
scanner input.

flex macros and functions that can be used within actions are:

ECHO Copies the yytext variable to the scanner’s output.

BEGIN state
Changes the scanner state to be state. This affects which rules are
active. The state must be defined in a %s or %x definition. The ini-
tial state of the scanner is INITIAL or 0 (zero).

REJECT Directs the scanner to proceed immediately to the next best pattern
that matches the input (which may be a prefix of the current match).
The yytext and yyleng variables are reset appropriately. Note that
REJECT is a particularly expensive feature in terms of scanner per-
formance; if it is used in any of the scanner’s actions, it slows down
all the scanner’s pattern matching operations. REJECT cannot be
used if the command is invoked with either the -f or -F flag.

yymore() Indicates that the next matched text should be appended to the
currently matched text in the yytext variable (rather than replace it).

527188-021 Hewlett-Packard Company 3−153

flex(1) OSS Shell and Utilities Reference Manual

yyless(n) Returns all but the first n characters of the current token back to the
input stream, where they are rescanned when the scanner looks for the
next match. The yytext and yyleng variables are adjusted accord-
ingly.

yywrap() Returns 0 (zero) if there is more input to scan or 1 if there is not. The
default yywrap() always returns 1. It is implemented as a macro.

yyterminate()
Can be used instead of a return statement in an action. It terminates
the scanner and returns a 0 (zero) to the scanner’s caller.

yyterminate() is automatically called when an End-of-File is
encountered. It is a macro and can be redefined.

yy_create_buffer(file, size)
Returns a YY_BUFFER_STATE handle to a new input buffer large
enough to accommodate size characters and associated with the given
file. When in doubt, use YY_BUF_SIZE for the size.

yy_switch_to_buffer(new_buffer)
Switches the scanner’s processing to scan for tokens from the given
buffer, which must be a YY_BUFFER_STATE.

yy_delete_buffer(buffer)
Deletes the given buffer.

YY_NEW_FILE
Enables scanning to continue after the yyin variable has been
assigned a new file to process.

YY_DECL Controls how the scanning function, yylex(), is declared. By default,
it is int yylex() or, if prototypes are being used, int yylex(void). This
definition can be changed by redefining the YY_DECL macro. This
macro is expanded immediately before the {...} (braces) that delimit
the scanner function body.

YY_INPUT(buf,result,max_size)
Controls scanner input. By default, YY_INPUT reads from the file-
pointer yyin variable. Its action is to place up to max_size characters
in the character array buf and return in the integer variable result
either the number of characters read or the constant YY_NULL to
indicate EOF. Following is a sample redefinition of YY_INPUT, in
the definitions section of the input file:

%{
#undef YY_INPUT
#define YY_INPUT(buf,result,max_size)\

{\
int c = getchar();\
result = (c == EOF) ? YY_NULL : (buf[0] = c, 1);\

}
%}

When the scanner receives an End-of-File indication from
YY_INPUT, it checks the yywrap() function. If yywrap() returns
zero, it is assumed that the yyin has been set up to point to another

3−154 Hewlett-Packard Company 527188-021

User Commands (d - f) flex(1)

input file, and scanning continues. If it returns a nonzero value, then
the scanner terminates, returning zero to its caller.

YY_USER_ACTION
Can be redefined to provide an action that is always executed prior to
the matched pattern’s action.

YY _USER_INIT
Can be redefined to provide an action that is always executed before
the first scan.

YY_BREAK
Is used in the scanner to separate different actions. By default, it is
simply a break, but it can be redefined if necessary.

The user_functions section consists of complete C functions, which are passed directly into the
lex.y.cc output file (the effect is similar to defining the functions in separate .c files and linking
them with lex.y.cc). This section is separated from the rules section by the %% delimiter.

Comments, in C syntax, can appear anywhere in the user_functions or definitions sections. In the
rules section, comments can be embedded within actions. Empty lines or lines consisting of white
space are ignored.

The following macros are not normally called explicitly within an action, but they are used inter-
nally by the flex command to handle the input and output streams.

input() Reads the next character from the input stream. You cannot redefine input().

output() Writes the next character to the output stream.

unput(c) Puts the character c back into the input stream. It will be the next character
scanned. You cannot redefine unput().

libl.a contains default functions to support testing or quick use of a flex program without the yacc
command; these functions can be linked in through -ll. They can also be provided by the user.

main() A simple wrapper that simply calls setlocale() and then calls the yylex() function.

yywrap() The function called when the scanner reaches the end of an input stream. The
default definition simply returns 1, which causes the scanner in turn to return 0
(zero).

EXAMPLES
1. The following command processes the file lexcommands to produce the scanner file

lex.yy.c:

flex lexcommands

This is then compiled and linked by the command:

cc -oscanner lex.yy.c -ll

to produce a program scanner.

2. The scanner program converts uppercase to lowercase letters, removes spaces at the end
of a line, and replaces multiple spaces with single spaces. The lexcommands file con-
tains:

%%
[A-Z] putchar(tolower(yytext[0]));
[]+$

527188-021 Hewlett-Packard Company 3−155

flex(1) OSS Shell and Utilities Reference Manual

[]+ putchar(’ ’);

FILES
flex.skel Is the skeleton scanner.

lex.yy.c Is the generated scanner C source.

lex.backtrack Contains backtracking information generated from the -b flag.

NOTES
• Some trailing context patterns cannot be properly matched and generate warning mes-

sages:

Dangerous trailing context

These are patterns where the ending of the first part of the rule matches the beginning of
the second part, such as zx*/xy*, where the x* matches the x at the beginning of the trail-
ing context.

• For some trailing context rules, parts that are actually fixed length are not recognized as
such, leading to the previously mentioned performance loss. In particular, patterns using
{n} (such as test{3}) are always considered variable length.

Combining trailing context with the special | (vertical bar) action can result in fixed trail-
ing context being turned into the more expensive variable trailing context. This happens
in the following example:

%%
abc|
xyz/def

• Use of the unput() macro invalidates the contents of the yytext and yyleng variables
within the current flex action.

• Use of the unput() macro to push back more text than was matched can result in the
pushed-back text matching a beginning-of-line (ˆ) rule even though it did not come at the
beginning of the line.

• Pattern matching of NULLs is substantially slower than matching other characters.

• The flex command does not generate correct #line directives for code internal to the
scanner; thus, bugs in flex.skel yield invalid line numbers.

• Due to both buffering of input and read-ahead, you cannot intermix calls to <stdio.h> rou-
tines, such as getchar(), with flex rules and expect it to work. Call input() instead.

• The total table entries listed by the -v flag excludes the number of table entries needed to
determine what rule was matched. The number of entries is equal to the number of deter-
ministic finite-state automaton (DFA) states if the scanner does not use REJECT, and is
somewhat greater than the number of states if it does.

• REJECT cannot be used with the -f or -F flag.

RELATED INFORMATION
Commands: awk(1), lex(1), sed(1), yacc(1).

Files: locale(4).

3−156 Hewlett-Packard Company 527188-021

User Commands (d - f) fold(1)

NAME
fold - Breaks lines in a file

SYNOPSIS
fold [-bs] [-w width] [file ...]

The fold command breaks lines in the specified files, or in the standard input file if no files are
specified, to have maximum width.

FLAGS
-b Counts width in bytes rather than in column positions. In this case, the lines are not lim-

ited to LINE_MAX bytes.

-s If a segment of a line contains a blank character within the first width column positions
(or bytes), breaks the line after the last such blank character, meeting the width con-
straints. If there is no blank character meeting the requirements, the -s flag does not
affect that output segment of the input line.

-w width Specifies the maximum width to which lines should be folded in column positions (or
bytes if -b is specified). The default value is 80.

DESCRIPTION
The fold command is a filter that folds lines from its input files, breaking the lines to have a max-
imum of width column positions (or bytes, if the -b flag is specified). The fold command breaks
lines by inserting a newline character so that each output line is the maximum width possible that
does not exceed the specified number of column positions (or bytes). A line cannot be broken in
the middle of a character.

The fold command is often used to send text files to line printers that truncate, rather than fold,
lines wider than the printer is able to print (usually 80 or 132 column positions).

If the <backspace>, <tab>, or <carriage-return> characters are encountered in the input and the
-b flag is not specified, these characters are treated specially:

<backspace>
The current count of line width is decremented by one, although the count never
becomes negative. The fold command does not insert a newline character immediately
before or after any backspace character.

<tab> Each tab character encountered advances the column position pointer to the position of
the next tab stop. Tab stops are at each column position number, such that number
modulo 8 equals 1.

<carriage-return>
The current count of the line width is set to 0 (zero). The fold command does not insert
a newline immediately before or after any carriage-return character.

Note that the fold command may affect any underlining that is present.

EXAMPLES
The fold command can be used to prepare files to be joined side-by-side with the paste command.
You might want to display these two files, az and AZ, side-by-side:

aaaa bbbb cccc dddd eeee ffff gggg hhhh iiii jjjj kkkk llll mmmm
nnnn oooo pppp qqqq rrrr ssss tttt uuuu vvvv wwww xxxx yyyy zzzz

AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH IIII JJJJ KKKK LLLL MMMM
NNNN OOOO PPPP QQQQ RRRR SSSS TTTT UUUU VVVV WWWW XXXX YYYY ZZZZ

527188-021 Hewlett-Packard Company 3−157

fold(1) OSS Shell and Utilities Reference Manual

The following command line:

fold -w 32 az > az2; fold -w 32 AZ > AZ2; paste -d" " az2 AZ2

results in the output below:

aaaa bbbb cccc dddd eeee ffff gg AAAA BBBB CCCC DDDD EEEE FFFF GG
gg hhhh iiii jjjj kkkk llll mmmm GG HHHH IIII JJJJ KKKK LLLL MMMM
nnnn oooo pppp qqqq rrrr ssss tt NNNN OOOO PPPP QQQQ RRRR SSSS TT
tt uuuu vvvv wwww xxxx yyyy zzzz TT UUUU VVVV WWWW XXXX YYYY ZZZZ

EXIT VALUES
The fold command returns the following values:

0 All input files were successfully processed.

1 A usage error occurred.

2 An input file cannot be opened. The fold command continues processing the other input
files specified on the command line.

RELATED INFORMATION
Commands: expand(1), paste(1), unexpand(1).

3−158 Hewlett-Packard Company 527188-021

User Commands (d - f) ftp(1)

NAME
ftp - Transfers files between a local OSS file system and a remote host

SYNOPSIS
ftp [-dginv] [host]

The ftp command is the interface to the File Transfer Protocol (FTP). This command uses OSS
FTP to transfer files between the local host and a remote host or between two remote hosts. OSS
FTP only runs in an OSS shell environment. The Guardian FTP client runs in a Guardian environ-
ment.

FLAGS
The following flags can be entered on the shell command line. (The ftp command equivalents can
also be entered at the ftp> prompt.)

-d Enables debugging by turning on the logging feature. See the debug subcommand.

-g Disables the expansion of metacharacters in filenames. Interpreting metacharacters may
be referred to as expanding (sometimes called globbing) a filename. See the glob sub-
command.

-i Disables interactive prompting during multiple file transfers. See the prompt, mget,
mput, and mdelete subcommands for descriptions of prompting during multiple file
transfers.

-n Prevents an automatic login on the initial connection. Otherwise, ftp searches for a
$HOME/.netrc entry that describes the login and initialization process for the remote
host. See the user subcommand.

-v Displays all the responses from the remote server and provides data transfer statistics.
This is the default display mode when the output of the ftp command is to a device, such
as the console or a display. However, if output is redirected, such as through a pipe or to
a file, or if the ftp command is started by a daemon, such as the cron daemon, verbose
mode is not in effect unless the -v flag or the verbose subcommand is used. See the ver-
bose subcommand.

DESCRIPTION
The OSS FTP client transfers data between a local host with an OSS file system and a remote host
that can use a dissimilar file system. Therefore, although the protocol provides a lot of flexibility
for transferring data, it does not attempt to preserve file attributes that are specific to a particular
file system (for example, the protection mode or modification times of a file). Additionally, the
FTP protocol makes few assumptions about the overall structure of a file system and does not pro-
vide or allow such things as recursively copying subdirectories.

The ftp command provides subcommands for tasks such as listing remote directories, changing the
current local and remote directory, transferring multiple files in a single request, creating and
removing directories, and escaping to the local shell to perform shell commands. The ftp com-
mand also provides for security by sending passwords to the remote host and permits automatic
login, file transfer, and logoff.

If you execute ftp and do not specify a hostname, ftp immediately displays the ftp> prompt and
waits for an ftp subcommand. To connect to a remote host, you then execute the open subcom-
mand. When the ftp command connects to the remote host, ftp then prompts for the username and
password before displaying the ftp> prompt again. ftp fails if no password is defined at the
remote host for the specified username.

If you do specify the name of a remote host, ftp immediately tries to establish a connection to the
specified host. If ftp connects successfully, ftp searches for a local $HOME/.netrc file in your
current directory or home directory. If the file exists, ftp searches the file for an entry that initiates

527188-021 Hewlett-Packard Company 3−159

ftp(1) OSS Shell and Utilities Reference Manual

the login process and command macro definitions for the remote host. If the $HOME/.netrc file
or autologin entry does not exist, ftp prompts you for a username and password. This occurs
whether or not the hostname is entered on the command line.

If ftp finds a $HOME/.netrc autologin entry for the specified host, ftp attempts to use the informa-
tion in that entry to automatically log into the remote host. The ftp command also loads any com-
mand macros defined in the entry. In some cases (for example, when the required password is not
listed in an autologin entry), ftp prompts for the password before displaying the ftp> prompt.
Once ftp completes the autologin process, ftp executes the init macro if the macro is defined in the
autologin entry. If the init macro does not exist or does not contain a quit or bye command, ftp
then displays the prompt and waits for a subcommand.

The remote username that you specify either at the prompt or in a $HOME/.netrc file must exist
and have a password defined at the remote host, or ftp fails.

The ftp command interpreter, which handles all commands entered at the ftp> prompt, provides
facilities that are not available with most file transfer programs, such as: the handling of filename
arguments to ftp commands, the ability to collect a group of commands into a single command
macro, and the ability to load macros from a $HOME/.netrc file. These facilities are designed to
allow simplifying repeated tasks and to allow using ftp in unattended mode. The ftp command
interpreter does not support entry of commands (including the arguments) longer than 198 charac-
ters at the ftp> prompt.

The command interpreter handles filename arguments according to the following rules:

• If a - (dash) is specified for the argument, standard input is used for read operations and
standard output is used for write operations.

• Failing the preceding check, if globbing is enabled, local filenames are expanded accord-
ing to the rules used in csh; (see the glob subcommand). If the ftp command expects a
single local file (for example, put), the pattern-matching characters following the put
command are interpreted as a file name.

• For get and mget subcommands with unspecified local filenames, the local filename is the
same as the remote filename, which may be altered by a case, ntrans, or nmap setting.
The resulting filename can then be altered if runique is on.

• For mput commands and put commands with unspecified remote filenames, the remote
filename is the same as the local filename, which can be altered by a ntrans or nmap set-
ting. The resulting filename can then be altered by the remote server if sunique is on.

• If the first argument is /G, the Guardian file space is accessed. The "G" must be capitalized
(upper case) to access Guardian file space.

To end an ftp session when you are running interactively, use the bye or quit subcommand or the
End-of-File key sequence at the ftp> prompt. To end a file transfer before it has been completed,
use the Interrupt key sequence. The default Interrupt key sequence is <Ctrl-c>.

The stty command can be used to redefine this key sequence. Sending transfers (those from the
local host to the remote host) are normally halted immediately. Receiving transfers are halted by
sending an FTP ABOR instruction to the remote FTP server and discarding all incoming file
transfer packets until the remote server stops sending them.

If the remote server does not support the ABOR instruction, the ftp> prompt will not appear until
the remote server has sent all of the requested files. Additionally, if the remote server does some-
thing unexpected, the local ftp process may need to be ended manually.

3−160 Hewlett-Packard Company 527188-021

User Commands (d - f) ftp(1)

SUBCOMMANDS
The following ftp subcommands can be entered at the prompt. If an argument for a subcommand
includes spaces, enclose the argument within "" (double quotes).

![command [argument ...]]
Invokes an interactive shell on the local host. An optional command, with one or more
optional arguments, can be specified.

$ macro [argument ...]
Executes the specified macro, previously defined with the macdef subcommand. Argu-
ments are not expanded. See the macdef subcommand for further information.

? [subcommand]
Displays a help message describing the subcommand. If you do not specify subcom-
mand, ftp displays a list of known subcommands.

account [password]
Sends a supplemental password that a remote host may require before granting access to
its resources. If the password is not supplied with the command, you are prompted for
the password. The password does not appear on the screen.

append local_file [remote_file]
Appends a local file to a file on the remote host. If the remote filename is not specified,
the local filename is used, altered by any setting made with the ntrans or nmap subcom-
mand. The append subcommand uses the current values for form, mode, struct, and
type while appending the file. For more information on these subcommands, see their
individual descriptions.

ascii Sets the file transfer type to network ASCII. This is the default. File transfer may be
more efficient with binary-image transfer. File transfers to the Guardian (/G) file system
will always arrive as Guardian file type 180.

bell Sounds a bell after the completion of each file transfer.

binary Sets the file transfer type to binary image. This can be more efficient than an ASCII
transfer. Attempts to transfer binary-image files without specifying this subcommand
can lead to corrupt data, since linefeeds and carriage returns are interpreted differently
by the ascii subcommand. File transfers to the Guardian (/G) file system will always
arrive as Guardian file type 180.

bye Ends the File Transfer session and exits ftp. Same as quit. An End of File key sequence
(default control-D) also terminates the session and exits.

case Sets a toggle for the case of filenames. When case is on, remote filenames that appear in
all capital letters are changed from uppercase to lowercase when written in the local
directory. The default is off (uppercase remote filenames are written in uppercase in the
local directory).

cd remote_directory
Changes the remote working directory to the specified directory.

cdup Changes the working directory on the remote host to the parent of the current directory.

close Ends the File Transfer session, but does not exit ftp. Defined macros are erased. Same
as disconnect.

527188-021 Hewlett-Packard Company 3−161

ftp(1) OSS Shell and Utilities Reference Manual

cr Strips the carriage-return character from a carriage-return/linefeed sequence when
receiving records during ASCII-type file transfers. (ftp terminates each ASCII-type
record with a carriage-return/linefeed sequence during file transfers.) This conforms
with the UNIX system convention for terminating records with a single linefeed.
Records on remote hosts that have different record termination conventions may have
single linefeeds embedded in records. To distinguish these embedded linefeeds from
record delimiters, set cr to off. cr toggles between on and off.

delete remote_file
Deletes the specified remote file.

debug [on | off]
Prints each command sent to the remote host preceded by the string --> when debug on
is specified.

dir [remote_directory][local_file]
Writes a listing of the contents of remote_directory to the file local_file. If
remote_directory is not specified, dir lists the contents of the current remote directory.
If local_file is not specified or is a - (dash), dir displays the listing on the local terminal.

disconnect
See close.

form format
Specifies the form of the file transfer. The only form available is file.

get remote_file [local_file]
Copies the remote file to the local host. If local_file is not specified, the remote filename
is used locally and is altered by any settings made by the case, ntrans, and nmap sub-
commands. The ftp command uses the current settings for type, form, mode, and struct
while transferring the file. For additional information, refer to the description of each of
these subcommands.

glob Toggles filename expansion (globbing) for mdelete, mget, and mput. If globbing is off,
filename arguments for these subcommands are not expanded. When globbing is
enabled and a pattern-matching character is used in a subcommand that expects a single
filename, results may be different than expected. For example, the append and put sub-
commands perform filename expansion and then use only the first filename generated.
Other ftp subcommands, such as cd, delete, get, rename, and rmdir, do not perform
filename expansion and take the pattern-matching characters literally.

Globbing for the mput subcommand is done locally in the same way as for the csh com-
mand. For mdelete and mget, each filename is expanded separately at the remote
machine and the lists are not merged. The expansion of a directory name may be
different than the expansion of a filename, depending on the remote host and the ftp
server.

To preview the expansion of a directory name, use the mls subcommand:

mls remote_file -

To transfer an entire directory subtree of files, transfer a tar archive of the subtree in
binary form, rather than using mget or mput.

3−162 Hewlett-Packard Company 527188-021

User Commands (d - f) ftp(1)

hash Toggles # (hash sign) printing. When hash is on, ftp displays one hash sign for each
data block (1024 bytes) transferred.

help [subcommand]
Displays help information. Refer to the ? subcommand.

lcd [directory]
Changes the working directory on the local host. If you do not specify a directory, ftp
uses your home directory.

ls [remote_directory] [local_file]
See the dir subcommand.

macdef macro
Defines a subcommand macro. Subsequent lines up to a null line (two consecutive
linefeeds) are saved as the text of the macro. Up to 16 macros containing at most 4096
bytes for all macros can be defined. Macros remain defined until redefined or a close is
executed.

The special characters $ (dollar sign) and \ (backslash) have special uses in ftp macros.
A $ followed by one or more numbers is replaced by the corresponding macro parameter
on the invocation line (refer to the $ subcommand). A $ followed by an i indicates that
the macro is to loop, with $i being replaced by consecutive parameters on each pass.
The first macro parameter is used on the first pass, the second parameter is used on the
second pass, and so on. A \ prevents special treatment of the next character. Use the \ to
turn off the special meanings of $ and \.

mdelete remote_files
Expands remote_files and deletes the indicated remote files.

mdir [remote_directory ... local_file]
Expands remote_directory at the remote host and writes a listing of the contents of the
remote_directory to the local_file. If the remote_directory argument contains a pattern-
matching character, mdir prompts for a local_file if none is specified. If the
remote_directory argument is a list of remote directories, separated by spaces, the last
argument in the list must be either a local filename or a - (dash). If local_file is -, mdir
displays the listing on the local terminal. If interactive prompting is on (refer to the
prompt subcommand), ftp prompts you to verify that the last argument is a local file and
not a remote directory.

mget remote_file ...
Expands remote_files at the remote host and copies the indicated remote files to the
current directory on the local host. Refer to the glob subcommand for more information
on filename expansion. The remote filenames are used locally and are altered by any
settings made by the case, ntrans, and nmap subcommands. The ftp command uses the
current settings for type, form, mode, and structure while transferring the files. Refer
to the description of each of these subcommands for additional information.

mls [remote_directory ... local_file]
Expands remote_directory at the remote host and writes an abbreviated file listing of the
indicated remote directories to a local file. If the remote_directory argument contains a
pattern-matching character, mls prompts for a local_file if none is specified. If the
remote_directory argument is a list of remote directories, separated by spaces, the last
argument in the list must be either a local filename or a - (dash). If local_file is -, mls
displays the listing on the local terminal. If interactive prompting is on (refer to the
prompt subcommand), ftp prompts you to verify that the last argument is a local file and
not a remote directory.

527188-021 Hewlett-Packard Company 3−163

ftp(1) OSS Shell and Utilities Reference Manual

mode [mode]
Sets file transfer mode. The only mode available is stream.

modtime [remote_file]
Shows the last modification time of file remote_file on the remote machine.

mput [local_file ...]
Expands local_file at the local host and copies the indicated local files to the remote
host. Refer to the glob subcommand for more information on filename expansion. The
local filenames are used at the remote host and are altered by any settings made by the
ntrans and nmap subcommands. The ftp command uses the current settings for type,
form, mode, and structure while transferring the files. Refer to the description of each
subcommand for additional information.

nmap [inpattern outpattern]
Sets or unsets the filename mapping mechanism. If no arguments are specified, filename
mapping is turned off. If arguments are specified, source filenames are mapped for mget
and mput operations and for get and put operations when the destination filename is not
specified. This subcommand is useful when the local and remote hosts use different file
naming conventions or practices. Mapping follows the pattern set by inpattern and out-
pattern.

The inpattern variable specifies the template for incoming filenames, which may have
already been processed according to the case and ntrans settings. The template vari-
ables $1 through $9 can be included in inpattern. All characters in inpattern other than
$ and protected $s (that is, \$) define the values of the template variables. For example,
if the inpattern is $1.$2 and the remote filename is mydata.dat, the value of $1 is
mydata and the value of $2 is dat.

The outpattern variable determines the resulting filename. The variables $1 through $9
are replaced by their values as derived from inpattern and the variable $0 is replaced by
the original filename. Additionally, the sequence [sequence1,sequence2] is replaced by
the value of sequence1 if sequence1 is not null; otherwise, it is replaced by the value of
sequence2. For example, the following subcommand would yield myfile.data from
myfile.data or myfile.data.old, myfile.file from myfile, and myfile.myfile from .myfile:

nmap $1.$2.$3 [$1,$2].[$2,file]

Spaces can be included in outpattern. Use the \ (backslash) character to prevent the spe-
cial meanings of $, [,], and , (comma) in outpattern.

ntrans [in_characters [out_characters]]
Sets or unsets the filename character translation mechanism. If no arguments are
specified, character translation is turned off. If arguments are specified, characters in
source filenames are translated for mget and mput operations and for get and put opera-
tions when the destination filename is not specified. This subcommand is useful when
the local and remote hosts use different file naming conventions or practices. Character
translation follows the pattern set by in_characters and out_characters. Characters in a
source filename matching characters in in_characters are replaced by the corresponding
characters in out_characters. If the string in_characters is longer than the string
out_characters, characters in in_characters are deleted if they have no corresponding
character in out_characters.

3−164 Hewlett-Packard Company 527188-021

User Commands (d - f) ftp(1)

open host [port]
Establishes a connection to the FTP server at the specified host. If the optional port
number is specified, ftp will attempt to connect to a server at that port. If the autologin
feature is set (that is, -n was not specified on the command line), ftp will attempt to
automatically log you into the FTP server. You must also have a $HOME/.netrc file
with the correct information in it and the correct permissions set.

prompt Toggles interactive prompting. If interactive prompting is on (the default), ftp will
prompt for verification before retrieving, sending, or deleting multiple files during mget,
mput, and mdelete operations. Otherwise, ftp will perform the operation on all files
specified.

proxy [subcommand]
Executes an ftp command on a secondary control connection. This subcommand allows
ftp to simultaneously connect to two remote FTP servers for transferring files between
the two servers. To establish the secondary control connection, specify open as the first
proxy subcommand. Enter the subcommand proxy ? to see the other ftp subcommands
that are executable on the secondary connection. The following subcommands behave
differently when prefaced by proxy:

• The open subcommand does not define new macros during the autologin pro-
cess.

• The close subcommand does not erase existing macro definitions.

• The get and mget subcommands transfer files from the host on the primary con-
nection to the host on the secondary connection.

• The put, mput, and append subcommands transfer files from the host on the
secondary connection to the host on the primary connection.

File transfers require that the FTP server on the secondary connection support the PASV
(passive) instruction.

put local_file [remote_file]
Stores a local file on the remote host. If you do not specify remote_file, ftp uses the
local filename to name the remote file, and the remote filename is altered by any settings
made by the ntrans and nmap subcommands. The ftp command uses the current set-
tings for type, form, mode, and structure while transferring the files. Refer to the
description of each subcommand for additional information.

pwd Displays the name of the current directory on the remote host.

quit Ends the file transfer session and exits ftp. A synonym for bye.

quote string
Sends the specified string verbatim to the remote host. Unpredictable results can occur
when you quote commands that involve data transfers.

recv remote_file [local_file]
Copies the remote file to the local host. A synonym for get.

remotehelp [subcommand]
Requests help from the remote FTP server.

527188-021 Hewlett-Packard Company 3−165

ftp(1) OSS Shell and Utilities Reference Manual

rename from to
Renames a file on the remote host.

reset Clears the reply queue. This command resynchronizes the command parsing.

restart marker
Restarts the immediately following get or put command at the indicated marker. On
systems that treat files as unstructured byte arrays (such as OSF/1 and UNIX systems),
marker is simply a byte offset into the file.

rmdir remote_directory
Removes the directory remote_directory at the remote host.

runique Toggles whether unique filenames are created for local destination files during get and
mget operations. If creating unique local filenames is not enabled (the default), ftp
overwrites local files. Otherwise, if a local file has the same name as specified for a
local destination file, ftp modifies the specified name of the local destination file with .1.
If a local file is already using the new name, ftp appends the postfix .2 to the specified
name. If a local file is already using this second name, ftp continues incrementing the
postfix until it either finds a unique filename or reaches .99 without finding a unique
name. If ftp cannot find a unique name, ftp reports an error and the transfer does not
take place. Note that runique does not affect local filenames generated from a shell
command. When transferring a file ending in .1 (or any other digit) to a /G Guardian file
system, the period (.) is dropped from the resulting Guardian file name.

send local_file [remote_file]
Stores a local file on the remote host. A synonym for put.

sendport
Toggles the use of FTP PORT instructions. By default, ftp uses a PORT instruction
when establishing a connection for each data transfer. When the use of PORT instruc-
tions is disabled, ftp does not use PORT instructions for data transfers.

size filename
Displays the size of the file, filename, on the remote system in bytes.

status Displays current status of ftp.

struct [structure]
Sets data transfer structure type. The only structure supported is stream.

sunique Toggles whether unique filenames are created for remote destination files during put and
mput operations. If creating unique remote filenames is not enabled (the default), ftp
overwrites remote files. Otherwise, if a remote file has the same name as specified for a
remote destination file, the remote FTP server modifies the name of the remote destina-
tion file. Note that the remote server must support the STOU instruction.

trace Toggles packet tracing.

type [type]
Sets the file transfer type to type. If type is not specified, the current type is printed. The
default type is ascii. Note that binary transfer (type binary) can be more efficient than
ASCII transfer. File transfers to the Guardian (/G) file system will always arrive as
Guardian file type 180.

3−166 Hewlett-Packard Company 527188-021

User Commands (d - f) ftp(1)

user user [password] [account]
Identifies the local user as user to the remote FTP server. If password or account is not
specified and the remote server requires it, ftp prompts for it locally. If account is
required, ftp sends it to the remote server after the remote login process completes.

Note that, unless autologin is disabled by specifying -n on the command line, this pro-
cess is done automatically for the initial connection to the remote server. You also need
a $HOME/.netrc file in your home directory to issue an autologin.

verbose Toggles verbose mode. When verbose mode is on (the default), ftp displays all
responses from the remote FTP server. Additionally, ftp displays statistics on all file
transfers when the transfers are completed.

Aborting a File Transfer
To abort a file transfer, use the Interrupt key sequence (often <Ctrl-c>). Sending transfers will be
immediately halted. Receiving transfers will be halted by sending an FTP protocol ABOR com-
mand to the remote server, and discarding any further data received. The speed at which this is
accomplished depends upon the remote server’s support for ABOR processing. If the remote
server does not support the ABOR command, the prompt ftp> does not appear until the remote
server has completed sending the requested file.

The Interrupt key sequence is ignored when ftp has completed any local processing and is await-
ing a reply from the remote server. A long delay in this mode may result from the ABOR process-
ing previously described, or from unexpected behavior by the remote server, including violations
of the FTP protocol. If the delay results from unexpected remote server behavior, the local ftp
program must be killed by hand.

EXAMPLES
1. This example shows how user smith, who is logged in on host1, can log in on the remote

host host2, check the current working directory on host2 and list its contents, transfer a
file, and then end the session.

$ ftp host2

If the connection to host2 is successful, a verification message is displayed on the local
system:

Connected to host2.abc.org
220 host2 FTP server (Version 5.47 13 Mar 90 02:27) ready.
Name (host2:smith): smith
Password:

Enter your name and password when prompted by the system. A message similar to the
following is then displayed on your local system:

230 User smith logged in

ftp> _

To set the file transfer type to binary, enter the binary subcommand after the ftp>
prompt:

ftp> binary

A message similar to the following is displayed on your local system:

200 Type set to I

527188-021 Hewlett-Packard Company 3−167

ftp(1) OSS Shell and Utilities Reference Manual

To check the current working directory, enter the pwd command after the ftp> prompt:

ftp> pwd

A message similar to the following is displayed on your local system:

257 "u/smith" is current directory

To list the contents of the current working directory, enter the ls command after the ftp>
prompt:

ftp> ls

A message similar to the following is displayed on your local system:

200 PORT command successful.
150 Opening data connection for /usr/bin/ls

(555.5.55.555) (0 bytes)
printfile
testfile
226 Transfer complete.

(The Opening data connection message appears on one line, not on two lines as
shown.)

To transfer a file from the remote host to the local host, enter the get or mget subcommand
following the ftp> prompt:

ftp> get testfile tmp.testfile

A message similar to the following is displayed on your local system:

200 PORT command successful.
150 Opening data connection for testfile

(555.5.55.555) (1201 bytes)
226 Transfer complete.
local:tmp.testfile remote:testfile

(The Opening data connection message appears on one line, not on two lines as
shown.)

To end the ftp session, enter the quit subcommand after the ftp> prompt:

ftp> quit
221 Goodbye.
$ __

2. This example shows how user smith, who is logged in on host1, can log in as the user
smith on the remote host host2:

$ ftp host2

Connected to host2.abc.org
220 host2 FTP server (Version 5.47 13 Mar 90 02:27) ready.
Name (host2:smith): smith

3−168 Hewlett-Packard Company 527188-021

User Commands (d - f) ftp(1)

331 Passwd required for smith
Password:
230 User smith logged in
ftp>

3. In this example, user smith makes a typing error:

$ ftp test

Connected to test.abc.org
220 test FTP server (Version 5.47 13 Mar 90 02:27) ready.
Name (test:fred): msith
331 Passwd required for msith
Password:
530 User msith unknown
ftp> user smith
331 Passwd required for smith
Password:
230 User smith logged in
ftp>

4. In this example, user fred issues the ftp command without specifying a hostname, then
connects to host1 using the open subcommand:

$ ftp
ftp> open host1

Connected to host1.abc.org
220 host1 FTP server (Version 5.47 13 Mar 90 02:27) ready.
Name (host1:fred): fred
331 Passwd required for fred
Password:
230 User fred logged in
ftp>

FILES
$HOME/.netrc Contains automatic login information.

RELATED INFORMATION
Commands: sh(1), ftpserver(7), stty(1).

Files: netrc(4).

527188-021 Hewlett-Packard Company 3−169

Section 4. User Commands (g - j)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the letters g through j.

527188-021 Hewlett-Packard Company 4−1

gencat(1) OSS Shell and Utilities Reference Manual

NAME
gencat - Creates and modifies a message catalog

SYNOPSIS
gencat catalog_file [source_file ...]

FLAGS
Operands

FLAGS
Operands

catalog_file is the name of a message catalog file. The naming convention for message cata-
log files uses the .cat extension.

source_file is a text file you create to hold messages printed by your program. The naming
convention for message source files uses the .msg extension. You can use any
text editor to enter messages into the text source file. Messages can be grouped
into sets that represent general functional subsets of your program. Each mes-
sage has a numeric identifier, which must be unique within its set. The message
source file can also contain commands recognized by gencat for manipulating
sets and individual messages.

DESCRIPTION
The gencat command can be used to create a message catalog (usually ending in .cat) from a
message text source file (usually ending in .msg).

A message text source file is a text file that you create to hold messages printed by your program.
Message source files usually have the .msg suffix. You can use any text editor to enter messages
into the text source file. Messages can be grouped into sets, generally to represent functional
subsets of your program. Each message has a numeric identifier, which must be unique within its
set. The message text source file can also contain commands recognized by gencat for manipu-
lating sets and individual messages.

The gencat utility does not recognize symbolic names for messages. If you use symbolic names
rather than numeric constants to refer to messages, use the mkcatdefs utility to preprocess the
source_file. The mkcatdefs utility accepts symbolic names and their associated messages; the
output generated by the mkcatdefs utility is used as input to gencat.

If a message catalog with the name catalog_file exists, gencat modifies it according to the state-
ments in the message source files. If it does not exist, gencat creates a catalog file with the name
catalog_file.

You can specify any number of message text source files. The gencat command processes multi-
ple source files one after the other in the sequence that you specify them. Each successive source
file modifies the catalog. If you do not specify a source file, the gencat command accepts mes-
sage source data from standard input. Note that you can specify a dash (-) for the catalog file
(standard output) or the source file (standard input).

The gencat utility conforms to the XPG4 specification. In an XPG4-conforming application, set
numbers must be integers in the range of 1 to NL_SETMAX, inclusive, and message numbers
must be integers in the range of 1 to NL_MSGMAX, inclusive.

The catalog_file can contain the following commands. Each initial keyword or number must be
followed by a space or a tab character. The gencat utility ignores any line beginning with a
space, a tab, or a $ (dollar sign) character followed by a space, a tab, or a newline character.
Thus, you can use these sequences to start comments in your catalog_file. Blank lines are also
ignored. Finally, you can place comments on the same line after the $delset, $quote, $len, or
$set commands, because the gencat utility ignores anything following the preceding syntax ele-
ments.

4−2 Hewlett-Packard Company 527188-021

User Commands (g - j) gencat(1)

message_number text
Inserts text as a message with the identifier message_number. There must be exactly
one blank, space, or tab character between message number and text. Numbers must
be ascending within each set, but need not be contiguous. If the message text is empty,
and a space field separator is present, an empty string is stored in the message catalog.
If a message source line has a message number and nothing else, the existing message
associated with message number (if any) is deleted from the catalog. The length of text
must be in the range 0 through NL_TEXTMAX.

$delset set_number
Deletes the set of messages indicated by set_number. You cannot use symbolic
identifiers with the $delset command.

$quote character
Sets the quote character to character. See the explanation later in this section for more
information. By default, or if the $quote command was last used with no argument, no
quote character is defined.

$len [max_length]
Sets the maximum length allowed for messages in your catalogue. If this command is
not used, or if you use it without the max_length argument, or if the specified value of
max_length is not between 1 and the value of NL_TEXTMAX, inclusive, the max-
imum length defaults to the value of NL_TEXTMAX.

$set set_number
Indicates that all messages entered after this command are placed in the set indicated
by set_number. You can change the set by entering another $set command. However,
set numbers must be entered in ascending order; you can not go back to a lower-
numbered set during the gencat session. If the command is not used, the default set
number is 1.

A line beginning with a digit marks a message to be included in the catalog. The first blank
(space or tab) character following the digit is the field separator. The rest of the line is con-
sidered to be message text unless the first character after the blank is the quote character. In this
case the message text extends from just after the initial quote character to just before the next
unescaped quotation mark character. The rest of the line is ignored.

Escape sequences, like those recognized by the C language, can be used in text; they are listed
after the commands. Use a backslash (\) character to continue message text on the following
line.

The gencat command does not accept symbolic identifiers. If you use symbolic identifiers you
must use the mkcatdefs utility to preprocess a message source file and change symbolic
identifiers into numeric constants.

The Escape character \ (backslash) can be used to include the following special characters in the
message text:

\n Inserts a newline character.

\t Inserts a horizontal tab character.

\v Inserts a vertical tab.

\b Performs a backspace function.

\r Inserts a carriage return.

527188-021 Hewlett-Packard Company 4−3

gencat(1) OSS Shell and Utilities Reference Manual

\f Inserts a formfeed character.

\\ Inserts a \ (backslash) character.

\ddd Inserts the single-byte character associated with the octal value represented by the
octal digits ddd. You can specify 1, 2, or 3 octal digits; however, you must include
leading zeros if the characters following the octal digits are also valid octal digits. For
example, the octal value for $ (dollar sign) is 44. To insert $5.00 into a message, use
\0445.00, not \445.00, or the 5 will be parsed as part of the octal value.

\xdddd Inserts the single-byte or double-byte character associated with the hexadecimal value
represented by the four valid hexadecimal digits dddd. You can specify either two or
four digits. See the explanation of \ddd for a way to avoid parsing errors when the hex-
adecimal value precedes an actual digit. This escape sequence is an Open System Ser-
vices extension to the XPG4 specification.

You can also include printf() conversion specifications in messages that are printed by the
printf() family of calls in C code. If you display a message from a shell script with the dspmsg
command, the only conversion specifications that can be used in the message are %s and %n$s.

When you enter a number followed by a message, gencat removes the first space or tab character
immediately following the number. Any spaces or tabs that follow the first space or tab are con-
sidered part of the message.

Environment Variables
The following environment variables affect the execution of the gencat utility: LANG,
LC_ALL, LC_TYPE, LC_MESSAGES, NLSPATH.

EXAMPLES
1. To use the $set command in a source file to give a group of messages a set number, enter:

$set 10 Communication Error Messages

The message set number is 10. All messages following the $set command are assigned
that set number, up until the next occurrence of a $set command. (Set numbers must be
assigned in ascending order, but need not be contiguous. Large gaps in the number
sequence are discouraged in order to increase efficiency and performance. There is no
performance advantage to using more than one set number in a catalog.)

You can include a comment in the $set command, but it is not required.

2. To use the $delset command to remove all messages belonging to the specified set from a
catalog, enter:

$delset 10 Communication Error Messages

The command set affected by the $delset command is specified by the number argument.
$delset must be placed in the proper set number order with respect to any $set com-
mands in the same message source file. You can include a comment in the $delset com-
mand.

3. To enter message text and assign message ID numbers, enter:

12 file removed

This assigns the message ID number 12 to the text that follows it.

You must specify a single space or tab character between the message ID number and the
message text, but you can include more spaces or tabs if you prefer. Any extra spaces or
tabs included are treated as part of the message itself. Message numbers must be in
ascending order within a single message set, but need not be contiguous.

All text following the message number is included as message text, up to the end of the

4−4 Hewlett-Packard Company 527188-021

User Commands (g - j) gencat(1)

line. If you place the escape character \ (backslash) as the last character on the line, the
message text continues on the following line. Consider the following example:

This is the text associated with \
message number 5.

The preceding two lines define this single-line message:

This is the text associated with message number 5.

4. The following example shows the use of the $quote command:

$quote " Use a double quote to delimit message text
$set 10 Message Facility - Quote command messages
1 "Use the $quote command to define a character \
\n for delimiting message text" \n
2 "You can include the \"quote\" character in a message \n \
by placing a \ in front of it" \n
3 You can include the "quote" character in a message \n \
by beginning it with any other character $quote
4 You can disable the quote mechanism by \n \
using the $quote command without \n a character \
after it \n

In this example, the $quote command defines the " (double quote) as the quote charac-
ter. The quote character must immediately follow the message number and the single
blank character. Any text following the next occurrence of the quote character is
ignored.

The example shows two ways the quote character can be included in the message text:

• Place a single backslash (\) in front of the quote character.

• Begin the message text with another character, as in message 3. The quote char-
acter is not treated specially unless it is the first character after the blank.

The example shows the following:

• A backslash (\) is still required to split a quoted message across lines, as in mes-
sages 2, 3, and 4.

• To display a \ in a message, you must place another \ in front of it, as in mes-
sage 1.

• You can format your message with a newline character by using \n, as in mes-
sage 3.

• If you use the $quote command with no character argument, you disable the
quote mechanism.

NOTES
The $len command is not described by X/OPEN. Other implementations of gencat may not
recognize $len.

DIAGNOSTICS
The gencat utility generates these error messages:

Usage: gencat CatalogFile [SourceFile...]
gencat: Cannot open target file \%s.\n
gencat: The realloc system call failed.
gencat: The following message text is longer than the en

527188-021 Hewlett-Packard Company 4−5

gencat(1) OSS Shell and Utilities Reference Manual

value:\n\t\%s\n
gencat: The set number in the following line is not valid:\n\t\%s\n
gencat: The length of the hex number in the following line is not
valid.\n\
It must be either two or four digits.\n\t\%s\n
gencat: Reached end of line before the defined closing quote.\n\t\%s\n
gencat: The following message string is longer than
NL_TEXTMAX:\n\t\%s\n
gencat: Reached end of string before expected.\n\t\%s\n
gencat: Internal error: The file pointer offset is not correct.
gencat: Cannot load the catalog file \%x.\n
gencat: Cannot the existing catalog file \%s.\n
gencat: There is not enough memory available now.
gencat: The following set uses a symbolic identifier:\n\t\%s\n
gencat: The following message uses a symbolic identifier:\n\t\%s\n
gencat: There is no message defined in a source file.
gencat: Set or message numbers are not in ascending sequence after:
\n\tMessage: \%d, Set: \%d\n\t\%s

EXIT VALUES
The gencat utility returns a 0 (zero) on successful completion; otherwise it returns a 1 and gen-
erates a diagnostic message. When gencat reports an error, it takes no action on any commands
and leaves an existing catalog unchanged.

RELATED INFORMATION
Commands: mkcatdefs(1).

STANDARDS CONFORMANCE
The following are HP extensions to the XPG4 Version 2 specification:

• The escape sequence \xdddd is supported for compatability with OSF/1.

4−6 Hewlett-Packard Company 527188-021

User Commands (g - j) genxlt(1)

NAME
genxlt - Generates code-set translation table

SYNOPSIS
genxlt [-f outputfile]

[inputfile]

FLAGS
-f outputfile

Specifies that the generated version of the code-set conversion table be placed in the
file specified by outputfile.

Operands
inputfile Specifies the code-set conversion table source file.

DESCRIPTION
The genxlt command reads a source code-set conversion table file from inputfile and writes the
compiled version to outputfile.

If inputfile is not specified, standard input is used. If outputfile is not specified, standard output is
used. The source code-set conversion table provided to genxlt as input contains directives that
are acted upon by the utility to produce the compiled version.

The format of a code-set conversion table source file is:

• An optional target_sub directive in the form: target_sub target [comment]

• An optional source_sub directive in the form: source_sub source [comment]

• Conversion entry lines must be in the form: source target [comment]

The source field must be hexadecimal numbers. The target field must be hexadecimal numbers
or the keyword is invalid. The comment field is optional. Lines whose initial non-space, non-tab
character is the # (number sign) are treated as comment lines. Null lines and lines consisting
only of white-space characters are also treated as comment lines.

The source, target, and comment fields can be separated by any combination of spaces and tabs.
Comments can contain these characters because anything after the second separator is con-
sidered a comment. The maximum value of source is 65535 decimal. The maximum value of
target is 4294967295 decimal. The hexadecimal representations of the values can be specified
by anything acceptable to the scanf() %x conversion specification, from 1 to 8 hexadecimal
digits. If asource value is found in the conversion table multiple times, the last entry is used in
the compilation of the conversion table. If a source value is greater than 0xff (255 decimal),
genxlt creates a conversion table for a double-byte input code set.

Include only valid and invalid conversions in the table. All values of source that are not present
in the first column of the table are considered to be valid for input but have no corresponding tar-
get value. Specific values of source that are invalid for input must be declared invalid by includ-
ing them in the source column with the string invalid in the target column on the same line.

Valid input characters that have no corresponding target value are converted to the target value
specified by the target_sub directive. 0x1A, the ASCII SUB character, is the default if no
target_sub is specified. Conversions of valid input characters to the target_sub character by the
iconv() function are called non-identical conversions.

If the target_sub character has a corresponding character in the input code set, the source value
for that character can be specified by the source_sub directive. 0x1A, the ASCII SUB character,
is the default if no source_sub is specified. Specifying the source_sub character prevents
conversions of source_sub characters to the target_sub character from being counted by iconv()

527188-021 Hewlett-Packard Company 4−7

genxlt(1) OSS Shell and Utilities Reference Manual

as non-identical conversions.

There is no requirement that the target_sub character for a conversion from a source code set to
a target code set be the source_sub character in a table that specifies the inverse conversion.

Comments can contain any characters, but it is recommended that only characters in the ASCII
code set be used. Using non-ASCII characters might cause genxlt to report an error if it finds
characters that are invalid in the current locale.

EXAMPLES
The following is an excerpt of a code set conversion table:

#source_sub 0x1a # SUB (default source_sub)
target_sub 0xffff Replacement Character
0x0 0x00 NULL
0x1 0x01 SOH
0x001a 0x1A SUB
0x80 0xc7 C cedilla
0x81 0xfc u diaeresis
0x82 0xe9 e acute
0x83 0xe2 a circumflex
0x84 0xe4 a diaeresis
0x85 invalid not in use
0x86 0x40 a grave
0xa1a1 0xa2a3 special
0xa1a2 0xa2a4 special
0xa1a3 0xa2a5 special
0xa1a4 0xa2a6 special

In the preceding example, a comment serves only as a reminder that the default source_sub
value is 0x1a. The target_sub is explicitly specified. The input values 0x1a and 0x001a are the
same input value; input values can be padded with leading NULL bytes. The table indicates that
the input character corresponding to the source_sub character is translated to the character SUB
(0x1A), instead of to the target_sub character. It is not required that the source_sub character
be translated to the target_sub character.

Note that the source value 0x85 in the preceding example is specifically declared invalid in the
target column. Source values between 0x86 and 0xa1a1 are implicitly declared valid by their
omission from the table. The omitted characters are converted to the target_sub character.

The name of the file generated by the genxlt utility must adhere to the following naming con-
vention for the iconv subsystem to recognize it as a conversion-table file:

fromcode: "ISO8859-1-GL"
tocode: "ISO8859-1"
conversion table file: "ISO8859-1-GL_ISO8859-1"

The code-set conversion table file name is formed by concatenating the to_code file name onto
the from_code file name, with an underscore character between the two.

Input code sets representable by the tables are restricted to single-byte and double-byte code sets.
It is not possible to represent a multibyte input code set, such as SJIS. Conversion of multibyte
input code sets to other code sets can be done by the iconv command only, using iconv convert-
ers.

4−8 Hewlett-Packard Company 527188-021

User Commands (g - j) genxlt(1)

DIAGNOSTICS
The following error messages have an exit value of 1:

Usage: genxlt [-f outputfile] [inputfile]
An unknown flag was detected at the command line.

genxlt: Unable to write to output file.
A failure to write to the output file occurred.

genxlt: Unable to open output file.
(file name): no such file or directory
A failure to open the output file occurred.

Failure to open the input file.
(file name): is a directory
A directory name is supplied as the input file.

The following error messages have an exit value of 2:

genxlt: Invalid format at line (line number)
The input file has an invalid format.

genxlt: There was no assignment for index (index number)
The input file is missing a source value.

EXIT VALUES
If successful, the genxlt utility exits with a value of 0 (zero). If unsuccessful, the genxlt utility
exits with a value greater than zero and writes an error message to the standard errror file.

RELATED INFORMATION
Commands: iconv(1).

Functions: iconv(3).

527188-021 Hewlett-Packard Company 4−9

getacl(1) OSS Shell and Utilities Reference Manual

NAME
getacl - Lists access control lists (ACLs) for files

SYNOPSIS
getacl [-ad] file ...

FLAGS
-a Displays the filename, owner, group, and any nondefault ACL entries for the file.

-d Displays the filename, owner, group, and any default ACL entries for the file. Only
directories have default ACL entries.

If you do not specify any flags, the filename, owner, group, and both default and nondefault ACL
entries are displayed.

DESCRIPTION
The getacl command displays the owner, group, and ACL entries for each file that is a directory,
a regular file, a first-in, first-out (FIFO) special file, or a bound AF_UNIX socket.

When you specify multiple files, a blank line separates the ACL listing for each file. The format
of a single ACL is:

file: filename
owner: uid
group: gid
user::perm
user:uid:perm
group::perm
group:gid:perm
class:perm
other:perm
default:user::perm
default:user:uid:perm
default:group::perm
default:group:gid:perm
default:class:perm
default:other:perm

The first three lines show the filename, the file owner, and the file-owning group. When you
specify only the -d flag, and the file has no default ACL, only these three lines are displayed.
Only directories have default ACL entries.

The user entry without a user ID indicates the permissions that are granted to the owner of the
file. One or more additional user entries indicate the permissions that are granted to the specified
users. The group entry without a group identifier indicates the permissions that are granted to
the owning group of the file. One or more additional group entries indicate the permissions that
are granted to the specified groups. The other entry indicates the permissions that are granted to
others. The class entry provides a mask that you can use to restrict the permissions granted by
additional user entries and any group entries.

The default entries (default:user, default:group, and default:other) can exist for directories
only and contain ACL entries that are added to files and directories created within the directory.
Default entries are added to new files as actual entries. Default entries are added to new direc-
tories both as actual entries and default entries.

The uid is the login name, gid is a group name, and perm is a three-character string of letters
representing the separate discretionary access rights: r (read), w (write), x (execute/search), or
the placeholder character - (dash). The value of perm is displayed in the order rwx. If a permis-
sion is not granted by an ACL entry, the placeholder character appears.

4−10 Hewlett-Packard Company 527188-021

User Commands (g - j) getacl(1)

The getacl command displays ACL entries in the order in which the entries are evaluated when
an access check is performed. Any default ACL entries for a directory have no effect on access
checks.

The file owner (user::) permission bits represent the access that the owner of the file has. The file
class permission bits represent the most access that any additional user entry, additional group
entry, or the owning group entry can grant. The file other permission bits represent the access
that the other ACL entry has. If a user invokes the chmod command or the setacl command and
changes the file class permission bits, the access granted by the additional ACL entries might be
restricted. For detailed information about ACLs, see the acl(5) reference page.

To indicate that the file group class permission bits restrict an ACL entry, getacl displays, after
each affected entry, text in the form #effective:perm, where perm shows only the permissions
actually granted.

EXAMPLES
Given file filea, with an ACL six entries long, the command getacl filea displays:

file: filea
owner: fletcher
group: us
user::rwx
user:spy:---
user:archer:rw-
group::r--
class:rw-
other:---

Given file filea, with an ACL six entries long, after the command chmod 700 filea was issued,
the command getacl filea displays:

file: filea
owner: fletcher
group: us
user::rwx
user:spy:---
user:archer:rw- #effective:---
group::r-- #effective:---
class:---
other:---

Given directory fileb, with an ACL containing default entries, the command getacl -d fileb
displays:

file: fileb
owner: fletcher
group: us
default:user::rwx
default:user:spy:---
default:group::r--
default:other:---

Given directory fileb, the command getacl fileb displays:

file: fileb
owner: fletcher
group: us
user::rwx

527188-021 Hewlett-Packard Company 4−11

getacl(1) OSS Shell and Utilities Reference Manual

user:spy:---
user:archer:rw-
group::r--
other:---
default:user::rwx
default:user:spy:---
default:group::r

NOTES
The output of the getacl command is in the correct format for input to the setacl command. If
you direct the output from getacl to a file, you can use this file as input to setacl, allowing you to
easily assign the ACL of one file to another file.

RELATED INFORMATION
Commands: chmod(1), ls(1), setacl(1).

Functions: acl(2), aclsort(3), getgrid(3), getpwuid(3).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
This command is an HP extension to the XPG4 Version 2 specification.

4−12 Hewlett-Packard Company 527188-021

User Commands (g - j) getconf(1)

NAME
getconf - Displays system configuration variable values

SYNOPSIS
getconf system_configuration

getconf path_configuration pathname

DESCRIPTION
The system_configuration argument specifies a system-wide configuration variable. The
path_configuration argument specifies a system path-configuration variable. The pathname
argument specifies a pathname for the path_configuration variable.

The system_configuration argument specifies system-configuration variables whose values are
valid throughout the system. There are two kinds of system-wide configuration values:

• System-wide configuration variables

• System standards configuration variables

The path_configuration argument specifies system path-configuration variables whose values
contain information about paths and the path structure in the system.

System-Wide Configuration Variables
System-wide configuration variables contain the minimum values met throughout all portions of
the system. The following list defines the system-wide configuration variables used with the
getconf command:

ARG_MAX
The maximum length, in bytes, of the arguments for one of the exec functions, includ-
ing environment data. atexit() per process.

BC_BASE_MAX
The maximum value allowed for the obase variable with the bc command.

BC_DIM_MAX
The maximum number of elements permitted in an array by the bc command.

BC_SCALE_MAX
The maximum value allowed for the scale variable with the bc command.

BC_STRING_MAX
The maximum length of string constants accepted by the bc command.

CHILD_MAX
The maximum number of simultaneous processes for each real user ID.

CLK_TCK
The number of clock ticks per second. The value of CLK_TCK may be variable, and
it should not be assumed that CLK_TCK is a compile-time constant.

COLL_WEIGHTS_MAX
The maximum number of weights that can be assigned to an entry in the
LC_COLLATE locale-dependent information in a locale-definition file.

CS_PATH
A value for the PATH environment variable that finds all standard utilities.

527188-021 Hewlett-Packard Company 4−13

getconf(1) OSS Shell and Utilities Reference Manual

EXPR_NEST_MAX
The maximum number of expressions that can be nested within parentheses by the
expr command.

LINE_MAX
The maximum length, in bytes, of a command’s input line (either standard input or
another file) when the utility is described as processing text files. The length includes
room for the trailing newline character.

NGROUPS_MAX
The maximum number of simultaneous supplementary group IDs for each process.

OPEN_MAX
The maximum number of files that one process can have open at one time.

PAGE_SIZE
The page size granularity for memory regions.

PASS_MAX
The maximum number of characters returned by getpass() (not including terminating
null).

PATH A value for the PATH environment variable that finds all standard utilities.

RE_DUP_MAX
The maximum number of repeated occurrences of a regular expression permitted when
using the interval-notation parameters, such as the m and n parameters, with the ed
command.

STREAM_MAX
The number of streams that one process can have open at one time.

TZNAME_MAX
The maximum number of bytes supported for the name of a time zone (not the length of
the TZ environmental variable).

System Standards Configuration Variables
System standards configuration variables contain the minimum values required by a particular
system standard. The prefixes POSIX_, POSIX2_, and XOPEN indicate that the variable con-
tains the minimum value for a system characteristic required by the POSIX 1003.1, POSIX
1003.2, and X/Open system standards, respectively. System standards are system-wide
minimums that the system meets to support the particular system standard. Actual configuration
values may exceed these standards. The system standards configuration variables for the getconf
command are defined as follows:

POSIX_ARG_MAX
The length of the arguments for one of the exec functions, in bytes, including environ-
ment data.

POSIX_CHILD_MAX
The maximum number of simultaneous processes for each real user ID.

POSIX_JOB_CONTROL
This variable has a value of 1 if the system supports job control; otherwise, the variable
is undefined.

4−14 Hewlett-Packard Company 527188-021

User Commands (g - j) getconf(1)

POSIX_LINK_MAX
The maximum value of a file’s link count.

POSIX_LOCALEDEF
This variable has a value of 1 if the system restricts supported locales to only those it
supplies; otherwise, the variable has a value of 0 (zero).

POSIX_MAX_CANON
The maximum number of bytes in a terminal canonical input queue.

POSIX_MAX_INPUT
The maximum number of bytes for which space will be available in a terminal input
queue.

POSIX_NAME_MAX
The maximum number of bytes in a filename.

POSIX_NGROUPS_MAX
The maximum number of simultaneous supplementary group IDs for each process.

POSIX_OPEN_MAX
The maximum number of files that one process can have open at one time.

POSIX_PATH_MAX
The maximum number of bytes in a pathname.

POSIX_PIPE_BUF
The maximum number of bytes that can be written atomically when writing to a pipe.

_POSIX_REENTRANT_FUNCTIONS
This variable has a value of 1 if the system supports POSIX reentrant functions; other-
wise, the variable is undefined.

POSIX_SAVED_IDS
This variable has a value of 1 if each process has a saved set-user-ID and a saved set-
group-ID; otherwise, the variable is undefined.

POSIX_SSIZE_MAX
The maximum value that can be stored in an object of type ssize_t.

POSIX_STREAM_MAX
The number of streams that one process can have open at one time.

_POSIX_THREAD_ATTR_STACKSIZE
This variable has a value of 1 if the system supports the POSIX threads stack size attri-
bute; otherwise, the variable is undefined.

_POSIX_THREADS
This variable has a value of 1 if the system supports POSIX threads; otherwise, the
variable is undefined.

POSIX_TZNAME_MAX
The maximum number of bytes supported for the name of a time zone (not the length of
the TZ environmental variable).

527188-021 Hewlett-Packard Company 4−15

getconf(1) OSS Shell and Utilities Reference Manual

POSIX_VERSION
The date of approval of the most current version of the POSIX 1 standard that the sys-
tem supports. The date is a 6-digit number, with the first 4 digits signifying the year and
the last 2 digits the month. Different versions of the POSIX 1 standard are periodically
approved by the IEEE Standards Board, and the date of approval is used to distinguish
between different versions.

POSIX2_BC_BASE_MAX
The maximum value allowed for the obase variable with the bc command.

POSIX2_BC_DIM_MAX
The maximum number of elements permitted in an array by the bc command.

POSIX2_BC_SCALE_MAX
The maximum value allowed for the scale variable with the bc command.

POSIX2_BC_STRING_MAX
The maximum length string constants accepted by the bc command.

POSIX2_CHAR_TERM
One or more terminal types capable of all operations described in ISO/IEC 9945. This
value need not be present on a system not supporting the User Portability Utilities
Option.

POSIX2_COLL_WEIGHTS_MAX
The maximum number of weights that can be assigned to an entry of the
LC_COLLATE locale variable in a locale-definition file.

POSIX2_EXPR_NEST_MAX
The maximum number of expressions that can be nested within parentheses by the
expr command.

POSIX2_LINE_MAX
The maximum length, in bytes, of a command’s input line (either standard input or
another file) when the utility is described as processing text files. The length includes
room for the trailing newline character.

POSIX2_RE_DUP_MAX
The maximum number of repeated occurrences of a regular expression permitted when
using the interval-notation parameters, such as the m and n parameters with the ed
command.

POSIX2_UPE
This variable has a value of 1 if the system supports the User Portability Utilities
Option; otherwise, the variable has a value of 0 (zero).

POSIX2_VERSION
The date of approval of the most current version of the POSIX 2 standard that the sys-
tem supports. The date is a 6-digit number, with the first 4 digits signifying the year and
the last 2 digits the month. Different versions of the POSIX 2 standard are periodically
approved by the IEEE Standards Board, and the date of approval is used to distinguish
between different versions.

4−16 Hewlett-Packard Company 527188-021

User Commands (g - j) getconf(1)

POSIX2_C_BIND
This variable has a value of 1 if the system supports the optional C Language Develop-
ment Facilities specified by POSIX 2 and the optional C Language Bindings Option
from POSIX 2; otherwise, the variable is undefined.

POSIX2_C_DEV
This variable has a value of 1 if the system supports the optional C Language Develop-
ment Utilities from POSIX 2; otherwise, the variable is undefined.

POSIX2_C_VERSION
The integer value 199209L. This value indicates the version of the interfaces
described in the C-Language Bindings Option section of the XPG4 standard. This
value changes with each published version of ISO/IEC 9945 to indicate the 4-digit year
and 2-digit month that the standard was approved by the IEEE Standards Board.

POSIX2_FORT_DEV
This variable has a value of 1 if the system supports the FORTRAN Development Util-
ities Option from POSIX 2; otherwise, the variable is undefined.

POSIX2_FORT_RUN
This variable has a value of 1 if the system supports the FORTRAN Runtime Utilities
Option from POSIX 2; otherwise, the variable is undefined.

POSIX2_LOCALEDEF
This variable has a value of 1 if the system supports the creation of new locales with
the localedef command; otherwise, the variable is undefined.

POSIX2_SW_DEV
This variable has a value of 1 if the system supports the Software Development Utili-
ties Option from POSIX 2; otherwise, the variable is undefined.

SSIZE_MAX
The maximum value that can be stored in an object of type ssize_t.

XOPEN_VERSION
An integer indicating the most current version of the X/OPEN standard that the system
supports.

System Path Configuration Variables
LINK_MAX

The maximum value of a file’s link count. If the pathname argument refers to a direc-
tory, the value returned applies to the directory itself.

MAX_CANON
The maximum number of bytes in a terminal canonical input queue. If the pathname
argument does not specify a terminal file, the getconf command exits with a nonzero
value.

MAX_INPUT
The maximum number of bytes for which space will be available in a terminal input
queue. If the pathname argument does not specify a terminal file, the getconf command
exits with a nonzero value.

527188-021 Hewlett-Packard Company 4−17

getconf(1) OSS Shell and Utilities Reference Manual

NAME_MAX
The maximum number of bytes in a filename. If the pathname argument specifies a
directory, the value returned applies to the filenames within the directory.

PATH_MAX
The maximum number of bytes in a pathname. If the pathname argument specifies a
directory, the value returned is the maximum length of a relative pathname when the
specified directory is the working directory.

PIPE_BUF
The maximum number of bytes that can be written atomically when writing to a pipe. If
the pathname argument specifies a FIFO or a pipe, the value returned applies to that
object. If the pathname argument specifies a directory, the value returned applies to
any FIFO created in that directory. If the pathname argument does not specify a direc-
tory or a FIFO file, the getconf command exits with a nonzero value.

POSIX_CHOWN_RESTRICTED
This variable has a value of 1 when the use of the chown function is restricted to a pro-
cess with appropriate privileges and the group ID of a file can only be changed to the
effective group ID of the process or to one of its supplementary group IDs. If the vari-
able is undefined, it varies in the system, depending upon the path.

POSIX_NO_TRUNC
This variable has a value of 1 when pathnames longer than the limit specified by the
NAME_MAX variable will generate an error. If the variable is undefined, it varies in
the system, depending upon the path.

POSIX_VDISABLE
When this variable has a value of 1, terminal special characters, which are defined in
the termios.h header file, can be disabled. If the pathname argument does not specify
a terminal file, the getconf command will exit with a nonzero value.

EXAMPLES
1. To display the value of the ARG_MAX environment variable, enter:

getconf ARG_MAX

2. To display the value of the PATH_MAX environment variable for the /usr directory and
check the exit codes for the command, enter the following sequence of shell commands:

value=$ (getconf PATH_MAX /usr)
status=$?
if ["X$value" = "x"]
then

case $status in
0) echo PATH_MAX is NULL; ;
1) echo PATH_MAX in /usr not defined; assume infinity; ;
*) echo Error in the getconf command; ;
esac

else
echo The value of PATH_MAX in /usr is $value

fi

This sequence returns the following message:

The value of PATH_MAX in /usr is 1024

4−18 Hewlett-Packard Company 527188-021

User Commands (g - j) getconf(1)

FILES
/usr/include/limits.h Defines system configuration variables.

/usr/include/unistd.h Defines system configuration variables.

RELATED INFORMATION
Commands: env(1).

Functions: confstr(3), pathconf(3), sysconf(3).

Files: limits(4).

527188-021 Hewlett-Packard Company 4−19

getfilepriv(1) OSS Shell and Utilities Reference Manual

NAME
getfilepriv - Displays file privileges for an executable file

SYNOPSIS
getfilepriv file ...

FLAGS
Operands

file Specifies the name of a file for which you want to display privileges.

DESCRIPTION
The getfilepriv command displays the file privileges for the specified file. This file can be either
a Guardian file or an OSS file.

For a description of the values for file privileges, see the setfilepriv(1) reference page.

EXAMPLES
1. To list the privileges for file /user/privexe, enter:

getfilepriv /user/priexe

Sample output:

#file: /usr/privexe
PRIVSETID

2. To list the privileges for the Guardian file $system.system.privobj,
enter:

getfilepriv /G/SYSTEM/SYSTEM/PRIVOBJ

Sample output:

#file: /G/SYSTEM/SYSTEM/PRIVOBJ
PRIVSETID
PRIVSOARFOPEN

3. To list the privileges for all the files in the current directory, enter:

getfilepriv *

Sample output:

#file: exe1_with_privs
PRIVSETID
PRIVSOARFOPEN

#file: exe2_no_priv
NONE

#file: exe2_with_priv
PRIVSETID

#file: not_executable
NONE

#file: exe3_with_priv
PRIVSETID

4−20 Hewlett-Packard Company 527188-021

User Commands (g - j) getfilepriv(1)

NOTES
You can use the output of the getfilepriv command used on a single file, saved as a file, as the
priv_file for the setprivfile command. Lines that begin with # (number sign) in the output of the
getfilepriv command are treated as comments in the input of the setfilepriv command.

This command is supported on systems running J06.11 or later J-series RVUs or H06.22 or later
H-series RVUs only.

RELATED INFORMATION
Commands: setfilepriv(1).

Functions: setfilepriv(2), stat(2).

STANDARDS CONFORMANCE
This command is an HP extension.

527188-021 Hewlett-Packard Company 4−21

getopts(1) OSS Shell and Utilities Reference Manual

NAME
getopts - Parses command options

SYNOPSIS
getopts optstring name [argument ...]

DESCRIPTION
The getopts command checks a specified command for legal options.

Operands
optstring Specifies the letters that the getopts command will recognize as

valid option values when parsing the command options. If a
letter is followed by a : (colon), the option is expected to have
an argument specified in argument. The options can be
separated from the argument by spaces.

name Specifies the name of a shell environment variable into which
the getopts command should place the value of the next option.

argument Specifies an option argument for the getopts command to parse.
If argument is omitted, positional parameters are parsed.

An option argument begins with a + (plus sign) or a - (dash).
Either an option not beginning with + or - or the argument --
ends the options.

Each time it is invoked, getopts places the next option letter it
finds into the variable name. The value stored has a + added in
front when argument begins with a +.

The index of the next argument is stored in OPTIND. OPTIND
is initialized to 1 when the shell is invoked.

The option argument, if any, gets stored in OPTARG.

If a required option argument is missing, a leading : in optstring
causes getopts to store the letter of an invalid option in
OPTARG and to set name to : (colon). Otherwise, name is set
to a ? (question mark), the shell variable OPTARG is not set,
and getopts prints an error message. The exit status remains 0
(zero).

The exit status is nonzero when there are no more options.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES,
NLSPATH, OPTARG, and OPTIND environment variables.

EXAMPLES
The following section from a shell script takes the command line passed from the invoking pro-
cess and extracts the flag characters. There are two expected flags: the -a flag and the -b flag.
The -b flag requires an argument. At the end, the script echoes the remaining arguments not
extracted by the getopts command.

aflag=
bflag=
while getopts ab: name
do

case $name in

4−22 Hewlett-Packard Company 527188-021

User Commands (g - j) getopts(1)

a) aflag=1
b) bflag=1

bval-"$OPTARG";;
?) echo Usage: $0 [-a] [-b value] parameters

exit 2;;
esac

done
if [! -z "$bflag"]; then echo Option -a specified; fi
if [! -z "$bflag"]; then echo Option -b "bval" specified; fi
shift $[OPTIND - 1]
echo Remaining parameters are: "$*"

NOTES
The getopts command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the sh(1) reference page.

EXIT VALUES
The getopts command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred or there are no more options.

RELATED INFORMATION
Commands: sh(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

527188-021 Hewlett-Packard Company 4−23

gname(1) OSS Shell and Utilities Reference Manual

NAME
gname - Displays the Guardian environment filename for an OSS file

SYNOPSIS
gname [-s] pathname ...

FLAGS
-s Supresses formatting and displays only the Guardian filename.

DESCRIPTION
The gname command displays the Guardian filename for the file specified by pathname.

Operands
pathname

Specifies the OSS pathname for the file whose Guardian filename is to
be displayed.

EXAMPLES
1. The command:

gname /bin/gname

results in output such as the following:

gname: /bin/gname ---> \KT22.$XPG.ZYQ00000.Z00005LS

2. The command:

gname -s /bin/pname

results in output such as the following:

\KT22.$XPG.ZYQ00000.Z00005LN

DIAGNOSTICS
The following error messages can be returned:

A prefix within the pathname refers to a file other than the dir
The value specified for pathname specifies a file where a direc-
tory name is required.

Failed with Guardian error: 4002
The value specified for pathname does not correspond to a
known file.

Invalid pathname specified: pathname
The value specified for pathname contains a character that is not
permitted in a pathname.

Pathname or name component too long.
Either a component of the value specified for pathname exceeds
the maximum number of characters allowed in that component,
or symbolic links in the specified pathname expand until the
maximum length for a valid pathname is exceeded.

4−24 Hewlett-Packard Company 527188-021

User Commands (g - j) gname(1)

Root fileset not mounted.
The value specified for pathname uses a root fileset that is not
currently mounted. If the specified value is valid, contact your
site administrator to have that root fileset mounted.

Some non-root fileset not mounted.
The value specified for pathname uses a directory for a fileset
that is not currently mounted. If the specified value is valid,
contact your site administrator to have that fileset mounted.

EXIT VALUES
The gname command returns the following exit values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: pname(1).

Miscellaneous: filename(5).

STANDARDS CONFORMANCE
This command is an extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 4−25

grep(1) OSS Shell and Utilities Reference Manual

NAME
grep - Search a file for a pattern

SYNOPSIS
grep [-E | -F] [-c | -l | -q] [-bhinsvwxy] [-pparagraph_separator ...]

{pattern ... | -e pattern ... | -f pattern_file ...} [file ...]

FLAGS
While most flags can be combined, some combinations result in one flag overriding another. For
example, if you specify the -n and -l flags, the output includes filenames only (as specified by the
-l flag) and thus does not include line numbers (as specified by the -n flag).

-b Precedes each line by the block number in which it was found. Use
this flag to help find disk block numbers by context.

-c Displays only a count of matching lines.

-e pattern ...
Specifies a pattern. This flag works the same as a simple pattern but is
useful when the pattern begins with a - (dash).

-E Uses extended regular expressions (EREs) to match patterns (treats
each pattern as an ERE). A null ERE matches every line.

-f pattern_file ...
Specifies a file that contains patterns. Each pattern terminates with a
newline character.

-F Uses fixed strings to match patterns (treats each pattern as a literal
string instead of as a regular expression). A null string matches every
line.

-h Suppresses reporting of filenames when multiple files are processed.

-i Ignores the case of letters in locating pattern; that is, uppercase and
lowercase letters in the input are considered identical (same as the -y
flag).

-l Lists the name of each file with lines matching pattern. Each filename
is listed only once; filenames are separated by newline characters.

-n Precedes each line with its relative line number in the file.

-pparagraph_separator ...
Displays the entire paragraph containing matched lines. Paragraphs
are delimited by paragraph separators specified by
paragraph_separator, which is a BRE pattern. Lines containing the
paragraph separators are used only as separators; they are never
included in the output. The default paragraph separator is a blank line.
No space is permitted between the flag and the paragraph separator.

-q Suppresses all output except error messages. This is useful for easily
determining whether or not a pattern or string exists in a group of files.
When searching several files, it provides a performance improvement
because it can quit as soon as it finds the first match, and it requires
less care by the user in choosing the set of files to supply as arguments
because it exits with a 0 (zero) exit status if it detects a match, even if
the grep command detected an access or read error on earlier file

4−26 Hewlett-Packard Company 527188-021

User Commands (g - j) grep(1)

arguments.

-s Suppresses error messages about inaccessible files.

-v Displays all lines except those that match the specified pattern. This
flag is useful for filtering unwanted lines out of a file.

-w Searches for the expression as a word (the pattern bracketed by nonal-
phanumeric characters or by the beginning or end of the line). See the
reference page for the ex command.

-x Displays lines that match the pattern exactly with no additional charac-
ters.

-y Ignores the case of letters in locating pattern; that is, uppercase and
lowercase letters in the input are considered to be identical (same as
the -i flag).

DESCRIPTION
The grep command searches the specified files (the standard input file by default) for lines con-
taining characters that match the specified pattern and then write matching lines to standard out-
put.

The grep command searches for patterns that are limited regular expressions as described under
Regular Expressions (REs).

Command Usage
The grep command precedes the matched line with the name of the file containing it if you
specify more than one file (except when the -h flag is specified).

Lines are limited to 2048 bytes; longer lines are broken into multiple lines of 2048 or fewer
bytes. Paragraphs (under the -p flag) are currently limited to a length of 5000 bytes.

Running the grep command on a nontext file (for example, an .o file) produces unpredictable
results and is discouraged.

Regular Expressions (REs)
Regular expressions (REs) cannot contain newline characters, because these signal a new pat-
tern. The following REs match a single character:

character
An ordinary character (one other than one of the special pattern-
matching characters) matches itself.

. A . (dot) matches any single character except the newline character.

[string] A string enclosed in [] (brackets) matches any one character in that
string. In addition, certain pattern-matching characters have special
meanings within brackets:

^ If the first character of string is a ˆ (circumflex), the RE
[ˆstring] matches any character except the characters in
string and the newline character. A ˆ has this special mean-
ing only if it occurs first in the string.

- You can use a - (dash) to indicate a range of consecutive
characters. The characters that fall within a range are deter-
mined by the current collating sequence, which is defined by
the LC_COLLATE environment variable. For example, [a-
d] is equivalent to [abcd] in the traditional ASCII collating

527188-021 Hewlett-Packard Company 4−27

grep(1) OSS Shell and Utilities Reference Manual

sequence.

A range can include a multicharacter collating element
enclosed within bracket-period delimiters ([. .]). The
bracket-period delimiters in the RE syntax distinguish mul-
ticharacter collating elements from a list of the individual
characters that make up the element.

A collating sequence can define equivalence classes for
characters. An equivalence class is a set of collating ele-
ments that all sort to the same primary location. They are
enclosed within bracket-equal delimiters ([= =]). An
equivalence class generally is designed to deal with
primary-secondary sorting. For example, if e, è, and ê
belong to the same equivalence class, then [[=e=]fg,
[[=è=]fg], and [[=ê=]fg] are each equivalent to [eèêfg].

The - (dash) character loses its special meaning if it occurs
first ([-string]), if it immediately follows an initial circumflex
([ˆ-string]), or if it appears last ([string-]) in the string.

] When the] (right bracket) is the first character in the string
([]string]) or when it immediately follows an initial
circumflex ([ˆ]string]), it is treated as a part of the string
rather than as the string terminator.

\special_character
A \ (backslash) followed by a special pattern-matching character
matches the special character itself (as a literal character). These spe-
cial pattern-matching characters are as follows:

. * [\ Always special, except when they appear within [] (brack-
ets).

^ Special at the beginning of an entire pattern or when it
immediately follows the left bracket of a pair of brackets
([ˆ...]).

$ Special at the end of an entire pattern.

[: :] A character class name enclosed in bracket-colon delimiters matches
any of the set of characters in the named class. Members of each of the
sets are determined by the current setting of the LC_CTYPE environ-
ment variable. The supported classes are alpha, upper, lower, digit,
xdigit, space, print, punct, graph, and cntrl.

Here is an example of how to specify one of these classes:

[[:lower:]]

This matches any lowercase character for the current locale.

Forming Patterns
The following rules describe how to form patterns from REs:

• An RE that consists of a single, ordinary character matches that same
character in a string.

4−28 Hewlett-Packard Company 527188-021

User Commands (g - j) grep(1)

• An RE followed by an * (asterisk) matches zero or more occurrences of
the character that the RE matches. For example, the following pattern:

ab*cd

matches each of the following strings:

acd
abcd
abbcd
abbbcd

but not the following string:

abd

If there is any choice, the longest matching leftmost string is chosen. For
example, given the following string:

122333444

the pattern .* matches 122333444, the pattern .*3 matches 122333, and
the pattern .*2 matches 122.

• An RE followed by:

\{number\}
Matches exactly number occurrences of the character matched
by the RE.

\{number,\}
Matches at least number occurrences of the character matched
by the RE.

\{number1,number2\}
Matches any number of occurrences of the character matched
by the RE from number1 to number2, inclusive.

The values of number1 and number2 must be integers in the
range 0 through 255, inclusive. Whenever a choice exists, this
pattern matches as many occurrences as possible.

Note that if number is 0 (zero), pattern matches zero
occurrences of pattern; for example:

$ echo abc | grep ’aX\{0\}bX\{0\}cX\{0\}’

abc
$

• You can combine REs into patterns that match strings containing the
same sequence of characters. For example, AB*CD matches the string
ABCD and [A-Za-z]*[0-9]* matches any string that contains any combi-
nation of ASCII alphabetic characters (including none), followed by any
combination of numerals (including none).

• The character sequence \(pattern\) matches pattern and saves it into a
numbered holding space. Using this sequence, up to nine patterns can be
saved on a line. Counting from left to right on the line, the first pattern
saved is placed in the first holding space, the second pattern is placed in
the second holding space, and so on.

527188-021 Hewlett-Packard Company 4−29

grep(1) OSS Shell and Utilities Reference Manual

The character sequence \n matches the nth saved pattern, which is
placed in the nth holding space. (The value of n is a digit, 1-9.) Thus,
the following pattern:

\(A\)\(B\)C\2\1

matches the string ABCBA. You can nest patterns to be saved in hold-
ing spaces. Whether the enclosed patterns are nested or in a series, \n
refers to the nth occurrence, counting from the left, of the delimiting
characters, \).

Restricting What Patterns Match
A pattern can be restricted to match from the beginning of a line, up to the end of the line, or the
entire line:

• A ˆ (circumflex) at the beginning of a pattern causes the pattern to match
only a string that begins in the first character position on a line.

• A $ (dollar sign) at the end of a pattern causes that pattern to match only
if the last matched character is the last character (not including the new-
line character) on a line.

• The construction ˆpattern$ restricts the pattern to matching only an
entire line.

EXAMPLES
1. To search several files for a string of characters, enter:

grep -F ’strcpy’ *.c

This command searches for the string strcpy in all files in the current
directory with names ending in .c.

2. To count the number of lines that match a pattern, enter:

grep -c -F ’{’ pgm.c
grep -c -F ’}’ pgm.c

This command displays the number of lines in pgm.c that contain left
and right braces.

If you do not put more than one { or } on a line in your C programs, and
if the braces are properly balanced, then the two numbers displayed will
be the same. If the numbers are not the same, then you can display the
lines that contain braces in the order that they occur in the file with the
command:

grep -n -E ’{�}’ pgm.c

3. To display all lines in a file that begin with an ASCII letter, enter:

grep ’ˆ[a-zA-Z]’ pgm.s

Note that because the command grep -F searches only for fixed strings
and does not interpret pattern-matching characters, the following com-
mand searches only for the literal string ˆ[a-zA-Z] in file pgm.s:

grep -F ’ˆ[a-zA-Z]’ pgm.s

A space character is required between the -F flag and the literal string
specification.

4−30 Hewlett-Packard Company 527188-021

User Commands (g - j) grep(1)

4. To display all lines that contain ASCII letters in parentheses or digits in
parentheses (with spaces optionally preceding and following the letters
or digits), but not letter-digit combinations in parentheses, enter:

grep -E \
’\(*([a-zA-Z]*⏐⏐[0-9]*) *\)’ my.txt

This command displays lines file in my.txt such as (y) or (783902), but
not (alpha19c).

Note that with the command grep -E, \(and \) match parentheses in the
text and (and) are special characters that group parts of the pattern.
With the grep command without the -E flag, the reverse is true; use (
and) to match parentheses and \(and \) to group characters.

5. To display all lines that do not match a pattern, enter:

grep -v ’ˆ#’

This displays all lines that do not begin with a # (number sign).

6. To display the names of files that contain a pattern, enter:

grep -l -F ’rose’ *.list

This command searches the files in the current directory whose names
end with .list and displays the names of those files that contain at least
one line containing the string rose.

A space character is required between the -F flag and the literal string
specification.

7. To display all lines that contain uppercase characters, enter:

grep ’[[:upper:]]’ pgm.s

EXIT VALUES
The exit values of the grep command are as follows:

0 A match was found.

1 No match was found.

2 A syntax error was found or a file was inaccessible, even if matches
were found.

RELATED INFORMATION
Commands: ed(1), sed(1), sh(1).

Files: locale(4).

527188-021 Hewlett-Packard Company 4−31

gtacl(1) OSS Shell and Utilities Reference Manual

NAME
gtacl - Runs a process in the Guardian environment from the OSS environment

SYNOPSIS
gtacl [option ...] [operands]

FLAGS
Operands used with the gtacl command must follow gtacl option specifications.

Options
All filename and pathname arguments used with gtacl options must be specified using OSS path-
name syntax. In the current release, filenames and pathnames within the /E directory are not sup-
ported by the OSS file system. These specifications allow the user to identify Guardian environ-
ment objects on other HP nodes.

The specification of options ends when gtacl finds one of the following:

• The end of the input line

• Any operand; that is, any specification that does not start with a minus
(-) or plus (+) and is not a redirection specification

• -- option

• -p option

Options cannot be grouped after a single minus (-) or plus (+). That is, -debug-
nowait is not a valid option specification.

The gtacl options can be specified in any order; gtacl processes options from left
to right. When you specify a gtacl option more than once, the rightmost
specification on the command line determines the value used.

-? | -help Displays usage information for the gtacl command. If this
option is specified, all other gtacl options and operands on the
command line are ignored.

-c command | -cv command
Submits command to the child process through the Guardian
environment STDIN file of the child process.

The command string must conform to OSS /bin/sh quoting con-
ventions. Refer to the sh(1) reference page for a description of
those conventions.

When you specify the -c command option, gtacl suppresses all
input and output operations except for those that occur after
command is read and before the end-of-file (EOF) indication is
returned. Use this option when you do not want Guardian pro-
gram banner information or similar output that is not data gen-
erated by running command.

When you specify the -cv command option, gtacl displays all
output, regardless of whether it occurs after command is read
and before the end-of-file (EOF) indication is returned. Use this
option when you do not want to discard Guardian program
banner information or similar output that is not data generated
by running command.

If you specify either of these options, the OSS environment

4−32 Hewlett-Packard Company 527188-021

User Commands (g - j) gtacl(1)

standard input file for gtacl is not connected to the Guardian
environment standard input file of the child process. Refer to
Input/Output Filtering under NOTES later in this reference
page for more information.

IMPORTANT: Do not use the -c option with the -i or +i option.
However, if the -c option is used with -i or +i, the last option
specified on the command line takes effect.

-cpu n Specifies the processor (0-15) in which the child process is to
run.

The default processor is the processor in which gtacl is running,
unless the child process is being created on another HP node.
When the child process runs on another HP node, the operating
system on that node assigns the default processor.

-debug Enters a Guardian environment debugging tool at the first exe-
cutable instruction of the child process. The default action is to
start the child process without a debugging tool active.

Refer to the manual for the debugger in use for additional infor-
mation.

-defmode on | -defmode off
Specifies the Guardian DEFINE mode for the child process.

If you use -defmode on, all Guardian DEFINE values of the pro-
cess executing gtacl are inherited by the child process.

If you use -defmode off, only Guardian =_DEFAULTS DEFINE
values are inherited by the child process.

The default mode is the DEFINE mode in effect for gtacl.

Refer to the TACL Reference Manual for additional information
about Guardian DEFINEs.

-extswap pathname
Specifies a Guardian swap file or swap volume for the extended
data segment of the child process. (Used for G-series TNS or
accelerated child processes only.) The pathname must be
specified in OSS pathname syntax.

The default action is to use the swap volume specified in the
=_DEFAULTS DEFINE for the child process. If that volume is
not available, the operating system chooses a swap volume.

Refer to the Guardian Programmer’s Guide for additional infor-
mation about swap files.

-f pathname Specifies a text file containing the environment variables to be
passed to the TACL process as PARAMs.

The environment variables must be listed in name=value format,
with each pair on a new line; white space is ignored before the
equal sign. Variable definitions that follow this format are
passed, one PARAM for each definition, to the Guardian TACL
process. Environment variable definitions that do not follow this
format are ignored.

If the -f flag is omitted, gtacl attempts to pass all existing

527188-021 Hewlett-Packard Company 4−33

gtacl(1) OSS Shell and Utilities Reference Manual

environment variables unless the -s flag is used. If both the -f
and -s flags are specified, the -f option is ignored. If the -f flag is
specified more than once, only the rightmost specification in the
command line is used.

-gpri n Assigns the initial Guardian execution priority n (1-199) to the
child process. The value 1 is the lowest priority; the value 199
is the highest priority.

The default priority is the priority used for gtacl.

-highpin on | -highpin off
Specifies whether the child process can run with a Guardian pro-
cess identification number (PIN) greater than 255.

Specifying -highpin on means that the child process can run
with a PIN greater than 255. Specifying -highpin off means the
child process must run with a PIN between 0 and 254.

The default value is -highpin on, unless an OFF value for the
Guardian process attribute is inherited from gtacl.

Refer to the TACL Reference Manual for additional information
about high and low PINs.

-i Specifies that gtacl should do the following:

• Send the child process the gtacl Guardian process name
qualifier to use as both its Guardian environment IN and
OUT filenames. (Many Guardian processes operate in
an interactive mode when their Guardian environment
IN and OUT filenames are the same.)

• Attempt to filter data passing through all OSS environ-
ment standard input, output, and error files. Refer to
Input/Output Filtering under NOTES later in this
reference page for more information.

The default action is to filter only the standard input and output
files that are connected to an OSS regular file, device file, pipe,
or FIFO that cannot be accessed through a Guardian environ-
ment filename.

IMPORTANT: Do not use the -i option with the -c option.
However, if the -i option is used with -c, the last option
specified on the command line takes effect.

+i Specifies that gtacl should do the following:

• Send the child process different Guardian process name
qualifiers for the Guardian environment IN and OUT
filenames. (Many Guardian processes operate in a
noninteractive mode when their Guardian environment
IN and OUT filenames are different.)

4−34 Hewlett-Packard Company 527188-021

User Commands (g - j) gtacl(1)

• Attempt to filter data passing through all OSS environ-
ment standard input, output, and error files. Refer to
Input/Output Filtering under NOTES later in this
reference page for more information.

The default action is to filter only the standard input and output
files that are connected to an OSS regular file, device file, pipe,
or FIFO that cannot be accessed through a Guardian environ-
ment filename.

IMPORTANT: Do not use the +i option with the -c option.
However, if the +i option is used with -c, the last option
specified on the command line takes effect.

-inspect on | -inspect off | -inspect saveabend
Indicates the debugging mode to be used for the child process.

Specifying inspect on causes the child process to enter the
currently selected symbolic debugger when the -debug option is
specified or if a debug event occurs.

Specifying -inspect off causes the child process to enter the
default debugger when the -debug option is specified or if a
debug event occurs.

Specifying -inspect saveabend causes creation of a saveabend
file (sometimes called a core file or a process snapshot file) when
the process terminates abnormally.

The default debugging mode is the mode specified in the pro-
gram file of the child process.

Refer to the manual for the debugging tool in use for additional
information about debug events and debugger use.

-jobid 0 | -jobid -1
Controls the job ID to be assigned to the child process.

Specifying -jobid 0 prevents the child process from running as
part of a batch job (the gtacl process cannot function as a batch
job ancestor, so no other value than -jobid -1 is supported).

Specifying -jobid -1 causes the child process to inherit its job ID
(if any) from gtacl.

The default value is -jobid -1.

-lib pathname Specifies the OSS pathname of a user library file in the Guardian
file system to be used by the child process; the program file for
the child process is modified to point to the specified library.

Use of this option requires write access to the program file for
the child process. The library file must be in the Guardian file
system on the same HP node as the program file for the child
process.

This option is needed only when a child process requires a user
library and an alternate is needed. The default action is to run
the child process with no modification to its user library usage.

527188-021 Hewlett-Packard Company 4−35

gtacl(1) OSS Shell and Utilities Reference Manual

+lib Specifies that the child process is to run without any user library
file; the program file for the child process is modified so that it
does not point to a library.

Use of this option requires write access to the program file for
the child process.

This option is needed only when a child process has used a user
library that is no longer needed. The default action is to run the
child process with no modification to its user library usage.

-mem n Specifies the amount of memory to allocate for the data stack of
the child process in 2048-byte virtual memory pages (1-64).
(Used for G-series TNS or accelerated child processes only.)
The default amount is determined by the program file executed
as the child process.

-name {/G/}processname
Starts the child process as a named process using the specified
name; processname must conform to Guardian process name
rules for length.

If /G/ is omitted, the full filename of the process is resolved
using Guardian environment rules. Refer to the RUN command
description in the TACL Reference Manual for the rules affecting
process name length and resolution.

The rules for mapping between Guardian filenames and OSS
pathnames mean that processname cannot begin with the dollar
sign ($) used in the Guardian environment.

If only -name /G is specified, the operating system creates a
unique four-character process name.

The default action is to use the process name attribute for the
program file of the child process.

+name Starts the child process as an unnamed process. This
specification is ignored if the Guardian RUNNAMED process
attribute is set in the program file for the child process.

If you specify neither the -name nor the +name option, the
default behavior is +name.

-nowait Exits without waiting for the child process to terminate. Refer to
Input/Output Filtering under NOTES later in this reference
page.

If you use this option, the effects of the following options are
restricted:

"-c command"
"-cv command"
"-i"
"+i"

If you do not specify the -nowait option, the default action is to
wait for the child process to terminate.

4−36 Hewlett-Packard Company 527188-021

User Commands (g - j) gtacl(1)

-p pathname Runs the specified program as the child process. This option is
an alternate syntax for the -prog option followed by the -- option
(described later in this reference page). For example, gtacl -p
pathname operands is equivalent to specifying gtacl -prog path-
name -- operands.

No other option can be specified after this option on the gtacl
command line.

-pfs n Specifies the size of the operating system process file segment
(PFS) for the child process in 2048-byte virtual memory pages
(64-512). The default size is determined from the program file
executed as the child process.

Refer to the TACL Reference Manual for additional information
about PFS pages.

-pmsg on | -pmsg off
Specifies whether the gtacl command displays status informa-
tion for the child process on the OSS standard output file of the
gtacl process.

Specifying -pmsg on means the name (for a named child pro-
cess) or the operating system cpu, pin (for an unnamed child pro-
cess), the program file name, and exit status information is
displayed. Specifying -pmsg off means no information is
displayed.

The default setting for display is -pmsg off.

-prog pathname
Runs the specified program file as the child process.

If this option is specified, the gtacl command uses the OSS
environment variable PMSEARCHLIST to resolve (expand)
pathname when it consists of a single Guardian filename com-
ponent. If the OSS environment variable PMSEARCHLIST is
not defined, then gtacl uses the /G/system/system subvolume.
If the named file cannot be found in /G/system/system, then the
current version of /G/system/sysnn is used. If the file is not
found, an error diagnostic is printed and gtacl terminates.

If this option is not specified, the default action is to run the file
/G/system/system/tacl or /G/system/sysnn/tacl.

-reclen length Specifies the record length (1-4096) in bytes to be reported when
a device inquiry request occurs for a file that gtacl is filtering.

The default record length is 80 bytes. For systems running
J06.05 and later J-series RVUs, H06.16 and later H-series
RVUs, or G06.32 and later G-series RVUs, if you start an
SQLCI process from the gtacl utility, the record length can be
up to 255 bytes, and the default record length is 132 bytes.

-s Suppresses propagation of all current OSS environment vari-
ables to the TACL process. This option takes precedence if the
-f option is also used.

527188-021 Hewlett-Packard Company 4−37

gtacl(1) OSS Shell and Utilities Reference Manual

-swap pathname
Specifies the name of a Guardian swap file or swap volume for
the data segment of the child process. This option is no longer
used and is provided for compatibility with previous releases. If
specified, the name must be

• in OSS pathname syntax

• valid for an existing file

but is otherwise ignored. The operating system chooses a swap
volume.

-term pathname
Specifies the filename of a Guardian terminal device to be used
as the home terminal of the child process. The name must be
specified in OSS pathname syntax.

The default action is to use the home terminal of the gtacl pro-
cess.

Refer to the TACL Reference Manual for additional information
about Guardian terminal device names.

If the gtacl process is to be run in the background, HP recom-
mends using /G/zhome as the home terminal for the child pro-
cess. $ZHOME is a reliable home terminal on which the process
can perform write operations. For more information about
$ZHOME, see the NonStop NS-Series Operations Guide.

-- Specifies that there are no more options on the gtacl command
line. Any information following this option is either processed
as redirection specifications or passed to the child process as
arguments.

Operands
All operands that the gtacl command does not interpret as option arguments are passed in the
Guardian environment Startup message sent to the child process. gtacl does not expand
operands or interpret special characters.

If the command line is entered through the OSS environment /bin/sh shell, the shell can process
or expand operands on the command line before passing the line to gtacl to interpret. When an
operand contains blanks or special characters normally processed by the shell, you must use quo-
tation marks or escape characters correctly or unexpected actions might result. Refer to the sh(1)
reference page for more information.

Up to 980 bytes of arguments can be passed to the child process.

DESCRIPTION
The gtacl command executes a Guardian program, TACL macro, TACL routine, TACL alias, or
TACL command from the OSS environment within the same HP node. gtacl is an OSS process
that spawns a Guardian process. gtacl allows you to specify the environment and initial process
attributes of the child process.

4−38 Hewlett-Packard Company 527188-021

User Commands (g - j) gtacl(1)

EXAMPLES
1. Running an interactive Guardian TACL process:

gtacl

2. Running a TACL command:

gtacl -c ’status *, user’

3. Running a Guardian program directly, without using the TACL com-
mand interpreter, using shell quotes to preserve special characters for
interpretation by the Guardian process:

gtacl -p fup ’info \sys.$vol.svol.*’

4. Running a Guardian program directly, without using the TACL com-
mand interpreter (the shell escape character \ prevents the shell from
expanding the * character):

gtacl -p fup rename *, newsvol.*

5. Running a Guardian program directly and passing a string containing a
blank within an operand:

gtacl -p locate ’"two words" $vol.svol.file’

6. Running a server program ($NULL) using the -nowait option. In this
example the null program is passed a value of 1 for the backup CPU.

gtacl -nowait -name /G/null -cpu 0 -p /G/system/system/null 1

7. Compiling a C program from a file in the Guardian file system:

gtacl -p c < /G/vol/svol/file > listing.output

8. Compiling a C program from a file in the Guardian file system, with out-
put to your Guardian default subvolume:

gtacl -p c < /G/vol/svol/bit1C ’; nolist,runnable’

9. Looking up the meaning of an errno value:

gtacl -p ’error’ $ERRNO

FILES
/G/system/system/tacl

Used as the default Guardian program to be executed. If the
operating system cannot find the program with this pathname, it
attempts to uses a copy from the current SYSnn subvolume.

NOTES
The gtacl command is commonly used to:

• Start an interactive TACL process (gtacl)

527188-021 Hewlett-Packard Company 4−39

gtacl(1) OSS Shell and Utilities Reference Manual

• Execute a single Guardian environment command (gtacl -c command or
gtacl -cv command)

• Run a Guardian environment program (gtacl -p prog args)

Using the -c or -cv option to run a Guardian process has the following advan-
tages:

• You can use Guardian environment user defaults and macros set up in a
TACLCSTM file.

• You need not distinguish among TACL built-in functions, TACL macros,
or programs external to TACL.

• You can use TACL RUN option syntax to direct input or output to Guar-
dian files (such as spooler locations) that are not available through shell
redirection.

Using the -c or -cv option to run a Guardian process has the following disadvan-
tages:

• You cannot redirect standard input using the shell.

• If you do not need TACL facilities, these options add the unnecessary
overhead of TACL process creation.

Using the -p option to run a Guardian process has the following advantages:

• It runs the program without the overhead of TACL process creation.

• There are no restrictions on redirection of OSS files using the shell.

Using the -p option to run a Guardian process has the following disadvantages:

• TACL facilities (such as built-in functions or macros) cannot be used.

Redirecting Input or Output
The gtacl process does not have its own run options for redirecting output. Instead, standard
/bin/sh redirection operators can be used to redirect the input or output of the gtacl process for
any file that can be opened using the OSS-environment open() function.

You cannot use the OSS shell to redirect input or output for files that can be opened only using
the Guardian file system (with the FILE_OPEN_ procedure call). For such files, the gtacl -c
command or -cv command option must be used with TACL file redirection. For example, the fol-
lowing command fails because the OSS shell cannot directly open the Guardian spooler process:

gtacl -p tgal < /G/vol/subvol/file > /G/S/#TITAN

Instead, the following command must be used:

gtacl -c ’tgal /IN $vol.subvol.file, OUT $S.#TITAN/’

Many Guardian processes allow input or output from a process file. The gtacl process uses this
feature by running as a named process and passing its own name in place of the OSS standard
files that cannot be opened by the Guardian FILE_OPEN_ procedure call. For example, if gtacl
is invoked with the following command and runs with a system-generated process name of
$X123:

4−40 Hewlett-Packard Company 527188-021

User Commands (g - j) gtacl(1)

gtacl -c ’fileinfo $vol.subvol.*’ > fileinfo.output

then the gtacl process runs TACL with an IN file named $X123.#CMD and an OUT file named
$X123.#OUT. When TACL first reads from $X123.#CMD, gtacl returns the string fileinfo
$vol.subvol.*; on the next read, gtacl returns an end-of-file indication. Any output from TACL
to $X123.#OUT is written by gtacl to its own OSS environment standard output file, which has
been connected to the OSS environment file fileinfo.output by shell redirection.

Input/Output Filtering
The gtacl process automatically converts line endings for data passing between the two environ-
ments. When gtacl encounters a newline indicator in input from the OSS environment, it
removes that character and forwards the line as a separate record to the Guardian environment.
When gtacl encounters the end of a record in input from the Guardian environment, it forwards
the line with a newline indicator to the OSS environment. This conversion is the primary filter-
ing done to the data.

The following conditions limit the effectiveness of gtacl filtering:

• Filtering can be used only for data passing through OSS environment
standard input, output, and error files and Guardian environment IN,
OUT, and STDERR files. Any files directly opened by a Guardian
environment process cannot be filtered.

• Some Guardian processes do not accept a process file as an input or out-
put file. Filtering will not work with such Guardian processes.

• If filtering is used with redirection and either the -c command or -cv
command option, it cannot be used for filtering standard input. When
either of these options is specified, gtacl ignores its standard input file.
For example, the following command will not work because the input
from myfile.tgal is ignored:

gtacl -c ’tgal /OUT $s.#hold/’ < myfile.tgal

Instead, either use an explicit Guardian input file:

gtacl -c ’tgal /IN MYFILE, OUT $S.#HOLD/’

or use the -p pathname option to run TGAL directly:

gtacl -p tgal < myfile.tgal | lp -d hold

• When the -nowait option is used with input/output filtering, the child
process can fail to do either of the following:

— open one or more of the gtacl standard files because gtacl has
stopped running

— access one or more of the gtacl standard files because gtacl has
stopped running

To avoid these problems, do not use the -c, -cv, -i, or +i options. Use
only files that can be opened from within the Guardian environment for
standard input and output when you use the -nowait option.

527188-021 Hewlett-Packard Company 4−41

gtacl(1) OSS Shell and Utilities Reference Manual

Use in Shell Scripts
Guardian processes typically open a Guardian environment disk file for output by requesting pro-
tected or exclusive access. This practice can conflict with use of exclusion mode by an OSS pro-
cess.

For example:

gtacl -p FUP ’INFO *’

fails if it is invoked from an OSS shell script and the output of the script is redirected to a Guar-
dian disk file. Because the output file can be opened from the Guardian environment, gtacl does
not filter the output. However, because the output file is still open by the shell process executing
the script, FUP cannot open the file for exclusive access and terminates abnormally.

To avoid this problem when gtacl is used within a shell script, use the -i or +i option to force
input/output filtering, as follows:

gtacl -i -p FUP ’INFO *’

OSS Environment Variables
The following OSS environment variables affect the execution of the gtacl command.

PMSEARCHLIST
If this variable is defined, gtacl uses the value if necessary to
resolve a Guardian file identifier to find the program specified
with the -p or -prog option. The value can be one or more of the
following:

• a list of Guardian subvolume names in Guardian exter-
nal file name format, separated by spaces. These subvo-
lumes are searched when resolving a Guardian file
identifier to find the program specified with the -p or
-prog option.

• the TACL command interpreter #DEFAULTS built-in
variable.

• the TACL command interpreter identifiers
#DEFAULTS/CURRENT/ or #DEFAULTS/SAVED/.

If this variable is not defined, gtacl uses the /G/system/system
subvolume to resolve a relative filename.

PWD This variable must resolve to a valid Guardian filesystem subvo-
lume name. If the value for this variable appears to be an OSS
pathname outside of the /G directory, gtacl ignores the value.

If this variable is correctly specified, gtacl interprets the value as
a Guardian volume and subvolume name. The gtacl process
passes the value to the child process in the default volume and
subvolume part of the Guardian environment Startup message.

If this variable is not defined or is incorrectly specified, then
gtacl uses the inherited default volume and subvolume names
from the =_DEFAULTS DEFINE for the Guardian environment
Startup message.

Unless the -s option is used, OSS environment variables are converted into

4−42 Hewlett-Packard Company 527188-021

User Commands (g - j) gtacl(1)

Guardian PARAMs and passed to the child process in a Guardian-environment
PARAM system message. Underscores in an OSS environment variable name
are converted to circumflex (ˆ) characters in the equivalent Guardian PARAM
name.

A single PARAM name and value can contain up to 255 bytes of character infor-
mation for one environment variable. If the length of an OSS environment vari-
able name plus the value for that variable exceeds 254 bytes, the variable is not
converted and an error message is sent to the standard output file for gtacl.

Up to 1024 bytes of PARAM names and values are supported. PARAM names
and values are accumulated from the current shell environment variables by
default, in the order defined. If more OSS environment variables need to be con-
verted and passed than fit within the 1024-byte limit, only those that fit are
passed. The remaining OSS environment variables are ignored and gtacl issues
a warning message.

If the 1024-byte limit does not allow needed environment variables to be passed,
the -f flag can be used to specify a specific set to be passed. When the -f flag is
used, no accumulated environment variables are passed. Instead, each environ-
ment variable specified in the text file associated with the -f flag is converted to a
separate Guardian PARAM. The converted PARAMs from the file must still fit
within the 1024-byte limit.

Guardian Environment Variables
The following Guardian environment variables affect the execution of the gtacl command.

DEFINEs

=_DEFAULTS Provides the default values for the current Guar-
dian volume and subvolume names.

If the -defmode on option is used, all Guardian DEFINEs inher-
ited by gtacl are inherited by the child process. Up to 256K
bytes of DEFINEs can be inherited. The actual maximum
depends on the size of the PFS for the child process.

If the -defmode off option is used, only the Guardian
=_DEFAULTS DEFINE values inherited by gtacl are inherited
by the child process.

DIAGNOSTICS
Error diagnostics are written to the OSS environment standard error file of the gtacl process. All
gtacl error messages are prefixed with gtacl[n]:, where n is a unique message number. The
following messages can appear:

gtacl[1]: unrecognized option option_name
You specified an option that gtacl does not recognize.

Check for typographical errors and reenter a corrected command
line.

gtacl[2]: unable to open $RECEIVE, error n strerror(n)
Guardian file-system error n was returned when gtacl attempted
to open its own Guardian $RECEIVE file. The meaning of that
error number as returned by the strerror() function is displayed.

The recovery action depends on the Guardian file-system error

527188-021 Hewlett-Packard Company 4−43

gtacl(1) OSS Shell and Utilities Reference Manual

number. Refer to the Guardian Procedure Errors and Messages
Manual for an explanation of the error and suggested error-
specific recovery actions.

gtacl[3]: unable to get default volume, DEFINEINFO error n
Guardian file-system error n was returned from a call to the
Guardian DEFINEINFO procedure that attempted to get the
information for the =_DEFAULTS DEFINE. A system software
problem might exist; the =_DEFAULTS DEFINE should exist
for all user processes.

Refer to the DEFINEINFO procedure description in the Guar-
dian Procedure Calls Reference Manual for the meaning of the
error returned. Check the current value of your =_DEFAULTS
DEFINE by using the OSS shell info_define command.

gtacl[4]: the option_name option must be followed by
permissible_values
You specified the indicated option with an unrecognized value.

Check for typographical errors and reenter a corrected command
line.

gtacl[5]: Unable to run pathname, error (error, err_detail) :
explanation
The child process for the program file pathname could not be
started by gtacl using the Guardian PROCESS_LAUNCH_ pro-
cedure call. The Guardian error error was returned by
PROCESS_LAUNCH_. A brief explanation of that error
number is displayed as explanation. The associated error detail
return value is shown as err_detail. For many values of error,
the value of err_detail is also a Guardian file-system error
number.

Refer to the PROCESS_LAUNCH_ description in the Guardian
Procedure Calls Reference Manual and to the error description
in the Guardian Procedure Errors and Messages Manual for an
explanation of the error and suggested error-specific recovery
actions.

gtacl[6]: Unable to open child process, error n: strerror(n)
The gtacl command detected an error while trying to open the
child process and send the child process a sequence of Guardian
environment startup messages. The Guardian file-system error n
was returned. The meaning of that error number as returned by
the strerror() function is displayed.

Refer to the Guardian Procedure Errors and Messages Manual
for an explanation of the error and suggested error-specific
recovery actions. A typical error is 201, because the child pro-
cess terminated as soon as it started. If this is the case, use the
-inspect saveabend option to create a saveabend (process
snapshot) file or the -debug option to start the child process
within a debugging tool.

4−44 Hewlett-Packard Company 527188-021

User Commands (g - j) gtacl(1)

gtacl[7]: Unable to read from <$RECEIVE|stdfile>, error n:
strerror(n)
The gtacl process detected an error while reading its Guardian
$RECEIVE file or the standard file indicated by stdfile. The
Guardian file-system error n was returned. The meaning of that
error number as returned by the strerror() function is displayed.

Refer to the Guardian Procedure Errors and Messages Manual
for an explanation of the error and suggested error-specific
recovery actions.

gtacl[8]: Unable to write to stdfile, error n: strerror(n)
The gtacl process detected an error while reading the standard
file indicated by stdfile. The Guardian file-system error n was
returned. The meaning of that error number as returned by the
strerror() function is displayed.

Refer to the Guardian Procedure Errors and Messages Manual
for an explanation of the error and suggested error-specific
recovery actions.

gtacl[9]:warning: unable to propagate all environment variables
The gtacl process cannot convert all of the OSS environment
variables into Guardian environment PARAMs. Some variables
have not been passed to the child process.

No action is necessary if the full set of OSS environment vari-
ables is not needed by the child process. To eliminate this mes-
sage, reduce the number of OSS environment variables to a set
that will convert and fit into a single Guardian-environment
PARAM message and then reissue the gtacl command. Refer to
the section on interprocessor command interpreter messages in
the Guardian Procedure Errors and Messages Manual for more
information about the PARAM message format and usage.

gtacl[10]: unable to get process information, procedure
error n
The gtacl process received the Guardian file-system error n
when trying to determine its own Guardian process attributes.
The gtacl process uses many of its own Guardian process attri-
butes (such as processor number and home terminal name) as
default values when creating the child process.

The Guardian procedure call indicated by procedure encoun-
tered the problem. This message occurs when one of the follow-
ing conditions is true:

• The version of gtacl used is not compatible with the ver-
sion of the operating system.

• The NonStop Kernel message system does not have
enough resources to provide the information.

• A coding error exists within this version of gtacl.

Recovery action depends on the error returned. Refer to the
description of procedure in the Guardian Procedure Calls
Reference Manual for more detailed information about the error

527188-021 Hewlett-Packard Company 4−45

gtacl(1) OSS Shell and Utilities Reference Manual

when returned by that procedure.

gtacl[11]: internal error - description
The gtacl process has detected the situation described by
description. This error should also create a saveabend file for
the gtacl process.

Report this problem to your service provider. Give the service
provider a copy of the saveabend (process snapshot) file and
describe the conditions necessary to reproduce the problem.

gtacl[12]: unable to allocate n bytes for purpose
The gtacl process could not allocate the indicated amount of
memory from its heap. This probably indicates that gtacl could
not allocate a Guardian file-system extent on the extended seg-
ment file used for the heap.

If this problem occurs because of disk allocation failure, run
gtacl using an extended swap volume or extended segment file
that has more free space.

gtacl[13]: unable to send msgtype message, error n:
strerror(n)
The gtacl process could not send a Guardian-environment
Startup, ASSIGN, or PARAM message to its child process. The
Guardian file-system error n was returned. The meaning of that
error number as returned by the strerror() function is displayed.

Refer to the Guardian Procedure Errors and Messages Manual
for an explanation of the error and suggested error-specific
recovery actions.

gtacl[14]: procedure error n on file: strerror(n)
The indicated procedure returned Guardian file-system error n
for the named file. The meaning of that error number as returned
by the strerror() function is displayed.

Refer to the Guardian Procedure Errors and Messages Manual
for an explanation of the error and suggested error-specific
recovery actions.

gtacl[15]: procedure returned error n: strerror(n)
The indicated procedure returned Guardian file-system error n
for the named file. The meaning of that error number as returned
by the strerror() function is displayed.

Refer to the Guardian Procedure Errors and Messages Manual
for an explanation of the error and suggested error-specific
recovery actions.

gtacl[16]: Unable to open pathname, error n: strerror(n)
The file with the specified pathname could not be opened when
the -f option was used. The Guardian file-system error n was
returned for the file. The meaning of that error number as
returned by the strerror() function is displayed.

Refer to the Guardian Procedure Errors and Messages Manual
for an explanation of the error and suggested error-specific
recovery actions.

4−46 Hewlett-Packard Company 527188-021

User Commands (g - j) gtacl(1)

EXIT VALUES
The gtacl process returns the following exit values (the Guardian environment completion code
always equals the gtacl exit value plus 256):

0 The child process terminated with an exit value of 0 or 5, or the
-nowait option was specified and the child process started suc-
cessfully. This value corresponds to the Guardian environment
completion codes 256 and 231.

170 An error prevented gtacl from starting the child process. This
value corresponds to the Guardian environment completion code
426.

171 Warnings occurred during the start of the child process. This
value corresponds to the Guardian environment completion code
427.

172 An error prevented gtacl from receiving the termination status of
the child process. This value corresponds to the Guardian
environment completion code 428.

173 The child process terminated with a negative completion code.
This value corresponds to the Guardian environment completion
code 429.

174 The gtacl process terminated abnormally. This value
corresponds to the Guardian environment completion code 430.

In all other cases, gtacl returns the exit status value and Guardian completion
code that it receives from the child process.

RELATED INFORMATION
Commands: info_define(1), osh(1), sh(1).

Functions: open(2), strerror(3).

Files: core(4).

STANDARDS CONFORMANCE
The gtacl command is an HP extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 4−47

hash(1) OSS Shell and Utilities Reference Manual

NAME
hash - Affects memory of where utilities are located

SYNOPSIS
hash [utility ...] -r

FLAGS
-r Causes the hash command to forget all locations of utilities and com-

mands.

DESCRIPTION
The hash command affects the way the current shell environment remembers the locations of
utilities.

When the name of a command or utility is specified for utility, the hash command adds the loca-
tion of that command or utility to its list of remembered locations.

When the -r flag is used, hash forgets all previously remembered locations of utilities and com-
mands.

When utility is not specified and the -r flag is not used, hash reports the contents of its list of
remembered locations.

EXAMPLES
1. The following command lists the commands whose locations the hash

command currently remembers:

hash

NOTES
The hash command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

4−48 Hewlett-Packard Company 527188-021

User Commands (g - j) head(1)

NAME
head - Displays the beginning of a file

SYNOPSIS
head [-c bytes] [-n lines] [file ...]

FLAGS
-c bytes Specifies the number of bytes (not characters) to display. If the last

byte written is not a newline character, a newline character is
appended to the output.

-n lines Specifies the number of lines to display. The default value for lines is
10.

DESCRIPTION
The head command prints the first lines lines or bytes bytes of each of the specified files to the
standard output file.

If you do not specify file, head displays from the standard input file.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXAMPLES
To display the first 5 lines of a file named test, enter:

head -n 5 test

EXIT VALUES
The head command returns the following values:

0 (zero) The command completed sucessfully.

>0 An error occurred.

RELATED INFORMATION
Commands: cat(1), more(1), tail(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification.

The following feature is an extension to the XPG4 Version 2 specification:

• The -c flag is supported.

527188-021 Hewlett-Packard Company 4−49

history(1) OSS Shell and Utilities Reference Manual

NAME
history - Lists previously executed commands

SYNOPSIS
history

DESCRIPTION
The history command displays the contents of the history file, which contains a list of previ-
ously executed commands. The history command is an exported alias for the fc -l command and
is compiled into the OSS shell. (See the reference page for the fc command.) history can be
unset or redefined. See "Command Aliasing" in the sh reference page.

EXAMPLES
1. The following command lists the contents of the history file:

history

NOTES
The history command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: fc(1), sh(1).

4−50 Hewlett-Packard Company 527188-021

User Commands (g - j) iconv(1)

NAME
iconv - Converts encoded characters to another code set

SYNOPSIS
iconv

-f from_code
-t to_code
[file ...]

FLAGS
-f from_code

Specifies the input code set

-t to_code
Specifies the output code set

Operands
file specifies the file to be converted

DESCRIPTION
The iconv command converts the encoding of characters in file from one coded character set to
another and writes the results to the standard output file.

The input and output coded character sets are identified by the arguments from_code and
to_code. If the file operand is not specified on the the command line, the iconv command reads
the standard input file.

If you specify invalid characters in the input stream, iconv returns an error message, writes the
already converted data to standard output, and exits with a status greater than 0 (zero.)

If you specify characters in the input stream that are valid members of the input code set but are
invalid members of the output code set, the input value is translated into a substitute character.
Such conversions are called non-identical conversions. The value of the substitute character
depends on the output code set specified.

The default value is 0x1A (the ASCII character SUB); the default value is 0xFFFD (the UCS-2
REPLACEMENT CHARACTER) for conversions to the UCS-2 code set. If the conversion is
done by using a table, the substitute character may be specified by a target_sub directive in the
source translation table. The default is 0x1A if there is no target_sub directive.

If a non-identical conversion occurred while converting an input file, the iconv utility will
attempt to print a warning message to the standard error file, once per file. If an input file is large
it is possible that the non-identical conversion warning will not be printed, even if such conver-
sions occurred. The exit status is not affected by a non-identical conversion.

If the LOCPATH environment variable is not defined or is set to the empty string (""), iconv
looks for converters and conversion tables in the default path: /usr/lib/nls/loc:/etc/nls/loc.

Otherwise, iconv looks in the directories specified by LOCPATH. If no valid converters or
conversion tables are found in the directories specified by LOCPATH, the default path is
searched too. If the superuser is using iconv, LOCPATH is ignored. $LOCPATH is an environ-
ment variable which, if set, specifies directories containing the iconv and iconvTable subdirec-
tories to be used instead of the default directories. The value of $LOCPATH must be a colon-
separated list of directories in which iconv can find the subdirectories containing converters and
conversion tables. Specified directories must have the same organization as the /usr/lib/nls/loc
directory.

527188-021 Hewlett-Packard Company 4−51

iconv(1) OSS Shell and Utilities Reference Manual

conversion_directory/iconv/*
is a directory containing algorithmic converters, where
conversion_directory is specified in $LOCPATH.

conversion_directory/iconvTable/*
is a directory containing iconv conversion tables generated by
genxlt, where conversion_directory is specified in $LOCPATH.

Environment Variables
The following environment variables affect the execution of the iconv command: LANG,
LC_ALL, LC_MESSAGES, NLSPATH.

DIAGNOSTICS
The following error messages have an exit value of 1:

Usage: iconv -f <from> -t <to> [<infile>]
Invalid command line

iconv: Cannot open converter
Failure to open a converter

iconv: Unable to allocate enough memory
Memory allocation failure

iconv: Input file cannot be opened
Failure to open the input file

iconv:read Failure to read an input file

iconv: write
Failure to write to the output file

The following error messages have an exit value of 2:

iconv: truncated character found
Uncompleted multibyte character in the input file

iconv: invalid character found
Invalid character in the input file

EXIT VALUES
If successful, the iconv command exits with a value of 0 (zero). If unsuccessful, the iconv com-
mand exits with a value greater than zero and writes an error message to the standard error file.

EXAMPLES
To convert the contents of the file eucjp.file from code set eucJPC to SJIS, and store the
results in the file sjis.file, enter:

iconv -f eucJP -t SJIS eucjp.file > sjis.file

To convert the contents of the file latin1.file from code set ISO 8859-1 to code set ISO
8859-2 and store the results in the file latin2.file, enter:

iconv -f ISO8859-1 t-UCS-2 latin1.file | iconv -f UCS-2 -t ISO8859-2 >
latin2.file

This conversion uses an intermediate code set (UCS-2) because there are no conversion tables or
algorithmic converters available for converting directly from ISO 8859-1 to ISO 8859-2.

4−52 Hewlett-Packard Company 527188-021

User Commands (g - j) iconv(1)

FILES
/usr/lib/nls/loc/iconv/*

Contains algorithmic converters.

/usr/lib/nls/loc/iconvTable/*
Contains table converters.

RELATED INFORMATION
Commands: genxlt(1).

527188-021 Hewlett-Packard Company 4−53

id(1) OSS Shell and Utilities Reference Manual

NAME
id - Displays the user’s system identity

SYNOPSIS
id [user]

id -G [-n] [user]

id -g [-nr] [user]

id -u [-nr] [user]

FLAGS
-g Outputs only the effective group ID by using the printf format

"%u\n".

-G Outputs all different group IDs (effective, real, and supplementary)
only by using the printf format "%u\n". If there is more than one dis-
tinct group affiliation, this flag outputs each such affiliation by using
the printf format %u before the new line is output.

-n Outputs the name in the printf format %s instead of the group ID by
using the printf format %u.

-r Outputs the real ID instead of the effective ID.

-u Outputs the effective user ID only by using the printf format "%u\n".

DESCRIPTION
The id command writes a message containing the user and group IDs and the corresponding
names of the invoking process or the specified user to the standard output file. When effective
names and IDs do not match the real ones, the id command writes both.

If multiple groups are supported (according to the NGROUPS_MAX variable), the supplemen-
tary group affiliations of the invoking process are also written.

If the selected user has more than one allowable group membership listed in the group database,
these are written in the same manner as the supplementary groups.

EXAMPLES
To display your user and group IDs, enter:

id

Information similar to the following is displayed:

uid=9259(tom) gid=1000(mcm) groups=0(system),1(daemon),
3(kmem),5(cf), 8(news),20(dumper),28(operator),
1003(engtools),1016(ddts),1052(mailuni), 1059(utils),
1062(lisbon),1065(perf)

RELATED INFORMATION
Commands: logname(1).

Functions: getuid(2).

4−54 Hewlett-Packard Company 527188-021

User Commands (g - j) info_define(1)

NAME
info_define - Displays attributes and values of existing DEFINEs

SYNOPSIS
info_define [-detail]

{ { define-name}[define-name] ... | all }

FLAGS
-detail Displays all the values and attributes of each DEFINE specified by

define-name.

define-name
Specifies the name of the DEFINE whose information is to be
displayed. The name can be 2 through 24 characters long. The first
character must be an equal sign (=) and the second character must be
an alphabetic character. A list of DEFINE names, separated by blanks,
can be specified.

all Displays information on all existing DEFINEs.

DESCRIPTION
The info_define command is specific to HP and is an OSS shell built-in command. It displays
attributes and values associated with the specified DEFINEs. It is similiar to the TACL INFO
DEFINE command. Refer to the TACL Reference Manual (INFO DEFINE) for more information
on the output of info_define.

Environment Variables
LANG Determines the locale to use for the locale categories when both

LC_ALL and the corresponding environment variable (beginning with
LC_) do not specify a locale.

LC_ALL
Determines the locale to be used to override any values for locale
categories specified by the settings of LANG or any environment vari-
able beginning with LC.

LC_CTYPE
Determines the locale for interpretation of bytes of text data as charac-
ters (for example, single-byte characters as opposed to multibyte char-
acters in arguments).

LC_MESSAGES
Determines the locale that should be used to affect the format and con-
tents of diagnostic messages written to the standard error file and infor-
mational messages written to the standard output file.

EXAMPLES
1. To display the principal attributes of all DEFINEs, enter:

info_define all

527188-021 Hewlett-Packard Company 4−55

info_define(1) OSS Shell and Utilities Reference Manual

This command might result in the following display:

DEFINE NAME ==ACK
CLASS =MAP
FILE =$BILL.WORK.FILE

DEFINE NAME ==_DEFAULTS
CLASS =DEFAULTS
VOLUME =$BILL.WORK

2. To display all attributes of an existing DEFINE that have a value, enter:

info_define -detail =TEST3

This command might result in the following display:

DEFINE NAME ==TEST3
CLASS =TAPE
VOLUME =SCRATCH
LABELS =OMITTED
USE =IN
DEVICE =$TAPE2
MOUNTMSG =Transferring files-Mr. Smith

NOTES
The info_define command is a shell built-in command. It differs from the regular commands in
that it does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the sh(1) reference page.

EXIT VALUES
The following exit values are returned:

0 DEFINEs displayed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: add_define(1), del_define(1), reset_define(1), set_define(1), show_define(1).

STANDARDS CONFORMANCE
The info_define command is an HP extension to the XPG4 Version 2 specification.

4−56 Hewlett-Packard Company 527188-021

User Commands (g - j) initfilepriv(1)

NAME
initfilepriv - Sets file privileges for selected system files

SYNOPSIS
initfilepriv sysnn_path

FLAGS
Operands

sysnn_path Specifies the path to the system subvolume that contains the sys-
tem files that require file privileges (such as the Backup and
Restore 2 product files). Typically, this is the current system sub-
volume, usually specified as /G/system/sysnn, where nn indi-
cates the system installation that is currently running.

DESCRIPTION
The initfilepriv command sets the file privileges on selected system files. For example, it sets
the file privileges on the Backup and Restore 2 product such that, when started by a user with the
appropriate privilege, it can back up and restore files that are in restricted-access filesets.

This command is supported on systems running J06.11 or later J-series RVUs or H06.22 or later
H-series RVUs only. The Backup and Restore 2 product must also be installed on a system run-
ning J06.11 or later J-series RVUs or H06.22 or later H-series RVUs only.

Only Members of Safeguard SECURITY-PRV-ADMINISTRATOR (SEC-PRIV-ADMIN or
SPA) group are permitted to use this command.

For more information about restricted-access filesets and file privileges, see the Open System Ser-
vices Management and Operations Guide.

EXAMPLE
To set the file privileges for Backup and Restore 2 application files in the sys21 subvolume,
enter:

initfilepriv /G/system/sys21

RELATED INFORMATION
Commands: getfilepriv(1), setfilepriv(1).

Functions: setfilepriv(2).

STANDARDS CONFORMANCE
This command is an HP extension.

527188-021 Hewlett-Packard Company 4−57

ipcrm(1) OSS Shell and Utilities Reference Manual

NAME
ipcrm - Removes message queues, semaphore identifiers, or shared memory identifiers and deal-
locates their data structures

SYNOPSIS
ipcrm [-m shared_memory_ID] [-M shared_memory_key]

[-q message_queue_ID] [-Q message_key]
[-s semaphore_ID] [-S semaphore_key]

FLAGS
-m shared_memory_ID

Removes the shared memory identifier specified by the
shared_memory_ID value, and removes the associated shared memory
segment and data structure after the final detach operation.

-M shared_memory_key
Removes the shared memory identifier created with the specified
shared_memory_key value, and removes the associated shared
memory segment and data structure after the final detach operation.

-q message_queue_ID
Removes the message queue identifier specified by the
message_queue_ID value, and removes the associated message queue
and the data structure.

-Q message_key
Removes the message queue identifier created with the specified
message_key value, and removes the associated message queue and
the data structure.

-s semaphore_ID
Removes the semaphore set identifier specified by the semaphore_ID
value, and removes the associated set of semaphores and data struc-
ture.

-S semaphore_key
Removes the semaphore set identifier created with the specified
semaphore_key value, and removes the associated set of semaphores
and data structure.

DESCRIPTION
The ipcrm command removes one or more message queues, semaphore identifiers, or shared
memory identifiers from the processor on which it runs. The details of the remove operations are
described on the reference pages for the msgctl(), semctl(), and shmctl() functions. The
identifiers and keys can be determined by using the ipcs command.

EXAMPLES
1. To remove the shared memory segment associated with shared memory

identifier 128 from the processor on which your terminal session runs,
enter:

ipcrm -m 128

4−58 Hewlett-Packard Company 527188-021

User Commands (g - j) ipcrm(1)

2. To remove the shared memory segment associated with shared memory
identifier 128 on processor 4, enter:

run -cpu=4 ipcrm -m 128

3. To remove the semaphore set associated with semaphore identifier 222
from the processor on which your terminal session runs, enter:

ipcrm -s 222

4. To remove the semaphore set associated with semaphore identifier 222
on processor 4, enter:

run -cpu=4 ipcrm -s 222

5. To remove the message queue associated with message queue identifier
4 from the processor on which your terminal session runs, enter:

ipcrm -q 4

6. To remove the message queue associated with message queue identifier
4 on processor 4, enter:

run -cpu=4 ipcrm -q 4

NOTES
The ipcs and ipcrm commands have no provision for managing interprocess communication
(IPC) facilities on processors other than the one in which they run. To manage IPC facilities
across all the processors of a node, you need to use these commands with other OSS shell com-
mands and command flags, such as the run command -cpu= flag.

RELATED INFORMATION
Commands: ipcs(1), run(1).

Functions: msgctl(2), msgget(2), semctl(2), semget(2), semop(2), shmctl(2), shmdt(2),
shmget(2).

STANDARDS CONFORMANCE
This utility is an HP extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 4−59

ipcs(1) OSS Shell and Utilities Reference Manual

NAME
ipcs - Reports interprocess communication (IPC) facilities status

SYNOPSIS
ipcs [-a | -bcopt] [-mqs]

FLAGS
-a Is the same as specifying the -b, -c, -o, -p, and -t flags.

-b Writes the maximum number of bytes in message queues, the max-
imum allowed size of segments for shared memory, and the number of
semaphores in each semaphore set.

-c Writes the username and group name of the user who created the facil-
ity.

-m Writes information about active shared memory segments.

-o Writes the following usage information:

• Number of messages on queue.

• Total number of bytes in message queues.

• Number of processes attached to shared memory segments.

-p Writes the following usage information:

• OSS process ID of the last process to receive a message and
OSS process ID of the last process to send a message currently
on message queues

• Process identifier of the creating process for a facility

• Process identifier of the last process to call the shmat(),
shmdt(), or shmctl() function for the segment

-q Writes information about active message queues.

-s Writes information about active semaphore sets.

-t Writes the times of the following actions:

• Either:

— The creation of the facility

— The last control operation that changed the facility
(either by modifying permissions information for the
facility or by removing the facility)

• The last use of the msgsnd() function and of the msgrcv()
function on message queues

• The last use of the shmat() function and of the shmdt() func-
tion on shared memory

• The last use of the semop() function on semaphore sets

4−60 Hewlett-Packard Company 527188-021

User Commands (g - j) ipcs(1)

DESCRIPTION
The ipcs command writes information to the standard output file about active interprocess com-
munication (IPC) facilities on the processor in which the command runs. If you do not specify
any flags, ipcs writes information in short form about the currently active message queues, shared
memory segments, semaphore sets, and local message queue headers.

Column Headings
The column headings and the meanings of the columns in an ipcs listing follow. The letters in
parentheses indicate the flags that cause the corresponding heading to appear. The word "all"
means that the heading always appears. The flags determine only what information is provided
for each facility; they do not determine which facilities are listed.

T (all) Type of facility:

q Message queue

m Shared memory segment

s Semaphore

ID (all) The identifier for the facility entry.

KEY (all)
The key used as a parameter in the msgget(), semget(), or shmget()
function call that created the facility entry.

Note that the key of a shared memory segment is changed to
IPC__PRIVATE when the segment is removed. The entry disappears
when the last process attached to the segment detaches it.

MODE (all)
The facility access modes and flags. The mode consists of 11 charac-
ters that are interpreted as follows. The first character is one of the fol-
lowing:

R If a process is waiting on a msgrcv() function call.

S If a process is waiting on a msgsnd() function call.

D The associated shared memory segment was removed. The
entry disappears when the last process attached to the seg-
ment detaches it.

- The corresponding special flag is not set.

The second character is reserved for future use.

The next nine characters are interpreted as three sets of three charac-
ters each. The first set refers to the owner’s permissions; the second
set to permissions of others in the user group of the facility entry; and
the third set to all others. Within each set, the first character indicates
permission to read, the second character indicates permission to write
or alter the facility entry, and the last character is currently unused.

The permissions are indicated as follows:

r Read permission is granted.

527188-021 Hewlett-Packard Company 4−61

ipcs(1) OSS Shell and Utilities Reference Manual

w Write permission is granted (for shared memory segments).

a Alter permission is granted (for semaphore sets).

- The indicated permission is not granted.

OWNER (all)
The username of the owner of the facility entry.

GROUP (all)
The group name of the owner of the facility entry.

CREATOR (a,c)
The username of the creator of the facility entry.

CGROUP (a,c)
The group name of the creator of the facility entry.

Note that when the OWNER, GROUP, CREATOR, and CGROUP
columns all appear, the user IDs and group IDs are displayed instead of
the usernames and group names.

CBYTES (a,o)
The number of bytes in messages currently outstanding on the associ-
ated message queue.

QNUM (a,o)
The number of messages currently outstanding on the associated mes-
sage queue.

QBYTES (a,b)
The maximum number of bytes allowed in messages outstanding on
the associated message queue.

LSPID (a,p)
The ID of the latest process that sent a message to the associated
queue.

LRPID (a,p)
The ID of the latest process that received a message from the associ-
ated queue.

STIME (a,t)
The time when the last message was sent to the associated queue.

RTIME (a,t)
The time when the last message was received from the associated
queue.

CTIME (a,t)
The time when the associated entry was created or changed.

NATTCH (a,o)
The number of processes attached to the associated shared memory
segment.

SEGSZ (a,b)
The size of the associated shared memory segment.

4−62 Hewlett-Packard Company 527188-021

User Commands (g - j) ipcs(1)

CPID (a,p)
The process ID of the creator of the shared memory entry.

LPID (a,p)
The process ID of the latest process to call the shmat(), shmdt(), or
shmctl() function for the associated shared memory segment.

ATIME (a,t)
The time when the latest call to the shmat() function was made for the
associated shared memory segment.

DTIME (a,t)
The time when the latest call to the shmdt() function was made for the
associated shared memory segment.

NSEMS (a,b)
The number of semaphores in the set associated with the semaphore
entry.

OTIME (a,t)
The time when the latest semaphore operation was completed on the
set associated with the semaphore entry.

EXAMPLES
1. Sample output from entering the ipcs command without flags follows:

Message Queues:

T ID KEY MODE OWNER GROUP

q 0 0x00010381 R rw-rw-rw- SUPER SUPER
q 65537 0x00010307 R rw-rw-rw- SUPER SUPER
q 65538 0x00010311 R rw-rw-rw- SUPER SUPER
q 65539 0x0001032f R rw-rw-rw- SUPER SUPER
q 65540 0x0001031b R rw-rw-rw- SUPER SUPER
q 65541 0x00010339 - rw-rw-rw- SUPER SUPER
q 6 0x0002fe03 R rw-rw-rw- SUPER SUPER

Shared memory:

T ID KEY MODE OWNER GROUP

m 65537 0x00000000 D rw------- SUPER SUPER
m 720898 0x00010300 - rw-rw-rw- SUPER SUPER
m 65539 0x00000000 D rw------- SUPER SUPER

Semaphores:

T ID KEY MODE OWNER GROUP

s 131072 0x4d02086a - ra-ra---- SUPER SUPER
s 65537 0x00000000 - ra------- SUPER SUPER
s 131076 0x00010301 - ra-ra-ra- SUPER SUPER

527188-021 Hewlett-Packard Company 4−63

ipcs(1) OSS Shell and Utilities Reference Manual

2. To display information on a processor other than the one for your termi-
nal session, start the ipcs utility using the run command -cpu= flag for
the appropriate processor. For example, to see information for processor
4, enter:

run -cpu=4 ipcs

NOTES
The ipcs and ipcrm commands have no provision for managing IPC facilities on processors other
than the one in which they run. To manage IPC facilities across all the processors of a node, you
need to use these commands with other OSS shell commands and command flags, such as the
run command -cpu= flag.

RELATED INFORMATION
Commands: ipcrm(1), run(1).

Functions: msgrcv(2), msgsnd(2), semctl(2), semget(2), semop(2), shmat(2), shmctl(2),
shmdt(2), shmget(2).

STANDARDS CONFORMANCE
This utility is an HP extension to the XPG4 Version 2 specification.

4−64 Hewlett-Packard Company 527188-021

User Commands (g - j) jobs(1)

NAME
jobs - Lists processes

SYNOPSIS
jobs [-lnp] [job ...]

FLAGS
-l Lists process IDs in addition to the normal information.

-n Lists jobs that have stopped or exited since last invocation.

-p Lists only the process group.

DESCRIPTION
The jobs command lists information about the process specified as job. If job is not specified, the
jobs command provides information on all active processes.

EXAMPLES
1. The following command lists all jobs, including job numbers and PIDs.

jobs -l

NOTES
The jobs command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

527188-021 Hewlett-Packard Company 4−65

join(1) OSS Shell and Utilities Reference Manual

NAME
join - Joins the lines of two files

SYNOPSIS
Current syntax

join [-a filenum_a]
[-e string]
[-o number.field, ...]
[-t character]
[-v filenum_v]
[-1 field1] [-2 field2]
file1 file2

Obsolescent syntax
join [-a filenum_a]

[-e string]
[-j num | field | num fld]
[-o number.field, ...]
[-t character]
file1 file2

FLAGS
-1 field1 Specifies the number of the join field for file1. field1 is a decimal

integer starting with 1.

-2 field2 Specifies the number of the join field for file2. field2 is a decimal
integer starting with 1.

-a filenum_a
Produces an output line for each unmatched line found in file1 if
filenum_a is 1 or in file2 if number is 2. Without -a, join produces out-
put only for lines containing a matching field. If both -a 1 and -a 2 are
used, the output contains all unmatched lines.

-e string Replaces empty output fields with string.

-j num | fld | num fld
(Obsolescent) Specifies the join field fld for file num, where num is 1
for file1 or 2 for file2. If you do not specify num, join uses fld in both
files. Without -j, join uses the first field in each file. The default value
for both num and fld is 1.

If you enter only a 1 or a 2 as an argument to -j, join interprets this
argument as the file number (num); integers greater than 2 are inter-
preted as the field number (fld). Therefore, if you want to specify a
field number of 1 or 2, you must precede the fld specification with a
num argument; otherwise, the join command interprets the 1 or 2 as the
file number (num).

-o number.field
Produces output lines consisting of the fields given by one or more
number.field arguments in the specified order, where number is 1 for
file1 or 2 for file2 and field is a field number. Multiple -o arguments
should be separated with commas.

4−66 Hewlett-Packard Company 527188-021

User Commands (g - j) join(1)

-t character
Uses character (a single character) as the field separator character in
the input and the output. Every appearance of character in a line is
significant. The default separator is a space. If you do not specify -t,
join also recognizes the tab and newline characters as separators.

With default field separation, the collating sequence is that of sort -b.
If you specify -t, the sequence is that of a plain sort. To specify a tab
character, enclose it in ’ ’ (single quotes).

-v filenum_v
Produces an output line for each unmatched line in filenum_v (where
filenum_v is 1 for file1 or 2 for file2), instead of the default output. If
both -v 1 and -v 2 are specified, join produces output lines for all
unmatched lines.

DESCRIPTION
The join command reads file1 and file2, joins the lines in those files that contain common fields
or otherwise according to the flags, and writes the results to the standard output file.

The join field is the field in the input files that join searches to determine what will be included in
the output. One line appears in the output for each identical join field appearing in both file1 and
file2. The output line consists of the join field, the rest of the line from file1, then the rest of the
line from file2.

You can specify the standard input file in place of file1 or file2 by substituting a - (dash) for the
operand.

Both input files must be sorted according to the collating sequence specified by the
LC_COLLATE environment variable, if set, for the fields on which they are to be compared (by
default, the first field in each line).

Fields are normally separated by a space, a tab character, or a newline character. join treats con-
secutive occurrences of these separators as a single separator and discards leading separators.
Use the -t flag to specify another field separator.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_COLLATE, LC_CTYPE,
LC_MESSAGES, and NLSPATH environment variables.

EXAMPLES
Note that the vertical alignment shown in these examples might not be consistent with your out-
put.

1. To perform a simple join operation on two files, phonedir and names,
whose first fields contain employee last names, enter:

join phonedir names

If phonedir contains the following telephone directory:

Binst 555-6235
Dickerson 555-1842
Eisner 555-1234
Green 555-2240
Hrarii 555-0256
Janatha 555-7358
Lewis 555-3237
Takata 555-5341

527188-021 Hewlett-Packard Company 4−67

join(1) OSS Shell and Utilities Reference Manual

Wozni 555-1234

and names contains this listing of names and department numbers:

Eisner Dept. 389
Frost Dept. 217
Green Dept. 311
Takata Dept. 454
Wozni Dept. 520

then join phonedir names displays:

Eisner 555-1234 Dept. 389
Green 555-2240 Dept. 311
Takata 555-5341 Dept. 454
Wozni 555-1234 Dept. 520

Each line consists of the join field found in both files (the last name), fol-
lowed by the rest of the line found in phonedir, followed by the rest of
the line found in names.

2. To display unmatched lines in names as well as matched lines in both
files, enter:

join -a 2 phonedir names

If phonedir contains:

Binst 555-6235
Dickerson 555-1842
Eisner 555-1234
Green 555-2240
Hrarii 555-0256
Janatha 555-7358
Lewis 555-3237
Takata 555-5341
Wozni 555-1234

and names contains:

Eisner Dept. 389
Frost Dept. 217
Green Dept. 311
Takata Dept. 454
Wozni Dept. 520

then join -a 2 phonedir names displays:

Eisner 555-1234 Dept. 389
Frost Dept. 217
Green 555-2240 Dept. 311
Takata 555-5341 Dept. 454
Wozni 555-1234 Dept. 520

This command performs the same join operation as in the first example
and also lists the lines of names that have no match in phonedir (the
entry for Frost).

4−68 Hewlett-Packard Company 527188-021

User Commands (g - j) join(1)

3. To perform a join operation and display selected fields, enter:

join -o 2.3,2.1,1.2 phonedir names

This command displays the following fields in this order:

Field 3 of names (department number without "Dept.")

Field 1 of names (last name)

Field 2 of phonedir (telephone number)

If phonedir contains:

Binst 555-6235
Dickerson 555-1842
Eisner 555-1234
Green 555-2240
Hrarii 555-0256
Janatha 555-7358
Lewis 555-3237
Takata 555-5341
Wozni 555-1234

and names contains:

Eisner Dept. 389
Frost Dept. 217
Green Dept. 311
Takata Dept. 454
Wozni Dept. 520

then join -o 2.3,2.1,1.2 phonedir names displays:

389 Eisner 555-1234
311 Green 555-2240
454 Takata 555-5341
520 Wozni 555-1234

4. To perform a join operation on a field other than the first field, enter:

sort -b +1 -2 phonedir | join -1 2 - numbers

This command combines the lines in phonedir and names, comparing
the second field of phonedir to the first field of numbers.

First, this command sorts phonedir by the second field, because both
files must be sorted by the join field. The output of sort is then piped to
join. The - (dash) by itself causes the join command to use this sorted
output as its file1. -1 2 defines the second field of the sorted phonedir as
the join field. This field is compared to the first field of numbers (its
join field is not specified with a -2 flag).

If phonedir contains:

Binst 555-6235
Dickerson 555-1842
Eisner 555-1234
Green 555-2240
Hrarii 555-0256
Janatha 555-7358
Lewis 555-3237

527188-021 Hewlett-Packard Company 4−69

join(1) OSS Shell and Utilities Reference Manual

Takata 555-5341
Wozni 555-1234

and numbers contains:

555-0256
555-1234
555-5555
555-7358

then sort ... | join ... displays:

555-0256 Hrarii
555-1234 Eisner
555-1234 Wozni
555-7358 Janatha

Each telephone number in numbers is listed with the name listed in
phonedir for that telephone number. Note that join lists all the matches
for a given field. In this case, join lists both Eisner and Wozni as hav-
ing the telephone number 555-1234. The telephone number 555-5555
is not listed, because it does not appear in phonedir.

EXIT VALUES
The join command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: awk(1), cmp(1), comm(1), cut(1), diff(1), grep(1), paste(1), sort(1), uniq(1).

Files: locale(4).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification. The obsolescent version of the
command does not conform to the XPG4 Version 2 specification, and its -j flag should be con-
sidered a temporary extension to the XPG4 Version 2 specification.

4−70 Hewlett-Packard Company 527188-021

Section 5. User Commands (k - l)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the letters k through l.

527188-021 Hewlett-Packard Company 5−1

kill(1) OSS Shell and Utilities Reference Manual

NAME
kill - Sends a signal to a running process

SYNOPSIS
kill -l [exit_status]

kill -s signal_name process_ID ...

Obsolescent Versions
kill -s -signal_name | -signal_number process_ID ...

The kill command sends a signal to one or more running processes.

