NonStop TS/MP Pathsend
and Server Programming
Manual

Abstract

This manual describes how to write two types of programs as part of a Pathway
application: requester programs that use the Pathsen ;pplicatlon program interface
(API) and server programs that service requests from all types of Pathway requesters.

Product Version
NonStop TSMP D44

Supported Releases

This manual supports D44.00 and all subsequent D4x releases and G03.00 and all
subsequent G-series releases until otherwise indicated in a new edition.

Part Number Published Release ID
132500 July 1997 D44.00

Document History

Part Number Product Version Published
110074 NonStop TSMP D31 July 1995
123813 NonStop TSMP D31 December 1995
132500 NonStop TSMP D44 July 1997

New editions incorporate any updates issued since the previous edition.

A plussign (+) after arelease ID indicates that this manual describes function added to the base release, either by an
interim product modification (IPM) or by a new product version on a .99 site update tape (SUT).

Ordering Information

For manual ordering information: domestic U.S. customers, call 1-800-243-6886; international customers, contact
your local sales representative.

Document Disclaimer

Information contained in amanual is subject to change without notice. Please check with your authorized Tandem
representative to make sure you have the most recent information.

Export Statement

Export of the information contained in this manual may require authorization from the U.S. Department of
Commerce.

Examples

Examples and sample programs are for illustration only and may not be suited for your particular purpose. Tandem
does not warrant, guarantee, or make any representations regarding the use or the results of the use of any examples
or sample programs in any documentation. You should verify the applicability of any example or sample program
before placing the software into productive use.

U.S. Government Customers

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE:

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
Section 52.227-19 of the FARS Computer Software—Restricted Rights clause.

RESTRICTED RIGHTSNOTICE: Use, duplication, or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 52.227-7013.

RESTRICTED RIGHTSLEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraphp(b)(3)(B) of therightsin Technical Data and Computer Software clausein

DAR 7-104.9(a). This computer software is submitted with “restricted rights” Use, duplication or disclosureis
subject to the restrictions as set forth in NASA FARpSUP 18-52p227-79 (Aprilp1985) “Commercial Computer
Software—Restricted Rights (Aprilp1985).” |If the contract contains the Clause at 18-52p227-74 “Rightsin Data
General” then the “Alternate | 11" clause applies.

U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished — All rights reserved under the Copyright Laws of the United States.

— New and Changed Information

Thisisthe third edition of the NonSop TSYMP Pathsend and Server Programming
Manual.

Writers of Pathsend requesters and all Pathway servers should read this manual. Writers
of SCREEN COBOL requesters should read the Pathway/TS TCP and Terminal
Programming Guide.

Thisthird edition includes changes to reflect product changes, and also additional
enhancements. Substantive changes (changes that are not ssimply editorial) are marked
by change bars in the right-hand margin of the page.

Product Changes

This manual documents the following changes to NonStop TS/MP and related products:

e New Pathsend procedure calls have been added to support context-sensitive
communication (dialogs) between requesters and servers.

Section 3, Writing Pathsend Requesters, now describes how to use these procedure
calls in a Pathsend requester. Section 5, Pathsend Procedure Call Reference,
provides detailed syntax for the procedure calls. Section 6, Pathsend Errors,
describes new error messages related to the calls.

e A new TUXEDO to Pathway translation server is now available as part of Release 2
of the NonStop TUXEDO system. This trandation server allows TUXEDO
requesters (that is, TUXEDO clients and TUXEDO servers acting as clients) to
access Pathway servers.

Other Transaction Processing Environments on page 1-13 and Writing Pathway
Servers That Interoperate With TUXEDO Requesters on page 4-17 now mention the
availability of the TUXEDO to Pathway trandlation server. Details on the use of this
trandation server are provided in the NonSop TUXEDO System Pathway
Trandation Servers Manual.

e Changes are being made to the Remote Server Call (RSC) product, and some of the
protocols formerly listed in Section 2 of this manual may no longer be supported.
Therefore, all mention of support for specific platforms and protocols under Clients
Using RSC and POET on page 2-15 has been removed and replaced by a more
general statement. For detailed information about the platforms and protocols
supported by the RSC product, refer to the Remote Server Call (RSC) Programming
Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
iii

New and Changed Information Enhancements to the Manual

Enhancementsto the M anual

The following enhancements have been made to the material in this manual:

e A new subsection, Consideration for Servers Used With Remote Server Call (RSC)
Clients on page 4-4, has been added to mention the optional server reply code for
servers used with Remote Server Call (RSC) clients. For details, refer to the Remote
Server Call (RSC) Programming Manual.

e Corrections have been made to the discussion of Server-Class Send Timeout on
page 5-27.

e Additional cause information has been added to the description of Pathsend error
902 on page 6-3.

e Severa minor technical corrections and editorial changes have been made.

NonStop TS/MP Pathsend and Server Programming Manual—132500
iv

— Contents

New and Changed Information iii
About ThisManual xi
Notation Conventions Xvii

1. Introduction to Pathway Application Programming
Which Sections Do You Need? 1-1
Advantages of the Pathway Environment 1-3
Ease of Development 1-3
Manageability 1-4
Data Integrity 1-4
Fault Tolerance 1-5
Other Tandem Fundamentals 1-6
Pathway Applications 1-7
Serversand Server Classes 1-8
Requesters 1-9
The Pathsend Environment 1-10
Pathsend Processes 1-10
LINKMON Processes 1-11
Client/Server Capabilities 1-12
Other Transaction Processing Environments 1-13
Development Tools and Utilities 1-14
Programming Languages and Related Tools 1-14
The Inspect Symbolic Debugger 1-14
The Pathmaker Application Generator 1-14
Client/Server Development Tools 1-15
Transaction Processing Scenario 1-15

2. Designing Your Application

Designing Transactions 2-1
Analyzing Data Flow 2-2
Identifying Transaction Components 2-4
Protecting Transactions 2-6

Designing the Database 2-9
Logical Design 2-9
Physical Design 2-10
Database Managers 2-10
Remote Duplicate Database Facility (RDF) 2-11

NonStop TS/MP Pathsend and Server Programming Manual—132500
%

Contents 2. Designing Your Application (continued)

2. Designing Your Application (continued)
Designing Requester Programs 2-11
SCREEN COBOL Regquesters 2-12
IDS Reguesters 2-12
Pathsend Requesters 2-13
ClientsUsing RSC and POET 2-15
Requesters Using GDSX 2-16
Dividing Function Between Requester and Server 2-19
Designing Server Programs 2-19
Design Considerations 2-20
Server Program Structure 2-25
Designing Applications for Batch Processing 2-27

3. Writing Pathsend Requesters

The Pathsend Procedure Calls 3-1

I nterprocess Communication in the Pathsend Environment 3-2

Basic Pathsend Programming 3-3
Programming for Failure Recovery 3-3
Security Issues 3-6
Avoiding Coded PATHMON Names 3-7

Context-Sensitive Pathsend Programming 3-8
Using Context-Sensitive Requesters With Context-Free Servers 3-8
Resource Utilization 3-8
Programming for Failure Recovery 3-9
Cancellation of Server-Class Send Operations 3-10

Writing Requesters That |nteroperate With NonStop TUXEDO Servers 3-11

4. Writing Pathway Servers
Basic Pathway Server Programming 4-1
Servers Shared by Different Types of Requesters 4-1
Guardian Servers and Pathway Servers 4-2
Server Stop Protocol 4-2
Handling of Messages from $RECEIVE 4-2
Pathsend Requester Failures 4-2
LINKMON Process Failures 4-3
Linkage Space Considerations 4-3
Considerations for Servers Used With SCREEN COBOL Requesters 4-3
Consideration for Servers Used With Remote Server Call (RSC) Clients 4-4
Nested Servers 4-4
Using Context-Free Servers With Context-Sensitive Requesters 4-4

NonStop TS/MP Pathsend and Server Programming Manual—132500
Vi

Contents 4. Writing Pathway Servers (continued)

4. Writing Pathway Servers (continued)

Considerations for Servers That Use the TMF Subsystem 4-5
Recommended Structure for Applications 4-5
Writing a Server to Use the TMF Subsystem 4-6
Using Audited and Nonaudited Files 4-7
Locking Records 4-8
Grouping Transaction Operations 4-8
Serversas Process Pairs 4-10
Transaction Deadlocks 4-10

Considerations for Debugging Pathway Servers 4-11
LINKMON Processand TCP Timeouts 4-11
PATHMON Process Timeouts 4-12
Server Timeouts 4-12
Avoiding Timeout Errors 4-12

Writing Context-Sensitive Servers 4-13
Functions of a Context-Sensitive Server 4-13
Detecting a Newly Established Dialog 4-14
Receiving, Servicing, and Replying to Messagesin aDialog 4-14
Correlating Messages With aDialog 4-16
Continuing aDidlog 4-16
AbortingaDialog 4-16
Terminating aDialog 4-16
Detecting an Aborted Dialog 4-16

Writing Pathway Servers That Interoperate With TUXEDO Requesters 4-17

5. Pathsend Procedure Call Reference

CdlsFromCor C++ 5-2

Cdls From COBOL85 5-3

CdlsFrom Pascad 5-4

CdlsFrom TAL or pTAL 5-5

SERVERCLASS DIALOG ABORT Procedure 5-6
Syntax 5-6
Considerations 5-6

SERVERCLASS DIALOG BEGIN Procedure 5-7
Syntax 5-7
Considerations 5-11

SERVERCLASS DIALOG END Procedure 5-12

Syntax 5-12
Considerations 5-12

NonStop TS/MP Pathsend and Server Programming Manual—132500
Vii

Contents 5. Pathsend Procedure Call Reference (continued)

5. Pathsend Procedure Call Reference (continued)
SERVERCLASS DIALOG SEND Procedure 5-13
Syntax 5-13
Considerations 5-16
SERVERCLASS SEND Procedure 5-17
Syntax 5-17
Considerations 5-20
SERVERCLASS SEND INFO Procedure 5-21
Syntax 5-21
Considerations 5-22
Usage Considerations for Pathsend Procedures 5-23
Condition Code 5-23
Waited /O 5-23
Nowait I/O 5-23
CdlsWithinaTMF Transaction 5-24
Server-Class Send Operation Number 5-24
Timeout Considerations for Pathsend Programming 5-27

6. Pathsend Errors
Types of Errors Returned by the Pathsend Procedures 6-1
Descriptions of Pathsend Errors 6-1

A. NonStop TS/MP Limitsfor Pathsend Reguesters

B. Examples
Pathsend Requester Example B-1
Nested Server Example B-53

Glossary
| ndex

NonStop TS/MP Pathsend and Server Programming Manual—132500
viii

Contents

Examples

Examples
Example 2-1. Sample Pathsend Requester Program Structure 2-15
Example2-2. COBOLS85 Server Program Example 2-25
Example B-1. Context-Free Pathsend Requester Program B-2
Example B-2. Context-Free Server Program B-53

Figures
Figurei. Related Documentation Xiii
Figure1-1. Pathsend Interprocess Communication 1-11
Figure1-2. Example Application Using a Pathsend Requester 1-16
Figure2-1. DataFlow for aBusiness Task 2-3
Figure 2-2. Relationships Between Transaction Functions 2-5
Figure 2-3. Pathway Application Programming for the TMF Subsystem 2-7
Figure2-4. GDSX asaFront-End Process 2-18
Figure2-5. GDSX asaBack-End Process 2-24

Tables
Table 1-1. Task and Manual Correspondences 1-2
Table 2-1. Considerations for Requester Programs 2-11
Table 4-1. Meaning of Error Codes Returned by Context-Sensitive Server in

Reply 4-15

Table 5-1. Summary of Pathsend Procedure Calls 5-1
Table A-1. Limitsfor Pathsend Requesters A-1

NonStop TS/MP Pathsend and Server Programming Manual—132500

iX

Contents

NonStop TS/MP Pathsend and Server Programming Manual—132500
X

— About ThisManual

This section describes the purpose and the contents of this manual and of other manuals
closely related to this manual.

This manual is one of a set of manuals that describe the NonStop Transaction
Services MP (NonStop TS/MP) and Pathway/Transaction Services (Pathway/TS)
products. The contents of these products are as follows:

e NonStop TS'MP: This product consists of the PATHMON process, the LINKMON
process, the PATHCOM process and interface, and the Pathsend procedure calls.

e Pathway/TS: Thisproduct consists of the terminal control process (TCP), the
SCREEN COBOL compiler and run-time environment, and the SCREEN COBOL
Utility Program (SCUP).

Together with the NonStop Transaction Manager/MP (NonStop TM/MP) product, the
NonStop TS/MP product forms the foundation for Tandem’s open transaction processing
and client/server products on NonStop Himalaya systems. Such products include the
NonStop TUXEDO system, the Remote Server Call (RSC) product, and the Pathway
Open Environment Toolkit (POET).

The Pathway/T S product supports requester programs that run in the Guardian
environment and communicate with terminals and intelligent devices. It requiresthe
services of the NonStop TS/MP product.

Purpose of ThisManual

This manual is acombined reference manual and programming guide. It contains
reference information about the Pathsend procedure calls, and it al'so contains
information about how to design and code applications using these calls.

In addition, this manual contains information about how to design and code Pathway
serversto be used with all types of requesters and clients.

Who Should Read This M anual

This manual isintended for programmers writing Pathway applications that include
Pathsend requesters, Pathway servers, or both. Readers should be experienced
programmers familiar with the Guardian environment and the Tandem programming
languages they are using.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Xi

About This Manual What Is in This Manual

What Isin ThisManual

This manual contains application design and programming information for writers of
Pathsend requesters and Pathway servers. This information includes syntax, usage, and
error-handling information for the Pathsend procedure calls. The manual has the
following structure:

Section 1, Introduction to Pathway A pplication Programming, contains an overview
of Pathway application programming, with emphasis on Pathsend requesters and
Pathway servers.

Section 2, Designing Your Application, provides information about Pathway
application design, with emphasis on Pathsend requesters and Pathway servers.

Section 3, Writing Pathsend Requesters, describes how to write requesters that use
the Pathsend procedure calls.

Section 4, Writing Pathway Servers, describes how to write Pathway servers.

Section 5, Pathsend Procedure Call Reference, provides the syntax, parameter
descriptions, and coding considerations for the Pathsend procedure calls.

Section 6, Pathsend Errors, provides cause, effect, and recovery information for all
Pathsend error codes.

Appendix A, NonStop TS/MP Limits for Pathsend Requesters, summarizes the
limits that apply to the Pathsend programming environment.

Appendix B, Examples, provides source code for an example Pathsend requester and
an example Pathway server.

A standard Glossary for al NonStop TS/MP and Pathway/TS manuals defines all
terms relevant to these products.

Related Documentation

This manual isonein aset of Tandem manuals for the NonStop TS/MP and Pathway/TS
products. Figurei, Related Documentation, shows the manuals that are most closely
related to this manual.

The following paragraphs describe each of the supporting manuals shown in Figure 1.

Pathway/TS TCP and Terminal Programming Guide. This guide describes how to
write requester programs using SCREEN COBOL.

Guardian Programmer’s Guide. This guide provides information about
programming in the Guardian environment, including use of the Guardian procedure
calls. Itisuseful to programmers who are writing Pathway servers, especialy if
they are writing them in C, C++, the Transaction Application Language (TAL), or
the Portable Transaction Application Language (pTAL).

NonStop TS/MP Pathsend and Server Programming Manual—132500
Xii

About This Manual

Related Documentation

Figurei. Related Documentation

Pathway/TS
TCP and
Terminal
Programming
Guide

application

Guardian
Programmer's

Guide

Further information
about Pathway

programming

Information about
problem
management

NonStop
TSIMP
Pathsend
and Server
Programming

Manual

Information
NonStop ;ba?nu;ging
LI a PATHMON

System .
environment

Management
Manual

Information
about related
products

Operator
Messages
Manual

Guardian
Procedure
Errors and
Messages
Manual

Introduction
to NonStop
Transaction
Processing

NonStop
TM/MP
Application
Programmer's
Guide

NonStop
TUXEDO Sys
App Dev

Guide

NonStop
TUXEDO Sys
Pathway

Trans| Serverq
Manual

CDTO022

For information about informational, warning, and error messages, refer to the following

manuals;

e Guardian Procedure Errors and Messages Manual. This manual describesthe
Guardian messages for Tandem systems that use the Tandem NonStop Kernel. The
manual covers various types of error codes and error lists associated with Guardian
procedure calls and al so the interprocess messages sent to application programs by
the operating system and the command interpreter.

NonStop TS/MP Pathsend and Server Programming Manual—132500

Xiii

About This Manual Related Documentation

e Operator Messages Manual. This manual describes system messages. For each
message the manual provides an explanation of the cause, a discussion of the effect
on the system, and suggestions for corrective action. The“PATHWAY Messages’
section describes the operator messages generated by the PATHMON environment.

For information about managing the PATHMON environment in which your Pathway
applications run, you might want to read the following manual:

e NonSop TYMP System Management Manual. This manual describes how to start,
configure, and manage a PATHMON environment. This manual also includes
information about monitoring and adjusting your PATHMON environment to
optimize performance, suggestions for diagnosing and fixing problems, and
manageability guidelines such as how to start objectsin parallel to improve
performance. It also describes the commands for configuring, starting, and
managing a PATHMON environment.

For information about related Tandem products, see the following publications:

e Introduction to NonStop Transaction Processing. This manual describes the
architecture, components, and benefits of Tandem transaction processing products,
including NonStop TS/IMP, Pathway/TS, and related products such as the NonStop
TUXEDO system.

e NonStop TM/MP Application Programmer’s Guide. This guide provides
information about programming for the Transaction Management Facility (TMF)
subsystem, including use of the TMF procedure calls. It isuseful to programmers
who are writing Pathsend requesters and Pathway servers, especialy if they are
writing them in C, C++, the Transaction Application Language (TAL), or the
Portable Transaction Application Language (pTAL).

e NonStop TUXEDO System Application Development Guide. This guide provides
information about writing NonStop TUXEDO applications. Pathsend requesters can
interoperate with NonStop TUXEDO applications either directly by using the
NonStop TUXEDO Application Transaction Monitor Interface (ATMI) functions, or
indirectly by using the Pathway trandlation server for the NonStop TUXEDO
system.

e NonStop TUXEDO System Pathway Trandation Servers Manual. This manual
provides information about writing Pathsend and SCREEN COBOL requesters that
interoperate with NonStop TUXEDO servers by using the Pathway to TUXEDO
trandation server, and information about writing Pathway servers that interoperate
with TUXEDO requesters (clients or servers acting as clients) by using the
TUXEDO to Pathway translation server. It also provides configuration information
for the two trandlation servers.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Xiv

About This Manual Other Manuals in the Manual Set

Other Manualsin the Manual Set

In addition to the NonStop TS/MP and Pathway/TS manuals shown in Figurei, the
manual set for these products includes the following manuals:

e Pathway/TS System Management Manual. This manual describes how to start,
configure, and manage Pathway/TS objects (TCPs, terminal objects, SCREEN
COBOL programs, and tell messages) ina PATHMON environment. It also
describes the commands for configuring, starting, and managing Pathway/TS
objects.

e NonStop TSYMP Management Programming Manual. This manual describes the
management programming interface to the Pathway subsystem, including
programmatic commands and related objects, event messages, and error lists.

e Pathway/TS Management Programming Manual. This manual describes the error
lists and event messages issued by the management programming interface to the
Pathway subsystem.

Other Manualsof Interest

Other manual s that might be of interest to readers of this manual include the following:

e Availability Guide for Application Design. This manual describes the features of
Tandem NonStop systems that support the availability of applications. This manual
includes a section about application availability in the Pathway transaction
processing environment.

e Guardian Programmer’s Guide. This guide provides information about
programming in the Guardian environment, including use of the Guardian procedure
calls. Itisuseful to programmers who are writing Pathway servers, especialy if
they are writing them in C, C++, the Transaction Application Language (TAL), or
the Portable Transaction Application Language (pTAL).

Your Comments|Invited

After using this manual, please take a moment to send us your comments. You can do
this by returning a Reader Comment Card or by sending an Internet mail message.

A Reader Comment Card islocated at the back of printed manuals and as a separate file
on the Tandem CD Read disc. You can either FAX or mail the card to us. The FAX
number and mailing address are provided on the card.

Also provided on the Reader Comment Card is an Internet mail address. When you
send an Internet mail message to us, we immediately acknowledge receipt of your
message. A detailed response to your message is sent as soon as possible. Be sure to
include your name, company name, address, and phone number in your message. |f
your comments are specific to a particular manual, also include the part number and title
of the manual.

Many of the improvements you see in Tandem manuals are a result of suggestions from
our customers. Please take this opportunity to help us improve future manuals.

NonStop TS/MP Pathsend and Server Programming Manual—132500
XV

About This Manual Your Comments Invited

NonStop TS/MP Pathsend and Server Programming Manual—132500
XVi

— Notation Conventions

General Syntax Notation

The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For example:

MAXATTACH

lower caseitalic letters. Lowercaseitalic lettersindicate variable items that you supply.
Items not enclosed in brackets are required. For example:

fil e-nanme

[] Brackets. Brackets enclose optional syntax items. For example:
TERM [\ syst emt nane.] $t er mi nal - nanme
| NT[ERRUPTS]

A group of itemsenclosed in bracketsis alist from which you can choose one item or
none. Theitemsin thelist may be arranged either vertically, with aligned brackets on
each side of thelist, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

LIGHTS [ON]
OFF]
[SMOOTH [num]]

K[X| D] address-1
{ } Braces. A group of items enclosed in bracesis alist from which you are required to
choose oneitem. Theitemsin the list may be arranged either vertically, with aligned

braces on each side of the list, or horizontally, enclosed in a pair of braces and separated
by vertical lines. For example:

LI STOPENS PROCESS { $appl - ngr - nane }
{ $process-nane }

ALLOMSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:
| NSPECT { OFF | ON | SAVEABEND }

. Ellipsis. An élipsisimmediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:
M address-1 [, newvalue]...
[-] {0]112]3]4|5|6|78|9}...

NonStop TS/MP Pathsend and Server Programming Manual—132500
XVii

Notation Conventions General Syntax Notation

An dlipsisimmediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char..."
Punctuation. Parentheses, commas, semicolons, and other symbols not previously described
must be entered as shown. For example:
error := NEXTFILENAME (file-nane) ;
LI STOPENS SU $pr ocess- nane. #su- nanme

Quotation marks around a symbol such as a bracket or brace indicate the symbol isa
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of theitemsisa
punctuation symbol such as a parenthesis or acomma. For example:
CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process- nane. #su- nane

Line Spacing. If the syntax of acommand istoo long to fit on asingle line, each continuation
lineisindented three spaces and is separated from the preceding line by a blank line.
This spacing distinguishes itemsin a continuation line from items in a vertical list of
selections. For example:

ALTER [/ OUT file-spec /] CONTROLLER

[, attribute-spec]...

li and !'o. Inprocedure calls, the!i notation follows an input parameter (one that passes data
to the called procedure); the o notation follows an output parameter (one that returns
datato the calling program). For example:

CALL CHECKRESI ZESEGVENT (segnent-id i
, error) o

li,0. Inprocedure calls, the!i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COWRESSEDI T (filenum) ; 'i,o
lizi. Inprocedure calls, the!i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME COWARE_ (filenanel:|ength Fi:
, filename2:1ength) ; Fici

NonStop TS/MP Pathsend and Server Programming Manual—132500
XVili

Notation Conventions Notation for Messages

lo:i. Inprocedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE GETINFO_ (filenum i
[filenane:maxlen]) ; lo:i

Notation for M essages

The following list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:
Backup Up.

lower caseitalic letters. Lowercaseitalic letters indicate variable items whose values are
displayed or returned. For example:
p-regi ster
process- nane

[] Brackets. Brackets encloseitems that are sometimes, but not always, displayed. For
example:
Event nunber = nunber [Subject = first-subject-val ue]

A group of items enclosed in bracketsisalist of al possible items that can be displayed,
of which one or none might actually be displayed. Theitemsin the list might be
arranged either vertically, with aligned brackets on each side of thelist, or horizontaly,
enclosed in apair of brackets and separated by vertical lines. For example:

LDEV Idev [CU%cu | CU%..] UP[(cpu,chan,%tlr,%unit)]
{ } Braces. A group of items enclosed in bracesisalist of all possibleitems that can be
displayed, of which oneis actually displayed. Theitemsin thelist might be arranged

either vertically, with aligned braces on each side of thelist, or horizontally, enclosed in
apair of braces and separated by vertical lines. For example:

LBU{ X | Y} POAER FAIL

process-nane State changed from ol d-objstate to objstate
{ Operator Request. }
{ Unknown.

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { K| Failed }

NonStop TS/MP Pathsend and Server Programming Manual—132500
Xix

Notation Conventions Change Bar Notation

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
%lpnotation precedes an octal number. The %Bpnotation precedes a binary number.
The %Hpnotation precedes a hexadecima number. For example:

%9©05400
P=%-regi ster E=%e-register

Change Bar Notation

Change bars are used to indicate substantive differences between this edition of the
manual and the preceding edition. Change bars are vertical rules placed in the right
margin of changed portions of text, figures, tables, examples, and so on. Change bars
highlight new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOL 85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for old
message types. In the CRE, the message type SY STEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

NonStop TS/MP Pathsend and Server Programming Manual—132500
XX

i | ntroduction to Pathway
Application Programming

This section introduces Pathway transaction processing applications, which you write
and run with the assistance of the NonStop Transaction ServicessMP (NonStop TS/IMP)
and Pathway/Transaction Services (Pathway/TS) software.

This section discusses the following topics:

e Advantages of the Pathway environment

e Pathway applications, including requesters and servers
e The Pathsend environment

e Client/server capabilities

e Other supported transaction processing environments
e Development tools and utilities

e A sample transaction processing scenario

This section does not describe the components of the NonStop TS/MP software in detail.
You can find more detailed information about these components in the introductory
sections of the NonStop TSYMP System Management Manual. The Introduction to
NonSop Transaction Processing manual summarizes the main features and capabilities
of the NonStop TS/MP software.

Which Sections Do You Need?

The remaining sections of this manual describe how to write two types of programs as
part of a Pathway application: requester programs that use the Pathsend application
program interface (API) and server programs that service requests from all types of
Pathway requesters. The sections are organized into logical groups of information for
easy reference. Depending on the types of requesters and servers in your Pathway
application and which parts of the application you are working on, you might not need

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-1

Introduction to Pathway Application Programming

Which Sections Do You Need?

toread all sections of this manual. Table 1-1 is a descriptive map listing which sections
are relevant to particular programming tasks.

Table 1-1. Task and Manual Correspondences

If Your Application
Includes...

Pathsend requesters

Pathway servers

You Need...

Section 2, Designing Your
Application

Section 3, Writing Pathsend
Requesters

Section 5, Pathsend Procedure
Call Reference

Section 6, Pathsend Errors

Appendix A, NonStop TS MP
Limits for Pathsend Requesters

Appendix B, Examples

Section 2, Designing Your
Application

Section 4, Writing Pathway
Sarvers

Appendix B, Examples

To Perform the Following...

Design an application including
Pathsend requesters

Write a Pathsend requester
program

Look up the syntax of Pathsend
procedures

Look up cause, effect, and
recovery for errorsreturned to a
Pathsend requester program

Look up limits pertaining to
Pathsend requesters

See examples of Pathsend
requester programs

Design an application including
Pathway servers

Write a Pathway server program

See examples of Pathway server
programs

If you are writing SCREEN COBOL requesters, you need the Pathway/TS TCP and
Terminal Programming Guide and the Pathway/TS SCREEN COBOL Reference Manual
for programming information.

If you are writing Pathsend requesters that communicate with NonStop TUXEDO
servers, or if you are writing Pathway servers that handle requests from NonStop
TUXEDO requesters (clients or servers acting as clients), you also need the manuals for
the NonStop TUXEDO system, particularly the NonStop TUXEDO System Application
Development Guide, for additional information. If you are using the Pathway to
TUXEDO trandlation server or the TUXEDO to Pathway translation server, you aso
need the NonStop TUXEDO System Pathway Translation Servers Manual. This manual
provides configuration, startup, and programming information.

NonStop TS/MP Pathsend and Server Programming Manual—132500

1-2

Introduction to Pathway Application Programming Advantages of the Pathway Environment

Advantages of the Pathway Environment

NonStop TS/MP provides ease of development, manageability, and the fundamental
strengths and benefits of Tandem NonStop systems. The strengths and benefits of
Tandem systems include data integrity, fault tolerance, high performance and low cost,
system security, scalability, and distributed processing. The following paragraphs
describe how NonStop TS/MP and related products—known together as the Pathway
environment—~benefit the application designer and programmer. The Introduction to
NonSop Transaction Processing provides afuller description of how all the Tandem
fundamentals apply to transaction processing.

Ease of Development

Development costs are one of the highest expenses associated with online transaction
processing (OLTP) systems. The more sophisticated the features and safeguards that are
built into your OLTP application—for example, multiprocessing, fault tolerance, and
data integrity—the greater the costs. When you use NonStop TS/MP and related Tandem
transaction processing products to create your OLTP applications, devel opment time and
efforts, and therefore costs, can be measurably reduced.

This cost reduction occurs because:

e NonStop TS/MP and related products provide the most complex components of an
OLTP application. NonStop TS/MP includes the transaction monitor (PATHMON),
the command interpreter for management (PATHCOM), and the means for
interprocess communication.

In addition, the NonStop Transaction Manager/MP (NonStop TM/MP) product
provides the transaction manager, and the Pathway/TS product provides a
multithreaded terminal control process (TCP) for communication with terminals,
including fault tolerance and transaction protection. (On Tandem NonStop system
models earlier than the Himalaya systems, Pathway/TS is packaged as part of the
Pathway transaction processing system.)

Used with or without NonStop TM/MP and Pathway/TS, NonStop TS/MP provides
arun-time Pathway environment to simplify your devel opment efforts for scalable
OLTP applications on amassively parallel processor architecture.

e Tandem makes valuable application devel opment tools and utilities available for the
Pathway environment. These devel opment tools and utilities can significantly reduce
the amount of programming time and effort required to generate a working Pathway
application.

The Remote Server Call (RSC) product facilitates client/server computing, alowing
workstation applications to access Pathway servers. A large number of packaged
tools and utilities are commercially available for use with RSC, including Tandem’s
Pathway Open Environment Toolkit (POET).

e The Pathway environment helps you standardize program code. You can repeat and
reuse code; you do not have to write the same requester and server programs over
and over again. This ability to reuse code saves development time.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-3

Introduction to Pathway Application Programming Manageability

e The Pathway environment allows you to isolate and test your requester and server
programs before adding them to a running application. This capability isimportant
because coding errors are difficult, time-consuming, and expensive to find after an
application is put into production.

e OLTP products that are compatible with the Pathway environment are available from
third-party vendors through the Tandem Alliance program.

In addition to making initial development faster and easier, the structured Pathway
environment allows you to implement enhancements and devel op new applications by
simply adding new requesters, sharing existing servers, or adding new serversto the
existing application. You can use code modules in the existing application as templates
for new modules in the modified or new application.

M anageability

Online transaction processing operations present a dynamic environment in which
hundreds of different transactions—from disparate locations and many different 1/0
devices—can be entered concurrently and processed within seconds. To process
hundreds of transactions, thousands to millions more application program instructions
must be executed. It is critical that you be able to control and monitor such a complex
processing environment.

To control and monitor your Pathway environment—as well as simplify the task of
system management—NonStop TS/MP provides the following:

e A PATHMON process, which provides a single point of control over your OLTP
applications and operations

e A choice of two different system management interfaces: the interactive PATHCOM
interface and the Subsystem Programmatic Interface (SPI)

e Statusand error reporting capabilities, provided through alog file and through the
Event Management Service (EMYS)

Because NonStop TS/MP provides these processes and capabilities, you do not have to
spend the time and money to develop, test, and implement comparable mechanisms.

For more information about the PATHMON process, the management interfaces, and
status and error reporting capabilities in the Pathway environment, refer to the
NonSop TSYMP System Management Manual, the Pathway/TS System Management
Manual, the NonSop TSYMP Management Programming Manual, and the Pathway/TS
Management Programming Manual.

Data Integrity

If your database is corrupted by a hardware or software failure, you might need weeks to
isolate and then correct the problem. Because an inaccessible or inconsistent database
can have a dramatic, adverse effect on business operations, Tandem developed the
Transaction Management Facility (TMF) subsystem, provided in the NonStop TM/MP
product, as away of ensuring database consistency. The TMF subsystem, which works
with NonStop TS/MP, protects the entire database from catastrophic system failures by
maintaining an audit trail of database changes (that is, transactions); an audit trail is also

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-4

Introduction to Pathway Application Programming Fault Tolerance

commonly known as a transaction log. You can use the audit trail to rebuild the database
in the event of a hardware or software failure.

The design of Pathway servers supports the integrity of individual transactions and
therefore transaction processing protection as a whole. Because the requester/server
model allows aclear division of processing functions, application programmers can code
each server program to handle a specific set of transaction types: for example, checking
an account balance, entering a new customer, or updating the parts inventory. The server
processes service their transactions by performing the same set of tasks over and over
again. In thisway, avalid transaction is defined as a specific set of tasks both by the
requester program and within the server logic.

If for any reason a server is unable to complete all tasks involved in processing a
transaction, it can abort the transaction and thereby maintain the transaction’s integrity.
The server does not have to wait for the requester to abort the transaction.

Fault Tolerance

Because OLTP systems automate core business operations and deliver key business
services, companies depend on OLTP applications to stay up and running—even if a
hardware or software component fails.

Tandem NonStop systems, which are specifically intended for online transaction
processing, are designed to remain continuously available during the hours when
transactions are being entered and businessis being conducted. Typically, a Tandem
NonStop system can continue processing despite the failure of any single software or
hardware component within that system. This ability is referred to as fault tolerance.

In the Pathway environment, automatic fault tolerance (that is, fault tolerance that does
not require any additional programming effort on your part) is provided by the use of
process pairs and the actions of the PATHMON process, the TMF subsystem, and the
terminal control process (TCP) provided with the Pathway/TS product.

In the Guardian operating environment, the functions and tasks of an application are
performed by processes, which are running programs. A process pair consists of a
primary process, which does some specific function in the overall work of the
application, and a secondary (backup) process, which remains ready to take over if the
primary process fails. During processing, the primary process keeps the backup process
informed of what it is doing (for example, sending a request) by means of special
interprocess messages, in an activity called checkpointing. Through checkpointing, the
backup process has enough information to take over and continue if the primary process
fails.

Both the PATHMON process and the TCP can be configured as process pairs to support
Pathway applications. When the PATHMON process is configured as a process pair, you
are ensured the ability to control and monitor OLTP system operation even if the
primary PATHMON process fails. When a TCP is configured as a process pair and the
primary TCP fails, terminals controlled by the TCP can still be used.

Pathway server classes provide additional fault tolerance by allowing requeststo be
rerouted to surviving server processes in a server classif one server processfails.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-5

Introduction to Pathway Application Programming Other Tandem Fundamentals

Besides process pairs and server classes, fault tolerance in a Pathway application is
ensured by the PATHMON process, the TCP, and the TMF subsystem. Using
information stored in the PATHMON configuration file, the PATHMON process
automatically restarts processes at their initialization level after afailure, allowing these
processes to resume work immediately.

Other Tandem Fundamentals

Besides dataintegrity and fault tolerance, the Pathway environment also provides the
high performance and low cost, system security, scalability, and distributed processing
of Tandem NonStop systems.

High Performance and Low Cost

The more transactions your system can process (preferably without degrading response
time), the lower the cost of each transaction. The Pathway environment supports fast
response time and high system throughput by allowing:

e Component processesin a Pathway application (for example, requester and server
processes) to reside and execute concurrently in different processors of a
multi-processor system or even a network. Thisis called multiprocessing.

e More than one Pathway application to run in a Tandem NonStop system.

NonStop TS/MP also supports fast response time and high system throughput by
allowing the replication of processes and programs and the distribution of processes. For
example:

e The PATHMON process can dynamically create additional copies of server
processes at times of peak demand and delete the additional servers when activity
dlows again.

e You can add copies of requester and server programs to your Pathway application to
maintain fast response time when the number of users or terminals increases.

e You can distribute processes such as requesters and servers close to the resources
they manage, reducing interprocess communication time within a network.

e You can distribute requesters and serversto less active processors if peak activity on
a particular processor is affecting throughput or response time.

System Security

The Guardian operating environment includes basic mechanisms for controlling access
to files, whether they are datafiles or program files. Because NonStop TS/MP runsin
the Guardian operating environment, Guardian system security parameters also apply to
Pathway users and processes. In addition, you can supplement the security features of
the Guardian environment with the Safeguard product, which provides authentication,
authorization, and auditing capabilities for Guardian files.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-6

Introduction to Pathway Application Programming Pathway Applications

Scalability

Your organization must be able to expand its transaction processing system as its
operations evolve and its technical requirements change. Tandem NonStop systems are
expressly designed to support incremental, modular expansion, allowing you to increase
the size and processing power of your transaction processing system by:

e Adding hardware and application resources to your existing system

e Linkingindividua Pathway applicationsinto a single network or adding more
Pathway applications to an existing network

e Supporting an open systems architecture in which standards-based networks as well
as devices and systems from other vendors can be connected to your Tandem system

Distributed Processing

Data communi cations technology allows organizations to extend their online operations
over long distances to form global networks and to support distributed processing. The
Pathway environment, in conjunction with the Tandem NonStop Kernel operating
system, allows you to distribute application processes within a single system.
Additionally, NonStop TS/MP and NonStop TM/MP, in conjunction with the Expand
networking software, allow you to spread processes, data, and transactions across a
network of Tandem NonStop systems. The coordination of transactions among
application servers residing within an Expand network and possibly accessing different
resource managers (NonStop SQL/MP and Enscribe) is known as distributed transaction
processing (DTP).

Pathway Applications

Pathway applications consist of two types of programs:. requester programs and server
programs. This design alows application logic to be distributed near the resourcesit
manages. For example, presentation services are located near terminal devices or
workstations; database logic resides in server programs near that database. Requesters
and servers communicate by using the Guardian file system or the message system that
is part of the Tandem NonStop Kernel.

Usersinteract with your application by using devices and processes controlled by your
requester programs. Often these devices are terminals through which the users enter and
retrieve transaction data. They might also, however, be intelligent devices such as
personal computers, workstations, point-of-sale devices, or automatic teller machines
(ATMs). Or, they might be Guardian processes that provide transaction input from afile
or other batch medium.

Server processes receive requests from requester processes to access a database to add,
retrieve, or modify information. Server processes process request messages and send
reply messages with the results of the work on the database.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-7

Introduction to Pathway Application Programming Servers and Server Classes

Serversand Server Classes

You can write Pathway server programsin C, C++, COBOL85, Pascal, the Transaction
Application Language (TAL), the Portable Transaction Application Language (pTAL),
FORTRAN, or Extended BASIC in the Guardian environment. Alternatively, you can
write Pathway server programsin C or COBOLS85 in the NonStop Kernel Open System
Services (OSS) environment; you must program such serversto read the Guardian
$RECEIVE file as described in the Open System Services Programmer’s Guide. In both
cases, you configure and manage the servers using the PATHCOM interactive interface
or the Pathway management programming interface (based on the Subsystem
Programmatic Interface, or SPI) in the Guardian environment.

The same server programs, whether devel oped in the Guardian environment or in the
OSS environment, can be used with severa different requester and client interfaces.
These interfacesinclude SCREEN COBOL, the Pathsend procedures, the Remote Server
Cdl (RSC) interface, and the Pathway Open Environment Toolkit (POET).

The Pathway environment provides the feature of server classes. A server classisa
collection of replicated Pathway server processes. All server processesin a server class
provide the same set of functions; that is, they execute the same program.

Server Processes

Server processes provide the following benefits:

e Server processes help ensure transaction integrity and, therefore, the integrity of the
database.

e Server code can be reused by many requester programs, and you can separate
presentation services from database functions.

e You can control which transactions can be performed on your node. You can control
the logic of the servers, database names, disk names, and so on.

e Indistributed environments, server processes provide high performance by allowing
you to use remote serversinstead of performing multiple remote I/O operations,
placing transaction processing close to system resources.

Server Classes
Server classes provide the following benefits:

e You can minimize use of system resources—for example, processes and file opens—
because server classes are shared and highly utilized.

e You can maximize performance because server classes allow multiple copies of
server processes to run concurrently in multiple processors.

e Based on configuration settings determined by the system manager or operator, the
PATHMON process can dynamically create additional server processes within the
server class to maintain acceptable throughput as the workload increases.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-8

Introduction to Pathway Application Programming Requesters

e By temporarily freezing and stopping the server class and changing configuration
parameters, the system manager or operator can adjust the number of serversthat are
active at any one time to suit response-time requirements.

e The system manager or operator can balance the workload over multiple processes
and across multiple processors, which provides fault tolerance in addition to load
balancing: if aprocessor fails, the server classis still available.

Requesters

The Pathway application programming environment provides two programming
interfaces for requesters:

e The Pathsend application program interface (API), provided in the NonStop TSMP
product

e The SCREEN COBOL language, provided in the Pathway/TS product

Requesters written using these two interfaces are briefly described in the following
paragraphs. In addition, other Tandem products are available to assist you in writing
requesters and clients that communicate with Pathway servers. These products include
the Remote Server Call (RSC) product and the Pathway Open Environment Toolkit
(POET) for workstation clients and the Extended General Device Support (GDSX)
product for front-end and back-end processes.

Section 2, Designing Your Application, provides additional information about how
Pathsend requesters, SCREEN COBOL requesters, RSC and POET clients, and GDSX
processes can be used in Pathway applications.

Pathsend Requesters

The Pathsend procedure calls and the LINKMON process allow Guardian processesto
access Pathway server classes. The Pathsend procedures bring the benefits of Pathway
server classesto awide range of requesters, providing flexibility in application design.
They also provide high performance for requesters that do not need a complex,
multithreaded interface to terminals or intelligent devices. Finally, they provide support
for both context-free and context-sensitive servers.

Pathsend requesters support the following features:
e Useof the TMF subsystem

e Automatic retry of I/O operationsto a server process if the primary process of a
server process pair fails, through use of the Guardian file system

The Extended General Device Support (GDSX) product provides a set of “pseudo
Pathway procedures’ that allow you to call Pathsend proceduresin the user-supplied part
of aGDSX program. A GDSX process can thus function as a Pathsend requester. GDSX
processes can communicate with devices by means of a number of data communications
protocols, as described in the Extended General Device Support (GDSX) Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-9

Introduction to Pathway Application Programming The Pathsend Environment

SCREEN COBOL Requesters

SCREEN COBOL requesters, which are compiled by the SCREEN COBOL compiler
and then interpreted and executed by the terminal control process (TCP), provide ease of
programming if you need to handle large numbers of terminals or intelligent devices or
If you need screen-presentation services. The TCP and the SCREEN COBOL language
produce a high-quality, manageable application. The TCP provides multithreading of
requesters, fault tolerance, terminal device configuration, and operations management so
that you do not need to program these features in your application. Transaction
protection through use of the TMF subsystem, with simplified programming, and
automatic retry of 1/0O operations are also provided. SCREEN COBOL requesters are
described in the Pathway/TS TCP and Terminal Programming Guide and the
Pathway/TS SCREEN COBOL Reference Manual.

You can use an Extended General Device Support (GDSX) process as a front-end
process to the TCP and SCREEN COBOL requesters to communicate with devices not
directly supported by the TCP. Use of the GDSX product is described in the Extended
General Device Support (GDSX) Manual.

The Pathsend Environment

The Pathsend environment includes Pathsend processes and LINKMON processes.

e Pathsend processes, written as part of your application, use Pathsend procedure calls
to make requests to server classes.

e LINKMON processes, supplied by Tandem, control communication between
Pathsend processes and Pathway server classes.

Pathsend Processes

In writing programs to run as Pathsend processes, you use a set of proceduresthat are
part of the Guardian procedure library. These procedures allow you to send request
messages to server processes within aserver class and to receive the servers' replies.
You can call the Pathsend procedures from programs written in C, C++, COBOL 85,
Pascal, the Transaction Application Language (TAL), or the Portable Transaction
Application Language (pTAL).

Pathsend procedure calls are provided for both context-free and context-sensitive
communication with servers. A context-free server accepts a single message from a
requester, performs the requested tasks, and issues a single reply to respond to the
requester. After the reply message is issued, the server retains no information (context)
that can be used in subsequent requests. A context-sensitive server engagesin a
multiple-message communication, or dialog, with a requester. Between messages, the
server retainsinformation (context) pertaining to the dialog.

The use of the Pathsend procedure calls is described in Section 3, Writing Pathsend
Requesters, and their syntax is described in Section 5, Pathsend Procedure Call

Reference. Design considerations related to context-free and context-sensitive servers |
are discussed in Section 2, Designing Your Application.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-10

Introduction to Pathway Application Programming LINKMON Processes

LINKMON Processes

LINKMON processes, together with the PATHMON process, perform link-management
functions for Pathsend processes. (A link is a connection to a server process.) A
LINKMON process executes in each processor, or CPU, of asystem. Asalink manager,
aLINKMON processis responsible for managing links on behalf of al the Pathsend
processes executing in its processor.

If you have the NonStop TS/MP software installed on your system, a LINKMON
process is automatically started in each processor. You cannot start aLINKMON process
with a RUN command.

Figure 1-1 shows a sample Pathsend environment in which Pathsend processes and a
LINKMON process reside in the same processor on system \A. The LINKMON process
sets up communication to the Pathway server class on system \B through the PATHMON
process controlling the server class. The role of the PATHMON process in establishing
this communication is described in Section 3, Writing Pathsend Requesters.

Asshown in the figure, only server-class control information is passed to the
LINKMON process; the application data moves directly from the Pathsend requester
process to the server process.

Figure 1-1. Pathsend Interprocess Communication

\A \B

CPU X

Pathsend
Requester

Control
Information

LINKMON -t
Control Information

Data
Server Class X

004

Although you can obtain some information about LINKMON processes through the
PATHMON process (by means of PATHCOM or SPI), LINKMON processes are not
managed as PATHM ON-controlled objects. For details about management of
LINKMON processes, refer to the NonSop TYMP System Management Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-11

Introduction to Pathway Application Programming Client/Server Capabilities

Client/Server Capabilities

The Remote Server Call (RSC) product and the Pathway Open Environment Toolkit
(POET) bring client/server capabilities to the Pathway environment by alowing you to
move requester functions to a workstation. RSC allows client programs residing on a
workstation to access Pathway server classes in any of three different ways:

e Through a Pathsend requester provided by RSC; this requester works with the
LINKMON process.

e Through aspecial intelligent device support (IDS) requester supplied with RSC; this
requester works with the terminal control process (TCP) provided in the Pathway/TS
product.

e Through an IDS requester that you develop yourself in the SCREEN COBOL
language; this requester works with the TCP provided in Pathway/TS.

RSC also allows requesters to access Guardian processes directly. To facilitate access to
servers and Guardian processes, RSC consists of multiple components within both the
workstation and Tandem computer environments.

The Pathway Open Environment Toolkit (POET) provides tools for developing RSC
clients for the Microsoft Windows environment. These tools include asimplified
programmatic interface, name mapping, and data conversion mapping.

For information about RSC, refer to the Remote Server Call (RSC) Programming
Manual. For information about POET, refer to the Pathway Open Environment Toolkit
(POET) Programming Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-12

Introduction to Pathway Application Programming Other Transaction Processing Environments

Other Transaction Processing Environments

The NonStop TS/MP product serves as the foundation for open transaction processing
on Tandem NonStop systems. In addition to the Pathway environment, NonStop TSIMP
supports the NonStop TUXEDO transaction processing system. This product allows you
to develop TUXEDO transaction processing applications to run on Tandem NonStop
systems, thus providing these applications with the fundamental advantages of Tandem
NonStop systems.

When using the NonStop TUXEDO system, you work in the NonStop TUXEDO
programming environment; you need not use the requester and server programming
Interfaces described in this manual. Note, however, that you can devel op applications
that use a combination of modules from the NonStop TUXEDO environment and the
Pathway environment.

You can write a Pathsend requester that also acts as a NonStop TUXEDO client, directly
invoking the services of aNonStop TUXEDO server, by using the NonStop TUXEDO
Application Transaction Monitor Interface (ATMI) functions. For more information
about this mechanism, refer to Section 3, Writing Pathsend Requesters, in this manual
and to the NonStop TUXEDO System Application Development Guide.

Alternatively, you can write a Pathsend or SCREEN COBOL requester that indirectly
invokes the services of aNonStop TUXEDO server by using the Pathway to TUXEDO
trandation server provided with the NonStop TUXEDO product. For more information
about this trandation server, refer to the NonSop TUXEDO System Pathway Translation
Servers Manual.

You can write aNonStop TUXEDO native System /T client or OSS workstation client
that directly invokes the services of a Pathway server by including calls to the Pathsend
procedures described in this manual. For more information, refer to the NonStop
TUXEDO System Application Development Guide.

Alternatively, you can write a TUXEDO client (or server acting as a client) that
indirectly invokes the services of a Pathway server by using the TUXEDO to Pathway
trandation server provided with the NonStop TUXEDO product. This trandlation server
allows access to Pathway servers from remote TUXEDO requesters (those that use
System /Domain) and non-native TUXEDO workstation clients, neither of which can
make Pathsend procedure calls. For more information about the TUXEDO to Pathway
trandation server, refer to the NonStop TUXEDO System Pathway Translation Servers
Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-13

Introduction to Pathway Application Programming Development Tools and Utilities

Development Tools and Utilities

When you are writing requester and server programs for your Pathway application, a
variety of program development tools and utilities are available to you. These tools and
utilities allow you to shorten the amount of time it takes to code, debug, and test your
programs.

Programming L anguages and Related Tools

Tandem provides compilersthat allow you to write application programsin a number of
programming languages, including C, C++, COBOL 85, SCREEN COBOL, Pascdl, the
Transaction Application Language (TAL), the Portable Transaction Application
Language (pTAL), FORTRAN, and Extended BASIC. In addition, the Crossref cross-
reference generator is available if you want to supplement the cross-reference listings
provided by the compilers.

The lnspect Symbolic Debugger

The Inspect product is the symbolic program debugging tool for Tandem NonStop
systems. You can use it interactively to examine and modify the execution of Guardian
processes (for example, Pathsend requesters and Pathway servers) as well as SCREEN
COBOL requesters. An online help facility is available for al Inspect commands and
topics.

Using the Inspect product in a Pathway environment requires the use of two terminals or
aterminal emulator with windowing capability. One terminal or window acts as the
application terminal, while the second terminal or window acts as a command or Inspect
terminal.

The Pathmaker Application Generator

The Pathmaker product helps you create Pathway applications consisting of requester
programs written in SCREEN COBOL and server programswritten in C or COBOL 85.
To create applications with the Pathmaker product, you:

e Enter information about your application into a series of screen-based entry forms,
which the Pathmaker product then stores in a catalog

e Usethe Tandem text editor, TEDIT, to create source files containing C or COBOL 85
service code

At your command, the Pathmaker product uses the information from the catalog and the
TEDIT fileto generate SCREEN COBOL requester code, C or COBOL 85 server code,
and command files to configure and start the finished Pathway environment for testing.

The Pathmaker product simplifies the creation of Pathway applications by:

e Generating application code in a uniform structure for all requesters and servers, to
help ssimplify maintenance and modification

e Producing program statements for tasks that are specific to the Pathway environment

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-14

Introduction to Pathway Application Programming Client/Server Development Tools

e Automatically generating TMF statements in your requester programs when you
indicate that you want your programs to have TMF protection

e Providing acentral location for most application information
e Creating error-handling code for the most commonly encountered errors

e Letting you simulate application screens and navigate from one application screen to
another before you write asingle line of code

Applications devel oped with the Pathmaker product can access data from databases
managed by either the NonStop SQL/MP relational database management system or the
Enscribe database record manager. If you are using Pathsend requesters, or clients that
use RSC or POET, you can use the Pathmaker tool to create prototype servers.

Client/Server Development Tools

As mentioned earlier, the Remote Server Call (RSC) product facilitates client/server
computing, allowing workstation applications to access Pathway servers. A large
number of packaged tools and utilities are commercially available for use with RSC,
including Tandem’s Pathway Open Environment Toolkit (POET).

Transaction Processing Scenario

Figure 1-2 and the description that follows it provide an example of how transactions
from Pathsend requesters are processed. The figure shows the path of transactions from
an IBM system to a server class on a Tandem NonStop system.

Note. The figure does not reflect the actual flow of data from the Pathsend requester to the
Pathway server class. Only server-class control information is passed to the LINKMON
process; the application data moves directly from the Pathsend process to the server class.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-15

Introduction to Pathway Application Programming Transaction Processing Scenario

Figure 1-2. Example Application Using a Pathsend Requester

IBM System IBM Terminals

Application - - [_][j
| 5

)

0

-

Tandem NonStop System

NonStop TS/MP Environment

PATHMON

Server Class

T~ Request _ ’\
LINKMON) B @

Reply

o

._7 n
2
é ”

<

Pathsend
Requester

Database

CDTO017

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-16

Introduction to Pathway Application Programming Transaction Processing Scenario

In this scenario, clerks at an order entry office enter their transactions into terminals
attached to an IBM system. Processing of the transactions, however, requires access to a
database that is linked to a Tandem NonStop system.

1.

10.

11.

The clerks enter transactions into their terminals and initiate processing by pressing
function keys. Any preliminary checking or editing is performed by the application
on the IBM system.

The IBM system collects the transactions and sends them to a Pathsend requester
located on the Tandem NonStop system. The transactions are sent by using a high-
speed networking product; for example, Tandem’s SNAX Advanced Peer
Networking (SNAX/APN) product.

The Pathsend requester accepts the transactions for the Tandem NonStop system and
formats a request message containing the name of the server class and the data
needed by the server to complete its work. The TMF transaction begins.

The Pathsend requester forwards the request message to the LINKMON process by
calling the Pathsend SERVERCLASS SEND _procedure. (Thisis a context-free

message.)

If the LINKMON process does not have alink to the specified server class, the
LINKMON process asks the PATHMON process for alink to a server process in the
server class. The PATHMON process replies that a server process is available. If the
LINKMON process already has alink to the server class, this step is not performed.

The LINKMON process forwards the request to the server process by using
NonStop Kernel interprocess communication.

The server process receives and reads the request message.

Executing NonStop SQL/MP statements in its program, the server process accesses
the database and updates the appropriate information.

The server process formats a reply message, which verifies that the information has
been updated, and replies to the LINKMON process by using NonStop Kernel
interprocess communication.

The LINKMON process receives and forwards the reply messages to the Pathsend
requester. The TMF transaction ends.

The Pathsend requester returns the reply messages to the IBM system, where the
application displays the information on the terminal screens.

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-17

Introduction to Pathway Application Programming Transaction Processing Scenario

NonStop TS/MP Pathsend and Server Programming Manual—132500
1-18

% Designing Your Application

To develop afunctioning Pathway application, you must identify the individual
transactions in your business operations, design and build the application database, and
design and code requester programs and server programs. This section describes the
design of transactions and databases for Pathway applications and the design of
requester and server programs.

To explain these application design tasks, this section uses as an example an application
that processes sales orders for a distributorship. The example shows how the Pathway
environment can be used to create an OLTP application that supports the
distributorship’s order-processing operations.

The distributorship in the example has three offices linked by telecommunications:

e \CORPisanetwork node at corporate headquarters where the purchasing, accounts
receivable, and accounts payabl e functions are managed.

¢ \WHSisanetwork node in awarehouse where the inventory, shipping, and
receiving functions are performed.

e \REG isanetwork nodein asales office that is responsible for processing all
customer orders in a particular geographic region. Order-processing functions
consist of entering orders as input and maintaining records of each order. To perform
these two functions, the order processing group:

e Checkswith inventory control to determine if items to be ordered are in stock

e Sendsinventory control shipping and ordered-items information about each
order

e Gets customer credit information from accounts receivable

e Sends billing information to accounts receivable

e Answers customer inquiries about order status

e Records complete information about each order in the database

Designing Transactions

Thefirst step in developing a Pathway application is to identify and define the
transactions that your application will process. To do this, you isolate the business tasks
you plan to automate, analyze the flow of information within those tasks, list the
transactions that result from the analysis, and then identify the various components of
the transactions. After these tasks are performed, you protect each transaction, and
therefore the integrity and consistency of the database, with the Transaction
Management Facility (TMF) subsystem.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-1

Designing Your Application Analyzing Data Flow

Analyzing Data Flow

Analyzing the flow of data involves identifying what information isrequired for a
business task, determining the order in which that information is required, and
specifying how the information is to be handled. To automate the order-processing tasks
of the previously described distributorship, for example, you could analyze the flow of
information as follows:

1.

9.

10.
11.

12.

Accept the customer’s identification number, arequested delivery date for the order,
and shipping instructions such as the delivery address.

Check the customer’s identification number to ensure that the customer is defined in
the \REG database; get the customer’s name and address from the \REG database;
and get anew order identification from the \REG database.

Accept alist of order items along with the requested quantity for each order item.

Check the current quantity available, in the database on \WHS, of each ordered item
to ensure that sufficient quantity existsto fill the order.

Accept any special instructions, such as back-ordering out-of-stock items, required
to process the order.

Calculate the total order cost; get the current customer balance and credit limit from
the \REG database; add the total order cost to current customer balance; and ensure
that the new balance does not exceed the customer’s credit limit.

Ask the customer to confirm the order.

After the customer has confirmed the order, subtract the quantity ordered from the
current quantity available, in the \WHS database, for each ordered item.

Add the total order cost to the customer’s current balance in the \REG database.
Record the order information in the \REG database.

Transmit the order information in the accounts receivabl e files to the \CORP
database and record the information in the database.

Record the order shipping information in inventory files on the \WHS database.

Assume that your analysis of the previous flow of information shows that only two
transactions need to be created to support order processing: an Add New Customers
transaction and an Enter Sales transaction. The Enter Sales transaction, which accepts
and records al the information associated with a customer order, isthe example used in
the rest of this section.

The data flow outlined in the previous stepsisillustrated in Figure 2-1.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-2

Designing Your Application

Analyzing Data Flow

Figure 2-1. Data Flow for a Business Task

TN
\REG

Customer

Information

Order IDs
v

Inventory
Data

N~

Customer
Credit

1. Accept: 2.
— Customer ID — Check customler ID.
— I > — Get customer's name
— Requested shipping date and address
— Shipping instructions _ Get order ID.
3. Accept: 4.
. . —Check quantity available
— List of ordered it .
— ISt of oraered items — > for delivery of each
— Quantity of each item -
ordered item.
5. Accept: 6.
— Calculate order cost.
| | — Back-order information — Get customer balance
- — > and credit limit.
ﬂ — Subtract order cost from
balance and check limit.
7. Accept: 8.
— Subtract quantity ordered
— Confirmation — > from quantity available.
9, 10.
— Update customer balance.
—® — Record order data.
—
11.
ol Record order information.
12.
|l Record order information.

Data

N~

\WHS

Inventory
Data/
Shipping

\Data_~/

Customer
Credit Data/

Order Data
v

L Accounts
Receivable

@y

\WHS

Inventory
Data/

Shipping
“—Data ~

CDT028

NonStop TS/MP Pathsend and Server Programming Manual—132500

2-3

Designing Your Application Identifying Transaction Components

| dentifying Transaction Components

After you have identified the Enter Sales transaction for the order-processing
application, you list the functions performed by the transaction and group them either
into data collection and validation operations or into database update operations. For
example, the key functions performed by the Enter Sales transaction during data
collection and validation are:

Assembling information for the order header, including:

Obtaining the order-1D

Accepting the customer-1D
Accepting the requested delivery date
Accepting shipping instructions
Checking the customer-1D

Obtaining the customer’s name and address from the database

Assembling the order, including:

Accepting the list of order items and the quantity of each item
Checking the current quantity available for each item ordered
Accepting special instructions

Calculating total order cost

Obtaining the customer’s balance and credit limit from the database

Adding the total cost to the customer’s balance and ensuring that it does not
exceed the credit limit

The key function performed by the Enter Sales transaction during database update
operationsis order completion. The order completion function includes:

Subtracting the quantity ordered from the current quantity available for each ordered
item

Adding the total order cost to the customer’s current account balance

Recording the order in the database

Recording the order invoice in the accounts receivabl e files

Recording order shipping information in the inventory files

The relationships of the various functions for the Enter Sales transaction are illustrated
in Figure 2-2. The dark arrows in the figure show the sequence of actions from Step 1
through Step 3. Thelighter arrows show the flow of information.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-4

Designing Your Application Identifying Transaction Components

Figure 2-2. Relationships Between Transaction Functions

C >

Order-ID
Order-ID
D
Customer Information ©
. Customer
Customer-ID . N~
c Detail Assemble Order Header
ustomer-Details Hea_cy
\
Item Detall

Customer
Credit

Customer Balance

Item Quantity Available Quantity Y
Y Yy Available
D ltem-ID. Quantity ~
'@cept) -

! | (Display Item Details |ter_ny | Order

A 11
Quantity Ordered
_Order Cost
. Y
|_Display Totals
Confirm Order ‘/ Complete Order Totals
"Done” o Order [
Shipping Request e Ship-ID
Invoice Request Invoice-ID
Legend AR

Assemble information for order header; display at terminal and add to database;

optionally change customer information.

Accept items in order, check item availability and customer credit; display item details

at terminal and add to database.

Display totals at terminal and get confirmation; update item quantity and customer balance;
add totals to database; inform related applications about order.

[~]

] E]

Later, when order is shipped and customer billed, add shipping and invoice numbers to database.

CDT029

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-5

Designing Your Application Protecting Transactions

Protecting Transactions

After listing and grouping the components of the Enter Sales transaction, you protect the
integrity of each transaction, and ultimately the consistency of the database, with the
TMF subsystem. The following pages outline how to integrate the TMF subsystem with
your business transactions. For information about the overall features of the TMF
subsystem, including database file recovery and audit trails, refer to the Introduction to
NonSop Transaction Processing.

Defining TMF Transactions

From a systems perspective, a transaction includes al the steps necessary to transform a
database from one consistent state to another. A TMF transaction must be constructed as
alogical unit of work: that is, all parts of a transaction, which usually consists of
multiple operations, must be handled as a single entity. If any parts of a TMF transaction
are not successfully completed or applied to a database, then none of the transaction
parts are applied to the database. By forcing all components of a transaction to be
handled as a single unit of work, the TMF subsystem prevents inaccurate or partial
updates to the database and protects database consistency.

At the application level, a TMF transaction is defined by special procedure calls or
statements that specify the beginning and end of atransaction. For example, in a
Pathsend requester program, a transaction begins with a call to the
BEGINTRANSACTION procedure and ends with a call to the ENDTRANSACTION or
ABORTTRANSACTION procedure. The procedure calls that define TMF transactions
act as brackets; that is, the statements are placed before and after the add record, update
record, and delete record procedures in your requester program.

Figure 2-3 illustrates the use of the TMF subsystem by a Pathsend requester program
and a Pathway server program. In the illustration, the variable called TRANSID actsasa
transaction identifier.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-6

Designing Your Application Protecting Transactions

Figure 2-3. Pathway Application Programming for the TMF Subsystem

I I
COBOLS5, C, COBOLS5, C,
C++, Pascal, or C++, Pascal,
TAL TAL, ...
\ y
4 \ 4 N\

BEGINTRANSACTION Rrocess|request by:

. TRANSID | —Reading files TRANSI
Request database :> —Locking records

(following TMF

services .
. record-locking rules
. Audited
Perform checkpointing —Changing records Database
in files (changes arg Files

as needed

associated with
TRANSID supplied
by requester)

Abort and restart

transaction if necessary . .
. —Aborting transaction

. if necessary
ABORTTRANSACTION[K)
or

ENDTRANSACTION Reply to request
_ Y, N Y,

Requester Server

CDT032

Database Consistency and Concurrency

Potentially, all operations that ater the database are candidates for TMF protection. But
before you can apply TMF protection to your transactions, you need to determine:

e When to begin a TMF transaction

e Whether al of the database update operations have to happen together in the same
TMF transaction or whether they can be parts of different transactions

To answer these issues, you have to establish your criteriafor database consistency and
decide how much processing concurrency you can achieve in the application. For
example, the Enter Sales transaction affects several pieces of information: order data,
inventory data, shipping data, customer credit, and receivables. Upon examination of this
transaction, you will seethat it is possible to make one general assertion about order
processing and about the Enter Sales transaction in particular: An order is not complete
until every piece of information associated with the order is recorded in the \REG,
\CORP, and \WHS databases.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-7

Designing Your Application Protecting Transactions

To illustrate this assertion, consider a situation where a transaction fails after it changes
the customer’s bal ance, records the order information, and records the order invoice, but
before it records the shipping information. In this scenario, the customer is going to be
billed for an order never received. Consequently, your basic criterion for database
consistency isasfollows: all database updates that are related to the order must be part
of one TMF transaction.

Any record modified or inserted by a database operation that is protected by the TMF
subsystem is locked and unavailable to other transactions until the initial transaction
ends successfully. Thistype of locking protocol means that you always have a design
tradeoff—consistency versus concurrency—with respect to locking records that are
actively accessed by the application. If records are locked too early, other transactions
cannot access them and the application’s concurrency (its ability to process many
transactions at the same time) suffers.

Asthe Enter Sales transaction demonstrates, al of the data collection and validation
operations can happen before you begin the TMF transaction—although some
revalidation may be done again as part of the transaction. Assembling the order header
and assembling the order involve reading records in the database but not changing the
records. The rest of the operations change the database and should all be done within a
TMF transaction.

Asageneral rule, you should design the application’s transactions to maintain
consistency under all circumstances. After the application is installed and running
successfully, you can look for ways to improve its concurrency.

Aborting Transactions

If the requester or the server program detects a problem during the processing of a TMF
transaction, the requester or server causes the transaction to be aborted with a special
procedure call or statement (for example, acall to ABORTTRANSACTION in a
Pathsend program). For requesters, the statement that aborts a transaction is executed in
lieu of the statement that ends a transaction; for example, in a Pathsend program the
requester either completes the transaction with acall to ENDTRANSACTION or causes
it to be backed out, because of an error, with acal to ABORTTRANSACTION.

In the past, program designs typically assigned the task of aborting transactionsto
requesters. Current program design often assigns that task to servers. Servers abort
transactions and inform the requesters of those actions, thus ensuring protection of data.
The aborting of transactions by serversis described further under Designing Server
Programs, later in this section.

The TMF subsystem backs out aborted transactions by using information contained in
the TMF audit-trail files. For more information about transaction backout and audit-trail
files, refer to the NonSop TM/MP Application Programmer’s Guide.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-8

Designing Your Application Designing the Database

Designing the Database

The next step in developing a Pathway application isto design the database that will be
accessed and updated by the application. Designing the database, which isa highly
specialized activity typically performed by experienced database administrators,
involves:

e Precisdly identifying the meaning and use of the data asit existsin your business
and specifying the database files and records that will storethisdata. Thisstep is
referred to aslogical design.

e Choosing file types and keys for the records. This step isreferred to as physical
design.

In addition to completing alogical and physical design of your database, you must also
select a database manager product and ensure that your server programs can interface
with that database manager.

L ogical Design

During the logical design process, you determine which classes of data must be
maintained by your application and identify the relationships that exist between the
classes. Each class of data names something that the database will store information
about. For example, in an application that processes sales orders, or der s isaclass of
dataand or der - i t ens isarelationship between a particular order and the inventory
items within the order. These data classes and rel ationships generally become records in
files accessed by the application.

After specifying data classes, you list the attributes (data items) for each class of data.
For example, some of the attributesareor der - | D, cust - | D,and or der -t ot al .
These attributes become fields in the records of the database. After specifying attributes
for data classes, you diagram the relationships between each of thefiles in the database
and then normalize your database files. To normalize filesisto ensure, at a minimum,
that:

e Thereare no repeating fields.
e Datais dependent on the entire key (a unique element) of afield.
e Datais dependent on nothing but the key.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-9

Designing Your Application Physical Design

Physical Design

You undertake the physical design of your database by selecting the appropriate file
types and record keys for each of the files in the database. Whether you are using the
NonStop SQL/MP software or the Enscribe software as your database management
system (DBMYS), these file types can be classified as key-sequenced, relative, entry-
sequenced, or unstructured:

Key-sequenced Each record in thefile has a primary key and up to 255 alternate
keys. The primary key isafield or combination of fields within the
record.

Relative Each record in the file has a unique record number, which isthe
primary key, and can have up to 255 alternate keys. The record
number is a unigue value that corresponds to the physical location
of the record within thefile.

Entry-sequenced Each record in the file has a unique record number and can have up
to 255 alternate keys. The record number corresponds to the order
in which arecord is stored in the file. The primary key isthe
relative byte address of the record.

Unstructured Each record in the file has a unique record number that can be used
asthe primary key. Alternate keys are not supported.

Although the file type you choose depends on your application requirements, generally
you should choose key-sequenced files for a database that will be accessed and
maintained by a Pathway application. Key-sequenced files provide more flexibility than
the other file types.

Database M anagers

Databases supporting Pathway applications can run under either the NonStop SQL/MP
relational database management system or the Enscribe database record manager. Both
of these products support the creation and use of large databases capable of operating in
local or distributed systems.

The NonStop SQL/MP (Structured Query Language/M P) product is both a database
management system (DBMS) for production environments and arelational database
management system (RDBMYS) for decision-making in an information-center
environment. The NonStop SQL/MP product allows you to think about and represent
filesin the database as a collection of similarly structured lists. For more information
about designing NonStop SQL/MP databases, refer to the NonSop SQL/MP Reference
Manual.

The Enscribe database record manager provides arecord-at-a-time interface between
Pathway servers and your database. For more information about designing Enscribe
databases, refer to the Enscribe Programmer’s Guide.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-10

Designing Your Application Remote Duplicate Database Facility (RDF)

Remote Duplicate Database Facility (RDF)

If disaster recovery of your database is important, the Remote Duplicate Database
Facility (RDF) is available to maintain a copy of the database on aremote system. The
RDF product monitors database updates audited by the TMF subsystem and applies
those updates to the remote copy of the database. For more information about the RDF
product, refer to the Remote Duplicate Database Facility (RDF) System Management
Manual.

Designing Requester Programs

To facilitate the accessing of Pathway server classes from different transaction sources,
you can develop requester programs for a Pathway application that use any of the
following access approaches:

e SCREEN COBOL and the TCP
e SCREEN COBOL and the TCP with the intelligent device support (IDS) facility
e The Pathsend procedure calls

e The Remote Server Call (RSC) product, with or without the Pathway Open
Environment Toolkit (POET)

e The Extended General Device Support (GDSX) product

In Table 2-1, key technical and business considerations are mapped to each way of
accessing Pathway servers. More information about each approach is provided following
the table.

Table 2-1. Considerationsfor Requester Programs

Support
Large Support for

Server Number for Multi- High Ease of Fault Context
Access of 1/0 Intelligent Threading Perform- Develop- Toler- TMF Sensi-
Approach Devices Devices Capability ance ment ance Support tivity
TCP X X X X X
TCPwith X X X X X X
IDS
Pathsend X X X X
RSC or X X X X X X
POET
GDSX X X X X X X

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-11

Designing Your Application SCREEN COBOL Requesters

SCREEN COBOL Requesters

Screen programs for Pathway terminals perform avariety of front-end functions for your
Pathway application and are typically written as single-threaded programs in the
SCREEN COBOL language. This language offers a simple programming environment
and screen-management system to drive Tandem terminals and IBM 3270 terminals.
SCREEN COBOL supports both conversational mode (for either block-mode or
conversational-mode terminals) and intelligent mode (for intelligent devices and
communications lines).

When you write a screen program in SCREEN COBOL, you can take advantage of the
features of the Pathway/TS TCP. As supplied by Tandem, the TCP supports:

e Fault tolerance

e TMF transactions

e Multitasking of single-threaded screen programs

e Accessto server processes with Pathway server classes
e Unsolicited message processing (UMP)

e System management interfaces (that is, PATHCOM or the Pathway management
programming interface)

SCREEN COBOL requester programs do not perform any file I/O operations except to
terminals and server classes. A file 1/O operation to a server class, whichisin the form
of arequest message, is initiated by the requester program by using the SCREEN
COBOL SEND statement.

For information about designing and coding SCREEN COBOL requesters, refer to the
Pathway/TS TCP and Terminal Programming Guide.

|DS Requesters

Standard SCREEN COBOL requesters are screen oriented; they send data back and
forth between the Working-Storage Section of the program and aterminal’s display
screen by way of screen templates defined in the Screen Section. Standard SCREEN
COBOL requesters use SCREEN COBOL ACCEPT and DISPLAY statements in the
Procedure Division to interact with display terminals.

SCREEN COBOL requesters that employ the IDS facility within the TCP send data
back and forth between the Working-Storage Section and an intelligent device (or a
front-end process that controls the device) by way of message templates defined in the
Message Section. IDS requesters use SCREEN COBOL SEND MESSAGE statements
and their associated REPLY clausesin the Procedure Division to interact with the
intelligent devices or front-end processes.

Although IDS sends and receives data through Message Section templates instead of
Screen Section templates, the TCP still provides:

e Link management for accessto Pathway server classes
e TMF support to ensure transaction protection and database integrity

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-12

Designing Your Application Pathsend Requesters

e Fault tolerance through process pairs
e Multithreading and multitasking
e Expanded I/O editing support for data streams from intelligent devices

For information about designing and coding IDS requesters, refer to the Pathway/TS
TCP and Terminal Programming Guide.

Pathsend Requesters

Asan aternative to writing SCREEN COBOL requesters, you can write Pathsend
requestersin C, C++, COBOLS85, Pascal, TAL, or pTAL. In such requesters, you use |
Pathsend procedure calls to communicate with Pathway servers. The LINKMON

process manages links to your server processes on behalf of Pathsend requesters.

Design Consider ations

Pathsend requesters are a good choice for your applications if you need to do the
following:

e Take ahigh volume of transactions from alimited number of devices. In this
scenario, there are relatively few requester processes, the requesters are busy, and
configuration and management is minimal.

e Access serversthat are shared by Pathway requesters and applications other than
OLTP applications: for example, a security checking server or alogging server. If
such servers are used infrequently or if the workload varies, server processes can be
automatically deleted when not needed and restarted through the PATHMON
process when needed again.

e Access servers from environments containing amix of online transaction processing
and batch processing: that is, environments where the same set of servers handle
both online requests and requests from batch applications such as NetBatch Plus
Processes.

e Write nested servers, which act as requesters by making requests to serversin other
server classes, perhaps server classes managed by adifferent PATHMON process.

o Write context-sensitive servers, which are discussed later in this section under
“Designing Server Programs.”

Pathsend procedure calls give you more flexibility than WRITEREAD calls for server-
to-server communication. The application gets all the advantages of server classes,
including advantages not readily available with WRITEREAD; for example, load
balancing, adjusting the number of serversto fit response-time requirements, and
configuration and operations management. You can use the Pathsend procedure callsin

C, C++, COBOLS8S5, Pascal, TAL, and pTAL programs. |

The Pathsend procedures and the LINKMON process, however, do not provide
multithreading, fault tolerance, device configuration, or operations management for
requesters. Therefore, if you need these capabilities in a Pathsend requester, you must
provide the programming for them.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-13

Designing Your Application Pathsend Requesters

In addition, Pathsend procedure calls that send messages to server classes must be
protected by the TMF subsystem to ensure data integrity in your Pathway application.

The Pathsend procedures and the LINKMON process do not support the checkpointing
of Guardian interprocess message synchronization IDs. Thislack of checkpointing
support is an important consideration when writing fault-tolerant requester programs
that do not use the TMF subsystem. Section 3, Writing Pathsend Requesters, provides
more information about writing fault-tolerant Pathsend programs.

The Pathsend procedures allow you to indicate a specific timeout value for each message
sent to a server class. For example, if you perform SERVERCLASS SEND _callsto
local and remote systems, you can specify shorter timeout values for the local sends and
longer values for the remote sends.

You can restrict access to Pathway server classes by Pathsend requesters by having the
LINKMON process perform security authorization checks on each send operation.

The Pathsend procedures and the LINKMON process |og error messages in the event of
aprocessing failure. Your Pathsend requester can check for these errors and perform
recovery actions.

Program Structure

The examplein Example 2-1 outlines a Pathsend requester program written in TAL.
This program handles data entry for the order-processing application introduced at the
beginning of this section.

Note. The program in Example 2-1 illustrates program structure only; it is not a complete
program. For an example of a complete, running Pathsend requester program, refer to
Appendix B, Examples.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-14

Designing Your Application Clients Using RSC and POET

Example 2-1. Sample Pathsend Requester Program Structure
Decl are program vari abl es.
TMFError : = BEG NTRANSACTI ON(TransactionTag): Begi ns TMF transacti on.

Al l ocate buffer for request
and reply messages.

Pat hronNane ‘' : =" [“$PM] Set SERVERCLASS_SEND_ paraneters.
Pat hronNaneByt es : =3;

ServerC ass ':=" [“ASERVER']

Server Cl assBytes =7;

Ti meout := -1D; Specifies no tineout.

Fl ags := 1; Specifies nowait send.

SendError := SERVERCLASS SEND (Pat hnmonNane, Perfornms send operation.

Pat hmonNaneByt es, Serverd ass, ServerCl assBytes,
Request Buf f er, RequestBufferBytes, MaxReadCount,
Count Read, Ti neout, Flags, SCSendOpNum Tag);

I F(SendError) THEN Nowait send request failed.
BEG N
InfoError := SERVERCLASS_SEND | NFO_ Cets Pathsend and Fil e errors.
(PSError, FSError); Per f orm appli cati on-dependent

error logic.

END,
Fi | enum =SCSendCpNum
CALL AWAI TIOX (Fil eNum Countread, Tag, -1D); Wait for conpletion of send
operation
CALL FILEINFO (Fil eNum SendError); and get the resulting send error.

I F(SendError) THEN
BEG N
| NFOERROR : = SERVERCLASS_SEND | NFO_ (PSError, FSError);

END;
TMFErr or : =RESUMETRANSACTI ON(Tr ansactionTag); Resunes TMF transaction.
I F(ReplyError) THEN Perform appl i cati on- dependent
. error logic, which may include
aborting transacti on.
ELSE

TMFEr ror : =ENDTRANSACTI ON,;

ClientsUsing RSC and POET

The RSC (Remote Server Call) product facilitates client/server computing, alowing
workstation applications to access Pathway server classes and Guardian processes.
The RSC product supports a number of different transport protocols and workstation
platforms. For detailed information about the supported platforms and protocols, refer
to the Remote Server Call (RSC) Programming Manual.

Transactions are transmitted from the workstation application (the client) to a Pathway
application running on a Tandem NonStop system (the server) by means of a supported
communications protocol, such as NETBIOS, TCP/IP, or an asynchronous connection.

RSC includes a process called the Transaction Delivery Process (TDP), which resides on
the Tandem NonStop system. The TDP isa multithreaded process that can handle
multiple workstations. It routes request messages from workstations to Pathway server

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-15

Designing Your Application Requesters Using GDSX

classes by using either the Pathsend API and the LINKMON process or the terminal
control process (TCP) provided in the Pathway/TS product. If the TCP isused, it can
route a request message to a Pathway server by using either the intelligent device
support (IDS) requester supplied as part of RSC or an IDS requester that you develop
yourself. The TDP can also send request messages from aworkstation to a Guardian
process.

The Pathway Open Environment Toolkit (POET) provides tools for developing RSC
clients for the Microsoft Windows environment. These tools include asimplified
programmatic interface, name mapping, and data conversion mapping.

For information about designing and coding requesters with the RSC product, refer to
the Remote Server Call (RSC) Programming Manual. For information about using the
POET product, refer to the Pathway Open Environment Toolkit (POET) Programming
Manual.

Reguesters Using GDSX

The Extended General Device Support (GDSX) communications subsystem product
simplifies the devel opment of front-end processes and back-end processes for
communication with I/O devices. These devices can be of any type, including
workstations, terminals, ATMs, point-of-sale (POS) devices, and industrial robots.
GDSX supplies code that provides multitasking and other features useful for developing
these front-end and back-end processes.

A GDSX process can act as afront-end process for LINKMON processes or a
Pathway/TS terminal control process (TCP).

A GDSX process contains two primary parts.
e TSCODE, supplied by Tandem
e USCODE, supplied by the application programmer

TSCODE provides generic routines and management services that help you build a
multithreaded, fault-tolerant process. TSCODE provides the following functions:

e Creates new tasks and stops tasks
e Recevesal system messages and I/O requests

e Dispatches (wakes up and executes) the appropriate active task to process messages
and requests

e Handleserrors

USCODE consists of user exits that are called by TSCODE to handle the application-
specific, data communications-related functions, such as data manipulation, protocol
conversion, and message routing for the 1/0 process. USCODE istypically written in the
Transaction Application Language (TAL) or the Portable Transaction Application
Language (pTAL) and bound with TSCODE to produce a functional GDSX process.

GDSX providesits own interface to Guardian procedures, NonStop TM/MP procedures,
and Pathsend procedures. The names of the GDSX procedures typically look like their
Guardian, NonStop TM/MP, or Pathsend equival ents, but they have a circumflex (©)

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-16

Designing Your Application Requesters Using GDSX

character inserted before the procedure name. For example, SERVERCLASS SEND
becomes "SERVERCLASS SEND . The GDSX interface supports both context-free
and context-sensitive Pathsend procedures

When a GDSX process is used as a front-end process, multiple threads of a user-coded
device handler provide separate tasks to manage the input from I/O devices and provide
functions such as data-stream conversion, implementation of a communications
protocol, and network communications error handling. One instance of the device
handler manages one |/O device.

If the GDSX processis acting as afront-end process for a TCP, the GDSX process
simulates aterminal supported by the TCP; the ssimulated terminal istypically run by an
IDS requester program. When the IDS facility is used, the GDSX process does not
ordinarily control how data appearsto the intelligent devices, nor does it perform any
other device-dependent functions. However, the GDSX process can be designed to
perform device-dependent functionsif needed.

A GDSX process can aso act as afront-end process to a LINKMON process, as shown
in Figure 2-4. The figure shows the path of a transaction from a general deviceto a
Pathway server through a GDSX process.

In this example, the GDSX device handler contains the application requester logic and
uses the Pathsend interface to communicate with Pathway servers. Normal interaction
with a server process for each thread is similar to that of a Pathsend requester process.

Note. Figure 2-4 does not reflect the actual flow of data from the GDSX processes to the
Pathway server class. Only server-class control information is passed to the LINKMON
process; the application data moves directly from the GDSX process to the server class.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-17

Designing Your Application Requesters Using GDSX

Figure 2-4. GDSX asa Front-End Process

Tandem NonStop System

PATHMON

Server Class

\

N N)
| |
L @ 7 @

General Device
NonStop ‘

TM/IMP

NonStop
SQL/MP

A

Y

When devel oping a front-end process using GDSX, consider the following points:

CDT126

e A GDSX front-end processis agood choice when a specified data communications
protocol is not supported by the Pathway TCP but is supported by GDSX.

e A GDSX front-end processis aso agood choice when performanceis critical.
SCREEN COBOL might not be efficient enough to handle alarge amount of
application function.

e A GDSX process can be designed to be context-sensitive, through use of the
context-sensitive Pathsend pseudo-procedures.

e GDSX processes are managed either through the Subsystem Control Facility (SCF)
interactive interface or through a management application program using the
Subsystem Programmatic Interface (SPI).