FLAGS
-l [exit_status]

Lists all supported signal names. If the exit_status argument is specified and it is a
value corresponding to an OSS process terminated by a signal, the name of the signal
that terminated the OSS process is listed.

-s signal_name
Specifies the signal to send, using one of the symbolic names defined for required sig-
nals or job control signals. Values of signal_name are recognized in both uppercase
and lowercase letters and with or without the prefix SIG. The symbolic name 0 (zero),
which represents the value 0 (zero), is also recognized. The corresponding signal is
sent instead of the SIGTERM signal.

-signal_name
Equivalent to -s signal_name. (Obsolescent.)

-signal_number
Specifies a nonnegative decimal integer representing the signal to be used instead of
the SIGTERM signal as the sig argument in the call to the kill command for OSS pro-
cess IDs. (Obsolescent.)

The effects of specifying any signal number other than those listed by the command kill -l is
unknown. In the obsolescent versions, if the first argument is a negative integer, it is interpreted
as an option to -signal_number, not as a negative process_ID operand specifying a process
group.

DESCRIPTION
The kill command sends a signal to one or more running processes, specified by each process_ID
argument.

The OSS shell contains a built-in command named kill that functions in the same way as the reg-
ular OSS command named kill, except that a new shell process is started for each execution of
the regular form of kill. The shell built-in version is the default. Both the regular form and the
shell built-in form of the kill command are described in this reference page.

Specify OSS processes to be signaled by giving their process identification number as the
process_ID argument.

Specify the signal to be sent with the -s signal_name argument, the -signal_name option, or the
-signal_number option.

If neither the -s signal_name argument, the -signal_name option, nor the -signal_number option
is specified, the SIGTERM signal is sent by default.

All numeric signal specifications except 0 (zero) are obsolescent.

The shell reports the PID of each process running in the background (unless you start more than
one process in a pipeline, in which case the shell reports the number of the last process). You can

5−2 Hewlett-Packard Company 527188-021

User Commands (k - l) kill(1)

also use the ps command to find the process ID of commands.

The sensitivity level of the target process must equal that of the process sending the signal,
unless you have the sysadmin command authorization. If you have the writeupclearance or
writeupsyshi base privileges, you can send signals to processes that dominate your process and
are dominated by your clearance of the System High sensitivity level, respectively.

Unless you are are operating with superuser authority, the process you want to signal must
belong to you. When operating with superuser authority, you can signal any process.

HP Extensions
For each Guardian process_ID argument ([/E/systemname]/G/process or
[/E/systemname]/G/cpu,pin), the kill command performs actions equivalent to the Guardian
PROCESS_STOP procedure called with the process handle of the given process. This TACL-
type stop action can be accessed only by invoking the kill command with the signal_name set to
SIGGUARDIAN.

If you identify a process by its CPU and PIN numbers you must use the following form:

/E/system-name/G/cpu,pin

Specifying a Guardian process ID with any of the other signal names results in an error and an
unsuccessful exit.

Special Process IDs
There are several special process IDs (PIDs) you can specify to cause the following special
actions:

0 The signal is sent to all processes having a process group ID equal to the pro-
cess group ID of the sender, except those with PIDs 0 and 1.

-pid The signal is sent to all processes whose process group number is equal to
the absolute value of pid.

Note that when you specify any negative PID, you must also specify the signal to be sent, even
the default signal SIGTERM.

Arguments
The kill command supports the following arguments:

process_ID A decimal integer specifying a process or process group to be signaled.

Job control job identification notation is applicable only for invocation of the
kill command in the current shell execution environment. The definition of
process_ID is true for all signal numbers and values except the SIGGUAR-
DIAN signal.

If signal name SIGGUARDIAN is specified, the process_ID operand must
be of the following form:

[/E/systemname]{/G/process | /G/cpu,pin}

exit_status A decimal integer that specifies a signal number or the exit status of an OSS
process terminated by a signal.

Environment Variables
The following environment variables affect the execution of the kill command:

LANG Determines the locale to use for the locale categories when both the LC_ALL variable
and the corresponding environment variable (whose name begins with LC_) do not
specify a locale.

527188-021 Hewlett-Packard Company 5−3

kill(1) OSS Shell and Utilities Reference Manual

LC_ALL
Determines the locale to be used to override any values for locale categories specified
by the settings of the LANG variable or any environment variable whose name begins
with LC_.

LC_CTYPE
Determines the locale for the interpretation of bytes of text data as characters (for
example, a single-byte character rather than a multibyte character in an argument).

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnos-
tic messages written to the standard error file and informational messages written to the
standard output file.

Standard Output
When the -l flag is not specified, the standard output file is not used.

When the -l flag is specified, the symbolic name of each signal is written in the following format:

%s%c,signal_name,separator

where signal_name is in uppercase without the prefix SIG, and separator is a blank space. For
the last signal written, separator is a newline.

When both the -l flag and the exit_status argument are specified, the symbolic name of the
corresponding signal is written in the following format:

%s,signal_name

EXAMPLES
1. To terminate a given process, enter:

kill 1095

This terminates process 1095 by sending it the default SIGTERM signal. Note that pro-
cess 1095 might not actually terminate if you have programmed it to ignore or catch the
SIGTERM signal.

2. To terminate several processes that ignore the default signal, enter:

kill -s KILL 17285 15692

This sends the SIGKILL signal to processes 17285 and 15692. SIGKILL is a special
signal that normally cannot be ignored or caught.

3. To terminate all of your background processes, enter:

kill 0

This sends the SIGTERM signal to all members of the shell process group. This
includes all background processes started with &. Although the signal is sent to the
shell, it has no effect there because the shell ignores the default signal 15.

4. To terminate all your processes and log out, enter:

kill -s KILL 0

This sends the SIGKILL signal to all members of the shell process group. Because the
shell cannot ignore SIGKILL, this also terminates the login shell and logs you out. If
you are using multiple windows, this closes the active window.

5−4 Hewlett-Packard Company 527188-021

User Commands (k - l) kill(1)

5. To send a different signal to a process, enter:

kill -s USR1 1103

This sends the SIGUSR1 signal to process 1103. The action taken on the SIGUSR1 sig-
nal is defined by the particular application you are running. (The name of the kill com-
mand is misleading because many signals, including SIGUSR1, do not terminate
processes.)

6. To list the signal names in numerical order, stripped of the prefix SIG, enter:

kill -l

1) HUP 17) USR2
2) INT 18) CHLD
3) QUIT 19) bad trap
4) ILL 20) STOP
5) URG 21) TSTP
6) ABRT 22) MEMERR
7) IO 23) NOMEM
8) FPE 24) MEMMGR
9) KILL 25) STK
10) bad trap 26) TIMEOUT
11) SEGV 27) LIMIT
12) WINCH 28) CONT
13) PIPE 29) TTIN
14) ALRM 30) TTOU
15) TERM 31) ABEND
16) USR1 32) GUARDIAN

This list may vary from system to system.

7. To stop a Guardian process, enter:

kill -s GUARDIAN /G/cmon

This issues a PROCESS_STOP_() against the named Guardian process $cmon.

8. To stop a Guardian process on another system or to stop a Guardian process that you
identify by its cpu,pin, enter:

kill -99 /E/tsii/G/3,57

This issues a PROCESS_STOP_() against the Guardian process identified by the
cpu,pin (3,57) running on the system named \tsii.

FILES
/usr/include/signal.h Specifies signal names.

NOTES
The OSS kill command has both a shell built-in version and a regular version. The two versions
have the same features and functionality. The only difference between the two versions is that
the shell built-in version does not start a new shell process when it is invoked. Both versions are
described in the reference page for kill. The shell built-in version is the default. To specify the
regular version, use the full pathname: /bin/kill For more information about shell built-in com-
mands, refer to the reference page for sh(1).

527188-021 Hewlett-Packard Company 5−5

kill(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: ps(1), sh(1).

Functions: kill(2).

STANDARDS CONFORMANCE
Extensions have been added to the kill command in order to support the Guardian environment.

5−6 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

NAME
ksh - Describes the OSS shell

SYNOPSIS
ksh [-i] [-c command_string | -s] [+ | -abCefmnosuvx] [+ | -o][option ...] | [argument ...] |

[file] [argument ...]

The OSS shell is an interactive command interpreter and a command programming language.
The OSS shell is based on the UNIX Korn shell.

FLAGS
-c command_string

Causes ksh to read commands from command_string.

-i Causes ksh to run as an interactive shell. The SIGTERM signal is thus ignored, and
the SIGINT signal is caught, causing the current command to be terminated and a new
prompt to be output.

-r Causes ksh to run as a restricted shell.

-s Causes ksh to read commands from standard input. If you do not specify the -c flag or
do not specify any arguments to ksh other than flags, ksh automatically invokes the -s
flag. The -c flag overrides the -s flag, however.

The rest of the flags that can be used with ksh are described under the set subcommand, in the
subsection Special ksh Commands.

DESCRIPTION
ksh is an alias for sh.

The OSS shell carries out commands either interactively from a terminal keyboard or from a file.

Some important features of the OSS shell are as follows:

• Command aliasing

• Filename substitution

• Tilde substitution

• Command substitution

• Parameter substitution

• Job control

• Inline editing

A file from which the shell carries out commands is usually called a shell script, a shell pro-
cedure, or a command file.

A simple command is a sequence of words separated by spaces or tabs. A word is a sequence of
characters that contains no unquoted spaces or tabs. The first word in the sequence (numbered as
0) usually specifies the name of a command. Any remaining words, with a few exceptions, are
passed to that command. A space refers to both spaces and tabs.

The value of a simple command is its exit value if it ends normally or (octal) 200 added to the
signal number if it terminates due to a signal. For a list of status values, see the signal() system
call.

A pipeline is a sequence of one or more commands separated by a | (vertical bar). In a pipeline,
the standard output of each command becomes the standard input of the next command. Each

527188-021 Hewlett-Packard Company 5−7

ksh(1) OSS Shell and Utilities Reference Manual

command runs as a separate process, and the shell waits for the last command to end. A filter is a
command that reads its standard input, transforms it in some way, then writes it to its standard
output. A pipeline normally consists of a series of filters. Although the processes in a pipeline
(except the first process) can execute in parallel, they are synchronized to the extent that each
program needs to read the output of its predecessor.

The exit value of a pipeline is the exit value of the last command.

A list is a sequence of one or more pipelines separated by ; (semicolon), & (ampersand), &&
(two ampersands), or || (two vertical bars) and optionally ended by a ; (semicolon), an & (amper-
sand), a |& (coprocess), or a newline. These separators and terminators have the following
effects:

; Causes sequential execution of the preceding pipeline; the shell waits for the pipeline
to finish.

& Causes asynchronous execution of the preceding pipeline; the shell does not wait for
the pipeline to finish.

&& Causes the list following it to be executed only if the preceding pipeline returns a 0
(zero) exit value.

|| Causes the list following it to be executed only if the preceding pipeline returns a
nonzero exit value.

The cd command is an exception; if it returns a nonzero exit value, no subsequent com-
mands in a list are executed, regardless of the separator characters.

The ; and & separators have equal precedence, as do && and ||. The single-character separators
have lower precedence than the double-character separators. An unquoted newline character fol-
lowing a pipeline functions the same as a ; (semicolon).

Access Control Lists (ACLs)
If the shell creates a file, for example when you redirect stdout or stderr to a file, and the parent
directory for that file has an ACL that contains default ACL entries, the file inherits ACL entries
from the parent directory as described in the acl(5) reference page.

Comments
The shell treats as a comment any word that begins with a # character and ignores that word and
all characters following up to the next newline character.

Shell Flow Control Statements
Unless otherwise stated, the value returned by a command is that of the last simple command
executed in the command.

for identifier [in word...] ;do list ;done
Each time a for command is executed, identifier is set to the next word taken from the
in word list. If in word ... is omitted, the for command executes the do list once for
each positional parameter that is set. (See Parameter Substitution.) Execution ends
when there are no more words in the list.

select identifier [in word...] ;do list ;done
Prints on standard error (file descriptor 2) the set of words, each word preceded by a
number. If in word... is omitted, then the positional parameters are used instead. (See
Parameter Substitution.) The PS3 prompt is printed and a line is read from the stan-
dard input. If this line consists of the number of one of the listed words, then the value
of the parameter identifier is set to the word corresponding to this number. If this line
is empty, the selection list is printed again. If neither of these cases is true, the value of
the parameter identifier is set to null. The contents of the line read from standard input

5−8 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

is saved in the REPLY parameter. The list is executed for each selection until a break
or end-of-file character is encountered.

case word in [[(]
pattern [| pattern] ...) list ;;] ... esac" Executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that used for filename gen-
eration. (See Filename Generation.)

if list ;then list [elif
list ;then list] ... [;else list] ;fi" Executes the list following if and, if it returns a 0 (zero)
exit status, executes the list following the first then. Otherwise, the list following elif
is executed and, if its value is 0 (zero), the list following the next then is executed.
Failing that, the else list is executed. If no else list or then list is executed, then the if
command returns a 0 (zero) exit status.

while list ;do list ;done

until list ;do list ;done
Executes the while list repeatedly, and if the exit status of the last command in the list
is 0 (zero), executes the do list; otherwise the loop terminates. If no commands in the
do list are executed, then the while command returns a 0 (zero) exit status; until can be
used in place of while to negate the loop termination test.

(list) Executes list in a separate environment. Note that if two adjacent open parentheses are
needed for nesting, a space must be inserted to avoid arithmetic evaluation.

{list;} Executes list. Note that unlike the metacharacters (and), { and } are reserved words
and must be at the beginning of a line or after a ; (semicolon) in order to be recognized.

[[expression]]
Evaluates expression and returns a 0 (zero) exit status when expression is TRUE. See
Conditional Expressions for a description of expression.

function identifier {list;}

identifier () {list;}
Defines a function that is referenced by identifier. The body of the function is the list
of commands between { and }. (See Functions.)

time pipeline
Executes pipeline and prints the elapsed time as well as the user and system time on
standard error.

The following reserved words are recognized only when they appear, without single or double
quotation marks, as the first word of a command:

case
do
done
elif
else
esac
fi
for
function
if
select
then

527188-021 Hewlett-Packard Company 5−9

ksh(1) OSS Shell and Utilities Reference Manual

time
until
while
{ }
[[]]

Command Aliasing
The first word of each command is replaced by the text of an alias (if an alias for this word was
defined). The first character of an alias name can be any nonspecial printable character, but the
rest of the characters must be the same as for a valid identifier. The replacement string can con-
tain any valid shell script, including the metacharacters previously listed. The first word of each
command in the replaced text, other than any that are in the process of being replaced, will be
tested for aliases. If the last character of the alias value is a space, the word following the alias
will also be checked for alias substitution.

Aliases can be used to redefine special built-in commands but cannot be used to redefine the
reserved words previously listed. Aliases can be created, listed, and exported with the alias com-
mand and can be removed with the unalias command. Exported aliases remain in effect for
scripts invoked by name, but must be reinitialized for separate invocations of the shell. (See
Invocation.)

Aliasing is performed when scripts are read, not while they are executed. Therefore, for an alias
to take effect, the alias definition command has to be executed before the command that refer-
ences the alias is read.

Aliases are frequently used as shorthand for full pathnames. An option to the aliasing facility
allows the value of the alias to be automatically set to the full pathname of the corresponding
command. These aliases are called tracked aliases.

The value of a tracked alias is defined the first time the corresponding command is looked up and
becomes undefined each time the PATH environment variable is reset. These aliases remain
tracked so that the next subsequent reference will redefine the value. Several tracked aliases are
compiled into the shell. The -h flag of the set command makes each referenced command name
into a tracked alias.

The following exported aliases are compiled into the shell, but can be unset or redefined:

autoload=’typeset -fu’
command=’command ’
functions=’typeset -f’
hash=’alias -t -’
history=’fc -l’
integer=’typeset -i’
local=typeset
nohup=’nohup ’
r=’fc -e -’
stop=’kill -STOP’
suspend=’kill -STOP $$’
type=’whence -v’

Tilde Substitution
After alias substitution is performed, each word is checked to see if it begins with an unquoted ˜
(tilde). If it does, then the word up to a / (slash) is checked to see if it matches a username in the
/etc/passwd file. If a match is found, the tilde and the matched name are replaced by the login
directory of the matched user. This is called a tilde substitution. If no match is found, the

5−10 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

original text is left unchanged. A tilde by itself, or in front of a /, is replaced by the value of the
HOME parameter. A tilde followed by a + (plus sign) or - (dash) is replaced by $PWD and
$OLDPWD, respectively.

In addition, tilde substitution is attempted when the value of a variable assignment parameter
begins with a tilde.

Command Substitution
The standard output from a command enclosed in parentheses preceded by a dollar sign $() or a
pair of ‘‘ (grave accents) can be used as part or all of a word; trailing newlines are removed. In
the second (archaic) form, the string between the grave accents is processed for special quoting
characters before the command is executed. (See Quoting.) The command substitution $(cat
file) can be replaced by the equivalent but faster $(<file). Command substitution of most special
commands that do not perform input/output redirection are carried out without creating a
separate process. An arithmetic expression enclosed in double parentheses preceded by a dollar
sign ($(())) is replaced by the value of the arithmetic expression within the double parentheses.

Parameter Substitution
A parameter is an identifier, one or more digits, or any of the characters *, @@@@, #, ?, -, $,
and !. A named parameter (a parameter denoted by an identifier) has a value and 0 (zero) or
more attributes. Named parameters can be assigned values and attributes by using the typeset
special command. The attributes supported by the shell are described later with the typeset spe-
cial command. Exported parameters pass values and attributes to the environment.

The shell supports a 1-dimensional array facility. An element of an array parameter is referenced
by a subscript. A subscript is denoted by an arithmetic expression enclosed with [] (brackets).
To assign values to an array, use values of subscripts in the range of 0 to 1023. Arrays need not
be declared. Any reference to a named parameter with a valid subscript is legal and an array will
be created if necessary. Referencing an array without a subscript is equivalent to referencing the
element 0 (zero).

The value of a named parameter can be assigned by the following:

name=value [name=value]

If the integer attribute, -i, is set for name, the value is subject to arithmetic evaluation. Positional
parameters, which are denoted by a number, can be assigned values with the set special com-
mand. Parameter $0 is set from argument 0 (zero) when the shell is invoked. The $ (dollar sign)
character is used to introduce substitutable parameters.

${parameter}
Reads all the characters from the ${ (dollar sign left brace) to the matching } (right
brace) as part of the same word even if it contains braces or metacharacters. The value,
if any, of the parameter is substituted. The braces are required when parameter is fol-
lowed by a letter, digit, or underscore that is not to be interpreted as part of its name or
when a named parameter is subscripted. If parameter is one or more digits, it is a posi-
tional parameter. A positional parameter of more than one digit must be enclosed in
braces. If parameter is * (asterisk) or @@@@ (at sign), all the positional parameters,
starting with $1, are substituted (separated by a field separator character). If an array
identifier with subscript * or @@@@ is used, the value for each of the elements is
substituted (separated by a field separator character).

${#parameter}
Substitutes the number of positional parameters if parameter is * or @@@@; other-
wise, the length of the value of the parameter is substituted.

527188-021 Hewlett-Packard Company 5−11

ksh(1) OSS Shell and Utilities Reference Manual

${#identifier[*]}
Substitutes the number of elements in the array identifier.

${parameter:-word}
Substitutes the value of parameter if it is set and non-null; otherwise, substitutes word.

${parameter:=word}
Sets parameter to word if it is not set or is null; the value of the parameter is then sub-
stituted. Positional parameters cannot be assigned values in this way.

${parameter:?word}
Substitutes the value of parameter if it is set and is non-null; otherwise, print word and
exit from the shell. If word is omitted, a standard message is printed.

${parameter:+word}
Substitutes word if parameter is set and is non-null; otherwise, substitutes nothing.

${parameter#pattern} | ${parameter##pattern}
Causes the value of this substitution to be the value of parameter with the matched
portion deleted if the shell pattern matches the beginning of the value of parameter;
otherwise the value of parameter is substituted. In the first form, the smallest matching
pattern is deleted and in the second form, the largest matching pattern is deleted.

${parameter%pattern} | ${parameter%%pattern}
Causes the value of this substitution to be the value of parameter with the matched part
deleted if the shell pattern matches the end of the value of parameter; otherwise, sub-
stitute the value of parameter. In the first form, the smallest matching pattern is
deleted and in the second form, the largest matching pattern is deleted.

If the : (colon) is omitted from the previous expressions, then the shell checks only whether
parameter is set or not.

In the previous expressions, word is not evaluated unless it is to be used as the substituted string,
so that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:-$(pwd)}

The following parameters are automatically set by the shell:

(hash mark)
The number of positional parameters in decimal.

- (dash)
Flags supplied to the shell on invocation or by the set command.

? (question mark)
The decimal value returned by the last executed command.

$ (dollar sign)
The process number of this shell.

_ (underscore)
Initially, an absolute pathname of the shell or script being executed as passed in the
environment. Subsequently, the value is assigned the last argument of the previous com-
mand. This parameter is not set for commands that are asynchronous.

5−12 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

! (exclamation point)
The process number of the last background command invoked.

ERRNO The value of errno as set by the most recently failed system call. This value is system
dependent and is intended for debugging purposes.

LINENO
The line number of the current line within the script or function being executed.

OLDPWD
The previous working directory set by the cd command.

OPTARG
The value of the last option argument processed by the getopts special command.

OPTIND
The index of the last option argument processed by the getopts special command.

PPID The process number of the parent of the shell.

PWD The present working directory set by the cd command.

RANDOM
Each time this parameter is referenced, a random integer, uniformly distributed
between 0 and 32767, is generated. The sequence of random numbers can be initial-
ized by assigning a numeric value to RANDOM.

REPLY This parameter is set by the select statement and by the read special command when
no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since shell invocation is
returned. If this parameter is assigned a value, then the value returned upon reference
will be the value that was assigned plus the number of seconds since the assignment.

The following parameters are used by the shell:

CDPATH
The search path for the cd command.

COLUMNS
If this variable is set, the value is used to define the width of the edit window for the
shell edit modes and for printing select lists.

EDITOR
If the value of this variable ends in vi and the VISUAL variable is not set, then the
corresponding option (see set under Special sh Commands) will be turned on.

ENV If this parameter is set, then parameter substitution is performed on the value to gen-
erate the pathname of the script that will be executed when the shell is invoked. (See
Invocation.) This file is typically used for alias and function definitions.

FCEDIT
The default editor name for the fc command.

527188-021 Hewlett-Packard Company 5−13

ksh(1) OSS Shell and Utilities Reference Manual

FPATH The search path for function definitions. This path is searched when a function with
the -u attribute is referenced and when a command is not found. If an executable file is
found, then it is read and executed in the current environment.

IFS Internal field separators, normally spaces, tabs, and newlines that are used to separate
command words which result from command or parameter substitution and for separat-
ing words with the read special command. The first character of the IFS parameter is
used to separate arguments for the $* substitution. (See Quoting.)

HISTFILE
If this parameter is set when the shell is invoked, then the value is the pathname of the
file that will be used to store the command history. (See Command Reentry.)

HISTSIZE
If this parameter is set when the shell is invoked, the number of previously entered
commands that are accessible by this shell will be greater than or equal to this number.
The default is 128.

HOME The default argument (home directory) for the cd command.

LANG Specifies the locale of your system, which is comprised of three parts: language, terri-
tory, and code set. The default locale is the C locale, which specifies the value English
for language, U.S. for territory, and ASCII for code set.

LC_ALL
Specifies the behavior for all aspects of the locale.

LC_COLLATE
Specifies the collating sequence to use when sorting names and when character ranges
occur in patterns. The default value is the collating sequence for American English. If
absent, the collating sequence can be taken from the LANG parameter. If both
LC_COLLATE and LANG are absent, the ANSI C collating sequence is used.

LC_CTYPE
Specifies the character classification information to use on your system. The default
value is American English.

LC_MESSAGES
Specifies the language in which system messages appear and the language that the sys-
tem accepts for user input of yes and no strings. The default is American English.

LC_MONETARY
Specifies the monetary format for your system. The default value is the monetary for-
mat for American English.

LC_NUMERIC
Specifies the numeric format for your system. The default value is the numeric format
for American English.

LC_TIME
Specifies the date and time format for your system. The default value is the date and
time format for American English.

LINES If this variable is set, the value is used to determine the column length for printing
select lists. Select lists will print vertically until about two-thirds of LINES lines are
filled.

5−14 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

LOCPATH
Specifies a series of colon-separated search rules that describe where to look for
locales. These rules override the default search path of /usr/lib/nls/loc.

NLSPATH
Specifies a list of directories to search to find message catalogs.

PATH The search path for commands. (See Execution.) You cannot change PATH if execut-
ing under rsh, except in .profile.

PS1 The value of this parameter is expanded for parameter substitution to define the pri-
mary prompt string which by default is the $ (dollar sign). The ! (exclamation point) in
the primary prompt string is replaced by the command number. (See Command Reen-
try.)

PS2 Secondary prompt string, by default > (right angle bracket).

PS3 Selection prompt string used within a select loop, by default #? (number sign, question
mark).

PS4 The value of this parameter is expanded for parameter substitution and precedes each
line of an execution trace. If omitted, the execution trace prompt is + (plus sign).

SHELL The pathname of the shell is kept in the environment.

TMOUT
If set to a value greater than 0 (zero), the shell terminates if a command is not entered
within the prescribed number of seconds after issuing the PS1 prompt. (Note that the
shell can be compiled with a maximum bound for this value that cannot be exceeded.)

TZ Current value for the time zone, if any.

VISUAL
If the value of this variable ends in vi, the corresponding option (see the set command
in Special ksh Commands) will be turned on.

The shell gives default values to PATH, PS1, PS2, TMOUT, and IFS, while HOME, SHELL,
and ENV are not set by the shell.

Interpretation of Spaces
After parameter and command substitution, the results of substitutions are scanned for the field
separator characters (those found in IFS), and split into distinct arguments where such characters
are found. Explicit null arguments (‘‘ or ’’) are retained. Implicit null arguments (those resulting
from parameters that have no values) are removed.

Filename Generation
Following substitution, each command word is scanned for the characters * (asterisk), ? (ques-
tion mark), and [] (brackets), unless the -f option was set. If one of these characters appears, the
word is regarded as a pattern. The word is replaced with lexicographically sorted filenames that
match the pattern. If no filename is found that matches the pattern, the word is left unchanged.
When a pattern is used for filename generation, the . (dot) character at the start of a filename or
immediately following a / (slash), as well as the / character itself, must be matched explicitly. In
other instances of pattern matching, the / and . are not treated specially.

* Matches any string, including the null string.

527188-021 Hewlett-Packard Company 5−15

ksh(1) OSS Shell and Utilities Reference Manual

? Matches any single character.

[...] Matches any one of the enclosed characters. In an expression such as [a-z], the -
(dash) means "through" according to the current collating sequence. The collating
sequence is determined by the value of the LC_COLLATE environment variable. If
the first character following the [(left bracket) is a ! (exclamation point), then any
character not enclosed is matched. A - can be included in the character set by putting it
as the first or last character.

A pattern_list is a list of one or more patterns separated from each other with a | (vertical bar).
Composite patterns can be formed with one or more of the following:

?(pattern_list)
Optionally matches any one of the given patterns.

*(pattern_list)
Matches zero or more occurrences of the given patterns.

+(pattern_list)
Matches one or more occurrences of the given patterns.

@@@@(pattern_list)
Matches exactly one of the given patterns.

!(pattern_list)
Matches anything, except one of the given patterns.

Character Classes
You can use the following notation to match filenames within a range indication:

[:charclass:]

This format instructs the system to match any single character belonging to charclass; the
defined classes correspond to ctype() subroutines as follows:

alnum
alpha
blank
cntrl
digit
graph
lower
print
punct
space
upper
xdigit

Your locale might define additional character properties, such as the following:

[:vowel:]

The preceding character class could be TRUE for a, e, i, o, u, or y. You could then use [:vowel]
inside a set construction to match any vowel. Refer to The LC_CTYPE Category section of the
locale file format reference page for more information.

5−16 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

Quoting
The following characters have a special meaning to the shell and cause termination of a word
unless quoted:

; & () | ˆ < > <newline> <space> <tab>

Each of the metacharacters previously listed has a special meaning to the shell and causes termi-
nation of a word unless quoted. A character can be quoted (that is, made to stand for itself) by
preceding it with a \ (backslash). The pair \newline is ignored. All characters enclosed between
a pair of ‘’ (single quotes) are quoted. A single quote cannot appear within single quotes.

Inside "" (double quotes) parameter and command substitution occurs and \ quotes the characters
\, ‘, ’, and $. The meaning of $* and $@@@@ is identical when not quoted or when used as a
parameter assignment value or as a filename. However, when used as a command argument, ’$*’
is equivalent to ’$1d$2d. . .’, where d is the first character of the IFS parameter, whereas
’$@@@@’ is equivalent to ’$1’ ’$2’ . . . Inside ‘‘ (grave accents) \ (backslash) quotes the char-
acters \, ‘, and $. If the grave accents occur within double quotes, then \ also quotes the ’ (single
quote) character.

The special meaning of reserved words or aliases can be removed by quoting any character of the
reserved word. The recognition of function names or special command names listed later cannot
be altered by quoting them.

Arithmetic Evaluation
An ability to perform integer arithmetic is provided with the let special command. Evaluations
are performed using long arithmetic. Constants are of the form [base#]n, where base is a decimal
number between 2 and 36 representing the arithmetic base and n is a number in that base. If base
is omitted, then base 10 is used.

An arithmetic expression uses the same syntax, precedence, and associativity of expression of
the C language. All the integral operators, other than ++, --, ?:, and , are supported. Named
parameters can be referenced by name within an arithmetic expression without using the parame-
ter substitution syntax. When a named parameter is referenced, its value is evaluated as an arith-
metic expression.

An internal integer representation of a named parameter can be specified with the -i option of the
typeset special command. Arithmetic evaluation is performed on the value of each assignment
to a named parameter with the -i attribute. If you do not specify an arithmetic base, the first
assignment to the parameter determines the arithmetic base. This base is used when parameter
substitution occurs.

Because many of the arithmetic operators require quoting, an alternative form of the let com-
mand is provided. For any command that begins with a ((, all the characters until a matching))
are treated as a quoted expression. More precisely, ((...)) is equivalent to let "...".

Note that ((...)) is a command with a return value, whereas $((...)) is the way to put the string
representation of the value of an arithmetic expression into the command line (that is, it is like a
$ variable).

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a command. If
at any time a newline character is typed and further input is needed to complete a command, then
the secondary prompt (that is, the value of PS2) is issued.

Conditional Expressions
A conditional expression is used with the [[compound command to test attributes of files and to
compare strings. Word splitting and filename generation are not performed on the words
between [[and]]. Each expression can be constructed from one or more of the following unary
or binary expressions:

527188-021 Hewlett-Packard Company 5−17

ksh(1) OSS Shell and Utilities Reference Manual

-a file TRUE, if file exists.

-b file TRUE, if file exists and is a block-special file.

-c file TRUE, if file exists and is a character-special file.

-d file TRUE, if file exists and is a directory.

-f file TRUE, if file exists and is an ordinary file.

-g file TRUE, if file exists and has its setgid bit set.

-G file TRUE, if file exists and its group ID matches the effective group ID of this process.

-h file TRUE, if file exists and is a symbolic link.

-k file TRUE, if file exists and has its sticky bit set.

-L file TRUE, if file exists and is a symbolic link.

-n string TRUE, if length of string is nonzero.

-o option
TRUE, if option named option is on.

-O file TRUE, if file exists and is owned by the effective user ID of this process.

-p file TRUE, if file exists and is a FIFO special file or a pipe.

-r file TRUE, if file exists and is readable by current process.

-s file TRUE, if file exists and has size greater than 0 (zero).

-S file TRUE, if file exists and is a socket.

-t file_des
TRUE, if file descriptor number file_des is open and associated with a terminal device.

-u file TRUE, if file exists and has its setuid bit set.

-w file TRUE, if file exists and is writable by current process.

-x file TRUE, if file exists and is executable by current process. If file exists and is a direc-
tory, then the current process has permission to search in the directory.

-z string TRUE, if length of string is 0 (zero).

file1 -nt file2
TRUE, if file1 exists and is newer than file2.

file1 -ot file2
TRUE, if file1 exists and is older than file2.

file1 -ef file2
TRUE, if file1 and file2 exist and refer to the same file.

string = pattern
TRUE, if string matches pattern.

5−18 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

string != pattern
TRUE, if string does not match pattern.

string1 < string2
TRUE, if string1 collates before string2.

string1 > string2
TRUE, if string1 collates after string2.

expression1 -eq expression2
TRUE, if expression1 is equal to expression2.

expression1 -ne expression2
TRUE, if expression1 is not equal to expression2.

expression1 -lt expression2
TRUE, if expression1 is less than expression2.

expression1 -gt expression2
TRUE, if expression1 is greater than expression2.

expression1 -le expression2
TRUE, if expression1 is less than or equal to expression2.

expression1 -ge expression2
TRUE, if expression1 is greater than or equal to expression2.

A compound expression can be constructed from these primitives by using any of the following,
listed in decreasing order of precedence.

(expression)
TRUE, if expression is TRUE. Used to group expressions.

! expression
TRUE if expression is FALSE.

expression1 && expression2
TRUE, if expression1 and expression2 are both TRUE.

expression1 || expression2
TRUE, if either expression1 or expression2 is TRUE.

Input/Output
Before a command is executed, you can redirect its input and output by using a special notation
interpreted by the shell. The following can appear anywhere in a simple command or can pre-
cede or follow a command and are not passed on to the invoked command. Command and
parameter substitution occurs before word or digit is used, except as noted in the following text.
Filename generation occurs only if the pattern matches a single file and interpretation of spaces
is not performed.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does not exist, it is
created. If the file exists, and the noclobber option is on, this causes an error; other-
wise, it is truncated to 0 (zero) length.

527188-021 Hewlett-Packard Company 5−19

ksh(1) OSS Shell and Utilities Reference Manual

>|word Same as >, except that it overrides the noclobber option.

>>word Use file word as standard output. If the file exists, output is appended to it (by first
seeking to the End-of-File); otherwise, the file is created.

<>word Open file word for reading and writing as standard input.

<<[-]word
The shell input is read up to a line that is the same as word, or to an End-of-File. No
parameter substitution, command substitution, or filename generation is performed on
word. The resulting document, called a here document, becomes the standard input. If
any character of word is quoted, then no interpretation is placed upon the characters of
the document; otherwise, parameter and command substitution occurs, \newline is
ignored, and \ must be used to quote the characters \, $, ‘, and the first character of
word. If - is appended to <<, then all leading tabs are stripped from word and from the
document.

<&digit The standard input is duplicated from file descriptor digit (see dup(2)). The standard
output is duplicated using >& digit.

<&- The standard input is closed. The standard output is closed using >&-.

<&p The input from the coprocess (or background process) is moved to standard input.

>&p The output to the coprocess is moved to standard output.

If one of the preceding redirections is preceded by a digit, then the file descriptor number referred
to is that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each redirection
in terms of the (file descriptor, file) association at the time of evaluation. For example:

... 1>fname >&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file
associated with file descriptor 1 (that is, fname). If the order of redirections is reversed, file
descriptor 2 is associated with the terminal (assuming file descriptor 1 is) and then file descriptor
1 is associated with file fname.

If a command is followed by & and job control is not active, the default standard input for the
command is the empty /dev/null file. Otherwise, the environment for the execution of a com-
mand contains the file descriptors of the invoking shell as modified by input/output
specifications.

Environment
The environment is a list of name-value pairs that is passed to an executed program in the same
way as a normal argument list. The names must be identifiers and the values are character
strings. The shell interacts with the environment in several ways. On invocation, the shell scans
the environment and creates a parameter for each name found, giving it the corresponding value
and marking it export. Executed commands inherit the environment. If you modify the values
of these parameters or create new ones, using the export or typeset -x commands, they become
part of the environment. The environment used by any executed command is thus composed of
any name-value pairs originally inherited by the shell, whose values can be modified by the
current shell, plus any additions that must be noted in the export or typeset -x commands.

5−20 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

You can augment the environment for any simple command or function by prefixing it with one
or more parameter assignments. A parameter assignment argument is a word of the form
identifier=value.

Thus, the following two expressions are equivalent (as far as the execution of command is con-
cerned):

TERM=450 command argument ...

(export TERM; TERM=450; command argument ...)

Functions
The function reserved word is used to define shell functions. Shell functions are read in and
stored internally. Alias names are resolved when the function is read. Functions are executed
like commands with the arguments passed as positional parameters. (See Execution.)

Functions execute in the same process as the caller and share all files and the present working
directory with the caller. Traps caught by the caller are reset to their default action inside the
function. A trap condition that is not caught or ignored by the function causes the function to ter-
minate and the condition to be passed on to the caller. A trap on EXIT set inside a function is
executed after the function completes in the environment of the caller. Ordinarily, variables are
shared between the calling program and the function. However, the special command typeset
used within a function defines local variables whose scope includes the current function and all
functions it calls.

The special command return is used to return from function calls. Errors within functions return
control to the caller.

Function identifiers can be listed with the -f or +f option of the typeset special command. The
text of functions is also listed with -f. Functions can be undefined with the -f option of the unset
special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf option of the
typeset command allows a function to be exported to scripts that are executed without a separate
invocation of the shell. Functions that need to be defined across separate invocations of the shell
should be specified in the ENV file with the -xf option of typeset.

Jobs
If the monitor option of the set command is turned on, an interactive shell associates a job with
each pipeline. It keeps a table of current jobs, printed by the jobs command, and assigns them
small integer numbers. When a job is started asynchronously with &, the shell prints a line that
looks like:

[1] 1234

This line indicates that the job, which was started asynchronously, was job number 1 and had one
(top-level) process, whose process ID was 1234.

If you are running a job and want to do something else, you can enter the Suspend key sequence
(normally <Ctrl-z>), which sends a SIGTSTP signal to the current job. The shell then normally
indicates that the job has been stopped, and it prints another prompt. You can then manipulate
the state of this job, putting it in the background with the bg command, or run some other com-
mands and then eventually bring the job back into the foreground with the foreground command
fg. The job suspension takes effect immediately, and corresponds to the Interrupt key sequence
in that pending output and unread input are discarded. A special key sequence, <Ctrl-y>, does
not generate a SIGTSTP signal until a program attempts to read it. (See the read(2) reference
page for more information.) This key sequence can usefully be typed ahead when you have
prepared some commands for a job that you wish to stop after it has read them.

527188-021 Hewlett-Packard Company 5−21

ksh(1) OSS Shell and Utilities Reference Manual

A job being run in the background will stop if it tries to read from the terminal. Background jobs
are normally allowed to produce output, but this can be disabled by issuing the stty tostop com-
mand. If you set this tty option, then background jobs will stop when they try to produce output
like they do when they try to read input.

There are several ways to refer to jobs in the shell. A job can be referred to by the process ID of
any process of the job, or by one of the following:

%job_number
The job with the given number.

%string Any job whose command line begins with string.

%?string
Any job whose command line contains string.

%% Current job.

%+ Equivalent to %%.

%- Previous job.

This shell knows immediately whenever a process changes state. It normally informs you when-
ever a job becomes blocked so that no further progress is possible, but only just before it prints a
prompt. This is done so that it does not otherwise disturb your work.

When the monitor mode is on, each background job that is completed triggers any trap set for
CHLD.

When you try to leave the shell while jobs are stopped or running, you are warned that You
have stopped(running) jobs. You can use the jobs command to see what they are. If you
do this or immediately try to exit again, the shell does not warn you a second time, and the
stopped jobs are terminated.

Signals
The SIGINT and SIGQUIT signals for an invoked command are ignored if the command is fol-
lowed by & and job monitor option is not active. Otherwise, signals have the values inherited
by the shell from its parent (but see also the trap command).

Execution
Each time a command is executed, the previous substitutions are carried out. If the command
name matches one of the shell built-in commands it is executed within the current shell process.
Next, the command name is checked to see if it matches one of the user-defined functions. If it
does, the positional parameters are saved and then reset to the arguments of the function call.
When the function is completed or issues a return, the positional parameter list is restored and
any trap set on EXIT within the function is executed. The value of a function is the value of the
last command executed. A function is also executed in the current shell process. If a command
name is not a special command or a user-defined function, a process is created and an attempt is
made to execute the command via exec.

The PATH shell parameter defines the search path for the directory containing the command.
Alternative directory names are separated by a : (colon). The default path is /usr/bin: (specify-
ing /usr/bin, and the current directory in that order). The current directory can be specified by
two or more adjacent colons, or by a colon at the beginning or end of the path list. If the com-
mand name contains a / (slash), then the search path is not used. Otherwise, each directory in the
path is searched for an executable file.

If the file has execute permission but is not a directory or an a.out file, it is assumed to be a file
containing shell commands. A subshell is spawned to read it. All nonexported aliases, functions,
and named parameters are removed in this case. If the shell command file does not have read

5−22 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

permission, or if the setuid and/or setgid bits are set on the file, the shell executes an agent
whose job it is to set up the permissions and execute the shell with the shell command file passed
down as an open file. A command in parentheses is executed in a subshell without the removal
of nonexported quantities.

Command Reentry
The text of the last HISTSIZE (default 128) commands entered from a terminal device is saved
in a history file. The $HOME/.sh_history file is used if the HISTFILE variable is not set or is
not writable. A shell can access the commands of all interactive shells that use the same named
HISTFILE. The fc special command is used to list or edit a portion of this file. The portion of
the file to be edited or listed can be selected by number or by giving the first character or charac-
ters of the command. A single command or range of commands can be specified. If you do not
specify an editor program as an argument to fc, then the value of the FCEDIT parameter is used.
If FCEDIT is not defined, then /usr/bin/ed is used. The edited commands are printed and reexe-
cuted upon leaving the editor. The editor name - (dash) is used to skip the editing phase and to
reexecute the command. In this case, a substitution parameter of the form old=new can be used
to modify the command before execution. For example, if r is aliased to ’fc -e -’, then typing ‘r
bad=good c’ reexecutes the most recent command, which starts with the letter c, replacing the
first occurrence of the string bad with the string good.

Inline Editing Options
Normally, each command line entered from a terminal device is simply typed followed by a new-
line character (<Return> or linefeed). If the vi option is active, you can edit the command line.
To be in this edit mode, set the corresponding option. An editing option is automatically selected
each time the VISUAL or EDITOR variable is assigned a value ending in the option name.

The editing features require that the terminal accept <Return> as carriage-return without
linefeed and that a space must overwrite the current character on the screen. ADM terminal
users should set the space-advance switch to Space. Hewlett-Packard series 2621 terminal users
should set the straps to bcGHxZ etX.

The editing modes create the impression that the user is looking through a window at the current
line. The window width is the value of COLUMNS if it is defined, otherwise it is 80 bytes. If
the line is longer than the window width minus 2, a mark is displayed at the end of the window to
notify the user. As the cursor moves and reaches the window boundaries, the window will be
centered about the cursor. The mark is a > (right angle bracket) if the line extends on the right
side of the window, a < (left angle bracket) if the line extends on the left side of the window, and
an * (asterisk) if the line extends on both sides of the window.

The search commands in each edit mode provide access to the history file. Only strings are
matched, not patterns, although if the leading character in the string is a ˆ (circumflex), the match
is restricted to begin at the first character in the line.

The vi Editing Mode
There are two typing modes. Initially, when you enter a command you are in the input mode. To
edit, the user enters control mode by typing <Esc> (ASCII 033) and moves the cursor to the
place needing correction and then inserts or deletes characters or words as needed. Most control
commands accept an optional repeat count prior to the command. When in vi mode on most sys-
tems, canonical processing is initially enabled and the commands are echoed again if the speed is
1200 baud or greater, if it contains any control characters, or if less than 1 second has elapsed
since the prompt was printed. The Escape character terminates canonical processing for the
remainder of the command and the user can then modify the command line.

This scheme of using two typing nodes has the advantages of canonical processing with the
type-ahead echoing of raw mode. If the option viraw is also set, the terminal always has canoni-
cal processing disabled. This mode is implicit for systems that do not support two alternative
End-of-Line delimiters, and can be helpful for certain terminals.

527188-021 Hewlett-Packard Company 5−23

ksh(1) OSS Shell and Utilities Reference Manual

Input Edit Commands
By default the editor is in input mode.

Erase (User-defined Erase character as defined by the stty command, often <Ctrl-h> or #.)
Deletes the previous character.

<Ctrl-w>
Deletes the previous space-separated word.

<Ctrl-d>
Terminates the shell (at the beginning of a line only).

<Ctrl-v>
Escapes the next character. Editing characters and the user’s Erase or Kill characters
can be entered in a command line or in a search string if preceded by a <Ctrl-v>.
<Ctrl-v> removes the next character’s editing features (if any).

\ Escapes the next Erase or Kill character.

Motion Edit Commands
These commands move the cursor:

[count]l Cursor forward (right) one character.

[count]w Cursor forward one word. A word is a string of characters delimited by spaces or tabs.

[count]W
Cursor to the beginning of the next word that follows a space.

[count]e Cursor to the end of the word.

[count]E Cursor to end of the current space-delimited word.

[count]h Cursor backward (left) one character.

[count]b Cursor backward one word.

[count]B Cursor to the preceding space-delimited word.

[count]| Cursor to the column count.

[count]fc Finds the next character c in the current line.

[count]Fc
Finds the previous character c in the current line.

[count]tc Equivalent to f followed by h.

[count]Tc
Equivalent to F followed by l.

[count]; Repeats count times, the last single character find command: f, F, t, or T.

[count], Reverses the last single character find command count times.

0 Cursor to the start of the line.

5−24 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

^ Cursor to the first nonspace character in the line.

$ Cursor to the end of the line.

Search Edit Commands
These commands access your command history.

[count]k Fetches the previous command. Each time k is entered, the previous command back in
time is accessed.

[count]- Equivalent to k.

[count]j Fetches the next command. Each time j is entered, the next command forward in time
is accessed.

[count]+ Equivalent to j.

[count]G Fetches the command number count. The default is the least recent history command.

/string Searches backward through history for a previous command containing the specified
string. string is terminated by <Return> or a newline character. If the specified string
is preceded by a ˆ (circumflex), the matched line must begin with string. If string is
null, the previous string is used.

?string Same as / (slash) except that the search is in the forward direction.

n Searches for next match of the last pattern to the / or ? commands.

N Searches for next match of the last pattern to the / or ? commands, but in reverse direc-
tion. Searches the command history for the string entered by the previous / command.

Text Modification Edit Commands
These commands modify the line.

a Enters input mode and enters text after the current character.

A Appends text to the end of the line. Equivalent to $a.

[count]cmotion

c[count]motion
Deletes the current character through the character to which motion would move the
cursor, and enters input mode. If motion is c, the entire line is deleted and input mode
is entered.

C Deletes the current character through the end of line, and enters input mode.
Equivalent to c$.

S Equivalent to cc.

D Deletes the current character through the end of line. Equivalent to d$.

[count]dmotion

d[count]motion
Deletes the current character through the character to which motion would move. If
motion is d, the entire line is deleted.

527188-021 Hewlett-Packard Company 5−25

ksh(1) OSS Shell and Utilities Reference Manual

i Enters input mode and inserts text before the current character.

I Inserts text before the beginning of the line. Equivalent to 0i.

[count]P Places the previous text modification before the cursor.

[count]p Places the previous text modification after the cursor.

R Enters input mode and replaces characters on the screen with the characters you type,
overlay fashion.

[count]rc
Replaces the count characters, starting at the current cursor position with c and advanc-
ing the cursor.

[count]x Deletes the current character.

[count]X Deletes the preceding character.

[count]. Repeats the previous text modification command.

[count]˜ Inverts the case of the count characters, starting at the current cursor position and
advancing the cursor.

[count]_ Causes the count word of the previous command to be appended and input mode
entered. The last word is used if count is omitted.

* Causes an * (asterisk) to be appended to the current word and filename generation to be
attempted. If no match is found, it sounds the bell. Otherwise, the word is replaced by
the matching pattern and input mode is entered.

\ Filename completion. Replaces the current word with the longest common prefix of all
filenames matching the current word with an * (asterisk) appended. If the match is
unique, a / (slash) is appended if the file is a directory; a space is appended if the file is
not a directory.

Miscellaneous vi Commands
[count]ymotion

y[count]motion
Yanks the current character through the character to which motion would move the cur-
sor and puts the characters into the delete buffer. The text and cursor are unchanged.

Y Yanks from current position to the end of line. Equivalent to y$.

u Undoes the last text-modifying command.

U Undoes all the text-modifying commands performed on the line.

[count]v Returns the command fc -e vi count in the input buffer. If count is omitted, the current
line is used.

<Ctrl-l> Performs a linefeed and prints the current line. Effective only in control mode.

<Ctrl-j> Executes the current line, regardless of mode (newline).

<Ctrl-m>
Executes the current line, regardless of mode (enter).

5−26 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

Sends the line after inserting a # (number sign) in front of the line. Useful for causing
the current line to be inserted in the history without being executed.

= Lists the filenames that match the current word if an * (asterisk) is appended to it.

@@@@letter
Searches the alias list for an alias by the name _letter . If an alias of this name is
defined, its value is inserted in the input queue for processing.

Special sh Commands
Shell built-in commands are executed by the OSS shell and run entirely within the shell process.
A subshell process is not created for shell built-in commands as it is for a command that is not a
shell built-in command.

The following shell built-in commands also have counterparts that are regular OSS commands
having the same names:

echo.1
kill.1
pwd.1
read.1

The shell built-in command is the default. To run the regular version of a command (instead of
the shell built-in version) specify the command as follows:

/bin/command_name

To make the regular version the default, create an alias to the regular version.

The shell built-in version and the regular version of a command may not behave the same way or
have the same flags.

The shell commands described below are executed in the shell process. Input/output redirection
is permitted.

DESCRIPTION
:[argument ...]

The command only expands arguments. It is used when a command is needed, as in
the then condition of an if command, but nothing is to be done by the command.

Parameter assignment lists that precede the command remain in effect when the com-
mand completes.

I/O redirections are processed after parameter assignments.

Errors cause a script that contains the commands so marked to abort.

. file [argument ...]
Reads the complete file and executes the commands. The commands are executed in
the current shell environment. The search path specified by PATH is used to find the
directory containing file. Unlike normal command search, however, the file searched
for by the . command need not be executable. If any arguments are specified, they
become the positional parameters. Otherwise, the positional parameters are
unchanged. If no readable file is found, a noninteractive shell aborts; an interactive
shell writes a diagnostic message to standard error, but this condition is not considered
a syntax error. The exit status is the exit status of the last command executed, or a 0
(zero) if no command is executed.

Parameter assignment lists that precede the command remain in effect when the com-
mand completes.

527188-021 Hewlett-Packard Company 5−27

ksh(1) OSS Shell and Utilities Reference Manual

I/O redirections are processed after parameter assignments.

Errors cause a script that contains the commands so marked to abort.

add_define
Creates DEFINEs for the Guardian environment. An HP extension.

alias Creates or lists aliases.

bg Puts each specified job into the background.

break Exits from the enclosing for, while, until, or select loop.

cd Changes the current directory.

continue
Resumes the next iteration of the enclosing for, while, until, or select loop.

del_define
Deletes DEFINEs from the current shell process. An HP extension.

echo Sends the string given as an argument to the standard output.

eval Reads arguments as input to the shell and executes arguments as commands.

exec Executes commands specified as arguments

exit Causes the shell to exit.

export Marks names automatic export to the shell environment.

fc Lists or edits and reexecutes commands previously entered to an interactive shell.

fg Moves processes into the foreground.

getopts Checks argument for legal options.

hash Affects the way the shell remembers the locations of utilities.

history Lists the contents of the history file, which contains a list of previously executed com-
mands.

info_define
Displays information about DEFINEs. An HP extension.

jobs Lists information about jobs.

kill Sends either the TERM signal or the specified signal to the specified jobs or processes.

let Evaluates arguments as arithmetic expressions.

print The shell output mechanism; prints arguments to standard output as described for echo.

pwd Prints the current working directory to standard output.

read The shell input mechanism.

readonly
The variable names given as arguments are marked read only. These names cannot be
changed by subsequent assignment.

5−28 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

reset_define
Restores the attributes of a DEFINE to their original settings. An HP extension.

return Causes a shell function to return to the invoking script.

set Sets parameters.

set_define
Sets the values for DEFINE attributes. An HP extension.

shift Renames positional parameters.

show_define
Displays values of DEFINE attributes. An HP extension.

times Prints the accumulated user and system times for the shell and for processes run from
the shell.

trap Defines variables to be read and executed when the shell receives the specified signals.

type Returns the location of commands.

typeset Sets attributes and values for shell parameters.

umask Sets the user file-creation mask to mask.

unalias Removes alias definions.

unset Erases values assigned to variables.

wait Waits for the specified process and reports its termination status.

whence Indicates how names would be interpreted if used as commands.

Invocation
If the shell is invoked by exec, and the first character of argument zero ($0) is - (dash), the shell
is assumed to be a login shell and commands are read from /etc/profile and then from either
.profile in the current directory or $HOME/.profile, if either file exists. Next, commands are
read from the file named by performing parameter substitution on the value of the ENV environ-
ment variable, if the file exists. If the -s flag is not present and argument is present, a path search
is performed on the first argument to determine the name of the script to execute. The script
argument must have read permission and any setuid and getgid settings are ignored. Commands
are then read, as described in the following text.

See the FLAGS section for a complete description of flags that can be interpreted by the shell
when it is invoked.

FILES
/etc/profile System profile.

$HOME/.profile User profile.

NOTES
1. If a command is executed, and a command with the same name is installed in a directory

in the search path before the directory where the original command was found, the shell
will execute the original command. Use the hash command to correct this situation.

527188-021 Hewlett-Packard Company 5−29

ksh(1) OSS Shell and Utilities Reference Manual

2. When the shell encounters the >> characters, it does not open the file in append mode;
instead, the shell opens the file for writing and seeks to the end.

3. Failure (nonzero exit status) of a special command preceding a || symbol prevents the list
following || from executing.

4. If a command that is a tracked alias is executed, and then a command with the same
name is installed in a directory in the search path before the directory where the original
command was found, the shell continues to exec the original command. Use the -t flag
of the alias command to correct this situation.

5. Using the fc built-in command within a compound command causes the whole command
to disappear from the history file.

6. The built-in .file command reads the whole file before any commands are executed.
Therefore, the alias and unalias commands in the file do not apply to any functions
defined in the file.

7. Traps are not processed while a job is waiting for a foreground process. Thus, a trap on
CHLD is not executed until the foreground job terminates.

8. The shell displays the following progress message if it needs to retry the fork operation
during an attempt at process creation:

sh: Resource temporarily unavailable....
will retry fork() for MAX 62 secs...

If the indicated time passes before the fork operation is successful, the shell returns the
following message:

/bin/-sh: sh: tdm_fork() failed with errno EAGAIN:
cannot fork too many processes

EXIT VALUES
Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit status.
Otherwise, the shell returns the exit status of the last command executed. (See also the exit com-
mand, described previously.) If the shell is being used noninteractively, execution of the shell
file is abandoned. Run-time errors detected by the shell are reported by printing the command or
function name and the error condition. If the line number that the error occurred on is greater
than 1, the line number is also printed in [] (brackets) after the command or function name.

RELATED INFORMATION
Commands: cd(1), chmod(1), echo(1), env(1), setacl(1), sh(1), stty(1), test(1), umask(1), vi(1).

Functions: exec(2), fcntl(2), fork(2), ioctl(2), lseek(2), pipe(2), rand(3), umask(2), ulimit(3),
wait(2).

Files: locale(4).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The following commands are HP extensions to the shell built-in commands of the XPG4 Version
2 specification. They are described in detail in their own reference pages:

add_define
Creates DEFINEs for the Guardian environment.

5−30 Hewlett-Packard Company 527188-021

User Commands (k - l) ksh(1)

del_define
Deletes DEFINEs from the current shell process.

info_define
Displays information about DEFINEs.

reset_define
Restores the attributes of a DEFINE to their original settings.

set_define
Sets the values for DEFINE attributes.

show_define
Displays values of DEFINE attributes.

527188-021 Hewlett-Packard Company 5−31

ld(1) OSS Shell and Utilities Reference Manual

NAME
ld - Runs the TNS/R native linker utility for position-independent code

SYNOPSIS
ld

[-allow_duplicate_procs]
[-allow_missing_libs]
[-allow_multiple_mains]
[-ansistreams]
[-bdllsonly]
[-bdynamic]
[-bglobalized]
[-blocalized]
[-bstatic]
[-bsymbolic | -bsemi_globalized]
[-call_shared]
[-change attribute_name attribute_value

filename3]
[-d address1]
[-dll | -shared]
[{ -dllname | -soname } DLL_name]
[-e symbol_name1]
[-export symbol_name2]
[-export_all]
[-export_not symbol_name3]
[-first_l pathname1]
[{ -fl | -obey } filename5]
[-include_whole | -no_include_whole]
[{ -l | -lib } filename6]
[{ -L | -libvol } pathname2]
[-libname Guardian_filename]
[-limit_runtime_paths]
[-m | -map]
[-no_optional_lib | -optional_lib]
[-no_preset]
[-no_reexport | -reexport]
[-nostdfiles | -no_stdfiles]
[-nostdlib | -no_stdlib]
[-noverbose | -no_verbose]
[-o filename7]
[-rld_l path_list1]
[-rld_first_l path_list2]
[-s]
[-set attribute_name attribute_value]
[-show_multiple_defs]
[-stdin]
[-strip filename9]
[-t address2]
[-temp_o filename10]
[-u symbol_name4]
[-ul]
[-unres_symbols { error | ignore | warn }]
[-verbose]
[-warn]

5−32 Hewlett-Packard Company 527188-021

User Commands (k - l) ld(1)

[-y symbol_name5]
[filename13] ...

FLAGS
-allow_duplicate_procs

Tells ld to unconditionally accept multiple copies of a procedure. The only
check made is that all copies of the procedure have the same procedure attri-
butes; for example, it is acceptable if they have different sizes. The first copy of
the duplicated procedure is the one that is kept. When building an executable
file, no space is allocated for the unused copies.

The default action is to accept multiple copies of only procedures specifically
marked as duplicatable by C++.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-allow_missing_libs
Tells ld not to stop processing when it cannot find an archive or a dynamic-link
library (DLL) after searching for the name specified by a -l or -lib flag. Instead,
a warning message is issued and processing continues.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

The default action when a needed DLL or archive cannot be found is to stop pro-
cessing.

-allow_multiple_mains
Directs ld not to issue an error message if more than one procedure has the
MAIN attribute. All main procedures are included in the output file. Only the
first procedure having the MAIN attribute is listed as the main entry point in the
file header.

The default action is to stop processing and report an error when more than one
procedure has the MAIN attribute.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-ansistreams Specifies that C run-time library functions create files of file code 180 (C text as
binary) instead of file code 101 (EDIT). The type of files created can also be set
with the ANSISTREAMS C and C++ compiler pragma.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

See the C/C++ Programmer’s Guide for more information.

-bdllsonly Tells ld to limit searches to DLLs when resolving the file names specified for the
-l and -lib flags.

If a file name is qualified, ld searches for a DLL with that name.

If a filename is unqualified, in each search path, ld first searches for a DLL with
the file name as specified in the -l or -lib flag. If ld cannot find a DLL, the file
name is unqualified, and the search path is not in the Guardian file system (/G),
then ld prefixes lib and suffixes .so to the file name and searches again. If ld still
cannot find the DLL, it searches the path again with the same prefix but with .srl
as the suffix. For more information on search paths, see the Finding Libraries
subsection of this reference page under DESCRIPTION.

527188-021 Hewlett-Packard Company 5−33

ld(1) OSS Shell and Utilities Reference Manual

When a DLL cannot be found, ld issues an error message unless the
-allow_missing_libs flag is specified.

The -bdllsonly, -bdynamic, and -bstatic flags are search control toggles. Multi-
ple flags can be specified in a single ld invocation; the behavior specified
remains in effect until another flag in the set is specified. Thus, you can search
for both DLLs and archive files for some -l and -lib flags and search for just
archive files for others. The default library search control is -bdynamic.

-bdynamic Directs ld to search for DLLs and archive files when resolving the file names
specified for the -l and -lib flags.

If a file name is qualified, ld searches for a DLL or archive with that name.

If a filename is unqualified, in each search path, ld first searches for a DLL or
archive with the file name as specified in the -l or -lib flag. If ld cannot find a
DLL or archive, the file name is unqualified, and the search path is not in the
Guardian file system (/G), then ld prefixes lib and suffixes .so to the file name
and searches again. If ld still cannot find the DLL or archive, it searches the path
again with the same prefix but with .srl as the suffix. If ld still cannot find the
DLL or archive, it searches the path again with the same prefix but with .a as the
suffix. For more information on search paths, see the Finding Libraries subsec-
tion of this reference page under DESCRIPTION.

When a DLL or archive cannot be found, ld issues an error message unless the
-allow_missing_libs flag is specified.

The -bdllsonly, -bdynamic, and -bstatic flags are search control toggles. Multi-
ple flags can be specified in a single ld invocation; the behavior specified
remains in effect until another flag in the set is specified. Thus, you can search
for both DLLs and archive files for some -l and -lib flags and search for just
archive files for others. The default library search control is -bdynamic.

-bglobalized Directs ld to use the following sequence as its linker searchList when resolving
the file names specified for the -l and -lib flags:

• At link time:

1. Libraries on the libList

2. Breadth-first transitive closure of DLLs on the libList

3. Implicit libraries

• At load time:

1. Libraries on the libList

2. Breadth-first transitive closure of DLLs on the libList

3. Loader loadList (libraries loaded by the program or libraries that
caused this loadfile to be loaded; this list is built from the
program’s and libraries’ libList and a breadth-first transitive clo-
sure of the libList-specified libraries)

4. Implicit libraries

A filename that is either a relative OSS pathname or a Guardian filename that is
not qualified is found using search path lists, as described in the Finding
Libraries subsection of this reference page under DESCRIPTION.

5−34 Hewlett-Packard Company 527188-021

User Commands (k - l) ld(1)

You cannot use this flag when you use the -blocalized, -bsemi_localized, or
-bsymbolic flag. The default action is the action for the -blocalized flag.

-blocalized Directs ld to use the following sequence as its linker searchList when resolving
the filenames specified for the -l and -lib flags:

1. Loadfile itself

2. Libraries on the libList

3. Breadth-first transitive closure of re-exported libList-specified DLLs

4. Implicit libraries

This is the default ld action.

A filename that is either a relative OSS pathname or a Guardian filename that is
not qualified is found using search path lists, as described in the Finding
Libraries subsection of this reference page under DESCRIPTION.

You cannot use this flag when you use the -bglobalized, -bsemi_localized, or
-bsymbolic flag.

-bstatic Directs ld to search for archive files when resolving the file names specified for
the -l and -lib flags.

If a file name is qualified, ld searches for an archive with that name.

If a filename is unqualified, in each search path, ld first searches for an archive
with the file name as specified in the -l or -lib flag). If ld cannot find an archive,
the file name is unqualified, and the search path is not in the Guardian file system
(/G), then ld prefixes lib and suffixes .a to the file name and searches again. For
more information on search paths, see the Finding Libraries subsection of this
reference page under DESCRIPTION.

When an archive cannot be found, ld issues an error message unless the
-allow_missing_libs flag is specified.

The -bdllsonly, -bdynamic, and -bstatic flags are search control toggles. Multi-
ple flags can be specified in a single ld invocation; the behavior specified
remains in effect until another flag in the set is specified. Thus, you can search
for both DLLs and archive files for some -l and -lib flags and search for just
archive files for others. The default library search control is -bdynamic.

-bsymbolic | -bsemi_globalized
Directs ld to use the following sequence as its linker searchList when resolving
the file names specified for the -l and -lib flags:

• At link time:

1. Loadfile itself

2. Libraries on the libList

3. Breadth-first transitive closure of DLLs on the libList

4. Implicit libraries

527188-021 Hewlett-Packard Company 5−35

ld(1) OSS Shell and Utilities Reference Manual

• At load time:

1. Loadfile itself

2. Libraries on the libList

3. Breadth-first transitive closure of DLLs on the libList

4. Loader loadList (libraries loaded by the program or libraries that
caused this loadfile to be loaded; this list is built from the
program’s and libraries’ libList and a breadth-first transitive clo-
sure of the libList-specified libraries)

5. Implicit libraries

A filename that is either a relative OSS pathname or a Guardian filename that is
not qualified is found using search path lists, as described in the Finding
Libraries subsection of this reference page under DESCRIPTION.

You cannot use this flag when you use the -bglobalized or -blocalized flag. The
default action is the action for the -blocalized flag.

-call_shared Tells ld to mark the linkfile specified by filename13 as the loadfile for a program.
This is the default ld action.

You cannot use this flag when you use the -dll or -shared flag.

-change attribute_name attribute_value filename3
Changes the value of the run-time attribute specified in attribute_name to the
value specified in attribute_value in the existing file specified by filename3.

For a linkfile, you can only change the values for FLOATTYPE,
FLOAT_LIB_OVERRULE, and SYSTYPE.

You can use the -set flag to set an attribute when creating a loadfile. See the -set
flag for a description of attribute_name and attribute_value.

You cannot specify other loadfile filenames or flags other than the following with
the -change flag:

-noverbose, -verbose, or -warn
-fl or -obey
-stdin

The resulting loadfile has the same ld timestamp as before.

-d address1 Specifies the hexadecimal virtual address at which the data area starts. When
creating a program file, the default value for address1 is 08000000. When creat-
ing a DLL, the default value is set to the next multiple of 16384 (0x4000) bytes
after the end of the text area.

The value specified for address1 is always hexadecimal and can optionally be
prefixed by 0x. The specified value is automatically rounded up to a multiple of
4096 (0x1000) bytes.

If you use this flag, you must also use the -t flag. If you use this flag with the -dll
or -shared flag, the value of address1 must be the next available address modulo
16384 after the text area in the DLL.

HP recommends against using this flag when creating a DLL.

5−36 Hewlett-Packard Company 527188-021

User Commands (k - l) ld(1)

-dll | -shared Tells ld to mark the loadfile specified by filename7 as a PIC DLL. When you
specify the -dll or -shared flag, the exported symbols are those exported by the
-export_all or -export flags, or those marked by the compiler to be exported.
Any symbols specified by the -export_not flag are not exported.

You cannot use this flag when you use the -call_shared flag. The default action
is the action for the -call_shared flag.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

{-dllname | -soname } DLL_name
Tells ld the DLL name to store in the DLL being created. When this DLL is
specified in the link step of another loadfile, the DLL name stored in this DLL is
placed in the libList of the loadfile for later use by rld when searching for DLLs.

If the DLL being created will reside in the Guardian file system, DLL_name must
conform to Guardian filename rules. If the DLL being created will reside in the
OSS file system, DLL_name must conform to OSS pathname rules. To reside in
either file system, DLL_name must be an unqualified Guardian file identifier.

If you specify both a DLL_name and the -o flag, the output loadfile filename is
determined by the -o specification and DLL_name is saved in the DLL being
created.

If you specify DLL_name but do not use the -o flag, the output loadfile filename
uses the DLL_name value.

If you do not specify DLL_name but use the -o flag, the output loadfile filename
is used as the DLL name stored in the DLL being created. Only the unqualified
part (rightmost part) of the output filename is used.

If you omit both a DLL_name and the -o flag, the output loadfile filename and
DLL_name in the libList both default to a.out. HP recommends against using
this default value.

-e symbol_name1
Specifies a function identifier. The specified function is the entry point, that is,
the point at which to begin executing the program when the program is loaded.

You should use this flag only when linking a program that will execute without
standard run-time support facilities and without linking a module such as
CCPPMAIN (in the Guardian file system) or ccppmain.o (in the OSS file sys-
tem) that contains a function with the MAIN attribute. Do not use this flag for
libraries.

-export symbol_name2
Tells ld to mark symbol_name2 for export in the output loadfile in addition to
those normally marked. This flag can be used with the -export_not flag to create
sets of symbols to be exported.

symbol_name2 cannot be the same symbol as symbol_name3.

The default action is to export only those symbols marked by a compiler as
requiring export.

-export_all Tells ld to mark for export in the output loadfile all symbols in the external sym-
bol table that are not one of the following:

• multiext

527188-021 Hewlett-Packard Company 5−37

ld(1) OSS Shell and Utilities Reference Manual

• starting with __sti__ (global constructors), __std__ (global destructors),
__INIT__ (initialization functions), or __TERM__ (termination func-
tions)

This flag can be used with the -export_not flag to create a subset of symbols to
be exported.

The default action when the -ul flag is not used is to export only those symbols
marked by a compiler as requiring export.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-export_not symbol_name3
Tells ld not to mark symbol_name3 for export in the output loadfile. This flag
can be used with the -export_all flag to create sets of symbols to be exported.

symbol_name3 cannot be the same symbol as symbol_name2.

The default action is to export all symbols marked by a compiler as requiring
export.

-first_l pathname1
Tells ld to use the specified pathname when searching for libraries. pathname1
is used in library searches before the public libraries are searched.

You cannot embed spaces (blanks) in pathname1. A pathname can be either a
relative or absolute OSS directory pathname or an unqualified, partially
qualified, or fully qualified Guardian subvolume name.

The -first_l flag can be specified more than once in a command line or an obey
file.

See the Finding Libraries subsection under DESCRIPTION for details about
the effect of this flag on search order.

{-fl | -obey } filename5
Specifies the name of an ld command file containing ld command tokens (such
as filenames and command flag specifications).

filename5 is a C text file. Tokens can be separated by spaces, tabs, or ends of
lines. Tokens can contain double quotation marks (") to group items into a sin-
gle string, consistent with OSS shell usage. Within the command file, two
hyphens indicate a comment that extends to the end of the current line. Com-
mand files can be nested; there is no limit to the depth of nesting. Recursive
nesting does not cause an error; ld does not read a command file invoked by
itself.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-include_whole | -no_include_whole
Tells ld whether to include in the loadfile all linkable archive members of all
archive libraries encountered after this flag is specified.

Specifying -include_whole begins this linking action. When
-no_include_whole behavior is in effect, archive searches are controlled by the
existence of undefined symbols. Archives are searched in the order specified on
the command line. Symbols are marked as undefined by compilers or by the user
through the -u flag. When an archive member is found that resolves an
undefined symbol, the member´s symbols are merged into the external symbol

5−38 Hewlett-Packard Company 527188-021

User Commands (k - l) ld(1)

table for the loadfile being created. After the merge, the undefined symbol that
triggered the merge is resolved (marked as defined). The same merge might
resolve other undefined symbols or result in more undefined symbols.

You can stop the linking action of -include_whole by specifying the
-no_include_whole flag later in the command line or obey file.

These flags can be specified as many times as needed in the command stream.
Providing either flag overrides the current setting, so that the linker actions can
be controlled on a library-by-library basis.

The default setting is -no_include_whole.

{ -l | -lib } filename6
Specifies the name of a DLL or archive file to use to resolve external references
from the executable file being linked. The -l flag must be specified in lowercase
type, and the space after the flag and before filename6 is optional. -l is a
synonym for -lib.

Other flags affect how filename6 is used. See the Finding Libraries subsection
under DESCRIPTION for details.

{ -L | -libvol } pathname2
Specifies a pathname to search for a DLL or archive file specified by a simple
filename in an -l or -lib flag. A simple filename is an OSS pathname without any
directory components. The -L flag must be specified in uppercase type, and the
space after the flag and before pathname2 is optional. -libvol is a synonym for
-L and the space before pathname2 is required.

Other flags affect how pathname2 is used. See the Finding Libraries subsection
under DESCRIPTION for details.

ld does not verify the names of locations specified in -L or -libvol flags. If you
specify the -verbose flag, ld writes to its output listing the locations where it
found a DLL or archive file.

-libname Guardian_filename
Associates a DLL as a native user library with an executable native program file.
You can associate a native user library to a program loadfile. The -set and
-change flags can also associate a native user library with an executable native
program.

The value specified for Guardian_filename cannot be the Guardian name of an
OSS file.

-limit_runtime_paths
Tells ld to mark the loadfile so that rld will omit certain locations when search-
ing for DLLs or archives to resolve symbols. See Finding Libraries in the
DESCRIPTION section of this reference page for more information.

The default action is to search all locations described in Finding Libraries.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-m | -map Tells ld to produce a memory map of the PIC program or DLL being created.

The default behavior does not produce a memory map.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

527188-021 Hewlett-Packard Company 5−39

ld(1) OSS Shell and Utilities Reference Manual

-no_optional_lib | -optional_lib
Specifies whether a library specified in the command line or obey file should be
considered optional when creating a loadfile.

When -no_optional_lib behavior is in effect, any library specified in a -l or -lib
flag is included in the .liblist section of the loadfile being created. When
-optional_lib behavior is in effect, a specified library can be omitted from the
.liblist section of the loadfile being created if omitting it would not affect how
symbolic references are resolved.

These flags can be specified as many times as needed in the command stream.
Providing either flag overrides the current setting, so that the linker actions can
be controlled on a library-by-library basis.

If a library is specified more than once, and at least one specification occurs
when -no_optional_lib is in effect, the library is included in the .liblist section
of the loadfile being created.

The default behavior is -no_optional_lib.

-no_reexport | -reexport
Tells ld whether to mark any library specified in a -l or -lib flag after this flag for
reexport in its libList entry in the loadfile being created. Specifying
-no_reexport leaves the library unmarked; specifying -reexport marks the
library. Reexport is a run-time attribute that is used by rld to decide what DLLs
it needs to load.

-no_reexport is the default action.

These flags can be specified as many times as needed in the command stream.
Providing either flag overrides the current setting, so that the linker actions can
be controlled on a library-by-library basis.

-nostdfiles | -no_stdfiles
Specifies that C run-time library functions do not automatically open the stan-
dard input and standard output files.

-nostdlib | -no_stdlib
Prevents ld from searching the standard library locations for DLLs and archive
files.

You can specify these flags as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-noverbose | -no_verbose
Prevents ld from writing warning and informational messages to its output list-
ing. Only error messages and output specifically requested by other options
appears in the listing.

The default value is -no_verbose.

You can specify the flags -warn, -verbose, -noverbose, and -no_verbose as
often as you want in the command line or an obey file. The value used is the
final value entered.

-o filename7 Specifies the filename of the output loadfile.

filename7 can be the same as the input file name. When this is true and linking is
successful, ld deletes the input file and then writes the output file. An error
occurs if you do not have permission to delete the input file.

If you do not specify a -o flag, the default output loadfile filename depends on

5−40 Hewlett-Packard Company 527188-021

User Commands (k - l) ld(1)

whether a -dllname or -soname flag is specified. filename7 can also become the
DLL name used for the file in the libList. See the description of the -dllname
flag in this reference page for more information.

-rld_l path_list1
Tells ld to set search paths in the loadfile for later use by the rld loader.
path_list1 identifies paths to be searched after using the loadfile location and
before using the rld default locations.

path_list1 contains one or more pathname entries, separated by a colon (:); you
cannot embed spaces (blanks) in path_list1. A pathname can be either an abso-
lute OSS directory pathname or a fully qualified Guardian subvolume name.

The -rld_l flag can be specified more than once in a command line or an obey
file. Multiple path_list1 specifications are concatenated into a single loadfile
entry.

See the Finding Libraries subsection under DESCRIPTION for details about
the effect of this flag on search order.

-rld_first_l path_list2
Tells ld to set search paths in the loadfile for later use by the rld loader.
path_list2 identifies paths to be searched after using the location specified by
-first_l and before using the public libraries.

path_list2 contains one or more pathname entries, separated by a colon (:); you
cannot embed spaces (blanks) in path_list2. A pathname can be either an abso-
lute OSS directory pathname or a fully qualified Guardian subvolume name.

The -rld_first_l flag can be specified more than once in a command line or an
obey file. Multiple path_list2 specifications are concatenated into a single
loadfile entry.

See the Finding Libraries subsection under DESCRIPTION for details about
the effect of this flag on search order.

-s Removes symbol information used for linking and symbolic debugging from the
output loadfile. A file stripped of all symbol information cannot be symbolically
debugged with the Visual Inspect debugger.

You can use this flag only when creating a loadfile. To strip all symbol informa-
tion from an existing loadfile, use the -strip flag.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-set attribute_name attribute_value
Sets the value of the run-time attribute specified in attribute_name to the value
specified in attribute_value when creating a loadfile. Use the -change flag to
change a run-time attribute in an existing loadfile.

Each attribute_name has a corresponding range of accepted attribute_values as
follows:

• FLOAT_LIB_OVERRULE is either ON or OFF. The default value is
OFF. (A FLOAT_TYPE_OVERRULE value of ON is ignored for
library loadfiles; this attribute only has meaning for program loadfiles.)

527188-021 Hewlett-Packard Company 5−41

ld(1) OSS Shell and Utilities Reference Manual

• FLOATTYPE is one of the following:

IEEE_FLOAT
NEUTRAL_FLOAT
TANDEM_FLOAT

If FLOATTYPE is not specified, the value used comes from the input
linkfile. If FLOATTYPE is specified more than once, all occurrences
except the final one are ignored.

• HEAP_MAX, MAINSTACK_MAX, [PROCESS_]SUBTYPE, and
SPACE_GUARANTEE are unsigned numbers. The default value is 0
(zero).

• HIGHPIN, HIGHREQUESTER[S] or HIGHREQUESTOR[S], and
INSPECT are either ON or OFF. The default value is ON.

• LIBNAME is the Guardian filename of a library file, specified as
described for the -libname flag. The default value is none.

• RUNNAMED and SAVEABEND are either ON or OFF. The default
value is OFF.

• RLD_UNRESOLVED is ERROR, IGNORE, or WARN. The default
value is ERROR.

• SYSTYPE is either OSS or GUARDIAN. The default value is deter-
mined by the file system that contains the output file. For users of this
reference page, the default value is probably OSS. (If the output loadfile
is created in the Guardian file system through the /G directory, the
default is GUARDIAN.)

See the ld Manual for a description of each run-time attribute.

-show_multiple_defs
Tells ld to produce a listing of any symbols with multiple definitions within the
input linkfiles.

The default action does not display instances of multiple definitions.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-stdin Reads the contents of the standard input file at the place in the command line
where the flag is specified.

You can specify this flag as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-strip filename9
Removes symbol information used for linking and symbolic debugging from an
existing loadfile with the name filename9. A file stripped of all symbol informa-
tion cannot be symbolically debugged with the Visual Inspect debugger or
linked again.

You can use this flag only on an existing loadfile. To strip all symbol informa-
tion when creating a loadfile, use the -s flag.

You cannot specify other loadfile filenames or flags other than the following with
the -strip flag:

-noverbose, -verbose, or -warn

5−42 Hewlett-Packard Company 527188-021

User Commands (k - l) ld(1)

-fl or -obey
-stdin

The resulting file has the same ld timestamp as before.

-t address2 Specifies the hexadecimal virtual address at which the text area starts. The
default value for address2 is:

• 70000000 for user programs

• 60000000 for a DLL

The value specified for address2 is always hexadecimal and can optionally be
prefixed by 0x. The specified value is automatically rounded up to a multiple of
4096 (0x1000) bytes.

-temp_o filename10
Tells ld to save its output loadfile work with the specified file name until it has
successfully rewritten filename7.

filename10 can be either a simple filename, a fully qualified Guardian filename,
or an absolute OSS pathname. If a simple filename is used, ld saves the file in
the directory or subvolume where filename7 is located.

The default action omits creation of the intermediate regular file.

-u symbol_name4
Tells ld to add symbol_name4 as an undefined symbol. This causes ld to search
for this symbol in any archive libraries that are specified after this flag on the
command line or in an obey file.

The search constraint specified by the -u flag is overridden by use of the
-include_whole flag.

-ul Creates a DLL as a native user library. Specify this flag when linking modules
to create a DLL as a native user library.

When you specify the -ul flag, the exported symbols are those described as
exported by the -export_all flag, unless you also use the -export_not flag.

You can specify these flags as often as you want in the command line or an obey
file. Each specification is processed when encountered.

-unres_symbols { error | ignore | warn }
Tells ld what action to take when a needed symbol cannot be resolved:

error Issue an error message and stop processing.

This setting is ignored when you also use the
-allow_missing_libs flag.

ignore Ignore the missing file and continue processing.

This is the default action.

warn Issue a warning message but continue processing.

This setting is ignored when you also use the
-allow_missing_libs flag.

You can specify this flag as often as you want in the command line or an obey
file. The final specification is the one used.

527188-021 Hewlett-Packard Company 5−43

ld(1) OSS Shell and Utilities Reference Manual

-verbose Directs ld to write error, warning, and informational messages to its output list-
ing, along with output specified by other options.

The default value is -no_verbose.

You can specify the flags -warn, -verbose, -noverbose, and -no_verbose as
often as you want in the command line or an obey file. The value used is the
final value entered.

-warn Directs ld to write only error and warning messages to its output listing, along
with output specified by other options.

You can specify the flags -warn, -verbose, -noverbose, and -no_verbose as
often as you want in the command line or an obey file. The default value is -
no_verbose. The value used is the final value entered.

-y symbol_name5
Tells ld to report which linkfiles define and use the symbol symbol_name5. The
linkfiles are listed in the order encountered.

This information can be useful if a previous ld session produced error or warning
messages about a symbol being either undefined or defined more than once.

Operands
filename13 Specifies one or more loadfiles or DLLs for the ld utility to link. This operand is

required for all flags except the -change and -strip flags. In the OSS environ-
ment, the value specified must be a valid OSS pathname.

DESCRIPTION
The ld utility links one or more TNS/R native position-independent code (PIC) linkfiles to pro-
duce an executable or nonexecutable native PIC loadfile. You can also modify existing loadfiles
using ld.

You can invoke ld directly or, if you are creating a C or C++ program, you can use the c89 utility
to invoke ld automatically for you. On the command line, the filenames are the names of input
linkfiles or archives. Names of flags must be followed by spaces and are not case-sensitive,
except for the -l and -L flags.

If no flags or operands are used, the ld command displays online help.

Saving Temporary Files
ld creates temporary working files while it processes command line or obey file information.
These temporary working files are given names of the form ZLDNFnnn, where:

nnn is a unique sequentially assigned decimal number, beginning with 000.

To create a final permanent file with the same name as an existing loadfile, ld must first remove
the existing file. If ld processing is interrupted during the process of removing and recreating the
output loadfile, all work can be lost.

The -temp_o flag allows you to save the completed working file as a temporary regular file with
a known filename before the original loadfile is removed. The temporary file is itself removed
after the final permanent loadfile is completely written.

Finding Libraries
The OSS version of ld searches for libraries in the following locations when resolving the values
specified for the -l and -lib flags:

1. Locations specified by the current -first_l flag

5−44 Hewlett-Packard Company 527188-021

User Commands (k - l) ld(1)

2. Public libraries (installed by the system operator) * **

3. Locations specified by the current -libvol and -L flags

4. Default locations in the OSS environment:
/lib:/usr/lib:/usr/local/lib:/G/SYSTEM/ZDLL *

The value of the COMP_ROOT environment variable is added to the beginning of /lib,
/usr/lib, and /usr/local/lib. By default, the value of COMP_ROOT is null in the OSS
environment.

5. Default locations in the Guardian environment: $SYSTEM.ZDLL * **

The steps marked by an asterisk (*) are skipped when the -nostdlib or -no_stdlib flag is in effect,
and the steps marked by two asterisks (**) are skipped only when the -bstatic flag is used.
Archive libraries encountered in steps marked by ** are reported as errors.

ld searches in each location for libraries by file name, based upon whether the specified file name
is a simple name. (A simple name is an OSS pathname without any directory components.) If
the specified file name is not a simple name, ld tries to open the specified file.

If the specified filename is a simple name, ld tries to open the specified file; if it cannot, it
modifies the supplied value and tries to open a file with the modified name. (Simple names
specified in the Guardian file system, /G, are not modified; ld uses only the supplied value.) The
prefix lib and the following suffixes are added to the specified name to create the modified name:

.so To find a DLL, unless the -bstatic flag is in effect

.srl To find a shared runtime library (SRL), unless the -bstatic flag is in effect

.a To find an archive file, unless the -dllsonly flag is in effect

The OSS version of rld searches for DLLs and archive files in the following locations:

1. Locations specified by the current -rld_first_l flag

2. Public libraries (installed by the system operator)

3. Program location *

4. Locations specified by the current -rld_l flag

5. Default locations:

On OSS: /lib:/usr/lib:/usr/local/lib:/G/SYSTEM/ZDLL
On Guardian: $SYSTEM.ZDLL *

The value of the COMP_ROOT environment variable is added to the beginning of /lib,
/usr/lib, and /usr/local/lib. By default, the value of COMP_ROOT is null in the OSS
environment.

When the -limit_runtime_paths flag has been used for the loadfile, the following are omitted
from the search:

• The steps marked by an asterisk (*) in the previously described search order

• Paths indicated by the TACL DEFINEs _RLD_FIRST_LIB_PATH and
_RLD_LIB_PATH.

527188-021 Hewlett-Packard Company 5−45

ld(1) OSS Shell and Utilities Reference Manual

For More Information
ld is not an interactive tool like Binder. For more information on using ld, see the ld Manual.
For more informaiton on run-time library use, see the rld Manual.

EXAMPLES
1. The following example:

ld objecta objectb -o objectc

links together the input linkfiles named objecta and objectb to create a loadfile named
objectc.

2. The following example:

ld -dll -dllname objecta -o objectb objectc

creates a DLL named objecta as the loadfile named objectb from the linkfile named
objectc.

3. The following example:

ld obj1.o obj2.o -ul -o lib

links the linkfiles named obj1.o and obj2.o together into a user library named lib.

4. The following example:

ld obj3.o obj4.o -o prog -libname \$A.B.C

links linkfiles named obj3.o and obj4.o together into a loadfile named prog. When prog
runs, it has a user library with the Guardian name $A.B.C. The backslash (\) prevents the
shell from misinterpreting the dollar sign ($).

5. The following example:

ld /usr/lib/ccppmain.o test1.o test2.o \
-obey /usr/lib/libc.obey -o prog

links the C linkfiles test1.o and test2.o to build a loadfile named prog. Because the pro-
gram is a C program, the ccppmain.o library linkfile is required. The -obey flag directs
ld to link in all the required hybrid SRLs.

6. The following example:

ld obj6.o obj7.o -o prog -set systype guardian

links the linkfiles named obj6.o and obj7.o into a loadfile named prog that you intend to
run as a Guardian process.

7. The following example:

ld -change highpin off exeobj

changes the value of the HIGHPIN attribute in the loadfile exeobj to OFF.

NOTES
OSS filenames intended for use with ld should not begin with an equals (=) character. The
equals character is reserved for use with MAP DEFINEs.

EXIT VALUES
The ld command returns one of the following values:

0 (zero) No errors or warning conditions were detected.

5−46 Hewlett-Packard Company 527188-021

User Commands (k - l) ld(1)

1 One or more warning conditions were detected.

2 One or more general errors were detected.

3 A fatal error was detected.

RELATED INFORMATION
Commands: c89(1), nld(1), noft(1).

Files: float(4).

STANDARDS CONFORMANCE
The ld command is an HP extension to the Single UNIX Version 2 specification and performs
functions comparable to the UNIX ld command.

527188-021 Hewlett-Packard Company 5−47

let(1) OSS Shell and Utilities Reference Manual

NAME
let - Evaluates arithmetic expressions

SYNOPSIS
let argument ...

DESCRIPTION
The let command evaluates each argument as a separate arithmetic expression. (See Arithmetic
Evaluation in the reference page for sh.1 for a description of arithmetic expression evaluation.)

EXIT VALUES
The exit status is 0 (zero) if the value of the last expression is nonzero, and 1 otherwise.

EXAMPLES
The statement let x=y+z is equivalent to the statement (x=y+z).

NOTES
The let command is a shell built-in command. It differs from the regular commands in that it does
not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

5−48 Hewlett-Packard Company 527188-021

User Commands (k - l) lex(1)

NAME
lex - Generates a C language lexical analyzer

SYNOPSIS
lex [-bcdfinpstvFILT8] -C[efmF] [-Sskeleton] [file ...]

FLAGS
-b Generates backtracking information to file lex.backtrack. This is a list of scanner

states that require backtracking and the input characters on which they backtrack. By
adding rules, you can remove backtracking states. If all backtracking states are elim-
inated and the -f or -F flag is used, the generated scanner will run faster.

-d Makes the generated scanner run in debug mode. Whenever a pattern is recognized
and the global yy_lex_debug is nonzero (which is the default value), the scanner writes
to the standard error file a line of the form:

--accepting rule at line 53 ("the matched text")

The line number refers to the location of the rule in the file defining the scanner (the
input to the lex command). Messages are also generated when the scanner backtracks,
accepts the default rule, reaches the end of its input buffer (or encounters a NULL), or
reaches an End-of-File.

-f Specifies full table (no table compression is done). The result is large but fast. This
flag is equivalent to -Cf.

-i Instructs the lex command to generate a case-insensitive scanner. The case of letters
given in the lex input patterns is ignored, and tokens in the input are matched regard-
less of case. The matched text given in the yytext variable will have the original case
(as read by the scanner).

-p Generates a performance report to the standard error file. This identifies features of the
lex input file that will cause a loss of performance in the resulting scanner.

-s Causes the default rule (that unmatched scanner input is echoed to the standard output
file to be suppressed. If the scanner encounters input that does not match any of its
rules, it aborts with an error.

-t Instructs the lex command to write the scanner it generates to the standard output file
instead of to the file lex.yy.c.

-v Specifies that the lex command should write to the standard error file a summary of
statistics regarding the scanner it generates.

-F Specifies that the fast scanner table representation should be used. This representation
is about as fast as the full table representation (the -f flag), and for some sets of patterns
it will be considerably smaller (and for others, larger). This flag is equivalent to the -
CF flag.

-I Instructs the lex command to generate an interactive scanner; that is, a scanner that
stops immediately rather than looking ahead if it knows that the currently scanned text
cannot be part of a longer rule’s match. Note that the -I flag cannot be used with full or
fast tables; that is, with the -f, -F, -Cf, or -CF flags.

-L Instructs the lex command not to generate #line directives in the file lex.yy.c. The
default action is to generate such directives so error messages in the actions will be
correctly located with respect to the original lex input files.

527188-021 Hewlett-Packard Company 5−49

lex(1) OSS Shell and Utilities Reference Manual

-T Makes the lex command run in trace mode. It generates a lot of messages to the stan-
dard output file concerning the form of the input and the resultant nondeterministic and
deterministic finite automata. This flag is mostly for use in maintaining the lex com-
mand.

-8 Instructs the lex command to generate an 8-bit scanner (the default scanner is a 7-bit
scanner).

-C[efmF]
Controls the degree of table compression. The default setting is -Cem, which provides
the highest degree of table compression. Faster-executing scanners can be traded off at
the cost of larger tables with the following generally being true:

Slowest and smallest

-Cem
-Cm
-Ce
-C
-C{f,F}e
-C{f,F}

Fastest and largest

-C flags are not cumulative; whenever the flag is encountered, the previous -C settings
are forgotten. The -f or -F and -Cm flags do not make sense together; there is no
opportunity for meta-equivalence classes if the table is not being compressed. Other-
wise, the flags may be freely mixed.

-C Specifies that the scanner tables should be compressed and neither
equivalence classes nor meta-equivalence classes should be used.

-Ce Directs the lex command to construct equivalence classes; for exam-
ple, sets of characters that have identical lexical properties.
Equivalence classes usually give dramatic reductions in the final
table/object file sizes (typically a factor of 2 to 5) and are inexpensive
in terms of cost versus performance (one array look-up per character
scanned).

-Cm Directs the lex command to construct meta-equivalence classes, which
are sets of equivalence classes (or characters, if equivalence classes
are not being used) that are commonly used together. Meta-
equivalence classes are often a benefit when using compressed tables,
but they have a moderate performance impact (one or two "if" tests
and one array look-up per character scanned).

-Cf Specifies that the full scanner tables should be generated; the lex com-
mand should not compress the tables by taking advantage of similar
transition functions for different states.

-CF Specifies that the alternative fast scanner representation should be
used.

5−50 Hewlett-Packard Company 527188-021

User Commands (k - l) lex(1)

-Sskeleton
Overrides the default skeleton file from which the lex command constructs its scanners.
This is useful for lex maintenance or development.

-c Specifies table-compression options. (Obsolescent)

-n Suppresses the statistics summaries that the -v flag typically generates. (Obsolescent.)

DESCRIPTION
The lex and flex commands have the same functionality.

The lex command is a tool for generating scanners: programs that recognize lexical patterns in
text. lex reads the given input files, or its standard input file if no filenames are given or if a file
operand is - (dash), for a description of a scanner to generate. The description is in the form of
pairs of regular expressions and C code, called rules. lex generates as output a C source file,
named lex.yy.c, which defines a routine yylex(). This file is compiled and linked with the -ll
library to produce an executable. When the executable is run, it scans its input and the regular
expressions in its rules looking for the best match (longest input). When it has selected a rule it
executes the associated C code, which has access to the matched input sequence (commonly
referred to as a token). This process then repeats until input is exhausted.

lex treats multiple input files as one.

Syntax for lex Input
This subsection contains a description of the lex input files, which are normally named with a .l
suffix. It provides a listing of the special values, macros, and functions recognized by the lex
command.

The lex input file consists of three sections, separated by a line with just %% in it:

[definitions]
%%
[rules]
[%%
[user_functions]]

where

definitions Contains declarations to simplify the scanner specification and declarations of
start states, which are explained below.

rules Describes what the scanner is to do.

user_functions Contains user-supplied functions, which are copied directly to file lex.yy.c.

With the exception of the first %% sequence, all sections are optional. The minimal scanner,
%%, copies its input to the standard output file.

Each line in the definitions section can be:

name regexp Defines name to expand to regexp. name is a word beginning with a letter or an
underscore (|*L_) followed by zero or more letters, digits, underscores, or
dashes (-). In the regular-expression parts of the rules section, the command
substitutes regexp wherever you refer to {name} (name within braces).

%x state [state ...] or %s state [state ...]
Defines names for states used in the rules section. A rule can be made condition-
ally active based on the current scanner state. Multiple lines defining states can
appear, and each can contain multiple state names, separated by white space.
The name of a state follows the same syntax as that of regexp names except that

527188-021 Hewlett-Packard Company 5−51

lex(1) OSS Shell and Utilities Reference Manual

dashes (-) are not permitted. Unlike regexp names, state names share the C
#define namespace. In the rules section, states are recognized as <state> (state
within angle brackets).

The %x directive names exclusive states. When a scanner is in an exclusive
state, only rules prefixed with that state are active. Inclusive states are named
with the %s directive.

%{ or %} When placed on lines by themselves, enclose C code to be passed verbatim into
the global definitions of the output file. Such lines commonly include preproces-
sor directives and declarations of external variables and functions.

space or tab Appear at the beginning of lines in the definitions section that are to be passed
directly into the lex.yy.c output file, as part of the initial global definitions.

The rules section follows the definitions, separated by a line consisting of %%. The rules sec-
tion contains rules for matching input and taking actions, in the following format:

pattern [action]

pattern starts in the first column of the line and extends until the first nonescaped white space
character. The command attempts to find the pattern that matches the longest input sequence
and execute the associated action. If two or more patterns match the same input, the one that
appears first in the rules section is chosen. If no action exists, the matched input is discarded. If
no pattern matches the input, the default action is to copy it to the standard output file.

All action code is placed in the yylex() function. Text (C code or declarations) placed at the
beginning of the rules section is copied to the beginning of the yylex() function and can be used
in actions. This text must begin with a space or a tab (to distinguish it from rules). In addition,
any input (beginning with a space or within %{ and %} delimiter lines) appearing at the begin-
ning of the rules section before any rules are specified is written to file lex.yy.c after the declara-
tions of variables for the yylex() function and before the first line of code in yylex().

Elements of each rule are:

state A pattern can begin with a comma-separated list of state names enclosed by
angle brackets (< state [,state...] >). These states are entered through the BEGIN
statement. If a pattern begins with a state, the scanner can recognize it only
when in that state. The initial state is 0 (zero).

regexp A pattern can be a regular expression to match against the input stream. The
regular expressions in the lex command provides a rich character-matching syn-
tax.

The following characters, shown in order of decreasing precedence, have special
meanings:

x Matches the character x.

"" (double quotes)
Enclose characters and treat them as literal strings. For example, "*+"
is treated as the asterisk character followed by the plus character.

\str (backslash)
If str is one of the characters a, b, f, n, r, t, or v, then represents the
ANSI C interpretation (for example, \n is a newline). If str is a string
of octal digits, it is interpreted as a character with octal value str. If str
is a string of hexadecimal digits with a leading x, it is interpreted as a
character with that value. Otherwise, it is interpreted literally with no

5−52 Hewlett-Packard Company 527188-021

User Commands (k - l) lex(1)

special meaning. For example, x*yz represents the four characters
x*yz.

[] (brackets)
Represent a character class in the enclosed range ([.-.]) or the enclosed
list ([...]). The dash character (-) is used to define a range of characters
from the ASCII value or the 8-bit class of the character that comes
before the dash to the ASCII value or the 8-bit class of the character
that follows the dash. For example, [abcx-z] matches a, b, c, x, y, or z.

The circumflex (ˆ), when it appears as the first character in a character
class, indicates the complement of the set of characters within that
class. For example, [ˆabc] matches any character except a, b, or c,
including special characters like newline. Similarly, [ˆa-zA-Z] is any
character that is not a letter.

() (parentheses)
Group regular expressions. For example, (ab) is considered as a single
regular expression.

{ } (braces)
When enclosing numbers, indicate a number of consecutive
occurrences of the expression that comes before it. For example,
(ab){1,5} indicates a match for from 1 to 5 occurrences of the string
ab.

When enclosing a name, the name represents a regular expression
defined in the definitions section. For example, {digit} will be replaced
with the defined regular expression for digit. Note that the expansion
takes place as if the definition were enclosed in parentheses.

. (dot) Matches any single character except newline.

? (question mark)
Matches zero or one of the preceding expressions. For example, ab?c
matches both ac and abc.

* (asterisk)
Matches zero or more of the preceding expressions. For example, a* is
zero or more consecutive a characters. The utility of matching zero
occurrences is more obvious in complicated expressions. For example,
the expression [A-Za-z][A-Za-z0-9]* indicates all alphanumeric
strings with a leading alphabetic character, including strings that are
only one alphabetic character.

+ (plus sign)
Matches one or more of the preceding expressions. For example,
[a-z]+ is all strings of lowercase letters.

xy (concatenation)
Matches the expression x followed by the expression y.

� (vertical bar)
Matches either the preceding expression or the following expression.
For example, ab�cd matches either ab or cd.

527188-021 Hewlett-Packard Company 5−53

lex(1) OSS Shell and Utilities Reference Manual

x/y (slash)
Matches expression x only if expression y (trailing context) immedi-
ately follows it. For example, ab/cd matches the string ab but only if
followed by cd. Only one trailing context is permitted per pattern.

^ (circumflex)
When it appears at the beginning of the pattern, matches the beginning
of a line. For example, ˆabc matches the string abc if it is found at the
beginning of a line.

$ (dollar sign)
When it appears at the end of a pattern, matches the end of a line. It is
equivalent to /\n. For example, abc$ matches the string abc if it is
found at the end of a line.

<<EOF>>
Matches an End-of-File.

<x> (angle bracket)
Identifies a state name (see earlier description of state) and can appear
only at the beginning of a pattern. For example, <done><<EOF>>
matches an End-of-File, but only if it is in the state done.

In addition, the following rules apply for bracket expressions:

Equivalence class expressions
These represent the set of collating elements in an equivalence
class and are enclosed within bracket-equal delimiters ([= =]).
An equivalence class generally is designed to deal with
primary-secondary sorting; that is, for languages like French that
define groups of characters as sorting to the same primary loca-
tion, and then have a tie-breaking, secondary sort. For example,
if a, à (a accent grave), and â (a circumflex) belong to the same
equivalence class, then [[=a=]b], [[=à=]b], and [[=â=]b] are
each equivalent to [aàâb].

NOTE: If you are viewing this reference page online using the
man command, the special characters are not displayed. See this
reference page in the Open System Services Shell and Utilities
Reference Manual.

Character class expressions
These represent the set of characters in the current locale
belonging to the named ctype class. These are expressed as a
ctype class name enclosed in bracket-colon delimiters ([: :]).

In the C or OSS locale, the following character class expressions
are supported: [:alpha:], [:upper:], [:lower:], [:digit:],
[:alnum:], [:xdigit:], [:space:], [:print:], [:punct:], [:graph:],
and [:cntrl:].

Other locales may define additional character classes.

Letters and digits never have special meanings. A character such as ˆ or -, which
has a special meaning in particular contexts, refers simply to itself when found
outside that context. Spaces and tabs must be escaped to appear in a regular
expression; otherwise they indicate the end of the expression.

5−54 Hewlett-Packard Company 527188-021

User Commands (k - l) lex(1)

action Each pattern in a rule has a corresponding action, which can be any arbitrary C
statement. The pattern ends at the first nonescaped white space character; the
remainder of the line is its action. If the action is empty, then when the pattern is
matched, the input that matched it is discarded.

If the action contains a {, then the action scans till the balancing } is found, and
the action may cross multiple lines. Using a return statement in an action
returns from yylex().

An action consisting solely of a vertical bar (|) means same as the action for the
next rule.

lex variable that can be used within actions are:

yytext Is a string (char *) containing the current matched input. It
cannot be modified.

yyleng Is the length (int) of the current matched input. It cannot be
modified.

yyin Is a stream (FILE *) that the lex command reads from the
standard input file by default. It can be changed, but because
of the buffering lex uses, changing the stream makes sense
only before scanning begins. Once scanning terminates
because an End-of-File was found, void yyrestart (FILE
*new_file) can be called to point yyin at a new input file.
Alternatively, yyin can be changed whenever a new or
different buffer is selected (see yy_switch_to_buffer()).

yyout Is a stream (FILE *) to which ECHO output is written (the
standard output file by default). It can be changed by the user.

YY_CURRENT_BUFFER
Returns the current buffer (YY_BUFFER_STATE) used for
scanner input.

lex macros and functions that can be used within actions are:

ECHO Copies the yytext variable to the scanner’s output.

BEGIN state
Changes the scanner state to be state. This affects which rules are
active. The state must be defined in a %s or %x definition. The ini-
tial state of the scanner is INITIAL or 0 (zero).

REJECT Directs the scanner to proceed immediately to the next best pattern
that matches the input (which may be a prefix of the current match).
The yytext and yyleng variables are reset appropriately. Note that
REJECT is a particularly expensive feature in terms of scanner per-
formance; if it is used in any of the scanner’s actions, it slows down
all the scanner’s pattern matching operations. REJECT cannot be
used if the command is invoked with either the -f or -F flag.

yymore() Indicates that the next matched text should be appended to the
currently matched text in the yytext variable (rather than replace it).

527188-021 Hewlett-Packard Company 5−55

lex(1) OSS Shell and Utilities Reference Manual

yyless(n) Returns all but the first n characters of the current token back to the
input stream, where they are rescanned when the scanner looks for
the next match. The yytext and yyleng variables are adjusted
accordingly.

yywrap() Returns 0 (zero) if there is more input to scan or 1 if there is not.
The default yywrap() always returns 1. It is implemented as a
macro.

yyterminate()
Can be used instead of a return statement in an action. It terminates
the scanner and returns a 0 (zero) to the scanner’s caller.

yyterminate() is automatically called when an End-of-File is
encountered. It is a macro and can be redefined.

yy_create_buffer(file, size)
Returns a YY_BUFFER_STATE handle to a new input buffer large
enough to accommodate size characters and associated with the
given file. When in doubt, use YY_BUF_SIZE for the size.

yy_switch_to_buffer(new_buffer)
Switches the scanner’s processing to scan for tokens from the given
buffer, which must be a YY_BUFFER_STATE.

yy_delete_buffer(buffer)
Deletes the given buffer.

YY_NEW_FILE
Enables scanning to continue after the yyin variable has been
assigned a new file to process.

YY_DECL Controls how the scanning function, yylex(), is declared. By
default, it is int yylex() or, if prototypes are being used, int
yylex(void). This definition can be changed by redefining the
YY_DECL macro. This macro is expanded immediately before the
{...} (braces) that delimit the scanner function body.

YY_INPUT(buf,result,max_size)
Controls scanner input. By default, YY_INPUT reads from the
file-pointer yyin variable. Its action is to place up to max_size char-
acters in the character array buf and return in the integer variable
result either the number of characters read or the constant
YY_NULL to indicate EOF. Following is a sample redefinition of
YY_INPUT, in the definitions section of the input file:

%{
#undef YY_INPUT
#define YY_INPUT(buf,result,max_size)\

{\
int c = getchar();\
result = (c == EOF) ? YY_NULL : (buf[0] = c, 1);\

}
%}

When the scanner receives an End-of-File indication from
YY_INPUT, it checks the yywrap() function. If yywrap() returns

5−56 Hewlett-Packard Company 527188-021

User Commands (k - l) lex(1)

zero, it is assumed that the yyin has been set up to point to another
input file, and scanning continues. If it returns a nonzero value, then
the scanner terminates, returning zero to its caller.

YY_USER_ACTION
Can be redefined to provide an action that is always executed prior
to the matched pattern’s action.

YY _USER_INIT
Can be redefined to provide an action that is always executed before
the first scan.

YY_BREAK
Is used in the scanner to separate different actions. By default, it is
simply a break, but it can be redefined if necessary.

The user_functions section consists of complete C functions, which are passed directly into the
lex.y.cc output file (the effect is similar to defining the functions in separate .c files and linking
them with lex.y.cc). This section is separated from the rules section by the %% delimiter.

Comments, in C syntax, can appear anywhere in the user_functions or definitions sections. In the
rules section, comments can be embedded within actions. Empty lines or lines consisting of
white space are ignored.

The following macros are not normally called explicitly within an action, but they are used inter-
nally by the lex command to handle the input and output streams.

input() Reads the next character from the input stream. You cannot redefine input().

output() Writes the next character to the output stream.

unput(c) Puts the character c back into the input stream. It will be the next character
scanned. You cannot redefine unput().

libl.a contains default functions to support testing or quick use of a lex program without the yacc
command; these functions can be linked in through -ll. They can also be provided by the user.

main() A simple wrapper that simply calls setlocale() and then calls the yylex() func-
tion.

yywrap() The function called when the scanner reaches the end of an input stream. The
default definition simply returns 1, which causes the scanner in turn to return 0
(zero).

EXAMPLES
1. The following command processes the file lexcommands to produce the scanner file

lex.yy.c:

lex lexcommands

This is then compiled and linked by the command:

cc -oscanner lex.yy.c -ll

to produce a program scanner.

527188-021 Hewlett-Packard Company 5−57

lex(1) OSS Shell and Utilities Reference Manual

2. The scanner program converts uppercase to lowercase letters, removes spaces at the end
of a line, and replaces multiple spaces with single spaces. The lexcommands file con-
tains:

%%
[A-Z] putchar(tolower(yytext[0]));
[]+$
[]+ putchar(’ ’);

FILES
flex.skel Is the skeleton scanner.

lex.yy.c Is the generated scanner C source.

lex.backtrack Contains backtracking information generated from the -b flag.

NOTES
• Some trailing context patterns cannot be properly matched and generate warning mes-

sages:

Dangerous trailing context

These are patterns where the ending of the first part of the rule matches the beginning of
the second part, such as zx*/xy*, where the x* matches the x at the beginning of the trail-
ing context.

• For some trailing context rules, parts that are actually fixed length are not recognized as
such, leading to the previously mentioned performance loss. In particular, patterns using
{n} (such as test{3}) are always considered variable length.

Combining trailing context with the special | (vertical bar) action can result in fixed trail-
ing context being turned into the more expensive variable trailing context. This happens
in the following example:

%%
abc|
xyz/def

• Use of the unput() macro invalidates the contents of the yytext and yyleng variables
within the current lex action.

• Use of the unput() macro to push back more text than was matched can result in the
pushed-back text matching a beginning-of-line (ˆ) rule even though it did not come at the
beginning of the line.

• Pattern matching of NULLs is substantially slower than matching other characters.

• The lex command does not generate correct #line directives for code internal to the
scanner; thus, bugs in flex.skel yield invalid line numbers.

• Due to both buffering of input and read-ahead, you cannot intermix calls to <stdio.h>
routines, such as getchar(), with lex rules and expect it to work. Call input() instead.

• The total table entries listed by the -v flag excludes the number of table entries needed to
determine what rule was matched. The number of entries is equal to the number of deter-
ministic finite-state automaton (DFA) states if the scanner does not use REJECT, and is
somewhat greater than the number of states if it does.

5−58 Hewlett-Packard Company 527188-021

User Commands (k - l) lex(1)

• REJECT cannot be used with the -f or -F flag.

RELATED INFORMATION
Commands: awk(1), flex(1), sed(1), yacc(1).

Files: locale(4).

527188-021 Hewlett-Packard Company 5−59

line(1) OSS Shell and Utilities Reference Manual

NAME
line - Reads one line from the standard input file and copies it to standard output file

SYNOPSIS
line

DESCRIPTION
The line command copies one line up to and including a newline character from the standard
input file and writes it to the standard output file. The line command always writes at least a
newline character.

Use this command within a shell command file to read from your terminal.

EXAMPLES
To read a line entered from the keyboard and append it to a file, enter:

echo ’Enter comments for the log:’
echo ’: \c’
line >>log

This shell procedure displays the message:

Enter comments for the log:

It then reads a line of text entered from the keyboard and adds it to the end of the file log. The
echo ’: \c’ command displays a : (colon) prompt. See the echo command for information about
the \c escape sequence.

NOTES
Applications should use the read command instead of the line command.

EXIT VALUES
The line command returns a value of 1 when it detects an end-of-file; otherwise, the line com-
mand returns a value of 0 (zero).

RELATED INFORMATION
Commands: echo(1), ksh(1), sh(1).

Functions: read(2).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification.

5−60 Hewlett-Packard Company 527188-021

User Commands (k - l) ln(1)

NAME
ln - Links files

SYNOPSIS
ln [-f] [-s] source_file target_file

ln [-f] [-s] source_file [...] target_directory

FLAGS
-f Forces removal of existing target pathnames to allow specified links.

-s Creates symbolic links.

DESCRIPTION
The ln command links a single file source_file to file target_file or links one or more files to the
same filenames in another existing directory (target_directory). If more than two arguments are
specified and the final argument is not a directory, an error results.

By default, ln makes hard links. A hard link can only be created when all of the following are in
the same OSS fileset:

• source_file

• target_file or target_directory

• All directories used for pathname resolution of any of the above

When the -s flag is used, ln makes symbolic links. A symbolic link can be created when
source_file and target_file or target_directory are in different OSS filesets.

If either of the following is true and the -f flag is not specified:

• target_file exists

• target_directory contains a file with the same name as a source_file specification

the ln command writes a diagnostic message to the standard error file, does nothing further with
the current source file, and goes on to any remaining source files.

Operands
source_file Specifies the absolute or relative pathname of the file to which the link should be

made.

The file is found through normal pathname resolution rules. When a component
of the pathname refers to a symbolic link rather than a directory, the pathname
contained in the symbolic link is resolved. If the pathname in the symbolic link
starts with a slash (/) character, the symbolic link pathname is resolved relative
to the root directory of the process. If the pathname in the symbolic link does
not start with a slash (/) character, the symbolic link pathname is resolved rela-
tive to the directory that contains the symbolic link.

If the file is not in the same OSS fileset as target_file or target_directory, a hard
link cannot be created. If resolution of the pathname for source_file includes
symbolic links, all of the directories traversed must be in the same OSS fileset as
target_file or target_directory; otherwise, a hard link cannot be created.

target_file Specifies the relative or absolute pathname to assign to the link.

The resolved pathname for a hard link stores the inode information necessary to
provide access to source_file only within the same OSS fileset. The resolved
pathname for a symbolic link stores the filename for later resolution, regardless
of whether source_file is in the same OSS fileset.

527188-021 Hewlett-Packard Company 5−61

ln(1) OSS Shell and Utilities Reference Manual

The value specified for target_file is resolved using normal pathname resolution
rules. target_file file must be in the same OSS fileset as source_file if you are
trying to create a hard link. If resolution of the pathname for target_file includes
symbolic links, all of the directories traversed must be in the same OSS fileset as
source_file; otherwise, a hard link cannot be created.

target_directory
Specifies the relative or absolute filename of a directory in which links for the
specified source_file values should be created. target_directory must be in the
same OSS fileset as source_file if you are trying to create hard links.

The value specified for target_directory is resolved using normal pathname reso-
lution rules. If resolution includes symbolic links, all of the directories traversed
must be in the same OSS fileset as source_file; otherwise, a hard link cannot be
created.

EXAMPLES
1. To create a hard link to a file, enter:

ln chap1 intro

This links file chap1 to the new filename intro, if intro does not already exist.

2. To create the link in Example 1 if intro already exists, enter:

ln -f chap1 intro

Now chap1 and intro are two filenames that refer to the same file. Any changes made to
one also appear in the other. If one name is deleted with the rm command, the file is not
actually deleted but remains under the other name.

3. To create a hard link for the file named index to the same name in another directory that
has the filename manual, enter:

ln index manual

This links file index to the new name manual/index.

Note that intro in Example 1 is the name of a file; manual in Example 2 is a directory
that already exists.

4. To create hard links for several files to names in another directory in the same OSS
fileset, enter:

ln chap2 jim/chap3 /u/manual

This links file chap2 to the new name /u/manual/chap2 and file jim/chap3 to
/u/manual/chap3.

5. To use the ln command with pattern-matching characters, enter:

ln manual/* .

This links all files in the directory manual into the current directory (.), giving them the
same names they have in manual. Note that you must type a space between the * (aster-
isk) and the . (dot).

5−62 Hewlett-Packard Company 527188-021

User Commands (k - l) ln(1)

6. To create a symbolic link to the final component of a pathname, enter:

ln -s /a/b/c/d/e

This creates a link, e, in the current directory to the file /a/b/c/d/e.

RELATED INFORMATION
Commands: cp(1), mv(1), rm(1).

STANDARDS CONFORMANCE
The -s flag is an extension to the Single UNIX Specification, Version 2.

527188-021 Hewlett-Packard Company 5−63

locale(1) OSS Shell and Utilities Reference Manual

NAME
locale - Writes information about locales

SYNOPSIS
locale

[-a | -m]

locale
[-c] [-k]
name ...

FLAGS
-a Writes information about all available public locales

-c Writes the names of the specified locale categories

-k Writes the names and values of specified locale keywords

-m Writes the names of all available character map files

Operands
name Specifies a locale category or locale keyword

DESCRIPTION
With no flags or arguments, the locale utility writes to the standard output file the name and
values of all the current locale environment variables, such as LANG and LC_COLLATE.

With the -a or -m flags, the locale utility displays information about available locales and charac-
ter maps on your system.

• If the -a flag is specified, the locale utility writes the name of all available public locales.
These are locales available to any application.

• If the -m flag is specified, the locale utility writes a list of the names of all available
character-mapping files.

The locale utility with the name argument displays information about locale categories and key-
words in the current locale. For example, it could display information about the decimal_point
keyword in the LC_NUMERIC category or information about all keywords in the
LC_NUMERIC category. The name argument can either be a locale category or a keyword from
a category.

5−64 Hewlett-Packard Company 527188-021

User Commands (k - l) locale(1)

The -c and -k flags determine the information displayed by the locale utility as follows:

Table 5−1. Controlling locale Utility Output

Flags Set Information Displayed___
Value of keyword specified by the name parame-
ter or values of all keywords in the category
specified by the name parameter.

None

Name of category containing the keyword
specified by the name parameter or the name of
the category specified by the name parameter,
followed by value of locale keywords.

-c

Name and value of locale keywords.-k___
Name of category, followed by name and value
of locale keywords.

-ck

The following table lists the locale categories and the locale keywords that can be used in the
name argument. There are no locale keywords for LC_COLLATE and LC_CTYPE.

Table 5−2. Categories and Keywords for the locale Utility

Category Associated Keywords_____________________________________
LC_COLLATE_____________________________________
LC_CTYPE_____________________________________
CHARMAP charmap

code_set_name
mb_cur_max
mb_cur_min_____________________________________

LC_MESSAGES yesexpr
noexpr
yesstr
nostr_____________________________________

LC_MONETARY int_curr_symbol
currency_symbol
mon_decimal_point
mon_grouping
mon_thousands_sep
positive_sign
negative_sign
int_frac_digits
frac_digits
p_cs_precedes
p_sep_by_space
n_cs_precedes
n_sep_by_space
p_sign_posn
n_sign_posn
debit_sign
credit_sign

527188-021 Hewlett-Packard Company 5−65

locale(1) OSS Shell and Utilities Reference Manual

left_parenthesis
right_parenthesis_____________________________________

LC_NUMERIC decimal_point
thousands_sep
grouping_____________________________________

LC_TIME alt_digits
abday
day
abmon
mon
d_t_fmt
d_fmt
t_fmt
t_fmt_ampm
am_pm
era
era_d_fmt
era_t_fmt
era_d_t_fmt
era_year_____________________________________

If several name arguments are specified, the locale utility processes them in order.

Environment Variables
The following environment variables affect the execution of locale: LANG, LC_ALL,
LC_CTYPE, LC_MESSAGES, NLSPATH.

EXAMPLES
1. If you set the LANG environment variable to fr_FR.ISO8859-1 and the

LC_MONETARY environment variable to fr_CA.ISO8859-1, the locale utility entered
without flags produces the following output:

locale
LANG=fr_FR.ISO8859-1
LC_COLLATE="fr_FR.ISO8859-1"
LC_CTYPE="fr_FR.ISO8859-1"
LC_MONETARY="fr_CA.ISO8859-1"
LC_NUMERIC="fr_FR.ISO8859-1"
LC_TIME="fr_FR.ISO8859-1"
LC_MESSAGES="fr_FR.ISO8859-1"
LC_ALL=

Note, however, that when setting the locale environment variables, some values imply
values for other locale variables. For example, if LC_ALL is set to en_US.ISO8859-1, it
implies LC_COLLATE=en_US.ISO8859-1, even if the LC_COLLATE environment
variable is set to another locale.

2. To use the locale utility to retrieve the value of the decimal_point delimiter for the
current locale, assuming the current locale is C/POSIX, enter:

locale -ck decimal_point
LC_NUMERIC
decimal_point="."

5−66 Hewlett-Packard Company 527188-021

User Commands (k - l) locale(1)

DIAGNOSTICS
The locale utility generates these errors:

locale: unrecognized keyword, ’\%s’, in argument list.\n
usage: locale [-amck] keyword ...\n

RELATED INFORMATION
Files: locale(4).

527188-021 Hewlett-Packard Company 5−67

logger(1) OSS Shell and Utilities Reference Manual

NAME
logger - Makes entries in the system log

SYNOPSIS
logger [-f file] [-i] [-p priority] [-t tag] [string ...]

The logger command makes the specified entries in the system log file.

FLAGS
-f file Logs all lines in file.

-i Logs the process ID (PID) of the logger process with each line.

-p priority
Enters the message with the specified priority. You can specify priority as a name or a
numeric value. You can also enter a facility/priority pair, separated by a . (dot) charac-
ter. (See Facilities and Priorities for information about valid values.)

-t tag Precedes each entry in the log with tag.

DESCRIPTION
The logger program allows information logging for later use by a system administrator or pro-
grammer in determining why noninteractive utilities have failed.

Facilities
The logger command provides a program and shell script interface to the syslog() subroutine.
The file in which entries are made depends on the current system log configuration; see the refer-
ence page for syslog() for more information.

You can specify the message to be used for entries on the command line or with the -f file flag,
which specifies that each line in file be logged as an entry, with the string argument. The string
argument consists of one or more character strings separated by spaces. If you do not specify
string or the -f flag, the logger command reads the standard input.

The specific facility names that can be entered as the facility portion of the priority argument to
the -p flag appear in the following list. The corresponding numeric values appear in parentheses.

kern Kernel messages (0).

user Random user-level messages (8).

mail Mail system (16).

daemon System daemons (24).

auth Security/authorization messages (32).

syslog Messages generated internally by the syslogd subroutine (40).

lpr Line printer subsystem (48).

news Network news subsystem (56).

uucp UUCP subsystem (64).

cron Clock daemon (72).

5−68 Hewlett-Packard Company 527188-021

User Commands (k - l) logger(1)

Priorities
The specific priority names that can be entered as the priority portion of the priority argument to
the -p flag appear in the following list. The corresponding numeric values appear in parentheses.

emerg The system is unusable (0).

alert Action must be taken immediately (1).

crit Critical conditions (2).

err Error conditions (3).

warning Warning conditions (4).

notice Normal but significant condition (5).

info Informational (6).

debug Debug-level messages (7).

EXAMPLES
1. To specify the debug priority with a priority name, enter:

logger -p debug my message

2. To specify the debug priority with a priority number, enter:

logger -p 7 my message

3. To specify both the user facility and the debug priority, enter:

logger -p user.debug my message

4. To specify the same facility/priority pair using numeric values, enter:

logger -p 8.7 my message

5. You can also combine alphabetic and numeric specifications:

logger -p user.7 my message

RELATED INFORMATION
Functions: openlog(3), syslog(3).

527188-021 Hewlett-Packard Company 5−69

logname(1) OSS Shell and Utilities Reference Manual

NAME
logname - Displays user login name

SYNOPSIS
logname

DESCRIPTION
The logname command writes to the standard output file the name you used to log in to the sys-
tem. This name is returned by the getlogin() function. Under conditions where getlogin()
would fail, the logname command writes a diagnostic message to the standard error file and exits
with a nonzero exit value.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXIT VALUES
The logname command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: env(1).

Functions: getlogin(2).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

5−70 Hewlett-Packard Company 527188-021

User Commands (k - l) lp(1)

NAME
lp - Sends files to a printer

SYNOPSIS
lp

[-c]
[-d dest]
[-n copies]
[-s]
[-t title]
[-W save]
[-W pri=priority]
[-W spl=spooler_name]
[file ...]

FLAGS
Flags for the lp command can appear in any order and can be mixed with filenames.

-c Copies the input files to the spooling area rather than directly to the printer device.
This is the default action.

-d dest Specifies dest as the spooler destination for the job. dest can be specified as an alias
that maps to a Guardian spooler location name. Spooler location aliases can be located
in the printcap file in the /etc directory. The lp command checks the printcap file to
resolve name mapping. If the destination name does not map to a physical printer dev-
ice, the files to be printed are left in the spooling area for further disposition. If the des-
tination name maps to an invalid printer location, lp exits with an error.

The destination name can be set with the environment variables LPDEST and
PRINTER. The -d flag has precedence over LPDEST, which has precedence over
PRINTER. If the -d and -W spl flags are not specified and none of the LPDEST,
PRINTER, or GUARDIAN_PRINTER environment variables are set, the system
default destination in the printcap file is used. The lp command exits with an error if
no valid destination can be found.

-n copies Specifies the number of copies to be printed of each file listed in the lp request. copies
is a number in the range 1 through 32767. When multiple files are to be printed, all
copies of one file are printed before printing of the next file is started. The default
value of copies is 1.

-s Suppresses messages from the lp command.

-t title Specifies a report name for the print job, where the argument title is a string of up to 16
alphanumeric characters and blank spaces. The report name is printed on the banner
page of the output. The default report name is the user’s Guardian logon name.

HP Extensions
-W save Saves the print job in the spooler after it has been printed.

-W pri=priority
Specifies the print request priority. The argument priority is defined as an integer 0
through 8, with 8 being the highest priority. The default value is 4. Normally, requests
with higher priorities are printed before requests with lower priorities.

-W spl=spooler_name
Specifies the Guardian spooler location, which can be a maximum of 40 characters.
Specify the spooler_name parameter as:

527188-021 Hewlett-Packard Company 5−71

lp(1) OSS Shell and Utilities Reference Manual

[\\node.]\$collector[.group[.destination]]

In which:

• node is the system name

• $collector is the spooler collector name

• group and destination are part of the spooler location

You can set the Guardian spooler name with the GUARDIAN_PRINTER environ-
ment variable. The -W spl flag has precedence over the LPDEST and PRINTER
environment variables, which have precedence over the GUARDIAN_PRINTER
environment variable. If the -d and -W spl flags are not specified and none of the
LPDEST, PRINTER, or GUARDIAN_PRINTER environment variables are set, the
system default destination in the printcap file is used. If no valid destination can be
found, the lp command exits with an error.

DESCRIPTION
The lp command sends the specified files and associated information (collectively called a
request) to a line printer for printing.

The lp command copies input files to an output printer device through the Guardian spooler sub-
system. The system default destination is a printer device or a Guardian spooler location. The
system default destination is configured by the system operator at system startup. If the system
default destination becomes unavailable or if a valid destination cannot be found, the lp com-
mand exits with a an error.

Files are always first copied to the spooling area. From there they are sent to the printer. Depend-
ing on printer availability, files specified in a print request may not actually be sent to a printer
from the spooling area until after the lp command successfully exits. When a job is sent to the
printer device, each print job has exclusive access to the printer device and cannot be interrupted.

Operands
file The pathname of a file to be printed. If no file operands are specified, or if a file

operand is specified as a - (hyphen), the standard input file is used. Guardian files are
preceded with the /G naming convention. The lp command must have read permission
to the file or it will return an error.

Standard Input Files
The standard input files can be OSS text files (filecode 180), Guardian EDIT files (filecode 101),
compiler listing files (filecode 129), and PostScript files (filecode 0). Using input files other than
the standard input file may produce unexpected results.

Standard input is used only if no file argument is specified or if file is specified as a - (hyphen).

Environment Variables
GUARDIAN_PRINTER

Specifies the Guardian spooler name. The -W spl flag has precedence over the
LPDEST and PRINTER environment variables, which have precedence over the
GUARDIAN_PRINTER environment variable. If the -d and -W spl flags are not
specified, the LPDEST and PRINTER environment variables are not set, and
GUARDIAN_PRINTER contains a value that is not a valid Guardian spooler name,
the lp command exits with an error.

LANG Provides a default value for the internationalization variables that are unset or null. If
the LANG variable is unset or null, the corresponding value from the implementation-
specific default locale is used. If any of the internationalization variables contain an
invalid setting, the lp command behaves as if none of the variables have been defined.

5−72 Hewlett-Packard Company 527188-021

User Commands (k - l) lp(1)

LC_ALL
When set with a nonempty string, overrides the values of all other internationalization
variables.

LC_CTYPE
Determines the locale for the interpretation of sequences of bytes of text data as char-
acters (for example, single-byte as opposed to multibyte characters in arguments and
input files).

LC_MESSAGES
Determines the locale to be used to affect the format and contents of diagnostic mes-
sages written to the standard error file and informative messages written to the standard
output file.

LC_TIME
Determines the format and contents of date and time strings displayed in the lp com-
mand banner page.

LPDEST
Names the output device or destination. If LPDEST is not set, the PRINTER environ-
ment variable is used. The -d variable takes precedence over LPDEST. If -d is not
specified and LPDEST contains a value that is not a valid destination, the lp command
exits with an error.

NLSPATH
Determines the location of message catalogs for processing the LC_MESSAGES vari-
able.

PRINTER
Names the output device or destination. If the -d and -W spl flags are not specified and
none of the LPDEST, PRINTER, or GUARDIAN_PRINTER environment variables
are set, the system default destination in the printcap file is used. The -d and the
-W spl flags and the LPDEST environment variable have precedence over the
PRINTER environment variable. If the -d and -W spl flags are not specified, the
LPDEST environment variable is not set, and the PRINTER environment variable
contains a value that is not a valid device or destination, the lp command exits with an
error.

Standard Output
The lp command associates a unique ID number from 1 through 4095 with each request and
writes it to the standard output file. The message includes the request ID and the output destina-
tion. This request ID can be used to cancel (see the cancel(1) reference page) the request or to
find its status (see the lpstat(1) reference page).

HP Extensions
The lp command establishes a level-3 spooling session with a spooler collector.

Spooler Destination
The spooler routing name consists of the spooler collection process name (names returned from
the SPOOLCOM COLLECT command) followed by the spooler location name (names returned
from the SPOOLCOM LOC command, for example, $S.#TITAN3). The spooler location names
are the logical destinations of the print jobs. They may or may not be mapped to the real print
devices. If a print device is associated with a specific location, the job request is eventually
printed. Otherwise, the job request is left in the spooler area.

The Guardian spooler system uses the spooler location names to specify certain output attributes
such as double-sided printing and landscape printing. These names are specified in the spooler
configuration files. The user must select the appropriate spooler location for each print job.

527188-021 Hewlett-Packard Company 5−73

lp(1) OSS Shell and Utilities Reference Manual

Search Alogrithm
The search algorithm for the printer locations is as follows. The printer destination specification
in the -d flag or the Guardian spooler name specification in the -W spl flag is used whenever it is
specified. If both the -d and the -W spl flags are specified, the last printer location that is
specified is used. Otherwise, the printer location is first the value set for the environment vari-
able LPDEST, and then, if LPDEST is not set, the value set for the PRINTER environment
variable is used. If the PRINTER environment variable is also not set, the value set for the
GUARDIAN_PRINTER is used. When none of the LPDEST, PRINTER, or
GUARDIAN_PRINTER environment variables are set, a system default location value
(#DEFAULT), stored in the printcap database file, is used. Most HP NonStop server spooler
systems are normally configured with a #DEFAULT location so jobs can always be routed to a
printer device.

printcap Database
Aliases for the spooler location names are stored in the printcap database file. The lp command
searches printcap everytime it needs to resolve the alias to its respective spooler location. A
system default location should always be specified in the printcap file and should appear as the
first entry in the file. printcap has the following format:

<alias name> <spooler location name>

The system is supplied with a default printcap file with aliases for all the devices that are avail-
able to the system. You can create your own printcap file as needed. If you create your own
printcap file, the lp command searches your own printcap file first and then the system default
printcap file in the /etc file.

Preprocessing File Data
The lp command does not preprocess data in Guardian EDIT files, compiler listing files, and
PostScript files. lp performs limited preprocessing of the control characters in OSS ASCII text
files. For example, line feed control characters signify the end of a record and form feed control
characters signify a page eject. Because lp has limited capability to handle all of the control
characters correctly (for example, tabs and backspaces), use the pr command to preprocess the
file data before invoking lp. lp translates unrecognizable control characters to blank characters.

EXAMPLES
1. To send an OSS text file to a printer using the destination-searching algorithm, enter:

cat file | lp

If the operation is successful, the exit status 0 is returned and a message,
stdin is routed to printer_name with request id id_number
is written to the standard output file.

2. To print multiple files with the destination and the heading for the banner specified,
enter:

lp -d hplp -t "myprint" file1 /G/system/vol/subvol/file

5−74 Hewlett-Packard Company 527188-021

User Commands (k - l) lp(1)

If the operation is successful, the exit status 0 is returned and the following messages are
written to the standard output file:

file 1 is routed to hplp with request id: 1

/G/system/vol/subvol/file is routed to hplp with request id: 2

The header for the banner is "myprint."

EXIT VALUES
The following exit values are returned:

0 All input files were processed successfully.

>0 No output device was available, or an error occurred.

RELATED INFORMATION
Commands: cancel(1), lpstat(1).

STANDARDS CONFORMANCE
Spooling is a Guardian operation.

Extensions have been added to the lp command in order to support the Guardian environment.

527188-021 Hewlett-Packard Company 5−75

lpstat(1) OSS Shell and Utilities Reference Manual

NAME
lpstat - Displays line printer and print job status information

SYNOPSIS
lpstat [-drst] [-a[list]] [-o[list]] [-p[list]] [-u[list]] [-v[list]] [ID ...]

FLAGS
The flags can be specified in any order. Specifying no flags displays all of the information asso-
ciated with the first printer alias (usually named default) in the user’s printcap file, or, if no
printcap file exists, in the /etc/printcap file.

Items specified in a list argument to a flag can be a series of items separated by commas or a list
of items separated by commas or one or more blank spaces and enclosed in quotation marks.

-a [list] Displays the job acceptance status of the printer devices that are configured for the sys-
tem.

The list argument is a list of printer aliases. If no value is specified for list, the infor-
mation displayed is for the first printer alias (usually named default) in the user’s
printcap file or, if no printcap file exists, in the /etc/printcap file.

The display includes the device names, the current state of each device, the associated
print processes, and other device attributes such as form name, selection algorithm, and
header messages.

-d Displays the default spooler destination for output requests.

The information displayed is for the first printer alias (usually named default) in the
user’s printcap file or, if no printcap file exists, in the /etc/printcap file.

-o [list] Displays the status of all job requests in the print queue.

The list argument is a list of printer aliases. If no value is specified for list, the infor-
mation displayed is for the first printer alias (usually named default) in the user’s
printcap file or, if no printcap file exists, in the /etc/printcap file.

-p [list] Displays the status of spooler locations.

The list argument is a list of printer aliases. If no value is specified for list, the infor-
mation displayed is for the first printer alias (usually named default) in the user’s
printcap file or, if no printcap file exists, in the /etc/printcap file.

-r Displays the status of the spooler collector and supervisor.

The information displayed is for the first printer alias (usually named default) in the
user’s printcap file or, if no printcap file exists, in the /etc/printcap file.

-s Displays a status summary of the spooler supervisor, collector process, and spooler
devices.

The output is the collective output of the -v, -r, and -d flags.

-t Displays all status information.

The output is the collective output of the -s and -o flags for all locations in the printcap
or /etc/printcap file.

-u [list] Displays the status of output requests for users.

The list argument is a list of login names (NonStop Kernel user names or aliases for
NonStop Kernel user names). If no value is specified for list, the login name of the user
is used.

5−76 Hewlett-Packard Company 527188-021

User Commands (k - l) lpstat(1)

-v [list] Displays the names of spooler locations and associated devices.

The list argument is a list of printer aliases. If no value is specified for list, the infor-
mation displayed is for the first printer alias (usually named default) in the user’s
printcap file or, if no printcap file exists, in the /etc/printcap file.

DESCRIPTION
The lpstat command displays information about the current status of the online accessible printer
devices, related processes, and the status of spooler job requests.

Jobs can be in one of four states: OPEN, READY, PRINT, or HOLD. When a job request is in
the process of being copied to the spooling area, it is in the OPEN state. When the job reaches
the spooler queue it is in the READY state. When a printer accepts the job from the spooler
queue, the job is in the PRINT state. If errors prevent a job from being copied to the spooler, the
job is in the HOLD state.

Status information displayed by the lpstat command can also be displayed by the Guardian
spooler utilities PERUSE and SPOOLCOM. These two Guardian utilities can be used to display
status information on jobs that are initiated using the lp command.

Use on Guardian Objects
The lpstat command displays status information on jobs that are initiated in the Guardian
environment.

Arguments
ID A job request identification number returned by the lp command. ID can be a value

from 1 through 4095.

Environment Variables
LANG Provides a default value for the internationalization variables that are unset or null. If

LANG is unset or null, the corresponding value from the implementation-specific
default locale is used. If any of the internationalization variables contain an invalid
setting, the lpstat command behaves as if none of the variables have been defined.

LC_ALL
When set with a nonempty string, overrides the values of all other internationalization
variables.

LC_CTYPE
Determines the locale for the interpretation of sequences of bytes of text data as char-
acters (for example, single-byte as opposed to multibyte characters in arguments and
input files).

LC_MESSAGES
Determines the locale to be used to affect the format and contents of diagnostic mes-
sages written to the standard error file and informative messages written to the standard
output file.

LC_TIME
Determines the format and contents of date and time strings displayed in the lpstat
command banner page.

NLSPATH
Determines the location of message catalogs for processing the LC_MESSAGES vari-
able.

527188-021 Hewlett-Packard Company 5−77

lpstat(1) OSS Shell and Utilities Reference Manual

TZ Determines the time zone to be used with date and time strings.

EXAMPLES
1. To display the default destination, enter:

lpstat -d

If the operation is successful, the destination name and a zero exit status are returned.

2. To display the status of all the jobs sent to the printer with the alias hplp by users with
the login names rose, bill, and raj, enter:

lpstat -u rose, bill, raj -p hplp

EXIT VALUES
The following exit values are returned:

0 Completion was successful.

>0 An error occurred.

RELATED INFORMATION
Commands: lp(1).

STANDARDS CONFORMANCE
The lpstat command complies with the XPG4 Version 2 specification with extensions, except for
the following feature:

• The -c flag is not supported because the Guardian environment does not recognize
printer classes. If the -c flag is used, the lpstat command issues the following message:

printer classes not supported.

5−78 Hewlett-Packard Company 527188-021

User Commands (k - l) ls(1)

NAME
ls - Lists and generates statistics for files

SYNOPSIS
ls [-W NOG] [-W NOE] [-abcCdfFgilLmnopPqrRstux1] [file | directory] ...

ls -W guardian [/G/[volume[/subvolume[/file_identifier]]]] ...

ls -W gfinfo [/G/[volume[/subvolume[/file_identifier]]]] ...

FLAGS
-a Lists all entries in the directory, including the entries that begin with a . (dot).

-b Displays nonprintable characters in octal notation. For example, a file named aˆAb is
displayed as a\0016.

-c Uses the time of last property change, mode change, and so on for sorting (when used
with the -t flag) or for displaying (when used with the -l, -g, -n, -o, or -u flags).

-C Sorts output vertically in a multicolumn format. This is the default action when output
is sent to a terminal.

-d Displays only the information for the directory that is named, rather than for its con-
tents. This is useful with the -l flag to get the status of a directory.

-f This flag turns off the -l, -t, -s, and -r flags and turns on the -a flag; the flag uses the
order in which entries appear in the directory.

-F Puts a / (slash) after each filename if the file is a directory, an * (asterisk) after each
filename if the file can be executed, an @ (at sign) for a symbolic link, and a | (vertical
bar) for a FIFO file.

-g Displays the same information as the -l flag, except for the owner, which is not
displayed.

-i Displays the inode number in the first column of the report for each file.

-l Displays the mode, number of links, owner, group, size, time of last modification for
each file, and pathname. If the file is a special file, the size field instead contains the
major and minor device numbers. If the file is a symbolic link, the pathname of the
linked-to file is also printed preceded by ->. The attributes of the symbolic link are
displayed. The -n flag overrides the -l flag.

-L Lists the file or directory the link references rather than the link itself, if the argument
is a symbolic link. The -n flag overrides the -l flag.

-m Uses stream output format (a comma-separated series).

-n Displays the same information as the -l flag, except that it displays the user and the
group IDs instead of the usernames and group names.

-o Displays the same information as the -l flag, except for the group, which is not
displayed. The -n flag overrides the -o flag.

-p Puts a slash after each filename if that file is a directory.

-P (J06.11 or later J-series RVUs or H06.22 or later H-series RVUs only) Must be used
with the -l, -n, -g, or -o flag. If the file has at least one file privilege set, a # appears
after the permissions of the file. If the file also has optional access control list (ACL)
entries, the + (plus sign) is not shown.

527188-021 Hewlett-Packard Company 5−79

ls(1) OSS Shell and Utilities Reference Manual

-q Displays nonprintable characters in filenames as a ? (question mark) character if output
is sent to a terminal (the default destination).

-r Reverses the order of the sort, giving reverse collation or the oldest first, as appropriate.

-R Lists all subdirectories recursively.

-s Gives space used in 512-byte units (including indirect blocks) for each entry.

-t Sorts by time of last modification (latest first) instead of by name, before sorting the
operands by the collating sequence.

-u Uses the time of the last access instead of the time of the last modification for sorting
(when used with the -t flag) or for displaying (when used with the -l flag). The -u flag
has no effect unless used with either the -t or -l flag or both.

-x Sorts output horizontally in a multicolumn format.

-1 Forces an output format of one entry per line; this is the default format when output is
not directed to a terminal.

When the following mutually exclusive flags are specified, the last flag specified on the com-
mand line takes effect:

• -C and -l (ell)

• -C and -1 (one)

• -m and -l (ell)

• -x and -l (ell)

• -c and -u

HP Extensions
-W guardian [/G[/volume[/subvolume[/file_identifier]]]] ...

Specifies a Guardian pathname. The -W guardian flag cannot be specified with any of
the other flags for the ls command. The specified pathname must either identify a disk
file directly or point to a Guardian subvolume. If a disk file is specified in the format
/G/volume/subvolume/file_identifier, its file code is displayed. If the format used is
/G/volume/subvolume, the file codes for all of the disk files within the specified subvo-
lume are displayed.

-W gfinfo [/G[/volume[/subvolume[/file_identifier]]]] ...
Specifies a Guardian pathname. The -W gfinfo flag cannot be specified with any of the
other flags for the ls command. The specified pathname must either identify a disk file
directly or point to a Guardian subvolume. If a disk file is specified in the format
/G/volume/subvolume/file_identifier, its file type, file code, last open time, modification
time, create time, permission, format, primary extents, secondary extents, and Safe-
guard status are displayed. If the format used is /G/volume/subvolume, the identical
information described above for an individual disk file is displayed for all of the disk
files within the specified subvolume.

This flag is supported on systems running J06.13 or later J-series RVUs or H06.24 or
later H-series RVUs only.

-W NOG
Specifies that the /G directory should be omitted when the initial directory is root and
the recursive flag (-R) is used. This flag is ignored when the initial directory is not /,

5−80 Hewlett-Packard Company 527188-021

User Commands (k - l) ls(1)

/E, or /E/system or when recursion does not occur.

-W NOE Specifies that the /E directory should be omitted when the initial directory is root and
the recursive flag (-R) is used. This flag is ignored when the initial directory is not root
or when recursion does not occur.

Specify both the -W NOG and -W NOE flags to omit both the /G and /E directories.

The -P flag is also an HP extension.

DESCRIPTION
The ls command writes to the standard output file the contents of each specified directory or the
name of each specified file, along with any other information you ask for with flags. If you do
not specify a file or a directory, ls displays the contents of the current directory. Objects whose
names begin with a period (.) are normally not displayed except with the -a flag.

By default, the ls command displays all information in collated order by filename. The collating
sequence is determined by the LC_COLLATE environment variable.

There are three main ways to format the output:

• List entries in multiple columns by specifying either the -C or -x flag. -1 is the default
format, when output is sent to a terminal.

• List one entry per line.

• List entries in a comma-separated series by specifying the -m flag.

The ls command attempts to determine the number of byte positions in the output line. If ls can-
not get this information, it uses a default value of 80. Note that columns may not be smaller than
20 bytes or larger than 400 bytes.

Access Control Lists (ACLs)
If a file has optional ACL entries:

• The file group permission bits displayed by the ls command are the class ACL entry per-
mission bits instead of the file group ACL entry permission bits.

• The output of the command when the -l, -n, -g, or -o flags are used displays a plus (+)
sign after the permissions of the file. However, the plus (+) sign is not displayed if one of
these conditions is true:

— The ls command is executed remotely from a system that does not support OSS
ACLs.

— You use the -P flag and the file has at least one file privilege set. In this case, # is
displayed instead of +.

To list the contents of an ACL, use the getacl command.

For more information about ACLs, see the acl(5) reference page.

Environment Variables
The following environment variables affect the execution of the ls command:

LC_COLLATE
Determines the collating sequence.

LC_TIME Controls the format of the date and time.

527188-021 Hewlett-Packard Company 5−81

ls(1) OSS Shell and Utilities Reference Manual

UTILSGE Specifies that HP extensions to the root directory should be omitted when the ini-
tial directory is root and a recursive operation occurs in an OSS shell command.
Application programs that test this variable might also honor its settings.

The UTILSGE value can be any of the following:

NOE Omit the /E directory.

NOG Omit the /G directory.

NOG:NOE Omit both the /G and /E directories.

The effect of assigning a value to the UTILSGE environment variable is the
same as specifying the -W NOG or -W NOE flag in the command.

Modes
The mode displayed with the -l flag is interpreted by the first character, as follows:

b Block special file

c Character special file

d Directory

l Symbolic link

p First-in-first-out (FIFO) special file

s AF_UNIX local socket

- Ordinary file

Permissions
The second through tenth characters in the permissions code are divided into three sets of three
characters each. The first set of three characters shows the owner’s permission. The next set of
three characters shows the permission of the other users in the group. The last set of three char-
acters shows the permission of everyone else. The three characters in each set show read, write
and execute permission of the file. Execute permission of a directory lets you search a directory
for a specified file.

Permissions are indicated as follows:

r Read

w Write

x Execute or search (directories)

- No access

The group-execute permission character is s if the file has set-group-ID mode. The user-execute
permission character is s if the file has set-user-ID mode. See the chmod command for the mean-
ing of this mode. The indications of set-ID bit of the mode are capitalized (S) if the correspond-
ing execute permission is not set.

When the sizes of the files in a directory are listed, the ls command displays a total count in 512-
byte units, including indirect blocks.

5−82 Hewlett-Packard Company 527188-021

User Commands (k - l) ls(1)

Use on Guardian Objects
For each pathname specified with the ls -W guardian command that names a
/G/volume/subvolume/file_identifier, ls writes the name of the Guardian disk file and its file code
attribute to the standard output file. For each operand that names a /G/volume/subvolume, ls
writes the names of all Guardian disk files that are contained within that subvolume, along with
their associated file codes.

If you invoke the ls -W guardian command without specifying a pathname and your current
working directory is not within /G, a warning message is written to the standard error file and ls
exits in error. If your current working directory is within /G, the file codes for all of the files in
the current directory are displayed.

When you invoke the ls command with the -W guardian flag and specify a valid Guardian path-
name, the following message is displayed:

%s:,<Guardian pathname in form/G/volume/subvolume>

For all files contained within the specified Guardian pathname (/G/volume/subvolume) and for all
specified disk filenames, the following message is displayed:

%s %d,<file_identifier>, <filecode>

For each pathname specified with the ls -W gfinfo command that names a
/G/volume/subvolume/file_identifier, ls writes the name of the Guardian disk file and its file type,
file code, last open time, modification time, create time, permission, format, primary extents,
secondary extents, and Safeguard status attributes to the standard output file. For each operand
that names a /G/volume/subvolume, ls writes the names of all Guardian disk files that are con-
tained within that subvolume, along with the identical information described above for an indivi-
dual disk file for all of the disk files within the subvolume.

If you invoke the ls -W gfinfo command without specifying a pathname and your current work-
ing directory is not within /G, a warning message is written to the standard error file and ls exits
in error. If your current working directory is within /G, the file type, file code, last open time,
modification time, create time, permission, format, primary extents, secondary extents, and Safe-
guard status attributes for all of the files in the current directory are displayed.

For all files contained within the specified Guardian pathname (/G/volume/subvolume) and for all
specified disk filenames, the following message is displayed:

%s %c %d %s %s %s %s %d %d %d %s <file_identifier>, <filetype>,
<filecode> , <lastopen_time>, <modification_time>, <create_time>,
<file_permission>, <file_format> , <primary_extents>,
<secondary_extents>, <safeguard_status>

EXAMPLES
1. To list all files in the current directory, enter:

ls -a

This command lists all files, including . (dot), .. (dot dot), and other files whose names
begin with a dot.

2. To display detailed information, enter:

ls -l chap1 .profile

This command displays a long listing with detailed information about the files chap1 and
.profile.

527188-021 Hewlett-Packard Company 5−83

ls(1) OSS Shell and Utilities Reference Manual

3. To display detailed information about a directory, enter:

ls -d -l . manual manual/chap1

This command displays a long listing for the directories . (dot) and manual and for the
file manual/chap1. Without the -d flag, this command lists the files in . (dot) and
manual instead of providing detailed information about the directories themselves.

4. To list the files in the current directory in order of modification time, enter:

ls -l -t

This command displays a long listing of the files that were modified most recently, fol-
lowed by the older files.

5. To list one or more individual files using the -W guardian flag, enter, for example:

ls -W guardian /G/osf/kill/mykill /G/osf/kill/test

The following is displayed:

/G/osf/kill/mykill 100
/G/osf/kill/test 100

6. To list all the files in a subvolume using the -W guardian flag, enter, for example:

cd /G/osf/kill
ls -W guardian

The following is displayed:

bindkil 101
makekil 101
mykill 100
test 100
testc 101

7. To list a specific file in one subvolume and all the files in another subvolume using the
-W guardian flag, enter, for example:

ls -W guardian /G/osf/rose/rosec /G/osf/kill

The following is displayed:

/G/osf/rose/rosec 101
/G/osf/kill:
bindkil 101
makekil 101
mykill 100
testc 101
test 100

8. To recursively list all subdirectories in the OSS file system on the local node, enter:

ls -W NOG -W NOE -R /

NOTES
Because /G and /E both appear in your local root directory, you should be very careful when
using OSS shell commands on or from the root directory. OSS shell commands that perform
recursive actions make no distinction between Guardian and OSS files or between local and
remote files. You can use the -W NOG and -W NOE flags or the UTILSGE environment vari-
able to exclude objects in the Guardian file system or objects accessible through the Expand pro-
duct.

5−84 Hewlett-Packard Company 527188-021

User Commands (k - l) ls(1)

RELATED INFORMATION
Commands: chmod(1), find(1), getacl(1), ln(1), stty(1).

Files: locale(4).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The UTILSGE environment variable and the -P, -W NOG, and -W NOE flags are HP exten-
sions to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 5−85

Section 6. User Commands (m - o)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the letters m through o.

527188-021 Hewlett-Packard Company 6−1

make(1) OSS Shell and Utilities Reference Manual

NAME
make - Maintains program dependencies

SYNOPSIS
make [-einpqrst] [-f makefile] . . . [-k | -S]

[string1=[string2]] . . . [target_name . . .]

FLAGS
-e Specifies that environmental variables override macro assignments within

makefiles.

-f makefile Specifies a makefile to read instead of the default makefile. If makefile is -
(dash), the standard input file is read. Multiple makefiles can be specified, and
they are read in the order specified.

-i Ignores nonzero exit of shell commands in the makefile. This flag is equivalent
to specifying - (dash) before each command line in the makefile.

-k Continues processing after errors are encountered, but only on those targets that
do not depend on the target whose creation caused the error.

-n Displays the commands that would have been executed, but does not actually
execute them. If the lines have + (plus sign) prefixes, the commands are exe-
cuted.

-p Displays all the macro definitions and target descriptions.

-q Does not execute any commands, but returns exit value 0 (zero) if the specified
targets are up-to-date and 1 otherwise. If the lines have + (plus sign) prefixes,
the commands are executed.

-r Does not use the built-in rules specified in the system makefile.

-S Terminates the make process if errors are encountered during updates. This is
the default behavior and is the opposite of the -k option.

-s Does not echo any commands as they are executed. This flag is equivalent to
specifying @ before each command line in the makefile.

-t Creates a target or updates its modification time to make it appear up-to-date,
instead of rebuilding a target as specified in the makefile. The target command
lines are typically not executed, unless the target command lines have + (plus
sign) prefixes, in which case they are executed.

string1=[string2]
Defines a macro, as described under Using Macros, later in this reference page.
The value specified as string1 is the macro name. The value specified as string2
is the macro definition.

target_name Specifies a target rule or a special target name, as described under Target Rules
and Special Targets, later in this reference page.

If no target_name is specified on the command line, the make utility uses the
first target defined in the makefile and builds that target.

6−2 Hewlett-Packard Company 527188-021

User Commands (m - o) make(1)

DESCRIPTION
The make program is designed to simplify the maintenance of other programs. Its input is a list
of specifications of the files that programs and other files depend upon. By default, the following
files are tried in sequence to provide this list of specifications: ./makefile and ./Makefile.

There are four different types of lines in a makefile: file dependency specifications, shell com-
mands, variable assignments, and comments.

In general, command lines in a makefile can be continued from one line to the next by ending
them with a \ (backslash). The trailing newline character and initial white space on the following
line are compressed into a single space.

File Dependency Specifications
Dependency lines consist of one or more targets, an operator, and zero or more sources (prere-
quisites). Dependency lines create a relationship where the targets depend on the sources and are
usually created from them.

The exact relationship between the target and the source is determined by the operator that
separates them. The operators are as follows:

: A target is considered out-of-date if its modification time is less than those of any of its
sources. Sources for a target accumulate over dependency lines when this operator is
used. The target is removed if make is interrupted unless the target has the .PRE-
CIOUS attribute.

:: If no sources are specified, the target is always re-created. Otherwise, a target is con-
sidered out-of-date if any of its sources were modified more recently than the target.
Sources for a target do not accumulate over dependency lines when this operator is
used. The target will not be removed if make is interrupted.

File dependency specifications have two types of rules, inference and target, as follows:

inference rules Have one target with no / (slash) and a minimum of one . (period).
These rules specify how a target is to be made up-to-date.

target rules Can have more than one target. These rules specify how to build the tar-
get.

Makefile Execution
The make command executes the commands in the makefile line by line. As make executes
each command, it writes the command to the standard output file (unless otherwise directed; for
example, by the -s option). A makefile must have a tab in front of the commands on each line.

When a command is executed through make, it uses the make program’s execution environment.
This includes any macros from the command line to make, and any environment variables
specified in the MAKEFLAGS variable (refer to Variable Assignments, later in this reference
page). The make utility’s environment variables overwrite any variables of the same name in the
existing environment.

Target Rules
Target rules have the following format:

target [target...] : [prerequisite...] [;command]
<Tab>command
...

Multiple targets and prerequisites are separated by spaces (note that the list of prerequisites can
be empty). Any text that follows the ; (semicolon) and all of the subsequent lines that begin with
a tab character are considered commands to be used to update the target. A new target entry is
started when a new line does not begin with a tab character or # (number sign). The following

527188-021 Hewlett-Packard Company 6−3

make(1) OSS Shell and Utilities Reference Manual

section, Special Targets, lists the special sources, or prerequisites, and targets for a makefile.

Special Targets
Special targets must not be included with other targets; that is, they must be the only target
specified. These control the operation of the make command.

The supported special target names are:

.DEFAULT
This is used as the rule for any target (that was used only as a source) that make cannot
create in any other way. Only the shell script is used. The < (left angle bracket) vari-
able of a target that inherits .DEFAULT’s commands is set to the target’s own name.

.IGNORE
Prerequisites of this target are targets themselves; this causes errors from commands
associated with them to be ignored. If no prerequisites are specified, this is the
equivalent of specifying the -i flag.

.POSIX This keyword currently has no effect on make behavior, because it is the only behavior
supported. However, you should use this as the first noncommand line of a makefile if
you want to avoid possible conflicts with future enhancements.

.PRECIOUS
Prerequisites of this target are targets themselves. .PRECIOUS prevents the target
from being removed. If no sources are specified, the .PRECIOUS attribute is applied
to every target in the file. Normally, when make is interrupted (for example, with
SIGHUP, SIGTERM, SIGINT, or SIGQUIT signals), it removes any partially made
targets. If make was invoked with the -n, -p, or -q flags, however, the target is con-
sidered to have the .PRECIOUS attribute.

.SILENT
Prerequisites of the target are targets themselves; this prevents commands associated
with the target from being written to the standard output file before they are executed.
If no sources are specified, the .SILENT attribute is applied to every command in the
file.

.SUFFIXES
Prerequisites of the target are appended to the list of known suffixes. If no suffixes are
specified, any previously specified suffixes are deleted. These suffixes are used by
inference rules, as described in the Inference Rules subsection. To change the order of
suffixes, you need to specify an empty .SUFFIXES entry, then a new list of .SUF-
FIXES entries. Makefiles must not associate commands with .SUFFIXES.

Inference Rules
The make command has a default set of inference rules, which you can supplement, or overwrite,
with additional inference rule definitions in the makefile. Inference rules consist of target
suffixes and commands. From the suffixes, make infers the prerequisites, and from both the
suffixes and their prerequisites, make command can infer how to make a target up-to-date. Infer-
ence rules have the following format:

rule:
<Tab>command
...

where rule has one of the following forms:

.s1 A single-suffix inference rule. This rule describes how to build a target that is appended
with one of the single suffixes.

6−4 Hewlett-Packard Company 527188-021

User Commands (m - o) make(1)

.s1.s2 A double-suffix inference rule. This rule describes how to build a target that is appended
with .s2 with a prerequisite that is appended with .s1.

s1 and s2 are suffixes defined as prerequisites of the special target, .SUFFIXES. The inference
rules use the suffixes in the order in which they are specified in .SUFFIXES. A new inference
rule is started when a new line does not begin with a <Tab> or # (number sign).

If rule is empty, for example:

rule: ;

execution has no effect; make recognizes that the suffix exists, but takes no actions when targets
are out-of-date.

Libraries
A target or prerequisite can also be a member of an archive library, and it is treated as such if
there are parentheses in the name. For example, library(name) indicates that name is a member
of the archive library library. To update a member of a library from a particular file, you can use
the format .s1.a, where a file with the .s1 suffix is used to update a member of the archive library.
The .a refers to an archive library.

Using Macros
Macro definitions are defined in the format:

string1=[string2]

The macro named string1 is defined as having the value of string2. The value of string2 includes
all characters (or no characters) after the equals sign (=) until a comment character (#) or an
unescaped newline character occurs. Blanks before or after the equals sign are ignored.

The forms string1[:subst1=[subst2]]) or string1[:subst1=[subst2]]} can be used to replace all
occurrences of subst1 with subst2 when the macro substitution is performed. The subst1 value is
recognized when it is a suffix at the end of a word in string1, where "word" is defined as a string
delimited by one of the following:

• The beginning of a line

• A blank

• An unescaped newline character

Macros can appear throughout the makefile, as follows:

• If a macro appears in a target line, then it is evaluated when the target line is read.

• If a macro appears in a command line, then it is evaluated when the command is exe-
cuted.

• If a macro appears in a macro definition line, it is evaluated when the new macro itself
appears in a rule or command.

If a macro has no definition, it evaluates to NULL. A new macro definition overwrites an exist-
ing macro of the same name. Macros assignments can come from the following, in the listed
order:

1. Default inference rules

2. Contents of the environment

3. Makefiles

527188-021 Hewlett-Packard Company 6−5

make(1) OSS Shell and Utilities Reference Manual

4. Command lines

Note, however, that the -e option causes environment variables to override those defined in the
makefile.

The SHELL macro is special. It is set by make to the pathname of the shell command inter-
preter (/bin/sh). However, if it is redefined in the makefile, or on the command line, then this
default setting is overridden. Note that this macro does not affect, and is not affected by, the
SHELL environment variable.

Shell Commands
Each target can have associated with it a series of shell commands, normally used to create the
target. Each of the commands in this script must be preceded by a tab character. While any tar-
get can appear on a dependency line, only one of these dependencies can be followed by a crea-
tion script, unless the :: operator is used.

If the first one or two characters of the command line are @, -, +, the command is treated spe-
cially, as follows:

@ Prevents the command from being echoed before it is executed.

- Causes any nonzero exit status of the command line to be ignored.

+ Causes a command line to be executed, even though the -n, -q, or -t flags are
specified.

Variable Assignments
Variables in make are much like variables in the shell and, by tradition, consist of all uppercase
letters. The = operator assigns values to variables. Any previous variable is then overridden.

Any white space before the assigned value is removed; if the value is being appended, a single
space is inserted between the previous contents of the variable and the appended value.

Variables are expanded by surrounding the variable name with either {} (braces) or ()
(parentheses) and preceding it with a $ (dollar sign). If the variable name contains only a single
letter, the surrounding braces or parentheses are not required. This shorter form is not recom-
mended.

Variable substitution occurs at two distinct times, depending on where the variable is being used.
Variables in dependency lines are expanded as the line is read. Variables in shell commands are
expanded when the shell command is executed.

The four different classes of variables (in order of increasing precedence) are:

Environment variables
Variables defined as part of the make program’s environment.

Global variables
Variables defined in the makefile or in included makefiles.

Command line variables
Variables defined as part of the command line.

Local variables
Variables that are defined specific to a certain target. The local variables are as fol-
lows:

$< Represents either the full name of a source that made a target out-of-
date (inference rule), or the full name of a target (.DEFAULT rule).

6−6 Hewlett-Packard Company 527188-021

User Commands (m - o) make(1)

$* Represents the filename section of a source that made a target out-of-
date (in an inference rule) without a suffix.

$@ Represents the full target name of the current target, or the archive
filename part of the library archive target.

$? Represents the list of sources causing a target to be out-of-date (infer-
ence and target rules).

$% Represents a library member in a target rule if the target is a member
of the archive library.

You can also use these local variables appended with D or F, where

D Indicates that the local variable applies to the directory part of the
name. This is the pathname prefix without a trailing / (slash). For
current directories, D is a . (period).

F Indicates that the local variable applies to the filename part of the
name.

The $? local variable can represent a list of sources. When used with D or F, the local
variable can represent a list of directory and filename parts, respectively.

make converts the expression $$ to a single dollar sign ($).

When make encounters a line beginning with the word include followed by another word that is
the name of a makefile (for example, include depend), make attempts to open that file and pro-
cess its contents as if the contents appeared where the include line occurs. This behavior occurs
only if the first noncomment line of the first makefile read by make is not the .POSIX target; oth-
erwise, a syntax error occurs.

Comments
Comments begin with a # (number sign), anywhere but in a shell command line, and continue to
the end of the line.

Environment Variables
The make command supports the following environment variables:

LANG Determines the locale to use for the locale categories when both LC_ALL and
the corresponding environment variable (beginning with LC_) do not specify a
locale.

LC_ALL Determines the locale to be used to override any values for locale categories
specified by the setting of LANG or any other LC_ environment variable.

LC_CTYPE Determines the locale for the interpretation of sequences of bytes of text data as
characters; for example, single-byte characters versus multibyte characters in
arguments.

LC_MESSAGES
Determines the language in which messages should be written.

MAKEFLAGS
Contains any flags that might be specified on the make utility’s command line.
Anything specified on the make utility’s command line is appended to the
MAKEFLAGS variable, which is then entered into the environment for all pro-
grams that make executes. Note that the operation of the -f and -p flags in the
MAKEFLAGS variable are undefined. Command line options have precedence

527188-021 Hewlett-Packard Company 6−7

make(1) OSS Shell and Utilities Reference Manual

over the -f and -p flags in this variable.

EXAMPLES
1. To compile, link, and run a TNS/R program using a non-PIC library and the files

mainstr.c, mystrng.c, and mystrng.h, use the following makefile:

TOOLS = /G/SYSTEM/SYSTEM
CFLAGS = -Woptimize=0 -g -Werrors=5 -Wextensions \

-I /G/SYSTEM/ZSYSDEFS -I ${TOOLS} -c
LDFLAGS = -obey /G/SYSTEM/SYSTEM/libcobey -L .

all: revstr
revstr : mainstr.o mystrng.o

nld -o $@ ${LDFLAGS} mainstr.o mystrng.o \
${TOOLS}/crtlmain

mainstr.o : mainstr.c
c89 -o $@ $? ${CFLAGS}

mystrng.c : mystrng.h
touch mystrng.c

mystrng.o : mystrng.c
c89 -o $@ $? ${CFLAGS}

clean:
rm *.o revstr *.dll

run: revstr
./revstr abc 45678

2. To compile, link, and run a TNS/R program using a PIC DLL and the files mainstr.c,
mystrng.c, and mystrng.h, use the following makefile:

TOOLS = /G/SYSTEM/SYSTEM
CFLAGS_NON_PIC = -Woptimize=0 -g -Werrors=5 -Wextensions \

-I /G/SYSTEM/ZSYSDEFS -I ${TOOLS} -c
CFLAGS= ${CFLAGS_NON_PIC} -Wcall_shared
LDFLAGS = -obey /G/SYSTEM/SYSTEM/libcobey -L .
LDFLAGS_DLL = ${LDFLAGS} -shared

all: revstr
revstr : mainstr.o mystrng.dll

ld -o $@ ${LDFLAGS} mainstr.o -l mystrng.dll \
${TOOLS}/ccppmain

mainstr.o : mainstr.c
c89 -o $@ $? ${CFLAGS}

mystrng.c : mystrng.h
touch mystrng.c

mystrng.dll : mystrng.o
ld -o $@ ${LDFLAGS_DLL} mystrng.o \
-export MyStr_Version -export StrRev

mystrng.o : mystrng.c
c89 -o $@ $? ${CFLAGS}

clean:
rm *.o revstr *.dll

run: revstr
./revstr abc 45678

6−8 Hewlett-Packard Company 527188-021

User Commands (m - o) make(1)

3. To compile, link, and run a TNS/R program using different DLLs and the files mainstr.c,
mystrng.c, and mystrng.h, use the following makefile:

TOOLS = /G/SYSTEM/SYSTEM
CFLAGS_NON_PIC = -Woptimize=0 -g -Werrors=5 -Wextensions \

-I /G/SYSTEM/ZSYSDEFS -I ${TOOLS} -c
CFLAGS= ${CFLAGS_NON_PIC} -Wcall_shared
LDFLAGS = -obey /G/SYSTEM/SYSTEM/libcobey -L .
LDFLAGS_DLL = ${LDFLAGS} -shared

all: mystrng.dll
mystrng.c : mystrng.h

touch mystrng.c
mystrng.dll : mystrng.o

ld -o $@ ${LDFLAGS_DLL} mystrng.o \
-export MyStr_Version -export StrRev

mystrng.o : mystrng.c
c89 -o $@ $? ${CFLAGS}

clean:
rm *.o revstr *.dll
unset _RLD_FIRST_LIB_PATH

run: revstr
export _RLD_FIRST_LIB_PATH=/home/les/dll3; \
../dll2/revstr abc 45678

4. To compile, link, and run a TNS/R program that dynamically adds a DLL and uses the
files hello.c, main.c, and hello.h, use the following makefile:

TOOLS = /G/SYSTEM/SYSTEM
CFLAGS_NON_PIC = -Woptimize=0 -g -Werrors=5 -Wextensions \

-I /G/SYSTEM/ZSYSDEFS -I ${TOOLS}
CFLAGS= ${CFLAGS_NON_PIC} -Wcall_shared
LDFLAGS = -obey /G/SYSTEM/SYSTEM/libcobey -L .
LDFLAGS_DLL = ${LDFLAGS} -shared

all: main.exe hello.dll
main.exe: main.c

c89 -o $@ $? ${CFLAGS} -l zrldsrl
hello.dll : hello.o

ld -o $@ ${LDFLAGS_DLL} hello.o -export hello
hello.o : hello.c

c89 -o $@ $? ${CFLAGS} -c
clean:

rm *.o revstr *.dll

5. To compile, link, and run a TNS/R program that dynamically adds a DLL, uses the qsort
utility, and uses the files sort.c, main.c, and sort.h, use the following makefile:

TOOLS = /G/SYSTEM/SYSTEM
CFLAGS_NON_PIC = -Woptimize=0 -g -Werrors=5 -Wextensions \

-I /G/SYSTEM/ZSYSDEFS -I ${TOOLS}
CFLAGS= ${CFLAGS_NON_PIC} -Wcall_shared
LDFLAGS = -obey /G/SYSTEM/SYSTEM/libcobey -L .
LDFLAGS_DLL = ${LDFLAGS} -shared

all: main.exe sort.dll

527188-021 Hewlett-Packard Company 6−9

make(1) OSS Shell and Utilities Reference Manual

main.exe: main.c
c89 -o $@ $? ${CFLAGS} -l zrldsrl

sort.dll : sort.o
ld -o $@ ${LDFLAGS_DLL} sort.o -export CompareInts

sort.o : sort.c
c89 -o $@ $? ${CFLAGS} -c

clean:
rm *.o revstr *.dll

FILES
/usr/share/mk/posix.mk Default POSIX rules for the make utility.

makefile List of dependencies.

Makefile List of dependencies.

EXIT VALUES
The make command exits with one of the following values:

0 (zero) To indicate successful completion.

1 To indicate that the target was not up-to-date when the -q flag was specified.

> 1 To indicate an error occurred.

RELATED INFORMATION
Commands: sh(1).

Miscellaneous: environ(5).

STANDARDS CONFORMANCE
The OSS implementation conforms to the XPG4 Version 2 specification with the following
exceptions:

• The OSS implementation does not support the extended description features of the XPG4
Version 2 specification.

• The following extensions are supported:

— The include feature for nested makefiles.

6−10 Hewlett-Packard Company 527188-021

User Commands (m - o) man(1)

NAME
man - Displays reference page information

SYNOPSIS
man [-c] [-] [-M pathname] [section] title ...

man [-M pathname] -f | -k keyword ...

FLAGS
-c Does not pipe output through more.

-f keyword ... Displays descriptions of all commands, calls, functions, or special filenames
matching the specified keyword. Locates reference pages by function (same
as the whatis command).

This option requires the existence of a whatis keyword database file. The
information returned represents a match of the keyword against information
to the left of the hyphen in all entries within such a database file.

-k keyword ... Displays descriptions of all commands, calls, functions, or special file names
that contain the keyword in their name or description. Locates reference
pages by keyword (same as the apropos command).

This flag requires the existence of a whatis keyword database file. The infor-
mation returned represents a match of the keyword against information to the
right of the hyphen in all entries within such a database file.

-M pathname Specifies an alternative search path. pathname is a colon-separated list of
directories in which man expects to find the standard subdirectories contain-
ing reference pages or a whatis keyword database file.

If this flag is omitted, the man command uses the values in effect for the
MANPATH environment variable to locate searchable subdirectories or a
whatis keyword database file. When the MANPATH environment variable
is not defined, the man command searches directories as described in
Environment Variables in this reference page.

- Does not pipe output through more. (Same as -c.)

Operands
title Specifies the name of the command, function call, file, or other topic whose

reference page is to be displayed.

section Specifies the subdirectories within the search path that the man command
should restrict its search to.

section is either a section number from 1 through 8 or one of the letters
CLFlnop. If you specify C or 1, man searches in the sections Cnlpo1.

The following section values have a pre-defined meaning:

C Command

l Local

o Old

n New

The other section values correspond to a logical section identified by that
letter or number within the online reference information.

527188-021 Hewlett-Packard Company 6−11

man(1) OSS Shell and Utilities Reference Manual

DESCRIPTION
The man program provides online access to the system’s reference pages.

Reference pages must be located within a known directory structure. A directory structure is
known when it is specified by the -M option, by a value in the MANPATH environment variable,
or by default.

Subdirectories within each known directory structure are searched in a specific order for a
requested reference page. Only the first matching reference page is returned by the command.

The man command searches subdirectories in the following order:

• Subdirectories named mann are searched first for nroff source files to format. The man
command attempts to call the /bin/nroff formatter to process the first file it finds whose
file name matches the title specified in the command line. Note that for H06.26 and ear-
lier H-series RVUs and J06.15 and earlier J-series RVUs, the /bin/nroff formatter is not
provided with the OSS shell.

The value used for n is the value specified for section in the command. If no value is
specified for section, then the man command searches the subdirectories using values for
n in the following order:

C, L, F, n, l, p, o, 1, 2, 3, 4, 5, 6, 7, 8

The man command formats and displays the first reference page source file it finds
whose name matches the title specified in the command line.

• When no matching file exists in the subdirectories named mann, the man command
searches the subdirectories named catn.

The value used for n is the value specified for section in the command. If no value is
specified for section, then the man command searches the subdirectories using values for
n in the following order:

C, L, F, n, l, p, o, 1, 2, 3, 4, 5, 6, 7, 8

The man command displays the first formatted reference page it finds whose file name
matches the title specified in the command line.

The basic OSS product includes formatted reference pages in the following subdirectories:

cat1 Commands available to the general interactive user.

cat2 Application program interface functions reserved on some UNIX systems to use
by privileged programs (this restriction does not exist on OSS systems).

cat3 Application program interface functions available to all C and C++ language
programs.

cat4 Application program interface header files and other file formats.

cat5 Miscellaneous topics.

cat7 Special file information.

cat8 Commands intended for system administrators.

The cat6 directory is empty (it is traditionally reserved for game information).

These subdirectories exist in the following directory structures:

/usr/share/man
Contains the basic OSS product set reference pages.

6−12 Hewlett-Packard Company 527188-021

User Commands (m - o) man(1)

/nonnative/usr/share/man
Contains reference information for the TNS C compiler (G-series RVUs only).

Independent products can either create additional directory structures for reference pages or add
their reference page files to one of these sets. If the man command does not display a reference
page for a recently installed product, contact your site administrator for the pathname of its refer-
ence page directory structure.

The -M flag is used if you have reference pages in a directory other than either the default loca-
tions or the directories in MANPATH.

If the standard output is a tty, and the -c flag is not provided, man uses more, or the pager pro-
vided by the PAGER environment variable, to display the reference page.

Environment Variables
The man command supports the MANPATH environment variable in the following ways:

• If MANPATH is not defined and the -M flag is not used, then directories are searched in
the following order:

/usr/share/man/man*
/usr/local/man/man*
/usr/share/man/cat*
/usr/local/man/cat*

This ordering can cause the content of /usr/share/man/cat* to become unavailable when
source files are installed in either of the man* subdirectories.

• If MANPATH is defined with multiple values, then the first directory in which a match is
found ends the search for reference pages to display.

FILES
/nonnative/usr/share/man/whatis

The whatis keyword database for the reference pages in
/nonnative/usr/share/man (G-series RVUs only).

/usr/local/man A directory structure reserved for local site reference pages. This
directory might not exist on your system.

/usr/share/man/whatis The whatis keyword database for the OSS reference pages in
/usr/share/man.

RELATED INFORMATION
Commands: apropos(1), more(1), merge_whatis(8), whatis(1).

STANDARDS CONFORMANCE
The following are HP extensions to the Single UNIX Specification, Version 2:

• All command line flags other than -k

• Support for the MANPATH environment variable

527188-021 Hewlett-Packard Company 6−13

mkcatdefs(1) OSS Shell and Utilities Reference Manual

NAME
mkcatdefs - Preprocesses a message source file

SYNOPSIS
mkcatdefs catname source_file ... [-h]

FLAGS
-h Suppresses the generation of a _msg.h file. This flag must be the last argument to the

mkcatdefs command.

Operands
catname is the name of a message catalog

source_file is a text file you create to hold messages printed by your program

DESCRIPTION
The mkcatdefs utility preprocesses a message source file to change symbolic identifiers into
numeric constants. The mkcatdefs utility’ standard output is a set of commands suitable for
passing to the gencat utility, which creates a new message catalogue. In addition, mkcatdefs is
used in producing a file named catname_msg.h containing definition statements that equate your
symbolic identifiers with set numbers and message ID numbers assigned by mkcatdefs. The
catname_msg.h file is required in your application program if you use symbolic identifiers.

See the explanation of the gencat utility for a description of input format for commands. The
only difference between gencat and mkcatdefs is that gencat requires a number to identify each
message, while mkcatdefs accepts either a number or a symbolic name. The mkcatdefs pro-
gram can send message source, data with numbers instead of symbolic identifiers to standard out-
put.

A symbolic name is converted to a number in the mkcatdefs output. Each set and message in a
program must have a unique number or symbolic name. Symbolic identifiers can contain letters,
digits, and underscores. The first character cannot be a digit or an underscore. You cannot use a
symbolic name for a set in the $delset command.

The mkcatdefs program is designed to create new message catalogs, not to change existing ones
incrementally. Thus, its first operation on each set is to delete it, in case the catalog contains a
set with that number. The sets specified in source_file are assigned numbers in ascending order,
starting at 1. Within each set, messages are also assigned numbers in ascending order, starting at
1. If you assign a message to a number in your source_file, mkcatdefs continues its ascending
series with that number.

EXAMPLES
1. The following example shows a message source file with symbolic message identifiers

and quoted messages:

$quote " Use a double quotation mark to delimit message text
$set MSFAC Message Facility - symbolic identifiers
SYM_FORM "Symbolic identifiers can contain only letters \
and digits and the _ (underscore character)\n"
5 "You can mix symbolic identifiers and numbers \n"
$quote
MSG_H Remember to include the "_msg.h" file in your program\n

In this example, the $quote command sets the quote character to " (double quote), then
disables it before the last message, which contains double quotes.

When you process the file with mkcatdefs, the modified source is written to standard
output.

6−14 Hewlett-Packard Company 527188-021

User Commands (m - o) mkcatdefs(1)

2. Assume that the preceding file is named symb.src. It can be processed with mkcatdefs
as follows:

$ mkcatdefs symb symb.src >symb.msg

The following source is created:

$quote "Use a double quotation mark to delimit message text
$delset 1
$set 1
1 "Symbolic identifiers can contain only letters \
and digits and the _ (underscore character)\n"
5 "You can mix symbolic identifiers and numbers \n"
$quote
6 Remember to include the "_msg.h" file in your program\n

Note that the assigned message numbers are noncontiguous because the source contained
a specific number. The mkcatdefs utility always assigns the previous number plus 1 to a
symbolic identifier.

The generated symb_msg.h file is:

#ifndef _H_SYMB_MSG
#define _H_SYMB_MSG
#include <limits.h>
#include <nl_types.h>
#define MF_SYMB "symb.cat"

/* The following was generated from symb.src. */

/* definitions for set MSFAC */
#define MSFAC 1

#define SYM_FORM 1
#define MSG_H 6
#endif

Note that mkcatdefs also created a symbol MF_SYMB by adding MF_ to the catname
using uppercase letters. In this example, mkcatdefs used the name of the generated cata-
log (symb.cat) and generated this symbol for use with catopen.

Because this file includes limits.h and nl_types.h, you do not need to include them in
your application program. (nl_types defines special data types required by the message
facility routines.)

NOTES
Symbolic references are not defined by XPG4, but are an OSS extension, allowing a convenient
input source for both the message catalog and the program’s header file.

DIAGNOSTICS
The mkcatdefs utility generates these error messages:

Usage: mkcatdefs catname msg_file [msg_file...] [-h]\n

The following message is displayed if catname is greater than FILENAME_MAX - 7 charac-
ters:

mkcatdefs: catname too long\n

527188-021 Hewlett-Packard Company 6−15

mkcatdefs(1) OSS Shell and Utilities Reference Manual

The following message is displayed if any of the input files cannot be opened:

mkcatdefs: Cannot open \%s\n
mkcatdefs: catname contains invalid character\n
Usage: mkcatdefs SymbolName SourceFile[...SourceFile] [-h]\n

The following messages pertain to the .msg file:

mkcatdefs: There were write errors on file \%s\n
mkcatdefs: Errors found: no \%s created\n
mkcatdefs: \%s created\n
mkcatdefs: No symbolic identifiers; no \%s created\n
mkcatdefs: no \%s created\n

The following message is displayed if a message line is greater than NL_TEXTMAX + 128
characters:

mkcatdefs: The message text is too long [\%d]:\n\t\%s\n

The following message is displayed if the set identifier is greater than 64:

mkcatdefs: The set identifier is too long [\%d]:\n\t\%s\n

The following message is displayed if an invalid character is used:

mkcatdefs: The symbolic set or message identifier is not
valid:\n\t\%s\n
mkcatdefs: A set number or identifier is missing:\n\t\%s\n
mkcatdefs: set # \%d already assigned or sets not in ascending
sequence\n
mkcatdefs: name \%s used more than once\n
mkcatdefs: Only message text can use ´\´ to continue: \%s\n
mkcatdefs: The symbolic identifier is too long [\%d]:\n\t\%s\n
mkcatdefs: sourcefile contains invalid character:\n\t\%s\n

The following message is displayed if the set number is zero:

mkcatdefs: \%s is an invalid identifier\n
mkcatdefs: message id \%s already assigned to identifier\n
mkcatdefs: source messages not in ascending sequence\n

The following message pertains to the .h file:

mkcatdefs: There were read errors on file \%s\n

RELATED INFORMATION
Commands: gencat(1), runcat(1).

Functions: catclose(3), catgets(3), catopen(3).

6−16 Hewlett-Packard Company 527188-021

User Commands (m - o) mkdir(1)

NAME
mkdir - Makes a directory

SYNOPSIS
mkdir [-m mode] [-p] directory ...

The mkdir command creates new directories with read, write, and execute permissions based
upon the permissions established by the umask setting.

FLAGS
-m mode Sets the file permissions to mode, after creating the specified directory. The mode

argument can be either an absolute mode string or a symbolic mode string as defined
for chmod. In the latter case, use only 9 protection bits in the mode argument, because
the set-user-ID, set-group-ID, and sticky bits are ignored.

In symbolic mode strings, the operation characters + and - are interpreted relative to an
assumed initial mode of a=rwx; A + adds permissions to the default mode, whereas a -
deletes permissions from the default mode.

-p Creates intermediate directories as necessary; otherwise, the full pathname prefix to
directory must already exist. Note that mkdir requires write permission in the parent
directory for users other than root.

For each directory argument that does not name an existing directory, effects
equivalent to those caused by the following command occur:

mkdir -p -m $(umask -S),u+wx $(dirname directory) &&
mkdir [-m mode] directory

[-m mode] represents the flag supplied to the original invocation of mkdir, if any.

Each component of directory that does not name an existing directory is created with
mode 777, modified by the current file mode creation mask (umask). The equivalent
of chmod u+wx is performed on each component to ensure that mkdir can create
lower directories regardless of the setting of umask.

For systems running G06.30 and later G-series RVUs, each component of directory
that names an existing directory is ignored without error. For systems running other
RVUs, each component of directory that names an existing directory is ignored
without error, except for the last component. If an intermediate pathname component
exists, but permissions are set to prevent writing or searching, mkdir fails and returns
an error message.

The mode argument does not apply to any intermediate directories created when the -p
flag is specified.

DESCRIPTION
The mkdir command also creates the standard entries . (dot), for the directory itself, and .. (dot
dot), for its parent.

The value of the bitwise inclusive OR of S_IRWXU, S_IRWXG, and S_IRWXO is used as the
mode argument. (If the -m flag is specified, the mode argument overrides this default.)

Access Control Lists (ACLs)
If the parent directory has an ACL that contains default ACL entries, the new directory inherits
ACL entries and permissions as described in the acl(5) reference page.

EXAMPLES
1. To create a new directory called test, enter:

mkdir test

527188-021 Hewlett-Packard Company 6−17

mkdir(1) OSS Shell and Utilities Reference Manual

2. To set file permissions for new directory test in absolute mode, enter:

mkdir -m 444 test

3. To set file permissions for new directory test in symbolic mode, enter:

mkdir -m+rw test

NOTES
To make a new directory, you must have write permission in the parent directory.

RELATED INFORMATION
Commands: chmod(1), rm(1), rmdir(1), setacl(1), sh(1).

Functions: mkdir(2).

Miscellaneous topics: acl(5).

6−18 Hewlett-Packard Company 527188-021

User Commands (m - o) mkfifo(1)

NAME
mkfifo - Makes FIFO special files

SYNOPSIS
mkfifo [-m mode] file ...

The mkfifo utility creates FIFO special files in the order specified.

FLAGS
-m mode Sets the file permission bits of the new file to the specified mode value, after creating

the FIFO special file. The mode argument is a symbolic mode string (see chmod), in
which the operator characters + (plus sign) and - (minus) are interpreted relative to the
default file mode for that file type. The + character adds permissions to the default
mode, and - deletes permissions from the default mode.

The default mode is a=rw (permissions of rw-rw-rw).

DESCRIPTION
For each file argument, mkfifo performs actions equivalent to the mkfifo() call with the following
arguments:

1. The file argument is used as the pathname argument.

2. The value of the bitwise inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP,
S_IROTH, and S_IWOTH is used as the mode argument.

Access Control Lists (ACLs)
If the parent directory has an ACL that contains default ACL entries, the new directory inherits
ACL entries and permissions as described in the acl(5) reference page.

EXAMPLES
1. To create a FIFO special file with permissions prw-r--r--, enter:

mkfifo
-m 644 /tmp/myfifo

The command creates the /tmp/myfifo file with read/write permissions for the owner and
read permission for the group and for others.

2. To create a FIFO special file using the - (minus) operand to set permissions of prw-r-----,
enter:

mkfifo
-m g-w,o-rw /tmp/fifo2

The command creates the /tmp/fifo2 file, removing write permission for the group and all
permissions for others.

EXIT VALUES
The mkfifo utility exits with one of the following values:

0 Indicates that all the specified FIFO special files were created successfully.

>0 Indicates that an error occurred.

RELATED INFORMATION
Commands: mknod(8), setacl(1).

Functions: acl(2), chmod(2), mkdir(2), mkfifo(3), mknod(2), umask(2).

Miscellaneous topics: acl(5).

527188-021 Hewlett-Packard Company 6−19

more(1) OSS Shell and Utilities Reference Manual

NAME
more - Displays a file one screenful at a time

SYNOPSIS
Current syntax

more [-cdeiNsuvz] [-n number] [-p command] [-t tagstring] [-W option] [-x tabs] [-number]
[file ...]

Obsolescent syntax
more [-cdeiNsuvz] [-number] [+command] [-t tagstring] [-W option] [-x tabs] [-number] [file ...]

The more command invokes a filter that allows examination of continuous text, one screenful at
a time, on a soft-copy terminal.

FLAGS
-c Redraws each line of the screen in turn, from the top of the screen to the bottom,

instead of scrolling the screen, if a screen is to be written that has no lines in common
with the current screen, or more is writing its first screen. In addition, if more is writ-
ing its first screen, the screen will be cleared.

-d Prompts you to continue, quit, or obtain help after each screenful of text.

-e Exits immediately after writing the last line of the last file in the argument list.

-i Performs pattern matching in searches without regard to case.

-n number

-number (Obsolescent)
Sets the number of lines in the display window to number, a positive decimal integer.
The default is one line less than the number of lines displayed by the terminal; on a
screen that displays 24 lines, the default is 23. The -n flag overrides any values
obtained from the environment.

-N Suppresses line numbers. The default (to display line numbers) can cause more to run
more slowly in some cases, especially with very large input files. Using line numbers
means that the line number is displayed in the = subcommand and the command passes
the current line number to the editor (if it is vi).

-p command

+command (Obsolescent)
Executes the more command initially in the command argument for each file exam-
ined. If the command is a positioning command, such as a line number or a regular
expression search, sets the current position to represent the final results of the com-
mand, without writing any intermediate lines of the file. For example, the following
two commands are equivalent and cause the display to start with the current position at
line 1000, bypassing the lines that j would write and scroll off the screen if it had been
issued during the file examination:

more -p 1000j file
more -p 1000G file

If the positioning command is unsuccessful, the first line in the file is the current posi-
tion.

-s Squeezes multiple empty lines from the output, producing only one empty line. Espe-
cially helpful when viewing nroff output, this flag maximizes the amount of useful
information present on the screen.

6−20 Hewlett-Packard Company 527188-021

User Commands (m - o) more(1)

-t tagstring
Writes the screenful of the file containing the tag named by the tagstring argument.
The specified tag appears in the current position. If both -p and -t are specified, more
processes -t first. (The tagstring argument specifies a file created with the ctags utility.
OSS does not support the ctags utility, but more does support ctags files that have
been copied to the OSS environment from another system.)

-u Treats <Backspace> as a printable control character, suppressing backspacing and the
special handling that produces underlined or standout-mode text on some terminal
types. Also, does not ignore a carriage-return character at the end of a line.

-v Does not display nonprinting characters graphically. Without this flag, all non-ASCII
and control characters (except <Tab>, <Backspace>, and <Return>) are displayed
visibly in the form ˆX for <Ctrl-x>, or M-x for non-ASCII character x.

-W option
Provides optional extensions to the more command. Currently, the following two
options are supported:

notite Prevents more from sending the terminal initialization string (the ti termcap
or the smcup terminfo capability) before displaying the file. This argument
also prevents more from sending the terminal de-initialization string (the te
termcap or the rmcup terminfo capability) before exiting.

tite Causes more to send the initialization and de-initialization strings. This is
the default.

The preceding options control whether more sends the control codes described, which
for certain terminals (such as certain xterms) cause more to switch to an alternative
screen. This causes the file you were viewing to vanish from your screen when you
exit.

This is also something you could set in your login file with the MORE environment
variable.

-x tabs Sets the tabstops every tabs position. The default value for the tabs argument is 8.

-z Same as if the -v flag is not given, but in addition, <Backspace> is displayed as ˆH,
<Return> as ˆM, and <Tab> as ˆI.

DESCRIPTION
The more command normally pauses after each screenful, printing the filename at the bottom of
the screen. You can then enter a carriage-return to display one more line, or press <Space> to
display another screenful. Other possibilities are described under SUBCOMMANDS.

The more command looks in the terminfo database to determine terminal characteristics, and to
determine the default window size. On a terminal capable of displaying 24 lines, the default win-
dow size for more is 23 lines.

The more command looks in the MORE environment variable to preset any desired flags. The
MORE variable thus sets a string containing flags and arguments, preceded with - (dash) charac-
ters and space-separated as on the command line. Any command-line flags or arguments are pro-
cessed after those in the MORE variable, as if the command line were as follows:

more $MORE flags arguments

For example, assume that you prefer to view files using the -c and -w flags. The sh command
sequence MORE=’-cw’ ; export MORE would cause all invocations of more, including invoca-
tions by programs such as man to use this mode. Normally, you place the command sequence
that sets up the MORE environment variable in the .profile file or the .kshrc file. Note that the

527188-021 Hewlett-Packard Company 6−21

more(1) OSS Shell and Utilities Reference Manual

string you set the MORE environment variable to must begin with a - (dash).

If more is reading from a file, rather than a pipe, then a percentage is displayed along with the
filename. This gives the fraction of the file (in characters, not lines) that was displayed so far.

If the standard output is not a terminal, then more processes like cat. The compact viewing for-
mat produced by the -s flag can also be used in this case.

SUBCOMMANDS
The more command provides the following subcommands that you can type when more pauses.
These commands are designed to be similar to the commands supported by the vi editor. (i is an
optional integer argument, defaulting to 1.) Regular expressions (as referred to here) are
described under grep.

i<Return>

ij

i<Ctrl-e>

i<Space>
Scrolls forward i lines. The default i for <Space> is one screenful; for j and <Return>
it is one line. The entire i lines are written, even if i is more than the screen size. At
End-of-File, <Return> causes more to continue with the next file in the list, or exits if
the current file is the last file in the list.

d

i<Ctrl-d>
Scrolls forward i lines, with a default of one-half of the screen size. If i is specified, it
becomes the new default for subsequent d and u subcommands.

iu

i<Ctrl-u>
Scrolls backward i lines, with a default of one-half of the screen size. If i is specified,
it becomes the new default for subsequent d and u subcommands. Note that if your
line kill character is <Ctrl-u>, then you must use the u command to scroll backward.

ik

i<Ctrl-y>
Scrolls backward i lines, with a default of one line. The entire i lines are written, even
if i is more than the screen size.

iz Displays i more lines and sets the new window (screenful) size to i.

ig Goes to line i in the file, with a default of 1 (beginning of file). Scrolls or rewrites the
screen so that that line is at the current position. If i is not specified, then more
displays the last screenful in the file. Instead of exiting (or going on to the next file)
after showing the last line of the file, more displays the filename prompt. This gives
you an opportunity to scroll or page backward through the file.

iG Goes to line i in the file, with a default of the end of the file. If i is not specified, scrolls
or rewrites the screen so that the last line in the file is at the bottom of the screen. If i is
specified, scrolls or rewrites the screen so that that line is at the current position.

is Skips forward i lines, with a default of one line, and writes the next screenful beginning
at that point. If i would cause the current position to be such that less than one screen-
ful would be written, the last screenful in the file is written.

6−22 Hewlett-Packard Company 527188-021

User Commands (m - o) more(1)

if

i<Ctrl-f>
Moves forward i lines, with a default of one screenful. At End-of-File, more continues
with the next file in the list, or exits if the current file is the last file in the list.

ib

i<Ctrl-b>
Moves backward i lines, with a default of one screenful (see the -n flag). If i is more
than the screen size, only the final screenful is written.

q, Q

ZZ Exits from more.

=

<Ctrl-g>
Writes the name of the file currently being examined, the number relative to the total
number of files there are to examine, the current line number, the current byte number,
and the total bytes to write, and what percentage of the file precedes the current posi-
tion. If more is reading from standard input, or the file is shorter than a single screen,
some of these items need not be written. All of these items reference the first byte of
the line after the last line written.

v Invokes an editor to edit the current file being examined. The name of the editor is
taken from the $EDITOR environment variable and defaults to vi. If $EDITOR
represents either vi or ex, the editor is invoked with options such that the current editor
line is the physical line corresponding to the current position in more at the time of
invocation. For example, either ex or vi is invoked by specifying the editor name and
following that with -c linenumber.

When the editor exits, more resumes on the current file by rewriting the screen with
the current line as the current position.

h Displays a description of all the more subcommands.

i/[!]expression
Searches forward in the file for the ith line containing the regular expression expres-
sion. The default value for i is 1. If the search is successful, the screen is modified so
that the searched-for line is in the current position. The null regular expression
(/<Return>) repeats the search using the previous regular expression. If the ! (excla-
mation point) character is included, the lines for searching are those that do not contain
expression.

If there are less than i occurrences of expression, and the input is a file rather than a
pipe, then the position in the file remains unchanged.

You can use Erase and Kill characters to edit the regular expression, which must be ter-
minated by pressing <Return> (with no trailing / character). Erasing back past the first
column cancels the search command.

i?[!]expression
Same as /, but searches backward in the file for the ith line containing the regular
expression expression.

in Repeats the previous search for the ith line (default 1) containing the last expression
(or not containing the last expression, if the previous search was /! or ?!).

527188-021 Hewlett-Packard Company 6−23

more(1) OSS Shell and Utilities Reference Manual

iN Repeats the search in the opposite direction of the previous search for the ith line
(default 1) containing the last expression (or not containing the last expression, if the
previous search was /! or ?!).

’ (single quotes)
Returns to the position from which the last large movement subcommand was executed
("large movement" is defined as any movement of more than a screenful of lines). If no
such movements have been made, returns to the beginning of the file.

!command or :!command
Invokes a shell with command. The % (percent sign) and ! (exclamation point) charac-
ters in command are replaced with the current filename and the previous shell com-
mand, respectively. If there is no current filename, % is not expanded. The sequences
\% and \! are replaced by % and !, respectively.

:e [file] Examines a new file. If a filename is not specified, the "current" file (see the :n and :p
subcommands) from the list of files in the command line is re-examined. The filename
is subject to the process of shell word expansions. If file is a # (number sign) character,
the previously examined file is re-examined.

i:n Examines the next file. If i is specified, examines the ith next file specified in the com-
mand line.

i:p Examines the previous file. If i is specified, examines the ith previous file given in the
command line. If this command is given during display of a file, more returns to the
beginning of the file. If more is not reading from a file, the bell is rung and nothing else
happens.

:f Displays the current filename and line number (same as =).

:t tagstring
Goes to the supplied tag string and scrolls or rewrites the screen with that line in the
current position. For more information, see the -t flag.

:q, :Q Exits from more (same as q or Q).

mletter Marks the current position with the specified letter, where letter represents the name of
one of the lowercase letters of the portable character set.

’letter Returns to the position that was previously marked with the specified letter, making
that line the current position.

r

<Ctrl-l> Redraws the screen.

R Redraws the screen, discarding any buffered input. If the current file is nonseekable,
buffered input is not discarded and the R subcommand is equivalent to the r subcom-
mand.

The commands take effect immediately; it is not necessary to type a carriage-return. Up to the
time when the command character itself is given, you can enter the line Kill character to cancel
the numerical argument being formed. In addition, you can enter the Erase character to redisplay
the prompt.

The terminal is set to noecho mode by this program so that the output can be continuous. Thus,
subcommands you enter do not show on your terminal, except for the / (slash), ? (question mark),
and ! (exclamation point) commands. In addition, the value of i (if it is not the default) is shown
at the bottom of the screen preceded by a : (colon).

6−24 Hewlett-Packard Company 527188-021

User Commands (m - o) more(1)

EXAMPLES
1. To examine each file starting with its last screenful, enter:

more -p G file1 file2

2. To examine each file starting with line 100 in the current position (usually the third line,
so line 98 would be the first line written), enter:

more -p 100 file1 file2

3. To examine each file starting with the first line containing the string 100 in the current
position, enter:

more -p /100 file1 file2

RELATED INFORMATION
Commands: cat(1), grep(1), man(1), sh(1).

Files: terminfo(4).

527188-021 Hewlett-Packard Company 6−25

mv(1) OSS Shell and Utilities Reference Manual

NAME
mv - Moves files and directories

SYNOPSIS
mv [-i | f] file1 file2

mv [-i | f] file1 ... directory

mv [-W NOG] [-W NOE] [-i | f] directory1 ... destination_directory

The mv command moves files from one directory to another or renames files and directories.

FLAGS
-f Overrides the -i flag and any mode restrictions. If both -f and -i are specified (for

example, because an alias includes one of them) whichever appears last overrides the
other.

-i Prompts you with the name of the file followed by a question mark whenever a move is
to supercede an existing file. If the answer begins with y, or the locale’s equivalent of a
y, the move continues. Any other reply prevents the move from occurring. If both -f
and -i are specified (for example, because an alias includes one of them) whichever
appears last overrides the other.

HP Extensions
-W NOG Specifies that the /G directory should be omitted when the initial directory is

root. This flag is ignored when the initial directory is not /, /E, or /E/system.

-W NOE Specifies that the /E directory should be omitted when the initial directory is
root. This flag is ignored when the initial directory is not root.

Specify both the -W NOG and -W NOE flags to omit both the /G and /E directories.

DESCRIPTION
If you move a file to a new directory, mv retains the original filename. When you move a file, all
other links to the file remain intact.

In the second form, one or more files are moved to directory with their original filenames. In the
third form, one or more directories are moved to the destination directory with their original
names.

Note that mv does not move a file onto itself.

When you use mv to rename a file, the target file can be either a new filename or a new directory
pathname. If moving the file would overwrite an existing file, the existing file is overwritten
unless you specify the -i flag, in which case you will be prompted. If moving the file would
overwrite an existing file that does not have write permission set and if standard input is a tty, mv
displays the permission code of the file to be overwritten and reads one line from standard input.
If the line begins with y, or the locale’s equivalent of a y, the move takes place and the file is
overwritten. If not, mv does nothing with the file.

When you use mv to move a directory into an existing directory, the directory and its contents
are added under the existing directory.

If the access permissions of the destination_directory or the existing destination file (file2) forbid
writing, the mv command asks the issuer of the command for permission to overwrite the file:

1. The mv command prints the mode (see "Access Control Lists (ACLs)," in this reference
page, and the chmod(1) reference page) followed by the first letters of the words yes and
no in the language of the current locale, to standard output, prompting for a response.

6−26 Hewlett-Packard Company 527188-021

User Commands (m - o) mv(1)

2. The mv command reads one line from the standard input.

3. If the response is the first letter of the word yes in the language of the current locale, the
operation occurs. Otherwise, the operation does not occur, and the command proceeds to
the next source file, if any.

If a mv operation fails, mv generally writes a diagnostic message to standard error, does nothing
more with the current source file, and goes on to process any remaining source files.

If the copying or removal of a file is prematurely terminated by a signal or error, mv might leave
a partial copy of the file at either the source or the target pathname. The mv program will not
modify both the source and target pathnames simultaneously; therefore, program termination at
any point always leaves either the source file or the target file complete.

Access Control Lists (ACLs)
If optional ACL entries are associated with the new file (file2), the mv command displays a plus
sign (+) after the access mode when asking for permission to overwrite the file.

When a file or directory is renamed, all the ACL entries for the file or directory are retained.

This table describes the impact of ACLs on the permissions used when a new file or directory is
created by the mv command. Cases not included in the table represent impossible situations.

mv Source Source Dest. Impact of
Command Fileset File/Dir Filesset ACLs on
Supports Supports Has Opt. Supports Permissions
ACLs ACLs ACLs ACLs of New File/Dir___
Y/N Y/N N N None
Y/N Y/N N Y See Note 2
Y/N Y Y N See Notes 1 and 3
N Y Y Y See Notes 1 and 2
Y Y Y Y See Note 4___�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Note 1: The optional ACLs for the source file or directory are not copied to the destina-
tion file or directory.

Note 2: If the destination parent directory has default ACL entries, those default ACL
entries are inherited by the new file or directory (see the acl(5) reference page).

Note 3: The file permissions are copied to the destination file or directory and the class
entry permissions in the ACL are used for the destination file or directory group
permissions.

Note 4: All ACL entries are retained by the new file or directory.

For G-series RVUs, H06.19 and earlier H-series RVUs, or J06.08 and earlier J-series RVUs, the
OSS Network File System (NFS) cannot access OSS objects that have OSS ACLs that contain
optional ACL entries.

For J06.09 and later J-series RVUs and H06.20 and later H-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects that have OSS ACLs that contain optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains
the object, however:

• The mv command does not move any ACLs associated with the object.

527188-021 Hewlett-Packard Company 6−27

mv(1) OSS Shell and Utilities Reference Manual

•• The permissions used when an object is created by the mv command depend on the
value of the NFSPERMMAP attribute for the fileset on the system that contained the ori-
ginal file.

For more information about NFS and ACLs, see the acl(5) reference page.

Environment Variables
The following environment variables affect the execution of the mv command:

LC_MESSAGES
Determines the locale’s equivalent of y or n (for yes/no queries).

UTILSGE Specifies that HP extensions to the root directory should be omitted when the ini-
tial directory is root and a recursive operation occurs in an OSS shell command.
Application programs that test this variable might also honor its settings.

The UTILSGE value can be any of the following:

NOE Omit the /E directory.

NOG Omit the /G directory.

NOG:NOE Omit both the /G and /E directories.

The effect of assigning a value to UTILSGE environment variable is the same
as specifying the -W NOG or -W NOE flag in the command.

EXAMPLES
1. To rename a file, enter:

mv file1 file2

This renames file1 to file2. If a file named file2 already exists, its old contents are
replaced with those of file1.

2. To move a directory, enter:

mv dir1 dir2

This moves dir1 to dir2. It moves all files and directories under dir1 to the directory
named dir2, if the second directory exists. Otherwise, the directory dir1 gets renamed
dir2.

3. To move a file to another directory and give it a new name, enter:

mv file1 dir1/file2

This moves file1 to dir1/file2. The name file1 is removed from the current directory, and
the same file appears as file2 in the directory dir1.

4. To move a file to another directory, keeping the same name, enter:

mv file1 dir1

This moves file1 to dir1/file1.

5. To move several files into another directory, enter:

mv file1 dir1/file2 /u/dir2

This moves file1 to /u/dir2/file1 and dir1/file2 to /u/dir2/file2.

6−28 Hewlett-Packard Company 527188-021

User Commands (m - o) mv(1)

6. To use mv with pattern-matching characters, enter:

mv dir1/* .

This moves all files in the directory dir1 into the current directory (.), giving them the
same names they had in dir1. This also empties dir1. Note that you must type a space
between the * (asterisk) and the . (dot).

7. To move all OSS files on the local node to a remote node, enter:

mv -W NOG -W NOE / /E/node

where node is the Expand node name of the target remote node.

NOTES
If the source is on a different file system than the destination, mv must copy the source to the
destination’s file system and then delete the source. In this case, if the current user is not
privileged enough to change ownership to the actual user, then the user ID becomes that of the
current user, but the mode and times are not changed. The effect is equivalent to the following
command syntax:

rm -f destination && cp -pR source destination && rm -rf source

Because /G and /E both appear in your local root directory, you should be very careful when
using OSS shell commands on or from the root directory. OSS shell commands that perform
recursive actions make no distinction between Guardian and OSS files or between local and
remote files. You can use the -W NOG and -W NOE flags or the UTILSGE environment vari-
able to exclude objects in the Guardian file system or objects accessible through the Expand pro-
duct.

For H06.23 and later H-series RVUs, J06.12 and later J-series RVUs, the H06.22 RVU with the
T9194H01ˆAFA SPR installed, or the J06.11 RVU with the T9194J01ˆAEZ SPR installed, a
remote user can move an SQL object that is in the OSS file system even if the file is present in
the destination directory.

For H06.22 (without the T9194H01ˆAFA SPR installed) and earlier H-series RVUs, and J06.11
(without the T9194J01ˆAEZ SPR installed) and earlier J-series RVUs, if a remote user attempts
to move an SQL object that is in the OSS file system and the file is present in the destination
directory, the mv command fails with error "Guardian or User Defined Error 197". To move this
type of file on these RVUs, a local user must execute the mv command.

File-Label and SQL Catalog Table Inconsistencies
When you issue the mv command to move an OSS SQL program file and an SQL program with
the same name already exists in the destination directory, if the command fails due to certain
failure scenarios such as a CPU failure, disk failure, or application outage, this failure can cause
an inconsistency between the destination SQL program file label already existing and the
corresponding SQL catalog. The program can lose its SQL properties, but have SQL catalog
entries present. In this case, the following conditions occur:

• The program does not run after losing its SQL properties.

• The SQL catalog tables have stray entries for this program file. The program exists, but
its just like a normal Enscribe file.

• If any DDL command is issued on a table on which the program depends, the program
obtains partial SQL properties and remains invalid.

527188-021 Hewlett-Packard Company 6−29

mv(1) OSS Shell and Utilities Reference Manual

CAUTIONS
The mv command may overwrite existing files unless the -i flag is specified to prompt you first.

RELATED INFORMATION
Commands: chmod(1), cp(1), ln(1), rm(1), rmdir(1).

Functions: rename(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The -W NOG and -W NOE flags and the UTILSGE environment variable are HP extensions to
the XPG4 Version 2 specification.

6−30 Hewlett-Packard Company 527188-021

User Commands (m - o) nawk(1)

NAME
nawk - Manipulates text and matches patterns in files

SYNOPSIS
nawk -f program [-Fcharacter] [file ...]

nawk [-Fcharacter] statement ... [file ...]

FLAGS
-Fcharacter

Uses character as the field separator character (a space by default).

-f program
Searches for the patterns and performs the actions found in the file program.

DESCRIPTION
The nawk command provides a flexible text-manipulation language suitable for simple report
generation. It is a more powerful tool for text manipulation than either sed or grep.

The nawk command:

• Performs convenient numeric processing.

• Allows variables within actions.

• Allows general selection of patterns.

• Allows control flow in the actions.

• Does not require any compiling of programs.

Pattern-matching and action statements can be specified either on the command line or in a pro-
gram file. In either case, nawk first reads all matching and action statements, then reads a line of
input and compares it to each specified pattern. If the line matches a specified pattern, nawk per-
forms the specified actions and writes the result to standard output. When it has compared the
current input line to all patterns, it reads the next line.

The nawk command reads input files in the order stated on the command line. If you specify a
filename as a - (dash) or do not specify a filename, nawk reads standard input.

Enclose pattern-action statements on the command line in ’’ (single quotes) to protect them from
interpretation by the shell. Consecutive pattern-action statements on the same command line
must be separated by a ; (semicolon), within one set of quotes. Consecutive pattern-action state-
ments in a nawk program file must appear on separate lines.

You can assign values to variables on the nawk command line as follows:

variable=value

The awk command treats input lines as fields separated by spaces, tabs, or a field separator you
set with the FS variable. (Consecutive spaces are recognized as a single separator.) Fields are
referenced as $1, $2, and so on. $0 refers to the entire line.

527188-021 Hewlett-Packard Company 6−31

nawk(1) OSS Shell and Utilities Reference Manual

Pattern-Action Statements
Pattern-action statements follow the form:

pattern {action}

If a pattern lacks a corresponding action, nawk writes the entire line that contains the pattern to
standard output. If an action lacks a corresponding pattern, nawk applies the action to every
line.

Actions
An action is a sequence of statements that follow C language syntax. These statements can
include:

if (expression) statement [else statement]

while (expression) statement

for (expression;expression;expression) statement

for (variable in array) statement

break

continue

{ [statement ...] }

variable=expression

print [expression_list] [>file] [| command]

printf format[,expression_list] [>file | >>file | | command]

next

exit [expression]

delete array [expression]

Statements can end with a semicolon, a newline character, or the right brace enclosing the action.

Expressions can have string or numeric values and are built using the operators +, -, , /, %, and ˆ
(exponentiation), a space for string concatenation, and the C operators ++, --, +=, -=, , /=, %=, ˆ=,
*=, >, >=, <, <=, ==, !=, and ?:.

Because the actions process fields, input white space is not preserved in the output.

The file and command arguments can be literal names or expressions enclosed in parentheses.
Identical string values in different statements refer to the same open file.

The print statement writes its arguments to standard output (or to a file if > file or >> file is
present), separated by the current output field separator and terminated by the current output
record separator.

The printf statement writes its arguments to standard output (or to a file if >file or >>file is
present, or to a pipe if | command is present), separated by the current output field separator, and
terminated by the output record separator. file and command can be literal names or
parenthesized expressions. Identical string values in different statements denote the same open
file. You can redirect the output into a file using the print ... > file or printf (...) > file state-
ments. The printf statement formats its expression list according to the format of the printf()
subroutine.

6−32 Hewlett-Packard Company 527188-021

User Commands (m - o) nawk(1)

Variables
Variables can be scalars, array elements (denoted x[i]), or fields.

Variable names can consist of uppercase and lowercase alphabetic letters, the underscore charac-
ter, the digits (0 to 9), and extended characters. Variable names cannot begin with a digit.

Variables are initialized to the null string. Array subscripts can be any string; they do not have to
be numeric. This approach allows for a form of associative memory. Enclose string constants in
expressions in "" (double quotes). Multiple subscripts such as [i,j,k] are permitted; the consti-
tuents are concatenated and separated by the value of SUBSEP (see the description in the fol-
lowing list).

There are several variables with special meaning to nawk. They include:

ARGC Argument count, assignable.

ARGV Argument array, assignable; nonnull members are interpreted as filenames.

FS Input field separator (default is a space). If it is a space, then any number of spaces and
tabs can separate fields.

NF The number of fields in the current input line (record), with a limit of 99.

NR The number of the current input line (record).

FNR The number of the current input line (record) in the current file.

FILENAME
The name of the current input file.

RS Input record separator (default is a newline character).

OFS The output field separator (default is a space).

ORS The output record separator (default is a newline character).

OFMT The output format for numbers (default % .6g).

SUBSEP
Separates multiple subscripts (default is 031).

Functions
Functions are defined at the position of a pattern-action statement, as follows:

function foo(a, b, c) { ... ; return x }

Arguments are passed by value if scalar and by reference if array name; functions can be called
recursively. Arguments are local to the function; all other variables are global.

There are several built-in functions that can be used in nawk actions. (For information about
regular expressions as referred to in this subsection, see the grep(1) reference page.)

length(argument)
Returns the length, in characters, of argument, or of the entire line if there is no argu-
ment.

blength(argument)
Returns the length, in bytes, of argument, or of the entire line if there is no argument.

527188-021 Hewlett-Packard Company 6−33

nawk(1) OSS Shell and Utilities Reference Manual

close(argument)
Closes the file or pipe expression. Note that you must enclose a filename in double
quotes when redirecting output with the nawk command; otherwise, it is treated as a
nawk variable. For example:

print "Hello" > "/tmp/junk"
close ("/tmp/junk")

exp(number)
Takes the exponential of its argument.

rand Returns a random number on (0, 1).

srand(number)
Sets seed for rand. The default is the time of day.

log(number)
Takes the base e logarithm of its argument.

sqrt(number)
Takes the square root of its argument.

int(number)
Takes the integer part of its argument.

substr(string,position,number)
Returns the substring number characters long of string, beginning at position.

index(string,string2)
Returns the position in string where string2 occurs, or 0 (zero) if it does not occur.

match(string,regular_expression)
Returns the position in string where regular_expression occurs, or 0 (zero) if it does
not occur. The RSTART and RLENGTH built-in variables are set to the position and
length, in bytes, of the matched string.

split(string,a,[regular_expression])
Splits string into array elements a[1], a[2], . . ., a[number], and returns number. The
separation is done with the specified regular expression or with the FS field separator if
regular_expression is not given.

sub(regular_expression,string2,[string])
Substitutes string2 for the first occurrence of the regular expression regular_expression
in string. If string is not given, the entire line is used.

gsub(regular_expression,string2,[string])
Same as sub except that all occurrences of the regular expression are replaced; both
sub and gsub return the number of replacements.

sprintf(fmt,expression1,
expression2, ...)" Formats the expressions according to the printf format string fmt and
returns the resulting string.

system(command)
Executes command and returns its exit status.

The getline function sets $0 to the next input record from the current input file; getline < file sets
$0 to the next record from file. getline x sets variable x instead. Finally, command | getline
pipes the output of command into getline. Each call of getline returns the next line of output

6−34 Hewlett-Packard Company 527188-021

User Commands (m - o) nawk(1)

from command. In all cases, getline returns 1 for a successful input, 0 (zero) for End-of-File, and
-1 for an error.

Patterns
Patterns are arbitrary Boolean combinations of patterns and relational expressions (the !, |, and &
operators and parentheses for grouping). You must start and end regular expressions with
slashes. You can use regular expressions as described for the grep command, including the fol-
lowing special characters:

+ One or more occurrences of the pattern.

? Zero or one occurrence of the pattern.

� Either of two statements.

() Grouping of expressions.

Isolated regular expressions in a pattern apply to the entire line. Regular expressions can occur
in relational expressions. Any string (constant or variable) can be used as a regular expression,
except in the position of an isolated regular expression in a pattern.

If two patterns are separated by a comma, the action is performed on all lines between an
occurrence of the first pattern and the next occurrence of the second.

Regular expressions can contain extended (multibyte) characters with one exception: range con-
structs in character class specifications using brackets cannot contain multibyte extended charac-
ters. Individual instances of extended (multibyte) characters can appear within brackets; how-
ever, extended characters are treated as separate one-byte characters.

Inclusion of extended characters in ranges is determined by the collating sequence as defined by
the current locale. The wild-card characters , +, and ? match characters and character strings, not
bytes.

There are two types of relational expressions you can use. The first type has the form:

expression match_operator pattern

where match_operator is either: ˜ (for contains) or !˜ (for does not contain).

The second type has the form:

expression relational_operator expression

where relational_operator is any of the six C relational operators: <, >, <=, >=, ==, and !=. A
conditional can be an arithmetic expression, a relational expression, or a Boolean combination of
these expressions.

You can use the BEGIN and END special patterns to capture control before the first and after the
last input line is read, respectively. BEGIN must be the first pattern; END must be the last.
BEGIN and END do not combine with other patterns.

You have two ways to designate a character other than white space to separate fields. You can
use the -Fcharacter flag on the command line, or you can start program with the following
sequence:

BEGIN { FS = c }

Either action changes the field separator to c.

527188-021 Hewlett-Packard Company 6−35

nawk(1) OSS Shell and Utilities Reference Manual

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number, add 0 (zero) to it. To force it to be treated as a string, append a null string
("").

EXAMPLES
1. To display the lines of a file longer than 72 bytes, enter:

nawk ’length >72’ chapter1

This command selects each line of the file chapter1 that is longer than 72 bytes. nawk
then writes these lines to standard output because no action is specified.

2. To display all lines between the words start and stop, enter:

nawk ’/start/,/stop/’ chapter1

3. To run a nawk program (sum2.awk) that processes a file (chapter1), enter:

nawk -f sum2.awk chapter1

4. To print the first two fields of a file named filename in reverse order, enter:

nawk ’{ print $2, $1 }’ filename

5. The following nawk program prints the first two fields of the input file in reverse order,
with input fields separated by a comma and a space, then adds up the first column and
prints the sum and average:

BEGIN { FS = ",[]*|[]+" }
{ print $2, $1}
{ s += $1 }

END { print "sum is", s, "average is", s/NR }

RELATED INFORMATION
Commands: awk(1), grep(1), sed(1).

Functions: printf(3).

Files: locale(4).

6−36 Hewlett-Packard Company 527188-021

User Commands (m - o) newgrp(1)

NAME
newgrp - Changes the shell process to a new group

SYNOPSIS
newgrp [-] [group]

FLAGS
- Changes the login environment as well as the primary group identification.

DESCRIPTION
The newgrp command changes the primary group identification of the current shell process to
group. Both the user’s real group ID and effective group ID are changed. Any active user-
generated shell is terminated.

The user remains logged in and the current directory is unchanged. Execution of the newgrp
command always replaces the current shell with a new shell, even when the command terminates
with an error (such as unknown group).

The program used as the new shell is chosen as follows:

1. The program file specified in the security database as the INITIAL-PROGRAM attribute
of the user ID is run.

2. If the INITIAL-PROGRAM attribute is not specified, the program file specified as the
most recently exported value for the SHELL environment variable is run.

If you specify a - (dash), newgrp also changes the login environment of the new shell process to
the login environment of the new group.

Operands
group Specifies the group name of the group to which the primary group identification

of the shell should be changed.

If you do not specify a group, newgrp changes the primary group identification
to the default group specified for the current user in the system security database.

Only a user with appropriate privileges can change the primary group
identification of the shell to a group to which that user does not belong.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES,
NLSPATH, and SHELL environment variables.

EXIT VALUES
When the newgrp command successfully creates a new shell execution environment, it returns
the exit value of the old shell execution environment. This exit value does not necessarily indi-
cate that the primary group identification was successfully changed.

When the newgrp command fails, it returns the following values:

>0 An error occurred.

RELATED INFORMATION
Commands: sh(1).

STANDARDS CONFORMANCE
This command conforms to the obsolescent alternative within the XPG4 Version 2 specification.
The -l flag is not supported.

527188-021 Hewlett-Packard Company 6−37

nice(1) OSS Shell and Utilities Reference Manual

NAME
nice - Runs a command at a different priority

SYNOPSIS
nice [-n priority] command [argument ...]

FLAGS
-n priority

Specifies how the system scheduling priority of the executed utility is to be adjusted.
The priority argument is a positive or negative decimal integer that changes the nice
value used when determining scheduling priority. Positive priority values cause a
lower or unchanged system scheduling priority. Negative priority values require
appropriate privileges and cause a higher or unchanged system scheduling priority.

DESCRIPTION
The nice command lets you run the command specified by command at a different priority. The
argument operand passes a command flag, operand, or other argument to the specified command.

For users without appropriate privileges, the value of priority can be in the range 1 through 19,
with 19 being the lowest priority. The default value of priority is 10.

For users with appropriate privileges, the value of priority can be in the ranges 1 through 19 or -1
through -19. The highest possible priority is -19.

When you have appropriate privileges, you can run commands at a higher priority by specifying
priority as a negative number; for example, -10.

If you lack appropriate privileges to affect command priority, nice is still invoked, but the change
in priority you specify does not take effect.

Refer to the nice(2) reference page for a description of the relationship among the nice value for
a process, the OSS scheduling priority for the process, and the Guardian priority for the process.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES,
NLSPATH, and PATH environment variables.

EXAMPLES
1. To run the c89 utility as a low-priority command in the background, enter:

nice c89 -c *.c &

This command executes the command c89 -c *.c at a low priority in the background.
Your terminal is free so that you can run other commands while c89 is running. Refer to
the sh(1) reference page for details about starting background processes with & (amper-
sand).

2. To specify a very low priority for the c89 utility, enter:

nice -n 15 c89 -c *.c &

This command executes the command c89 -c *.c in the background at a priority that is
even lower than the default priority set by nice.

EXIT VALUES
The nice command returns the following exit values:

1-125 An error occurred in the nice utility.

126 The specified command was found but could not be invoked.

6−38 Hewlett-Packard Company 527188-021

User Commands (m - o) nice(1)

127 The specified command could not be found.

RELATED INFORMATION
Commands: nohup(1), sh(1).

Functions: nice(2).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

527188-021 Hewlett-Packard Company 6−39

nl(1) OSS Shell and Utilities Reference Manual

NAME
nl - Numbers lines in a file

SYNOPSIS
nl

[-b type]
[-d delimiter1[delimiter2]]
[-f type]
[-h type]
[-i number]
[-l number]
[-n format]
[-p]
[-s [separator]]
[-v number]
[-w number]
[file]

FLAGS
Use the following flags to change the default settings. If a particular flag is not specified, nl uses
its default value.

-b type Specifies which logical page body section lines to number. The recognized values for
type are:

a Numbers all lines

t Does not number blank lines (the default value for -b)

n Does not number any lines

ppattern Numbers only those lines containing the basic regular expression
specified by pattern

-d delimiter1[delimiter2]
Uses delimiter1 and delimiter2 as the delimiter characters for the start of a logical page
section. The two default characters are \: (backslash followed by a colon). You can
specify either one or two characters after the -d flag. If you enter only one character
after -d, the second delimiter character remains the default (:). If you want to use a
backslash as a delimiter, you must enter two backslashes (\\).

-f type Specifies which logical page footer lines to number. The values recognized for type
are the same as those for -b type. The default value for type in the -f flag is n (no lines
numbered).

-h type Specifies which logical page header lines to number. The values recognized for type
are the same as those for -b type. The default value for type in the -h flag is n (no lines
numbered).

-i number
Increments logical page line numbers by number. The default value of number is 1.

-l number
Counts number blank lines as 1. For example, -l 3 numbers only the third adjacent
blank (if the appropriate -h a, -b a, or -f a flag is set). The default value of number is 1.

6−40 Hewlett-Packard Company 527188-021

User Commands (m - o) nl(1)

-n format
Specifies format as the line-numbering format. Recognized formats are:

ln Left justified, leading zeros are suppressed

rn Right justified, leading zeros are suppressed (the default value)

rz Right justified, leading zeros are kept

-p Ignores logical page delimiters (does not restart numbering).

-s[separator]
Separates text from line numbers with the separator string. The default value of
separator is a tab character.

-v number
Sets the initial logical page line number to number. The default value of number is 1.

-w number
Specifies number as the number of digits in the line number. The default value of
number is 6.

DESCRIPTION
The nl command reads file (the standard input file by default), numbers the lines in the input, and
writes the numbered lines to the standard output file.

In the output, nl numbers the lines on the left, according to the flags you specify on the command
line.

The input text must be written in logical pages. Each logical page has a header, a body, and a
footer section (sections can be empty). Unless you use the -p flag, nl resets the line numbers at
the start of each logical page. You can set line-numbering flags independently for the header,
body, and footer sections (for example, no numbering of header and footer lines while numbering
text lines only in the body).

Signal the start of logical page sections with lines in file that contain nothing but the following
delimiter characters:
Line Contents Start of
\:\:\: Header
\:\: Body
\: Footer

If file contains none of these lines, then the entire file is considered the body.

You can name only one file on the command line. You can list the flags and the filename in any
order.

Unless otherwise specified, nl assumes the text being read is in a single logical page body.

EXAMPLES
1. To number only the nonblank lines in the file chap1, enter:

nl chap1

This displays a numbered listing of chap1, numbering only the nonblank lines in the
body sections by default. If chap1 contains no \:\:\:, \:\:, or \: delimiters, then the entire
file is considered the body.

527188-021 Hewlett-Packard Company 6−41

nl(1) OSS Shell and Utilities Reference Manual

2. To number all lines in chap1, enter:

nl -b a chap1

This command numbers all the lines in the body sections, including blank lines. This
form of the nl command is adequate for most uses.

3. To number the lines in chap1 and specify a different line-number format, enter:

nl -i 10 -n rz -s :: -v 10 -w 4 chap1

This command numbers the lines of chap1, starting with 10 (-v 10) and incrementing by
10 (-i 10). It displays four digits for each number (-w 4), right-justified including leading
zeros (-n rz). The line numbers are separated from the text by two colons (-s ::). For
example, if chap1 contains the following text:

A not-so-important note to remember:

You can’t kill time without injuring eternity.

then the numbered listing is as follows:

0010::A not-so-important note to remember:

0020::You can’t kill time without injuring eternity.

Note that the blank line was not numbered. To number the blank line too, use the -b a
flag as shown in Example 2.

RELATED INFORMATION
Commands: cat(1), pr(1).

Files: locale(4).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification.

6−42 Hewlett-Packard Company 527188-021

User Commands (m - o) nld(1)

NAME
nld - Creates a non-PIC executable object file (loadfile) from one or more relinkable non-PIC
object files (linkfiles)

SYNOPSIS
nld

[-allow_duplicate_procs]
[-allow_missing_libs]
[-allow_multiple_mains]
[-ansistreams]
[-bdynamic]
[-bstatic]
[-change attribute-name attribute-value filename]
[-e name]
[-elf_check filename]
[-export symbol_name]
[-import symbol_name { filename | =srlname }]
[{ -l | -lib } filename]
[{ -L | -libvol } pathname]
[-libname Guardian_filename]
[-nostdfiles]
[-nostdlib]
[-noverbose]
[-o filename]
[{ -obey | -fl } filename]
[-r]
[-rename old-name new-name]
[-s]
[-set attribute-name attribute-value]
[-stdin]
[-strip filename]
[-ul]
[-verbose]
[-x]
[-y symbol]
[obj-filename] ...

FLAGS
-allow_duplicate_procs

Tells nld to unconditionally accept multiple copies of a procedure, rather than to allow
only procedures specifically marked as duplicatable by C++. The only check made is
that all copies of the procedure have the same procedure attributes; it is an acceptable
condition, for example, if they have different sizes. The first copy of the duplicated
procedure is the one that is kept. When building an executable file, no space is allo-
cated for the unused copies.

-allow_missing_libs
Tells nld not to stop processing the input file when it cannot find an archive or a shared
run-time library (SRL) after searching for the name specified by a -l or -lib flag.
Instead, a warning message is issued and processing continues.

527188-021 Hewlett-Packard Company 6−43

nld(1) OSS Shell and Utilities Reference Manual

-allow_multiple_mains
Tells nld that it is not to issue an error message if more than one procedure has the
MAIN attribute. All main procedures are included in the output file. Only the first pro-
cedure having the MAIN attribute is listed as the main entry point in the file header.

-ansistreams
Specifies that C run-time library functions create files of type 180 (C binary) instead of
type 101 (EDIT). The type of files created can also be set with the ANSISTREAMS C
and C++ compiler pragma. Refer to the C/C++ Programmer’s Guide for details.

-bdynamic
Directs nld to search for SRLs and archive files when resolving -l and -lib flags. This
is the nld default action.

nld first searches for an SRL. If an SRL cannot be found, nld then searches for an
archive file. nld issues an error if neither an SRL nor archive file can be found.

This flag can be disabled by the -bstatic flag. Multiple -bdynamic and -bstatic flags
can be specified in a single nld invocation. Thus, it is possible to search for both SRLs
and archive files for some -l and -lib flags and to search for just archive files for others.

-bstatic Directs nld to to search for archive files when resolving -l and -lib flags. nld does not
search for SRLs. nld issues an error if an archive file cannot be found.

This flag can be disabled by the -bdynamic flag. Multiple -bdynamic and -bstatic
flags can be specified in a single nld invocation. Thus, it is possible to search for both
SRLs and archive files for some -l and -lib flags and to search for just archive files for
others.

-change attribute-name attribute-value filename
Changes the value of the run-time attribute specified in attribute-name to the value
specified in attribute-value in the existing relinkable or executable object file specified
by filename. See the -set flag for a description of attribute-name and attribute-value.

You cannot specify other flags or object filenames with the -change flag. The resulting
object file has the same nld timestamp as before. The -set flag can be used to set an
attribute when creating a relinkable or executable object file.

-e name Specifies a function identifier. The specified function is the point at which to begin
executing the program when the program is loaded.

This flag should be used only when linking a program that will execute without stan-
dard run-time support facilities and without linking a module such as CRTLMAIN that
contains a function with the MAIN attribute. This flag should not be used for libraries.

-elf_check filename
Tells nld to check the specified executable file for corruptions that might have occurred
when:

• Unresolved references in the data portion of the file that were not on a 4-byte-
aligned boundary were resolved.

• The PC version of NLD changed the file header during an SRL fixup operation.

This is a read-only operation.

6−44 Hewlett-Packard Company 527188-021

User Commands (m - o) nld(1)

-export symbol_name
Specifies that the named symbol is exported by the SRL being created.

-import symbol_name { filename | =srlname }
Tells nld to import the named unresolved symbol from the SRL specified by either its
filename or its SRL name. Searches for the symbol within the SRL are governed by the
specification for the -libvol flag, using the rules for -lib flags.

This flag cannot be specified when the -r flag is specified.

{ -l | -lib } filename
Specifies the name of an SRL or archive file to use to resolve external references from
the executable file being linked. The -l flag must be specified in lowercase type, and
the space after the flag and before filename is optional.

A simple name is an OSS pathname without any directory components. If filename is
not a simple name, nld searches the specified location. If filename is a simple name,
nld adds the string lib to the beginning of the name. It also adds either .a or .srl to the
end of the name, depending on whether -bdynamic or -bstatic is set. Files with the
suffix .a are archive files, and files with the suffix .srl are SRLs. Simple filenames in
the Guardian file system, /G, are not modified.

nld searches for files specified with simple names in -l and -lib flags in locations
specified in each -L and -libvol flag, in the order specified to nld, before searching any
of the standard library locations. If you specify the -nostdlib flag, nld does not search
the standard library locations. See the Standard Library Locations subsection under
DESCRIPTION for details.

{ -L | -libvol } pathname
Specifies a pathname to search for an SRL or archive file specified by a simple
filename in an -l or -lib flag. A simple filename is an OSS pathname without any direc-
tory components. The -L flag must be specified in uppercase type, and the space after
the flag and before pathname is optional. -libvol is a synonym for -L.

nld searches for files specified with simple names in -l and -lib flags in locations
specified in each -L and -libvol flag, in the order specified to nld, before searching any
of the standard library locations. If you specify the -nostdlib flag, nld does not search
the standard library locations. See the Standard Library Locations subsection under
DESCRIPTION for details.

nld does not verify the names of locations specified in -L or -libvol flags. If you
specify the -verbose flag, nld writes to its output listing the locations where it found an
SRL or archive file.

-libname Guardian_filename
Associates a TNS/R native user library with an executable native program file. You can
associate a native user library to an executable object file but not to a relinkable object
file. The -set and -change flags can also associate a native user library with an execut-
able native program.

The value specified for Guardian_filename must use uppercase characters and cannot
be the Guardian name of an OSS file.

-nostdfiles
Specifies that C run-time library functions do not automatically open the standard input
and standard output files.

527188-021 Hewlett-Packard Company 6−45

nld(1) OSS Shell and Utilities Reference Manual

-nostdlib
Prevents nld from searching the standard library locations for SRLs and archive files.

-noverbose
Prevents nld from writing warning and informational messages to its output listing. The
-verbose flag directs nld to write warning and informational messages to its output list-
ing. The default value is -noverbose.

-o filename
Specifies the filename of the output object file.

filename can be the same as the input file name. When this is true and linking is suc-
cessful, nld deletes the input file and then writes the output file. An error occurs if you
do not have permission to delete the input file.

If you do not specify a -o flag, the default output filename is a.out.

{ -obey | -fl } filename
Specifies the name of an nld command file containing nld command tokens (such as
filenames and command flag specifications).

filename is a C text file. Tokens can be separated by spaces, tabs, or ends of lines.
Within the command file, two hyphens indicate a comment that extends to the end of
the current line. Command files can be nested and there is no limit to the depth of nest-
ing. Recursive nesting does not cause an error; nld does not read the same command
file more than once.

-r Directs nld to create a relinkable object file for later use as an nld input file, instead of
creating an executable object file. nld creates an executable object file by default.

-rename old-name new-name
Changes the symbol name of an externally visible procedure or data item. old-name is
the name of the procedure or data item to rename. new-name is the new name to give
the procedure or data item. See the nld and noft Manual for details.

-s Removes symbol information used for linking and symbolic debugging from the output
executable object file. A file stripped of all symbol information cannot be symbolically
debugged with the Inspect debugger or linked again by nld.

You can use this flag only when creating an executable object file. If you specify both
the -r and -s flags, the -s flag is ignored. To strip all symbol information from an exist-
ing executable object file, use the -strip flag. You can strip only the symbol informa-
tion used for symbolic debugging with the -x flag.

-set attribute-name attribute-value
Sets the value of the run-time attribute specified in attribute-name to the value
specified in attribute-value when creating a relinkable or executable object file. Use
the -change flag to change a run-time attribute in an existing relinkable or executable
object file.

Each attribute-name has a corresponding range of accepted attribute-values as follows:

• FLOATTYPE is one of the following:

IEEE_FLOAT
NEUTRAL_FLOAT
TANDEM_FLOAT

If FLOATTYPE is specified more than once, all occurrences except the final
one are ignored.

6−46 Hewlett-Packard Company 527188-021

User Commands (m - o) nld(1)

• HEAP_MAX, MAINSTACK_MAX, PFS[SIZE], [PROCESS_]SUBTYPE,
and SPACE_GUARANTEE are numbers.

• FLOAT_LIB_OVERRULE, HIGHPIN, HIGHREQUESTER[S] |
HIGHREQUESTOR[S], INSPECT, RUNNAMED, and SAVEABEND are
either ON or OFF.

• LIBNAME is the Guardian filename of a library file, specified as described for
the -libname flag.

• SYSTYPE is either OSS or GUARDIAN.

The default values of run-time attributes are as follows:

• FLOAT_LIB_OVERRULE is OFF.

• FLOATTYPE is derived from the floating-point data type of the correspond-
ing input object files.

• HEAP_MAX is 0.

• HIGHPIN is ON.

• HIGHREQUESTER[S] | HIGHREQUESTOR[S] is ON.

• INSPECT is ON.

• LIBNAME is none.

• MAINSTACK_MAX is 0.

• PFS[SIZE] is 0.

• [PROCESS_]SUBTYPE is 0.

• RUNNAMED is OFF.

• SAVEABEND is OFF.

• SPACE_GUARANTEE is 0.

• SYSTYPE is OSS.

Refer to the nld and noft Manual for a description of each run-time attribute.

-stdin Reads the contents of the standard input file at the place in the command line where the
flag is specified.

-strip filename
Removes symbol information used for linking and symbolic debugging from an exist-
ing executable object file with the name filename. A file stripped of all symbol infor-
mation cannot be symbolically debugged with the Inspect debugger or linked again by
nld.

You can use this flag only on an existing executable object file. To strip all symbol
information when creating an executable object file, use the -s flag. You can strip only
the symbol information used for symbolic debugging with the -x flag. You cannot
specify any other flags or object filenames with the -strip flag. The resulting file has the
same nld timestamp as before.

527188-021 Hewlett-Packard Company 6−47

nld(1) OSS Shell and Utilities Reference Manual

-ul Creates a native user library. Specify this flag when linking modules to create a native
user library.

When the -ul flag is specified, all functions are exported unless the -export option is
also used.

-verbose Directs nld to write warning and informational messages to its output listing. The
default value is -noverbose.

-x Removes symbol information used for symbolic debugging from the output file. This
action often decreases the size of an object file. The file cannot be symbolically
debugged with the Inspect debugger, but enough information remains so the object file
can be used as nld input again. This flag is often used with the -r flag.

If you specify only one input filename and both the -x and -r flags, and if you specify
the same filename again for the output file with the -o flag, you can partially strip a file
in place. The resulting file has a new nld timestamp. The resulting object file is not
necessarily smaller than the original file.

-y symbol
Identifies which object files define and use the symbol symbol. If the -verbose flag is
specified, nld writes to its output listing information to identify which object files
define and use the specified symbol. This information can be useful if a previous nld
session produced error or warning messages about a symbol being either undefined or
defined more than once.

obj_filename
Specifies one or more object files for the nld utility to link. This operand is required
for all flags except the -change and -strip flags.

DESCRIPTION
The nld utility links one or more TNS/R native object files to produce an executable or nonexe-
cutable native object file in a non-position-independent code (non-PIC) form, in contrast with the
ld utility. You can also modify existing executable files using nld.

You can invoke nld directly, or:

• If you are creating a TNS/R native C or C++ program with non-position-independent
(nonPIC) code, you can use the c89 utility to invoke nld automatically

• If you are creating a TNS/R native COBOL program with nonPIC code, you can use the
nmcobol utility to invoke nld automatically

On the command line, the filenames are the names of input object files, archives, or SRLs.
Names of flags must be followed by spaces and are not case-sensitive, except for the -l and -L
flags.

Standard Library Locations
The OSS version of nld searches for SRLs and archive files in the following standard library
locations:

• The directory with the current version of the operating system image (the active
/G/system/sysnn directory)

• The /lib directory

6−48 Hewlett-Packard Company 527188-021

User Commands (m - o) nld(1)

• The /usr/lib directory

• The /usr/local/lib directory

The value of the COMP_ROOT environment variable is added to the beginning of /lib, /usr/lib,
and /usr/local/lib. By default, the value of COMP_ROOT is null in the OSS environment.

For More Information
nld is not an interactive tool like Binder. For more information on using nld and details on map-
ping Binder commands to nld commands, refer to the nld and noft Manual.

EXAMPLES
1. The following example:

nld objecta objectb -o objectc

links together the input object files named objecta and objectb to create an executable
file named objectc.

2. The following example:

nld obj1.o obj2.o -ul -o lib

links the object files named obj1.o and obj2.o together into a user library named lib.

3. The following example:

nld obj3.o obj4.o -o prog -libname \$A.B.C

links object files named obj3.o and obj4.o together into a program named prog and runs
it as a user library with the Guardian name $A.B.C. The backslash (\) is necessary to
prevent the shell from misinterpreting the dollar sign ($).

4. The following example:

nld /usr/lib/crtlmain.o test1.o test2.o \
-obey /usr/lib/libc.obey -o prog

links the C object files test1.o and test2.o to build a program named prog. Because the
program is a C program, the crtlmain.o library object file is required. The -obey flag
directs nld to link in all the required SRLs.

5. The following example:

nld obj6.o obj7.o -o prog -set systype guardian

links the object files named obj6.o and obj7.o into a program named prog that you
intend to run as a Guardian process.

6. The following example:

nld -change highpin off exeobj

changes the value of the HIGHPIN attribute in the executable object file exeobj to OFF.

NOTES
Some NLD options are not available as command flags in the OSS environment. For example,
specifying the -NS_extent_size or -NS_max_extents flag for the nld command on an OSS shell
command line causes an error.

OSS filenames intended for use with nld should not begin with an equals (=) character. The
equals character is reserved for use with MAP DEFINEs.

527188-021 Hewlett-Packard Company 6−49

nld(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: c89(1), nmcobol(1), eld(1), enoft(1), ld(1), noft(1).

Files: float(4).

STANDARDS CONFORMANCE
The nld command is an HP extension to the XPG4 Version 2 specification and performs func-
tions comparable to the UNIX ld command.

6−50 Hewlett-Packard Company 527188-021

User Commands (m - o) nm(1)

NAME
nm - Displays the name list of a linkfile, loadfile, or other object file

SYNOPSIS
nm

[-A]
[-e | -g | -u]
[-f]
[-o]
[-P]
[-t format]
[-v]
[-x]
[file] ...

FLAGS
You can specify the following flags in any combination, but some flags will override others.

-A Writes the full pathname or library name of a named object on each line.

-e Displays only external (global) definitions and static symbol information.

-f Produces full output and writes redundant symbols that are normally suppressed. In the
HP implementation, this flag has no effect, but it is retained for XPG4 compatibility.

-g Writes only external (global) symbol information.

-o Displays a symbol’s value and size as an octal rather than a decimal number (same as
the -to flag).

-P Writes information in a portable output format as specified in Standard Output under
DESCRIPTION.

-t format Writes each numeric value in the specified format. The format depends on the single
character used as the format argument:

d The offset value is written in decimal (this is the default format).

o The offset value is written in octal.

x The offset value is written in hexadecimal.

-u Displays only undefined symbols.

-v Sorts external symbols by value instead of alphabetically before displaying them.

-x Displays a symbol’s value and size as a hexadecimal rather than a decimal number
(same as the -tx flag).

DESCRIPTION
The nm command writes the name list of each specified file to the standard output file.

The nm command displays symbolic information appearing in the linkfile, loadfile, object file,
executable file, or library named by the file operand. If no symbolic information is available for a
valid input file, nm reports that fact but does not consider it an error condition.

The default base for numeric values is decimal.

527188-021 Hewlett-Packard Company 6−51

nm(1) OSS Shell and Utilities Reference Manual

Operands
The file operand can be a single linkfile, loadfile, object file, an executable file, or an archive
library. If you do not specify a file operand, the symbols in the a.out file are listed by default.
An input file must have a format that is the same as those produced by the Binder, ld, eld, nld, or
ar utility to be used for linking.

Environment Variables
This utility supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

Standard Output
If symbolic information is present in the input files, the nm command writes, for each file or for
each member of an archive, the following information to the standard output file:

• Library member or object name, if the -A flag is present

• Symbol name

• Symbol type for TNS and accelerated object files:

D Global data symbol

d Local data symbol

E External function

T Global text symbol

t Local text symbol

U Undefined symbol

• Symbol type for native linkfiles or loadfiles:

A External absolute

a Local absolute

B External zeroed data (TNS/R) or Global zeroed data (TNS/E)

b Local zeroed data

C Common

D Global data symbol (TNS/R) or Global data (TNS/E)

d Local data symbol (TNS/R) or local data (TNS/E)

E External function

e HP entry vector (TNS/R only)

F Fini section or HP resident text (TNS/R) or Global function section
(TNS/E)

f Local function (TNS/E only)

G External small initialized data (TNS/R) or Global small intialized data
(TNS/E)

g Local small initialized data

6−52 Hewlett-Packard Company 527188-021

User Commands (m - o) nm(1)

I Init section (TNS/R only)

K HP NonStop Kernel gateway (TNS/R only)

k HP user gateway (TNS/R only)

N Nil storage class (TNS/R only)

P Procedure section

R External read-only data (TNS/R) or Global read-only data (TNS/E)

r Local read-only data

S External small zeroed data (TNS/R) or Global small zeroed data
(TNS/E)

s Local small zeroed data

T Global text symbol

t Local text symbol

U Undefined symbol

V External small undefined symbol (TNS/R) or Global pointer (GP) value
(TNS/E)

W Stack unwinding section (TNS/E only)

X Exception data (TNS/R only)

0 Text data (TNS/R only)

$ Section within an object file (TNS/E only)

• Value of the symbol

If the -P flag is specified, the information is displayed using the following portable format. The
three versions of the portable format differ depending on whether -t d, -t o, or -t x is specified.

• If -t d is specified, the following is displayed:

"%s%s %s %d %d\n", library/object-name, name, type, value

• If -t o is specified, the following is displayed:

"%s%s %s %o %o\n", library/object-name, name, type, value

• If -t x is specified, the following is displayed:

"%s%s %s %x %x\n", library/object-name, name, type, value

In all cases, library/object-name is formatted as follows:

• If the -A flag is not specified, library/object-name is an empty string.

• If the -A flag is specified and the corresponding file operand does not name a library,
library/object-name is:

"%s: ", file

• If the -A flag is not specified and if either more than one file is specified or only one file
that names a library is specified, nm writes a line identifying the object containing the

527188-021 Hewlett-Packard Company 6−53

nm(1) OSS Shell and Utilities Reference Manual

following symbols before the lines containing those symbols.

If the file operand does not name a library, the format of the line is:

"%s: ", file

If the corresponding file operand names a library, the format of the line is:

"%s[%s]:\n", file, object-file

EXAMPLES
1. To list the external global symbols of the linkfile a.out, enter:

nm -g a.out

2. To display symbol sizes and values as hexadecimal values and then sort the symbols by
value, enter:

nm -xv a.out

3. To show undefined symbols from a file xyz, enter:

nm -u xyz

4. To use the output format with the object name on every line, enter:

nm -PA foo.o

FILES
a.out The default input file.

EXIT VALUES
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

RELATED INFORMATION
Commands: ar(1), make(1), strip(1).

Files: ar(4).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions, except that the -f
flag is ignored.

6−54 Hewlett-Packard Company 527188-021

User Commands (m - o) nmcobol(1)

NAME
nmcobol - Compiles TNS/R native COBOL85 programs

SYNOPSIS
nmcobol

[-c | -Wnolink]
[-g]
[-L directory] ...
[-l library] ...
[-O [optlevel]]
[-o outfile]
[-s]
[-Wansistreams]
[-Wcall_shared | -Wnon_shared | -Wshared]
[-WBdllsonly | -WBdynamic | -WBstatic]
[-Wcobol="args"]
[-Wcolumns=n]
[-Wcopylib=pathname]
[-Wdryrun]
[-Werrors=n]
[-Wheap=n[b | w | p]
[-Whelp | -Wusage]
[-Whighpin={on | off}]
[-Whighrequesters={on | off}]
[-W[no]include_whole]
[-W[no]innerlist]
[-W[no]inspect]
[-Wld="args"]
[-Wld_obey="pathname"]
[-Wlines=n]
[-W[no]list]
[-W[no]map]
[-WmoduleCatalog="catalog_spec"]
[-WmoduleGroup[="[group_spec]"]]
[-WmoduleSchema="schema_spec"]
[-WmoduleTableSet[="[tableset_spec]"]]
[-WmoduleVersion[="[version_spec]"]]
[-Wmxcmp[="args"]]
[-Wmxcmp_add="args"]
[-Wmxcmp_files="file[,...]"]
[-Wmxcmp_querydefault="attr_name=attr_value[,...]"]
[-Wnld="args"]
[-Wnld_obey="pathname"]
[-Wnostdlib]
[-Woptimize=n]
[-W[no]optional_lib]
[-Wr]
[-W[no]reexport]
[-Wrunnamed]
[-W[no]saveabend]
[-Wsavetemps]
[-Wsettog=n[, n] ...]
[-Wsql[="args"]]
[-Wsqlcomp[="args"]]

527188-021 Hewlett-Packard Company 6−55

nmcobol(1) OSS Shell and Utilities Reference Manual

[-Wsqlmx[="arg[,...]"]
[-Wsqlmxadd="args"]
[-W[no]suppress]
[-Wsyntax]
[-Wsystype={guardian | oss}]
[-Wtimestamp=value]
[-Wu="symbol_name"]
[-Wv]
[-Wverbose]
[-Ww]
[-Wx]
operand ...

FLAGS
-c | -Wnolink Performs compilation of the specified source files but suppresses the linking

phase. This flag does not delete any object files that are produced.

For source files of the form file.cbl, creates object files with names of the form
file.o on the current directory.

Use this flag when an SQL compiler is to be invoked without having to rebuild the
executable file.

-g Produces symbols information for symbolic debugging in the object or executable
files. This is equivalent to specifying the SYMBOLS and INSPECT directives to
the NMCOBOL compiler.

-L directory Changes the algorithm for searching the libraries named in the -l flags to look in
the directory named by the directory pathname before looking in the default direc-
tories /lib, /usr/lib, and /usr/local/lib. Directories named in -L options are
searched in the order specified.

The order of specifying the -l and -L flags is significant. If the -L flag is specified,
it should be specified before specifying any of the following flags, to affect the
processing of -l flags related to those flags:

-WBdllsonly, -WBdynamic, or -WBstatic
-Wshared

-l library Specifies the filename of a library file to be used for linking. This flag can be
specified more than once in a command line and is normally used following
specification of -WBdllsonly, -WBdynamic, -WBstatic, or -Wshared.

In static linking mode, specifying this flag instructs the linker to search for the
library named liblibrary.a. In dynamic linking mode, specifying this flag instructs
the linker to search for the library named liblibrary.srl or liblibrary.so; if
liblibrary.srl or liblibrary.so is not found, use liblibrary.a.

The position of -l library operands within a list of flags affects the order in which
libraries are searched.

The order of specifying the -l and -L flags is also significant. If the -L flag is
specified, it should be specified before specifying any of the following flags, to
affect the processing of -l flags related to those flags:

-WBdllsonly, -WBdynamic, or -WBstatic
-Wshared

6−56 Hewlett-Packard Company 527188-021

User Commands (m - o) nmcobol(1)

-O [optlevel] Specifies the optimization level to be used for the program file using one of the
following values:

0 Specifies an OPTIMIZE 0 NMCOBOL compiler directive

1 Specifies an OPTIMIZE 1 NMCOBOL compiler directive

2 or no optlevel value
Specifies an OPTIMIZE 2 NMCOBOL compiler directive

If a -O flag is not specified, an OPTIMIZE 1 NMCOBOL compiler directive is
specified.

-o outfile Uses the pathname outfile instead of the default pathname a.out for the executable
file produced.

-s Strips symbolic and other information not required for proper execution from
object and executable files. If both the -g and -s flags are used, symbolic informa-
tion is kept in the object files but is stripped from the executable file. Do not
specify the -s and -Wsql flags in the same nmcobol invocation.

-Wansistreams
Generates a program that opens text files as file code 180 files instead of file code
101 (EDIT) files when a program is compiled for the Guardian environment and
includes C or C++ modules compiled with the c89 flag -Wsystype=guardian.
(By default Guardian C or C++ modules open text files as file code 101 files.)
This flag is ignored if -Wsystype=oss is specified. OSS C or C++ modules can
open text files only as file code 180 files.

-WBdllsonly | -WBdynamic | -WBstatic
Specifies the type of linking to be performed:

-WBdllsonly Specifies that the ld linker should limit searches to position-
independent code (PIC) files that are dynamic-link libraries
(DLLs) when resolving the file names specified for the -l and -L
flags.

If a file name is qualified, ld searches for a DLL with that name.

If a filename is unqualified, in each search path, ld first searches
for a DLL with the file name as specified in the -l or -L flag. If ld
cannot find a DLL, the file name is unqualified, and the search
path is not in the Guardian file system (/G), then ld prefixes lib
and suffixes .so to the file name and searches again. If ld still can-
not find the DLL, it searches the path again with the same prefix
but with .srl as the suffix. For more information on search paths,
see the Finding Libraries subsection of the ld(1) reference page
under DESCRIPTION.

When a DLL cannot be found, ld issues an error message unless
its -allow_missing_libs flag is specified.

The -WBdllsonly, -WBdynamic, and -WBstatic flags are search
control toggles. Multiple flags can be specified in a single ld
invocation; the behavior specified remains in effect until another
flag in the set is specified. Thus, you can search for both DLLs
and archive files for some -l and -L flags and search for just
archive files for others. The default library search control is
-WBdynamic.

527188-021 Hewlett-Packard Company 6−57

nmcobol(1) OSS Shell and Utilities Reference Manual

-WBdynamic Specifies that the linker utility should use dynamic linking when
searching for libraries specified in subsequent operands of the
form -l library. Dynamic linking is in effect until a -WBstatic
flag is specified. -WBdynamic is the default setting. Refer to the
Differences Between Dynamic and Static Linking subsection
for details.

-WBstatic Specifies that the linker utility should use static linking when
searching for libraries specified in subsequent operands of the
form -l library. Static linking is in effect until a -WBdynamic
flag is specified. -WBdynamic, not -WBstatic, is the default set-
ting. Refer to the Differences Between Dynamic and Static
Linking subsection for details.

You cannot use these flags if you use the -c or -Wnolink flag.

-Wcall_shared | -Wnon_shared | -Wshared
Specifies the kind of linked file that should be created:

-Wcall_shared Directs the compiler to create a position-independent code (PIC)
program loadfile using the ld linker. If you also specify the -c or
-Wnolink flag, the file created is a PIC linkfile instead.

When you use this flag, you cannot use the following flags:

-Wnld or -Wnld_obey

-Wnon_shared
Directs the compiler to create non-PIC object files using the nld
linker. This is the default behavior.

When you use this flag, you cannot use the following flags:

-Wld or -Wld_obey

-Wshared Directs the compiler to create a PIC dynamic-link library (DLL)
using the ld linker.

When you use this flag, you cannot use the following flags:

-Wnld or -Wnld_obey

-Wcobol="args"
Passes to the NMCOBOL compiler the directives in the argument string enclosed
in quotation marks. This string follows any directives generated by other flags. If
you repeat this flag, arguments are passed to the compiler in the order specified.

-Wcolumns=n Sets the maximum number of columns for an input file to n, where n is a number in
the range 12 through 32767. If n is greater than 132, 132 is used. The compiler
ignores text in columns beyond n.

-Wcopylib="pathname"
Specifies pathname as the source file to use as the default COPY library for any
COPY statement in the source program that does not specify a library. If you
repeat this flag, the last file specified is the default COPY library. The default is to
look for a file called COPYLIB in the current working directory.

6−58 Hewlett-Packard Company 527188-021

User Commands (m - o) nmcobol(1)

-Wdryrun Verifies the syntax and semantics of the flags and operands that were specified and
enables the -Wv flag. No compilation system components are run.

-Werrors=n Stops compiling when n errors have been encountered.

-Wheap=n[b | w | p]
Specifies the value that the linker should use for the HEAP_MAX attribute of the
output file. n can be any positive value that gives a size valid for the NonStop
server node on which the file is used. The size can be specified in units of:

b Bytes; this is the default unit

w Words

p Pages

-Whelp | -Wusage
Displays information on how to run the nmcobol utility. No compilation system
components are run.

-Whighpin={on | off }
Directs the linker to set the HIGHPIN attribute to on or off in the output object
files. This attribute specifies whether the object file will run at a high PIN or a low
PIN.

If the program is compiled for execution in the Guardian environment, the default
setting is -Whighpin=off. If the program is compiled for execution in the OSS
environment, the default setting is -Whighpin=on. This flag is set only if an exe-
cutable object file is produced.

-Whighrequesters={on | off }
Directs the linker to set the HIGHREQUESTERS attribute to on or off in the out-
put object file. This attribute specifies whether the object file supports requests
from requesters running at a high PIN.

The object file must contain a C or C++ main() function. If the C or C++ module
was compiled with the c89 -Wsystype=guardian flag set, the default setting is
-Whighrequesters=off. If the C or C++ module was compiled with the c89
-Wsystype=oss flag set, the default setting is -Whighrequesters=on. This flag is
set only if an executable object file is produced.

-W[no]include_whole
Tells the ld linker whether to include in the loadfile all linkable archive members
of all archive libraries encountered after this flag is specified.

Specifying -Winclude_whole begins this linking action. When
-Wnoinclude_whole behavior is in effect, archive searches are controlled by the
existence of undefined symbols. Archives are searched in the order specified on
the command line. Symbols are marked as undefined by compilers or by the user
through the -Wu flag or the ld linker -u flag. When an archive member is found
that resolves an undefined symbol, the member´s symbols are merged into the
external symbol table for the loadfile being created. After the merge, the
undefined symbol that triggered the merge is resolved (marked as defined). The
same merge might resolve other undefined symbols or result in more undefined
symbols.

You can stop the linking action of -Winclude_whole by specifying the
-Wnoinclude_whole flag later in the command line or an obey file.

527188-021 Hewlett-Packard Company 6−59

nmcobol(1) OSS Shell and Utilities Reference Manual

These flags can be specified as many times as needed in the command stream.
Providing either flag overrides the current setting, so that the linker actions can be
controlled on a library-by-library basis.

The default setting is -Wnoinclude_whole.

-W[no]innerlist
Enables [disables] the generation of instruction code mnemonics in the compiler
listing immediately following each corresponding statement. This flag works only
if the -Wnosuppress flag is specified. The default is -Wnoinnerlist.

-W[no]inspect Designates [does not designate] the Inspect debugger as the default debugger for
the output object file. Use this flag with the -g flag. The default setting is
-Wnoinspect. This flag is set only if an executable object file is produced.

-Wld="args" Passes to the ld utility the directives in the argument string enclosed in quotation
marks after any other arguments are passed. If you repeat this flag, arguments are
passed to the ld utility in the order specified.

You can only use this flag when you use one of the following flags:

-Wcall_shared or -Wshared

This flag is ignored when linking is suppressed.

-Wld_obey="pathname"
Passes pathname (a file of ld utility commands) to the ld utility.

You can only use this flag when you use one of the following flags:

-Wcall_shared or -Wshared

This flag is ignored when linking is suppressed.

-Wlines=n Sets the maximum number of lines on a listing page to n, if a listing is generated.
n is a number in the range 10 through 32767.

-W[no]list Temporarily enables [disables] the generation of the compiler listing. This flag
works only if the -Wnosuppress flag is specified. The default is -Wlist.

-W[no]map Temporarily enables [disables] the generation of identifier maps in the compiler
listing. This flag works only if the -Wnosuppress flag is specified. The default is
-Wnomap.

-WmoduleCatalog="catalog_spec"
Specifies a NonStop SQL/MX module catalog name. The specified string is used
only if the input file does not contain an SQL/MX module directive or its module
directive does not specify a catalog name. The string cannot contain more than
128 characters.

This flag is valid only for preprocessor release 2.0 and newer.

-WmoduleGroup[="group_spec"]
Specifies a string for a module group specification to use as a prefix to the module
name. The specified string is used only if the input file does not contain an
SQL/MX module directive or its module directive does not specify a group name.
The string cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

6−60 Hewlett-Packard Company 527188-021

User Commands (m - o) nmcobol(1)

-WmoduleSchema="schema_spec"
Specifies a NonStop SQL/MX module schema name. The specified string is used
only if the input file does not contain an SQL/MX module directive or its module
directive does not specify a schema name. The string cannot contain more than
128 characters.

This flag is valid only for preprocessor release 2.0 and newer.

-WmoduleTableSet[="[tableset_spec]"]
Specifies a string for a tableset specification to use as the first suffix to the module
name. The specified string is used only if the input file does not contain an
SQL/MX module directive or its module directive does not specify a tableset
name. The string cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

-WmoduleVersion[="[version_spec]"]
Specifies a string for a tableset specification to use as the second suffix to the
externally qualified module name that is written to the module file. The string
cannot contain more than 31 characters.

This flag is valid only for preprocessor release 1.8 and newer.

-Wnostdlib Suppresses the searching of the standard library directories to locate libraries for
any C or C++ modules in the program. Refer to the Standard Library Direc-
tories subsection of the c89(1) reference page for details.

-Wmxcmp[="args"]
Invokes the NonStop SQL/MX compiler after the NonStop SQL/MX preprocessor
is invoked.

If a value is supplied for args, it must be one of the following:

warn Directs the NonStop SQL/MX compiler to generate a warning
rather than an error if a table does not exist at compilation time.

verbose Directs the NonStop SQL/MX compiler to display summary infor-
mation as well as error and warning messages.

If the -Wmxcmp flag is specified more than once, only the last occurrence has an
effect. If the -Wmxcmp flag is specified without the -Wsqlmx flag, and if a file
specified for operand has a name of the form file.m, that file is passed to the Non-
Stop SQL/MX compiler.

If the -Wmxcmp flag is specified, you cannot use the -Wsql or -Wsqlcomp flag.
The -Wmxcmp flag is ignored when a flag, such as -Wsyntax, that prevents com-
pilation is specified.

-Wmxcmp_add="args"
Specifies a string to pass to the SQL/MX compiler without validation or change.
If more than one value is specified, they must be separated by commas without
any white space.

-Wmxcmp_files="file[,...]"
Passes MDF files specified to mxcmp in release 1 module management mode.
Passes all specified files without the .m extension to mxCompileUserModule in
release 2 module management mode.

527188-021 Hewlett-Packard Company 6−61

nmcobol(1) OSS Shell and Utilities Reference Manual

-Wmxcmp_querydefault="attr_name=attr_value[,...]"
Specifies attribute settings (CONTROL QUERY DEFAULT settings) to pass to
the NonStop SQL/MX compiler. These attribute settings override any
corresponding entries in the SYSTEM_DEFAULTS table.

-Wnld="args" Passes to the nld utility the directives in the argument string enclosed in quotation
marks. If you repeat this flag, arguments are passed to the nld utility in the order
specified.

You cannot use this flag if you use any of the following flags:

-Wcall_shared or -Wshared

-Wnld_obey="pathname"
Passes pathname (a file of nld utility commands) to the nld utility.

You cannot use this flag if you use any of the following flags:

-Wcall_shared or -Wshared

-Woptimize=n Sets the optimization level to n. n is 0, 1, or 2. The NMCOBOL compiler handles
2 as if it were 1. The default is 1.

-W[no]optional_lib
Indicates whether a library specified in the command stream should be considered
optional when the ld linker creates a loadfile.

When -Wnooptional_lib behavior is in effect, any library specified in a -l or -lib
flag is included in the .liblist section of the loadfile being created. When
-Woptional_lib behavior is in effect, a specified library can be omitted from the
.liblist section of the loadfile being created if omitting it would not affect how
symbolic references are resolved.

These flags can be specified as many times as needed in the command stream.
Providing either flag overrides the current setting, so that the linker actions can be
controlled on a library-by-library basis.

If a library is specified more than once, and at least one specification occurs when
-Wnooptional_lib is in effect, the library is included in the .liblist section of the
loadfile being created.

The default behavior is -Wnooptional_lib.

-Wr Produces a nonexecutable non-PIC object file. The object file can be used as input
to the nld utility. If this flag is not specified and a linker is invoked, the object file
is executable.

You should not specify this flag for a PIC file.

-W[no]reexport
Tells the ld linker whether to mark any library specified in an -l or -L flag after
this flag for reexport in its libList entry in the loadfile being created. Specifying
-Wnoreexport leaves the library unmarked; specifying -Wreexport marks the
library. Reexport is a run-time attribute that is used by the rld loader to decide
what DLLs it needs to load.

-Wnoreexport is the default action.

These flags can be specified as many times as needed in the command stream.
Providing either flag overrides the current setting, so that the linker actions can be
controlled on a library-by-library basis.

6−62 Hewlett-Packard Company 527188-021

User Commands (m - o) nmcobol(1)

-Wrunnamed Directs the linker to set the RUNNAMED ON attribute in the current object file.
This attribute specifies that the object file runs as a named process. The default is
RUNNAMED OFF.

-W[no]saveabend
Specifies that a saveabend file is [not] created if the program terminates abnor-
mally. The default is -Wnosaveabend.

-Wsavetemps Saves all temporary and intermediate files created by compilation system com-
ponents. Use the -Wv flag to display the filenames.

-Wsettog=n[, n] ...
Specifies a numeric toggle in the range 1 through 15 that is defined only during the
NonStop SQL/MX preprocessing step. See the HP NonStop SQL/MX Program-
ming Manual for C and COBOL for details about the NonStop SQL/MX -d toggle
option.

All -Wsettog values that are supplied to nmcobol are automatically passed as -d
options to the NonStop SQL/MX preprocessor. The -d options control the pro-
cessing of ?IF directives by the preprocessor; the options do not pass ?SETTOG
directives to the COBOL compiler.

This flag is ignored unless the -Wsqlmx flag is also specified. This flag can be
specified more than once.

-Wsql[="args"]
Enables NonStop SQL/MP support when processing COBOL85 source files, using
the arguments in the argument string enclosed in quotation marks. Refer to the
NonStop SQL/MP Programming Manual for COBOL85 for a description of the
arguments that can be passed to the NonStop SQL/MP compiler. If no errors
occur, -Wsql also runs the SQLCOMP compiler after the link step.

If you specify the -Wsql flag, you cannot use the -s, -Wmxcmp, or -Wsqlmx flag.

-Wsqlcomp[="args"]
Runs the NonStop SQL/MP SQLCOMP compiler after the link step, using the
arguments specified in args.

If you specify the -Wsqlcomp flag, you cannot use the -Wmxcmp or -Wsqlmx
flag.

-Wsqlmx[="arg[,...]"]
Invokes the NonStop SQL/MX mxsqlco preprocessor, using the arguments given
by args. If an arg value is specified, it must be one of the following; if more than
one value is specified, they must be separated by commas without any white
space:

ansi_format Directs the preprocessor to assume ANSI fixed format for the
source file that it reads.

double_quotes Directs the preprocessor to accept SQL string literals delimited by
double quotes in addition to literals delimited by single quotes.

listing Directs the preprocessor to write its diagnostic messages to a file
named file.eL, where file is the name of the primary source file.

527188-021 Hewlett-Packard Company 6−63

nmcobol(1) OSS Shell and Utilities Reference Manual

preprocess_only
Directs the preprocessor to suppress all steps after preprocessing.

This option is valid only for preprocessor release 2.0 and newer.

refrain_r2 Directs the SQL/MX preprocessor to use only the rules and
features that apply to preprocessors prior to release 2.0. The
default action is to use only the rules and features that apply to
preprocessors beginning with release 2.0.

This option is valid only for preprocessor release 2.0 and newer.

If you specify the -Wsqlmx flag, you cannot use the -Wsql or -Wsqlcomp flag.

-Wsqlmxadd="args"
Specifies a string to pass to the SQL/MX preprocessor without validation or
change. If more than one value is specified, they must be separated by commas
without any white space.

-W[no]suppress
Disables [enables] the generation of the compiler listing. The compiler listing is
written to standard output. The default is -Wsuppress.

-Wsyntax Checks the syntax of the source program, but does not generate any code.

-Wsystype={guardian | oss }
Specifies the target execution environment. This flag selects definitions used dur-
ing compilation, program startup code, default libraries, and system routines used
during linking. The default setting is -Wsystype=oss. (To run files compiled for a
Guardian target execution environment, you must set the file code to 700 with a
FUP ALTER filename, CODE 700 command from a TACL prompt.)

-Wtimestamp=value
Provides a creation timestamp for the NonStop SQL/MX preprocessor that is writ-
ten to the two output files created by the preprocessor. See the HP NonStop
SQL/MX Programming Manual for C and COBOL for details about the formats
allowed for value. If this flag is specified more than once, only the last occurrence
has an effect. Note that nmcobol does not check that value is valid; it relies on
the NonStop SQL/MX preprocessor to validate this argument.

This flag is ignored unless the -Wsqlmx flag is also specified.

-Wu="symbol_name"
Tells the ld linker to add symbol_name as an undefined symbol. This causes ld to
search for this symbol in any archive libraries that are specified after this flag on
the command line or in an obey file.

The search constraint specified by the -Wu flag is overridden by use of the
-Winclude_whole flag.

-Wv Echoes to the standard error file the command line as each component of the com-
pilation system is run.

-Wverbose Displays detailed information from the NMCOBOL compiler and linker utility.

-Ww Suppresses the printing of compiler warning messages.

6−64 Hewlett-Packard Company 527188-021

User Commands (m - o) nmcobol(1)

-Wx Strips part of the symbol table from the output object file, but keeps information
necessary for the object file to be used as input to the linker utility. This flag is
typically used with the -Wr flag.

Do not include a space before or after the = (equal sign).

Quotation marks around string values in flags are optional but recommended to avoid errors
caused by shell substitutions or deletions.

DESCRIPTION
The nmcobol utility is the interface to the NMCOBOL compilation system; it accepts source code
conforming to the ISO COBOL85 standard. The system consists of an NMCOBOL compiler and
a linker utility (nld or ld), with additional program components supporting SQL preprocessing (the
SCI library for NonStop SQL/MP and mxsqlco for NonStop SQL/MX) and SQL compilation
(sqlcomp for NonStop SQL/MP and mxcmp or mxCompileUserModule for NonStop SQL/MX).

nmcobol performs simple validation of the flags and operands on its command line and, depending
on those items, invokes components of the language compilation system. nmcobol does not verify
the existence of files it passes to compilation system components. It does verify that operand
identifies valid files to pass to compilation system components. nmcobol and the components it
runs issue messages to the standard error file.

nmcobol performs the following steps:

1. If the -Wsqlmx flag is specified, invokes the NonStop SQL/MX preprocessor to prepro-
cess any COBOL source files that contain embedded NonStop SQL/MX statements to
create either of the following:

• COBOL source files with module definitions (using the release 2 module manage-
ment method)

• COBOL-only source files and module definition files (MDFs) (using the release 1
module management method)

2. Compiles any specified COBOL source files or source files produced by Step 1 into object
files.

3. If the -Wmxcmp flag is specified, invokes the NonStop SQL/MX compiler to compile any
module definitions or MDFs.

4. Links the object files together with any libraries specified on the command line. This step
occurs if no flags that prevent linking (such as -c or -Wnolink) are specified and if the
source files are compiled without errors.

5. If the -Wsqlcomp flag is specified, invokes the NonStop SQL/MP compiler to process any
embedded NonStop SQL/MP statements in files created by Step 1 or specified in the com-
mand.

6. Writes an executable object file, dynamic link library (DLL), or shared run-time library
(SRL) specified by the -o flag (if present) or to the file a.out.

The files specified in the operand list are operated on by the appropriate program components of
the compilation system, depending on the command line flags and the type of file operands.

If the -c flag is specified, then for all pathname operands of the form file.cbl, the files $(basename
pathname.c).o are created as the result of successful compilation.

If -c is not specified, the object files created after successful compilation are combined by the link
operation into a program file, dynamic-link library (DLL), or user library. When linking is per-
formed and either the -Wsqlmx or -Wmxcmp flag is specified, the list of libraries searched

527188-021 Hewlett-Packard Company 6−65

nmcobol(1) OSS Shell and Utilities Reference Manual

automatically includes zclisrl. Object files created are not deleted after successful generation of
the executable program file.

The executable file is created according to OSS file creation rules, except that the file permissions
are set to S_IRWXO | S_IRWXG | S_IRWXU and the bits specified by the umask value of the
process are cleared.

HP Extensions
The -W flags are specific to HP for supporting the HP compilation environment. The argument
strings within these flags are passed to the program components unchanged, along with default
argument strings and argument strings corresponding to nmcobol command line flags meaningful
to the program components. Do not specify conflicting instructions in -W flag argument strings or
nmcobol command line flags. The results of conflicting instructions are undefined.

Operands
An operand is a pathname. At least one pathname must be specified. The following operands are
supported:

file.a A library of object files typically produced by the ar command, and passed
directly to the linker utility.

file.cbl A COBOL85 language source file to be compiled and optionally linked. Embed-
ded NonStop SQL/MP information might be present.

file.cob A COBOL85 language source file to be compiled and optionally linked. Embed-
ded NonStop SQL/MP information might be present.

file.ECBL A COBOL85 language source file that contains embedded NonStop SQL/MX
statements to be compiled and optionally linked.

file.ecbl A COBOL85 language source file that contains embedded NonStop SQL/MX
statements to be compiled and optionally linked.

file.ECOB A COBOL85 language source file that contains embedded NonStop SQL/MX
statements to be compiled and optionally linked.

file.ecob A COBOL85 language source file that contains embedded NonStop SQL/MX
statements to be compiled and optionally linked.

file.m A module definition file (MDF) containing NonStop SQL/MX information for a
corresponding COBOL source file.

file.o An object file produced by a previous NMCOBOL compilation, to be passed
directly to the linker utility.

file.srl A shared run-time library passed directly to the nld utility. The shared run-time
library is used by the nld utility to resolve external references.

Input Files
Input files are one or more of the following:

• A text file containing a COBOL85 language source program

• An object file in the format produced by the command nmcobol -c or the command c89 -c

• A library of object files in the format produced by archiving zero or more object files using
the ar command

6−66 Hewlett-Packard Company 527188-021

User Commands (m - o) nmcobol(1)

• A library of object files produced by the nld utility or the ld utility

• An executable file produced by the nld utility or the ld utility

When -Wsqlmx is specified, nmcobol uses the source file extension to determine whether a file
requires preprocessing and the names of the source files created by the NonStop SQL/MX prepro-
cessor. The name of the source file created is the name of the primary source file with the follow-
ing transformation to the file extension:

• Each source file with the extension .ecbl, .ECBL, .ECOB, or .ecob is given to the
mxsqlco program for preprocessing. The resulting source files have the extensions .cbl
and .m, where the file named file.cbl contains the COBOL source to be compiled and the
file named file.m contains the corresponding module definition file (MDF).

• Source files with the extensions .cbl or .cob are not given to the mxsqlco program; these
files are assumed to contain no embedded SQL statements.

Files created by the NonStop SQL/MX preprocessor overwrite any existing files with the same
name in the current working directory.

Output Files
Output files are object files, executable files, log files, NonStop SQL/MX module definition files
created by the NonStop SQL/MX preprocessor, or all four. Log files have names of the form
file.eL. Module definition files have names of the form file.m.

Standard Output
The standard output file is a text file that contains the compiler listing, if generated.

Standard Error
The standard error file is used for diagnostic and informational messages. If more than one file
operand is specified, then for each such file, "%s: \n",file might be written. These messages
precede the processing of each input file.

Environment Variables
The following environment variables affect the execution of nmcobol. The nmcobol utility and
its program components do not support locale variables.

AS1 Determines the pathname of the as1 assembler component of the NMCOBOL
compiler. /usr/lib/as1 is the default location for the OSS environment.

COMP_ROOT
Changes the default pathnames for the nmcobol compilation system components.
In the OSS environment, the string specified in COMP_ROOT is added to the
beginning of the default pathnames. If a component’s environment variable is set
explicitly, the COMP_ROOT environment variable does not modify the
component’s environment variable.

LD Determines the pathname of the ld utility invoked by nmcobol. /usr/bin/ld is the
default location for the OSS environment.

MXCMP Determines the pathname of the NonStop SQL/MX release 1 compiler.
/G/system/system/mxcmp is the default.

MXCMPUM Determines the pathname of the NonStop SQL/MX release 2 compiler.
/usr/tandem/sqlmx/bin/mxCompileUserModule is the default.

527188-021 Hewlett-Packard Company 6−67

nmcobol(1) OSS Shell and Utilities Reference Manual

MXSQLCO Determines the pathname of the NonStop SQL/MX preprocessor, mxsqlco.
/usr/tandem/sqlmx/bin/mxsqlco is the default.

NLD Determines the pathname of the nld utility invoked by nmcobol. /usr/bin/nld is
the default location for the OSS environment.

SQLCOMP Determines the pathname of the NonStop SQL/MP compiler invoked by nmcobol.
By default, the program sqlcomp in the directory /G/system/system is used.

SQLCIO Determines the pathname of the object file for the NonStop SQL/MX application
program interface to the NMCOBOL compiler. /usr/tandem/lib/sqlci.o is the
default.

SQLMX_PREPROCESSOR_VERSION
Indicates the preprocessor rules and features to be used. Specifying the value 800
causes rules and features associated with release 1.8 to be used; the mxcmp com-
piler is used and only MDF files and annotated source files are produced, while
rules and features associated with release 2.0 and later are ignored. Specifying a
value of 1200 or larger or not specifying a value causes rules and features associ-
ated with release 2.0 and later to be used; the mxCompileUserModule compiler
is used and annotated source files that contain embedded module definitions are
produced instead of MDF files, while restrictions associated with release 1.8 or
earlier are ignored.

TMPDIR Determines the pathname that overrides the default directory for temporary files
created by nmcobol and components it invokes. By default, temporary files are
stored in the /tmp directory. If TMPDIR is set to a directory that does not exist
or is not writable, nmcobol uses the default directory as described on the temp-
nam(3) reference page.

UGEN Determines the pathname of the ugen assembler component of the nmcobol com-
piler. /usr/lib/ugen is the default.

Processes
With the exception of the COBOLFE process, which is invoked as a Guardian process, all com-
ponents are invoked as OSS processes.

Standard Libraries
The following libraries are available for COBOL85 programs in the OSS environment.

-l cob Contains COBOL library and utility routines described in the COBOL Manual for
TNS and TNS/R Programs.

-l cre Contains C run-time library routines.

-l cli Contains SQL/MX support routines.

In the absence of flags that inhibit invocation of a linker utility, such as -c or -Wnolink, nmcobol
passes -l cob and -l cre operands to the linker utility, causing the COBOL and CRE libraries to be
searched. If the -Wsqlmx or -Wmxcmp flags are present, nmcobol also passes a -l cli operand to
the linker utility, causing the SQL/MX support library to be searched.

If you want the libraries to be searched in a specific order or you want linking options to be pro-
cessed in a specific order, you should invoke the linker using the ld or nld command from the OSS

6−68 Hewlett-Packard Company 527188-021

User Commands (m - o) nmcobol(1)

shell and not use nmcobol to do the linking.

Differences Between Static and Dynamic Linking
The -WBdllsonly and -WBdynamic operands specify dynamic linking. The -WBstatic operand
specifies static linking.

In dynamic linking, the nld utility first searches for a shared run-time library (SRL) or the ld utility
first searches for a dynamic-link library (DLL). If an SRL or DLL cannot be found, the linker util-
ity searches for an archive file. If no archive file can be found, an error is issued.

In static linking, the linker utility searches for an archive file but does not search for an SRL or
DLL. If the archive file cannot be found, an error is issued.

Dynamic and static linking are not exact opposites. Dynamic linking accepts either an SRL, DLL,
or an archive file, but static linking accepts only an archive file.

Unlike nmcobol flags, multiple -WBdllsonly, -WBdynamic, and -WBstatic operands can be
specified in a single nmcobol invocation; thus, it is possible to perform dynamic linking for some
-l operands and static linking for others.

-WBdllsonly, -WBdynamic and -WBstatic operands specified to nmcobol are temporarily over-
ridden by linking arguments specified in the -Wld, -Wnld, -Wld_obey, or -Wnld_obey flags.

The nld utility performs dynamic linking by default. The ld utility can be used instead. Refer to
the ld(1) or nld(1) reference page for more information.

Using the c89 and nmcobol Utilities
OSS COBOL85 programs can contain COBOL85 modules and C modules. Compile COBOL85
modules using the nmcobol utility and C modules using the c89 utility. To produce a program
containing COBOL85 and C modules, first compile all the modules written in either COBOL85 or
C. You can also link these modules together or with other libraries at this time, but do not SQL-
compile the modules. After you have compiled all the modules of one language, compile the
modules written in the other language, specifying any necessary linking or SQL-compiling
options.

For example, to produce an executable object file made up of COBOL85 modules cobol1.cbl and
cobol2.cbl and C modules c1.c and c2.c, you can first run the C compiler using the c89 utility
with:

c89 -c -o cprog.o c1.c c2.c

This command directs c89 to compile the two modules but not link them. The output object file is
cprog.o.

You can then invoke the nmcobol utility to compile the two COBOL85 modules and link the
NMCOBOL compiler output with the previously produced C object file and the standard C library
to produce the executable object myprog with:

nmcobol -o myprog cprog.o cobol1.cbl cobol2.cbl

Refer to the C/C++ Programmer’s Guide and the Open System Services Programmer’s Guide for
details on writing and compiling C programs in the OSS environment.

EXAMPLES
1. The command

nmcobol test1.cbl

compiles the source file test1.cbl and links the object file into a program file a.out.

527188-021 Hewlett-Packard Company 6−69

nmcobol(1) OSS Shell and Utilities Reference Manual

2. The command

nmcobol -c test1.cbl

compiles the source file test1.cbl into an object file test1.o.

3. The command

nmcobol -g -o test2 x.cbl y.cbl z.cbl

compiles source files x.cbl, y.cbl, and z.cbl and links the object files into a program file
test2. Symbolic information is generated by the compiler and retained by the linker utility
for debugging.

4. The command

nmcobol -o xyz -Wsql x.o y.o z.o

links the object files x.o, y.o, and z.o into a program file xyz. The NonStop SQL/MP com-
piler, sqlcomp, is then invoked to compile xyz.

5. The command

nmcobol -Wnolink -Wsql="catalog \$abc.def" xyz

invokes the NonStop SQL/MP compiler, sqlcomp, on program file xyz without going
through the linking process. In addition to the input filename xyz, the catalog option is
passed to the NonStop SQL/MP compiler.

6. The command

nmcobol -o testprog -L . -L /usr/test/lib testprog.cbl -l tdm

compiles the COBOL85 language source program testprog.cbl and links the object file
with the library specified in the -l operand. It also links the object file with a shared run-
time library, if found. If a shared run-time library is not found, it uses the standard C run-
time library. The nld utility produces a program file named testprog.

By default, dynamic linking is selected. nmcobol searches directories for the library tdm
specified by the -l flag in the following order and selects the first copy found:

libtdm.so in the current directory (-L .)

libtdm.a in the current directory (-L .)

libtdm.so in /usr/test/lib (-L /usr/test/lib)

libtdm.a in /usr/test/lib (-L /usr/test/lib)

libtdm.so in /lib (by default)

libtdm.a in /lib (by default)

libtdm.so in /nonnative/usr/lib (by default)

libtdm.a in /nonnative/usr/lib (by default)

libtdm.so in /usr/lib (by default)

libtdm.a in /usr/lib (by default)

libtdm.so in /usr/local/lib (by default)

libtdm.a in /usr/local/lib (by default)

6−70 Hewlett-Packard Company 527188-021

User Commands (m - o) nmcobol(1)

7. The command

nmcobol -Wsqlmx -Wmxcmp -o sqlprog.exe sqlprog.ecbl sqlprog.m

when using the release 1 module management method, processes the single COBOL
module named sqlprog.ecbl containing embedded NonStop SQL/MX statements as fol-
lows:

a. The NonStop SQL/MX preprocessor is invoked to process the source file. The
preprocessor creates the files sqlprog.cbl and sqlprog.m. The file sqlprog.cbl is
the COBOL-only equivalent of sqlprog.ecbl; that is, the preprocessor translates
all embedded NonStop SQL/MX statements to the appropriate COBOL code. The
file sqlprog.m is the corresponding module definition file.

b. If no errors occurred in Step a, the NMCOBOL compiler processes the file
sqlprog.cbl to create the file sqlprog.o.

c. If no errors occurred in Step b, the NonStop SQL/MX compiler is invoked to pro-
cess the module definition file sqlprog.m.

d. If no errors occurred in Step c, nld is invoked to link the file sqlprog.o with the
standard COBOL library and produces the executable file sqlprog.exe.

8. The command

nmcobol -Wmxcmp -Wmxcmp_files="test1.m,test1.o"

SQL-compiles the MDF file test1.m using the NonStop SQL/MX mxcmp compiler and
processes the file test1.o using the NonStop SQL/MX mxCompileUserModule without
also linking it.

9. The command

nmcobol -c -Wsqlmx file1.ecob file2.ecob file3.ecob

preprocesses the three specified files and also compiles them, but does not link the result-
ing object files. If no errors are detected during either preprocessing or compilation, the
following files are created: file1.m, file1.cob, file2.m, file2.cob, file3.m, file3.cob, file1.o,
file2.o, and file3.o.

10. The command

nmcobol -c -Wsqlmx file1.cbl file2.ecbl file3.ecob file4.cob

mixes COBOL source files with and without embedded NonStop SQL/MX statements.
All files are compiled but not linked. When using the release 1 module management
method, if no errors are detected during either preprocessing or compilation, the following
files are created: file2.m, file2.cob, file3.m, file3.cob, file1.o, file2.o, file3.o, file4.o.

DIAGNOSTICS
If nmcobol encounters a compilation error that prevents an object file from being created, it writes
a diagnostic message to the standard error file and continues to compile other source code
operands; however, it does not perform program linking and returns a nonzero exit status. If the
linking is unsuccessful, nmcobol writes a diagnostic message to the standard error file and returns
a nonzero exit status.

527188-021 Hewlett-Packard Company 6−71

nmcobol(1) OSS Shell and Utilities Reference Manual

EXIT VALUES
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

RELATED INFORMATION
Commands: ar(1), c89(1), cobol(1), ecobol(1), ld(1), nld(1), strip(1).

Functions: tempnam(3).

STANDARDS CONFORMANCE
The nmcobol utility is an HP extension to the XPG4 Version 2 specification.

6−72 Hewlett-Packard Company 527188-021

User Commands (m - o) noft(1)

NAME
noft - Reads and displays information from TNS/R native object files

SYNOPSIS
noft

[-CD pathname]
[-COMMENT [text]]
[- [DUMPADDRESS | DA] address-spec]
[{ -DUMPOFFSET | -DO } address-spec]
[{ -DUMPPROC | -DP } { proc-spec | proc-num }

[address-spec]]
[-DYNSTR2]
[-ENV]
[{ -FILE | -F } filename]
[-HELP [ALL | flag | help-topic]]
[-LAYOUT]
[-LIBLIST]
[{ -LISTATTRIBUTE | -LA }]
[{ -LISTCOMPILERS | -LC }

[{ BRIEF B } | { DETAIL | D }]]
[{ -LISTOPTIMIZE | -LO } { 0 | 1 | 2 | * }]
[{ -LISTPROC | -LP } { proc-spec | proc-num|* }

[{ SUBPROC | SP } | { NOSUBPROC | NSP }]
[{ BRIEF | B } | { DETAIL | D }]]

[{ -LISTSOURCE | -LS } source-spec
[{ BRIEF | B } | { DETAIL | D }]]

[{ -LISTSRLEXPORTS | -LLE }
[{ BRIEF | B } | { DETAIL | D }]]

[{ -LISTSRLFIXUPS | -LLF }
[{ BRIEF | B } | { DETAIL | D }]]

[{ -LISTSRLINFO | -LLI }
[{ BRIEF | B } | { DETAIL | D }]]

[{ -LISTUNREFERENCED | -LUR }
{ { PROC | P } | { DATA | D } | * }
[{ BRIEF | B } | { DETAIL | D }]]

[{ -LISTUNRESOLVED | -LU }
{ { PROC | P } | { DATA | D } | * }
[{ BRIEF | B } | { DETAIL | D }

| { EXCLUDE | E }]]
[-[SET] LOG { filename | OFF | ? }]
[-OBEY filename]
[-[SET] OUT { filename | OFF | ? }]
[-RESET { set-param | * }]
[-SET set-param]
[-SHOW [*]]
[{ -XREFPROC | -XP } { proc-spec | proc-num | * }

[CALLEDBY | CALLS | BOTH]
[{ BRIEF | B } | { DETAIL | D }]]
. . .

object-filename

527188-021 Hewlett-Packard Company 6−73

noft(1) OSS Shell and Utilities Reference Manual

FLAGS
-CD pathname Changes the current working directory noft uses to search for relative pathnames

to the specified pathname.

-COMMENT [text]
Allows comments in noft command files. Comments are not displayed in output.

-[{DUMPADDRESS | DA }] address-spec
Displays code and data from a virtual address inside an object file’s memory
space. address-spec is the following:

start-address [range-specifier] [IN format-specifier]

start-address
Specifies the starting virtual addresses in hexadecimal format.

range-specifier
Specifies the amount of information to display. range-specifier is one of
the following:

TO end-address
Is an ending virtual address in hexadecimal format.

FOR number BYTES
Is the number of bytes to display.

FOR number WORDS
Is the number of words to display.

FOR * Displays information to the end of the code or data section. If
the -DUMPADDRESS flag is used on an OSS shell command
line, the flag specification must be enclosed in quotation
marks when the FOR * specifier is used.

IN format-specifier
Specifies how the information is to be formatted. format-specifier is one
of the following:

ASCII | A Displays portions of the object file in ASCII format.

DECIMAL | D
Displays portions of the object file in decimal format.

HEX | H Displays portions of the object file in hexadecimal for-
mat.

ICODE | IC Displays portions of the object file in disassembled pro-
gram code. This is the default format.

INNERLIST | IN
Displays portions of the object file in disassembled code
and displays the source code interspersed with the assem-
bler. This option can be used only for dumping text.

OCTAL | O Displays portions of the object file in octal format.

6−74 Hewlett-Packard Company 527188-021

User Commands (m - o) noft(1)

{-DUMPOFFSET | -DO } address-spec
Displays code and data from a physical offset within an object file. address-spec
is identical to that of the -DUMPADDRESS flag, except that the addresses are
physical offsets within the file instead of virtual addresses.

{-DUMPPROC | -DP } { proc-spec | proc-num } [address-spec]
Displays the contents of a procedure or part of a procedure.

proc-spec
Specifies the procedure name. Procedure names are case-sensitive in C
and C++ but not in pTAL. proc-spec is one of the following:

proc-name
Limits the scope to the specified procedure and subpro-
cedures. If proc-name is not completely specified, noft
resolves the name and lists conforming procedure names with
numbers.

proc-name.subproc-name
Limits the scope to the specified subprocedure. If proc-name
or subproc-name is not completely specified, noft resolves the
name and lists conforming subprocedure names with numbers.

subproc-name
Limits the scope to the specified subprocedure. If subproc-
name is not completely specified, noft resolves the name and
lists conforming subprocedure names with numbers.

proc-num
Specifies the procedure number. This number specifies the ordering in
the object file’s procedure table. Use the -LISTPROC flag to list each
procedure number.

address-spec
Specifies addresses in a form that is identical to that of the -DUMPAD-
DRESS flag, except that the addresses are virtual offsets within the file
instead of virtual addresses.

-DYNSTR2 Displays the dynamic string information pointed to by the library list and the rld
loader search lists. In other words, -DYNSTR2 displays the libraries specified by
the ld -lib flag and the paths specified by the ld -rld_l and -rld_first_l flags when
this loadfile was built.

-ENV Displays the current settings of noft environment parameters. The -SHOW flag
also displays these parameters and additional parameters.

{-FILE | -F } filename
Specifies the name of the target object file you want to use with noft. A subse-
quent -FILE flag closes the current object file and opens the specified object file.

-HELP [ALL | flag | help-topic]
Displays descriptions and syntax for noft flags and operands.

ALL Displays a single line description of each noft flag. This informa-
tion can be directed to an output file or log file.