For further information about designing and coding GDSX processes, refer to the
Extended General Device Support (GDSX) Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-18

Designing Your Application Dividing Function Between Requester and Server

Dividing Function Between Requester and Server

In designing a Pathway application, you must decide how to divide function between
requester and server. In making this decision, you should consider the type of requester
or client you are writing (SCREEN COBOL, Pathsend, RSC, or GDSX), and you should
also consider performance, maintainability, and other factors.

For example, which program module should check entry fields for validity? If you are
writing a SCREEN COBOL requester, you can easily code it so that the TCP performs
these checks. However, a special edit-checking server could provide better performance.
If your application includes aworkstation requester that communicates with servers
using RSC, having the requester check the entry fields would save communications
overhead.

As another example, which program module should change screen field attributes such
as color, blink, brightness or reverse video for such purposes as highlighting an entry
field that contains an error? The SCREEN COBOL language allows such work to be
done by the requester, but it could also be done by the server.

For more considerations about dividing function among modules within an application,
see Packaging Server Functions, under Designing Server Programs, later in this section.

Designing Server Programs

Request validations, security checks, calculations, database inquiries, and database
changes made in response to a request message should be performed by individual units
of code within Pathway server programs. As an application programmer, your task isto
create a server program to perform specific tasks (for example, create a customer
account).

You can write Pathway server programsin C, C++, COBOLS85, Pascal, TAL, pTAL,
FORTRAN, or Extended BASIC in the Guardian environment. Alternatively, you can
write Pathway server programsin C or COBOLS8S5 in the NonStop Kernel Open System
Services (OSS) environment; you must program such serversto read the Guardian
$RECEIVE file as described in the Open System Services Programmer’s Guide. In both
cases, you configure and manage the servers using the PATHCOM interactive interface
or the Pathway management programming interface (based on the Subsystem
Programmatic Interface, or SPI) in the Guardian environment.

Regardless of which operating environment or programming language you use, your
Pathway server programs can access database files through the NonStop SQL/MP
relational database management system or the Enscribe database record manager. Refer
to Designing the Database earlier in this section for information about these two
database managers.

You can use the same server programs, whether developed in the Guardian environment
or in the OSS environment, with several different requester and client interfaces. These
interfaces include SCREEN COBOL, the Pathsend procedures, the Remote Server Call
(RSC) interface, and the Pathway Open Environment Toolkit (POET). Requesters or
clients using different interfaces can share the same Pathway server classesif you ensure
that the server program’s request and reply formats are consistent for all requesters.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-19

Designing Your Application Design Considerations

After you code and compile your server program, the server object code and library code
are shared among all processes of the same server class.

Design Consider ations

Before structuring and coding a server program, you should consider some design issues
that can affect server performance and efficiency. First, you must decide whether to
program single-threaded or multithreaded servers. Additionally, you should be aware of
the issues related to context-free versus context-sensitive servers, server packaging,
nested servers, aborting transactions, process pairs, early replies, and audited and
unaudited servers. You might also consider the use of a GDSX back-end process.

Single-Threaded Versus M ultithreaded Servers

When writing Pathway server programs, you need to consider whether to write them as
single-threaded or multithreaded programs.

Typically, you can get solid performance from single-threaded servers, which are
simpler to design, program, and maintain than multithreaded server programs. For most
applications, single-threaded server design is recommended.

Single-threaded servers generally perform well because they are highly utilized. Server
processes handl e requests from many requester programs (for example, afew servers
might support 100 terminals), keeping the server processes highly utilized. Servers are
not idle waiting for input from a single requester or device; they can get work from any
requester or device.

Low server utilization, however, might still result if the server experiences long waits
while processing a request. The main reason for writing multithreaded serversisto
provide resource efficiency in applications where processes have long waits (for
example, when a server creates Guardian processes on demand or communicates with a
remote system from another vendor) or shared access (for example, when requests are
multiplexed over asingle link).

Context-Free Server s Versus Context-Sensitive Servers

If your servers are programmed to be context-free, the relationship between an
application requester program (for example, a SCREEN COBOL program) and a
Pathway server process exists only for the duration of a single send operation: that is,
one request message and the server’sreply to it. Subsequent send operations to the same
server class could be serviced by any server process in the server class.

This design allows server processes to be easily shared and serially reused by many
requesters. The sharing and reusing of server processes results in more highly utilized
servers and consequently can require fewer server processes, depending on the service
time required. The assignment of requests to server processes on a per-request basis also
allows the PATHMON process to improve the distribution of work among the available
servers.

However, context-free design requires that your servers not save any information (that is,
context) from previous requests, such as counts, subscripts, or record pointers.
Transaction context must be maintained outside of the server, either by the requester

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-20

Designing Your Application Design Considerations

program or in the database. When you program a server to be context-free, you code the
server to be independent of its previous request. In essence, every request must be
treated asif it were the first request received by the server.

SCREEN COBOL and the TCP support only context-free servers. However, if you use
Pathsend requesters, you can use either context-free or context-sensitive servers. In most
cases, it is preferable to use context-free servers. However, context-sensitive servers
might be a better solution if you need to do one of the following:

e Retrieve large blocks of information (larger than 32 KB) from a database
e Browse adatabase and repeatedly get the next record, saving the cursor position

Context-sensitive servers require additional programming for both requester and server.
The requester must first establish adialog with a server class and then send messages
within the dialog. All messagesin adialog will be sent to the same server process in the
server class. Programming details are explained in Section 3, Writing Pathsend
Requesters, and Section 4, Writing Pathway Servers.

Packaging Server Functions

Another major decision that you must make during server design is how to package the
individual functions, or services, that the server performs. This decision is related to the
decision about how to divide function between requester and server, discussed earlier in
this section at the end of the subsection Designing Requester Programs.

Based on various operational considerations (for example, security, management, file
access, throughput, and response-time requirements), you could choose one or more of
the following server packaging alternatives:

e One server class for each database: Called a single-function server, this server
(for instance, a list-item server or a change-item-quantity server) services an entire
database.

e One server classfor each file: Each file has its own dedicated server that executes all
I/0 (reads, updates, adds, and del etes) against the file. The server performs no
functions beyond file access.

e Similar service times: Transactions with similar I/O rates are grouped and processed
by the same server. Grouping transactions with different service times in separate
servers minimizes server queues and facilitates application tuning.

e One server for each business function: A single server handles all tasks of a specific
business function, including business decisions (for example, loan approvals based
on predefined criteria) and database navigation.

e One server for similar business functions. Similar business transactions (for
instance, enter orders less than $100 in value or delete orders) are handled by a
single server.

e One server for similar business functions and all database functions: A single server
services similar business transactions and handles both business decisions and
database navigation.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-21

Designing Your Application Design Considerations

e Update or read-only server: A single server exclusively handles either update
transactions or inquiry transactions.

One approach to packaging server functionsisto first group server functions based on
management considerations (for example, all servers within a server class must freeze
and stop as aunit) and security considerations (for example, the server class must
execute under one user ID). Then, partition server functions based on the database files
that are most frequently accessed.

To ensure acceptable response times for users and allow you to tune your application for
performance, it is very important to partition server functions based on service times. If
the same set of servers handles short and long transactions, some requests for short
transactions will be queued behind long transactions, resulting in poor response times
for the short requests. If the short and long transactions perform different functions, put
those functions in separate server programs. If the short and long transactions perform
essentially the same work—for example, a simple database |ookup—but some requests
could be for multiple lookups, you can configure two or more server classes for requests
of different lengths, all using the same program code.

Nested Servers

A server written in C, C++, COBOLS8S5, Pascal, TAL, or pTAL can use the Pathsend
procedures to send a request message to a server in another server class and receive a
reply. In such a case, the server is acting as a requester. Servers communicating with
each other in this manner are called nested servers.

For example, consider a situation where a requester on one node requires the services of
two server classes on another node. Instead of sending to server class A, waiting for a
reply, and then sending to server class B, the requester could send to server class A, and
server class A could send to server class B, get the response, and then reply to the
requester. This use of nested servers reduces the number of messages sent across data
communications lines and enables application logic to be distributed near the resources
it manages.

Consider the following when considering the use of nested server programs:

e Single-threaded serversthat send to other server classes can cause process
deadlocks. A process deadlock is a situation in which two processes cannot proceed
because each iswaiting for areply from the other.

For example, if aprocessin server class A sends areguest to server class B and the
process in server class B then sends a request to server class A, a deadlock might
occur. Even if there is more than one process in server class A, there is no guarantee
that the second request would not be sent to the same process that sent the original
request.

To avoid this problem, the server program for server class A should keep aread
operation posted on $RECEIVE and wait for completion of either the send operation
or the read operation. Although this multithreading increases the complexity of the
program, it is necessary in order to prevent deadlock.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-22

Designing Your Application Design Considerations

e Single-threaded serversthat send to other server classes can cause low server
utilization in the same way that any single-threaded process that calls another
process can: the server process sending the request isidle until it receives areply
from the server to which it sent the request.

e Single-threaded serversthat send to other server classes can, therefore, result in
longer queues for a server class, and these longer queues can affect application
performance.

Aborting Transactions

A request sent to the server can have one of three outcomes:
e All thework for the request was completed successfully.
e None of thework for the request was completed.

e Thework for the request was only partially completed.

In thefirst case, the requester can commit the transaction. In the second case, the
requester can commit the transaction and then retry it. In both of these cases, the
information in the server’s reply is sufficient to ensure the integrity of the transaction.

However, if the transaction work was only partially completed, as in the third case, the
server needs to ensure that the transaction is not committed, so that the incomplete work
can be backed out. To ensure transaction backout, the server should call the
ABORTTRANSACTION procedure after it reads the server’s request and before it sends
itsreply. A call to ABORTTRANSACTION by the server does not end the transaction—
only the requester can end it—but it ensures that the transaction is aborted. The
requester should then call either ABORTTRANSACTION or ENDTRANSACTION
after it repliesto the server. (If the requester callsENDTRANSACTION inthis
situation, the ENDTRANSACTION call returns an error because the transaction has
already been aborted. However, either call ensuresthat the resources associated with the
transaction are released.)

Fault-Tolerant Process Pairs

You should not write your server processes as fault-tolerant process pairs when you are
using the TMF subsystem to protect transactions. The additional programming and
functional overhead required to do so is unnecessary.

Early Replies

You should program your servers so that when a server process reads a request message,
it completely processes the request beforeit repliesto it. This practice is often called the
no-early-reply rule. If you do not follow this rule, the server process loses the TMF
transaction identifier it requires to finish processing a transaction. After the reply, any
further attemptsto lock, write, or delete records in the same audited files will fail. In
addition, failureto follow the no-early-reply rule can create a queue of incomplete
transactions for single-threaded servers. The queue occurs when the requester, which has
been replied to prematurely, sends one more request to the server and the server

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-23

Designing Your Application Design Considerations

increases its potential queue by one request. A single-threaded server queue can result in
poorer performance for the application system.

Audited and Nonaudited Servers

If your Pathway application uses a database that is a combination of TMF audited files
and nonaudited files, write separate servers to process the two types of files. Updates to
audited files must occur within a TMF transaction; updates to nonaudited files should
not occur within atransaction, because the transaction imposes unnecessary overhead.

Use of a GDSX Back-End Process

The Extended General Device Support (GDSX) communications subsystem product,
described under Requesters Using GDSX, earlier in this section, can aso be used as a
back-end process for Pathway server classes.

A GDSX back-end process receives input from multiple processes on a Tandem
NonStop system and provides access to alimited number of 1/0O devices. Common uses
of GDSX back-end processes include implementing communi cations protocols; message
switching; and coordinating access to shared resources or I/O devices, such aslog files,
terminals, or remote ports.

In a back-end process, each thread of the device handler has no direct association with
an 1/0O device. Figure 2-5 shows atypical message-switching application in which
processes on the Tandem system send messages to the communi cations process on the
remote system. Here, the GDSX process might run aline-handler task to handle data on
the communications lines and a device-handler task for each server process. The device
handlers forward data to the line handler for forwarding to the remote system.

Figure 2-5. GDSX as a Back-End Process

Tandem NonStop System Remote System

Server Class
~ - —— Comm
Process

CDT129

For further information about designing and coding GDSX processes, refer to the
Extended General Device Support (GDSX) Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-24

Designing Your Application

Server Program Structure

Example 2-2 illustrates the structure of a single-function server program written in
COBOL85. The program in the following example handles data entry for the order-
processing application introduced at the beginning of this section.

Server Program Structure

Note. The program in Example 2-2 illustrates program structure only; it is not a complete
program. For an example of a complete, running Pathway server program, refer to Appendix B,

Examples.

PROGRAM | D. ORDER- SERVER.

ENVI RONMVENTAL DI VI SI ON.

CONFI GURATI ON_SECTI ON.

SPECI AL NAMES.
FILE “$src.srvlib.orderlib”
FI LE “$obj . srvlib. ocngrobj”

I NPUT- QUTPUT SECTI ON.
FI LE CONTROL.
SELECT M5G- I N
ASSI GN TO $RECEI VE

COBAL- LI B.
COVM MGR.

FI LE STATUS | S RCV- STAT | N W5- RCV- | NFQ.

SELECT M5G QUT
ASSI GN TO $RECEI VE

FI LE STATUS | S RCV- STAT | N W5- RCV- | NFQ.

SELECT LAST-1D
ASSI GN TO $DATA. ORDER. LASTI D
ORGANI ZATI ON | S RELATI VE
ACCESS | S SEQUENTI AL
RECORD KEY | S W5- LASTI D- REL- KEY

FILE STATUS | S FI LE- STAT I N W5- FI LE- | NFO.

RECEI VE- CONTRCL.

TABLE OCCURS 5 TI MES
SYNCDEPTH IS 1

REPLY CONTAI NS 204 CHARACTERS.

DATA DI VI SI ON.

FD M5G I N
RECORD CONTAI NS 204 CHARACTERS
LABEL RECORDS ARE OM TTED

01 ORDER- M5G

Example 2-2. COBOL 85 Server Program Example (page 1 of 3)

| DENTI FI CATI ON DI VI SI ON.

Decl ares server nane.

Defines source library file
names.

Sel ects | ogi cal nanes for
$RECEI VE and al | dat abase
files accessed by server.
$RECEI VE is a Quardi an

file that receives and stores
messages transmtted between
requesters and servers.

Decl ar es nunber of
concurrent opens and
mexi mum si ze of | argest
request nmessage.

Declares record data _
structures for logical file
names.

NonStop TS/MP Pathsend and Server Programming Manual—132500

2-25

Designing Your Application

Server Program Structure

Example 2-2. COBOL 85 Server Program Example (page 2 of 3)

FD M5G QUT
RECORD CONTAINS 36 TO 204 CHARACTERS
LABEL RECORDS ARE OM TTED

01 ORDER- REPLY.
01 ERROR- STATUS- REPLY.

FD LAST-1D
RECORD CONTAI NS 12 CHARACTERS
LABEL RECORDS ARE OM TTED

01 LAST- | D- RECORD.
02 LAST-ID PIC 9(12).

WORKI NG STORAGE SECTI ON.
PROCEDURE DI VI SI ON.
DECL ARATI VES.

MAI N SECTI ON.
PERFORM START.
PERFORM PROCESS- REQUEST
UNTI L | ast-requester-close.
PERFORM STOCP.
STOP RUN.

START SECTI ON.

OPEN | NPUT nsg-i n.

OPEN QUTPUT nsg- out SYNCDEPTH 1.
OPEN 1/O |l ast-id SHARED SYNCDEPTH 1.

Decl ares data structures of
vari abl es used by server.

Decl ares error procedures to
be used when an I/0O statenent
returns an error.

Cont ains main program | ogic.
Server program begi ns and
ends here.

Contains logic that opens all
files used by server.

NonStop TS/MP Pathsend and Server Programming Manual—132500

2-26

Designing Your Application Designing Applications for Batch Processing

Example 2-2. COBOL 85 Server Program Example (page 3 of 3)

PROCESS- REQUEST SECTI ON. Contains |ogic that reads
PERFORM GET- MSG | N RCV- MGR. requests in $RECEI VE, services
I F NOT | ast-requester-close requests, and replies to

PERFORM DO REQUEST. requests.
DO REQUEST.
I F functi on-code OF

order - check-nmsg = ORDER- CHECK
PERFORM DO- ORDER- CHECK
ELSE | F function-code OF
order-check-msg = ORDER-COM T
PERFORM DO- ORDER- COM T
ELSE PERFORM BAD- REQUEST | N ERROR- MGR.

DO- ORDER CHECK.

RCV- MGR SECTI ON. Provi des $RECEIVE 1/0O
servi ces.

DB- MGR SECTI ON. Provi des disk-file I/0O
servi ces.

ERROR- MGR SECTI ON. Provi des error-processing
servi ces.

STOP SECTI ON. Contains logic that closes

CLOSE nsg-in. all files used by server.

CLOSE nsg- out .
CLCSE | ast-id.

Designing Applications for Batch Processing

If your Pathway application includes batch processing, consider the different needs of
thistype of processing in your design.

For example, you might code a Pathsend program that takes itsinput from afile rather
than from a terminal, then sends requests to a server to make updates to a database. This
program could be configured as a server, thus operating as a nested server. Itsinput file
might be TMF protected, and the Pathsend program might make updates to it.

An application that does several updates to a database, with each update coded as a
separate TMF transaction, could be slow when it performs these updates as a batch job
rather than performing them online. For batch processing, it is usually faster to group a
number of updates in asingle transaction. However, if your batch jobs are very large,
note that you should not try to group more than about one thousand updates in one TMF
transaction.

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-27

Designing Your Application Designing Applications for Batch Processing

NonStop TS/MP Pathsend and Server Programming Manual—132500
2-28

% Writing Pathsend Reguesters

This section explains how to write programs that use Pathsend procedure calls to make
requests to Pathway servers. These programs can be either one of the following:

e Standard reguesters—programs that initiate application requests

e Nested servers—servers that act as requesters by making requests to serversin other
server classes

Nested servers are described further in Section 4, Writing Pathway Servers. However,
this section (Section 3) describes the use of Pathsend procedure callsto perform
requester functions, whether by a standard requester or a nested server. The terms
Pathsend program and Pathsend process are used to refer to any program or process that
uses Pathsend calls, whether it is a standard requester or a nested server.

Pathsend programs are Guardian requesters, as described in the Guardian Programmer’s
Guide. You can write Pathsend programsin C, C++, COBOL85, Pascal, pTAL, or TAL.
You should be familiar with the Guardian requester/server model asimplemented in the
programming language you are using.

In addition, if you are using the Transaction Management Facility (TMF) subsystem,
you should be familiar with the programming guidelines and considerations for TMF
requesters, as described in the NonStop TM/MP Application Programmer’s Guide. Note
that the NonStop TM/MP Application Programmer’s Guide describes requesters that use
callsto Guardian procedures rather than Pathsend procedures. In Pathsend requesters
that use the TMF subsystem, calls to Pathsend procedures are used instead of callsto
WRITEREAD and associated Guardian procedures, and there are other differences as
described in this section.

An example of a Pathsend requester program that is also a nested server isgivenin
Example B-1 on page B-2.

The Pathsend Procedure Calls

Pathsend programs use six procedures that are part of the Guardian procedure library:

SERVERCLASS SEND
SERVERCLASS SEND_INFO
SERVERCLASS DIALOG ABORT _
SERVERCLASS DIALOG_BEGIN
SERVERCLASS DIALOG _END
SERVERCLASS DIALOG_SEND _

Later parts of this section describe how to use these procedures in context-free and
context-sensitive Pathsend programs. Section 5, Pathsend Procedure Call Reference,
gives detailed syntax and usage considerations for the procedures.

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-1

Writing Pathsend Requesters Interprocess Communication in the Pathsend

Environment

| nter process Communication in the Pathsend
Environment

Communication between requesters and serversin the Pathsend environment differs
from communication between Guardian requesters and servers. Rather than directly
opening a particular server process, the requester opens the LINKMON process, which
in turn opens a server process selected by the PATHMON process. The LINKMON
process's open of the server process is shared among all requesters running in the same
processor asthe LINKMON process.

The communication begins as follows:

1.

The requester calls a Pathsend procedure (for example, SERVERCLASS SEND)
to request a server-class send operation.

The request goes to the LINKMON process running in the same processor as the
Pathsend requester process.

The LINKMON process checks for alink to a server process in the server class
specified in the request. If the LINKMON process has no available link to the server
class, the actions performed depend on the settings of the PATHMON configuration
parameters NUMSTATIC and MAXLINKS. The following steps might occur:

a. The LINKMON process sends a “get-link” request to the PATHMON process
that manages the server class specified in the procedure call.

b. The PATHMON process selects a server process in the specified server class. If
necessary, it starts and initializes a new server process in the server class.

c. The PATHMON process sends back to the LINKMON process the Guardian
process name of a server process within the specified server class.

d. TheLINKMON process opens the server process of that name. Thisopenis
shared among all the Pathsend requester processes running in the same
processor asthat LINKMON process; therefore, a close operation does not
necessarily occur when the communication with a particular requester processis
finished.

For more information about the NUMSTATIC and MAXLINKS parameters and
their effects on get-link requests, refer to the NonStop TSYMP System Management
Manual.

The LINKMON process forwards the send request to the server process.

When the server process replies, the LINKMON process replies to the requester
process, and the server-class send operation is complete.

The action of the PATHMON process in step 3 iscalled granting alink. The LINKMON
process, which requests links and provides access to the server process after thelink is
granted, is called the link manager. (For SCREEN COBOL requesters, the terminal
control process (TCP) serves as the link manager.)

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-2

Writing Pathsend Requesters Basic Pathsend Programming

Basic Pathsend Programming

The simplest type of Pathsend program is a context-free program. This subsection
provides the information you need to write a context-free Pathsend program. It also
provides information common to both context-free and context-sensitive programming.
The next subsection provides information about the additional tasks required of a
context-sensitive Pathsend program.

Context-free Pathsend programming consists simply of sending messagesto aserver ina
server class and receiving the replies. The sending of a message to a Pathway server
classiscalled a server-class send operation. In a context-free program, only two
Pathsend procedures are used: SERVERCLASS _SEND _ to send the messages (and to
receive the replies if in waited mode) and SERVERCLASS SEND_INFO _to get
additional information about the results of the last SERVERCLASS SEND _ call if the
cal failed.

The SERVERCLASS SEND _ procedure enables Pathsend requesters to send data to
and receive replies from a specified Pathway server class. This procedure communicates
with the LINKMON process in the processor where the Pathsend requester is running,
passing information that enablesthe LINKMON process to choose alink to a server
process. After alink to the server has been obtained, the requester’s datais sent directly
from the requester’s data space to the server.

Subsequent server-class send operations to the same server class might not be sent to the
same server process, therefore, the requester must provide all necessary context on each
send.

When a server process replies to the request, the LINKMON process completes the
server-class send operation. If you use waited 1/0, the reply dataisin the reply buffer
when the SERVERCLASS SEND _call is completed. If you use nowait /O, you
complete the 1/O operation with acall to the AWAITIOX procedure.

A Pathsend requester can use the SERVERCLASS SEND_INFO __ procedure to get
detailed information about server-class send initiation and completion errors.

Programming for Failure Recovery

A Pathsend requester must provide a mechanism for failure recovery. It can do so in one
or both of the following ways:

e By using TMF level recovery through the Transaction Management Facility (TMF)
subsystem

e By providing fault tolerance through process pairs and checkpointing

TMF level recovery isthe recovery of the database to a consistent state through the use
of the TMF subsystem. When afailure occurs, the TMF subsystem allows the
application to back out (abort) the entire transaction, returning the contents of the
database to the valuesit held when the transaction was started. The application can then
retry the transaction.

In general, TMF level recovery is recommended for use with Pathsend programs: this
method is easier and faster to program than process pairs, and it handles nonretryable

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-3

Writing Pathsend Requesters Programming for Failure Recovery

requests more smoothly. However, because the TMF subsystem guarantees only the
consistency of the database and not fault tolerance for other operations (such as
messages sent over data communications lines), your application might need to use
process pairs along with TMF level recovery.

TMF programming is described in the NonStop TM/MP Application Programmer’s
Guide. The Guardian Programmer's Guide discusses process pairs and checkpointing.
The following paragraphs provide information specific to the use of these featuresin a
Pathsend program.

Server Process Failures

A server process can fail for reasons that include the following: the server process calls
ABEND, a processor fails, or someone stops the process.

If the server process fails while there are outstanding SERVERCLASS SEND _,
SERVERCLASS DIALOG_BEGIN _, or SERVERCLASS DIALOG_SEND _ calsto |
it, error 904 (FEScServeerkConnect) is returned to the requester. If the server-class
send operation is protected by a TMF transaction, the requester should abort the
transaction and reissue the request or the dialog. If the request is repeatable, the
requester should just retry the request. Context-free requesters need only retry the call to
SERVERCLASS SEND _, but context-sensitive requesters must retry the entire dialog.

If the server process fails while there are no outstanding SERVERCLASS SEND _,
SERVERCLASS DIALOG_BEGIN _, or SERVERCLASS DIALOG_SEND _ cdlstoit
but a dialog isin progress, the dialog is aborted and the requester receives error 929
(FEScDiaogAborted) on its next call to SERVERCLASS DIALOG_SEND .

If the server processisin transaction mode and fails, the TMF transaction is
automatically aborted. This treatment of the TMF transaction is a feature of the TMF
subsystem.

LINKMON Limit Errors

In some cases, you can recover from a LINKMON limit error by retrying the Pathsend
procedure call. Whether aretry will work depends on the design and operating
environment of your application, including the configuration of static and dynamic links.
Static links between a LINKMON process and a PATHMON process generally persist
for some time, depending on the application and the system workload. Dynamic links
and server classes come and go more frequently, again depending on the application and
the system workload. The number of concurrent server-class send operationsis very
dynamic.

Therefore, it might be appropriate to retry a call to SERVERCLASS SEND _,
SERVERCLASS DIALOG_BEGIN _, or SERVERCLASS DIALOG | SEND (aftera |
short wait) if the concurrent calls limit is exceeded. Conversely, it might not be
appropriate to retry acal if the limit for the maximum number of PATHMON processes
IS exceeded.

For more information about PATHMON configuration and performance, refer to the
NonSop TSYMP System Management Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-4

Writing Pathsend Requesters Programming for Failure Recovery

Pathsend Programming and the TM F Subsystem

The Pathsend procedure calls support TMF transactions. Calling a Pathsend procedure to
start a server-class send operation propagates the current transaction identifier, if any, to
the server process. If the Pathsend procedure call fails, use of the TMF subsystem allows
your application to abort the transaction and retry the call. As an application developer,
you do not have to be concerned about the role of LINKMON processesin the
propagation of transaction identifiers.

If you use the TMF subsystem, you should check for errors after each call to the
BEGINTRANSACTION, ENDTRANSACTION, ABORTTRANSACTION, and
RESUMETRANSACTION procedures. Failure to perform these checks could cause
important parts of your application to fail. If aserver error occurs duringa TMF
transaction, the requester should explicitly abort the transaction (even though in some
cases, the transaction might already have been aborted). For further information,
including alist of the file-system errors that can be returned by each of the TMF
procedure calls, refer to the NonStop TM/MP Application Programmer’s Guide.

When designing and coding your application, you should pay attention to whether or not
your Pathsend requests are in transaction mode. For example, your application should
not be in transaction mode while using Pathsend procedure calls to make requests to
subsystems whose operations are not TMF protected, such as the spooler.

Instead, do the following:
1. Savethe value of the transaction identifier.

2. Suspend the transaction by calling the RESUMETRANSACTION procedure with a
tag value of 0.

Make the subsystem request.

Resume the transaction by calling the RESUMETRANSACTION procedure with a
tag value equal to the saved transaction identifier.

Attempting to send to a server class configured with the TMF parameter set to OFF fails
with Pathsend error 917 (FEScServerClassTmfViolation) if the requesting process has a
current transaction. The NonSop TSYMP System Management Manual describes how to

set the TMF parameter in the PATHCOM SET SERVER command.

Fault-Tolerant Programming

The following paragraphs describe issues related to the use of Pathsend procedure calls
in fault-tolerant programs and discuss the appropriate levels of recovery that your
application can perform after takeover by a backup Pathsend process.

For Pathsend callsthat are protected by the TMF subsystem, on takeover the new
primary process must determine whether the current transaction ended or aborted. If the
transaction aborted, the new primary process can retry the entire TMF transaction. That
is, the backup process can begin a new TMF transaction and reissue the Pathsend calls.
This retry mechanism relies on the TMF subsystem’s capability to back out all work that
the server process carried out on the original request.

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-5

Writing Pathsend Requesters Security Issues

For Pathsend calls not protected by the TMF subsystem, the proper recovery depends on
the nature of the request:

e Retryable requests that are not protected by the TMF subsystem can be repeated
many times without adverse effect. An example of thiskind of request is arequest to
read a bank account balance. Requests to retrieve data from a database are retryable
requests.

For these requests, on backup takeover, the backup can simply reissue the request.
The request could be processed more than once by different server processes without
resulting in data corruption.

e Nonretryable requests that are not protected by the TMF subsystem cannot be
processed more than once without having adverse effects. An example of this kind
of request isarequest to subtract $50.00 from a bank account balance.

For these requests, there is no way for the server class to detect duplicate requests,
Pathsend does not support checkpointing of Guardian sync IDs. Therefore, the
backup process cannot send the request again because the operation might be
processed more than once. Because the request cannot be safely retried, the
Pathsend process cannot ensure that the request gets processed at |east once.

Because the request thread suspends while a checkpoint isin progress, checkpointing
large buffers can affect the performance of your application. You should checkpoint the
entire context of nonretryabl e requests, but avoid checkpointing unnecessary data: for
example, data from retryable requests or data that has not changed since the last
checkpoint.

The LINKMON process opens servers that are configured with the TMF parameter OFF
with a sync depth of 1, and 1/0O operations to the server process are automatically retried
if the primary process of a server process pair fails.

See the Guardian Programmer’s Guide for detailed information about checkpointing
and sync IDs.
Security Issues

There are two levels of security to consider for Pathsend processes. security at the
network level and security at the server-classlevel. In addition, if you are using the
Remote Server Call (RSC) product, you can provide additional security to control access
to servers.

Network Security

If your Pathsend process is to access a Pathway server class on another system, the user
ID of the PATHMON process controlling the server class hasto have corresponding user
IDs and remote passwords with the following systems:

e The system where the requesting process is running
e The system where the PATHMON process is running
e The system where the server classis running

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-6

Writing Pathsend Requesters Avoiding Coded PATHMON Names

Thislevel of security isrequired because the LINKMON process must be able to open
the PATHMON process (to make link requests); the LINKMON process must be able to
open the server processes (to send user requests); and the PATHMON process must be
able to open the server processes (to send startup messages). All of these opens are
performed with the PATHMON user ID.

Note. The user ID of the Pathsend process need not have remote passwords to the
PATHMON system or to the server-class system to access the server class. Moreover, the
Pathsend-process user ID need not be known on the PATHMON or server-class systems.

Server-Class Security

LINKMON processes perform authorization checks on each server-class send operation
to make sure that the user ID of the Pathsend process at the time of the send conformsto
the server class s OWNER and SECURITY attributes. You set these attributes for server
classes at configuration time if those server classes are to be accessed by Pathsend
Processes.

The NonStop TSMP System Management Manual describes how to set the SERVER
OWNER and SERVER SECURITY parametersin PATHCOM.

RSC Client Security

Remote Server Call (RSC) workstation clients can be allowed or disallowed to
communicate with specified Pathway servers. You can set up security validation by
creating an Access Control Server (ACS). For more information about creating an ACS,
refer to the Remote Server Call (RSC) Programming Manual.

Avoiding Coded PATHM ON Names

SCREEN COBOL requesters can send requests to Pathway server classes without
having to specify the name of the PATHMON process controlling the server class,
because the TCP has a default PATHMON process to send to. Pathsend processes,
however, must specify the PATHMON name of the server classto send to, because the
Pathsend procedures provide no default PATHMON name.

It is possible, however, to avoid coding PATHMON names in Pathsend programs. For
example, you can use ASSIGNSs containing the PATHMON system and process name.
Or, if the Pathsend process is a Pathway server, the process can use the name of its
creator asthe default PATHMON name to send to. This method of avoiding coding the
PATHMON nameisreliable as long as the sending server is not associative, in which
caseits creator might not be a PATHMON process.

The Pathsend program examples BREQ and PATHSRV in Appendix B, Examples, use
ASSIGNsto avoid coding PATHMON names. The PATHSRV example also uses the
creator default method just described to avoid coding the PATHMON names.

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-7

Writing Pathsend Requesters Context-Sensitive Pathsend Programming

Context-Sensitive Pathsend Programming

If you are writing a context-sensitive Pathsend program, you must follow the guidelines
in the previous subsection, Basic Pathsend Programming, and also perform additional
programming tasks. This subsection describes these additional tasks and other
considerations for context-sensitive programming.

Context-sensitive Pathsend programming involves establishing a dialog between a
requester and a server processin a server class, and then sending messages within the
dialog. After the dialog is established, the same server processis used for al the
messages in the dialog; therefore, the server can retain context between send operations.

A requester startsadialog by calling SERVERCLASS DIALOG BEGIN . This
procedure returns a dialog identifier to be used on subsequent server-class send
operations, which are made by calling SERVERCLASS DIALOG_SEND . The
requester can use multiple callsto SERVERCLASS DIALOG_BEGIN_, and the
resulting dialog identifiers, to engage in multiple simultaneous dialogs. Asin the
context-free case, the requester can call SERVERCLASS SEND_INFO _ after a server-
class send operation to get detailed information about send initiation and compl etion
errors.

Either the requester or the server can abort the dialog, but only the server can end it.
(The server aborts the dialog by returning file-system error 1 (FEEOF) in itsreply; it
ends the dialog by returning file-system error 0 (FEOK).) To abort the dialog, the
requester calls SERVERCLASS DIALOG_ABORT _. Therequester calls
SERVERCLASS DIALOG_END _to clean up resources after the server has ended or
aborted the dialog.

Asin context-free programming, the requester can perform context-sensitive server-class
send operations either waited or nowait. The requester receives an error indication if the
server process has terminated or if it has ended or aborted the dialog.

To participate in adialog with a context-sensitive Pathway requester, a server must
perform additional tasks besides those required of all servers. These additional tasks are
described under Writing Context-Sensitive Serversin Section 4.

Using Context-Sensitive Requester s With Context-Free Servers

Context-sensitive requesters can perform single-send dial ogs with Pathway servers that
are coded to be context-free. However, if these servers check for system messages and
they use the Common Run-Time Environment (CRE), they must be modified to
recognize and respond to Pathsend dialog abort system messages. Section 4, Writing
Pathway Servers, describes how to code serversto handle these system messages.

Resource Utilization

On arequester’'sfirst SERVERCLASS DIALOG _BEGIN _call, an extended segment is
added to the requester’s segment space for use as a workspace. This segment can be up
to 64 KB in size. It is deallocated when the requester process is terminated.

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-8

Writing Pathsend Requesters Programming for Failure Recovery

Programming for Failure Recovery

The SERVERCLASS DIALOG _BEGIN _ procedure allows two types of TMF
protection for dialogs:

e The one-transaction-per-dialog model
e The any-transaction-per-dialog model

You use bit 14 of thef | ags parameter in the SERVERCLASS DIALOG_BEGIN_
procedure call to select which model will be used.

A value of O for bit 14 of f | ags (the default) selects the one-transaction-per-dialog
model. In this model, the dialog records the transaction identifier that is current at the
time of the SERVERCLASS DIALOG _BEGIN _ call. Subsequent Pathsend calls for
this dialog must use this transaction identifier, or the calswill fail; that is, the current
transaction at the time of all Pathsend calls for the dialog must be the same as when the
dialog was started.

With the one-transaction-per-dialog model, the transaction cannot commit—that is, calls
to ENDTRANSACTION will fail—until the server ends (not aborts) the dialog and the
requester calls SERVERCLASS DIALOG_END . In other words, when bit 14 of

fl ags isset to 0, the TMF subsystem treats adialog like an I/O operation: the
ENDTRANSACTION operation fails until the dialog has finished. The same restriction
appliesto nested servers: if aserver receives amessage in adialog and then initiates a
dialog with another server, it must complete the entire initiated dialog before replying to
the message from the received dialog.

A value of 1 for bit 14 of f | ags selects the any-transaction-per-dialog model. In this
model, all server-class send operations within the dialog will contain the transaction
identifier that is current at the time of the send, and there are no restrictions on
ENDTRANSACTION other than those associated with calls to the WRITEREAD
procedure (as described in the NonSop TM/MP Application Programmer’s Guide).

When the one-transaction-per-dialog model is used, the dialog must be ended rather than
aborted for the transaction to be compl eted successfully. The requester can ask the server
to end the dialog by specifying a user-defined END REQUEST command that is
recognized by the server.

If the dialog is aborted, the requester receives error 233, FEScError, and
SERVERCLASS SEND_INFO _ returns Pathsend error 929, FEScDial ogAborted.

The file-system error returned by SERVERCLASS SEND_INFO __ provides information
about the reason for the abort. If the server explicitly aborts the dialog, the file-system
error is FEEOF (1).

If the server abends and the dialog is not in an ended state, the dialog is aborted, and the
requester receives error 233, FEScError, and SERVERCLASS SEND _INFO _ returns
Pathsend error 929, FEScDial ogAborted.

When the one-transaction-per-dialog model is used, the current TMF transaction, if any,
isautomatically aborted when the server returns an error value (FEEOF, or any other
value besides FEOK or FEContinue) in the reply. When the any-transaction-per-dialog
model isused (when bit 14 of the dialog flags is equal to 1), no automatic transaction

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-9

Writing Pathsend Requesters Cancellation of Server-Class Send Operations

abort occurs. In either case, the requester should abort the transaction when it receives
an error reply.

If the server is shut down by the operator, the following occurs:

e For dialogs that currently have an 1/0 operation outstanding, the 1/O operationis
first completed, and action is then taken depending on the error value returned:

e If thel/O operation is completed with an error value of FEOK (0), then the
FEOK value is passed back to the requester along with all user data.

e If thel/O operation is completed with an error value of FEContinue (70), the
requester receives error 233, FEScError, and SERVERCLASS SEND_INFO _
returns Pathsend error 929, FEScDialogAborted. No user datais passed back to
the requester.

e If thel/O operation is completed with any other file-system error, the requester
receives error 233, FEScError, and SERVERCLASS SEND INFO _returnsthe
file-system error that occurred. No user datais passed back to the requester.

After completion of the I/O operation, the dialog is aborted and the LINKMON
process closes the server process. The server process should interpret the close
operation as adialog abort.

e For diaogs that have no I/O operation outstanding, the dialog is aborted and the
LINKMON process closes the server process. The server process should interpret
the close operation as a dialog abort.

When writing requesters as process pairs with or without the TMF subsystem, note that
it is not possible to checkpoint dialogs. The dialog and the transaction, if any, are
aborted when the requester fails.

Cancedllation of Server-Class Send Oper ations

The requester can explicitly cancel an outstanding server-class send operation if it has
used the nowait option in the Pathsend procedure call and has not yet sensed completion
of the server-class send operation through the AWAITIOX procedure. In this case, the
server receives a Pathsend dialog abort system message (as described in Section 4) even
if it has already replied to the last send operation.

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-10

Writing Pathsend Requesters Writing Requesters That Interoperate With
NonStop TUXEDO Servers

Writing Requesters That I nteroperate With
NonStop TUXEDO Servers

Pathsend requesters can call on the services of NonStop TUXEDO serversin either of
two ways:

e Directly, by making callsto the NonStop TUXEDO Application Transaction
Monitor Interface (ATMI) functions

e Indirectly, by using the Pathway to TUXEDO (PWY 2TUX) trandlation server |

To communicate directly with aNonStop TUXEDO server by calling the ATMI
functions, a Pathsend requester must also act asa NonStop TUXEDO client, as follows:

e It must be compiled as a NonStop Kernel Open System Services (OSS) process,
therefore, it must be written in a Tandem language that supports Open System
Services (such as C).

e It must link inthe ATMI functions. For example, if the requester isa C program, it
can be linked to the ATMI functions by being compiled with the bui | dcl i ent
command.

e It mustjoinaNonStop TUXEDO application by calling the tpinit() ATMI function
or one of the ATMI functions that implicitly calls tpinit(), such as tpalloc() or
tpcall().

e It must follow the restrictions on Pathsend procedure calls that apply to NonStop
TUXEDO clients. namely, it cannot make nowait calls (calls with bit 15 of the
f | ags parameter set to 1) to the SERVERCLASS SEND _,
SERVERCLASS DIALOG BEGIN_, and SERVERCLASS DIALOG_SEND _ |
procedures.

A requester using this method of interoperation can use request/response messages,
conversations, or both.

For more information about writing a NonStop TUXEDO client and calling the ATMI
functions, refer to the NonSop TUXEDO System Application Devel opment Guide. For
the syntax of the ATMI function calls, refer to the NonSop TUXEDO System Reference
Manual.

To communicate indirectly with aNonStop TUXEDO server by using the Pathway to
TUXEDO trandlation server, a Pathsend requester program (or a SCREEN COBOL
requester program) must be written according to the guidelinesin the NonSop TUXEDO
System Pathway Trandlation Servers Manual. Refer to that manual for further
information. A Pathsend requester using the Pathway to TUXEDO trandlation server
must use context-free Pathsend calls (callsto SERVERCLASS SEND); the trandation
server does not support dialogs (conversations).