527188-021 Hewlett-Packard Company 6−75

noft(1) OSS Shell and Utilities Reference Manual

flag Displays information about the specified flag, including syntax.

help-topic Specifies one of the following noft topics for which you want
detailed information:

CD COMMENT
DUMPADDRESS DUMPOFFSET
DUMPPROC DYNSTR2
ENV EXIT
FC FILE
HELP HISTORY
LAYOUT LIBLIST
LISTATTRIBUTE LISTCOMPILERS
LISTOPTIMIZE LISTPROC
LISTSOURCE LISTSRLINFO
LISTSRLEXPORTS LISTSRLFIXUPS
LISTUNRESOLVED LISTUNREFERENCED
LOG OBEY
OUT RESET
SET CASE SET FORMAT
SET HISTORYBUFFER
SET HISTORYWINDOW
SET LINES SET LOG
SET OUT SET SCOPEPROC
SET SCOPESOURCE SET SORT
SHOW XREFPROC
all commands
command_line object_files
procedures shortcuts
source_files

-LAYOUT Lists the parts of an object file in order by file offset.

-LIBLIST Displays the library list of a loadfile.

-LISTATTRIBUTE | -LA
Lists process-specific information associated with an object file.

{-LISTCOMPILERS | -LC } [{ BRIEF | B } | { DETAIL | D }]
Lists version information about the native compiler components and linker utility
used to create an object file. BRIEF provides minimal information and DETAIL
provides detailed information.

{-LISTOPTIMIZE | -LO } { 0 | 1 | 2 | * }
Lists procedures based on their optimization level.

0, 1, or 2 List procedures with an optimization level corresponding to the
specified number.

* List procedures sorted by optimization level. If the -LISTOPTIMIZE
flag is used on an OSS shell command line, the flag specification must
be enclosed in quotation marks when the * specifier is used.

6−76 Hewlett-Packard Company 527188-021

User Commands (m - o) noft(1)

{-LISTPROC | -LP } { proc-spec | proc-num | * }
[{ SUBPROC | SP } | { NOSUBPROC | NSP }]
[{ BRIEF | B } | { DETAIL | D }]
Lists procedures and their subprocedures.

proc-spec Specifies the procedure name. Procedure names are case sensi-
tive in C and C++ but not in pTAL. proc-spec is one of the fol-
lowing:

proc-name
Limits the scope to the specified procedure and sub-
procedures. If proc-name is not completely specified,
noft resolves the name and lists conforming procedure
names with numbers.

proc-name.subproc-name
Limits the scope to the specified subprocedure. If
proc-name or subproc-name is not completely
specified, noft resolves the name and lists conforming
subprocedure names with numbers.

subproc-name
Limits the scope to the specified subprocedure. If
subproc-name is not completely specified, noft
resolves the name and lists conforming subprocedure
names with numbers.

proc-num Specifies the procedure number. This number specifies the ord-
ering in the object file’s procedure table. Use the -LISTPROC
flag to list each procedure number.

* Specifies all procedures in the current scope. If the -LIST-
PROC flag is used on an OSS shell command line, the flag
specification must be enclosed in quotation marks when the *
specifier is used.

SUBPROC | SP Lists the subprocedures along with procedures. If procedure P
contains subprocedure S, a -LISTPROC P SUBPROC flag lists
S, because it is contained within P.

NOSUBPROC | NSP
Does not list subprocedures along with procedures. If procedure
P contains subprocedure S, a -LISTPROC P NOSUBPROC
flag lists only P and not S, even though S is contained within P.

BRIEF | B Provides minimal information about procedures and subpro-
cedures. This is the default value.

DETAIL | D Provides detailed information about procedures and subpro-
cedures.

527188-021 Hewlett-Packard Company 6−77

noft(1) OSS Shell and Utilities Reference Manual

{-LISTSOURCE | -LS } source-spec
[{ BRIEF | B } | { DETAIL | D }]
Lists the source files in the object file. If only one procedure is dumped, then the
-LISTSOURCE flag dumps the entry for the source file containing the procedure.

source-spec Has one of the following forms:

source-name Specifies the name of the procedure for which
you want information.

source-number Specifies the number of the procedure for which
you want information. This number is determined
by the order of procedures in the object files’s
procedure table.

* Specifies that you want information for all pro-
cedures. If the -LISTSOURCE flag is used on an
OSS shell command line, the flag specification
must be enclosed in quotation marks when the *
specifier is used.

BRIEF | B Displays minimal information about the procedures. This is the
default value.

DETAIL | D Displays detailed information about the procedures.

{-LISTSRLEXPORTS | -LLE } [{ BRIEF | B } | { DETAIL | D }]
Lists all symbols exported by a shared run-time library (SRL).

BRIEF | B Displays only exported names and numbers. This is the default
value.

DETAIL | D Displays more information about each library, such as address and
size in decimal.

{-LISTSRLFIXUPS | -LLF } [{ BRIEF | B } | { DETAIL | D }]
Lists the names of shared run-time libraries (SRLs) to which the unresolved sym-
bols in a foreign client object file have been "fixed up".

BRIEF | B Displays only unresolved symbols and library names. This is the
default value.

DETAIL | D Displays more information about each library, such as number and
fixup address.

{-LISTSRLINFO | -LLI } [{ BRIEF | B } | { DETAIL | D }]
Lists the shared run-time libraries (SRLs) linked into an object file.

BRIEF | B Displays minimal information about SRLs. This is the default
value.

DETAIL | D Displays detailed information about the SRLs.

6−78 Hewlett-Packard Company 527188-021

User Commands (m - o) noft(1)

{-LISTUNREFERENCED | -LUR } { { PROC | P } | { DATA | D } | * }
[{ BRIEF | B } | { DETAIL | D }]
Lists the undefined and unreferenced symbols in an object file. These symbols
must be linked before the object file can be executed.

PROC | P Displays unresolved procedures.

DATA | D Displays unresolved data items.

* Displays all unresolved items. If the -LISTUNREFERENCED
flag is used on an OSS shell command line, the flag specification
must be enclosed in quotation marks when the * specifier is used.

BRIEF | B Displays only symbol names and numbers. This is the default for-
mat.

DETAIL | D Displays detailed information such as the type of each symbol. For
C++ functions, DETAIL provides the "demangled" (original)
names as well as the "mangled" iinternal equivalents.

{-LISTUNRESOLVED | -LU } { { PROC | P } | { DATA | D } | * }
[{ BRIEF | B } | { DETAIL | D } | EXCLUDE | E]
Lists the undefined names in an object file. These references must be resolved
before the file can be executed.

PROC | P Displays unresolved procedures.

DATA | D Displays unresolved data items.

* Displays unresolved procedures and data items. If the -LISTUN-
RESOLVED flag is used on an OSS shell command line, the flag
specification must be enclosed in quotation marks when the *
specifier is used.

BRIEF | B Displays only symbol names and numbers. This is the default for-
mat.

DETAIL | D Displays detailed name information. This option is not available
for position-independent code (PIC) files.

EXCLUDE | E
Excludes common operating system function names so that func-
tion calls that will not be linked can be identified before running
the program. Millicode calls and calls to functions within shared
run-time libraries (SRLs) are omitted.

This option is not available for PIC files.

-[SET] LOG { filename | OFF | ? }
Writes a copy of the current session’s input and output to a file.

filename Identifies the file to receive the copy of the command lines and out-
put. If the file does not exist, noft creates it.

527188-021 Hewlett-Packard Company 6−79

noft(1) OSS Shell and Utilities Reference Manual

OFF Closes the current log file and stops all logging.

? Displays the name of the current log file. If the -SET LOG flag is
used on an OSS shell command line, the flag specification must be
enclosed in quotation marks when the ? specifier is used.

-OBEY filename
Directs noft to read command lines from the file specified in filename.

-[SET] OUT { filename | OFF | ? }
Directs the input and output listings to a specified file.

filename Specifies the name of the file. The -OUT flag can be specified as
an option to any listing or dumping flag. In this case, the specified
file is opened just for one flag and then closed.

OFF Turns off redirection to a file and reverts to the original output file.

? Displays the current output filename or, if that file does not exist,
indicates the standard output file. If the -SET OUT flag is used
on an OSS shell command line, the flag specification must be
enclosed in quotation marks when the ? specifier is used.

-RESET { set-param | * }
Resets one or more of the target object file parameters previously specified with
the -SET flag to their default values.

set-param Is one of the following target object file parameters:

CASE
FORMAT
HISTORYBUFFER
HISTORYWINDOW
LINES
LOG
OUT
SCOPEPROC
SCOPESOURCE
SORT

* Specifies that all target object file parameters are reset to their
default values. If the -RESET flag is used on an OSS shell com-
mand line, the flag specification must be enclosed in quotation
marks when the * specifier is used.

Refer to the description of the -SET flag for descriptions of these object file
parameters.

-SET set-param
Sets a noft target object file parameter to the specified value. The -SET flag can
be abbreviated by combining it with letters that abbreviate set-param values;
these abbreviated flags are shown in the following list of valid set-param values:

{CASE | -SC } { ON | OFF | ? }
Specifies the case sensitivity of the noft environment. If the first
procedure (not necessarily the MAIN procedure) in the target

6−80 Hewlett-Packard Company 527188-021

User Commands (m - o) noft(1)

object file is written in C or C++, the default value is case sensi-
tivity. If the first procedure is written in pTAL, the default is no
case sensitivity.

ON Turns on case sensitivity in the noft environment.

OFF Turns off case sensitivity in the noft environment. If
turned off, some files and procedures written in C and
C++ are unavailable.

? Returns the current case-sensitivity setting. If the -SET
CASE flag is used on an OSS shell command line, the
flag specification must be enclosed in quotation marks
when the ? specifier is used.

{FORMAT | -SF } { { ASCII | A } | { DECIMAL | D }
| { HEX | H} | { ICODE | IC }
| { INNERLIST | IN } | { OCTAL | O } | ? }
Specifies the format used to display the object file.

ASCII | A Displays portions of the object file in ASCII for-
mat.

DECIMAL | D
Displays portions of the object file in decimal for-
mat.

HEX | H Displays portions of the object file in hexadecimal
format.

ICODE | IC Displays portions of the object file in disassembled
program code.

INNERLIST | IN
Displays portions of the object file in disassembled
program code and displays the source code inter-
spersed with the assembler. This option can be
used only for text dumps.

OCTAL | O Displays portions of the object file in octal format.

? Returns the current format setting. If the -SET
FORMAT flag is used on an OSS shell command
line, the flag specification must be enclosed in quo-
tation marks when the ? specifier is used.

{HISTORYBUFFER | -SHB } [number | ?]
Specifies the number of command lines in memory that are to be
available to the !, FC, or HISTORY subcommands. The default
value is 50 command lines.

number Specifies the number of command lines in the history
buffer. If number is greater than the current buffer size,
noft is unable to retrieve command lines that have
already left the history buffer. If number is smaller than
the current buffer size, the command lines lost from the

527188-021 Hewlett-Packard Company 6−81

noft(1) OSS Shell and Utilities Reference Manual

buffer are not retrievable.

? Returns the current history buffer size. If the -SET
HISTORYBUFFER flag is used on an OSS shell com-
mand line, the flag specification must be enclosed in
quotation marks when the ? specifier is used.

The HISTORYBUFFER setting is only meaningful when noft is
used interactively.

{HISTORYWINDOW | -SHW } [number | ?]
Specifies the number of command lines displayed with the HIS-
TORY subcommand. The default value is 10 command lines.

number Specifies the number of command lines displayed with
the HISTORY subcommand.

? Returns the current history window size. If the -SET
HISTORYWINDOW flag is used on an OSS shell
command line, the flag specification must be enclosed
in quotation marks when the ? specifier is used.

The HISTORYWINDOW setting is only meaningful when noft
is used interactively.

LINES [number]
Specifies the number of lines of output to display before pausing
so that an area of output does not scroll out of the terminal or
emulator display memory. A single line of output from noft can
result in multiple lines of output on a screen, so more lines than
are specified by number might be displayed.

The default value for number is 0 (zero). A zero value causes out-
put to continue until all results are displayed.

LOG { filename | OFF | ? }
Writes a copy of the current session’s input and output to a file.
The file created by the -LOG flag appends an existing file with
the same name.

filename Identifies a file to receive the copy of the command
lines and output. If the file does not exist, noft creates
it.

OFF Closes the current log file and stops all logging.

? Displays the name of the current log file. If the -SET
LOG flag is used on an OSS shell command line, the
flag specification must be enclosed in quotation marks
when the ? specifier is used.

OUT { filename | OFF | ? }
Directs the input and output listings to a specified file.

filename Specifies the name of the file.

6−82 Hewlett-Packard Company 527188-021

User Commands (m - o) noft(1)

OFF Turns off redirection to a file and reverts to the original
output file.

? Displays the name of the current log file. If the -SET
OUT flag is used on an OSS shell command line, the
flag specification must be enclosed in quotation marks
when the ? specifier is used.

{ SCOPEPROC | -SSP } { proc-spec | proc-num | * | ? }
Narrows the scope to a single procedure or subprocedure. This is
helpful when trying to find unique items within a procedure or
subprocedure and when trying to limit output to a range within a
single scope.

proc-spec
Specifies the procedure name. Procedure names are
case-sensitive in C and C++ but not in pTAL. proc-spec
is one of the following:

proc-name
Limits the scope to the specified procedure
and subprocedures. If proc-name is not com-
pletely specified, noft resolves the name and
lists conforming procedure names with
numbers.

proc-name.subproc-name
Limits the scope to the specified subpro-
cedure. If proc-name or subproc-name is not
completely specified, noft resolves the name
and lists conforming subprocedure names
with numbers.

subproc-name
Limits the scope to the specified subpro-
cedure. If subproc-name is not completely
specified, noft resolves the name and lists
conforming subprocedure names with
numbers.

proc-num
Specifies the procedure number. This number specifies
the ordering in the object file’s procedure table. Use the
-LISTPROC flag to list each procedure number.

* Eliminates any scope limitations and allows you to view
the entire object file. If the -SET SCOPEPROC flag is
used on an OSS shell command line, the flag
specification must be enclosed in quotation marks when
the * specifier is used.

527188-021 Hewlett-Packard Company 6−83

noft(1) OSS Shell and Utilities Reference Manual

? Returns the current procedure in scope. If the -SET
SCOPEPROC flag is used on an OSS shell command
line, the flag specification must be enclosed in quotation
marks when the ? specifier is used.

{ SCOPESOURCE | -SSS } { filename | file-number | * | ? }
Narrows the scope to a single source file, which is helpful when
trying to find unique items within a source file, as well as limiting
the output to a range within the designated scope.

filename Narrows the scope to a single named source file. If
filename does not uniquely identify a source file, noft
provides additional help.

file-number Specifies the procedure number. This number
specifies the ordering in the object file’s procedure
table. Use the -LISTPROC flag to list each pro-
cedure number.

* Eliminates any scope limitations present and opens
selections to the entire object file. If the -SET
SCOPESOURCE flag is used on an OSS shell com-
mand line, the flag specification must be enclosed in
quotation marks when the * specifier is used.

? Returns the current source file in scope, if any. If the
-SET SCOPESOURCE flag is used on an OSS shell
command line, the flag specification must be
enclosed in quotation marks when the ? specifier is
used.

{ SORT | -ST } { { ALPHA | A }
| { LOC | L } | { NONE | N } | ? }
Specifies the sorting order of the output.

ALPHA | A
Sorts noft output in alphabetic order.

LOC | L Sorts noft output in virtual address order.

NONE | N
Sorts noft output in numeric order determined in the
relevant table. The default value is NONE.

? Returns the current sorting order. If the -SET SORT
flag is used on an OSS shell command line, the flag
specification must be enclosed in quotation marks when
the ? specifier is used.

-SHOW [*] Displays the current values of the noft program environment parameters and the
target object file parameters. This flag is a superset of the -ENV flag.

If the -SHOW flag is used on an OSS shell command line, the flag specification
must be enclosed in quotation marks when the * specifier is used.

6−84 Hewlett-Packard Company 527188-021

User Commands (m - o) noft(1)

{-XREFPROC | -XP } { proc-spec | proc-num | * }
[CALLEDBY | CALLS | BOTH] [{ BRIEF | B } | { DETAIL | D }]
Displays a cross-reference listing of procedures.

proc-spec Specifies the procedure name. Procedure names are case-sensitive
in C and C++ but not in pTAL. proc-spec is one of the following:

proc-name
Limits the scope to the specified procedure and subpro-
cedures. If proc-name is not completely specified, noft
resolves the name and lists conforming procedure names
with numbers.

proc-name.subproc-name
Limits the scope to the specified subprocedure. If proc-
name or subproc-name is not completely specified, noft
resolves the name and lists conforming subprocedure
names with numbers.

subproc-name
Limits the scope to the specified subprocedure. If
subproc-name is not completely specified, noft resolves
the name and lists conforming subprocedure names with
numbers.

proc-num Specifies the procedure number. This number specifies the order-
ing in the object file’s procedure table. Use the -LISTPROC flag
to list each procedure number.

* Specifies all procedures in the current scope. If the -XREFPROC
flag is used on an OSS shell command line, the flag specification
must be enclosed in quotation marks when the * specifier is used.

CALLEDBY Lists each procedure and the procedures that call it. A scope set-
ting restricts the procedures that are the children of the given pro-
cedure.

CALLS Lists each procedure and the procedures that it calls. A scope set-
ting restricts the procedures that are the parents of the given pro-
cedure.

BOTH Lists the information for both CALLEDBY and CALLS.

BRIEF | B Lists the called or calling procedures referenced by the indicated
procedures.

DETAIL | D Lists the called or calling procedures referenced by the indicated
procedures and the addresses where the calls are made. If the tar-
get object file is non-PIC, references to functions that might be
used for calls (for example, function pointers passed as parameters)
are identified by the word "reference".

The virtual addresses of the call sites are shown with the DETAIL option
specified. A SORT setting affects both lists and sublists of procedures.

527188-021 Hewlett-Packard Company 6−85

noft(1) OSS Shell and Utilities Reference Manual

object-filename
Specifies the target object file.

DESCRIPTION
The noft utility reads and displays information from TNS/R native object files. noft enables you
to:

• Determine the optimization level of procedures in a file.

• Display object code with corresponding source code.

• List SRL references in an object file.

• List object file attributes.

These noft capabilities are useful when developing and debugging programs.

The noft utility can be used from the command line or interactively to examine object files. To use
noft interactively, enter the noft command without specifying any flags; you can then specify the
flags interactively as subcommands in the manner described in the SUBCOMMANDS subsection
of this reference page.

To use noft from a command file, capture the flags listed in the FLAGS subsection of this refer-
ence page or the subcommands listed in the SUBCOMMANDS subsection of this reference page.
Capture one flag or subcommand per line in the command file and then specify the command file
as the standard input file to the noft command.

In either instance, you can display the following object file components with noft:

• Various file headers

• Program text and data

• Symbol table and component parts

• Run-time procedure table and relocation tables

For complete information on using noft, refer to the nld and noft Manual.

SUBCOMMANDS
noft supports all flags listed in the SYNOPSIS section as subcommands for interactive use. Such
subcommands consist of the flag without the prefixed dash (-).

The following subcommands are also supported for interactive use. These subcommands can be
entered as OSS shell command line flags when prefixed by a dash (-) but are only meaningful
when used interactively:

break key on keyboard
Interrupts the processing of the current subcommand as soon as possible without
corrupting any noft internal tables. The noft utility resumes operation with the
next subcommand line.

! [history-number]
Allows you to execute a previously executed subcommand line determined by the
specified history-number value. If no history-number value is specified, the previ-
ous subcommand line is executed.

6−86 Hewlett-Packard Company 527188-021

User Commands (m - o) noft(1)

EXIT | E Stops the noft process.

FC [history-number | -history-offset | text]
Allows you to edit or repeat a previously executed subcommand line.

history-number Specifies the number of a previously entered subcommand line.
The default value is the previously entered subcommand line.

-history-offset Specifies a negative offset from the current subcommand line.
The flag entered before the FC subcommand is -1.

text Is a string of characters.

{ HISTORY | H } [number]
Displays previously entered subcommand lines. number specifies the number of
subcommand lines to be displayed. The default value is 10 subcommand lines.

QUIT | Q Stops the noft utility.

EXAMPLES
1. To find the names of procedures in a source file named sample.c:

noft -FILE sample.o -SET SCOPESOURCE sample.c
"-LISTPROC *"

or
noft -F sample.o -SSS sample.c "-LP *"

2. To find all the procedures that are called by source file sample.c:

noft -FILE sample.o -SET SCOPESOURCE sample.c
"-XREFPROC * CALLEDBY"

or
noft -F sample.o -SSS sample.c "-XP * CALLEDBY"

3. To look at the optimization levels for source file sample.c:

noft -FILE sample.o -SET SCOPESOURCE sample.c
"-LISTOPTIMIZE *"

or
noft -F sample.o -SSS sample.c "-LO *"

4. To look at the optimization level for a single procedure:

noft -FILE sample.o -SET SCOPEPROC procedure-name
"-LISTOPTIMIZE *"

or
noft -F sample.o -SSP procedure-name "-LO *"
or
noft -FILE sample.o -LISTPROC procedure-name DETAIL
or
noft -F sample.o -LP procedure-name D

5. To look at source file numbers for sample.o:

noft -FILE sample.o "-LISTSOURCE *"

527188-021 Hewlett-Packard Company 6−87

noft(1) OSS Shell and Utilities Reference Manual

6. To look at procedure numbers:

noft -F sample.o "-LP *"

7. To see the instructions for a procedure:

noft -FILE sample.o
-DUMPPROC procedure-name IN ICODE

or
noft -F sample.o -DP procedure-name IN IC

8. To look at a particular 20 words referenced by one of those instructions in octal:

noft -FILE sample.o
-DUMPADDRESS 0x00000390 FOR 20 WORDS IN OCTAL

or
noft -F sample.o -0x00000390 FOR 20 IN O

9. To look at the first 30 bytes in an object file in ASCII:

noft -FILE sample.o
-DUMPOFFSET 0x0 FOR 30 BYTES IN ASCII

or
noft -F sample.o -DO 0x0 FOR 30 B IN A

10. To find out if all the SRLs referenced by this object were resolved correctly:

noft -FILE sample.o -LISTSRLINFO DETAIL

11. To see all the data items external to the object file that need to be linked in and where they
are used in alphabetic order:

noft -FILE sample.o -SET SORT ALPHA
-LISTUNRESOLVED DATA DETAIL

or
noft -F sample.o -ST A -LU DATA D

RELATED INFORMATION
Commands: eld(1), enoft(1), ld(1), nld(1).

STANDARDS CONFORMANCE
The noft command is an HP extension to the XPG4 Version 2 specification.

6−88 Hewlett-Packard Company 527188-021

User Commands (m - o) nohup(1)

NAME
nohup - Runs a utility ignoring hangups

SYNOPSIS
nohup utility [argument ...]

DESCRIPTION
The nohup command runs utility with arguments supplied as argument values, ignoring all hangup
signals. You can use this command to run programs in the background after logging out of the sys-
tem. To run a nohup command in the background, add an & (ampersand) to the end of the com-
mand. When utility is invoked, the SIGHUP signal is ignored.

If nohup output is redirected to a terminal or is not redirected at all, the output is appended to the
file nohup.out. If the file is created, the permission bits are set to S_IRUSR and S_IWUSR. If
nohup.out is not writable in the current directory, the output is redirected to $HOME/nohup.out.
If neither file can be created or opened for appending, utility is not invoked.

The nohup command accepts just one utility as an argument. To apply nohup to a pipeline or list
of commands, enter the pipeline or list in a shell script file. Then run sh as utility using the follow-
ing format:

nohup sh -c file

You can also assign the shell file execute permission and run it as the utility in the form:

nohup file

EXAMPLES
1. To leave a command running after logging out (sh only), enter:

nohup find / -print &

Shortly after you enter this, the following is displayed:

670
$ Sending output to nohup.out

670 is the process ID of the command you just put in the background. The $ (dollar sign)
is the shell prompt.

The following is a message informing you that the output from the find command is in the
file nohup.out.

Sending output...

You can log out after you see these messages, even if the find command has not finished
yet.

2. To do the same, but redirect the standard output to a different file, enter:

nohup find / -print >filenames &

This runs the find command and stores its output in a file named filenames. Now only the
process ID and prompt are displayed.

Wait for a second or two before logging out, because the nohup command takes a moment
to start the utility you specified. If you log out too quickly, utility may not run at all. Once
utility has started, logging out will not affect it.

527188-021 Hewlett-Packard Company 6−89

nohup(1) OSS Shell and Utilities Reference Manual

3. To run more than one utility, use a shell script. For example, if you include the following
in a shell script:

comm -23 fi4 fi5 | comm -23 - fi6 | join -a1 - fi7 > comm.out

and rename it ncomm, you can run nohup for all of the utilities in ncomm by entering:

nohup sh ncomm

If you assign ncomm Execute permission, you can obtain the same results by issuing the
command:

nohup ncomm

To run this command in the background, enter:

nohup ncomm &

FILES
nohup.out Standard output and standard error file for nohup..

NOTES
The term utility, rather than the term command, is used to describe the argument to nohup because
shell compound commands, pipelines, special built-in programs, and so on, cannot be used
directly. In addition, utility includes user application programs and shell scripts, not just the stan-
dard utilities.

EXIT VALUES
The nohup command returns the following exit values:

126 The specified utility was found, but could not be invoked.

127 The error occurred in the nohup utility or the specified utility could not be found.

The exit status is otherwise that of the utility.

RELATED INFORMATION
Commands: sh(1).

Functions: sigaction(2).

6−90 Hewlett-Packard Company 527188-021

User Commands (m - o) od(1)

NAME
od - Writes the contents of a file to the standard output file

SYNOPSIS
od

[-v]
[-A address_base]
[-j skip]
[-N count]
[-t type_string...]
[file ...]

od
[-abBcCdDefFhHiIlLoOpPvxX]
[-A address_base]
[-j skip]
[-N count]
[-t type_string...]
[-s][number]
[-w][number]
[file ...]
[+]
[offset]
[.][b | B]
[label][.][b | B]

FLAGS
Format characters are as follows:

-a Displays bytes as characters and displays them with their ASCII names. If the p charac-
ter is also given, bytes with even parity are underlined. The P character causes bytes
with odd parity to be underlined. Otherwise, parity is ignored.

-A address_base
Specifies the input offset base with the single-character address_base argument. The
characters d, o, and x specify that the offset base be written in decimal, octal, or hexade-
cimal, respectively. The character n specifies that the offset not be written at all.

-b Displays bytes as octal values. This flag is equivalent to -t o1.

-B Displays short words as octal values. This flag is equivalent to -o and -t o2.

-c Displays bytes as characters using the current setting of the LC_CTYPE variable. This
flag is equivalent to -t -c. The following nongraphic characters appear as C escape
sequences:

\0 Null

\a Alarm (or bell)

\b Backspace

\f Formfeed

\n Newline character

\r Enter

527188-021 Hewlett-Packard Company 6−91

od(1) OSS Shell and Utilities Reference Manual

\t Tab

\v Vertical tab

Other nongraphic characters appear as 3-digit octal numbers. Bytes with the parity bit
set are displayed in octal.

-C Displays any extended characters as standard printable ASCII characters using the
appropriate character escape string.

-d Displays short words as unsigned decimal values. This flag is equivalent to -t u2.

-D Displays long words as unsigned decimal values.

-e Displays long words as double-precision, floating-point. (Same as -F.)

-f Displays long words as single-precision, floating-point.

-F Displays long words as double-precision, floating-point.

-h Displays short words as unsigned hexadecimal values.

-H Displays long words as unsigned hexadecimal values.

-i Displays short words as signed decimal values.

-I, -l, -L Display long words as signed decimal values. (The three flags are identical.)

-j skip Jumps over (reading or seeking) skip bytes from the beginning of the concatenated input
files. If the input is not at least skip bytes long, od writes a diagnostic message to stan-
dard error and returns a nonzero exit value.

The skip argument is interpreted as a decimal number by default. If you include a lead-
ing offset of 0x or 0X, skip is interpreted as a hexadecimal number. A leading offset of 0
(zero) causes skip to be interpreted as an octal number.

If you append the character b, k, or m to skip, the number is interpreted as a multiple of
512, 1024, or 1,048,576 bytes, respectively.

-N count Causes od to format no more than count bytes of input.

The count argument is interpreted as a decimal number by default. If you include a lead-
ing offset of 0x or 0X, count is interpreted as a hexadecimal number. A leading offset of
0 (zero) causes count to be interpreted as an octal number. If there are not count bytes of
input available (after successfully skipping bytes as specified by -j), od formats the
available input.

-o Displays short words as octal values. This flag is equivalent to -t o2. This is the default.

-O Displays long words as unsigned octal values.

-p Indicates even parity on -a conversion.

-P Indicates odd parity on -a conversion.

-s[number]
Looks for strings of ASCII graphic characters, terminated with a null byte. number
specifies the minimum length string to be recognized. By default, the minimum length is
3 characters. Allowable characters are those between blank (040) and tilde (0176), as
well as backspace, tab, linefeed, formfeed, and carriage-return (010 through 015, except
013).

6−92 Hewlett-Packard Company 527188-021

User Commands (m - o) od(1)

-t type_string...
Specifies one or more output types. The type_string argument is a string that specifies
the types to be used when writing the input data. type_string consists of the following
type specification characters:

a Named character

c Character

d Signed decimal

f Floating point

o Octal

u Unsigned decimal

x Hexadecimal

The type specification characters d, f, o, u, and x can be followed by an optional
unsigned decimal integer that specifies the number of bytes to be transformed by each
instance of the output type.

The type specification character f can be followed by one of the following optional char-
acters, which indicate the type of the item to which the conversion should be applied.

F float

D double

L long double

The type specification characters d, o, u, and x can be followed by one of the following
optional characters, which indicate the type of the item to which the conversion should
be applied:

C char

I int

L long

S short

You can concatenate multiple types within the same type_string argument and you can
specify multiple -t arguments. od writes the output lines for each type specified in the
order in which you entered the type specification characters.

-v Shows all data. By default, display lines that are identical to the previous line are not
output (except for the byte offsets), but are indicated with an * (asterisk) in column 1.

-w[number]
Specifies the number of input bytes to be interpreted and displayed on each output line.
If -w is not specified, 16 bytes are read for each display line. If number is not specified,
it defaults to 32.

-x Displays short words as unsigned hexadecimal values. (Same as -h and -t x2.)

-X Displays long words as unsigned hexadecimal values. (Same as -H.)

527188-021 Hewlett-Packard Company 6−93

od(1) OSS Shell and Utilities Reference Manual

An uppercase format character implies the long or double-precision form of the object.

You can specify multiple types by using multiple -bcdostx flags. Output lines are written for each
type specified in the order in which the types are specified.

DESCRIPTION
The od command reads file (standard input by default), and writes the information stored in file to
standard output using the format specified by the first flag. If you do not specify the first flag, the
-o flag is the default.

When od reads standard input, the offset and label parameters must be preceded by a + (plus sign).

The offset argument specifies the point in the file at which the output starts. The offset argument is
interpreted as octal bytes. If a . (dot) is added to offset, it is interpreted in decimal. If offset begins
with x or 0x, it is interpreted in hexadecimal. If b (B) is appended, the offset is interpreted as a
block count, where a block is 512 (1024) bytes.

The output continues until the end of the file. If the file argument is omitted and none of the -A, -j,
-N, or -t flags is specified, the offset argument must be preceded by a + (plus sign) character.

If the first character of file is a + (plus sign) or the first character of the first file argument is
numeric, no more than two arguments are given, and none of the -A, -j, -N or -t flags is specified,
the argument is assumed to be an offset.

The label argument is interpreted as a pseudoaddress for the first byte displayed. It is shown in
parentheses following the file offset. It is intended to be used with core images to indicate the real
memory address. The syntax for label is identical to that for offset.

EXAMPLES
1. To display a file in octal word format, a page at a time, enter:

od a.out | more

2. To translate a file into several formats at once, enter:

od -cx a.out >a.xcd

This writes a.out in hexadecimal format (the -x flag) into the file a.xcd, giving also the
ASCII character equivalent, if any, of each byte (the -c flag).

3. To start in the middle of a file, enter:

od -bcx a.out +100.

This displays a.out in octal-byte, character, and hexadecimal formats, starting from the
100th byte. The . (dot) after the offset makes it a decimal number. Without the . (dot), the
dump starts from the 64th (100 octal) byte.

NOTES
Compatibility Note

The -i flag displays short words as signed decimal values. The -i flag used to be -s in System V.

RELATED INFORMATION
Files: locale(4).

6−94 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

NAME
osh - Runs a process in the OSS environment from the Guardian environment

SYNOPSIS
osh [option ...] [redirection ...] [operands]

FLAGS
Operands used with the osh command must follow osh option specifications. Redirection can
appear anywhere on the command line.

Options
All filename and pathname arguments used with osh options must be specified using OSS path-
name syntax. In the current release, filenames and pathnames within the /E directory are not sup-
ported by the OSS file system. However, osh supports specification of the /E directory for
filenames and pathnames in options such as -prog pathname. These specifications allow the user
to identify Guardian environment objects on other HP NonStop server nodes.

The specification of osh options ends when osh finds one of the following:

• The end of the input line

• Any operand; that is, any specification that does not start with a minus (-) or plus (+) and
is not a redirection specification

• The -- option

• The -p option

The osh options cannot be grouped after a single minus (-) or plus (+). That is, -debuginspect on
is not a valid option specification.

The osh options can be specified in any order; osh processes options from left to right. When you
specify an osh option more than once, the rightmost specification on the command line determines
the value used.

-? | -help Displays usage information for the osh command. If this option is specified, all
remaining osh options and operands on the command line are ignored.

-c command Submits command to the OSS child process as a single argument, prefixed by -c.

If the command string contains more than one item, the entire string must be
enclosed in quotation marks ("). The command string can be any valid OSS shell
command, OSS utility name, or script file pathname and can include parameters to
be processed by the named command, utility, or script.

-cpu n Specifies the processor (0-15) in which the child process is to run. The default
processor is the processor in which osh is running.

-debug Starts a Guardian environment debugging tool at the first executable instruction of
the child process. The default action is to start the child process without a debug-
ging tool active.

Refer to the appropriate debugger manual for additional information.

-defmode on | -defmode off
Specifies the Guardian DEFINE mode for the child process.

If you use -defmode on, all Guardian DEFINE values of the process executing
osh are inherited by the child process.

If you use -defmode off, only Guardian =_DEFAULTS DEFINE values are inher-
ited by the child process.

527188-021 Hewlett-Packard Company 6−95

osh(1) OSS Shell and Utilities Reference Manual

The default mode is the DEFINE mode in effect for osh.

Refer to the TACL Reference Manual for additional information about Guardian
DEFINEs.

-extswap pathname
Specifies a Guardian swap file or swap volume for the extended data segment of
the child process. This option is no longer used but is retained for compatability
with older versions of the command. The pathname must be specified in OSS
pathname syntax.

The default action is to use the swap volume specified in the =_DEFAULTS
DEFINE values for the child process. If that volume is not available, the operat-
ing system chooses a swap volume.

Refer to the Guardian Programmer’s Guide for additional information about swap
files.

-gpri n Assigns the initial Guardian execution priority n (1-199) to the child process. The
value 1 is the lowest priority; the value 199 is the highest priority.

The default priority is the priority used for osh.

-highpin on | -highpin off
Specifies whether the child process can run with a Guardian process identification
number (PIN) greater than 255.

Specifying -highpin on means that the child process can run with a PIN greater
than 255. Specifying -highpin off means the child process must run with a PIN
between 0 and 254.

The default value is -highpin on, unless an off value for the Guardian process
attribute is inherited from osh.

Refer to the TACL Reference Manual for additional information about high and
low PINs.

-inspect on | -inspect off | -inspect saveabend
Indicates the Inspect mode to be used for the child process.

Specifying -inspect on causes the child process to enter the currently defined sym-
bolic debugger when the -debug option is specified or if a debug event occurs.

Specifying -inspect off causes the child process to enter the default debugger
when the -debug option is specified or if a debug event occurs.

Specifying -inspect saveabend causes creation of a saveabend file (process
snapshot file or core file) when the process terminates abnormally.

The default Inspect mode is the mode specified in the program file of the child
process.

Refer to the appropriate debugger manual for additional information about debug
events and debugger use.

-jobid 0 | -jobid -1
Controls the job ID to be assigned to the child process.

Specifying -jobid 0 prevents the child process from running as part of a batch job
(the osh process cannot function as a batch job ancestor, so no other value than -
jobid -1 is supported).

Specifying -jobid -1 causes the child process to inherit its job ID (if any) from
osh.

6−96 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

The default value is -jobid -1.

-lib pathname Specifies the OSS pathname of a user library file in the Guardian file system to be
used by the child process; the program file for the child process is modified to
point to the specified library.

Use of this option requires write access to the program file for the child process.
The library file must be in the Guardian file system on the same HP node as the
program file for the child process.

This option is needed only when a child process requires a user library and an
alternate is needed. The default action is to run the child process with no
modification to its user library usage.

+lib Specifies that the child process is to run without any user library file; the program
file for the child process is modified so that it does not point to a library.

Use of this option requires write access to the program file for the child process.

This option is needed only when a child process has used a user library that is no
longer needed. The default action is to run the child process with no modification
to its user library usage.

-ls Specifies that the child process is a login shell. The last pathname in the argv[0]
value passed to the child process is prefixed by a minus (-), indicating that the
/etc/profile and $HOME/.profile files should be run.

Refer to the rules later in this reference page under Process Environment for
more information on the source of the values used for the initial login and current
working directories.

If the osh command is used without specifying either the -p or -prog option, then
the -ls option is the default option and causes execution of the /bin/sh file as a
login shell.

+ls Specifies that the child process is not a login shell (the value passed to the child
process in argv[0] is not changed).

The osh command sets the current working directory for the child process to the
directory specified by the current value of the PWD PARAM. If the PWD
PARAM is not specified, osh command sets the current working directory for the
child process to the current Guardian file system default volume and subvolume
(as indicated in the =_DEFAULTS DEFINE). Refer to the rules later in this refer-
ence page under Process Environment for more information on the source of the
value used for this directory.

If the osh command is used with either the -p or -prog option, then the +ls option
is the default option.

-name {/G/ | /E/nodename/G/}processname
Starts the child process as a named process using the specified name; processname
must conform to Guardian process name rules for length.

If /G/ or /E/nodename/G/ is omitted, the full filename of the process is resolved
using Guardian environment rules. Refer to the RUN command description in the
TACL Reference Manual for the rules affecting process name length and resolu-
tion.

The rules for mapping between Guardian filenames and OSS pathnames mean that
processname cannot begin with the dollar sign ($) used in the Guardian environ-
ment. Similarly, nodename cannot begin with the backslash (\) character used in

527188-021 Hewlett-Packard Company 6−97

osh(1) OSS Shell and Utilities Reference Manual

the Guardian environment.

If only -name /G is specified, the operating system creates a unique four-character
process name.

The default action is to use the process name attribute for the program file of the
child process.

+name Starts the child process as an unnamed process. This specification is ignored if the
Guardian RUNNAMED process attribute is set in the program file for the child
process.

If you specify neither the -name nor the +name option, the default behavior is
+name.

-nowait Exits without waiting for the child process to terminate. The default action is to
wait for the child process to terminate.

-osstty Starts a copy of the OSSTTY process and redirects any OSS standard input, stan-
dard output, or standard error file through the process, to or from Guardian file sys-
tem objects, as specified by the redirection operators or the RUN options in the
same command. OSSTTY is started only if at least one of the objects specified
would otherwise not be accessible to the OSS program started by this command.
If -osstty is the only option specified and no redirection is requested in the com-
mand, OSSTTY does not start.

OSSTTY starts as a single-use process without a backup copy, on the same pro-
cessor as the osh process; osh ignores any server copies of OSSTTY that might
already be running. The instance of OSSTTY is given a 4-character process name
generated by the system and terminates as soon as the OSS application launched
by this command terminates.

All OSSTTY error messages are suppressed; the osh process issues its own error
messages instead. Output sent to standard files is not prefixed with information to
identify its source (the -osstty flag does not use the OSSTTY -prefixpid option).

Any OSS process started with a valid user ID can read or write data to a standard
file through the OSSTTY copy started by this command.

The standard error file cannot be redirected to a Guardian EDIT file.

When the -p or -c flag specifies an application program that cannot inherit OSS
standard files and you use the -osstty flag, standard file data is exchanged with one
or more of the following, as required:

standard input data
/G/abcd/#stdin

standard output data
/G/abcd/#stdout

standard error data
/G/abcd/#stderr

where abcd represents the 4-character process name generated for the copy of
OSSTTY.

The use of redirection specifications affects this determination; see Redirection in
this reference page.

If the OSS process uses a Guardian process for its standard error file, OSSTTY
uses the process specified for the HOMETERM of that process for its standard

6−98 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

error file; otherwise, OSSTTY uses the HOMETERM associated with the osh pro-
cess.

-p pathname Runs the program specified by pathname as a child process. This option is an
alternate syntax for the -prog option followed by the -- option (described later in
this reference page). For example, osh -p pathname operands is equivalent to
specifying osh -prog pathname -- operands.

No other osh option can be specified after this option on the osh command line.

-phd Specifies that the child process uses the initial login directory of the effective
(PAID) user instead of the initial login directory of the login user (the default
action). For more information, see "Process Environment." This flag is available
on systems running G06.31 and later G-series RVUs and H06.11 and later H-
series RVUs.

-pfs n Specifies the size of the operating system process file segment (PFS) for the child
process in 2048-byte virtual memory pages (64-512). The default size is deter-
mined from the program file executed as the child process.

Refer to the TACL Reference Manual for additional information about PFS pages.

-pmsg on | -pmsg off
Specifies whether the osh command displays the child process OSS process ID
(pid) and exit status information on its Guardian standard output file.

Specifying -pmsg on means the information is displayed. Specifying -pmsg off
means the information is not displayed.

The default option is -pmsg off.

-prog pathname
Runs the specified program file as the child process. If this option is specified:

• The osh command uses the Guardian environment PATH PARAM to
resolve (expand) the pathname argument. If the Guardian environment
PATH PARAM is not defined, then osh searches the /bin directory for a
file identified by the pathname value. If execution fails because the file is
not in executable format and the specified filename is not a directory, the
file is assumed to be a shell script and an OSS shell process is spawned to
execute it. If the file is not found, an error diagnostic is printed and osh
terminates.

• The osh command uses the +ls option instead of the -ls option as its
default option.

If you do not specify the -prog pathname option, the default action is to run the
OSS /bin/sh file as the child process and as a login shell (refer to the -ls option).

-swap pathname
Specifies the name of a Guardian swap file or swap volume for the data segment of
the child process. This option is no longer used and is provided for compatibility
with previous versions of the command. If specified, the name must be

• in OSS pathname syntax

• valid for an existing file

but is otherwise ignored. The operating system chooses a swap volume.

527188-021 Hewlett-Packard Company 6−99

osh(1) OSS Shell and Utilities Reference Manual

-term pathname
Specifies the filename of a Guardian terminal device to be used as the home termi-
nal of the child process. The name must be specified in OSS pathname syntax.

The default action is to use the home terminal of the osh process.

Refer to the TACL Reference Manual for additional information about Guardian
terminal device names.

-- Specifies that there are no more options on the osh command line. Any informa-
tion following this option is either processed as redirection specifications or
passed to the child process as operands.

Redirection
The osh command initially routes the input, output, and error file information of the child process
to its own standard input, output, and error files. A change in routing is called redirection.

Files that can be redirected include OSS regular files, odd-unstructured Guardian Enscribe format
1 files (file code 180), and Guardian terminal simulation processes such as OSSTTY or Telserv
windows. Other Guardian processes cannot be specified as the source or destination of child pro-
cess redirection; this restriction applies to such processes as spoolers and home terminal emulators
(for example, $VHS cannot receive standard error output unless OSSTTY is used as an intermedi-
ate process). Guardian EDIT files (file code 101) can be used for redirection only when the type of
redirection allows them to be opened for read-only access.

You can redirect information routed to standard files by embedding either or both of the following
in the osh command line:

• Standard Guardian command RUN options (specifying an IN, OUT, or TERM parameter
with a Guardian file name between slashes in the command line)

• POSIX.2 standard file redirection specifications

When a RUN option is used by itself, the Guardian file-system object it specifies is used for the
corresponding standard file of both the osh process and the OSS application that it launches. The
following values are valid:

IN filename1 specifies where to find standard input file data. You can specify a Guardian termi-
nal simulation process (such as OSSTTY or a Telserv window), an odd-
unstructured Enscribe format 1 (file code 180) file, or an EDIT file (file code 101)
using a Guardian filename.

OUT filename2
specifies where to write standard output file data. You can specify a Guardian ter-
minal simulation process (such as OSSTTY or a Telserv window) or an odd-
unstructured Enscribe format 1 (file code 180) file using a Guardian filename.

TERM filename3
specifies where to write standard error file data. You can specify a Guardian ter-
minal simulation process (such as OSSTTY or a Telserv window) using a Guar-
dian filename. If you omit this option, the HOMETERM for your terminal session
is used.

When a POSIX.2 redirection specification is used by itself, it applies to the standard file of the
OSS application being launched by the osh command.

When both a RUN option and a POSIX.2 redirection specification for the same standard file are
used, the osh process determines from the file in the POSIX.2 redirection specification whether a
copy of OSSTTY should be started automatically to redirect the standard file data appropriately.

6−100 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

osh POSIX.2 redirection specifications are a subset of those defined for a POSIX-conformant shell.
The following rules apply:

• All pathnames specified must use OSS pathname syntax. Relative pathnames are resolved
(expanded) using the initial working directory specified in the OSS environment variable
PWD passed to the child process.

• Any files that are the target of POSIX.2 redirection must be capable of being opened by
the OSS file system. See the open(2) reference page either online or in the Open System
Services System Calls Reference Manual for the kinds of files accessible.

• POSIX.2 redirection specifications can appear anywhere in the command line. The
specifications (and redirection operators within them) are processed in the order they
appear, from left to right.

osh supports only file descriptors 0 through 9. Leading zeros are allowed.

In the following descriptions, if the file descriptor number is omitted and the first character of the
redirection operator is <, the redirection refers to the standard input file (file descriptor 0). If the
first character of the redirection operator is >, the redirection refers to the standard output file (file
descriptor 1). You must specify file descriptor 2 to refer to the standard error file.

Redirecting Input

[n]<pathname Redirection of input opens the named file for read access on file
descriptor n. The standard input file (file descriptor 0) is used if n
is not specified.

Redirecting Output

[n]>pathname or [n]>|pathname
Redirection of output opens the named file or pipe for write
access on file descriptor n. The standard output file (file descrip-
tor 1) is used if n is not specified.

If the named file does not exist, it is created. If the named file
does exist, it is truncated to zero length.

Appending Redirected Output

[n]>>pathname Redirection of output opens the named file for append access on
file descriptor n. The standard output file (file descriptor 1) is
used if n is not specified.

If the named file does not exist, it is created.

Redirecting Input and Output

[n]<>pathname Redirection of both input and output opens the named file for both
read and write access on file descriptor n. The standard input file
(file descriptor 0) is used if n is not specified.

If the named file does not exist, it is created.

Duplicating Input

[n]<&fd Duplicates input file descriptors. If the fd argument consists of
one or more digits, the file descriptor n is made a copy of file
descriptor fd. If fd is -, file descriptor n is closed. If n is not

527188-021 Hewlett-Packard Company 6−101

osh(1) OSS Shell and Utilities Reference Manual

specified, the standard input file (file descriptor 0) is used.

Duplicating Output

[n]>&fd Duplicates output file descriptors. If the fd argument consists of
one or more digits, the file descriptor n is made a copy of file
descriptor fd. If fd is -, file descriptor n is closed. If n is not
specified, the standard output file (file descriptor 1) is used.

The order of redirections is significant. For example, the sequence

osh -c "ls -a" >lsout 2>&1

directs both standard output and standard error to the file lsout, while the sequence

osh -c "ls -a" 2>&1 >lsout

directs only standard output to the file lsout, because the standard error file was duplicated as the
standard output file before the standard output file was redirected.

Operands
All operands that the osh command does not interpret as option or redirection arguments are
passed to the child process as positional arguments in argv[1] through argv[n]. osh does not
expand operands or interpret special characters, except that double quotes can be used to group a
set of operands into a single argument.

The character string that constitutes a single operand depends on the parsing done to the command
line. An osh command line can be parsed up to four times before being executed.

The parsers that might interpret the line are:

TACL
The C run-time initializer
The osh process
The OSS shell

Each of these parsers applies different rules for special characters and uses different characters as
escape sequences to bypass parsing. A command line that contains special characters must be
entered with the escape sequences appropriate for each of these parsers.

For example, suppose a command line is entered through the Guardian environment TACL com-
mand interpreter. The TACL process can interpret or expand operands on the command line before
passing the line to the osh command to interpret. The settings used for TACL features can affect
the outcome of the command. In the following osh command, the OSS shell pipe symbol reaches
the shell for execution if the user has #INFORMAT PLAIN in effect:

osh -c "grep ’#’include *.c | sort | unique | more"

However, the pipe symbol cannot reach the shell for execution if the user has #INFORMAT TACL
in effect because the | character has a programming function within TACL. With #INFORMAT
TACL, the appropriate command line becomes:

osh -c "grep ’#’include *.c | sort | unique | more"

In both examples, the double quotes (") prevent the C run-time initializer from dividing the com-
mand parameter value into pieces that the osh command passes on to the child process (the OSS
shell) as multiple operands. The single quotes (’) prevent the OSS shell from interpreting all char-
acters of the operand following the number sign (#) as a comment.

You can pass 980 bytes of operands to the child process.

6−102 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

DESCRIPTION
The osh command executes an OSS program or shell script from the Guardian environment. osh is
a Guardian process that spawns an OSS process within the same HP node. osh allows you to
specify the environment and initial process attributes of the child process; it also allows redirec-
tion of data for the initially open files of the child process.

For the H06.23 or later H-series RVUs, or J06.12 RVUs or later J-series RVUs, or systems that
have installed SPR T8628H01_AAU, the file mode creation mask (umask) of the spawned process
is set to 0022. For the H06.25 or later H-series RVUs, or J06.14 or later J-series RVUs, or systems
that have installed SPR T8628H01_AAV or later SPRs, the file mode creation mask (umask) of the
spawned process is set using the Guardian DEFINE =OSSˆUMASK. If DEFINE =OSSˆUMASK is
not set or the value is invalid, osh uses the default value of 0022.

EXAMPLES
1. Running the OSS /bin/sh file (a Korn shell) interactively:

osh

2. Running an interactive shell script:

osh script1

3. Running a noninteractive script:

osh < script2

4. Reading this reference page:

osh -c "man osh"

5. Running the OSS shell ls command with output to an OSS file:

osh ls -a >/dirlist.txt

6. Using OSS pipes and regular expressions in a shell command (note the use of single quote
marks (apostrophes) to prevent the OSS shell from interpreting the number sign (#) char-
acter):

osh -c "grep ’#’include *.c | sort | uniq | more"

7. Using an OSS process directly without a shell:

osh -p cp ./myprog /usr/bin/myprog

8. Running a server program that has no controlling terminal:

osh -nowait -p /etc/portmap <- >- 2<>logfile

9. Preventing the TACL command interpreter from interpreting an absolute pathname as a
RUN option:

osh -- /usr/scripts/myscript

527188-021 Hewlett-Packard Company 6−103

osh(1) OSS Shell and Utilities Reference Manual

10. Running the osh process programmatically from a Guardian environment C program:

void main(void)
{

short myprocesshandle[10];
char myterm[64];
short mytermlen;
char cmd[255];

/* Get the home terminal name */
PROCESSHANDLE_NULLIT_(myprocesshandle);
PROCESS_GETINFO_(myprocesshandle ,

/* filename */, /* filenamemaxlen */,
/* filenamelen */, /* pri */, /* mom */,
myterm, (short)(sizeof (myterm) - 1),
&mytermlen);

myterm[mytermlen] = ’\0’;

/* Build the command line */
sprintf (cmd, "osh / IN %s, OUT %s / -c \"%s \"",

myterm, myterm, shcmd);

system (cmd);
exit (0);

}

where shcmd is any valid OSS shell command.

6−104 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

11. Passing text and multiple shell commands using a TACL macro as a substitute for a UNIX
Here-document:

?TACL MACRO
#FRAME
==
== First, create a Guardian file named msg
== containing text. To do this,
== add the TACL variable to be used, then
== place character strings in it.
==
#PUSH msg
#APPEND msg ****************
#APPEND msg * Hello world! *
#APPEND msg ****************
[#IF [#FILEINFO/EXISTENCE/ msg] |THEN|

SINK [#PURGE msg]]
==
== Write the variable to the Guardian file
==
VARTOFILE msg msg
==
== Next, create a Guardian file named cmds
== containing OSS shell commands. To do this,
== add the TACL variable to be used, then
== place character strings in it.
==
#PUSH cmds
#APPEND cmds echo ’cp msg /tmp/msg’
#APPEND cmds cp msg /tmp/msg
#APPEND cmds echo ’cat /tmp/msg’
#APPEND cmds cat /tmp/msg
#APPEND cmds echo ’rm /tmp/msg’
#APPEND cmds rm /tmp/msg
[#IF [#FILEINFO/EXISTENCE/ cmds] |THEN|

SINK [#PURGE cmds]]
==
== Write the variable to the Guardian file
==
VARTOFILE cmds cmds
==
== Now, run a shell to process the commands
== in the Guardian file cmds
==
osh +ls cmds
==
== Remove no longer needed Guardian files
==
SINK [#PURGE cmds]
SINK [#PURGE msg]
#UNFRAME

527188-021 Hewlett-Packard Company 6−105

osh(1) OSS Shell and Utilities Reference Manual

12. Using the output from an OSS command in the TACL variable VAR1:

#SET #INFORMAT TACL
OBEY GNMTOVAR
#PUSH VAR1
GNAMETOVAR /usr/donl/printcap VAR1
OUTVAR VAR1

\BOSTON.$XPG.ZYQ00000.Z0000M5L

where the file GNMTOVAR contains the following code:

== This macro has the following runtime syntax:
==
== GNAMETOVAR <OSS_pathname> <TACL_variablename>
==
== where <OSS_pathname> is represented as %1% and
== <TACL_variablename> is represented as %2%
==
[#DEF GNAMETOVAR MACRO |BODY|
==
== Add temporary TACL variables to be used
==

#PUSH cmds tmpfile1 tmpfile2
==
== Create a Guardian temporary file named tmpfile1
== to hold the output; a second file would be needed
== if there was more than one line of output (see below):
==

#SET/TYPE DELTA/cmds 0,Z-4K
[#LOOP |DO|

#SET tmpfile1 zz[#DELTA/COMMANDS cmds/
[#TIMESTAMP]]

|UNTIL| NOT
[#FILEINFO/EXISTENCE/ tmpfile1]

]
CREATE [tmpfile1]

==
== Redirect the output of the OSS shell
== gname command to the Guardian temporary file
==

osh -p gname -s %1% > [tmpfile1]
==
== Read the temporary file into the TACL variable and
== delete the trailing newline character; if the output
== will contain more than one line, convert the file
== to an EDIT file using CTOEDIT [tmpfile1] [tmpfile2]
== and omit the #CHARDEL line:
==

FILETOVAR [tmpfile1] %2%
#CHARDEL %2% [#CHARCOUNT %2%] FOR 1
SINK [#PURGE [tmpfile1]]

==
== Remove no longer needed TACL variables
==

6−106 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

#POP cmds tmpfile1 tmpfile2
]

13. Redirecting the standard output file from an OSS shell session to the $VHS virtual home
terminal subsystem for later postprocessing:

OSH / OUT $VHS / -osstty

14. Overriding the default file mode creation mask (umask) used by osh with a value of 023
using DEFINE =OSSˆUMASK. Note that DEFINE =OSSˆUMASK must be set before run-
ning osh, or osh uses the default value of 0022:

add DEFINE =OSSˆUMASK, class MAP, file #023

FILES
/bin/sh Contains the default OSS shell to be executed.

NOTES
Many of the osh command options correspond to the options of the TACL RUN or RUND com-
mand that are usually called RUN options in the Guardian environment. Except as described
under Redirection in this reference page, RUN options can be specified as part of the osh com-
mand but apply to the osh process itself, not to the child process created by the call to osh.

If you specify a RUN option value for osh but do not specify the corresponding osh option for the
child process, the RUN option value you specify can be used as the default value for that attribute
of the child process. However, if you specify both a RUN option value for osh and the
corresponding osh option for the child process, the value specified for the RUN option has no
effect on the value used for the child process.

For example:

osh / CPU 5 / -- /usr/scripts/myscript

runs both osh and myscript in processor 5, but

osh / CPU 5 / -cpu 3 -- /usr/scripts/myscript

runs osh in processor 5 and myscript in processor 3.

Use in Programs
When the osh command is run using the system() function, the TACL RUN options IN and OUT
must be specified.

Guardian processes typically open a Guardian environment disk file for output by requesting pro-
tected or exclusive access. This practice can conflict with use of a file by an OSS process.

For example:

osh -c "ls -al"

fails if it is invoked within a program and the output from the program is redirected to a Guardian
disk file. Because the output file is still open by the Guardian process executing the command file,
the OSS shell cannot open the file and terminates abnormally.

527188-021 Hewlett-Packard Company 6−107

osh(1) OSS Shell and Utilities Reference Manual

Guardian Environment Variables
The following Guardian environment variables affect the execution of the osh command.

ASSIGNs

STDERR Names the Guardian file to be used by osh as its Guardian stan-
dard error file. The default file is the hometerm file for the TACL
session.

No Guardian environment ASSIGN values are passed to the child process.

PARAMs

HOME If this parameter is defined, osh passes the value to the child pro-
cess as its OSS environment variable HOME. If the Guardian
HOME PARAM is not defined, then osh sets the OSS environ-
ment variable HOME according to the rules indicated under Pro-
cess Environment later in this reference page.

LOGNAME If this parameter is defined, osh passes the value to the child pro-
cess as its OSS environment variable LOGNAME. If the Guar-
dian LOGNAME PARAM is not defined, then osh sets the OSS
environment variable LOGNAME to the user’s login name.

The LOGNAME value has no effect on the determination of the
HOME or PWD environment variable value passed to the child
process. Refer to the rules indicated under Process Environment
later in this reference page.

PATH If this parameter is defined, osh interprets the value as a list of
OSS directories, separated by colons. These directories are
searched when resolving a relative OSS pathname for the program
specified with the -p or -prog option.

If the Guardian PATH PARAM is not defined, osh uses the OSS
/bin directory to resolve relative pathnames.

PWD If this parameter is defined, osh passes the value to the child pro-
cess as its OSS environment variable PWD. If the Guardian
PWD PARAM is not defined, then osh sets the OSS environment
variable PWD according to the rules indicated under Process
Environment later in this reference page.

All Guardian PARAMs are converted into OSS environment variables for the
child process. Circumflex (ˆ) and hyphen (-) characters within a PARAM name
are converted to underscore (_) characters in the equivalent OSS environment
variable name.

A single PARAM name and value can contain up to 255 bytes of character infor-
mation for one environment variable. Up to 1024 bytes of PARAM names and
values are supported.

DEFINEs

=_DEFAULTS Provides the default values for the current Guardian volume and
subvolume names.

If the -defmode on option is used, all Guardian DEFINEs inherited by osh are

6−108 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

inherited by the child process. Up to 256K bytes of DEFINEs can be inherited.
The actual maximum depends on the size of the PFS for the child process.

If the -defmode off option is used, only the Guardian =_DEFAULTS DEFINE
values inherited by osh are inherited by the child process.

Process Environment
The child process is a session leader and its OSS parent process ID is set to 1. Its Guardian mom,
or its Guardian ancestor if it is a named process, is the osh process that created it.

osh child processes have an initial signal mask in which all signals are defaulted.

The value of the OSS environment variable HOME passed to the child process is the first applica-
ble value from the following list:

1. The content of the Guardian environment HOME PARAM variable, if one is defined.

2. If the -phd option was specified to osh, the initial login directory of the current effective
user ID (PAID) of the parent process as configured on the HP node that runs the child pro-
cess.

3. If the -phd option was not specified to osh, the initial login directory of the parent process
as configured on the HP node that runs the child process.

The initial login directory is determined by looking up the user ID that corresponds to the
login name of the parent process in the authentication database of the node on which the
child process runs. If that user ID matches the real user ID of the child process, then the
initial login directory configured for the user ID of the parent process on the target node is
used as the HOME environment variable value. If the user ID of the parent process does
not match the real user ID of the child process, the initial login directory configured for the
real user ID of the child process is used as the HOME environment variable value.

The value of the OSS environment variable PWD passed to the child process is the first applicable
value from the following list:

1. The content of the Guardian environment PWD PARAM variable, if one is defined.

2. If a logon shell is being created and the -phd option was specfied to osh, the initial login
directory of the current effective user ID (PAID) of the parent process as configured on the
HP node that runs the child process.

3. If a login shell is being created and the -phd option was not specified to osh, the initial
login directory of the parent process as configured on the HP node that runs the child pro-
cess.

The initial login directory is determined by looking up the user ID that corresponds to the
login name of the parent process in the authentication database of the node on which the
child process runs. If that user ID matches the real user ID of the child process, then the
initial login directory configured for the user ID of the parent process on the target node is
used as the PWD environment variable value. If the user ID of the parent process does
not match the real user ID of the child process, the initial login directory configured for the
real user ID of the child process is used as the PWD environment variable value.

4. The current working directory of the parent process (if a login shell is not being created).

The creation of the child process fails when an initial working directory and current working
directory cannot be identified.

527188-021 Hewlett-Packard Company 6−109

osh(1) OSS Shell and Utilities Reference Manual

DIAGNOSTICS
Error diagnostics are written to the Guardian STDERR file of the osh process. All osh error mes-
sages are prefixed with osh[n]:, where n is a unique message number. The following messages
can appear:

osh[1]: standard files must be local to nodename
One of the standard input, output, or error files is not local to the HP node on
which osh is running.

Make sure that the IN, OUT, and either TERM or STDERR files are on your local
HP node. Reenter the command with new specifications if needed.

osh[2]: invalid I/O redirection syntax
The command line contains an unrecognized redirection specification.

Check for typographical errors and reenter a corrected command line.

osh[3]: here-documents are not supported
Your input included a UNIX here-document. osh does not support here-
documents.

Copy the here-document into a file and use the file as input. Or use osh to start an
interactive OSS shell and reissue your here document as part of the appropriate
shell command.

osh[4]: only fds 0-9 are supported with I/O redirection
You entered a redirection specification containing a file descriptor outside of the
supported range (0 through 9).

Reissue the command using a file descriptor within the supported range.

osh[5]: unable to get login name, using derived name username
The getlogin() function returned a NULL string. osh substituted the indicated
name from your effective user ID.

This is a warning message, indicating that osh was started from a process without
a valid OSS login name.

osh[6]: unable to get default volume, DEFINEINFO error n
Guardian file-system error n was returned from a call to the Guardian
DEFINEINFO procedure that attempted to get the information for the
=_DEFAULTS DEFINE. A system software problem might exist; the
=_DEFAULTS DEFINE should exist for all user processes.

Refer to the DEFINEINFO procedure description in the Guardian Procedure
Calls Reference Manual for the meaning of the error returned. Check the current
value of your =_DEFAULTS DEFINE by using the TACL INFO DEFINE com-
mand.

osh[7]: the option_name option must be followed by
permissible_values
You specified the indicated option with an unrecognized value.

Check for typographical errors and reenter a corrected command line.

osh[8]: root fileset is not mounted
The OSS root fileset is not mounted on your local HP node. The root fileset must
be mounted to execute an osh command.

Contact your system administrator and ask that the root fileset be mounted.

6−110 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

osh[9]: unable to chdir to pathname, error n: strerror(n)
osh could not set the current working directory for the child process. The chdir()
function call returned the indicated error number. The meaning of that error
number as returned by the strerror() function is displayed. The indicated path-
name might not exist, or you might not have search permission (read and execute
access) for it.

Check the value used for the OSS environment variable PWD if the child process
was not to be a login shell. Set the Guardian PWD PARAM environment variable
to a new value if necessary and reenter the command.

osh[10]: <stdin|stdout|stderr|fdn> file pathname is not
OSS-openable
The file identified by pathname cannot be opened by an OSS environment open()
function call. The file must be one of the following for an OSS application to
open it:

• An unstructured disk file, a FIFO, or a Telserv window

• For stdin when the -osstty flag is not used, an EDIT file

• For stdin when the -osstty flag is used, a Guardian process or an EDIT file

• For stdout when the -osstty flag is used, a Guardian process or an EDIT
file

• For stderr when the -osstty flag is used, a Guardian process

If -osstty has been specified, OSSTTY was not launched. The OSS application is
not running.

Reenter the command but redirect the information for the indicated file to a file
that can be opened within the OSS environment.

osh[11]: unable to open child process, error n: strerror(n)
The osh command detected an error while trying to open the child process and
send the child process a sequence of Guardian environment startup messages. The
Guardian file-system error n was returned. The meaning of that error number as
returned by the strerror() function is displayed.

Refer to the Guardian Procedure Errors and Messages Manual for an explanation
of the error and suggested error-specific recovery actions. A typical error is 201,
because the child process terminated as soon as it started. If this is the case, use
the -inspect saveabend option to create a saveabend file or the -debug option to
start the child process within a debugging tool.

osh[12]: Unable to run pathname, error ([errno,] n[,m]):
explanation
osh could not start the child process for the program file pathname. If the error
occurred in the OSS environment, the errno value returned is shown. The Guar-
dian process-creation error n was returned. The associated error detail m value is
also returned. An explanation of the error is given.

Refer to the following for an explanation of the error and possible error-specific
recovery actions:

• The display from the TACL command ERROR errno

527188-021 Hewlett-Packard Company 6−111

osh(1) OSS Shell and Utilities Reference Manual

• The process-creation error n and m descriptions in the Guardian Pro-
cedure Errors and Messages Manual

If the value of n is 111 or 112 and the value of m is 0, 1, or 2, the underlying
PROCESS_SPAWN_ procedure call was unable to open the standard files of the
OSS application. Check if any of the standard files specified is a Guardian pro-
cess or if the standard output file is an EDIT file. If either condition exists, reissue
the command with the -osstty flag specified.

If osh is unable to stop the OSSTTY process, this warning message is displayed:

WARNING: unable to stop OSSTTY process process-name,
PROCESS_STOP_() failed with error: error

Stop the OSSTTY process manually. For more information about error, see the
PROCESS_STOP_ procedure in the Guardian Procedure Calls Reference
Manual.

osh[13]: Unable to read from filename, error n: strerror(n)
The osh command detected an error while trying to read the indicated file. The
Guardian file-system error n was returned. The meaning of that error number as
returned by the strerror() function is displayed.

Refer to the Guardian Procedure Errors and Messages Manual for an explanation
of the error and possible error-specific recovery actions.

osh[14]: Unable to get process information, procedure
error n
The osh process received the Guardian file-system error n when trying to deter-
mine its own Guardian process attributes. The osh process uses many of its own
Guardian process attributes (such as processor number and home terminal name)
as default values when creating the child process.

The Guardian procedure call indicated by procedure encountered the problem.
This message occurs when one of the following conditions is true:

• The version of osh used is not compatible with the version of the operat-
ing system.

• The NonStop Kernel message system does not have enough resources to
provide the information.

• A coding error exists within this version of osh.

Recovery action depends on the error returned. Refer to the description of pro-
cedure in the Guardian Procedure Calls Reference Manual for more detailed
information about the error when returned by that procedure.

osh[15]: unrecognized option: option_name
You specified an option that osh does not recognize.

Check for typographical errors and reenter a corrected command line.

osh[16]: unable to open $RECEIVE, error n: strerror(n)
Guardian file-system error n was returned when osh attempted to open its own
Guardian $RECEIVE file. The meaning of that error number as returned by the
strerror() function is displayed.

The recovery action depends on the Guardian file-system error number. Refer to
the Guardian Procedure Calls Reference Manual for an explanation of the error

6−112 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

and suggested error-specific recovery actions.

osh[17]: internal error - description
The osh process has detected the situation described by description. This error
should also create a saveabend file for the osh process.

Report this problem to your service provider. Give the service provider a copy of
the saveabend file and describe the conditions necessary to reproduce the prob-
lem.

osh[18]: unable to allocate nbytes for purpose
The osh process could not allocate the indicated amount of memory from its heap.
This probably indicates that osh could not allocate a Guardian file-system extent
on the extended segment file used for the heap.

If this problem occurs because of disk allocation failure, run osh using an
extended swap volume or extended segment file that has more free space.

osh[19]: unable to send msgtype message, error n:
strerror(n)
The osh process could not send a Guardian-environment startup, ASSIGN, or
PARAM message to its child process. The Guardian file-system error n was
returned. The meaning of that error number as returned by the strerror() function
is displayed.

Refer to the Guardian Procedure Errors and Messages Manual for an explanation
of the error and suggested error-specific recovery actions.

osh[20]: procedure error n on file: strerror(n)
The indicated procedure returned Guardian file-system error n for the named file.
The meaning of that error number as returned by the strerror() function is
displayed.

Refer to the Guardian Procedure Errors and Messages Manual for an explanation
of the error and suggested error-specific recovery actions.

osh[21]: Unable to redirect standard files via OSSTTY (a, b, c):
explanation
The meaning of this message depends upon the value returned for a:

1 The value of explanation is: unable to launch OSSTTY. The
value returned as b is the Guardian file-system error returned by
the attempt. The value returned as c is the related detail error
value.

The osh process did not launch the OSS application.

Refer to the process-creation error descriptions in the Guardian
Procedure Errors and Messages Manual for an explanation of the
error value and suggested error-specific recovery actions.

2 The value of explanation is: unable to communicate with
OSSTTY. The value returned as b is the Guardian file-system error
returned by the attempt. No value is returned as c.

OSSTTY started but stopped immediately. The osh process did
not launch the OSS application.

Refer to the Guardian Procedure Errors and Messages Manual
for an explanation of the error and suggested error-specific
recovery actions.

527188-021 Hewlett-Packard Company 6−113

osh(1) OSS Shell and Utilities Reference Manual

3 The value of explanation is: OSSTTY terminated, unable
to run OSS application. The value returned as b is the
Guardian file-system error returned by the attempt to create the
OSS application process. The value returned as c is the file
descriptor for the OSSTTY process involved in the failure.

The osh process did not launch the OSS application.

Refer to the process-creation errors in the Guardian Procedure
Errors and Messages Manual for an explanation of the error and
suggested error-specific recovery actions. Check the following
for the Guardian objects corresponding to the standard files:

• The Guardian file or process exists

• The Guardian file is not corrupted

• The Guardian file has the correct access permissions to be
used in this command

• The Guardian file is not opened by another process

Check event logs for any OSSTTY Event Management Service
(EMS) messages.

4 The value of explanation is: WARNING: OSSTTY ter-
minated... OSS application running. The value
returned as b is the completion code of the OSSTTY process. No
value is returned for c. If an external process stopped OSSTTY,
the process name and user ID associated with that process is writ-
ten to the osh process standard error file.

OSSTTY stopped after the OSS application process was created.
The OSS application process might continue to run, depending on
how it is coded. However, neither it nor any OSS process it
spawns can redirect their standard files to Guardian file-system
objects.

Refer to the Guardian Procedure Errors and Messages Manual
for an explanation of the completion code. Check event logs for
any OSSTTY Event Management Service (EMS) messages.

osh[22]: stdfile is a non-existent file/process.
The specification for the standard file represented by stdfile refers to a nonexistent
file or process for OSSTTY redirection.

The value returned for stdfile is one of the following:

STDERR The standard error file

STDIN The standard input file

STDOUT The standard output file

Neither OSSTTY nor the OSS application are running.

Either create the missing file or launch the required process, then reissue the com-
mand.

6−114 Hewlett-Packard Company 527188-021

User Commands (m - o) osh(1)

EXIT VALUES
If the osh command successfully starts the child process, osh returns the completion code 0. Oth-
erwise, osh returns one of the following completion codes:

3 The osh process terminated abnormally.

2 The child process terminated abnormally.

1 Warnings occurred when the child process started.

The completion code returned by the child process is returned as the termination status of the osh
process. For example:

126 Indicates the command was found but is not executable.

127 Indicates the command was not found.

RELATED INFORMATION
Commands: gtacl(1).

Functions: getlogin(2), open(2), tdm_execve(2), tdm_execvep(2), strerror(3), system(3).

Files: core(4), errno(5).

STANDARDS CONFORMANCE
The osh command as a mechanism for starting a shell is an HP extension to the XPG4 Version 2
specification.

527188-021 Hewlett-Packard Company 6−115

Section 7. User Commands (p - r)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the letters p through r.

527188-021 Hewlett-Packard Company 7−1

pack(1) OSS Shell and Utilities Reference Manual

NAME
pack - Compresses files

SYNOPSIS
pack [-f] [-] file ...

FLAGS
- Displays statistics about the input files. The statistics are calculated from a Huffman

minimum redundancy code tree built on a byte-by-byte basis. Repeating the - (dash)
on the command line toggles this function.

-f Forces compaction of input files.

DESCRIPTION
The pack command stores the specified file in a compressed form. The input file is replaced by a
packed file with a name derived from the original filename (file.z). The pack command tries to
preserve the access modes, access and modification dates, and owner from the original file, but it
can do so only if you have the appropriate privileges (see the chmod(1) reference page); other-
wise, pack compresses the file and assigns your owner and group ID to the new file.

Directories cannot be compressed.

If pack cannot create a smaller file, it stops processing and reports that it is unable to save space,
unless you specify -f. (The -f flag forces packing to occur even if the files cannot benefit from
packing.) A failure to save space generally happens with small files or files with uniform charac-
ter distribution.

The amount of space saved depends on the size of the input file and the character frequency dis-
tribution. Because a decoding tree forms the first part of each .z file, you will generally not be
able to save space with files smaller than three blocks. Typically, text files are reduced 25 to 40
percent. Object files, which use a larger character set and have a more uniform distribution of
characters, show only a 10-percent reduction when packed.

Packing is not done if any of the following conditions are true:

• The file is already packed.

• The file has hard links.

• The file is a directory.

• The file cannot be opened.

• No storage blocks are saved by packing.

• A file called file.z already exists.

• The .z file cannot be created.

• An I/O error occurs during processing.

• The filename is more than NAME_MAX-2 bytes long.

• The file is empty and the -f option has not been specified.

If the file has an access control list (ACL), the ACL is preserved when the file is packed. For
more information about ACLs, see the acl(5) reference page.

7−2 Hewlett-Packard Company 527188-021

User Commands (p - r) pack(1)

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXAMPLES
1. To compress files, enter:

pack chap1 chap2

This command compresses the files chap1 and chap2, replacing them with files named
chap1.z and chap2.z. The pack command displays the percent decrease in size for each
file.

2. To display statistics about the amount of compression done, enter:

pack - chap1 - chap2

This command compresses the files chap1 and chap2 and displays statistics about chap1
but not about chap2. The first - (dash) turns on the statistic display, and the second -
(dash) turns it off.

NOTES
If you try to use pack on a very small file, you might receive the following message:

pack filename: No saving -- file unchanged

EXIT VALUES
The pack command returns the following values:

0 (zero) The command completed successfully and all files were packed.

>0 An error occurred because some of the files could not be packed. The number
returned is the number of files that the pack command could not pack.

RELATED INFORMATION
Commands: cat(1), compress(1), uncompress(1), unpack(1), zcat(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

527188-021 Hewlett-Packard Company 7−3

paste(1) OSS Shell and Utilities Reference Manual

NAME
paste - Joins lines from one or more files

SYNOPSIS
paste [-d list] [-s] file ...

The paste command reads input files, joins corresponding lines, and writes the result to stan-
dard output. It also reads standard input if you specify a - (dash) instead of a filename.

FLAGS
-d list Replaces the delimiter that separates lines in the output (tab by default) with one or

more characters from list. If list contains more than one character, then the characters
are repeated in order until the end of the output. In parallel merging, the lines from the
last file always end with a newline character instead of one from list.

The following special characters can be used in list:

\n Newline character

\t Tab

\\ Backslash

\0 Empty string (not a null character)

c An extended character

You must quote characters that have special meaning to the shell.

When the -s flag is specified with -d, the last newline character in a file is preserved,
and the delimiter is reset to the first element of list after each file is processed. If -s is
not specified with -d, the newline characters in the last file specified are preserved, and
the delimiter is reset to the first element of list each time a line is processed.

-s Merges all lines from each input file into one line of output (serial merging). With this
flag, paste works through one entire file before starting on the next. When it finishes
merging the lines in one file, it forces a newline and then merges the lines in the next
input file, continuing in the same way through the remaining input files, one at a time.
A tab separates the input lines unless you use the -d flag. Regardless of the list, the last
character of the output is a newline character.

DESCRIPTION
Without a flag, or with the -d flag, paste treats each file as a column and joins them horizontally
with a tab character by default (parallel merging).

With the -s flag, paste combines all lines of each input file into one output line (serial merging).
These lines are joined with the tab character by default.

Output lines can be of arbitrary length.

If an End-of-File condition is detected on one or more input files, but not all input files, paste
behaves as though empty lines were read from the file(s) on which End-of-File was detected,
unless the -s flag is specified.

Note that the output of pr -t -m is similar to that of paste, but it creates extra spaces, tabs, and
lines for an enhanced page layout.

7−4 Hewlett-Packard Company 527188-021

User Commands (p - r) paste(1)

EXAMPLES
1. To paste several columns of data together, enter:

paste names places dates > npd

This creates a file named npd that contains the data from names in one column, places in
another, and dates in a third. The columns are separated by tab characters.

npd then contains:

names places dates

rachel New York 28 February
jerzy Warsaw 27 April
mata Nairobi 21 June
michel Boca Raton 27 July
segui Managua 18 November

A tab character separates the name, place, and date on each line.

2. To separate the columns with a character other than a tab (sh only), enter:

paste -d "!@" names places dates > npd

This alternates ! and @ as the column separators. If names, places, and dates are the
same as in Example 1, then npd contains:

rachel!New York@28 February
jerzy!Warsaw@27 April
mata!Nairobi@21 June
michel!Boca Raton@27 July
segui!Managua@18 November

3. To display the standard input in multiple columns, enter:

ls | paste - - - -

This lists the current directory in four columns. Each - (dash) tells paste to create a
column containing data read from the standard input. The first line is put in the first
column, the second line in the second column, ... and then the fifth line in the first
column, and so on.

This is equivalent to the following:

ls | paste -d "\t\t\t\n" -s -

The preceding command line fills the columns across the page with subsequent lines
from the standard input. The -d "\t\t\t\n" defines the character to insert after each
column: a tab character (\t) after the first three columns, and a newline character (\n)
after the fourth. Without the -d flag, paste -s - displays all of the input as one line with a
tab between each column.

4. To merge the lines of the file names above into one output line, enter:

paste -s names

This results in the following:

rachel jerzy mata michel segui

527188-021 Hewlett-Packard Company 7−5

paste(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: cut(1), grep(1), pr(1).

Files: locale(4).

7−6 Hewlett-Packard Company 527188-021

User Commands (p - r) patch(1)

NAME
patch - Applies changes to files

SYNOPSIS
patch

[-bflNRsSv]
[-c | -n]
[-B prefix]
[-d directory]
[-D define]
[-i patchfile]
[-o outfile]
[-p [number]]
[-r rejectfile]
[original_file]
[[+ flags] [original_file] . . .]

FLAGS
-b Saves a copy of the original contents of each modified file, before the differences

are applied, in a file of the same name with the suffix .orig appended. If the file
already exists, it is overwritten; if multiple patches are applied to the same file,
the .orig file is written only for the first patch. If -o outfile is also specified,
patchfile.orig is not created, but if outfile already exists, outfile.orig is created.

-B prefix Specifies a prefix to the backup filename.

-c Interprets the patch file as a context diff script (the output of diff when the -c or
-C flag is specified).

-d directory Changes the current directory to directory before processing.

-D define Uses the C preprocessor #ifdef define #endif construct to mark changes. The
define argument is used as the differentiating symbol.

-f Suppresses queries to the user. To suppress commentary, use the -s flag.

-i patchfile Reads the patch information from the file named by patchfile, rather than from
the standard input file.

-l Causes any sequence of spaces and tabs (white space) in the diff script to match
any sequence of spaces in the input file. Other characters are matched exactly.

-n Interprets the script as a normal diff script.

-N Ignores patches where the differences have already been applied to the file; by
default, already applied patches are rejected. (See the -R flag.)

-o outfile Instead of modifying the files (specified by the patchfile argument or the diff list-
ings) directly, writes a copy of the file referenced by each patch, with the
appropriate differences applied, to outfile. Multiple patches for a single file are
applied to the intermediate versions of the file created by any previous patches,
and result in multiple, concatenated versions of the file written to outfile.

-p [number] Sets the pathname strip count, which controls how pathnames found in the patch
file are treated. This flag is useful if you keep your files in a different directory
than that specified by the patch. The strip count number specifies how many
slashes to strip from the front of a pathname. Any intervening directory names
are also stripped.

527188-021 Hewlett-Packard Company 7−7

patch(1) OSS Shell and Utilities Reference Manual

If number is omitted or 0, then the pathname is not modified. If the -p flag is
omitted, all slashes and directory names preceding the filename are stripped.

For example, if the filename in the patch file was /u/howard/src/blurfl/blurfl.c,
entering -p or -p0 leaves the entire pathname unmodified. Entering -p1 results in
u/howard/src/blurfl/blurfl.c without the leading slash. Entering -p4 results in
blurfl/blurfl.c. Omitting -p from the patch command line results in blurfl.c.

The patch command looks for the resulting pathname in either the current direc-
tory or the directory specified by the -d flag.

-r rejectfile Specifies the filename of the reject file. By default, the reject file has the same
name as the output file, with the suffix .rej appended.

-R Reverses the sense of the patch script; that is, patch assumes that the diff script
was created by comparing the new version to the old version. The patch com-
mand tries to reverse each portion of the script before applying it. Rejected
differences are saved in swapped format.

If this flag is not specified, then until a portion of the patch file is successfully
applied, patch tries to apply each portion in its reversed sense as well as in its
normal sense. If the attempt is successful, you are prompted to determine
whether -R should be set.

Note that this method cannot detect a reversed patch if it is a normal diff script
and if the first command is an append (that is, it should have been a delete):
appends always succeed because a NULL context matches anywhere. However,
most patches add or change lines rather than delete them, so most reversed nor-
mal diff scripts begin with a delete, which will fail, triggering the heuristic.

-s Patches silently unless an error occurs.

-S Ignores a patch from the patch file, but continues looking for the next patch in
the file. For example

patch -S + -S + <patchfile

ignores the first and second patches in patchfile.

-v Prints out the revision header and patch level.

+ flags [original_file]
Specifies flags (and possibly another original filename) for the second and subse-
quent patches. The argument list for each patch must be preceded with + (plus
sign). (Note that the argument list for a second or subsequent patch may not
specify a new patch file.)

Operands
original_file Specifies the file to be patched.

DESCRIPTION
The patch command takes a patch file that contains either of the forms of difference listing pro-
duced by the diff program (normal or context) and applies those differences to an original file,
producing a patched version.

By default, the patched version of a file replaces the original. The original file can be backed up
to the same name with the extension .orig by specifying the -b flag. You can also specify where
you want the output to go with the -o flag. If the -i patchfile flag is not specified, or if patchfile is
- (dash), the patch is read from the standard input file.

7−8 Hewlett-Packard Company 527188-021

User Commands (p - r) patch(1)

The patch command attempts to determine the type of the diff script, unless it is overruled by a
-c or -n flag, which specify context diffs and normal diffs, respectively.

The patch file must contain zero or more lines of header information followed by one or more
patches. Each patch must contain zero or more lines of filename identification in the format pro-
duced by diff -c, and one or more sets of diff output, which are customarily called "hunks."

The patch command tries to skip any leading text, apply the diff, and then skip any trailing text.
Therefore, you could feed an article or message containing a diff listing to patch, and it will
work. If the entire diff is indented by a consistent amount, patch takes this into account.

If original_file is not specified, patch tries to determine the name of the file to edit from the lead-
ing text. In the header of a context diff, patch searches for filenames in lines beginning with ***
(the name of the file from which the patches arose) or --- (the name of the file to which the
patches should be applied), and selects the shortest name of an existing file. If there is an Index:
line in the leading text, patch tries to use the filename from that line. The context diff header
takes precedence over an Index: line. If no filename can be determined from the leading text,
patch asks you for the name of the file to patch.

If the original file cannot be found but a suitable SCCS or RCS file is available, patch attempts to
get or check out the SCCS or RCS file.

Additionally, if the leading text contains a Prereq: line, patch takes the first word from the
prerequisites line (normally a version number) and searches the input file for that word. If the
word is not found, patch asks for confirmation before proceeding.

If the patch file contains more than one patch, patch tries to apply each patch as if it came from a
separate patch file. In this case, the name of the file to patch must be determined for each diff
listing, and the header text before each diff listing is examined for information such as filenames
and revision level. You can give flags (and another original filename) for the second and subse-
quent patches by separating the corresponding argument lists with a +.

For each hunk, patch calculates the location to apply the hunk using the line number mentioned
for the hunk, plus or minus any offset used in applying the previous hunk. If that calculation
does not give the correct place to apply the hunk, patch scans both forward and backward for a
set of lines matching the context given in the hunk. The patch command searches for a location
where all lines of the context match.

If patch cannot find a place to install that hunk of the patch, it places the hunk in a reject file
(normally, a file with the same name as the output file plus the suffix .rej). The rejected hunk is
written in the form of a context diff script, regardless of the format of the patch file. If the input
was a normal diff or ed-style script, the reject file might contain diffs with zero lines of context.
The line numbers on the hunks in the reject file might be different from the line numbers in the
patch file; the reject file line numbers reflect the approximate locations for the failed hunks in the
new file rather than the old file.

As each hunk is completed, patch tells you whether the hunk succeeded or failed, and on which
line in the new file patch assumed the hunk should go. If this line does not have the line number
specified in the diff, patch tells you the offset. A single large offset might be an indication that a
hunk was installed in the wrong place.

NOTES
Note the following if you are going to be sending out patches:

• HP recommends that you keep a patchlevel.h file that is patched to increment the patch
level as the first diff in the patch file you send out. If you put a Prereq: line in with the
patch, users will not be able to apply patches out of order without some warning.

527188-021 Hewlett-Packard Company 7−9

patch(1) OSS Shell and Utilities Reference Manual

• Make sure you specify the filenames correctly, either in a context diff header or with an
Index: line. If you are patching something in a subdirectory, be sure to tell the patch
user to specify a -p flag as needed.

• You can create a file by using a diff script that compares a null file to the file you want to
create. This works only if the file you want to create does not already exist in the target
directory.

• Take care not to send out reversed patches, because this makes users wonder whether
they have already applied the patch.

• While you might be able to put many diff scripts into one file, it is advisable to group
related patches into separate files.

• The patch command can detect bad line numbers in a normal diff script only when it
finds a change or a delete command.

• The results of the patch command are guaranteed to be correct only when the patch is
applied to exactly the same version of the file from which the patch was generated.

• If the code has been duplicated (for example, with #ifdef OLDCODE ... #else ...
#endif), patch is incapable of patching both versions, and, if patch works at all, it will
likely patch the wrong version and tell you that it succeeded.

• If you apply a patch you have already applied, patch assumes it is a reversed patch and
offers to undo it.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES,
NLSPATH, and LC_TIME environment variables.

DIAGNOSTICS
The message Hmm... indicates that there is unprocessed text in the patch file and that patch is
attempting to determine whether there is a patch in that text and, if there is, what kind of patch it
is.

EXIT VALUES
The patch command returns the following values:

0 (zero) The command completed successfully.

1 At least one reject file was created.

>1 An error occurred.

When applying a set of patches in a loop, you should check this exit status after each call to
patch, so that you do not apply a later patch to a partially patched file.

RELATED INFORMATION
Commands: diff(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

7−10 Hewlett-Packard Company 527188-021

User Commands (p - r) pathchk(1)

NAME
pathchk - Checks pathnames

SYNOPSIS
pathchk [-p] pathname ...

The pathchk command checks that one or more pathnames are valid (that is, they can be
used to access or create a file without causing syntax errors) and portable (that is, no
filename truncation will result).

FLAGS
-p Performs pathname checks based on POSIX portability standards. An error message is

sent if any of the following conditions are true:

• The byte length of the full pathname is longer than allowed by POSIX stan-
dards (_POSIX_PATH_MAX).

• The byte length of a component is longer than allowed by POSIX standards
(_POSIX_NAME_MAX).

• A character in any component is not in the portable filename character set.

DESCRIPTION
By default, the pathchk command checks each component of each pathname specified by the
pathname argument based on the underlying file system. If the -p flag is not specified, pathchk
sends an error message if any of the following conditions are true:

• The byte length of the full pathname is longer than allowed by the system (PATH_MAX
bytes).

• The byte length of a component is longer than allowed by the system (NAME_MAX
bytes).

• Search permission is not allowed for a component.

• A character in any component is not valid in its containing directory.

It is not considered an error if one or more components of a pathname do not exist, as long as a
file matching the pathname specified by the pathname argument could be created without violat-
ing any of the preceding criteria.

EXAMPLES
1. To check the validity and portability of the /u/bob/work/tempfiles pathname, enter:

pathchk /u/bob/work/tempfiles

2. To check the validity and portability of the /u/bob/temp pathname for POSIX standards,
enter:

pathchk -p /u/bob/temp

EXIT VALUES
The pathchk command returns the following exit values:

0 All pathname operands passed the checks.

>0 An error occurred.

527188-021 Hewlett-Packard Company 7−11

pax(1) OSS Shell and Utilities Reference Manual

NAME
pax - Extracts (reads), writes, and lists archive files, and copies files and directory hierarchies

SYNOPSIS
List Members of Archived Files

pax [-cdnv] [-f archive]
[-s replstr] [-W options] [pattern ...] [pattern ...]

Read (Extract) Archived Files
pax -r [-cdiknuv] [-f archive] [-p string] ...

[-s replstr] ... [-W options] [pattern ...]

Write a File Archive
pax -w [-aAdituvX] [-b blocksize] [-f archive] [-L]

[-s replstr] ... [-x format] [-W options] [pattern ...] [file ...] [file ...]

Copy Files
pax -r -w [-AdiklntuvX] [-p string] ...

[-s replstr] ... [-W options] [file ...] directory

FLAGS
-a Appends files to the end of the archive. The -a flag is used only when writing disk

files. It is not supported for tape archives.

-A Suppresses warning messages about optional access control list (ACL) entries.
Because the pax utility does not archive optional ACL entries, a warning message is
printed for each file that has optional ACL entries. However, if pax is executed
remotely from a system that does not support OSS ACLs, no warnings are printed.

-b blocksize
Specifies a positive decimal integer of bytes to be the block size for output. The block
size cannot exceed 32256 bytes for archives on disk or 28672 bytes for archives on
tape. Block size is automatically determined on input.

blocksize is specified as a series of digits (0-9) followed by the optional letter b or k. If
b is specified, the block-size value is multiplied by 512. If k is specified, the block-size
value is multiplied by 1024. For example, if 10b is specified as the value for blocksize,
it is translated into a block-size value of 5120 bytes (10 * 512).

The default block size for the cpio archive format is 10b (5120 bytes). The block size
of the last group of blocks is always set to the maximum size.

The default block size for the ustar archive format is 10k (10240 bytes). The blocksize
argument is specified as a multiple of 512 bytes.

-c Selects all file or archive members that do not match the pattern or file operands.

-d Specifies that directories being copied or archived, and archived directories being
extracted, match only the directory or archive that is explicitly named. Information for
intermediate subdirectories in an archive is not stored, and files are not extracted unless
the required directories already exist.

-f archive
Specifies the pathname of the input or output archive. The value specified for archive
overrides the default standard input file when in list or read mode and overrides the
default standard output file when in write mode.

Guardian tape-device names can be specified with the /G naming convention
(/G/tape). pax does not support labeled tapes, so only unlabeled tapes should be used

7−12 Hewlett-Packard Company 527188-021

User Commands (p - r) pax(1)

for archives. Refer to the NOTES subsection of this reference page for considerations
when using unlabeled tapes.

If the -a option is also specified, and the archive file is written to a disk volume, files
are appended to the end of the archive.

-i Renames files or archives interactively. For each archive member that matches the pat-
tern operand or file operand, a prompt is written to the terminal associated with the pax
process. The prompt contains the name of the file or archive member that is to be
renamed. Users’ responses are also read from the terminal.

If the user’s response to the prompt is empty, the file or archive member is skipped. If
the response is a single period (dot), the file or archive member is processed with no
modification to its name. Otherwise, the name of the file or archive member is replaced
with the contents of the response.

The pax utility immediately terminates with a nonzero exit value if an end-of-file is
encountered when reading a response. The pax utility terminates with a nonzero exit
value if an interrupt signal is received, or if the terminal cannot be opened for reading
and writing.

-k Prevents pax from writing over existing files (in read and copy modes).

-l Links files. In copy mode, hard links are made between the source and destination file
hierarchies whenever possible.

-L Archives the file hierarchy rooted in the file referenced by the link, using the name of
the link as the root of the file hierarchy. The default action is to archive the symbolic
link itself.

-n Selects the first archive member that matches each pattern operand. No more than one
archive member is matched for each pattern (although members of type directory will
still match the file hierarchy rooted at that file).

-p string Specifies one or more file characteristic options (privileges). The string argument must
be a string specifying the file characteristics to be retained or discarded on extraction,
subject to the permissions of the invoking process. Otherwise, the attribute is deter-
mined as part of the normal file creation action.

The string can consist of any combination of the following options:

a Do not preserve file access times.

e Preserve the user ID, group ID, file mode bits, file access times, and file
modification times when the user executing the pax command has a logon ID with
appropriate privileges.

m Do not preserve file modification times.

o Preserve the user ID and group ID when the user executing the pax command has
a logon ID with appropriate privileges.

p Preserve the file mode bits.

Multiple -p options are allowed in one command. If an option in string duplicates or
conflicts with another option in string, the option given last takes precedence.

If neither the -e nor the -o option is specified, or if the user ID and group ID are not
retained, pax does not set the S_ISUID and S_ISGID bits of the access permission. If
the retention of any of these items fails, pax writes a diagnostic message to the

527188-021 Hewlett-Packard Company 7−13

pax(1) OSS Shell and Utilities Reference Manual

standard error file. Failure to retain any of the items affects the exit value but does not
cause the extracted file to be deleted.

-r Reads an archive file from the standard input file.

-s replstr Modifies file-member or archive-member names specified by the pattern or file
operands according to the substitution expression replstr and using the syntax of the ed
command. The substitution expression has the following format:

-s /old/new/[gp]

where (as in the ed command) old is a basic regular expression and new is the replace-
ment string to be inserted in place of strings that match the regular expression. The
string new can contain an & (ampersand), \n (where n is a digit), back references, or
subexpression matching. A g following new/ replaces all matches. A p following new/
causes successful substitutions to be written to the standard error file.

Any nonnull character can be used as a delimiter (/ shown here). Multiple -s flag
expressions can be specified in one command. Multiple expressions are applied in the
order specified, terminating with the first successful substitution. File-member or
archive-member names that are replaced by an empty string are ignored when reading
and writing archives.

-t Prevents the access times of the archived files from being changed when the files are
read by pax.

-u Ignores files that are older (that have a less recent file modification time) than a preex-
isting file or archive member with the same name.

When extracting files from an archive, an archive member with the same name as a file
in the file system is extracted if the archive member is newer than the file.

When writing files to an archive, an archive member with the same name as a file in the
file system is superseded if the file is newer than the archive member.

When copying files to a destination directory, a file in the destination hierarchy is
replaced by a file in the source hierarchy or by a link to a file in the source hierarchy if
the file in the source hierarchy is newer.

-v In list mode, -v produces a table of contents (see Standard Output under DESCRIP-
TION). Otherwise, -v writes the archive member pathnames to the standard error file
(see Standard Error under DESCRIPTION).

-w Writes files to the standard output file in the specified archive format.

-x format
Specifies the output archive format. The pax command recognizes the following for-
mats:

cpio
Extended cpio interchange format.

ustar
Extended tar interchange format.

If this option is omitted, ustar format is used.

7−14 Hewlett-Packard Company 527188-021

User Commands (p - r) pax(1)

Any attempt to append an archive file in a format that is different from the existing for-
mat causes pax to exit immediately with a nonzero exit value.

-X Prevents pax from descending into directories that have a different device ID when
traversing the file hierarchy specified by a pathname.

HP Extensions
-W clobber

Allows the matching files from an archive to be restored to a Guardian target and to
overwrite any existing Guardian target file with the same name. The files are restored
as unstructured files and Guardian file attributes are not preserved.

Be sure you understand the problems this can create (refer to the subsection Guardian
Filename Transformation under DESCRIPTION before using this flag).

-W NOG
Specifies that the Guardian namespace (/G) should not be accessible to pax. This flag
is effective only if the specified file is in the local (/G) or remote (/E/node/G) Guardian
namespace. This flag is ignored if you specify a wildcard character in or as the target
of the pax command because wildcard characters are not recursive operations.

-W NOE Specifies that the Expand namespace (/E) should not be accessible to pax. This flag is
effective only if the specified file is in the Expand (/E) namespace. This flag is ignored
if you specify a wildcard character in or as the target of the pax command because
wildcard characters are not recursive operations.

-W noprompt
Specifies that pax should not prompt the user to load a tape. pax waits indefinitely
until the tape gets mounted. The -W noprompt flag has precedence over the -W wait
flag.

-W norewind
Specifies that the tape be left on the tape drive without being rewound and unloaded
after pax has finished writing to or reading from it. The tape drive is closed. The
default action is for the tape to be rewound.

The pax utility cannot append files on unlabeled tapes. Refer to the NOTES subsec-
tion of this reference page for more information.

The -W nounload flag is assumed when the -W norewind flag is specified. The -W
unload and -W norewind flags cannot be specified together.

-W [unload | nounload]
Specifies whether the tape is to be unloaded or left on the tape drive after it has been
rewound. The default action is -W unload.

-W [wait | nowait]
Specifies which of the following pax is to do if a tape is not mounted on the tape drive
or the tape drive goes off line:

• Issue a prompt and wait for you to mount a tape

• Exit immediately, without waiting

The default action is -W nowait.

Specify both the -W NOG and -W NOE flags to omit both the /G and /E directories.

527188-021 Hewlett-Packard Company 7−15

pax(1) OSS Shell and Utilities Reference Manual

DESCRIPTION
The pax utility reads and writes member files of archive files; writes lists of the member files of
archives; and copies directory hierarchies.

The -r and -w flags specify the archive operation performed by pax.

The name of the archive file can be specified with the -f flag. The archive file can be a disk file
or tape file on a mounted tape. If the -f flag is not specified, in read mode the archive file is
assumed to be the standard input file and in write mode the archive file is assumed to be the stan-
dard output file. If the standard input file is a disk file, the file should be a text file with one path-
name per line and no leading or trailing blanks.

Operands
directory The destination directory pathname for copy mode.

file The pathname of a file to be copied or archived.

pattern A pattern matching one or more pathnames of archive members. The default action, if
no pattern is specified, is to select all members in the archive.

Flag Interaction and Processing Order
The flags that operate on the names of files or archive members (-c, -i, -n, -s, -u, and -v) interact
as follows.

When extracting files (-r flag), archive members are selected, using the modified names, accord-
ing to the user-specified pattern arguments as modified by the -c, -n, and -u flags. Then, any -s
and -i flags modify, in that order, the names of the selected files. The -v flag writes the names
resulting from these modifications.

When writing files to an archive file (-w flag), or when copying files, the files are selected accord-
ing to the user-specified pathnames as modified by the -n and -u flags. Then, any -s and -i flags
modify, in that order, the names resulting from these modifications. The -v flag writes the names
resulting from these modifications.

If both the -u and -n flags are specified, pax does not consider a file selected unless it is newer
than the file to which it is compared.

Modes
The action taken by pax depends on the presence of the -r and -w flags. Four combinations of
these two flags are possible. The combinations are referred to as list, read, write, and copy
modes. These modes correspond to the four forms of the command shown in SYNOPSIS.

List Mode
When neither the -r nor the -w flag is specified, the pax command writes the names of the
members of the archive file read from the standard input file, with pathnames matching the
specified patterns, to the standard output file. If a named file is a directory, the file hierarchy con-
tained in the directory is also written.

You can specify the pax command without the -r or -w flags using the -c, -d, -f, -n, -s, and -v
flags and with the pattern operand.

If neither the -r nor -w flags are present, pax lists the contents of the specified archive, one file
per line. pax lists hard link pathnames as follows:

pathname == linkname

pax lists symbolic link pathnames as follows:

pathname -> linkname

In both of the preceding cases, pathname is the name of the file that is being extracted and link-
name is the name of a file that appeared earlier in the archive.

7−16 Hewlett-Packard Company 527188-021

User Commands (p - r) pax(1)

If intermediate directories are necessary to extract an archive member, pax creates the directories
with access permissions set as the bitwise inclusive OR of the values of S_IRWXU, S_IRWXG,
and S_IRWXO, modified by the current file mode creation mask (umask).

Read Mode
When the -r flag is specified but the -w flag is not, pax extracts the members of an archive file
read from the standard input file, and with pathnames matching the pattern operand if one is
specified. If an extracted file is a directory, the file hierarchy contained in the directory is also
extracted. The extracted files are created relative to the current file hierarchy. The -r flag can be
specified with the -c, -d, -f, -n, -s, and -v flags and a pattern operand.

The access and modification times of the extracted files are the same as the archived files. The
access permissions of the extracted files remain as archived unless affected by the user’s default
file creation mode. The S_ISUID and S_ISGID bits of the extracted files are cleared.

If intermediate directories are necessary to extract an archive member, the pax command creates
the directories with access permissions set as the bitwise inclusive OR of the values of
S_IRWXU, S_IRWXG, and S_IRWXO, modified by the current file mode creation mask
(umask).

If the selected archive format supports the specification of linked files, it is an error if these files
cannot be linked when the archive is extracted. pax informs you of the error and continues pro-
cessing. Both the ustar and cpio formats support hard-linked files.

The ownership, access and modification times, and file mode of the restored files are discussed in
the description of the -p flag.

Write Mode
When the -w flag is specified and the -r flag is not, pax writes the contents of the files specified
by the file operands to the standard output file in an archive format. If no file operands are
specified, a list of files to copy, one per line, is read from the standard input file. When the file
operand specifies a directory, all of the files contained in the directory are written. The -w flag
can be specified with the -b, -d, -f, -i, -s, -t, -u, -v, -x, and -X flags and with file operands.

If -w is specified but no files are specified, the standard input file is used. If neither -f nor -w is
specified, the standard input file must be an archive file.

Copy Mode
When both the -r and -w flags are specified, pax copies the files specified by the file operand to
the destination directory specified by the directory operand. If no file arguments are specified, a
list of files to copy, one per line, is read from the standard input file. If a specified file is a direc-
tory, the file hierarchy contained in the directory is also copied. The -r and -w flags can be
specified with the -d, -i, -k, -l, -p, -n, -s, -t, -u, -v, and -X flags and with the file operands. A
directory operand must be specified.

Copied files are the same as if they were written to an archive file and subsequently extracted,
except that there might be hard links between the original and the copied files.

For filesets that support OSS access control lists (ACLs), this command also copies any ACL
entries associated with the file, so that the copied file has the same ACL entries as the source file.
If the parent directory has an ACL that contains default ACL entries, the new directory inherits
ACL entries and permissions as described in the acl(5) reference page.

Standard Input
The input file is named by the archive argument of the -f flag.. If the archive argument maps to a
disk file, the input file must must be formatted in either cpio or ustar data interchange format. If
the archive is read from a Guardian tape device, the tape file mounted on that device must be for-
matted in either cpio or ustar data interchange format.

The file /dev/tty is used to write tape mount messages.

527188-021 Hewlett-Packard Company 7−17

pax(1) OSS Shell and Utilities Reference Manual

In write mode, the standard input file is used only if no file operand is specified. The standard
input file must be a text file containing a list of pathnames, one per line, without leading or trail-
ing blank characters. In list and read modes, the standard input file must be an archive file. In all
other cases, the standard input file is not used.

Standard Output
In write mode, the archive is written to the standard output file if -f is not supplied.

In list mode, the table of contents of the selected archive members is written to the standard out-
put file as:

%s\n,pathname

If the -v flag is also specified in either write or list mode, the output has the following format:

%s\n,ls -l listing

where ls -l listing is the format used by the ls utility when the -l flag is used in that command.

Standard Error
When -v is specified in the read, write, or copy modes, pax writes the pathnames it processes to
the standard error file using the following format:

%s\n, pathname

The pathname is written as soon as processing starts on the file or archive member and is sent to
the standard error file.

When -s is specified in the read, write, or copy modes, and the replacement string has a trailing p,
substitutions are written to the standard error file in the following format:

%s>>%s\n,original-pathname,new-pathname

Diagnostic messages are written to the standard error file.

Use on Guardian Objects
Unless otherwise noted, pax makes no distinction between Guardian and OSS files and treats
them the same way.

Guardian files can be specified with the /G pathname convention. On output, the Guardian files
are copied but their file attributes are not preserved. On input, files can be restored to the Guar-
dian target, but the existing Guardian files are only overwritten if the -W clobber flag is
specified. The file is restored as an unstructured Guardian file having the file code 180. Only
Guardian files that are supported by the OSS function calls (open(), read(), write()) are pro-
cessed.

If the underlying function calls fail to operate on /G files, pax sends the error back to the caller
together with a diagnostic message and, if possible, continues to process the other files.

Guardian Tape Devices
pax uses Guardian tape devices to read and write tape archives. Guardian tape devices are con-
trolled by the Guardian tape process executing in the Guardian environment and do not behave
the same as UNIX devices. The interaction between the tape process and tape device is tran-
sparent to the pax user.

If the -W wait flag is set, pax first issues a mount request to the Guardian tape process and then
prints the following tape mount message to the terminal (/dev/tty):

Device not ready or tape is not mounted?

If /dev/tty is not available, pax does all of the following:

• Writes a diagnostic message to the standard output file

7−18 Hewlett-Packard Company 527188-021

User Commands (p - r) pax(1)

• Generates an EMS event message to the local collector process

• Waits indefinitely for the tape to be mounted

If the -W wait and -W noprompt flags are not specified, pax exits with the following message:

Device not ready, offline, or tape not mounted.

if the tape has not already been properly mounted on the drive. pax remains in a wait state until
an unlabeled tape has been mounted on the tape drive correctly. Use the Guardian utility MEDI-
ACOM. This utility can be invoked from the HP Tandem Advanced Command Language
(TACL) command intrpreter or from the OSS shell through the gtacl command.

If errors occur that are related to the device or the mounted tape during the tape mount process,
diagnostic messages are issued. You have a choice of correcting the errors and remounting the
tape or canceling the tape mount request through MEDIACOM.

To access remote tape drives on a system that runs a release preceding D43, do the following:

1. Set the environment variable GUARD_REMOTE_TAPE to the remote tape
devicename.

2. Invoke pax without specifying the -f flag.

Guardian Filename Transformation
Because of the syntactic differences between Guardian filenames and OSS filenames, the follow-
ing behaviors can occur when an archive member is restored to a Guardian system.

A Guardian filename that is generated by the underlying OSS function calls for the file might
contain illegal Guardian filename characters. As a result, the archive member cannot be created
on the Guardian target and the restore fails.

In the name conversion process, OSS filenames that are longer than eight characters are truncated
to the first valid eight characters. For example, an OSS filename like abcde.fghi is converted to
the Guardian name ABCDEFGH. This can cause confusion and make identification of files
difficult. Filenames that are similiar might be converted to the same filename. This results in the
file overwriting a previously restored file.

Environment Variables
The following environment variables affect the execution of the pax command:

GUARD_REMOTE_TAPE
Specifies the Guardian device name of a tape device.

LANG Provides a default value for the internationalization variables that are NULL. If
LANG is unset or NULL, the corresponding value from the implementation-specific
default locale is used. If internationalization variables contain invalid settings, pax
behaves as though none of the variables had been defined.

LC_ALL
When given a valid setting, overrides the values of all the other internationalization
variables.

LC_COLLATE
Determines the locale for the behavior of ranges, equivalence classes and multi-
character collating elements used in the pattern-matching expressions for the pattern
operand, the basic regular expression for the -s flag, and the extended regular expres-
sion defined for the yesexpr locale keyword in the LC_MESSAGES variable.

527188-021 Hewlett-Packard Company 7−19

pax(1) OSS Shell and Utilities Reference Manual

LC_CTYPE
Determines the locale for the interpretation of bytes of text data as characters (for
example, single-byte as opposed to multibyte characters in arguments).

LC_MESSAGES
Determines the locale for the processing of affirmative responses that should be used to
affect the format and contents of diagnostic messages written to the standard error file.

LC_TIME
Determines the format and contents of the date and time strings to be displayed.

NLSPATH
Determines the location of message catalogs for processing LC_MESSAGES.

UTILSGE
Specifies that HP extensions to the / (root) directory should be omitted when the initial
directory is the root directory and a recursive operation occurs in an OSS shell com-
mand. Application programs that test this variable might also honor its settings.

The UTILSGE value can be any of the following:

NOE Omit the /E directory.

NOG Omit the /G directory.

NOG:NOE Omit both the /G and /E directories.

The effect of assigning a value to the UTILSGE environment variable is the same as
specifying the -W NOG or -W NOE flag in the command. This environment variable
is ignored if you specify a wildcard character in or as the target of the pax command
because wildcard characters are not recursive operations.

EXAMPLES
The following examples create or read archives in ustar format.

1. To copy the file hierarchy of the current directory to the tape mounted on Guardian tape
device $TAPE using the blocking factor of 5120 bytes, enter:

pax -w -f /G/tape -b 10b .

2. To copy the directory olddir to the directory newdir, enter:

mkdir newdir
pax -rw olddir newdir

3. To read the archive a.pax, with all files rooted in /usr in the archive extracted relative to
the current directory, enter:

pax -r -s ’,ˆ//*usr//*,,’ -f a.pax

4. To restore files from a tape mounted on $TAPE to the Guardian target $VOL.SUBVOL,
extracting only the .c files and overwriting any existing Guardian files with the same
name, enter:

cd /G/vol/subvol
pax -r -f /G/tape -W clobber *.c

5. To archive all OSS files on the local node into the file named paxfile, enter:

pax -wvf paxfile -W NOG -W NOE /

7−20 Hewlett-Packard Company 527188-021

User Commands (p - r) pax(1)

NOTE: If you specify a wildcard character, such as *, instead of / in this command, the
-W NOG and -W NOE flags are ignored.

6. If the UTILSGE environment variable is not set, to archive all files on the local node,
including files in /E and /G, into the file named paxfile, enter:

pax -wvf paxfile /

7. To archive all files on the local node, including files in /E and /G (ignoring the value of
the UTILSGE environment variable) into the file named paxfile, enter:

pax -wvf paxfile *

8. To extract and restore all OSS files in an archive named paxfile but skip files archived
from /G, enter:

pax -rvf paxfile -W NOG

CAUTIONS
Because of industry standards and interoperability goals, pax does not support the archival of
files larger than 8 gigabytes.

DIAGNOSTICS
A diagnostic message is written to the standard error file and a nonzero exit value is returned (but
processing continues) when pax cannot create a file or a link when reading an archive or when
pax cannot preserve the user ID, group ID, or file mode bits when the -p flag is specified.

If the extraction of a file from an archive is prematurely terminated by a signal or error, pax
might have only partially extracted the file or, if the -n flag was not specified, might have
extracted a file that has the same name as that specified by the user but that is not the file the user
wanted. In addition, the file modes of extracted directories might have incorrect modification
and access times.

When appropriate privileges are required to set one of the access mode bits and if the user restor-
ing the files from the archive does not have the appropriate privileges, the mode bits for which
the user does not have privileges are ignored.

EXIT VALUES
The following exit values are returned by pax:

0 All files were processed successfully.

> 0 An error occurred.

NOTES
1. The pax command can fail with the error message Name too long when an attempt is

made to archive a file with a filename longer than 100 characters. This message is
displayed when the default USTAR format is used to create an archive. The command
fails because the default USTAR format does not support filenames longer than 100 char-
acters, in conformance with the 1990 edition of the POSIX Standard IEEE 1003.1. A
practical workaround is to use the pax command with the -x cpio flag, because the cpio
archive format supports filenames longer than 100 characters.

2. Because /G and /E both appear in your local root directory, you should be very careful
when using OSS shell commands on or from the root directory. OSS shell commands
that perform recursive actions make no distinction between Guardian and OSS files or
between local and remote files. You can use the -W NOG and -W NOE flags or the
UTILSGE environment variable to exclude objects in the Guardian file system or
objects accessible through the Expand product. However, these flags are ignored if you
specify a wildcard character in or as the target of the pax command.

527188-021 Hewlett-Packard Company 7−21

pax(1) OSS Shell and Utilities Reference Manual

3. The pax utility cannot append a file to an unlabeled tape. Each successive write to such
a tape begins at the beginning of the tape.

For example, if you issue the following commands from the shell:

find xlog -print | pax -wv -f /G/TAPE -W norewind
find xlog.bsm -print | pax -wv -f /G/TAPE -W norewind

Then physically unload the tape, reload the tape, and enter:

pax -rv -f /G/TAPE -W norewind

You will see that the tape contains only the last file archived by the two commands
above.

To archive more than one file on an unlabeled tape, you must enter all of the commands
within the same subshell. For example:

(find xlog -print; find xlog.bsm -print) | pax -wv -f /G/tape

The above command causes all the files printed by both the find commands to be put on
tape because the find commands are executed in a subshell.

RELATED INFORMATION
Commands: cp(1), cpio(1), ed(1), pinstall(1), tar(1).

Files: cpio(4), tar(4).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The -W flags and the GUARD_REMOTE_TAPE and UTILSGE environment variables are HP
extensions to the XPG4 Version 2 specification.

7−22 Hewlett-Packard Company 527188-021

User Commands (p - r) pinstall(1)

NAME
pinstall - Extracts files from a pax (ustar) format archive file and copies them to the OSS file
system

SYNOPSIS
pinstall [-r] [-cdiknuv] [-f archive] [-p string] ...

[-s replstr] ... [-W options] [pattern] ...

FLAGS
-c Matches all file or archive members except those specified by the pattern operand.

-d Does not create intermediate directories unless they are specifically named in the
archive file. Similiarly, files are not extracted unless the required directories already
exist.

-f archive
Specifies the OSS pathname of the input archive. The archive argument can be:

• The pathname for a Guardian tape device (such as /G/tape for the Guardian
device named \NODE1.$TAPE on \NODE1)

• The pathname for a Guardian file (such as /G/system/system/archfile for the
Guardian file $SYSTEM.SYSTEM.ARCHFILE)

If a tape device is used, pinstall displays the appropriate tape mount messages to make
sure that the correct tapes are mounted on the tape drives before proceeding.

-f does not preserve file access times.

-i Interactively renames archive members. For each archive member matching the
specified pattern operand, a prompt is written to the terminal. The prompt contains the
name of the archive member that is to be renamed. The user’s response is read from
the terminal.

If the user’s response to the prompt is blank, the archive member is skipped. If the
response is a single period (dot), the archive member is processed with no modification
to its name. Otherwise, the name is replaced with the contents of the response.

-k Prevents existing files from being overwritten.

-n Selects the first archive member that matches the specified pattern operand. No more
than one archive member is matched for each pattern operand.

-p string Specifies one or more file characteristic options (privileges). The string argument must
be a string specifying file characteristics to be retained or discarded on extraction. The
string argument can consist of any combination of the following options:

a Do not preserve file access times.

e Preserve the user ID, group ID, file mode bits, file access times, and file
modification times.

m Do not preserve file modification times.

o Preserve the user ID and group ID.

p Preserve the file mode bits.

527188-021 Hewlett-Packard Company 7−23

pinstall(1) OSS Shell and Utilities Reference Manual

Multiple -p flags are allowed in one command. If an option in string duplicates or
conflicts with another option in string, the option given last takes precedence.

If neither the e nor the o option is specified in string, or if the user ID and group ID are
not retained, the S_ISUID and S_ISGID bits of the access permission are not set for
the extracted archive members. If the retention of any of these items fails, pinstall
writes a diagnostic message to the standard error file. Failure to retain any of the items
affects the exit value but does not cause the extracted file to be deleted.

File mode bits cannot be preserved if the target is a Guardian file. The user’s default
Guardian file permissions or the existing Guardian file permissions are used instead.

-r Reads an archive file. -r is required if the archive members are to be restored to the
OSS file system.

-s replstr Modifies archive-member names specified by the pattern operand according to the sub-
stitution expression replstr and using the syntax of the ed command. The substitution
expression has the following format:

-s /old/new/ [gp]

where (as in the ed command) old is a basic regular expression and new is the replace-
ment string to be inserted in place of strings that match the regular expression. The
string new can contain an & (ampersand), \n (where n is a digit), back references, or
subexpression matching. A g following new/ replaces all matches. A p following new/
causes successful substitutions to be written to the standard error file.

Multiple -s flags can be specified in one command. Multiple expressions are applied in
the specified order, terminating with the first successful substitution. Archive-member
names that are replaced by an empty string are ignored.

-u Ignores files that are older (that have a less recent file modification time) than archive
members with the same names. An archive member with the same name as a file in the
file system is extracted if the archive member is newer than the file.

-v In list mode, produces a table of contents (see Standard Output under DESCRIP-
TION). Otherwise, -v writes the archive member pathnames to the standard error file
(see Standard Error under DESCRIPTION).

-W clobber
Allows the matching files from an archive to be restored to a Guardian target and to
overwrite any existing Guardian target file with the same name. The files are restored
as unstructured files, and Guardian file attributes are not preserved. Be sure you under-
stand the problems this flag can create (refer to the subsection Guardian Filename
Transformation in the pax(1) reference page) before using this flag.

-W norewind
Specifies that the tape be left on the tape drive without being rewound and unloaded
after pinstall has finished reading from it. The tape drive is closed. The default action
is for the tape to be rewound. The -W nounload flag is assumed when the -W
norewind flag is specified. The -W unload and -W norewind flags cannot be
specified together.

-W [unload | nounload]
Specifies whether the tape is to be unloaded or left on the tape drive after it has been
rewound. The default action is -W unload.

7−24 Hewlett-Packard Company 527188-021

User Commands (p - r) pinstall(1)

-W [wait | nowait]
Specifies which of the following the pinstall command is to do if a tape is not mounted
on the tape drive or the tape drive goes off line:

• Issue a prompt and wait for a tape to be mounted

• Exit immediately, without waiting

The default action is -W wait.

DESCRIPTION
The pinstall command invokes a Guardian process that copies archived files such as OSS utili-
ties to the OSS file system. The pinstall command reads ustar data interchange format files,
such as archive files that are created by the pax utility. pinstall can only read from an archive; it
cannot create an archive.

The name of the archive is specified by the archive argument of the -f flag. If the archive argu-
ment is a tape device, pinstall reads from the archive tapes that are mounted on the tape device.
If the -r flag is not specified, the names of all members of the archive file are listed to the output
file or to the process’s controlling terminal; no files are extracted.

The root directory must exist and be mounted when pinstall is invoked.

For the H06.23 or J06.12 RVUs, or systems that have installed SPR T8626H03_ADE, pinstall
assigns a permission of 0755 to the intermediate directories it creates. For the H06.24 or later
H-series RVUs, or J06.13 or later J-series RVUs, or systems that have installed SPR
T8626H03_ADF or later, pinstall creates intermediate directories with access permissions set as
the bitwise inclusive OR of the values of S_IRWXU, S_IRWXG, and S_IRWXO. The access
permissions are set using the Guardian DEFINE =OSSˆUMASK. If DEFINE =OSSˆUMASK is
not set or invalid, pinstall assumes the default value of 022.

The -s flag defines where extracted files are to be stored in the OSS file system. Without the -s
flag, the files could be stored to the current file system, which could be the Guardian file system.

pinstall also issues tape mount messages and checks the tape drive to make sure that the correct
tapes are mounted before proceeding. (See the pax(1) reference page for mount messages and
possible diagnostic messages.)

Operands
pattern Specifies the pathnames for one or more archive members to be copied or listed. If no

pattern is specified, the default action is to select all archive members.

Standard Input
The standard input file is specified by the archive argument of the -f flag.

Input Files
The input file is specified by the archive argument of the -f flag. If the input file maps to a disk
file, then it must be written in ustar archive format. If the input file maps to a tape device, then
the tape mounted on the tape device must be written in ustar archive format.

Standard Output
The table of contents of the archive members is written to the standard output file as:

%s,pathname

If the -v flag is also specified, the output has the following format:

%s,-ls_-l_listing

where ls_-l_listing is the format used by the ls command with the -l flag specified.

527188-021 Hewlett-Packard Company 7−25

pinstall(1) OSS Shell and Utilities Reference Manual

Output Files
Extracted files are copied to the OSS file system.

Standard Error
Diagnostic messages are written to the standard error file. Tape messages are written to the pro-
cess identified as HOMETERM in the Guardian environment.

EXAMPLES
To extract files from the archive tape that is currently mounted on the tape drive $TAPE and
restore them to the same directory from which they were originally copied, enter:

pinstall -r -f /G/tape

To override the default access permissions used by pinstall with a value of 023, enter the follow-
ing before running pinstall:

add DEFINE =OSSˆUMASK, class MAP, file #023

NOTES
pinstall uses unlabeled-tape processing. There is no mechanism to check for tape sequence in
the case of multiple-reel archives.

On systems where the Distributed Systems Management/Distributed Configuration Manager
(DSM/SCM) product is used to install HP product files from the ZOSSUTL subvolume and main-
tain those files in the OSS file system, do not use pinstall to install HP product files from the
ZOSSUTL subvolume.

On systems where DSM/SCM is not used to install HP product files from the ZOSSUTL subvo-
lume and maintain those files in the OSS file system, do not use pinstall on files with Guardian
file identifiers that begin with ZFB or ZPG. Such files are created and maintained by DSM/SCM.
Using pinstall on such files can duplicate installation effort or overwrite current versions of pro-
duct files with obsolete versions.

DIAGNOSTICS
A diagnostic message is written to the standard error file and a nonzero exit value is returned (but
processing continues) when pinstall cannot create a file or preserve the user ID, group ID, or file
mode bits.

If the extraction of a file from an archive is permanently terminated for any reason, either pinstall
might have extracted only a partially restored file or the file attributes of the extracted files might
not be set correctly.

If appropriate privileges are required to set one of the file access mode bits and if the user restor-
ing the files from the archive does not have the appropriate privileges, the file access mode bits
for which the user does not have privileges are ignored.

EXIT VALUES
The following exit values are returned by pinstall:

0 (zero) All files were processed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: copyoss(8), cp(1), ed(1), pax(1).

STANDARDS CONFORMANCE
The pinstall command is an extension to the XPG4 Version 2 specification.

7−26 Hewlett-Packard Company 527188-021

User Commands (p - r) pname(1)

NAME
pname - Displays the OSS pathname of a Guardian file

SYNOPSIS
pname [-s] filename

FLAGS
-s Suppresses formatting and displays only the OSS pathname.

DESCRIPTION
The pname command displays the OSS filename for the Guardian file identified by filename.
This command displays either of the following:

• The full pathname of a file in an OSS fileset when given the filename of that file in the
Guardian file system

• The full OSS pathname for a file in the Guardian file system

Operands
filename Specifies the Guardian filename whose OSS pathname is to be displayed. The follow-

ing special characters must be preceded with a backslash: dollar sign ($) and
backslash (\).

EXAMPLES
1. The command:

pname \$XPG.ZYQ00000.Z00005LN

results in the following output:

pname: $XPG.ZYQ00000.Z00005LN ---> /bin/pname

2. The command:

pname -s \\KT22.\$XPG.ZYQ00000.Z00005LS

results in the following output:

/bin/pname

3. The command:

pname -s \\KT22.\$SYSTEM.SYSTEM.FUP

results in the following output:

/G/system/system/fup

DIAGNOSTICS
The following error message is returned if an invalid filename or a nonexistent file is specified:

Failed with Guardian error: 4022

EXIT VALUES
The pname command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

527188-021 Hewlett-Packard Company 7−27

pname(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: gname(1).

Miscellaneous: filename(5).

STANDARDS CONFORMANCE
This command is an extension to the XPG4 Version 2 specification.

7−28 Hewlett-Packard Company 527188-021

User Commands (p - r) pr(1)

NAME
pr - Writes a file to standard output

SYNOPSIS
pr [-adfFmprt] [-e][character][number] [-h header] [-i][character][gap] [-l lines]

[-n][character][width] | [-x][character][number] [-o offset] [-s][character] [-w width]
[-column] [+page] [file ...]

The pr command writes file to standard output. If you do not specify file or if file is -, pr
reads standard input.

FLAGS
-a Displays multicolumn output across the page. (This flag is useful only in combination

with the -column flag. It modifies -column so that columns are filled across the page in
a round robin order.)

-d Doublespaces the output.

-e[character][number]
Expands tabs to byte positions number+1, 2*number+1, 3*number+1, and so on. The
default value of number is 8. Tab characters in the input expand to the appropriate
number of spaces to line up with the next tab setting. If you specify character (any
character other than a digit) that character becomes the input tab character. The
default value of character is the ASCII tab character.

-f Uses a formfeed character to advance to a new page. (Otherwise, pr issues a sequence
of newline characters.) Pauses before beginning the first page if the standard output is
a tty.

-F Uses a formfeed character to advance to a new page. (Otherwise, pr issues a sequence
of newline characters.) Does not pause before beginning the first page if the standard
output if a tty.

-h header
Displays header instead of the filename in the page header.

-i[character][gap]
Replaces white space wherever possible by inserting tabs to positions gap+1, 2*gap+1,
3*gap+1, and so on. The default value of gap is 8. If you specify character (any char-
acter other than a digit), that character becomes the output tab character. (The default
value of character is the ASCII tab character.)

-l lines Sets the length of a page to lines lines (the default is 66). If lines is less than the sum of
the header and trailer, pr suppresses both header and trailer, as if -t were in effect.

-m Combines and writes all files at the same time, with each file in a separate column.
(This overrides the -column and -a flags.)

-n[character][width]
Provides width-digit line numbering (the default value of width is 5). The number
occupies the first width positions of each column of normal output (or each line of -m
output). If you specify character (any character, other than a digit), that character is
added to the line number to separate it from whatever follows. (The default value of
character is an ASCII tab character.)

-o offset Indents each line of output by offset byte positions (the default is 0). This is in addition
to output width (see -w).

527188-021 Hewlett-Packard Company 7−29

pr(1) OSS Shell and Utilities Reference Manual

-p Pauses before beginning each page if the output is directed to a tty. (pr sounds the bell
at the tty and waits for you to press <Return>.)

-r Does not display diagnostic messages if the system cannot open files.

-s[character]
Separates columns by the single character instead of by the appropriate number of
spaces (the default for character is an ASCII tab character).

-t Does not display the 5-line identifying header and the 5-line footer. Stops after the last
line of each file without spacing to the end of the page.

-x[character][number]
Same as -n.

-w width Sets the width of a line to width byte positions. If neither -w or -s are specified, the
default is 72. If only -s is specified, the default is 512. Single column output is not
truncated.

-column Produces the specified number of columns (the default value is 1). The -e and -i flags
are assumed for multicolumn output. A text column never exceeds the width of the
page (see -l).

+page Begins the display at the specified page number (the default value is 1).

DESCRIPTION
A heading that contains the page number, date, time, and the name of the file separates the output
into pages.

Unless specified, columns are of equal width and separated by at least one space. Lines that are
too long for the page width are shortened. If the standard output is a tty, pr does not display any
error messages until it has ended. By default, the input is separated into 66-line pages, including
the 5-line header and 5-line footer.

EXAMPLES
1. To print a file with headings and page numbers on the printer, enter:

pr prog.c | print

This inserts a page break in prog.c, starts each page with a heading, and sends the output
to the print command. The heading consists of the date the file was last modified, the
filename, and the page number.

2. To specify a title, enter:

pr -h "MAIN PROGRAM" prog.c � print

This prints prog.c with the title MAIN PROGRAM in place of the filename. The
modification date and page number are still printed.

3. To print a file in multiple columns, enter:

pr -3 word.lst � print

This prints the file word.lst in three vertical columns.

4. To print several files side-by-side on the paper, enter:

pr -m -h "Members, Visitors" member.lst visitor.lst | print

This prints the files member.lst and visitor.lst side-by-side with the title Members,
Visitors.

7−30 Hewlett-Packard Company 527188-021

User Commands (p - r) pr(1)

5. To modify a file for later use, enter:

pr -t -e prog.c > prog.notab.c

This replaces tab characters in prog.c with spaces and puts the result in prog.notab.c.
Tab positions are at byte positions 9, 17, 25, 33, and so on. The -e tells pr to replace the
tab characters; the -t suppresses the page headings.

RELATED INFORMATION
Commands: cat(1).

527188-021 Hewlett-Packard Company 7−31

print(1) OSS Shell and Utilities Reference Manual

NAME
print - The shell output mechanism

SYNOPSIS
print [-Rnprsu[n]] [argument ...]

FLAGS
-R Ignores escape conventions, which are the same as those followed by the echo com-

mand. Prints all subsequent arguments and options, other than -n.

-n Does not add newlines to the output.

-p Causes the arguments to be written onto the pipe of the process spawned with |&
instead of onto the standard output.

-r Ignores escape conventions, which are the same as those followed by the echo com-
mand.

-u Specifies a 1-digit file descriptor unit number n on which the output will be placed.
The default is 1.

- Causes the arguments to be written to the history file instead of to standard output.

DESCRIPTION
The print command prints the string of numbers and letters specified as argument to the standard
output (default) or to a pipe (if the -p flag is used).

If no flags are specified or if a - or a -- is used, the argument is printed to standard output as des-
cibed for the echo command.

EXAMPLES
The following command prints the sentence "This is a test." to the screen:

print This is a test.

This is a test.

NOTES
The print command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: echo(1), sh(1).

7−32 Hewlett-Packard Company 527188-021

User Commands (p - r) printf(1)

NAME
printf - Writes formatted output

SYNOPSIS
printf format [argument ...]

DESCRIPTION
The printf command converts, formats, and writes its arguments to the standard output. The
values specified by the argument argument are formatted under the control of the format argu-
ment.

The LC_NUMERIC environment variable affects the format of numbers written using the e, E,
f, g, and G conversion characters.

The format argument is a character string that contains three types of objects:

• Plain characters that are copied to the output stream.

• The following escape sequences, which are copied to the output stream, causing the
associated action to occur on display devices that are capable of the action.

\\ Backslash

\a Alert

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\ddd Where ddd is a one-, two-, or three-digit octal number. These escape
sequences are displayed as a byte with the numeric value specified by the octal
number.

• Conversion specifications, each of which causes zero or more items to be fetched from
the value argument list.

The argument argument is a list of one or more strings to be written to the standard output under
the control of the format argument. These are treated as strings if the corresponding conversion
character is b, c, or s; otherwise, the argument is evaluated as a C constant, as described by
ISO/IEC 9899:1990, with the following extensions:

• A leading + (plus sign) or - (minus sign) is allowed.

• If the leading character is a ’ (single quotation mark) or " (double quotation), the value is
the numeric value in the underlying code set of the character following the single quota-
tion mark or double quotation mark.

The format argument is reused as often as necessary to satisfy the argument arguments. Any
extra c or s conversion specifications are evaluated as if a null string argument were supplied;
other extra conversion specifications are evaluated as if a zero argument were supplied.

527188-021 Hewlett-Packard Company 7−33

printf(1) OSS Shell and Utilities Reference Manual

Each conversion specification in the format argument has the following syntax:

1. A % (percent sign).

2. Zero or more options, which modify the meaning of the conversion specification. The
option characters and their meaning are as follows:

- The result of the conversion is left aligned within the field.

+ The result of a signed conversion always begins with a + (plus) or - (minus).

blank If the first character of a signed conversion is not a sign, a blank is prefixed to
the result. If both the blank and + options appear, then the blank option is
ignored.

The value is converted to an alternative form. For c, d, i, u, and s conversions,
the option has no effect. For o conversion, it increases the precision to force the
first digit of the result to be a 0 (zero). For x and X conversions, a nonzero
result has 0x or 0X prefixed to it, respectively. For e, E, f, g, and G conver-
sions, the result always contains a radix character, even if no digits follow the
radix character. For g and G conversions, trailing zeros are not removed from
the result as they usually are.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding
is performed. If the 0 (zero) and - options appear, the 0 (zero) option is
ignored. For d, i, o, u, x, and X conversions, if a precision is specified, the 0
(zero) option is ignored.

3. An optional decimal digit string that specifies the minimum field width. If the converted
value has fewer characters than the field width, the field is padded on the left to the
length specified by the field width. If the left-adjustment option is specified, the field is
padded on the right.

4. An optional precision. The precision is a . (dot) followed by a decimal digit string. If no
precision is given, it is treated as 0 (zero). The precision specifies:

• The minimum number of digits to appear for the d, i, o, u, x, or X conversions.

• The number of digits to appear after the radix character for the e and f conver-
sions.

• The maximum number of significant digits for the g conversion.

• The maximum number of bytes to be printed from a string in the s conversion.

5. A character that indicates the type of conversion to be applied, as follows:

% Performs no conversion. Prints a % (percent sign).

b Accepts a value as a string that may contain backslash-escape sequences.
Bytes from the converted string are printed until the end of the string or the
number of bytes indicated by the precision specification is reached. If the pre-
cision is omitted, all bytes until the first null character are printed.

7−34 Hewlett-Packard Company 527188-021

User Commands (p - r) printf(1)

The following backslash-escape sequences are supported:

• \Oddd, where ddd is a zero-, one-, two-, or three-digit octal number
that is converted to a byte with the numeric value specified by the octal
number.

• The escape sequences previously listed under the description of the
format argument. These are converted to the individual characters they
represent.

• The \c sequence, which is not displayed and causes the printf com-
mand to ignore any remaining characters in the string parameter con-
taining it, any remaining string parameters, and any additional charac-
ters in the format argument.

c Accepts an integer value and converts it to an unsigned character. The result-
ing byte is printed.

d, i Accepts an integer value and converts it to signed decimal notation in the style
[-]dddd. The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a 0 (zero)
value with a precision of 0 (zero) is a null string. Specifying a field width with
a 0 (zero) as a leading character causes the field width value to be padded with
leading zeros.

e, E Accepts a float or double value and converts it to the exponential form [-]
d.dde +|- dd. There is one digit before the radix character (shown here as the
decimal point), and the number of digits after the radix character is equal to the
precision specification. The LC_NUMERIC locale category determines the
radix character to use in this format. If no precision is specified, then six digits
are output. If the precision is 0 (zero), then no radix character appears. The E
conversion character produces a number with E instead of e before the
exponent. The exponent always contains at least two digits. However, if the
value to be printed requires an exponent greater than two digits, additional
exponent digits are printed as necessary.

f Accepts a float or double value and converts it to decimal notation in the for-
mat [-] ddd.ddd. The number of digits after the radix character (shown here as
the decimal point) is equal to the precision specification. The LC_NUMERIC
locale category determines the radix character to use in this format. If no preci-
sion is specified, then six digits are output. If the precision is 0 (zero), then no
radix character appears.

g, G Accepts a float or double value and converts it in the style of the f or e conver-
sion characters (or E in the case of the G conversion), with the precision speci-
fying the number of significant digits. Trailing zeros are removed from the
result. A radix character appears only if it is followed by a digit. The style used
depends on the value converted. Style g results only if the exponent resulting
from the conversion is less than -4 or it is greater than or equal to the precision.

o Accepts an integer value and converts it to unsigned octal notation. The preci-
sion specifies the minimum number of digits to appear. If the value being con-
verted can be represented in fewer digits, it is expanded with leading zeros.
The default precision is 1. The result of converting a 0 (zero) value with a pre-
cision of 0 (zero) is a null string. Specifying a field width with a 0 (zero) as a

527188-021 Hewlett-Packard Company 7−35

printf(1) OSS Shell and Utilities Reference Manual

leading character causes the field width value to be padded with leading zeros.
An octal value for field width is not implied.

s Accepts a value as a string, and bytes from the string are printed until the end
of the string is encountered or the number of bytes indicated by the precision is
reached. If no precision is specified, all characters up to the first null character
are printed.

u Accepts an integer value and converts it to unsigned decimal notation. The pre-
cision specifies the minimum number of digits to appear. If the value being
converted can be represented in fewer digits, it is expanded with leading zeros.
The default precision is 1. The result of converting a 0 (zero) value with a pre-
cision of 0 (zero) is a null string. Specifying a field width with a 0 (zero) as a
leading character causes the field width value to be padded with leading zeros.

x, X Accepts an integer value and converts it to unsigned hexadecimal notation.
The letters abcdef are used for the x conversion, and the letters ABCDEF are
used for the X conversion. The precision specifies the minimum number of
digits to appear. If the value being converted can be represented in fewer
digits, it is expanded with leading zeros. The default precision is 1. The result
of converting a 0 (zero) value with a precision of 0 (zero) is a null string.
Specifying a field width with a 0 (zero) as a leading character causes the field
width value to be padded with leading zeros.

If the result of a conversion is wider than the field width, the field is expanded to contain
the converted result. No truncation occurs. However, a small precision may cause trunca-
tion on the right.

EXAMPLES
The following command

printf "%5d%4d\n" 1 21 321 4321 54321

produces the following output:

1 21
3214321

54321 0

The format argument is used three times to print all of the given strings. The 0 (zero) is supplied
by the printf command to satisfy the last %4d conversion specification.

RELATED INFORMATION
Commands: read(1).

Functions: printf(3).

7−36 Hewlett-Packard Company 527188-021

User Commands (p - r) ps(1)

NAME
ps - Displays process status

SYNOPSIS
ps [-aA] [-defl]

[-G grouplist]
[-o format] ...
[-p proclist]
[-t termlist]
[-U userlist]
[-g grouplist]
[-n namelist]
[-u userlist]

or

ps -W
all

[,node=system_name]
[,gpri=Gpriority]
[,prog=[/E/systemname]/G/volume/subvolume/fileid]
[,term=[/E/system_name]/G/terminal_process_name]
[,guser={ groupname.username | groupid:userid}]
[,detail]

. . .

or

ps -W
cpu=processor_number

[,pin=process_identifier_number]
[,node=system_name]
[,detail]

. . .

or

ps -W
name=[/E/system_name]/G/process_name . . .

[,node=system_name]
[,detail]

. . .

or

ps -W files pid

or

ps -W loaded filename

FLAGS
The following flags can be used with the ps command:

-a Writes information about all processes, except the process group leaders and processes
not associated with a terminal, to the standard output file.

527188-021 Hewlett-Packard Company 7−37

ps(1) OSS Shell and Utilities Reference Manual

-A Writes information about all processes.

-d Writes information about all processes, except the process group leaders, to the stan-
dard output file.

-e Writes information about all processes to the standard output file.

-f Generates a full listing that includes the fields C, CMD, PID, PPID, STIME, TIME,
TTY, and UID.

-G grouplist
Writes information for processes whose real group ID numbers are given in the
grouplist option. The grouplist is a list of process-group identifiers separated from one
another by a comma or one or more spaces.

-l Generates a long listing, which includes the fields ADDR, C, CMD, F, NI, PID, PPID,
PRI, S, SZ, TIME, TTY, UID, and WCHAN.

-n namelist
Specifies the name of an alternative system namelist file in place of the default file.

Note that the concept of an alternative system is meaningless in the Guardian or OSS
environment. As a result, any argument is accepted for namelist. The -n flag is thus
the equivalent of a noop, and -n is ignored by the ps utility. Nevertheless, the require-
ment to specify an argument to -n is enforced.

-o format
Specifies a list of format specifiers to describe the output format. Multiple -o flags can
be specified; the format specification is interpreted as the concatenation of all the for-
mat options.

-p proclist
Displays only information about processes whose process numbers are specified in the
proclist argument. The proclist argument is either a list of process ID numbers or a list
of process ID numbers enclosed in " " (double quotes) and separated from one another
by a comma or a space.

-t termlist
Displays only information about processes associated with the terminals listed in the
termlist argument. The termlist argument is a list of terminal identifiers or a list of ter-
minal identifiers separated from one another by a comma or one or more spaces.

Terminal identifiers must be in one of two forms:

• The device’s filename

• The device’s digit identifier, if the device’s filename begins with tty

-u userlist
Displays only information about processes whose user ID numbers or login names are
specified in the userlist argument. The userlist argument is either a list of user IDs or a
list of user IDs enclosed in " " (double quotes) and separated from one another by a
comma or one or more spaces or both. Because of the way the shell treats spaces and
tabs, you need to quote space-separated lists.

In the listing, the numerical user ID is written unless the -f flag is used, in which case
the login name is written.

7−38 Hewlett-Packard Company 527188-021

User Commands (p - r) ps(1)

-U userlist
Writes information for processes whose real user ID numbers or login names are given
in the userlist argument. The userlist argument is either a list of user IDs or a list of
user IDs enclosed in " " (double quotes) and separated from one another by a comma
or one or more spaces or both. Because of the way the shell treats spaces and tabs, you
need to quote space-separated lists.

HP Extensions
The -W flag and its options are HP extensions to the ps command. They write information about
Guardian and OSS processes.

The -W flag can only be specified with the -W options. It cannot be specified with the other ps
command flags. When the -W flag is is used with other flags, the usage message is displayed and
ps exits in error.

Information displayed by the -W flag is formatted using Guardian environment display conven-
tions, rather than UNIX conventions.

When none of the -W flags are used (or when no other options are used with them), only OSS
processes are candidates for display.

When the -W flag and its options are used, all processes (both OSS and Guardian) are candidates
for display.

All flag options used with the -W flag are used to select processes. Specifying any option causes
the ps command to ignore the default list of options and select the processes represented by the
inclusive "or" of all the selection criteria options. When specifying more than one option, do not
use spaces after the commas.

If the -W flag is specified without one of its valid options (described below), the ps command
displays the usage message and exits in error.

-W all Writes information about all Guardian and OSS processes. If the node= option is omit-
ted, the information displayed is for the local node. If any of the options gpri, prog,
term, or guser are also specified, only information about the matching subset of Guar-
dian and OSS processes is displayed.

-W cpu=processor_number
If pin=process_identifier_number is omitted, writes information about all Guardian
and OSS processes that reside on the processor specified by the processor_number
value. If pin=process_identifier_number is also specified, specifying the -W cpu flag
restricts the output to the process with the specified operating system CPU,PIN number
on the specified processor. The processor_number value must be within the range 0
through 15.

-W detail
Displays detailed information about processes.

-W files pid
Displays the absolute pathnames of all loadfiles used by the process with the OSS pro-
cess identifier (PID) specified as pid. Each pathname is marked with its type of loadfile
(program, dynamic-link library (DLL), or other library).

-W gpri=Gpriority
Displays information about processes whose execution priority is equal to the Gprior-
ity value. The specified priority is the Guardian priority, where 0 is the minimum and
255 is the maximum. If the specified priority is less than 0 or greater than 255, the
usage message is displayed and the ps command exits in error.

527188-021 Hewlett-Packard Company 7−39

ps(1) OSS Shell and Utilities Reference Manual

-W guser=groupname.username | groupid:userid
Displays information on processes created by the user specified by
groupname.username or groupid:userid.

-W loaded pathname
Displays the OSS process identifiers (PIDs) for all processes that have copies of the
loadfile specified by pathname.

-W name=[/E/system_name]/G/process_name
Writes information about the process identified by the path
/E/system_name/G/process_name. The value specified for process_name must begin
with the character immediately following the $ in the Guardian process name.

-W node=system_name
Writes information about processes based on other selection criteria residing in the
remote system identified by system_name. Do not specify the backslash (\) when enter-
ing the system_name value.

The equivalent to the TACL command STATUS \system_name is:

ps -W node=system_name -W all

or

ps -W node=system_name, all

The -W node= option cannot be specified alone. It must be accompanied by one of the
other options. For example:

ps -W node=foxii -W cpu=3

ps -W node=tsii,-W name=/G/cmon

-W prog=[/E/system_name] /G/volume/subvolume/fileid
Displays information about processes that are executing the specified Guardian file.
Remember to specify the Guardian filename using OSS pathname conventions.

-W term=[/E/system_name]/G/terminal_process_name
Displays information on processes that are associated with the specified Guardian ter-
minal.

DESCRIPTION
The ps command displays the current process status.

While the ps command provides a fairly accurate snapshot of the system, ps cannot begin and
finish a snapshot as fast as some processes change state. At times there may be minor discrepan-
cies between the ps command’s output and the actual state of a process.

The state is given by a sequence of letters, for example, RWN. The first letter indicates the
status of the process:

R Runnable process

U Uninterruptible sleeping process

S Process sleeping for less than about 20 seconds

I Idle (sleeping longer than about 20 seconds) process

7−40 Hewlett-Packard Company 527188-021

User Commands (p - r) ps(1)

T Stopped process

H Halted process

The second character, if any, indicates additional state information:

W Process is swapped out (shows a blank space if the process is loaded, or in core).

> Process has specified a soft limit on memory requirements and is exceeding that limit;
such a process is (necessarily) not swapped.

The third character, if any, indicates whether a process is running with altered processor schedul-
ing priority:

N Process priority is reduced.

< Process priority has been artificially raised.

+ Process is a process group leader with a controlling tty.

Environment Variables
The following environment variables affect the execution of the -ps command:

COLUMNS
Overrides the default horizontal screen size. COLUMNS determines the number of
text columns to display. The output wraps if COLUMNS exceeds the system screen
size.

LANG Provides a default value for internationalization variables that are null. If LANG is
unset or null, the corresponding value from the implementation-specific default locale
is used. If internationalization variables contain invalid settings, the ps command
behaves as though none of the variables are defined.

LC_ALL
Overrides the values of all other internationalization variables.

LC_CTYPE
Determines the locale for interpreting bytes of text data as characters (for example,
single-byte versus multiple-byte characters in arguments).

LC_MESSAGES
Determines the locale for defining the format and contents of diagnostic messages that
are written to the standard error file and of information messages that are written to the
standard output file.

LC_TIME
Determines the format and contents of the date and time strings that are to be
displayed.

NLSPATH
Determines the location of message catalogs for processing the LC_MESSAGES vari-
able.

527188-021 Hewlett-Packard Company 7−41

ps(1) OSS Shell and Utilities Reference Manual

Standard Output
When the -o and -W flags are not specified, the standard output format is as follows:

• The column headings and descriptions of the columns in a ps listing are described

• The letters f and l indicate the flag (full or long) that causes the corresponding heading to
appear

• The suboption all specifies that the heading always appears

The -o option allows the output format to be specified by the user. The format specification must
be a list of names presented as a single argument, with the names separated by a space or a
comma. Each variable has a default header that is displayed. The default header can be
overwritten by appending an equal sign and the new text of the header to the default header. The
characters in the argument following the equal sign are used as the header text. The fields are
written in the order specified on the command line and are arranged in columns in the output.
The field widths are selected automatically and are at least as wide as the header text. If all the
header text fields are null, no header line is written.

The following names are recognized in the OSS environment:

args The command being executed with all of its arguments. The display is a string. The
string is not truncated to match the field width length. However, the string is truncated
if it wraps around the screen. The string is the argument list that was passed to the
command when it was started. Any modifications that a process might do to its argu-
ment list are not reflected in the output of the ps command.

comm The name of the command being executed, displayed as a string. The name is truncated
in the display if its value is larger than 80 bytes.

etime The elapsed time since the process was started. The value is displayed in the form
[[dd-]hh:]mm:ss, where dd represents the number of days, hh represents the number of
hours, mm represents the number of minutes, and ss represents the number of seconds.
The dd field is a decimal integer. The hh, mm, and ss fields are two-digit decimal
integers padded on the left with zeros.

group The effective group ID of the process. This is the textual group ID.

nice The decimal value of the system scheduling priority of the process.

pcpu The ratio of the processor time used recently to the available processor time during the
same period. The value is expressed as a percentage. The meanings of "recently" and
"processor time" are implementation-defined. This field has no meaning in the Guar-
dian or OSS environments, and a hyphen is displayed instead of the field value.

pgid The decimal value of the process group ID.

pid The decimal value of the process ID.

ppid The decimal value of the parent process ID.

rgroup The real group ID of the process. This is the textual group ID.

ruser The real user ID of the process. This is the textual user ID.

7−42 Hewlett-Packard Company 527188-021

User Commands (p - r) ps(1)

time The cumulative CPU time of the process in the form [[dd-]hh:]mm:ss. The hh, mm, and
ss fields have the same definitions that they do for etime.

tty The name of the controling terminal of the process (if any). If no controlling terminal
is present, a question mark (?) is displayed

user The effective user ID of the process. This is the textual user ID.

vsz The size of the process in virtual memory in kilobytes as a decimal integer.

If you use the -l and -A flags together, a list of zombie processes also appears at the end of the
display (similar to the following):

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
.
.
.

- 0000 xx xx xx - - - - - - - - <defunct>

Format Specifiers
The following list contains all format specifiers that can be used with the ps command. The
default header for each specifier appears in parentheses. Most of the headers can also be used as
format specifier synonyms.

args (COMMAND)
The command with all its arguments as a string. The ps command truncates this value
to the field width.

comm (COMMAND)
The name of the command being executed (argv[0] value) as a string.

etime (ELAPSED)
Elapsed time since the process was started.

group (GROUP)
Effective group ID of the process.

nice (NI) Process scheduling increment for the process.

pcpu The ratio of processor time used recently to processor time available in the same time
period. The meaning of the term "recently" as well as the meaning of "processor time
available" is implementation defined. This field has no meaning in the Guardian or
OSS environment.

pgid (PGID)
Process group ID of the process.

pid (PID)
Process ID of the process.

ppid (PPID)
Parent process ID of the process.

rgroup (RGROUP)
Real group ID of the process.

527188-021 Hewlett-Packard Company 7−43

ps(1) OSS Shell and Utilities Reference Manual

ruser or runame (RUSER)
Real user ID of the process.

user or uname (USER)
Real user name of the process.

time The cumulative processor time of the process in the form [[dd-] hh:] mm:ss.

tty The name of the controlling terminal of the process. If no controlling terminal is
present a question mark (?) is displayed.

vsz The size of the process in virtual memory in Kbytes, as a decimal integer.

EXAMPLES
1. To list all your processes, enter:

ps

2. To list all processes except kernel processes, enter:

ps -e

3. To list processes owned by specific users, enter:

ps -f -l -uos.jim,software.jane,super.super

4. To display only the pid, user, and comm information for all processes, enter:

ps -o pid,user,comm -e

5. The command:

ps -l

results in the following display:

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
011 8102 123456 318570500 1 - 106 - 1,27 - - tty 05:17 /bin/ps

6. The command:

ps -W name=/G/cmon -W node=kt22

results in the following display:

SYSTEM_NAME
\KT22
PROCESS BK CPU,PIN GPRI PFR %WT USERID PROGRAMFILE HOMETERM
/G/cmon 0,51 170 P 001 255,255 /G/system/cmon/cmon /G/osp
/G/cmon B 4,139 170 P 001 255,255 /G/system/cmon/cmon /G/osp

7. Each of the commands:

ps -W cpu=3 -W pin=76 -W detail

ps -W cpu=3, pin=76 -W detail

ps -W cpu=3, pin=76, detail

7−44 Hewlett-Packard Company 527188-021

User Commands (p - r) ps(1)

results in the following display:

SYSTEM_NAME
foxii
PROCESS BK CPU,PIN GPRI PFR %WT USERID PROGRAMFILE HOMETERM

3,76 150 P 001 255,255 /G/system/sys02/zexp /G/tl1/111
PROCESS_TIME GMOMJOBID SWAP_FILENAME EXTENDED_SWAP
0:0:0.041 0 /G/SYSTEM/#0121577 /G/system/#0121578
PROCESS_STATE CREATION_TIME
no messages, forced low, runnable March 26, 1993 16:16:34.408

8. The command:

ps -Wloaded /G/system/sys01/zcresrl

results in a display similar to the following:

PID
703594543
938475558
183500819
821035021

1055916036
988807201

9. The command:

ps -Wfiles 1055916036

results in a display similar to the following:

FILES
/bin/util/myprog (PROGRAM)
/usr/lib/mylib (DLL)
/G/SYSTEM/SYS01/zcresrl (SRL)

NOTES
The status of a system can change between the time ps polls a system for status and the time the
information is displayed on your terminal. Thus the ps command gives a snapshot of a system’s
status that may be out of date by the time it is displayed.

The COLUMNS variable overrides the system-selected horizontal screen size.

EXIT VALUES
The ps command returns the following values:

0 Completion was successful.

>0 An error occurred.

RELATED INFORMATION
Commands: kill(1), nice(1).

STANDARDS CONFORMANCE
The -W flags are HP extensions to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 7−45

pwd(1) OSS Shell and Utilities Reference Manual

NAME
pwd - Displays current directory pathname

SYNOPSIS
pwd

DESCRIPTION
The pwd command writes to standard output the full pathname of your current directory from the
root directory. All directories are separated by a / (slash). The root directory is represented by
the first /, and the last directory named is your current directory.

The OSS shell contains a built-in command named pwd, that functions in the same way as the
regular OSS command named pwd, except that a new shell process is started for each execution
of the regular form of pwd. The shell built-in version is the default. A new subshell is not
started for each invocation of the shell built-in form of pwd. Both the regular form and the shell
built-in form of pwd are described in this reference page.

NOTES
The OSS pwd command has both a shell built-in version and a regular version. The two versions
have the same features and functionality. The only difference between the two versions is that
the shell built-in version does not start a new shell process when it is invoked. Both versions are
described in the reference page for pwd. The shell built-in version is the default. To specify the
regular version use the full pathname: /bin/pwd For more information about shell built-in com-
mands refer to the reference page for sh(1).

RELATED INFORMATION
Commands: cd(1), sh(1).

Functions: stat(2).

7−46 Hewlett-Packard Company 527188-021

User Commands (p - r) read(1)

NAME
read - Reads one line from the standard input file

SYNOPSIS
read [-r] variablename ...

FLAGS
-r Specifies that the read command treat a \ (backslash) character as just part of the input

line, not as a control character.

DESCRIPTION
The read command reads one line from the standard input file and assigns the values of each
field in the input line to a shell variable.

The OSS shell contains a built-in command named read that functions in the same way as the
regular OSS command named read, except that a new shell process is started for each execution
of the regular OSS command read. The shell built-in version of read is the default. Both the
regular version and the shell built-in version of the read command are described in this reference
page.

Operands
variablename Specifies the name of a shell variable.

The first variable specified by variablename is reached if the line of standard corresponding shell
variables specified is given the value of all the remaining fields. If there are fewer fields than
shell variables, the remaining shell variables are set to empty strings. The setting of shell vari-
ables by the read command affects the current shell execution environment. The environment
variable IFS determines the internal field separators used to delimit the fields.

The read command prompts for a continuation line when the shell readsan input line ending with
a \ (backslash), unless the -r flag is specified.

Environment Variables
IFS Determines the internal field separators used to delimit the fields.

EXAMPLES
The following is a command sequence to print a file with the first field of each line moved to the
end of the line:

while read -r xx yy
do

printf "%s %s\n" "$yy" "$xx"
done < inputfile

NOTES
The OSS read command has both a shell built-in version and a regular version. The two versions
have the same features and function. The only difference between the two versions is that the
shell built-in version does not start a new shell process when it is invoked. Both versions are
described in this reference page. The shell built-in version is the default version. To specify the
regular version, use the full pathname: /bin/read. For more information about shell built-in com-
mands, refer to the sh(1) reference page.

EXIT VALUES
The read command returns the following exit values:

0

>0 An End-of-File was detected or an error occurred during execution.

527188-021 Hewlett-Packard Company 7−47

read(1) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: printf(1).

7−48 Hewlett-Packard Company 527188-021

User Commands (p - r) readonly(1)

NAME
readonly - Sets environment variables as read only

SYNOPSIS
readonly [name[=value ...]]

readonly -p

FLAGS
-p Writes to standard output the names and values of all read-only variables.

DESCRIPTION
The names and assigned values of environmental variables specified as name and value are
marked as read only and cannot be changed by subsequent assignment.

If -p is specified, readonly displays a list of the names and values of all read-only variables. The
shell formats the output, including the proper use of quoting, so that is it suitable for reinput to
the shell as commands that achieve the same attribute-setting results. The -p flag allows portable
access to the values that can be saved and then later restored by using, for example, a . (dot)
script.

EXAMPLES
1. In the following series of commands the variable x is made read only and the read only

status is tested:

x = 3
readonly x
x = 5

The last command in the above series results in the following error message:

x: is read only

NOTES
• Parameter assignment lists that precede the command remain in effect when the com-

mand completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

• Words in the format of a parameter assignment are expanded with the same rules as a
parameter assignment. This means that ˜ (tilde) substitution is performed after the =
(equal sign). Word splitting and filename generation are not performed.

The readonly command is a shell built-in command. It differs from the regular commands in that
it does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

527188-021 Hewlett-Packard Company 7−49

reset_define(1) OSS Shell and Utilities Reference Manual

NAME
reset_define - Restores a DEFINE’s attributes to their initial settings

SYNOPSIS
reset_define {attribute-name}...

DESCRIPTION
The reset_define command is specific to OSS and a built-in command to the OSS shell. It is
similiar to the TACL RESET DEFINE command. The reset_define command restores the attri-
butes of one or more DEFINEs to their initial settings. If you reset a default attribute, the default
value is restored. (Optional attributes cannot be reset, because they have no initial value.) Refer
to the RESET DEFINE command in the TACL Reference Manual for related information.

attribute-name
Specifies the attribute whose setting is to be restored. Valid attribute names are
described in the TACL Reference Manual.

Environment Variables
LANG Determines the locale to use for the locale categories when neither the LC_ALL vari-

able nor the corresponding environment variable (beginning with LC_) specify a
locale.

LC_ALL
Determines the locale to be used to override any values for locale categories specified
by the LANG variable or any environment variable whose name begins with LC_.

LC_CTYPE
Determines the locale for interpretation of bytes of text data as characters (for example,
single-byte as opposed to multibyte characters in arguments).

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnos-
tic messages written to the standard error file and of information messages written to
the standard output file.

EXAMPLES
1. To reset and display the entire working attribute set that specifies a CLASS TAPE

DEFINE, enter:

reset_define class=tape

This command might result in the following display:

CLASS =TAPE
VOLUME =(25436, 75444, 23121)
LABELS =ANSI
REELS =
OWNER =
FILESECT =
FILESEQ =
FILEID =
RETENTION =
EXPIRATION =
GEN =
VERSION =
RECFORM =
BLOCKLEN =
RECLEN =

7−50 Hewlett-Packard Company 527188-021

User Commands (p - r) reset_define(1)

DENSITY =
USE =IN
DEVICE =\KT22.$TAPE
EBCDIC =
MOUNTMSG =
SYSTEM =
TAPEMODE =

EXIT VALUES
The following exit values are returned:

0 DEFINE attribute values were reset successfully.

>0 An error occurred.

NOTES
The reset_define command is a shell built-in command. It differs from the regular commands in
that it does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: add_define(1), del_define(1), info_define(1), set_define(1), show_define(1).

STANDARDS CONFORMANCE
The reset_define command is an HP extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 7−51

return(1) OSS Shell and Utilities Reference Manual

NAME
return - Returns a shell function to its invoking script

SYNOPSIS
return [n]

DESCRIPTION
The return command causes a shell function to return to the script that started it, with the return
status specified by the argument n.

If the argument n is not specified, the return status is that of the last command executed. If the
return command is executed while not in a function or in a . (dot) script, it has the same effect as
an exit command.

NOTES
• Parameter assignment lists that precede the command remain in effect when the com-

mand completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The return command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

7−52 Hewlett-Packard Company 527188-021

User Commands (p - r) rm(1)

NAME
rm - Removes (unlinks) files or directories

SYNOPSIS
rm [-firR] [-W NOG] [-W NOE] file ...

FLAGS
-f Does not prompt before removing a file that does not have write permission set, and

does not display an error message if a specified file does not exist. If you specify both
the -f and -i flags when invoking the rm command, the flag that is specified last on the
command line takes effect.

-i Prompts you before deleting each file (interactive). When you use both the -i and -r
flags, the rm command also asks if you want to examine directories. If you specify
both the -f and -i flags when invoking the rm command, the flag that is specified last on
the command line takes effect.

-r Permits recursive removal of directories and their contents.

-R Permits recursive removal of directories and their contents (same as -r).

HP Extensions
-W NOG Specifies that the /G directory should be omitted when the initial directory is root

and a recursive flag (-R or -r) is used. This flag is ignored when the initial direc-
tory is not /, /E, or /E/system or when recursion does not occur.

-W NOE Specifies that the /E directory should be omitted when the initial directory is root
and a recursive flag (-R or -r) is used. This flag is ignored when the initial direc-
tory is not root or when recursion does not occur.

Specify both the -W NOG and -W NOE flags to omit both the /G and /E directories.

DESCRIPTION
The rm command removes the entries for the specified files from a directory.

If the file argument is of the directory type, the following steps are taken:

1. If neither the -R or -r flag is specified, rm writes a diagnostic message to standard error,
does nothing further with the file file, and goes on to any remaining files.

2. If the -f flag is not specified and either of the following is true, rm writes a prompt to
standard error and reads a line from standard input:

• The permissions of the file file do not permit writing, and standard input is a ter-
minal.

• The -i flag is specified.

If the response is affirmative, rm does nothing further with the current file and goes on to
any remaining files. (The same actions are taken if the -f flag is specified and file is not
of the directory type.)

3. For each entry contained in the file file, other than . (dot) or .. (dot dot) entries. Steps 1
through 3 are taken with the entry as if it were a file argument.

If an entry is the last link to a file, it is destroyed. To remove a file, you must have write permis-

527188-021 Hewlett-Packard Company 7−53

rm(1) OSS Shell and Utilities Reference Manual

sion for its parent directory, but you need neither read nor write permission for the file itself.

If a file has no write permission and standard input is a tty:

• If the system does not support OSS ACLs, the rm command displays the file permission
code and reads a line from standard input. If that line begins with y, or the locale’s
equivalent of a y, rm deletes the file. If the response is anything else, the rm command
does nothing to that file and continues with the next specified file.

• If the system supports OSS ACLs, the rm command displays the file name and the file
permissions and reads a line from standard input. If that line begins with y, or the
locale’s equivalent of a y, rm deletes the file. If the response is anything else, the rm
command does nothing to that file and continues with the next specified file.

If the -f option is used or the standard input is not a tty, rm does not display any prompts.

If the file has optional ACL entries, the rm command displays a plus sign (+) after the
file permissions. The permissions shown by the rm command summarize the st_mode
values returned
by the stat() function (see the stat(2) reference page). If you execute the rm command
remotely from a system that does not support OSS ACLs, rm does not display a plus sign
(+) for files that have optional ACLs.

For more information about ACLs, see the acl(5) reference page.

The -i flag causes rm to prompt and read the standard input even if the standard input is not a ter-
minal. In the absence of -i, however, rm does not prompt when the standard input is not a termi-
nal.

Environment Variables
The following environment variables affect the execution of the rm command:

LC_MESSAGES
Determines the locale’s equivalent of y or n (for yes/no queries).

UTILSGE Specifies that HP extensions to the root directory should be omitted when the ini-
tial directory is root and a recursive operation occurs in an OSS shell command.
Application programs that test this variable might also honor its settings.

The UTILSGE value can be any of the following:

NOE Omit the /E directory.

NOG Omit the /G directory.

NOG:NOE Omit both the /G and /E directories.

The effect of assigning a value to the UTILSGE environment variable is the
same as specifying the -W NOG or -W NOE flag in the command.

7−54 Hewlett-Packard Company 527188-021

User Commands (p - r) rm(1)

EXAMPLES
1. To delete a file, enter:

rm myfile

If there is another link to this file, then the file remains under that name, but the file
myfile is removed. If myfile is the only link, the file itself is deleted.

2. To delete a file silently, enter:

rm -f core

This command removes file core without asking any questions or displaying any error
messages. This is normally used in shell procedures. It prevents confusing messages
from being displayed when deleting files that may or may not exist.

3. To delete files interactively, enter:

rm -i mydir/*

After each filename is displayed, enter the affirmative response; press <Return> (or any-
thing other than the affirmative response) to retain the file.

4. To delete a directory tree interactively, enter:

rm -ir manual

This recursively removes the contents of all subdirectories of the file manual, then
removes manual itself, asking if you want to remove each file and directory.

5. To delete all OSS files on the local node, enter:

export UTILSGE=NOG:NOE
rm -r /

6. To delete all OSS files on the remote node node1, enter:

rm -r -W NOG /E/node1

NOTES
Because /G and /E both appear in your local root directory, you should be very careful when
using OSS shell commands on or from the root directory. OSS shell commands that perform
recursive actions make no distinction between Guardian and OSS files or between local and
remote files. You can use the -W NOG and -W NOE flags or the UTILSGE environment vari-
able to exclude objects in the Guardian file system or objects accessible through the Expand pro-
duct.

For G-series RVUs, H06.19 and earlier H-series RVUs, or J06.08 and earlier J-series RVUs, the
OSS Network File System (NFS) you cannot use the rm command to remove OSS objects that
have OSS ACLs that contain optional ACL entries.

For H06.20 and later H-series RVUs and J06.09 and later J-series RVUs, access by the OSS Net-
work File System (NFS) to OSS objects that have OSS ACLs that contain optional ACL entries
can be allowed, depending upon the NFSPERMMAP attribute value for the fileset that contains
the object. For more information about NFS and ACLs, see the acl(5) reference page.

For H06.23 and later H-series RVUs, J06.12 and later J-series RVUs, the H06.22 RVU with the
T9194H01ˆAFA SPR installed, or the J06.11 RVU with the T9194J01ˆAEZ SPR installed, a
remote user can delete an SQL object that is in the OSS file system.

For H06.22 (without the T9194H01ˆAFA SPR installed) and earlier H-series RVUs, and J06.11
(without the T9194J01ˆAEZ SPR installed) and earlier J-series RVUs, if a remote user attempts

527188-021 Hewlett-Packard Company 7−55

rm(1) OSS Shell and Utilities Reference Manual

to delete an SQL object that is in the OSS file system, the rm command fails with error "Guar-
dian or User Defined Error 197". To remove this type of file on these RVUs, a local user must
execute the rm command.

File-Label and SQL Catalog Table Inconsistencies
When you issue the rm command to purge a remote OSS SQL program and the command fails
due to certain failure scenarios such as a CPU failure, disk failure, or application outage, this
failure can cause an inconsistency between the program file label and the corresponding SQL
catalog. The program can lose its SQL properties, but have SQL catalog entries present. In this
case, the following conditions occur:

• The program does not run after losing its SQL properties.

• The SQL catalog tables have stray entries for this program file. The program exists, but
its just like a normal Enscribe file.

• If any DDL command is issued on a table on which the program depends, the program
obtains partial SQL properties and remains invalid.

RELATED INFORMATION
Commands: ln(1), mv(1), rmdir(1).

Functions: rmdir(2), unlink(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The -W NOG and -W NOE flags and the UTILSGE environment variable are HP extensions to
the XPG4 Version 2 specification.

7−56 Hewlett-Packard Company 527188-021

User Commands (p - r) rmdir(1)

NAME
rmdir - Removes a directory

SYNOPSIS
rmdir [-p] directory ...

FLAGS
-p Removes all directories in a pathname. For each directory argument, the following

operations are performed:

1. The directory entry specified by directory is removed.

2. If the directory argument includes more than one pathname component, effects
equivalent to the following command occur:

rmdir -p $(dirname directory)

DESCRIPTION
The rmdir command removes a directory from the system. The directory must be empty before
you can remove it, and you must have write permission in its parent directory. Use the ls -al
command to see whether a directory is empty.

If a directory and a subdirectory of that directory are specified in a single invocation of rmdir,
the subdirectory must be specified before the parent directory so that the parent directory is
empty when rmdir tries to remove it.

EXAMPLES
1. To empty and remove a directory, enter:

rm mydir/* mydir/.*
rmdir mydir

This command removes the contents of directory mydir, then removes the empty direc-
tory. The rm command displays an error message about trying to remove the directories .
(dot) and .. (dot dot), and then rmdir removes them.

Note that rm mydir/* mydir/.* first removes files with names that do not begin with a .
(dot), then those with names that do begin with a . (dot). You may not realize that the
directory contains filenames that begin with a . (dot), because the ls command does not
normally list them unless you use the -a flag.

2. To remove all of the directories in the pathname a/b/c, enter:

rmdir -p a/b/c

Use a command like this one if directory a in the current directory is empty except that it
contains a directory b and a/b is empty except that it contains a directory c.

NOTES
Because /G and /E both appear in your local root directory, you should be very careful when
using OSS shell commands on or from the root directory. OSS shell commands that perform
recursive actions make no destinction between Guardian and OSS files or between local and
remote files.

RELATED INFORMATION
Commands: ls(1), rm(1).

Functions: rmdir(2), unlink(2).

527188-021 Hewlett-Packard Company 7−57

rsh(1) OSS Shell and Utilities Reference Manual

NAME
rsh - Executes the specified command remotely

SYNOPSIS
rsh [-d] [-l user] hostname command [argument ...]

rsh [-d] hostname [-l user] command [argument ...]

hostname [-l user] [command] [argument ...]

FLAGS
-d Turns on socket debugging (using the setsockopt() function) on the Transmission Con-

trol Protocol (TCP) sockets used for communication with the remote host.

-l user Specifies that rsh is to log in to the remote host using user instead of the user’s local
user name. If this flag is not specified, the local and remote user names are the same.

DESCRIPTION
The remote shell command (rsh) executes command at hostname. The rsh command sends the
standard input file from the local host to the remote command and receives the standard output
and standard error files from the remote command.

If the name of the file from which rsh is executed is anything other than rsh, rsh takes this name
as its hostname operand. This feature allows you to create a symbolic link to rsh in the name of
the host that, when executed, invokes a remote shell on that host. If you create a directory and
populate it with symbolic links in the names of commonly used hosts, then, by including the
directory in your shell’s search path, you can run rsh by typing hostname to your shell.

If you do not specify the -l flag, the local user name is used at the remote host. If -l user is
entered, the specified user name is used at the remote host. In either case, the remote host allows
access only if at least one of the following conditions is satisfied:

• The local user ID is not the super ID, and the name of the local host is listed as an
equivalent host in the remote /etc/hosts.equiv file.

• The remote user’s home directory contains a $HOME/.rhosts file that lists the local host
and user name.

For security reasons, any $HOME/.rhosts file must be owned by either the remote user or the
super ID, and only the owner should have write access.

In addition to the preceding conditions, rsh also allows access to the remote host if the remote
user account does not have a password defined. However, for security reasons, use of a password
on all user accounts is recommended.

While the remote command is executing, pressing the Interrupt, Terminate, or Quit key sequence
sends the corresponding signal to the remote process. However, pressing the Stop key sequence
stops only the local process. Normally, when the remote command terminates, the local rsh pro-
cess terminates.

To have shell metacharacters interpreted on the remote host, place the metacharacters inside ´ ´
(single quotes). Otherwise, the metacharacters are interpreted by the local shell.

EXAMPLES
In the following examples, the local host host1 is listed in the /etc/hosts.equiv file at the remote
host host2.

1. To check the amount of free disk space on the remote host host2, enter:

$ rsh host2 df

7−58 Hewlett-Packard Company 527188-021

User Commands (p - r) rsh(1)

2. To do the same job, create symbolic link host2 to rsh and enter:

$ host2 df

3. To append a remote file to another file on the remote host, place the >> metacharacters in
"" (double quotes):

$ rsh host2 cat test1 ">>" test2

4. To append a remote file at the remote host to a local file, omit the double quotes:

$ rsh host2 cat test2 >> test3

5. To append a remote file to a local file and use a remote user’s permissions at the remote
host, use the -l flag:

$ rsh host2 -l jane cat test4 >> test5

FILES
/etc/hosts.equiv Specifies remote hosts from which users can execute commands on

the local host (if these users have an account on the local host). This
file can also specify a trusted user for each host.

$HOME/.rhosts Specifies remote hosts from which users can execute commands on
the local host (if these users have an account on the local host). This
file can also specify a trusted user for each host.

NOTES
To remotely access an HP NonStop server from a UNIX system or another NonStop HP server
through that system’s rsh command, you must specify the -l flag. If you omit the -l flag, or if the
target server does not have a login name configured with an INITIAL-DIRECTORY attribute,
the command fails with the message "Connection refused."

RELATED INFORMATION
Commands: rshd(8), telnet(1).

Files: hosts.equiv(4), .rhosts(4).

STANDARDS CONFORMANCE
This command is an HP extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 7−59

run(1) OSS Shell and Utilities Reference Manual

NAME
run - Runs a process with specific attributes

SYNOPSIS
run [-cpu=cpu_number

| -debug
| -defmode={off | on}
| -inspect={off | on | saveabend}
| -jobid=jobid_number
| -mem=num_pages
| -maxheap=maxheapsize
| -name=/G/process_name
| -gpri=priority
| -swap=/G/volume[/subvolume[/swapfile]]
| -extswap=/G/volume[/subvolume[/swapfile]]
| -term=/G/terminal_name
| -lib={/G/volume/subvolume/<library_filename> | unset}] ...
program_file_path [arguments]

FLAGS
-cpu=cpu_number

Specifies the number of the processor on which the process is to run. cpu_number is an
integer in the range 0 through 15. If the -cpu flag is not specified, the process is
created on the CPU from which the run command was executed.

-debug Causes the process to start in the symbolic debugger. If the -debug flag is not
specified, the process is not started in the symbolic debugger.

-defmode={off | on}
Specifies the initial -defmode setting for the process being started. The setting con-
trols both enablement and propagation of DEFINEs for the process and determines
which DEFINEs are propagated to the process. If you specify -defmode=off, all
DEFINEs are disabled for the new process and no DEFINE is propagated from the OSS
shell to the new process. If you specify -defmode=on, all DEFINEs are enabled for the
new process and all DEFINEs are propagated to the new process. The -defmode flag
has no effect on the -defmode setting for the current OSS shell. If you do not specify
the -defmode flag, the initial setting for -defmode is the same as the -defmode setting
for the current OSS shell. The -defmode flag has no effect on the -defmode setting for
the current OSS shell.

-gpri=priority
Specifies the Guardian execution priority of the new process. priority is specified as an
integer in the range 1 through 199, with 199 being the highest priority. If an integer
greater than 199 is specified, the process runs at priority 199 (a warning message might
be displayed). In this case, the exit status is set to indicate that the operation was suc-
cessful. If the -gpri flag is not specified, the default Guardian execution priority of a
child process will be the same as the execution priority of the parent.

-inspect={off | on | saveabend}
Sets the debugging environment for the process being started. The -inspect off flag
selects the default debugging utility, which is the default action. The -inspect on and
-inspect saveabend flags select the current symbolic debugger. -inspect on and
-inspect saveabend are the same except that -inspect saveabend automatically creates
a saveabend file (process snapshot file or core file) if the program ends abnormally.

7−60 Hewlett-Packard Company 527188-021

User Commands (p - r) run(1)

-jobid=jobid_number
Specifies the new job ID for the new process. If this flag is not specified, the job ID for
the new process is 0.

-lib={/G/volume/subvolume/swapfile | unset}
Specifies a user library file in the /G directory that is to be searched for external refer-
ences required by the program being run. The user library file is searched before the
OSS library file. The name of the library file in /G is linked to the program file being
run and remains in use until the program is run with the -lib=unset option.

-mem=num_pages
Specifies the maximum number of virtual data pages to be allocated for the new pro-
cess. num_pages is an integer in the range 1 through 64. If this flag is not specified, the
default value for the maximum number of virtual data pages allocated for the new pro-
cess is 64. If the value specified for num_pages is less than the compilation-time
value, the compilation-time value is used. If the actual compilation-time value is less
than the value specified for num_pages (or its default value), the compilation-time
value is used.

The -mem flag does not apply to native processes, which use the kernel-managed swap
facility.

-maxheap=maxheapsize
Overrides the default maximum heap size for a process. The maxheapsize value is a
positive integer, optionally suffixed with either MB or GB. The default unit of the max-
heapsize value is MB (MegaBytes).

This flag is supported on systems running J06.13 or later J-series RVUs or H06.24 or
later H-series RVUs only.

-name=/G/process_name
Specifies the Guardian process name to be assigned to the new process. process_name
is an alphanumeric string whose first character must be alphabetic. If this flag is not
specified, the new process is not named.

-swap=/G/volume[/subvolume[/swapfile]]
Specifies either the name of a file in directory /G that holds the virtual data of a TNS
process or the name of a volume to contain temporary files.

When a TNS process is running, by default the operating system allocates swap space
from the kernel-managed swap facility for the purpose of swapping the data stack.
However, if the -swap flag specifies a valid unstructured permanent file, that file is
used as the swap file and is not purged when the process terminates. The volume that is
specified with the -swap flag must exist in the /G directory on the local node. If not,
the run command displays the usage message and exits in error.

For a TNS process, if the file specified with the -swap flag does not exist, it will be
created. If you specify a swap volume (omitting the subvolume and swapfile names)
for a TNS process, the operating system creates a temporary swap file for the TNS data
segment and deletes it when the process completes.

For a native process, any volume specified in a -swap flag can be used for temporary
file creation by appropriately coded processes. The process can inquire (through
PROCESS_GETINFOLIST_ or PROCESS_GETINFO_) about its swap file and get
back the name of a nonexistent temporary file, for example, $VOL.#0. (The volume
name is as specified in the command; the #0 is syntactically valid but does not
correspond to a real file [a temporary file would have seven digits after the #].) Some
utilities use this feature to determine the volume on which to place temporary files of

527188-021 Hewlett-Packard Company 7−61

run(1) OSS Shell and Utilities Reference Manual

their own creation. By default, the swap volume of a native process is reported as the
program location.

-extswap=/G/volume[/subvolume[/swapfile]]
Same as -swap, but any swap file specified is used to hold the extended data segment
for the TNS process. This flag has no impact on native processes.

-term=/G/terminal_name
Specifies the home terminal for the new process. If this flag is omitted, the new process
uses the OSS shell’s home terminal. terminal_name must be a valid name for a termi-
nal or process. If terminal_name is of the Guardian form $ZTNT.#PTY4, it must be
specified as /G/ZTNT/#PTY4. If terminal_name is of the Guardian form $name, it
must be specified as /G/name. For example, $TTY translates to /G/TTY.

DESCRIPTION
The run utility starts OSS programs with specific attributes. The run utility is implemented as a
built-in shell feature conforming to the POSIX.2 syntax standards. The child process of run
belongs to the same process group as that of the shell from which the run command was issued.
run allows OSS programs to run under the control of the symbolic debugger. run issues a
tdm_execve() function call with the specified executable image file path and the option operands
with which it was invoked.

Operands
program_file_path

The OSS filename of an executable image. An executable image is any type of OSS
file that has the execute permission bit set for the user, so that the OSS stat() function
identifies the file as an executable image.

If the full OSS pathname is not specified, the directories listed in the environment vari-
able PATH are searched. If the run command is invoked without a program_file_path,
the usage string is displayed and run exits in error.

arguments
An optional list of arguments that are to be passed to the program file. The arguments
should be specified at the time the run command is invoked.

Environment Variables
LANG Determines the locale to be used for the locale categories when both the LC_ALL

variable and the corresponding environment variable (whose name begins with LC_)
do not specify a locale.

LC_ALL
Determines the locale to be used to override any values for locale categories specified
by the settings of the LANG variable or any environment variable whose name begins
with LC_.

LC_CTYPE
Determines the locale for the interpretation of bytes of text data as characters (for
example, single-byte versus multibyte characters in arguments).

LC_MESSAGES
Determines the locale to be used to affect the format and content of diagnostic mes-
sages written to the standard error file and informational messages written to the stan-
dard output file.

7−62 Hewlett-Packard Company 527188-021

User Commands (p - r) run(1)

Standard Output
The run command itself does not print messages to the standard output file. However, the pro-
gram file to which run is applying the tdm_execve() function can print messages to the standard
output file if both the program file and the shell are sharing the same home terminal.

EXAMPLES
1. The following command line

run -cpu=3 -gpri=150 -name=/G/myls ls -xaF

starts the ls utility on processor 3 with a priority of 150. This instance of ls is passed the
arguments -xaF and is named /G/myls.

2. The following command line

run -debug -inspect=on myprogram

starts the program myprogram in the symbolic debugger.

NOTES
When resources are not available, the shell can return the following message if the run command
is used:

/bin/-sh: sh: tdm_fork() failed with errno EAGAIN:
cannot fork too many processes

EXIT VALUES
0 Command completed sucessfully.

>0 An error occurred.

RELATED INFORMATION
Functions: tdm_execve(2).

STANDARDS CONFORMANCE
The run utility is an HP extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 7−63

runcat(1) OSS Shell and Utilities Reference Manual

NAME
runcat - Invokes the mkcatdefs utility and pipes the resulting message-catalog source data to the
gencat utility

SYNOPSIS
runcat catalog_name source_file catalogfile

FLAGS
Operands

catalog_name is the name of the message catalog to be used by the mkcatdefs utility to gen-
erate the name of the symbolic definition file.

source_file identifies the message text containing symbolic identifiers.

catalogfile is the name of the catalog file to be created by the gencat utility.

DESCRIPTION
The runcat utility invokes the mkcatdefs utility and pipes the resulting message-catalog source
data to the gencat utility.

source_file contains the message text containing symbolic identifiers. The mkcatdefs utility
uses the catalog_name argument to generate the name of the symbolic definition file by adding
_msg.h to the end of the catalog_name value. mkcatdefs also uses the catalog_name value to
generate the symbolic name for the catalog file by adding MF_ to the beginning of the
catalog_name value.

The symbolic definition file must be included in your application. The symbolic name for the
catalog file can be used in library functions such as the catopen function. The catalogfile argu-
ment is the name of the catalog file created by the gencat utility. If you do not specify this argu-
ment, the gencat utility appends .cat to the end of the catalog_name value. This filename can
also be used in the catopen library function.

EXAMPLES
To generate a catalog named test.cat from a message source file named test.msg, enter:

runcat test test.msg

DIAGNOSTICS
The runcat utility generates these error messages:

Usage: runcat catname srcfile [catfile]\n
Can´t open \%s\n

RELATED INFORMATION
Commands: gencat(1), mkcatdefs(1).

STANDARDS CONFORMANCE
The runcat() utility is an extension to the XPG4 specification.

7−64 Hewlett-Packard Company 527188-021

User Commands (p - r) runv(1)

NAME
runv - Runs a process in the Visual Inspect debugger

SYNOPSIS
runv [-wsaddr={workstation_IP_address }]

[run_command_options]
program_file_path [arguments]

FLAGS
-wsaddr={workstation_IP_address}

Specifies the workstation name or numeric IP address of the client workstation running
Visual Inspect.

DESCRIPTION
The runv utility starts OSS programs in the Visual Inspect symbolic debugger. The runv utility
is implemented as a stand-alone shell script. The runv utility accepts all run utility flags
described in the run(1) reference page, except it silently ignores the -inspect=off, -inspect=on,
and -debug flags. The -debug and -inspect=on flags are not necessary, because these features
are implied by the use of runv. If -inspect=off is specified, it is ignored.

The -wsaddr flag specifies the workstation name or numeric IP address of the client workstation
running the Visual Inspect debugger. This Visual Inspect session must have a connection to the
HP NonStop host that invoked the runv utility. See the Visual Inspect online help for details on
connecting to a host.

The -wsaddr flag overrides the setting of the _TANDEM_VISUALINSPECT_WSADDR
environment variable if both are set. If neither the flag nor the variable is set, runv automatically
detects the IP address and uses it.

Operands
program_file_path

The OSS filename of an executable image. An executable image is any type of OSS
file that has the execute permission bit set for the user, so that the OSS stat() function
identifies the file as an executable image.

If the full OSS pathname is not specified, the directories listed in the environment vari-
able PATH are searched. If the runv utility is invoked without a program_file_path,
the usage string is displayed and runv exits in error.

arguments
An optional list of arguments that are to be passed to the program file. The arguments
should be specified at the time the runv utility is invoked.

Environment Variables
_TANDEM_VISUALINSPECT_WSADDR

Specifies the default workstation name or IP address of the client system running
Visual Inspect if the -wsaddr flag is not specified. This variable must be exported to be
available to runv.

Standard Output
The runv utility prints error text to the standard output file if it encounters an error. The program
file to which runv is applying the tdm_execve() function can also print messages to the standard
output file if both the program file and the shell are sharing the same home terminal.

527188-021 Hewlett-Packard Company 7−65

runv(1) OSS Shell and Utilities Reference Manual

NOTES
On H-series systems, the runv and run -debug commands start the same debugger and are func-
tionally equivalent. However, the run -debug command is faster than the runv command in the
OSS environment on H-series systems.

Unless you want to initiate debugging from one workstation but have the debugging session go to
another workstation, you should use the run -debug command instead of runv. The run -debug
command does not support the -wsaddr flag, so the runv command must be used to route debug-
ging to a different workstation.

EXAMPLES
1. The command line

runv myprog

starts the program myprog under the control of the Visual Inspect session on the current
workstation.

2. The command line

runv -cpu=2 -wsaddr=mypc.mycompany.com myprogram -abc myfile

starts the myprogram executable image under the control of Visual Inspect on the
workstation mypc.mycompany.com and on processor 2. This instance of myprogram
is passed the arguments -abc and myfile.

EXIT VALUES
The following exit values are returned by runv:

0 The file specified in program_file_path was run successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: run(1).

Functions: tdm_execve(2).

STANDARDS CONFORMANCE
The runv utility is an HP extension to the XPG4 Version 2 specification.

7−66 Hewlett-Packard Company 527188-021

Section 8. User Commands (s)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the letter s.

527188-021 Hewlett-Packard Company 8−1

sed(1) OSS Shell and Utilities Reference Manual

NAME
sed - Provides a stream line editor

SYNOPSIS
sed [-n] [-e escript] ... [-f script_file] ... [file ...]

sed [-n] script [file ...]

The sed command modifies lines from the specified file or from standard input according to
edit commands and writes them to standard output.

FLAGS
-e escript

Uses the string escript as an edit script. If you are using just one -e flag and no -f flag,
you can omit the -e flag and include the single escript on the command line as an argu-
ment to sed.

-f script_file
Uses script_file as the source of the edit script. The script_file is a set of editing com-
mands to be applied to file.

-n Suppresses the default action of writing each line to standard output after editing. Only
lines explicitly selected for output are written.

DESCRIPTION
The sed command includes many features for selecting lines to be modified and making changes
only to the selected lines.

The sed command uses two workspaces for holding the line being modified: the pattern space,
where the selected line is held, and the hold space, where lines can be stored temporarily.

An edit script consists of individual subcommands, each one on a separate line. The general
form of sed subcommands is as follows:

[address[,address]] command [argument ...]

The sed command processes each input file by reading an input line into the pattern space,
sequentially applying all sed subcommands in sequence whose addresses select that pattern
space, and writing the pattern space to standard output. It then clears the pattern space and
repeats this process for each line in the input file. Some of the subcommands use a hold space to
save all or part of the pattern space for subsequent retrieval.

When a command includes an address, either a line number or a search pattern, only the
addressed line or lines are affected by the command. Otherwise, the command is applied to all
lines.

The sed Addresses
An address is either a decimal line number, a $, which addresses the last line of input, or a con-
text address. A context address is a regular expression as described for grep, except that you can
select the character delimiter for patterns. The general form of the expression is as follows:

\?pattern\?

The ? represents a character delimiter you select. This delimiter cannot be a multibyte character.

The default form for the pattern is as follows:

/pattern/

• In a context address, the construction \cexpressionc , where c is any character other than
a \ (backslash) or the newline character, is identical to /expression/. If the character
designated by c appears following a \ (backslash), then it is considered to be that literal

8−2 Hewlett-Packard Company 527188-021

User Commands (s) sed(1)

character, which does not terminate the regular expression (RE). For example, in the
context address \xabc\xdefx, the second x stands for itself, so that the RE is abcxdef.

• The sequence \n matches a newline character in the pattern space, except the terminating
new line. A literal newline character must not be used in the regular expression of a con-
text address or in the s (substitute) subcommand.

• A . (dot) matches any character except a terminating newline character. That is, unlike
grep, which cannot match a newline character in the middle of a line, sed can match a
newline character in the pattern space.

Certain commands allow you to specify one line or a range of lines to which the command
applies. These commands are called addressed commands. The following rules apply to
addressed commands:

• A command line with no address selects every line.

• A command line with one address, expressed in context form, selects each line that
matches the address.

• A command line with two addresses separated by a , (comma) or ; (semicolon) selects
the entire range from the first line that matches the first address through the next line that
matches the second. (If the second address is a number less than or equal to the line
number first selected, only one line is selected.) Thereafter, the process is repeated,
looking again for the first address.

SUBCOMMANDS
Backslashes in text are treated like backslashes in the replacement string of an s command and
can be used to protect initial spaces and tabs against the stripping that is done on every script
line.

The text argument accompanying the a\, c\, and i\ commands can continue onto more than one
line, provided all lines but the last end with a \ (backslash) to quote the newline character.

The read_file and write_file arguments must end the command line and must be preceded by
exactly one space. Each write_file is created before processing begins, up to a maximum of 10
files.

The sed command can process up to 99 commands in a file.

In the following list of subcommands, the maximum number of permissible addresses for each
subcommand is indicated in parentheses. The sed script subcommands are as follows:

(2){subcommand ...

} Groups subcommands enclosed in { } (braces). The { (left brace) can be preceded by
spaces and can be followed by spaces or tabs. The list of subcommands must be
separated by newline characters. The subcommands can also be preceded by spaces or
tabs. The terminating } (right brace) must be preceded by a newline character and then
zero or more spaces.

(1) a\

text Places text in the output file before reading the next input line, whether by executing N
or by beginning a new cycle.

(2)b [label]
Branches to the : command bearing the label. If label is empty, it branches to the end
of the script.

527188-021 Hewlett-Packard Company 8−3

sed(1) OSS Shell and Utilities Reference Manual

(2)c\

text Deletes the pattern space. With a 0 or 1 address or at the end of a 2-address range,
places text on the output. Then it starts the next cycle.

(2)d Deletes the pattern space. Then it starts the next cycle.

(2)D Deletes the initial segment of the pattern space through the first newline character.
Then it starts the next cycle.

(2)g Replaces the contents of the pattern space with the contents of the hold space.

(2)G Appends the contents of the hold space to the pattern space, after first appending a
newline character.

(2)h Replaces the contents of the hold space with the contents of the pattern space.

(2)H Appends the contents of the pattern space to the hold space, after first appending a
newline character.

(1)i\

text Writes text to standard output before reading the next line into the pattern space.

(2)l Writes the pattern space to standard output, showing nonprinting characters as 3-digit
octal values. Long lines are folded, with the point of folding indicated by
<Backslash><Return>. The end of each line is marked with a $.

Certain characters are shown as escape sequences as follows:

\\ Backslash

\a Alert

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

(2)n Writes the pattern space to standard output. It replaces the pattern space with the next
line of input.

(2)N Appends the next line of input to the pattern space with an embedded newline charac-
ter. (The current line number changes.) You can use this subcommand to search for
patterns that are split onto two lines.

(2)p Writes the pattern space to standard output.

(2)P Writes the initial segment of the pattern space through the first newline character to
standard output.

(1)q Branches to the end of the script. It does not start a new cycle.

(1)r read_file
Reads the contents of read_file. It places contents on the output before reading the

8−4 Hewlett-Packard Company 527188-021

User Commands (s) sed(1)

next input line. If read_file does not exist, it is treated as an empty file, causing no
error condition.

(2)s/pattern/replacement/flags
Substitutes the replacement string for the first occurrence of the pattern in the pattern
space. Any character that is entered after the s command can substitute for the / (slash)
separator, except \ (backslash) and the newline character. Within the regular expres-
sion and replacement string, the delimiter can appear as a literal if it is preceded by a \
(backslash).

An & (ampersand) appearing in the replacement string is replaced by the string match-
ing the RE. The special meaning of & in this context can be suppressed by preceding
it with a \ (backslash). The characters \n, where n is a digit, are replaced by the text
matched by the corresponding backreference expression.

A line can be split by substituting a newline character into it. You must escape the
newline character in the replacement string by preceding it with a \ backslash. A sub-
stitution is considered to have been performed even if the replacement string is identi-
cal to the string that it replaces.

You can add zero or more of the following flags:

n Substitutes replacement for the nth occurrence of pattern on each addressed
line, rather than for the first occurrence.

g Substitutes replacement for all nonoverlapping instances of pattern on each
addressed line, rather than for just the first one (or for the one specified by n).

p Writes the pattern space to standard output if a replacement was made.

w write_file
Writes the pattern space to write_file if a replacement was made. Appends
the pattern space to write_file. If write_file was not already created by a pre-
vious write by this sed script, sed creates it. Each write_file is created before
processing begins.

(2)t [label]
Branches to :label in the script file if any substitutions were made since the most recent
reading of an input line or execution of a t subcommand. If you do not specify label,
control transfers to the end of the script.

(2)w write_file
Appends the pattern space to write_file.

(2)x Exchanges the contents of the pattern space and the hold space.

(2)y/pattern1/pattern2/
Replaces all occurrences of characters in pattern1 with the corresponding characters
from pattern2. pattern1 and pattern2 must contain the same number of characters. The
delimiter itself can be used as a literal if it is preceded by a \ (backslash) character.

(2)!sed_command
Applies the specified sed subcommand only to lines not selected by this address or
addresses.

(2)!{subcommand ...

} Applies the specified subcommand list only to lines not selected by this address or
addresses. The { (left brace) can be preceded by spaces and can be followed by spaces

527188-021 Hewlett-Packard Company 8−5

sed(1) OSS Shell and Utilities Reference Manual

or tabs. The list of subcommands must be separated by newline characters. The sub-
commands can also be preceded by spaces or tabs. The terminating } (right brace)
must be preceded by a newline character and then zero or more spaces.

(0):label This script entry simply marks a branch point to be referenced by the b and t com-
mands. This label can be any sequence of eight or fewer bytes.

(1)= Writes the current line number to standard output as a line.

(0) Ignores an empty command.

(0)# If a # (number sign) appears as the first character on a line, that entire line is treated as
a comment, with one exception. If the first two characters of a script file are #n, the
default output is suppressed (same as -n).

EXAMPLES
1. To perform a global change, enter:

sed "s/happy/enchanted/g" chap1 >chap1.new

This replaces each occurrence of happy found in the file chap1 with enchanted, and
puts the edited version in a separate file named chap1.new. The g at the end of the s sub-
command tells sed to make as many substitutions as possible on each line. Without the
g, sed replaces only the first happy on a line.

The sed stream editor operates as a filter. It reads text from standard input or from the
files named on the command line (chap1 in this example), modifies this text, and writes it
to standard output. Unlike most editors, it does not replace the original file. This makes
sed a powerful command when used in pipelines.

2. To use sed as a filter in a pipeline (sh only), enter:

pr chap2 | sed "s/Page *[0-9]*$/(&)/" | print

This encloses the page numbers in parentheses before printing chap2. The pr command
puts a heading and page number at the top of each page, then sed puts the page numbers
in parentheses, and the print command prints the edited listing.

The sed pattern /Page *[0-9]*$/ matches page numbers that appear at the end of a line.
The s subcommand changes this to (&), where the & stands for the pattern that was
matched (for example, Page 5).

3. To display selected lines of a file, enter:

sed -n "/food/p" chap3

This displays each line in chap3 that contains the word food. Normally, sed copies
every line to standard output after it is edited. The -n flag stops sed from doing this. You
then use subcommands like p to write specific parts of the text. Without the -n, this
example displays all the lines in chap3, and it shows each line containing food twice.

4. To perform complex editing, enter:

sed -f script.sed chap4 >chap4.new

It is always a good idea to create a sed script file when you want to do anything complex.
You can then test and modify your script before using it. You can also reuse your script
to edit other files. Create the script file with an interactive text editor.

8−6 Hewlett-Packard Company 527188-021

User Commands (s) sed(1)

5. A sample sed script follows:

:join
/\\$/{N
s/\\\n//
b join
}

This sed script joins each line that ends with a \ (backslash) to the line that follows it.
First, the pattern /\\$/ selects a line that ends with a \ for the group of commands enclosed
in { }. The N subcommand then appends the next line, embedding a newline character.
The s/\\\n// deletes the \ (backslash) and embedded newline character. Finally, b join
branches back to the label :join to check for a \ (backslash) at the end of the newly
joined line. Without the branch, sed writes the joined line and reads the next one before
checking for a second \ character.

The N subcommand causes sed to stop immediately if there are no more lines of input
(that is, if N reads the End-of-File character). It does not copy the pattern space to stan-
dard output before stopping. This means that if the last line of the input ends with a \
(backslash) character, then it is not copied to the output.

RELATED INFORMATION
Commands: awk(1), grep(1), vi(1).

527188-021 Hewlett-Packard Company 8−7

set(1) OSS Shell and Utilities Reference Manual

NAME
set - Sets shell options and positional parameters

SYNOPSIS
set [+ | -aCefmnostuvx] [+ | -o option ...] [argument ...]

FLAGS
a All subsequent parameters defined are automatically exported.

b Causes the shell to notify the user asynchronously of background job completions
(same as -o notify). When the shell notifies the user a job has been completed, it can
remove the job’s process ID from the list of those known in the current shell execution
environment.

C Prevents existing files from being overwritten by the shell’s > redirection operator
(same as -o noclobber). The >| redirection operator overrides this noclobber option for
an individual file.

e If a command has a nonzero exit status, is not part of the compound list following a
while, until, or if keyword, is not part of an AND or OR list, and is not a pipeline pre-
ceded by the ! reserved word, it executes the ERR trap, if set, and exits. This mode is
disabled while reading profiles.

f Disables pathname expansion.

m Background jobs run in a separate process group and a line prints upon completion.
The exit status of background jobs is reported in a completion message. On systems
with job control, this flag is turned on automatically for interactive shells.

n Reads commands and checks them for syntax errors, but does not execute them.
Ignored for interactive shells.

o The argument can be one of the following option names:

allexport
Same as a.

errexit Same as e.

bgnice Runs all background jobs at a lower priority. This is the default mode.

emacs Invokes an emacs style inline editor for command entry.

gmacs Invokes a gmacs-style inline editor for command entry.

ignoreeof
The interactive shell does not exit on End-of-File. This setting prevents
accidental exit when <Ctrl-D> is entered. The exit command must be used.

markdirs
All directory names resulting from filename generation have a trailing
/ (slash) appended.

monitor Same as m.

noclobber
Prevents redirection > from truncating existing files. Requires >| to truncate
a file when turned on. (Same as C.)

8−8 Hewlett-Packard Company 527188-021

User Commands (s) set(1)

noexec Same as n.

noglob Same as f.

nolog Prevents the entry of function definitions into the command history.

notify Same as b.

nounset Same as u.

trackall Each time the shell finds a new command when searching a path, it creates
an alias for the command. The value of the alias is the full pathname for the
command.

verbose Same as v.

vi Invokes, in insert mode, a vi-style inline editor until you press Escape (ASCII
033). This changes to move mode. A return sends the line.

viraw Each character is processed as it is entered in vi mode.

xtrace Same as x.

If no option name is supplied, then the current option settings are printed.

s Sorts the positional parameters.

t Exits after reading and executing one command.

u Treats unset parameters as an error when substituting. An interactive shell does not
exit.

v Prints shell input lines to standard error as they are read.

x Prints each command and its arguments to standard error after expanding the command
and before executing it.

- Unsets x and v flags without changing the positional parameters. If other arguments
are present, these arguments are assigned to the positional parameters in order.
(Obsolescent)

-- Does not change any of the flags; useful in setting $1 to a value beginning with -. If no
arguments follow this flag, the positional parameters are unset.

These flags can also be used upon invocation of the shell. The current set of flags can
be found in $-. The remaining arguments are positional parameters and are assigned, in
order, to $1 $2 If no arguments are given, the names and values of all named
parameters are printed on the standard output. If the only argument is +, the names of
all named parameters are printed.

DESCRIPTION
The set command is used to set various shell commands (listed under the o option below) and to
assign positional parameters.

The flags can also be used upon invocation of the shell. The current set of flags can be found in
$-.

Used without any of its options, the set command returns a list of all the variables that exist in
your environment, local or exported.

If the only argument is +, the names of all named parameters are printed.

527188-021 Hewlett-Packard Company 8−9

set(1) OSS Shell and Utilities Reference Manual

The argument argument ... is composed of positional parameters, which are assigned, in order, to
$1 $2

The set command is also used to assign positional parameters.

EXAMPLES
1. Following is an example of the set command and its results.

set a b c

The above command assigns a to $1, b to $2, and c to $3. The following command
verifies the values of a, b, and c.

echo $1:$2:$3

a:b:c

NOTES
• Parameter assignment lists that precede the command remain in effect when the com-

mand completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The set command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1), unset(1).

8−10 Hewlett-Packard Company 527188-021

User Commands (s) setacl(1)

NAME
setacl - Modifies access control lists (ACLs) for files

SYNOPSIS
setacl [-n] -f acl_file file ...
setacl [-n] { -m | -d } acl_entries [{ -m | -d } acl_entries]... file ...
setacl [-n] -s acl_entries file ...

FLAGS
-n Normally, the setacl command recalculates the group class entry to ensure that

permissions specified in the additional ACL entries are actually granted, and the
value specified in the class entry is ignored. If you specify the -n flag, the recal-
culation is not performed, and the value specified in the class entry is used.

-s Sets the ACL for a file. All old ACL entries are removed and replaced with the
newly specified ACL. You must specify exactly one user entry for the owner of
the file, exactly one group entry for the owning group of the file, and exactly one
other entry. If you specify the -n flag, you must specify exactly one class entry
also. You can specify additional user ACL entries and additional group ACL
entries, but these entries must not duplicate user entries with the same user ID or
group entries with the same group ID.

-m Adds or modifies the specified ACL entry.

-d Deletes the specified entry from the ACL of the specified file.

-f Sets the ACL entries for file to the entries specified in acl_file.

You must specifiy one of the flags -s, -m, -d, or -f. If you specify -s or -f, other flags are invalid.
You can combine the -m and -d flags, and you can specify multiple -m and -d flags.

For a detailed description of the use of these flags, see DESCRIPTION.

DESCRIPTION
For each file specified, the setacl command either:

• Replaces the entire ACL.

• Adds, modifies, or deletes the specified ACL entries, including default entries for direc-
tories.

Only a user with a user ID equal to the super ID or file owner, or with a user ID or group
affiliation qualifying for membership in the Safeguard SECURITY-OSS-ADMINISTRATOR
group can use the setacl command to change the file access permissions for a file.

For the -m and -s flags, acl_entries are one or more comma-separated ACL entries selected from
the following list. For the -f flag, acl_file must contain ACL entries, one to a line, selected from
the same list. You can specify default ACL entries for directories only. Brackets denote optional
characters. Items formatted as a variable denote fields for you to enter. For example, u:uid:perm
becomes u:james:rwx. Choices, of which exactly one must be selected, are separated by verti-
cal bars.

u[ser]::operm|perm
u[ser]:uid:operm|perm
g[roup]::operm|perm
g[roup]:gid:operm|perm
c[lass]:operm|perm
o[ther]:operm|perm
d[efault]:u[ser]::operm|perm

527188-021 Hewlett-Packard Company 8−11

setacl(1) OSS Shell and Utilities Reference Manual

d[efault]:u[ser]:uid:operm|perm
d[efault]:g[roup]::operm|perm
d[efault]:g[roup]:gid:operm|perm
d[efault]:c[lass]:operm|perm
d[efault]:o[ther]:operm|perm

For the -d flag, acl_entries are one or more comma-separated ACL entries, without permissions,
selected from the following list. You cannot delete the entries for file owner (user), owning
group (group), class, or other.

u[ser]:uid
g[roup]:gid
d[efault]:u[ser]:
d[efault]:u[ser]:uid
d[efault]:g[roup]:
d[efault]:g[roup]:gid
d[efault]:c[lass]:
d[efault]:o[ther]:

In the preceding lists:

perm A permissions string composed of the characters r (read), w (write), and x (exe-
cute), each of which can appear at most one time, in any order. You can specify
the character - (dash) as a placeholder.

operm The octal representation of the preceding permissions, with 7 representing all
permissions, or rwx, and 0 representing no permissions, or ---.

uid A login name or user ID.

gid A group name or group ID.

The flags have the following meanings:

-n Specifies not to recalculate the group class entry. Normally, setacl recalculates
the group class entry to ensure that permissions granted in the additional ACL
entries are actually granted, and the value specified in the class entry is ignored.
If you specify the -n flag, the recalculation is not performed, and the value
specified in the class entry is used. The setacl command never recalculates the
default:class entry.

-s Replaces the ACL for the specified file with the ACL specified in this command.
All old ACLs are removed. You must specify exactly one user entry for the
owner of the file, one group entry for the owning group of the file, and one other
entry. If you specify the -n flag, you must specify exactly one class entry in
addition to the entries for the owner, owning group, and other. You can specify
additional user and group entries, but these entries cannot contain duplicate
user entries with the same user ID or duplicate group entries with the same
group ID.

If the file is a directory, you can specify default ACL entries. You can specify at
most one default:user entry for the owner of the file, at most one default:group
entry for the owning group of the file, at most one default:class entry for the file
group class, and at most one default:other entry for other users. You can specify
additional default:user entries and additional default:group entries, but these
entries cannot include duplicate default:user entries with the same user ID or
default:group entries with the same group ID.

8−12 Hewlett-Packard Company 527188-021

User Commands (s) setacl(1)

If you specify no permissions for an entry (---), the user ID or group ID specified
in the entry is denied access to the file.

The entries need not be in order. The setacl command sorts them before apply-
ing them to the file.

-m Adds one or more new ACL entries to the file, or changes one or more existing
ACL entries on the file. If an entry already exists for a specified user ID or group
ID, the specified permissions replace the current permissions. If an entry does
not exist for the specified user ID or group ID, an entry is created.

-d Deletes one or more existing ACL entries from the file. You cannot delete entries
for the file owner, the owning group, class, or other. Deleting an entry does not
necessarily have the same effect as removing all permissions from the entry.
Specifically, deleting an entry for a specific user causes the permissions for that
user to be determined by the other entry (or other group entries, if the user is in
those groups).

-f Sets the ACL for the specified file using the ACL entries contained in the file
named acl_file. The constraints for entries in the acl_file are the same as the con-
straints for entries you specify using the -s flag. The character # in acl_file indi-
cates a comment. All characters, starting with the #, until the end of the line, are
ignored. If the acl_file has been created as the output of the getacl command,
any effective permissions, which are written with a preceding #, are also ignored.

Using the setacl command can result in changes to the file permission bits. When you change
the user ACL entry for the file owner, the file owner permission bits are modified. When you
change the other ACL entry, the file other permission bits are modified. When you set or
modify additional user ACL entries, any group ACL entries, or both, the class permission bits are
modified to reflect the maximum permissions allowed by the additional user entries and all the
group entries.

If an ACL contains no additional user or additional group entries, the permissions in the group
entry for the object-owning group and the class entry must be the same. Therefore, if specifying
the -d flag results in no additional user entries and no additional group entries, the class entry
permissions are set to the permissions of the owning-group entry, whether or not the -n flag is
specified.

A directory can contain default ACL entries. If a file is created in a directory that contains
default ACL entries, the file inherits those default ACL entries as described in the acl(5) refer-
ence page.

If an ACL contains no additional default:user or additional default:group entries, and you
specify a default:group entry for the owning group, you must also specify a default:class entry
that has the same permissions as the default:group entry.

EXAMPLES
To add one ACL entry to file filea, giving user archer read permission only, use this command:

setacl -m user:archer:r-- filea

If an entry for user archer already exists, this command sets the permissions in that entry to r--.

To replace the entire ACL for file filea and add entries:

• Allowing read/write access for users archer and fletcher

• For the file owner allowing all access

527188-021 Hewlett-Packard Company 8−13

setacl(1) OSS Shell and Utilities Reference Manual

• For the file group allowing read access only

• For others disallowing all access

use this command:

setacl -s user::rwx,user:archer:rw-,user:fletcher:rw-,group::r--,other:--- filea

After this command is executed, the file permission bits are set to -rwxrw----. Although the file-
owning group has read permission only, the maximum permissions available to all additional
user ACL entries and all group ACL entries are read and write, because the two additional user
entries both specify these permissions.

To set an ACL for filea using a file, sample.acl, that contains ACL entries, enter this command:

setacl -f sample.acl filea

Edit the file sample.acl to contain:

user::rwx
user:archer:rw-
user:fletcher:rw-
class:rw-
group::r--
other:---

RELATED INFORMATION
Commands: getacl(1).

Functions: acl(2), aclsort(3), creat(2), creat64(2), getgrid(3), getpwuid(3), mkdir(2), open(2),
open64(2).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
This command is an HP extension to the XPG4 Version 2 specification.

8−14 Hewlett-Packard Company 527188-021

User Commands (s) setfilepriv(1)

NAME
setfilepriv - Sets file privileges for one or more executable files

SYNOPSIS
setfilepriv {-a|-d} privilege_value [{-a|-d} privilege_value]... file ...
setfilepriv -f privilege_file file ...
setfilepriv -s privilege_value[,privilege_value]... file ...

FLAGS
-a Adds the specified privilege_value to the file privileges of file.

-d Deletes the specified privilege_value from the file privileges of file.

-f Sets the privileges for the specified file using the privileges entries contained in
the file privilege_file.

-s Sets the file privileges of file to privilege_value, replacing all existing file
privileges. Multiple privilege values can be separated by commas. Spaces
between values or after commas are not permitted.

Operands
file The pathname of a file for which you want to set privileges.

See DESCRIPTION for information about the requirements for these flags.

DESCRIPTION
The setfilepriv command sets file privileges for the specified file or files. A file specified by file
can be either a Guardian disk file or an OSS regular file, but file privileges are ignored for files
that are not executable files, ordinary DLLs, or user libraries.

The values for privilege_value are:

PRIVNONE If a file has the PRIVNONE file privilege only, the file has no special privileges.
When used with the -s flag:

• If PRIVNONE is used alone, the file privileges are reset and the file has
no special privileges.

• If PRIVNONE is used with another file privilege, such as PRIVSETID,
the PRIVNONE privilege value has no effect and the file privileges are
set to the other file privilge value or values you used.

When used with a flag other than the -s flag, the PRIVNONE privilege value has
no effect.

PRIVSETID If the super ID (255,255 in the Guardian environment, 65535 in the OSS environ-
ment) runs an executable file that has this file privilege, the resultant process is
permitted to perform a privileged switch (such as by using the setuid() function)
to another user ID, group ID, or both to access files in a restricted-access fileset.

PRIVSOARFOPEN
If a locally-authenticated member of the Safeguard
SECURITY_OSS_ADMINISTRATOR (SOA) group runs an executable file that
has this file privilege, the resultant process is permitted to perform additional
system calls needed to back up and restore files in a restricted-access fileset.
These system calls include open(), open64(), creat(), creat64(), link(),
remove_oss(), unlink(), rmdir(), and utime(),

527188-021 Hewlett-Packard Company 8−15

setfilepriv(1) OSS Shell and Utilities Reference Manual

The -a flag adds the privilege specified by privilege_value to the file privileges of the file file.
Using PRIVNONE with this flag has no effect.

The -d flag deletes the privilege option specified by privilege_value from the file privileges of the
file file. Using PRIVNONE with this flag has no effect.

The -s flag sets the file privileges for the file to the specified value or values, replacing all exist-
ing file privileges. Multiple privilege values can be separated by commas. Spaces between
values or after commas are not permitted. See also the description of the PRIVNONE file
privilege.

The file privilege_file, used with the -f flag, must contain one or more of the values listed for
privilege_value, one on each line. The character # in a privilege_file indicates a comment. All
characters, starting with the # through the end of the line, are ignored. You can use the output of
the getfilepriv command to create this file.

Use on Guardian Objects
Specify Guardian files with the /G pathname convention.

EXAMPLES
1. To set PRIVSOARFOPEN privileges for the file /G/SYSTEM/SYSTEM/PRIVOBJ,

enter:

setfilepriv -s PRIVSOARFOPEN /G/SYSTEM/SYSTEM/PRIVOBJ

2. To add the PRIVSETID privilege to the file /G/SYSTEM/SYSTEM/PRIVOBJ, enter:

setfilepriv -a PRIVSETID /G/SYSTEM/SYSTEM/PRIVOBJ

3. To remove the file privileges for the file /G/SYSTEM/SYSTEM/PRIVOBJ, enter:

setfilepriv -s PRIVNONE /G/SYSTEM/SYSTEM/PRIVOBJ

4. To set both the PRIVSOARFOPEN and the PRIVSETID privileges file privileges for the
file /G/SYSTEM/SYSTEM/MYPRVOB, enter:

setfilepriv -s PRIVSOARFOPEN,PRIVSETID /G/SYSTEM/SYSTEM/MYPRVOBJ

5. To add the PRIVSETID privilege to all files in the XYZ directory, enter:

setfilepriv -a PRIVSETID /G/system/xyz/*

6. To delete the PRIVSOARFOPEN privilege from the file
/G/SYSTEM/SYSTEM/MYPRVOB, enter:

setfilepriv -d PRIVSOARFOPEN /G/SYSTEM/SYSTEM/MYPRVOBJ

7. To add the PRIVSETID file privilege and delete PRIVSOARFOPEN file file privilege
from the file /G/SYSTEM/SYSTEM/PRIVOBJ, enter:

setfilepriv -a PRIVSETID -d PRIVSOARFOPEN /G/SYSTEM/SYSTEM/PRIVOBJ

8. To set the privileges for file exe2 to the same privileges that are set for the file exe1,
create a file from the output of the getfilepriv command for exe1 and use it with the -f
flag of the setfilepriv command:

getfilepriv exe1>my_privilege_file
setfilepriv -f my_privilege_file exe2

8−16 Hewlett-Packard Company 527188-021

User Commands (s) setfilepriv(1)

NOTES
This command is supported on systems running J06.11 or later J-series RVUs or H06.22 or later
H-series RVUs only

Only Members of Safeguard SECURITY-PRV-ADMINISTRATOR (SEC-PRIV-ADMIN or
SPA) group are permitted to explicitly set or reset file privileges. For example, only members of
the Safeguard SECURITY_OSS_ADMINISTRATOR (SOA) group can use the initfilepriv com-
mand to set the file privileges needed by the Backup and Restore 2 product to access files in a
restricted-access fileset.

File privileges are removed from a file if the file is modified. Any change to the file privileges of
a file is audited. File privileges are inherited by child processes created using the fork() func-
tion.

If the main executable of a process has a file privilege, then all user libraries and ordinary DLLs
loaded into the process must also have that file privilege. Public DLLs and implicit DLLs do not
need file privileges to be loaded into a process.

NFS client processes are not allowed to write to a file that has file privileges.

RELATED INFORMATION
Commands: getfilepriv(1), initfilepriv(1).

Functions: setfilepriv(2), stat(2).

STANDARDS CONFORMANCE
This command is an HP extension.

527188-021 Hewlett-Packard Company 8−17

set_define(1) OSS Shell and Utilities Reference Manual

NAME
set_define - Sets values for DEFINE attributes in the working attribute set

SYNOPSIS
set_define -like=define-name {attribute-specs}...

FLAGS
-like=define-name

Specifies a DEFINE name. The name can be from 2 to 24 characters long. The first
character must be an equal sign (=), and the second character must be a letter.

DESCRIPTION
The set_define command is specific to HP and an OSS shell built-in command. It sets values for
the specified DEFINE attributes. The set_define command is similiar to the TACL SET DEFINE
command. It accepts Guardian attributes. As a result, input must follow Guardian conventions.

attribute-specs
Specifies the names of one or more valid DEFINE attributes and the values they are to
have. If the -like flag is specified, a DEFINE is created with the attributes and values of
the specified define_name and modified by the clauses specified by attribute-specs. If
the -like flag is not specified, a DEFINE is created with the attributes and values of the
working attribute set and modified by the specified attribute-specs. attribute-specs is
defined as:

class={catalog | defaults | map | search
| sort | spool | subsort | tape}
{class_attributes}...

Class Attributes
Certain characters are special in the OSS environment and must be preceded by the escape char-
acter or they will not be accepted by the set_define command. For a detailed description of the
valid class attributes, refer to the SET DEFINE command in the TACL Reference Manual.

For class=catalog (a CATALOG DEFINE), you must use the escape character in class-attributes
as follows:

subvol=\$a123

For class=defaults (a DEFAULTS DEFINE), you must use the escape character in class-
attributes as follows:

volume=\$oss.joe
swap=\$null
catalog=\$system.catalog

For class=map (a MAP DEFINE), you must use the escape character in class-attributes as fol-
lows:

file=\$volume.subvolume.file

For class=search (a SEARCH DEFINE), you must use the escape character in class-attributes as
follows:

subvol0=\(a,b,c,d\)
relsubvolO=\\foxii.\$coral.i
subvol2=\(\$data.y2,y22\)

For class=sort (a SORT DEFINE), you must use the escape character in class-attributes as fol-
lows:

8−18 Hewlett-Packard Company 527188-021

User Commands (s) set_define(1)

scratch=\\foxii.\$osf.joe.scratch
swap=\\foxii.\$osf.joe.swap
program=\\foxii.\$osf.joe.suprsort
cpus=\(1,2\)
notcpus=\(0,3\)
subsorts=\(=subsort1,=subsort2\)

For class=spool (a SPOOL DEFINE), you must use the escape character in class-attributes as
follows:

loc=\\kt22.\$s.#a

For class=subsort (a SUBSORT DEFINE), you must use the escape character in class-attributes
as follows:

scratch=\\foxii.\$osf.joe.scratch
swap=\\foxii.\$osf.joe.swap
program=\\foxii.\$osf.joe.suprsort

For class=tape (a TAPE DEFINE), you must use the escape character in class-attributes as fol-
lows:

device=\$device
swap=\(v1,v2\)
program=\\foxii

EXAMPLES
1. The following command establishes a working attribute set that describes a tape file

residing on three ANSI-standard tape volumes (1, 2, and 3). This file is to be read (USE
IN), and the system is to do standard label processing.

set_define class=tape labels=
ansi volume=\(1,2,3\) reels=3 use=in

2. The following command establishes a working attribute set that contains the attributes
common to two DEFINEs that are to be created. Each is a CLASS TAPE DEFINE that
describes a tape file residing on volume 30 of an IBM standard labeled tape mounted on
tape drive $TAPE2. The two add_define commands create the DEFINEs and set the
attributes that are unique to each DEFINE, which in this case are the file names
MAYRCDS and JUNRCDS.

set_define class=tape labelsˆH=ibm fileid=
\$TAPE device=\$TAPE2 volume=30
add_define=ONE fileid=MAYRCDS
add_define=TWO fileid=JUNRCDS

EXIT VALUES
The following exit values are returned:

0 DEFINEs were set successfully.

>0 An error occurred.

527188-021 Hewlett-Packard Company 8−19

set_define(1) OSS Shell and Utilities Reference Manual

NOTES
The set_define command is a shell built-in command. It differs from the regular commands in
that it does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: add_define(1), del_define(1), info_define(1), reset_define(1), show_define(1).

STANDARDS CONFORMANCE
The set_define command is an HP extension to the XPG4 Version 2 specification.

8−20 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

NAME
sh - Describes the OSS shell

SYNOPSIS
sh [-i] [-c command_string | -s] [+ | -abCefmnosuvx] [+ | -o][option ...] | [argument ...] |
[file] [argument ...]

The OSS shell is an interactive command interpreter and a command programming language.
The OSS shell is based on the UNIX Korn shell.

FLAGS
-c command_string

Causes sh to read commands from command_string.

-i Causes sh to run as an interactive shell. The SIGTERM signal is thus ignored, and the
SIGINT signal is caught, causing the current command to be terminated and a new
prompt to be output.

-r Causes sh to run as a restricted shell.

-s Causes sh to read commands from standard input. If you do not specify the -c flag or
do not specify any arguments to sh other than flags, sh automatically invokes the -s
flag. The -c flag overrides the -s flag, however.

The rest of the flags that can be used with sh are described under the set subcommand, in the sub-
section Special sh Commands.

DESCRIPTION
ksh is an alias for sh.

The OSS shell carries out commands either interactively from a terminal keyboard or from a file.

Some important features of the OSS shell are as follows:

• Command aliasing

• Filename substitution

• Tilde substitution

• Command substitution

• Parameter substitution

• Job control

• Inline editing

A file from which the shell carries out commands is usually called a shell script, a shell pro-
cedure, or a command file.

A simple command is a sequence of words separated by spaces or tabs. A word is a sequence of
characters that contains no unquoted spaces or tabs. The first word in the sequence (numbered as
0) usually specifies the name of a command. Any remaining words, with a few exceptions, are
passed to that command. A space refers to both spaces and tabs.

The value of a simple command is its exit value if it ends normally or (octal) 200 added to the
signal number if it terminates due to a signal. For a list of status values, see the signal() system
call.

A pipeline is a sequence of one or more commands separated by a | (vertical bar). In a pipeline,
the standard output of each command becomes the standard input of the next command. Each

527188-021 Hewlett-Packard Company 8−21

sh(1) OSS Shell and Utilities Reference Manual

command runs as a separate process, and the shell waits for the last command to end. A filter is a
command that reads its standard input, transforms it in some way, then writes it to its standard
output. A pipeline normally consists of a series of filters. Although the processes in a pipeline
(except the first process) can execute in parallel, they are synchronized to the extent that each
program needs to read the output of its predecessor.

The exit value of a pipeline is the exit value of the last command.

A list is a sequence of one or more pipelines separated by ; (semicolon), & (ampersand), &&
(two ampersands), or || (two vertical bars) and optionally ended by a ; (semicolon), an & (amper-
sand), a |& (coprocess), or a newline. These separators and terminators have the following
effects:

; Causes sequential execution of the preceding pipeline; the shell waits for the pipeline
to finish.

& Causes asynchronous execution of the preceding pipeline; the shell does not wait for
the pipeline to finish.

&& Causes the list following it to be executed only if the preceding pipeline returns a 0
(zero) exit value.

|| Causes the list following it to be executed only if the preceding pipeline returns a
nonzero exit value.

The cd command is an exception; if it returns a nonzero exit value, no subsequent com-
mands in a list are executed, regardless of the separator characters.

The ; and & separators have equal precedence, as do && and ||. The single-character separators
have lower precedence than the double-character separators. An unquoted newline character fol-
lowing a pipeline functions the same as a ; (semicolon).

Access Control Lists (ACLs)
If the shell creates a file, for example when you redirect stdout or stderr to a file, and the parent
directory for that file has an ACL that contains default ACL entries, the file inherits ACL entries
from the parent directory as described in the acl(5) reference page.

Comments
The shell treats as a comment any word that begins with a # character and ignores that word and
all characters following up to the next newline character.

Shell Flow Control Statements
Unless otherwise stated, the value returned by a command is that of the last simple command
executed in the command.

for identifier [in word...] ;do list ;done
Each time a for command is executed, identifier is set to the next word taken from the
in word list. If in word ... is omitted, the for command executes the do list once for
each positional parameter that is set. (See Parameter Substitution.) Execution ends
when there are no more words in the list.

select identifier [in word...] ;do list ;done
Prints on standard error (file descriptor 2) the set of words, each word preceded by a
number. If in word... is omitted, then the positional parameters are used instead. (See
Parameter Substitution.) The PS3 prompt is printed and a line is read from the stan-
dard input. If this line consists of the number of one of the listed words, then the value
of the parameter identifier is set to the word corresponding to this number. If this line
is empty, the selection list is printed again. If neither of these cases is true, the value of
the parameter identifier is set to null. The contents of the line read from standard input

8−22 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

is saved in the REPLY parameter. The list is executed for each selection until a break
or end-of-file character is encountered.

case word in [[(]
pattern [| pattern] ...) list ;;] ... esac" Executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that used for filename gen-
eration. (See Filename Generation.)

if list ;then list [elif list ;then list] ... [;else list] ;fi
Executes the list following if and, if it returns a 0 (zero) exit status, executes the list
following the first then. Otherwise, the list following elif is executed and, if its value is
0 (zero), the list following the next then is executed. Failing that, the else list is exe-
cuted. If no else list or then list is executed, then the if command returns a 0 (zero) exit
status.

while list ;do list ;done

until list ;do list ;done
Executes the while list repeatedly, and if the exit status of the last command in the list
is 0 (zero), executes the do list; otherwise the loop terminates. If no commands in the
do list are executed, then the while command returns a 0 (zero) exit status; until can be
used in place of while to negate the loop termination test.

(list) Executes list in a separate environment. Note that if two adjacent open parentheses are
needed for nesting, a space must be inserted to avoid arithmetic evaluation.

{list;} Executes list. Note that unlike the metacharacters (and), { and } are reserved words
and must be at the beginning of a line or after a ; (semicolon) in order to be recognized.

[[expression]]
Evaluates expression and returns a 0 (zero) exit status when expression is TRUE. See
Conditional Expressions for a description of expression.

function identifier {list;}

identifier () {list;}
Defines a function that is referenced by identifier. The body of the function is the list
of commands between { and }. (See Functions.)

time pipeline
Executes pipeline and prints the elapsed time as well as the user and system time on
standard error.

The following reserved words are recognized only when they appear, without single or double
quotation marks, as the first word of a command:

case
do
done
elif
else
esac
fi
for
function
if
select
then

527188-021 Hewlett-Packard Company 8−23

sh(1) OSS Shell and Utilities Reference Manual

time
until
while
{ }
[[]]

Command Aliasing
The first word of each command is replaced by the text of an alias (if an alias for this word was
defined). The first character of an alias name can be any nonspecial printable character, but the
rest of the characters must be the same as for a valid identifier. The replacement string can con-
tain any valid shell script, including the metacharacters previously listed. The first word of each
command in the replaced text, other than any that are in the process of being replaced, will be
tested for aliases. If the last character of the alias value is a space, the word following the alias
will also be checked for alias substitution.

Aliases can be used to redefine special built-in commands but cannot be used to redefine the
reserved words previously listed. Aliases can be created, listed, and exported with the alias com-
mand and can be removed with the unalias command. Exported aliases remain in effect for
scripts invoked by name, but must be reinitialized for separate invocations of the shell. (See
Invocation.)

Aliasing is performed when scripts are read, not while they are executed. Therefore, for an alias
to take effect, the alias definition command has to be executed before the command that refer-
ences the alias is read.

Aliases are frequently used as shorthand for full pathnames. An option to the aliasing facility
allows the value of the alias to be automatically set to the full pathname of the corresponding
command. These aliases are called tracked aliases.

The value of a tracked alias is defined the first time the corresponding command is looked up and
becomes undefined each time the PATH environment variable is reset. These aliases remain
tracked so that the next subsequent reference will redefine the value. Several tracked aliases are
compiled into the shell. The -h flag of the set command makes each referenced command name
into a tracked alias.

The following exported aliases are compiled into the shell, but can be unset or redefined:

autoload=’typeset -fu’
command=’command ’
functions=’typeset -f’
hash=’alias -t -’
history=’fc -l’
integer=’typeset -i’
local=typeset
nohup=’nohup ’
r=’fc -e -’
stop=’kill -STOP’
suspend=’kill -STOP $$’
type=’whence -v’

Tilde Substitution
After alias substitution is performed, each word is checked to see if it begins with an unquoted ˜
(tilde). If it does, then the word up to a / (slash) is checked to see if it matches a username in the
/etc/passwd file. If a match is found, the tilde and the matched name are replaced by the login
directory of the matched user. This is called a tilde substitution. If no match is found, the

8−24 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

original text is left unchanged. A tilde by itself, or in front of a /, is replaced by the value of the
HOME parameter. A tilde followed by a + (plus sign) or - (dash) is replaced by $PWD and
$OLDPWD, respectively.

In addition, tilde substitution is attempted when the value of a variable assignment parameter
begins with a tilde.

Command Substitution
The standard output from a command enclosed in parentheses preceded by a dollar sign $() or a
pair of ‘‘ (grave accents) can be used as part or all of a word; trailing newlines are removed. In
the second (archaic) form, the string between the grave accents is processed for special quoting
characters before the command is executed. (See Quoting.) The command substitution $(cat
file) can be replaced by the equivalent but faster $(<file). Command substitution of most special
commands that do not perform input/output redirection are carried out without creating a
separate process. An arithmetic expression enclosed in double parentheses preceded by a dollar
sign ($(())) is replaced by the value of the arithmetic expression within the double parentheses.

Parameter Substitution
A parameter is an identifier, one or more digits, or any of the characters *, @@@@, #, ?, -, $,
and !. A named parameter (a parameter denoted by an identifier) has a value and 0 (zero) or
more attributes. Named parameters can be assigned values and attributes by using the typeset
special command. The attributes supported by the shell are described later with the typeset spe-
cial command. Exported parameters pass values and attributes to the environment.

The shell supports a 1-dimensional array facility. An element of an array parameter is referenced
by a subscript. A subscript is denoted by an arithmetic expression enclosed with [] (brackets).
To assign values to an array, use values of subscripts in the range of 0 to 1023. Arrays need not
be declared. Any reference to a named parameter with a valid subscript is legal and an array will
be created if necessary. Referencing an array without a subscript is equivalent to referencing the
element 0 (zero).

The value of a named parameter can be assigned by the following:

name=value [name=value]

If the integer attribute, -i, is set for name, the value is subject to arithmetic evaluation. Positional
parameters, which are denoted by a number, can be assigned values with the set special com-
mand. Parameter $0 is set from argument 0 (zero) when the shell is invoked. The $ (dollar sign)
character is used to introduce substitutable parameters.

${parameter}
Reads all the characters from the ${ (dollar sign left brace) to the matching } (right
brace) as part of the same word even if it contains braces or metacharacters. The value,
if any, of the parameter is substituted. The braces are required when parameter is fol-
lowed by a letter, digit, or underscore that is not to be interpreted as part of its name or
when a named parameter is subscripted. If parameter is one or more digits, it is a posi-
tional parameter. A positional parameter of more than one digit must be enclosed in
braces. If parameter is * (asterisk) or @@@@ (at sign), all the positional parameters,
starting with $1, are substituted (separated by a field separator character). If an array
identifier with subscript * or @@@@ is used, the value for each of the elements is
substituted (separated by a field separator character).

${#parameter}
Substitutes the number of positional parameters if parameter is * or @@@@; other-
wise, the length of the value of the parameter is substituted.

527188-021 Hewlett-Packard Company 8−25

sh(1) OSS Shell and Utilities Reference Manual

${#identifier[*]}
Substitutes the number of elements in the array identifier.

${parameter:-word}
Substitutes the value of parameter if it is set and non-null; otherwise, substitutes word.

${parameter:=word}
Sets parameter to word if it is not set or is null; the value of the parameter is then sub-
stituted. Positional parameters cannot be assigned values in this way.

${parameter:?word}
Substitutes the value of parameter if it is set and is non-null; otherwise, print word and
exit from the shell. If word is omitted, a standard message is printed.

${parameter:+word}
Substitutes word if parameter is set and is non-null; otherwise, substitutes nothing.

${parameter#pattern} | ${parameter##pattern}
Causes the value of this substitution to be the value of parameter with the matched
portion deleted if the shell pattern matches the beginning of the value of parameter;
otherwise the value of parameter is substituted. In the first form, the smallest matching
pattern is deleted and in the second form, the largest matching pattern is deleted.

${parameter%pattern} | ${parameter%%pattern}
Causes the value of this substitution to be the value of parameter with the matched part
deleted if the shell pattern matches the end of the value of parameter; otherwise, sub-
stitute the value of parameter. In the first form, the smallest matching pattern is
deleted and in the second form, the largest matching pattern is deleted.

If the : (colon) is omitted from the previous expressions, then the shell checks only whether
parameter is set or not.

In the previous expressions, word is not evaluated unless it is to be used as the substituted string,
so that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:-$(pwd)}

The following parameters are automatically set by the shell:

(hash mark)
The number of positional parameters in decimal.

- (dash)
Flags supplied to the shell on invocation or by the set command.

? (question mark)
The decimal value returned by the last executed command.

$ (dollar sign)
The process number of this shell.

_ (underscore)
Initially, an absolute pathname of the shell or script being executed as passed in the
environment. Subsequently, the value is assigned the last argument of the previous com-
mand. This parameter is not set for commands that are asynchronous.

8−26 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

! (exclamation point)
The process number of the last background command invoked.

ERRNO The value of errno as set by the most recently failed system call. This value is system
dependent and is intended for debugging purposes.

LINENO
The line number of the current line within the script or function being executed.

OLDPWD
The previous working directory set by the cd command.

OPTARG
The value of the last option argument processed by the getopts special command.

OPTIND
The index of the last option argument processed by the getopts special command.

PPID The process number of the parent of the shell.

PWD The present working directory set by the cd command.

RANDOM
Each time this parameter is referenced, a random integer, uniformly distributed
between 0 and 32767, is generated. The sequence of random numbers can be initial-
ized by assigning a numeric value to RANDOM.

REPLY This parameter is set by the select statement and by the read special command when
no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since shell invocation is
returned. If this parameter is assigned a value, then the value returned upon reference
will be the value that was assigned plus the number of seconds since the assignment.

The following parameters are used by the shell:

CDPATH
The search path for the cd command.

COLUMNS
If this variable is set, the value is used to define the width of the edit window for the
shell edit modes and for printing select lists.

EDITOR
If the value of this variable ends in vi and the VISUAL variable is not set, then the
corresponding option (see set under Special sh Commands) will be turned on.

ENV If this parameter is set, then parameter substitution is performed on the value to gen-
erate the pathname of the script that will be executed when the shell is invoked. (See
Invocation.) This file is typically used for alias and function definitions.

FCEDIT
The default editor name for the fc command.

527188-021 Hewlett-Packard Company 8−27

sh(1) OSS Shell and Utilities Reference Manual

FPATH The search path for function definitions. This path is searched when a function with
the -u attribute is referenced and when a command is not found. If an executable file is
found, then it is read and executed in the current environment.

IFS Internal field separators, normally spaces, tabs, and newlines that are used to separate
command words which result from command or parameter substitution and for separat-
ing words with the read special command. The first character of the IFS parameter is
used to separate arguments for the $* substitution. (See Quoting.)

HISTFILE
If this parameter is set when the shell is invoked, then the value is the pathname of the
file that will be used to store the command history. (See Command Reentry.)

HISTSIZE
If this parameter is set when the shell is invoked, the number of previously entered
commands that are accessible by this shell will be greater than or equal to this number.
The default is 128.

HOME The default argument (home directory) for the cd command.

LANG Specifies the locale of your system, which is comprised of three parts: language, terri-
tory, and code set. The default locale is the C locale, which specifies the value English
for language, U.S. for territory, and ASCII for code set.

LC_ALL
Specifies the behavior for all aspects of the locale.

LC_COLLATE
Specifies the collating sequence to use when sorting names and when character ranges
occur in patterns. The default value is the collating sequence for American English. If
absent, the collating sequence can be taken from the LANG parameter. If both
LC_COLLATE and LANG are absent, the ANSI C collating sequence is used.

LC_CTYPE
Specifies the character classification information to use on your system. The default
value is American English.

LC_MESSAGES
Specifies the language in which system messages appear and the language that the sys-
tem accepts for user input of yes and no strings. The default is American English.

LC_MONETARY
Specifies the monetary format for your system. The default value is the monetary for-
mat for American English.

LC_NUMERIC
Specifies the numeric format for your system. The default value is the numeric format
for American English.

LC_TIME
Specifies the date and time format for your system. The default value is the date and
time format for American English.

LINES If this variable is set, the value is used to determine the column length for printing
select lists. Select lists will print vertically until about two-thirds of LINES lines are
filled.

8−28 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

LOCPATH
Specifies a series of colon-separated search rules that describe where to look for
locales. These rules override the default search path of /usr/lib/nls/loc.

NLSPATH
Specifies a list of directories to search to find message catalogs.

PATH The search path for commands. (See Execution.) You cannot change PATH if execut-
ing under rsh, except in .profile.

PS1 The value of this parameter is expanded for parameter substitution to define the pri-
mary prompt string which by default is the $ (dollar sign). The ! (exclamation point) in
the primary prompt string is replaced by the command number. (See Command Reen-
try.)

PS2 Secondary prompt string, by default > (right angle bracket).

PS3 Selection prompt string used within a select loop, by default #? (number sign, question
mark).

PS4 The value of this parameter is expanded for parameter substitution and precedes each
line of an execution trace. If omitted, the execution trace prompt is + (plus sign).

SHELL The pathname of the shell is kept in the environment.

TMOUT
If set to a value greater than 0 (zero), the shell terminates if a command is not entered
within the prescribed number of seconds after issuing the PS1 prompt. (Note that the
shell can be compiled with a maximum bound for this value that cannot be exceeded.)

TZ Current value for the time zone, if any.

VISUAL
If the value of this variable ends in vi, the corresponding option (see the set command
in Special sh Commands) will be turned on.

The shell gives default values to PATH, PS1, PS2, TMOUT, and IFS, while HOME, SHELL,
and ENV are not set by the shell.

Interpretation of Spaces
After parameter and command substitution, the results of substitutions are scanned for the field
separator characters (those found in IFS), and split into distinct arguments where such characters
are found. Explicit null arguments (‘‘ or ’’) are retained. Implicit null arguments (those resulting
from parameters that have no values) are removed.

Filename Generation
Following substitution, each command word is scanned for the characters * (asterisk), ? (ques-
tion mark), and [] (brackets), unless the -f option was set. If one of these characters appears, the
word is regarded as a pattern. The word is replaced with lexicographically sorted filenames that
match the pattern. If no filename is found that matches the pattern, the word is left unchanged.
When a pattern is used for filename generation, the . (dot) character at the start of a filename or
immediately following a / (slash), as well as the / character itself, must be matched explicitly. In
other instances of pattern matching, the / and . are not treated specially.

* Matches any string, including the null string.

527188-021 Hewlett-Packard Company 8−29

sh(1) OSS Shell and Utilities Reference Manual

? Matches any single character.

[...] Matches any one of the enclosed characters. In an expression such as [a-z], the -
(dash) means "through" according to the current collating sequence. The collating
sequence is determined by the value of the LC_COLLATE environment variable. If
the first character following the [(left bracket) is a ! (exclamation point), then any
character not enclosed is matched. A - can be included in the character set by putting it
as the first or last character.

A pattern_list is a list of one or more patterns separated from each other with a | (vertical bar).
Composite patterns can be formed with one or more of the following:

?(pattern_list)
Optionally matches any one of the given patterns.

*(pattern_list)
Matches zero or more occurrences of the given patterns.

+(pattern_list)
Matches one or more occurrences of the given patterns.

@@@@(pattern_list)
Matches exactly one of the given patterns.

!(pattern_list)
Matches anything, except one of the given patterns.

Character Classes
You can use the following notation to match filenames within a range indication:

[:charclass:]

This format instructs the system to match any single character belonging to charclass; the
defined classes correspond to ctype() subroutines as follows:

alnum
alpha
blank
cntrl
digit
graph
lower
print
punct
space
upper
xdigit

Your locale might define additional character properties, such as the following:

[:vowel:]

The preceding character class could be TRUE for a, e, i, o, u, or y. You could then use [:vowel]
inside a set construction to match any vowel. Refer to The LC_CTYPE Category section of the
locale file format reference page for more information.

8−30 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

Quoting
The following characters have a special meaning to the shell and cause termination of a word
unless quoted:

; & () | ˆ < > <newline> <space> <tab>

Each of the metacharacters previously listed has a special meaning to the shell and causes termi-
nation of a word unless quoted. A character can be quoted (that is, made to stand for itself) by
preceding it with a \ (backslash). The pair \newline is ignored. All characters enclosed between
a pair of ‘’ (single quotes) are quoted. A single quote cannot appear within single quotes.

Inside "" (double quotes) parameter and command substitution occurs and \ quotes the charac-
ters \, ‘, ’, and $. The meaning of $* and $@@@@ is identical when not quoted or when used as
a parameter assignment value or as a filename. However, when used as a command argument,
’$*’ is equivalent to ’$1d$2d. . .’, where d is the first character of the IFS parameter, whereas
’$@@@@’ is equivalent to ’$1’ ’$2’ . . . Inside ‘‘ (grave accents) \ (backslash) quotes the char-
acters \, ‘, and $. If the grave accents occur within double quotes, then \ also quotes the ’ (single
quote) character.

The special meaning of reserved words or aliases can be removed by quoting any character of the
reserved word. The recognition of function names or special command names listed later cannot
be altered by quoting them.

Arithmetic Evaluation
An ability to perform integer arithmetic is provided with the let special command. Evaluations
are performed using long arithmetic. Constants are of the form [base#]n, where base is a decimal
number between 2 and 36 representing the arithmetic base and n is a number in that base. If base
is omitted, then base 10 is used.

An arithmetic expression uses the same syntax, precedence, and associativity of expression of
the C language. All the integral operators, other than ++, --, ?:, and , are supported. Named
parameters can be referenced by name within an arithmetic expression without using the parame-
ter substitution syntax. When a named parameter is referenced, its value is evaluated as an arith-
metic expression.

An internal integer representation of a named parameter can be specified with the -i option of the
typeset special command. Arithmetic evaluation is performed on the value of each assignment
to a named parameter with the -i attribute. If you do not specify an arithmetic base, the first
assignment to the parameter determines the arithmetic base. This base is used when parameter
substitution occurs.

Because many of the arithmetic operators require quoting, an alternative form of the let com-
mand is provided. For any command that begins with a ((, all the characters until a matching))
are treated as a quoted expression. More precisely, ((...)) is equivalent to let "...".

Note that ((...)) is a command with a return value, whereas $((...)) is the way to put the string
representation of the value of an arithmetic expression into the command line (that is, it is like a
$ variable).

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a command. If
at any time a newline character is typed and further input is needed to complete a command, then
the secondary prompt (that is, the value of PS2) is issued.

Conditional Expressions
A conditional expression is used with the [[compound command to test attributes of files and to
compare strings. Word splitting and filename generation are not performed on the words
between [[and]]. Each expression can be constructed from one or more of the following unary
or binary expressions:

527188-021 Hewlett-Packard Company 8−31

sh(1) OSS Shell and Utilities Reference Manual

-a file TRUE, if file exists.

-b file TRUE, if file exists and is a block-special file.

-c file TRUE, if file exists and is a character-special file.

-d file TRUE, if file exists and is a directory.

-f file TRUE, if file exists and is an ordinary file.

-g file TRUE, if file exists and has its setgid bit set.

-G file TRUE, if file exists and its group ID matches the effective group ID of this process.

-h file TRUE, if file exists and is a symbolic link.

-k file TRUE, if file exists and has its sticky bit set.

-L file TRUE, if file exists and is a symbolic link.

-n string TRUE, if length of string is nonzero.

-o option
TRUE, if option named option is on.

-O file TRUE, if file exists and is owned by the effective user ID of this process.

-p file TRUE, if file exists and is a FIFO special file or a pipe.

-r file TRUE, if file exists and is readable by current process.

-s file TRUE, if file exists and has size greater than 0 (zero).

-S file TRUE, if file exists and is a socket.

-t file_des
TRUE, if file descriptor number file_des is open and associated with a terminal device.

-u file TRUE, if file exists and has its setuid bit set.

-w file TRUE, if file *O exists and is writable by current process.

-x file TRUE, if file exists and is executable by current process. If file exists and is a direc-
tory, then the current process has permission to search in the directory.

-z string TRUE, if length of string is 0 (zero).

file1 -nt file2
TRUE, if file1 exists and is newer than file2.

file1 -ot file2
TRUE, if file1 exists and is older than file2.

file1 -ef file2
TRUE, if file1 and file2 exist and refer to the same file.

string = pattern
TRUE, if string matches pattern.

8−32 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

string != pattern
TRUE, if string does not match pattern.

string1 < string2
TRUE, if string1 collates before string2.

string1 > string2
TRUE, if string1 collates after string2.

expression1 -eq expression2
TRUE, if expression1 is equal to expression2.

expression1 -ne expression2
TRUE, if expression1 is not equal to expression2.

expression1 -lt expression2
TRUE, if expression1 is less than expression2.

expression1 -gt expression2
TRUE, if expression1 is greater than expression2.

expression1 -le expression2
TRUE, if expression1 is less than or equal to expression2.

expression1 -ge expression2
TRUE, if expression1 is greater than or equal to expression2.

A compound expression can be constructed from these primitives by using any of the following,
listed in decreasing order of precedence.

(expression)
TRUE, if expression is TRUE. Used to group expressions.

! expression
TRUE if expression is FALSE.

expression1 && expression2
TRUE, if expression1 and expression2 are both TRUE.

expression1 || expression2
TRUE, if either expression1 or expression2 is TRUE.

Input/Output
Before a command is executed, you can redirect its input and output by using a special notation
interpreted by the shell. The following can appear anywhere in a simple command or can pre-
cede or follow a command and are not passed on to the invoked command. Command and
parameter substitution occurs before word or digit is used, except as noted in the following text.
Filename generation occurs only if the pattern matches a single file and interpretation of spaces
is not performed.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does not exist, it is
created. If the file exists, and the noclobber option is on, this causes an error; other-
wise, it is truncated to 0 (zero) length.

527188-021 Hewlett-Packard Company 8−33

sh(1) OSS Shell and Utilities Reference Manual

>|word Same as >, except that it overrides the noclobber option.

>>word Use file word as standard output. If the file exists, output is appended to it (by first
seeking to the End-of-File); otherwise, the file is created.

<>word Open file word for reading and writing as standard input.

<<[-]word
The shell input is read up to a line that is the same as word, or to an End-of-File. No
parameter substitution, command substitution, or filename generation is performed on
word. The resulting document, called a here document, becomes the standard input. If
any character of word is quoted, then no interpretation is placed upon the characters of
the document; otherwise, parameter and command substitution occurs, \newline is
ignored, and \ must be used to quote the characters \, $, ‘, and the first character of
word. If - is appended to <<, then all leading tabs are stripped from word and from the
document.

<&digit The standard input is duplicated from file descriptor digit (see dup(2)). The standard
output is duplicated using >& digit.

<&- The standard input is closed. The standard output is closed using >&-.

<&p The input from the coprocess (or background process) is moved to standard input.

>&p The output to the coprocess is moved to standard output.

If one of the preceding redirections is preceded by a digit, then the file descriptor number referred
to is that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each redirection
in terms of the (file descriptor, file) association at the time of evaluation. For example:

... 1>fname >&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file
associated with file descriptor 1 (that is, fname). If the order of redirections is reversed, file
descriptor 2 is associated with the terminal (assuming file descriptor 1 is) and then file descriptor
1 is associated with file fname.

If a command is followed by & and job control is not active, the default standard input for the
command is the empty /dev/null file. Otherwise, the environment for the execution of a com-
mand contains the file descriptors of the invoking shell as modified by input/output
specifications.

Environment
The environment is a list of name-value pairs that is passed to an executed program in the same
way as a normal argument list. The names must be identifiers and the values are character
strings. The shell interacts with the environment in several ways. On invocation, the shell scans
the environment and creates a parameter for each name found, giving it the corresponding value
and marking it export. Executed commands inherit the environment. If you modify the values
of these parameters or create new ones, using the export or typeset -x commands, they become
part of the environment. The environment used by any executed command is thus composed of
any name-value pairs originally inherited by the shell, whose values can be modified by the
current shell, plus any additions that must be noted in the export or typeset -x commands.

8−34 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

You can augment the environment for any simple command or function by prefixing it with one
or more parameter assignments. A parameter assignment argument is a word of the form
identifier=value.

Thus, the following two expressions are equivalent (as far as the execution of command is con-
cerned):

TERM=450 command argument ...

(export TERM; TERM=450; command argument ...)

Functions
The function reserved word is used to define shell functions. Shell functions are read in and
stored internally. Alias names are resolved when the function is read. Functions are executed
like commands with the arguments passed as positional parameters. (See Execution.)

Functions execute in the same process as the caller and share all files and the present working
directory with the caller. Traps caught by the caller are reset to their default action inside the
function. A trap condition that is not caught or ignored by the function causes the function to ter-
minate and the condition to be passed on to the caller. A trap on EXIT set inside a function is
executed after the function completes in the environment of the caller. Ordinarily, variables are
shared between the calling program and the function. However, the special command typeset
used within a function defines local variables whose scope includes the current function and all
functions it calls.

The special command return is used to return from function calls. Errors within functions return
control to the caller.

Function identifiers can be listed with the -f or +f option of the typeset special command. The
text of functions is also listed with -f. Functions can be undefined with the -f option of the unset
special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf option of the
typeset command allows a function to be exported to scripts that are executed without a separate
invocation of the shell. Functions that need to be defined across separate invocations of the shell
should be specified in the ENV file with the -xf option of typeset.

Jobs
If the monitor option of the set command is turned on, an interactive shell associates a job with
each pipeline. It keeps a table of current jobs, printed by the jobs command, and assigns them
small integer numbers. When a job is started asynchronously with &, the shell prints a line that
looks like:

[1] 1234

This line indicates that the job, which was started asynchronously, was job number 1 and had one
(top-level) process, whose process ID was 1234.

If you are running a job and want to do something else, you can enter the Suspend key sequence
(normally <Ctrl-z>), which sends a SIGTSTP signal to the current job. The shell then normally
indicates that the job has been stopped, and it prints another prompt. You can then manipulate
the state of this job, putting it in the background with the bg command, or run some other com-
mands and then eventually bring the job back into the foreground with the foreground command
fg. The job suspension takes effect immediately, and corresponds to the Interrupt key sequence
in that pending output and unread input are discarded. A special key sequence, <Ctrl-y>, does
not generate a SIGTSTP signal until a program attempts to read it. (See the read(2) reference
page for more information.) This key sequence can usefully be typed ahead when you have
prepared some commands for a job that you wish to stop after it has read them.

527188-021 Hewlett-Packard Company 8−35

sh(1) OSS Shell and Utilities Reference Manual

A job being run in the background will stop if it tries to read from the terminal. Background jobs
are normally allowed to produce output, but this can be disabled by issuing the stty tostop com-
mand. If you set this tty option, then background jobs will stop when they try to produce output
like they do when they try to read input.

There are several ways to refer to jobs in the shell. A job can be referred to by the process ID of
any process of the job, or by one of the following:

%job_number
The job with the given number.

%string Any job whose command line begins with string.

%?string
Any job whose command line contains string.

%% Current job.

%+ Equivalent to %%.

%- Previous job.

This shell knows immediately whenever a process changes state. It normally informs you when-
ever a job becomes blocked so that no further progress is possible, but only just before it prints a
prompt. This is done so that it does not otherwise disturb your work.

When the monitor mode is on, each background job that is completed triggers any trap set for
CHLD.

When you try to leave the shell while jobs are stopped or running, you are warned that You
have stopped(running) jobs.You can use the jobs command to see what they are. If you
do this or immediately try to exit again, the shell does not warn you a second time, and the
stopped jobs are terminated.

Signals
The SIGINT and SIGQUIT signals for an invoked command are ignored if the command is fol-
lowed by & and job monitor option is not active. Otherwise, signals have the values inherited
by the shell from its parent (but see also the trap command).

Execution
Each time a command is executed, the previous substitutions are carried out. If the command
name matches one of the shell built-in commands it is executed within the current shell process.
Next, the command name is checked to see if it matches one of the user-defined functions. If it
does, the positional parameters are saved and then reset to the arguments of the function call.
When the function is completed or issues a return, the positional parameter list is restored and
any trap set on EXIT within the function is executed. The value of a function is the value of the
last command executed. A function is also executed in the current shell process. If a command
name is not a special command or a user-defined function, a process is created and an attempt is
made to execute the command via exec.

The PATH shell parameter defines the search path for the directory containing the command.
Alternative directory names are separated by a : (colon). The default path is /usr/bin: (specify-
ing /usr/bin, and the current directory in that order). The current directory can be specified by
two or more adjacent colons, or by a colon at the beginning or end of the path list. If the com-
mand name contains a / (slash), then the search path is not used. Otherwise, each directory in the
path is searched for an executable file.

If the file has execute permission but is not a directory or an a.out file, it is assumed to be a file
containing shell commands. A subshell is spawned to read it. All nonexported aliases, functions,
and named parameters are removed in this case. If the shell command file does not have read

8−36 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

permission, or if the setuid and/or setgid bits are set on the file, the shell executes an agent
whose job it is to set up the permissions and execute the shell with the shell command file passed
down as an open file. A command in parentheses is executed in a subshell without the removal
of nonexported quantities.

Command Reentry
The text of the last HISTSIZE (default 128) commands entered from a terminal device is saved
in a history file. The $HOME/.sh_history file is used if the HISTFILE variable is not set or is
not writable. A shell can access the commands of all interactive shells that use the same named
HISTFILE. The fc special command is used to list or edit a portion of this file. The portion of
the file to be edited or listed can be selected by number or by giving the first character or charac-
ters of the command. A single command or range of commands can be specified. If you do not
specify an editor program as an argument to fc, then the value of the FCEDIT parameter is used.
If FCEDIT is not defined, then /usr/bin/ed is used. The edited commands are printed and reexe-
cuted upon leaving the editor. The editor name - (dash) is used to skip the editing phase and to
reexecute the command. In this case, a substitution parameter of the form old=new can be used
to modify the command before execution. For example, if r is aliased to ’fc -e -’, then typing ‘r
bad=good c’ reexecutes the most recent command, which starts with the letter c, replacing the
first occurrence of the string bad with the string good.

Inline Editing Options
Normally, each command line entered from a terminal device is simply typed followed by a new-
line character (<Return> or linefeed). If the vi option is active, you can edit the command line.
To be in this edit mode, set the corresponding option. An editing option is automatically selected
each time the VISUAL or EDITOR variable is assigned a value ending in the option name.

The editing features require that the terminal accept <Return> as carriage-return without
linefeed and that a space must overwrite the current character on the screen. ADM terminal
users should set the space-advance switch to Space. Hewlett-Packard series 2621 terminal users
should set the straps to bcGHxZ etX.

The editing modes create the impression that the user is looking through a window at the current
line. The window width is the value of COLUMNS if it is defined, otherwise it is 80 bytes. If
the line is longer than the window width minus 2, a mark is displayed at the end of the window to
notify the user. As the cursor moves and reaches the window boundaries, the window will be
centered about the cursor. The mark is a > (right angle bracket) if the line extends on the right
side of the window, a < (left angle bracket) if the line extends on the left side of the window, and
an * (asterisk) if the line extends on both sides of the window.

The search commands in each edit mode provide access to the history file. Only strings are
matched, not patterns, although if the leading character in the string is a ˆ (circumflex), the match
is restricted to begin at the first character in the line.

The vi Editing Mode
There are two typing modes. Initially, when you enter a command you are in the input mode. To
edit, the user enters control mode by typing <Esc> (ASCII 033) and moves the cursor to the
place needing correction and then inserts or deletes characters or words as needed. Most control
commands accept an optional repeat count prior to the command. When in vi mode on most sys-
tems, canonical processing is initially enabled and the commands are echoed again if the speed is
1200 baud or greater, if it contains any control characters, or if less than 1 second has elapsed
since the prompt was printed. The Escape character terminates canonical processing for the
remainder of the command and the user can then modify the command line.

This scheme of using two typing nodes has the advantages of canonical processing with the
type-ahead echoing of raw mode. If the option viraw is also set, the terminal always has canoni-
cal processing disabled. This mode is implicit for systems that do not support two alternative
End-of-Line delimiters, and can be helpful for certain terminals.

527188-021 Hewlett-Packard Company 8−37

sh(1) OSS Shell and Utilities Reference Manual

Input Edit Commands
By default the editor is in input mode.

Erase (User-defined Erase character as defined by the stty command, often <Ctrl-h> or #.)
Deletes the previous character.

<Ctrl-w>
Deletes the previous space-separated word.

<Ctrl-d>
Terminates the shell (at the beginning of a line only).

<Ctrl-v>
Escapes the next character. Editing characters and the user’s Erase or Kill characters
can be entered in a command line or in a search string if preceded by a <Ctrl-v>.
<Ctrl-v> removes the next character’s editing features (if any).

\ Escapes the next Erase or Kill character.

Motion Edit Commands
These commands move the cursor:

[count]l Cursor forward (right) one character.

[count]w Cursor forward one word. A word is a string of characters delimited by spaces or tabs.

[count]W
Cursor to the beginning of the next word that follows a space.

[count]e Cursor to the end of the word.

[count]E Cursor to end of the current space-delimited word.

[count]h Cursor backward (left) one character.

[count]b Cursor backward one word.

[count]B Cursor to the preceding space-delimited word.

[count]| Cursor to the column count.

[count]fc Finds the next character c in the current line.

[count]Fc
Finds the previous character c in the current line.

[count]tc Equivalent to f followed by h.

[count]Tc
Equivalent to F followed by l.

[count]; Repeats count times, the last single character find command: f, F, t, or T.

[count], Reverses the last single character find command count times.

0 Cursor to the start of the line.

8−38 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

^ Cursor to the first nonspace character in the line.

$ Cursor to the end of the line.

Search Edit Commands
These commands access your command history.

[count]k Fetches the previous command. Each time k is entered, the previous command back in
time is accessed.

[count]- Equivalent to k.

[count]j Fetches the next command. Each time j is entered, the next command forward in time
is accessed.

[count]+ Equivalent to j.

[count]G Fetches the command number count. The default is the least recent history command.

/string Searches backward through history for a previous command containing the specified
string. string is terminated by <Return> or a newline character. If the specified string
is preceded by a ˆ (circumflex), the matched line must begin with string. If string is
null, the previous string is used.

?string Same as / (slash) except that the search is in the forward direction.

n Searches for next match of the last pattern to the / or ? commands.

N Searches for next match of the last pattern to the / or ? commands, but in reverse direc-
tion. Searches the command history for the string entered by the previous / command.

Text Modification Edit Commands
These commands modify the line.

a Enters input mode and enters text after the current character.

A Appends text to the end of the line. Equivalent to $a.

[count]cmotion

c[count]motion
Deletes the current character through the character to which motion would move the
cursor, and enters input mode. If motion is c, the entire line is deleted and input mode
is entered.

C Deletes the current character through the end of line, and enters input mode.
Equivalent to c$.

S Equivalent to cc.

D Deletes the current character through the end of line. Equivalent to d$.

[count]dmotion

d[count]motion
Deletes the current character through the character to which motion would move. If
motion is d, the entire line is deleted.

527188-021 Hewlett-Packard Company 8−39

sh(1) OSS Shell and Utilities Reference Manual

i Enters input mode and inserts text before the current character.

I Inserts text before the beginning of the line. Equivalent to 0i.

[count]P Places the previous text modification before the cursor.

[count]p Places the previous text modification after the cursor.

R Enters input mode and replaces characters on the screen with the characters you type,
overlay fashion.

[count]rc
Replaces the count characters, starting at the current cursor position with c and advanc-
ing the cursor.

[count]x Deletes the current character.

[count]X Deletes the preceding character.

[count]. Repeats the previous text modification command.

[count]˜ Inverts the case of the count characters, starting at the current cursor position and
advancing the cursor.

[count]_ Causes the count word of the previous command to be appended and input mode
entered. The last word is used if count is omitted.

* Causes an * (asterisk) to be appended to the current word and filename generation to be
attempted. If no match is found, it sounds the bell. Otherwise, the word is replaced by
the matching pattern and input mode is entered.

\ Filename completion. Replaces the current word with the longest common prefix of all
filenames matching the current word with an * (asterisk) appended. If the match is
unique, a / (slash) is appended if the file is a directory; a space is appended if the file is
not a directory.

Miscellaneous vi Commands
[count]ymotion

y[count]motion
Yanks the current character through the character to which motion would move the cur-
sor and puts the characters into the delete buffer. The text and cursor are unchanged.

Y Yanks from current position to the end of line. Equivalent to y$.

u Undoes the last text-modifying command.

U Undoes all the text-modifying commands performed on the line.

[count]v Returns the command fc -e vi count in the input buffer. If count is omitted, the current
line is used.

<Ctrl-l> Performs a linefeed and prints the current line. Effective only in control mode.

<Ctrl-j> Executes the current line, regardless of mode (newline).

<Ctrl-m>
Executes the current line, regardless of mode (enter).

8−40 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

Sends the line after inserting a # (number sign) in front of the line. Useful for causing
the current line to be inserted in the history without being executed.

= Lists the filenames that match the current word if an * (asterisk) is appended to it.

@@@@letter
Searches the alias list for an alias by the name _letter . If an alias of this name is
defined, its value is inserted in the input queue for processing.

Special sh Commands
Shell built-in commands are executed by the OSS shell and run entirely within the shell process.
A subshell process is not created for shell built-in commands as it is for a command that is not a
shell built-in command.

The following shell built-in commands also have counterparts that are regular OSS commands
having the same names:

echo.1
kill.1
pwd.1
read.1

The shell built-in command is the default. To run the regular version of a command (instead of
the shell built-in version) specify the command as follows:

/bin/command_name

To make the regular version the default, create an alias to the regular version.

The shell built-in version and the regular version of a command may not behave the same way or
have the same flags.

The shell commands described below are executed in the shell process. Input/output redirection
is permitted.

DESCRIPTION
:[argument ...]

The command only expands arguments. It is used when a command is needed, as in
the then condition of an if command, but nothing is to be done by the command.

Parameter assignment lists that precede the command remain in effect when the com-
mand completes.

I/O redirections are processed after parameter assignments.

Errors cause a script that contains the commands so marked to abort.

. file [argument ...]
Reads the complete file and executes the commands. The commands are executed in
the current shell environment. The search path specified by PATH is used to find the
directory containing file. Unlike normal command search, however, the file searched
for by the . command need not be executable. If any arguments are specified, they
become the positional parameters. Otherwise, the positional parameters are
unchanged. If no readable file is found, a noninteractive shell aborts; an interactive
shell writes a diagnostic message to standard error, but this condition is not considered
a syntax error. The exit status is the exit status of the last command executed, or a 0
(zero) if no command is executed.

Parameter assignment lists that precede the command remain in effect when the com-
mand completes.

527188-021 Hewlett-Packard Company 8−41

sh(1) OSS Shell and Utilities Reference Manual

I/O redirections are processed after parameter assignments.

Errors cause a script that contains the commands so marked to abort.

add_define
Creates DEFINEs for the Guardian environment. An HP extension.

alias Creates or lists aliases.

bg Puts each specified job into the background.

break Exits from the enclosing for, while, until, or select loop.

cd Changes the current directory.

continue
Resumes the next iteration of the enclosing for, while, until, or select loop.

del_define
Deletes DEFINEs from the current shell process. An HP extension.

echo Sends the string given as an argument to the standard output.

eval Reads arguments as input to the shell and executes arguments as commands.

exec Executes commands specified as arguments

exit Causes the shell to exit.

export Marks names automatic export to the shell environment.

fc Lists or edits and reexecutes commands previously entered to an interactive shell.

fg Moves processes into the foreground.

getopts Checks argument for legal options.

hash Affects the way the shell remembers the locations of utilities.

history Lists the contents of the history file, which contains a list of previously executed com-
mands.

info_define
Displays information about DEFINEs. An HP extension.

jobs Lists information about jobs.

kill Sends either the TERM signal or the specified signal to the specified jobs or processes.

let Evaluates arguments as arithmetic expressions.

print The shell output mechanism; prints arguments to standard output as described for echo.

pwd Prints the current working directory to standard output.

read The shell input mechanism.

readonly
The variable names given as arguments are marked read only. These names cannot be
changed by subsequent assignment.

8−42 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

reset_define
Restores the attributes of a DEFINE to their original settings. An HP extension.

return Causes a shell function to return to the invoking script.

set Sets parameters.

set_define
Sets the values for DEFINE attributes. An HP extension.

shift Renames positional parameters.

show_define
Displays values of DEFINE attributes. An HP extension.

times Prints the accumulated user and system times for the shell and for processes run from
the shell.

trap Defines variables to be read and executed when the shell receives the specified signals.

type Returns the location of commands.

typeset Sets attributes and values for shell parameters.

umask Sets the user file-creation mask to mask.

unalias Removes alias definions.

unset Erases values assigned to variables.

wait Waits for the specified process and reports its termination status.

whence Indicates how names would be interpreted if used as commands.

Invocation
If the shell is invoked by exec, and the first character of argument zero ($0) is - (dash), the shell
is assumed to be a login shell and commands are read from /etc/profile and then from either
.profile in the current directory or $HOME/.profile, if either file exists. Next, commands are
read from the file named by performing parameter substitution on the value of the ENV environ-
ment variable, if the file exists. If the -s flag is not present and argument is present, a path search
is performed on the first argument to determine the name of the script to execute. The script
argument must have read permission and any setuid and getgid settings are ignored. Commands
are then read, as described in the following text.

See the FLAGS section for a complete description of flags that can be interpreted by the shell
when it is invoked.

FILES
/etc/profile System profile.

$HOME/.profile User profile.

NOTES
1. If a command is executed, and a command with the same name is installed in a directory

in the search path before the directory where the original command was found, the shell
will execute the original command. Use the hash command to correct this situation.

527188-021 Hewlett-Packard Company 8−43

sh(1) OSS Shell and Utilities Reference Manual

2. When the shell encounters the >> characters, it does not open the file in append mode;
instead, the shell opens the file for writing and seeks to the end.

3. Failure (nonzero exit status) of a special command preceding a || symbol prevents the list
following || from executing.

4. If a command that is a tracked alias is executed, and then a command with the same
name is installed in a directory in the search path before the directory where the original
command was found, the shell continues to exec the original command. Use the -t flag
of the alias command to correct this situation.

5. Using the fc built-in command within a compound command causes the whole command
to disappear from the history file.

6. The built-in .file command reads the whole file before any commands are executed.
Therefore, the alias and unalias commands in the file do not apply to any functions
defined in the file.

7. Traps are not processed while a job is waiting for a foreground process. Thus, a trap on
CHLD is not executed until the foreground job terminates.

8. The shell displays the following progress message if it needs to retry the fork operation
during an attempt at process creation:

sh: Resource temporarily unavailable....
will retry fork() for MAX 62 secs...

If the indicated time passes before the fork operation is successful, the shell returns the
following message:

/bin/-sh: sh: tdm_fork() failed with errno EAGAIN:
cannot fork too many processes

EXIT VALUES
Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit status.
Otherwise, the shell returns the exit status of the last command executed. (See also the exit com-
mand, described previously.) If the shell is being used noninteractively, execution of the shell
file is abandoned. Run-time errors detected by the shell are reported by printing the command or
function name and the error condition. If the line number that the error occurred on is greater
than 1, the line number is also printed in [] (brackets) after the command or function name.

RELATED INFORMATION
Commands: cd(1), chmod(1), echo(1), env(1), ksh(1), setacl(1), stty(1), test(1), umask(1),
vi(1).

Functions: exec(2), fcntl(2), fork(2), ioctl(2), lseek(2), pipe(2), rand(3), umask(2), ulimit(3),
wait(2).

Files: locale(4).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
The following commands are HP extensions to the shell built-in commands of the XPG4 Vewr-
sion 2 specification. They are described in detail in their own reference pages:

add_define
Creates DEFINEs for the Guardian environment.

8−44 Hewlett-Packard Company 527188-021

User Commands (s) sh(1)

del_define
Deletes DEFINEs from the current shell process.

info_define
Displays information about DEFINEs.

reset_define
Restores the attributes of a DEFINE to their original settings.

set_define
Sets the values for DEFINE attributes.

show_define
Displays values of DEFINE attributes.

527188-021 Hewlett-Packard Company 8−45

shift(1) OSS Shell and Utilities Reference Manual

NAME
shift - Shifts positional parameters

SYNOPSIS
shift [n]

DESCRIPTION
The shift command moves the specified positional parameter so that it takes the place of the
specified parameter to its left. Thus, the positional parameters from $n+1 ... are renamed $n
The parameters represented by the numbers $# down to $#-n+1 are unset, and the parameter # is
updated to reflect the new number of positional parameters. The argument n can be any arith-
metic expression that evaluates to a nonnegative number less than or equal to $#.

EXIT VALUES
The exit status is greater than 0 (zero) if n is greater than $#; otherwise, it is 0 (zero).

NOTES
• Parameter assignment lists that precede the command remain in effect when the com-

mand completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The shift command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

8−46 Hewlett-Packard Company 527188-021

User Commands (s) show_define(1)

NAME
show_define - Displays the values of DEFINE attributes

SYNOPSIS
show_define [attribute-name]

DESCRIPTION
The show_define command is specific to HP and a shell built-in command. It displays the values
associated with the specified DEFINE attributes. It can display all attribute values that are
currently set or defaulted, and it can show all attributes in the current working set and the value
of each attribute. The show_define command is similiar to the TACL INFO DEFINE command.

The show_define command has the same output as the TACL INFO DEFINE command. Refer
to the TACL Reference Manual for more information on the output of show_define.

attribute-name
Specifies the attribute whose value is to be displayed. Valid attribute-names are:

catalog | defaults | map | search |
sort | spool | subsort | tape

If no argument is specified with the show_define command, all attribute names and their current
values for the working attribute set are displayed. (Optional attributes that have no current value
are listed with a blank value.)

Environment Variables
LANG Determines the locale to use for the locale categories when neither the LC_ALL vari-

able nor the corresponding environment variable (beginning with LC_) specify a
locale.

LC_ALL
Determines the locale to be used to override any values for locale categories specified
by the LANG variable or any environment variable whose name begins with LC_.

LC_CTYPE
Determines the locale for interpretation of bytes of text data as characters (for example,
single-byte as opposed to multibyte characters in arguments).

LC_MESSAGES
Determines the locale that should be used to affect the format and contents of diagnos-
tic messages written to the standard error file and of informational messages written to
the standard output file.

EXAMPLES
1. To display the value currently set for the tape attribute, enter:

show_define tape

This command might result in the following display:

DEVICE =\KT22.$TAPE

527188-021 Hewlett-Packard Company 8−47

show_define(1) OSS Shell and Utilities Reference Manual

EXIT VALUES
The following exit values are returned:

0 DEFINE attribute values were displayed successfully.

>0 An error occurred.

NOTES
The show_define command is a shell built-in command. It differs from the regular commands in
that it does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: add_define(1), del_define(1), info_define(1), reset_define(1), set_define(1).

STANDARDS CONFORMANCE
The show_define command is an HP extension to the XPG4 Version 2 specification.

8−48 Hewlett-Packard Company 527188-021

User Commands (s) sleep(1)

NAME
sleep - Suspends execution for a specified time

SYNOPSIS
sleep seconds

DESCRIPTION
The sleep command suspends execution of a process for the interval specified by seconds, which
can range from 0 to 2,147,483,647 seconds.

seconds can be entered as a non-negative decimal, octal, or hexadecimal value.

EXAMPLES
1. To display a message at 4-minute intervals for 20 minutes, create a shell script called

remind containing the following:

for i
do
sleep 240; echo $i
sleep 240; echo $i
sleep 240; echo $i
sleep 240; echo $i
sleep 240; echo $i
done

To display the message Try calling NHK at 4-minute intervals, enter:

remind ’Try calling NHK’

2. To run a command at regular intervals, create a shell script containing the following:

while true
do

date
sleep 60

done

This displays the date and time once a minute.

NOTES
If sleep receives a SIGALARM signal before process execution has resumed, sleep terminates
normally with a 0 (zero) exit status. (See the sleep(3) reference page for more information.)

RELATED INFORMATION
Functions: alarm(3), pause(3), sigaction(2), sleep(3).

527188-021 Hewlett-Packard Company 8−49

sort(1) OSS Shell and Utilities Reference Manual

NAME
sort - Sorts or merges files

SYNOPSIS
Current syntax

sort
[-m]
[-o output_file]
[-Abdfinru]
[-k keydef] ...
[-t character]
[-T directory]
[-y][kilobytes]
[-z record_size] ...
file ...

sort
-c
[-u]
[-Abdfinru]
[-k keydef] ...
[-t character]
[-T directory]
[-y][kilobytes]
[-z record_size] ...
file ...

Obsolescent syntax
sort

[-Abcdfimnru]
[-o output_file]
[-t character]
[-T directory]
[-y][kilobytes]
[-z record_size]
[+fskip][.cskip]
[-fskip][.cskip]
[-bdfinr] ...
file ...

FLAGS
The sort command sorts lines in its input files and writes the result to standard output.

The -d, -f, -i, -n, and -r flags override the default ordering rules. When ordering flags appear
independent of any key field specifications, the requested field ordering rules are applied globally
to all sort keys. When attached to a specific key (see -k), the specified ordering flags override all
global ordering flags for that key. In the obsolescent forms, if one or more of these flags follows
a +fskip flag, it affects only the key field specified by that preceding flag.

-A Sorts on a byte-by-byte basis using each character’s encoded value. On some systems,
extended characters will be considered negative values, and so sort before ASCII char-
acters. If you are sorting ASCII characters in a non-C/POSIX locale, this flag performs
much faster.

-b Ignores leading spaces and tabs when determining the starting and ending positions of
a restricted sort key. If the -b flag is specified before the first -k flag, the -b flag is

8−50 Hewlett-Packard Company 527188-021

User Commands (s) sort(1)

applied to all -k flags on the command line; otherwise, the -b flag can be independently
attached to each -k field_start or field_end argument.

-c Checks that the input is sorted according to the ordering rules specified in the flags and
the collating sequence of the current locale. No output is produced; only the exit code
is affected.

-d Specifies that only spaces and alphanumeric characters (according to the current set-
ting of LC_TYPE) are significant in comparisons.

-f Treats all lowercase characters as their uppercase equivalents (according to the current
setting of LC_TYPE) for the purposes of comparison.

-i Sorts only by printable characters (according to the current setting of LC_TYPE).

-k keydef Specifies one or more (up to 10) restricted sort key field definitions. This flag replaces
the obsolescent +fskip.cskip and -fskip.cskip flags. A field comprises a maximal
sequence of non-separating characters and, in the absence of the -t flag, any preceding
field separator.

The format of a key field definition is as follows:

field_start[type][,field_end[type]]

where the field_start and field_end arguments define a key field that is restricted to a
portion of the line, and type is a modifier specified by b, d, f, i, n, or r. The b modifier
behaves like the -b flag, but applies only to the field_start or field_end argument to
which it is attached. The other modifiers behave like their corresponding flags, but
apply only to the key field to which they are attached; these modifiers have this effect if
specified with field_start, field_end or both. Modifiers attached to a field_start or
field_end argument override any specifications made by the flags. A missing field_end
argument means the last character of the line.

The field_start portion of the keydef argument takes the following form:

field_number[.first_character]

Fields and characters within fields are numbered starting with 1. The field_number and
first_character pieces, interpreted as positive decimal integers, specify the character to
be used as part of a sort key. If first_character is not specified, the default is the first
character of the field.

The field_end portion of the keydef argument takes the following form:

field_number[.last_character]

The field_number is the same as that described for field_start. The last_character
argument, interpreted as a nonnegative decimal integer, specifies the last character to
be used as part of the sort key. If last_character evaluates to 0 (zero) or is not
specified, the default is the last character of the field specified by field_number.

If -b is in effect, characters within a field are counted from the first nonspace character
in the field. (This applies separately to first_character and last_character.)

If -k is not specified, the default sort key is the entire line.

When there are multiple key fields, later keys are compared only after all earlier keys
compare as equal. Except when the -u flag is specified, lines that otherwise compare as
equal are ordered as though none of the flags -d, -f, -i, -n, or -k were present (but with
-r still in effect, if it was specified) and with all bytes in the lines significant to the
comparison.

The algorithm for the -k flag can be summarized as follows:

527188-021 Hewlett-Packard Company 8−51

sort(1) OSS Shell and Utilities Reference Manual

/*
* -ka.b,c.d = if d==0 then +(a-1).(b-1) -c.d
* else +(a-1).(b-1) -(c-1).d
*/

-m Merges only (assumes sorted input).

-n Sorts any initial numeric strings (consisting of optional spaces, optional dashes, and
zero or more digits with optional radix character and thousands separator, as defined by
the current locale) by arithmetic value. An empty digit string is treated as zero; leading
zeros and signs on zeros do not affect ordering.

-o output_file
Directs output to output_file instead of standard output. output_file can be the same as
one of the input files.

-r Reverses the order of the specified sort.

-t character
Sets the field separator character to character. The character argument is not con-
sidered to be part of a field (although it can be included in a sort key). Each occurrence
of character is significant (for example, two consecutive occurrences of character del-
imit an empty field). To specify the tab character as the field separator, you must
enclose it in ’ ’ (single quotes).

The default field separator is one or more spaces.

-T directory
Places all the temporary files that are created in directory.

-u Suppresses all but one in each set of equal lines. Ignored characters (such as leading
tabs and spaces) and characters outside of sort keys are not considered in this type of
comparison.

If used with the -c flag, -u checks that there are no lines with duplicate keys, in addition
to checking that the input file is sorted.

-y [kilobytes]
Starts the sort command using kilobytes of main storage and adds storage as needed.
(If kilobytes is less than the minimum storage size or greater than the maximum, the
minimum or maximum is used instead.) If the -y flag is omitted, the sort command
starts with the default storage size; -y 0 starts with minimum storage, and -y (with no
value) starts with the maximum storage. The amount of storage used by the sort com-
mand has a significant impact on performance. Sorting a small file in a large amount of
storage is wasteful.

-z record_size
Prevents abnormal termination if lines being sorted are longer than the default buffer
size can handle. When the -c or -m flags are specified, the sorting phase is omitted and
a system default size buffer is used. If sorted lines are longer than this size, sort ter-
minates abnormally. The -z option specifies that the longest line be recorded in the sort
phase so that adequate buffers can be allocated in the merge phase. record_size must
be a value in bytes equal to or greater than the number of bytes in the longest line to be
merged.

+fskip.cskip
Specifies the start position of a key field. See the -k flag for a description of the current
way to perform this operation. (Obsolescent)

8−52 Hewlett-Packard Company 527188-021

User Commands (s) sort(1)

The fskip variable specifies the number of fields to skip from the beginning of the input
line, and the cskip variable specifies the number of additional characters to skip to the
right beyond that point. For both the starting point (+fskip.cskip) and the ending point
(-fskip.cskip) of a sort key, fskip is measured from the beginning of the input line, and
cskip is measured from the last field skipped. If you omit .cskip, .0 (zero) is assumed.
If you omit fskip, 0 (zero) is assumed. If you omit the ending field specifier
(-fskip.cskip), the end of the line is the end of the sort key.

You can supply more than one sort key by repeating +fskip.cskip and -fskip.cskip. In
cases where you specify more than one sort key, keys specified further to the right on
the command line are compared only after all earlier keys are sorted. For example, if
the first key is to be sorted in numerical order and the second according to the collating
sequence, all strings that start with the number 1 are sorted according to the collating
order before the strings that start with the number 2. Lines that are identical in all keys
are sorted with all characters significant. You can also specify different flags for
different sort keys in multiple sort keys.

-fskip.cskip
Specifies the end position of a key field. See the -k flag for a description of the current
way to perform this operation. (Obsolescent)

DESCRIPTION
The sort command performs one of the following functions:

1. Sorts lines of all the named files together and writes the result to the specified output.

2. Merges lines of all the named (presorted) files together and writes the result to the
specified output.

3. Checks that a single input file is correctly presorted.

Comparisons are based on one or more sort keys extracted from each line of input (or the entire
line if no sort keys are specified), and are performed using the collating sequence of the current
locale.

The sort command treats all of its input files as one file when it performs the sort. A - (dash) in
place of a filename specifies standard input. If you do not specify a filename, it sorts standard
input.

The sort command can handle a variety of collation rules typically used in Western European
languages, including primary/secondary sorting, one-to-two character mapping, N-to-one charac-
ter mapping, and ignore-character mapping. To summarize briefly:

Primary/Secondary Sorting
In this system, a group of characters all sort to the same primary location. If there is a tie, a
secondary sort is applied. For example, in French, the plain and accented a’s all sort to the same
primary location. If two strings collate to the same primary location, the secondary sort goes into
effect. These words are in correct French order:

à
abord
âpre
après
âpreté
azur

NOTE: If you are viewing this reference page online using the
man command, the special characters are not displayed. See
this reference page in the Open System Services Shell and

527188-021 Hewlett-Packard Company 8−53

sort(1) OSS Shell and Utilities Reference Manual

Utilities Reference Manual.

One-to-Two Character Mappings
This system requires that certain single characters be treated as if they were two characters. For
example, in German, the ß (scharfes-S) is collated as if it were ss.

NOTE: If you are viewing this reference page online using the man command, the special char-
acters are not displayed. See this reference page in the Open System Services Shell and Utilities
Reference Manual.

N-to-One Character Mappings
Some languages treat a string of characters as if it were one single collating element. For exam-
ple, in Spanish, the ch and ll sequences are treated as their own elements within the alphabet.
(ch comes between c and d in the alphabet, and ll comes between l and m.)

Ignore-Character Mappings
In some cases, certain characters may be ignored in collation. For example, if - were defined as
an ignore-character, the strings re-locate and relocate would sort to the same place.

The results that you get from sort depend on the collating sequence as defined by the current set-
ting of the LC_COLLATE environment variable. The configuration files for collation and char-
acter classification information are /usr/lib/nls/loc/src/locale.src.

A field is one or more characters bounded by the beginning of a line and the current field separa-
tor, or one or more characters bounded by a field separator on either side. The space character is
the default field separator.

Lines longer than 1024 bytes are truncated by sort. The maximum number of fields on a line is
10.

EXAMPLES
The following examples apply to the C locale, unless it is specifically stated otherwise.

1. To perform a simple sort, enter:

sort fruits

This displays the contents of fruits sorted in ascending lexicographic order. This means
that the characters in each column are compared one by one, including spaces, digits, and
special characters.

For instance, if fruits contains the text:

banana
orange
Persimmon
apple
%%banana
apple
ORANGE

then sort fruits displays:

%%banana
ORANGE
Persimmon
apple
apple
banana
orange

8−54 Hewlett-Packard Company 527188-021

User Commands (s) sort(1)

This order follows from the fact that in the ASCII collating sequence, symbols (such as
%) precede uppercase letters, and all uppercase letters precede the lowercase letters. If
you are using a different collating order, your results may be different.

2. To group lines that contain uppercase and special characters with similar lowercase lines,
and remove duplicate lines, enter:

sort -d -f -u fruits

The -u flag tells sort to remove duplicate lines, making each line of the file unique. This
displays:

apple
%%banana
orange
Persimmon

Note that not only was the duplicate apple removed, but banana and ORANGE were
removed as well. The -d flag told sort to ignore symbols, so %%banana and banana
were considered to be duplicate lines and banana was removed. The -f flag told sort not
to differentiate between uppercase and lowercase, so ORANGE and orange were con-
sidered to be duplicate lines and ORANGE was removed.

When the -u flag is used with input that contains nonidentical lines that are considered
by sort (due to other flags) to be duplicates, there is no way to predict which lines sort
will keep and which it will remove.

3. To sort as in Example 2, but remove duplicates unless capitalized or punctuated
differently, enter:

sort -u -k 1df -k 1 fruits

Flags appearing between sort key specifiers apply only to the specifier preceding them.
There are two sorts specified in this command line. -k 1df specifies the first sort, of the
same type done with -d -f in Example 3. Then -k 1 performs another comparison to dis-
tinguish lines that are not actually identical. This prevents -u, which applies to both sorts
because it precedes the first sort key specifier, from removing lines that are not exactly
identical to other lines.

Given the fruits file shown in Example 1, the added -k 1 distinguishes %%banana from
banana and ORANGE from orange. However, the two instances of apple are exactly
identical, so one of them is deleted.

apple
%%banana
banana
ORANGE
orange
Persimmon

4. To specify a new field separator, enter:

sort -t : -k 2 vegetables

This sorts vegetables, comparing the text that follows the first colon on each line. -t :
tells sort that colons separate fields. -k 2 tells sort to ignore the first field and to com-
pare from the start of the second field to the end of the line. If vegetables contains:

yams:104
turnips:8

527188-021 Hewlett-Packard Company 8−55

sort(1) OSS Shell and Utilities Reference Manual

potatoes:15
carrots:104
green beans:32
radishes:5
lettuce:15

then sort -t : -k 2 vegetables displays:

carrots:104
yams:104
lettuce:15
potatoes:15
green beans:32
radishes:5
turnips:8

Note that the numbers are not in ascending order. This is because a lexicographic sort
compares each character from left to right. In other words, 3 comes before 5 so 32 comes
before 5.

5. To sort on more than one field, enter:

sort -t : -k 2n -k 1r vegetables

This performs a numeric sort on the second field (-k 2n) and then, within that ordering,
sorts the first field in reverse collating order (-k 1r). The output looks like this:

radishes:5
turnips:8
potatoes:15
lettuce:15
green beans:32
yams:104
carrots:104

The lines are sorted in numeric order; when two lines have the same number, they appear
in reverse collating order.

6. To replace the original file with the sorted text, enter:

sort -o vegetables vegetables

The -o vegetables flag stores the sorted output into the file vegetables.

7. To collate using Spanish rules, set the LC_COLLATE (or LANG) environment variable
to a Spanish locale, and then use sort in the regular way, enter:

sort sp.words

If an input file named sp.words contains the following Spanish words:

dama
loro
chapa
canto
mover
chocolate
curioso
llanura

8−56 Hewlett-Packard Company 527188-021

User Commands (s) sort(1)

The sorted file looks like this:

canto
curioso
chapa
chocolate
dama
loro
llanura
mover

If you sort the file in the default C locale, the output looks like this:

canto
chapa
chocolate
curioso
dama
llanura
loro
mover

FILES
/usr/lib/nls/loc/src/locale.src

Configuration files.

EXIT VALUES
The sort command returns the following exit values:

0 All input files were output successfully, or -c was specified and the input file was
correctly sorted.

1 Under the -c flag, the file was not ordered as specified, or if the -c and -u flags were
both specified, two input lines were found with equal keys.

>1 An error occurred.

RELATED INFORMATION
Commands: comm(1), join(1), uniq(1).

Files: locale(4).

527188-021 Hewlett-Packard Company 8−57

split(1) OSS Shell and Utilities Reference Manual

NAME
split - Splits a file into pieces of a specified size

SYNOPSIS
Current syntax

split
[-l line_count]
[-a suffix]
[file [prefix] | -]

split
-b n[k | m]
[-a suffix]
[file [prefix] | -]

Obsolescent syntax
split

[-number]
[-a suffix]
[file [prefix] | -]

FLAGS
-a suffix Uses suffix letters to form the suffix portion of the filenames of the split files. If -a is

not specified, the default suffix length is two letters.

If the sum of the length of the prefix and the suffix would create a filename exceeding
NAME_MAX - 2 bytes, an error occurs. In this case, split exits with a diagnostic mes-
sage and no files are created.

-b n[k | m]
Splits a file into pieces of the specified size. The n argument without k or m specifies
the size of each piece in bytes. The nk argument specifies the size of each piece in
n*1024 bytes. The nm argument specifies the size of each piece in n*1048576 bytes.

-l line_count
Specifies the number of lines in each output file. The line_count argument is an
unsigned decimal integer. The default value is 1000. If the input does not end with a
newline character, the partial line is included in the last output file.

-number (Obsolescent) Specifies the number of lines in each output file. The default value is
1000 lines per output file.

DESCRIPTION
The split command reads file and writes it in number-line pieces (the default number is 1000
lines) to a set of output files. The size of the output files can be modified by using the -b or -l
flag.

Each output file is created with a unique suffix consisting of exactly suffix lowercase letters from
the POSIX locale. The letters of the suffix are used as if they were a base-26 digit system, with
the first suffix to be created consisting of all a characters, the second with b replacing the last a,
and so forth, until a suffix of all zs is created.

By default, the names of the output files are x, followed by a two-character suffix from the char-
acter set as described in the preceding paragraph, starting with aa, ab, ac, and so on, and continu-
ing until the suffix zz, for a maximum of 676 files.

The filename specified by prefix and suffix cannot be longer than the value of NAME_MAX
minus two (from the limits.h header file).