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-11

Writing Pathsend Requesters Writing Requesters That Interoperate With
NonStop TUXEDO Servers

NonStop TS/MP Pathsend and Server Programming Manual—132500
3-12

% Writing Pathway Servers

This section explains how to write server programs that service requests from Pathway
requesters. Such requesters can be Pathsend requesters, SCREEN COBOL requesters, or
clients that use the Remote Server Call (RSC) product or the Pathway Open
Environment Toolkit (POET) product. Pathsend requesters are described in this manual.
SCREEN COBOL requesters are described in the Pathway/TS TCP and Terminal
Programming Guide; the SCREEN COBOL language is described in the Pathway/TS
SCREEN COBOL Reference Manual. For information about writing RSC clients, refer
to the Remote Server Call (RSC) Programming Manual. For information about writing
POET clients, refer to the Pathway Open Environment Toolkit (POET) Programming
Manual.

Pathway server programs read requests from $RECEIVE, as described in the Guardian
Programmer’s Guide and in the manual s describing Tandem programming languages.
You can write Pathway server programsin C, C++, COBOLS85, Pascal, pTAL, TAL,
FORTRAN, or Extended BASIC. You should be familiar with the Guardian requester/
server model and with the $RECEIVE mechanism as implemented in the programming
language you are using.

Note. This section describes how to write Pathway servers in the Guardian environment. You
can also write a Pathway server program in the NonStop Kernel Open System Services (OSS)
environment. The basic design considerations in this section apply also to Pathway servers in
the Open System Services environment; however, additional Open System Services
programming considerations also apply. For information about these programming
considerations, refer to the Open System Services Programmer’s Guide.

If you are using the Transaction Management Facility (TMF) subsystem, you should
also be familiar with general programming guidelines and considerations for TMF
servers, as described in the NonStop TM/MP Application Programmer’s Guide.

Basic Pathway Server Programming

The simplest type of Pathsend server is a context-free server. This subsection provides
information related to writing context-free Pathway servers, as well as information that
appliesto all Pathway servers. Writing Context-Sensitive Servers, later in this section,
provides information about the additional tasks required of a context-sensitive Pathway
Server.

In X/Open and NonStop TUXEDO system terminology, a context-free server iscalled a
request/response server, and a context-sensitive server is called a conversational server.

Servers Shared by Different Types of Requesters

The protocol for Pathway server processesis essentially the same regardless of the type
of requester they work with. Therefore, Pathway servers can be used by more than one
type of requester; for example, by both Pathsend requesters and SCREEN COBOL
requesters, or by both Guardian requesters and clients from client/server environments.
If servers are used by several types of requester, the server program request and reply
formats must be consistent with that of all the requesters.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-1

Writing Pathway Servers Guardian Servers and Pathway Servers

Guardian Serversand Pathway Servers

Like a Guardian server, a Pathway server receives messages by reading the Guardian
$RECEIVE file. However, unlike a Guardian server, it does not receive its messages
directly from arequester program, but instead receives them from an intermediate
process. either a LINKMON process or atermina control process (TCP). Whereas a
Guardian server receives open messages, |/0 messages, and close messages from the
requester, a Pathway server receives all these messages from the LINKMON process or
the TCP. A Pathway server receives no information about the identity of the requester
process that initiated the communication, unless the requester provides that information
in the messages it sends.

The LINKMON process's open of the server process is shared among all the Pathsend
requester processes running in the same processor as that LINKMON process.
Therefore, a close does not necessarily occur when the communication with a particular
requester process is finished.

Server Stop Protocol

A Pathway server must stop itself when the LINKMON process or the TCP closes it on
behalf of the last requester that has alink to it. Otherwise, the PATHMON process
considers the server process to be in the PENDING state.

Handling of M essages from $RECEIVE

COBOL85 servers aways perform all of the 1/0 for the request message most recently
read from $RECEIVE and always reply to that message before reading another message.
For smplicity, thisis the protocol servers should follow in most cases.

If you do need to write a multithreaded server or a context-sensitive server that performs
queuing of messages from $RECEIVE, you must write this portion of your server
program in a language other than COBOL 85.

Pathsend Requester Failures

A Pathsend requester process can fail for reasons that include the following: the
requester process calls ABEND, a processor fails, or someone stops the process.

When a Pathsend requester process fails with outstanding 1/O operations, the effect is
similar to that of afailure of any Guardian process with outstanding 1/0; that is, all
outstanding 1/0O operations are canceled, including those for outstanding server-class
send operations. As aresult, the target server process might get cancellation messages
related to the outstanding callsto SERVERCLASS SEND ,

SERVERCLASS DIALOG _BEGIN_, or SERVERCLASS DIALOG_SEND _.

However, the target server process does not get a close message, as it would have from a
Guardian file-system open. Except in the case of a processor failure, the links that the
LINKMON process established with server processes on behalf of the Pathsend
requester are maintained, because these links are shared. Therefore, servers must
monitor cancel messages, rather than close messages, to determine when a pending reply
isno longer needed.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-2

Writing Pathway Servers LINKMON Process Failures

When arequester fails, all transactions initiated by that requester but not yet completed
at the time of the failure are automatically aborted.

LINKMON Process Failures

If ahalt occursin the processor where a LINKMON processis running, al the Pathsend
requesters in that processor fail. (See the previous subsection for details about requester
failures.) Thelinksthat the LINKMON process established with the server processes are
relinquished.

Linkage Space Consider ations

If the server alocates too little space for SRECEIV E messages, system performance can
be adversely affected, and the requester can get errors at peak workload times. To avoid
this problem, the number of links specified by the server (for example, in the COBOL 85
RECEIVE-TABLE OCCURS clause) should be greater than the value specified in the
SET SERVER MAXLINKS parameter in PATHCOM. The server’s specified number of
links should be large enough for all openers, including requesters from other
PATHMON environments that specify associative servers and from outside the Pathway
environment (for example, operations applications).

The default value for MAXLINKS is an unlimited number of links; therefore, to avoid
this problem, MAXLINKS must be set to avalue. The error returned to a Pathsend
requester iserror 905 (FEScNoServerLinkAvailable) or 923
(FEScTooManyServerLinks). The error returned to a SCREEN COBOL requester is
error 4 (link denied).

Considerationsfor Servers Used With SCREEN COBOL Requesters

SCREEN COBOL requesters require that the first two bytes of a server reply message
contain an integer reply-code value. For more information about reply-code values, refer
to the description of the REPLY CODE clause of the SCREEN COBOL SEND
statement in the Pathway/TS SCREEN COBOL Reference Manual.

The checkpointing requirements of the Pathway/TS terminal control process (TCP) can
be reduced significantly if TMF protected servers read outside of transaction mode—
that is, perform their read operations while no transaction is in progress—before
updating the database.

You can improve the performance of a server used by SCREEN COBOL requesters by
taking advantage of the TCP's checkpointing strategy for TMF protected servers, as
follows:

e Do not use transaction mode for a server with read-only access to a database if the
requester displays the data before making any attempt to change it. In the event of a
failure, the read operations are retryable and fault-tolerant operation is maintained.

e Do not use transaction mode for a server that writesto an entry-sequenced logging
filein which duplicates are acceptable. In the event of afailure, the write operations
can be rewritten.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-3

Writing Pathway Servers Consideration for Servers Used With Remote Server
Call (RSC) Clients

For more information about the checkpointing strategy used by the TCRP, refer to the
Pathway/TS TCP and Terminal Programming Guide.

Consideration for Servers Used With Remote Server Call (RSC) Clients

Some Remote Server Call (RSC) clients are written to check for an integer reply-code
valuein the first two bytes of the server’s reply message. If the RSC client program calls
the RscSetOption function to set TMF_OPTION to either 2 (RSC_END_TRANS) or 3
(RSC_BEGIN_END_TRANS), the RSC transaction delivery process (TDP) monitors
thisreply code from the server to determine whether the client should end the
transaction. The reply codeis afeature that can allow optimization to reduce network
traffic. For further information about use of the RSC reply code, refer to the Remote
Server Call (RSC) Programming Manual.

Nested Servers

A Pathway server can use Pathsend procedure calls to make requests to serversin other
server classes. In such a case, the server is acting as a server with respect to the requester
that sends requeststo it, but it is also acting as a Pathsend requester with respect to
another server. Servers communicating with each other in this way are known as nested
servers. Because they are Pathsend programs, nested servers must be written in C, C++,
COBOLS85, Pascal, pTAL, or TAL. |

If you use nested servers, you should try to prevent queues of requests from developing,
because a single-threaded server that calls Pathsend procedures waits for a response
before proceeding. Serversusually just wait for disk I/0, ahigh-priority activity. Waiting
for alow-priority server might tie up system resources.

For information about how to code the requester functions of nested servers (that is, how
to use the Pathsend procedure calls), refer to Writing Pathsend Requesters. An example
of anested server, called PATHSRYV, is given in Example B-2 on page B-53.

Using Context-Free Servers With Context-Sensitive Requesters

Dialogs using context-sensitive requesters are described under Context-Sensitive
Pathsend Programming in Section 3. A context-free server-class send operation (initiated
by acall to SERVERCLASS SEND_) is, in effect, adialog consisting of asingle send
operation. Pathway servers that are coded to be context-free can participate in single-
send dialogs with context-sensitive requesters. However, if these servers check for
system messages, you must modify them so that they recognize Pathsend dialog abort
system messages, as described under Writing Context-Sensitive Servers later in this
section.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-4

Writing Pathway Servers Considerations for Servers That Use the TMF
Subsystem

Congderationsfor ServersThat Usethe TMF
Subsystem

If you are writing a Pathway server that uses the TMF subsystem for transaction
management, a number of additional programming considerations apply, related to the
following topics:

e Recommended application structure

e Writing a server to use the TMF subsystem if your application does not follow the
recommended structure

e Using audited and nonaudited files
e Record locking
e Grouping transaction operations

Recommended Structure for Applications

The recommended structure for applications that use the TMF subsystem is described in
this subsection. If your current or planned application has these characteristics,
programming the application to use the TMF subsystem is relatively straightforward,;
otherwise, refer to Writing a Server to Use the TMF Subsystem, later in this section, for
achecklist of changes to make.

One process (usually the requester) coordinates all of the work required to do asingle
TMF transaction; this process identifies the beginning and ending points of each
transaction. Additionally, if the server repliesto arequest message by indicating that it
failed to complete all of the changes, this process can either abort and abandon the
transaction or abort and retry the transaction.

The communication between requesters and servers is by standard interprocess 1/0O. The
requester does the send operation, and the server does the READUPDATE call for
$RECEIVE and the REPLY call. Each request message and the server’s reply to the
message isfor asingle transaction.

Any disk 1/0 request isfor asingle transaction. The TMF subsystem appends the
process's current transaction identifier to each disk-request message so that the audit
trails can include the identity of the transaction responsible for each database change.

How concurrency control is performed depends on which relational database
management system (RDBMYS) is being used. If the NonStop SQL/MP relational
database management system is used, concurrency control is done by means of

NonStop SQL/MP access options. Use of the access options causes NonStop SQL/MP
software to generate the appropriate TMF transactions as required; therefore, serversthat
use NonStop SQL/M P databases are not required to include TMF procedure calls or
statements. For information about use of the NonStop SQL/MP access options, refer to
the NonSop SQL/MP Reference Manual. For servers that use the Enscribe database
record manager, concurrency control is done by using the Enscribe locking facilities,
and you must program the transactions by using TMF procedure calls or statements. For

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-5

Writing Pathway Servers Writing a Server to Use the TMF Subsystem

information about use of the Enscribe locking facilities, refer to the Enscribe
Programmer’s Guide.

Servers do not reply to request messages until all work for the request has been
completed. The contents of the reply message indicate the outcome of the request, which
isone of thefollowing:

e All thework for the request was completed successfully.
e None of thework for the request was completed.
e Thework for the request was only partially completed.

In thefirst case, the requester can commit the transaction. In the second case, the
requester can commit the transaction and then retry it. In both of these cases, the
information in the server’s reply is sufficient to ensure the integrity of the transaction.

However, if the transaction work was only partially completed, as in the third case, the
server needs to ensure that the transaction is not committed so that the incompl ete work
can be backed out. To ensure transaction backout, the server should call the
ABORTTRANSACTION procedure after reading the server’s request and before
sending itsreply. A call to ABORTTRANSACTION by the server does not end the
transaction—only the requester can end it—but such a call imposes the requirement that
the requester also call ABORTTRANSACTION, rather than ENDTRANSACTION,
after the requester’s reply.

Writing a Server to Usethe TM F Subsystem

If, for some reason, your application does not follow the structure described in
Recommended Structure for Applications, earlier in this section, you should consult the
checklist that follows.

Writing a Pathway server to use the TMF subsystem requires that you do the following:
1. Decide which filesin the database should be audited.

2. Determine any modifications that are necessary to convert the application to follow
the TMF subsystem locking rules.

3. Decide how to group sequences of the application operations into TMF transactions
(that is, units of recovery).

4. Ensurethat any fault-tolerant servers respond correctly to file-system error 75:
REQUESTING PROCESS HAS NO CURRENT-TRANSACTION IDENTIFIER.
A backup server that takes over in mid-transaction does not have a current-
transaction identifier to send to the disk process; therefore, the disk process returns
error 75 to the server, which passes the error to the requester. If the requester aborts
and retries the transaction, the new request has a current-transaction identifier. The
preferred solution is to change the servers so they are not fault-tolerant servers.

5. Determine whether any new transaction deadlock situations are introduced as a
result of TMF implicit record locking and modify the application to avoid the
deadlock. (Transaction deadlock is a situation in which two transacti ons cannot

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-6

Writing Pathway Servers Using Audited and Nonaudited Files

proceed because they are each waiting for the other to release alock.) One way to
cope with deadlock is to use timeout.

In addition, your requester program must use the necessary transaction-control
procedure calls or statements to begin and end the transaction and to abort or restart the
transaction if necessary.

Note. Whenever your server begins work on a new queued message, it must call the
ACTIVATERECEIVETRANSID procedure to change the current transaction identifier, as
described in the NonStop TM/MP Application Programmer’s Guide.

Using Audited and Nonaudited Files

TMF recovery strategy involves backing out the aborted transaction changes; backing
out those changes enabl es the transaction to be reexecuted from the beginning (with a
new transaction identifier). This strategy means that if you decide to have a mixture of
audited and nonaudited files in the database, you must be careful: only changes to
audited files are backed out. If atransaction works on a mix of audited and nonaudited
files, the operations on the nonaudited files must be retryable.

A retryable operation is an operation that can be interrupted and repeated an indefinite
number of times without affecting the consistency of the database; for example, all
reading operations are retryable. Whether or not awriting operation (on a nonaudited
file) is retryable depends on your criteriafor consistency of the datain the database. If
the transaction changes both audited and nonaudited files, you should analyze the
transaction to determine whether backing it out and reexecuting it affects consistency.

For example, consider a transaction that extracts records from a database, computes
some aggregates like averages or means, and then uses the aggregates to extract a subset
of the extracted records from the database for summary reporting. This transaction can
be implemented by doing the extraction twice, the first time to compute the aggregates
and the second time to extract the subset. You can place the extracted recordsin a
nonaudited scratch file (each server can haveits own scratch file, to avoid conflict
among them). If the transaction is aborted and restarted, the transaction starts writing the
scratch file from the beginning and there is no need for the scratch file to be audited.

Another exampleislogging all input messagesto a server, which allows examination of
them after afailure. It is self-defeating to designate the log file as an audited file; the
message that caused the failure would be backed out.

The following restrictions apply to applications that use the TM F subsystem:

e When working with audited files, do not use the COBOL 85 feature that provides
record blocking on an unstructured disk file.

e When changing audited files, do not use a server that provides its own record
blocking, its own record caching, or its own form of record locking.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-7

Writing Pathway Servers Locking Records

L ocking Records

If your application uses the TMF subsystem, your servers must follow the TMF locking
rules. Locking gives the TMF subsystem the control required to ensure that transactions
are presented with a consistent view of the database. With respect to the locking of
records, you must consider the following aspects of your application:

e Repeatable reads.

e Errorsthat result from locks being held by the transaction identifier instead of the
process identifier and OPENID of the file opener.

e Errorsthat result from reading deleted records.

e Batch updates by atransaction that acquires alarge number of locks. You should use
file locks instead of record locks for batch updating.

For details about how to handle these aspects of your application, refer to the
NonSop TM/MP Application Programmer’s Guide.
Grouping Transaction Oper ations

Your application can view the transaction as alogical unit of work; for example, the
order header and al of the detail itemsin a purchase order might be such awork unit.
The TMF subsystem, however, treats the transaction as a physical unit of recovery.
When you use the TMF subsystem in your application, you must consider this
difference.

Basically, you need to answer certain questions. What is the logical unit of work that
you want to accomplish within an application? How can the work be divided into a
number of transactions that can be recovered by the TMF subsystem?

Factors that influence the answers to these questions are:
e Concurrency: How long will record locks be held by a transaction?

e Performance: How much server activity and how many display screens are involved
in the choice of one conversion strategy over another?

e Consistency: Arethe units of recovery large enough to ensure that your criteriafor
consistency will be maintained?

In view of these factors, two guidelines can help you decide how to group the database
accesses made by an application into a single transaction:

e Any group of accesses that together modify the database from one consistent state to
another consistent state should be a single TMF transaction.

e Any group of accessesthat require a consistent view of the database should be a
single TMF transaction.

The following exampl es demonstrate how you might apply these guidelines.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-8

Writing Pathway Servers Grouping Transaction Operations

Example 1

Some logical transactions do not have to be identified as TMF transactions. For
example, alogical transaction locates a single record and displays the record contents.
Because this transaction changes nothing in the database, it does not affect consistency
and does not have to be a TMF transaction.

Example 2

A data-entry transaction with agroup of accesses that insert new data into the database
should be a TMF transaction. For example, alogical transaction records receipt of some
items for a stockroom by accepting the stock codes and quantity received from a data-
entry operator and then updates the records (in an audited file) for the items.

Because the first guideline applies, you should arrange to begin a TMF transaction after
the datais accepted and to end the transaction after the last record is updated. The TMF
subsystem ensures that al changes resulting from the one operator entry either are
permanent or are backed out in case the transaction aborts. Note that because any change
to an audited file requires a transaction identifier, this example isalso true if the
transaction inserts only one record in the file.

Example 3

An update transaction should be a TMF transaction. For example, assume alogical
transaction does the following:

1. Accepts a specification from the operator

Performs the equivalent of an inquiry operation to find the data that will be updated
Releases the locks obtained for the inquiry

Displaysthe data for the operator

o A~ W DN

Accepts modifications to the displayed data (saving a copy of the original displayed
data)

6. Performstheinquiry asecond time
7. Verifiesthat the results of thefirst inquiry and the second inquiry are the same
8. Writes the modified record to the database

The transaction should be implemented as two TMF transactions. The first should begin
after the data is accepted and should end (rather than release the locks) after the last
record isread. The second should begin after the modifications to the displayed data
have been accepted and should end after the last modified record is written to the
database. If theinquiry part of the transaction is just a single read, however, thereisno
need for the first inquiry to be part of a TMF transaction.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-9

Writing Pathway Servers Servers as Process Pairs

Servers as Process Pairs

When you are using the TMF subsystem, you should not write your server processes as
fault-tolerant process pairs. The additional programming and functional overhead
required to do so isunnecessary. If your servers are already coded as process pairs,
however, it is not usually necessary to change them back to ordinary servers. For such
servers, note that if the primary server process fails, the backup process (on takeover)
does not have a current-transaction identifier. This means that the server process receives
error 75: NO CURRENT-TRANSACTION IDENTIFIER on the first I/O request to an
audited file. You should insert code into such a server either to recognize this error and
report it as afailure to the requester, or to terminate when it receives this error.

Because the COBOL 85 run-time library recognizes the PARAM named NONSTOP, you
can prevent a COBOL 85 server from running as a process pair by having a PARAM
NONSTOP OFF in effect when the server is started. For Pathway servers, you can
accomplish thistask by including PARAM NONSTOP OFF with the parametersin the
definition of the server class during PATHMON configuration. When PARAM
NONSTOP OFF isin effect when the server is started, the COBOL 85 run-time library
ignores the STARTBACKUP and CHECKPOINT verbs and stores the successful
completion code in the PROGRAM-STATUS special register.

There is no comparable mechanism to indicate that a server process coded in TAL,
pTAL, or FORTRAN should not run as a process pair. If you have server processesin
these languages that are coded as process pairs, you can either implement a custom
PARAM or recode your server.

Transaction Deadlocks

An application that uses the TMF subsystem might hold more record locks and hold
them longer than it would without the TM F subsystem because:

e Implicit locks are held on the keys of deleted records.
e Implicit locks are held for inserted records.
e Locksare held until the transaction is either committed or aborted and backed out.

The increased locking could cause new possibilities for transaction deadlock. If
transaction deadlock might become a problem, consider implementing the methods for
coping with deadlock discussed in the Guardian Programmer’s Guide.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-10

Writing Pathway Servers Considerations for Debugging Pathway Servers

Considerations for Debugging Pathway Servers

When you are running a Pathway server in debug mode (that is, with the server class
configured with DEBUG ON) or when the server falls into debug mode because of an
error, some situations might cause errors to be returned to the requester communicating
with that server, and in some cases also might cause errors to be returned to other
requesters. Those situations are described in the following subsections.

LINKMON Processand TCP Timeouts

The LINKMON process and the TCP have a built-in five-minute timeout for process
opens and 1/0O operations such as get-link requests. During normal operation, such
operations are generally completed in less than five minutes unless there is a problem.
However, if the server processisin debug mode, the server can be stopped (for example,
at a breakpoint) for longer than five minutes. In certain cases, this can cause a process
open or 1/0O operation from a LINKMON process or TCP to time out. The effects of the
timeout depend on what type of operation timed out.

If an I/O operation to the PATHMON process times out, the LINKMON process or the
TCP behaves asif there were a problem with the PATHMON process: that is, it shuts
down communication with the PATHMON process, relinquishing al links granted by
that PATHMON process.

Inthis situation, if the requester that sent the request that timed out was a Pathsend
requester, this request (as well asall other server-class send requests queued under that
PATHMON process) fails with Pathsend error 902, FEScPathmonConnect, with
file-system error 40 (timeout error). Subsequent send requests to server classes under
that PATHMON process fail with Pathsend error 915, FEScPathmonShutDown.

If the timed-out request came from a SCREEN COBOL requester, this request (as well
asal other server-class send requests queued under that PATHMON process) fails with
a SEND error with a TERMINATION-STATUS value of 18 (PATHMON 1/O error) and
aTERMINATION-SUBSTATUS value of 40. Subsequent send requeststo server classes
under that PATHMON process fail with a SEND error with a TERMINATION-STATUS
value of 18 (PATHMON 1/O error) and a TERMINATION-SUBSTATUS value of 40.

If atimeout occurs on the server process open, the LINKMON process or the TCP
returns the link to the PATHMON process. If other links to the server class exist, no send
requests fail as aresult of the open failure. If no other links exist, the send request (as
well as all other server-class send requests queued for that LINKMON process or TCP)
fails. A Pathsend requester receives Pathsend error 904, FEScServerLinkConnect, with
file-system error 40 (timeout error). A SCREEN COBOL requester receives a SEND
error with a TERMINATION-STATUS value of 12 (1/0 error) and a TERMINATION-
SUBSTATUS value of 40 (timeout error).

Note also that if the server classis configured so that it can be opened more than once
(that is, with MAXLINKS greater than 1), aLINKMON process or TCP can attempt to
open a server process in that server class at any time. This open attempt can time out if
the server processis being debugged.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-11

Writing Pathway Servers PATHMON Process Timeouts

When Pathsend error 915 or a SEND error with TERMINATION-STATUS 12 occurs
with atimeout error during server debugging, use the PATHCOM STATUS PATHMON
command to find the server classesthat are in the LOCKED state. |dentify the server
program file for each locked server class, and issue the TACL command STATUS *,
PROG obj ect-fi | e- nane tolist al running processes. Stop these processes by
using the TACL STOP command. The PATHMON process then unlocks the server class,
the LINKMON process or the TCP completes the shutdown logic, and error 915 isno
longer returned.

The LINKMON process now has no more communication with that PATHMON
process. When a subsequent send request comes in for a server controlled by that
PATHMON process, the LINKMON process or TCP opens the PATHMON process, and
waits to be opened by that PATHMON processin turn, before initiating any get-link
requests to that PATHMON process.

PATHM ON Process Timeouts

Similarly, the PATHMON process has a built-in five-minute timeout for 1/O operations,
such as the opening of a a server process and the sending of a startup message to it that
can occur as aresult of aget-link request. If such an operation takes longer than five
minutes (for example, because the server processis in debug mode), the get-link request
from the LINKMON process or the TCP times out. A Pathsend requester receives
Pathsend error 902, FEScPathmonConnect, with file-system error 40 (timeout error).

A SCREEN COBOL requester receives a SEND error witha TERMINATION-STATUS
value of 18 (PATHMON 1/O error) and a TERMINATION-SUBSTATUS value of 40
(timeout error).

By default, the COBOL85 and C run-time libraries handle initialization automatically
before the first line of server code is executed. Therefore, PATHMON timeout errors on
server initialization are most likely to occur when you are debugging servers written in
TAL or pTAL, or other serversthat are explicitly programmed to monitor system |
messages such as open messages.

Server Timeouts

Another kind of timeout problem that can occur for servers being debugged is related to
the configured timeout value for the server class (set in the PATHCOM SET SERVER
TIMEOUT command). This timeout covers only the time taken by the 1/0 to the server
process. If atimeout occurs, the LINKMON process or the TCP cancels the send
operation, and the Pathsend call or SCREEN COBOL SEND request fails. Changing the

value of the timeout parameter during debugging might help prevent this problem from
occurring.

Avoiding Timeout Errors

A good way to avoid most timeout errors during the debugging of serversisto write an
Inspect command file that automatically continues server operation before a timeout
OCCUrS.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-12

Writing Pathway Servers Writing Context-Sensitive Servers

Writing Context-Sensitive Servers

If you are writing a context-sensitive Pathway server, you must follow the guidelinesin
Basic Pathway Server Programming earlier in this section and also perform additional
programming tasks. This subsection describes these additional tasks and other
considerations for programming context-sensitive servers.

When you use context-sensitive Pathway servers, the requester and server must be
designed to work together. The context-sensitive Pathsend procedure calls used by the
requester, described in Section 3, Writing Pathsend Requesters, and Section 5, Pathsend
Procedure Call Reference, convey dialog information to the server, and the server
conveys dialog information in its reply.

Note. The SCREEN COBOL language does not support context sensitivity; therefore, to take
advantage of context sensitivity, you must use either a Pathsend requester or a GDSX
front-end process that uses the GDSX pseudo Pathsend procedures.

Functions of a Context-Sendtive Server

In addition to the functions performed by all Pathway servers, a context-sensitive server
must do the following:

e Detect anewly established dialog

e Receive, service, and reply to messages associated with a dialog
e Correlate messages with adialog

e Continue adialog

e Terminate adialog

e Abortadiaog

e Detect an aborted dialog

It issimpler to code a context-sensitive server if you allow only one dialog at atime.

To impose this restriction, you must configure the server class witha MAXLINKS value
of 1. If MAXLINKS s set to a value other than 1, you must code your server to save
multiple dialog contexts and to switch context, if needed, on each incoming request.

When a server receives a message on $RECEIVE, it checks dialog flag bits <12:13>
returned by the file-system procedure FILE_GETRECEIVEINFO _ or the Common
Run-Time Environment (CRE) procedure CRE_Receive Read to determine whether
thisisthe first message of anew dialog or a message within an existing dialog. A value
of zero in these two bits indicates a context-free send operation. In addition, the server
can check dialog flag bit 14 to determine the model used by the requester for associating
transactions with dialogs.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-13

Writing Pathway Servers Detecting a Newly Established Dialog

For the syntax of the FILE_GETRECEIVEINFO _ procedure, refer to the Guardian
Procedure Calls Reference Manual. For the syntax of the CRE_Receive Read
procedure, refer to the Common Run-Time Environment (CRE) Programmer’s Guide.

Note. CRE_Receive_Read_ and the other CRE routines are callable only from TAL, pTAL,
FORTRAN, and COBOLS85 programs and are used when you are writing mixed-language
programs. You cannot use CRE routines along with Guardian procedure calls. For more
information about the use of the CRE routines, refer to the Common Run-Time Environment
(CRE) Programmer’s Guide.

Detecting a Newly Established Dialog

A context-sensitive server detects a newly established dialog by checking bits <12:13>
of the dialog flags returned by the FILE_GETRECEIVEINFO _ or the

CRE_Receive Read_procedure. If the value in these bitsis 1, the message is the first in
anew dialog. This message corresponds to the requester’s call to the

SERVERCLASS DIALOG_BEGIN __ procedure; this call starts the dialog and usually
also sends data.

Receiving, Servicing, and Replying to Messagesin a Dialog
The server receives, services, and replies to messages in adialog by doing the following:

1. Reads amessage from $RECEIVE by using the $RECEIV E reading mechanism for
the programming language, such as acall to the Guardian READUPDATE or
READUPDATEX procedure.

2. Checksbits <12:13> of the dialog flags returned by the FILE_GETRECEIVEINFO _
or the CRE_Receive Read procedure. If the value in these bitsis 1, the message is
thefirst in anew dialog. If the value is 2, the messageis for an existing dialog.

3. Checksthe value of bit 14 of the dialog flags if the TMF subsystem is being used,
the server is enforcing transaction commit protection during the dialog, and the
value of bits <12:13> of the dialog flagsis 1 (first message in anew dialog). If the
value of bit 14 is 1, aborts the dialog by replying with FEEOF (1).

4. Processes the message and performs the requested services.

Issues areply by using the language’s SRECEIV E writing mechanism, such asacall
to the REPLY or REPLY X procedure.

Dialog Control

The server controls the dialog by means of afile-system error code it returnsin itsreply.
Table 4-1 shows the effect of the reply error codes.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-14

Writing Pathway Servers Receiving, Servicing, and Replying to
Messages in a Dialog

Table4-1. Meaning of Error Codes Returned by Context-Sensitive Server in Reply
Error Returned

by Server Meaning
70 (FEContinue) Allow the dialog to continue.
0 (FEOK) End the dialog. After the server replies with this code, the associated

TMF transaction (if any) will be allowed to commit, and the server will
receive no further sends associated with this dialog.

1 (FEEOF) Abort the dialog. After the server replies with this code, there will be no
further sends associated with this dialog.

Any other valuel Abort the dialog. After the server replies with this code, there will be no
further sends associated with this dialog.

The regquester receives this error as the file-system error of the
FEScServerLinkConnect error.

1Use of other error values is not recommended because of their effect on the link to the server. Refer to
accompanying text for details.

Use of error values other than 1 (FEEOF) is not recommended. Any other error value
causes the LINKMON process to close the link to the server and return it to the
PATHMON process. If there are no other links to that server process, the server process
is deleted; then, if that processis later needed to service subsequent requests, it will need
to be re-created, thereby affecting system performance. It is recommended, therefore,
that servers always reply with FEEOF to abort adialog. The server should return any
additional information in the message itself rather than in the reply code.

Whether the current TMF transaction, if any, is also aborted when an error valueis
returned depends on the setting of dialog flag bit 14 in the call to
SERVERCLASS DIALOG_BEGIN _, as explained in the following subsection.

Use of TMF Transactions With Dialogs

A context-sensitive server participatesin a TMF transaction in the same manner as
context-free servers would do. The server inherits the transaction identifier of the
received message. The server can abort the transaction when it has the transaction
identifier.

When the server calls FILE. GETRECEIVEINFO _or CRE_Receive Read and detects
thefirst message in adialog, it can also check the dialog flags used to initiate the dial og.
If you want to enforce transaction commit protection during the dialog—that is, ensure
that the requester cannot call ENDTRANSACTION until the server has ended the
dialog—you can code your server to verify that bit 14 of the dialog flags is O whenever
the value of bits<12:13> is 1. If the requester’s value for bit 14 is 1, the server can abort
the dialog by replying to the message with an error value of FEEOF (1).

When the one-transaction-per-dialog model is used (when bit 14 of the dialog flagsis
equal to 0), the server must end the dialog by replying FEOK to a message before the
requester can commit the associated TMF transaction. To allow requestersto ask the
server to end the dialog, you can program your server to recognize a user-defined “end
request” command.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-15

Writing Pathway Servers Correlating Messages With a Dialog

When the one-transaction-per-dialog model is used, the transaction is automatically
aborted when the server returns an error value (FEEOF, or any other value besides
FEOK or FEContinue) in the reply. When the any-transaction-per-dialog model is used
(when bit 14 of the dialog flagsis equal to 1), no automatic transaction abort occurs. In
either case, the requester should abort the transaction when it receives an error reply.

Correlating Messages With a Dialog

After amessage with a“dialog begin” indication has been received, all messages
received on that open of $RECEIVE will pertain to that dialog until one of the following
OCCUrS:

e The server terminates the dialog.

e A Pathsend dialog abort system message (system message -121) is received,
indicating that the dialog has been aborted. To receive Pathsend dialog abort
messages, the server must be monitoring system messages of this type. For more
information about Pathsend dialog abort messages, refer to “ Detecting an Aborted
Dialog” later in this section.

e A path error (such as CPU down or network down) occurs on the link to the
LINKMON process.

Continuing a Dialog

To indicate that the dialog should continue, the server replies to a message in the dialog
with an error value of FECONTINUE (70).

Aborting a Dialog

The server can abort adialog by replying to any message in the dialog with an error
value of FEEOF (1).

Terminating a Dialog

After the dialog has started, either the requester or the server can abort it, but only the
server can end it. To end the dialog, the server replies to a message in the dialog with an
error value of FEOK (0).

Detecting an Aborted Dialog

When adialog is aborted, either explicitly or by termination of the requester, the server
receives a Pathsend dialog abort system message (system message -121), if the server is
monitoring system messages of this type. Context-sensitive Pathsend servers must
ensure that Pathsend dial og abort system messages are monitored on $RECEIVE. The
Pathsend dialog abort system message is described in the Guardian Procedure Errors
and Messages Manual.

When a server receives a Pathsend dialog abort system message, the server should call
FILE_GETRECEIVEINFO _to obtain the file number and process handl e associated

with the message. The server can then use these parameters to identify the dialog. The
server should reply to the Pathsend dialog abort system message with an error val ue of

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-16

Writing Pathway Servers Writing Pathway Servers That Interoperate With
TUXEDO Requesters

either FEOK (0) or FEEOF (1); these values direct the LINKMON processto release the
link for re-use.

If a processor or network failure occurs, it is possible to have adialog abort but not
receive a Pathsend dialog abort message. Therefore, to monitor all aborted dialogs, your
server must a'so monitor CPU down, remote CPU down, and loss of communication
with network node system messagesif it uses FILE_ GETRECEIVEINFO _, or CLOSE
system messagesif it uses CRE_Receive Read or the COBOLS85 or FORTRAN
language. The server should treat such messages as dialog aborts.

Servers can monitor CPU down, remote CPU down, and loss of communication with
network node system messages by calling the Guardian procedures MONITORCPUS
and MONITORNET, which are described in the Guardian Programmer’s Guide.

It is also possible to get Pathsend dialog abort messages that do not represent actual
aborted dialogs. A server can receive such a message if the requester calls
SERVERCLASS DIALOG_BEGIN __ and then cancels the message. In that case, the
LINKMON process sends the Pathsend dialog abort message even though the server
might not have received the first message in the dialog. Similarly, if the requester calls
SERVERCLASS SEND__ with the nowait option and then cancels the operation before
being notified of completion of the operation through the AWAITIOX procedure, the
server receives the Pathsend dialog abort message even if it has already replied to the
last send operation.

A cancel operation can also occur if the requester abends while a server-class send
operation isin progress, whether or not the send operation was invoked with the nowait
option.

Writing Pathway ServersThat I nteroperate With
TUXEDO Requesters

A Pathway server can service requests from TUXEDO requesters (TUXEDO clients or
TUXEDO servers acting as clients). Such requesters can make their requeststo a
Pathway server in either of two ways.

e Directly, by making callsto the Pathsend procedures described in this manual
e Indirectly, by using the TUXEDO to Pathway (TUX2PWY) trandlation server

Only those TUXEDO requesters that are NonStop TUXEDO native System /T clients
can make direct requests by using Pathsend procedure calls. For more information, refer
to the NonSop TUXEDO System Application Devel opment Guide.

Native System /T clients, remote TUXEDO requesters using System /Domain, and non-
native TUXEDO workstation clients can indirectly invoke the services of a Pathway
server by using the TUXEDO to Pathway translation server. If you use this translation
server, special guidelines apply, and you might need to modify the code of existing
Pathway servers. For further information, refer to the NonSop TUXEDO System
Pathway Trandlation Servers Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-17

Writing Pathway Servers Writing Pathway Servers That Interoperate With
TUXEDO Requesters

NonStop TS/MP Pathsend and Server Programming Manual—132500
4-18

§ Pathsend Procedure Call
Reference

Pathsend programs use six procedures that are part of the Guardian procedure library. |
This section provides the syntax and semantics of these procedure calls, preceded by
information about how to call the procedures from each of the languages supported by
Pathsend. The descriptions are in aphabetic order by procedure name.

For each procedure, the reference information includes:

e A brief description of what the procedure does

e The syntax of the procedure call (in TAL)

e Parameter definitions

e Additional usage considerationsfor the call, where applicable

Lengthy usage considerations that apply to severa different Pathsend procedures are
grouped at the end of the section.

You invoke al of the procedures by using afunction-type statement in which the
procedure returns a numeric completion code (as an integer value).

Table 5-1 lists the Pathsend procedure calls by name and gives the purpose of each one. |

Table 5-1. Summary of Pathsend Procedure Calls |

Procedure Purpose
SERVERCLASS DIALOG_ABORT_ Requeststhat the specified dialog be aborted |

SERVERCLASS DIALOG BEGIN_ Initiatesadialog with a server processin a server
class and sends the first message in the dialog

SERVERCLASS DIALOG_END_ Ends the specified dialog |

SERVERCLASS DIALOG _SEND_Initiates a send within the specified dialog |

SERVERCLASS SEND_ Initiates a context-free send operation to a server
process in the specified server class

SERVERCLASS SEND_INFO _ Gets error information about the last call to any of

the other Pathsend procedures

The procedures whose names begin with SERVERCLASS DIALOG _ are used for
requests to context-sensitive servers. The SERVERCLASS SEND __ procedure is used
for requests to context-free servers. The SERVERCLASS SEND_INFO_ procedureis
used to obtain information about both context-free and context-sensitive requests.

The method for accessing these procedures from a Pathsend program depends on the
programming language you use. You can write Pathsend programsin C, C++,

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-1

Pathsend Procedure Call Reference Calls From C or C++

COBOLS8S5, Pascal, pTAL, or TAL. Thetopics that follow explain how to call the
Pathsend procedures from each of the supported programming languages.

Note. For general information about calling these and other Tandem system procedures from
programs written in various programming languages, refer to the information about accessing
Guardian procedures in the Guardian Programmer’s Guide.

None of the Pathsend procedures set the condition-code register. Therefore, language
restrictions on procedures that set this register do not apply to the Pathsend procedures.

Note. For some Pathsend procedures, some parameters in the TAL calling syntax contain an
embedded colon and are of the form name: | engt h. These parameters are TAL parameter
pairs. For further information about parameter pairs and their use in mixed-language
programming (for example, calls to these procedures from languages other than TAL or pTAL),
refer to the TAL Programmer’s Guide.

CallsFrom C or C++

To invoke any of the procedures from within a C or C++ program, you execute a
statement of the following form:

error = SERVERCLASS SEND (pat hnon- process- nane
, pat hnon- pr ocess- nane- | en
, server-cl ass- nane

, server -cl ass- nane- | en

, message- buf f er

, request-1en

, maxi mumreply-1en

,actual -reply-1len

, t1 meout

, Tl ags

, sScsend- op- num

,tag);

error

is an integer variable defined earlier in your data declarations.

pat hnon- pr ocess- nane, pat hnon- process- nane-| en,

server-cl ass-nane, server-cl ass-nane-1en, nessage-buffer,
request-1len, maxi mumreply-len, actual-reply-len, timeout,
flags, scsend-op-num andtag

are variables defined earlier in your data declarations. The types of these variables
should be the C types that correspond to the TAL variable types specified in the
Pathsend procedure-call description later in this section. For atable of these
corresponding data types, refer to the information about mixed-language
programming in the C/C++ Programmer’s Guide.

To use the Pathsend proceduresin a C program, you must first have named them in an
#include <cextdecs> preprocessor directive.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-2

Pathsend Procedure Call Reference Calls From COBOLS85

For further information, refer to the C/C++ Programmer’s Guide.

CallsFrom COBOLS85

To invoke any of the procedures from within a COBOL 85 program, you execute a
statement of the following form:

ENTER " SERVERCLASS SEND " USI NG pat hnon- pr ocess- nane
pat hnon- process- nane- | en
server-cl ass- nane
server-cl ass- nane- | en
nmessage- buf f er
request -1 en
maxi mumrepl y-1en
actual -reply-Ilen
ti meout
flags
scsend- op- num
tag

G VI NG error

pat hnon- pr ocess- nane, pat hnon- process- nane-1|en

server-cl ass-nane, server-cl ass-nane-1en, nessage-buffer,
request-1len, maxi mumreply-len, actual-reply-len, timeout,
flags, scsend-op-num andtag

are variables defined in the WORKING-STORAGE SECTION of the DATA
DIVISION. The types of these variables should be the COBOL 85 types that
correspond to the TAL variable types specified in the Pathsend procedure-call
description later in this section. For atable of these corresponding data types, refer
to the information about invoking non-COBOL routines in the COBOL85 Manual.

If the length of astring parameter is declared in a separate parameter (asin

SERVER _CLASS SEND), this parameter must be passed to the procedure. If the
length is declared as part of the string parameter in the form nane:l engt h (asin
SERVERCLASS DIALOG _BEGIN_and SERVERCLASS DIALOG_SEND),
the length must not be passed explicitly.

error

isan integer variable (USAGE NATIVE-2) defined in the WORKING-STORAGE
SECTION of the DATA DIVISION.