8−58 Hewlett-Packard Company 527188-021

User Commands (s) split(1)

If the number of files required is greater than the maximum allowed by the effective suffix length
(such that the last allowable file would be larger than the requested size), split fails after creating
the last possible file with a valid suffix. The split command does not delete the files it creates
with valid suffixes. If the file limit is not exceeded, the last file created contains the remainder of
the input file and thus might be smaller than the requested size.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

Operands
file Specifies the pathname of the file to be read. If you do not specify an input file,

or if you specify - (dash) in place of file, split reads the standard input file.

prefix Specifies the prefix to be used for the resulting output filenames.

EXAMPLES
1. To split a file into 1000-line segments, enter:

split book

This splits book into 1000-line segments named xaa, xab, xac, and so forth.

2. To split a file into 50-line segments and specify the filename prefix, enter:

split -l 50 book sect

This splits book into 50-line segments named sectaa, sectab, sectac, and so forth.

EXIT VALUES
The split command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: join(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions, with the following
exception:

• The length of an output filename cannot be greater than NAME_MAX - 2 bytes.

527188-021 Hewlett-Packard Company 8−59

strings(1) OSS Shell and Utilities Reference Manual

NAME
strings - Finds printable strings in binary files

SYNOPSIS
strings [-a] [-t format] [-n number] [file ...]

FLAGS
-a Searches an entire object file, linkfile, or loadfile rather than just the:

• Code, data, and extended data areas of a TNS or accelerated object file

• .data, .rodata, and .sdata areas of a TNS/R native non-position-
independent (non-PIC) or PIC linkfile or loadfile

• .data, .rdata, .sdata, .rconst areas of a TNS/E native PIC linkfile or
loadfile

-n number Sets the minimum string length to number rather than the default length of 4.

-t format Writes each string preceded by its byte offset from the start of the file. The for-
mat depends on the single character used as the format argument, as follows:

d The offset is written in decimal.

o The offset is written in octal.

x The offset is written in hexadecimal.

DESCRIPTION
The strings command looks for strings in an ASCII or binary file.

The strings command looks for printable strings in regular files and writes the strings to the stan-
dard output file. A printable string is any sequence of four (the default value) or more printable
characters terminated by a newline or NULL character.

By default, strings scans for strings in the:

• code, data, and extended data areas of a TNS or accelerated object file

• .data, .rodata, and .sdata areas of a TNS/R native non-position-independent (non-PIC)
or PIC linkfile or loadfile

• .data, .rdata, .sdata, .rconst areas of a TNS/E native PIC linkfile or loadfile

Operand
file Specifies the pathname of a regular file to be used as input. The input files can be

regular files of any format. If you do not specify a file operand, strings reads
from the standard input file.

Environment Variables
This utility supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

Standard Output
Strings that are found are written to the standard output file, one per line.

• When the -t flag is not specified, the format of the output is:

"%s", string

8−60 Hewlett-Packard Company 527188-021

User Commands (s) strings(1)

• When the -t or -t o flag is specified, the format of the output is:

"%o %s", byte-offset, string

• When the -t x flag is specified, the format of the output is:

"%x %s", byte-offset, string

• When the -t d flag is specified, the format of the output is:

"%d %s", byte-offset, string

EXIT VALUES
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

RELATED INFORMATION
Commands: od(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions, except that the HP
implementation does not support the obsolescent form of the command.

The scanning of code and extended code areas of files is an HP extension to the XPG4 Version 2
specification.

527188-021 Hewlett-Packard Company 8−61

strip(1) OSS Shell and Utilities Reference Manual

NAME
strip - Removes unnecessary information from loadfiles or executable files

SYNOPSIS
strip [[-Wa] | [-Ws]] file ...

FLAGS
-Wa Removes the TNS/R Accelerator region or TNS/E Object Code Accelerator

region of an accelerated object file.

-Ws Removes the Inspect symbols region of a TNS or accelerated object file.

DESCRIPTION
The strip utility removes information that is considered unnecessary for proper execution of a
file:

TNS object files
This information includes the Binder and Inspect symbols regions.

accelerated object files
This information includes the Binder, debugger symbols, and TNS/R Accelerator
or TNS/E Object Code Accelerator regions.

TNS/R native non-position-independent code (non-PIC)
or PIC loadfiles
This information includes the debugger and nld or ld symbols regions.

TNS/E native PIC loadfiles
This information includes the eld symbols region.

Using strip is the same as using the -s flag with the c89 utility.

If neither -Wa nor -Ws is specified, strip removes:

• Both the Binder and debugger symbols regions from TNS and accelerated object files

• The symbols region from native loadfiles

Removing the Binder and debugger symbols regions of an executable object file or loadfile does
not affect the behavior or outcome of the program. However:

• Files stripped of the debugger symbols region cannot be debugged symbolically.

• TNS and accelerated object files stripped of the Binder region cannot be relinked by the
Binder.

Environment Variables
This utility supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXIT VALUES
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

8−62 Hewlett-Packard Company 527188-021

User Commands (s) strip(1)

RELATED INFORMATION
Commands: ar(1), c89(1), eld(1), ld(1), nld(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

The -W flags are HP extensions to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 8−63

stty(1) OSS Shell and Utilities Reference Manual

NAME
stty - Sets terminal characteristics

SYNOPSIS
stty [-a | -g] [-f special_device]

stty [-f special_device] [argument ...]

The stty command sets or reports on terminal I/O characteristics for the device that is its
standard input.

FLAGS
-a Writes to standard output all the current settings for the terminal.

-f special_device
Allows you to specify an alternative terminal or tty device. Normally, the stty com-
mand works on your standard input.

-g Writes to standard output the current settings in an unspecified form that can be used as
input arguments to another stty command on the same system. (The form used will not
contain any characters that would require quoting; therefore, word expansion by the
shell is avoided.)

DESCRIPTION
Without flags or arguments specified, stty reports the settings of certain characteristics, usually
those that differ from implementation-defined defaults. Otherwise, stty modifies the terminal
state according to the specified arguments. Some combinations of arguments are mutually
exclusive on some terminal types.

Control Modes
The following arguments are available to set the terminal characteristics:

parenb (-parenb)
Enables (disables) parity generation and detection.

parodd (-parodd)
Selects odd (even) parity.

cs7 cs8 Selects character size, if possible.

hupcl (-hupcl)
Stops asserting modem control (does not stop asserting modem control) on last close.

hup (-hup)
Same as hupcl (-hupcl).

cstopb (-cstopb)
Uses two (one) stop bits per character.

cread (-cread)
Enables (disables) the receiver.

clocal (-clocal)
Assumes a line without (with) modem control.

Input Modes
ignbrk (-ignbrk)

Ignores (does not ignore) break on input.

8−64 Hewlett-Packard Company 527188-021

User Commands (s) stty(1)

brkint (brkint)
Signals (does not signal) INTR on break.

parmrk (-parmrk)
Marks (does not mark) parity errors.

istrip (-istrip)
Strips (does not strip) input characters to seven bits.

inlcr (-inlcr)
Maps (does not map) newline to carriage-return on input.

igncr (-igncr)
Ignores (does not ignore) carriage-return on input.

icrnl (-icrnl)
Maps (does not map) carriage-return to newline on input.

ixon (-ixon)
Enables (disables) Start/Stop output control. Output from the system is stopped when
the system receives Stop and started when the system receives Start.

ixoff (-ixoff)
Requests that the system send (not send) Stop characters when the input queue is
nearly full and Start characters to resume data transmission.

Local Modes
isig (-isig)

Enables (disables) the checking of characters against the special control characters
INTR, QUIT, and SUSP.

icanon (-icanon)
Enables (disables) canonical input (Erase and Kill processing).

tostop (-tostop)
Sends (does not send) SIGTTOU for background output. This stops or allows output
from background jobs to the terminal.

echo (-echo)
Echoes back (does not echo back) every character typed.

echoe (-echoe)
Causes the Erase character to (to not) visually erase the last character in the current
line from the display, if possible.

echok (-echok)
Echoes (does not echo) newline after the Kill character.

echonl (-echonl)
Echoes (does not echo) newline, even if echo is disabled.

noflsh (-noflsh)
Disables (enables) flush after INTR, QUIT, SUSP.

527188-021 Hewlett-Packard Company 8−65

stty(1) OSS Shell and Utilities Reference Manual

Control Assignments
special_character string

Sets special_character to string. The special character is set to the first character in
string and subsequent characters are ignored, with the following exceptions:

• The strings undef and ˆ- set the special character to {_POSIX_VDISABLE} if
it is in effect for the device.

• The string ˆ? sets the special character to <Delete>.

• Any other string beginning with the character ˆ sets the special character to the
control character corresponding to the second character of string (subsequent
characters are ignored). For example, the string ˆc sets the special character to
^C; the string ˆzq sets the special character to ˆZ.

Note that you can set a special character to a control character in two ways: by
entering the control character itself or by entering ˆ and another character.
This allows you to enter a control character that is already assigned to a special
character without entering that special character; for example, you can enter
^C, even if it is already assigned to the intr special character, by entering ˆ and
then c.

Recognized special_characters include dsusp, eof, eol, eol2, erase, discard,
status, intr, kill, lnext, quit, reprint, start, stop, susp, and werase.

min number

time number
Sets the value of min or time to number. MIN and TIME are used in Noncanonical
mode input processing (-icanon).

Combination Modes
saved settings

Sets the current terminal characteristics to the saved settings produced by -g.

evenp or parity
Enables parenb and cs7; disables parodd.

oddp Enables parenb, cs7, and parodd.

-parity, -evenp, -oddp
-parity enables parodd, -evenp sets odd parity (that is, disables parenb), and -oddp
sets even parity (that is, sets cs8).

nl (-nl) Enables (disables) icrnl and onlcr. -nl also unsets inlcr, igncr ocrnl, and onlret.

sane Resets all modes to some reasonable values.

Compatibility Mode
ek Resets Erase and Kill characters back to system defaults.

lfkc (-lfkc)
Same as echok.

flow (-flow)
Same as ixon (-ixon).

tandem (-tandem)
Same as ixoff (-ixoff).

8−66 Hewlett-Packard Company 527188-021

User Commands (s) stty(1)

crterase (-crterase)

crtbs (-crtbs)
Same as echoe (-echoe).

ctlecho (-ctlecho)
Same as echoctl (-echoctl).

litout (-litout)

all

everything
Same as -a.

nohang (-nohang)
Does not (does) send HANGUP signal if carrier drops.

nul-fill Does character fill and uses Null character.

del-fill Does character fill and uses Delete character.

If no options are specified, an unspecified subset of the information displayed for the -a flag is
displayed.

Control-characters are displayed as follows:

control_character = value

where value is either the character, or some visual representation of the character if it is nonprint-
ing, or the string undef if the character is disabled.

EXIT VALUES
The stty utility exits with one of the following values:

0 The terminal options were read or set successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: tty(1).

Functions: tcsetattr(3), tcgetattr(3), ttyname(3)

Files: termios(4)

527188-021 Hewlett-Packard Company 8−67

su(1) OSS Shell and Utilities Reference Manual

NAME
su - Substitutes user ID temporarily and changes password

SYNOPSIS
su [[-f] | [-]

[username | username,password[,]]
[-c string]]

FLAGS
- Starts a login shell using /bin/sh; /etc/profile and .profile are processed if they exist,

and the current working directory is set to the home directory (the initial working
directory) of the new user ID. The ENV and HOME environment variables are set
accordingly. If the - option is not specified, the ENV and HOME environment vari-
ables are not changed.

-f The -f option allows the command to skip certain steps to load faster. A new shell
(/bin/sh) is started.

-c string Specifies a string to be passed to the shell as a command to execute. This option must
follow a specified username value.

The string value is subject to all of the rules of character substitution and is usually
enclosed in quotation marks. Refer to the osh(1) reference page either online or in the
Open System Services Shell and Utilities Reference Manual for a discussion of using -c
options.

DESCRIPTION
The su command can change:

• The login name and therefore the user ID of the current shell

• The password for the user ID of the current shell

• The login name and therefore the user ID used for a new shell

• The password used for the user ID of a new shell

Security is enforced by requiring the user to complete a normal login dialog for the new login
name.

The new user ID stays in force until the shell exits. The new password stays in force until
changed again.

Changing the Password
The password can be changed either on the command line or during the login dialog by specify-
ing a comma immediately after the current password. See the EXAMPLES section of this refer-
ence page for more information. For information about valid passwords, including information
about special characters in passwords, see the USER_AUTHENTICATE_ procedure in the Guar-
dian Procedure Calls Reference Manual.

The ability to change the password of the new login name can be disabled by setting the
BLINDLOGON attribute of the new login name.

Operands
username Specifies the login name to which the command applies. If no value is specified

for username, the SUPER.SUPER username is assumed; this usually
corresponds to the super ID of 65535. Only users who belong to group number
255 can issue su to become the super ID, even with the appropriate password for
the super ID.

8−68 Hewlett-Packard Company 527188-021

User Commands (s) su(1)

,password[,] Specifies the password for the new login name. The initial comma cannot have
any spaces before it. When this option is used, login dialog is bypassed unless
the value entered is incorrect for the login name specified. Passwords that con-
tain characters that have special meaning to the shell must be enclosed in quotes
if the password is specified on the command line. For information about shell
metacharacters, see "Quoting" in the sh(1) reference page.

If the comma is specified after the value, the dialog for changing the password of
the new login name must be completed.

To remind super ID users of their responsibilities, the shell substitutes a # (number sign) for its
usual prompt.

Environment Variables
This command supports the following environment variables: ENV, HOME, and LOGNAME.

EXAMPLES
1. The following command starts a new login shell for the login name myalias, runs the

/etc/profile and .profile files, and changes the user to the initial working directory of
myalias:

su - myalias

2. The following command does not start a new shell for the user named SUPER.SUPER
but does begin the editing of the system-wide profile file:

su SUPER.SUPER -c "vi /etc/profile"

3. The following command changes the password for the login name myalias in the current
shell:

su myalias
Password: oldpw,
Enter new password: newpw
Reenter new password: newpw

The password values oldpw and newpw are not echoed during this dialog.

4. The following command also changes the password for the login name myalias in the
current shell:

su myalias,oldpw,
Enter new password: newpw
Reenter new password: newpw

The new password value newpw is not echoed during this dialog.

RELATED INFORMATION
Commands: sh(1).

STANDARDS CONFORMANCE
This command is an extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 8−69

sum(1) OSS Shell and Utilities Reference Manual

NAME
sum - Displays the checksum and block count of a file

SYNOPSIS
sum [-o | -r] [file ...]

FLAGS
-o Computes the checksum using a word-by-word computation algorithm.

-r Computes the checksum using the more rigorous byte-by-byte computation algorithm.
This is the default action.

DESCRIPTION
The sum command reads file and calculates a 16-bit checksum and the number of 512-byte
blocks in the file. If the file operand is omitted, sum reads the standard input file.

The checksum and number of blocks are written to the standard output file.

Environment Variables
The following environment variables affect the execution of the sum command:

LANG Provides a default value for the internationalization variables that are unset or
null. If LANG is unset or null, the corresponding value from the default locale is
used. If any of the internationalization variables contain an invalid setting, the
utility behaves as if none of the variables have been defined.

LC_ALL If set to a nonempty string value, overrides the values of all the other internation-
alization variables.

LC_CTYPE Determines the locale for the interpretation of sequences of bytes of text data as
characters (for example, single-byte as opposed to multibyte characters in argu-
ments).

LC_MESSAGES
Determines the locale to be used to affect the format and contents of diagnostic
messages written to the standard error file.

NLSPATH Determines the location of message catalogs for the processing of
LC_MESSAGES.

EXAMPLES
To display the checksum of datafile and the number of blocks in this file, enter:

sum datafile

If the checksum of datafile is 1605 and if the file contains 3 blocks, sum displays:

1605 3 datafile

NOTES
The sum command is typically used to determine whether a file that was copied or communi-
cated over transmission lines is an exact copy of the original.

Portable applications should use the cksum command instead of the sum command.

EXIT VALUES
The following exit values are returned:

0 Successful completion.

8−70 Hewlett-Packard Company 527188-021

User Commands (s) sum(1)

>0 An error occurred.

RELATED INFORMATION
Commands: cksum(1), wc(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification, with the following exception:

• The -o flag is an HP extension to the specification.

527188-021 Hewlett-Packard Company 8−71

Section 9. User Commands (t - u)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the letters t and u.

527188-021 Hewlett-Packard Company 9−1

tail(1) OSS Shell and Utilities Reference Manual

NAME
tail - Writes a file from a specified point

SYNOPSIS
Current Syntax

tail
[-f | -r]
[-c [+|-]number | -n [+|-]number]
[file]

Obsolescent Syntax
tail

[+[number][unit] | -[number][unit][f]]
[-f | -r]
[file]

FLAGS
-c [+|-]number

Writes number bytes of the file. The sign specified before number affects the location
in the file from which to begin writing:

+ (plus) Writing begins relative to the beginning of the file.

- (minus) Writing begins relative to the end of the file.

no sign Writing begins relative to the end of the file.

The value number begins at 1; that is, -c +1 writes the first byte of the file, and -c -1
writes the last byte of the file.

-f Prevents the tail command from terminating after it writes the last line of the input file
if the input file is not read from a pipe (that is, if the input file is a regular file or the file
operand specifies a FIFO). Instead, tail enters an endless loop in which it sleeps for a
second and then attempts to read and write further records from the input file. Thus,
the tail command with the -f flag set can be used to monitor the growth of a file being
written by another process.

The -f flag has no effect if specified with the -r flag.

-n [+|-]number
Writes number lines of the file. The sign specified before number affects the location
in the file from which to begin writing:

+ (plus) Writing begins relative to the beginning of the file.

- (minus) Writing begins relative to the end of the file.

no sign Writing begins relative to the end of the file.

The value number begins at 1; that is, -n +1 writes the first line of the file, and -n -1
writes the last line of the file.

-r Causes tail to write lines from the end of the file in reverse order. This flag overrides
the -f flag.

If the size of the file is not larger than BUFFSIZE, the default action is to write the
entire file; otherwise, -r writes the last BUFFSIZE bytes of the file. (Note that
BUFFSIZE is 10 * LINE_MAX, or 20,480 bytes.)

9−2 Hewlett-Packard Company 527188-021

User Commands (t - u) tail(1)

+[number][unit]
(Obsolescent) Begins writing from a location that is the specified number of units after
the beginning of the input file.

The default value for number is 10.

The possible values for unit are:

b Specifies 512-byte blocks

c Specifies characters, counted byte by byte

k Specifies 1-kilobyte blocks

l Specifies lines

m Specifies characters, counting a multibyte character as a single charac-
ter

The default value for unit is l.

-[number][unit][f]
(Obsolescent) Begins writing from a location that is the specified number of units
before the end of the input file.

The default value for number is 10.

The possible values for unit are:

b Specifies 512-byte blocks

c Specifies characters, counted byte by byte

k Specifies 1-kilobyte blocks

l Specifies lines

m Specifies characters, counting a multibyte character as a single charac-
ter

The default value for unit is l. Specifying f has the same effect as specifying the -f flag.

DESCRIPTION
The tail command writes from the named file (or, if no file is specified, from the standard input
file) to the standard output file, beginning at a point you specify. If you do not specify the flags -
f, -r, -number, or +number, tail begins reading 10 lines before the end of the file. - (end of input
file) is the default starting point, l (lines) is the default unit, and 10 is the default number.

By specifying +, you can direct tail to write from the beginning of the input file. By specifying a
number or a unit or both, you can change the point at which tail begins writing.

The unit argument can specify lines, blocks, or characters. The block size is either 512 bytes or 1
kilobyte.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

527188-021 Hewlett-Packard Company 9−3

tail(1) OSS Shell and Utilities Reference Manual

EXAMPLES
1. To write the last 10 lines of a file named notes, enter:

tail notes

2. To write the last 20 lines of notes, enter:

tail -n -20 notes

3. To write notes a page at a time, starting with the 200th byte from the beginning, enter:

tail +200c notes � more

4. To follow the growth of a file named accounts, enter:

tail -n -1 -f accounts

This command writes the last line of accounts and then continues to write any lines that
have been added to the end of the file until the command is stopped by the Interrupt key
sequence.

EXIT VALUES
The tail command returns the following exit values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: cat(1), more(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

The -r flag is an HP extension to the XPG4 Version 2 specification.

9−4 Hewlett-Packard Company 527188-021

User Commands (t - u) tar(1)

NAME
tar - Manipulates tape-archive-format files

SYNOPSIS
tar [-]required_flag[Abflmovw]

[operand ...]

FLAGS
The function performed by tar is specified by one of the following values for required_flag:

c Creates a new archive file. If the archive file is on tape, writing begins at the beginning
of the tape instead of after the last file. The use of this flag implies the function of the
required_flag value of r.

r Writes the files specified by operand values at the end of the tape or appends them to
the end of an existing archive file. The use of the required_flag value of c implies the
function of this flag.

t Lists the names of the files specified by operand values each time they occur in the
archive file. If no value is given for operand, all the names in the archive file are listed
to the standard output file.

u Adds the files specified by operand values to the archive file, if the files are not already
there or if they were modified since last archived.

x Extracts the files specified by operand values from the archive file. If a specified file
matches a directory whose contents were written into the archive file, this directory is
(recursively) extracted. The owner, modification time, and mode are restored (if possi-
ble).

If no value is given for operand, the entire content of the archive is extracted. If multi-
ple entries specifying the same file are in the archive, the last one overwrites all earlier
ones.

You can use the following flags with required_flag:

A Tells the tar command to suppress warning messages about optional access control list
(ACL) entries. Because the tar utility does not archive optional ACL entries, a warn-
ing message is printed for each file that has optional ACL entries. However, if tar is
executed remotely from a system that does not support OSS ACLs, no warnings are
printed.

b Tells the tar command to use the next operand as the blocking factor for tape records.
The default value is less than or equal to 20, and the maximum value is greater than or
equal to 20 (larger values can be specified at the risk of creating a tape archive that
some systems’ tape drives might not be able to restore).

Use this flag only when creating or writing raw magnetic tape archives. The block size
is determined automatically when reading tapes (required_flag values of x or t).

f Tells the tar command to use the first operand value (or the second, if the b flag has
been specified) as the name of the archive file.

When f is used with the required_flag value of t or x and the pathname specified for
operand is - (dash), the standard input file is an archive file formatted as with pax -x
ustar. When f is used with the required_flag value of r, u, or c and the pathname
specified for operand is - (dash), the standard output file is an archive file formatted as
with pax -x ustar. For example, the following command line is valid:

527188-021 Hewlett-Packard Company 9−5

tar(1) OSS Shell and Utilities Reference Manual

(cd fromdir; tar cf -.)|(cd todir; tar xf -)

l Tells tar to generate an error message if it cannot resolve all the links to the files
archived. If this flag is not specified, no error messages are generated.

m Tells tar not to restore the modification times. The modification time assigned will be
the time of extraction, which is always the case with symbolic links.

o Is provided for backward compatibility. Specify this flag if the archive will be restored
on a system with an earlier version of tar.

On output, tar normally places information specifying owner and modes of directories
in the archive file. Earlier versions of tar, when encountering this information, give an
error message of the form:

name/: cannot create

The o flag suppresses the directory information. It also prevents archiving of special
files and FIFOs that earlier versions of tar would not be able to extract properly.
(Although anyone can archive special files, only a user who has appropriate privileges
can extract them from the archive files.)

When o is used for reading, it causes the extracted file to take on the user ID and group
ID (UID and GID) of the user running the program, rather than those of the archive file.
This is the default action for the ordinary user.

v Makes tar display progress messages containing the name of each file it processes pre-
ceded by the flag letter. When the v flag is omitted, tar does not produce progress mes-
sages.

When used with the required_flag value of t, the v (verbose) flag gives more informa-
tion about the archive entries than just their names.

w Causes tar to display the action to be taken followed by the name of the file, and then
to wait for the user’s confirmation.

If the user responds with a word beginning with y, or the locale’s equivalent of a y, the
action is performed. If any other response is given, the action is not performed.

All flags must be specified together (with no separating spaces). For all flags that require
operand values, the operands must follow the string of flags and be in the same order as the
corresponding flags. For example, tar -cbf n file . and tar -cfb file n |. both use correct ordering,
while tar -cbf file n . specifies a filename where a blocking factor is expected.

DESCRIPTION
The tar utility is used to save and restore data from traditional format tar archives.

The actions of the tar command are controlled by a string containing one required flag and one
or more optional flags. Most operands to tar are filenames or directory names specifying which
files to dump or restore. In all cases, appearance of a directory name refers to the files and (recur-
sively) subdirectories of that directory.

Environment Variables
The LC_MESSAGES variable determines the locale’s equivalent of y or n (for yes/no user
responses).

This command supports the use of the LANG, LC_ALL, LC_COLLATE, LC_CTYPE,
LC_MESSAGES, LC_TIME, NLSPATH, and TZ environment variables.

9−6 Hewlett-Packard Company 527188-021

User Commands (t - u) tar(1)

FILES
/tmp/tar* Temporary file used with the required_flag value of u.

NOTES
• There is no way to ask for the nth occurrence of a file.

• Tape errors are handled ungracefully.

• The function of the required_flag value of u can be slow.

• The limit on filename length is 256 bytes. The limit on file links (hard or soft) is 100
bytes.

• There is no way to selectively follow symbolic links.

• When extracting archive files created with the required_flag value of r or u, directory
modification times might not be set correctly.

• The tar command can fail with the error message Name too long when an attempt is
made to archive a file with a filename longer than 100 characters. This message is
displayed because the USTAR format is used to create an archive. The command fails
because the USTAR format does not support filenames longer than 100 characters, in
conformance with the 1990 edition of the POSIX Standard IEEE 1003.1. A practical
workaround is to use the pax command with the -x cpio flag, because the cpio archive
format supports filenames longer than 100 characters.

EXIT VALUES
The tar command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: cpio(1), pax(1).

Functions: chdir(2), umask(2).

Files: tar(4).

Miscellaneous topics: acl(5).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

527188-021 Hewlett-Packard Company 9−7

tee(1) OSS Shell and Utilities Reference Manual

NAME
tee - Displays program output and copies to a file

SYNOPSIS
tee [-ai] [file ...]

The tee command reads standard input and writes both to standard output, and to each
specified file.

FLAGS
-a Adds the output to the end of file instead of writing over it.

-i Ignores the SIGINT signal.

DESCRIPTION
The tee command is useful when you wish to view program output as it is displayed, and also
want to save it in a file. The tee command can accept up to 20 file arguments.

The tee command does not buffer output.

EXAMPLES
1. To view and save the output from a command at the same time, enter:

ls | tee mylist

This displays the standard output of the command ls at the terminal, and at the same time
saves a copy of it in the file mylist. If mylist already exists, it is deleted and replaced.

2. To display the output of a command or program and append it to a file, enter:

ls | tee -a listrecord

This displays the standard output of ls at the terminal and at the same time appends a
copy of it to the end of listrecord. If the file listrecord does not exist, it is created.

RELATED INFORMATION
Commands: echo(1).

9−8 Hewlett-Packard Company 527188-021

User Commands (t - u) telnet(1)

NAME
telnet - Allows login to a remote host (not supported in OSS)

SYNOPSIS
telnet

DESCRIPTION
The telnet command implements the TELNET protocol, which allows remote login to other
hosts. The telnet client is not supported in the OSS environment.

As a substitute, the Guardian environment Telserv interface for the TELNET protocol can be
used through the gtacl command. The corresponding syntax is:

gtacl -p telnet [hostname | ipaddress [port_number]]

EXAMPLES
The following example creates a connection for login to the remote host with the specified IP
address; the port number defaults to a well-known value (usually 23):

gtacl -p telnet 130.255.198.4

RELATED INFORMATION
Commands: gtacl(1).

527188-021 Hewlett-Packard Company 9−9

test(1) OSS Shell and Utilities Reference Manual

NAME
test - Evaluates conditional expressions

SYNOPSIS
test expression

[expression]

DESCRIPTION
The test command evaluates an expression constructed of functions and operators. If the value
of expression is TRUE, test returns an exit value of 0 (zero); otherwise, it returns a value of 1
(FALSE). The test command also returns an exit value of 1 if there are no arguments.

The alternative form of the command surrounds expression with [] (brackets). When you use
this form, you must surround the brackets with spaces.

The test Expressions
All of the listed functions and operators are separate arguments to test.

The following functions are used to construct expression:

-a file TRUE if file exists.

-b file TRUE if file exists and is a block special file.

-c file TRUE if file exists and is a character special file.

-d file TRUE if file exists and is a directory.

-e file TRUE if file exists.

-f file TRUE if file exists and is a regular file.

-g file TRUE if file exists and its set-group ID bit is set.

-h file TRUE if file exists and is a symbolic link. This function was used with previous
versions of this program. Use -L instead of -h.

-k file TRUE if file exists and its sticky bit is set.

-L file TRUE if file exists and is a symbolic link.

-n string1 TRUE if the length of string1 is nonzero.

-p file TRUE if file exists and is a named pipe (FIFO).

-r file TRUE if file exists and has read permission.

-s file TRUE if file exists and has a size greater than 0 (zero).

-t [file_descriptor]
TRUE if the open file with file descriptor number file_descriptor (1 by default)
is associated with a terminal device.

-u file TRUE if file exists and its set-user ID bit is set.

-w file TRUE if file exists and has write permission.

-x file TRUE if file exists and has execute permission. If file is a directory, TRUE
indicates that it can be searched.

9−10 Hewlett-Packard Company 527188-021

User Commands (t - u) test(1)

-z string1 TRUE if the length of string1 is 0 (zero).

string1 = string2
TRUE if string1 and string2 are identical.

string1 != string2
TRUE if string1 and string2 are not identical.

string1 TRUE if string1 is not the null string.

number1 -eq number2
TRUE if the integers number1 and number2 are algebraically equal. Any of the
comparisons -ne (not equal to), -gt (greater than), -ge (greater than or equal to),
-lt (less than), and -le (less than or equal to) can be used in place of -eq.

The listed functions can be combined with the following operators:

! Unary negation operator.

-a Binary AND operator.

-o Binary OR operator (-a has higher precedence than -o).

\(expression \) Parentheses for grouping. There must be a space after \(and before \).

EXAMPLES
1. To test whether a file exists and is not empty, enter:

if test -s "$1"
then

echo $1 does not exist or is empty.
fi

If the file specified by the first positional parameter to the shell procedure does not exist,
this example displays an error message. If $1 exists, this example displays nothing.
Note that there must be a space between -s and the filename.

The double quotes around $1 ensure that the test will work properly even if the value of
$1 is the empty string. If the double quotes are omitted and $1 is the empty string, test
displays the error message test: parameter expected.

2. To do a complex comparison, enter:

if [$# -lt 2 -o ! -s "$1"]
then

exit
fi

If the shell procedure was given fewer than two positional parameters or if the file
specified by $1 does not exist or is empty, then this example exits the shell procedure.
The special shell variable $# represents the number of positional parameters entered on
the command line that started this shell procedure.

Note that there must be a space before and after the [character and before the] charac-
ter. There must also be a space before the -lt flag and before the -s flag.

527188-021 Hewlett-Packard Company 9−11

test(1) OSS Shell and Utilities Reference Manual

EXIT VALUES
The test command evaluates expression and, if its value is TRUE, returns an exit value of 0
(zero); otherwise, it returns a value of 1 (FALSE); the test command also returns an exit value of
1 if there are no arguments.

RELATED INFORMATION
Commands: find(1), sh(1).

STANDARDS CONFORMANCE
The -a file function (an expression primary operand) is an extension to the XPG4 Version 2
specification.

9−12 Hewlett-Packard Company 527188-021

User Commands (t - u) time(1)

NAME
time - Times the execution of a command

SYNOPSIS
time [-p] command [argument ...]

The time command prints the elapsed time during the execution of a command, the time
spent in the system, and the time spent in execution of the command on the diagnostic out-
put system.

FLAGS
-p Writes the timing output to standard error. This is the default.

DESCRIPTION
Time is reported in seconds.

The time command (with a different format) is also built into sh.

EXAMPLES
To measure the time required to run a program, enter:

time a.out

This runs the program a.out and writes to the standard error output the amount of real, system,
and user time that it uses:

real 10.5
user 0.3
sys 3.6

EXIT VALUES
The time command returns the following exit values:

1-125 An error occurred.

126 The utility was found but could not be invoked.

127 The utility could not be found.

RELATED INFORMATION
Commands: sh(1).

527188-021 Hewlett-Packard Company 9−13

times(1) OSS Shell and Utilities Reference Manual

NAME
times - Prints accumulated running times

SYNOPSIS
times

DESCRIPTION
The times command returns the total time that has been used by the shell and the accumulated
run times of processes run by the shell.

Two sets of times are returned for both the shell time and process time. The first two numbers
represent the accumulated user time and accumulated system time used by the shell. The second
two numbers represent the accumulated user time and accumulated system time used for
processes.

EXAMPLES
1. The following example shows the time command and an example of its output:

times

0m0.23s 0m0.33s
0m0.13s 0m0.09s

The first line represents times used by the shell. The first number is the time used by the
shell for the user functions. The second number represents time used by the system for
shell functions.

The second line represents times used by the shell for subshell processes. The first
number represents user time for subshells, the second number represents system time
used for subshells.

NOTES
• Parameter assignment lists that precede the command remain in effect when the com-

mand completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The times command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

9−14 Hewlett-Packard Company 527188-021

User Commands (t - u) touch(1)

NAME
touch - Updates file access and modification times

SYNOPSIS
Current Syntax

touch [-acfm] [-r reference_file | -t time] file ...

Obsolescent Syntax
touch [-acfm] [time] file ...

The touch command updates the access and modification times of each file or directory named to
the time specified on the command line.

Do not use the touch command on files in the Guardian environment.

FLAGS
-a Changes only the access time.

-c Suppresses the creation of the file without any diagnostic messages.

-f Attempts to force the touch in spite of read and write permissions on a file. -f is actu-
ally a dummy flag; it is not used by the touch code, but is recognized by getopt().

-m Changes only the modification time.

-r reference_file
Uses the time of the file named by the pathname reference_file instead of the current
time.

-t time Uses the specified time instead of the current time. The time argument is a decimal
number in the following form:

[[CC]YY]MMDDhhmm[.SS]

The paired decimal numbers in the preceding syntax line represent the following:

CC The first two digits of the year (the century).

YY The second two digits of the year (00-99).

MM The month of the year (01-12).

DD The day of the month (01-31).

hh The hour of the day (00-23).

mm The minute of the hour (00-59).

SS The second of the minute (00-61).

Both CC and YY are optional. If neither is specified, the current year is assumed. If YY
is specified, but CC is not, CC is derived as follows:

• If YY is 69-99, CC is 19.

• If YY is 00-68, CC is 20.

The resulting time is affected by the value of the TZ environment variable. If the
resulting time value precedes the Epoch, touch exits immediately with an error status.
The range of valid times past the Epoch extends to at least midnight 1 January 2000
UT.

527188-021 Hewlett-Packard Company 9−15

touch(1) OSS Shell and Utilities Reference Manual

The range for SS is 00-61 rather than 00-59 because of leap seconds. If SS is 60 or 61,
and the resulting time, as affected by the TZ environment variable, does not refer to a
leap second, the resulting time is one or two seconds after a time where SS is 59. If SS
is not given a value, it is assumed to be 0 (zero).

DESCRIPTION
The time used can be specified by -t, -r, or by the time argument. If you do not specify a time,
touch uses the current time. If you specify a file that does not exist, touch creates a file with that
name unless you request otherwise with the -c flag.

If neither the -a or -m flags are specified, touch behaves as though both of these flags were
specified.

The LC_TIME environment variable, if defined, specifies the order of month and day in the date
specification and of hour and minute in the time specification. Otherwise, these orders default to
MMdd and hhmm.

The obsolescent format for the time argument is MMddhhmm[yy].

EXAMPLES
1. To update the access and modification times of a file, enter:

touch program.c

This sets the last access and last modification times of program.c to the current date and
time. If program.c does not exist, touch creates an empty file with that name.

2. To avoid creating a new file, enter:

touch -c program.c

3. To update only the modification time, enter:

touch -m *.o

This updates only the last modification times of the files in the current directory that end
with .o. The touch command is often used in this way to alter the results of the make
command.

4. To explicitly set the access and modification times, enter:

touch -c -t 02171425 program.c

This sets the access and modification dates to 14:25 (2:25 p.m.) February 17 of the
current year. (This assumes that you are using the default format.)

5. To touch a file with a numeric filename, include its full pathname or precede it with ./, so
that the filename is not mistaken for the time argument. For example, to touch the file
123.abc, enter:

touch -c ./123.abc

CAUTION
Do not use the touch command on files in the Guardian Environment.

9−16 Hewlett-Packard Company 527188-021

User Commands (t - u) touch(1)

EXIT VALUES
The return code from touch is the number of files for which the times could not be successfully
modified (including files that did not exist and were not created). If no errors occur, the exit
status is 0 (zero).

RELATED INFORMATION
Commands: date(1).

Functions: utime(2).

Files: locale(4).

527188-021 Hewlett-Packard Company 9−17

tr(1) OSS Shell and Utilities Reference Manual

NAME
tr - Translates characters

SYNOPSIS
tr [-Acs] string1 string2

tr -s [-Ac] string1

tr -d [-Ac] string1

tr -ds [-Ac] string1 string2

The tr command copies characters from the standard input to the standard output with sub-
stitution or deletion of selected characters.

FLAGS
-A Translates on a byte-by-byte basis. When you specify this flag, tr does not support

extended characters.

-c Complements (inverts) the set of characters in string1, which is the set of all characters
in the current character set, as defined by the current setting of LC_CTYPE, except for
those actually specified in the string1 argument. These characters are placed in the
array in ascending collation sequence, as defined by the current setting of
LC_COLLATE.

-d Deletes all occurrences of input characters or collating elements found in the array
specified in string1.

If -c and -d are both specified, all characters except those specified by string1 are
deleted. The contents of string2 are ignored, unless -s is also specified. Note, how-
ever, that the same string cannot be used for both the -d and the -s flags; when both
flags are specified, both string1 (used for deletion) and string2 (used for squeezing) are
required.

If -d is not specified, each input character or collating element found in the array
specified by string1 is replaced by the character or collating element in the same rela-
tive position in the array specified by string2.

-s Replaces any character specified in string1 that occurs as a string of two or more
repeating characters as a single instance of the character in string2.

If the string2 contains a character class, the argument’s array contains all of the charac-
ters in that character class. For example:

tr -s ’[:space:]’

In a case conversion, however, the string2 array contains only those characters defined
as the second characters in each of the toupper or tolower character pairs, as appropri-
ate. For example:

tr -s ’[:upper:]’ ’[:lower:]’

DESCRIPTION
Input characters from string1 are replaced with the corresponding characters in string2. If neces-
sary, string1 and string2 can be quoted to avoid pattern matching by the shell.

The following abbreviations can be used to introduce ranges of ASCII characters or repeated
characters:

a-z Stands for a string of characters whose ASCII codes run from character a to character
z, inclusive. No multicharacter collating elements will be included in this range.

9−18 Hewlett-Packard Company 527188-021

User Commands (t - u) tr(1)

[a*number]
Stands for number repetitions of a. number is considered to be in decimal unless the
first digit of number is 0; then it is considered to be in octal. Because this expression is
used to map multiple characters to one character, it is only valid when it occurs in
string2. If number is omitted or is 0 (zero), it is interpreted as large enough to extend
the string2-based sequence to the length of the string1-based sequence.

[=equiv=]
Represents all characters or collating elements belonging to the equivalence class
specified by equiv, as defined by the LC_COLLATE locale category. An equivalence
class expression can be used for string1 or string2 only when used in combination with
the -d and -s flags. (For more information, see the reference page for the locale file.)

[:class:] Represents all characters belonging to the defined character class, as defined by the
current setting of the LC_CTYPE locale category. The following character class
names are accepted when specified in string1:

alnum cntrl lower space
alpha digit print upper
blank graph punct xdigit

When the -d and -s flags are specified together, any of the character class names are
accepted in string2; otherwise, only character class names lower or upper are
accepted in string2 and then only if the corresponding character class (upper and
lower, respectively) is specified in the same relative position in string1. Such a
specification is interpreted as a request for case conversion.

When [:lower:] appears in string1 and [:upper:] appears in string2, the arrays contain
the characters from the toupper mapping in the LC_CTYPE category of the current
locale. When [:upper:] appears in string1 and [:lower:] appears in string2, the arrays
contain the characters from the tolower mapping in the LC_CTYPE category of the
current locale.

The first character from each mapping pair is in the array for string1 and the second
character from each mapping pair is in the array for string2 in the same relative posi-
tion. (For more information about possible character class settings, see the reference
page for sh.)

Use the escape character \ (backslash) to remove the special meaning from any character in a
string. Use the \ (backslash) followed by 1, 2, or 3 octal digits for the code of a character.

If an ordinary digit (representing itself) is to follow an octal sequence, the octal sequence must
use the full three digits to avoid ambiguity.

When string2 is shorter than string1, a difference results between historical System V and BSD
systems. A BSD system pads string2 with the last character found in string2. Thus, it is possible
to do the following:

tr 0123456789 d

The preceding command translates all digits to the letter d. A portable application cannot rely on
the BSD behavior; it would have to code the example in the following way:

tr 0123456789 ’[d*]’

Despite their similarity to regular expressions, string arguments used by tr are not regular expres-
sions.

The tr command correctly processes NULL characters in its input stream. NULL characters can
be stripped using the following command:

tr -d ’\000’

527188-021 Hewlett-Packard Company 9−19

tr(1) OSS Shell and Utilities Reference Manual

EXAMPLES
1. To translate braces into parentheses, enter:

tr ’{}’ ’()’

This translates each { (left brace) to a ((left parenthesis) and each } (right brace) to)
(right parenthesis). All other characters remain unchanged and are sent to standard out-
put.

2. To translate lowercase ASCII characters to uppercase, enter:

tr ’[:lower:]’ ’[:upper:]’ < infile > outfile

3. To translate each digit to a # (number sign), enter:

tr ’0-9’ ’[#*]’ < infile > outfile

The * (asterisk) tells tr to repeat the # (number sign) enough times to make the second
string as long as the first one.

4. To translate each string of digits to a single # (number sign), enter:

tr -s ’0-9’ ’[#*]’ < infile > outfile

5. To translate all ASCII characters that are not specified, enter:

tr -c ’[-˜\177]’ ’[A-_?]’ < infile > outfile

This translates each nonprinting ASCII character to the corresponding control key letter
(\001 translates to A, \002 to B, and so on). ASCII DEL (\177), the character that follows
~(tilde), translates to a ? (question mark).

6. To create a list of all words in file1 one per line in file2, where a word is taken to be a
maximal string of letters, enter:

tr -cs ’[:alpha:]’ ’[\n*]’ < file1 > file2

7. To use an equivalence class to identify accented variants of the base character e in file1,
which are stripped of diacritical marks and written to file2, enter:

tr ’[=e=]’ ’[e*]’ < file1 > file2

Specifying the -A flag improves ASCII performance.

RELATED INFORMATION
Commands: sh(1).

9−20 Hewlett-Packard Company 527188-021

User Commands (t - u) trap(1)

NAME
trap - Provides instructions to a process

SYNOPSIS
trap [argument] [signal ...]

DESCRIPTION
The trap command provides instructions to a program when signals are received.

The argument variable specifies a command to be read and executed when the shell receives the
specified signals. (Note that argument is scanned once when the trap is set and once when the
trap is taken.) Each signal can be given as a number or as the name of the signal. Trap com-
mands are executed in order of signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective.

If argument is omitted or is -, all traps are reset to their original values.

If argument is a null string, this signal is ignored by the shell and by the commands it invokes.

If signal is ERR, argument is executed whenever a command has a nonzero exit status.

If signal is DEBUG, argument is executed after each command.

If signal is 0 or EXIT and the trap statement is executed inside the body of a function, the com-
mand argument is executed after the function completes.

If signal is 0 (zero) or EXIT for a trap set outside any function, the command argument is exe-
cuted on exit from the shell. The trap command with no arguments prints a list of commands
associated with each signal number.

NOTES
• Parameter assignment lists that precede the command remain in effect when the com-

mand completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The trap command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

527188-021 Hewlett-Packard Company 9−21

true(1) OSS Shell and Utilities Reference Manual

NAME
true - Returns a standard exit value

SYNOPSIS
true

DESCRIPTION
The true command returns a 0 (zero) exit value. These commands are usually used in input to
the sh command.

EXAMPLES
To construct a loop in a shell procedure, enter:

while true
do

date
sleep 60

done

This procedure displays the date and time once a minute. To stop it, press the Interrupt key
sequence.

RELATED INFORMATION
Commands: false(1), sh(1).

9−22 Hewlett-Packard Company 527188-021

User Commands (t - u) tty(1)

NAME
tty - Returns pathname of terminal device

SYNOPSIS
tty [-s]

The tty command writes the full pathname of your terminal device to standard output.

FLAGS
-s Suppresses reporting the pathname so that only the exit status is affected. (Obsoles-

cent.) You can perform the same operation with the test -t file_descriptor command.

DESCRIPTION
The tty -s command evaluates as TRUE if standard output is a display and FALSE if it is not.

The /dev/tty special file always refers to your controlling terminal, although it also may have
another name like /dev/console or /dev/tty2. To avoid writing undesirable output to an output
file (for example, to write a prompt in a shell script to the screen, while writing the response to
the prompt to an output file), redirect standard output to /dev/tty.

EXAMPLES
1. To display the full pathname of your terminal device, enter:

tty

2. To test whether or not the standard input is a terminal device, enter:

if test -t 0
then

echo "Output is a display"
else

echo "Output is not a display"

FILES
/dev/tty Pseudodevice representing the user’s controlling terminal.

DIAGNOSTICS
not a tty Your standard input is not an interactive terminal.

EXIT VALUES
The exit value has the following possible meanings:

0 Standard input is a tty.

1 Standard input is not a tty.

2 Invalid flags specified or other error.

RELATED INFORMATION
Commands: stty(1).

Subroutines: isatty(3), ttyname(3).

Files: tty(7).

527188-021 Hewlett-Packard Company 9−23

type(1) OSS Shell and Utilities Reference Manual

NAME
type - Returns type and location of commands

SYNOPSIS
type argument

DESCRIPTION
The type command returns the location of the command name given as argument. The type
command is an alias to the whence -v command, another shell built-in command.

EXAMPLES
1. The following example returns the command type and location of the grep command.

type grep

grep is a tracked alias for /bin/grep

In this example, the name grep is a tracked alias for the grep command located at
/bin/grep.

NOTES
The type command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1), whence(1).

9−24 Hewlett-Packard Company 527188-021

User Commands (t - u) typeset(1)

NAME
typeset - Sets attributes and values for shell parameters

SYNOPSIS
typeset [+ | -HLRZfilrtux[n]] [name[=value ...]]

FLAGS
-f The names refer to function names rather than parameter names. No assignments can

be made and the only other valid flags are -t, -u, and -x. The -t flag turns on execution
tracing for this function. The -u flag causes this function to be marked undefined. The
FPATH variable is searched to find the function definition when the function is refer-
enced. The -x flags allows the function definition to remain in effect across shell pro-
cedures invoked by name.

-H Provides system-to-hostname file mapping on machines that restrict the set of charac-
ters in filenames.

-i Parameter is an integer. This makes arithmetic faster. If n is nonzero, it defines the
output arithmetic base; otherwise, the first assignment determines the output base.

-l All uppercase characters are converted to lowercase. The uppercase -u flag is turned
off.

-L Left justifies and removes leading spaces from value. If n is nonzero, it defines the
width of the field; otherwise, it is determined by the width of the value of first assign-
ment. When the parameter is assigned, it is filled on the right with spaces or truncated,
if necessary, to fit into the field. Leading zeros are removed if the -Z flag is also set.
The -R flag is turned off.

-r The given names are marked read-only, and these names cannot be changed by subse-
quent assignment.

-R Right justifies and fills with leading spaces. If n is nonzero, it defines the width of the
field; otherwise, it is determined by the width of the value of first assignment. The field
is left-filled with spaces or truncated from the end if the parameter is reassigned. The
L flag is turned off.

-t Tags the named parameters. Tags are user definable and have no special meaning to
the shell.

-u All lowercase characters are converted to uppercase characters. The lowercase -l flag
is turned off.

-x The given names are marked for export.

-Z Right justifies and fills with leading zeros if the first nonspace character is a digit and
the -L flag was not set. If n is nonzero, it defines the width of the field; otherwise, it is
determined by the width of the value of first assignment.

DESCRIPTION
The typeset command assigns values to named parameters. The flags assign attributes to the
parameters.

When the typeset command is invoked inside a function, a new instance of the parameter name
is created. The parameter value and type are restored when the function completes.

Using + (plus sign) rather than - (dash) causes the flags to be turned off.

527188-021 Hewlett-Packard Company 9−25

typeset(1) OSS Shell and Utilities Reference Manual

If no name arguments are given but flags are specified, a list of names (and optionally the values)
of the parameters that have these flags set is printed. (Using + rather than - keeps the values from
being printed.)

If no names and flags are given, the names and attributes of all parameters are printed.

NOTES
The typeset command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: set(1), sh(1).

9−26 Hewlett-Packard Company 527188-021

User Commands (t - u) umask(1)

NAME
umask - Sets the user file-creation mask.

SYNOPSIS
umask [-S] [mask]

-S Produces symbolic output.

DESCRIPTION
The umask command sets the user file-creation mask to the value specified in the argument
mask. The default user file-creation mask for an OSS process is 0022.

The default permissions is 666 (rw-rw-rw) for files and 777 (rwxrwxrwx) for directories. The
permissions value you specify with the umask command will modify the default permissions.

The mask argument can be either octal number or a symbolic value. If an octal value is given,
the new umask value is the complement of the result of applying mask to the complement of the
current umask value.

If mask is omitted, the current value of the mask is printed.

Symbolic Mode
Symbolic mode has the form:

[who] operation permission,[operation permission ...]

The who argument specifies whether you are defining permissionsfor a user, group, or all others,
or any combination of these. The operation argument specifies whether the permission is being
added, removed, or assigned absolutely. The permission argument identifies the operation that
the specified users can perform.

Valid options for the who argument are as follows:

a User, group, and all others (same effect as the combination ugo)

g Group

o All others

u User (owner)

If the who argument is omitted, the default value is a, but the setting of the file creation mask,
umask (see the reference page for sh(1)), is applied.

Valid options for the operation argument are as follows:

- Removes specified permissions.

+ Adds specified permissions.

Valid options for the permission argument are as follows:

r Read permission.

w Write permission.

x Execute permission for files, search permission for directories.

s Set-user-ID or set-group-ID permission.

This permission bit sets the effective user ID or group ID to that of the owner or group
owner of file whenever the file is run. Use this permission setting with the u or g option
to allow temporary or restricted access to files not normally accessible to other users.

527188-021 Hewlett-Packard Company 9−27

umask(1) OSS Shell and Utilities Reference Manual

An s appears in the user or group execute position of a long listing (see the reference
page for the ls command) to show that the file runs with set-user-ID or set-group-ID
permission.

Note that the command umask o+s has no effect (the set-user-ID-on-execution and
set-group-ID-on-execution bits are not modified).

Absolute Mode
Absolute mode lets you use octal notation to set each bit in the permission code.

0400 Permits read by owner.

0200 Permits write by owner.

0100 Permits execute or search by owner.

0040 Permits read by group.

0020 Permits write by group.

0010 Permits execute or search by group.

0004 Permits read by others.

0002 Permits write by others.

0001 Permits execute or search by others.

EXAMPLES
1. To change the default permissions from 666 (wr-wr-wr) to 644 (rw-r--r--) using octals

(absolute mode) enter the following command.

umask 022

Notice that the octal number 022 is used. The complement of 666 is 111; when 022 is
applied to 111 the result is 133. The complement of 133 is 644, the value of the new per-
missions.

2. To change the default permissions from 666 to 644 using symbolic mode, enter the fol-
lowing command.

umask go-w

This command removes the write permissions for both the group and others.

NOTES
The umask command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: chmod(1), sh(1).

9−28 Hewlett-Packard Company 527188-021

User Commands (t - u) unalias(1)

NAME
unalias - Removes aliases

SYNOPSIS
unalias name ...
unalias -a

FLAGS
-a Removes all alias definitions from the current shell environment.

DESCRIPTION
The unalias command removes alias definitions.

Without the -a flag, the alias command removes the names specified as name ... from the shell’s
alias list.

With the -a flag, the alias command removes all alias definitions from the current shell execution
environment, but not from the shell’s alias list.

EXIT VALUES
If one of the name arguments does not represent a valid alias definition or an error occurs, the
exit value is greater than 0 (zero).

NOTES
The unalias command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: alias(1), sh(1).

527188-021 Hewlett-Packard Company 9−29

uname(1) OSS Shell and Utilities Reference Manual

NAME
uname - Displays information about the operating system

SYNOPSIS
uname [-amnrsv]

FLAGS
-a Displays all information specified with the -m, -n, -r, -s, and -v flags.

-m Displays the type of hardware running the system.

-n Displays the name of the node (this might be a name that the system is known by to a
communications network).

-r Displays the release version of the running system software.

-s Displays the operating system name. (This flag is on by default.)

-v Displays the update number of the release version currently running on the server.

DESCRIPTION
The uname command displays the name of the operating system that you are using and provides
other system information.

The uname command writes system information to standard output. This is mainly useful to
determine which system you are using. The flags cause selected information returned by uname
to be displayed.

EXAMPLES
To display the complete system name and version banner, enter:

uname -a

RELATED INFORMATION
Functions: uname(2).

9−30 Hewlett-Packard Company 527188-021

User Commands (t - u) uncompress(1)

NAME
uncompress - Expands compressed data

SYNOPSIS
uncompress [-cdfnqv] [file[.Z] ...]

FLAGS
-c Makes the uncompress command write to the standard output file; no files are

changed. The nondestructive behavior of the zcat command is identical to that of
uncompress -c.

-d Specifies that decompression should occur.

-f Except when uncompress is run in the background under the /usr/bin/sh file,
suppresses the prompt about whether an existing file given by the file operand should
be overwritten.

-n Specifies that no header is added or expected. This flag might be useful for
decompressing old files.

-q Specifies a quiet operation. This flag is the default action; diagnostic messages are
displayed only if the -v flag is specified.

-v Prints the percentage expansion of each file.

DESCRIPTION
The uncompress command replaces the compressed .Z file with a decompressed version of the
file, identical to the file that was originally compressed with the compress command. The new
file has the same filename as the compressed file with the .Z suffix removed.

You can specify the compressed target file with or without the .Z suffix; if you do not specify the
suffix, uncompress assumes it.

If the file has an access control list (ACL), the ACL is preserved when the file is decompressed.
For more information about ACLs, see the acl(5) reference page.

Operands
file[.Z] Specifies the pathname of a compressed file to be decompressed. If the .Z suffix

is omitted, it is assumed.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXIT VALUES
The uncompress command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred or an attempt was made to expand a file that is not
compressed.

RELATED INFORMATION
Commands: compress(1), zcat(1).

527188-021 Hewlett-Packard Company 9−31

uncompress(1) OSS Shell and Utilities Reference Manual

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

The following features are extensions to the XPG4 Version 2 specification:

• The -d, -n, and -q flags are supported.

9−32 Hewlett-Packard Company 527188-021

User Commands (t - u) unexpand(1)

NAME
unexpand - Replace tab or space characters

SYNOPSIS
unexpand [-a] [-t tablist] [file ...]

The unexpand command puts tab characters back into the data from the standard input file,
or the named files and writes the result to the standard output file.

FLAGS
-a Replaces spaces at the beginning of each line with a tab, and inserts tab characters

wherever their presence compresses the resultant file, by replacing two or more charac-
ters. When the -t flag is specified with the unexpand command, the -a flag has no
effect.

-t tablist Specifies the tab stops. The tablist argument consists of a single positive decimal
integer or multiple positive decimal integers, separated by spaces or commas, in
ascending order. If a single number is specified, tabs are set tablist column positions
apart instead of the default width (8). If multiple numbers are specified, tabs are set at
those specific column positions. Tabbing to tab stop position n thus causes the next
character output to be in the (n+1)th column position on that line.

DESCRIPTION
Backspace characters are preserved in the output and decrement the column count for tab calcu-
lations. The column position count cannot be decremented below zero.

By default, the unexpand command converts only spaces within sequences of spaces and tab
characters at the beginnings of lines. Use the -a flag to convert other sequences of spaces.

EXAMPLES
1. To replace the spaces in file with tab characters, enter:

unexpand -a file

RELATED INFORMATION
Commands: expand(1).

527188-021 Hewlett-Packard Company 9−33

uniq(1) OSS Shell and Utilities Reference Manual

NAME
uniq - Removes or lists repeated lines in a file

SYNOPSIS
Current syntax

uniq [-c | -d | -u] [-f fields] [-s characters] [input_file] [output_file]

Obsolescent syntax
uniq [-c | -d | -u] [-number] [+number] [input_file] [output_file]

The uniq command reads standard input by default or, the specified input_file compares adjacent
lines, removes the second and succeeding occurrences of a line, and writes to standard output or
the specified file output_file.

FLAGS
-c Precedes each output line with a count of the number of times each line appears in the

file. This flag supersedes -d and -u.

-d Displays repeated lines only.

-f fields Ignores the first fields fields on each input line when doing comparisons, where fields is
a positive decimal integer. A field is the maximal string matched by the basic regular
expression:

[[:blank:]]*[ˆ[:blank:]]*

If the fields argument specifies more fields than appear on an input line, a null string is
used for comparisons.

-s characters
Ignores the specified number of characters when doing comparisons. The characters
argument is a positive decimal integer.

If specified with the -f flag, the first characters characters after the first fields fields are
ignored. If the characters argument specifies more characters than remain on an input
line, uniq uses a null string for comparison.

-u Displays unique lines only.

-number Skips over the first number fields. A field is a string of nonspace, nontab characters
separated by tabs or spaces, or both, from adjacent data on the same line. Equivalent to
-f fields. (Obsolescent)

+number Skips over the first number characters. Fields specified by number are skipped before
characters. Equivalent to -s characters. (Obsolescent)

DESCRIPTION
The input_file and output_file arguments must specify different files.

Repeated lines must be on consecutive lines to be found. You can arrange them with the sort
command before processing.

9−34 Hewlett-Packard Company 527188-021

User Commands (t - u) uniq(1)

EXAMPLES
To delete repeated lines in the following file called fruit and save it to a file named newfruit,
enter:

uniq fruit newfruit

The file fruit contains the following lines:

apples
apples
bananas
cherries
cherries
peaches
pears

The file newfruit contains the following lines:

apples
bananas
cherries
peaches
pears

RELATED INFORMATION
Commands: comm(1), sort(1).

527188-021 Hewlett-Packard Company 9−35

unpack(1) OSS Shell and Utilities Reference Manual

NAME
unpack - Expands files compressed by the pack command

SYNOPSIS
unpack file[.z] ...

DESCRIPTION
The unpack command expands files created by pack. For each file specified, unpack searches
for a file named file.z. If this file is a packed file, unpack replaces it with its expanded version.
The unpack command names the new file by removing the .z suffix from file.z. The unpack
command tries to preserve the access modes, access and modification dates, and owner from the
compressed file, but it can do so only if you have the appropriate privileges (see the chmod(1)
reference page); otherwise, unpack expands the compressed file and assigns your owner and
group ID to the new file.

The exit value is the number of files the unpack command was unable to expand (unpack). A file
cannot be unpacked if any one of the following occurs:

• The file cannot be opened.

• The file is not a packed file.

• A file with the unpacked filename already exists.

• The unpacked file cannot be created.

If the file has an access control list (ACL), the ACL is preserved when the file is unpacked. For
more information about ACLs, see the acl(5) reference page.

Operands
file[.z] Specifies the filename of the file to be unpacked. If the .z suffix is omitted, it is

assumed.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXAMPLES
To unpack packed files, enter:

unpack chap1.z chap2

This command expands the packed files chap1.z and chap2.z, replacing them with files named
chap1 and chap2. Note that you can give unpack filenames either with or without the .z suffix.

NOTES
1. unpack operates only on files whose names end in .z. As a result, when you specify a

filename file that does not end in .z, unpack adds that suffix and searches the directory
for the filename file.z.

2. The unpack command writes a warning to the standard output file if the file it is unpack-
ing has links. Any other files linked to the packed file’s original inode still exist and are
still packed.

3. If the file being unpacked has a symbolic link, the new unpacked file has a different
inode than the packed file from which it was created.

9−36 Hewlett-Packard Company 527188-021

User Commands (t - u) unpack(1)

EXIT VALUES
The unpack command returns the following values:

0 (zero) The command completed successfully; all files were unpacked.

>0 An error occurred because some of the files could not be unpacked. The number
returned is the number of files the unpack command was unable to unpack.

RELATED INFORMATION
Commands: cat(1), compress(1), pack(1), uncompress(1), zcat(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions, except for the fol-
lowing features:

• The size of the file value is restricted to NAME_MAX-2 bytes.

527188-021 Hewlett-Packard Company 9−37

unset(1) OSS Shell and Utilities Reference Manual

NAME
unset - Removes environment variable or function definitions

SYNOPSIS
unset [-fv] name

FLAGS
-f The name argument refers to function names.

-v The name argument refers to an environment variable name.

DESCRIPTION
The values of the variables or functions given as the name argument are unassigned; that is, the
values and attributes of the names are erased. Read-only variables cannot be unset.

If the -f flag is set, the name given as the name argument refers to a function name.

If the -v flag is specified, the name given as the name parameter refers to a variable name, and the
shell unsets it and removes it from the environment.

If neither the -f nor -v flag is specified, name refers to a variable.

Unsetting ERRNO, LINENO, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _
removes their special meaning, even if they are subsequently assigned.

EXAMPLES
1. The following commands set, check, reset, and recheck the value of a variable x. After x

has been unset, the echo x command returns null, confirming that the value of x has been
unset.

x=100
echo $x
100
unset x
echo $x

NOTES
• Parameter assignment lists that precede the command remain in effect when the com-

mand completes.

• I/O redirections are processed after parameter assignments.

• Errors cause a script that contains the commands so marked to abort.

The unset command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: set(1), sh(1).

9−38 Hewlett-Packard Company 527188-021

User Commands (t - u) uudecode(1)

NAME
uudecode - Decodes a binary file

SYNOPSIS
uudecode [file ...]

DESCRIPTION
The uudecode command reads an encoded file, strips off any leading and trailing lines added by
mailers, and recreates the original file with its original file access permissions and pathname.

If the pathname of the file to be produced exists and the user does not have write permission on
that file, uudecode terminates with an error. If the pathname of the file to be produced exists and
the user has write permission on that file, the existing file is overwritten.

Operands
file Specifies the pathname of a binary file to be decoded. If this operand is omitted,

the standard input file is decoded.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXIT VALUES
The uudecode command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: uuencode(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

The following features are extensions to the XPG4 Version 2 specification:

• More than one file can be specified.

527188-021 Hewlett-Packard Company 9−39

uuencode(1) OSS Shell and Utilities Reference Manual

NAME
uuencode - Encodes a binary file

SYNOPSIS
uuencode [infile] remotefile

DESCRIPTION
The uuencode command reads the named infile (the default value for infile is the standard input
file) and produces an encoded version of that file on the standard output file. The encoding uses
only printing ASCII characters and includes the file access permission bits of the file and the
pathname to be used when the file is decoded by uudecode. This pathname is specified by
remotefile.

The output file is approximately 35 percent larger than the original file.

When the command is reading from the standard input file, the umask setting determines the file
permissions.

Operands
infile Specifies the pathname of the file to be encoded.

remotefile Specifies the pathname that the file should be given when it is decoded by the
uudecode command.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXIT VALUES
The uuencode command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred.

RELATED INFORMATION
Commands: umask(1), uudecode(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

9−40 Hewlett-Packard Company 527188-021

Section 10. User Commands (v - z)

This section contains reference pages for the Open System Services (OSS) user
commands with names starting with the letters v through z.

527188-021 Hewlett-Packard Company 10−1

vi(1) OSS Shell and Utilities Reference Manual

NAME
vi - Edits files

SYNOPSIS
vi [-ls] [-R] | [-r] [-c subcommand] [-t tag] [-wnumber] [+subcommand] [-] [file ...]

The vi command is a display editor that is based on an underlying line editor (ex).

FLAGS
-c subcommand

Executes the specified ex subcommand (command) before displaying the file for which
the editor was invoked.

-l Indents appropriately for LISP code, and accepts the (,), {, }, [, and] characters
(parentheses, braces, and brackets) as text rather than interpreting them as vi subcom-
mands. The LISP modifier is active in open or visual modes.

-r[file] Recovers file after an editor or system crash. If you do not specify a file, vi displays a
list of all saved files.

-R Sets the readonly option to protect the file against overwriting.

-s Invokes vi in open mode. (Silent mode.)

-t tag Edits the file containing the tag and positions the editor at its definition. To use this
flag, you must first create a database of function names and their locations using the
ctags command. OSS does not support the ctags command, however OSS vi does sup-
port ctags databases imported from other systems.

-wnumber
Sets the default window size to number. This is useful when you use the editor over a
low-speed line.

- Suppresses all interactive user feedback. If you use this flag, file input/output errors do
not generate an error message.

+[subcommand]
Performs the ex subcommand before editing begins. If you do not specify subcom-
mand, the cursor is placed on the first line of the file. (Obsolescent)

DESCRIPTION
The ex editor subcommands can be used within the vi editor, because vi is based on ex. (For a
complete description of ex subcommands, see the ex reference page.) The file argument specifies
the files to be edited. If you supply more than one file on the command line, vi edits each file in
the order specified.

When you use vi, changes you make to a file are reflected on your display. The position of the
cursor on the display indicates its position within the file. The subcommands affect the file at the
cursor position.

Limitations of the vi Editor
The maximum limits of the vi editor are as follows:

• 2048 bytes per line.

• 256 bytes per global command list.

• 128 bytes in the previous inserted and deleted text.

10−2 Hewlett-Packard Company 527188-021

User Commands (v - z) vi(1)

• 128 bytes in a shell escape command.

• 128 bytes in a string-valued option.

• 30 bytes in a tag name.

• 128 map macros with 2048 bytes total.

Editing Modes
The vi editor has the following operational modes:

Command mode
When you start the vi editor, it is in Command mode. Any subcommand can be entered
from this mode, except commands that can only be used in the Text Input mode (those
subcommands that make corrections during text insertion). When subcommands and
the other modes end, vi returns to Command mode. Pressing <Esc> cancels a partial
subcommand.

Text Input mode
Entered by the a, A, i, I, o, O, cx (where x represents the scope of the subcommand), C,
s, S, and R subcommands. After entering one of these commands, you can enter text
into the editing buffer at the current cursor position. To return to Command mode,
press <Esc> for normal exit or press the Interrupt key sequence to end abruptly.

Setting Options
The vi editor allows you to customize options so that you can use the editor for a specific task.
Use the set command to set or change an option. To view the current setting of options, enter
:set all while in vi Command mode.

Some options are set to a string or a number value; other options are simply turned on or off. To
change an option that is set to a value, enter a command in the form :set option=value. To toggle
an option that can be set to on or off, enter a line of the form :set option to set it to on or :set
nooption to set it to off.

Options can be abbreviated in a set command. The following list describes some of vi’s options,
along with their abbreviations and descriptions:

[no]autoindent (ai)
Indents automatically in Text mode to the indentation on the previous line by using the
spacing between tab stops specified by the shiftwidth option. The default is noai. To
back the cursor up to the previous tab stop, type <Ctrl-d>. This option is not in effect
for global commands.

[no]autoprint (ap)
Prints the current line after any command that changes the editing buffer. The default is
ap. This option applies only to the last command in a sequence of commands on a sin-
gle line, and is not in effect for global commands.

[no]autowrite (aw)
Writes the editing buffer to the file automatically before the :e, :n, :ta, :rew, :st, :su,
<Ctrl-a>, and ! subcommands if the editing buffer was changed since the last write
command. The default is noaw.

[no]beautify (bf)
Prevents user from entering control characters (except for tab, newline, and formfeed)
in the editing buffer during text entry. The default is nobf. This option does apply to
command input. If beautify is set, all nonprintable characters other than the Tab, new-
line, and formfeed characters are discarded from text read in from files.

527188-021 Hewlett-Packard Company 10−3

vi(1) OSS Shell and Utilities Reference Manual

directory (dir=)
Displays the directory that contains the editing buffer. The default is dir=/tmp.

[no]edcompatible (ed)
Causes the presence of global (g) and confirm (c) suffixes on substitute commands to
be remembered and toggled by repeating the suffixes during substitutions and causes
the read (r) suffix to work like the r subcommand. The default is noed.

[no]errorbells (eb)
Precedes error messages with an <Alert> character. Setting this option off (noeb) does
not suppress the alerting in visual mode. The default is noeb.

[no]exrc If not set, ignores any .exrc file in the current directory during initialization, unless the
current directory is that named by the HOME variable. The default is noexrc.

[no]flash (fl)
Uses visual flash rather than audible bell. The default is fl.

hardtabs (ht=)
Tells vi the distance between the hardware tab stops on your display. The default is
ht=8.

[no]ignorecase (ic)
Ignores the distinction between uppercase and lowercase while searching for regular
expressions. The default is noic.

[no]lisp Enters vi in LISP mode. In this mode, vi appropriately indents for LISP code and the (,
), {, }, [[, and]]. The default is nolisp.

[no]list Displays text with tabs and the end of lines marked. Tabs are displayed as ˆI and the
end of lines as $. The default is nolist.

[no]magic
Treats the characters ., [, and * as special characters in scans. In Off mode, only the (,
), and $ characters retain special meanings; however, special meaning of other charac-
ters can still be invoked by preceding the characters with a \ (backslash). The default
is magic.

[no]mesg
Turns on write permission to the terminal while in visual mode. The default is on.

[no]modeline
Runs an editor command line if found in the first five and the last five lines of the file.
An editor command line may be anywhere in a line. To be recognized as a command
line, it must contain a space or a tab followed by the string ex: or vi:. The command
line is ended by a second : (colon). The editor tries to interpret any data between the
first and second : as editor commands. The default is nomodeline.

[no]number (nu)
Displays lines prefixed with their line numbers. The default is nonu.

[no]optimize (opt)
Speeds up the operation of terminals that do not have cursor addressing. The default is
noopt.

paragraphs (para=)
Defines macro names that start paragraphs. The default is para=IPLPPPQPP LIp-
plpipbp. Single-letter nroff macros, such as .P, must include the space as a quoted
character if respecifying a paragraph. (See RELATED INFORMATION.)

10−4 Hewlett-Packard Company 527188-021

User Commands (v - z) vi(1)

[no]prompt
Prompts for command mode input with a : (colon). When not set, no prompt is
displayed. The default is on.

readonly
Allows writing to a different file. In addition, the write can be forced by using the !
(exclamation point) character (see the editor command write). The default is off,
unless the file lacks write permission or the -R flag is specified.

[no]redraw (re)
Simulates a smart display on a dumb display. The default is re.

[no]remap
Enables multi-step translation of map keys. For example, if r maps to u, and u maps to
k, remap causes r to map to k. If noremap is set, r maps to u. The default is remap.

report Sets the number of repetitions of a command before a message is displayed. For sub-
commands that can produce a number of messages, such as global subcommands, the
messages are displayed when the command is completed. The default is report=5.

scroll (scr=)
Sets the number of lines to be scrolled when you scroll the screen up or down. The
default scroll is one-half the size of the screen.

sections (sect=)
Defines macro names that start sections. The default is sect=NHSHH HUuhsh+c.
Single-letter nroff macros, such as .P, must include the space as a quoted character if
respecifying a paragraph. (See RELATED INFORMATION.)

shell (sh=)
Defines the shell for ! or :! commands. The default is the value of the SHELL environ-
ment variable.

shiftwidth (sw=)
Sets the distance for the software tab stops used by autoindent, the shift commands (>
and <), and the text input commands (<Ctrl-d> and <Ctrl-t>) to allow the editor to
indent text and move back to a previous indentation. The default is sw=8.

[no]showmatch (sm)
Shows the matching open parenthesis (or open brace { as you type the close
parenthesis) or close brace }. The default is nosm.

[no]showmode (smd)
Displays mode indicator at the bottom of the screen when in the insert or replace mode.
The default is nosmd.

[no]slowopen (slow)
Postpones updating the display during inserts. Setting this option alters the display
algorithm to accommodate slow or unintelligent terminals. The default is noslow.

[no]sourceany
Allows the use of the source command on a file that a user does not own. The default
is nosourceany.

tabstop (ts=)
Sets distance between tab stops when a file is displayed. The default is ts=8.

527188-021 Hewlett-Packard Company 10−5

vi(1) OSS Shell and Utilities Reference Manual

taglength (tl=)
Determines length of tag.

[no]tags (tag)
Specifies a list of possible filenames of tag files. The default is tags /usr/lib/tags.

term Sets the kind of display you are using. The default is term=$TERM, where $TERM
is the value of the TERM shell variable.

[no]terse
Allows vi to display the short form of messages. The default is noterse.

[no]timeout (to)
Sets a time limit of 2 seconds on entry of characters. This limit allows the characters in
a macro to be entered and processed as separate characters when timeout is set. To
resume use of the macro, set notimeout. The default is to.

ttytype (tty=)
Same as term.

[no]warn
Displays a warning message before the ! subcommand executes a shell command if this
is the first time you issued a shell command after a given set of changes were made in
the editing buffer, but not written to a file. The default is warn.

window (wi=)
Sets the number of lines displayed in one window of text. The default is dependent on
the baud rate at which you are operating: 600 baud or less / 8 lines, 1200 baud / 16
lines, higher speeds / full screen minus 1.

wrapmargin (wm=)
Sets the margin for automatic wordwrapping from one line to the next. A value of 0
indicates no wordwrapping. The default is wm=0.

[no]wrapscan (ws)
Allows string searches to wrap from the end of the editing buffer to the beginning. The
default is ws.

wraptype (wt=)
Causes words to be wrapped in Japanese style. wraptype=general causes general-
purpose wrap on word breaks, where word break is defined as whitespace or space
between two nonASCII characters. general is a combination of word and flexible.

wraptype=word causes wrap on words. wraptype=rigid causes wrap on column and
before closing punctuation. wraptype=flexible causes wrap on column, but closing
punctuation may extend past the margin.

[no]writeany (wa)
Turns off the checks usually made before a write command. The default is nowa.

10−6 Hewlett-Packard Company 527188-021

User Commands (v - z) vi(1)

Defining Macros
If you use a subcommand or sequence of subcommands frequently, you can create a macro that
issues the subcommand or sequence when you call a macro. To create a macro, enter the
sequence of subcommands into an editing buffer named with a letter of the alphabet. When used
as buffer names, lowercase ASCII letters a through z overlay the contents of the buffer, while
uppercase ASCII letters A through Z append text to the previous contents of the buffer, allowing
the building of a macro piece by piece.

To invoke the macro, enter @x, where x is the letter name of the buffer. Enter @@ to repeat the
last macro you invoked.

Mapping Keys
You can use the map command to set a keystroke to a subcommand or a sequence of subcom-
mands for use during visual mode. To set a key mapping, enter :map key subcommand where
key is the key to which you want to assign a subcommand or sequence of subcommands and sub-
command is the subcommand or sequence of subcommands. For example, to set X to delete lines,
enter:

:map X dd

In this example, X is the key to which the subcommand is assigned and dd is the subcommand.

In the next example, a subcommand sequence is mapped to a key:

:map * {>}

The * (asterisk) is the key to which the subcommand sequence is assigned and {>} is the subcom-
mand sequence. The { (open brace) moves the cursor to the beginning of the paragraph and the >
(right angle bracket) indents the paragraph to the next shiftwidth.

To display the list of the current key mappings while you are in Command mode, enter the :map
key command. To remove a key mapping, enter :unmap key or :unmap! key where key is the
string used after the :map command to set the key and subcommand sequence. For example, to
remove key mapping for the previous example, enter:

:unmap *

If function keys are defined for your terminal, they can be put in a map or unmap command by
typing <Ctrl-v> and then pressing the desired key. In this way, function keys that are unused
during editing can be mapped to useful editing subcommand sequences.

If the ! (exclamation point) character is appended to the command name map (map!), the map-
ping is effective during input mode rather than during visual mode.

Abbreviations
You can define abbreviations for long phrases that you use often. vi then automatically expands
these abbreviations whenever you enter them in insert mode.

To define an abbreviation, enter:

:abbr abbreviation phrase

where abbreviation is the abbreviation you specify for the longer text specified by phrase. For
example, to specify the abbreviation imho for the phrase In my humble opinion, enter:

:abbr imho In my humble opinion

527188-021 Hewlett-Packard Company 10−7

vi(1) OSS Shell and Utilities Reference Manual

Keeping a Customized Change
The editing environment defaults to certain configuration options. When an editing session is
initiated, vi attempts to read the EXINIT environment variable. If it exists, the editor uses the
values defined in EXINIT, otherwise the values set in $HOME/.exrc are used. If $HOME/.exrc
does not exist, the default values are used.

The vi Character Sets
The collation sequence, as defined by the value of the LC_COLLATE environment variable,
defines the alphanumeric set used by your system. This table affects the performance of vi mac-
ros and subcommands.

The vi editor uses the collation sequence to distinguish between a small word and a big word. A
small word is bounded by letters or numbers as defined in the collation table. For example, isn’t
is two small words. The ’ (apostrophe) is not a number or an alphabetic character, and it bounds
both the small word t and the small word isn. A big word is bounded by spaces, tabs, or newline
indicators. For example, accommodate is a big word. For more information, see the section
Moving to Words.

SUBCOMMANDS
Subcommand Syntax

[named_buffer] [operator] [number] argument

Surrounding brackets indicate optional items.

[named_buffer]
A temporary text storage area.

[operator]
Specifies the subcommand or action; instructs the vi editor.

[number] A whole decimal value that specifies either the extent of the action or a line address.
The vi editor interprets this number in one of the following ways:

1. Go to line number:

5G
10z<Return>

2. Go forward number columns.

25<Space>

3. Scroll number of lines:

10<Ctrl-d>
10<Ctrl-u>

4. Delete number lines:

6dd

10−8 Hewlett-Packard Company 527188-021

User Commands (v - z) vi(1)

5. % means all. To yank all lines:

%y

(The preceding command replaces 1,$y.)

argument
Specifies what to act on. This can be a text object (a character, word, sentence, para-
graph, section, or character string) or a text position (a line, position in the current line,
or screen position).

Moving Within a File
Enter the following subcommands in Command mode. You can cancel an incomplete subcom-
mand by pressing <Esc>.

<Left Arrow>, h, <Ctrl-h>
Moves the cursor one character to the left.

<Down Arrow>, j, <Ctrl-j>, <Ctrl-n>
Moves the cursor down one line, remaining in the same column.

<Up Arrow>, k, <Ctrl-p>
Moves the cursor up one line, remaining in the same column.

<Right Arrow>, l <Space>
Moves the cursor one character to the right.

Long lines: Lines over one screen width are wrapped but not broken. When using the
Up Arrow or Page Up key, @ lines are added at the bottom of the screen when too few
physical lines are available to display the complete line. The Down Arrow key moves
the entire line off the screen at once.

Character Positioning Within a Line
Enter the following subcommands in Command mode.

^ Moves the cursor to the first nonspace character.

0 Moves the cursor to the beginning of the line.

$ Moves the cursor to the end of the line.

fx Moves the cursor to the next x character.

Fx Moves the cursor to the previous x character.

tx Moves the cursor to one column before the next x character.

Tx Moves the cursor to one column after the previous x character.

; Repeats the last f, F, t, or T subcommand.

, Repeats the last f, F, t, or T subcommand in the opposite direction.

number<Space>
Moves the cursor to the specified column.

Moving to Words
Enter the following subcommands in Command mode.

w Moves the cursor forward to the beginning of a word.

527188-021 Hewlett-Packard Company 10−9

vi(1) OSS Shell and Utilities Reference Manual

b Moves the cursor backward to the beginning of a word.

e Moves the cursor forward to the end of a word.

W Moves the cursor forward to the beginning of a big word.

B Moves the cursor backward to the beginning of a big word.

E Moves the cursor forward to the end of a big word.

Moving by Line Positioning
Enter the following subcommands in Command mode.

G Moves to the line number given as preceding argument, or the end of the file if no
preceding count is given.

H Moves the cursor to the top line on the screen.

L Moves the cursor to the last line on the screen.

M Moves the cursor to the middle line on the screen.

+ Moves the cursor to the next line, at its first nonspace character.

- Moves the cursor to the previous line, at its first nonspace character.

<Return>
Moves the cursor to the next line, at its first nonspace character.

Moving to Sentences, Paragraphs, or Sections
Enter the following subcommands in Command mode. You can cancel an incomplete subcom-
mand by pressing <Esc>.

(Places the cursor at the beginning of the previous sentence (or the previous S-
expression if you are in LISP mode).

) Places the cursor at the beginning of the next sentence (or the next S-expression if you
are in LISP mode).

{ Places the cursor at the beginning of the previous paragraph (or at the next list if you
are in LISP mode).

} Places the cursor at the beginning of the next paragraph, at the next section if you are
in C mode, or at the next list if you are in LISP mode.

| Requires a count; the cursor is placed in that column (if possible).

]] Places the cursor at the next section, or at the next function if you are in LISP mode.

[[Places the cursor at the previous section, or at the next function if you are in LISP
mode.

Paging and Scrolling
<Ctrl-u>

Scrolls up (defaults to value of scroll option).

<Ctrl-d>
Scrolls down (defaults to value of scroll option).

<Ctrl-f> Pages forward one screen (defaults to value of window option).

10−10 Hewlett-Packard Company 527188-021

User Commands (v - z) vi(1)

<Ctrl-b>
Pages backward one screen (defaults to value of window option).

<Ctrl-y>
Scrolls the window up one line.

<Ctrl-e> Scrolls the window down one line.

<Ctrl-m>
Moves to the first nonwhite character in the next line. A count specifies the number of
lines to go forward.

<Ctrl-t> Inserts shiftwidth white space in input mode, if at the beginning of the line or preceded
only by white space. This inserted space can only be backed over using <Ctrl-d>.

<Ctrl-[> Cancels a partially formed command; sounds the bell if there is none.

In input mode, terminates input mode.

When entering a command on the bottom line of the screen (ex command line or search
pattern with \ or ?), terminates input and executes command.

z+ Pages up (defaults to value of window option).

zˆ Pages down (defaults to value of window option).

Searching for Patterns
The following commands allow you to search for patterns within a file. Patterns can be regular
expressions as described for grep.

/pattern Places the cursor at the next line containing pattern.

?pattern Places the cursor at the next previous line containing pattern.

n Repeats the last search for pattern in the same direction.

N Repeats the last search for pattern in the opposite direction.

/pattern/+number
Places the cursor at the numberth line after the line matching pattern.

?pattern?-number
Places the cursor at the numberth line before the line matching pattern.

% Finds the parenthesis or brace that matches the one at the current cursor position.

<Ctrl-t> Finds the word at the cursor in the tags file then edits the proper file, placing the cursor
at the tag. If the tag is in the current file, moves cursor to it.

Marking and Returning
Enter the following subcommands in Command mode. You can cancel an incomplete subcom-
mand by pressing <Esc>.

‘‘ Moves the cursor to the same cursor position of the previous current line.

’’ Moves the cursor to the beginning of the previous current line.

mx Marks the current position with the letter specified by x.

‘x Moves the cursor to the same cursor position of line marked x.

527188-021 Hewlett-Packard Company 10−11

vi(1) OSS Shell and Utilities Reference Manual

’x Moves the cursor to the beginning of the line marked x.

Adjusting the Screen
Enter the following subcommands in Command mode. An incomplete subcommand can be can-
celled by pressing <Esc>.

<Ctrl-l> Clears and redraws the screen.

<Ctrl-r> Redraws the screen and eliminates blank lines marked with a @.

z<Return>
Redraws the screen with the current line at the top of the screen.

z- Redraws the screen with the current line at the bottom of the screen.

z. Redraws the screen with the current line at the center of the screen.

/pattern/z-
Redraws the screen with the line containing pattern at the bottom.

znumber<Return>
Makes the window number lines long.

Adding Text to a File--Text Input Mode
The following subcommands are entered in Command mode and bring the vi editor into Text
Input mode to allow you to add text to your file. End Text Intput mode by pressing <Esc>.

atext Inserts text after the cursor.

Atext Adds text to the end of the line.

itext Inserts text before the cursor.

Itext Inserts text before the first nonspace character in the line.

o Adds an empty line below the current line.

O Adds an empty line above the current line.

Changing Text While in Input Mode
Use the following commands only while in Text Entry mode. They have different meanings in
Command mode.

<Ctrl-h>
Erases the last character.

<Ctrl-w>
Erases the last small word. (For more information about small words, see the section vi
Character Sets.)

\ Quotes the Erase and Kill characters.

<Esc> Ends insertion, sends the program back to Command mode.

Quit key sequence
Interrupts and terminates insert or <Ctrl-d>.

<Ctrl-d>
Goes back to the previous autoindent stop.

10−12 Hewlett-Packard Company 527188-021

User Commands (v - z) vi(1)

<̂Ctrl-d>
Ends autoindent for this line only.

0<Ctrl-d>
Moves the cursor back to the left margin.

<Ctrl-v>
Quotes a nonprinting character.

Changing Text from Command Mode
Use the following subcommands in Command mode. An incomplete subcommand can be can-
celled by pressing <Esc>.

C Changes the rest of the line (c$).

c Must be followed by a movement command. Deletes the specified region of text and
enters input mode to replace it with the entered text. If more than part of a single line
is affected, the deleted text is saved in the numeric buffers. If only part of the current
line is affected, the last character to be deleted is marked with a $. A count is passed
through to the move command. If the command is cc, the whole of the current line is
changed.

cc Changes a line.

cw Changes a word.

D Deletes the rest of the line (d$) and puts it into the undo buffer.

d Must be followed by a movement command. Deletes the specified region of text. If
more than part of a line is affected, the text is saved in the numeric buffers. A count is
passed through to the move command. If the command is dd, the whole of the current
line is deleted.

dd Deletes a line and puts it into the undo buffer.

dw Deletes a word and puts it into the undo buffer.

J Joins lines.

rx Replaces the current character with the character specified by x.

R Overwrites characters.

s Substitutes characters (cl).

S Substitutes lines (cc).

u Undoes the previous change.

x Deletes a character.

X Deletes characters before cursor (dh).

<< Shifts one line to the left.

<L Shifts all lines from the cursor to the end of the screen to the left. (The < character
describes a range upon which the L subcommand acts.)

>> Shifts one line to the right.

527188-021 Hewlett-Packard Company 10−13

vi(1) OSS Shell and Utilities Reference Manual

>L Shifts all lines from the cursor to the end of the screen to the right. (The > character
describes a range upon which the L subcommand acts.)

~ Changes the letter at the cursor to the opposite case.

Copying and Moving Text
Use the following subcommands in Command mode. An incomplete subcommand can be can-
celled by pressing <Esc>.

p (P) Puts back text in the undo buffer after (before) the cursor.

"xp (xP) Puts back text from the buffer x after (before) the cursor. You must precede the charac-
ter x with a double quote.

"xdobject
Deletes object into the buffer x. You must precede the character x with a double quote.

yobject Yanks object into the undo buffer (for example, yw to yank a word).

"xyobject
Yanks object into buffer x. You must precede the character x with a double quote.

Y Places the line in the undo buffer.

Restoring and Repeating Changes
Use the following subcommands in Command mode. An incomplete subcommand can be can-
celled by pressing <Esc>.

u Undoes the last command.

U Restores the current line if the cursor has not left the line since the last change.

. Repeats the last change or increments the np command.

Note that this command is not meant for use with a macro. Enter @@ to repeat a
macro.

"np Retrieves the nth last delete of a complete line or block of lines. You must precede the
character n with a double quote.

Saving Changes to a File
Use the following subcommands in Command mode. An incomplete subcommand can be can-
celled by pressing <Esc>. If you are using these subcommands within the ex editor, you do not
need to type the : (colon).

:w Writes the editing buffer contents to the original file.

:w file Writes the editing buffer contents to the named file.

:w! file Overwrites file with the editing buffer contents.

Interrupting, Cancelling, and Exiting vi
Q Enters the ex editor in Command mode.

q Enters the ex editor in Command mode if no filename was specified on the vi command
line when the program was invoked.

ZZ Exits vi, saving changes, if any were made.

10−14 Hewlett-Packard Company 527188-021

User Commands (v - z) vi(1)

:q Quits vi. If you have changed the contents of the editing buffer, vi displays a warning
message and does not quit.

:q! Quits vi, discarding the editing buffer with no warning.

:sh Runs a shell. You can return to vi by pressing <Ctrl-d>.

:w !command
Runs the file through the specified shell command (causes no change to the file).

:!command
Runs command, then returns.

:!! Repeats the last :!command command.

n!!command
Executes the shell command identified by command and replaces the number of lines
specified by n with the output of command. If n is not specified, the default is 1. If
command expects standard input, the lines specified are used as input. (10!!sort sorts
the next 10 lines.)

!linescommand
Works like n!!command, except that lines is a line address (for example, !Gsort sorts
the rest of the file).

Quit key sequence
Interrupts a subcommand.

Editing a Second File
Enter the following subcommands in Command mode. An incomplete subcommand can be can-
celled by pressing <Esc>.

:e file Edits file. If you are using this subcommand from the ex editor, you do not need to type
the : (colon).

:e! Reedits the current file and discards all changes.

:e + file Edits file, starting at the end.

:e +number
Edits file, starting at the line number.

:e # and <Ctrl-a>
Edits the alternate file. The alternate file is usually the previous current filename.
However, if changes are pending on the current file when a new file is called, the new
file becomes the alternate file.

:r file Reads the file into the editing buffer by adding new lines below the current line. If you
are using this subcommand from the ex editor, you do not need to type the : (colon).

:r !command
Runs the shell command identified by command and places its output in the file by
adding new lines below the current cursor position.

527188-021 Hewlett-Packard Company 10−15

vi(1) OSS Shell and Utilities Reference Manual

:ta tag Edits a file containing tag at the location of tag. If the tag is in another file and the
current file has been changed (and noaw is set), a warning is posted. To use this com-
mand, you must first create a database of function names and their locations using the
ctags command. OSS does not support the ctags utility. However, vi does support
ctags databases imported from other systems. If you are using this subcommand from
the ex editor, you do not need to type the : (colon).

<Ctrl-t> Finds the word at the cursor in the tags file and edits the indicated file, placing the cur-
sor at the tag. Same as :ta, but the tag is the word to the right of the cursor.

Editing a List of Files
Enter the following subcommands in Command mode.

:n Edits the next file in the list entered on the command line.

:n file ... Specifies a new list of files to edit.

Displaying File Information
Enter the following subcommand in Command mode to show the current filename, the current
line number, the number of lines in the file, and the percentage of lines of the file that are before
the cursor:

<Ctrl-g>

RELATED INFORMATION
Commands: ed(1), grep(1).

10−16 Hewlett-Packard Company 527188-021

User Commands (v - z) vproc(1)

NAME
vproc - Displays version information for program and object files

SYNOPSIS
There are two ways to obtain version-procedure information:

Through the Guardian VPROC utility
Through the OSS vproc command

To use the Guardian VPROC utility from a TACL prompt for an object in the Guardian file
system:

vproc
[/ RUN_option, ... /]
[filename]

To use the Guardian VPROC utility from a TACL prompt for an object in the OSS file sys-
tem:

vproc
/ { RUN_option, ... } /
[pathname]

To use the Guardian VPROC utility from an OSS shell prompt for an object in the Guardian
file system:

gtacl -p vproc
[’filename’]

To use the Guardian VPROC utility from an OSS shell prompt for an object in the OSS file
system:

gtacl -p vproc
[pathname]

To use the OSS command from an OSS shell prompt:

vproc
[path] ...

To use the OSS command from a TACL prompt:

osh -p vproc
[path] ...

FLAGS
The Guardian VPROC utility has the following flags and operands:

RUN_option Specifies one or more TACL RUN command options as flags with arguments.
Use these options only when running the Guardian VPROC utility from a TACL
prompt. Refer to the TACL Reference Manual for a complete list and description
of these options.

When using the Guardian VPROC utility from a TACL prompt, you must enter
at least one valid value for RUN_option if you enter a pathname operand.

Do not use RUN options when using the Guardian VPROC utility through the
gtacl command or when using the OSS vproc command. Refer to the gtacl(1)
reference page for possible ways to redirect Guardian input or output. Use gtacl
options instead of RUN options.

527188-021 Hewlett-Packard Company 10−17

vproc(1) OSS Shell and Utilities Reference Manual

filename Specifies the Guardian filename of the program file or object file whose version
information is to be displayed.

When the Guardian VPROC utility is used from a TACL prompt, the value of
filename need not be fully qualified. When the Guardian VPROC utility is used
through the gtacl command, the value of filename should be fully qualified and
enclosed in single quotes.

TACL wildcard-matching can be used.

pathname Specifies the absolute OSS pathname of the program file or object file whose ver-
sion information is to be displayed. Information can be returned for any OSS
regular file.

When the Guardian VPROC utility is used from a TACL prompt, the pathname
must be preceded by at least one specification for RUN_option. If no run option
is needed, use the NAME option.

Wildcard-matching cannot be used.

The OSS vproc command is a script that calls the Guardian VPROC utility. The OSS vproc
command has the following flags and operands:

path Specifies the relative or absolute pathname of the program file or object file
whose version information is to be displayed. Information can be returned for
any OSS regular file.

If more than one pathname is specified, all pathnames must be relative to the
current working directory.

If filename, pathname, and path are omitted, the Guardian VPROC utility and the OSS vproc
command run in interactive mode. Pathnames or Guardian filenames can be entered interac-
tively.

DESCRIPTION
The Guardian VPROC utility and the OSS vproc command display information that identifies
the version of the file pointed to by the filename, pathname, or path operand.

Information can be displayed for any Guardian file with a file code (type) of the following:

0 Indicates a binary file

100 Indicates a TNS format or TNS/R COFF format executable object file or a file in
the OSS file system

180 Indicates a file containing text in the Guardian file system or a Guardian C data
file (format is consistent with an OSS regular file containing ASCII text)

510 Indicates a standard microcode file

700 Indicates a TNS/R native (COFF or ELF format) relinkable or executable object
file

800 Indicates a TNS/E native (ELF format) linkfile or loadfile

860 Indicates a TNS/R millicode file.

10−18 Hewlett-Packard Company 527188-021

User Commands (v - z) vproc(1)

870, 871, or 872
Indicates a TNS/R millicode file.

880 or 881 Indicates a TNS/R millicode file.

All program and object files have a version. Use the version information returned by vproc to
identify the code you are using when you report a problem to HP.

An OSS archive file (or other file in ar format) might contain member files that do not contain
version information. Member files that contain version information are listed. Member files that
do not contain version information are not listed. If no member of an archive file contains ver-
sion information, the timestamp for the last modification to the file is returned.

The vproc display has the following fields:

Archive member
Displays the archive member OSS or UNIX filename. This information appears
only for files in ar format.

Binder timestamp
Displays the date and time the program was created. This information appears
only for appropriate file types.

GMT Binder Timestamp
Displays the date and time the ELF file was created in GMT (UTC), rather than
displaying it as local time. This information appears only for appropriate file
types.

Version procedure
Displays a string of the form:

cttttrvv_ddmmmyy_nnnnnn_xxxxxx
or

cttttrvv_ddmmmyyyy_nnnnnn_xxxxx

ctttt is the Tandem number (T number) of the corresponding product.

rvv is the version of the product.

ddmmmyy or ddmmyyyy
is the release date of the product version.

nnnnnn is the abbreviated product name of the code.

xxxxxx or xxxxx
is optional information for use by HP.

Target CPU Indicates which type of processor must be used to execute the code.

AXCEL timestamp
Displays the date and time the code was accelerated. This information appears
only for files that have been accelerated for TNS/R.

OCA timestamp
Displays the date and time the code was accelerated. This information appears
only for files that have been accelerated for TNS/E.

527188-021 Hewlett-Packard Company 10−19

vproc(1) OSS Shell and Utilities Reference Manual

Privileged code
This information appears only for files with file code 100 that contain privileged
code. The value is YES.

Native Mode Indicates whether the file can be executed. This information appears only for
files with file code 700. The possible values are runnable file and Not runnable
file.

TNS/E Native Mode
Indicates whether the file can be executed. This information appears only for
files with file code 800. The possible values are runnable file and Not runnable
file.

EXAMPLES
1. To display the process version information for the ed editor from the OSS shell, enter:

gtacl -p vproc ’/bin/ed’

This displays information similiar to the following:

GMT Binder timestamp: 04JAN2003 11:43:43
Version procedure: T8432G07_01AUG99_CRTLMAIN
Version procedure: T8626G06_30JAN2003_ABU_OSSUTIL

Native Mode: runnable file

2. To display the process version information for the ed editor from a TACL prompt, enter:

vproc /NAME/ /bin/ed

This displays information similiar to the following:

GMT Binder timestamp: 04JAN2003 11:43:43
Version procedure: T8432G07_01AUG99_CRTLMAIN
Version procedure: T8626G06_30JAN2003_ABU_OSSUTIL

Native Mode: runnable file

3. To use vproc interactively, enter:

gtacl -p vproc

and enter filenames or absolute pathnames in response to the prompt:

> Enter filename:

To leave vproc, enter CTRL/Y at any prompt.

4. To display version information about Binder-format object files in an OSS ar format
archive file named /nonnative/usr/lib/libc.a, enter the following from an OSS shell
prompt:

vproc /nonnative/usr/lib/libc.a

This displays information similiar to the following:

Archive member: versiono
Binder timestamp: 14FEB2000 00:02:32
Version procedure: T8305D40_08MAR2000_STDLIBS_AAO
Target CPU: UNSPECIFIED
.
.
.

10−20 Hewlett-Packard Company 527188-021

User Commands (v - z) vproc(1)

5. To display version information about an OSS ar format archive file named /usr/lib/liby.a
that contains no VPROC information, enter the following from an OSS shell prompt:

vproc /usr/lib/liby.a

This displays information similiar to the following:

/usr/lib/liby.a
Last modified timestamp: 04JAN2003 04:46:26
No VPROC found in this ar-format file

6. To display information about the OSS ls command object file using the OSS vproc com-
mand from a TACL prompt, enter the following:

osh -p vproc /bin/ls

This displays information similar to the following:

GMT Binder timestamp: 04JAN2003 12:00:41
Version procedure: T6523G05_31MAY2000_RTLABB
Version procedure: S7035D40ˆ17JUL97ˆ03OCT97ˆAAB
Version procedure: T8432G07_01AUG99_CRTLMAIN
Version procedure: T8626G06_30JAN2003_ABU_OSSUTIL
Version procedure: T8626G05_01Jun00_LS

Native Mode: runnable file

FILES
/bin/vproc Contains the OSS vproc command script.

/tmp/username/.vproc.tempfile.OSS_process_ID
A temporary file that is used during processing by the OSS vproc command
script.

NOTES
To use the Guardian VPROC utility or the OSS vproc command, you must first know the loca-
tion of the file for which you want information. To locate a Guardian file, follow the procedure in
the Guardian User’s Guide. To locate an OSS file, use the find command. For example, to deter-
mine the location of sh and then display the process version for sh, enter:

find / -name sh

This returns:

find: cannot chdir to </G/oss/zyq00000> : Operation not permitted
.
.
.

/bin/sh

Next enter:

gtacl -p vproc ’/bin/sh’

This displays information similiar to the following:

/bin/sh
GMT Binder timestamp: 04JAN2003 12:34:12
Version procedure: T8432G07_01AUG99_CRTLMAIN
Version procedure: T8626G06_30JAN2003_ABU_OSSUTIL

527188-021 Hewlett-Packard Company 10−21

vproc(1) OSS Shell and Utilities Reference Manual

Native Mode: runnable file

You can also use the whence or type command to find a file if you are interested only in those
files accessible through your PATH environment variable values.

DIAGNOSTICS
ERROR: [filename | pathname] does not exist.

Either the specified file does not exist or you made a typographical error when
entering the filename or pathname value.

ERROR - NO SUCH VOLUME: [filename | pathname]
Either the Guardian volume that you specified does not exist or you made a typo-
graphical error when entering the volume-name portion of the filename or path-
name value.

>> NO T9xxx PROC <<
The version procedure information is not stored in the specified program or
object file.

No VPROC found in this ar-format file
No VPROC information is stored in the indicated archive file.

Version procedure: [filename | pathname]: Not object file
Either the indicated file does not have a file code of a type that VPROC can read,
or the file contains only text data.

RELATED INFORMATION
Commands: find(1), gtacl(1), osh(1), type(1).

STANDARDS CONFORMANCE
This command is an extension to the XPG4 Version 2 specification.

10−22 Hewlett-Packard Company 527188-021

User Commands (v - z) wait(1)

NAME
wait - Reports termination status of processes

SYNOPSIS
wait [job]

DESCRIPTION
The wait command waits for the specified job and reports its termination status. If job is not
given, all currently active child processes are waited for. The exit status from this command is
that of the process waited for. (See Jobs for a description of the format of job.)

EXIT VALUES
If a specified job is not known, wait returns an exit status of 127. If wait is invoked with no
arguments and all process IDs known by the invoking shell have terminated, wait returns an exit
status of 0 (zero). If wait detects an error, it returns an exit status in the range 1-126.

NOTES
The wait command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: sh(1).

527188-021 Hewlett-Packard Company 10−23

wall(1) OSS Shell and Utilities Reference Manual

NAME
wall - Sends a message to all users

SYNOPSIS
wall [file]

DESCRIPTION
The wall command takes its input from the contents of file if you specify it; if you do not specify
file, wall reads from the standard input file until either you press the End-of-File key sequence or
an end-of-file is encountered. wall then sends that input as a message to all users who are logged
in. The message is preceded by the heading:

Broadcast Message from user@node (tty) at hh:mm

where user is the user invoking wall, node and tty are the node and terminal of that user, and
hh:mm is the time of the message.

To override any protections other users have set up, you must be operating with appropriate
privileges. Typically, the system administrator uses wall to warn all users of an impending sys-
tem shutdown.

The wall command sends messages only to the local node.

Operands
file Specifies the pathname of a file to be used as the source of the broadcast mes-

sage.

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification.

The following features are extensions to the XPG4 Version 2 specification:

• The alternate message source file can be specified.

10−24 Hewlett-Packard Company 527188-021

User Commands (v - z) wc(1)

NAME
wc - Counts lines, words, characters, and bytes

SYNOPSIS
wc [-c | -k | -m] [-lw] [file ...]

FLAGS
-c Counts bytes.

-k Counts characters.

-m Counts characters.

-l Counts lines.

-w Counts words.

DESCRIPTION
The wc command counts the lines, words, characters, and bytes in a file, or in the standard input
file if you do not specify any files, and writes the results to the standard output file. It also keeps
a total count for all named files.

A word is defined as a nonzero-length string of characters delimited by spaces, tabs, or newline
characters. A line is defined as zero or more characters followed by a newline character.

The wc command counts lines, words, and bytes by default; use the appropriate flags to limit wc
output. Specifying wc without flags is the equivalent of specifying wc -lwc.

The order in which the counts appear in the output line matches the order in which the flags are
entered on the command line. (If you do not specify any flags, the order is lines, words, bytes.)

When you specify more than one file, wc displays the name of the file along with the counts.

EXAMPLES
1. To display the number of lines, words, and bytes in the file text, enter:

wc text

This command results in the following output:

27 185 722 text

The numbers 27, 185, and 722 are the number of lines, words, and bytes, respectively, in
the file text.

2. To display only one or two of the three counts, or to display the counts you want in a par-
ticular order, include the appropriate flags in the order you want. For example, the fol-
lowing command displays only byte and line counts:

wc -cl text

722 27 text

3. To count lines, words, and bytes in more than one file, use wc with more than one input
file or with a filename pattern. For example, the following command can be issued in a
directory containing the files text, text1, and text2:

wc -l text*

27 text
112 text1
5 text2
144 total

527188-021 Hewlett-Packard Company 10−25

wc(1) OSS Shell and Utilities Reference Manual

The numbers 27, 112, and 5 are the numbers of lines in the files text, text1, and text2,
respectively, and 144 is the total number of lines in the three files.

RELATED INFORMATION
Commands: ls(1).

STANDARDS CONFORMANCE
The -k flag is an extension to the XPG4 Version 2 specification.

10−26 Hewlett-Packard Company 527188-021

User Commands (v - z) whatis(1)

NAME
whatis - Describes a command’s function

SYNOPSIS
whatis [-M pathname] [keyword ...]

The whatis command looks up a keyword, which may be a command, system call, library
function, special filename, or POSIX regular expression and displays the NAME line from
the reference page. You can then issue the man command to display additional information.

FLAGS
-M pathname

Specifies an alternative search path. The search path is a list of directories, separated
by : (colons), in which whatis expects to find the standard manual subdirectories.

DESCRIPTION
The whatis command is equivalent to the man command with the -f flag.

The keyword argument can be a POSIX regular expression. For more information, see the grep
reference page.

EXAMPLES
To find out what function the ls command performs, enter:

whatis ls

FILES
/usr/share/man/whatis Keyword database.

RELATED INFORMATION
Commands: man(1).

527188-021 Hewlett-Packard Company 10−27

whence(1) OSS Shell and Utilities Reference Manual

NAME
whence - Interprets command names

SYNOPSIS
whence [-pv] name ...

FLAGS
-p The -p flag does a path search for name even if name is an alias, a function, or a

reserved word.

-v The -v flag produces a more verbose report.

DESCRIPTION
The whence command indicates how each name given in the argument name would be inter-
preted if it were used as a command name. The flags provide more specific information about the
name or its use as a command name.

EXAMPLES
1. The following example shows the whence command used with the OSS grep command

as an argument. The output of the command shows that the grep command is located in
/bin.

whence -rv grep

grep is /bin/grep

2. The following example shows the results when a name that is not a command name is
used as an agument:

whence -rv shell

shell not found

NOTES
The whence command is a shell built-in command. It differs from the regular commands in that it
does not open a new shell process when it executes.

A general discussion of shell built-in commands and a list of the OSS shell built-in commands
are in the reference page for sh(1).

RELATED INFORMATION
Commands: type(1), sh(1).

10−28 Hewlett-Packard Company 527188-021

User Commands (v - z) who(1)

NAME
who - Identifies users currently logged in

SYNOPSIS
who [-mTu]

The who command displays information about users on the local system.

FLAGS
-m Displays information about the current terminal.

-T Displays the status of the terminal line and indicates who can write to that terminal as
follows:

+ Writable by anyone.

- Writable only by the superuser or its owner.

? Bad line encountered.

-u Displays the username, terminal name, login time (time login shell was started), line
activity, and process-ID of each current user. The LC_TIME environment variable
controls the format of the login time.

DESCRIPTION
The who command displays the following information for the users and/or processes you specify:

• User name

• Terminal name

• Date

• Time of login

The general output format of the who command is as follows:

user [state] line time [activity] [process_ID]

where:

• The user argument specifies the user’s login name.

• The state argument indicates whether or not the line is readable by everyone (see the -T
flag).

• The line argument specifies the name of the TELNET line as found in the /dev directory.

• The time argument specifies the time that user logged in.

• The activity argument specifies the hours and minutes since activity last occurred on that
user’s line. A . (dot) here indicates line activity within the last minute. If the line has
been quiet more than 24 hours or has not been used since the last system start-up, the
entry is marked as old.

• The process_ID argument specifies the process-ID of the user’s shell.

Note that who only identifies users on the local node.

527188-021 Hewlett-Packard Company 10−29

who(1) OSS Shell and Utilities Reference Manual

EXAMPLES
1. To display information about who is using the local system, enter:

who

Information similar to the following is displayed:

super.super /G/ZTNT/#PTY6 JUN 08 09:10
software.rdas /G/ZTNT/#PTY5 Jun 06 08:20

2. To display information about who is using the local system and their associated host
machine name, enter:

who -m

Information similar to the following is displayed:

software.rdas /G/ZTNT/#PTY5 Jun 06 08:20

RELATED INFORMATION
Commands: date(1).

Functions: wait(2).

10−30 Hewlett-Packard Company 527188-021

User Commands (v - z) whoami(1)

NAME
whoami - Displays the user name for the effective user ID

SYNOPSIS
whoami

DESCRIPTION
The whoami command displays the user name associated with your effective user ID.

RELATED INFORMATION
Commands: who(1).

STANDARDS CONFORMANCE
The whoami command is an extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 10−31

xargs(1) OSS Shell and Utilities Reference Manual

NAME
xargs - Constructs argument lists and runs commands

SYNOPSIS
xargs [-e eof_string] [-i][replace_string] | [-I replace_string] | [-r] [-l][number] |[-

L number] |[-n number] [-ptx] [-s size] [command] [argument ...]

The xargs command constructs a command line by combining a command string, containing
a command and its flags or arguments with additional arguments read from standard input.

FLAGS
-e eof_string

Sets the logical End-of-File string to eof_string. By default, there is no logical End-
of-File. The xargs command reads standard input until it encounters either an End-of-
File character or the logical EOF string.

-i[replace_string]
This flag is the same as -I. The default replace_string for -i is {}.

The -i, -I, and -r flags are mutually exclusive; the last one of these flags specified takes
effect.

-I replace_string
Takes an entire line as a single argument and inserts it in each instance of
replace_string found in the command string. A maximum of five arguments in the
command string can each contain one or more instances of replace_string. The xargs
command discards spaces and tabs at the beginning of each line. The argument con-
structed cannot be larger than 255 bytes. This flag also turns on the -x flag.

The -i, -I, and -r flags are mutually exclusive; the last one of these flags specified takes
effect.

-l[number]
This flag is the same as -L. The default number is 1. This flag turns on the -x flag.

The -l, -L, and -n flags are mutually exclusive; the last one of these flags specified
takes effect.

-L number
Runs the command string with the specified number of nonempty argument lines read
from standard input. The last invocation of the command string can have fewer argu-
ment lines if fewer than number remain. A line ends with the first newline character
unless the last character of the line is a space or a tab. A trailing space or tab indicates
a continuation through the next nonempty line.

The -l, -L, and -n flags are mutually exclusive; the last one of these flags specified
takes effect.

-n number
Executes the command string using as many standard input arguments as possible, up
to a maximum of number (a positive decimal integer). The xargs command uses fewer
arguments if their total length is greater than the number of characters specified by the
-s size flag (or LINE_MAX if there is no -s flag). It also uses fewer arguments for the
last invocation if fewer than number arguments remain. When -x is present, each
number argument must fit the length limitation specified by -s. When the replacement
string {} is in effect for the -i flag (the deafult), the maximum number of input argu-
ments that can be substituted is 1. Therefore, the use of the -n flag in this case has no
effect.

10−32 Hewlett-Packard Company 527188-021

User Commands (v - z) xargs(1)

The -l, -L, and -n flags are mutually exclusive; the last one of these flags specified
takes effect.

-p Asks whether or not to run the command string. Trace mode (-t) is turned on to write
the command instance to be executed, followed by a prompt to standard error (?...).
An affirmative response read from /dev/tty executes the command. Any other response
causes xargs to skip that particular invocation of the command string. You are asked
about each invocation.

-r This flag is the same as -I {}.

The -i, -I, and -r flags are mutually exclusive; the last one of these flags specified takes
effect.

-s size Invokes the specified command using as many standard input arguments as possible,
yielding a command line length less than size (a positive decimal integer) bytes. Fewer
arguments are used if any of the following conditions is true:

• The total number of arguments exceeds that specified by -n.

• The total number of lines exceeds that specified by -L.

• End-of-File is encountered on standard input before size bytes are accumu-
lated.

Note that the character count for size includes one extra character for each argument
and the number of characters in the command name. Values of size up to at least
LINE_MAX bytes are supported.

-t Echoes the command string and each constructed argument list to file descriptor 2 (usu-
ally standard error).

-x Stops running xargs if any argument list is greater than the number of characters
specified by the -s size flag. This flag is turned on if you specify either the -I or -L
flags. If you do not specify -I, -L, or -n, the total length of all arguments must be
within the length limit.

DESCRIPTION
The xargs command runs the command string as many times as necessary to process all input
arguments. The default command string is /usr/bin/echo.

Arguments read from standard input are character strings delimited by one or more spaces, tabs,
or newline characters. You can embed a space or a tab in arguments by preceding it with a \
(backslash) or by quoting it. The xargs command reads characters enclosed in single or double
quotes as literals and removes the delimiting quotes. It always discards empty lines.

The xargs command ends if it cannot run the command string or if it receives an exit code of
255. When the command string calls a shell procedure, the shell procedure should explicitly exit
with an appropriate value to avoid accidentally returning 255. (See the sh command.)

The LC_MESSAGES variables determines the locale’s equivalent of y and n (for yes/no
queries).

EXAMPLES
1. To use a command on files whose names are listed in a file, use a command line similar

to the following:

xargs ls -l < cfiles

If cfiles contains the text, enter:

527188-021 Hewlett-Packard Company 10−33

xargs(1) OSS Shell and Utilities Reference Manual

main.c readit.c
gettoken.c
putobj.c

Then xargs constructs and runs the command:

ls -l main.c readit.c gettoken.c putobj.c

Each shell command line can be up to LINE_MAX bytes long. If cfiles contains more
filenames than fit on a single line, then xargs runs the ls command with the filenames
that fit. It then constructs and runs another ls command using the remaining filenames.
Depending on the names listed in cfiles, the commands might look like the following:

ls -l main.c readit.c gettoken.c...
ls -l getisx.c getprp.c getpid.c...
ls -l fltadd.c fltmult.c fltdiv.c...

2. To construct commands that contain a certain number of filenames, use a command line
similar to the following:

xargs -t -n 2 diff <<end
starting chap1 concepts chap2 writing
chap3
end

This constructs and runs diff commands that contain two filenames each (-n 2):

diff starting chap1
diff concepts chap2
diff writing chap3

The -t flag tells xargs to display each command before running it so that you can see
what is happening. The <<end and end arguments define a Here Document, which uses
the text entered before the end line as standard input for the xargs command. (For more
details, see the section Inline Input (Here) Documents in the sh reference page.)

3. To insert filenames into the middle of commands, use a command line similar to the fol-
lowing:

ls | xargs -t -r mv {} {}.old

This renames all files in the current directory by adding .old to the end of each name.
The -r tells xargs to insert each line of the ls directory listing where { } (braces) appear.
(You might need to precede the braces with shell escape characters, depending on what
shell you are using.)

If the current directory contains the files chap1, chap2, and chap3, then this constructs
the following commands:

mv chap1 chap1.old
mv chap2 chap2.old
mv chap3 chap3.old

4. To run a command on files that you select individually, use a command line similar to the
following:

ls | xargs -p -n 1 ar r lib.a

This allows you to select files to add to the library lib.a. The -p flag tells xargs to
display each ar command it constructs and ask if you want to run it. Press y, or the

10−34 Hewlett-Packard Company 527188-021

User Commands (v - z) xargs(1)

locale’s equivalent of a y, and press <Return> to run the command. Press <Return>
alone if you do not want to run it.

EXIT STATUS
The xargs command returns the following exit values:

0 All invocations of command returned exit status 0 (zero).

1-125 A command line meeting the specified requirements could be assembled, one or more
of the invocations of command returned a nonzero exit status, or some other error
occurred.

126 The specified comand was found but could not be invoked.

127 The specified command could not be found.

255 No further invocations using the current data stream will succeed.

RELATED INFORMATION
Commands: sh(1).

527188-021 Hewlett-Packard Company 10−35

yacc(1) OSS Shell and Utilities Reference Manual

NAME
yacc - Generates an LR(1) parsing program from input

SYNOPSIS
yacc [-vltds] [-b prefix] [-N number] [-p symbol_prefix] [-P pathname] grammar

The yacc command converts a context-free grammar specification into a set of tables for a
simple automaton that executes an LR(1) parsing algorithm.

FLAGS
-b prefix Uses prefix instead of y as the prefix for all output filenames (prefix.tab.c, prefix.tab.h,

and prefix.output).

-d Produces the y.tab.h file, which contains the #define statements that associate the
yacc-assigned token codes with your token names. This allows source files other than
y.tab.c to access the token codes by including this header file.

-l Does not include any #line constructs in y.tab.c.

-N number
Provides yacc with extra storage for building its LALR tables, which may be necessary
when compiling very large grammars. number should be larger than 40,000 when you
use this flag.

-p symbol_prefix
Allows multiple yacc parsers to be linked together. Use symbol_prefix instead of yy to
prefix global symbols.

-P pathname
Specifies an alternative parser (instead of /usr/ccs/lib/yaccpar). pathname specifies
the filename of the skeleton to be used in place of yaccpar.

-s Breaks the yyparse() function into several smaller functions. Because its size is some-
what proportional to that of the grammar, it is possible for yyparse() to become too
large to compile, optimize, or execute efficiently.

-t Compiles runtime debugging code. By default, this code is not included when y.tab.c
is compiled. If YYDEBUG has a nonzero value, the C compiler (cc) includes the
debugging code, whether or not the -t flag was used. Without compiling this code,
yyparse() will run more quickly.

-v Produces the y.output file, which contains a readable description of the parsing tables
and a report on conflicts generated by grammar ambiguities.

DESCRIPTION
The yacc grammar can be ambiguous; specified precedence rules are used to resolve ambiguities.

You must compile the y.tab.c output file with a C language compiler to produce the yyparse()
function. This function must be loaded with a yylex lexical analyzer function, as well as the
main() routine and yyerror(), an error-handling routine (you must provide these routines). The
lex command is useful for creating lexical analyzers usable by yacc.

The yacc program reads its skeleton parser from the file /usr/ccs/lib/yaccpar. Use the -P flag or
the environment variable PARSER to specify another location for yacc to read from.

Syntax for yacc Input
This section contains a formal description of the yacc input file (or grammar file), which is nor-
mally named with a .y suffix. The section provides a listing of the special values, macros, and
functions recognized by yacc.

10−36 Hewlett-Packard Company 527188-021

User Commands (v - z) yacc(1)

The general format of the yacc input file is:

[definitions]
%%
[rules]
[%%
[user functions]]

where

definitions Is the section where you define the variables to be used later in the grammar,
such as in the rules section. It is also the file where files are included (#include)
and processing conditions are defined. This section is optional.

rules Is the section that contains grammar rules for the parser. A yacc input file must
have a rules section.

user functions Is the section that contains user-supplied functions that can be used by the
actions in the rules section. This section is optional.

Each line in the definitions can be:

%{

%} When placed on lines by themselves, these enclose C code to be passed into the
global definitions of the output file. Such lines commonly include preprocessor
directives and declarations of external variables and functions.

%token token [token ...]
Lists tokens or terminal symbols to be used in the rest of the input file. This line
is needed for tokens that do not appear in other % definitions.

%left token [token ...]
Indicates that each token is an operator, that all tokens in this definition have
equal precedence, and that a succession of the operators listed in this definition
are evaluated left to right.

%right token [token ...]
Indicates that each token is an operator, that all tokens in this definition have
equal precedence, and that a succession of the operators listed in this definition
are evaluated right to left.

%nonassoc token [token ...]
Indicates that each token is an operator, and that the operators listed in this
definition cannot appear in succession.

%start symbol Indicates the highest-level production rule to be reduced; in other words, the rule
where the parser can consider its work done and terminate. If this definition is
not included, the parser uses the first production rule. symbol must be non-
terminal (not a token).

%type < type > symbol [symbol ...]
Defines each symbol as data type type, to resolve ambiguities.

%union union-def
Defines the yylval global variable as a union, where union-def is a standard C
definition in the format:

{ type member ; [type member ; ...] }

527188-021 Hewlett-Packard Company 10−37

yacc(1) OSS Shell and Utilities Reference Manual

At least one member should be an int. Any valid C data type can be defined,
including structures. When you run yacc with the -d option, the definition of
yylval is placed in the y.tab.h file and can be referred to in a lex input file.

Every token (non-terminal symbol) must be listed in one of the preceding % definitions. Multi-
ple tokens can be separated by white space or commas. All the tokens in %left, %right, and
%nonassoc definitions are assigned a precedence, with tokens in later definitions having pre-
cedence over those in earlier definitions.

In addition to symbols, a token can be a literal character enclosed in single quotes. (Multibyte
characters are recognized by the lexical analyzer and returned as tokens.) The following special
characters can be used, just as in C programs:

\a Alert

\n Newline

\t Tab

\v Vertical tab

\r Carriage return

\b Backspace

\f Formfeed

\\ Backslash

\’ Single quote

\? Question mark

\n One or more octal digits specifying the integer value of the character

The rules section consists of a series of production rules that the parser tries to reduce. The for-
mat of each production rule is:

symbol : symbol-sequence
[action] [� symbol-sequence
[action] ...] ;

where symbol-sequence consists of zero or more symbols separated by white space. The first
symbol must be the first character of the line, but new lines and other white space can appear
anywhere else in the rule. All terminal symbols must be declared in %token definitions.

Each symbol-sequence represents an alternative way of reducing the rule. A symbol can appear
recursively in its own rule. Always use left-recursion (where the recursive symbol appears
before the terminating case in symbol-sequence).

The specific sequence:

%prec token

indicates that the current sequence of symbols is to be preferred over others, at the level of pre-
cedence assigned to token in the definitions section.

The specially defined token error matches any unrecognized sequence of input. This token
causes the parser to invoke the yyerror function. By default, the parser tries to synchronize with
the input and continue processing it by reading and discarding all input up to the symbol follow-
ing error. (You can override this behavior through the yyerrok action.) If no error token
appears in the yacc input file, the parser exits with an error message upon encountering

10−38 Hewlett-Packard Company 527188-021

User Commands (v - z) yacc(1)

unrecognized input.

The parser always executes action after encountering the symbol that precedes it. Thus, an
action can appear in the middle of a symbol-sequence, after each symbol-sequence, or after multi-
ple instances of symbol-sequence. In the last case, action is executed when the parser matches
any of the sequences.

The action consists of standard C code within braces and can also take the following values,
variables, and keywords.

yylval If the token returned by the yylex function is associated with a significant value,
yylex should place the value in this global variable. By default, yylval is of type
int. The definitions section can include a %union definition to associate with
other data types, including structures. If you run yacc with the -d option, the full
yylval definition is passed into the y.tab.h file for access by lex.

yyerrok Causes the parser to start parsing tokens immediately after an erroneous
sequence, instead of performing the default action of reading and discarding
tokens up to a synchronization token. The yyerrok action should appear
immediately after the error token.

$ [<type>] n Refers to symbol n, a token index in the production, counting from the beginning
of the production rule, where the first symbol after the colon is $1. The type
variable is the name of one of the union lines listed in the %union directive in
the declaration section. The <type> syntax (non-standard) allows the value to be
set to a specific data type. Note that you will rarely need to use the type syntax.

$ [<type>] $ Refers to the value returned by the matched symbol-sequence and used for the
matched symbol when reducing other rules. The symbol-sequence generally
assigns a value to $$. The type variable is the name of one of the union lines
listed in the %union directive in the declaration section. The <type> syntax
(non-standard) allows the value to be set to a specific data type. Note that you
will rarely need to use the type syntax.

The user functions section contains user-supplied programs. If you supply a lexical analyzer
(yylex) to the parser, it must be contained in the user functions section.

The following functions, which are contained in the user functions section, are invoked within
the yyparse function generated by yacc.

yylex() The lexical analyzer called by yyparse to recognize each token of input. Usu-
ally this function is created by lex. yylex reads input, recognizes expressions
within the input, and returns tokens. The function returns an int value. A return
value of 0 (zero) means the end of input.

yyerror(string)
The function that the parser calls upon encountering an input error. The default
function, defined in liby.a, simply prints string to the standard error. The user
can redefine the function. The function’s type is void.

The liby.a library contains default main() and yyerror() functions. These look like the follow-
ing, respectively:

main()
{

setlocale(LC_ALL, "");
(void) yyparse();
return(0);

527188-021 Hewlett-Packard Company 10−39

yacc(1) OSS Shell and Utilities Reference Manual

}

int yyerror(s);
char *s;

{
fprintf(stderr,"%s\n",s);
return (0);

}

Comments, in C syntax, can appear anywhere in the user functions or definitions sections. In the
rules section, comments can appear wherever a symbol is allowed. Blank lines or lines consist-
ing of white space can be inserted anywhere in the file, and are ignored.

EXAMPLES
This section describes the example programs for the lex and yacc commands, which together
create a simple desk calculator program that performs addition, subtraction, multiplication, and
division operations. The calculator program also allows you to assign values to variables (each
designated by a single lowercase ASCII letter), and then use the variables in calculations. The
files that contain the program are as follows:

calc.l The lex specification file that defines the lexical analysis rules.

calc.y The yacc grammar file that defines the parsing rules and calls the yylex() function
created by lex to provide input.

The remaining text expects that the current directory is the directory that contains the lex and
yacc example program files.

Compiling the Example Program
Perform the following steps to create the example program using lex and yacc:

1. Process the yacc grammar file using the -d flag. The -d flag tells yacc to create a file that
defines the tokens it uses in addition to the C language source code.

yacc -d calc.y

2. The following files are created:

y.tab.c The C language source file that yacc created for the parser.

y.tab.h A header file containing #define statements for the tokens used by the parser.

3. Process the lex specification file:

lex calc.l

4. The following file is created:

lex.yy.c The C language source file that lex created for the lexical analyzer.

5. Compile and link the two C language source files:

cc -o calc y.tab.c lex.yy.c

6. The following files are created (the *.o files are created temporarily and then removed):

y.tab.o The object file for y.tab.c.

lex.yy.o The object file for lex.yy.c.

10−40 Hewlett-Packard Company 527188-021

User Commands (v - z) yacc(1)

calc The executable program file.

You can then run the program directly by entering:

calc

Then enter numbers and operators in calculator fashion. After you press <Return>, the
program displays the result of the operation. If you assign a value to a variable as fol-
lows, the cursor moves to the next line:

m=4 <Return>
_

You can then use the variable in calculations and it will have the value assigned to it:

m+5 <Return>

9

The Parser Source Code
The text that follows shows the contents of the file calc.y. This file has entries in all three of the
sections of a yacc grammar file: declarations, rules, and programs.

%{
#include <stdio.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left ’|’
%left ’&’
%left ’+’ ’-’
%left ’*’ ’/’ ’%’
%left UMINUS /*supplies precedence for unary minus */

%% /*beginning of rules section */

list : /*empty */
| list stat ’\n’
| list error ’\n’

{ yyerrok; }
;

stat : expr
{ printf("%d\n",$1); }

| LETTER ’=’ expr
{ regs[$1] = $3; }

;

expr : ’(’ expr ’)’
{ $$ = $2; }

527188-021 Hewlett-Packard Company 10−41

yacc(1) OSS Shell and Utilities Reference Manual

| expr ’*’ expr
{ $$ = $1 * $3; }

| expr ’/’ expr
{ $$ = $1 / $3; }
| expr ’%’ expr

{ $$ = $1 % $3; }
| expr ’+’ expr

{ $$ = $1 + $3; }
| expr ’-’ expr

{ $$ = $1 - $3; }
| expr ’&’ expr

{ $$ = $1 & $3; }
| expr ’|’ expr

{ $$ = $1 | $3; }
| ’-’ expr %prec UMINUS

{ $$ = -$2; }
| LETTER

{ $$ = regs[$1]; }
| number
;

number : DIGIT
{ $$ = $1; base = ($1==0) ? 8:10; }

| number DIGIT
{ $$ = base * $1 + $2; }

;

%%
main()
{

return(yyparse());
}

yyerror(s)
char *s;
{

fprintf(stderr,"%s\n",s);
}

yywrap()
{

return(1);
}

Declarations Section
This section contains entries that perform the following functions:

• Includes standard I/O header file.

• Defines global variables.

• Defines the list rule as the place to start processing.

• Defines the tokens used by the parser.

10−42 Hewlett-Packard Company 527188-021

User Commands (v - z) yacc(1)

• Defines the operators and their precedence.

Rules Section
The rules section defines the rules that parse the input stream.

Programs Section
The programs section contains the following routines. Because these routines are included in
this file, you do not need to use the yacc library when processing this file.

main() The required main program that calls yyparse() to start the program.

yyerror(s) This error handling routine only prints a syntax error message.

yywrap() The wrap-up routine that returns a value of 1 when the end of input
occurs.

The Lexical Analyzer Source Code
This shows the contents of the file calc.lex. This file contains include statements for standard
intput and output, as well as for the y.tab.h file. The yacc program generates that file from the
yacc grammar file information, if you use the -d flag with the yacc command. The file y.tab.h
contains definitions for the tokens that the parser program uses. In addition, calc.lex contains the
rules used to generate the tokens from the input stream.

%{

#include <stdio.h>
#include "y.tab.h"
int c;
extern int yylval;
%}
%%
" " ;
[a-z] {

c = yytext[0];
yylval = c - ’a’;
return(LETTER);

}
[0-9] {

c = yytext[0];
yylval = c - ’0’;
return(DIGIT);

}
[ˆa-z 0-9] {

c = yytext[0];
return(c);
}

FILES
y.output A readable description of parsing tables and a report on conflicts gen-

erated by grammar ambiguities.

y.tab.c Output file.

y.tab.h Definitions for token names.

527188-021 Hewlett-Packard Company 10−43

yacc(1) OSS Shell and Utilities Reference Manual

yacc.tmp Temporary file.

yacc.debug Temporary file.

yacc.acts Temporary file.

/usr/ccs/lib/yaccpar Default skeleton parser for C programs.

/usr/ccs/lib/liby.a yacc library.

RELATED INFORMATION
Commands: lex(1).

10−44 Hewlett-Packard Company 527188-021

User Commands (v - z) zcat(1)

NAME
zcat - Expands compressed data

SYNOPSIS
zcat [-n] [file[.Z] ...]

FLAGS
-n Specifies that no header is added or expected. This flag might be useful for expanding

old files.

DESCRIPTION
The zcat command writes the uncompressed version of a compressed file to the standard output
file. The compressed (.Z) file remains intact.

zcat is identical to the command uncompress -c.

You can specify the compressed target file with or without the .Z suffix; if you do not specify the
suffix, zcat assumes it. If you do not specify a file or if you specify - by itself, then the zcat com-
mand expands the standard input file.

Operands
file[.Z] Specifies the pathname of the compressed file to be expanded. If the .Z suffix is

omitted, it is assumed.

Environment Variables
This command supports the use of the LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, and
NLSPATH environment variables.

EXIT VALUES
The zcat command returns the following values:

0 (zero) The command completed successfully.

>0 An error occurred or an attempt was made to expand a file that is not
compressed.

RELATED INFORMATION
Commands: compress(1), uncompress(1).

STANDARDS CONFORMANCE
This command conforms to the XPG4 Version 2 specification with extensions.

527188-021 Hewlett-Packard Company 10−45

Section 11. File Format Reference Pages

This section contains reference pages for selected OSS file formats. See the Open
System Services System Calls Reference Manual for other reference pages you might
expect to find in this section.

527188-021 Hewlett-Packard Company 11−1

charmap(4) OSS Shell and Utilities Reference Manual

NAME
charmap - Defines character symbols as character encodings

DESCRIPTION
The character set description (charmap) source file defines character symbols as character
encodings.

The CHARMAP Section
The CHARMAP section must precede all other sections in the charmap file. The CHARMAP
section of the charmap file maps symbolic character names to code points. All supported code
sets have the portable character set as a proper subset. The portable character set consists of the
following character symbols (listed by their standardized symbolic names) and hexadecimal
encodings:

Table 11−1. The Portable Character Set

Symbol Name Code Symbol Name Code__
<NUL> \x00 <comma> \x2C
<SOH> \x01 <hyphen> \x2D
<STX> \x02 <period> \x2E
<ETX> \x03 <slash> \x2F
<EOT> \x04 <zero> \x30
<ENQ> \x05 <one> \x31D
<ACK> \x06 <two> \x32E
<alert> \x07 <three> \x33F
<backspace> \x08 <four> \x34
<tab> \x09 <five> \x35
<newline> \x0A <six> \x36
<vertical-tab> \x0B <seven> \x37
<form-feed> \x0C <eight> \x38
<carriage-return> \x0D <nine> \x39
<SO> \x0E <colon> \x3A
<SI> \x0F <semi-colon> \x3B
<DLE> \x10 <less-than> \x3C
<DC1> \x11 <equal-sign> \x3D
<DC2> \x12 <greater-than> \x3E
<DC3> \x13 <question-mark> \x3F
<DC4> \x14 <commercial-at> \x40
<NAK> \x15 <A> \x41
<SYN> \x16 \x42
<ETB> \x17 <C> \x43
<CAN> \x18 <D> \x44
 \x19 <E> \x45
<SUB> \x1A <F> \x46
<ESC> \x1B <G> \x47
<IS4> \x1C <H> \x48
<IS3> \x1D <I> \x49
<IS2> \x1E <J> \x4A
<IS1> \x1F <K> \x4B
<space> \x20 <L> \x4C
<exclamation-mark> \x21 <M> \x4D��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

11−2 Hewlett-Packard Company 527188-021

File Format Reference Pages charmap(4)

<quotation-mark> \x22 <N> \x4E
<number-sign> \x23 <O> \x4F
<dollar-sign> \x24 <P> \x50
<percent> \x25 <Q> \x51
<ampersand> \x26 <R> \x52
<apostrophe> \x27 <S> \x53
<left-parenthesis> \x28 <T> \x54
<right-parenthesis> \x29 <U> \x55
<asterisk> \x2A <V> \x56
<plus-sign> \x2B <W> ex57
<X> \x58 <l> \x6C
<Y> \x59 <m> \x6D
<Z> \x5A <n> \x6E
<left-bracket> \x5B <o> \x6F
<backslash> \x5C <p> \x70
<right-bracket> \x5D <q> \x71
<circumflex> \x5E <r> \x72
<underscore> \x5F <s> \x73
<grave-accent> \x60 <t> \x74
<a> \x61 <u> \x75
 \x62 <v> \x76
<c> \x63 <w> \x77
<d> \x64 <x> \x78
<e> \x65 <y> \x79
<f> \x66 <z> \x7A
<g> \x67 <left-brace> \x7B
<h> \x68 <vertical-line> \x7C
<i> \x69 <right-brace> \x7D
<j> \x6A <tilde> \x7E
<k> \x6B \x7F__�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The CHARMAP section contains the following four components:

• The CHARMAP section header.

• An optional special symbolic name declarations section. The symbolic name and value
must be separated by one or more space characters. The following are the special sym-
bolic names and their meanings:

<code_set_name>
Specifies the name of the coded character set for which the charmap file is
defined. This value determines the value returned by the nl_langinfo
(CODESET) subroutine.

<mb_cur_max>
Specifies the maximum number of bytes in a character for the coded character
set. Valid values are 1 to 4. The default value is 1.

<mb_cur_min>
Specifies the minimum number of bytes in a character for the coded character
set. Since all supported code sets have the portable character set as a proper
subset, this value must be 1.

527188-021 Hewlett-Packard Company 11−3

charmap(4) OSS Shell and Utilities Reference Manual

<escape_char>
Specifies the escape character that indicates encodings in hexadecimal or octal
notation. The default value is a \ (backslash).

<comment_char>
Specifies the character used to indicate a comment within a charmap file. The
default value is a # (number sign).

• Mapping statements for the defined coded character set.

Each statement in this section lists a symbolic name for a character and its associated
encodings. A symbolic name begins with the < (left angle bracket) character and ends
with the > (right angle bracket) character. The characters between the < and > can be
any characters from the portable character set, except for control and space characters.
The > character may be used if it is escaped with the escape character (as specified by
the <escape_char> special symbolic name). A symbolic name cannot exceed 32 bytes
in length.

The format of a symbolic name definition is:

<char_symbol> encoding

An encoding is specified as one or more character constants, with the maximum number
of character constants specified by the <mb_cur_max> special symbolic name. The
encodings may be listed as decimal, octal, or hexadecimal constants with the following
formats:

Hexadecimal constant \xxxx, where x is a hexadecimal digit.

Octal constant \ooo, where o is an octal digit.

Decimal constant \dddd, where d is a decimal digit.

Some examples of character symbol definitions are the following:

<A> \d65 #decimal constant

 \x42 #hexadecimal constant

<j10101> \x81\xA1 #multiple hexadecimal constants

A range of symbolic names and corresponding encoded values may also be defined,
where the non-numeric prefix for each symbolic name is common, and the numeric por-
tion of the second symbolic name is equal to or greater than the numeric portion of the
first symbolic name. In this format, a symbolic name value consists of zero or more
non-numeric characters followed by an integer of one or more decimal digits. This for-
mat defines a series of symbolic names. For example, the string <j0101>...<j0104> is
interpreted as the <j0101>, <j0102>, <j0103>, and <j0104> symbolic names, in that
order.

In statements defining ranges of symbolic names, the encoded value listed is the value
for the first symbolic name in the range. Subsequent symbolic names have encoded
values in increasing order. For example:

<j0101>...<j0104> \d129\d254

The preceding statement is interpreted as follows:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0
<j0104> \d130\d1

11−4 Hewlett-Packard Company 527188-021

File Format Reference Pages charmap(4)

Although you cannot assign multiple encodings to one symbolic name, you can create
multiple names for one encoded value. This is because some characters have several
common names. For example, the "." character is called a period in some parts of the
world, and a full stop in others. Both names may appear in the charmap. For example:

<period> \x2e
<full-stop> \x2e

If used, comments must begin with the character specified by the <comment_char> spe-
cial symbolic name.

• The END CHARMAP section trailer.

The following is an example of a portion of a possible CHARMAP section from a charmap file:

CHARMAP

<code_set_name> "ISO8859-1"

<mb_cur_max> 1

<mb_cur_min> 1

<escape_char> \

<comment_char> #

<NUL> \x00

<SOH> \x01

<STX> \x02

<ETX> \x03

<EOT> \x04

<ENQ> \x05

<ACK> \x06

<alert> \x07

<backspace> \x09

<tab> \x09

<newline> \x0a

<vertical-tab> \x0b

<form-feed> \x0c

<carriage-return> \x0d

END CHARMAP

RELATED INFORMATION
Commands: locale(1), localedef(1).

Files: locale(4).

527188-021 Hewlett-Packard Company 11−5

hosts(4) OSS Shell and Utilities Reference Manual

NAME
hosts - Contains information about the hosts in the network

DESCRIPTION
The /etc/hosts file contains information about the hosts in the network. A host entry consists of a
host address in standard dot notation and the host name. The entry can optionally contain aliases
for the host name. Each entry takes the following form:

address name aliases

The fields contain the following information.

address The host address in standard dot notation.

name The name of the host.

aliases Any alias names for the host.

Fields are separated by one or more spaces or tab characters. Comments begin with the number
sign (#). Routines that search the hosts file do not interpret characters from the beginning of a
comment to the end of the line. A host name can contain any printable character except a field
delimiter, newline character, or comment character (#).

EXAMPLES
Example lines from a hosts file are shown below:

131.253.124.22 toms #Tom Smith
155.187.223.67 granada #name server

FILES
/etc/hosts

RELATED INFORMATION
Files: networks(4), protocols(4), services(4).

Functions: endhostent(3), gethostbyaddr(3), gethostbyname(3), gethostent(3), sethostent(3).

11−6 Hewlett-Packard Company 527188-021

File Format Reference Pages hosts.equiv(4)

NAME
hosts.equiv - Describes node file for trusted remote hosts and users

SYNOPSIS
/etc/hosts.equiv

DESCRIPTION
The /etc/hosts.equiv and .rhosts files provide the "remote authentication" database for the rsh
command. The files specify remote hosts and users that are considered trusted. Only trusted
users from the remote host are allowed to access the local system. The /etc/hosts.equiv file
applies to the entire system, while individual users can maintain their own .rhosts files in their
home directories. To maintain system security, these files must be carefully created and main-
tained. The remote authentication procedure determines whether a user from a remote host
should be allowed to access the local system with the identity of a local user. This procedure
first checks the /etc/hosts.equiv file and then checks the .rhosts file in the home directory of the
local user who is requesting access. The rsh command fails if the remote authentication pro-
cedure fails.

Each entry in the file has the form:

hostname [username]

If the entry is in the form:

hostname

then all users from the named host are trusted. That is, they are allowed to access the system
with the same user name as they have on the remote system. This form of entry can be used in
both the /etc/hosts.equiv and .rhosts files.

If the entry is in the form:

hostname username

then the named user from the named host is allowed to access the system. This form can be used
in individual .rhosts files to allow a remote user to access the system as a different local user. If
this form is used in the /etc/hosts.equiv file, the named remote user is allowed to access the sys-
tem with the same capabilities as any local user.

FILES
/etc/hosts.equiv

~/.rhosts

NOTES
The hostname value used in the /etc/hosts.equiv and .rhosts files must be the official name of the
host, not one of its nicknames.

Super ID access is handled as a special case. Only the .rhosts file is checked when access is
attempted for the super ID. To help maintain system security, the /etc/hosts.equiv file is not
checked.

RELATED INFORMATION
Commands: rsh(1).

Files: hosts(4), .rhosts(4).

STANDARDS CONFORMANCE
This file is an extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 11−7

ipnodes(4) OSS Shell and Utilities Reference Manual

NAME
ipnodes - Defines the hosts using IPv6 network addresses

DESCRIPTION
The Guardian IPNODES file is the IPv6-equivalent of the IPv4 /etc/hosts file. It contains IP
addresses and host names, where the IP addresses can be either in IPv4 or IPv6 format.

Guardian DEFINEs determine whether a name resolution service is searched first, or whether the
local databases (the IPNODES and hosts files) are searched first. If the DEFINEs
=TCPIPˆNODEˆFILE, $SYSTEM.ZTCPIP.IPNODES and =TCPIPˆHOSTˆFILE,
$SYSTEM.ZTCPIP.HOSTS are in effect, the Guardian copies of the local files are searched first.

No /etc directory link is used for IPNODES. NonStop TCP/IPv6 does not require an OSS
/etc/ipnodes file.

Each entry in the IPNODES file has the format:

node_address stack_name

where

node_address Specifies a text string version of the address. This has one of the following
forms:

IPv4 Dotted decimal format as ddd.ddd.ddd.ddd, for example:

172.17.201.43

IPv6 Hexadecimal string format as x:x:x:x:x:x:x:x, for example:

1080:0:0:0:8:800:200C:417A

Compressed hexadecimal string format that omits zero values,
for example:

1080:::8:800:200C:417A

In mixed form as x:x:x:x:x:x:d.d.d.d, for example:

::FFFF:13.1.68.3

as a mapped value, or

::13.1;68.3

as a compatible value.

stack_name Is an arbitrary character string that identifies the TCP/IP stack or host for the
corresponding host address.

NOTES
The maximum length of an IPv6 address as a text string is defined as INET6_ADDRSTRLEN in
the header file in6.h.

EXAMPLES
Example lines from an ipnodes file are shown below:

3ffe:1111:200:1:a00:2bff:fe55 foo-ipv6
10.12.1.100 foo-ipv4
fe80:12::1234 test1

11−8 Hewlett-Packard Company 527188-021

File Format Reference Pages ipnodes(4)

FILES
/G/SYSTEM/ZTCPIP/IPNODES

Contains the network host definitions for IPv6 addresses.

/etc/hosts Contains the network host definitions for IPv4 addresses.

RELATED INFORMATION
Files: hosts(4), networks(4), protocols(4), services(4).

Functions: freeaddrinfo(3), gai_strerror(3), getaddrinfo(3), getnameinfo(3),
if_freenameindex(3), if_indextoname(3), if_nameindex(3), if_nametoindex(3), inet_ntop(3),
inet_pton(3).

STANDARDS CONFORMANCE
This file is an extension to the XPG4 specification.

527188-021 Hewlett-Packard Company 11−9

locale(4) OSS Shell and Utilities Reference Manual

NAME
locale - Contains one or more categories that describe a locale

DESCRIPTION
For information on writing programs that use the internationalization features of Open System
Services, refer to the Software Internationalization Guide.

A locale definition source file contains one or more categories that describe a locale. Files using
this format can be converted into a locale by using the localedef command. Locales can be
modified only by editing a locale definition source file and then using the localedef command
again on the new source file.

Each locale source file section defines a category of locale data. A source file should not contain
more than one section for the same category. The following standard categories are supported:

LC_COLLATE
Defines character or string collation information.

LC_CTYPE
Defines character classification, case conversion, and other character attributes.

LC_MESSAGES
Defines the format for affirmative and negative responses.

LC_MONETARY
Defines rules and symbols for formatting monetary numeric information.

LC_NUMERIC
Defines a list of rules and symbols for formatting nonmonetary numeric information.

LC_TIME
Defines a list of rules and symbols for formatting time and date information.

The category source definition consists of the following:

• The category header (category name).

• The associated keyword/value pairs that comprise the category body.

• The category trailer (END category_name).

For example:

LC_CTYPE
source for LC_CTYPE category
END LC_CTYPE

The source for all of the categories is specified using keywords, strings, character literals, and
character symbols. Each keyword identifies either a definition or a rule. The remainder of the
statement containing the keyword contains the operands to the keyword. Operands are
separated from the keyword by one or more spaces. A statement may be continued on the next
line by placing a \ (backslash) as the last character before the newline character that terminates
the line. Lines containing the # (comment character) in the first column are treated as comment
lines.

A symbolic name begins with the < (left angle bracket) character and ends with the > (right angle
bracket) character. The characters between the < and the > can be any characters from the port-
able character set except for control and space characters. A symbolic name cannot exceed 32
bytes in length. For example, <A-diaeresis> is a valid symbolic name. Any symbolic name
referenced in the source file should either be one of the portable character set symbols, or should

11−10 Hewlett-Packard Company 527188-021

File Format Reference Pages locale(4)

be defined in the provided character set description source file (charmap).

A character literal is the character itself, or else a decimal, hexadecimal, or octal constant. A
decimal constant is of the following form:

\dddd

where d is a decimal digit. A hexadecimal constant is of the following form:

\xxxx

where x is a hexadecimal digit. An octal constant is of the following form:

\ooo

where o is an octal digit.

The explicit definition of each category in a locale definition source file is not required. When a
category is undefined in a locale definition source file, it defaults to the C locale definition.

The LC_COLLATE Category
The LC_COLLATE category defines the relative order between collating elements.

A collation element is the unit of comparison for collation. A collation element may be a charac-
ter or a sequence of characters. Every collation element in the locale has a set of weights, which
determine if the collation element collates before, equal to, or after the other collation elements
in the locale. Each collation element is assigned collation weights by the localedef command
when the locale definition source file is compiled. These collation weights are then used by
applications programs that compare strings.

Comparison of strings is performed by comparing the collation weights of each character in the
string until either a difference is found or the strings are determined to be equal. This com-
parison may be performed several times if the locale defines multiple collation orders. For exam-
ple, in the French locale, the strings are compared using a primary set of collation weights. If
they are equal on the basis of this comparison, they are compared again using a secondary set of
collation weights. A collating element has a set of collation weights associated with it that is
equal to the number of collation orders defined for the locale.

Every character defined in the charmap file (or every character in the portable character set if no
charmap file is specified) is itself a collating element. Additional collating elements can be
defined using the collating-element statement. The syntax is as follows:

collating-element <character_symbol> from <string>

The LC_COLLATE category begins with the keyword LC_COLLATE and ends with the END
LC_COLLATE keyword.

The following keywords are recognized in the LC_COLLATE category:

collating-element
The collating-element statement is used to specify multicharacter collating elements.

The character_symbol argument defines a collating element that is a string of one or
more characters as a single collating element. The character_symbol argument cannot
duplicate any symbolic name in the current charmap file, or any other symbolic name
defined in this collation definition. The string argument specifies a string of two or
more characters that define the character_symbol argument. The following are exam-
ples of the syntax for the collating-element statement:

collating-element <ch> from <c><h>
collating-element <e-acute> from <acute><e>
collating-element <11> from <1><1>

527188-021 Hewlett-Packard Company 11−11

locale(4) OSS Shell and Utilities Reference Manual

A character_symbol argument defined by the collating-element statement is recog-
nized only within the LC_COLLATE category.

collating-symbol
The collating-symbol statement is used to specify collation symbols for use in colla-
tion sequence statements.

The syntax for the collating-symbol statement is as follows:

collating-symbol <collating_symbol>

The collating_symbol argument cannot duplicate any symbolic name in the current
charmap file, or any other symbolic name defined in this collation definition. The fol-
lowing are examples of the syntax for the collating-symbol statement:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

A collating_symbol argument defined by the collating-symbol statement is recognized
only within the LC_COLLATE category.

substitute
The substitute statement is used to define a substring substitution in a string to be col-
lated.

The syntax for the substitute statement is as follows:

substitute "regular_expr" with "replacement"

The regular_expr argument defines a basic regular expression enclosed in "" (double
quotes). The replacement argument consists of zero or more characters and regular
expression back references (for example, \1 through \9) enclosed in "" (double quotes).

When strings are collated based on a collation definition containing substitute state-
ments, the collation acts as if occurrences of substrings matching the regular_expr
string are replaced by the replacement string in the same manner as the ed command
performs a global substitution. After all substitutions are complete, the strings are
compared based on the specified collation order. Ranges in the regular expression are
interpreted according to the character classification specified by the LC_CTYPE
environment variable at collation time. If more than one substitute statement is
defined in the collation definition, the collation process acts as if the substitute state-
ments are applied to the strings in the order they occur in the source definition.

A regular_expr argument defined by the substitute statement is recognized only with
the LC_COLLATE category.

A situation where substitution is necessary for dictionary order is the expansion of Mc
to Mac in personal names. The following substitute statement performs this substitu-
tion:

substitute "ˆMc\(\{0,1\}\)\([[:upper:]]\)" with " Mac\1\2"
substitute " Mc\(\{0,1\}\)\([[:upper:]]\)" with " Mac\1\2"

order_start
The order_start statement is followed by one or more collation order statements,
assigning collation weights to collating elements. This statement is mandatory.

The syntax for the order_start statement is as follows:

order_start <sort_rules>;<sort_rules>;...;<sort_rules>
collation_order_statements
order_end

11−12 Hewlett-Packard Company 527188-021

File Format Reference Pages locale(4)

The <sort_rules> have the following syntax:

keyword, keyword,...,keyword

where keyword is one of the keywords forward, backward, no-substitute, and posi-
tion.

The sort_rules directives are optional. If present, they define the rules to apply during
string comparison. The number of specified sort_rules directives defines the number
of weights each collating element is assigned; that is, the number of collation orders in
the locale. If no sort_rules directives are present, one forward directive is assumed
and comparisons are made on a character basis rather than a string basis. If present, the
first sort_rules directive applies when comparing strings using primary weight, the
second when comparing strings using the secondary weight, and so on. Each set of
sort_rules directives is separated by a ; (semicolon). A sort_rules directive consists of
one or more comma-separated keywords. The following keywords are supported:

copy Specifies the name of an existing locale to be used as the definition of this
category. If you include a copy statement, no other keyword shall be
specified.

forward Specifies that collation weight comparisons proceed from the beginning of a
string toward the end of the string.

backward
Specifies that collation weight comparisons proceed from the end of a string
toward the beginning of the string.

no-substitute
Specifies that substitution operations defined by the substitute statement are
disabled for this collation order.

position Specifies that collation weight comparisons consider the relative position of
nonignored elements in the string. That is, if strings compare as equal, the
element with the shortest distance from the starting point of the string col-
lates first.

The forward and backward keywords are mutually exclusive. The following is an
example of the syntax for the sort_rules directives:

order_start forward;backward,no-substitute

The syntax of the collation order statements is as follows:

• Each collation element consists of a <character_symbol> specification, followed by whi-
tespace and a set of collation orders.

• All characters in the character set must be placed in the collation order, either explicitly,
or implicitly via the ellipsis symbol (...) or by using the UNDEFINED special symbol.

• The number of collation order statements must match the order_start specification.

The optional operands for each collation element are used to define the primary, secondary, or
subsequent weights for the collating element. The special symbol IGNORE is used to indicate a
collating element that is to be ignored when strings are compared.

An ellipsis keyword appearing in place of a collating_element_list indicates the weights are to be
assigned, for the characters in the identified range, in numerically increasing order from the
weight for the character symbol on the left-hand side of the preceding statement.

527188-021 Hewlett-Packard Company 11−13

locale(4) OSS Shell and Utilities Reference Manual

The use of the ellipsis keyword results in a locale that may collate differently when compiled
with different character set description (charmap) source files. For this reason, the localedef
command will issue a warning when the ellipsis keyword is encountered.

The UNDEFINED special symbol includes all coded character set values not specified expli-
citly or with an ellipsis symbol. These characters are inserted in the character collation order at
the point indicated by the UNDEFINED special symbol in the order of their character code set
values. If no UNDEFINED special symbol exists and the collation order does not specify all
collation elements from the coded character set, a warning is issued and all undefined characters
are placed at the end of the character collation order.

The following is an example of a collation order statement in the LC_COLLATE locale
definition source file category:

order_start forward;backward

UNDEFINED IGNORE;IGNORE

<LOW>

<space> <LOW>;<space>

.. <LOW>;...

<a> <a>;<a>

<a-acute> <a>;<a-acute>

<a-grave> <a>;<a-grave>

<A> <a>;<A>

<A-acute> <a>;<A-acute>

<A-grave> <a>;<A-grave>

<ch> <ch>;<ch>

<Ch> <ch>;<Ch>

<s> <s>;<s>

<ss> <s><s>;<s><s>

<eszet> <s><s>;<eszet><eszet>

... <HIGH>;...

<HIGH>

order_end

This example is interpreted as follows:

• The UNDEFINED special symbol indicates that all characters not specified in the
definition (either explicitly or by the ellipsis symbol) are ignored for collation purposes.

• All collating elements between <space> and <a> have the same primary equivalence
class and individual secondary weights based on their coded character set values.

• All versions of the letter a — uppercase and lowercase, and with or without diacriticals
— belong to the same primary collation class.

• The <c><h> multicharacter collating element is represented by the <ch> collating sym-
bol and belongs to the same primary equivalence class as the <C><h> multicharacter
collating element.

• The <eszet> character is collated as an <s><s> string. That is, one <eszet> character is
expanded to two characters before comparing.

The LC_CTYPE Category
The LC_CTYPE category of a locale definition source file defines character classification, case
conversion, and other character attributes. This category begins with an LC_CTYPE category
header and terminates with an END LC_CTYPE category trailer.

11−14 Hewlett-Packard Company 527188-021

File Format Reference Pages locale(4)

All operands for LC_CTYPE category statements are defined as lists of characters. Each list
consists of one or more semicolon-separated characters or symbolic character names.

The following keywords are recognized in the LC_CTYPE category. In the descriptions, the
term automatically included means that an error does not occur if the referenced characters are
included or omitted. The characters will be provided if they are missing and will be accepted if
they are present.

copy Specifies the name of an existing locale to be used as the definition of this category. If
you include a copy statement, no other keyword shall be specified.

upper Defines uppercase letter characters. No character defined by the cntrl, digit, punct, or
space keyword can be specified. If upper is not defined, A through Z default to upper.

lower Defines lowercase letter characters. No character defined by the cntrl, digit, punct, or
space keyword can be specified. If lower is not defined, a through z default to lower.

alpha Defines all letter characters. No character defined by the cntrl, digit, punct, or space
keyword can be specified. Characters defined by the upper and lower keywords are
automatically included in this character class.

digit Defines numeric digit characters. Only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can be
specified. If digit is not defined, 0 through 9 default to digit.

alnum Defines alphanumeric characters. No character defined by the cntrl, punct, or space
keyword can be specified. Characters defined by the alpha and digit keywords are
automatically included in this character class.

space Defines white-space characters. No character defined by the upper, lower, alpha,
digit, graph, cntrl, or xdigit keyword can be specified. If space is not defined, the
space, formfeed, newline, carriage-return, tab, and vertical tab characters default to
space.

cntrl Defines control characters. No character defined by the upper, lower, alpha, digit,
punct, graph, print, xdigit, blank, or space keyword can be specified.

punct Defines punctuation characters. A character defined as the space character and charac-
ters defined by the upper, lower, alpha, digit, cntrl, or xdigit keyword, or as the
<space> character cannot be specified.

graph Defines printable characters, excluding the space character. If this keyword is not
specified, characters defined by the upper, lower, alpha, digit, xdigit, and punct key-
words are automatically included in this character class. No character defined by the
cntrl keyword can be specified.

print Defines printable characters, including the space character. If this keyword is not
specified, the space character and characters defined by the upper, lower, alpha, digit,
xdigit, and punct keywords and the <space> character are automatically included in
this character class. No character defined by the cntrl keyword can be specified.

xdigit Defines hexadecimal digit characters. Only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can
be specified. Any character can be specified for the hexadecimal values for 10 to 15,
however. These alternate hexadecimal digits are not used by standard conversion rou-
tines when converting digit strings from hexadecimal to numeric quantities. If xdigit is
not defined, the numbers 0 through 9 and the letters A through F and a through f
default to xdigit.

527188-021 Hewlett-Packard Company 11−15

locale(4) OSS Shell and Utilities Reference Manual

blank Defines blank characters. If this keyword is not specified, the space and horizontal tab
characters are included in this character class. Any characters defined by this state-
ment are automatically included in the space class.

toupper Defines the mapping of lowercase characters to uppercase characters. Operands for
this keyword consist of comma-separated character pairs. Each character pair is
enclosed in () (parentheses) and separated from the next pair by a ; (semicolon). The
first character in each pair is considered a lowercase character; the second character is
considered an uppercase character. Only characters defined by the lower and upper
keywords can be specified. If toupper is not defined, a through z is mapped to A
through Z by default.

tolower Defines the mapping of uppercase characters to lowercase characters. Operands for
this keyword consist of comma-separated character pairs. Each character pair is
enclosed in () (parentheses) and separated from the next pair by a ; (semicolon). The
first character in each pair is considered an uppercase character; the second character
is considered a lowercase character. Only characters defined by the lower and upper
keywords can be specified.

The tolower keyword is optional. If this keyword is not specified, the mapping
defaults to the reverse mapping of the toupper keyword, if specified. If the toupper
and tolower keywords are both unspecified, the mapping for each defaults to that of the
C locale.

Additional keywords can be provided to define new character classifications. For example:

vowel <a>;<e>;<i>;<o>;<u>;<y>

The LC_CTYPE category does not support multicharacter elements. For example, the German
Eszet character is traditionally classified as a lowercase letter. There is no corresponding upper-
case letter; in proper capitalization of German text, the Eszet character is replaced by the two
characters SS. This kind of conversion is outside of the scope of the toupper and tolower key-
words.

The following is an example of a possible LC_CTYPE category listed in a locale definition
source file:

LC_CTYPE

#"alpha" is by default "upper" and "lower"

#"alnum" is by default "alpha" and "digit"

#"print" is by default "alnum", "punct" and the space character

#"graph" is by default "alnum" and "punct"

#"tolower" is by default the reverse mapping of "toupper"

#

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\

<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

#

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\

<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

#

digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>

#

space <tab>;<newline>;<vertical-tab>;<form-feed>;\

<carriage-return>;<space>

#

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\

11−16 Hewlett-Packard Company 527188-021

File Format Reference Pages locale(4)

<form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;\

<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;<SI>;<DLE>;<DC1>;<DC2>;\

<DC3>;<DC4>;<NAK>;<SYN>;<ETB>;<CAN>;;<SUB>;\

<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;

#

punct <exclamation-mark>;<quotation-mark>;<number-sign>;\

<dollar-sign>;<percent-sign>;<ampersand>;<asterisk>;\

<apostrophe>;<left-parenthesis>;<right-parenthesis>;\

<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\

<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\

<greater-than-sign>;<question-mark>;<commercial-at>;\

<left-square-bracket>;<backslash>;<circumflex>;\

<right-square-bracket>;<underline>;<grave-accent>;\

<left-curly-bracket>;<vertical-line>;<tilde>;\

<right-curly-bracket>

#

xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;\

<a>;;<c>;<d>;<e>;<f>

#

blank <space>;<tab>

#

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\

(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\

(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\

(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);\

(<z>,<Z>)

#

END LC_CTYPE

The LC_MESSAGES Category
The LC_MESSAGES category of a locale definition source file defines the format for
affirmative and negative system responses. This category begins with an LC_MESSAGES
category header and terminates with an END LC_MESSAGES category trailer.

All operands for the LC_MESSAGES category are defined as strings or extended regular
expressions bounded by " " (double quotes). These operands are separated from the keyword
they define by one or more spaces. Two adjacent " " (double quotes) indicate an undefined
value. The following keywords are recognized in the LC_MESSAGES category:

copy Specifies the name of an existing locale to be used as the definition of this category. If
you include a copy statement, no other keyword shall be specified.

yesexpr Specifies an extended regular expression that describes the acceptable affirmative
response to a question expecting an affirmative or negative response.

noexpr Specifies an extended regular expression that describes the acceptable negative
response to a question expecting an affirmative or negative response.

yesstr Specifies the locale’s equivalents of an acceptable affirmative response. This string is
accessible to applications through the nl_langinfo subroutine as nl_langinfo
(YESSTR).

527188-021 Hewlett-Packard Company 11−17

locale(4) OSS Shell and Utilities Reference Manual

nostr Specifies the locale’s equivalents of an acceptable negative response. This string is
accessible to applications through the nl_langinfo subroutine as nl_langinfo
(NOSTR).

The following is an example of a possible LC_MESSAGES category listed in a locale definition
source file:

LC_MESSAGES

#

yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"

noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"

yesstr "<y>:<Y>:<y><e><s>"

nostr "<n>:<N>:<n><o>"

#

END LC_MESSAGES

The LC_MONETARY Category
The LC_MONETARY category of a locale definition source file defines rules and symbols for
formatting monetary numeric information. This category begins with an LC_MONETARY
category header and terminates with an END LC_MONETARY category trailer.

All operands for the LC_MONETARY category keywords are defined as string or integer
values. String values are bounded by " " (double quotes). All values are separated from the key-
word they define by one or more spaces. Two adjacent " " (double quotes) indicate an undefined
string value. A -1 (negative one) indicates an undefined integer value. The following keywords
are recognized in the LC_MONETARY category:

copy Specifies the name of an existing locale to be used as the definition of this category. If
you include a copy statement, no other keyword shall be specified.

int_curr_symbol
Specifies the string used for the international currency symbol. The operand for the
int_curr_symbol keyword is a 4-character string. The first three characters contain
the alphabetic international currency symbol. The fourth character specifies a charac-
ter separator between the international currency symbol and a monetary quantity.

currency_symbol
Specifies the string used for the local currency symbol.

mon_decimal_point
Specifies the string used for the decimal delimiter used to format monetary quantities.

mon_thousands_sep
Specifies the character separator used for grouping digits to the left of the decimal del-
imiter in formatted monetary quantities.

mon_grouping
Specifies a string that defines the size of each group of digits in formatted monetary
quantities. The operand for the mon_grouping keyword consists of a sequence of
semicolon-separated integers. Each integer specifies the number of digits in a group.
The initial integer defines the size of the group immediately to the left of the decimal
delimiter. The following integers define succeeding groups to the left of the previous
group. If the last digit is a 0 (zero), subsequent grouping is performed using the previ-
ous digit. If the last digit is nonzero, grouping is only performed for the number of
groups specified.

The following is an example of the interpretation of the mon_grouping statement.
Assuming the value to be formatted is 123456789 and the operand for the

11−18 Hewlett-Packard Company 527188-021

File Format Reference Pages locale(4)

mon_thousands_sep keyword is ’, the following results occur:

mon_grouping Value Formatted Value

3 123456’789

3;0 123’456’789

3;2 1234’56’789

3;2;0 12’34’56’789

positive_sign
Specifies the string used to indicate a nonnegative-valued formatted monetary quantity.

negative_sign
Specifies the string used to indicate a negative-valued formatted monetary quantity.

int_frac_digits
Specifies an integer value representing the number of fractional digits (those after the
decimal delimiter) to be displayed in a formatted monetary quantity using the
int_curr_symbol value.

frac_digits
Specifies an integer value representing the number of fractional digits (those after the
decimal delimiter) to be displayed in a formatted monetary quantity using the
currency_symbol value.

p_cs_precedes
Specifies an integer value indicating whether the int_curr_symbol or
currency_symbol string precedes or follows the value for a nonnegative-formatted
monetary quantity. The following integer values are recognized:

0 Indicates that the currency symbol follows the monetary quantity.

1 Indicates that the currency symbol precedes the monetary quantity.

p_sep_by_space
Specifies an integer value indicating whether the int_curr_symbol or
currency_symbol string is separated by a space from a nonnegative-formatted mone-
tary quantity. The following integer values are recognized:

0 Indicates that no space separates the currency symbol from the monetary
quantity.

1 Indicates that a space separates the currency symbol from the monetary
quantity.

2 Indicates that a space separates the currency symbol and the positive_sign
string, if adjacent.

n_cs_precedes
Specifies an integer value indicating whether the int_curr_symbol or
currency_symbol string precedes or follows the value for a negative-formatted mone-
tary quantity. The following integer values are recognized:

0 Indicates that the currency symbol follows the monetary quantity.

527188-021 Hewlett-Packard Company 11−19

locale(4) OSS Shell and Utilities Reference Manual

1 Indicates that the currency symbol precedes the monetary quantity.

n_sep_by_space
Specifies an integer value indicating whether the int_curr_symbol or
currency_symbol string is separated by a space from a negative-formatted monetary
quantity. The following integer values are recognized:

0 Indicates that no space separates the currency symbol from the monetary
quantity.

1 Indicates that a space separates the currency symbol from the monetary
quantity.

2 Indicates that a space separates the currency symbol and the negative_sign
string, if adjacent.

p_sign_posn
Specifies an integer value indicating the positioning of the positive_sign string for a
nonnegative-formatted monetary quantity. The following integer values are recog-
nized:

0 Indicates that a left_parenthesis and right_parenthesis symbol enclose both
the the monetary quantity and the int_curr_symbol or currency_symbol
string.

1 Indicates that the positive_sign string precedes the quantity and the
int_curr_symbol or currency_symbol string.

2 Indicates that the positive_sign string follows the quantity and the
int_curr_symbol or currency_symbol string.

3 Indicates that the positive_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4 Indicates that the positive_sign string immediately follows the
int_curr_symbol or currency_symbol string.

n_sign_posn
Specifies an integer value indicating the positioning of the negative_sign string for a
negative-formatted monetary quantity. The following integer values are recognized:

0 Indicates that a left_parenthesis and right_parenthesis symbol enclose both
the the monetary quantity and the int_curr_symbol or currency_symbol
string.

1 Indicates that the negative_sign string precedes the quantity and the
int_curr_symbol or currency_symbol string.

2 Indicates that the negative_sign string follows the quantity and the
int_curr_symbol or currency_symbol string.

3 Indicates that the negative_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4 Indicates that the negative_sign string immediately follows the
int_curr_symbol or currency_symbol string.

11−20 Hewlett-Packard Company 527188-021

File Format Reference Pages locale(4)

debit_sign
Specifies the string used for the debit symbol (DB) to indicate a negative-formatted
monetary quantity.

credit_sign
Specifies the string used for the credit symbol (CR) to indicate a nonnegative-
formatted monetary quantity.

left_parenthesis
Specifies the character, equivalent to a ((left parenthesis), used by the p_sign_posn
and n_sign_posn statements to enclose a monetary quantity and currency symbol.

right_parenthesis
Specifies the character, equivalent to a) (right parenthesis), used by the p_sign_posn
and n_sign_posn statements to enclose a monetary quantity and currency symbol.

A unique customized monetary format can be produced by changing the value of a single state-
ment. For example, the following table shows the results of using all combinations of defined
values for the p_cs_precedes, p_sep_by_space, and p_sign_posn statements:

p_cs_precedes p_sign_posn p_sep_by_space

0 1 2___
1 0 ($1.25) ($ 1.25) ($1.25)

1 + $1.25 +$ 1.25 +$1.25
2 $1.25 + $ 1.25+ $1.25+
3 + $1.25 +$ 1.25 +$1.25
4 $ +1.25 $+ 1.25 $+1.25

0 0 (1.25 $) (1.25 $) (1.25$)
1 +1.25 $ +1.25 $ +1.25$
2 1.25$ + 1.25 $+ 1.25$+
3 1.25+ $ 1.25 +$ 1.25+$
4 1.25$ + 1.25 $+ 1.25$+___��

�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

The following is an example of a possible LC_MONETARY category listed in a locale
definition source file:

LC_MONETARY

#

int_curr_symbol "<U><S><D>"

currency_symbol "<dollar-sign>"

mon_decimal_point "<period>"

mon_thousands_sep "<comma>"

mon_grouping <3>;<0>

positive_sign "<plus-sign>"

negative_sign "<hyphen>"

int_frac_digits <2>

frac_digits <2>

p_cs_precedes <1>

p_sep_by_space <2>

n_cs_precedes <1>

n_sep_by_space <2>

p_sign_posn <3>

n_sign_posn <3>

debit_sign "<D>"

credit_sign "<C><R>"

527188-021 Hewlett-Packard Company 11−21

locale(4) OSS Shell and Utilities Reference Manual

left_parenthesis "<left-parenthesis>"

right_parenthesis "<right-parenthesis>"

#

END LC_MONETARY

The LC_NUMERIC Category
The LC_NUMERIC category of a locale definition source file defines rules and symbols for for-
matting nonmonetary numeric information. This category begins with an LC_NUMERIC
category header and terminates with an END LC_NUMERIC category trailer.

All operands for the LC_NUMERIC category keywords are defined as string or integer values.
String values are bounded by " " (double quotes). All values are separated from the keyword
they define by one or more spaces. Two adjacent " " (double quotes) indicate an undefined
string value. A -1 (negative one) indicates an undefined integer value. The following keywords
are recognized in the LC_NUMERIC category:

copy Specifies the name of an existing locale to be used as the definition of this category. If
you include a copy statement, no other keyword shall be specified.

decimal_point
Specifies the decimal delimiter string used to format nonmonetary numeric quantities.

thousands_sep
Specifies the string separator used for grouping digits to the left of the decimal delim-
iter in formatted nonmonetary numeric quantities.

grouping
Defines the size of each group of digits in formatted monetary quantities. The operand
for the grouping keyword consists of a sequence of semicolon-separated integers.
Each integer specifies the number of digits in a group. The initial integer defines the
size of the group immediately to the left of the decimal delimiter. The following
integers define succeeding groups to the left of the previous group. Grouping is per-
formed for each integer specified for the grouping keyword, unless the last integer is 0
(zero), in which case the size of the last group is repeatedly used for remaining digits.

The following is an example of the interpretation of the grouping statement. Assuming the value
to be formatted is 123456789 and the operand for the thousands_sep keyword is ’ (single quote),
the following results occur:

grouping Value Formatted Value

3 123456’789

3;0 123’456’789

3;2 1234’56’789

3;2;0 12’34’56’789

11−22 Hewlett-Packard Company 527188-021

File Format Reference Pages locale(4)

The following is an example of a possible LC_NUMERIC category listed in a locale definition
source file:

LC_NUMERIC

#

decimal_point "<period>"

thousands_sep "<comma>"

grouping <3>;<0>

#

END LC_NUMERIC

The LC_TIME Category
The LC_TIME category of a locale definition source file defines rules and symbols for format-
ting time and date information. This category begins with an LC_TIME category header and
terminates with an END LC_TIME category trailer.

All operands for the LC_TIME category keywords are defined as string or integer values. String
values are bounded by " " (double quotes). All values are separated from the keyword they
define by one or more spaces. Two adjacent " " (double quotes) indicate an undefined string
value. A -1 (negative one) indicates an undefined integer value. Field descriptors are used by
commands and subroutines that query the LC_TIME category to represent elements of time and
date formats. The field descriptors used by commands and subroutines that query the LC_TIME
category for time formatting are described in this section, immediately following the descriptions
of valid keywords.

The following keywords are recognized in the LC_TIME category:

copy Specifies the name of an existing locale to be used as the definition of this category. If
you include a copy statement, no other keyword shall be specified.

abday Defines the abbreviated weekday names corresponding to the %a field descriptor.
Recognized values consist of 7 semicolon-separated strings. The first string
corresponds to the abbreviated name for the first day of the week (Sun), the second to
the abbreviated name for the second day of the week, and so on.

day Defines the full spelling of the weekday names corresponding to the %A field descrip-
tor. Recognized values consist of 7 semicolon-separated strings. The first string
corresponds to the full spelling of the name of the first day of the week (Sunday), the
second to the name of the second day of the week, and so on.

abmon Defines the abbreviated month names corresponding to the %b field descriptor.
Recognized values consist of 12 semicolon-separated strings. The first string
corresponds to the abbreviated name for the first month of the year (Jan), the second to
the abbreviated name for the second month of the year, and so on.

mon Defines the full spelling of the month names corresponding to the %B field descriptor.
Recognized values consist of 12 semicolon-separated strings. The first string
corresponds to the full spelling of the name for the first month of the year (January),
the second to the full spelling of the name for the second month of the year, and so on.

d_t_fmt Defines the string used for the standard date and time format corresponding to the %c
field descriptor. The string can contain any combination of characters and field
descriptors.

527188-021 Hewlett-Packard Company 11−23

locale(4) OSS Shell and Utilities Reference Manual

d_fmt Defines the string used for the standard date format corresponding to the %x field
descriptor. The string can contain any combination of characters and field descriptors.

t_fmt Defines the string used for the standard time format corresponding to the %X field
descriptor. The string can contain any combination of characters and field descriptors.

am_pm Defines the strings used to represent a.m. (before noon) and p.m. (after noon)
corresponding to the %p field descriptor. Recognized values consist of two
semicolon-separated strings. The first string corresponds to the a.m. designation, the
last string to the p.m. designation.

t_fmt_ampm
Defines the string used for the standard 12-hour time format that includes an am_pm
value (%p field descriptor). This statement corresponds to the %r field descriptor.
The string can contain any combination of characters and field descriptors.

era Defines how the years are counted and displayed for each era in a locale, correspond-
ing to the %E field descriptor modifier. For each era, there must be one string in the
following format:

direction:offset:start_date:end_date:name:format

The variables for the era string format are defined as follows:

direction Specifies a - (minus) or + (plus) character. The + character indicates that
years count in the positive direction when moving from the start date to the
end date. The - character indicates that years count in the negative direction
when moving from the start date to the end date.

offset Specifies a number representing the first year of the era.

start_date
Specifies the starting date of the era in yyyy/mm/dd format, where yyyy, mm,
and dd are the year, month, and day, respectively on the Gregorian calendar.
Years prior to the year AD 1 are represented as negative numbers. For exam-
ple, an era beginning March 5th in the year 100 BC would be represented as
-100/03/05.

end_date Specifies the ending date of the era in the same form used for the start_date
variable or one of the two special values -* or +*. A -* value indicates that
the ending date of the era extends backward to the beginning of time. A +*
value indicates that the ending date of the era extends forward to the end of
time. Therefore, the ending date can be chronologically before or after the
starting date of the era. For example, the strings for the Christian eras AD
and BC would be entered as follows:

+:0:0000/01/01:+*:AD:%o %N
+:1:-0001/12/31:-*:BC:%o %N

name Specifies a string representing the name of the era that is substituted for the
%N field descriptor.

format Specifies a strftime() format string to use when formatting the %EY field
descriptor. This string can contain any strftime() format control charac-
ters (except %EY) and locale-dependent multibyte characters.

An era value consists of one string (enclosed in quotes) for each era. If more than one
era is specified, each era string is separated by a ; (semicolon).

11−24 Hewlett-Packard Company 527188-021

File Format Reference Pages locale(4)

era_year
Defines the string used to represent the year in alternate-era format corresponding to
the %Ey field descriptor. The string can contain any combination of characters and
field descriptors.

era_d_fmt
Defines the string used to represent the date in alternate-era format corresponding to
the %Ex field descriptor. The string can contain any combination of characters and
field descriptors.

era_t_fmt
Defines the locale’s alternative time format, as represented by the %EX field descrip-
tor for strftime().

era_d_t_fmt
Defines the locale’s alternative date and time format, as represented by the %Ec field
descriptor for strftime().

alt_digits
Defines alternate strings for digits corresponding to the %O field descriptor. Recog-
nized values consist of a group of semicolon-separated strings. The first string
represents the alternate string for 0 (zero), the second string represents the alternate
string for 1, and so on. A maximum of 100 alternate strings can be specified.

m_d_recent
Defines the string used to print out month/date/time format for some commands (ls,
find, who, ar). This format corresponds to the "%b %e %H:%M" format for the
POSIX locale. (Optional)

m_d_old Defines the string used to print out month/date/year format for some commands (ls,
find, who, ar). This format corresponds to the "%b %e %Y" format for the POSIX
locale. (Optional)

The LC_TIME locale definition source file uses field descriptors to represent elements of time
and date formats. Combinations of these field descriptors create other field descriptors or create
time and date format strings. When used in format strings containing field descriptors and other
characters, field descriptors are replaced by their current values. All other characters are copied
without change. The following field descriptors are used by commands and subroutines that
query the LC_TIME category for time formatting:

%a Represents the abbreviated weekday name (for example, Sun) defined by the abday
statement.

%A Represents the full weekday name (for example, Sunday) defined by the day state-
ment.

%b Represents the abbreviated month name (for example, Jan) defined by the abmon
statement.

%B Represents the full month name (for example, January) defined by the month state-
ment.

%c Represents the date and time format defined by the d_t_fmt statement.

527188-021 Hewlett-Packard Company 11−25

locale(4) OSS Shell and Utilities Reference Manual

%C Represents the century as a decimal number (00 to 99).

%d Represents the day of the month as a decimal number (01 to 31).

%D Represents the date in %m/%d/%y format (for example, 01/31/91).

%e Represents the day of the month as a decimal number (1 to 31). The %e field descrip-
tor uses a 2-digit field. If the day of the month is not a 2-digit number, the leading digit
is filled with a space character.

%Ec Specifies the locale’s alternate appropriate date and time representation.

%EC Specifies the name of the base year (period) in the locale’s alternate representation.

%Ex Specifies the locale’s alternate date representation.

%Ey Specifies the offset from %EC (year only) in the locale’s alternate representation.

%EY Specifies the full alternate year representation.

%h Represents the abbreviated month name (for example, Jan) defined by the abmon
statement. This field descriptor is a synonym for the %b field descriptor.

%H Represents the 24-hour clock hour as a decimal number (00 to 23).

%I Represents the 12-hour clock hour as a decimal number (01 to 12).

%j Represents the day of the year as a decimal number (001 to 366).

%m Represents the month of the year as a decimal number (01 to 12).

%M Represents the minutes of the hour as a decimal number (00 to 59).

%n Specifies a newline character.

%N Represents the alternate era name.

%o Represents the alternate era year.

%Od Specifies the day of the month using the locale’s alternate numeric symbols.

%Oe Specifies the day of the month using the locale’s alternate numeric symbols.

%OH Specifies the hour (24-hour clock) using the locale’s alternate numeric symbols.

%OI Specifies the hour (12-hour clock) using the locale’s alternate numeric symbols.

%Om Specifies the month using the locale’s alternate numeric symbols.

%OM Specifies the minutes using the locale’s alternate numeric symbols.

%OS Specifies the seconds using the locale’s alternate numeric symbols.

%OU Specifies the week number of the year (Sunday as the first day of the week) using the
locale’s alternate numeric symbols.

%Ow Specifies the weekday as a number in the locale’s alternate representation (Sunday =
0).

11−26 Hewlett-Packard Company 527188-021

File Format Reference Pages locale(4)

%OW Specifies the week number of the year (Monday as the first day of the week) using the
locale’s alternate numeric symbols.

%Oy Specifies the year (offset from %C) in alternate representation.

%p Represents the a.m. or p.m. string defined by the am_pm statement.

%r Represents the 12-hour clock time with a.m./p.m. notation as defined by the
t_fmt_ampm statement.

%S Represents the seconds of the minute as a decimal number (00 to 59).

%t Specifies a tab character.

%T Represents 24-hour clock time in the format %H:%M:%S (for example, 16:55:15).

%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its
equivalent as defined by the day statement, is considered the first day of the week for
calculating the value of this field descriptor.

%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its equivalent
as defined by the day statement, is considered as 0 (zero) for calculating the value of
this field descriptor.

%W Represents the week of the year as a decimal number (00 to 53). Monday, or its
equivalent as defined by the day statement, is considered the first day of the week for
calculating the value of this field descriptor.

%x Represents the date format defined by the d_fmt statement.

%X Represents the time format defined by the t_fmt statement.

%y Represents the year of the century (00 to 99).

%Y Represents the year as a decimal number (for example, 1989).

%Z Represents the time zone name, if one can be determined (for example, EST); no char-
acters are displayed if a time zone cannot be determined.

%% Specifies a % (percent sign) character.

The following is an example of a possible LC_TIME category listed in a locale definition source
file:

LC_TIME

#

#Abbreviated weekday names (%a)

abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\

"<T><h><u>";"<F><r><i>";"<S><a><t>"

#Full weekday names (%A)

day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\

"<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\

<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\

<S><a><t><u><r><d><a><y>"

#Abbreviated month names (%b)

abmon "<J><a><n>";"<F><e>";"<M><a><r>";"<A><p><r>";\

"<M><a><y>";"<J><u><n>";"<J><u><l>";"<A><u><g>";\

<S><e><p>";"<O><c><t>";"<N><o><v>";"<D><e><c>"

527188-021 Hewlett-Packard Company 11−27

locale(4) OSS Shell and Utilities Reference Manual

#Full month names (%B)

mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\

"<M><a><r><c><h>";"<A><p><r><i><l>";"<M><a><y>";\

<J><u><n><e>";"<J><u><l><y>";"<A><u><g><u><s><t>";\

"<S><e><p><t><e><m><e><r>";"<O><c><t><o><e><r>";\

<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"

#Date and time format (%c)

#Note that for improved readability, this section uses actual

#characters, rather than symbolic names, and is inconsistent with

#the other sections in this example. This is bad form.

#In practice, symbolic names should be used.

d_t_fmt "%a %b %d %H:%M:%S %Y"

#

#Date format (%x)

d_fmt "%m/%d/%y"

#

#Time format (%X)

t_fmt "%H:%M:%S"

#

#Equivalent of AM/PM (%p)

am_pm "<A><M>";"<P><M>"

#

#12-hour time format (%r)

#Note that for improved readability, this section uses actual

#characters, rather than symbolic names, and is inconsistent with

#the other sections in this example. This is bad form.

#In practice, symbolic names should be used.

t_fmt_ampm "%I:%M:%S %p"

#

era "+:0:0000/01/01:+*:AD:%o %N";\

"+:1:-0001/12/31:-*:BC:%o %N"

era_year ""

era_d_fmt ""

alt_digits "<0><t><h>";"<1><s><t>";"<2><n><d>";"<3><r><d>";\

"<4><t><h>";"<5><t><h>";"<6><t><h>";"<7><t><h>";\

"<8><t><h>";"<9><t><h>";"<1><0><t><h>"

#

END LC_TIME

FILES
/usr/lib/nls/loc/src/* Locale definition source files for supported locales.

/usr/lib/nls/loc/charmap/*
Character set description (charmap) source files for supported
locales.

RELATED INFORMATION
Commands: locale(1), localedef(1).

Files: charmap(4).

11−28 Hewlett-Packard Company 527188-021

File Format Reference Pages netrc(4)

NAME
netrc - file for ftp remote login data

DESCRIPTION
The .netrc file contains data for logging in to a remote host over the network for file transfers by
ftp(1). This file resides in the user’s home directory on the machine initiating the file transfer. Its
permissions should be set to disallow read access by group and others (see the chmod(1) refer-
ence page).

The following tokens are recognized; they may be separated by SPACE, TAB, or NEWLINE char-
acters:

machinename
Identify a remote machine name. The auto-login process searches the .netrc file for a
machine token that matches the remote machine specified on the ftp command line or as
an open command argument. Once a match is made, the subsequent .netrc tokens are
processed, stopping when the EOF is reached or another machine token is encountered.

login name
Identify a user on the remote machine. If this token is present, the auto-login process
will initiate a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process will supply the
specified string if the remote server requires a password as part of the login process.
Note: if this token is present in the .netrc file, ftp will abort the auto-login process if the
.netrc is readable by anyone besides the user.

account string
Supply an additional account password. If this token is present, the auto-login process
will supply the specified string if the remote server requires an additional account pass-
word, or the auto-login process will initiate an command if it does not.

macdef name
Define a macro. This token functions as the ftp macdef command functions. A macro is
defined with the specified name; its contents begin with the next .netrc line and continue
until a null line (consecutive NEWLINE characters) is encountered. If a macro named
init is defined, it is automatically executed as the last step in the auto-login process.

EXAMPLE
The command:

machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with password mypassword.

FILES
~/.netrc

RELATED INFORMATION
Commands: chmod(1), ftp(1), ftpserver(7).

527188-021 Hewlett-Packard Company 11−29

networks(4) OSS Shell and Utilities Reference Manual

NAME
networks - Contains network name information

DESCRIPTION
The /etc/networks file contains information about the known networks that constitute the
DARPA (Defense Advanced Research Projects Agency) Internet. Each network is represented by
a single line in the networks file. The format for the entries in the networks file is as follows:

name number aliases

The fields contain the following:

name The official network name.

number The network number.

aliases The unofficial names used for the network.

Items on a line are separated by one or more spaces or tab characters. Comments begin with a #
(number sign). Routines that search the networks file do not interpret characters from the begin-
ning of a comment to the end of that line. Network numbers are specified in dotted-decimal nota-
tion. A network name can contain any printable character except a field delimiter, newline char-
acter, or comment character (#).

The networks file is normally created from the official network database maintained at the Net-
work Information Center (NIC). The file may need to be modified locally to include unofficial
aliases or unknown networks.

EXAMPLES
Example lines from a networks file are shown below:

loopback 127
arpanet 10 arpa

FILES
/etc/networks Specifies the pathname of the file.

RELATED INFORMATION
Commands: routed(8)

Functions: getnetbyaddr(3), getnetbyname(3), getnetent(3).

Files: hosts(4), protocols(4).

11−30 Hewlett-Packard Company 527188-021

File Format Reference Pages .proto(4)

NAME
.proto - Defines the environment for a job to be processed by an at or batch command

SYNOPSIS
/var/adm/cron/.proto

DESCRIPTION
This file contains a set of shell commands that are added to the end of each at or batch job file to
create an environment for the job. This set of commands is defined by the site; a prototype is
provided by Compaq.

When a job is submitted to an at or batch queue, the job is constructed as a shell script. The at
or batch command places the job file in /var/spool/cron/atjobs and the following steps occur:

1. The at or batch process adds a header describing the job:

: at job Defines an at job

: batch job Defines a batch job

Jobs submitted to any queue other than queue a are always given a batch job header.

2. The process adds a set of shell commands to create an environment for the job identical
to the current shell environment.

3. The process then copies text from the /var/adm/cron/.proto file into the job file. The
following special variables can be used in the /var/adm/cron/.proto file to help define or
modify the shell environment for the job:

$d Replace with the pathname of the current working directory.

$l Replace with the current file size limit.

$m Replace with the current value of umask.

$t Replace with the time at which the job should be run, expressed as
seconds since the Epoch of Coordinated Universal Time (UTC) and
prefixed by a colon (:).

$< Replace with text read by the process from the standard input file (that
is, with the commands to be run in the job).

When this job is dispatched by cron for execution, a new shell is started to execute this script.

EXAMPLES
When the following at command is given, a job file is created in /var/spool/cron/atjobs with the
name TCS.ALI.1008378001.a:

Whit10:/home/ali: at -f /home/arindam/test.sh 5 pm Friday
job TCS.ALI.1008378001.a at Fri Dec 14 17:00:00 2001
Whit10:/home/ali:

The file /var/adm/cron/.proto contains attribution comments and the following three shell com-
mands:

cd $d
ulimit $l
umask $m

The file TCS.ALI.1008378001.a contains:

: at job

527188-021 Hewlett-Packard Company 11−31

.proto(4) OSS Shell and Utilities Reference Manual

export CDPATH;
.
.
.

TERM=’dumb’;
export TERM;

.

.

.
export PATH;

.

.

.
export HOME;
#
COPYRIGHT NOTICE
#

.

.

.
#

cd /home/ali
ulimit 4194303
umask 0
/bin/sh << ’QAZWSXEDCRFVTGBYHNUJMIKOLP’
/home/arindam /test.sh

The prototype file (.proto) contents begin with the # characters and have been appended
after the environment variables are set. The /bin/sh command and the /home/arindam
/test.sh command have been appended to the end of the job file from the standard input
file.

RELATED INFORMATION
Commands: at(1), batch(1).

STANDARDS CONFORMANCE
This file is an extension to the XPG4 Version 2 specification.

11−32 Hewlett-Packard Company 527188-021

File Format Reference Pages protocols(4)

NAME
protocols - Defines the Internet protocols used on the local host

DESCRIPTION
The /etc/protocols file contains information about the known protocols used in the DARPA
(Defense Advanced Research Projects Agency) Internet. Each protocol is represented by a sin-
gle line in the protocols file. Each entry is of the following form:

name number aliases

The fields contain the following information:

name Official Internet protocol name.

number Protocol number.

aliases Unofficial names used for the protocol.

Items on a line are separated by one or more spaces or tab characters. Comments begin with the
(number sign), and routines that search the protocols file do not interpret characters from the
beginning of a comment to the end of the line. A protocol name can contain any printable char-
acter except a field delimiter, newline character, or comment character (#).

EXAMPLES
Example lines from a protocols file are shown below:

#
Internet (IP) protocols
@(#)protocols 5.1 (Berkeley) 4/17/92
#
ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol
hmp 20 HMP # host monitoring protocol
xns-idp 22 XNS-IDP # Xerox NS IDP
rdp 27 RDP # "reliable datagram" protocol

FILES
/etc/protocols Specifies the pathname of the file.

RELATED INFORMATION
Functions: endprotoent(3), getprotobyname(3), getprotobynumber(3), getprotoent(3), set-
protoent(3).

527188-021 Hewlett-Packard Company 11−33

queuedefs(4) OSS Shell and Utilities Reference Manual

NAME
queuedefs - Describes queues for the at, batch, and cron commands

DESCRIPTION
The queuedefs file describes the characteristics of the queues managed by the cron demon.
Each noncomment line in this file describes one queue.

The format of a line is as follows:

q.[njobj][nicen][nwaitw]

The fields in this line are:

q The name of the queue:

a is the default queue name for jobs started by at

b is the default queue name for jobs started by batch

c is the default queue name for jobs run from a crontab file

njob The maximum number of jobs that can be run simultaneously in that queue. If
more than njob jobs are ready to run, only the first njob jobs will be run; the oth-
ers will be run when currently running jobs terminate. The default value is 100.

nice The nice() function value to give to all jobs in that queue that are not run with a
user ID that has appropriate privileges. The default value is 2.

nwait The number of seconds to wait before rescheduling a job that was deferred either
because more than njob jobs were running in that job’s queue or because the sys-
temwide limit for the number of jobs executing has been reached. The default
value is 60.

Lines beginning with # are comments and are ignored.

EXAMPLES
#
#
a.4j1n
b.2j2n90w

This file specifies that the a queue, for at command jobs, can have up to 4 jobs running simul-
taneously; those jobs will run with a nice value of 1. Because no nwait value was given, if a job
cannot be run because too many other jobs are running, cron waits 60 seconds before trying
again to run it.

The b queue, for batch command jobs, can have up to 2 jobs running simultaneously; those jobs
will run with a nice value of 2. If a job cannot be run because too many other jobs are running,
cron waits 90 seconds before trying again to run it.

All other queues can have up to 100 jobs running simultaneously; they are run with a nice value
of 2, and if a job cannot be run because too many other jobs are running, cron waits 60 seconds
before trying again to run it.

FILES
/var/adm/cron/queuedefs

The queue description file for at, batch, and cron.

11−34 Hewlett-Packard Company 527188-021

File Format Reference Pages queuedefs(4)

RELATED INFORMATION
Commands: crontab(1), cron(8).

Functions: nice(2).

527188-021 Hewlett-Packard Company 11−35

resolv.conf(4) OSS Shell and Utilities Reference Manual

NAME
resolv.conf - Describes BIND 4 Domain Name System resolver configuration file

DESCRIPTION
The configuration file /etc/resolv.conf provides an explicit default domain name for the Domain
Name System (DNS) to use, and identifies name servers on other processors. Each entry in the
file is a directive that consists of a keyword followed by one or more values:

keyword value

The /etc/resolv.conf file can contain the following directives:

nameserver address
The Internet address of a name server, in standard dot notation. Multiple name
server addresses may be listed. The resolver queries the name servers in the
order they are listed in the file, stopping when it receives a response, or moving
to the next in the list if the query times out. If the resolver reaches the end of the
name server list without receiving a response, it will start from the beginning of
the list and query each name server again, until a maximum number of retries is
reached. If /etc/resolv.conf contains no nameserver directives, the resolver uses
the loopback address. Therefore, a name server must be running on the proces-
sor on which the file resides.

domain name The default domain to append to names that do not contain a domain, and the
default domain name to be used in searches. No trailing spaces are allowed after
the value in name.

If /etc/resolv.conf does not contain a domain directive, then the resolver uses the
the hostname for the processor, but removes the first part of the name. For exam-
ple, if the host name is set to "yojimbo.dev1.anyfirm.com," the resolver
uses the name "dev1.anyfirm.com."

search name name ...
The explicit search order that you want the resolver to use. The search keyword
can accept up to six domain names as values.

The resolver will perform its search using the order specified after the search
keyword.

Fields are separated by one or more spaces or tab characters. If /etc/resolv.conf contains a search
and a domain directive, the resolver will use whichever directive comes first in the file.

EXAMPLES
Example lines from a /etc/resolv.conf file are shown below:

domain dev1.anyfirm.com
nameserver 123.456.78.90
nameserver 123.456.78.91

RELATED INFORMATION
Files: hosts(4), networks(4), protocols(4), resolv.conf(5), services(4).

Commands: gethostbyaddr(3), gethostbyname(3) setnetent(3).

11−36 Hewlett-Packard Company 527188-021

File Format Reference Pages .rhosts(4)

NAME
.rhosts - Describes individual user files for trusted remote hosts and users

SYNOPSIS
~/.rhosts

DESCRIPTION
The /etc/hosts.equiv and .rhosts files provide the "remote authentication" database for the rsh
command. The files specify remote hosts and users that are considered trusted. Only trusted
users from the remote hosts are allowed to access the local system. The /etc/hosts.equiv file
applies to the entire system, while individual users can maintain their own .rhosts files in their
home directories. To maintain system security, these files must be carefully created and main-
tained. The remote authentication procedure determines whether a user from a remote host
should be allowed to access the local system with the identity of a local user. This procedure
first checks the /etc/hosts.equiv file and then checks the .rhosts file in the home directory of the
local user who is requesting access. The rsh command fails if the remote authentication pro-
cedure fails.

Each entry in the file has the form:

hostname [username]

If the entry is in the form:

hostname

then all users from the named host are trusted. That is, they are allowed to access the system
with the same user name as they have on the remote system. This form of entry can be used in
both the /etc/hosts.equiv and .rhosts files.

If the entry is in the form:

hostname username

then the named user from the named host is allowed to access the system. This form can be used
in individual .rhosts files to allow remote users to access the system as a different local user. If
this form is used in the /etc/hosts.equiv file, the named remote user is allowed to access the sys-
tem with the same capabilities as any local user.

FILES
/etc/hosts.equiv

~/.rhosts

NOTES
A hostname value used in the /etc/hosts.equiv and .rhosts files must be the official name of the
host, not one of its nicknames.

Super ID access is handled as a special case. Only the .rhosts file is checked when access is
attempted for the super ID. To help maintain system security, the /etc/hosts.equiv file is not
checked.

RELATED INFORMATION
Commands: rsh(1).

Files: hosts(4), hosts.equiv(4).

527188-021 Hewlett-Packard Company 11−37

.rhosts(4) OSS Shell and Utilities Reference Manual

STANDARDS CONFORMANCE
This file is an extension to the XPG4 Version 2 specification.

11−38 Hewlett-Packard Company 527188-021

File Format Reference Pages services(4)

NAME
services - Contains information about Internet services

DESCRIPTION
The /etc/services file contains information about services available through the Internet. A ser-
vice entry consists of a service name followed by a port number and protocol, and it can option-
ally contain aliases for the service. Each entry takes the following form:

service_name port/protocol aliases

The fields contain the following information:

service_name The official name for the service.

port/protocol The port number and protocol through which the service is pro-
vided, for example, 513/TCP.

aliases These are alternate names that can be used to request the ser-
vice.

Fields are separated by one or more space or tab characters. Comments begin
with the number sign (#). Routines that search the /etc/services file do not inter-
pret characters from the beginning of a comment to the end of the line. A host
name can contain any printable character except a field delimiter, newline char-
acter, or comment character (#).

EXAMPLES
Example lines from a services file are shown below:

echo 7/udp
smtp 25/tcp mail

RELATED INFORMATION
Commands: endservent(3), getservbyname(3), setservent(3).

Files: hosts(4), networks(4), protocols(4).

527188-021 Hewlett-Packard Company 11−39

Section 12. Administrator Commands and Files

This section contains reference pages for miscellaneous OSS files from the cat7 directory
and administrator command reference pages from the cat8 directory. See the Open
System Services System Calls Reference Manual for other reference pages you might
expect to find in this section.

527188-021 Hewlett-Packard Company 12−1

copyoss(8) OSS Shell and Utilities Reference Manual

NAME
copyoss - Copies the contents of pax archive files from the Guardian environment to the OSS file
system

SYNOPSIS
[gtacl -c ´] [$tsv.tsvsvl.]copyoss

[? | [filename | subvolname] ...]
[´]

gtacl -c ´ is a required prefix of this command for users of the OSS shell, but this prefix
must be omitted by users of the HP Tandem Advanced Command Language (TACL) com-
mand interpreter. Users of the OSS shell must end the command line with an apostrophe
(single quotation mark) (´), but this apostrophe must be omitted by users of TACL.

FLAGS
The copyoss command has the following operands:

$tsv.tsvsvl Specifies the disk volume and subvolume where the OSS product installation
files are located.

At many sites, COPYOSS is copied to $SYSTEM.ZOSSUTL.

? Requests the display of help text for the command.

This is the default used if no value is specified for filename or subvol.

filename Specifies the Guardian filename of the pax archive file whose content is to be
copied to the OSS file system. The specified file must have a file code of 0 or
180.

When copyoss is used from the OSS shell, filename should be fully qualified.

To avoid unexpected side effects, filename should be fully qualified when
COPYOSS is used from any subvolume other than ZOSSUTL. If you enter a
value for a Guardian file identifier that is not recognized as valid for a file in the
current subvolume, COPYOSS will try to interpret the value as a subvolume
name.

subvolname Specifies the Guardian subvolume name of the Guardian subvolume whose con-
tent is to be copied to the OSS file system. When subvolname is specified,
copyoss copies the content of all pax archives within the specified subvolume
unless their file identifiers begin with the reserved letters ZFB or ZPG.

When copyoss is used from the OSS shell, subvolname should be fully qualified.

DESCRIPTION
The copyoss command invokes a TACL routine that calls the Guardian pinstall utility. The
copyoss utility is present on your system only if, when you last installed the OSS product set, you
retained the target subvolume from the installation or copied the COPYOSS file to a known loca-
tion such as the $SYSTEM disk. In contrast, the pinstall utility is installed on the $SYSnn disk
and is always present on your system.

copyoss attempts to process only files with file codes of 0 or 180; other files within the subvo-
lume are ignored.

copyoss processes files within a subvolume in alphabetic order. If versions of archive files are
maintained within subvolname by the Distributed Systems Management/Software Configuration
Manager (DSM/SCM) product with Guardian file identifiers that begin with ZFB or ZPG, those
files are ignored by copyoss.

12−2 Hewlett-Packard Company 527188-021

Administrator Commands and Files copyoss(8)

If you specify more than one operand for COPYOSS, you can mix subvolume names and
filenames.

EXAMPLES
1. To copy all the files in the pax archives distributed with the OSS product to the OSS file

system, enter the following two commands at TACL prompts:

VOLUME $SYSTEM.ZOSSUTL
RUN COPYOSS ZOSSUTL

where $SYSTEM.ZOSSUTL is the name of the target subvolume from an installation of
the OSS product set.

2. To copy only the Java servlet files from the NonStop Java Server product pax archive to
the OSS file system, enter the following at a TACL prompt:

RUN $tsv1.ZOSSUTL.COPYOSS $tsv2.subvol.T0094PAX

where $tsv1 is the name of the disk volume where the most recent OSS product installa-
tion files are kept, $tsv2.subvol identifies the disk volume and target subvolume contain-
ing the installation files from the NonStop Java Server product, and T0094PAX is the
Guardian file identifier of the specific pax archive file containing the Java servlet files.

3. To copy only the contents of the two pax archives T8626MAN and T8629MNN to the
OSS file system when ZOSSUTL contains a copy of COPYOSS, enter either of the fol-
lowing at TACL prompts:

VOLUME $SYSTEM.ZOSSUTL
RUN COPYOSS T8626MAN T8629MNN

or:

RUN $SYSTEM.ZOSSUTL.COPYOSS $SYSTEM.ZOSSUTL.T8626MAN $SYSTEM.ZOSSUTL.T8629MNN

4. To copy all of the current OSS product archive content and the Java pax archive content
to the OSS file system in one operation, enter the following at TACL prompts:

VOLUME $SYSTEM.ZOSSUTL
RUN COPYOSS ZOSSUTL $tsv2.subvol.T0094PAX

where the ZOSSUTL subvolume contains multiple product pax archives, $tsv2.subvol
identifies the disk volume and target subvolume containing the installation files from the
NonStop Java Server product, and T0094PAX is the Guardian file identifier of the
specific pax archive file containing the Java servlet files.

FILES
$tsv.tsvsvl.COPYOSS

Contains the COPYOSS routine.

NOTES
On systems where DSM/SCM is used to install HP product files from the ZOSSUTL subvolume
and maintain those files in the OSS file system, do not use copyoss to install HP product files
from the ZOSSUTL subvolume.

On systems where DSM/SCM is not used to install HP product files from the ZOSSUTL subvo-
lume and maintain those files in the OSS file system, do not use copyoss on files with Guardian
file identifiers that begin with ZFB or ZPG.

527188-021 Hewlett-Packard Company 12−3

copyoss(8) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
Commands: gtacl(1), pax(1), pcleanup(8), pinstall(1).

Files: tar(4).

STANDARDS CONFORMANCE
The copyoss command is an extension to the XPG4 Version 2 specification.

12−4 Hewlett-Packard Company 527188-021

Administrator Commands and Files cron(8)

NAME
cron - Runs the system clock daemon

SYNOPSIS
cron [-f]

FLAGS
-f Run the cron process in the foreground.

This flag is valid for systems running:

• J06.05 and later J-series RVUs

• H06.16 and later H-series RVUs

• G06.33 and later G-series RVUs

• J06.03, J06.04, or H06.03 through H06.15 RVUs and have installed SPR
T8626H03ˆACU

• G06.29 through G06.32 RVUs and have installed SPR T8626G07ˆACV

DESCRIPTION
The cron daemon runs shell commands at specified dates and times. Because the cron process
exits only when killed or when the system stops, only one cron daemon should exist on the sys-
tem at any given time.

In systems that support the -f flag, you can start the cron process as a persistent generic process.
Add the cron process to $ZZKRN and associate it with the OSH process. Configure the cron
process as follows:

• Set the STARTUPMSG attribute to:

"-osstty -name /G/process_name -p /bin/cron -f"

where process_name is a Guardian process name of the persistent cron process.

• Set the ASSOCPROC attribute to the same name as you used for the persistent cron pro-
cess in the STARTUPMSG attribute.

• The attibutes HOMETERM, INFILE, and OUTFILE are required.

For information about the rules that apply to the Guardian process name, see "Environment Vari-
ables." For an example of adding the cron process as a persistent process, see "Examples." For
information about configuring a generic process, see the SCF Reference Manual for the Kernel
Subsystem.

Commands that are to run according to a regular or periodic schedule are found within the cron-
tab files. Commands that are to run only once are found within the at files. You submit crontab
and at file entries by using the crontab and at commands.

During process initialization and when cron detects a change, it examines the crontab and at
files. This strategy reduces the overhead of checking for new or changed files at regularly
scheduled intervals.

The cron command creates a log of its activities as a file named log in the directory
/var/adm/cron. When the log file size exceeds 2.5 MB (2,621,440 bytes), the log file is closed
and renamed to save its information. A new log file named log is created in the same directory.
The renamed log file’s filename has the format

log_yyyymmddhhnnss

527188-021 Hewlett-Packard Company 12−5

cron(8) OSS Shell and Utilities Reference Manual

where the variable information denotes the year, month, day, hour, minute, and second at which
the file was renamed.

The cron daemon starts each job with the following process attributes stored with the job by the
invoking process:

• Effective and real user IDs

• Effective and real group IDs

• Supplementary groups

Environment Variables
cron runs as a named process if the CRON_NAMED environment variable is set and exported
before the cron command is entered. The environment variable has the form:

CRON_NAMED=/G/process_name

where process_name conforms to the rules for Guardian process names described in the path-
name(5) reference page, available either online or in the Open System Services System Calls
Reference Manual. The following additional rules apply:

• The process name must be specified in OSS pathname format, so the $ is omitted

• The first character cannot be a Z

When CRON_NAMED is not defined or is not exported, cron starts as an unnamed process and
nothing prevents the undesirable situation of accidentally running multiple copies.

EXAMPLES
1. These SCF commands configure and start the cron process as a persistent process:

-> ASSUME $ZZKRN
-> ADD PROC #cro, &

NAME $cro, &
CPU FIRST, &
ASSOCPROC $cro1, &
PRIORITY 100, &
STARTUPMSG "-osstty -name /G/cro1 -p /bin/cron -f",&
PROGRAM $system.system.osh, &
HOMETERM $ZHOME, &
INFILE $NULL, &
OUTFILE $ZHOME, &
STARTMODE manual, &
AUTORESTART 3

-> START PROC #cro

2. This set of commands starts cron as the named process $CRON if another copy of cron
is not already running with the same name:

export CRON_NAMED=/G/CRON
cron

FILES
/bin/cron cron daemon code file.

/var/adm/cron/queuedefs
queue description file for at, batch, and cron.

12−6 Hewlett-Packard Company 527188-021

Administrator Commands and Files cron(8)

/var/adm/cron/log
Most recent cron history information.

NOTES
Only one copy of cron should be running at a given time. HP recommends starting cron as a
named process and always using the same name for that process to ensure this situation.

RELATED INFORMATION
Commands: crontab(1).

Files: queuedefs(4).

STANDARDS CONFORMANCE
This command is an extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 12−7

dig(8) OSS Shell and Utilities Reference Manual

NAME
dig - BIND 9 Domain Name System (DNS) server lookup utility

SYNOPSIS
/etc/dns_secure/dig [global_queryopt ...]

[@server]
[-b address[#port]]
[-c class]
[-f filename1]
[-h]
[-k filename2]
[-p port#]
[-t type]
[-x addr]
[-y name:key]
[-4 | -6]
[name]
[type]
[class]
[queryopt ...]

FLAGS
When no command line flags, arguments, or options are given, dig performs an NS query for the .
(root) server.

-b address[#port]
Sets the source IP address of the query to address. address must be a valid
address on one of the host’s network interfaces or 0.0.0.0 or ::. An optional port
can be specified by appending #port.

-c class Overrides the default query class (IN for Internet). class is a mnemonic for any
valid class, such as HS for Hesiod records or CH for CHAOSNET records.

-f filename1 Makes dig operate in batch mode by reading a list of lookup requests to process
from the file filename1. The file contains one or more queries, one per line.
Each entry in the file should be organized in the same way it would be presented
as a query to dig using the command-line interface.

-h Prints a brief description of command-line flags and options.

-k filename2 Signs the DNS queries sent by dig and their responses using transaction signa-
tures (TSIG) in the TSIG key file filename2.

When using TSIG authentication with dig, the name server that is queried needs
to know the key and algorithm that is being used. In BIND 9, this is done by
providing appropriate key and server statements in the named.conf file.

-p port# Queries a nonstandard port number. port# is the port number that dig sends its
queries to instead of the standard DNS port number 53.

This option is used to test a name server that has been configured to listen for
queries on a nonstandard port number.

-t type Sets the query type to type. type can be any valid query type which is supported
in BIND 9. The default query type is A, unless the -x flag is supplied to indicate
a reverse lookup.

A zone transfer can be requested by specifying a type of AXFR.

12−8 Hewlett-Packard Company 527188-021

Administrator Commands and Files dig(8)

When an incremental zone transfer (IXFR) is required, set type to ixfr=N. The
incremental zone transfer contains the changes made to the zone since the serial
number in the zone’s SOA record was N.

-x addr Simplifies reverse lookups (mapping addresses to names). addr is an IPv4
address in dotted-decimal notation, or a colon-delimited IPv6 address.

When this flag is used, you do not need to provide the name, class, and type
arguments. dig automatically performs a lookup for a name like 11.12.13.10.in-
addr.arpa and sets the query type and class to PTR and IN respectively. By
default, IPv6 addresses are looked up using nibble format under the IP6.ARPA
domain. To use the older RFC1886 method using the IP6.INT domain, specify
the -i flag.

Bit string labels (RFC2874) are experimental and are not attempted.

-y name:key Signs DNS queries sent by dig and their responses using transaction signatures
(TSIG), where name is the name of the TSIG key and key is the actual key. The
key is a base-64 encoded string, typically generated by the dnssec-keygen util-
ity. Be cautious when using the -y flag on multi-user systems because the key
can be visible in the output from the ps command or in the shell’s history file.

When using TSIG authentication with dig, the name server that is queried needs
to know the key and algorithm that is being used. In BIND 9, this is done by
providing appropriate key and server statements in the named.conf file.

You can also sign the DNS queries sent by dig and their responses using transac-
tion signatures (TSIG) byspecifing a TSIG key file using the -k flag.

-4 | -6 The -4 flag forces dig to only use IPv4 query transport. The -6 flag forces dig to
only use IPv6 query transport.

Arguments
global_queryopt and queryopt

dig provides query options that affect the way in which lookups are made and
the results displayed. Some of these set or reset flag bits in the query header,
some determine which sections of the answer get printed, and others determine
the timeout and retry strategies. Each query option is identified by a keyword
preceded by a plus sign (+).

Some keywords set or reset an option; these can be preceded by the string no to
negate the meaning of that keyword.

Other keywords assign values to options like the timeout interval; these have the
form +keyword=value.

The query options are:

+[no]tcp Use [do not use] TCP when querying name servers. The default
behavior is to use UDP unless an AXFR or IXFR query is
requested, in which case a TCP connection is used.

+[no]vc Use [do not use] TCP when querying name servers. This alter-
nate syntax to +[no]tcp provides backwards compatibility. vc
stands for "virtual circuit".

527188-021 Hewlett-Packard Company 12−9

dig(8) OSS Shell and Utilities Reference Manual

+[no]ignore Ignore [do not ignore] truncation in UDP responses instead of
retrying with TCP. By default, TCP retries are performed.

+domain=somename
Set the search list to contain the single domain somename, as if
specified in a domain directive in the /etc/resolv.conf file, and
enable search list processing as if the +search option were
given.

+[no]search Use [do not use] the search list defined by the searchlist or
domain directive in the /etc/resolv.conf file (if any). The search
list is not used by default.

+[no]defname Deprecated; treated as a synonym for +[no]search.

+[no]aaonly | +[no]aaflag
Set [do not set] the aa flag in the query.

+[no]adflag Set [do not set] the AD (authentic data) bit in the query. The AD
bit currently has a standard meaning only in responses, not in
queries, but the ability to set the bit in the query is provided for
completeness.

+[no]cdflag Set [do not set] the CD (checking disabled) bit in the query.
This requests the server to not perform DNSSEC validation of
responses.

+[no]cl Display [do not display] the class when printing the record.

+[no]ttlid Display [do not display] the TTL when printing the record.

+[no]recurse Set [do not set] the RD (recursion desired) bit in the query. This
bit is set by default, which means dig normally sends recursive
queries. Recursion is automatically disabled when the
+nssearch or +trace query options are used.

+[no]nssearch Search for [do not search for] authoritative name servers for the
zone containing the name being looked up and display the SOA
record that each name server has for the zone.

+[no]trace Set [do not set] tracing of the delegation path from the root name
servers for the name being looked up. Tracing is disabled by
default.

When tracing is enabled, dig makes iterative queries to resolve
the name being looked up. dig follows referrals from the root
servers, showing the answer from each server that was used to
resolve the lookup.

+[no]cmd Set [do not set] printing of the initial comment in the output,
which identifies the version of dig and the query options that
have been applied. This comment is printed by default.

+[no]short Provide [do not provide] a terse answer. The default is to print
the answer in a verbose form.

12−10 Hewlett-Packard Company 527188-021

Administrator Commands and Files dig(8)

+[no]identify Show [do not show] the IP address and port number that sup-
plied the answer when the +short option is enabled. If short
form answers are requested, the default is to not show the source
address and port number of the server that provided the answer.

+[no]comments
Display [do not display] comment lines in the output. The
default is to print comments.

+[no]stats Print [do not print] statistics such as: when the query was made,
the size of the reply, and so on. The default behavior is to print
the query statistics.

+[no]qr Print [do not print] the query as it is sent. By default, the query
is not printed.

+[no]question Print [do not print] the question section of a query when an
answer is returned. The default is to print the question section as
a comment.

+[no]answer Display [do not display] the answer section of a reply. The
default is to display it.

+[no]authority Display [do not display] the authority section of a reply. The
default is to display it.

+[no]additional
Display [do not display] the additional section of a reply. The
default is to display it.

+[no]all Set [or clear] all display flags.

+time=t1 Set the timeout for a query to t1 seconds. The default timeout is
5 seconds. An attempt to set t1 to less than 1 results in a query
timeout of 1 second being applied.

+tries=t2 Set the number of times to try UDP queries to a server to t2
instead of the default, 3. If t2 is less than or equal to 0 (zero),
the number of tries is silently rounded up to 1.

+retry=t3 Set the number of times to retry UDP queries to a server to t3
instead of the default, 2. Unlike +tries, this does not include the
initial query.

+ndots=d Set the number of dots that have to appear in name to d for it to
be considered an absolute name. The default value is that
defined using the ndots statement in the /etc/resolv.conf file, or
1 if no ndots statement is present.

Names with fewer dots are interpreted as relative names and are
searched for in the domains listed in the search or domain
directive in the /etc/resolv.conf file.

+bufsize=b Set the UDP message buffer size advertised using EDNS0 to b
bytes. The maximum and minimum sizes of this buffer are
65535 and 0 respectively. Values outside this range are rounded
up or down appropriately.

527188-021 Hewlett-Packard Company 12−11

dig(8) OSS Shell and Utilities Reference Manual

+[no]multiline Print [do not print] records like the SOA records in a verbose
multiline format with human-readable comments. The default is
to print each record on a single line, to facilitate machine pars-
ing of the dig output.

+[no]fail Try [do not try] the next server if you receive a SERVFAIL
response. The default is to not try the next server, which is the
reverse of normal stub resolver behavior.

+[no]besteffort
Display [do not display] the contents of messages which are
malformed. The default is to not display malformed answers.

+[no]dnssec Request [do not request] that DNSSEC records be sent by setting
the DNSSEC OK bit (DO) in the OPT record in the additional
section of the query.

+[no]sigchase Chase [do not chase] DNSSEC signature chains. Requires that
dig be compiled with -DDIG_SIGCHASE.

+trusted-key=key
Specify a trusted key to be used with +sigchase. Requires that
dig be compiled with -DDIG_SIGCHASE.

+[no]topdown Perform [do not perform] a top-down validation when chasing
DNSSEC signature chains. Requires that dig be compiled with
-DDIG_SIGCHASE.

name Specifies the relative or absolute name of the server to return information for.

type Specifies the type of information to be returned.

class Specifies the class of information to be returned.

DESCRIPTION
dig is a tool for interrogating DNS name servers. It performs DNS lookups and displays the
answers that are returned from the name servers that were queried. Most DNS administrators use
dig to troubleshoot DNS problems because of its flexibility, ease of use, and clarity of output.

Although dig is normally used with command-line arguments, it also has a batch mode of opera-
tion for reading lookup requests from a file. A brief summary of its command-line arguments and
options is printed when the -h option is given.

Unlike earlier versions, the BIND 9 implementation of dig allows multiple lookups to be issued
from the command line. Unless it is told to query a specific name server, dig tries each of the
servers listed in the /etc/resolv.conf file.

You can set per-user defaults for dig in the file $HOME/.digrc. This file is read and any options
in it are applied before the command line values are processed.

Simple Usage
A typical invocation of dig looks like:

dig @server name type

where:

server is the name or IP address of the name server to query. This can be an IPv4
address in dotted-decimal notation or an IPv6 address in colon-delimited nota-
tion. When the supplied server argument is a hostname, dig resolves that name
before querying that name server. If no server argument is provided, dig reads

12−12 Hewlett-Packard Company 527188-021

Administrator Commands and Files dig(8)

/etc/resolv.conf and queries the name servers listed there. The reply from the
name server that responds is displayed.

name is the name of the resource record that is to be looked up.

type indicates what type of query is required: ANY, A, MX, SIG, and so forth. type
can be any valid query type. If no type argument is supplied, dig performs a
lookup for an A record.

Multiple Queries
The BIND 9 implementation of dig supports specifying multiple queries on the command line (in
addition to supporting the -f batch file option). Each of those queries can be supplied with its
own set of flags, options, and query options. In this case, each query argument represents an
individual query in the command-line syntax described above. Each consists of any of the stan-
dard options and flags, the name to be looked up, an optional query type and class, and any query
options that should be applied to that query.

You can also supply a global set of query options, which should be applied to all queries. These
global query options must precede the first set of name, class, type, options, flags, and query
options supplied on the command line. Any global query options (except the +[no]cmd option)
can be overridden by a query-specific set of query options.

EXAMPLES
The following example of a multiple query shows how dig can be used from the command line to
make three lookups:

• An ANY query for www.isc.org

• A reverse lookup of 127.0.0.1

• A query for the NS records of isc.org

dig +qr www.isc.org any -x 127.0.0.1 isc.org ns +noqr

A global query option of +qr is applied, so that dig shows the initial query it made for each
lookup. The final query has a local query option of +noqr, which means that dig does not print
the initial query when it looks up the NS records for isc.org.

FILES
/etc/named.conf

The default named server configuration file. This file defines the recognized
values for class in its zone and view statements.

/etc/resolv.conf
The default domain name server resolver file.

$HOME/.digrc
The local file to override default values for dig use. This file can contain com-
mand line flags and query options, with one flag or query option specification per
line.

RELATED INFORMATION
Commands: dnssec_named(8), named(8), dnssec-keygen(8).

Files: named.conf(4), resolv.conf(5).

Documents: BIND Administrator Reference Manual, RFC1035.

527188-021 Hewlett-Packard Company 12−13

dnssec-keygen(8) OSS Shell and Utilities Reference Manual

NAME
dnssec-keygen - Runs the BIND 9 secure domain name server DNSSEC key generation tool

SYNOPSIS
/etc/dns_secure/dnssec-keygen

-a algorithm
-b keysize
-n nametype
[-c class]
[-e]
[-f flag]
[-g generator]
[-h]
[-k]
[-p protocol]
[-r randomdev]
[-s strength]
[-t type]
[-v level]
name

FLAGS
-a algorithm ... Selects the cryptographic algorithm to be used. The value of algorithm must be

one or more of:

RSAMD5 Specifies RSA. This value is an alternative to RSASHA1.

RSASHA1 Specifies RSA. This value is required to implement a secure
DNSSEC name server algorithm.

DSA Specifies DSA. This value is recommended to implement a
secure DNSSEC name server algorithm.

DH Specifies Diffie Hellman. Using this value automatically sets
the -k flag.

HMAC-MD5 Specifies HMAC-MD5. This value is required for transaction
signatures (TSIG). Using this value automatically sets the -k
flag.

These values are case-insensitive.

-b keysize Specifies the number of bits in the key. The choice of key size depends on the
algorithm used:

• RSAMD5/RSASHA1 keys must be between 512 and 2048 bits.

• Diffie Hellman keys must be between 128 and 4096 bits.

• DSA keys must be between 512 and 1024 bits and an exact multiple of
64.

• HMAC-MD5 keys must be between 1 and 512 bits.

12−14 Hewlett-Packard Company 527188-021

Administrator Commands and Files dnssec-keygen(8)

-n nametype Specifies the owner type of the key. The value of nametype must be one of:

ZONE Specifies a DNSSEC zone key (KEY/DNSKEY).

HOST Specifies a key associated with a host (KEY).

ENTITY Specifies a key associated with a host (KEY).

USER Specifies a key associated with a user (KEY).

OTHER Specifies a DNSKEY.

These values are case-insensitive.

-c class Indicates that the DNS record containing the key should have the specified class.
If this flag is not specified, class IN is used.

-e If generating an RSAMD5/RSASHA1 key, use a large exponent.

-f flag Set the specified flag in the flag field of the KEY/DNSKEY record. The only
recognized flag is KSK (Key Signing Key) DNSKEY.

-g generator If generating a Diffie Hellman key, use this generator. Allowed values are 2 and
5.

If no generator is specified, a known prime from RFC 2539 is used if possible;
otherwise, the default is 2.

-h Prints a short help summary of the flags and values to dnssec-keygen.

-k Generates KEY records rather than DNSKEY records.

-p protocol Sets the protocol value for the generated key. The protocol is a number between
0 and 255. The default is 3 (DNSSEC). Other possible values for this argument
are listed in RFC 2535 and its successors.

-r randomdev Specifies the source of randomness. If the operating system does not provide a
/dev/random or equivalent device, the default source of randomness is keyboard
input. (The OSS environment does not have a /dev/random device.)

randomdev specifies the name of a character device or file containing random
data to be used instead of the default. The special value keyboard indicates that
keyboard input should be used.

-s strength Specifies the strength value of the key. The strength is a number between 0 and
15, and currently has no defined purpose in DNSSEC.

-t type Indicates the use of the key. type must be one of:

AUTHCONF Use for data authentication and data encryption. This is the
default.

NOAUTHCONF
Do not use for data authentication or data encryption.

NOAUTH Do not use for data authentication.

527188-021 Hewlett-Packard Company 12−15

dnssec-keygen(8) OSS Shell and Utilities Reference Manual

NOCONF Do not use for data encryption.

-v level Sets the debugging level.

Operands
name Specifies the domain name for which the security information should be gen-

erated.

DESCRIPTION
dnssec-keygen generates keys for secure DNS, as defined in RFC 2535. It can also generate
keys for use with TSIG (transaction signatures), as defined in RFC 2845.

Generated Keys
When dnssec-keygen completes successfully, it prints a string of the form Knnnn.+aaa+iiiii to
the standard output, where:

nnnn is the key name.

aaa is the numeric representation of the algorithm.

iiiii is the key identifier (or footprint).

This is an identification string for the key it has generated.

dnssec-keygen creates two files, with names based on the printed string. Knnnn.+aaa+iiiii.key
contains the public key, and Knnnn.+aaa+iiiii.private contains the private key.

The Knnnn.+aaa+iiiii.key file contains a DNS KEY record that can be inserted into a zone file
(directly or with a $INCLUDE statement).

The Knnnn.+aaa+iiiii.private file contains algorithm-specific fields. For security reasons, this
file does not have general read permission.

Both files are generated for symmetric encryption algorithms such as HMAC-MD5, even though
the public and private keys are equivalent.

EXAMPLE
To generate a 768-bit DSA key for the domain example.com, issue the following command:

dnssec-keygen -a DSA -b 768 -n ZONE example.com

This command prints a string of the form:

Kexample.com.+003+26160

In this example, dnssec-keygen creates the files Kexample.com.+003+26160.key and
Kexample.com.+003+26160.private.

RELATED INFORMATION
Commands: dnssec-signzone(8).

Documents: BIND 9 Administrator Reference Manual, RFC 2535, RFC 2845, RFC 2539.

12−16 Hewlett-Packard Company 527188-021

Administrator Commands and Files dnssec-signzone(8)

NAME
dnssec-signzone - Runs the BIND 9 secure domain name server DNSSEC zone signing tool

SYNOPSIS
/etc/dns_secure/dnssec-signzone

[-a]
[-c class]
[-d directory]
[-e end_time]
[-f output_file]
[-g]
[-h]
[-k key]
[-l domain]
[-i interval]
[-n nthreads]
[-o origin]
[-p]
[-r randomdev]
[-s start_time]
[-t]
[-v level]
[-z]
zonefile
[key [...]]

FLAGS
-a Verify all generated signatures.

-c class Specifies the DNS class of the zone.

-k key Treat the specified key as a key signing key, ignoring any key flags. This flag
may be specified multiple times.

-l domain Generate a DLV set in addition to the key (DNSKEY) and DS sets. The domain
name is appended to the name of the records.

-d directory Look for keyset files in directory as the current directory.

-e end_time Specify the date and time when the generated RRSIG records expire. As with
start_time, an absolute time is indicated in YYYYMMDDHHMMSS notation.
A time relative to the start time is indicated with +N, which is N seconds from
the start time. A time relative to the current time is indicated with now+N. If no
end_time is specified, 30 days from the start time is used as a default.

-g Generate DS records for child zones from keyset files. Existing DS records are
removed.

-s start_time Specify the date and time when the generated RRSIG records become valid.
This can be either an absolute or relative time. An absolute start time is indi-
cated by a number in YYYYMMDDHHMMSS notation; 20000530144500
denotes 14:45:00 UTC on May 30th, 2000. A relative start time is indicated by
+N, which is N seconds from the current time. If no start_time is specified, the
current time minus 1 hour (to allow for clock skew) is used.

527188-021 Hewlett-Packard Company 12−17

dnssec-signzone(8) OSS Shell and Utilities Reference Manual

-f output-file The name of the output file containing the signed zone. The default is to append
.signed to the input file.

-h Prints a short help summary of the flags and values to dnssec-signzone.

-i interval When a previously signed zone is passed as input, records may be re-signed.
The interval option specifies the cycle interval as an offset from the current time
(in seconds). If an RRSIG record expires after the cycle interval, it is retained.
Otherwise, it is considered to be expiring soon, and it is replaced.

The default cycle interval is one quarter of the difference between the signature
end and start times. If neither end_time nor start_time are specified, dnssec-
signzone generates signatures that are valid for 30 days, with a cycle interval of
7.5 days. Therefore, if any existing RRSIG records are due to expire in less than
7.5 days, they would be replaced.

-n nthreads Specifies the number of threads to use. By default, one thread is started for each
detected processor.

-o origin Specifies the zone origin. If not specified, the name of the zone file is assumed to
be the origin.

-p Use pseudo-random data when signing the zone. This is faster, but less secure,
than using real random data. This option may be useful when signing large
zones or when the entropy source is limited.

-r randomdev Specifies the source of randomness. If the operating system does not provide a
/dev/random or equivalent device, the default source of randomness is keyboard
input. (The OSS environment does not have a /dev/random device.)

randomdev specifies the name of a character device or file containing random
data to be used instead of the default. The special value keyboard indicates that
keyboard input should be used.

-t Print statistics at completion.

-v level Sets the debugging level.

-z Ignore a KSK flag on a key when determining what to sign.

Operands
zonefile The name of the file containing the zone to be signed.

key ... The keys used to sign the zone. These keys are expressed in the form
Knnnn.+aaa+iiiii as generated by dnssec-keygen.

If no keys are specified, the default values used are all zone keys that have
private key files in the current directory.

DESCRIPTION
dnssec-signzone signs a zone. It generates NSEC and RRSIG records and produces a signed
version of the zone file. The security status of delegations from the signed zone (that is, whether
the child zones are secure or not) is determined by the presence or absence of a keyset file for
each child zone.

12−18 Hewlett-Packard Company 527188-021

Administrator Commands and Files dnssec-signzone(8)

EXAMPLE
The following command signs the example.com zone with the DSA key generated by the exam-
ple in the dnssec-keygen(8) reference page. The zone’s keys must be in the zone. If there are
keyset files associated with child zones, they must be in the current directory.

dnssec-signzone -o example.com db.example.com Kexample.com.+003+26160

In this example, dnssec-signzone creates the file db.example.com.signed. This file should be
referenced in a zone statement in a named.conf file.

RELATED INFORMATION
Commands: dnssec-keygen(8).

Documents: BIND 9 Administrator Reference Manual, RFC 2535.

527188-021 Hewlett-Packard Company 12−19

dnssec_lwresd(8) OSS Shell and Utilities Reference Manual

NAME
lwresd - Starts the secure BIND 9 lightweight resolver demon

SYNOPSIS
/etc/dns_secure/lwresd

[-C config_file]
[-d debug_level]
[-f]
[-g]
[-n ncpus]
[-P port1]
[-p port2]
[-s]
[-t directory]
[-T tcpip_process_name]
[-u user]
[-v]

FLAGS
-C config_file Use config_file as the resolver configuration file instead of the default,

/etc/resolv.conf. To ensure that reloading the configuration file continues to
work after the server has changed its working directory because of a possible
directory option in the configuration file, config_file should be an absolute path-
name.

-d debug_level Set the server’s debug level to debug_level . Debugging traces from lwresd
become more verbose as the debug level increases.

-f Run the server in the foreground (that is, do not run as a demon).

-g Run the server in the foreground and force all logging to stderr.

-n ncpus Create ncpus worker threads to take advantage of multiple processors. If not
specified, lwresd tries to determine the number of processors present and create
one thread per processor. If it is unable to determine the number of processors, a
single worker thread is created.

-P port1 Listen for lightweight resolver queries on port port1. If this flag is not specified,
the default is port 921.

-p port2 Send DNS lookups to port port2. If this flag is not specified, the default is port
53.

This flag provides a way of testing the lightweight resolver server with a name
server that listens for queries on a nonstandard port number.

-s Write memory usage statistics to stdout on exit.

This option is mainly of interest to BIND 9 developers and might be removed or
changed in a future release.

-t directory Make the specified directory the current directory after processing the command
line arguments, but before reading the configuration file.

Caution: This option should be used in conjunction with the -u option, because
changing the root directory for a process running as the super ID does not
enhance security on most systems; the way chroot() is defined allows a process
with root user privileges to escape a chroot jail.

12−20 Hewlett-Packard Company 527188-021

Administrator Commands and Files dnssec_lwresd(8)

-T tcpip_process_name
Start lwresd using the transport provider named tcpip_process_name. The pro-
cess name must be specified as an OSS pathname for a Guardian process; that is,
/G/ZTC0 is a valid specification.

This flag overrides the default behavior of starting with the process $ZTC0 as the
transport provider process.

-u user Change the user ID to user after completing privileged operations, such as creat-
ing sockets that listen on privileged ports.

-v Report the version number and exit.

DESCRIPTION
lwresd is the server providing name lookup services to clients that use the BIND 9 lightweight
resolver library. It is a stripped-down, caching-only name server that answers queries using the
BIND 9 lightweight resolver protocol rather than the DNS protocol.

lwresd listens for resolver queries on a UDP port on the IPv4 loopback interface, 127.0.0.1. This
means that lwresd can only be used by processes running on the local machine. By default, UDP
port number 921 is used for lightweight resolver requests and responses.

Incoming lightweight resolver requests are decoded by the server, which then resolves them
using the DNS protocol. When the DNS lookup completes, lwresd encodes the answers in the
lightweight resolver format and returns them to the client that made the request.

If /etc/resolv.conf contains any nameserver entries, lwresd sends recursive DNS queries to
those servers. This is similar to the use of forwarders in a caching name server. If no
nameserver entries are present, or if forwarding fails, lwresd resolves the queries autonomously
starting at the root name servers, using a built-in list of root server hints.

FILES
/etc/resolv.conf

The default configuration file.

RELATED INFORMATION
Commands: dnssec_lwresd(8), named(8).

527188-021 Hewlett-Packard Company 12−21

dnssec_named(8) OSS Shell and Utilities Reference Manual

NAME
named - Starts the secure BIND 9 Internet domain name server

SYNOPSIS
/etc/dns_secure/named

[-4 | -6]
[-c config_file]
[-d debug_level]
[-f]
[-g]
[-n ncpus]
[-p port]
[-s]
[-T tcpip_process_name]
[-t directory]
[-u user]
[-v]
[-x cache_file]

FLAGS
-4 Use IPv4 addresses even if the node supports IPv6 addresses. If neither -4 nor -6

are specified, both types of addresses can be used.

This flag is not recognized by the nonsecure version of named.

-6 Use IPv6 addresses even if the node also supports IPv4 addresses. If neither -4
nor -6 are specified, both types of addresses can be used.

This flag is not recognized by the nonsecure version of named.

-c config_file Use config_file as the configuration file instead of the default, /etc/named.conf.
To ensure that reloading the configuration file continues to work after the server
has changed its working directory because of a possible directory option in the
configuration file, config_file should be an absolute pathname.

-d debug_level Set the server’s debug level to debug_level . Debugging traces from named
become more verbose as the debug level increases.

-f Run the server in the foreground (that is, do not run it as a demon).

-g Run the server in the foreground and force all logging to stderr.

-n ncpus Create ncpus worker threads to take advantage of multiple processors. If not
specified, named tries to determine the number of processors present and creates
one thread per processor. If it is unable to determine the number of processors, a
single worker thread is created.

-p port Listen for queries on port port. If not specified, the default is port 53.

-s Write memory usage statistics to stdout on exit.

This option is mainly of interest to BIND 9 developers and might be removed or
changed in a future release.

-t directory Change the working directory to directory after processing the command line
arguments, but before reading the configuration file.

Caution: This option should be used in conjunction with the -u option, because
changing the root directory for a process running as the super ID does not
enhance security on most systems; the way chroot() is defined allows a process

12−22 Hewlett-Packard Company 527188-021

Administrator Commands and Files dnssec_named(8)

with root user privileges to escape a chroot jail.

-T tcpip_process_name
Start the domain name server so that it uses the transport provider process with
the process name tcpip_process_name. The process name must be specified as
an OSS pathname for a Guardian process; that is, /G/ZTC0 is a valid
specification.

This flag overrides the default behavior of starting with the process $ZTC0 as the
transport provider process. This flag is not recognized by the nonsecure version
of named.

-u user setuid() to user after completing privileged operations, such as creating sockets
that listen on privileged ports.

-v Report the version number and exit.

-x cache_file Load data from cache_file into the cache of the default view.

Caution: This option must not be used. It is only of interest to BIND 9 develop-
ers and might be removed or changed in a future release.

DESCRIPTION
named is a domain name system (DNS) server, part of the BIND 9 distribution from the Internet
Software Consortium (ISC). For more information on the DNS, see RFCs 1033, 1034, and 1035.

When invoked without arguments, named reads the default configuration file /etc/named.conf,
reads any initial data, and listens for queries.

Signals
In routine operation, signals should not be used to control the nameserver; rndc should be used
instead.

SIGHUP Force a reload of the server.

SIGINT, SIGTERM
Shut down the server.

The result of sending any other signals to the server is undefined.

Configuration
The named configuration file named.conf is too complex to describe in detail here. A complete
description is provided in the BIND 9 Administrator Reference Manual.

FILES
/etc/named.conf

The default configuration file.

/etc/resolv.conf
The default resolver configuration file.

/var/run/named.pid
The default process-id file.

RELATED INFORMATION
Commands: dnssec_rndc(8), lwresd(8), named(8), rndc(8).

Files: resolv.conf(5).

Documents: RFC 1033, RFC 1034, RFC 1035, BIND 9 Administrator Reference Manual.

527188-021 Hewlett-Packard Company 12−23

dnssec_nsupdate(8) OSS Shell and Utilities Reference Manual

NAME
nsupdate - Starts the secure BIND 9 dynamic domain name system (DNS) update utility

SYNOPSIS
/etc/dns_secure/nsupdate

[-d]
[[-y keyname:secret] [-k keyfile]]
[-v]
[filename]

DESCRIPTION
nsupdate is used to submit Dynamic DNS Update requests (as defined in RFC2136) to a BIND 9
domain name server. This allows resource records to be added or removed from a zone without
manually editing the zone file. A single update request can contain requests to add or remove
more than one resource record.

Zones that are under dynamic control via nsupdate or a DHCP server should not be edited by
hand. Manual edits could conflict with dynamic updates and cause data to be lost.

The resource records that are dynamically added or removed with nsupdate have to be in the
same zone. Requests are sent to the zone’s master server. This is identified by the MNAME
field of the zone’s SOA record.

The -d flag makes nsupdate operate in debug mode. This mode provides tracing information
about the update requests that are made and the replies received from the name server.

Transaction signatures can be used to authenticate the Dynamic DNS updates. These use the
TSIG resource record type described in RFC2845. The signatures rely on a shared secret that
should only be known to nsupdate and the name server. Currently, the only supported encryp-
tion algorithm for TSIG is HMAC-MD5, which is defined in RFC 2104. Once other algorithms
are defined for TSIG, applications will need to ensure they select the appropriate algorithm as
well as the key when authenticating each other. For instance, suitable key and server statements
would be added to /etc/named.conf so that the name server can associate the appropriate secret
key and algorithm with the IP address of the client application that will use TSIG authentication.
nsupdate does not read /etc/named.conf.

nsupdate uses the -y or -k flag to provide the shared secret needed to generate a TSIG record for
authenticating Dynamic DNS update requests. These flags are mutually exclusive. With the -k
flag, nsupdate reads the shared secret from the file keyfile, whose name is of the form
Kname.+157.+random.private. For historical reasons, the file Kname.+157.+random.key must
also be present. When the -y flag is used, a signature is generated from keyname:secret. key-
name is the name of the key, and secret is the base64 encoded shared secret. Use of the -y flag is
discouraged because the shared secret is supplied as a command line argument in clear text. This
may be visible in the output from ps(1) or in a history file maintained by the user’s shell.

By default, nsupdate uses UDP to send update requests to the name server. The -v flag makes
nsupdate use a TCP connection. This may be preferable when a batch of update requests is
made.

Input Format
nsupdate reads input from filename or standard input. Each command is supplied on exactly one
line of input. Some commands are for administrative purposes. The others are either update
instructions or prerequisite checks on the contents of the zone. These checks set conditions that
some name or set of resource records (RRset) either exists or is absent from the zone. These con-
ditions must be met if the entire update request is to succeed. Updates are rejected if the tests for
the prerequisite conditions fail.

Every update request consists of zero or more prerequisites and zero or more updates. This
allows a suitably authenticated update request to proceed if some specified resource records are

12−24 Hewlett-Packard Company 527188-021

Administrator Commands and Files dnssec_nsupdate(8)

present or missing from the zone. A blank input line (or the send command) causes the accumu-
lated commands to be sent as one Dynamic DNS update request to the domain name server.

The command formats and their meaning are as follows:

server servername [port]
Sends all dynamic update requests to the name server servername. When no
server statement is provided, nsupdate sends updates to the master server of the
correct zone. The MNAME field of that zone’s SOA record identifies the master
server for that zone. port is the port number on servername where the dynamic
update requests get sent. If no port number is specified, the default DNS port
number of 53 is used.

local address [port]
Sends all dynamic update requests using the local address. When no local state-
ment is provided, nsupdate sends updates using an address and port chosen by
the system. port can additionally be used to make requests come from a specific
port. If no port number is specified, the system assigns one.

zone zonename Specifies that all updates are to be made to the zone zonename. If no zone state-
ment is provided, nsupdate attempts to determine the correct zone to update
based on the rest of the input.

key name secret
Specifies that all updates are to be TSIG signed using the keyname keysecret
pair. The key command overrides any key specified on the command line via -y
or -k.

prereq nxdomain domain_name
Requires that no resource record of any type exists with name domain_name.

prereq yxdomain domain_name
Requires that domain_name exists (has as at least one resource record, of any
type).

prereq nxrrset domain_name [class] type
Requires that no resource record exists of the specified type, class and
domain_name. If class is omitted, IN (internet) is assumed.

prereq yxrrset domain_name [class] type
This requires that a resource record of the specified type, class and domain_name
must exist. If class is omitted, IN (internet) is assumed.

prereq yxrrset domain_name [class] type data...
The data from each set of prerequisites of this form sharing a common type,
class, and domain-name are combined to form a set of RRs. This set of RRs must
exactly match the set of RRs existing in the zone at the given type, class, and
domain_name. The data is written in the standard text representation of the
resource record’s RDATA.

update delete domain_name [ttl] [class] [type [data...]]
Deletes any resource records named domain_name. If type and data is provided,
only matching resource records are removed. The internet class is assumed if
class is not supplied. The ttl is ignored, and is only allowed for compatibility.

527188-021 Hewlett-Packard Company 12−25

dnssec_nsupdate(8) OSS Shell and Utilities Reference Manual

update add domain_name ttl [class] type data...
Adds a new resource record with the specified ttl, class, and data.

show Displays the current message, containing all of the prerequisites and updates
specified since the last send.

send Sends the current message. This is equivalent to entering a blank line.

Lines beginning with a semicolon are comments, and are ignored.

EXAMPLES
The examples below show how nsupdate could be used to insert and delete resource records
from the example.com zone. Notice that the input in each example contains a trailing blank line
so that a group of commands are sent as one dynamic update request to the master name server
for example.com.

1.

nsupdate
> update delete oldhost.example.com A
> update add newhost.example.com 86400 A 172.16.1.1
>

Any A records for oldhost.example.com are deleted and an A record for
newhost.example.com with IP address 172.16.1.1 is added. The newly-added record
has a one-day TTL (86400 seconds)

2.

nsupdate
> prereq nxdomain nickname.example.com
> update add nickname.example.com 86400 CNAME somehost.example.com
>

The prerequisite condition gets the name server to check that there are no resource
records of any type for nickname.example.com. If there are, the update request fails. If
this name does not exist, a CNAME for it is added. This ensures that when the CNAME
is added, it cannot conflict with the long-standing rule in RFC1034 that a name must not
exist as any other record type if it exists as a CNAME. (The rule has been updated for
DNSSEC in RFC2535 to allow CNAMEs to have SIG, KEY, and NXT records.)

FILES
/etc/resolv.conf

Default resolver configuration file, used to identify default name server

Kname.+157.+random.key
base-64 encoding of HMAC-MD5 key created by the dnssec-keygen utility.

Kname.+157.+random.private
base-64 encoding of HMAC-MD5 key created by the dnssec-keygen utility.

RELATED INFORMATION
Commands: dnssec_named(8), named(8), dnssec-keygen(8).

Documents: RFC2136, RFC3007, RFC2104, RFC2845, RFC1034, RFC2535.

12−26 Hewlett-Packard Company 527188-021

Administrator Commands and Files dnssec_rndc(8)

NAME
rndc - Starts the secure BIND 9 Internet domain name server control utility

SYNOPSIS
/etc/dns_secure/rndc

[-c config_file]
[-k key_file]
[-s server]
[-p port]
[-V]
[-y key_id]
command

FLAGS
-c config_file Use config_file as the configuration file instead of the default, /etc/rndc.conf.

-k key_file Use key_file as the key file instead of the default, /etc/rndc.key. The key in
/etc/rndc.key will be used to authenticate commands sent to the server if the
config_file does not exist.

-s server server is the name or address of the server which matches a server statement in
the configuration file for rndc. If no server is supplied on the command line, the
host named by the default-server clause in the option statement of the
configuration file is used.

-p port Send commands to TCP port port instead of BIND 9’s default control channel
port, 953.

-V Enable verbose logging.

-y keyid Use the key keyid from the configuration file. keyid must be known by named
with the same algorithm and secret string in order for control message valida-
tion to succeed. If no keyid is specified, rndc first looks for a key clause in the
server statement of the server being used, or if no server statement is present for
that host, it then looks for the default-key clause of the options statement. Note
that the configuration file contains shared secrets which are used to send authen-
ticated control commands to name servers. It should therefore not have general
read or write access.

Operands
command For the complete set of commands supported by rndc, see the BIND 9 Adminis-

trator Reference Manual or run rndc without arguments to see its help message.

DESCRIPTION
rndc controls the operation of a BIND 9 domain name server. If rndc is invoked with no com-
mand line options or arguments, it prints a short summary of the supported commands and the
available options and their arguments.

rndc communicates with the name server over a TCP connection, sending commands authenti-
cated with digital signatures. In the nonsecure version of rndc and named, the only supported
authentication algorithm is HMAC-MD5, which uses a shared secret on each end of the connec-
tion. This provides TSIG-style authentication for the command request and the name server’s
response. All commands sent over the channel must be signed by a key_id known to the server.

rndc reads a configuration file to determine how to contact the name server and decide what
algorithm and key it should use.

527188-021 Hewlett-Packard Company 12−27

dnssec_rndc(8) OSS Shell and Utilities Reference Manual

NOTES
rndc does not yet support all the commands of the BIND 8 ndc utility.

There is currently no way to provide the shared secret for a key_id without using the
configuration file.

Several error messages could be clearer.

RELATED INFORMATION
Commands: dnssec_named(8), dnssec_nsupdate(8), named(8), nsupdate(8).

Files: named.conf(4).

Documents: BIND 9 Administrator Reference Manual.

12−28 Hewlett-Packard Company 527188-021

Administrator Commands and Files ftpserver(7)

NAME
ftp server - Services FTP connection requests

DESCRIPTION
The FTP server for the OSS environment is a program called FTPSERV that runs as a process in
the Guardian environment. FTPSERV is called to service each FTP connection request for either
environment.

FTPSERV is invoked by the Guardian LISTNER process each time a connection to an FTP
server process is requested. The inetd process is not used to initiate an FTP server (such as the
ftpd process used on many UNIX systems) in the OSS environment. (An ftp client is supported
as a process in the OSS environment.) If the PORTCONF file that invokes FTPSERV contains
the parameter -ttimerval, inactive connections time-out after timerval seconds.

Accessing Either Guardian or OSS File Systems
The FTP server allows a client to access either the Guardian file system or the OSS file system.
Toggle between the two file systems using the quote command from the FTP client followed by
the string "Guardian" or "OSS". For example:

quote Guardian

accesses the Guardian file system, and

quote OSS

accesses the OSS file system.

Once the user has logged in, the user can determine the file system with a pwd command. If the
result is either /G/vol/subvol or an OSS pathname, the OSS file system is being accessed. If the
result is $vol.subvol, the Guardian file system is being used.

FTP Client User Command Requests
The FTP server currently supports requests for the following FTP client user commands when the
OSS file system is used. These commands are not case-sensitive. For the syntax of each com-
mand, enter remotehelp command_name from an FTP client process.

ABOR abort previous comand

APPE append to a file

CWD change working directory

DELE delete a file

HELP display help information

LIST list files in a directory (ls -lg)

MKD make a directory

MODE specify data transfer mode

NLST list files in directory (ls)

NOOP do nothing

PASS specify password

PASV prepare for server-to-server transfer

PORT specify data connection port

PWD print the current working directory

527188-021 Hewlett-Packard Company 12−29

ftpserver(7) OSS Shell and Utilities Reference Manual

QUIT terminate the session

RETR retrieve a file

RMD remove a directory

RNFR specify rename_from filename

RNTO specify rename_to filename

SITE provide system-specific services

STOR store a file

STRU specify data transfer structure (store unique)

TYPE specify data transfer type

USER specify user name

XPWD print the current working directory

The remaining FTP commands specified in RFC 959 are recognized but not implemented.

The FTP server aborts an active file transfer only when the ABOR command is preceded by a
Telnet "Interrupt Process" (IP) signal and a Telnet "Synch" signal in the command Telnet stream,
as described in RFC 959.

The FTP server interprets file names according to the "globbing" conventions used by ksh. This
allows users to use the metacharacters ‘* ? [] {}’.

Using SITE Commands
SITE commands are used by an FTP server to provide services specific to the system on which
the server runs. Such services are those essential to file transfer but not so generally needed that
they must be implemented as commands in the protocol. FTPSERV supports the following SITE
commands:

CHMOD [nnn]
When the OSS file system is used, the SITE CHMOD command sets or checks
the security of a destination file. nnn is a three-digit octal value for access per-
missions.

If nnn is a valid value, all files transferred after this command have their security
set to the specified value. If nnn is an invalid value, the error is reported to the
user and the current valid security setting is unchanged.

If the command is specified without an nnn value, the current security setting is
displayed.

If the SITE CHMOD command is not specified, all files transferred have their
security set to 666 (-rw-rw-rw).

HELP When either file system is used, the SITE HELP command describes each
server service and the syntax for its command.

NOCRLF { ON | OFF }
When the Guardian file system is used, the SITE NOCRLF command enables
(ON) or disables (OFF) carriage return and linefeed translation by the server
during file transfers.

If the SITE NOCRLF command is not used, carriage return and linefeed trans-
lation occurs by default.

12−30 Hewlett-Packard Company 527188-021

Administrator Commands and Files ftpserver(7)

SHOWOPEN { ON | OFF }
When the Guardian file system is used, the SITE SHOWOPEN command
displays (ON) or does not display (OFF) an open flag (an O next to the filecode
field) when the FTP client’s DIR command is used and a listed file has at least
one current open.

If the SITE SHOWOPEN command is not used, no open flags are displayed.

Authenticating Users
The FTP server authenticates users according to the following rules:

• Using the User_Authenticate call to validate a user. If an initial OSS directory is
configured, OSS is the default file system. Use the quote Guardian command to access
the Guardian file system. If an OSS directory is not configured, Guardian is the default
file system.

• Using the User_Getinfo_ call to set up the initial directory of both the OSS and Guar-
dian file systems for the user.

• Failure of either of the above results in the user not logging in. The FTP server supports
Safeguard security configuration.

The Guardian SAFECOM program used for setting-up FTP user IDs is described below.

Adding FTP user IDs to the System Using the Guardian SAFECOM Program
The following Guardian TACL macro shows how to add an FTP user ID that defaults to an OSS
directory.

?TACL MACRO
== This macro adds FTP user IDs to the system
#FRAME
#SET #INLINEPREFIX>
INLECHO ON

safecom /INLINE/
>add user admin.ftp, 168,10, password ftp
>alter user admin.ftp, guardian default security NNNN
>alter user admin.ftp, guardian default volume $data2.q9552
>add alias ftp, 168,19, password ftp
>alter alias ftp, guardian default security NNNN
>alter alias ftp, guardian default volume $data2.q9552
>alter alias ftp, initial-program /bin/ksh
>alter alias ftp, initial-directory /user/q9552
>info user super.ftp, detail
>info alias ftp, detail
>exit

#UNFRAME

FTP Replies
The FTP server reply consists of a three digit number (transmitted as three alphanumeric charac-
ters) followed by text. Programmatic applications can use the number to determine what state to
enter next. Users can interpret the text. A reply contains a 3-digit code, followed by Space
<SP>, followed by one line of text (where some maximum line length has been specified), and
terminated by the Telnet end-of-line code. The first digit of the three digit code denotes whether
the response is good, bad or incomplete. There are five values for the first digit of the reply code:

527188-021 Hewlett-Packard Company 12−31

ftpserver(7) OSS Shell and Utilities Reference Manual

1yz Positive Preliminary reply. The requested action is being initiated; expect
another reply before proceeding with a new command.

2yz Positive Completion reply. The requested action completed successfully. A new
request may be initiated.

3yz Positive Intermediate reply. The command was accepted, but the requested
action is pending, waiting for further information. The user should send another
command specifying the information. This reply is used in command sequence
groups.

4yz Transient Negative Completion Reply. The command was not accepted. The
requested action did not take place, but the error condition is temporary.
Request the action again.

5yz Permanent Negative Completion Reply. The command was not accepted. The
requested action did not take place.

The second digit indicates the following types of information:

x0z Syntax: syntax errors, syntactically correct commands that don’t fit any func-
tional category, or unimplemented commands.

x1z Information: replies to requests for information, such as status or help.

x2z Connections: replies referring to the control and data connections.

x3z Authentication and accounting: replies for the login process and accounting pro-
cedures.

x4z Undefined

x5z File system: replies indicate the status of the Server file system regarding the
requested transfer or other file system action.

The third digit describes a more detailed meaning of the function categories, specified by the
second digit. The list of replies in Reply Codes by Function Groups describe values for the
third digit. Note that the text associated with each reply is recommended, rather than mandatory,
and may even change according to the command with which it is associated.

Reply Codes by Function Groups
The following is a list of reply codes specified in RFC959. Not all codes listed below are gen-
erated by the OSS FTP server.

200 Command okay.

500 Syntax error, command unrecognized.

501 Syntax error in parameters or arguments.

202 Command not implemented, superfluous at this site.

502 Command not implemented.

503 Bad sequence of commands.

12−32 Hewlett-Packard Company 527188-021

Administrator Commands and Files ftpserver(7)

504 Command not implemented for that parameter.

211 System status, or system help reply.

212 Directory status.

213 File status.

214 Help message.

120 Service ready in nnn minutes.

220 Service ready for new user.

221 Service closing control connection. Logged out if appropriate.

421 Service not available, closing control connection. This may be a reply to any
command if the service knows it must shut down.

125 Data connecton already open; transfer starting.

225 Data connection open; no transfer in progress.

425 Can’t open data connection.

226 Closing data connection. Requested file action successful (for example, file
transfer or file abort).

426 Connection closed; transfer aborted.

227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).

230 User logged in, proceed.

530 Not logged in.

331 User name okay, need password.

332 Need account for login.

532 Need account for storing files.

150 File status okay; about to open data connection.

250 Requested file action okay, completed.

350 Requested file action pending further information.

450 Requested file action not taken. File unavailable (for example, file busy).

550 Requested action not taken. File unavailable (for example, file not found, no
access).

451 Requested action aborted. Local error in processing.

551 Requested action aborted. Page type unknown.

452 Requested action not taken. Insufficient storage space in system.

527188-021 Hewlett-Packard Company 12−33

ftpserver(7) OSS Shell and Utilities Reference Manual

552 Requested file action aborted. Exceeded storage allocation (for current directory
or dataset).

553 Requested action not taken. File name not allowed.

RELATED INFORMATION
Commands: ftp(1), sh(1).

12−34 Hewlett-Packard Company 527188-021

Administrator Commands and Files inetd(8)

NAME
inetd - The Internet superserver

SYNOPSIS
/usr/ucb/inetd

[-d]
[-L]
[-R rate]
[-W process_name]
[-f]
[configfile]

FLAGS
-d Turns on debugging.

-L Turns on load balancing. When load balancing is performed, inetd runs external server
service programs on all available processors in cyclic order, or on the set of processors
specified for an external service in the Proc entry of an inetd configuration file.

The default action is to run all external server service programs on the processor used to
run inetd.

-R rate
Specifies the maximum number of times per minute a service can be invoked. The
default value is 40.

-W process_name
Specifies the NonStop operating system process name to assign to the running process.
The value used as process_name must conform to the naming rules for NonStop operating
system process names and must be specified as the OSS pathname for a Guardian named
process; that is, it must be specified in the form /G/process_name, where the dollar sign
($) is omitted.

The default action is to run the process as an unnamed process.

-f Run the inetd process in the foreground. For an example of configuring and starting inetd
as a persistent process, see "Examples."

This flag is valid for systems running:

• J06.05 and later J-series RVUs

• H06.16 and later H-series RVUs

• G06.33 and later G-series RVUs

• J06.03, J06.04, or H06.03 through H06.15 RVUs and have installed SPR
T9660H01ˆAAJ

• G06.20 through G06.32 RVUs and have installed SPR T9660H01ˆAAK

configfile
Specifies the pathname of the configuration file to be used for this invocation of the pro-
cess. If this operand is omitted, the default pathname of /etc/inetd.conf is used.

527188-021 Hewlett-Packard Company 12−35

inetd(8) OSS Shell and Utilities Reference Manual

DESCRIPTION
The inetd process should be run immediately after loading the OSS product files into the OSS
environment. It listens for connections on certain Internet sockets. When a connection is found
on one of its sockets, it decides what service the socket corresponds to, and invokes a program to
service the request. After the program completes the request, it continues to listen on the socket
(except in some cases that are described later in this section). Essentially, inetd allows one
server process to invoke several others, reducing load on the system.

Upon execution, inetd reads its configuration information from a configuration file (either
configfile in the command line or /etc/inetd.conf). There must be an entry in each field of the
configuration file (except as noted below). The fields must be separated by a tab or a space.
Comments are denoted by a # (number sign) at the beginning of a line.

The fields of the configuration file are as follows:

SrvName SockType ProtoName Wait/Nowait UserName [Proc] SrvPath SrvArgs

SrvName
The name of a valid service in the /etc/services file. For internal services (discussed
later in this section), the service name must be the official name of the service; that is, the
first entry in /etc/services).

SockType
One of stream, dgram, or raw, depending on whether the socket is a stream, datagram,
or raw socket.

ProtoName
A valid protocol as given in /etc/protocols. Examples are tcp or udp.

Wait/Nowait
Applicable to datagram sockets only. (Other sockets should have a nowait entry in this
space.)

If a datagram server connects to its peer, freeing the socket so inetd can receive further
messages on the socket, it is said to be a multithreaded server, and should use the nowait
entry.

For datagram servers that process all incoming datagrams on a socket and eventually time
out, the server is defined as singlethreaded, and should use a wait entry.

UserName
The username of the user for whom the server should run. This allows for servers to be
given less permission than the super ID.

Proc The processor number of one or more processors on which to run the corresponding exter-
nal server process. This field is optional and can be omitted.

This field is used to perform load-balancing of server processes among the processors
within a node. When this field is omitted, inetd assigns each server it starts to the next
available processor in the node. This field is ignored unless the -L flag is specified when
inetd is started.

The number specification must be enclosed in square brackets ([and]). If more than one
processor number is used, the numbers can be specified as a range (using a dash between
the lowest and highest processor numbers in the range), as a comma-separated list, or as a
combination of those two formats. The current processor (the processor on which inetd
runs) can be specified using empty brackets ([]). Blanks cannot appear within the brack-
ets.

When inetd is started without specifying the -L flag, the behavior is the same as when

12−36 Hewlett-Packard Company 527188-021

Administrator Commands and Files inetd(8)

empty brackets are used with the -L flag; that is, all external service programs run on the
processor used by inetd.

SrvPath
The pathname of the server program that is to be executed by inetd when a service
request is found on its socket. If inetd provides a service internally, this entry should be
internal.

SrvArgs
The command-line arguments that the server process must execute. For services that
inetd provides internally, this field should be left empty.

The arguments to a SrvPath entry should be specified just as they normally are for a shell
command line, starting with argv[0], which is the name of the program.

The inetd process can provide several trivial services itself, without using external server pro-
grams. These services are echo, discard, chargen (character generator), daytime (human-
readable time), and time (machine-readable time, in the form of the number of seconds since
midnight January 1, 1900). All of these services are tcp based.

The inetd process rereads its configuration file when it receives a hangup signal, SIGHUP. Ser-
vices may be added, deleted, or modified when the configuration file is reread.

EXAMPLES
1. To start inetd as a named process and restrict it to satisfying approximately 10 service

requests per minute, enter:

/usr/ucb/inetd -R 10 -W /G/INETD /etc/inetd.conf &

2. To start inetd as a named process and perform load balancing for the rexecd service
using processors 2 through 4, enter:

/usr/ucb/inetd -R 10 -W /G/INETD -L &

using an /etc/inetd.conf configuration file that contains the following entry:

exec stream tcp nowait super.super [2-4] /bin/rexecd

3. To start inetd as a foreground process, enter:

/usr/ucb/inetd -f

4. These SCF commands configure and start the inetd process as a persistent process:

527188-021 Hewlett-Packard Company 12−37

inetd(8) OSS Shell and Utilities Reference Manual

SCF-> ADD PROCESS $ZZKRN.OSSINT, &
NAME $OINT, &
ASSOCPROC $INET0, &
STARTUPMSG &
"-osstty -name /G/INET0 -p /usr/ucb/inetd -f -L /etc/inetd.conf", &
PROGRAM $system.system.osh, &
HIGHPIN ON, &
PRIMARYCPU 1, &
HOMETERM $ZHOME, &
TYPE OTHER, &
STARTMODE manual, &
STOPMODE standard, &
AUTORESTART 5, &
USERID SUPER.SUPER

SCF-> ADD PROCESS $ZZKRN.OSSINT, (param SOCKETˆTRANSPORTˆNAME $ZTC1)
SCF-> START PROCESS $ZZKRN.OSSINT

FILES
/usr/ucb/inetd

Specifies the command path.

/etc/inetd.conf
Contains information on the services used for the Internet sockets in the system.

/etc/services
Contains the names of official and unofficial Internet services used in the system.

/etc/protocols
Contains the names of the Internet protocols implemented in the system.

NOTES
The OSS sockets transport provider process used by inetd can be specified in either of the fol-
lowing ways:

1. Set the Guardian PARAM SOCKETˆTRANSPORTˆNAME in the HP Tandem Advanced
Command Language (TACL) session that subsequently starts the OSS shell session in
which inetd is started. This specification has the format:

PARAM SOCKETˆTRANSPORTˆNAME process_name

For example:

PARAM SOCKETˆTRANSPORTˆNAME $ZTC1

2. Set the environment variable SOCKET_TRANSPORT_NAME in the OSS shell ses-
sion from which inetd is started. This specification has the format:

EXPORT SOCKET_TRANSPORT_NAME=\process_name

For example:

EXPORT SOCKET_TRANSPORT_NAME=\$ZTC1

When the PARAM is specified, it becomes the corresponding environment variable when the
OSS shell is started.

12−38 Hewlett-Packard Company 527188-021

Administrator Commands and Files inetd(8)

RELATED INFORMATION
Miscellaneous: rshd(8).

Files: services(4).

STANDARDS CONFORMANCE
The following are HP extensions to traditional UNIX implementations of inetd:

• The -f, -L, and -W parameters of the inetd command line

• The Proc field of the configuration file entries

• The use of NonStop operating system DEFINE statements

527188-021 Hewlett-Packard Company 12−39

lwresd(8) OSS Shell and Utilities Reference Manual

NAME
lwresd - Starts the nonsecure BIND 9 lightweight resolver demon

SYNOPSIS
/etc/dns923/lwresd

[-C config_file]
[-d debug_level]
[-f]
[-g]
[-n ncpus]
[-P port1]
[-p port2]
[-s]
[-t directory]
[-T tcpip_process_name]
[-u user]
[-v]

FLAGS
-C config_file Use config_file as the resolver configuration file instead of the default,

/etc/resolv.conf. To ensure that reloading the configuration file continues to
work after the server has changed its working directory because of a possible
directory option in the configuration file, config_file should be an absolute path-
name.

-d debug_level Set the server’s debug level to debug_level . Debugging traces from lwresd
become more verbose as the debug level increases.

-f Run the server in the foreground (that is, do not run as a demon).

-g Run the server in the foreground and force all logging to stderr.

-n ncpus Create ncpus worker threads to take advantage of multiple processors. If not
specified, lwresd tries to determine the number of processors present and create
one thread per processor. If it is unable to determine the number of processors, a
single worker thread is created.

-P port1 Listen for lightweight resolver queries on port port1. If this flag is not specified,
the default is port 921.

-p port2 Send DNS lookups to port port2. If this flag is not specified, the default is port
53.

This flag provides a way of testing the lightweight resolver server with a name
server that listens for queries on a nonstandard port number.

-s Write memory usage statistics to stdout on exit.

This option is mainly of interest to BIND 9 developers and might be removed or
changed in a future release.

-t directory Make the specified directory the current directory after processing the command
line arguments, but before reading the configuration file.

Caution: This option should be used in conjunction with the -u option, because
changing the root directory for a process running as the super ID does not
enhance security on most systems; the way chroot() is defined allows a process
with root user privileges to escape a chroot jail.

12−40 Hewlett-Packard Company 527188-021

Administrator Commands and Files lwresd(8)

-T tcpip_process_name
Start lwresd using the transport provider named tcpip_process_name. The pro-
cess name must be specified as an OSS pathname for a Guardian process; that is,
/G/ZTC0 is a valid specification.

This flag overrides the default behavior of starting with the process $ZTC0 as the
transport provider process.

-u user Change the user ID to user after completing privileged operations, such as creat-
ing sockets that listen on privileged ports.

-v Report the version number and exit.

DESCRIPTION
lwresd is the server providing name lookup services to clients that use the BIND 9 lightweight
resolver library. It is a stripped-down, caching-only name server that answers queries using the
BIND 9 lightweight resolver protocol rather than the DNS protocol.

lwresd listens for resolver queries on a UDP port on the IPv4 loopback interface, 127.0.0.1. This
means that lwresd can only be used by processes running on the local machine. By default, UDP
port number 921 is used for lightweight resolver requests and responses.

Incoming lightweight resolver requests are decoded by the server, which then resolves them
using the DNS protocol. When the DNS lookup completes, lwresd encodes the answers in the
lightweight resolver format and returns them to the client that made the request.

If /etc/resolv.conf contains any nameserver entries, lwresd sends recursive DNS queries to
those servers. This is similar to the use of forwarders in a caching name server. If no
nameserver entries are present, or if forwarding fails, lwresd resolves the queries autonomously
starting at the root name servers, using a built-in list of root server hints.

FILES
/etc/resolv.conf

The default configuration file.

RELATED INFORMATION
Commands: named(8).

527188-021 Hewlett-Packard Company 12−41

merge_whatis(8) OSS Shell and Utilities Reference Manual

NAME
merge_whatis - Creates and updates the whatis database file used by the apropos, man, and
whatis commands

SYNOPSIS
merge_whatis

[MANPATH_entry]

FLAGS
MANPATH_entry

Specifies the absolute pathname of the directory in which the whatis database
file should be located. If this operand is omitted, the default directory expected
by the man command (/usr/share/man) is used.

DESCRIPTION
The merge_whatis command allows you to create or replace the whatis database file that
corresponds to a set of installed reference (man) pages. To execute the merge_whatis command
for reference pages distributed by HP, your user ID must be the super ID. (This restriction is
imposed by the security of the directories that contain the files processed by the command.)

Use this command after you install an HP product for which reference pages are added to your
system or updated on your system. You can also use the merge_whatis command after adding
reference pages that are written on site or by other software vendors, provided the database file
file-naming convention and placement shown under FILES later in this reference page are met.

You can determine whether this command needs to be executed by recording the last-
modification dates for all files in the whatis.frag directory after each installation. After the next
installation, check the current dates against the dates you recorded from the previous installation.
If the last-modification date for any file changes after an installation, then the merge_whatis
command should be used.

EXAMPLES
1. Using the command to update the /usr/share/man/whatis file:

merge_whatis

FILES
/usr/share/man/whatis

Contains the default database used by the apropos, man, and whatis commands.

/usr/share/man/whatis.frag/whatis.fragment
Contains the database fragment files used to create the /usr/share/man/whatis
file.

For HP products, the fragment value is normally the Tandem product number (T
number) of the corresponding pax archive file that contains the product code.
Such pax archive files are installed from /G/tsvvol/zossutl/fragmentman.

MANPATH_entry/whatis
Contains an alternate database used by the apropos, man, and whatis com-
mands. The merge_whatis command can create this database file in any direc-
tory that contains directories of reference pages, provided the directory named
whatis.frag also exists in the directory specified by the MANPATH_entry
operand.

MANPATH_entry/whatis/whatis.frag/whatis.fragment
Contains the database fragment files used to create the MANPATH_entry/whatis
file. This set of files must be present in the directory specified by the

12−42 Hewlett-Packard Company 527188-021

Administrator Commands and Files merge_whatis(8)

MANPATH_entry operand when that operand is used.

The values used for fragment must not include an asterisk (*).

NOTES
Any existing whatis file is saved as whatis_old.

DIAGNOSTICS
The merge_whatis command issues the following error messages to the standard output file:

Usage: merge_whatis [MANPATH_entry]
Too many operands were specified.

Check for extra blanks in the input line and reenter the command.

MANPATH_entry does not exist.
The pathname specified as the MANPATH_entry operand cannot be found.

Check the specified pathname for typographical errors and reenter the command.
Do not use . or . . in the specified pathname.

EXIT VALUES
If too many operands are specified, or if a specified pathname does not exist, the merge_whatis
command fails and returns a nonzero value.

RELATED INFORMATION
Commands: apropos(1), man(1), whatis(1).

STANDARDS CONFORMANCE
This utility is an HP extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 12−43

named(8) OSS Shell and Utilities Reference Manual

NAME
named - Starts the nonsecure BIND 9 Internet domain name server

SYNOPSIS
/etc/dns923/named

[-c config_file]
[-d debug_level]
[-f]
[-g]
[-n ncpus]
[-p port]
[-s]
[-t directory]
[-u user]
[-v]
[-x cache_file]

FLAGS
-c config_file Use config_file as the configuration file instead of the default, /etc/named.conf.

To ensure that reloading the configuration file continues to work after the server
has changed its working directory because of a possible directory option in the
configuration file, config_file should be an absolute pathname.

-d debug_level Set the server’s debug level to debug_level . Debugging traces from named
become more verbose as the debug level increases.

-f Run the server in the foreground (that is, do not run it as a demon).

-g Run the server in the foreground and force all logging to stderr.

-n ncpus Create ncpus worker threads to take advantage of multiple processors. If not
specified, named tries to determine the number of processors present and creates
one thread per processor. If it is unable to determine the number of processors, a
single worker thread is created.

-p port Listen for queries on port port. If not specified, the default is port 53.

-s Write memory usage statistics to stdout on exit.

This option is mainly of interest to BIND 9 developers and might be removed or
changed in a future release.

-t directory Change the working directory to directory after processing the command line
arguments, but before reading the configuration file.

Caution: This option should be used in conjunction with the -u option, because
changing the root directory for a process running as the super ID does not
enhance security on most systems; the way chroot() is defined allows a process
with root user privileges to escape a chroot jail.

-u user setuid() to user after completing privileged operations, such as creating sockets
that listen on privileged ports.

-v Report the version number and exit.

12−44 Hewlett-Packard Company 527188-021

Administrator Commands and Files named(8)

-x cache_file Load data from cache_file into the cache of the default view.

Caution: This option must not be used. It is only of interest to BIND 9 develop-
ers and might be removed or changed in a future release.

DESCRIPTION
named is a domain name system (DNS) server, part of the BIND 9 distribution from the Internet
Software Consortium (ISC). For more information on the DNS, see RFCs 1033, 1034, and 1035.

When invoked without arguments, named reads the default configuration file /etc/named.conf,
reads any initial data, and listens for queries.

Signals
In routine operation, signals should not be used to control the nameserver; rndc should be used
instead.

SIGHUP Force a reload of the server.

SIGINT, SIGTERM
Shut down the server.

The result of sending any other signals to the server is undefined.

Configuration
The named configuration file named.conf is too complex to describe in detail here. A complete
description is provided in the BIND 9 Administrator Reference Manual.

FILES
/etc/named.conf

The default configuration file.

/etc/resolv.conf
The default resolver configuration file.

/var/run/named.pid
The default process-id file.

RELATED INFORMATION
Commands: dnssec_named(8), dnssec_rndc(8), rndc(8), lwresd(8).

Files: resolv.conf(5).

Documents: RFC 1033, RFC 1034, RFC 1035, BIND 9 Administrator Reference Manual.

527188-021 Hewlett-Packard Company 12−45

newusers(8) OSS Shell and Utilities Reference Manual

NAME
newusers - Updates and creates new users in batch.

SYNOPSIS
newusers [options new_users_file]

FLAGS
-h Display this help and exit.

DESCRIPTION
The newusers command reads a file of user name and clear-text password pairs and uses this
information to update a group of existing users or to create new users. Each line is in the format
as shown below:

user_type:name:passwd:memberNum:groupNum:description:dir

user_type
The type of user, user or alias, as indicated by U or A respectively.

name The name of the user or alias. It can be the name of a new user or alias or the name of an
existing user or alias (or a user created before by newusers). For an existing user, the
user’s information will be changed, otherwise a new user will be created. In the absence
of a fully qualified user name, a username will be derived as explained in useradd(8) or
usermod, respectively.

passwd The new clear-text value of the password that Safeguard will encrypt.

This option is only valid if Safeguard is running on the system.

memberNum
The member number of the user. If the field is empty for a new user, a new (unused)
member number will be derived automatically as explained in useradd(8). If this field
contains a number, it must match the existing value for an existing user specified or
derived from name. This must be an unused number for a new user.

groupNum
The primary group number of the user. If the field is empty for a user, the group number
is derived automatically as explained in useradd(8).

description
A description of the user. Maximum length of 80 characters.

This option is only valid if Safeguard is running on the system.

dir The home directory of the user. If this field does not specify an existing directory, the
specified directory is created with ownership set to the user being created or updated and
its primary group.

This option is only valid if Safeguard is running on the system.

NOTES
• The newusers command does not create parent directories of the new user’s home direc-

tory. If the parent directories do not exist, the newusers command fails to create the
home directory and sends a message to STDERR informing the user of the failure.

• If the newusers command fails to create the home directory, it does not halt or return a
failure to the calling shell. It will continue to process the batch of new users specified.

• If the home directory of an existing user is changed, newusers does not move or copy the
content of the old directory to the new location. This must be done manually.

12−46 Hewlett-Packard Company 527188-021

Administrator Commands and Files newusers(8)

• The newusers command is intended to be used in a large system environment where
many accounts are updated at the same time. When any operation on any of the entries
fails, a corresponding warning message is displayed on STDERR and the command
processes the next entry.

CAVEATS
• The input file must be protected because it contains unencrypted passwords.

• The passwords must respect the system password policy.

CONFIGURATION
The following configuration variables in /etc/login.defs change the behavior of this tool:

GROUP
When a partial name is specified as LOGIN, the group name and corresponding group
number will be taken from the GROUP variable in the /etc/default/users file. The
GROUP variable is specified in the format GROUP=groupName,groupNumber. For
example, GROUP=TEST,99.

USER When a LOGIN name is not specified with the -A option, the LOGIN name is taken from
the USER variable in the /etc/default/users file. The USER variable is specified in the
format USER=group- Name.memberName. For example, USER=TEST.USER1.

CREATE_HOME (boolean)
Indicates if a home directory must be created by default for new users.

Only valid on systems running Safeguard.

PASS_MAX_DAYS (number)
The maximum number of days a password may be used. If the password is older than
this, a password change is forced. The valid value for this is -1 or 1 through 32767. If not
specified, -1 is assumed (which disables the restriction).

Only valid on systems running Safeguard.

UMASK (number)
The file mode creation mask is initialized to this value. If not specified, the mask is ini-
tialized to 022. The useradd and newusers commands use this mask to set the mode of
the home directory when they create files.

Only valid on systems running Safeguard.

FILES
/etc/default/users

Default values for account creation.

/etc/skel/
Directory containing default files.

/etc/login.defs
Default values for login configuration.

EXIT VALUES
The newusers command exits with the following values:

0 success

1 invalid command syntax

2 operation on one or more entries failed

527188-021 Hewlett-Packard Company 12−47

newusers(8) OSS Shell and Utilities Reference Manual

RELATED INFORMATION
login.defs(5), users(5), useradd(8), usermod(8), userdel(8).

12−48 Hewlett-Packard Company 527188-021

Administrator Commands and Files nsupdate(8)

NAME
nsupdate - Starts the nonsecure BIND 9 dynamic domain name system (DNS) update utility

SYNOPSIS
/etc/dns923/nsupdate

[-d]
[[-y keyname:secret] [-k keyfile]]
[-v]
[filename]

DESCRIPTION
nsupdate is used to submit Dynamic DNS Update requests (as defined in RFC2136) to a BIND 9
domain name server. This allows resource records to be added or removed from a zone without
manually editing the zone file. A single update request can contain requests to add or remove
more than one resource record.

Zones that are under dynamic control via nsupdate or a DHCP server should not be edited by
hand. Manual edits could conflict with dynamic updates and cause data to be lost.

The resource records that are dynamically added or removed with nsupdate have to be in the
same zone. Requests are sent to the zone’s master server. This is identified by the MNAME
field of the zone’s SOA record.

The -d flag makes nsupdate operate in debug mode. This mode provides tracing information
about the update requests that are made and the replies received from the name server.

Transaction signatures can be used to authenticate the Dynamic DNS updates. These use the
TSIG resource record type described in RFC2845. The signatures rely on a shared secret that
should only be known to nsupdate and the name server. Currently, the only supported encryp-
tion algorithm for TSIG is HMAC-MD5, which is defined in RFC 2104. Once other algorithms
are defined for TSIG, applications will need to ensure they select the appropriate algorithm as
well as the key when authenticating each other. For instance, suitable key and server statements
would be added to /etc/named.conf so that the name server can associate the appropriate secret
key and algorithm with the IP address of the client application that will use TSIG authentication.
nsupdate does not read /etc/named.conf.

nsupdate uses the -y or -k flag to provide the shared secret needed to generate a TSIG record for
authenticating Dynamic DNS update requests. These flags are mutually exclusive. With the -k
flag, nsupdate reads the shared secret from the file keyfile, whose name is of the form
Kname.+157.+random.private. For historical reasons, the file Kname.+157.+random.key must
also be present. When the -y flag is used, a signature is generated from keyname:secret. key-
name is the name of the key, and secret is the base64 encoded shared secret. Use of the -y flag is
discouraged because the shared secret is supplied as a command line argument in clear text. This
may be visible in the output from ps(1) or in a history file maintained by the user’s shell.

By default, nsupdate uses UDP to send update requests to the name server. The -v flag makes
nsupdate use a TCP connection. This may be preferable when a batch of update requests is
made.

Input Format
nsupdate reads input from filename or standard input. Each command is supplied on exactly one
line of input. Some commands are for administrative purposes. The others are either update
instructions or prerequisite checks on the contents of the zone. These checks set conditions that
some name or set of resource records (RRset) either exists or is absent from the zone. These con-
ditions must be met if the entire update request is to succeed. Updates are rejected if the tests for
the prerequisite conditions fail.

Every update request consists of zero or more prerequisites and zero or more updates. This
allows a suitably authenticated update request to proceed if some specified resource records are

527188-021 Hewlett-Packard Company 12−49

nsupdate(8) OSS Shell and Utilities Reference Manual

present or missing from the zone. A blank input line (or the send command) causes the accumu-
lated commands to be sent as one Dynamic DNS update request to the domain name server.

The command formats and their meaning are as follows:

server servername [port]
Sends all dynamic update requests to the name server servername. When no
server statement is provided, nsupdate sends updates to the master server of the
correct zone. The MNAME field of that zone’s SOA record identifies the master
server for that zone. port is the port number on servername where the dynamic
update requests get sent. If no port number is specified, the default DNS port
number of 53 is used.

local address [port]
Sends all dynamic update requests using the local address. When no local state-
ment is provided, nsupdate sends updates using an address and port chosen by
the system. port can additionally be used to make requests come from a specific
port. If no port number is specified, the system assigns one.

zone zonename Specifies that all updates are to be made to the zone zonename. If no zone state-
ment is provided, nsupdate attempts to determine the correct zone to update
based on the rest of the input.

key name secret
Specifies that all updates are to be TSIG signed using the keyname keysecret
pair. The key command overrides any key specified on the command line via -y
or -k.

prereq nxdomain domain_name
Requires that no resource record of any type exists with name domain_name.

prereq yxdomain domain_name
Requires that domain_name exists (has as at least one resource record, of any
type).

prereq nxrrset domain_name [class] type
Requires that no resource record exists of the specified type, class and
domain_name. If class is omitted, IN (internet) is assumed.

prereq yxrrset domain_name [class] type
This requires that a resource record of the specified type, class and domain_name
must exist. If class is omitted, IN (internet) is assumed.

prereq yxrrset domain_name [class] type data...
The data from each set of prerequisites of this form sharing a common type,
class, and domain-name are combined to form a set of RRs. This set of RRs must
exactly match the set of RRs existing in the zone at the given type, class, and
domain_name. The data is written in the standard text representation of the
resource record’s RDATA.

update delete domain_name [ttl] [class] [type [data...]]
Deletes any resource records named domain_name. If type and data is provided,
only matching resource records are removed. The internet class is assumed if
class is not supplied. The ttl is ignored, and is only allowed for compatibility.

12−50 Hewlett-Packard Company 527188-021

Administrator Commands and Files nsupdate(8)

update add domain_name ttl [class] type data...
Adds a new resource record with the specified ttl, class, and data.

show Displays the current message, containing all of the prerequisites and updates
specified since the last send.

send Sends the current message. This is equivalent to entering a blank line.

Lines beginning with a semicolon are comments, and are ignored.

EXAMPLES
The examples below show how nsupdate could be used to insert and delete resource records
from the example.com zone. Notice that the input in each example contains a trailing blank line
so that a group of commands are sent as one dynamic update request to the master name server
for example.com.

1.

nsupdate
> update delete oldhost.example.com A
> update add newhost.example.com 86400 A 172.16.1.1
>

Any A records for oldhost.example.com are deleted and an A record for
newhost.example.com with IP address 172.16.1.1 is added. The newly-added record
has a one-day TTL (86400 seconds)

2.

nsupdate
> prereq nxdomain nickname.example.com
> update add nickname.example.com 86400 CNAME somehost.example.com
>

The prerequisite condition gets the name server to check that there are no resource
records of any type for nickname.example.com. If there are, the update request fails. If
this name does not exist, a CNAME for it is added. This ensures that when the CNAME
is added, it cannot conflict with the long-standing rule in RFC1034 that a name must not
exist as any other record type if it exists as a CNAME. (The rule has been updated for
DNSSEC in RFC2535 to allow CNAMEs to have SIG, KEY, and NXT records.)

FILES
/etc/resolv.conf

Default resolver configuration file, used to identify default name server.

Kname.+157.+random.key
Contains base-64 encoding of HMAC-MD5 key created by the dnssec-keygen
utility.

Kname.+157.+random.private
Contains base-64 encoding of HMAC-MD5 key created by the dnssec-keygen
utility.

RELATED INFORMATION
Commands:

dnssec_named(8), named(8), dnssec-keygen(8).

Documents: RFC2136, RFC3007, RFC2104, RFC2845, RFC1034, RFC2535.

527188-021 Hewlett-Packard Company 12−51

Pcleanup(8) OSS Shell and Utilities Reference Manual

NAME
Pcleanup - Moves or removes obsolete OSS files

SYNOPSIS
Pcleanup -i | -r { source | target } | -?
Pcleanup -m [-?]

FLAGS
-i Displays a list of all obsolete OSS files, as identified within the remove-list files

in the /etc/install_obsolete directory.

-m Moves all obsolete files specified within the remove-list files in the
/etc/install_obsolete directory to the /etc/install_obsolete directory but does not
delete them.

-r { source | target }
When source is specified, removes all obsolete files from their locations as given
in the remove-list files within the /etc/install_obsolete directory. When target is
specified, removes all obsolete files from /etc/install_obsolete (intended for use
after using Pcleanup -m.)

-? Displays usage information for the command.

DESCRIPTION
The Pcleanup utility removes or moves all obsolete OSS files after an interim product
modification (IPM) or a new release of OSS has been installed on a system.

The pinstall utility installs OSS files into the OSS file system but it does not remove files that
were made obsolete by the IPM or release. The Pcleanup utility can provide the file removal
function.

The Pcleanup utility uses a set of remove-list files. These remove-list files are included in the
pax archive files for OSS products. The remove-list files are named
/etc/install_obsolete/PINSTALL_REMOVE_LIST_filename, where filename is the Guardian
file identifier of the pax archive file the remove-list file applies to. Usually filename contains a
product number.

Each remove-list file contains a list of absolute pathnames for the obsolete files in their originally
installed locations. Each pathname is on a separate line, terminated by a carriage return.

The remove-list files are not removed by the Pcleanup utility.

EXAMPLES
1. The following command removes the obsolete files from the locations given in the

remove lists.

Pcleanup -r source

2. The following command moves obsolete files from the locations given in the remove-list
files to the directory /etc/install_obsolete.

Pcleanup -m

3. The following command removes obsolete files from /etc/install_obsolete, to which
those files were moved using the -r flag.

Pcleanup -r target

12−52 Hewlett-Packard Company 527188-021

Administrator Commands and Files Pcleanup(8)

NOTES
On systems where the Distributed Software Management/Software Configuration Manager
(DSM/SCM) product is used to install HP product files from the ZOSSUTL subvolume and main-
tain those files in the OSS file system, do not use Pcleanup with any option other than -i or -?.
Moving or removing files installed by DSM/SCM can invalidate the DSM/SCM database used
for file maintenance.

RELATED INFORMATION
Commands: pax(1), pinstall(1).

STANDARDS CONFORMANCE
The Pcleanup utility is an extension to the XPG4 standards.

527188-021 Hewlett-Packard Company 12−53

pcleanup(8) OSS Shell and Utilities Reference Manual

NAME
pcleanup - See the Pcleanup(8) reference page

DESCRIPTION
The first character of the Pcleanup command must be uppercase.

12−54 Hewlett-Packard Company 527188-021

Administrator Commands and Files portmap(8)

NAME
portmap - Maps TCP/IP ports to Remote Procedure Call (RPC) program numbers

SYNOPSIS
[ADD DEFINE =TCPIPˆHOSTˆFILE, FILE hostfile]
[ADD DEFINE =TCPIPˆRESOLVERˆNAME, FILE resconffile]
[ADD DEFINE =TCPIPˆPROCESSˆNAME, FILE process]
[\node.]PORTMAP / NAME $ZPMn, NOWAIT / [param] [, param] . . .

FLAGS
hostfile Specifies the Guardian filename of the TCP/IP host definition file. This file con-

tains a list of valid host names, aliases for those names, and the corresponding
Internet Protocol (IP) addresses for those hosts.

This value must be specified if a domain name resolver is not running.

This value cannot be specified if the =TCPIPˆRESOLVERˆNAME DEFINE is
specified.

For information on creating a TCP/IP host definition file, refer to the
TCP/IP (Parallel Library) Configuration and Management Manual or the TCP/IP
Configuration and Management Manual.

resconffile Specifies the Guardian filename of the TCP/IP domain name resolver
configuration file. This file contains a list of valid name servers for resolution
between host names and Internet Protocol (IP) addresses for those hosts.

This value cannot be specified if the =TCPIPˆHOSTˆFILE DEFINE or the TCPIP
value for the param option is specified.

For information on creating a TCP/IP domain name resolver configuration file,
refer to the TCP/IP (Parallel Library) Configuration and Management Manual or
the TCP/IP Configuration and Management Manual.

process Specifies the Guardian process name of the standard process that provides an IP
address for the portmapper process.

This value should be specified if the TCPIP value for the param option is not
specified.

The value you specify depends on whether you use conventional TCP/IP or paral-
lel library TCP/IP.

• For conventional TCP/IP, the standard server process is usually named
$ZTCn, where n by convention is the digit used in the input/output pro-
cess (IOP) name associated with the controller being served. For exam-
ple, by convention $ZTC0 is the server for the controller that is accessed
through $LAN0.

• For parallel library TCP/IP, the standard server process is usually named
$ZSAMn, where n by convention is the digit used in the input/output pro-
cess (IOP) name associated with the controller being served. For exam-
ple, by convention $ZSAM0 is the server for the controller that is
accessed through $LAN0.

Most HP NonStop system software assumes that the correct default TCP/IP server
process name is $ZTC0. If only one TCP/IP server is configured, it should use
that process name, so the usual value to use for process with the first portmapper
process to be started is $ZTC0.

The process name used for the TCP/IP server process is a convention and is not

527188-021 Hewlett-Packard Company 12−55

portmap(8) OSS Shell and Utilities Reference Manual

enforced by HP software. The value used does not need to contain any specific
collection of letters or the digit n.

node Specifies the Expand node name of the NonStop server node on which to run the
portmapper process.

If this value is omitted, the portmapper process is run on the local NonStop server
node.

n The value you specify depends on whether you use conventional TCP/IP or paral-
lel library TCP/IP.

• For conventional TCP/IP, by convention, this number matches the number
used in the process name of the TCP/IP server process that provides the
correct IP address.

This value is usually 0, corresponding to the assumed default TCP/IP pro-
cess name of $ZTC0.

• For parallel library TCP/IP, you must specify the fourth and fifth charac-
ters of the process name for the TCPSAM process.

The correct number to specify depends on the IP address that the portmapper pro-
cess should be registered with. Refer to the NOTES section of this reference page
for a procedure that can help you choose a number based on the IP address
configured for a TCP/IP server process.