For further information, refer to the COBOL85 Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-3

Pathsend Procedure Call Reference Calls From Pascal

Calls From Pascal

To invoke any of the procedures from within a Pascal program, you execute a statement
of the following form:

error := SERVERCLASS SEND (pat hnon-process- nane
, pat hnon- pr ocess- nane- | en
, server-cl ass- nane
, server -cl ass- nane- | en
, message- buf f er
, request-1en
, maxi mumreply-1len
,actual -reply-1len
, t1 meout
, Tl ags
, sScsend- op- num
,tag)

error

isavariable of type 10_Error_Number defined earlier in your data declarations.

pat hnon- pr ocess- nane, pat hnon- process- nane-1|en

server-cl ass-nane, server-cl ass-nane-1en, nessage-buffer,
request-1len, maxi mumreply-len, actual-reply-len, timeout,
flags, scsend-op-num andtag

are variables defined earlier in your data declarations. The types of these variables
should be the Pascal types that correspond to the TAL variable types specified in the
Pathsend procedure-call description later in this section. For definitions of these
corresponding data types, refer to the information about mixed-language
programming and data-type correspondence in the Pascal Reference Manual.

To use the Pathsend proceduresin a Pascal program, you must first have named them in
a SOURCE PEXTDECS compiler directive. For further information, refer to the Pascal
Reference Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-4

Pathsend Procedure Call Reference Calls From TAL or pTAL

CallsFrom TAL or pTAL

To invoke any of the procedures from within a TAL or pTAL program, you execute a
statement of the following form:

error := SERVERCLASS SEND (pat hnon-process- nane
, pat hnon- pr ocess- nane- | en
, server-cl ass- nane
, server -cl ass- nane- | en
, message- buf f er
, request-1en
, maxi mumreply-1len
,actual -reply-1len
, t1 meout
, Tl ags
, sScsend- op- num
,tag);

error

is an integer variable defined earlier in your data declarations.

pat hnon- pr ocess- nane, pat hnon- process- nane-1|en

server-cl ass-nane, server-cl ass-nane-1en, nessage-buffer,
request-1len, maxi mumreply-len, actual-reply-len, timeout,
flags, scsend-op-num andtag

are variables defined earlier in your data declarations, with types as specified in the
Pathsend procedure-call description later in this section.

To use the Pathsend proceduresin a TAL or pTAL program, you must first have named
them in a SOURCE EXTDECS compiler directive. For further information, refer to the
TAL Programmer’s Guide.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-5

Pathsend Procedure Call Reference SERVERCLASS_DIALOG_ABORT_ Procedure

SERVERCLASS DIALOG_ABORT_ Procedure

The SERVERCLASS DIALOG_ABORT _ procedure aborts the specified dialog.

A call to SERVERCLASS DIALOG_BEGIN _to begin adialog must be matched by a
call to SERVERCLASS DIALOG_ABORT_ or SERVERCLASS DIALOG_END_ at

the end of the dialog.

Syntax

The syntax of the SERVERCLASS DIALOG_ABORT _ procedureis:

error := SERVERCLASS DI ALOG ABORT_ (dialog-id); P

error returned val ue

INT
returns an error word containing one of the following values:
0 (FEOK) indicates that the call was successful.

233 (FESCErr) indicates that an error occurred. You can call the
SERVERCLASS SEND_INFO _ procedureto get more detailed
information about the error.

di al og-i d i nput

INT(32):value

isthe dialog identifier previously returned from the
SERVERCLASS DIALOG_BEGIN_ call that began the dialog.

This parameter is required.

Consider ations

The following considerations apply to the SERVERCLASS DIALOG_ABORT _
procedure:
e If the server has opened $RECEIVE for system message handling and is using the

Common Run-Time Environment (CRE), aborting the dialog will cause the server to
receive a system message -121, PATHSEND DIALOG ABORT.

e SERVERCLASS DIALOG_SEND _operationsin progress within this dialog at the
time of the call to SERVERCLASS DIALOG _ABORT _ are canceled.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-6

Pathsend Procedure Call Reference SERVERCLASS_DIALOG_BEGIN_ Procedure

SERVERCLASS DIALOG_BEGIN_ Procedure

The SERVERCLASS DIALOG_BEGIN_ procedure initiates a dialog with a server
process in a server class and sends the first message in the dialog.

The procedure identifies the server classto the system and returns adialog identifier for
subsequent dialog operations. A SERVERCLASS DIALOG_BEGIN _ call must be
matched by a SERVERCLASS DIALOG_ABORT_or

SERVERCLASS DIALOG_END _ call at the end of the dialog.

The completion of this processing—that is, getting the final outcome (success or failure)
and, if successful, the reply data—occurs in one of two ways, depending on whether the
send operation isinitiated as waited or nowait:

e For waited send operations, initiation and completion are both performed by the
SERVERCLASS DIALOG_BEGIN_ procedure.

e For nowait send operations, initiation is performed by the
SERVERCLASS DIALOG_BEGIN __procedure, and completion is performed by
calling the AWAITIOX procedure.

Syntax
The syntax of the SERVERCLASS DIALOG_BEGIN _ procedureis:

error := SERVERCLASS DI ALOG BEGQ N_
(dialog-id ' o
, pat hnon- pr ocess- nane: | ength !
, server-cl ass-nane: | ength !

, message- buf f er !

i,0
, request-1en P
, maxi mumreply-1Ilen P
,[actual -reply-len] ' o
,[timeout] P
[flags] Lo
,| scsend-op-num] ' o
[tag |); o

error returned val ue

INT

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-7

Pathsend Procedure Call Reference Syntax

returns an error word containing one of the following values:

0 (FEOK) indicates that the call was successful and the server has ended the
dialog.

70 (FEContinue) indicates that the call was successful and the server is ready
for the next message in the dialog.

233 (FESCErT) indicates that an error occurred. You can call the
SERVERCLASS SEND_INFO _ procedureto get more detailed
information about the error.

di al og-i d out put
INT:ref:EXT(32):1
returns an identifier that can be used for subsequent operations on this dialog.

This parameter is required.

pat hnon- process- nane: | ength i nput : i nput
STRING:ref:EXT:*, INT:value

contains the external Guardian process name of the PATHMON process controlling
the server class (for example, $PM or \AB.$PMN). The process hame portion can
have up to five characters after the dollar sign ($) if it isalocal process name and up
to four characters after the dollar signiif it is a process on aremote system. The
name cannot include an optional first or second name qualifier, must be left justified
in the buffer, and can contain trailing blanks.

The integer value isthe byte length of the pat hnon- pr ocess- nane string. This
value can range from 2 through 15.

This parameter is required.

server-cl ass-nane: | ength i nput : i nput
STRING:ref:EXT:*, INT:value

contains the name of the server classto send to (for example, EMP-SERVER). This
name must conform to the Pathway server-class naming rules, must be left justified
in the buffer, and can contain trailing blanks. This server-class name, along with the
pat hnon- pr ocess- nane, uniquely identifies a server class.

The integer valueis the byte length of theser ver - cl ass- nane string. This
value can range from 1 through 15.

This parameter is required.
nmessage- buf f er i nput, out put

STRING:ref:EXT:*

contains the message to send to the server class. On successful completion of the
send operation, message- buf f er containsthe reply from the server class.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-8

Pathsend Procedure Call Reference Syntax

This parameter is required.

request -1 en i nput
INT:value

is the byte length of the data contained in mressage- buf f er. Therange of
acceptable values is 0 through 32767 bytes.

This parameter is required.

maxi mumrepl y-1en i nput
INT:value

is the maximum number of bytes that the reply message from the server class can
contain. The range of acceptable valuesis O through 32767 bytes.

No more than maxi mum r epl y- | en bytes of the actual reply are placed into
nmessage- buf f er upon successful completion of a send.

It isnot an error if the server replies with a byte count not equal to the maxi num

r epl y- 1 en value specified by the requester in the call to this procedure. If the
server replies with a byte count greater than the maxi num r epl y- | en value, the
actual bytes transferred are truncated to maxi num repl y- | en.

This parameter is required.

actual -reply-Ilen out put
INT:ref:EXT:1

returns a count of the number of bytes returned in the server process reply. This
parameter isfor waited I/O only and can be omitted for nowait 1/0. The return value
of this parameter is 0 if nowait 1/O isused. For nowait 1/0O, the actua reply lengthis
returned by AWAITIOX.

ti meout i nput
INT(32):value

specifies the maximum amount of time, in hundredths of a second, that the
LINKMON process waits for the completion of this send. Thisvalue must be either
-1D or avaue greater than OD. The default is-1D (wait indefinitely).

If there is an outstanding 1/0O operation to a server process when a
SERVERCLASS DIALOG_BEGIN __operation times out, the I/O operation is
canceled.

See Timeout Considerations for Pathsend Programming later in this section for
details about timeout for waited and nowait operations.

flags i nput
INT:value

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-9

Pathsend Procedure Call Reference Syntax

fl ags. <15>

with avalue of 1 indicates that this operation isto be performed nowait. A value
of 0 indicates that this operation is to be performed waited. The default isO.

fl ags. <14>

if set to 0, selects the one-transaction-per-dialog model. In this model, the
dialog records the transaction identifier that is current at the time of the
SERVERCLASS DIALOG_BEGIN_ call. Subsequent

SERVERCLASS DIALOG_SEND , SERVERCLASS DIALOG_ABORT _,
and SERVERCLASS DIALOG_END _callsthat usethereturned di al og-i d
must specify this transaction identifier, or the callswill fail.
ENDTRANSACTION will fail unless the dialog has been ended (not aborted).

When thisbit is set to 0, the TMF subsystem treats adialog likean 1/0
operation: the ENDTRANSACTION operation fails until the dialog has
finished. The same restriction applies to a nested server (aserver that receives a
request and then becomes a requester to other servers): if aserver receives a
message in a dialog and then initiates a dialog with another server, it must
complete the entire initiated dialog before replying to the message from the
received dialog.

A value of 1 selects the any-transaction-per-dialog model. Inthis model, all
server-class send operations within the dialog will contain the transaction
identifier that is current at the time of the send, and there are no restrictions on
ENDTRANSACTION other than those associated with calls to the
WRITEREAD procedure.

The default isO.

flags. <0: 13>
must be 0.

scsend- op- num out put
INT:ref:EXT:1

returns the server-class send operation number. You can use the server-class send
operation number in place of the file-number parameter in callsto CANCEL,
CANCELREQ, and AWAITIOX for nowait sends, and in callsto FILEINFO for
waited and nowait sends, to indicate that the calls refer to server-class send
operations. The value of scsend- op- numis determined on the first successfully
initiated nowait send. Thisvalueisreturned on every subsequent nowait send that is
initiated successfully. A value of -1 isreturned for nowait sends that are not
initiated successfully. A value of -1 isaways returned for waited sends.

See Server-Class Send Operation Number later in this section for more information
about the server-class send operation number.

t ag i nput
INT(32):value

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-10

Pathsend Procedure Call Reference Considerations

isused for nowait I/O only. Thet ag isstored by the system and then passed back
to the application by the AWAITIOX procedure when the nowait operation is
completed. You can use thet ag parameter to identify multiple nowait 1/0
operations. For waited 1/0O, this parameter is not used and can be omitted.

The default isOD.

Consider ations

If the SERVERCLASS DIALOG BEGIN _procedure fails but does not return avalid
dialog identifier, the dialog was never created. In this case, there isno need to abort the

dialog.

For additional considerations, refer to Usage Considerations for Pathsend Procedures at
the end of this section.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-11

Pathsend Procedure Call Reference SERVERCLASS_ DIALOG_END_ Procedure

SERVERCLASS DIALOG_END_Procedure

The SERVERCLASS DIALOG_END _ procedure cleans up resources for the specified
dialog after the server has ended it.

A call to SERVERCLASS DIALOG_BEGIN_must be matched by acall to
SERVERCLASS DIALOG_ABORT_or SERVERCLASS DIALOG_END_ at the end
of thedialog. For the SERVERCLASS DIALOG_END __procedure to work correctly,
the server must previously have ended the dialog by replying with an er r or value other
than FEContinue (70).

This procedure does not perform any /O operations.

Syntax
The syntax of the SERVERCLASS DIALOG_END _procedureis:

error := SERVERCLASS DI ALOG END (dialog-id); P

error returned val ue
INT
returns an error word containing one of the following values:
0 (FEOK) indicates that the call was successful.

233 (FESCErr) indicates that an error occurred. You can call the
SERVERCLASS SEND_INFO _ procedureto get more detailed
information about the error.

di al og-i d i nput
INT(32):value

isthe dialog identifier previously returned from the
SERVERCLASS DIALOG_BEGIN_ call that began the dialog.

This parameter is required.

Consider ations

None.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-12

Pathsend Procedure Call Reference SERVERCLASS_DIALOG_SEND_ Procedure

SERVERCLASS DIALOG_SEND_Procedure

The SERVERCLASS DIALOG_SEND _ procedure initiates a send within the specified
dialog.

The completion of this processing—that is, getting the final outcome (success or failure)
and, if successful, the reply data—occurs in one of two ways, depending on whether the
send operation is initiated as waited or nowait:

e For waited send operations, initiation and completion are both performed by the
SERVERCLASS DIALOG_SEND __ procedure.

e For nowait send operations, initiation is performed by the
SERVERCLASS DIALOG_SEND __ procedure, and completion is performed by the
AWAITIOX procedure.

This procedure is similar to the context-free SERVERCLASS SEND _ procedure, with a
few differences as described under “Considerations.”

Syntax
The syntax of the SERVERCLASS DIALOG_SEND _ procedureis:
error := SERVERCLASS DI ALOG SEND
(dialog-id P
. , message- buf f er !
i,0
, request-1en P
, maxi mumreply-1len P
,[actual -reply-len] ' o
,[timeout] P
, [flags] P
,| scsend-op-num] ' o
[tag |); o
error returned val ue
INT

returns an error word containing one of the following values:

0 (FEOK) indicates that the call was successful and the server has ended the
dialog.

70 (FEContinue) indicates that the call was successful and the server is ready
for the next message in the dialog.

233 (FESCErT) indicates that an error occurred. You can call the
SERVERCLASS SEND_INFO _ procedureto get more detailed
information about the error.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-13

Pathsend Procedure Call Reference Syntax

di al og-i d i nput
INT(32):value

isan identifier, previoudly returned from SERVERCLASS DIALOG BEGIN , that
specifies the dialog for this send operation.

This parameter is required.

nmessage- buf f er i nput, out put
STRING:ref:EXT:*

contains the message to send to the server class. On successful completion of the
send operation, message- buf f er containsthe reply from the server class.

This parameter is required.

request -1 en i nput
INT:value

is the byte length of the data contained in mressage- buf f er. The range of
acceptable values is 0 through 32767 bytes.

This parameter is required.

maxi mumrepl y-1en i nput
INT:value

is the maximum number of bytes that the reply message from the server class can
contain. The range of acceptable valuesis 0 through 32767 bytes.

No more than maxi mum r epl y- | en bytes of the actual reply are placed into
nmessage- buf f er upon successful completion of a send.

It isnot an error if the server replies with a byte count not equal to the maxi num

r epl y- 1 en value specified by the requester in the call to this procedure. If the
server replies with a byte count greater than the maxi num r epl y- | en value, the
actual bytestransferred are truncated to maxi num repl y- | en.

This parameter is required.

actual -reply-Ilen out put
INT:ref:EXT:1

returns a count of the number of bytes returned in the server process reply. This
parameter isfor waited I/O only and can be omitted for nowait 1/0. The return value
of this parameter is 0 if nowait 1/O isused. For nowait 1/0O, the actua reply lengthis
returned by AWAITIOX.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-14

Pathsend Procedure Call Reference Syntax

ti meout i nput
INT(32):value

specifies the maximum amount of time, in hundredths of a second, that the
LINKMON process waits for the completion of this send. Thisvalue must be either
-1D or avaue greater than OD. The default is-1D (wait indefinitely).

If there is an outstanding 1/0O operation to a server process when the
SERVERCLASS DIALOG_SEND _ operation times out, the I/O operation is
canceled.

See Timeout Considerations for Pathsend Programming later in this section for
details about timeout for waited and nowait operations.

flags i nput
INT:value

fl ags. <15>

with avalue of 1 indicates that this operation isto be performed nowait. A value
of O indicates that this operation is to be performed waited. The default isO.

flags. <0: 14>
must be 0.

scsend- op- num out put
INT:ref:EXT:1

returns the server-class send operation number. You can use the server-class send
operation number in place of the file-number parameter in callsto CANCEL,
CANCELREQ, and AWAITIOX for nowait sends, and in callsto FILEINFO for
waited and nowait sends, to indicate that the calls refer to server-class send
operations. The value of scsend- op- numis determined on the first successfully
initiated nowait send. Thisvalueisreturned on every subsequent nowait send that is
initiated successfully. A value of -1 isreturned for nowait sends that are not
initiated successfully. A value of -1 isaways returned for waited sends.

See Server-Class Send Operation Number later in this section for more information
about the server-class send operation number.

t ag i nput
INT(32):value

isused for nowait I/O only. Thet ag isstored by the system and then passed back
to the application by the AWAITIOX procedure when the nowait operation is
completed. You can use thet ag parameter to identify multiple nowait 1/0
operations. For waited 1/0, this parameter is not used and can be omitted.

The default is OD.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-15

Pathsend Procedure Call Reference Considerations

Consider ations

The SERVERCLASS DIALOG_SEND _ procedureis similar to the context-free
SERVERCLASS SEND __ procedure, with the following differences:

e Thediaog identifier, obtained from the SERVERCLASS DIALOG _BEGIN_ call
that started the dialog, is used to identify the dialog, which is associated with a
particular server class.

e The SERVERCLASS DIALOG SEND cadll falsif the current transaction
identifier does not match the transaction identifier used for the
SERVERCLASS DIALOG BEGIN _cal, unless this feature has been overridden
by setting the f | ags.<14> bitto 1 inthecall to
SERVERCLASS DIALOG BEGIN .

e Thesendfailsif thereis already an outstanding send in the dialog from a previous
nowait call to this procedure.

For additional considerations, refer to Usage Considerations for Pathsend Procedures at
the end of this section.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-16

Pathsend Procedure Call Reference SERVERCLASS_SEND__ Procedure

SERVERCLASS SEND_ Procedure

The SERVERCLASS SEND _ procedure initiates a context-free send operation to a
server process in the specified server class.

The completion of this processing—that is, getting the final outcome (success or failure)
and, if successful, the reply data—occurs in one of two ways, depending on whether the
send operation is initiated as waited or nowait:

e For waited send operations, initiation and completion are both performed by the
SERVERCLASS SEND__ procedure.

e For nowait send operations, initiation is performed by the SERVERCLASS SEND _
procedure, and completion is performed by calling the AWAITIOX procedure.

Syntax
The syntax of the SERVERCLASS SEND _procedureis:

error := SERVERCLASS SEND (pat hnon-process- nane
, pat hnon- pr ocess- nane-| en
, server-cl ass- nane
server-cl ass-nane-| en
nmessage- buf f er
request -1 en
maxi mumrepl y-1en

—0——Q —— —————

[actual -reply-len]
[timeout]
[flags]
[scsend-op-num]
[tag]);
error returned val ue

INT
returns an error word containing one of the following values:
0 (FEOK) indicates that the call was successful.

233 (FESCErr) indicates that an error occurred. You can call the
SERVERCLASS SEND_INFO _ procedureto get more detailed
information about the error.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-17

Pathsend Procedure Call Reference Syntax

pat hnon- pr ocess- nane i nput
STRING:ref:EXT:*

contains the external Guardian process name of the PATHMON process controlling
the server class (for example, $PM or \AB.$PMN). The process hame portion can
have up to five characters after the dollar sign ($) if it isalocal process name and up
to four characters after the dollar signiif it is a process on aremote system. The
name cannot include an optional first or second name qualifier, must be left justified
in the buffer, and can contain trailing blanks.

This parameter is required.

pat hnon- process- nanme- | en i nput
INT:value
is the byte length of the pat hnon- pr ocess- nane string. Thisvalue can range
from 2 through 15.

This parameter is required.

server - cl ass- nane i nput
STRING:ref:EXT:*

contains the name of the server classto send to (for example, EMP-SERVER). This
name must conform to the Pathway server-class naming rules, must be left justified
in the buffer, and can contain trailing blanks. This server-class name, along with the
pat hnon- pr ocess- nane, uniquely identifies a server class.

Thisis arequired parameter.

server-cl ass-nane-1| en i nput
INT:value
isthe byte length of theser ver - cl ass- nane string. Thisvalue can range from
1 through 15.

This parameter is required.

nmessage- buf f er i nput, out put
STRING:ref:EXT:*

contains the message to send to the server class. On successful completion of the
send operation, message- buf f er containsthe reply from the server class.

This parameter is required.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-18

Pathsend Procedure Call Reference Syntax

request -1 en i nput
INT:value

is the byte length of the data contained in mressage- buf f er. The range of
acceptable values is 0 through 32767 bytes.

This parameter is required.

maxi mumrepl y-1en i nput
INT:value

is the maximum number of bytes that the reply message from the server class can
contain. The range of acceptable valuesis O through 32767 bytes.

No more than maxi mum r epl y- | en bytes of the actual reply are placed into
nmessage- buf f er upon successful completion of a send.

It isnot an error if the server replies with a byte count not equal to the maxi num

r epl y- 1 en value specified by the requester in the call to this procedure. If the
server replies with a byte count greater than the maxi mum r epl y- 1 en value, the
actual bytes transferred are truncated to maxi num repl y- | en.

This parameter is required.

actual -reply-Ilen out put
INT:ref:EXT:1

returns a count of the number of bytes returned in the server process reply. This
parameter isfor waited I/O only and can be omitted for nowait 1/0. The return value
of this parameter is 0 if nowait 1/O isused. For nowait 1/0O, the actua reply lengthis
returned by AWAITIOX.

ti meout i nput
INT(32):value

specifies the maximum amount of time, in hundredths of a second, that the
LINKMON process waits for the completion of this send. Thisvalue must be either
-1D or avaue greater than OD. The default is-1D (wait indefinitely).

If there is an outstanding 1/0O operation to a server process when a
SERVERCLASS SEND _ operation times out, the I/O operation is canceled.

See Timeout Considerations for Pathsend Programming later in this section for
details about timeout for waited and nowait operations.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-19

Pathsend Procedure Call Reference Considerations

flags i nput
INT:value

fl ags. <15>

with avalue of 1 indicates that this operation isto be performed nowait. A value
of O indicates that this operation is to be performed waited. The default isO.

flags. <0: 14>
must be 0.

scsend- op- num out put
INT:ref:EXT:1

returns the server-class send operation number. You can use the server-class send
operation number in place of the file number parameter in callsto CANCEL,
CANCELREQ, and AWAITIOX for nowait sends, and in callsto FILEINFO for
waited and nowait sends, to indicate that the calls refer to server-class send
operations. The value of scsend- op- numis determined on the first successfully
initiated nowait send. Thisvalueisreturned on every subsequent nowait send that is
initiated successfully. A value of -1 isreturned for nowait sends that are not
initiated successfully. A value of -1 isaways returned for waited sends.

See Server-Class Send Operation Number later in this section for more information
about the server-class send operation number.

t ag i nput
INT(32):value

isused for nowait I/O only. Thet ag isstored by the system and then passed back
to the application by the AWAITIOX procedure when the nowait operation is
completed. You can use thet ag parameter to identify multiple nowait 1/0
operations. For waited 1/0, this parameter is not used and can be omitted. The
default isOD.

Consider ations
Refer to Usage Considerations for Pathsend Procedures at the end of this section.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-20

Pathsend Procedure Call Reference SERVERCLASS_SEND_INFO_ Procedure

SERVERCLASS SEND_INFO_ Procedure

The SERVERCLASS SEND_INFO __procedure retrieves error information about the
last SERVERCLASS SEND |, SERVERCLASS DIALOG BEGIN
SERVERCLASS DIALOG SEND SERVERCLASS DIALOG END or
SERVERCLASS DIALOG_ABORT operation that was initiated or completed with
return error 233 (FEScError) or 0 (FEOK).

If the return error from the previous Pathsend call is O (FEOK), both the Pathsend error
and the file-system error will always be 0, so you do not need to call
SERVERCLASS SEND_INFO .

Syntax
The syntax of the SERVERCLASS SEND_INFO _procedureis:

error := SERVERCLASS SEND | NFO_ (pathsend-error I o
,file-systemerror); ! o
error returned val ue
INT

returns an error word. Thiserror is associated with the call to
SERVERCLASS SEND_INFO __and not with the previous Pathsend call. The error
word contains one of the following file-system errors:

0 (FEOK) indicatesthat no errors occurred in the call to
SERVERCLASS SEND_INFO_.

2 (FEInvalOp) isreturned if the caller has an invalid segment in use. Error 2is
also returned if the caller has no extended data segment in use and one of the
reference parametersis an extended address.

22 (FEBoundsErr) isreturned if areference parameter isout of bounds.
29 (FEMissParam) isreturned if arequired parameter is missing.
These errors are programming errors.

pat hsend- error out put
INT:ref:1

returns the Pathsend error. See Section 6, Pathsend Errors, for descriptions of
Pathsend errors.

file-systemerror out put
INT:ref:1

returns the file-system error. See the Guardian Procedure Errors and Messages
Manual for descriptions of file-system errors.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-21

Pathsend Procedure Call Reference Considerations

Consider ations

The following considerations apply to the SERVERCLASS SEND_INFO_ procedure:

e The condition code setting has no meaning following acall to
SERVERCLASS SEND_INFO .

e A call to SERVERCLASS SEND INFO beforeacall isever madeto
SERVERCLASS SEND_ or SERVERCLASS DIALOG_BEGIN_ resultsin return |
error 0 (FEOK), Pathsend error 906 (FEScNoSendEverCalled), and file-system error
0 (FEOK).

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-22

Pathsend Procedure Call Reference Usage Considerations for Pathsend Procedures

Usage Consider ations for Pathsend Procedures

The following subsections discuss usage considerations that apply to several of the
Pathsend procedure calls.

Condition Code

The condition-code setting has no meaning following a Pathsend procedure call. |

Waited 1/0

The following considerations apply to waited Pathsend procedure calls: |
e Thet ag parameter has no meaning and can be omitted.

e On asuccessful completion of awaited Pathsend procedure call, the
act ual - repl y- | en parameter indicates the number of bytesin thereply.

For an example of issuing awaited call to SERVERCLASS SEND _, see the Pathsend
server program example PATHSRV, Example B-2 on page B-53. In this COBOL85
program, paragraph 460-SEND-TO-SUBSIDIARY-SERVER performs a waited
SERVERCLASS SEND _ cal.

Nowait |/O

The following considerations apply to nowait Pathsend procedure calls:

e The maximum nowait depth for Pathsend procedure calls is 255 per process.
In other words, a Pathsend requester process can have no more than 255 outstanding
nowait server-class send operations at any one time.

e You complete anowait Pathsend procedure call with acall to AWAITIOX.
You cannot use the AWAITIO—without the X—yprocedure to complete a nowait
server-class send operation. The SERVERCLASS SEND
SERVERCLASS DIALOG BEGIN_, and SERVERCLASS DIALOG_SEND _
procedures use a 32-bit extended message buffer address, and AWAITIO cannot be
used to compl ete extended /O operations.

If anowait Pathsend procedure call returns an error, the send operation was not
initiated and therefore does not need to be completed with AWAITIOX.

e Theactual -reply-I en parameter has no meaning for nowait server-classsend |
operations and can be omitted. The count of the number of bytesin the server-class
reply isreturned inthe count - t r ansf er r ed parameter of the AWAITIOX
procedure.

e After caling SERVERCLASS SEND _, SERVERCLASS DIALOG_BEGIN_, or
SERVERCLASS DIALOG_SEND __ with the nowait option, do not modify the I/O
buffer before the 1/0 operation is completed as indicated by AWAITIOX.

o Nowait server-class send operations must not use buffers that are currently in use for |
other outstanding nowait 1/0 operations. Thefile system requires that these buffers
not be modified.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-23

Pathsend Procedure Call Reference Calls Within a TMF Transaction

e SERVERCLASS SEND_, SERVERCLASS DIALOG _BEGIN_, and
SERVERCLASS | DIALOG SEND _ return the server-class send operatlon number
inthe scsend- op- numparameter. See Server-Class Send Operation Number
later in this section for more information about the server-class send operation
number.

For an example of issuing anowait call to SERVERCLASS SEND , see the Pathsend
program example BREQ, Example B-1 on page B-2. Inthis TAL program, the
procedure Initiate™ O initiates anowait SERVERCLASS SEND _ call.

CallsWithin a TMF Transaction

The following considerations apply when calling Pathsend procedures duringa TMF |
transaction:

e If SERVERCLASS SEND , SERVERCLASS DIALOG_BEGIN_, or
SERVERCLASS DIALOG_SEND iscaled during a TMF transaction, the
transaction identifier is propagated to the server processin the sameway asitisin
all interprocess communication (for example, callsto the WRITEREAD procedure).
As an application devel oper, you do not have to be concerned about the role of the
LINKMON process in the propagation of transaction identifiers.

e For context-sensitive server-class send operations, two types of TMF protection are
available, depending on the setting of bit 14 inthef | ags parameter on the call to
SERVERCLASS DIALOG _BEGIN_. For details, refer to the discussion of
context-sensitive requestersin Section 3, Writing Pathsend Requesters.

e If asendismadeto aserver classthat is configured with the TMF parameter set to
OFF while thereis a currently active transaction identifier, the send is compl eted
with return error 233 (FEScError), Pathsend error 917
(FEScServerClassTmfViolation), and file-system error 0 (FEOK). Seethe
NonStop TSYMP System Management Manual for details about the TMF parameter
of the SET SERVER command.

Server-Class Send Operation Number

The server-class send operation number isreturned in the scsend- op- numparameter
on the first successfully initiated nowait server-class send operation (through a call to
SERVERCLASS SEND _, SERVERCLASS DIALOG _BEGIN_, or
SERVERCLASS | DIALOG_SEN D). Thesamevalueis returned on every subsequent
nowait send that is initiated successfully.

You can use the server-class send operation number in the following calls:

e Incalsto AWAITIOX towait for completion of any SERVERCLASS SEND _,
SERVERCLASS DIALOG_BEGIN _, or SERVERCLASS DIALOG_SEND_ |
operation

e Incalsto CANCEL and CANCELREQ to cancel an outstanding
SERVERCLASS SEND _, SERVERCLASS DIALOG_BEGIN_, or
SERVERCLASS | DIALOG SEND _ operation

e IncalstoFILEINFO

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-24

Pathsend Procedure Call Reference Server-Class Send Operation Number

A vaue of -1 isreturned for nowait send operations that are not initiated successfully. A
value of -1 is aways returned for waited send operations.

Note. Passing the server-class send operation number as a f i | enumparameter to Guardian
procedures other than AWAITIOX, CANCEL, CANCELREQ, and FILEINFO results in file-
system error 2 (FEInvalOp).

Calling AWAITIOX

You can use the server-class send operation number asthe file number in calls to the
AWAITIOX procedure to wait for completion of any outstanding

SERVERCLASS SEND _, SERVERCLASS DIALOG _BEGIN_, or
SERVERCLASS | DIALOG SEND _ operation. Alternatively, you can specify -1 asthe
file number to AWAITIOX to wait for completion of any outstanding 1/0 operation,
including callsto SERVERCLASS _SEND _, SERVERCLASS DIALOG_BEGIN_, or
SERVERCLASS DIALOG_SEND_. When completion of one of these calls occurs,
you can identify the specific call by the tag returned by AWAITIOX. (You cannot use
the AWAITIO—without the X—jprocedure to complete a nowait server-class send
operation. The SERVERCLASS SEND_, SERVERCLASS DIALOG_BEGIN_, and
SERVERCLASS DIALOG_SEND procedures use a 32-hit extended message buffer
address, and AWAITIO cannot be used to complete extended 1/O operations.)

For an example of one way to use AWAITIOX, see the Pathsend program example
BREQ, Example B-1 on page B-2. Inthis TAL example, the procedure completetio
waits for completion of an 1/O operation on any file and identifies the 1/0O operation by
the tag returned by AWAITIOX. You can also see how this procedure calls AWAITIOX.
If AWAITIOX returns with an error (condition code CCL), it calls FILEINFO to retrieve
the error code. If the error returned is 233 (FEScError),

SERVERCLASS SEND_INFO _iscalled to get the specific Pathsend error and
file-system error.

Canceling a Server-Class Send Operation

You cancel an outstanding SERVERCLASS SEND _,

SERVERCLASS DIALOG_BEGIN_, or SERVERCLASS DIALOG_SEND

operation by using the Guardian CANCEL or CANCEL REQ procedure if you have used
the nowait option in the Pathsend procedure call and have not yet received notification of
completion of the server-class send operation with the AWAITIOX procedure. Note that
if the AWAITIOIX call was completed with a Pathsend error, such as a server-class send
timeout error (described in the following subsection), thisis still acompletion; in such
cases, you should not call CANCEL or CANCELREQ.

Calling CANCEL or CANCELREQ has the following effects on your Pathsend
program:

e The program is not affected by any reply to the SERVERCLASS SEND ,
SERVERCLASS DIALOG_BEGIN _, or SERVERCLASS DIALOG | SEND cal. |

e The program cannot determine whether the request message has been sent to a
server process, and if it was sent, whether or not it was canceled before the server
process finished processing the request.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-25

Pathsend Procedure Call Reference Server-Class Send Operation Number

e |f thecanceled call wasto SERVERCLASS DIALOG_BEGIN_ or
SERVERCLASS DIALOG_SEND _, the dialog is aborted and the server receives a
Pathsend dial og abort wstem message even if the server has already replied to the
server-class send operation.

e |If the SERVERCLASS SEND_, SERVERCLASS DIALOG_BEGIN_ or
SERVERCLASS DIALOG_SEND __ operation was performed withina TMF
transaction, the transaction is automatically aborted.

On acal to CANCELREQ, you supply:
e The server-class send operation number as the file-number parameter.

e Thetag identifying the specific operation to be canceled. (Thetag isoptional.)

If you use the tag parameter, the system cancels the oldest incomplete

SERVERCLASS SEND _, SERVERCLASS DIALOG_BEGIN_, or

SERVERCLASS DIALOG_SEND __call with that tag value. If you do not provide a

tag, the system cancels the oldest incomplete SERVERCLASS SEND

SERVERCLASS DIALOG_BEGIN _, or SERVERCLASS DIALOG SEND call. |

On acal to CANCEL, you supply the server-class send operation number as the
file-number parameter.

Refer to the Guardian Procedure Calls Reference Manual for descriptions of the
CANCEL and CANCELREQ procedures.

A cancel operation can also occur if the requester abends while a server-class send
operation isin progress, whether or not the send operation was invoked with the nowait
option.

Calling FILEINFO

You can use the server-class send operation number returned by

SERVERCLASS SEND _, SERVERCLASS DIALOG _BEGIN_, or

SERVERCLASS DIALOG_SEND_ as the file-number | parameter in callsto FILEINFO |
to get the return error associated with the last waited or nowait

SERVERCLASS SEND _, SERVERCLASS DIALOG _BEGIN_, or

SERVERCLASS DIALOG _SEND cal. FILEINFO returns the same error that the
server-class procedure call returned. Seetheerr or parameter in the procedure-call
syntax descriptions earlier in this section for details about the return errors.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-26

Pathsend Procedure Call Reference Timeout Considerations for Pathsend Programming

Timeout Considerations for Pathsend Programming

When you design a Pathsend application, you can decide which of two timeout methods
that you want the LINKMON process to use:

e A server TIMEOUT attribute that applies only to the server process 1/0

e A SERVERCLASS SEND_, SERVERCLASS DIALOG_BEGIN_, or
SERVERCLASS DIALOG SEND parameter value that appllesto the entire
processing of the send request

Because the errors for each are different, programs can differentiate between the two
kinds of timeout.

Server Timeout

You can specify a TIMEOUT attribute for your Pathway servers. You specify the server
TIMEOUT value when you configure the server. If atimeout occurs during an 1/0
operation to a server, the I/O operation is canceled and any TMF transaction is aborted.
Unlike the timeout parameter to a SERVERCLASS SEND ,

SERVERCLASS DIALOG_BEGIN_, or SERVERCLASS | DIALOG . SEND_ cdll,
described in the following subsection,), the TIMEOUT attribute does not include waii ng
for the server link; the TIMEOUT attribute applies only to the 1/0 to the server.

Server timeout returns Pathsend error 904 (FEScServerLinkConnect) and file-system
error 40 (FETimedOuit).

Server-Class Send Timeout

Pathsend allows you to specify atimeout value on callsto SERVERCLASS SEND ,
SERVERCLASS DIALOG_BEGIN_, and SERVERCLASS DIALOG_SEND . You |
can specify a different timeout val ueTor each call. For example, if you perform
SERVERCLASS SEND _ callsto local and remote systems, you can specify a shorter
timeout value for the local sends and a longer value for the remote send operations.

Withinadialog, if f | ags.<14>wassetto 0inthecall to
SERVERCLASS DIALOG_BEGIN__and atimeout occurs, both the dialog and the
transaction (if any) are automatically aborted.

If awaited SERVERCLASS SEND_, SERVERCLASS DIALOG_BEGIN_, or
SERVERCLASS DIALOG_SEND _ request is not completed before the specified
timeout value expires, it is completed with return error 233 (FEScError), and a
subsequent call to SERVERCLASS SEND_INFO _ returns Pathsend error 918
(FeScSendOperationAborted) and file-system error 40 (FETimedOut). If thereisan
outstanding 1/0O operation to a server process when a SERVERCLASS SEND
SERVERCLASS DIALOG_BEGIN_, or SERVERCLASS DIALOG_SEND_
operation times out, that 1/O ¢ operatlon is canceled and the transaction, if any, is
automatically aborted.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-27

Pathsend Procedure Call Reference Timeout Considerations for Pathsend Programming

Nowait server-class send operations are completed with acall to AWAITIOX. The
timeout considerations for nowait operations are more complex, because atime-limit
parameter can also be set in the AWAITIOX call. The error returned by AWAITIOX
depends on which time limit was reached:

e If atimeout value is specified in anowait call to SERVERCLASS SEND _,
SERVERCLASS DIALOG_BEGIN_, or SERVERCLASS DIALOG SEND and
the request is not completed within the specified time, the AWAITIOX call returns
error 233, and a subsequent call to SERVERCLASS SEND_INFO _ returns
Pathsend error 918 (FeScSendOperationAborted) and file-system error 40
(FETimedOut).

e If atime-limit valueis specified in the call to AWAITIOX and thistime limit is
reached, the AWAITIOX call returns file-system error 40 (FETimedOut).

If you use atime-limit value on AWAITIOX to wait on I/O operations other than the
Pathsend calls SERVERCLASS _SEND_, SERVERCLASS DIALOG_BEGIN_, and
SERVERCLASS DIALOG_SEND _ (for example, WRITEREAD calls, which do not
provide atimeout parameter) and you also use atimeout value on the Pathsend calls,
timeouts can occur in one of the preceding two ways, depending on which timer expires
first. To avoid this complex error handling, it is recommended that you use a timeout
value only on the AWAITIOX call.

For programs whose only 1/0 operations are Pathsend procedure calls, it is not useful to
use both a timeout on the Pathsend procedure calls and a time limit on AWAITIOX,
because you would be timing the same operation twice. In this case, choose either
Pathsend timeouts or AWAITIOX time limits.

When an AWAITIOX time limit is reached, whether an I/O operation is canceled
dependsonthef i | enumparameter used in the AWAITIOX call. If f i | enumis set
equal to scsend- op- numand the AWAITIOX time-limit value is greater than zero,
the oldest outstanding send operation is canceled. Iff i | enumis set to-1 or if the
AWAITIOX time-limit value is zero or less, no operation is canceled. When a Pathsend
timeout is reached, no send operation is canceled regardless of parameter settings.

Note that any time asend is canceled, the current TMF transaction, if any, is
automatically aborted. Any time a send timeout occurs when an 1/O operation is
outstanding on a server process, the I/0O operation to the server is canceled and the
transaction, if any, is aborted. However, you should code the requester to call the
ABORTTRANSACTION procedure so that the appropriate cleanup is done on the
requester’s side.

NonStop TS/MP Pathsend and Server Programming Manual—132500
5-28

ﬁ Pathsend Errors

This section describes the error codes that can be returned by the Pathsend procedure
calls. These errors can be returned by processes that call the Pathsend procedures
directly and also by software that uses these procedures internally, such as the NonStop
TUXEDO system.

Types of Errors Returned by the
Pathsend Procedures

Three errors are associated with each call to a Pathsend procedure (except
SERVERCLASS SEND_INFO):

e A return error
e A Pathsend error
e A file-system error

Thereturn error isthe error returned by the Pathsend procedure or by AWAITIOX. For
details about the return errors for a particular procedure call, seetheer r or parameter
in the syntax description for that call in Section 5, Pathsend Procedure Call Reference.

For waited send operations, the return error is returned from the Pathsend procedure call.

For nowait send operations, the return error is returned from the Pathsend procedure call
if it isasend-initiation error. For errors other than send-initiation errors, the return error
isreturned by the AWAITIOX procedure and can be retrieved by calling the FILEINFO

procedure.

If the return error is error 233 (FEScError), you can call

SERVERCLASS SEND_INFO _to retrieve the Pathsend error and the file-system error.
(If the return error is 0 (FEOK), both the Pathsend error and the file-system error are
always 0, so you do not need to call SERVERCLASS SEND_INFO)

The Pathsend errors are described in this section. The file-system errors are described in
the Guardian Procedures Errors and Messages Manual; however, specific Pathsend
considerations for some of the file-system errors are given in this section in the
descriptions of the associated Pathsend errors.