The process name used for the portmapper process is a convention and is not
enforced by HP software. The value used does not need to contain any specific
collection of letters or the digit n.

param Is one of the following options:

[BACKUPCPU] processor
Specifies the processor number in the range 0 through 15 of the
processor that should run the backup process of the portmapper
process pair. The value used should not specify the processor that
runs the primary portmapper process of the process pair.

The keyword BACKUPCPU can be omitted only if this is the
first value for the param option specified in the command.

If this option is omitted, the portmapper process does not run as a
process pair.

TCPIP pname Specifies the Guardian process name of the standard process that
provides access to the portmapper process.

If this option is omitted, the value specified in the
=TCPIPˆPROCESSˆNAME DEFINE is used.

If this option is specified, the value used must meet the same
requirements as those described for =TCPIPˆPROCESSˆNAME
DEFINE values.

If both this option and the DEFINE are omitted, the default name
for the TCP/IP server process is $ZTC0.

12−56 Hewlett-Packard Company 527188-021

Administrator Commands and Files portmap(8)

COLLECTOR cname
Specifies the Guardian process name of the Event Management
Service (EMS) server process that collects event messages from
the portmapper process.

If this option is omitted, the primary EMS collector ($0) is used.

In addition to the NOWAIT option, other TACL RUN command options (such as CPU and PRI)
are also valid in this command. Refer to the TACL Reference Manual for a description of the RUN
command.

DESCRIPTION
The portmapper process is a Guardian server process that converts host port numbers to Remote
Procedure Call (RPC) program numbers. The portmapper process must be running for successful
execution of server processes that make remote procedure calls, such as the Network File System
(NFS).

When an RPC server process is started, that process tells the portmapper process what host port
number it is listening to and what RPC program numbers it is prepared to serve. When a client pro-
cess wants to make an RPC call to a given program number, that client first contacts the port-
mapper process on the system that should receive the call to determine the host port number to
which RPC packets should be sent.

EXAMPLES
1. The following example starts the portmapper process as a process pair on the local node.

This example assumes that the user’s PMSEARCHLIST variable does not include the
ZNFS subvolume and that the =ZTCPIPˆPROGRAMˆNAME DEFINE has not been
declared:

VOLUME $SYSTEM.ZNFS
PORTMAP / NAME $ZPM0, CPU 1, NOWAIT / BACKUPCPU 0, TCPIP $ZTC0

FILES
$SYSTEM.ZNFS.PORTMAP

The Guardian filename of the program file for the portmapper program.

$SYSTEM.ZTCPIP.HOSTS
The Guardian filename of the default TCP/IP host definition file for the NonStop
server node. This file must be created by a site administrator.

$SYSTEM.ZTCPIP.RESCONF
The Guardian filename of the default TCP/IP domain name resolver configuration
file for the NonStop server node. This file must be created by a site administrator.

NOTES
The Guardian portmapper program corresponds to the program that is located at /usr/etc/portmap
on some UNIX systems.

On UNIX systems, standard RPC servers are started by the inetd utility, so the portmapper process
must be started before inetd is started. On an HP NonStop server, RPC servers are not started by
inetd. However, the portmapper process must still be started before an RPC server is started.

Binding to a Single Subnet
On systems running H06.24 and later H-series RVUs or J06.13 and later J-series RVUs, you can
bind a portmapper process to an IP address by setting the TACL PORTMAPˆBINDˆIP parameter
before you start the portmapper process. The IP address must be an IPv4 address in dotted-decimal

527188-021 Hewlett-Packard Company 12−57

portmap(8) OSS Shell and Utilities Reference Manual

format.

For example, to bind the portmapper to IP address 192.168.10.10, enter this TACL command
before you start the portmapper process:

PARAM PORTMAPˆBINDˆIP 192.168.10.10

Determining the portmapper Process for a TCP/IP Process
For conventional TCP/IP, when more than one TCP/IP server is running, the portmapper process
for a specific IP process can be determined as follows:

• By convention, each portmapper process name contains the same number as the
corresponding TCP/IP server process name.

• Each TCP/IP server is associated with a host name and an IP address (called a Host ID in
Subsystem Control Facility [SCF] displays). The corresponding portmapper process
returns information for that IP address.

• The IP address for each TCP/IP server process (and, if naming conventions were followed,
for its corresponding portmapper process) can be determined by entering the following
SCF command:

INFO PROCESS $ZTC*, DETAIL

For parallel library TCP/IP, only one portmapper process can be started for the entire TCP/IP sub-
system, regardless of how many TCPSAM processes are running.

• By convention, each portmapper process name contains the fourth and fifth characters of
the TCPSAM process name.

• Even though only one portmapper process can be started, it serves all the IP addresses
associated with the parallel library TCP/IP subsystem.

When starting a copy of the portmapper process, the digit to use in its process name can be deter-
mined by the same method:

• Use an SCF command to determine the IP address for each TCP/IP server process and the
digit from the correct corresponding TCP/IP process name.

DIAGNOSTICS
In addition to the following messages, the portmapper program generates EMS error messages for
problems encountered during socket or file input or output.

portmap: backup CPU nn is not valid
The specified backup processor does not exist, or it is the same as the processor
used for the primary portmapper process.

portmap: name is not a valid tcpip process
The process specified by name is the wrong process type to function as a valid
TCP/IP server process. Specify a valid process name for a process of device type
48, device subtype 0.

portmap: name is not a valid collector process
The process specified by name is not an existing EMS collector process.

12−58 Hewlett-Packard Company 527188-021

Administrator Commands and Files portmap(8)

portmap: process must be named
The portmapper program was started as an unnamed process. The portmapper pro-
gram must run as a named process.

portmap: process name does not exist
The process name specified by name for the EMS collector or TCP/IP server pro-
cess does not identify a running process.

RELATED INFORMATION
Commands: inetd(8), rpcinfo(8).

STANDARDS CONFORMANCE
This command is an HP extension to the XPG4 Version 2 specification.

The HP implementation of the portmapper program depends upon an RPC implementation that
conforms to the Defense Data Network (DDN) Request for Comments (RFC) 1057.

527188-021 Hewlett-Packard Company 12−59

rexecd(8) OSS Shell and Utilities Reference Manual

NAME
rexecd - Starts the remote execution server

SYNOPSIS
rexecd

DESCRIPTION
rexecd is the local server for the rexec() function available on remote UNIX systems. The server
provides remote execution facilities with authentication based on user names and passwords.

rexecd listens for service requests at the port indicated in the exec service specification of the
/etc/services file. When a service request is received, the following steps occur:

1. The server reads characters from the socket up to a NUL byte. The resultant string is
interpreted as an ASCII number, base 10.

2. If the number received in step 1 is nonzero, it is interpreted as the port number of a secon-
dary stream to be used for the standard error file. A second connection is then created to
the specified port on the client’s machine.

3. A NUL-terminated user name of at most 80 characters is retrieved on the initial socket.

4. A NUL-terminated, unencrypted password of at most 80 characters is retrieved on the ini-
tial socket.

5. A NUL-terminated command to be passed to a shell is retrieved on the initial socket. The
length of the command is limited by the upper bound on the size of the system’s argument
list.

6. rexecd then validates the user as is done at login time and, if the authentication was suc-
cessful, changes to the user’s home directory, and establishes the user and group protec-
tions of the user. If any of these steps fails, the connection is aborted with a diagnostic
message returned.

7. A NUL byte is returned on the initial socket, and the command line is passed to the nor-
mal login shell of the user. The shell inherits the network connections established by rex-
ecd.

FILES
/etc/inetd.conf The default file containing the configuration and startup information for the rex-

ecd process.

NOTES
To start the rexecd process, add the following entry to the configuration file for the inetd process:

exec stream tcp nowait super.super /bin/rexecd

(The default configuration file for inetd is /etc/inetd.conf.) Then refresh the inetd configuration
by restarting inetd or by sending it a SIGHUP signal.

DIAGNOSTICS
Except for the last message listed below, all diagnostic messages are returned on the initial socket,
after which any network connections are closed. An error is indicated by a leading byte with a
value of 1 (zero is returned in step 7, above, upon successful completion of all the steps prior to
the command execution).

username too long
The name is longer than 80 characters.

12−60 Hewlett-Packard Company 527188-021

Administrator Commands and Files rexecd(8)

password too long
The password is longer than 80 characters.

command too long
The command line passed exceeds the size of the argument list
(as configured into the system).

Login incorrect.
The user name and password could not be validated.

No remote directory.
The chdir() function call to the home directory failed.

Try again. A fork() function call by the server failed.

shellname: ... The user’s login shell, identified as shellname, could not be
started. This message is returned on the connection associated
with the standard error file, and is not preceded by a flag byte.

RELATED INFORMATION
Commands: inetd(8).

Files: services(4).

STANDARDS CONFORMANCE
This command is an extension to the XPG4 version 2 specification.

527188-021 Hewlett-Packard Company 12−61

rndc(8) OSS Shell and Utilities Reference Manual

NAME
rndc - Starts the nonsecure BIND 9 Internet domain name server control utility

SYNOPSIS
/etc/dns923/rndc

[-c config_file]
[-k key_file]
[-s server]
[-p port]
[-V]
[-y key_id]
command

FLAGS
-c config_file Use config_file as the configuration file instead of the default,

/etc/rndc.conf.

-k key_file Use key_file as the key file instead of the default, /etc/rndc.key.
The key in /etc/rndc.key will be used to authenticate commands
sent to the server if the config_file does not exist.

-s server server is the name or address of the server which matches a server
statement in the configuration file for rndc. If no server is sup-
plied on the command line, the host named by the default-server
clause in the option statement of the configuration file is used.

-p port Send commands to TCP port port instead of BIND 9’s default
control channel port, 953.

-V Enable verbose logging.

-y keyid Use the key keyid from the configuration file. keyid must be
known by named with the same algorithm and secret string in
order for control message validation to succeed. If no keyid is
specified, rndc first looks for a key clause in the server statement
of the server being used, or if no server statement is present for
that host, it then looks for the default-key clause of the options
statement. Note that the configuration file contains shared secrets
which are used to send authenticated control commands to name
servers. It should therefore not have general read or write access.

Operands
command For the complete set of commands supported by rndc, see the

BIND 9 Administrator Reference Manual or run rndc without
arguments to see its help message.

DESCRIPTION
rndc controls the operation of a BIND 9 domain name server. If rndc is invoked with no com-
mand line options or arguments, it prints a short summary of the supported commands and the
available options and their arguments.

rndc communicates with the name server over a TCP connection, sending commands authenti-
cated with digital signatures. In the nonsecure version of rndc and named, the only supported
authentication algorithm is HMAC-MD5, which uses a shared secret on each end of the connec-
tion. This provides TSIG-style authentication for the command request and the name server’s
response. All commands sent over the channel must be signed by a key_id known to the server.

12−62 Hewlett-Packard Company 527188-021

Administrator Commands and Files rndc(8)

rndc reads a configuration file to determine how to contact the name server and decide what algo-
rithm and key it should use.

NOTES
rndc does not yet support all the commands of the BIND 8 ndc utility.

There is currently no way to provide the shared secret for a key_id without using the configuration
file.

Several error messages could be clearer.

RELATED INFORMATION
Commands: dnssec_named(8), dnssec_nsupdate(8), named(8), nsupdate(8).

Files: named.conf(4).

Documents: BIND 9 Administrator Reference Manual.

527188-021 Hewlett-Packard Company 12−63

rpcinfo(8) OSS Shell and Utilities Reference Manual

NAME
rpcinfo - Reports or changes Remote Procedure Call (RPC) information

SYNOPSIS
[ADD DEFINE =ZRPCˆRPCˆFILE, FILE rpcfile]
[ADD DEFINE =TCPIPˆHOSTˆFILE, FILE hostfile]
[ADD DEFINE =TCPIPˆRESOLVERˆNAME, FILE resconffile]
[ADD DEFINE =TCPIPˆPROCESSˆNAME, FILE process]

[\node.]RPCINFO -p [-u | -t] [target]

[\node.]RPCINFO [-n portnum] { -u | -t }
host program [version]

[\node.]RPCINFO -b program version

[\node.]RPCINFO -d program version

FLAGS
rpcfile Specifies the Guardian filename of the RPC program definition

file. This file contains a list of valid RPC program numbers and
program names.

This value should be specified if the default RPC program
definition file for the HP NonStop server node is not used or was
not created. If no RPC program definition file can be found, the
RPCINFO output will not contain a program name.

The RPC program definition file is an EDIT file and can be
created using any Guardian text editor. Each line in the file is
either a comment line beginning with a pound sign (#) or an entry
for one program. Program entries contain the program name to be
reported by RPCINFO, the program number, and possible aliases
for the program name. For example:

#
rpc 1.16 89/12/27
#
portmapper 100000 portmap sunrpc

The fields of each program-entry line are separated by blanks.

hostfile Specifies the Guardian filename of the TCP/IP host definition file.
This file contains a list of valid host names, aliases for those
names, and the corresponding Internet Protocol (IP) addresses for
those hosts.

This value must be specified if a domain name resolver is not run-
ning.

For information on creating a TCP/IP host definition file, refer to
the
TCP/IP (Parallel Library) Configuration and Management
Manual or the TCP/IP Configuration and Management Manual.

resconffile Specifies the Guardian filename of the TCP/IP domain name
resolver configuration file. This file contains a list of valid name
servers for resolution between host names and Internet Protocol
(IP) addresses for those hosts.

This value cannot be specified if the =TCPIPˆHOSTˆFILE

12−64 Hewlett-Packard Company 527188-021

Administrator Commands and Files rpcinfo(8)

DEFINE is specified.

For information on creating a TCP/IP domain name resolver
configuration file, refer to the TCP/IP (Parallel Library)
Configuration and Management Manual or the TCP/IP
Configuration and Management Manual.

process Specifies the Guardian process name of the standard process that
provides an IP address for the portmapper process.

The value you specify depends on whether you use conventional
TCP/IP or parallel library TCP/IP.

• For conventional TCP/IP, the standard server process is
normally named $ZTCn, where n by convention is the
digit used in the input/output process (IOP) name associ-
ated with the controller being served. For example, by
convention $ZTC0 is the server for the controller that is
accessed through $LAN0.

• For parallel library TCP/IP, the standard server process is
usually named $ZSAMn, where n by convention is the
digit used in the input/output process (IOP) name associ-
ated with the controller being served. For example, by
convention $ZSAM0 is the server for the controller that is
accessed through $LAN0.

Most HP NonStop system software assumes that the correct
default TCP/IP server name is $ZTC0. If only one TCP/IP server
is configured, it should use that process name, so the usual value
to use for process with RPCINFO is $ZTC0.

The process name used for the TCP/IP server process is a conven-
tion and is not enforced by HP software. The value used does not
need to contain any specific collection of letters or the digit n.

node Specifies the Expand node name of the HP NonStop server node
on which to run the RPCINFO utility.

If this value is omitted, the RPCINFO utility is run on the local
node.

-p [-u | -t] [target]
Requests that the portmapper process on the host specified by
target list all registered RPC programs.

The target value can be specified either as the name or the
dotted-decimal form of the IP address of a host within a reachable
TCP/IP network.

The target value is case-sensitive; that is, the specified name must
match the case of the host name within the TCP/IP host definition
file. For example, specifying FORTY.TANDEM.COM does not
match an entry of forty.tandem.com.

If no value is specified for the target argument, information is
reported for the HP NonStop server node specified or implied by
the value of node.

527188-021 Hewlett-Packard Company 12−65

rpcinfo(8) OSS Shell and Utilities Reference Manual

The associated flags specify the TCP/IP client protocol used to
contact the portmapper process, as follows:

-t Use the TCP protocol.

-u Use the UDP protocol.

If neither flag is specified, TCP protocol is used.

-n portnum { -u | -t }
Makes an RPC call using the port identified within the TCP/IP
host definition file by portnum and reports whether a response is
received. The RPC call is made to procedure 0 of a targeted RPC
program that is identified by the other specified options.

If this flag is not specified, the RPC call is made to the program
using the first port specified for the targeted program in the RPC
program definition file.

The associated flags specify the TCP/IP client protocol used to
contact the targeted program, as follows:

-t Use the TCP protocol.

-u Use the UDP protocol.

One of these flags must be specified, as indicated by the { } nota-
tion.

host Specifies the host on which the targeted program runs.

The host value can be specified either as the name or the dotted-
decimal form of the IP address of a host within a reachable
TCP/IP network.

Note that the host value is not the same as the node value.

The host value is case-sensitive; that is, the specified name must
match the case of the host name within the TCP/IP host definition
file. For example, specifying FORTY.TANDEM.COM does not
match an entry of forty.tandem.com.

program Specifies the targeted program.

The program value can be specified either as the name of a pro-
gram within the RPC program definition file or as the program
number of a program defined in that file.

The program value is case-sensitive; that is, the specified name
must match the case of the program name within the RPC pro-
gram definition file. For example, specifying PORTMAPPER
does not match an entry of portmapper.

version Specifies the version of the targeted program as defined within the
RPC program definition file.

If no value is specified for version in those cases where version is
not required, RPCINFO attempts to identify all registered ver-
sions of the targeted program. RPCINFO first calls version 0
(zero), which is assumed not to exist. If version 0 exists,
RPCINFO calls a very high version number instead.

12−66 Hewlett-Packard Company 527188-021

Administrator Commands and Files rpcinfo(8)

-b Makes an RPC broadcast to procedure 0 of a targeted RPC pro-
gram that is identified by the other specified options and reports
whether a response is received.

-d Deletes the registration of a targeted RPC program that is
identified by the other specified options. This flag can be
specified only by the super ID (255,255 in the Guardian environ-
ment, 65535 in the OSS environment).

DESCRIPTION
The RPCINFO utility is a Guardian program that reports or modifies the status of RPC services
accessible from the local HP NonStop server node.

The program names reported do not have a one-to-one relationship to a specific process. When
multiple server processes are running on the same HP NonStop server node, the report includes
only one entry for each version of the server program and each TCP/IP client protocol supported
by the program.

EXAMPLES
1. The following example displays the names and TCP/IP or UDP port

numbers of all RPC services registered on the local node:

ADD DEFINE =ZRPCˆRPCˆFILE, FILE $SYSTEM.ZRPC.RPC
RPCINFO -p

The output contains one line for each version of an RPC program and for
each client protocol supported by the program. The program line shows
the RPC program number, the program version, the client protocol used
by the program, the port number, and the program name. For example:

program vers proto port
100000 2 tcp 111 portmapper

2. The following example displays the names and TCP/IP or UDP port
numbers of all RPC services registered on the remote node
forty.tandem.com:

ADD DEFINE =ZRPCˆRPCˆFILE, FILE $SYSTEM.ZRPC.RPC
RPCINFO -p forty.tandem.com

3. The following example displays the names of all HP NonStop server
nodes that are running version 2 of the HP portmapper program, as
configured in the default RPC program definition file:

RPCINFO -b portmapper 2

In this example, the output contains the IP address of each node contacted
during the search for a node that runs version 2 of the portmapper program
and the corresponding name of the host. The listing looks something like
the following:

111.222.333.444 forty.tandem.com
111.222.555.666 loc247.tandem.com
program 100000 version 2 ready and waiting

527188-021 Hewlett-Packard Company 12−67

rpcinfo(8) OSS Shell and Utilities Reference Manual

4. The following example deletes the registration for version 1 of the RPC
program identified by the program number 1073741824:

RPCINFO -d 1073741824 1

5. The following example shows typical RPC program definition file infor-
mation for a node that has the Network File System (NFS) running and the
file $SYSTEM.ZRPC.RPC defined:

RPCINFO -p

program vers proto port
100000 2 udp 111 portmapper
100000 2 tcp 111 portmapper
100003 2 udp 2049 nfs
100005 1 udp 740 mountd
150001 1 udp 808 pcnfsd
150001 2 udp 808 pcnfsd
150001 1 tcp 811 pcnfsd
150001 2 tcp 811 pcnfsd

In this example, the local HP NonStop server node has eight registered
RPC programs. These include:

• The portmapper program, which has one entry for each supported
client protocol.

The portmapper process on HP NonStop servers is called
$ZPMnn within the Guardian environment. The portmapper pro-
cess appears as portmapper when viewed from a UNIX system.
Refer to the portmap(8) reference page for additional information
about the portmapper program on HP NonStop servers.

The portmapper program shown in the report supports both UDP
and TCP/IP client protocols.

• The NFS server headpin process, which indicates that the NFS
subsystem is running.

The headpin process on HP NonStop servers is unnamed within
the Guardian environment but appears as nfs when viewed from a
UNIX system.

The headpin process shown in the report supports the UDP client
protocol.

• The mounting process for NFS filesets.

The mounting process on HP NonStop servers is called the NFS
Manager with the process name $ZNFS within the Guardian
environment but appears as mountd when viewed from a UNIX
system.

The mounting process shown in the report supports the UDP
client protocol.

• One copy of the NFS printing and authentication server for each
version of the server and for each supported client protocol.

The NFS printing and authentication server on HP NonStop
servers is called $PCDn within the Guardian environment but
appears as pcnfsd when viewed from a UNIX system. (This

12−68 Hewlett-Packard Company 527188-021

Administrator Commands and Files rpcinfo(8)

server is used only by TCP/IP nodes that do not run the OSS
environment or a UNIX operating system.)

6. The following example uses the TCP client protocol to request informa-
tion about the program identified as portmapper on the host
forty.tandem.com:

RPCINFO -t forty.tandem.com portmapper

In this example, the output shows the routing used for the request, in the
form of the IP address and host names for each node along the route, as
follows:

111.222.333.444 aardvark.tandem.com
111.222.555.666 (unknown)
program 100000 version 2 ready and waiting

FILES
$SYSTEM.SYSTEM.RPCINFO

The Guardian filename of the program file for the RPCINFO util-
ity.

$SYSTEM.ZRPC.RPC
The Guardian filename of the default RPC program definition file
for the HP NonStop server node. This file must be created by a
site administrator.

$SYSTEM.ZTCPIP.HOSTS
The Guardian filename of the default TCP/IP host definition file
for the HP NonStop server node. This file must be created by a
site administrator.

$SYSTEM.ZTCPIP.RESCONF
The Guardian filename of the default TCP/IP domain name
resolver configuration file for the HP NonStop server node. This
file must be created by a site administrator.

NOTES
The information reported for an RPC program on a node that is not an HP NonStop server might
vary slightly from the description in this reference page.

The Guardian RPCINFO program corresponds to the program that is located at /usr/etc/rpcinfo on
some UNIX systems.

DIAGNOSTICS
In response to user errors, RPCINFO terminates abnormally and issues the following diagnostic
messages:

Usage: rpcinfo -p [-u | -t] [host]
rpcinfo [-n portnum] -u host program [version
]
rpcinfo [-n portnum] -t host program [version
]
rpcinfo -b program version
rpcinfo -d program version

Indicates a syntax error or specification of an unrecognized
option.

527188-021 Hewlett-Packard Company 12−69

rpcinfo(8) OSS Shell and Utilities Reference Manual

rpcinfo: aaaaaaaa is unknown service
Indicates that the value specified by aaaaaaaa does not
correspond to a registered RPC program on the host to which you
made the request.

Additionally, RPCINFO returns messages related to RPC call error conditions.
For example, the following message is returned if an RPC call times out during a
call to the portmapper process:

rpcinfo: RPC: Portmapper failure - RPC: Timed out
program 100000 is not available

RELATED INFORMATION
Commands: portmap(8).

STANDARDS CONFORMANCE
This command is an HP extension to the XPG4 Version 2 specification.

The HP implementation of RPCINFO depends upon an RPC implementation that conforms to the
Defense Data Network (DDN) Request for Comments (RFC) 1057.

12−70 Hewlett-Packard Company 527188-021

Administrator Commands and Files rshd(8)

NAME
rshd - Starts the remote shell (demon) server process

SYNOPSIS
rshd

DESCRIPTION
The rshd process is the server process for the rsh utility.

NOTES
To start the rshd process, you need to add the following entry to the configuration file for the inetd
process:

shell stream tcp nowait root /bin/rshd

(The default configuration file for inetd is /etc/inetd.conf.) Then refresh the inetd configuration
by restarting inetd or by sending it a SIGHUP signal.

FILES
/etc/inetd.conf The default file containing the configuration and startup

information for the rshd process.

RELATED INFORMATION
Commands: inetd(8), rsh(1).

STANDARDS CONFORMANCE
This command is an HP extension to the XPG4 Version 2 specification.

527188-021 Hewlett-Packard Company 12−71

useradd(8) OSS Shell and Utilities Reference Manual

NAME
useradd - Creates a new user or alias, or updates default new user or alias information.

SYNOPSIS
useradd [OPTION] LOGIN
useradd -A ALIAS_NAME [OPTION] [LOGIN]
useradd -D
useradd -D [OPTION]

FLAGS
The following flags are only valid on systems running Safeguard. If these flags are used on a sys-
tem not running Safeguard, a diagnostic message is reported on STDERR and the command exits
with the exit status of 15.

-A ALIAS_NAME
Add user alias with name ALIAS_NAME.

-c COMMENT
Any text string of maximum length of 80 characters. It is generally a short description of
the login, and is currently used as the field for the user’s full name.

-d HOME_DIR
The new user is created using HOME_DIR as the value for the user’s login directory. The
default is to append the LOGIN name (in the form ’groupName.memberName’, specified or
derived) to BASE_DIR and use that as the login directory name. The directory HOME_DIR
need not exist, but is not created if it is missing.

-e EXPIRE_DATE
The date on which the user account will expire. The date is specified in the format
"YYYY-MM-DD". If not specified, useradd uses the default expiry date specified by the
EXPIRE variable in /etc/default/users, or an empty string (no expiry) by default.

-f INACTIVE
The number of days after a password expires until the account is expired. This value ranges
from 0 through 32767. A value of 0 disables the account as soon as the password has
expired. If not specified, useradd uses the default inactivity period specified by the INAC-
TIVE variable in the /etc/default/users file, or none. If none, the PASSWORD-EXPIRY-
GRACE attribute specified in the Safeguard configuration record is used.

-k SKEL_DIR
The skeleton directory, which contains files and directories to be copied in the user’s home
directory, when the home directory is created by useradd. This option is only valid if the
-m option is specified. If this option is not set, the skeleton directory is defined by the SKEL
variable in /etc/default/users or, by default, /etc/skel.

-K KEY=VALUE
Overrides /etc/login.defs defaults (UMASK, PASS_MAX_DAYS and others). Example:
-K UMASK=023 can be used to specify the umask value. You can specify multiple -K
options. For example: -K UMASK=023 -K PASS_MAX_DAYS=90.

-m Create the user’s home directory if it does not exist. The files and directories contained in
the skeleton directory (which can be defined with the -k option) are copied to the home
directory. By default, no home directories are created.

-M Do not create the user’s home directory, even if the system wide setting from /etc/login.defs
(CREATE_HOME) is set to yes.

-p PASSWORD
The login password. By default the value is set to null (no password is required to log on).

The following flags are always valid.

12−72 Hewlett-Packard Company 527188-021

Administrator Commands and Files useradd(8)

-b BASE_DIR
The default base directory for the system if -d HOME_DIR is not specified. BASE_DIR is
concatenated with the account name, that is, ’groupName.memberName’ to define the home
directory. If the -m option is not used, BASE_DIR must exist. If this option is not specified,
useradd uses the base directory specified by the HOME variable in /etc/default/users, or
/home by default. If Safeguard is not running on the system, this option is not applicable.
In these cases, a diagnostic message is reported on STDERR and the command exits with
the exit status of 15.

-D Print or change default useradd configuration. See the "Changing the default values" sub-
section.

-h Display this help and exit.

DESCRIPTION
When invoked without the -D option, the useradd command creates a new user account using the
values specified on the command line and the default values from the system. Depending on
command-line options, the useradd command updates system files and might also create the new
user’s home directory and copy initial files.

You can specify the LOGIN name in a fully qualified form
’groupName.memberName:groupNum,memberNum’ (no white spaces); or a partial name contain-
ing only the memberName. When a partial name is used, the group name and corresponding group
number will be taken from the GROUP variable in the /etc/default/users file. memberNum will be
the first unused number starting from 254 in the descending order, in the range of 254 - 0. member-
Num 255 is reserved for SUPER memberName.

In the useradd -A alias [OPTION] [LOGIN] form, a user alias is added. The LOGIN in this case,
specified or derived as described previously, must be an existing user. If [LOGIN] is not specified,
the USER variable in the /etc/default/users file is used.

Changing the Default Values
When invoked with only the -D option, useradd displays the current default values. When
invoked with -D plus other options, useradd will update the default values for the specified
options. Valid default-changing options are:

-b BASE_DIR
The path prefix for a new user’s home directory. If the -d option is not used when creating a
new account, the user’s name is affixed to the end of BASE_DIR to form the new user’s
home directory name. This option sets the HOME variable in /etc/default/users.

-e EXPIRE_DATE
The date on which the user account will expire. This option sets the EXPIRE variable in
/etc/default/users.

Only valid on systems running Safeguard.

-f INACTIVE
The number of days after a password has expired before the account expires. This option
sets the INACTIVE variable in /etc/default/users.

Only valid on systems running Safeguard.

NOTES
• You can only use partial LOGIN when the Safeguard subsystem is run-

ning.

• The -p option is not recommended because the password will be visible
by users listing the processes.

527188-021 Hewlett-Packard Company 12−73

useradd(8) OSS Shell and Utilities Reference Manual

Only valid on systems running Safeguard

• The password must respect the system password policy.

• The system administrator is responsible for placing the default user files in
the /etc/skel/ directory (or any other skeleton directory specified in
/etc/default/users or on the command line).

• The -D option changes the default values specified in /etc/default/users
file. If this command is executed by someone other than super.super, such
as SOA or other delegates, super.super must verify they have write access
to the /etc/default/users file.

CAVEATS
• Usernames can be up to 17 characters in length.

• Alias names can be 32 characters in length.

• Group number and member number can be 0 - 255.

CONFIGURATION
The following configuration variables in /etc/login.defs change the behavior of this tool:

GROUP
When a partial name is specified as LOGIN, the group name and corresponding group
number will be taken from the GROUP variable in the /etc/default/users file. The GROUP
variable is specified in the format GROUP=groupName,groupNumber. For example,
GROUP=TEST,99.

USER
When a LOGIN name is not specified with the -A option, the LOGIN name is taken from
the USER variable in the /etc/default/users file. The USER variable is specified in the for-
mat USER=group- Name.memberName. For example, USER=TEST.USER1.

CREATE_HOME (boolean)
Indicates if a home directory must be created by default for new users.

Only valid on systems running Safeguard.

PASS_MAX_DAYS (number)
The maximum number of days a password may be used. If the password is older than this, a
password change is forced. The valid value for this is -1 or 1 through 32767. If not
specified, -1 is assumed (which disables the restriction).

Only valid on systems running Safeguard.

UMASK (number)
The file mode creation mask is initialized to this value. If not specified, the mask is initial-
ized to 022. The useradd and newusers commands use this mask to set the mode of the
home directory when they create files.

Only valid on systems running Safeguard.

FILES
/etc/default/users

Default values for account creation.

/etc/skel/
Directory containing default files.

12−74 Hewlett-Packard Company 527188-021

Administrator Commands and Files useradd(8)

/etc/login.defs
Default values for login configuration.

EXIT VALUES
The useradd command exits with the following values:

0 success

1 cannot set password

2 invalid command syntax

3 invalid argument to option

4 specified member (name or number) already in use

6 specified group (name or number) does not exist

7 incorrect LOGIN

9 LOGIN already in use

10 alias already in use

11 LOGIN does not exist

12 cannot create group

13 insufficient privilege

14 cannot create home directory

15 Safeguard is not available, invalid option

RELATED INFORMATION
login.defs(5), users(5), newusers(8), userdel(8), usermod(8).

527188-021 Hewlett-Packard Company 12−75

userdel(8) OSS Shell and Utilities Reference Manual

NAME
userdel - Deletes a user account and removes related files.

SYNOPSIS
userdel [OPTION] LOGIN
userdel -A ALIAS_NAME [OPTION]

FLAGS
-A ALIAS_NAME

Delete user alias with name ALIAS_NAME.

This option is only valid if Safeguard is running on the system. If Safeguard is not running,
a diagnostic message is reported on STDERR and the command exits with the exit status of
15.

-f This option forces the removal of the user account, even if the user is still logged in. It also
forces userdel to remove the user’s home directory, even if another user uses the same
home directory. Warning: This option can leave your system in an inconsistent state.

-h Display help message and exit.

-r Files in the user’s home directory will be removed along with the home directory itself.
Search for files located in other file systems and delete manually.

DESCRIPTION
The userdel command modifies the system account files, deleting all entries that refer to the user
name LOGIN. The named user must exist.

You can specify the LOGIN name in a fully qualified form
’groupName.memberName:groupNum,memberNum’ (no white spaces); or a partial name contain-
ing only the memberName. When a partial name is used, the group name and corresponding group
number will be taken from the GROUP variable in the /etc/default/users file.

In the userdel -A alias [OPTION] form, the specified alias is deleted.

NOTES
Manually check all file systems to ensure that no files remain owned by this user.

FILES
/etc/default/users

Default values for account creation.

EXIT VALUES
The userdel command exits with the following values:

0 success

2 invalid command syntax

6 specified user or alias does not exist

7 specified user is associated with one or more aliases

8 user or alias currently logged in

11 insufficient privilege

12 cannot remove home directory

15 Safeguard is not available, invalid option

RELATED INFORMATION
login.defs(5), users(5), newusers(8), useradd(8), usermod(8).

12−76 Hewlett-Packard Company 527188-021

Administrator Commands and Files usermod(8)

NAME
usermod - Modifies a user account.

SYNOPSIS
usermod [OPTION] LOGIN
usermod -A ALIAS_NAME [OPTION]

FLAGS
The following flags are only valid on systems running Safeguard. If these flags are used on a sys-
tem not running Safeguard, a diagnostic message is reported on STDERR and the command exits
with the exit status of 15.

-A ALIAS_NAME
Modify user alias with name ALIAS_NAME.

-c COMMENT
Any text string of 80 characters maximum length. Generally a short description of the login.
Currently used as the field for the user’s full name.

-d HOME_DIR
The user’s new login directory. If the -m option is given, the contents of the current home
directory are moved to the new home directory, which is created if it does not already exist.

-e EXPIRE_DATE
The date on which the user account will expire. The date is specified in the format
"YYYY-MM-DD".

-f INACTIVE
The number of days after a password expires until the account is expired. This value ranges
from 0 through 32767. A value of 0 disables the account when the password expires, unless
the PASSWORD-EXPIRY-GRACE attribute in the Safeguard configuration record
specifies a different value.

-L Locks or freezes the user account and temporarily suspends the users ability to log on to a
system. You cannot use this option with -p or -U.

-m Move the content of the user’s home directory to the new location. This option is only valid
in combination with the -d option.

-p PASSWORD
The password.

-U Unlock or thaw a user’s account. You cannot use this option with -p or -L.

The following flag is always valid.

-h Display this help and exit.

DESCRIPTION
The usermod command modifies the system account files to reflect the changes that are specified
on the command line.

You can specify the LOGIN name in a fully qualified form
’groupName.memberName:groupNum,memberNum’ (no white spaces); or a partial name contain-
ing only the memberName. When a partial name is used, the group name and corresponding group
number is taken from the GROUP variable in the /etc/default/users file.

In the usermod -A ALIAS_NAME [OPTION] form, a user alias is modified.

NOTES

527188-021 Hewlett-Packard Company 12−77

usermod(8) OSS Shell and Utilities Reference Manual

• The -p option is not recommended because the password will be visible
by users listing the processes. This option is only valid on systems run-
ning Safeguard.

• The password must respect the system password policy.

CAVEATS
• You must verify the named user is not executing any processes when this

command is being executed if the user’s name, or the user’s home direc-
tory is being changed.

• You must change the owner of any crontab files or at jobs manually.

CONFIGURATION
The following configuration variables in /etc/default/users change the behavior of this tool:

GROUP
When a partial name is specified as LOGIN, the group name and corresponding group
number will be taken from the GROUP variable in the /etc/default/users file. The GROUP
variable is specified in the format GROUP=groupName,groupNumber. For example,
GROUP=TEST,99.

FILES:
/etc/default/users

Default values for account creation.

EXIT VALUES
The usermod command exits with the following values:

0 success

1 cannot set password

2 invalid command syntax

3 invalid argument to option

4 LOGIN does not exist

5 alias does not exist

6 specified group (name or number) does not exist

8 user or alias currently logged in

11 insufficient privilege

12 cannot move home directory contents to new location

15 Safeguard is not available, invalid option

RELATED INFORMATION
login.defs(5), users(5), newusers(8), useradd(8), userdel(8).

12−78 Hewlett-Packard Company 527188-021

Permuted Index_____________________________

name server DNSSEC/ dnssec:keygen - Runs the BIND 9 secure domain dnssec-keygen(8)
name server/ dnssec:signzone - Runs the BIND 9 secure domain dnssec-signzone(8)
 resolv.conf: Describes BIND 4 Domain Name System resolver/ resolv.conf(4)

lookup utility dig: BIND 9 Domain Name System (DNS) server dig(8)
 nsupdate: Starts the secure BIND 9 dynamic domain name system/ dnssec_nsupdate(8)

(DNS)/ /Starts the nonsecure BIND 9 dynamic domain name system nsupdate(8)
 named: Starts the secure BIND 9 Internet domain name server dnssec_named(8)

 rndc: Starts the secure BIND 9 Internet domain name server/ dnssec_rndc(8)
 named: Starts the nonsecure BIND 9 Internet domain name server named(8)

 rndc: Starts the nonsecure BIND 9 Internet domain name server/ rndc(8)
 lwresd: Starts the secure BIND 9 lightweight resolver demon dnssec_lwresd(8)

 lwresd: Starts the nonsecure BIND 9 lightweight resolver demon lwresd(8)
 dnssec:keygen - Runs the BIND 9 secure domain name server/ dnssec-keygen(8)

 dnssec:signzone - Runs the BIND 9 secure domain name server/ dnssec-signzone(8)
 touch: Updates file access and modification times touch(1)

files getacl: Lists access control lists (ACLs) for getacl(1)
files setacl: Modifies access control lists (ACLs) for setacl(1)

 usermod: Modifies a user account. .. usermod(8)
files. userdel: Deletes a user account and removes related .. userdel(8)

 times: Prints accumulated running times ... times(1)
 Lists access control lists (ACLs) for files getacl: ... getacl(1)

 Modifies access control lists (ACLs) for files setacl: ... setacl(1)
DEFINEs for the current OSS/ add_define: Creates one or more add_define(1)
 the hosts using IPv6 network addresses ipnodes: Defines ... ipnodes(4)

are located hash: Affects memory of where utilities hash(1)
 alias: Defines and lists aliases alias(1)

 or updates default new user or alias information. /or alias, .. useradd(8)
 useradd: Creates a new user or alias, or updates default new/ useradd(8)

 alias: Defines and lists aliases ... alias(1)
 unalias: Removes aliases ... unalias(1)

(not supported in OSS) telnet: Allows login to a remote host telnet(1)
used by other commands export: Allows values of variables to be export(1)
 Generates a C language lexical analyzer flex: ... flex(1)
 Generates a C language lexical analyzer lex: .. lex(1)

 patch: Applies changes to files .. patch(1)
by keyword apropos: Locates reference pages apropos(1)

 /whatis database file used by the apropos, man, and whatis commands merge_whatis(8)
files and libraries ar: Creates and maintains archive ar(1)

 Performs integer arithmetic with arbitrary precision dc: .. dc(1)
language processor bc: Arbitrary-precision arithmetic bc(1)

 /files from a pax (ustar) format archive file and copies them to/ pinstall(1)
and/ /(reads), writes, and lists archive files, and copies files .. pax(1)

 ar: Creates and maintains archive files and libraries .. ar(1)
 /Copies the contents of pax archive files from the Guardian/ copyoss(8)

 cpio: Copies files to and from archive storage ... cpio(1)
 xargs: Constructs argument lists and runs commands xargs(1)

 command: Treats command arguments as a simple command command(1)
 eval: Executes arguments as commands ... eval(1)
 exec: Executes arguments as commands ... exec(1)
 expr: Evaluates arguments as expressions .. expr(1)

 echo: Writes arguments to standard output echo(1)
 let: Evaluates arithmetic expressions .. let(1)

 bc: Arbitrary-precision arithmetic language processor bc(1)

527188-021 Hewlett-Packard Company Pindex−1

OSS Shell and Utilities Reference Manual

precision dc: Performs integer arithmetic with arbitrary ... dc(1)
 /Describes queues for the at, batch, and cron commands queuedefs(4)

user-specified later time at: Runs commands at a .. at(1)
waiting to be run atq: Prints the queue of jobs ... atq(1)

at command atrm: Removes jobs queued by the atrm(1)
 DEFINE attributes in the working attribute set /Sets values for ... set_define(1)
 run: Runs a process with specific attributes ... run(1)

parameters typeset: Sets attributes and values for shell typeset(1)
DEFINEs info_define: Displays attributes and values of existing info_define(1)

attribute/ /Sets values for DEFINE attributes in the working ... set_define(1)
 Displays the values of DEFINE attributes show_define: .. show_define(1)

 reset_define: Restores a DEFINE’s attributes to their initial/ ... reset_define(1)
patterns in files awk: Manipulates text and matches awk(1)

 Causes processes to run in the background bg: ... bg(1)
 banner: Creates a large banner ... banner(1)

 banner: Creates a large banner banner(1)
of pathnames basename: Returns specified parts basename(1)

 /Describes queues for the at, batch, and cron commands ... queuedefs(4)
 Updates and creates new users in batch. newusers: .. newusers(8)

system-determined later time batch: Runs commands at a .. batch(1)
arithmetic language processor bc: Arbitrary-precision .. bc(1)

 head: Displays the beginning of a file .. head(1)
the background bg: Causes processes to run in bg(1)

 uudecode: Decodes a binary file ... uudecode(1)
 uuencode: Encodes a binary file ... uuencode(1)

 Finds printable strings in binary files strings: ... strings(1)
resolver/ resolv.conf: Describes BIND 4 Domain Name System resolv.conf(4)

server lookup utility dig: BIND 9 Domain Name System (DNS) dig(8)
 nsupdate: Starts the secure BIND 9 dynamic domain name system/ dnssec_nsupdate(8)

 nsupdate: Starts the nonsecure BIND 9 dynamic domain name system/ nsupdate(8)
server named: Starts the secure BIND 9 Internet domain name dnssec_named(8)

server/ rndc: Starts the secure BIND 9 Internet domain name dnssec_rndc(8)
 named: Starts the nonsecure BIND 9 Internet domain name/ named(8)

 rndc: Starts the nonsecure BIND 9 Internet domain name/ rndc(8)
 lwresd: Starts the secure BIND 9 lightweight resolver demon dnssec_lwresd(8)

 lwresd: Starts the nonsecure BIND 9 lightweight resolver demon lwresd(8)
DNSSEC/ dnssec:keygen - Runs the BIND 9 secure domain name server dnssec-keygen(8)

 dnssec:signzone - Runs the BIND 9 secure domain name server/ dnssec-signzone(8)
 sum: Displays the checksum and block count of a file ... sum(1)

until, or select loop break: Exits from for, while, ... break(1)
 fold: Breaks lines in a file .. fold(1)

foreground fg: Brings processes to the .. fg(1)
 cksum: Displays the checksum and byte count of a file ... cksum(1)

 lines, words, characters, and bytes wc: Counts ... wc(1)
native compilers c89: Compiles C and C++ programs using the c89(1)
 c99: Compiles C99-compliant C and C++ programs using the/ c99(1)

 flex: Generates a C language lexical analyzer .. flex(1)
 lex: Generates a C language lexical analyzer .. lex(1)

compilers c89: Compiles C and C++ programs using the native c89(1)
 c99: Compiles C99-compliant C and C++ programs using the TNS/E/ c99(1)

using the native compilers c89: Compiles C and C++ programs c89(1)
C++ programs using the TNS/E/ c99: Compiles C99-compliant C and c99(1)
using the TNS/E/ c99: Compiles C99-compliant C and C++ programs c99(1)

 cal: Displays a calendar .. cal(1)
 cal: Displays a calendar .. cal(1)

 or changes Remote Procedure Call (RPC) information /Reports rpcinfo(8)
 TCP/IP ports to Remote Procedure Call (RPC) program numbers /Maps portmap(8)

the line printer spooling queue cancel: Removes job requests from cancel(1)
files cat: Concatenates or displays cat(1)

 Displays all or part of a message catalog dspcat: .. dspcat(1)
 Creates and modifies a message catalog gencat: .. gencat(1)

 /Writes a message from a message catalog to standard output .. dspmsg(1)
 locale: Contains one or more categories that describe a locale locale(4)

background bg: Causes processes to run in the bg(1)
 exit: Causes the shell to exit ... exit(1)

Pindex−2 Hewlett-Packard Company 527188-021

Permuted Index

 cd: Changes the current directory cd(1)
 user ID temporarily and changes password su: Substitutes su(1)

file mode settings chmod: Changes permissions and other chmod(1)
(RPC)/ rpcinfo: Reports or changes Remote Procedure Call rpcinfo(8)

 cd: Changes the current directory cd(1)
file or directory chgrp: Changes the group ownership of a chgrp(1)

directories chown: Changes the owner of files or chown(1)
new group newgrp: Changes the shell process to a newgrp(1)

 patch: Applies changes to files ... patch(1)
 Defines character symbols as character encodings charmap: charmap(4)

encodings charmap: Defines character symbols as character charmap(4)
 stty: Sets terminal characteristics .. stty(1)

 expand: Replace tab or space characters ... expand(1)
 tr: Translates characters ... tr(1)

 unexpand: Replace tab or space characters ... unexpand(1)
 wc: Counts lines, words, characters, and bytes ... wc(1)
 iconv: Converts encoded characters to another code set iconv(1)

symbols as character encodings charmap: Defines character ... charmap(4)
 pathchk: Checks pathnames ... pathchk(1)

file sum: Displays the checksum and block count of a sum(1)
 cksum: Displays the checksum and byte count of a file cksum(1)

ownership of a file or directory chgrp: Changes the group ... chgrp(1)
other file mode settings chmod: Changes permissions and chmod(1)

or directories chown: Changes the owner of files chown(1)
byte count of a file cksum: Displays the checksum and cksum(1)

 clear: Clears terminal screen .. clear(1)
 clear: Clears terminal screen ... clear(1)

 cron: Runs the system clock daemon ... cron(8)
 cmp: Compares two files ... cmp(1)

programs cobol: Compiles COBOL85 TNS cobol(1)
 ecobol: Compiles TNS/E native COBOL85 programs ... ecobol(1)

 nmcobol: Compiles TNS/R native COBOL85 programs ... nmcobol(1)
 cobol: Compiles COBOL85 TNS programs ... cobol(1)

 encoded characters to another code set iconv: Converts .. iconv(1)
 utility for position-independent code /the TNS/E native linker eld(1)
 utility for position-independent code /the TNS/R native linker ld(1)

 genxlt: Generates code-set translation table .. genxlt(1)
 comm: Compares two sorted files comm(1)

 time: Times the execution of a command .. time(1)
command command: Treats command arguments as a simple command(1)

 nice: Runs a command at a different priority nice(1)
 Removes jobs queued by the at command atrm: ... atrm(1)

 command arguments as a simple command command: Treats ... command(1)
 whence: Interprets command names .. whence(1)

 getopts: Parses command options .. getopts(1)
 rsh: Executes the specified command remotely .. rsh(1)

as a simple command command: Treats command arguments command(1)
 files compressed by the pack command unpack: Expands ... unpack(1)
 eval: Executes arguments as commands .. eval(1)
 exec: Executes arguments as commands .. exec(1)
 fc: Lists, edits, or reexecutes commands .. fc(1)

later time batch: Runs commands at a system-determined batch(1)
later time at: Runs commands at a user-specified at(1)

 by the apropos, man, and whatis commands /database file used merge_whatis(8)
 for the at, batch, and cron commands /Describes queues queuedefs(4)

 of variables to be used by other commands export: Allows values export(1)
 whatis: Describes a command’s function .. whatis(1)

 Lists previously executed commands history: .. history(1)
 crontab: Submits a schedule of commands to cron ... crontab(1)

 Returns type and location of commands type: .. type(1)
 argument lists and runs commands xargs: Constructs xargs(1)

 ipcs: Reports interprocess communication (IPC) facilities/ ipcs(1)
 diff: Compares text files .. diff(1)

 dircmp: Compares two directories ... dircmp(1)
 cmp: Compares two files .. cmp(1)

527188-021 Hewlett-Packard Company Pindex−3

OSS Shell and Utilities Reference Manual

 comm: Compares two sorted files ... comm(1)
 programs using the TNS/E native compilers /C and C++ ... c99(1)

 and C++ programs using the native compilers c89: Compiles C .. c89(1)
the native compilers c89: Compiles C and C++ programs using c89(1)

programs using the TNS/E/ c99: Compiles C99-compliant C and C++ c99(1)
 cobol: Compiles COBOL85 TNS programs cobol(1)

programs ecobol: Compiles TNS/E native COBOL85 ecobol(1)
programs nmcobol: Compiles TNS/R native COBOL85 nmcobol(1)

decompresses data compress: Compresses or .. compress(1)
 unpack: Expands files compressed by the pack command unpack(1)
 uncompress: Expands compressed data ... uncompress(1)

 zcat: Expands compressed data ... zcat(1)
 pack: Compresses files .. pack(1)

 compress: Compresses or decompresses data compress(1)
 cat: Concatenates or displays files cat(1)

 test: Evaluates conditional expressions .. test(1)
 4 Domain Name System resolver configuration file /BIND ... resolv.conf(4)

 getconf: Displays system configuration variable values getconf(1)
 ftp server: Services FTP connection requests ... ftpserver(7)

runs commands xargs: Constructs argument lists and xargs(1)
Internet services services: Contains information about .. services(4)

hosts in the network hosts: Contains information about the hosts(4)
 networks: Contains network name information networks(4)

that describe a locale locale: Contains one or more categories locale(4)
 Determines file type from file content file: .. file(1)

standard output/ od: Writes the contents of a file to the .. od(1)
from the/ copyoss: Copies the contents of pax archive files ... copyoss(8)

 csplit: Splits files by context .. csplit(1)
until, or select loop continue: Resumes a for, while, continue(1)

 getacl: Lists access control lists (ACLs) for files ... getacl(1)
 setacl: Modifies access control lists (ACLs) for files ... setacl(1)

 9 Internet domain name server control utility /nonsecure BIND rndc(8)
 9 Internet domain name server control utility /the secure BIND dnssec_rndc(8)

another code set iconv: Converts encoded characters to iconv(1)
 cp: Copies files ... cp(1)

 /and lists archive files, and copies files and directory/ ... pax(1)
storage cpio: Copies files to and from archive cpio(1)

 /from the standard input file and copies it to standard output file line(1)
archive files from the/ copyoss: Copies the contents of pax .. copyoss(8)
 (ustar) format archive file and copies them to the OSS file/ /pax pinstall(1)

 tee: Displays program output and copies to a file .. tee(1)
pax archive files from the/ copyoss: Copies the contents of copyoss(8)

 Displays the checksum and byte count of a file cksum: ... cksum(1)
 Displays the checksum and block count of a file sum: ... sum(1)

and bytes wc: Counts lines, words, characters, wc(1)
 cp: Copies files ... cp(1)

archive storage cpio: Copies files to and from cpio(1)
 banner: Creates a large banner ... banner(1)

updates default new/ useradd: Creates a new user or alias, or useradd(8)
object file (loadfile) from/ nld: Creates a non-PIC executable nld(1)

files and libraries ar: Creates and maintains archive ar(1)
catalog gencat: Creates and modifies a message gencat(1)

database file used/ merge_whatis: Creates and updates the whatis merge_whatis(8)
 newusers: Updates and creates new users in batch. .. newusers(8)

the current OSS/ add_define: Creates one or more DEFINEs for add_define(1)
 queues for the at, batch, and cron commands /Describes .. queuedefs(4)

 Submits a schedule of commands to cron crontab: ... crontab(1)
daemon cron: Runs the system clock ... cron(8)

commands to cron crontab: Submits a schedule of crontab(1)
 csplit: Splits files by context .. csplit(1)

 cd: Changes the current directory .. cd(1)
 pwd: Displays current directory pathname ... pwd(1)

 one or more DEFINEs for the current OSS shell /Creates ... add_define(1)
 one or more DEFINEs from the current OSS shell /Deletes ... del_define(1)

 who: Identifies users currently logged in .. who(1)

Pindex−4 Hewlett-Packard Company 527188-021

Permuted Index

each line of a file cut: Displays selected parts from cut(1)
 cron: Runs the system clock daemon ... cron(8)

 netrc: file for ftp remote login data ... netrc(4)
 uncompress: Expands compressed data ... uncompress(1)

 zcat: Expands compressed data ... zcat(1)
 Compresses or decompresses data compress: ... compress(1)

 identifiers and deallocates their data structures /or shared memory ipcrm(1)
 resulting message-catalog source data to the gencat utility /the runcat(1)

 /Creates and updates the whatis database file used by the/ .. merge_whatis(8)
 date: Display the date and time .. date(1)

 date: Display the date and time date(1)
with arbitrary precision dc: Performs integer arithmetic dc(1)

 /or shared memory identifiers and deallocates their data structures ipcrm(1)
 a process in the Visual Inspect debugger runv: Runs ... runv(1)

 uudecode: Decodes a binary file ... uudecode(1)
 compress: Compresses or decompresses data ... compress(1)

 /a new user or alias, or updates default new user or alias/ .. useradd(8)
 set_define: Sets values for DEFINE attributes in the working/ set_define(1)

 Displays the values of DEFINE attributes show_define: show_define(1)
 alias: Defines and lists aliases .. alias(1)

initial/ reset_define: Restores a DEFINE’s attributes to their ... reset_define(1)
character encodings charmap: Defines character symbols as .. charmap(4)

 add_define: Creates one or more DEFINEs for the current OSS shell add_define(1)
 del_define: Deletes one or more DEFINEs from the current OSS/ del_define(1)
 attributes and values of existing DEFINEs info_define: Displays info_define(1)

network addresses ipnodes: Defines the hosts using IPv6 ... ipnodes(4)
used on the local/ protocols: Defines the Internet protocols protocols(4)

 environment variable or function definitions unset: Removes .. unset(1)
DEFINEs from the current OSS/ del_define: Deletes one or more del_define(1)

removes related files. userdel: Deletes a user account and .. userdel(8)
the current OSS/ del_define: Deletes one or more DEFINEs from del_define(1)

 BIND 9 lightweight resolver demon lwresd: Starts the secure dnssec_lwresd(8)
 rshd: Starts the remote shell (demon) server process ... rshd(8)

 BIND 9 lightweight resolver demon /Starts the nonsecure .. lwresd(8)
 make: Maintains program dependencies .. make(1)

 one or more categories that describe a locale /Contains .. locale(4)
 whatis: Describes a command’s function whatis(1)

System resolver/ resolv.conf: Describes BIND 4 Domain Name resolv.conf(4)
for trusted remote/ .rhosts: Describes individual user filesrhosts(4)

remote hosts and/ hosts.equiv: Describes node file for trusted hosts.equiv(4)
batch, and cron/ queuedefs: Describes queues for the at, .. queuedefs(4)

 ksh: Describes the OSS shell .. ksh(1)
 sh: Describes the OSS shell .. sh(1)

content file: Determines file type from file file(1)
 tty: Returns pathname of terminal device ... tty(1)

filesets df: Displays statistics of .. df(1)
 diff: Compares text files .. diff(1)

 nice: Runs a command at a different priority .. nice(1)
(DNS) server lookup utility dig: BIND 9 Domain Name System dig(8)

 dircmp: Compares two directories dircmp(1)
 dircmp: Compares two directories ... dircmp(1)

 mv: Moves files and directories ... mv(1)
 rm: Removes (unlinks) files or directories ... rm(1)

 Changes the owner of files or directories chown: .. chown(1)
 cd: Changes the current directory ... cd(1)

 mkdir: Makes a directory ... mkdir(1)
 rmdir: Removes a directory ... rmdir(1)

 the group ownership of a file or directory chgrp: Changes ... chgrp(1)
 files, and copies files and directory hierarchies /archive pax(1)

 pwd: Displays current directory pathname .. pwd(1)
of pathnames dirname: Returns specified parts dirname(1)

 du: Displays a summary of disk usage ... du(1)
 date: Display the date and time ... date(1)

 cal: Displays a calendar ... cal(1)
a time more: Displays a file one screenful at more(1)

527188-021 Hewlett-Packard Company Pindex−5

OSS Shell and Utilities Reference Manual

 du: Displays a summary of disk usage du(1)
catalog dspcat: Displays all or part of a message dspcat(1)

existing DEFINEs info_define: Displays attributes and values of info_define(1)
pathname pwd: Displays current directory .. pwd(1)

executable file getfilepriv: Displays file privileges for an getfilepriv(1)
 cat: Concatenates or displays files ... cat(1)

operating system uname: Displays information about the uname(1)
native object/ enoft: Reads and displays information from TNS/E enoft(1)
native object/ noft: Reads and displays information from TNS/R noft(1)
job status information lpstat: Displays line printer and print lpstat(1)

variables env: Displays or sets environment env(1)
 ps: Displays process status ... ps(1)

copies to a file tee: Displays program output and tee(1)
information man: Displays reference page .. man(1)
line of a file cut: Displays selected parts from each cut(1)

 df: Displays statistics of filesets ... df(1)
variable values getconf: Displays system configuration getconf(1)

 head: Displays the beginning of a file head(1)
count of a file sum: Displays the checksum and block sum(1)

count of a file cksum: Displays the checksum and byte cksum(1)
filename for an OSS file gname: Displays the Guardian environment gname(1)

linkfile, loadfile, or other/ nm: Displays the name list of a .. nm(1)
Guardian file pname: Displays the OSS pathname of a pname(1)

effective user ID whoami: Displays the user name for the whoami(1)
identity id: Displays the user’s system .. id(1)

attributes show_define: Displays the values of DEFINE show_define(1)
 logname: Displays user login name .. logname(1)

program and object files vproc: Displays version information for vproc(1)
 dig: BIND 9 Domain Name System (DNS) server lookup utility .. dig(8)

 BIND 9 dynamic domain name system (DNS) update utility /nonsecure nsupdate(8)
 BIND 9 dynamic domain name system (DNS) update utility /the secure dnssec_nsupdate(8)

 BIND 9 secure domain name server DNSSEC key generation tool /the dnssec-keygen(8)
 BIND 9 secure domain name server DNSSEC zone signing tool /the dnssec-signzone(8)

secure domain name server DNSSEC/ dnssec:keygen - Runs the BIND 9 dnssec-keygen(8)
9 secure domain name server/ dnssec:signzone - Runs the BIND dnssec-signzone(8)

 /the nonsecure BIND 9 Internet domain name server control/ .. rndc(8)
 Starts the secure BIND 9 Internet domain name server control/ rndc: dnssec_rndc(8)

 /- Runs the BIND 9 secure domain name server DNSSEC key/ dnssec-keygen(8)
 /- Runs the BIND 9 secure domain name server DNSSEC zone/ dnssec-signzone(8)

 Starts the secure BIND 9 Internet domain name server named: .. dnssec_named(8)
 the nonsecure BIND 9 Internet domain name server named: Starts named(8)

lookup utility dig: BIND 9 Domain Name System (DNS) server dig(8)
 /Starts the secure BIND 9 dynamic domain name system (DNS) update/ dnssec_nsupdate(8)

 /the nonsecure BIND 9 dynamic domain name system (DNS) update/ nsupdate(8)
 resolv.conf: Describes BIND 4 Domain Name System resolver/ resolv.conf(4)

message catalog dspcat: Displays all or part of a dspcat(1)
message catalog to standard/ dspmsg: Writes a message from a dspmsg(1)

usage du: Displays a summary of disk du(1)
update/ /Starts the secure BIND 9 dynamic domain name system (DNS) dnssec_nsupdate(8)

 /Starts the nonsecure BIND 9 dynamic domain name system (DNS)/ nsupdate(8)
standard output echo: Writes arguments to .. echo(1)

COBOL85 programs ecobol: Compiles TNS/E native ecobol(1)
 ed: Edits a file line by line .. ed(1)

 sed: Provides a stream line editor ... sed(1)
 ed: Edits a file line by line .. ed(1)
 vi: Edits files .. vi(1)

interactively ex: Edits lines in a file ... ex(1)
 fc: Lists, edits, or reexecutes commands fc(1)

 Displays the user name for the effective user ID whoami: .. whoami(1)
pattern that is a full regular/ egrep: Searches a file for a .. egrep(1)

utility for position-independent/ eld: Runs the TNS/E native linker eld(1)
code set iconv: Converts encoded characters to another iconv(1)

 uuencode: Encodes a binary file ... uuencode(1)
 character symbols as character encodings charmap: Defines .. charmap(4)

information from TNS/E native/ enoft: Reads and displays ... enoft(1)

Pindex−6 Hewlett-Packard Company 527188-021

Permuted Index

 logger: Makes entries in the system log ... logger(1)
variables env: Displays or sets environment env(1)

 Guardian environment from the OSS environment /a process in the gtacl(1)
 OSS environment from the Guardian environment /a process in the osh(1)

 gname: Displays the Guardian environment filename for an OSS/ gname(1)
 osh: Runs a process in the OSS environment from the Guardian/ osh(1)
 Runs a process in the Guardian environment from the OSS/ gtacl: gtacl(1)
 archive files from the Guardian environment to the OSS file/ /pax copyoss(8)

definitions unset: Removes environment variable or function unset(1)
 env: Displays or sets environment variables ... env(1)

only readonly: Sets environment variables as read readonly(1)
commands eval: Executes arguments as ... eval(1)

expressions expr: Evaluates arguments as ... expr(1)
 let: Evaluates arithmetic expressions let(1)

 test: Evaluates conditional expressions test(1)
interactively ex: Edits lines in a file ... ex(1)

commands exec: Executes arguments as .. exec(1)
 Displays file privileges for an executable file getfilepriv: .. getfilepriv(1)
 file privileges for one or more executable files /Sets .. setfilepriv(1)
 information from loadfiles or executable files /unnecessary strip(1)

from one/ nld: Creates a non-PIC executable object file (loadfile) nld(1)
 history: Lists previously executed commands .. history(1)

 eval: Executes arguments as commands eval(1)
 exec: Executes arguments as commands exec(1)

remotely rsh: Executes the specified command rsh(1)
 sleep: Suspends execution for a specified time sleep(1)
 time: Times the execution of a command ... time(1)

 rexecd: Starts the remote execution server ... rexecd(8)
 Displays attributes and values of existing DEFINEs info_define: info_define(1)

 exit: Causes the shell to exit .. exit(1)
 exit: Causes the shell to exit ... exit(1)

 false: Returns a standard exit value .. false(1)
 true: Returns a standard exit value .. true(1)

select loop break: Exits from for, while, until, or break(1)
characters expand: Replace tab or space expand(1)

 uncompress: Expands compressed data ... uncompress(1)
 zcat: Expands compressed data ... zcat(1)

pack command unpack: Expands files compressed by the unpack(1)
variables to be used by other/ export: Allows values of ... export(1)

expressions expr: Evaluates arguments as expr(1)
 find: Finds files matching an expression .. find(1)
 a pattern that is a full regular expression /Searches a file for egrep(1)
 expr: Evaluates arguments as expressions ... expr(1)

 let: Evaluates arithmetic expressions ... let(1)
 test: Evaluates conditional expressions ... test(1)

format archive file/ pinstall: Extracts files from a pax (ustar) pinstall(1)
lists archive files, and/ pax: Extracts (reads), writes, and .. pax(1)

 interprocess communication (IPC) facilities status ipcs: Reports ipcs(1)
value false: Returns a standard exit false(1)

commands fc: Lists, edits, or reexecutes .. fc(1)
foreground fg: Brings processes to the .. fg(1)

fixed-string pattern fgrep: Searches a file for a ... fgrep(1)
 mkfifo: Makes FIFO special files ... mkfifo(1)

 fold: Breaks lines in a file ... fold(1)
 head: Displays the beginning of a file ... head(1)

 nl: Numbers lines in a file ... nl(1)
 uudecode: Decodes a binary file ... uudecode(1)
 uuencode: Encodes a binary file ... uuencode(1)

times touch: Updates file access and modification .. touch(1)
 /one line from the standard input file and copies it to standard/ .. line(1)

 /from a pax (ustar) format archive file and copies them to the OSS/ pinstall(1)
 System resolver configuration file /BIND 4 Domain Name ... resolv.conf(4)

 the checksum and byte count of a file cksum: Displays ... cksum(1)
 file: Determines file type from file content .. file(1)

 parts from each line of a file cut: Displays selected .. cut(1)

527188-021 Hewlett-Packard Company Pindex−7

OSS Shell and Utilities Reference Manual

file content file: Determines file type from file(1)
 environment filename for an OSS file /Displays the Guardian .. gname(1)

 fgrep: Searches a file for a fixed-string pattern ... fgrep(1)
 grep: Search a file for a pattern .. grep(1)

regular/ egrep: Searches a file for a pattern that is a full .. egrep(1)
 netrc: file for ftp remote login data ... netrc(4)

 hosts.equiv: Describes node file for trusted remote hosts and/ hosts.equiv(4)
 tail: Writes a file from a specified point ... tail(1)

 file privileges for an executable file getfilepriv: Displays ... getfilepriv(1)
 ex: Edits lines in a file interactively ... ex(1)

size split: Splits a file into pieces of a specified .. split(1)
 ed: Edits a file line by line ... ed(1)

 /a non-PIC executable object file (loadfile) from one or more/ nld(1)
 Preprocesses a message source file mkcatdefs: ... mkcatdefs(1)
 Changes permissions and other file mode settings chmod: .. chmod(1)

 loadfile, or other object file /name list of a linkfile, ... nm(1)
 of a file to the standard output file od: Writes the contents .. od(1)

 more: Displays a file one screenful at a time .. more(1)
 Changes the group ownership of a file or directory chgrp: .. chgrp(1)

 the OSS pathname of a Guardian file pname: Displays ... pname(1)
file getfilepriv: Displays file privileges for an executable getfilepriv(1)

executable/ setfilepriv: Sets file privileges for one or more setfilepriv(1)
system files initfilepriv: Sets file privileges for selected ... initfilepriv(1)

 one line from the standard input file read: Reads .. read(1)
 the checksum and block count of a file sum: Displays ... sum(1)

 /files between a local OSS file system and a remote host .. ftp(1)
 Guardian environment to the OSS file system /files from the ... copyoss(8)

 file and copies them to the OSS file system /format archive ... pinstall(1)
 program output and copies to a file tee: Displays ... tee(1)
 and copies it to standard output file /the standard input file ... line(1)

 pr: Writes a file to standard output ... pr(1)
 od: Writes the contents of a file to the standard output file od(1)

 file: Determines file type from file content .. file(1)
 or lists repeated lines in a file uniq: Removes .. uniq(1)

 /and updates the whatis database file used by the apropos, man,/ merge_whatis(8)
 umask: Sets the user file-creation mask. ... umask(1)

 Displays the Guardian environment filename for an OSS file gname: gname(1)
 cat: Concatenates or displays files .. cat(1)

 cmp: Compares two files .. cmp(1)
 comm: Compares two sorted files .. comm(1)

 cp: Copies files .. cp(1)
 diff: Compares text files .. diff(1)

 join: Joins the lines of two files .. join(1)
 ln: Links files .. ln(1)

 mkfifo: Makes FIFO special files .. mkfifo(1)
 pack: Compresses files .. pack(1)

 patch: Applies changes to files .. patch(1)
 sort: Sorts or merges files .. sort(1)

 vi: Edits files .. vi(1)
 /writes, and lists archive files, and copies files and/ ... pax(1)

 mv: Moves files and directories ... mv(1)
 /lists archive files, and copies files and directory hierarchies pax(1)

 from TNS/E native object files /and displays information enoft(1)
 from TNS/R native object files /and displays information noft(1)

 ar: Creates and maintains archive files and libraries ... ar(1)
 text and matches patterns in files awk: Manipulates .. awk(1)
system and a/ ftp: Transfers files between a local OSS file ftp(1)

 csplit: Splits files by context ... csplit(1)
command unpack: Expands files compressed by the pack .. unpack(1)

and/ /Describes individual user files for trusted remote hostsrhosts(4)
archive file/ pinstall: Extracts files from a pax (ustar) format pinstall(1)

 the contents of pax archive files from the Guardian/ /Copies copyoss(8)
 access control lists (ACLs) for files getacl: Lists ... getacl(1)
 privileges for selected system files initfilepriv: Sets file .. initfilepriv(1)

 or more relinkable non-PIC object files (linkfiles) /from one .. nld(1)

Pindex−8 Hewlett-Packard Company 527188-021

Permuted Index

 and generates statistics for files ls: Lists ... ls(1)
 find: Finds files matching an expression ... find(1)

 text and matches patterns in files nawk: Manipulates ... nawk(1)
 chown: Changes the owner of files or directories .. chown(1)

 rm: Removes (unlinks) files or directories .. rm(1)
 Joins lines from one or more files paste: .. paste(1)

 Moves or removes obsolete OSS files Pcleanup: ... Pcleanup(8)
 access control lists (ACLs) for files setacl: Modifies ... setacl(1)

 for one or more executable files /Sets file privileges ... setfilepriv(1)
 Finds printable strings in binary files strings: ... strings(1)

 Manipulates tape-archive-format files tar: .. tar(1)
 lp: Sends files to a printer .. lp(1)

 cpio: Copies files to and from archive storage cpio(1)
 from loadfiles or executable files /unnecessary information strip(1)

 user account and removes related files. userdel: Deletes a ... userdel(8)
 for program and object files /version information ... vproc(1)

 df: Displays statistics of filesets ... df(1)
expression find: Finds files matching an ... find(1)

expression find: Finds files matching an ... find(1)
files strings: Finds printable strings in binary strings(1)

 fgrep: Searches a file for a fixed-string pattern .. fgrep(1)
lexical analyzer flex: Generates a C language .. flex(1)

 fold: Breaks lines in a file ... fold(1)
 break: Exits from for, while, until, or select loop break(1)

 continue: Resumes a for, while, until, or select loop continue(1)
 fg: Brings processes to the foreground .. fg(1)

 /Extracts files from a pax (ustar) format archive file and copies/ pinstall(1)
 printf: Writes formatted output .. printf(1)

 ftp server: Services FTP connection requests ... ftpserver(7)
 netrc: file for ftp remote login data ... netrc(4)

connection requests ftp server: Services FTP .. ftpserver(7)
local OSS file system and a/ ftp: Transfers files between a .. ftp(1)
 a file for a pattern that is a full regular expression /Searches egrep(1)

 whatis: Describes a command’s function .. whatis(1)
 Removes environment variable or function definitions unset: ... unset(1)

 return: Returns a shell function to its invoking script return(1)
message catalog gencat: Creates and modifies a gencat(1)

 source data to the gencat utility /message-catalog runcat(1)
analyzer flex: Generates a C language lexical flex(1)
analyzer lex: Generates a C language lexical lex(1)

program from input yacc: Generates an LR(1) parsing .. yacc(1)
table genxlt: Generates code-set translation genxlt(1)
 ls: Lists and generates statistics for files ... ls(1)

 domain name server DNSSEC key generation tool /BIND 9 secure dnssec-keygen(8)
translation table genxlt: Generates code-set .. genxlt(1)

lists (ACLs) for files getacl: Lists access control ... getacl(1)
configuration variable values getconf: Displays system .. getconf(1)
privileges for an executable/ getfilepriv: Displays file .. getfilepriv(1)

 getopts: Parses command options getopts(1)
environment filename for an OSS/ gname: Displays the Guardian gname(1)

 grep: Search a file for a pattern grep(1)
 the shell process to a new group newgrp: Changes .. newgrp(1)

directory chgrp: Changes the group ownership of a file or .. chgrp(1)
Guardian environment from the/ gtacl: Runs a process in the .. gtacl(1)

 in the OSS environment from the Guardian environment /a process osh(1)
an OSS file gname: Displays the Guardian environment filename for gname(1)

 gtacl: Runs a process in the Guardian environment from the OSS/ gtacl(1)
 /of pax archive files from the Guardian environment to the OSS/ copyoss(8)

 Displays the OSS pathname of a Guardian file pname: .. pname(1)
 nohup: Runs a utility ignoring hangups .. nohup(1)

utilities are located hash: Affects memory of where hash(1)
file head: Displays the beginning of a head(1)

 and copies files and directory hierarchies /lists archive files, pax(1)
executed commands history: Lists previously ... history(1)

 protocols used on the local host /Defines the Internet ... protocols(4)

527188-021 Hewlett-Packard Company Pindex−9

OSS Shell and Utilities Reference Manual

 OSS file system and a remote host /files between a local .. ftp(1)
 telnet: Allows login to a remote host (not supported in OSS) .. telnet(1)

 node file for trusted remote hosts and users /Describes .. hosts.equiv(4)
 user files for trusted remote hosts and users /individualrhosts(4)

the hosts in the network hosts: Contains information about hosts(4)
 Contains information about the hosts in the network hosts: ... hosts(4)

addresses ipnodes: Defines the hosts using IPv6 network .. ipnodes(4)
for trusted remote hosts and/ hosts.equiv: Describes node file hosts.equiv(4)

characters to another code set iconv: Converts encoded .. iconv(1)
identity id: Displays the user’s system id(1)

password su: Substitutes user ID temporarily and changes .. su(1)
 user name for the effective user ID whoami: Displays the .. whoami(1)

 /identifiers, or shared memory identifiers and deallocates their/ ipcrm(1)
 /Removes message queues, semaphore identifiers, or shared memory/ ipcrm(1)

in who: Identifies users currently logged who(1)
 id: Displays the user’s system identity ... id(1)

 nohup: Runs a utility ignoring hangups ... nohup(1)
remote/ .rhosts: Describes individual user files for trustedrhosts(4)

 inetd: The Internet superserver inetd(8)
and values of existing DEFINEs info_define: Displays attributes info_define(1)

 man: Displays reference page information .. man(1)
 networks: Contains network name information .. networks(4)

services services: Contains information about Internet .. services(4)
 locale: Writes information about locales ... locale(1)

the network hosts: Contains information about the hosts in hosts(4)
system uname: Displays information about the operating uname(1)

object/ vproc: Displays version information for program and .. vproc(1)
 strip: Removes unnecessary information from loadfiles or/ strip(1)

object/ enoft: Reads and displays information from TNS/E native enoft(1)
object/ noft: Reads and displays information from TNS/R native noft(1)
 line printer and print job status information lpstat: Displays .. lpstat(1)
 Remote Procedure Call (RPC) information /Reports or changes rpcinfo(8)

 updates default new user or alias information. /user or alias, or useradd(8)
privileges for selected system/ initfilepriv: Sets file ... initfilepriv(1)
 a DEFINE’s attributes to their initial settings /Restores ... reset_define(1)

 /Reads one line from the standard input file and copies it to/ ... line(1)
 Reads one line from the standard input file read: ... read(1)

 an LR(1) parsing program from input yacc: Generates ... yacc(1)
 Runs a process in the Visual Inspect debugger runv: ... runv(1)

 trap: Provides instructions to a process .. trap(1)
precision dc: Performs integer arithmetic with arbitrary dc(1)
 ex: Edits lines in a file interactively ... ex(1)

 named: Starts the secure BIND 9 Internet domain name server .. dnssec_named(8)
 rndc: Starts the secure BIND 9 Internet domain name server/ dnssec_rndc(8)

 /Starts the nonsecure BIND 9 Internet domain name server .. named(8)
 rndc: Starts the nonsecure BIND 9 Internet domain name server/ rndc(8)

local/ protocols: Defines the Internet protocols used on the protocols(4)
 Contains information about Internet services services: .. services(4)

 inetd: The Internet superserver ... inetd(8)
 whence: Interprets command names ... whence(1)

facilities status ipcs: Reports interprocess communication (IPC) ipcs(1)
pipes the resulting/ runcat: Invokes the mkcatdefs utility and runcat(1)

 Returns a shell function to its invoking script return: .. return(1)
 interprocess communication (IPC) facilities status /Reports ipcs(1)

semaphore identifiers, or shared/ ipcrm: Removes message queues, ipcrm(1)
communication (IPC) facilities/ ipcs: Reports interprocess ... ipcs(1)

IPv6 network addresses ipnodes: Defines the hosts using ipnodes(4)
 ipnodes: Defines the hosts using IPv6 network addresses ... ipnodes(4)

printer spooling/ cancel: Removes job requests from the line ... cancel(1)
 Displays line printer and print job status information lpstat: lpstat(1)

 jobs: Lists processes .. jobs(1)
 atrm: Removes jobs queued by the at command atrm(1)

 atq: Prints the queue of jobs waiting to be run .. atq(1)
files join: Joins the lines of two .. join(1)

files paste: Joins lines from one or more .. paste(1)

Pindex−10 Hewlett-Packard Company 527188-021

Permuted Index

 join: Joins the lines of two files ... join(1)
 secure domain name server DNSSEC key generation tool /the BIND 9 dnssec-keygen(8)

 Locates reference pages by keyword apropos: .. apropos(1)
process kill: Sends a signal to a running kill(1)

 ksh: Describes the OSS shell .. ksh(1)
 flex: Generates a C language lexical analyzer ... flex(1)
 lex: Generates a C language lexical analyzer ... lex(1)

 Arbitrary-precision arithmetic language processor bc: ... bc(1)
 banner: Creates a large banner .. banner(1)

 Runs commands at a user-specified later time at: .. at(1)
 commands at a system-determined later time batch: Runs ... batch(1)

utility for position-independent/ ld: Runs the TNS/R native linker ld(1)
expressions let: Evaluates arithmetic ... let(1)

lexical analyzer lex: Generates a C language ... lex(1)
 flex: Generates a C language lexical analyzer .. flex(1)
 lex: Generates a C language lexical analyzer .. lex(1)

 and maintains archive files and libraries ar: Creates ... ar(1)
 lwresd: Starts the secure BIND 9 lightweight resolver demon .. dnssec_lwresd(8)

 /Starts the nonsecure BIND 9 lightweight resolver demon .. lwresd(8)
 ed: Edits a file line by line .. ed(1)

 ed: Edits a file line by line ... ed(1)
 sed: Provides a stream line editor ... sed(1)

and copies it to/ line: Reads one line from the standard input file line(1)
 read: Reads one line from the standard input file read(1)

 Displays selected parts from each line of a file cut: .. cut(1)
information lpstat: Displays line printer and print job status lpstat(1)

 /Removes job requests from the line printer spooling queue ... cancel(1)
standard input file and copies/ line: Reads one line from the .. line(1)

 paste: Joins lines from one or more files .. paste(1)
 fold: Breaks lines in a file ... fold(1)
 nl: Numbers lines in a file ... nl(1)

 uniq: Removes or lists repeated lines in a file ... uniq(1)
 ex: Edits lines in a file interactively .. ex(1)

 join: Joins the lines of two files ... join(1)
bytes wc: Counts lines, words, characters, and ... wc(1)

 eld: Runs the TNS/E native linker utility for/ .. eld(1)
 ld: Runs the TNS/R native linker utility for/ .. ld(1)

 nm: Displays the name list of a linkfile, loadfile, or other/ ... nm(1)
 relinkable non-PIC object files (linkfiles) /from one or more .. nld(1)

 ln: Links files ... ln(1)
other/ nm: Displays the name list of a linkfile, loadfile, or .. nm(1)

for files getacl: Lists access control lists (ACLs) getacl(1)
 getacl: Lists access control lists (ACLs) for files .. getacl(1)

 setacl: Modifies access control lists (ACLs) for files .. setacl(1)
 alias: Defines and lists aliases ... alias(1)

for files ls: Lists and generates statistics .. ls(1)
 xargs: Constructs argument lists and runs commands ... xargs(1)

 /Extracts (reads), writes, and lists archive files, and copies/ pax(1)
commands fc: Lists, edits, or reexecutes .. fc(1)

commands history: Lists previously executed ... history(1)
 jobs: Lists processes ... jobs(1)

 uniq: Removes or lists repeated lines in a file ... uniq(1)
 ln: Links files ... ln(1)

 /a non-PIC executable object file (loadfile) from one or more/ ... nld(1)
 /the name list of a linkfile, loadfile, or other object file ... nm(1)

 /unnecessary information from loadfiles or executable files .. strip(1)
 Internet protocols used on the local host /Defines the .. protocols(4)
 ftp: Transfers files between a local OSS file system and a/ ... ftp(1)

categories that describe a/ locale: Contains one or more .. locale(4)
 more categories that describe a locale locale: Contains one or locale(4)

locales locale: Writes information about locale(1)
 locale: Writes information about locales ... locale(1)

 memory of where utilities are located hash: Affects .. hash(1)
keyword apropos: Locates reference pages by ... apropos(1)

 type: Returns type and location of commands ... type(1)

527188-021 Hewlett-Packard Company Pindex−11

OSS Shell and Utilities Reference Manual

 Makes entries in the system log logger: ... logger(1)
 who: Identifies users currently logged in ... who(1)

system log logger: Makes entries in the ... logger(1)
 netrc: file for ftp remote login data .. netrc(4)
 logname: Displays user login name .. logname(1)

supported in OSS) telnet: Allows login to a remote host (not .. telnet(1)
 logname: Displays user login name logname(1)

 9 Domain Name System (DNS) server lookup utility dig: BIND .. dig(8)
 from for, while, until, or select loop break: Exits ... break(1)

 a for, while, until, or select loop continue: Resumes ... continue(1)
 lp: Sends files to a printer ... lp(1)

print job status information lpstat: Displays line printer and lpstat(1)
 yacc: Generates an LR(1) parsing program from input yacc(1)

statistics for files ls: Lists and generates ... ls(1)
9 lightweight resolver demon lwresd: Starts the nonsecure BIND lwresd(8)

lightweight resolver demon lwresd: Starts the secure BIND 9 dnssec_lwresd(8)
libraries ar: Creates and maintains archive files and ... ar(1)

 make: Maintains program dependencies make(1)
dependencies make: Maintains program ... make(1)

 mkdir: Makes a directory .. mkdir(1)
 logger: Makes entries in the system log logger(1)
 mkfifo: Makes FIFO special files ... mkfifo(1)

 /file used by the apropos, man, and whatis commands .. merge_whatis(8)
information man: Displays reference page man(1)

files tar: Manipulates tape-archive-format tar(1)
patterns in files awk: Manipulates text and matches awk(1)

patterns in files nawk: Manipulates text and matches nawk(1)
Procedure Call (RPC)/ portmap: Maps TCP/IP ports to Remote portmap(8)

 Sets the user file-creation mask. umask: ... umask(1)
 awk: Manipulates text and matches patterns in files .. awk(1)

 nawk: Manipulates text and matches patterns in files .. nawk(1)
 find: Finds files matching an expression ... find(1)

 print: The shell output mechanism ... print(1)
 semaphore identifiers, or shared memory identifiers and/ /queues, ipcrm(1)

located hash: Affects memory of where utilities are hash(1)
 sort: Sorts or merges files .. sort(1)

the whatis database file used by/ merge_whatis: Creates and updates merge_whatis(8)
 dspcat: Displays all or part of a message catalog ... dspcat(1)
 gencat: Creates and modifies a message catalog ... gencat(1)

 dspmsg: Writes a message from a message catalog to standard/ .. dspmsg(1)
standard output dspmsg: Writes a message from a message catalog to dspmsg(1)

identifiers, or/ ipcrm: Removes message queues, semaphore ... ipcrm(1)
 mkcatdefs: Preprocesses a message source file .. mkcatdefs(1)

 wall: Sends a message to all users ... wall(1)
 /utility and pipes the resulting message-catalog source data to/ runcat(1)

source file mkcatdefs: Preprocesses a message mkcatdefs(1)
resulting/ runcat: Invokes the mkcatdefs utility and pipes the runcat(1)

 mkdir: Makes a directory .. mkdir(1)
 mkfifo: Makes FIFO special files mkfifo(1)

 permissions and other file mode settings chmod: Changes chmod(1)
 touch: Updates file access and modification times ... touch(1)

 gencat: Creates and modifies a message catalog ... gencat(1)
 usermod: Modifies a user account. ... usermod(8)

(ACLs) for files setacl: Modifies access control lists ... setacl(1)
screenful at a time more: Displays a file one .. more(1)

 mv: Moves files and directories ... mv(1)
files Pcleanup: Moves or removes obsolete OSS Pcleanup(8)

 mv: Moves files and directories mv(1)
 logname: Displays user login name ... logname(1)

 whoami: Displays the user name for the effective user ID whoami(1)
 networks: Contains network name information .. networks(4)
loadfile, or/ nm: Displays the name list of a linkfile, .. nm(1)

 /the secure BIND 9 Internet domain name server control utility .. dnssec_rndc(8)
 nonsecure BIND 9 Internet domain name server control utility /the rndc(8)
 /- Runs the BIND 9 secure domain name server DNSSEC key generation/ dnssec-keygen(8)

Pindex−12 Hewlett-Packard Company 527188-021

Permuted Index

 /- Runs the BIND 9 secure domain name server DNSSEC zone signing/ dnssec-signzone(8)
 the secure BIND 9 Internet domain name server named: Starts ... dnssec_named(8)
 nonsecure BIND 9 Internet domain name server named: Starts the named(8)

utility dig: BIND 9 Domain Name System (DNS) server lookup dig(8)
 /the secure BIND 9 dynamic domain name system (DNS) update utility dnssec_nsupdate(8)
 /nonsecure BIND 9 dynamic domain name system (DNS) update utility nsupdate(8)

 /Describes BIND 4 Domain Name System resolver/ ... resolv.conf(4)
9 Internet domain name server named: Starts the nonsecure BIND named(8)

Internet domain name server named: Starts the secure BIND 9 dnssec_named(8)
 whence: Interprets command names .. whence(1)

 ecobol: Compiles TNS/E native COBOL85 programs .. ecobol(1)
 nmcobol: Compiles TNS/R native COBOL85 programs .. nmcobol(1)

 C and C++ programs using the native compilers c89: Compiles c89(1)
 and C++ programs using the TNS/E native compilers /C99-compliant C c99(1)

 eld: Runs the TNS/E native linker utility for/ .. eld(1)
 ld: Runs the TNS/R native linker utility for/ .. ld(1)

 displays information from TNS/E native object files /Reads and enoft(1)
 displays information from TNS/R native object files /Reads and noft(1)

matches patterns in files nawk: Manipulates text and ... nawk(1)
data netrc: file for ftp remote login netrc(4)

 Defines the hosts using IPv6 network addresses ipnodes: ... ipnodes(4)
 about the hosts in the network /Contains information hosts(4)

 networks: Contains network name information ... networks(4)
information networks: Contains network name networks(4)

to a new group newgrp: Changes the shell process newgrp(1)
users in batch. newusers: Updates and creates new newusers(8)

different priority nice: Runs a command at a ... nice(1)
 nl: Numbers lines in a file ... nl(1)

object file (loadfile) from one/ nld: Creates a non-PIC executable nld(1)
linkfile, loadfile, or other/ nm: Displays the name list of a nm(1)

COBOL85 programs nmcobol: Compiles TNS/R native nmcobol(1)
hosts and/ hosts.equiv: Describes node file for trusted remote ... hosts.equiv(4)

information from TNS/R native/ noft: Reads and displays ... noft(1)
hangups nohup: Runs a utility ignoring nohup(1)

(loadfile) from/ nld: Creates a non-PIC executable object file nld(1)
 /from one or more relinkable non-PIC object files (linkfiles) nld(1)

name system/ nsupdate: Starts the nonsecure BIND 9 dynamic domain nsupdate(8)
name server named: Starts the nonsecure BIND 9 Internet domain named(8)

name server/ rndc: Starts the nonsecure BIND 9 Internet domain rndc(8)
resolver/ lwresd: Starts the nonsecure BIND 9 lightweight lwresd(8)

 Allows login to a remote host (not supported in OSS) telnet: telnet(1)
BIND 9 dynamic domain name/ nsupdate: Starts the nonsecure nsupdate(8)

9 dynamic domain name system/ nsupdate: Starts the secure BIND dnssec_nsupdate(8)
 nl: Numbers lines in a file .. nl(1)

 Procedure Call (RPC) program numbers /TCP/IP ports to Remote portmap(8)
 nld: Creates a non-PIC executable object file (loadfile) from one/ nld(1)

 of a linkfile, loadfile, or other object file /the name list ... nm(1)
 information for program and object files /Displays version vproc(1)

 one or more relinkable non-PIC object files (linkfiles) /from .. nld(1)
 information from TNS/E native object files /Reads and displays enoft(1)
 information from TNS/R native object files /Reads and displays noft(1)

 Pcleanup: Moves or removes obsolete OSS files .. Pcleanup(8)
to the standard output file od: Writes the contents of a file od(1)

 Displays information about the operating system uname: .. uname(1)
 getopts: Parses command options .. getopts(1)

 set: Sets shell options and positional parameters set(1)
environment from the Guardian/ osh: Runs a process in the OSS osh(1)

 the Guardian environment from the OSS environment /a process in gtacl(1)
 osh: Runs a process in the OSS environment from the Guardian/ osh(1)

 environment filename for an OSS file /Displays the Guardian gname(1)
 /Transfers files between a local OSS file system and a remote host ftp(1)

 the Guardian environment to the OSS file system /files from ... copyoss(8)
 file and copies them to the OSS file system /format archive pinstall(1)

 Moves or removes obsolete OSS files Pcleanup: ... Pcleanup(8)
 pname: Displays the OSS pathname of a Guardian file pname(1)

527188-021 Hewlett-Packard Company Pindex−13

OSS Shell and Utilities Reference Manual

 ksh: Describes the OSS shell .. ksh(1)
 sh: Describes the OSS shell .. sh(1)

 or more DEFINEs for the current OSS shell /Creates one ... add_define(1)
 or more DEFINEs from the current OSS shell /Deletes one ... del_define(1)

 a remote host (not supported in OSS) telnet: Allows login to .. telnet(1)
 pr: Writes a file to standard output .. pr(1)

 printf: Writes formatted output .. printf(1)
 tee: Displays program output and copies to a file ... tee(1)

 Writes arguments to standard output echo: ... echo(1)
 file and copies it to standard output file /the standard input line(1)

 of a file to the standard output file /Writes the contents od(1)
 print: The shell output mechanism ... print(1)

 a message catalog to standard output /Writes a message from dspmsg(1)
 chown: Changes the owner of files or directories .. chown(1)

 chgrp: Changes the group ownership of a file or directory chgrp(1)
 Expands files compressed by the pack command unpack: .. unpack(1)

 pack: Compresses files .. pack(1)
 man: Displays reference page information ... man(1)

 See the Pcleanup(8) reference page pcleanup: .. pcleanup(8)
 apropos: Locates reference pages by keyword .. apropos(1)

 shift: Shifts positional parameters .. shift(1)
 Sets shell options and positional parameters set: ... set(1)

 attributes and values for shell parameters typeset: Sets ... typeset(1)
 getopts: Parses command options ... getopts(1)

 yacc: Generates an LR(1) parsing program from input .. yacc(1)
 dspcat: Displays all or part of a message catalog .. dspcat(1)
 cut: Displays selected parts from each line of a file ... cut(1)

 basename: Returns specified parts of pathnames ... basename(1)
 dirname: Returns specified parts of pathnames ... dirname(1)

 user ID temporarily and changes password su: Substitutes .. su(1)
more files paste: Joins lines from one or paste(1)

 patch: Applies changes to files patch(1)
 pathchk: Checks pathnames ... pathchk(1)

 pwd: Displays current directory pathname .. pwd(1)
 pname: Displays the OSS pathname of a Guardian file .. pname(1)

 tty: Returns pathname of terminal device .. tty(1)
 pathchk: Checks pathnames .. pathchk(1)

 Returns specified parts of pathnames basename: ... basename(1)
 Returns specified parts of pathnames dirname: .. dirname(1)

 grep: Search a file for a pattern ... grep(1)
 a file for a fixed-string pattern fgrep: Searches ... fgrep(1)

 egrep: Searches a file for a pattern that is a full regular/ ... egrep(1)
 awk: Manipulates text and matches patterns in files ... awk(1)

 Manipulates text and matches patterns in files nawk: ... nawk(1)
 copyoss: Copies the contents of pax archive files from the/ .. copyoss(8)

and lists archive files, and/ pax: Extracts (reads), writes, .. pax(1)
 pinstall: Extracts files from a pax (ustar) format archive file/ pinstall(1)

obsolete OSS files Pcleanup: Moves or removes .. Pcleanup(8)
reference page pcleanup: See the Pcleanup(8) pcleanup(8)

 pcleanup: See the Pcleanup(8) reference page ... pcleanup(8)
arbitrary precision dc: Performs integer arithmetic with dc(1)

settings chmod: Changes permissions and other file mode chmod(1)
 split: Splits a file into pieces of a specified size ... split(1)

pax (ustar) format archive file/ pinstall: Extracts files from a .. pinstall(1)
 Invokes the mkcatdefs utility and pipes the resulting/ runcat: ... runcat(1)

of a Guardian file pname: Displays the OSS pathname pname(1)
 Writes a file from a specified point tail: ... tail(1)

Remote Procedure Call (RPC)/ portmap: Maps TCP/IP ports to portmap(8)
(RPC)/ portmap: Maps TCP/IP ports to Remote Procedure Call portmap(8)

 set: Sets shell options and positional parameters .. set(1)
 shift: Shifts positional parameters .. shift(1)

 TNS/E native linker utility for position-independent code /the eld(1)
 TNS/R native linker utility for position-independent code /the ld(1)

output pr: Writes a file to standard ... pr(1)
 integer arithmetic with arbitrary precision dc: Performs .. dc(1)

Pindex−14 Hewlett-Packard Company 527188-021

Permuted Index

file mkcatdefs: Preprocesses a message source mkcatdefs(1)
 history: Lists previously executed commands history(1)

 lpstat: Displays line printer and print job status information .. lpstat(1)
 print: The shell output mechanism print(1)

 strings: Finds printable strings in binary files strings(1)
 lp: Sends files to a printer ... lp(1)

 lpstat: Displays line printer and print job status/ .. lpstat(1)
 job requests from the line printer spooling queue /Removes cancel(1)

 printf: Writes formatted output printf(1)
 times: Prints accumulated running times times(1)

to be run atq: Prints the queue of jobs waiting atq(1)
 Runs a command at a different priority nice: .. nice(1)

 getfilepriv: Displays file privileges for an executable file getfilepriv(1)
 setfilepriv: Sets file privileges for one or more/ ... setfilepriv(1)

files initfilepriv: Sets file privileges for selected system initfilepriv(1)
 /Reports or changes Remote Procedure Call (RPC) information rpcinfo(8)

 /Maps TCP/IP ports to Remote Procedure Call (RPC) program/ portmap(8)
 kill: Sends a signal to a running process .. kill(1)
 trap: Provides instructions to a process .. trap(1)

environment from/ gtacl: Runs a process in the Guardian ... gtacl(1)
from the Guardian/ osh: Runs a process in the OSS environment osh(1)

debugger runv: Runs a process in the Visual Inspect .. runv(1)
 the remote shell (demon) server process rshd: Starts ... rshd(8)

 ps: Displays process status ... ps(1)
 newgrp: Changes the shell process to a new group .. newgrp(1)

 run: Runs a process with specific attributes run(1)
 jobs: Lists processes .. jobs(1)

background bg: Causes processes to run in the ... bg(1)
 fg: Brings processes to the foreground .. fg(1)

 Reports termination status of processes wait: .. wait(1)
 arithmetic language processor /Arbitrary-precision bc(1)

 Displays version information for program and object files vproc: vproc(1)
 make: Maintains program dependencies .. make(1)

 yacc: Generates an LR(1) parsing program from input ... yacc(1)
 to Remote Procedure Call (RPC) program numbers /TCP/IP ports portmap(8)

file tee: Displays program output and copies to a tee(1)
 cobol: Compiles COBOL85 TNS programs ... cobol(1)

 Compiles TNS/E native COBOL85 programs ecobol: .. ecobol(1)
 Compiles TNS/R native COBOL85 programs nmcobol: ... nmcobol(1)

 c89: Compiles C and C++ programs using the native/ ... c89(1)
 /Compiles C99-compliant C and C++ programs using the TNS/E native/ c99(1)

protocols used on the local host protocols: Defines the Internet protocols(4)
 protocols: Defines the Internet protocols used on the local host protocols(4)

 sed: Provides a stream line editor .. sed(1)
process trap: Provides instructions to a .. trap(1)

 ps: Displays process status ... ps(1)
pathname pwd: Displays current directory pwd(1)

 atq: Prints the queue of jobs waiting to be run atq(1)
 from the line printer spooling queue /Removes job requests cancel(1)

 atrm: Removes jobs queued by the at command ... atrm(1)
the at, batch, and cron commands queuedefs: Describes queues for queuedefs(4)

cron/ queuedefs: Describes queues for the at, batch, and ... queuedefs(4)
shared/ ipcrm: Removes message queues, semaphore identifiers, or ipcrm(1)

 Sets environment variables as read only readonly: ... readonly(1)
standard input file read: Reads one line from the read(1)

variables as read only readonly: Sets environment .. readonly(1)
from TNS/E native object/ enoft: Reads and displays information enoft(1)
from TNS/R native object/ noft: Reads and displays information noft(1)

input file and copies it/ line: Reads one line from the standard line(1)
input file read: Reads one line from the standard read(1)

archive files, and/ pax: Extracts (reads), writes, and lists .. pax(1)
 fc: Lists, edits, or reexecutes commands ... fc(1)

 pcleanup: See the Pcleanup(8) reference page .. pcleanup(8)
 man: Displays reference page information ... man(1)

 apropos: Locates reference pages by keyword ... apropos(1)

527188-021 Hewlett-Packard Company Pindex−15

OSS Shell and Utilities Reference Manual

 file for a pattern that is a full regular expression /Searches a egrep(1)
 a user account and removes related files. userdel: Deletes userdel(8)

 /file (loadfile) from one or more relinkable non-PIC object files/ nld(1)
 rexecd: Starts the remote execution server .. rexecd(8)

 a local OSS file system and a remote host /files between .. ftp(1)
OSS) telnet: Allows login to a remote host (not supported in telnet(1)

 /Describes node file for trusted remote hosts and users .. hosts.equiv(4)
 individual user files for trusted remote hosts and users /Describesrhosts(4)

 netrc: file for ftp remote login data ... netrc(4)
 portmap: Maps TCP/IP ports to Remote Procedure Call (RPC)/ portmap(8)

 rpcinfo: Reports or changes Remote Procedure Call (RPC)/ rpcinfo(8)
process rshd: Starts the remote shell (demon) server ... rshd(8)

 Executes the specified command remotely rsh: ... rsh(1)
 rmdir: Removes a directory .. rmdir(1)

 unalias: Removes aliases ... unalias(1)
function definitions unset: Removes environment variable or unset(1)

line printer spooling/ cancel: Removes job requests from the cancel(1)
command atrm: Removes jobs queued by the at atrm(1)

identifiers, or shared/ ipcrm: Removes message queues, semaphore ipcrm(1)
 Pcleanup: Moves or removes obsolete OSS files ... Pcleanup(8)

in a file uniq: Removes or lists repeated lines uniq(1)
 Deletes a user account and removes related files. userdel: userdel(8)

directories rm: Removes (unlinks) files or .. rm(1)
from loadfiles or/ strip: Removes unnecessary information strip(1)
 uniq: Removes or lists repeated lines in a file ... uniq(1)

 expand: Replace tab or space characters expand(1)
 unexpand: Replace tab or space characters unexpand(1)

communication (IPC)/ ipcs: Reports interprocess .. ipcs(1)
Procedure Call (RPC)/ rpcinfo: Reports or changes Remote .. rpcinfo(8)

processes wait: Reports termination status of wait(1)
spooling/ cancel: Removes job requests from the line printer cancel(1)

 server: Services FTP connection requests ftp .. ftpserver(7)
attributes to their initial/ reset_define: Restores a DEFINE’s reset_define(1)

Domain Name System resolver/ resolv.conf: Describes BIND 4 resolv.conf(4)
 /BIND 4 Domain Name System resolver configuration file ... resolv.conf(4)
 the secure BIND 9 lightweight resolver demon lwresd: Starts dnssec_lwresd(8)

 the nonsecure BIND 9 lightweight resolver demon lwresd: Starts lwresd(8)
their initial/ reset_define: Restores a DEFINE’s attributes to reset_define(1)

 /mkcatdefs utility and pipes the resulting message-catalog source/ runcat(1)
select loop continue: Resumes a for, while, until, or continue(1)
to its invoking script return: Returns a shell function return(1)

invoking script return: Returns a shell function to its return(1)
 false: Returns a standard exit value false(1)
 true: Returns a standard exit value true(1)

device tty: Returns pathname of terminal tty(1)
pathnames basename: Returns specified parts of .. basename(1)

pathnames dirname: Returns specified parts of .. dirname(1)
commands type: Returns type and location of ... type(1)
execution server rexecd: Starts the remote .. rexecd(8)

user files for trusted remote/ .rhosts: Describes individual .. .rhosts(4)
directories rm: Removes (unlinks) files or rm(1)

 rmdir: Removes a directory .. rmdir(1)
Internet domain name server/ rndc: Starts the nonsecure BIND 9 rndc(8)
Internet domain name server/ rndc: Starts the secure BIND 9 dnssec_rndc(8)

 or changes Remote Procedure Call (RPC) information /Reports ... rpcinfo(8)
 ports to Remote Procedure Call (RPC) program numbers /TCP/IP portmap(8)

Remote Procedure Call (RPC)/ rpcinfo: Reports or changes .. rpcinfo(8)
command remotely rsh: Executes the specified .. rsh(1)

(demon) server process rshd: Starts the remote shell ... rshd(8)
 the queue of jobs waiting to be run atq: Prints .. atq(1)

 bg: Causes processes to run in the background ... bg(1)
attributes run: Runs a process with specific run(1)

utility and pipes the resulting/ runcat: Invokes the mkcatdefs runcat(1)
 kill: Sends a signal to a running process .. kill(1)

 times: Prints accumulated running times ... times(1)

Pindex−16 Hewlett-Packard Company 527188-021

Permuted Index

priority nice: Runs a command at a different nice(1)
environment from the OSS/ gtacl: Runs a process in the Guardian gtacl(1)

environment from the/ osh: Runs a process in the OSS .. osh(1)
Inspect debugger runv: Runs a process in the Visual ... runv(1)

attributes run: Runs a process with specific ... run(1)
 nohup: Runs a utility ignoring hangups nohup(1)

system-determined later/ batch: Runs commands at a .. batch(1)
later time at: Runs commands at a user-specified at(1)

 Constructs argument lists and runs commands xargs: .. xargs(1)
name server/ dnssec:keygen - Runs the BIND 9 secure domain dnssec-keygen(8)

name server/ dnssec:signzone - Runs the BIND 9 secure domain dnssec-signzone(8)
 cron: Runs the system clock daemon cron(8)

utility for/ eld: Runs the TNS/E native linker eld(1)
utility for/ ld: Runs the TNS/R native linker ld(1)

Visual Inspect debugger runv: Runs a process in the ... runv(1)
 crontab: Submits a schedule of commands to cron crontab(1)

 clear: Clears terminal screen .. clear(1)
 more: Displays a file one screenful at a time ... more(1)

 a shell function to its invoking script return: Returns .. return(1)
 grep: Search a file for a pattern .. grep(1)

fixed-string pattern fgrep: Searches a file for a .. fgrep(1)
that is a full regular/ egrep: Searches a file for a pattern ... egrep(1)

system/ nsupdate: Starts the secure BIND 9 dynamic domain name dnssec_nsupdate(8)
name server named: Starts the secure BIND 9 Internet domain dnssec_named(8)

name server/ rndc: Starts the secure BIND 9 Internet domain dnssec_rndc(8)
resolver/ lwresd: Starts the secure BIND 9 lightweight ... dnssec_lwresd(8)

 dnssec:keygen - Runs the BIND 9 secure domain name server DNSSEC/ dnssec-keygen(8)
zone signing/ /- Runs the BIND 9 secure domain name server DNSSEC dnssec-signzone(8)

editor sed: Provides a stream line ... sed(1)
 Exits from for, while, until, or select loop break: .. break(1)
 Resumes a for, while, until, or select loop continue: ... continue(1)

a file cut: Displays selected parts from each line of cut(1)
 /Sets file privileges for selected system files .. initfilepriv(1)

 ipcrm: Removes message queues, semaphore identifiers, or shared/ ipcrm(1)
 wall: Sends a message to all users ... wall(1)

process kill: Sends a signal to a running ... kill(1)
 lp: Sends files to a printer ... lp(1)

 BIND 9 Internet domain name server control utility /nonsecure rndc(8)
 BIND 9 Internet domain name server control utility /secure .. dnssec_rndc(8)

 /the BIND 9 secure domain name server DNSSEC key generation tool dnssec-keygen(8)
 /the BIND 9 secure domain name server DNSSEC zone signing tool dnssec-signzone(8)

 BIND 9 Domain Name System (DNS) server lookup utility dig: .. dig(8)
 BIND 9 Internet domain name server named: Starts the secure dnssec_named(8)

 Starts the remote shell (demon) server process rshd: ... rshd(8)
 Starts the remote execution server rexecd: .. rexecd(8)

requests ftp server: Services FTP connection ftpserver(7)
 BIND 9 Internet domain name server /Starts the nonsecure ... named(8)

about Internet services services: Contains information services(4)
 ftp server: Services FTP connection requests ftpserver(7)

 information about Internet services services: Contains .. services(4)
positional parameters set: Sets shell options and .. set(1)

 characters to another code set iconv: Converts encoded .. iconv(1)
 in the working attribute set /values for DEFINE attributes set_define(1)

lists (ACLs) for files setacl: Modifies access control setacl(1)
DEFINE attributes in the working/ set_define: Sets values for .. set_define(1)

for one or more executable files setfilepriv: Sets file privileges setfilepriv(1)
shell parameters typeset: Sets attributes and values for .. typeset(1)

 env: Displays or sets environment variables ... env(1)
read only readonly: Sets environment variables as readonly(1)

more executable/ setfilepriv: Sets file privileges for one or .. setfilepriv(1)
system files initfilepriv: Sets file privileges for selected initfilepriv(1)

parameters set: Sets shell options and positional set(1)
 stty: Sets terminal characteristics ... stty(1)

 umask: Sets the user file-creation mask. umask(1)
in the working/ set_define: Sets values for DEFINE attributes set_define(1)

527188-021 Hewlett-Packard Company Pindex−17

OSS Shell and Utilities Reference Manual

 permissions and other file mode settings chmod: Changes .. chmod(1)
 attributes to their initial settings /Restores a DEFINE’s reset_define(1)

 sh: Describes the OSS shell .. sh(1)
 /queues, semaphore identifiers, or shared memory identifiers and/ ipcrm(1)

 ksh: Describes the OSS shell .. ksh(1)
 sh: Describes the OSS shell .. sh(1)

 more DEFINEs for the current OSS shell add_define: Creates one or add_define(1)
 more DEFINEs from the current OSS shell del_define: Deletes one or del_define(1)

 rshd: Starts the remote shell (demon) server process .. rshd(8)
script return: Returns a shell function to its invoking return(1)

parameters set: Sets shell options and positional .. set(1)
 print: The shell output mechanism .. print(1)

 Sets attributes and values for shell parameters typeset: .. typeset(1)
 newgrp: Changes the shell process to a new group ... newgrp(1)

 exit: Causes the shell to exit ... exit(1)
parameters shift: Shifts positional ... shift(1)

 shift: Shifts positional parameters ... shift(1)
of DEFINE attributes show_define: Displays the values show_define(1)

 kill: Sends a signal to a running process ... kill(1)
 domain name server DNSSEC zone signing tool /the BIND 9 secure dnssec-signzone(8)

 Treats command arguments as a simple command command: .. command(1)
 a file into pieces of a specified size split: Splits ... split(1)

specified time sleep: Suspends execution for a sleep(1)
 sort: Sorts or merges files .. sort(1)

 comm: Compares two sorted files .. comm(1)
 sort: Sorts or merges files .. sort(1)

 /the resulting message-catalog source data to the gencat utility runcat(1)
 mkcatdefs: Preprocesses a message source file ... mkcatdefs(1)

 expand: Replace tab or space characters ... expand(1)
 unexpand: Replace tab or space characters ... unexpand(1)

 mkfifo: Makes FIFO special files ... mkfifo(1)
 run: Runs a process with specific attributes ... run(1)

 rsh: Executes the specified command remotely .. rsh(1)
 basename: Returns specified parts of pathnames ... basename(1)

 dirname: Returns specified parts of pathnames ... dirname(1)
 tail: Writes a file from a specified point .. tail(1)

 Splits a file into pieces of a specified size split: .. split(1)
 sleep: Suspends execution for a specified time ... sleep(1)

of a specified size split: Splits a file into pieces .. split(1)
specified size split: Splits a file into pieces of a ... split(1)

 csplit: Splits files by context .. csplit(1)
 requests from the line printer spooling queue /Removes job cancel(1)

 false: Returns a standard exit value .. false(1)
 true: Returns a standard exit value .. true(1)

 read: Reads one line from the standard input file .. read(1)
to/ line: Reads one line from the standard input file and copies it line(1)

 echo: Writes arguments to standard output .. echo(1)
 pr: Writes a file to standard output .. pr(1)

 message from a message catalog to standard output dspmsg: Writes a dspmsg(1)
 the contents of a file to the standard output file od: Writes od(1)

 input file and copies it to standard output file /standard line(1)
lightweight resolver/ lwresd: Starts the nonsecure BIND 9 .. lwresd(8)

Internet domain name/ named: Starts the nonsecure BIND 9 .. named(8)
dynamic domain name/ nsupdate: Starts the nonsecure BIND 9 .. nsupdate(8)

Internet domain name/ rndc: Starts the nonsecure BIND 9 .. rndc(8)
server rexecd: Starts the remote execution .. rexecd(8)

server process rshd: Starts the remote shell (demon) rshd(8)
lightweight resolver/ lwresd: Starts the secure BIND 9 ... dnssec_lwresd(8)

domain name system/ nsupdate: Starts the secure BIND 9 dynamic dnssec_nsupdate(8)
domain name server named: Starts the secure BIND 9 Internet dnssec_named(8)

domain name server control/ rndc: Starts the secure BIND 9 Internet dnssec_rndc(8)
 ls: Lists and generates statistics for files .. ls(1)

 df: Displays statistics of filesets .. df(1)
 ps: Displays process status ... ps(1)

 line printer and print job status information /Displays .. lpstat(1)

Pindex−18 Hewlett-Packard Company 527188-021

Permuted Index

 wait: Reports termination status of processes ... wait(1)
 communication (IPC) facilities status /Reports interprocess ... ipcs(1)

 Copies files to and from archive storage cpio: .. cpio(1)
 sed: Provides a stream line editor ... sed(1)

in binary files strings: Finds printable strings strings(1)
 strings: Finds printable strings in binary files ... strings(1)

information from loadfiles or/ strip: Removes unnecessary ... strip(1)
 and deallocates their data structures /memory identifiers ipcrm(1)

characteristics stty: Sets terminal .. stty(1)
temporarily and changes password su: Substitutes user ID .. su(1)

cron crontab: Submits a schedule of commands to crontab(1)
and changes password su: Substitutes user ID temporarily su(1)

block count of a file sum: Displays the checksum and sum(1)
 du: Displays a summary of disk usage .. du(1)

 inetd: The Internet superserver ... inetd(8)
 login to a remote host (not supported in OSS) telnet: Allows telnet(1)

specified time sleep: Suspends execution for a .. sleep(1)
 charmap: Defines character symbols as character encodings charmap(4)

 /files between a local OSS file system and a remote host .. ftp(1)
 cron: Runs the system clock daemon .. cron(8)

values getconf: Displays system configuration variable getconf(1)
utility dig: BIND 9 Domain Name System (DNS) server lookup .. dig(8)

 /BIND 9 dynamic domain name system (DNS) update utility ... nsupdate(8)
 secure BIND 9 dynamic domain name system (DNS) update utility /the dnssec_nsupdate(8)

 environment to the OSS file system /files from the Guardian copyoss(8)
 Sets file privileges for selected system files initfilepriv: .. initfilepriv(1)

 and copies them to the OSS file system /format archive file ... pinstall(1)
 id: Displays the user’s system identity ... id(1)

 logger: Makes entries in the system log .. logger(1)
 /Describes BIND 4 Domain Name System resolver configuration/ resolv.conf(4)

 information about the operating system uname: Displays ... uname(1)
 batch: Runs commands at a system-determined later time batch(1)

 expand: Replace tab or space characters .. expand(1)
 unexpand: Replace tab or space characters .. unexpand(1)

 Generates code-set translation table genxlt: ... genxlt(1)
specified point tail: Writes a file from a .. tail(1)

 tar: Manipulates tape-archive-format files ... tar(1)
tape-archive-format files tar: Manipulates ... tar(1)

Call (RPC) program/ portmap: Maps TCP/IP ports to Remote Procedure portmap(8)
copies to a file tee: Displays program output and tee(1)

host (not supported in OSS) telnet: Allows login to a remote telnet(1)
 su: Substitutes user ID temporarily and changes password su(1)

 stty: Sets terminal characteristics ... stty(1)
 tty: Returns pathname of terminal device .. tty(1)

 clear: Clears terminal screen ... clear(1)
 wait: Reports termination status of processes wait(1)

expressions test: Evaluates conditional ... test(1)
files awk: Manipulates text and matches patterns in ... awk(1)

files nawk: Manipulates text and matches patterns in ... nawk(1)
 diff: Compares text files .. diff(1)

command time: Times the execution of a time(1)
 times: Prints accumulated running times ... times(1)

times times: Prints accumulated running times(1)
 time: Times the execution of a command time(1)

 file access and modification times touch: Updates .. touch(1)
 cobol: Compiles COBOL85 TNS programs .. cobol(1)

 ecobol: Compiles TNS/E native COBOL85 programs ecobol(1)
 /C and C++ programs using the TNS/E native compilers .. c99(1)

 eld: Runs the TNS/E native linker utility for/ eld(1)
 and displays information from TNS/E native object files /Reads enoft(1)

 nmcobol: Compiles TNS/R native COBOL85 programs nmcobol(1)
 ld: Runs the TNS/R native linker utility for/ ld(1)

 and displays information from TNS/R native object files /Reads noft(1)
 name server DNSSEC key generation tool /the BIND 9 secure domain dnssec-keygen(8)

 name server DNSSEC zone signing tool /the BIND 9 secure domain dnssec-signzone(8)

527188-021 Hewlett-Packard Company Pindex−19

OSS Shell and Utilities Reference Manual

modification times touch: Updates file access and touch(1)
 tr: Translates characters .. tr(1)

OSS file system and a/ ftp: Transfers files between a local ftp(1)
 tr: Translates characters ... tr(1)

 genxlt: Generates code-set translation table ... genxlt(1)
process trap: Provides instructions to a trap(1)

simple command command: Treats command arguments as a command(1)
value true: Returns a standard exit ... true(1)

 /Describes node file for trusted remote hosts and users hosts.equiv(4)
 /individual user files for trusted remote hosts and usersrhosts(4)

device tty: Returns pathname of terminal tty(1)
 type: Returns type and location of commands type(1)

 file: Determines file type from file content .. file(1)
of commands type: Returns type and location type(1)

values for shell parameters typeset: Sets attributes and ... typeset(1)
file-creation mask. umask: Sets the user .. umask(1)

 unalias: Removes aliases .. unalias(1)
the operating system uname: Displays information about uname(1)

data uncompress: Expands compressed uncompress(1)
characters unexpand: Replace tab or space unexpand(1)

lines in a file uniq: Removes or lists repeated uniq(1)
 rm: Removes (unlinks) files or directories .. rm(1)

loadfiles or/ strip: Removes unnecessary information from strip(1)
by the pack command unpack: Expands files compressed unpack(1)

variable or function definitions unset: Removes environment unset(1)
 break: Exits from for, while, until, or select loop .. break(1)

 continue: Resumes a for, while, until, or select loop .. continue(1)
 dynamic domain name system (DNS) update utility /nonsecure BIND 9 nsupdate(8)
 dynamic domain name system (DNS) update utility /the secure BIND 9 dnssec_nsupdate(8)

batch. newusers: Updates and creates new users in newusers(8)
 /Creates a new user or alias, or updates default new user or alias/ useradd(8)

modification times touch: Updates file access and ... touch(1)
used/ merge_whatis: Creates and updates the whatis database file merge_whatis(8)
 du: Displays a summary of disk usage ... du(1)

 usermod: Modifies a user account. .. usermod(8)
files. userdel: Deletes a user account and removes related userdel(8)

 umask: Sets the user file-creation mask. ... umask(1)
 .rhosts: Describes individual user files for trusted remote/rhosts(4)

password su: Substitutes user ID temporarily and changes su(1)
 the user name for the effective user ID whoami: Displays .. whoami(1)

 logname: Displays user login name .. logname(1)
ID whoami: Displays the user name for the effective user whoami(1)

 or alias, or updates default new user or alias information. /user useradd(8)
new user/ useradd: Creates a new user or alias, or updates default useradd(8)

alias, or updates default new/ useradd: Creates a new user or useradd(8)
and removes related files. userdel: Deletes a user account userdel(8)

 usermod: Modifies a user account. usermod(8)
 wall: Sends a message to all users .. wall(1)

 who: Identifies users currently logged in ... who(1)
 file for trusted remote hosts and users /Describes node ... hosts.equiv(4)

 newusers: Updates and creates new users in batch. .. newusers(8)
 for trusted remote hosts and users /individual user files .. .rhosts(4)

 id: Displays the user’s system identity .. id(1)
 at: Runs commands at a user-specified later time .. at(1)

 ipnodes: Defines the hosts using IPv6 network addresses ipnodes(4)
 c89: Compiles C and C++ programs using the native compilers .. c89(1)

 /C99-compliant C and C++ programs using the TNS/E native compilers c99(1)
copies/ /Extracts files from a pax (ustar) format archive file and pinstall(1)
 hash: Affects memory of where utilities are located .. hash(1)

 runcat: Invokes the mkcatdefs utility and pipes the resulting/ runcat(1)
 domain name server control utility /BIND 9 Internet .. rndc(8)

 Name System (DNS) server lookup utility dig: BIND 9 Domain ... dig(8)
 eld: Runs the TNS/E native linker utility for position-independent/ eld(1)
 ld: Runs the TNS/R native linker utility for position-independent/ ld(1)

 nohup: Runs a utility ignoring hangups ... nohup(1)

Pindex−20 Hewlett-Packard Company 527188-021

Permuted Index

 source data to the gencat utility /message-catalog ... runcat(1)
 domain name system (DNS) update utility /nonsecure BIND 9 dynamic nsupdate(8)
 domain name system (DNS) update utility /secure BIND 9 dynamic dnssec_nsupdate(8)

 domain name server control utility /secure BIND 9 Internet dnssec_rndc(8)
 uudecode: Decodes a binary file uudecode(1)
 uuencode: Encodes a binary file uuencode(1)

 false: Returns a standard exit value ... false(1)
 true: Returns a standard exit value ... true(1)
the working/ set_define: Sets values for DEFINE attributes in set_define(1)

 typeset: Sets attributes and values for shell parameters ... typeset(1)
 system configuration variable values getconf: Displays .. getconf(1)

 show_define: Displays the values of DEFINE attributes ... show_define(1)
 /Displays attributes and values of existing DEFINEs ... info_define(1)

other commands export: Allows values of variables to be used by export(1)
 unset: Removes environment variable or function definitions unset(1)

 Displays system configuration variable values getconf: ... getconf(1)
 env: Displays or sets environment variables ... env(1)

 readonly: Sets environment variables as read only .. readonly(1)
 export: Allows values of variables to be used by other/ export(1)

and object files vproc: Displays version information for program vproc(1)
 vi: Edits files .. vi(1)

 runv: Runs a process in the Visual Inspect debugger ... runv(1)
information for program and/ vproc: Displays version .. vproc(1)

of processes wait: Reports termination status wait(1)
 atq: Prints the queue of jobs waiting to be run .. atq(1)

users wall: Sends a message to all ... wall(1)
characters, and bytes wc: Counts lines, words, ... wc(1)

 used by the apropos, man, and whatis commands /database file merge_whatis(8)
apropos,/ /Creates and updates the whatis database file used by the merge_whatis(8)

function whatis: Describes a command’s whatis(1)
 whence: Interprets command names whence(1)

 break: Exits from for, while, until, or select loop .. break(1)
 continue: Resumes a for, while, until, or select loop .. continue(1)

logged in who: Identifies users currently who(1)
for the effective user ID whoami: Displays the user name whoami(1)

 wc: Counts lines, words, characters, and bytes ... wc(1)
 for DEFINE attributes in the working attribute set /values .. set_define(1)

point tail: Writes a file from a specified .. tail(1)
 pr: Writes a file to standard output pr(1)

catalog to standard/ dspmsg: Writes a message from a message dspmsg(1)
and/ pax: Extracts (reads), writes, and lists archive files, .. pax(1)

output echo: Writes arguments to standard echo(1)
 printf: Writes formatted output .. printf(1)
 locale: Writes information about locales locale(1)

the standard output file od: Writes the contents of a file to od(1)
and runs commands xargs: Constructs argument lists xargs(1)
program from input yacc: Generates an LR(1) parsing yacc(1)

 zcat: Expands compressed data zcat(1)
 secure domain name server DNSSEC zone signing tool /the BIND 9 dnssec-signzone(8)

527188-021 Hewlett-Packard Company Pindex−21

Index_____________________________

Symbols
.proto file, 11-31
.rhosts file, 11-7, 11-37
/etc/ipnodes file, 11-8
/etc/networks, 11-30
:- printers, line printers, 5-71

A
ACLs

listing, 4-10
setting, 8-11

add_define command, 1-2
alias

creating, 12-72
updating, 12-72

apropos command
database for, 12-42
finding keywords in

reference pages, 1-6
ar command, 1-7
arbitrary-precision arithmetic, 1-31,

3-5
archive

extracting, writing and
listing, 7-12, 7-23

format, 1-7
maintaining, 1-7
storage, 2-108

arguments
evaluating, 3-125
lists, 10-32

arithmetic
arbitrary-precision, 1-31, 3-5

shell variable, 3-125
ASCII files, finding printable strings

in, 8-60
at command, 1-14, 11-31
atq command, 1-18
atrm command, 1-20
awk command, 1-21

B
backend, printer, 5-71
Backup and Restore 2 product,

setting file privileges for,
4-57

banner command, 1-27
base filename, 1-28
basename command, 1-28
batch command, 1-29, 11-31
bc command, 1-31
bg command, 1-36
binary files

encoding and decoding, 9-39,
9-40

finding printable strings in,
8-60

mailing, 9-39
binder, 8-62
block, disk, 3-10
block count, 8-70
break command, 1-37
bytes, counting, 2-81, 10-25

527188-021 Hewlett-Packard Company Index−1

OSS Shell and Utilities Reference Manual

C
C language

compiling programs, 2-2,
2-36

generating programs, 3-147,
5-49

c89 command, 2-2 to 2-35
c99 command, 2-36 to 2-63
cal command, 2-64
calculator, interactive, 3-5
calculator program, 1-31
calendar, displaying, 2-64
cancel command, 2-65, 5-71
canceling printer requests, 2-65, 5-71
cat command, 2-67
catalog, message, 4-2 to 4-6
changing

file owner ID, 2-78
group ownership, 2-70
lines in files, 1-21, 6-31
permission codes, 2-72

characteristics, terminal, 8-64
characters

converting encoding, 4-51,
4-53

translating, 9-18
charmap file, 11-2
checksum, 2-81, 8-70
chgrp command, 2-70
chmod command, 2-72
chown command, 2-78
cksum command, 2-81
clear command, 2-83
clearing, terminal screen, 2-83
cmp command, 2-84
cobol command, 2-85
COBOL85 language, compiling

programs, 2-85
code set conversion table, 4-7
collating sequence, 5-81
comm command, 2-94
command command, 2-98
commands

displaying function, 10-27
entered at the keyboard, 5-7,

8-21
executing remotely, 7-58
execution, suspending, 8-49

execution environment,
3-107

finding by keyword, 1-6
priority, 6-38
read from a file, 5-7, 8-21
running, 10-32
running automatically, 12-5
scheduling, 1-14, 1-29
setting priority of, 6-38
submitting a schedule, 2-111
suspending execution of,

8-49
timing, 9-13

communication, interprocess, 4-60
comparing

directories, 3-14
files, 2-84, 3-14
sorted files, 2-94
text files, 3-11

compiling
C programs, 2-2, 2-36
COBOL85 programs, 2-85

compress command, 2-99
compressing files, 2-99, 7-2, 10-45
concatenating files, 2-67
conditional expressions, 9-10
configuration variable values, 4-13
context split of files, 2-114
context-free grammar specification,

10-36
continue command, 2-101
converting, character encoding, 4-51,

4-53
copying

files, 2-102
files to and from archive

storage, 2-108
copyoss command, 12-2
counting lines, words, and bytes,

10-25
cp command, 2-102
cpio command, 2-108
creating

argument lists, 10-32
banners, 1-27
directories, 6-17
message catalog, 4-2 to 4-6

Index−2 Hewlett-Packard Company 527188-021

Index

message source file, 7-60,
7-65

cron command, 12-5 to 12-7
crontab command, 2-111
csplit command, 2-114
cut command, 2-116

D
data fields, joining, 4-66
database, files, joining, 4-66
date command, 3-2
dc command, 1-31, 3-5
debuggers, symbolic, 8-62
decoding binary files after mailing,

9-39
defines

creating, 1-2
deleting, 3-9
displaying attribute values,

4-55, 8-47
DEFINEs

attribute values, 7-50
restoring DEFINEs, 7-50
setting values, 8-18

deleting
directories, 7-57
files, 7-53

del_define command, 3-9
desk calculator, 3-5
device, terminal, pathname of, 9-23
df command, 3-10
diff command, 3-11
dircmp command, 3-14
directories

changing owner ID, 2-78
comparing, 3-14
creating, 6-17
deleting, 7-57
displaying working

pathname, 7-46
listing contents, 5-79
pathname, 3-16
removing, 7-57

dirname command, 3-16
disk

block, 3-10
space, 3-10, 3-21
usage summary, 3-21

displaying
base filename, 1-28
block count, 8-70
byte count, 2-81
calendar, 2-64
checksum, 2-81, 8-70
command execution

environment, 3-107
command function, 10-27
date, 3-2
directory contents, 5-79
directory pathname, 1-28
end of a file, 9-2
file beginning, 4-49
files, 2-67, 6-20
formatted output, 7-33
hardware information, 9-30
job queue, 1-18
LAN network number, 9-30
lines common to two files,

2-94
lines unique to each of two

files, 2-94
locale information, 5-64
login name, 5-70
node name, 9-30
object file symbol table, 6-51
object files, 3-81, 6-73
operating system

information, 9-30
printer requests, 5-76
printer status information,

5-76
process status, 7-37
program output, 9-8
reference pages, 6-11
release number, 9-30
repeated lines in a file, 9-34
selected file fields and

characters, 2-116
statistics on free disk space,

3-10
system name, 9-30
terminal settings, 8-64

527188-021 Hewlett-Packard Company Index−3

OSS Shell and Utilities Reference Manual

user identity, 4-54
user name, 10-31
working directory pathname,

7-46
DNS, using resolv.conf, 11-36
dnssec-keygen utility, 12-14
dnssec-signzone utility, 12-17
Domain Name System, using

resolv.conf, 11-36
dspcat utility, 3-17 to 3-18
dspmsg utility, 3-19 to 3-20
du command, 3-21
dump, octal, 6-91

E
echo command, 3-23
ed command, 3-43
editing

files, 10-2
files by line, 3-43
lines interactively, 3-109

editors
ex, 3-109
full screen, 10-2
line, 3-109
vi, 10-2

egrep command, 3-51
elapsed time, 9-13
eld command, 3-56 to 3-80
encoding converter, 4-51, 4-53
enoft command, 3-81 to 3-106
entry, system log, 5-68
env command, 3-107
environment, command execution,

3-107
eval command, 3-108
evaluating

conditional expressions, 9-10
expressions, 3-125

ex command, 3-109
exec command, 3-121
executing commands remotely, 7-58
execution

environment for commands,
3-107

time, 9-13
exit command, 3-122
exit values, 3-127, 9-22
expand command, 3-123
expanding files, 2-99, 9-31, 9-36,

10-45
export command, 3-124
expr command, 3-125
expression

evaluating, 3-125
matching, 3-140

F
false command, 3-127
fc command, 3-128
fg command, 3-130
fgrep command, 3-131
FIFO special files, 6-19
file, network names, 11-30
file command, 3-137
File privileges

listing, 4-20
setting, 8-15
setting for selected system

files, 4-57
File Transfer Protocol (FTP), 3-159
files

.proto, 11-31

.rhosts, 11-7, 11-37
access times, 9-15
archive, 7-12, 7-23
base filename, 3-16
binary

encoding and
decoding,
9-39, 9-40

mailing, 9-39
block count, 8-70
breaking lines, 3-157
changing group ownership,

2-70
changing owner ID, 2-78
changing permission codes,

2-72
checksum, 8-70

Index−4 Hewlett-Packard Company 527188-021

Index

common lines, 2-94
comparing, 2-84, 3-11, 3-14
compressing, 2-99, 7-2,

10-45
concatenating, 2-67
copying, 2-102
copying to and from archive

storage, 2-108
counting lines, words, and

bytes, 10-25
crontab, 2-111
database, 4-66
deleting, 7-53
determining type, 3-137
displaying, 2-67
displaying beginning, 4-49
displaying byte count, 2-81
displaying checksum, 2-81
displaying end, 9-2
displaying selected fields and

characters, 2-116
editing, 10-2
editing line by line, 3-43
editing lines interactively,

3-109
expanding, 2-99, 9-31, 9-36,

10-45
FIFO special, 6-19
finding, 3-140
finding and changing lines,

1-21, 6-31
folding lines, 3-157
formatting for display, 6-20
hosts.equiv, 11-7, 11-37
joining

lines from more than
one, 7-4

subsequent lines
from, 7-4

joining the lines of, 4-66
library, 1-7
linking within the OSS file

system, 5-61
listing, 5-79
listing ACL entries for, 4-10
listing privileges for, 4-20
makefiles, 6-2
merging

lines from more than
one, 7-4

subsequent lines
from, 7-4

using sort command,
8-50

message source, 6-14, 7-60,
7-65

modification times, 9-15
monitoring growth, 9-4
moving, 6-26
numbering lines in, 6-40
object, 6-51
packing, 7-2
paginating, 7-29
removing, 7-53
renaming, 6-26
repeated lines, 9-34
searching for a pattern in,

3-51, 3-131, 4-26
selecting fields and

characters, 2-116
setting ACL entries for, 8-11
setting privileges for, 8-15
sorting, 8-50
splitting

by context, 2-114
by size, 8-58

squeezing, 7-2
transferring, 3-159
unique lines, 2-94

filter, line numbering, 6-40
find command, 3-140
finding

commands by keyword, 1-6
files matching an expression,

3-140
lines in files, 1-21, 6-31
printable strings in ASCII

and binary files, 8-60
flex command, 3-147
fold command, 3-157
formatted output, displaying, 7-33
formatting files for display, 6-20
free disk space, statistics on, 3-10
ftp command, 3-159
FTP server, 12-29 to 12-34
ftpserver, 12-29 to 12-34
full screen file editor, 10-2

527188-021 Hewlett-Packard Company Index−5

OSS Shell and Utilities Reference Manual

G
gencat command, 4-2 to 4-6, 6-14
generating

C programs, 3-147, 5-49
code set conversion table,

4-7
parsing programs, 10-36

genxlt command, 4-7
getacl command, 4-10
getconf command, 4-13
getfilepriv command, 4-20
getopts command, 4-22
gname command, 4-24
grammar specification, context-free,

10-36
grep command, 4-26
group ID, 2-70, 4-54
groups

displaying identity, 4-54
ownership, 2-70

gtacl command, 4-32 to 4-47

H
hangups, 6-89
hardware information, displaying,

9-30
hash command, 4-48
head command, 4-49
headers, page, 7-29
history command, 4-50
hosts file, 11-6
hosts.equiv file, 11-7, 11-37
HP Tandem Advanced Command

Language (TACL), starting,
4-32

I
iconv command, 4-51, 4-53
ID

group, 2-70, 4-54
owner, 2-78
user, 4-54, 10-31

id command, 4-54
identifiers, symbolic, 6-14
identifying users, 10-29
inetd process, 12-35
info_define command, 4-55
initfilepriv command, 4-57
interactive desk calculator, 3-5
interactive processor, 1-31
Internet Protocol, 12-35

local, 11-33
interpreting commands, 5-7, 8-21
interprocess communication status,

reporting, 4-60
ipcrm command, 4-58 to 4-59
ipcs command, 4-60 to 4-64
IPv6, 11-8

J
job queue

displaying, 1-18
printing, 1-18

jobs, removing, 1-20
jobs command, 4-65
join command, 4-66
joining

lines from several files, 7-4
lines of two files, 4-66
subsequent lines in a file, 7-4

K
keywords, 1-6
kill command, 5-2

Index−6 Hewlett-Packard Company 527188-021

Index

Korn shell, 5-7, 8-21
ksh command, 5-7

L
labeled tape, 7-12
LAN network number, displaying,

9-30
ld command, 5-32 to 5-47
let command, 5-48
lex command, 5-49
lexical analysis, 3-147, 5-49
libraries

linkage, 1-7
maintaining, 1-7

line command, 5-60
line editors, 3-109

ed, 3-43
red, 3-43
stream, 8-2

line numbering filter, 6-40
lines

counting, 10-25
in a file, joining, 4-66

linkage editor, 1-7
linkage library, 1-7
linking

files within the OSS file
system, 5-61

object files, 3-56, 5-32, 6-43
list, argument, 10-32
ln command, 5-61
local accounts, 11-7, 11-37
locale command, 5-64
locale file, 11-10
locales, current and public, 5-64
logged-in users, 10-29
logger command, 5-68
login

name, 5-70
remote, 9-9

logname command, 5-70
lp command, 5-71
lpstat command, 5-76

LR(1) parsing program, 10-36
ls command, 5-79
lwresd server, 12-20 to 12-21, 12-40

to 12-41

M
maintaining

archives and libraries, 1-7
program groups, 6-2

make command, 6-2
makefiles, 6-2
making

directories, 6-17
entries in the system log,

5-68
man command

database for, 12-42
displaying reference pages,

6-11
matching an expression, 3-140
merge_whatis command, 12-42 to

12-43
merging

files, 8-50
lines from several files, 7-4
subsequent lines in a file, 7-4

message catalog, creating and
modifying, 4-2 to 4-6

message source file, 6-14, 7-60, 7-65
messages

creating catalog, 4-2 to 4-6
modifying catalog, 4-2 to 4-6
queue removal, 4-58
sending to all users, 10-24

mkcatdefs command, 6-14
mkdir command, 6-17
mkfifo command, 6-19
modifying, message catalog, 4-2 to

4-6
modifying file access times, 9-15
more command, 6-20
moving files, 6-26
mv command, 6-26

527188-021 Hewlett-Packard Company Index−7

OSS Shell and Utilities Reference Manual

N
name, login, 5-70
named command, 12-22 to 12-23,

12-44 to 12-45
named Internet domain name server,

12-22, 12-44
native link editor, 6-43
native object file tool, 3-81, 6-73
native PIC link editor

TNS/E, 3-56
TNS/R, 5-32

nawk command, 6-31
networks, 11-30
newgrp command, 6-37
newusers command, 12-46
nice command, 6-38 to 6-39
nl command, 6-40
nld command, 6-43 to 6-50
nm command, 6-51
node name, displaying, 9-30
noft command, 6-73 to 6-88
nohup command, 6-89
nsupdate command, 12-24 to 12-26,

12-49 to 12-51

O
object files

displaying name list of, 6-51
finding printable strings in,

8-60
removing information from,

8-62
octal dump, 6-91
od command, 6-91
operating system

displaying information about,
9-30

release number, 9-30
version, 9-30

osh command, 6-95 to 6-115
OSS shell, 5-7, 8-21
owner ID, 2-78
ownership, group, 2-70

P
pack command, 7-2
page headers, 7-29
paginating files, 7-29
parsing program, generating, 10-36
paste command, 7-4
patch command, 7-7
pathchk command, 7-11
pathnames

checking, 7-11
directory, 1-28, 3-16
terminal device, returning,

9-23
working directory, 7-46

pattern-matching, 1-21, 6-31
patterns, searching files, 3-51, 3-131,

4-26
pax command, 7-12
Pcleanup command, 12-52
permission codes, 2-72
pinstall command, 7-23
pipes, 5-7, 6-19, 8-21
pname command, 7-27
portable library, 1-7
portmap utility, 12-55 to 12-59
pr command, 7-29
precision arithmetic, 1-31
preprocessing message source files,

6-14
print command, 7-32
printers

backend, 5-71
canceling queued requests,

2-65
canceling requests, 5-71
displaying status

information, 5-76
request

canceling, 5-71
sending, 5-71

requests, displaying, 5-76
sending requests, 5-71
spooling queue, 2-65

printf command, 7-33
printing job queue, 1-18
priority, command, 6-38
privileges, obtaining those of another

Index−8 Hewlett-Packard Company 527188-021

Index

user, 8-68
processes

creating a session, 4-32, 6-95
running Guardian, 4-32
running Open System

Services, 6-95
sending signals to, 5-2
status, displaying, 7-37
suspending, 5-2
terminating, 5-2

programs
C, 2-2, 2-36, 2-85, 3-147,

5-49
displaying output, 9-8
generating, 10-36
maintenance, 6-2
parsing, 10-36
updating, 6-2
versions, 6-2

protocols
FTP, 3-159
Internet Protocol, 12-35
TELNET, 9-9

protocols file, 11-33
ps command, 7-37
pwd command, 7-46

Q
queues

canceling requests, 2-65
job, 1-18

QUIT signals, 6-89

R
read command, 7-47
reading from standard input file,

5-60, 7-47
readonly command, 7-49
reference pages

displaying, 6-11

finding by keyword, 1-6
release number, displaying, 9-30
remote

command execution, 7-58
login, 9-9
shell server, 12-71
users and local accounts,

11-7, 11-37
removing

directories, 7-57
files, 7-53
message queue, 4-58
repeated lines in a file, 9-34
semaphore set, 4-58
shared memory ID, 4-58
spooled jobs, 1-20

renaming, files, 6-26
repeated lines, displaying, 9-34
replacing, spaces and tab characters,

3-123, 9-33
reporting

free disk space, 3-10
interprocess communication

status, 4-60
requests, removing from printer

queue, 2-65
reset_define command, 7-50
resolv.conf file, 11-36
return command, 7-52
returning

standard exit value, 3-127,
9-22

terminal device pathname,
9-23

rm command, 7-53, 7-57
rmdir command, 7-57
rndc command, 12-27 to 12-28,

12-62 to 12-63
rpcinfo utility, 12-64 to 12-70
rsh command, 7-58
rshd command, 12-71
run command, 7-60
runcat utility, 7-64
running

commands at different
priorities, 6-38

commands automatically,
12-5

scheduled commands, 1-14,
1-29

527188-021 Hewlett-Packard Company Index−9

OSS Shell and Utilities Reference Manual

utilities without hangups,
6-89

runv command, 7-65

S
scheduling commands, 1-14, 1-29,

2-111
screen editors, 10-2
searching for patterns in files, 3-51,

3-131, 4-26
sed command, 8-2
segmented files, 2-114
semaphore set, 4-58
sending

messages to all users, 10-24
printer request, 5-71
signals to processes, 5-2

server processes, 12-71
services file, 11-39
session, creating a new, 4-32, 6-95
set command, 8-8
setacl command, 8-11
setfilepriv command, 8-15
setting

command execution
environment, 3-107

object file attributes, 3-56,
5-32, 6-43

terminal characteristics, 8-64
set_define command, 8-18
sh command, 8-21
shared memory, 4-58
shell

command execution, 12-5
Korn, 5-7, 8-21
OSS, 5-7, 8-21
starting, 6-95
variable arithmetic, 3-125

shift command, 8-46
show_define command, 8-47
signals, QUIT, 6-89
sleep command, 8-49
sort command, 8-50

sorting files, 8-50
spaces, replacing with tab characters,

3-123, 9-33
specifying remote users for local

accounts, 11-7, 11-37
split command, 8-58
splitting files

by context, 2-114
by size, 8-58

spooled jobs, removing, 1-20
squeezing files, 7-2
standard input file, reading from,

5-60, 7-47
standard output file

writing file contents to, 6-91
writing to, 3-23

status
information for printers,

displaying, 5-76
interprocess communication,

4-60
process, displaying, 7-37

storage, archive, 2-108
stream line editor, 8-2
strings, finding in ASCII and binary

files, 8-60
strings command, 8-60
strip command, 8-62
stty command, 8-64
su command, 8-68
sum command, 8-70
summary, disk usage, 3-21
suspending

execution of a command,
8-49

processes, 5-2
symbol table, 6-51
symbolic debugger, 8-62
symbolic identifiers, 6-14
systems

configuration variable
values, 4-13

log, making entries in, 5-68
name, displaying, 9-30

Index−10 Hewlett-Packard Company 527188-021

Index

T
table, symbol, 6-51
tabs, replacing with spaces, 3-123,

9-33
TACL, starting, 4-32
tail command, 9-2
tar command, 9-5
tee command, 9-8
telnet command, 9-9
terminals

characteristics, 8-64
clearing screen, 2-83
device pathname, returning,

9-23
formatting files for display,

6-20
settings, 8-64

terminating processes, 5-2
test command, 9-10
time command, 9-13
times command, 9-14
timing commands, 9-13
touch command, 9-15
tr command, 9-18
transferring files, 3-159
translating, characters, 9-18
trap command, 9-21
true command, 9-22
tty command, 9-23
type, file, 3-137
type command, 9-24
typeset command, 9-25

U
umask command, 2-69, 9-27
unalias command, 9-29
uname command, 9-30
uncompress command, 9-31
unexpand command, 9-33
uniq command, 9-34
unlabeled tape, 7-22
unlimited precision arithmetic, 1-31

unpack command, 9-36
unset command, 9-38
updating

file access times, 9-15
program groups, 6-2

user account
deleting, 12-76
modifying, 12-77

user ID
displaying for specified

users, 4-54
displaying user name for,

10-31
useradd command, 12-72
userdel command, 12-76
usermod command, 12-77
users

access to local accounts,
11-7, 11-37

adding, 12-72
adding multiple in batch,

12-46
deleting, 12-76
displaying identity, 4-54
identifying, 10-29
logged-in, 10-29
privileges, 8-68
remote, 11-7, 11-37
sending a message to all,

10-24
updating information, 12-72

utilities, running without hangups,
6-89

uudecode command, 9-39
uuencode command, 9-40

V
versions

operating system, 9-30
programs, 6-2

vi command, 10-2
viewing object files, 3-81, 6-73
vproc command, 10-17

527188-021 Hewlett-Packard Company Index−11

OSS Shell and Utilities Reference Manual

W
wall command, 10-24
wc command, 10-25
whatis command

database for, 12-42
describing a command, 10-27

whence command, 10-28
who command, 10-29
whoami command, 10-31
words, counting, 10-25
writing

a terminal device pathname,
9-23

file contents to standard
output file, 6-91

to standard output file, 3-23

X
xargs command, 10-32

Y
yacc command, 10-36

Z
zcat command, 10-45

Index−12 Hewlett-Packard Company 527188-021

	Open System Services Shell and Utilities Reference Manual
	Contents
	What is New in This Manual
	About This Manual
	1. User Commands (a - b)
	2. User Commands (c)
	3. User Commands (d - f)
	4. User Commands (g - j)
	5. User Commands (k - l)
	6. User Commands (m - o)
	7. User Commands (p - r)
	8. User Commands (s)
	9. User Commands (t - u)
	10. User Commands (v - z)
	11. File Format Reference Pages
	12. Administrator Commands and Files
	Permuted Index
	Index