Descriptions of Pathsend Errors

The Pathsend error codes are described in numeric order on the following pages.
Each description includes the following:

e The error number and corresponding error literal

e The cause of the error

e Typical file-system errorsthat can be encountered with the Pathsend error
e Theeffect of the error

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-1

Pathsend Errors Descriptions of Pathsend Errors

e How to recover from the error

These errors can be returned to Pathsend requesters. They can aso be returned to
NonStop TUXEDO clients that invoke NonStop TUXEDO request/response services or
conversational services. When Pathsend errors are returned to a NonStop TUXEDO
client, the necessary recovery actions might differ from those listed here; for information
about recovery from errorsin the NonStop TUXEDO environment, refer to the NonSop
TUXEDO System Messages Manual.

For examples of how errors are returned to a Pathsend program, refer to the example
programs in Appendix B, Examples. The error literals that follow the error numbers—
for example, 233 (FEScError)—are used in the example programs.

You can recover from some errors by retrying the Pathsend procedure call; the errors
you should retry depend on the requirements of your application. The programming
examplesin Appendix B, Examples, illustrate retrying the call for certain errors. You
can use those examples and the error descriptions in this section to decide how to
program for retrying errors.

900

FEScl nval i dSer ver Cl assNane

Cause. The server-class name specified in acall to SERVERCLASS SEND_or
SERVERCLASS DIALOG_BEGIN _isnot syntactically correct. Thisisa
programming error.

Typical file-system error: 2 (FEInvalOp)
Effect. The send initiation fails with an error.

Recovery. Correct the server-class name syntax. See the NonStop TSYMP System
Management Manual for a description of the correct syntax for server-class names.

901

FEScI| nval i dPat hnbonNane

Cause. The PATHMON process name specified in acall to SERVERCLASS_SEND
or SERVERCLASS _DIALOG_BEGIN_ isnot syntactically correct. This name must be |
avalid external process name. Thisis aprogramming error.

Typical file-system error: 2 (FEInvalOp)
Effect. The send initiation fails with an error.

Recovery. Correct the PATHMON name syntax. Refer to Section 5, Pathsend
Procedure Call Reference, for details about the correct syntax for PATHMON process
names.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-2

Pathsend Errors Descriptions of Pathsend Errors

902

FEScPat hnonConnect

Cause. An error has occurred in the requester’s communication with the PATHM ON
process. For example, an open operation has failed, an 1/0O error has occurred, or the
PATHMON process hasfailed.

Typical file-system errors. 12, 14, 40, 48, 201, or one of the path errors between 240
and 255.

Effect. The SERVERCLASS SEND_ or SERVERCLASS DIALOG_BEGIN_call is |
completed with an error. The message is not sent to the server process.

Recovery. Recovery depends on the file-system error:

e Error 12 (FEInUse) indicates that the PATHMON process was unable to open the
LINKMON process. Specific causes of this situation include (but are not limited to)
the following:

e The maximum number of LINKMON processes that the PATHMON process
can communicate with has been exceeded. See the NonStop TSMP System
Management Manual for information about setting the MAXLINKMONS
parameter.

e Theremote password on the system where the SERVERCLASS SEND _
request originated was not set for the system where the server class was running.
The PATHMON process receives afile-system error 48 but convertsthis error
into afile-system error 12. To recover, ensure that all remote passwords are
properly set, as described in the Expand Network Management Guide.

e Error 14 (FENoSuchDev) indicates the PATHMON process does not exist. Start the
PATHMON process or use an existing PATHMON process.

e Error 40 (FETimeout) indicates that a timeout error occurred, possibly because a
server was in debug mode. See Considerations for Debugging Pathway Serversin
Section 4 for more information about timeout errors for servers in debug mode.

e Error 48 (FESecViol) indicates there was a security violation. See Section 3, Writing
Pathsend Requesters, for information about network and server-class security.

e Error 201 (FEPathDown) or error 240 through 255 indicates that a path error
occurred (for example, the PATHMON process failed). Restart the PATHMON
process.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-3

Pathsend Errors Descriptions of Pathsend Errors

903

FEScPat hnonMessage

Cause. The LINKMON process received an unrecognizable message from the
PATHMON process while processing a SERVERCLASS SEND_ or

SERVERCLASS DIALOG_BEGIN _request. You might be using incompatible
versions of the LINKMON and PATHMON processes, or this could be a LINKMON or
PATHMON process internal error.

Typical file-system error: 0 (FEOK)

Effect. The SERVERCLASS SEND_ or SERVERCLASS DIALOG_BEGIN_call is |
completed with an error. The message is not sent to the server process.

Recovery. Thisisanonrecoverable error.

904

FEScSer ver Li nkConnect

Cause. An error has occurred with the link to the server. For example, an open
operation hasfailed or thereisan I/O problem. Thiserror could occur on acall to
SERVERCLASS SEND _, SERVERCLASS DIALOG _BEGIN_, or
SERVERCLASS DIALOG_SEND .

Typical file-system errors. 14, 40, 48, 201, or one of the path errors between 240
and 255.

Effect. Thecall iscompleted with an error. The message might or might not have been
sent to the server process, depending on the file-system error.

If the file-system error is a path error, any transaction associated with the call is aborted.

If this error isreturned from SERVERCLASS DIALOG BEGIN or
SERVERCLASS DIALOG_SEND , the dialog isended on the server side.

Recovery. If thiserror isreturned from SERVERCLASS SEND _, recovery depends on
the file-system error:

e Error 14 (FENoSuchDev) indicates that the server process does not exist. Retry the
SERVERCLASS SEND _ to cause the LINKMON processto use adifferent link to
the server process or to receive additional links from the PATHMON process. The
success of the retry depends on why the server process stopped.

e Error 40 (FETimedout) indicates that the I/O to the server process timed out because
it exceeded the configured SERVER TIMEOUT value for the server class.

e Error 48 (FESecVial) indicates there was a security violation. Section 3, Writing
Pathsend Requesters, for information about network and server-class security.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-4

Pathsend Errors Descriptions of Pathsend Errors

e Error 201 (FEPathDown) or error 240 through 255 indicates that a path error
occurred (for example, the processor where the server process was running has
failed).

If this error isreturned from SERVERCLASS DIALOG BEGIN or
SERVERCLASS DIALOG_SEND , use SERVERCLASS DIALOG_END_or
SERVERCLASS DIALOG_ABORT _ to terminate the requester’s portion of the dialog.

905

FEScNoSer ver Li nkAvai | abl e

Cause. The LINKMON process had no linksto the server class and was unable to get a
link from the PATHMON process to satisfy this request. For example, MAXLINKS
links for each server class are already allocated to other LINKMON processes and
TCPs. Thisisa PATHMON configuration problem.

Typical file-system error: 0 (FEOK)

Effect. The SERVERCLASS SEND_ or SERVERCLASS DIALOG_BEGIN_call is |
completed with an error. The message is not sent to the server process.

Recovery. Increase the maximum number of serversin the server class (with the
PATHCOM MAXSERVERS parameter) or increase the number of links available to the
server (with the PATHCOM MAXLINKS parameter). For details about the
MAXSERVERS and MAXLINKS parameters, see the NonStop TSYMP System
Management Manual.

906

FEScNoSendEver Cal | ed

Cause. The SERVERCLASS SEND_INFO __procedure was called before
SERVERCLASS_SEND_ or SERVERCLASS DIALOG_BEGIN_wasever caled by |
this program. Thisis a programming error.

Typical file-system error: 0 (FEOK)

Effect. The SERVERCLASS SEND_INFO _call iscompleted with return error O,
Pathsend error 906, and file-system error O.

Recovery. Ensure that your application program does not call
SERVERCLASS SEND_INFO_beforeit calls SERVERCLASS SEND __or
SERVERCLASS DIALOG BEGIN _.

Note. Error 907, FEScInvalidSegmentld, and error 908, FEScNoSegmentinUse, are not
returned on D-series systems. Error 908 has been replaced by error 912,
FEScParameterBoundsError.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-5

Pathsend Errors Descriptions of Pathsend Errors

909

FEScl nval i dFl agsVal ue

Cause. Thecaler set bitsinthef | ags parameter that are reserved and must be 0.
Thisisa programming error.

Typical file-system error: 2 (FEInvalOp)
Effect. The send initiation fails with an error.
Recovery. Setthereserved bitsinthef | ags parameter to O.

910

FEScM ssi ngPar anet er

Cause. A required parameter was not supplied. Thisis a programming error.

Typical file-system error: 29 (FEMissParam)

Effect. The send initiation fails with an error.

Recovery. Check the syntax of the procedure call and supply the required parameters.

011

FEScl nval i dBuf f er Lengt h

Cause. Thebuffer lengthinther equest - | en or maxi mum r epl y- | en parameter
for acall to SERVERCLASS SEND _, SERVERCLASS DIALOG_BEGIN_, or
SERVERCLASS DIALOG_SEND isinvalid. Thisisaprogramming error.

Typical file-system error: 21 (FEBadCount)
Effect. The send initiation fails with an error.

Recovery. Check the buffer lengths allowed for ther equest - | en and maxi mum
repl y- | en parametersin the syntax description for the procedure call, and specify the
correct buffer lengths.

912

FEScPar anet er BoundsEr r or

Cause. The address specified by areference parameter is out of bounds, or the caller
supplied areference parameter that is an extended address but does not have an extended
segment in use. Thisisa programming error.

Effect. The send initiation fails with an error.
Recovery. Correct the programming error.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-6

Pathsend Errors Descriptions of Pathsend Errors

913

FEScSer ver Cl assFr ozen

Cause. The server class the process tried to send to is frozen.
Typical file-system error: 0 (FEOK)

Effect. The SERVERCLASS SEND_ or SERVERCLASS DIALOG_BEGIN_call is |
completed with an error. The message is not sent to the server class.

Recovery. Resend after the system manager or operator has thawed the server class.

914

FEScUnknownSer ver Cl ass

Cause. Theserver classis not configured through the specified PATHMON process.
The program has specified an incorrect server-class name or specified the wrong
PATHMON process.

Typical file-system error: 0 (FEOK)

Effect. The SERVERCLASS SEND_ or SERVERCLASS DIALOG_BEGIN_call is |
completed with an error. The message is not sent to the server class.

Recovery. Check the server-class name and the PATHMON process name. Or check if
the server class has been configured yet (the PATHMON-controlled objects could bein
the process of being cold started).

915

FEScPat hnonShut Down

Cause. The send operation has been denied for one of the following reasons:
e The PATHMON process for the server classis shutting down.

e A timeout occurred on an 1/O operation to a server in debug mode.
Typical file-system error: 0 (FEOK)

Effect. The SERVERCLASS SEND _, SERVERCLASS DIALOG BEGIN , or
SERVERCLASS DIALOG_SEND _ cal is completed with an error. The messageis
not sent to the server class.

Recovery. If the PATHMON process is shutting down, determine the reasons for the
shutdown and perform appropriate recovery actions.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-7

Pathsend Errors Descriptions of Pathsend Errors

If aserver processisin debug mode and atimeout error (file-system error 40) occurred,
do the following:

o Usethe PATHCOM STATUS PATHMON command to find the server classes that
areinthe LOCKED state.

e |dentify the server program file for each locked server class.

e Issuethe TACL command STATUS *, PROG obj ect-fi | e- nane tolist al
running processes.

e Stop these processes by using the TACL STOP command.

For more information about timeout errors for serversin debug mode, refer to
Considerations for Debugging Pathway Serversin Section 4.

916

FEScSer ver Creati onFai l ure

Cause. The LINKMON process was unable to get alink to the server classdueto a
server creation failure. Thisisusually a server-class configuration problem, or a server
might have a problem that causesit to fail.

Typical file-system error: 0 (FEOK)
Effect. The send initiation fails with an error.

Recovery. Verify that the server class has been configured correctly. If the problem is
not in the configuration, correct the error in the server.

017

FEScSer ver Cl assTnf Vi ol ati on

Cause. The transaction mode of the Pathsend program does not match that of the server
class. The process has acurrent transaction ID at the time of the send, and the server
classis configured with the TMF parameter set to OFF. Thisis a programming error or
a server-class configuration error.

Typical file-system error: 0 (FEOK)
Effect. Thecall iscompleted with an error. The message is not sent to the server class.

Recovery. Correct your program or change the server-class configuration setting to
TMF ON.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-8

Pathsend Errors Descriptions of Pathsend Errors

018

FEScSendQper at i onAbort ed

Cause. The send operation has been terminated at an indeterminate point.
Typical file-system error: 40 (FETimedOut)

Effect. Thesend fails. A message might or might not have been sent to the server
process, depending on when the send was aborted.

Recovery. Therecovery action depends on which file-system error has occurred. With
error 40 (FETimedOut), you might want to try alarger timeout value.

919

FEScl nval i dTi neout Val ue

Cause. Thecaler supplied an invalid timeout valuein acall to
SERVERCLASS SEND _, SERVERCLASS DIALOG _BEGIN_, or
SERVERCLASS DIALOG_SEND . Thisisaprogramming error.

Typical file-system error: 2 (FEInvalOp)
Effect. The send initiation fails with an error.

Recovery. Specify avalid timeout value. See the procedure call syntax description for
details about valid timeout values.

920

FESc PFSUseEr r or

Cause. Thecaler's process file segment (PFS) could not be accessed.
Typical file-system error: 31 (FENoBufSpace)

Effect. The send initiation fails with an error.

Recovery. Code the process to stop itself if thiserror occurs.

021

FEScTooManyPat hnons

Cause. A call to SERVERCLASS SEND_ or SERVERCLASS DIALOG BEGIN_ |
specifiesa PATHMON process not known to the LINKMON process, and the

LINKMON processis aready communicating with the maximum number of

PATHMON processes allowed. The maximum number is 256.

Typical file-system error: 0 (FEOK)

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-9

Pathsend Errors Descriptions of Pathsend Errors

Effect. Thecall iscompleted with an error. The message is not sent to the server
process.

Recovery. In some cases, you can recover from this error by retrying the call. Whether
aretry will work depends on the design and operating environment of your application.
If the PATHMON processes in your application are frequently created and stopped, retry
the call. Otherwise, investigate the cause of the large number of PATHMON processes
and eliminate some processes.

For more information about LINKMON limits, refer to LINKMON Limit Errorson
page 3-4 and also to the NonStop TSYMP System Management Manual .

922

FEScTooManySer ver Cl asses

Cause. The LINKMON process aready has links to the maximum number of server
classes allowed for all PATHMON processes. The maximum number is 1024.

Typical file-system error: 0 (FEOK)

Effect. The SERVERCLASS SEND_ or SERVERCLASS DIALOG_BEGIN_call is |
completed with an error. The message is not sent to the server process.

Recovery. In some cases, you can recover from this error by retrying the call. Whether
aretry will work depends on the design and operating environment of your application.

For more information about LINKMON limits, refer to LINKMON Limit Errorson
page 3-4 and also to the NonStop TSYMP System Management Manual .

923

FEScTooManySer ver Li nks

Cause. The LINKMON process already has the maximum number of concurrent links
to server processes allowed for all PATHMON processes. The maximum number
is1750.

Typical file-system error: 0 (FEOK)

Effect. The SERVERCLASS SEND_ or SERVERCLASS DIALOG_BEGIN_call is |
completed with an error. The message is not sent to the server process.

Recovery. In some cases, you can recover from this error by retrying the call. Whether
aretry will work depends on the design and operating environment of your application.

For more information about LINKMON limits, refer to LINKMON Limit Errorson
page 3-4 and also to the NonStop TSYMP System Management Manual .

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-10

Pathsend Errors Descriptions of Pathsend Errors

924

FEScTooMany SendRequest s

Cause. The maximum number of concurrent server-class send operations allowed has
been exceeded. The maximum number is 255 per requester and 512 for all requesters
running in a processor. Thiserror can occur on acall to SERVERCLASS SEND ,
SERVERCLASS DIALOG BEGIN_, or SERVERCLASS DIALOG_SEND .

Typical file-system error: 0 (FEOK)

Effect. Thecall iscompleted with an error. The message is not sent to the server
process.

Recovery. In some cases, you can recover from this error by retrying the call. Whether
aretry will work depends on the design and operating environment of your application.

For more information about LINKMON limits, refer to LINKMON Limit Errorson
page 3-4 and also to the NonStop TSYMP System Management Manual .

925

FEScTooManyRequest er s

Cause. The LINKMON processis aready communicating with the maximum number
of requesters allowed. The maximum number of concurrently active Pathsend
requesters per processor is 256. Thiserror can occur only on the requester’sfirst call to
SERVERCLASS SEND_or SERVERCLASS DIALOG_BEGIN._.

Typical file-system error: 0 (FEOK)

Effect. The SERVERCLASS SEND_or SERVERCLASS DIALOG_BEGIN_ cdll is
completed with an error. The message is not sent to the server process.

Recovery. Retry if the number of Pathsend requesters fluctuates in this processor.

926

FEScDi al ogl nval i d

Cause. The specified dialog identifier isnot valid. This error can occur on acall to
SERVERCLASS DIALOG_SEND _, SERVERCLASS DIALOG_END , or
SERVERCLASS DIALOG ABORT

Typical file-system error: 0 (FEOK)
Effect. Thesend initiation fails with an error.
Recovery. Useavalid dialog identifier.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-11

Pathsend Errors Descriptions of Pathsend Errors

927

FEScTooManyDi al ogs

Cause. Therequester cannot start anew dialog, because it already has the maximum
number of dialogs open. The maximum number of dialogs per requester is 256.
Thiserror can occur on acall to SERVERCLASS DIALOG BEGIN .

Typical file-system error: 0 (FEOK)
Effect. The send initiation fails with an error.

Recovery. Reduce the number of dialogs.

928

FEScQut st andi ngSend

Cause. Therequester has an outstanding send operation on thisdialog. This error can
occur on acall to SERVERCLASS DIALOG _SEND .

Typical file-system error: 0 (FEOK)
Effect. The send initiation fails with an error.

Recovery. Complete the current send before starting another.

929

FEScDi al ogAbort ed

Cause. Thediaog has been aborted for one of the following reasons:
e The server requested a dialog abort.
e The server terminated between send operations.

e The server terminated immediately following send completion (with areply of
FEContinue), but before the LINKMON process had replied to the requester.

If the server terminated, the termination could be due to a server error or anetwork error.
Thiserror can occur on acall to SERVERCLASS DIALOG BEGIN_or
SERVERCLASS DIALOG SEND .

Typical file-system error: if the server requested the abort, 1 (FEEOF); if the server
terminated, the file-system error returned by the LINKMON process

Effect. Thediaogisaborted. If f| ags.<14> was not set to 1 on the call to
SERVERCLASS DIALOG_BEGIN _, the transaction is also aborted. The procedure
(if waited) or AWAITIOX (if nowait) returns with an error.

Recovery. Use SERVERCLASS DIALOG_END _to terminate the requester’s portion
of the dialog.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-12

Pathsend Errors Descriptions of Pathsend Errors

930

FEScChangedTr ansi d

Cause. A call to SERVERCLASS DIALOG_SEND _,

SERVERCLASS DIALOG_END _, or SERVERCLASS DIALOG_ABORT_ wasdone
under a different transaction identifier than the previous call to

SERVERCLASS DIALOG_BEGIN_ (which had specified f | ags. <14>=0). Thisis
aprogramming error.

Typical file-system error: 0 (FEOK)
Effect. The operation failswith an error.

Recovery. Use RESUMETRANSACTION to make the correct transaction identifier |
current, and reissue the call that failed.

931

FEScDi al ogEnded

Cause. A call to SERVERCLASS DIALOG _SEND failed because the server had
already ended the dialog, either by replying with FEOK or FEEOF or by terminating
while asend was still outstanding.

Typical file-system error: the file-system error of the last server response. Any number
other than 0 (FEOK) indicates one of the following:

e Thedialog has been aborted.

e Thepreviouscal to SERVERCLASS DIALOG BEGIN_or
SERVERCLASS DIALOG_SEND failed with an error that indicated an abort,
but the requester has not yet aborted the dialog.

Effect. The procedure initiation failswith an error.

Recovery. None. Use SERVERCLASS DIALOG_END _to end the specified dialog or
SERVERCLASS DIALOG_ABORT_ to abort it.

933

FEScDi al ogQut st andi ng

Cause. A call to SERVERCLASS DIALOG_END_ was made, but the server hasnot |
ended the dialog.

Typical file-system error: 0 (FEOK)
Effect. The procedure initiation failswith an error.

Recovery. Have the server end the dialog by replying FEOK, or use
SERVERCLASS DIALOG_ABORT __to abort the dialog.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-13

Pathsend Errors Descriptions of Pathsend Errors

934

FEScTr ansacti onAbort ed

Cause. The transaction associated with the dialog has been aborted.
Typical file-system error: 0 (FEOK)
Effect. The procedure initiation failswith an error. The dialog is now aborted.

Recovery. Use SERVERCLASS DIALOG_END_ or
SERVERCLASS DIALOG_ABORT _ to terminate the requester’s portion of the dialog.

947

FEScLi nknonConnect

Cause. Thereis aproblem communicating with the LINKMON process in this
processor.

Typical file-system errors. 14 (FENOSUCHDEV) and 43 (FENODISCSPACE)
Effect. The send initiation fails with an error.
Recovery. Recovery depends on the file-system error.

File-system error 14 indicates that there is no LINKMON process executing in the
processor.

File-system error 43 indicates that the LINKMON process was unable to initialize itself;
inthis case, the LINKMON process writes a message to $0 that indicates the reason for
theinitialization failure. Each subsequent SERVERCLASS SEND _,

SERVERCLASS DIALOG_BEGIN_, or SERVERCLASS DIALOG_SEND_ cdll in
this processor causes the LINKMON processto reattempt initialization; after the
condition is corrected, the LINKMON process can complete initialization.

For information about initialization and limits for the LINKMON process, refer to
LINKMON Limit Errors on page 3-4 and also to the NonStop TSMP System
Management Manual.

NonStop TS/MP Pathsend and Server Programming Manual—132500
6-14

E NonStop TS/MP Limitsfor
Pathsend Requesters

Table A-1 lists the NonStop TS/MP product limits that apply to the Pathsend

programming environment.

For limits related to the configuration of a PATHMON environment, refer to the
NonSop TSYMP System Management Manual.

Table A-1. Limitsfor Pathsend Requesters

[tem
Buffer length
Dialogs

Linksto server processes
Nowait depth
PATHMON processes

Pathsend requesters
Server classes

Server-class send operations

TMF transactions

Limit

Maximum of 32,767 bytes per server-class send operation
Maximum of 256 per requester

Maximum of 1750 for all requesters in a processor

Per server, as many as the number of allowed links. The limits
on allowed links are described in the NonSop TSYMP System
Management Manual.

Maximum of 1750 concurrent links per processor
Maximum of 255 for nowait Pathsend procedure calls

Maximum of 256 PATHMON processes with which a
LINKMON process can communicate

Maximum of 256 concurrently active Pathsend requesters per
processor

Maximum of 1024 server classesto which al requestersin a
processor can have outstanding links

Maximum of 255 concurrent outstanding send requests per
requester

Maximum of 512 concurrent outstanding send requests per
processor

Maximum of 100 outstanding TMF transactions per requester.
(Thislimit isimposed by the TMF subsystem.)

NonStop TS/MP Pathsend and Server Programming Manual—132500

A-1

NonStop TS/MP Limits for Pathsend Requesters

NonStop TS/MP Pathsend and Server Programming Manual—132500
A-2

g Examples

This appendix shows the source code for two example programs designed to help you
understand how to write Pathsend programs and Pathway servers. The following
examples are included:

e A context-free Pathsend requester coded in TAL
e A context-free Pathsend nested server example coded in COBOL 85

Edit files containing the source code for these examples are provided on the site update
tape (SUT). The source code for the Pathsend requester isin the file BREQS; the source
code for the nested server isin thefile PATHSRVS.

The examples allow you to see some of the programming concepts, described in
previous sections of this manual, put into practice. These programs, however, require
several other files provided on the SUT to run. You should read the file README
(located on the SUT) carefully before attempting to run these programs.

Note. The program examples included in this manual and on the SUT are for reference
purposes only and are intended to illustrate usage of Pathsend procedures. The program
examples are not intended to form the basis of production programs. The examples do not
demonstrate the definitive way to write Pathsend programs. There are other methods that
might be more suitable for your requirements or application.

Pathsend Requester Example

Example B-1, BREQ), is a Pathsend context-free requester program coded in TAL.
BREQ issues nowait SERVERCLASS SEND __callsto two server classes. The program
demonstrates how to write a Pathsend program that issues nowait

SERVERCLASS SEND _ callsto two servers and waits for successful completion of
both send operations before committing the transaction.

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-1

Examples Pathsend Requester Example

Example B-1. Context-Free Pathsend Requester Program

?PAGE " BROADCAST REQUESTER (BREQ OVERVI EW

@ START COPYRI GHT @o@

Tandem Confidential: Need to Know only

Copyright (c) 1980-1985, 1987-1995, Tandem Conputers I|ncorporated
Protected as an unpublished work.

Al Rights Reserved.

The conputer programlistings, specifications, and docunentation
herein are the property of Tandem Conputers | ncorporated and shall
not be reproduced, copied, disclosed, or used in whole or in part
for any reason without the prior express witten perm ssion of
Tandem Conput ers | ncor por at ed.

! @a@ END COPYRI GHT @o@

?SETTOG 1

?1 FNOT 1

BREQ is a single-threaded program It gets its input fromthe input
file, which contains data used to nake two Pathsend sends. In
addition to doing the two sends, BREQ writes the input record to the
nmessage log file. The two sends and the wite are treated as one

| ogi cal transaction.

The processing flowis like this: read one record fromthe input file,
initiate the 1/O nowaited, conplete the I/O and wite the reply from
the two servers to the output file before reading the next record from
the input file.

An input record is made up of the followi ng data for each Pat hsend
send: either a PATHMON ASSI GN nane or a PATHMON system and process
name, followed by a server class nane.

The PATHMON ASSI GN nanes get passed to BREQ at startup. |If a trace
file ASSICGN is present, then BREQ outputs a nsg after it does any of
the follow ng:

READs one record fromthe input file
Initiates a SERVERCLASS SEND
Initiates a WRITE to the nsg log file
Execut es BEG NTRANSACTI ON

Execut es ENDTRANSACTI ON

Execut es ABORTTRANSACTI ON

CANCELs outstanding 1/0O

After an 1/0O conpl etes successfully
After an I/O times out

After an I/Ofails

When a transaction is retried

When mex-retries is exceeded

BREQ does a SERVERCLASS SEND to the first server, a WRITE to the
message log file, and a SERVERCLASS SEND to the second server. All
three /O s are NOMIT and initiated in this sequence.

The reply from each server naned in the request nsg is sinply its
process id. BREQ puts together the reply for each server and wites
it to the output file.

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-2

Examples Pathsend Requester Example

The following files are used by BREQ and nust exi st before running the

program
I NFI LE -- each record is one transaction
QUTFI LE -- the outcone of the transaction
ERROR LOG -- Entry sequenced; record length 132; not audited.

The physical file nane is read fromthe ASSIGN
' ERROR- LOG- FI LE' .

MESSAGE LOG -- Entry sequenced; record length 132; audited.
The physical file nane is read fromthe ASSIGN
' MESSAGE- LOG- FI LE' .

TRACE (OPTIONAL) -- Entry sequenced; record length 80; not
audited; may be a terminal, nmay not be a
spool er location ($S. #SOMVE. LOC). The physi cal

file nanme is read fromthe ASSIGN
' TRACE- FI LE' .

The foll owi ng ASSI GNS passed in:

ERROR- LOG- FI LE
-- Used to record error nsgs.

MESSAGE- LOG FI LE
-- Awite tothis file is part of a transaction. It contains
request mnsgs received by BREQ from DRI VER

TRACE- FI LE (OPTI ONAL)
-- Used to |l og certain READs, SENDs, and TMF operati ons.

There can also be up to 50 ASSIGNs to give |ogical nanes to PATHMONs
that may be referenced in the input record.

The foll owi ng PARAM i s passed:
MAX- RETRI ES
-- BREQ uses this nunber to cal culate the nunber of tines
it will try to recover from PATHSEND SEND f ai | ures.
Exanpl e run-1ine:
RUN BREQ NAME $BREQ IN infile, OUT outfile/

The procedures on the followi ng pages are listed in al phabeti cal
or der.

?ENDIF 1

?PACGE " COWPI LER DI RECTI VES, GLOBALS, AND EXTDECS"
?1 NSPECT, SYMBOLS, NOCCDE

?LI ST

?DATAPAGES 64

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-3

Examples Pathsend Requester Example

?PAGE " VERSI ON PROCEDURE DECLARATI ON'
?SOURCE Ver sProc(PS"EXAMPLEMMODULE)
?PAGE " GLOBAL DECLARATI ONS FOR BREQ'
! The followi ng are GLOBAL defi nes

DEFI NE def = DEFI NE#;
DEF it = LI TERAL#;
DEF str = STRI NG¥;
DEF dbl = I NT(32) #;

?PACGE " STRUCTS BREQ'

! These are the STRUCTS used when conpiling the BREQ program
! Comments appears to the right of the code.

?PAGE " STRUCTURE NEEDED TO STARTUP A PROCESS"
?SECTI ON STARTUP
! The following is used when starting up

STRUCT . ClI *STARTUP (*);

BEG N
I NT MSGCODE;
STRUCT DEFAULT;
BEG N
I NT VOLUME [0: 3],
SUBVOL [0: 3];
END;
STRUCT | NFI LE;
BEG N
I NT VOLUME [0: 3],
SUBVOL [0: 3],
DNAME 0: 3];
END;
STRUCT QUTFI LE;
BEG N
I NT VOLUME [0: 3],
SUBVOL [0: 3],
DNAME 0: 3];
END;

STRI NG PARAM [0: 564] ;
END; ! CI STARTUP

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-4

Examples

Pathsend Requester Example

?PACGE " STRUCTURE NEEDED TO PROCESS ASSI GN MSGS!

?SECTI ON ASSI GN

! The following is used to process ASSI GN nsgs:

STRUCT CI~ASSI CN (*);
BEG N
I NT MSG*CODE;
STRUCT LOGQ CALUNIT;
BEG N
STRI NG PROGNAMELEN,

PROGNANME] 0: 30] ,

FI LENAMELEN,

FI LENAME] 0: 30] ;

END;
I NT(32) FI ELDMASK;

STRUCT TANDEMFI LENAME;
BEG N
I NT VOLUME] O: 3],
SUBVOL[0: 3] ,
DFI LE [0:3];
END;

I CREATESPEC

I NT PRI MARYEXTENT,
SECONDARYEXTENT,
FI LECODE,
EXCLUSI ONSPEC,

ACCESSSPEC,

RECORDSI ZE,
BLOCKSI ZE;
END; ! ci ASSIGN !

I ASSI GN nsg
!
1[o] -2
! PARAMS t o ASSI GN command
!
1[1]
!
1[17]
!
[33] bit nask to indicate
'which fields were supplied
(1 suppl i ed):
. <0> = TANDEM FI LENAME
.<1> = PRI - EXT- SI ZE
. <2> = SEC- EXT- SI ZE
. <3> = FIl LE- CODE
. <4> = EXCLUSI ON- SI ZE
. <6> = ACCESS- SPEC
. <6> = RECORD- Sl ZE
. <7> = BLOCK- Sl ZE

[53]
I'meg size

[35] TANDEM FI LENAME

%00 if shared
%20 i f excl usive
%60 if protected

99000 if I/0
%2000 i f input
%1000 i f out put

[50 51] correspond to flag PARAM
I of OPEN

108 bytes

NonStop TS/MP Pathsend and Server Programming Manual—132500

B-5

Examples Pathsend Requester Example

?PACGE " STRUCTURE NEEDED TO PROCESS PARAM MSGS"
?SECTI ON PARAM

! The following is used to process PARAM nessages

STRUCT Cl “"PARAM (*); ! PARAM nsg
BEG N !
| NT MSG*CODE, '[o] -3
NUM PARAMS; 'T1] nunber of PARAMS in this nsg
STR PARAMETERS[0: 1023] ; 1[2] PARAMS
END; !

?PACGE " STRUCTURE OF THE | NPUT FI LE"
?SECTI ON BREQI NPUT

! The following is the record format of the edit file, which is the

! i nput to the BREQ program
!

STRUCT BREQ'I NPUTAREC*TEMPLATE (*);
BEG N
STRUCT SERVERMREQUEST [0: 1] ;
BEG N
STR PATHMON'ASSI GN*NAME[0: 30] ;
STR PATHVON* SYSTEM* AND* PROCESS™ NAME[0: 14] ;
STR SERVERMCLASS] 0: 14] ;
END;
END;

?PACGE " STRUCTURE OF THE BREQ OUTPUT RECORD'
?SECTI ON BREQ*OUTPUT

! The following is the structure of the output record that BREQ
! wites to the OUT file specified in the run line.

STRUCT BREQ*OUTPUT”RECTEVMPLATE (*);
BEG N
STRUCT SERVERMREPLY [0:1];
BEG N
STR SYSTEM*NAME[0: 7] ;
STR PROCESS"NAME[0: 7] ;
STRUCT ERRORMMSG,
BEG N
STR PATHSEND"ERROR[0: 77] ;
STR FI LE*SYSTEM*ERRCR][0: 77] ;
END;
END;

STR NON*SEND" ERROR*MSJH 0: 77] ;
END; ! BREQ output rec tenplate

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-6

Examples Pathsend Requester Example

?PACGE " STRUCTURE OF A REQUEST TO PATHSRV"
?SECTI ON PATHSRVA REQUEST

! The following is the format of the nsg to PATHSRV. It is
! used i n BREQ

STRUCT PATHSRVAREQUEST~TEMPLATE (*);

BEG N
STR PATHMON*ASSI GN*NAME[0: 30] ;
STR PATHVON* SYSTEM*AND* PROCESS™ NAME[0: 14] ;
STR SERVERMCLASSJ 0: 14] ;

END;

?PACGE " STRUCTURE OF A REPLY FROM PATHSRV"
?SECTI ON PATHSRVMREPLY

! The following is the fornmat of the reply from PATHSRV. It is
! used i n BREQ

STRUCT PATHSRVMREPLYATEMPLATE (*);
BEG N
I NT REPLY”CODE;
STRUCT THI S*SERVER,
BEG N
STR SYSTEM'NAME[O0: 7] ;
STR PROCESS"NAME[0: 7] ;
END;

STRUCT SUBSI DI ARY" SERVER,
BEG N
STR SYSTEM*NAME[O0: 7] ;
STR PROCESS"NAME[0: 7] ;
END;

STR TMF* ABORT” REQUI RED,;

STRUCT ERRORMMSG,
BEG N
STR PATHSEND"ERROR[0: 77] ;
STR FI LE*SYSTEM*ERRCR] 0: 77] ;
END;

STR NON*SEND" ERROR*MSJH 0: 77] ;
END;, ! PATHSRV reply tenpl ate

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-7

Examples Pathsend Requester Example

?PACGE " STRUCTURE OF THE CONTROL BLOCK"
?SECTI ON CONTROLMBLOCK

! This structure is used to keep data about a Pathsend send or
! message log wite. Control blocks (cb's) are allocated fromthe
! upper 32K using GETPOOL.

! For each transaction, which is driven by data fromone record in

! the input file, 3 cb's are allocated (one each for the Pathsend

! sends, and one for the nessage log wite) and linked together in a
! linked list. At transaction conpletion, the cb nenory is returned
! usi ng PUTPOOL.

STRUCT control bl ock*tenplate (*);

BEG N
I NT type; ! Pathsend cb or nsg log cb (see types bel ow)
I NT fnum I file # of msg log file if cb type is nsg |og
I NT scsend”opnum = fnum ! sc send op # if cb type is Pathsend
I NT record®nunber; ! corresponding input file rec nunber
I NT i o”buf [0: $MAX ($LEN (pat hsrv”request”tenpl ate), ! 1/ 0O buf

$LEN (pat hsrv~Areply*tenmplate)) - 1]; ! for sends
! and writes.
STRUCT pat hsend”reqg*buf (pathsrv”request”tenplate) = io”buf;

I for sends
STRUCT pat hsend”repl y*buf (pathsrv~repl y*tenplate) = io”buf;

I for sends
I NT .input~data”buf (breg”input”rec”tenplate) = io”~buf;

I for wites, a ptr
STR . pat hnon*syst emf*tand”pr ocess”™nane; ! pointer into input buf
STR . servercl ass™nang; ! pointer into input buf
I NT pat hsend”™error; ' if error on send
INT fil ersystemterror; ' if error on send or wite
UNSI GNED (1) io”posted,; I if send or wite outstanding
UNSI GNED (1) error”is™retryabl e; ' if we can retry i/o
UNSI GNED (14) not“used,; ' filler
STR pat hsend™error”™nsg [0: 77]; I text for pathsend error
STR fil efsystemterror®nsg [0:77]; I text for filesys error
I NT . EXT next”~cb (control *bl ock*"tenplate); ! ptr to next cb in list,
END; ! nmust be last field in struct

! Types of control blocks. A cb can be used for a PATHSEND send or
! used for a nessage log write.

LI T cb”type”pat hsend
LIT cb~typernsg”l og

1,
2,

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-8

Examples Pathsend Requester Example

?PACGE " GLOBAL DECLARATI ONS FOR BREQ'

! The following are GLOBAL literals:
LI T nil ~addr

-1D

LIT true

_1,
LIT fal se ;

O,

LIT eneof
LIT e*security”violation

-1; ! end of file
48; ! an access denied

%2000;
%4000;

LI T open”read™only
LIT open*wite”only

LI T open”shared
LI T open®nowai t *di sk

%0;
% ;

LIT retry”pat h~failures 1; ! sync depth paramin the open

! The following are TRACE file literals:

(0]

LI T trace”read”i nput

LIT trace”pat hsend

LIT trace®wite”to”nsg”l og
LIT trace™begi n*transacti on
LIT trace®end™transacti on
LIT trace™abort~transaction
LIT trace”cancel *request
LIT trace®wite”bl ank™line
LIT trace™conpl et ed™i o

LIT trace”i oti ned®out

LIT trace”i oM ail ed

LIT trace*retry™transaction
LIT trace®max"retri es"exceeded

P
PoooNooarwvRO

[N
N

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-9

Examples

?PACGE "T9153 PATHWAY PATHSEND SC Errors”
!

The following is a list of all

!
! error nunbers 900 -
!

LI TERAL
FEScFirstError
FEScl nval i dServer O assNanme
FEScl| nval i dPat hmonNane
FEScPat hnonConnect
FEScPat hnronMessage
FEScSer ver Li nkConnect
FEScNoSer ver Avai | abl e
FEScNoSendEver Cal | ed
FEScl nval i dSegnent | D

FEScNoSegnent | nUse

FEScl nval i dFl agsVal ue

FEScM ssi ngPar anet er
FEScl nval i dBuf f er Lengt h
FEScPar anet er BoundsEr r or

FEScServer Cl assFrozen
FEScUnknownSer ver C ass

FEScPat hnonShut Down

FEScServer CreationFail ure

FEScServer Cl assTnf Vi ol ati on

FEScOper ati onAbort ed

FEScl nval i dTi neout Val ue
FEScPFSUseEr r or
FEScTooManyPat hnons
FEScTooManySer ver d asses
FEScTooManySer ver Li nks
FEScTooManySendRequest s
FEScTooManyRequesters

the Server Class Errors.
950 reserved

900,
900,
901,
902,

= 903,

= 904,

905,
906,

907,
908,

909,

910,
911,
912,

913,
914,

915,
916,

917,

918,

919,
920,
921,
922,
923,
924,
925,

segnent

Pathsend Requester Example

PATHSEND has

First avail. PATHSEND Error.
Invalid server class nane.

I nvalid Pat hnmon process nane.
Error with Pat hnon
connection (eg. Open,
etc.).

Unknown nessage received from
PATHMON.

/0

Error with Server Link
connection
(eg. Open, 1/0 etc.).

No Server Avail abl e.

the user called SC _SEND | NFO
before ever calling SC _SEND .
The cal l er uses an extended
idthat is out of range.
The cal ler supplied a ref.
paranmeter that is an extended
address, but doesn't have an
ext ended segnent in use.

The caller set bits in flags
paraneter that are reserved
and nmust be O.

A requi red paraneter was not
suppl i ed.

One of the buffer |ength
paranmeters is invalid.
A reference paraneter
of bounds.

The Server Class is Frozen
PATHMON does not recogni ze
Server Cl ass nane.

Send deni ed because Pat hnon
is shutting down.

Send deni ed by PATHMON
because of Server creation
failure.

The Tnf Transacti on node of
the Send does not nmtch that
of the Serverd ass (eg.
Requester Send has a Transld
and the ServerClass is
configured with TMF OFF).
Send operation aborted. See
acconpanyi ng Guardi an error
for nore information.

The caller supplied an
invalid tinmeout val ue.

The caller's PFS segnent
coul d not be accessed.

The max. nunber of Pat hnons
al | oned has been exceeded.
The maxi mum nunber of server
cl asses has been exceeded.
The maxi mum nunber of server
I i nks has been exceeded.

The maxi mum nunber of send
requests has been exceeded.
The maxi mum nunber of all owed

is out

NonStop TS/MP Pathsend and Server Programming Manual—132500

B-10

Examples

555555

FEScLi nkMonConnect = 947,
FEScLast Error = 950;

M scel | aneous file systemerrors

FEok = 0;
FEI nval i dOp = 2;
FEBoundsErr = 22;
FEM sspar am = 29;
FESCEr r or = 233;

Various file nunbers used globally

termMfnum:= -1;
in*fnum:= -1;

out "fnum:= -1;
error”l og™Mnum = -1;
msg”l ogMf num ;= - 1;
tracefnum:= -1;

Pathsend Requester Example

requesters has been exceeded.
Error with LI NKMON connecti on
(eg. Open, 1/0 etc.).

Last avail. PATHSEND error.
This is for checking ranges
not currently returned.

NonStop TS/MP Pathsend and Server Programming Manual—132500

B-11

Examples Pathsend Requester Example

I NT . nmy~processid[0:3]; ! used to preface error nsgs with ny pid

! Define a global array to hold error nmsgs that aren't PATHSEND send
! errors. For exanple, reference paraneter errors, AWAITIOX tineout
! errors, and validation errors.

STR . gl obal *non”pat hsend®error”nmsg [0:77] :=[78 * [" "]];

LIT max™assi gns = 56
STRUCT . assi gn“tabl e (ci”assign) [0:max*assigns - 1];

I NT assign“count := 0; I count of assigns in table
I NT max~retries := -1; I #times to retry Pathsend failures
I NT .edit”control *bl ock[0: (40 + (1024 / 2)) - 1];

! We use CGETPOOL and PUTPOOL to manage nenory in the upper 32K
! Here are sone vars used by these procedures.
|

LIT HeadSi ze = 38D; ! 19 words

LI T Pool Addr = 9%200000D; I upper 32K

I NT . EXT Pool Head : = Pool Addr; ! roomfor the header
I NT . EXT pool := Pool Addr + HeadSi ze; ! start of poo

LI T Pool Si ze = 32D*1024D; I 32K bytes

?LI ST, PAGE

?PACE " BREQ PROGRAM EXTDECS"
?PACGE " PROCESS THE ASSI GN MSGS"

PROC assi gn®“proc (ruch, passthru, assign®nsg, nsg”len, match) VARI ABLE
I NT . ruch,

. passthru

. assi gn“nsg,

nmsg”l en,

mat ch;
EXTERNAL;

?PAGE "RETURN AN ENTRY FROM THE ASSI GN TABLE"
I NT PROC get “assign (logical *nane, |en);

STR .| ogi cal *nane;

INT len;

EXTERNAL;

?PAGE " READ THE STARTUP AND ASSI GN MSGS, AND OPEN THE LOG FI LE"
PROC initialize;
EXTERNAL;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-12

Examples Pathsend Requester Example

?PAGE "START ONE |/ O I N THE TRANSACTI ON'

INT PROC initiate®l O (ch);
I NT . EXT cb (control ~bl ock™t enpl at e);
EXTERNAL;

?PAGE "START A WRITE OF THE | NPUT REQUEST RECORD TO THE MSG LOG'
INT PROC initiate*wite”to*nessage™l og (cb);

I NT . EXT cb (control ~bl ock™t enpl at e);

EXTERNAL;

?PAGE " REPORT AN | O ERRCR"
PROC | O*error (fnum;

I NT fnum

EXTERNAL;

?PAGE " SEARCH THE CONTROL BLOCKS FOR OUTSTANDI NG | / O
I NT PROC i o”outstanding (cb);

I NT . EXT cb (control ~bl ock™t enpl at e);

EXTERNAL;

?PAGE "PRINT A MESSAGE TO THE TERM NAL AND ABEND"
PROC abend”wi t h"my~abend”~nsg;
EXTERNAL;

?PACGE " PROCESS THE PARAM MSGS"

PROC paramtproc (ruch, buf, param‘nsg, nsg”len, match) VARI ABLE;
I NT . ruch,

. buf,

. param*nmsg (ci ~param,

nmsg”l en,

mat ch;
EXTERNAL;

?PACE "READ FROM AN EDI T FI LE"

I NT PROC read™ (fnum buf, read”count, error);
INT fnum

STR . buf;

I NT read”count;

INT .error;

EXTERNAL;

?PACE "LOOK AT WHY SERVERCLASS SEND | NFO_ FAI LED'
PROC Server Cl ass”Send”™l nf o*error (error);

I NT error,;

EXTERNAL;

?PAGE "SET UP THE CONTROL BLOCKS FOR ONE TRANSACTI ON'
DBL PROC setup”control ~bl ocks (i nput”~buf, record™nunber);
I NT .input”buf (breg”i nput”rec”tenplate);

I NT record”®nunber;

EXTERNAL;

?PAGE " START A TMF TRANSACTI ON'

PROC start”t he*t nf transacti on;
EXTERNAL;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-13

Examples Pathsend Requester Example

?PAGE " PROCESS THE STARTUP MsSG'
PROC startup”proc (rucb, buf, nmsg, nsg”len, match) VARI ABLE;
I NT . ruch,
. buf,
.meg (ci” startup),
nmsg”l en,
mat ch;
EXTERNAL;

?PACE "STORE DATA I N THE CONTRCL BLOCK"

PROC st ore”~control ~bl ock®info (cb, data”“buf, cb”type, record”*nunber);
I NT . EXT cb (control ~bl ock™t enpl at e);

STR . dat a*buf (pathsrv”~request”™tenpl ate);

I NT cb”type;

I NT record”®nunber;

EXTERNAL;

?PAGE "BE SURE AN | NCOM NG REQUEST | S VALI D"
I NT PROC val i dat e®breg”request (i nput”rec);

I NT .input”~rec (breg”input”~rec”tenplate);
EXTERNAL;

?PAGE "GET MY NAME OR PROCESS | D'
PROC who”am\i ;
EXTERNAL;

?PAGE "WRI TE TO THE TRACE FI LE"

PROC witertracerile (function, record®nunber) VARI ABLE;
I NT function;

I NT record”®nunber;

EXTERNAL;

?LI ST

?NOLI ST, SOURCE $SYSTEM SYSTEM EXTDECSO (ABEND, ABORTTRANSACTI ON,

AVAI TI OX, BEG NTRANSACTI ON,
CANCELREQ, CLOSE, DEBUG

DEVI CEl NFO, DNUMOUT, EDI TREAD,
EDI TREADI NI T, ENDTRANSACTI ON,
FI LEI NFO, FNAVECOLLAPSE,
FNAVEEXPAND, GETCRTPI D,
GETTRANSI D, | NI TI ALI ZER,

MYPI D, NEWPROCESS, NUM N,
NUMOUT, OPEN, PROCESSORSTATUS,
READ, READUPDATE, REPLY,
SETMODE, STOP, WRI TE,

WRI TEREAD, WRI TEX,

DEFI NEPOOL, GETPOOL, PUTPOOL,
MYTERM

SERVERCLASS_SEND_
SERVERCLASS_SEND_| NFO_)

2NN 5N 1) N)))))))))))

)
-
[9)]
k|

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-14

Examples Pathsend Requester Example

! The follow ng dunmy procedure is for exanple program version control
PS" EXAMPLEM VERSI ON™ PROC;
?PAGE "PRINT A MESSAGE TO THE TERM NAL AND ABEND"

Many procedures check for error conditions that, under nornal

!

! ci rcunst ances, shoul d not happen. |In these cases, before

! ABENDi ng, a procedure will call this procedure to wite a nessage
! to the home terminal. This proc calls ABEND.

PROC abend”wi t h"my~abend”~nsg;

BEG N

INT .filenane [O0:11];

I NT terntfnum

INT . buf [0:79];

STR .shuf := @uf '<< 1;
STR . sp;

CALL MYTERM (fil enane);

CALL OPEN (filenanme, termfnum;
I F <>
THEN ! print an error nsg and abend
CALL I O*error (termfnum;

sbuf ':=" "I NTERNAL ERROR DETECTED, PROGRAM ABENDI NG' -> @p;
CALL WRITE (ternfnum buf, @p '-' @buf);
I F <

THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

CALL CLOSE (termtfnun;

CALL ABEND;

END; ! PROC abend”w t h~ny~abend”"nsg
?PAGE " ABORT THE TRANSACTI ON'

!
! Abort the transaction | started
|

iDROC abort "t nf Mt ransacti on;

BEG N

INT tnf error;

I NT . buf [0:79];

STR . sbuf := @uf '<<' 1;
STR . sp;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-15

Examples Pathsend Requester Example

I F (tnf~error := ABORTTRANSACTI ON)
THEN ! failed to abort, file sys error in tnf”error

BEG N

sbuf ':='" "ERROR W TH ABORTTRANSACTION: " -> @p;
CALL NUMOUT (sp, tnf”~error, 10, 3);

@p 1= @p[3];

CALL WRI TE (error”l ogMnum buf, @p '-' @buf);
I F <

THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

CALL ABEND;
END;

! Successful ly aborted the transaction

CALL write~trace~rfile (trace™abort”transaction);

sbuf ':=" "TRANSACTI ON ABORTED NORMALLY" -> @p;
CALL WRI TE (error”l ogMnum buf, @p '-' @buf);
IF <

THEN ! print an error nsg and abend
CALL I O*error (nsg”™l og™f num ;

END; ! PROC abort”tnf”~transaction

?PAGE "FI ND OUT WHY SERVERCLASS SEND FAIl LED"

! The follow ng procedure is called from PROCs conpl ete”i o and

! initiater O. That is, SERVERCLASS SEND and AWAI TI OX can both
! return file systemerror 233 (FESCERROR).

! This proc gets detailed information about error 233 by calling
! SERVERCLASS _SEND | NFO_ , which returns the pathsend error and
! the file systemerror.

PROC anal yze~send”error”233 (ch);
I NT . EXT cb (control ~bl ock™t enpl at e);

BEG N

STR . EXT sp;

STR . EXT st;

INT error; ! used in call to serverclass_send_info_
I NT pathsend™error; ! used in call to serverclass_send_info_
INT filesystemterror; ! used in call to serverclass_send_info_

! Default to a non-retryable error

cb.error™is?retryable : = fal se;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-16

Examples Pathsend Requester Example

IF (error := SERVERCLASS SEND | NFO_ (pat hsend®error, filesystenterror))

THEN ! problem making the call to SERVERCLASS SEND | NFO_
BEG N
CALL servercl ass”send”i nfoerror (error);
RETURN;
END;

! Save off the errors and error nsg text

cb. pat hsend®error := pathsend®error
cb.filersystemterror = fil esystemterror

! This application treats Pathsend errors 916, 918, and 924 as

! retryable. Oher errors nay be retryabl e, depending on your

! application. They generally reflect PATHWAY confi guration

! probl enms, and would be retryable after a delay. For exanple,

! 904 (FEScServerLi nkConnect): error with server |ink connection
! (Open, I/0 etc.).

! 905 (FEScNoServerAvail able): no server in the requested server

! class has a free Iink. the nmaxi nun nunber of links is specified
! i n PATHCOM by the server class attribute MAXLINKS. A link could
! becone available if a TCP was shut down.

! 913 (FEScServerC assFrozen): the server class is frozen

! 916 (FEScServerCreationFailure): send deni ed by PATHMON because
! of a server creation failure.

! 918 (FEScSendOper ati onAborted): the send operation was

! term nated. See file systemerror for nore information. For
! exanpl e, corresponding file systemerror could be error 40,

! time out.

! 924 (FEScTooManySendRequests): the maxi mum nunber of all owed
! send requests has been exceeded.

| F (pat hsend™error = FEScServerCreationFailure !916
OR pat hsend™error = FEScOperati onAborted !918!
OR pat hsend™error = FEScTooManySendRequests !924!)

THEN ! we'll retry the SERVERCLASS_SEND

cb.error™is?retryable := true
ELSE ! store error nsg text, trap paraneter errors
BEG N
cb. pat hsend®error”nmsg ': =" "PATHSEND ERROR. " -> @p;
CALL DNUMOUT (sp, $UDBL (pathsend”error), 10, 3);
@p = @p[3];

cb.filefrsystemterror®nsg ':=" "FILE SYSTEM ERROR. " -> @t ;
CALL DNUMOUT (st, $UDBL (fil esystemterror), 10, 3);
@t 1= @&t[3];

Use the pathsend error to check for paranmeter errors, and flag
them as non-retryable. Alternatively, we could use the val ue
returned in the file systemerror to trap a bad param (error 2
FEI nval i dOp, error 21: FEBadCount, error error 22: FEBadParam
error 29: FEM ssParan).

The pat hsend error does provide nore specific information about
about the problem For exanple, pathsend errors 907, 908, 909
and 919 all return the same file systemerror (error 2

!
!
!
!
!
!
:
!
! FEI nval Op) .

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-17

Examples

END;

Pathsend Requester Example

| F pat hsend™error = FEScl nval i dSegnent|d 1907!
OR pat hsend”error FEScl nval i dFl agsVal ue 1909!
OR pat hsend”error FEScM ssi ngPar anet er 1910!

OR pat hsend”error
OR pat hsend”error
OR pat hsend”error

FEScl nval i dBuf ferLength 1911!
FEScPar anet er BoundsError 912!

F
OR pat hsend™error = FEScNoSegnent | nUse 1 908!
= FEScI nval i dTi meout Val ue ! 919!

THEN ! the error returned from serverclass_send_ was a param error
sp ': =" "(BAD PARAMETER PASSED TO SERVERCLASS SEND)" -> @p;

! Include a nsg if the file systemerror is a security violation
IF filesystemterror = e*security”violation !48!
THEN ! add error text for the user
st ':=" "(SECURITY VI OLATION)";
END;, ! else trap paraneter errors

I PROC anal yze~send”™error”~233

?PACGE " PROCESS THE ASSI GN MESSAGES"

This procedure is called by the GUARDI AN 90 PROC I NI TI ALI ZER from
PROC initialize. It saves ASSIGN nsgs, passed from our ancestor
TACL, in our ASSICN table, and is called once for each ASSI GN nsg
passed.

A count of the nunmber of ASSIGNs in the table is kept in global
var assign®count, and is used in table | ookups.

PROC assi gn®“proc (ruch, passthru, assign®nsg, nsg”l en, match) VARI ABLE;

I NT . ruch,
. passt hru,
. assi gn“nsg,
nmsg”l en,
mat ch;
BEG N
INT . buf [0:79];
STR .shuf := @uf '<< 1;
STR . sp;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-18

Examples Pathsend Requester Example

| F assi gn“count >= nax”assi gns
THEN ! will exceed the size of our assign table

BEG N

sbuf ':=" "NUMBER OF ASSI GNS EXCEEDS MAX"ASSI GNS' -> @p;
CALL WRITE (ternmMf num buf, @p '-' @buf);

I F <

THEN ! print an error nsg and abend
CALL I O*error (termfnum;

CALL ABEND;

END;
assi gn“tabl e [assign®count] ':='" assign®*nsg FOR (nsg™len + 1) / 2;
assi gn“count := assign“count + 1;

END;, ! PROC assi gn“proc

?PAGE "CANCEL ALL OUR QUTSTANDING |/ O

! This proc is called to cancel 1/0 posted but not conpleted. W
! use the io”posted flag in the control block to get the state of

! the 1/0

! This proc is called when one I/Oin a transaction failed, either
! at initiation tine or conpletion tine.

PROC cancel "out st andi ng”™i o (cb”™list”head);

I NT . EXT cb™list~head (control ~bl ock*tenplate); ! ptr to head of cb |ist
BEG N
I NT . EXT cb (control ~bl ock~tenplate) := @b”list”head;

VWH LE @b <> nil *addr DO
BEG N

I F cb.io”posted
THEN ! this cb has I/O that hasn't conpl eted
BEG N
CALL CANCELREQ (cb. fnum @b);
IF <
THEN ! print an error nsg and abend
CALL I O*error (cb.fnum;

cb.io”posted : = fal se;
CALL write~trace~file (trace™cancel “request, cb.record”nunber);
END;

@b := @b. next~cb

END; ! while

END; ! PROC cancel *out st andi ng”™i o

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-19

Examples Pathsend Requester Example

?PAGE " COWPLETE THE QUTSTANDI NG |/ O

! This PROC waits for 1/Oto conplete and returns the address of the
! control block associated with the conpletion. It returns nil~addr
! if I/Oconpleted with an error, or nil”addr if there was no
! conpletion (in the case of a tinmeout, error 40).

DBL PROC conpl et e?i o;

BEG N

I NT . EXT cb (control ~bl ock™t enpl at e);

DBL tag := -1D;

DBL tinmelimt := 300D, ! wait 3 seconds (0.01 sec units)
LIT anyfnum= -1; I wait on any file

I NT fnum ! used in call to awaitiox

STR . EXT sp;

INT error;

I NT . buf [0:79];
STR . sbuf := @uf '<<' 1;
STR . st ;

! When waiting for any /O to conmplete (fnum= -1) with an AWAITI O
! time limt <> 0, I/Ois considered conplete and no | onger

! out standi ng (whether an error is returned or not) in every case
! except when a tineout (error 40) occurs.
|
|
|

When a conpletion occurs, the file nunber of the conpleted call
is returned in the <fnunk param and tag is returned in <tag>.

fnum : = anyf num

CALL AVAITIOX (fnum,, tag, tinmelimt);

I F =
THEN ! one |/ 0O successfully conpl eted
BEG N
@b : = tag;

! Do sone basic checks to make sure the control block is what we
! expect. We expect the file nunber returned by AWAITIOX to be
! the sane as the fle nunber we saved in the control block when
! the I/Owas initiated. And we expect the control block to be
! a valid type.

I F cb. fnum <> f num OR
(cb.type <> cb*type”pathsend AND cbh.type <> cb”type”*nsg”l og)

THEN ! assertion failed
CALL abend”™wi t h"my~abend®nsg;

cb.io”posted : = fal se;

CALL write~tracenrfile (trace™conpl eted”i o, cb.record®nunber);
RETURN @b;

END;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-20

Examples Pathsend Requester Example

! An error or warning occurred

CALL FILEINFO (fnum error);
I F <>

THEN ! couldn't access the ACB
CALL abend”™wi t h"ny~abend®nsg;

! Check for a tineout error

IF error = 40
THEN ! AWAITIO tinmed out and no conpl etion has occurred

BEG N
sbuf ':=" "AWAITIO TIMED OQUT (ERROR 40)" -> @t;
CALL WRI TE (error”l ogMfnum buf, @t '-' @buf);
I F <

THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

CALL write~tracenrfile (trace”i o™tinmedrout);
! Save the error nsg so we can include it in the output record
gl obal *non”pat hsend”error~nsg ':=" sbuf FOR @t '-' @buf;

RETURN ni | ~addr ;
END;

! I/O conpleted with sone error, find out what it is
@b : = tag;
! We expect the file nunber returned by AWAITIOX to be the sanme as
! the fle nunber we saved in the control block when the I/0O was
! initiated.
I F cb. fnum <> fnum

THEN ! assertion failed

CALL abend”™wi t h"ny~abend®nsg;

cb.io”posted : = fal se;

CALL write~rtracenrfile (trace™i o~ ailed, cb.record™nunber);

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-21

Examples Pathsend Requester Example

! Check for errors on the disk operation

CASE ch.type OF
BEG N

cb”typernmsg”l og ->
BEG N
! I/Oto the nessage log file failed
cb.fil efrsystemterror := error;

cb.filefrsystemterror®neg ': =" "ERROR " -> @&p;

CALL DNUMOUT (sp, $UDBL (error), 10,3);

@p = @p[3];

sp ':=" "RETURNED FROM AVWAI TIO ON | /O TO THE MESSAGE LOG FI LE";

RETURN ni | ~addr ;
END;

cb”t ype”~pat hsend ->
BEG N
! A nowai ted ServerC ass_Send_ failed
IF error = FeSCError !file systemerror 233!
THEN ! call ServerCl ass_Send_Info_ for Pathsend & filesys errors
CALL anal yze~*send”error”233 (ch)

ELSE ! no other errors should be returned by AWAI TI OX for
CALL abend”™wi t h"my~abend®nsg; I Pat hsend sends

END,;
OTHERW SE - >
! There are no other types of control blocks, so
CALL abend”™wi t h"ny~abend®nsg;
END; ! case
RETURN ni | ~addr ;
END; ! PROC conpl ete”io

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-22

Examples Pathsend Requester Example

?PACGE " CREATE THE CONTROL BLOCK MEMCRY POQOL"

! Thi s procedure uses the standard nmenory managenent routines to
! declare a nenory pool starting at the upper 32K, with a size of
! 32K bytes.

! Control blocks (cb's) are managed as a linked |ist, and new ch's
! are allocated in get”~control ~bl ock.

PROC cr eat et he®nmenory”pool ;

BEG N

I NT status;

INT . buf [0:79];

STR . sbuf := @uf '<<' 1;
STR . sp;

I F (status := DEFI NEPOOL (Pool Head, pool, Pool Size))
THEN ! some nenory allocation problem

BEG N

sbuf ':=" "DEFI NEPOOL FAILED TO CREATE THE MEMORY POOL" -> @p;
CALL WRI TE (error”l ogMnum buf, @p '-' @buf);

I F <

THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

CALL ABEND;
END;

END; ! PROC creat et he®nmenory”pool
?PAGE "END THE TMF TRANSACTI ON'

! End the transaction | started, and |og the outcone to the error
! log file. If successful, wite a record to the trace file.

PROC end”t he”t nf Atransacti on;

BEG N

INT tnf error;

I NT . buf [0:79];

STR . sbuf := @uf '<<' 1;
STR . sp;

I F (tnf~error : = ENDTRANSACTI ON)
THEN ! file sys error in tnf”error

BEG N

sbuf ':=" "ERROR W TH ENDTRANSACTION: " -> @p;
CALL NUMOUT (sp, tnf”~error, 10, 3);

@p 1= @p[3];

CALL WRI TE (error”l ogMfnum buf, @p '-' @buf);
I F <

THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

CALL ABEND;
END;

! Successful ly ended the transaction

CALL write~rtracenrfile (trace®end™transaction);

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-23

Examples Pathsend Requester Example

sbuf ':=" "TRANSACTI ON ENDED NORMALLY" -> @p;
CALL WRI TE (error”l ogMnum buf, @p '-' @buf);
IF <

THEN ! print an error nsg and abend
CALL I O*error (nsg”™l og™f num ;

END; ! PROC end”t he“tnf~transaction

?PAGE "RETURN AN ENTRY FROM THE ASSI GN TABLE"

! This procedure is passed a |ogical ASSIGN nane and searchs the
! ASSIGN table for the ASSIGN nane. If found it returns the address
! of the table entry, otherw se fal se

I NT PROC get “assign (logical *nane, |en);

STR .| ogi cal *nane;

INT len;

BEG N

INT i := 0;

I NT . assign™ (ci”assign);

WHI LE i < assign”count DO

BEG N

@ssign™ = @ssignttablel[i];

I F assign™.logicalunit.filenane = | ogi cal “*nane FOR | en
AND assign”.logicalunit.filenanmelen = len

THEN ! found mat chi ng ASSI GN
RETURN @assi gn”;

=0+ 1

RETURN f al se
END; ! | NT PROC get”“assign

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-24

Examples Pathsend Requester Example

?PACGE "ALLOCATE A NEW CONTRCL BLOCK FROM THE MEMCRY POQOL"

! This proc gets nmenory fromthe pool for a new control block (cbh).
! The caller passes in the head of a list of control blocks, and it
! links the new cb to the end of that Iist.

! If the list head has a nil address, then the new cb becones the
! first elenment of the |ist.

! This proc returns the address of the new control block. Before
! returning, the newchb is zero'd.

DBL PROC get ~control ~bl ock (cb”list”head);
I NT . EXT cb”list~head (control ~bl ock”tenpl ate);

BEG N

I NT . EXT cb (control ~bl ock~tenplate) := @b”list”head;
I NT . EXT new‘*cb (control ~bl ock™t enpl ate);

INT . buf [0:79];

STR .shuf := @uf '<< 1;

STR . sp;

@ewrch = CGETPOOL (Pool Head, $UDBL ($LEN (ch)));

| F @ewrcb = -1D
THEN ! couldn't get nenory

BEG N

sbuf ':='" "GETPOOL FAILED TO GET MEMORY | N GETA"CONTROLABLOCK" -> @p;
CALL WRI TE (error”l ogMnum buf, @p '-' @buf);

I F <

THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

CALL ABEND;
END;

! If the caller passed in a list head with nil address, then make
! the new cb the first elenment in the list.

IF @b = nil~addr
THEN ! the user passed an enpty |ist
@b := @ew‘cb

ELSE ! link the newcb to the end of the |ist
BEG N

VWH LE @b. next”~cb <> nil~addr DO
@b := @b. next”cb;

@b. next*cb : = @ew'‘cb;
@b := @b. next~cb;

END;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-25

Examples Pathsend Requester Example

! Cl ean the new control block, and set the link to nil address

cb ':=" 0 &cb FOR (($LEN (cb) + 1) / 2) - 1;

@b. next~cb := nil ~addr;

RETURN @b;

END; ! DBL PROC get”~control bl ock

?PAGE "READ THE STARTUP AND ASSI GN MSGS, AND OPEN VARI QUS LOG FI LES"

! This procedure calls the GUARDI AN 90 PROC | NI Tl ALI ZER, whi ch opens
! $RECEI VE and handl es the protocol with our ancestor, TACL.

! I NI TIALI ZER cal | s procs local to this programto read the startup
! nmsg, save the ASSI GN nsgs, and save the param nsg.

! This proc then opens the error log file, nessage log file, and the
! trace file.

PROC initialize;

BEG N

STRUCT .startup”nmsg (ci” startup);
I NT . buf [0:79];

STR .sp := @uf '<<' 1;

STR . st;
.filename [
.error”l og”
.meg”l og”hfile
.trace~file[O:
. assi gn”® (C|Aa55|gn);
.assign®name[0:17] := [18*[" "]];
. 1 ogi cal *nane[0: 30] ;

set node”par ant;

devtype, phys”reclen;

0:1
fi
I

2547455533

Open the honme ternminal to report initialization errors

CALL MYTERM (fil enane);
CALL OPEN (filenanme, termfnum;
I F <>

THEN ! print an error nsg and abend
CALL I O*error (termfnum;
! Get my process id and read the startup nsg, ASSI GNs and PARAMs
CALL who”anti ;

CALL I NI TIALI ZER (!'ruch!, startup”nsg, startup”proc, parantproc,
assi gn“proc);

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-26

Examples Pathsend Requester Example

! Verify that the ASSIGNs for nsg log file, error log file, and
! trace file are present in our ASSIGN table.

! The nsg log file contains each record read fromthe input file
| ogi cal *name ':=" "MESSAGE-LOG FI LE "

I F NOT (@ssign™ : = get”™assign (logical “nanme, 16))
THEN ! user forgot assign

BEG N

sp ':=" "M SSING ASSI GN ' MESSAGE- LOG- FI LE' " ->@&t;
CALL WRITE (termtfnum buf, @t '-' @p);

IF <

THEN ! print an error nsg and abend
CALL I O*error (termfnum;

CALL ABEND;
END;

! The logical ASSIGN nanme is in assign.logicalunit.filename and the
! physical file name is in internal format in assign.tandenfil enane.
! Wien a user adds an ASSIGN and onits the $VOL and/or SUBVOL, these
! fields are also onitted fromthe ASSI GN STRUCT.

! By collapsing the file nane to it's external formt

! ($VOL. SUBVOL. FN) and then expanding it to it's internal format

! ("\ 246 ANCHORSUBVOL FI LE "), we let the GUARDI AN 90 PROCs do

! the work of adding default val ues.

CALL FNAMECOLLAPSE (assign”™.tandenfil enane. vol unme, nsg”™l og™file);
CALL FNAMEEXPAND (msg”l og”file, nmsg™l ognfile, startup”nmsg.default);

! The error log file is used to log errors generated by BREQ

| ogi cal *nanme ':=" "ERROR LOG FI LE "

I F NOT (@ssign™ : = get”™assign (logical *nanme, 14))
THEN ! user forgot assign

BEG N

sp ':=" "M SSING ASSI GN ' ERROR-LOG FILE " ->@&t;
CALL WRITE (ternmMfnum buf, @&t '-' @&p);

I F <

THEN ! print an error nsg and abend
CALL I O*error (termfnum;

CALL ABEND;
END;

CALL FNAMECOLLAPSE (assign”.tandenfil enane.vol ume, error”l og™file);
CALL FNAMEEXPAND (error”log”file, error™l ognrfile, startup”nsg.default);

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-27

Examples Pathsend Requester Example

! The trace file contains a |l og of specific events that occurred in
! BREQ e.g., a PATHSEND send or ENDTRANSACTI ON.

| ogi cal *nanme ':=" "TRACE-FILE "
I F (@ssign™ : = get”assign (logical *nane, 10))
THEN ! optional assign, use if included
BEG N
CALL FNAMECOLLAPSE (assi gn”™.tandenfil enane.vol une, trace”file);
CALL FNAMEEXPAND (trace~file, trace~file, startup”nsg.default);

CALL OPEN (trace~file, trace®fnum open*wite?only LOR
open”shared, retry”path”failures);

I F <>
THEN ! open failed
BEG N
sp ':=" "FAILED TO OPEN TRACE FILE" ->@t;
CALL WRITE (term\fnum buf, @&t '-' @&p);
I F <

THEN ! print an error nsg and abend
CALL I O*error (termfnum;

CALL I O*error (trace™f num;
END;

! By sharing the same term nal as the Cl, which uses BREAK, we
! gai n BREAK access to the termwith SETMODE 12 (set file
! type access, param 2 = 1). File access is BREAK access.

CALL DEVI CEI NFO (trace~file, devtype, phys”reclen);
| F devtype.<4:9> = 6 | Type TERM

THEN ! Do a setnpde so we can wite to it.
CALL SETMODE (tracefnum 12, 0, 1);

END
ELSE ! trace assign not present, so don't trace
tracer num:= -1;

CALL OPEN (error”™l ognhfile, error”l oghfnum open*wite”only LOR
open”shared, retry”path”failures);

I F <>
THEN ! open failed
BEG N
sp ':=" "FAILED TO OPEN ERROR LOG FI LE" ->@t;
CALL WRITE (ternmffnum buf, @t '-' @p);
I F <

THEN ! print an error nsg and abend
CALL I O*error (termfnum;

CALL I O*error (error”l og™fnum;
END;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-28

Examples Pathsend Requester Example

CALL DEVI CEI NFO (error”~l ognfile, devtype, phys”reclen);

| F devtype.<4:9> = 6 !type term
THEN ! Do a setnpde so we can wite to an un-paused TERM
CALL SETMODE (error”l oghnum 12, 0, 1);

CALL OPEN (nsg”™l og™file, nmsg”™l og"fnum open®™write”only LOR open”shared
LOR open”nowai t ~di sk, retry”path”failures);

I F <>
THEN ! open failed
BEG N
sp ': =" "FAILED TO OPEN MESSAGE LOG FI LE" -> @&t ;
CALL WRITE (ternmffnum buf, @t '-' @&p);
I F <

THEN ! print an error nsg and abend
CALL I O*error (termfnum;

CALL I O*error (nsg”™l og™f num ;
END;

CALL CLOSE (terntfnun;

END; ! PROC initialize

?PAGE "START ONE |/ O I N THE TRANSACTI ON"

! Thi s procedure uses data in the control block (cb) to start a

! Pat hsend send or nessage log WRITE. The I/Ois nowaited, and the
! I/Otag is the cb address. If we fail to initiate the

! SERVERCLASS _SEND , then call anal yze®send®error”233 to get the

! associ ated Pathsend error and file systemerror.

! This application treats initiation errors as non-retryabl e.

INT PROC initiate®l O (ch);
I NT . EXT cb (control ~bl ock™t enpl at e);

BEG N

I NT |en;

I NT ~ScSendOpNum

I NT pat hnon”process”nane”l en;
I NT servercl ass™nane”l en;

INT flags := O;

DBL ti meout;

I NT error,;

STR . sp;

! If this is a nsg log control block then start the wite to the nsg
! log file.

I F cb.type = cb*typetnmsg”l og
THEN ! start the disc op
RETURN initiate®wite”to*nessage™l og (cb);

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-29

Examples Pathsend Requester Example

! Start the Pathsend send to the server class. Fill the send buf
! with bl anks so there's not a cascadi ng Pat hsend send from server
! to server cl ass.

cb.iorbuf ':=" " " & cb.ioMbuf FOR $OCCURS (cb.io”buf) - 1;

! Set up the ServerC ass_Send_ paraneters: get the PATHVON name and

! server class nanme | engths, and set the values for <flags> and

! <ti meout >.

I en := $OCCURS (cb. pat hsend”r eg”buf. pat hnon*syst enttand”pr ocess™nane) - 1;

0

WHI LE cb. pat hron”*syst enftand”process™nane [
cb. pat hnon*syst emtand”pr ocess™nane |

| en]
| en]
DO ! skip blanks and nulls
len :=len - 1;
pat hmon”process”nanme®l en := len + 1;
I en := $OCCURS (cbh. pat hsend”reg”buf. server”class) - 1;

0

WHI LE cb. servercl ass®nane [l e
cb. servercl ass™nane [l e

n]
n]

DO ! skip blanks and nulls
len :=len - 1;

servercl ass®nane”l en := len + 1;

! Setting bit 15 in flags nmeans send nowaited. Setting timeout to
! -1D nmeans we're willing to wait forever for the send to conplete,
! and LI NKMON wi |l not cause this send to time out.

! Renenber, when a Pathsend send tines out (AWAITI OX conpletes with
! error 233 and ServerC ass_Send_Info returns file systemerror 40),
! the outstanding 1/O to the server process is cancell ed.

! Note that setting a timeout value here is independent of setting a
! ti meout value in the call to AWAITI OX

flags. <15> : = 1;
timeout := -1D;

! Initiate the Pathsend I/O. |If no error is returned from
! SERVERCLASS SEND , then the I/Ois successfully initiated.

! If an error is returned, then the I/0O was NOT successfully
! initiated and NOI/O to a server process is outstanding.

! NOTE: A value of -1 is returned in the <scsend-op-nunt param for
! wai ted sends. A value of -1 is also returned for nowaited sends
! that are not successfully initiated.

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-30

Examples Pathsend Requester Example

! Al so note that the <actual-reply-len> paramis an optional
! reference paramthat has a return value of 0 for nowaited 1/QO

error := SERVERCLASS SEND (ch. pat hnron”*syst enftand”pr ocess”nane,

pat hmon”pr ocess”name”l en
cb. servercl ass®nane,
server cl ass™nane”l en,
cb. pat hsend”~r eq”buf,
$LEN (pat hsrv”request”tenpl ate),
$LEN (pat hsrv~repl y*tenpl ate),
! actual reply len for waited /O only !

ti meout,
flags,
ANScSendOpNum
@b 'tag!);

I F error = FEok !0!
THEN ! successfully initiated the Pathsend send

BEG N
cb. ScSend”OpNum : = ~ScSendOpNum
cb.io”posted : = true;

CALL write~tracenfile (trace”pathsend, cb.record”*nunber);
RETURN true;
END;

! The send failed with an initiation error. Find out
! what happened.

cb.io”posted : = fal se;
IF error = FESCError !file systemerror 233!
THEN ! call SERVERCLASS SEND | NFO to get Pathsend and file systemerrors
CALL anal yze~*send”error”233 (ch)

ELSE ! we should only see errors 0 or 233
CALL abend”™wi t h"ny~abend®nsg;

RETURN f al se
END;, ! PROC initiate®l O

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-31

Examples Pathsend Requester Example

?PACGE "START A WRI TE OF THE | NPUT REQUEST RECORD TO THE MSG LOG'

! This proc is called frominitiate® O and starts the I/Oto the
! message log file. The WRITE is tagged so we can identify this I/0O
! when conpleting it with AWAITIOX, or cancelling it w th CANCELREQ

! If the WRITE fails, we will not return.

INT PROC initiate*witeto*nessage™l og (cb);
I NT . EXT cb (control ~bl ock™t enpl at e);

BEG N
INT error := 0;

CALL WRI TEX (nmsg”l og"fnum cb.input”~data”buf, S$LEN(cb.input~data”buf),, @b);
IF <
THEN ! error occurred on the wite
BEG N

CALL FI LEI NFO (nsg”l ogMf num error);
I F <>

THEN ! couldn't access the ACB
CALL abend”™wi t h"my~abend®nsg;

! Print an error nessage and abend

CALL I O*error (nsg”™l og™f num ;
END;

! I/ O successfuly initiated

cb.io”posted : = true;
cb. fnum : = nmsg”l og"f num

CALL write~rtracenrfile (trace®wite”to®nsg”l og, cb.record®nunber);
RETURN true;

END; ! INT PROC initiate®wite”to*nmessage”l og

?PAGE "WRI TE AN ERRCR M5G TO THE ERROR LOG'

! This procedure is passed a file nunber and gets the file system

! error and file nanme associated with that file number. It builds an
! error meg and wites it to either the error log file or the hone

! termnal. This PROC calls ABEND.

PROC | O*error (fnum;

I NT fnum

BEG N

I NT . buf [0:79];

STR . sbuf := @uf '<<' 1;
STR . sp;

INT .filenane [O0:11];

I NT | en;

I NT error;

I NT Qut Fnun

! If an OPEN failed, fnumis -1 and FILEINFOw || return the error
! associated with the failed OPEN. The file nane param in this
! case, will be invalid.

CALL FILEINFO (fnum error, filenane);
I F <>

THEN ! couldn't access the ACB

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-32

Examples Pathsend Requester Example

CALL abend”™wi t h"ny~abend®nsg;

sbuf ':='" "FILE SYSTEM ERROR " -> @p;

CALL NUMOUT (sp, error, 10, 3);

@p = @p[3];

! If the error is on a file already opened, include the file nane
! inthe error nsg. |If the error occurred while trying to open

! a fi

le, we can't include the file nane.

IF fnum<> -1
THEN ! the error occurred on a file al ready opened

BEG N

sp ':=" " FILE" -> @p;

@p := @p [len := FNAMECOLLAPSE (fil ename, sp)];
END;

! Wite the nsg to the ternminal if the error log isn't open

I F error”l ogMnum<= 0
THEN ! send output to the hone term
BEG N
CALL MYTERM (fil enane);
CALL OPEN (fil enane, QutFnun;
| F <> THEN CALL ABEND;

END
ELSE ! error log file is open
Qut Fnum : = error ™l og™"f num
CALL WRITE (Qut Fnum buf, @p '-' @buf);

CALL CLCSE (CQut Fnum;
CALL ABEND;
END; ! PROC | Oerror

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-33

Examples Pathsend Requester Example

?PAGE " SEARCH THE CONTROL BLOCKS FCR |1/ O POSTED BUT NOT COVPLETED"

! I/Os were initiated out of control blocks. Here we step through
! the list of cb's and check for 1/O that was initiated but not

! conpleted. |If there are any outstanding I/O s, return true,

! otherwi se return fal se

I NT PROC i o”outstanding (cb”list”~head);

I NT . EXT cb”list~head (control ~bl ock*tenplate); ! first element in cb list
BEG N
I NT . EXT cb (control ~bl ock~tenplate) := @b”list”head;
VWHI LE @b <> nil ~addr
DO
BEG N

I F cb.io”posted
THEN ! yes, there is outstanding I/0O
RETURN true;

@b := @b. next”cb
END;

RETURN f al se

END; ! PROC i o”out standi ng

?PAGE "OUTPUT THE RESULTS OF ONE TRANSACTI ON'

! Thi s procedure noves data fromthe two Pat hsend control bl ocks

i gﬂiof}rg.output buffer, and then wites the output buffer to the

PROC out put “t he*results (cb”list”~head);
I NT . EXT cb”list~head (control ~bl ock”tenpl ate);

BEG N

I NT . EXT cb (control ~bl ock~tenplate) := @b”list”head;
STRUCT . out “buf (breg”output”~rec”tenpl ate);

INT i := 0;

STR . EXT sp;

! Cl ear the output buffer
outbuf ':="" " & out”buf FOR ($LEN (out”buf) + 1) / 2;
! Store the outcone of the two Pathsend sends into the output buffer

VWH LE @b <> nil ~addr DO
BEG N

I F cb.type = cb”type”pat hsend
THEN ! this cb has data about the outcone of a Pathsend send
BEG N

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-34

Examples Pathsend Requester Example

! Store the server's reply: system nanme and process nane
out *buf . server”reply[i].systenmtnane ':=

cb. pat hsend”~repl y*buf . t hi s*server. syst em*nane
FOR $OCCURS (cb. pat hsend”repl y~buf . t hi s*server. syst enf*nane) ;

out *buf . server”reply[i].process®nane ':=
cb. pat hsend”~repl y*buf . t hi s*server. process™nane
FOR $OCCURS (cb. pat hsend”r epl y~buf .t hi s*server. process”nane);

! Store Pathsend error nsg text and file systemerror nsg text
! generated by this program

! VWhen an error is retryable we retry the transacti on and
! don't include error nmeg text. |If the retries also failed,
! we need to add nmsg text now.

I F (cb. pathsend®error AND NOT cb. pat hsend”error”~nmsg) OR
(cbhb.filefrsystemterror AND NOT cb.fil efsystemterror”nsg)

THEN ! include error nsg text
BEG N
cb. pat hsend®error”~nsg ':=" "PATHSEND ERROR. " -> @p;
CALL DNUMOUT (sp, $UDBL (cb.pathsend”error), 10, 3);
cb.filefrsystenterror®nsg ':=" "FILE SYSTEM ERROR. " -> @p;

CALL DNUMOUT (sp, $UDBL (ch.file~rsystemterror), 10, 3);
END;

I F cb. pat hsend™error”~nsg
THEN ! include nsg text
out *buf . server”~reply[i].error~nsg. pat hsend®error ':=
ch. pat hsend”®error”*msg FOR $OCCURS (cb. pat hsend”error”nsg);

IF cb.fil efrsystenterror”™nsg
THEN ! include nsg text

out *buf . server™reply[i].error*nsg.fil e*systenterror
ch.filersystemterror®nsg FOR $OCCURS (cb.fil ersystenferror”nsg);

! I ndex to next server reply elenment in output buffer
=0+ 1
END; ! if

@b := @b. next”~cb

END; ! while

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-35

Examples Pathsend Requester Example

! Store non-Pathsend error nessages generated by this program

out *buf . non®*send”error*nsg gl obal *non”pat hsend™error~nsg
FOR $OCCURS (out “buf.non*send”error”nsg);

! Wite the record to the output file
CALL WRI TE (out~fnum out”~buf, $LEN (out”buf));
IFT;EN ! print an error nmsg and abend
CALL I O*error (out”™fnum;
END; ! PROC out put~the”results
?PAGE " PROCESS THE PARAM MSGS"

! This procedure is called by GUARDI AN 90 PROC I NI TI ALI ZER from PROC
! initialize to save the PARAM MAX- RETRI ES and store into variable

! MAX- RETRI ES.
PROC paramtproc (ruch, passthru, parantnsg, nmsg”l en, match) VARI ABLE;
I NT . ruchb;
I NT . passthru;
I NT . paranmtnsg (ci”~paran;
I NT nmsg”len;
I NT nmatch;
BEGI N

NT buf [0:79];

.sbuf := @)uf <1

INT i :=0, found := fal se;
STR .sp, .st;
I NT st at us;
I NT early”exit := false;
! Unlike ASSIGNs, we receive all the PARAMs in a single
! PARAM nsg.
@p = @aranmnsg. paraneters;
! The early”exit flag is used to exit the loop if the paraneter has
! an invalid value specified. The found flag is used to exit the
! loop if the paramis found and has a valid val ue.
WHILE (i :=1i + 1) <= parantnsg. numtparans AND NOT found AND NOT early”exit
DO

BEG N

I F sp[1] = "MAX- RETRI ES"
THEN ! found the param

BEG N
sbuf ':='" sp[sp + 2] FOR sp[sp + 1] -> @&t;
st 1= 0;
CALL NUM N (sbuf, max“retries, 10, status);
| F status
THEN ! illegal value
BEG N
max~retries := -1;
early”fexit := true;
END
ELSE
found : = true;
END;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-36

Examples

Pathsend Requester Example

I'F NOT found AND NOT earl y”exit

THEN ! | ook at the next param
@p := @p[sp + sp[sp + 1] + 2];

END;, ! while i < num parans and not found
I F NOT found
THEN ! missing or bad param
BEG N
sbuf ':='" "M SSING OR | LLEGAL PARAM ' MAX- RETRI ES' " -> @p;
CALL WRITE (ternmMf num buf, @p '-' @buf);
I F <

END;

THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

CALL ABEND;
END; ! if not found
I PROC par anf*proc

?PACE " PROCESS ONE TRANSACTI ON'

I NT
I NT

BEG
I NT

This PROC executes one transaction. It initiates the two nowaited
Server Cl ass_Sends_ and one nessage log wite, and calls the
routi ne conplete®rl Oto finish the I/QO

If the 1/0O conpl etes successfully, this proc ends the transaction,
otherwise it aborts the transaction and cancel s any outstandi ng
/0

PROC process”™transaction (cb”™list”head);
. EXT cb”list~head (control ~bl ock™t enpl ate);

N
.EXT cb (control ~bl ock”tenpl ate) := @b”list”™head,;

CALL start”~the”tnf transaction;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-37

Examples Pathsend Requester Example

! Step through the list of control blocks (cb's), initiating the I/0O
! associated with each cb (a send or a wite).

VWH LE @b <> nil ~addr DO
BEG N

IF NOT initiate®l O (ch)
THEN ! failed to start the operation, treat error as non-retryable
BEG N
CALL cancel “out standi ng”i o (cb”list”~head);
CALL abort”tnf~transaction;
RETURN f al se;
END;

! Successfully started the 1/O for this cb, goto next cb
@b := @b. next~ch;
END; ! while

! | O*Qutstanding is a proc that steps through the list of cb's
! checking for 1/O that has been posted but not yet conpleted.

WHI LE i o”out standi ng (cb”list”head) DO
BEG N

! Completer O returns @b if the 1/0 conpleted successfully,
! otherwise it returns the nil address.

@b : = conpl et e”i o;
IF @b = nil~addr
THEN ! an I/O failed

BEG N
CALL cancel “out standi ng”i o (cb”list”~head);
CALL abort”tnf~transaction;
RETURN f al se;
END;

! I/ O conpl eted successfully, check the reply buffer

I F cb.type = cb”*type”~pat hsend ! pat hsend control bl ock!
AND ch. pat hsend”r epl y*buf.repl y®*code <> 0 !reply from server!

THEN ! we expect the reply code to be 0
CALL abend”™wi t h"my~abend®nsg;

END; ! while
! Transaction conpl eted successfully
CALL end”the”tnf”transaction;
RETURN true;
END; ! I NT PROC process”™transaction
?PAGE "READ FROM AN EDI T FI LE"
! This procedure reads one line fromthe IN file.
! It returns the outcome of the read to the caller, with the
! variable error containing the error associated with the read.
I NT PROC read™ (fnum buf, read”count, error);

INT fnum
STR . buf;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-38

Examples Pathsend Requester Example

I NT read”count;

INT .error;
BEG N
I NT status;

DBL Li neNum
! If status >= 0, the read was successful and status contains the
! count of chars in the text line. Actual bytes transferred <=
! read®count. If status < 0, an unrecoverable error occurred.
error := 0;
I F (status := EDI TREAD (edit”control ~bl ock, buf, read®count, LineNum) >= 0
THEN ! read was successful
RETURN true;
IF (error := status) = -1
THEN ! end of file
RETURN f al se;
! Unexpected error reading the INfile, print an error nmsg and abend
CALL I O*error (fnum;
END; ! I NT PROC read”
?PACE " SEARCH THE CONTROL BLOCKS FOR RETRYABLE ERRORS"
! Search the list of control blocks for errors that can be retried.
! Al Pathsend I/Othat failed nust be retryable (not just one send,
! but both) for the transaction to be considered retryable.

! When a transaction is retried, we re-use the existing list of
! control bl ocks.

I NT PROC retryabl ertransaction (cb”list”head);

I NT . EXT cb”list~head (control ~bl ock*tenplate); ! ptr to hd of cb list
BEG N

I NT . EXT cb (control ~bl ock*tenplate) := @b”list”head;

I NT transaction®is?retryable := fal se;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-39

Examples Pathsend Requester Example

VWH LE @b <> nil ~addr
DO
BEG N
I F cb.type = cb*type”~pat hsend AND cb. pat hsend”®error
THEN ! an error occurred on this Pathsend send

BEG N
I F NOT cb.error”is”retryable
THEN ! the transaction isn't retryable
RETURN f al se;

transacti on®is"retryable := true;
END;

@b := @b. next~cb;
END;

RETURN transacti on™i s*retryabl e;
END; ! INT PROC retryabl ertransaction
?PAGE "RETURN THE CONTROL BLOCK MEMORY TO THE POOL"

! After we are done using all the control blocks in a list, return
! the nenory allocated for each control bl ock.

PROC return~control *bl ock®nmenory (cb”list”head);
I NT . EXT cb”list~head (control ~bl ock”tenpl ate);

BEG N

I NT . EXT cb (control ~bl ock~tenplate) := @b”list”head;
I NT . EXT next”cb (control bl ock*tenpl ate);

INT . buf [0:79];

STR . shuf := @uf '<< 1;

STR . sp;

VWH LE @b <> nil ~addr DO
BEG N

! Save the address of the next elenent in the |ist before we
! return the current |ist elenent.

@extcb := @b. next *cb;
CALL PUTPOCL (Pool Head, cb);

IF <
THEN ! couldn't return the nenory
BEG N
sbuf ':=" "PUTPOOL FAILED TO RETURN MEMORY" -> @p;
CALL WRI TE (error”l ogMnum buf, @p '-' @buf);
I F <
THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

CALL ABEND;
END; ! if

@b : = @ext”cb;

END; ! while

END; ! PROC return”control ~bl ock®nenory

?PACGE "LOOK AT WHY SERVERCLASS_SEND | NFO_ FAI LED'

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-40

Examples Pathsend Requester Example

! The followi ng procedure is called from PROC anal yze®*send”error”233
! when SERVERCLASS _SEND | NFO_fails. All these errors are
! non-retryable, and all are programming errors.

PROC Server Cl ass”Send”™l nf o*error (error);
I NT error,;

BEG N

CASE error OF
BEG N

FEl nval idOp !'2! ->

! Invalid segnent in use or no segnment in use and a param has xaddr

gl obal *non”pat hsend”~error”~nsg ':
" SERVERCLASS_SEND | NFO_ EXT ENDED SEGVENT USAGE ERROR";

FEBoundsErr !22! ->

! Par am out of bounds

gl obal *non”pat hsend”~error”~nsg ':
" SERVERCLASS_SEND | NFO_ PARAI\/ETER OUT OF BOUNDS";

FEM ssParam ! 29! ->

! A required paramis nissing

gl obal *non”pat hsend”error~nsg
" SERVERCLASS SEND I NFO_ M SSI NG REQUI RED PARAMETER';

OTHERW SE - >

! No other errors should be returned from ServerC ass_Send_I nfo_

gl obal *non”pat hsend”error~nsg
" SERVERCLASS_SEND | NFO_ UNEXPECT ED ERROR";

END; ! case
END; ! PROC Server Cl ass”"Send”|l nf o®error

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-41

Examples Pathsend Requester Example

?PACGE "SET UP THE CONTROL BLOCKS FOR ONE TRANSACTI ON'

! Here we get nmenory for each control block (cb) used in the

! transaction, and we store data fromthe input record into the cb
! The data we store is data necessary to execute that part of the

! transaction, a Pathsend send or nsg | og WRI TE.

! This proc returns the address of the first element in the list of
! control bl ocks.

DBL PROC setup”control ~bl ocks (i nput”~buf, record™numnber);

I NT .input”~buf (breg”input”~rec™tenplate); ! input buffer

I NT record™nunber; ! input file rec num
BEG N

I NT . EXT cb”list~head (control ~bl ock*tenplate) := nil~addr

I NT . EXT cb (control ~bl ock™t enpl at e);
We pass into get”control ~block the head of a list, and it creates
a new cb and links it onto the end of the list. If we pass in a

!
!
! list head with nil address, then |list head becones the first
! element in the |ist.

@bl i st~ head : = get”~control ~bl ock (cb”list”head);

! Store data into this control block, used for the first Pathsend
! send.

CALL store”~control bl ock®info (cb”list”head, input”buf.server”request[O0],
cb”t ype”~pat hsend, record”nunber);

! Get the second elenment in the list, used for the WRITE to the nsg
! log file, and link it to the end of the |ist.

@b := get~control *bl ock (cb”list”~head);

CALL store”~control bl ock®info (cb, input”buf, cb”type®nsg”l og,
record®nunber);

! Get the third elenent in the list, used for the second Pat hsend
! send, and link it to the end of the |ist.

@b := get~control *bl ock (cb”list”~head);

CALL store”control bl ock®info (cb, input”buf.server”~request[1],
cb”t ype”~pat hsend, record”nunber);

RETURN @b”li st ~head;
END; ! DBL PROC setup”control ~bl ocks

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-42

Examples Pathsend Requester Example

?PACGE " START THE TMF TRANSACTI ON'

! The followi ng procedure is called by the MAIN proc to start the
! TMF transacti on.

PROC start”t hetnf transacti on;

BEG N

DBL trans”tag;

I NT tnf”~error;

INT . buf [0:79];

STR . shuf := @uf '<< 1;
STR . sp;

IF (tnf~error := BEG NTRANSACTI ON (trans”™tag))
THEN ! file systemerror returned in tnf”error

BEG N

sbuf ':='" "ERROR W TH BEG NTRANSACTION: " -> @p;
CALL NUMOUT (sp, tnf”~error, 10, 3);

@p 1= @p[3];

CALL WRI TE (error”l ogMnum buf, @p '-' @buf);
I F <

THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

CALL ABEND;
END;

CALL write~trace~rfile (trace”begi n*transaction);
END; ! PROC start”the™tnf~transaction
?PAGE " PROCESS THE STARTUP MsSG'

! This procedure is called fromthe GUARDI AN 90 PROC I NI Tl ALI ZER
! to save the startup nsg, and OPEN the IN and OUT fil es.

ROC startup”proc (ruchb, passthru, nmsg, nsg”len, match) VARI ABLE;
NT . ruch;

NT . passthru;

NT .nsg (ci”startup);

NT nsg”l en;

NT nmat ch;

- - —-—~-—"3

STR sbuf : @)uf <<

STR .
I NT Fi I eCode
I NT status;

! Pass the startup nmsg back because PROC initialize needs access
! to the default volune and subvol une.

passthru ':=" msg for nmsg”l en;

CALL OPEN (nsg.infile, in*fnum open~read®only);

I F <>

THEN ! error opening the input file

BEG N
sbuf ':='" "FAILED TO OPEN IN FILE" ->@p;
CALL WRITE (ternmMf num buf, @p '-' @buf);
IF <

THEN ! print an error nsg and abend

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-43

Examples Pathsend Requester Example

CALL I O*error (termfnum;

CALL I Q*error (in~fnum;
END;

!' The INfile nust be an EDIT file, so verify that now

CALL FILEINFO (in*fnum,,,,,,,, FileCode);
| F Fil eCode <> 101
THEN ! illegal file type
BEG N
sbuf ':=" "INFILE MUST BE TYPE EDIT (101)" -> @p;
CALL WRITE (ternmM num buf, @p '-' @buf);
I F <

THEN ! print an error nsg and abend
CALL I O*error (termfnum;

CALL ABEND;
END;

! Setup the edit control block (a GLOBAL array) for calls
! t o EDI TREAD.

IF (status := EDI TREADINIT (edit”~control ~bl ock, in*fnum 1024))
THEN ! print an error nsg and abend
CALL I O*error (in™fnum;

CALL OPEN (nsg.outfile, out”fnum;

I F <>
THEN ! error opening the output file
BEG N
sbuf ':='" "FAILED TO OPEN OUT FILE" -> @p;
CALL WRITE (ternmMf num buf, @p '-' @buf);
I F <

THEN ! print an error nsg and abend
CALL I Oterror (termfnum;

CALL I O*error (out”™fnum;
END;

END; ! PROC startup”proc

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-44

Examples Pathsend Requester Example

?PACE "STORE DATA I N THE CONTRCL BLOCK"

! This proc stores data to make one Pathsend send or one wite to
! the nessage log file. The data is fromone input record, and is
! stored in the control block that's passed into this procedure.

PROC st ore”~control ~bl ock®info (cb, data”“buf, cb”type, record”*nunber);
I NT . EXT cb (control ~bl ock™t enpl at e);

STR . dat a*buf (pat hsrv”~request”~tenpl ate);

INT cb*type

I NT record”®nunber;

BEG N
| F cb*type <> cb”type®pathsend AND cb”type <> cb"type”nsg”l og
THEN ! assertion failed
CALL abend”™wi t h"ny~abend®nsg;

cb.type : = cb*type
cb. record®nunber := record®nunber

I F cb.type = cb”"type~pat hsend
THEN ! store data necessary to do a Pathsend send
BEG N
@b. pat hnron*syst em*tand”pr ocess™hane : =
@lat a”buf . pat hnon*syst enttand”pr ocess™nane;

@b. servercl ass™nanme : = @lat a®buf. server”cl ass;
END
ELSE ! the cb is for a wite to nsg | og
BEG N
@b. i nput ~dat a*buf := @latarbuf '>>" 1;
END;

END; ! PROC store”control ~bl ock”i nfo
?PAGE " VALI DATE A REQUEST RECORD"

! A valid request is in the format of breqg”i nput”~rec”tenplate, and

! contai ns data needed to make 2 Pathsend sends. The data is a

! PATHMON nanme (either explicit or an ASSIGN) and a server class

! name.

! If an ASSIGN is specified, then this proc |ooks up the ASSI GN nane
! in our ASSIGN table and puts the corresponding file name into the
! PATHMON system and process nane field of the input record.

! This proc returns the outconme of the validation check to the
! caller.

PROC val i dat e®breg”i nput (i nput”~rec);
.input”~rec (breg”input”~rec”tenplate);

N
I,

.buf [0:79] :=1[80*[" "]1;
.sbuf = @uf '<< 1;

- SP;

STR .| ogi cal *nane[0: 30] ;

I NT . assign™ (ci”assign);

FEELREE

nn--w
bl
Py

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-45

Examples Pathsend Requester Example

?PACGE " SUBPROC TO WRI TE A VALI DATI ON ERROR MsG'
I

! If arecordis invalid, wite an error nsg to the error log file
!

SUBPROC out put *neg;
BEG N

CALL WRI TE (error”logrnum buf, @p '-' @buf);
IF <
THEN ! print an error nsg and abend
CALL I O*error (error”l og™fnum;

! Save the error nsg so we can include it in the output record

gl obal *non”pat hsend®error~nsg ':=" sbuf FOR @p '-' @buf;
END; ! SUBPROC out put “nsg
?PAGE "BEG N BODY OF VALI DATE BREQ | NPUT"

FORi :=0to 1 DO
BEG N

I F input”rec.server®request[i].server~class = [15*[" "]]
THEN ! Invalid request

BEG N

sbuf ':=" "INVALI D REQUEST: SERVER CLASSES MUST BE SPECI FI ED" ->
@p;

CALL out put *nsg;

RETURN f al se

END;

I'F (input”~rec.server”request[i]. pathnmon”assign®name = [31*[" "]] AND
i nput*rec. server”~request[i]. pat hnon?systemtand”®process®nane =

[15*[* "11)
THEN ! invalid request
BEG N
sbuf '::' "I NVALI D REQUEST: ASSI GN NAME " -> @p;
sp ':=" "OR SYSTEM AND PROCESS NAME MUST BE SPECI FI ED' -> @p;

CALL out put *nsg;
RETURN f al se
END;

I'F (input”~rec.server”request[i]. pathnmon”tassign®name <> [31*[" "]] AND
i nput*rec. server”~request[i].pathnon®*systemtand”®process®nane <>

[15*[" "11)

THEN ! invalid request
BEG N
sbuf ':=" "INVALI D REQUEST: BOTH ASSI GN AND SYSTEM " -> @p;
sp ': =" "AND PROCESS NAMES CAN T BE SPECI FI ED' -> @p;

CALL out put *nsg;
RETURN f al se
END;

! No format errors detected with server class nanmes and PATHVON
! ASSI GNs and process nanes.

I F input”rec.server®request[i].pathnon®assi gn®nane <> [31*[" "]]
THEN ! try to get the ASSI GN nane
BEG N
| ogi cal *nanme ':=" input”rec.server”request[i].pathnmon™assi gn®nane

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-46

Examples Pathsend Requester Example

FOR $OCCURS (i nput”rec. server”request. pat hnron*assi gn®nane) ;

RSCAN | ogi cal *nane[30] WHILE " " -> @&p;
| F NOT (@ssign® := get”assign (logical *name, @p[1l] '-' @ ogical *name))
THEN ! the ASSIGN isn't in our ASSIGN table
BEG N
sbuf ':=" "ASSIGN'" -> @p;
sp ':=" logical “namre FOR 31 -> @p;
RSCAN sp[-1] WHILE " " -> @p;
sp[1] ':=" "' NOT FOUND' -> @p;

CALL out put *nsg;
RETURN f al se;
END;
! Found the ASSI G\, save the PATHMON nane

CALL FNAMECOLLAPSE (assi gn”™.tandenfil enane. vol une,
i nput*rec. server”~request[i]. pat hmon?syst emtand”process”nane);

END; ! | ook up the ASSI GN
END;, ! for |oop
RETURN true;
END; ! | NT PROC vali dat e*breg”i nput

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-47

Examples Pathsend Requester Example

?PACGE "GET MY NAME OR PRCCESS | D'
!

! The follow ng procedure gets ny nanme or process id so that
! error nmeg text can be preceded by ny process nane or cpu, pin.
|

PROC who”amhi ;

BEG N
STR .spid := @wy"processid '<< 1;

! MYPID returns my cpu,pin and is input to GETCRTPI D, which returns
! my~processid in this form

! [0: 2]
!
!

= process name or creation tinmestanp
[3].<4:7> = cpu
[3].<8:15> = pin

CALL GETCRTPID (MYPI D, ny”processid);

IF spid <> "$"
THEN ! | am not a naned process, convert cpu, pin for output
BEG N
CALL NUMOUT (spid, ny”“processid[3].<4:7> 10, 2);
spid[2] :=",";
CALL NUMOUT (spid[3], mnmy~processid[3].<8:15> 10, 3);
END;

END; ! PROC who™amti

?PAGE "WRI TE TO THE TRACE FI LE"

! Thi s procedure prefaces each trace nsg with this process's

! process id, and does a waited WRITE to the trace file. The trace
! nmsg witten depends on the function passed in.

PROC witertracerile (function, record®nunber) VARI ABLE;

INT function; I what action we are tracing

INT record™nunber; ! input file record nunber (optional param
BEG N

INT .writerbuf[0:79] := [80*[" "]];

STR .switerbuf := @witerbuf '<<' 1;

STR . sp;

STR .spid := @wy"processid '<<' 1;

| F NOT $PARAM (function)
THEN ! missing required param
CALL abend”™wi t h"ny~abend®nsg;

IF tracernum<= 0
THEN ! user doesn't want to trace
RETURN,;

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-48

Examples Pathsend Requester Example

! Let the user know who this nsg is from

swriterbuf ':='" spid FOR 6 BYTES -> @p;
RSCAN sp[-1] WHILE " " -> @p;

@p = @p[1];

sp ':= : -> @p;

! I nclude the record nunber

| F $PARAM (recor d®nunber)
THEN ! include it in the nsg
BEG N
sp ': =" "RECORD #" -> @p;
CALL NUMOUT (sp, record”nunber, 10, 3);
@p = @Gp[4];
END;

CASE function OF

BEG N
10! sp ':='" "READ ONE REQUEST MSG FROM I NPUT FI LE" -> @p;
11! sp ':=" "IN TIATED ONE PATHSEND SEND' -> @p;
121 sp ':=" "IN TIATED WRI TE TO MESSAGE- LOG FI LE" -> @p;
13! sp ':='" "BEG N TRANSACTION' -> @p;
14! sp ':=" "END TRANSACTI ON' -> @p;
151 sp ':='" "ABORT TRANSACTION' -> @p;
16! sp ':=" "CANCELREQ' -> @p;
17" @p := @witerbuf; ! wite a blank |ine
18! sp ':='" "1/O COWLETED SUCCESSFULLY" -> @p;
191 sp ':='" "AWAITIO TI MED QUT" -> @p;
110! sp ':=" "I/O COWPLETED W TH AN ERROR' -> @p;
111! sp ':='" "RETRYI NG THE TRANSACTI ON' -> @p;
112! sp ':=" "MAX- RETRI ES EXCEEDED, TRANSACTI ON ABORTED' -> @p;

I*1 OTHERW SE cal | abend™wi t h"ny*abend”*nsg;

END;, ! Case
CALL WRITE (tracenum witerbuf, @p '-' @wite”buf);
IF <

THEN ! print an error nsg and abend
CALL I O*error (trace™fnum;

END;, ! PROC wite*tracenrfile

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-49

Examples Pathsend Requester Example

?PACGE "THE BREQ PROGRAM S MAI N PROCEDURE"

! This procedure calls the initialize routine to start up, sets up a
! menory pool, and | oops reading the INfile.

! I nput records are validated, control blocks are allocated, the
! transaction is initiated and then conpl eted, and control bl ocks
! are de-all ocat ed.

! If we fail to execute the transaction and the error is retryable,
! we retry it MAX-RETRIES tines, where MAX-RETRIES is a param nsg
! defined at the TACL pronpt.

PROC br eq”program MAI N,;

BEG N
STRUCT . i nput”~buf (breg”i nput”~rec”~tenpl ate); ! buf to hold input record
I NT . EXT cb”list~head (control ~bl ock*tenplate) := nil~addr
Ifirst cb in linked list.
INT error := O; ! used with read of input file
I NT record®nunber := 0; ! input file record nunber we're processing
I NT retry”~count; I #tinmes we retried transaction a failure

LI T gl obal *nmsg”l en $OCCURS(br eg”out put *r ec™t enpl at e. non*send”error *nsg) ;
! Ien of non-Pathsend error nmsg buffer

CALL initialize;

! Define the nmenory pool that we use to store the control bl ocks

! (cb's), maintained as a linked Iist in the upper 32K. Cb's are

! al |l ocated when we process one transaction, and are deal |l ocated

! when we conplete one transaction. A transaction is driven by data
! in one record of the input file.

CALL create”t he®nmenory”pool

! Loop until end of INfile, reading one record and doing the

! transacti on associated with that record. A transaction is two
! Pat hsend sends and one WRITE to the nessage log file.

VWHI LE NOT error DO

BEG N
i nput~buf ':=""" " & input”buf FOR (($LEN (input”buf) + 1) / 2) - 1;
gl obal *non”pat hsend”error~nsg ':=" gl obal *nsg™len * [" "];

| F read™ (in*fnum input”buf, $LEN (input”buf), error)
THEN ! successfully read 1 record
BEG N

! Recor d*Nunber is the input file record nunber we're

! processing, and is used in the output to associate the

! outcone of a transaction with the record used to generate
! the transacti on.

record®nunber := record®nunber + 1;

! Tracing is enabled by specifying a trace file ASSIGN. If

! enabled, a trace record is witten to the trace file when

! this program perforns certain actions. For exanple, reading
! an input record, and starting or aborting a transaction

CALL write”trace/fi

|
CALL witertrace/fi

o @

(trace®™write”bl ank™line);
(trace~read”i nput, record®nunber);

! Besi des validating the input record, the validate routine
! | ooks up ASSI GN nanes for PATHMON system and process nanes

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-50

Examples

Pathsend Requester Example

! specified in the input record, and puts the process nane
! associated with the ASSIGN into the PATHMON system and
! process nane field of the input record.

I F val i dat e®breg”i nput (i nput~buf)
THEN !
BEG N

@bl
!

i st

i nput record is valid

A valid request record is in the format of

breg”i nput ~rec”tenpl ate, and contains data needed to
make 2 Pathsend sends. The data is a PATHVMON name
(either explicit or an ASSIGN) and a server class nane.

Al |l ocate one control block (cb) each for the two

Pat hsend sends, and one cb for the nessage log wite.
The cb's are link |isted together, and the head of the
list is returned. Data stored in the cb's is fromthe
i nput record.

"head := setup”control ~bl ocks (input”buf, record™nunber);

Process™transaction starts the tnf transaction,
initiates the 1/0O conpletes the 1/0O and ends the tnf
transacti on.

If an 1/O fails, then process”transaction aborts the tnf
transaction, cancels the outstanding I/O and returns
false. In this case we will retry the transaction
MAX-RETRIES tines if the transaction is retryable.

retry®count := 0;

I F NOT process”transaction (cb”list”head)
THEN ! the transaction failed

END;

w

BEG N

! Retryabl ertransaction is a proc that returns true
! if all I/Othat failed is retryable

WHI LE retry”~count < nax"retries AND
retryabl ertransacti on (cb”list”~head)

BEG N
CALL witertracerfile (traceretry”transaction);
CALL process”transaction (cb”list”head);

retry~count := retry”~count + 1,
END;

If retry*count >= max”"retries
THEN
the transaction failed after retrying max“retries tines
CALL witertracerfile (tracemax"retries”exceeded);
END; ! if
I input record is valid

ite the output to the QUT file

CALL out put”*the”results (cb”list”head);

Return all control block nenory to the pool, and set the
the first element in the list to nil address.

NonStop TS/MP Pathsend and Server Programming Manual—132500

B-51

Examples Pathsend Requester Example

CALL return”control bl ock rmenmory (cb”list”~head);
@b”list~head : = nil ~addr;
END;, ! if read”
END; ! while not error
I F error <> e”eof
THEN ! print an error nsg and abend
CALL I O*error (in™fnum;
! end of file input file
CALL CLOSE (i n*num;
CALL CLOSE (out~fnum;
CALL CLCSE (msg”l og™f num ;
CALL CLCSE (error”l ogM num ;

IF tracef num > 0 THEN
CALL CLCSE (trace”fnum;

CALL STOR;
END; ! PROC breqg”program
?NOVAP

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-52

Examples Nested Server Example

Nested Server Example

Example B-2, PATHSRYV, is a context-free nested server coded in COBOL 85.
PATHSRV uses Pathsend calls within a server to access another server.

Example B-2. Context-Free Server Program

* @ START COPYRI GHT @o@

* Tandem Confidential: Need to Know only

* Copyright (c) 1980-1985, 1987-1995, Tandem Conputers I|ncorporated
* Protected as an unpublished work.

* Al Rights Reserved.

*

* The conputer programlistings, specifications, and docunentation

* herein are the property of Tandem Conputers | ncorporated and shall
* not be reproduced, copied, disclosed, or used in whole or in part
* for any reason without the prior express witten perm ssion of

* Tandem Conput ers | ncor por at ed.

* @@ END COPYRI GHT @a@

?SYMBCLS

?SEARCH $SYSTEM SYSTEM COBOLLI B
?CONSULT $SYSTEM SYSTEM COBOLEXO

?SAVE ASSI GNS 50, PARAM

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. PATHSRV.

THE COBOL85 SERVER PATHSRV READS A REQUEST FROM $RECEI VE AND
RETURNS | TS GUARDI AN PROCESS- |1 D AND THAT OF A SUBSI DI ARY SERVER
CLASS (I F ANY) | DENTI FI ED ON THE REQUEST MESSAGE. THE PATHMON OF
THE SUBSI DI ARY SERVER CLASS |'S | DENTI FI ED | N THE REQUEST MESSAGE | N
ONE OF THREE WAYS AS FOLLOWG:

- BY AN ASSI GN NAME WHI CH REFERENCES AN ASSI GN W TH THE
PATHMON SYSTEM AND PROCESS NAME.

- WTH AN EXPLICI T SYSTEM AND PROCCESS NAME OF PATHMON.

- | F BOTH THE ASSI GN NAME AND THE EXPLICI T SYSTEM AND PROCESS
NAME | N THE REQUEST MESSAGE ARE BLANK THEN THE PATHMON FOR THE
SUBSI DI ARY SERVER CLASS DEFAULTS TO BE THE SAME PATHVON AS
THAT VWH CH OWNS THE SERVER MAKI NG THE PATHSEND SEND. THIS | S
POSSI BLE AS LONG AS THE SENDI NG SERVER | S NOT ASSOCI ATI VE (I'N
VHI CH CASE | TS ANCESTCR MAY NOT BE A PATHVON) .

THE FI RST AND THI RD OPTI ONS DEMONSTRATE WAYS TO AVO D HARD
CODI NG A PATHMON SYSTEM AND PROCESS | N A PROGRAM THAT DCES A
PATHSEND SEND.

IN THE EVENT OF A PROBLEM AN ERROR MESSAGE AND A FLAG TO | NDI CATE
THAT A TMF ABORT | S REQUI RED ARE ALSO RETURNED TO THE REQUESTER

L I S T N B R I R R R I R R R

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-53

Examples

* Ok X X

PATHSRV.

ENVI RONMVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER. TANDEM
OBJECT- COMPUTER. TANDEM

I NPUT- QUTPUT SECTI ON.

FI LE- CONTROL.

SELECT MESSAGE-I N-FI LE
ASSI GN TO $RECEI VE

FI LE STATUS | S W5- FI LE- STATUS.

SELECT MESSAGE- QUT- FI LE
ASS|I GN TO $RECEI VE

FI LE STATUS | S W5- FI LE- STATUS.

SELECT ERROR- LOG-FI LE
ASSI GN TO " ERRORLOG'
ORGANI ZATI ON | S SEQUENTI AL
ACCESS | S SEQUENTI AL

FI LE STATUS | S W5- FI LE- STATUS.

RECEI VE- CONTROL.

/

TABLE OCCURS 10 TI MES
SYNCDEPTH 1.

DATA DI VI SI ON.

FI LE SECTI ON.

FD

01

FD

01

FD

MESSAGE- | N- FI LE
DATA RECORD | S PATHSRV- REQUEST.

PATHSRV- REQUEST.

03 SUBSI DI ARY- SERVER.
05 PATHMON- ASSI GN- NAME
05 PATHMON- SYSTEM AND- PROCESS
05 SERVER- CLASS

MESSAGE- OUT- FI LE
DATA RECORD | S PATHSRV- REPLY.

PATHSRV- REPLY.
03 REPLY- CCDE
03 THI S- SERVER
05 SYSTEM NAME
05 PROCESS- NAME
03 SUBSI DI ARY- SERVER.
05 SYSTEM NAME
05 PROCESS- NAME
03 TMr- ABORT- REQUI RED
03 ERROR- MESSAGE.
05 PATHSEND- ERROR
05 FI LE- SYSTEM ERROR
03 NON- SEND- ERROR- MESSAGE

ERROR- LOG- FI LE

PI C

PI C
PI C

PI C
PI C
PI C
PI C

PI C

C X(31).
X(15) .
C X(15).

S9(4)

X(8) .
X(8) .

X(8) .
X(8) .
X.

X(78).
X(78).
X(78).

Nested Server Example

ANY ERRORS THAT CAN NOT' BE REPORTED BY PATHSRV BACK TO | TS
REQUESTER ARE WRI TTEN TO AN ERRCR LOG FILE. THI' S ENTRY SEQUENCED
FILE WTH 132 BYTES RECORDS MJST EXI ST PRI OR TO THE EXECUTI ON OF
I TS ASSI GN NAME | S ERROR- LOG- FI LE.

COVP.

NonStop TS/MP Pathsend and Server Programming Manual—132500

B-54

Examples

DATA RECORD | S ERROR- LOG- REC.

01 ERROR-LOG REC

WORKI NG- STORAGE SECTI ON.

01 W5-FI LE- STATUS

88

01 W5- FI LE- SYSTEM ERROR- MESSAGE.

03

03
03

03

W6- CLOSE- FROM REQUESTER

FI LLER

VALUE " FI LE SYSTEM ERROR

WS- LOG CAL- FI LE- NAME
FI LLER
VALUE "FI LE STATUS: *.

FI LE:

W6- FI LE- STATUS- ERROR- MESSACGE

01 W5 NUMERI C- DI SPLAY

Nested Server Example

Pl C X(132).

PIC X(2) VALUE ZERO
VALUE "10".
Pl C X(25)

Pl C X(31).
Pl C X(13)

Pl C 99.
PI C S9(9).

* YOU CAN USE THE FOLLOW NG Ws- ASSI GN TABLE TO STORE UP TO FI FTY

[I I

ASSI GNS.
NAMES OF SUBSI DI ARY SERVERS.
REQUEST MESSAGE (PATHSRV- REQUEST),
SHOULD BE IN THIS TABLE. THIS | S ONE WAY OF AVO DI NG HARD- CODI NG
PATHMON SYSTEM AND PROCESS NAMES.

01 W5- ASSI GN- TABLE.

03
03
03
03

WS- ASSI GN- NAMVE

W5- SYSTEM AND- PROCESS
WS- NUMBER- OF- ENTRI ES
WS- | NDEX

THESE ASSI GNS ARE FOR THE PATHMON SYSTEM AND PROCESS
I F YOU USE PATHVON- ASSI GN- NAME | N THE
THEN THE ASSOCI ATED PATHVON

PI C X(31) OCCURS 50.
PI C X(15) OCCURS 50.
PIC S9(4) COW VALUE ZERO
PIC S9(4) COW VALUE ZERO

* THE FOLLOW NG PARAMETERS ARE USED WHEN CALLI NG GETASSI GNTEXT

01 WS- GETASSI GNTEXT- PARAM

03
03
03
03

WS- PORTI ON

WS- TEXT

W5- MESSAGE- NUMBER
WS- RESULT

9(4) COWP VALUE 1.
9(4) COWP VALUE ZERO,

NonStop TS/MP Pathsend and Server Programming Manual—132500

B-55

Examples

*
*
*

*
*
*

*

*

*
*
*

Nested Server Example

PROCESSI NFO | S CALLED TO SEE | F THE MOM OF THE SERVER PROCESS | S A
PATHMON. (THI'S | DENTI FI ES WHETHER THE SERVER | S ASSCOCI ATI VE.) AN
ERRCR NUMBER (W5- ERROR) My BE RETURNED FOR A CALL TO PROCESSI NFO.

01 W5- PROCESSI NFO- PARAM
03 W5- ERROR

THE FOLLOWN NG PARAMETERS ARE USED I N A CALL
VWHI CH LOCATES THE MOM OF THE CURRENT SERVER

A PATHVON) .

01 W5 LOOKUPPROCESSNAME- PARAM
03 WS- PROCESS- NAME
03 FILLER
03 W5- ANCESTOR- PROCESS- | D

THE FOLLOWN NG PARAMETERS ARE USED I N A CALL

01 W5- SERVERCLASS- SEND- PARAM
03 W5- ERROR
03 W5- PATHVON- PROCESS- NAME

03 W5- PATHVON- PROCESS- NAME- LEN

03 W5- SERVER- CLASS- NAME

03 W5- SERVER- CLASS- NAME- LEN

03 W5- MESSAGE- BUFFER

03 W5- REQUEST- LEN

03 W5 MAXI MUM- REPLY- LEN
03 W5- ACTUAL- REPLY- LEN
03 W& TI MEQUT

PI C
PI C
PI C
PI C
PI C
PI C
PI C
PI C
PI C
PI C

THE FOLLOW NG PARAMETERS ARE USED I N A CALL

01 W5- SERVERCLASS- SEND- | NFO- PARAM

03 W5- ERROR
03 WS- PATHSEND- ERROR
03 W5- FI LE- SYSTEM ERROR

Pl C S9(4) COWP.

TO LOOKUPPROCESSNANME,
PROCESS (TOSEE IF IT'S

IIDT
000
AXX
AL

TO SERVERCLASS_SEND_.

S9(4) COMP VALUE ZERO,
X(15) .

S9(4) COMP VALUE 15.
X(15) .

S9(4) COMP VALUE 15.
X(300) .

S9(4) COMP VALUE 63.
S9(4) COMP VALUE 300.
S9(4) COWP.

S9(9) COMP VALUE 12000.

TO SERVERCLASS_SEND_| NFO_

C S9(4) COW VALUE ZERO.

S9(4) COWP.

C S9(4) COWP.

THE FOLLOW NG PARAMETERS ARE USED IN A CALL TO MYPI D AND MYCRTPI D,
VWHI CH ARE USED TO | DENTI FY THE CURRENT PROCESS. THE PROCESS NAME | S
RETURNED TO THE REQUESTER | N THE PATHSRV- REPLY MESSAGE.

01 WS- MY- PROCESS.
03 W5-CPU-PIN
03 WS- PROCESS- | D.
05 W5- PROCESS- NAME
05 FILLER
03 WS- SYSTEM NUMBER
03 WS- SYSTEM NAME

Pl C S9(4) COWP.

PI C X(6).
PI C X(2).
Pl C 9(4) COWP.
PI C X(8).

NonStop TS/MP Pathsend and Server Programming Manual—132500

Examples Nested Server Example

* THE FOLLOW NG PARAMETERS ARE USED | N CALLS TO PROCESSI NFO AND
* MYSYSTEMNUMBER, WH CH ARE USED TO | DENTI FY THE MOM OF THE SERVER
* PROCESS.

01 W5 MOM PROCESS.
03 W5- PROCESS- | D- GENERI C.

05 WS- BYTE-1 PI C X.
88 WS- LOCAL VALUE "$".
88 WS- NETWORK VALUE "\".
05 FILLER PI C X(5).
05 WS- CPU-PIN Pl C S9(4) COWP.
03 WS- PROCESS- | D- LOCAL REDEFI NES WS- PROCESS- | D- GENERI C.
05 WS- PROCESS- | D Pl C X(6).
05 WS- CPU-PIN Pl C S9(4) COWP.
03 WS- PROCESS- | D- NETWORK REDEFI NES WS- PROCESS- | D- GENERI C.
05 WS- BACKSLASH PI C X.
05 WS- SYSTEM NUVBER- 1- BYTE PI C X.
05 WS- PROCESS- | D Pl C X(4).
05 WS- CPU-PIN Pl C S9(4) COWP.
03 WS- SYSTEM NUVBER Pl C 9(4) COWP.
03 WS- SYSTEM NUVBER- 2- BYTES REDEFI NES WS- SYSTEM NUVBER.
05 FILLER PI C X.
05 WS- BYTE- 2 PI C X.
03 WS- PROGRAM FI LENAME.
05 FILLER Pl C X(16).
05 WS- FILE PI C X(8).
03 WS- SYSTEM NAVE PI C X(8).
03 WS- PROCESS- NAVE Pl C X(6).
03 WS- SYSTEM AND- PROCESS Pl C X(15).
* THI'S FLAG | NDI CATES WHETHER THE MOM OF THE SERVER PROCESS IS A
* PATHVON. THE VALUE "N' MEANS THAT MOM | S A PATHMON, THE VALUE "Y"
* MEANS THAT MON IS NOT A PATHVON, | N WHI CH CASE THE PATHSRV- REQUEST
* MESSAGE MUST | DENTI FY THE PATHVON W TH AN EXPLI CI T NAMVE OR AN
* ASSIGN. (THE DEFAULT TO THE SERVER PROCESS MOM CANNOT BE TAKEN.)
01 WS- SERVER- | S- ASSOCI ATI VE PI C X.

* THE PATHSRV- REQUEST MESSAGE FROM THE REQUESTER |'S VALI DATED IN THI' S
* PROGRAM IF IT IS NOT VALID, THI'S FLAG IS SET TO "N

01 W5- VALI D- PATHSRV- REQUEST PIC X

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-57

Examples Nested Server Example

I F PATHSRV- REQUEST SPECI FI ES A SERVER CLASS, THEN A PATHSEND
REQUEST IS MADE TO A SUBSI DI ARY SERVER. THE FOLLOW NG GROUP DATA

| TEMS ARE THE REQUEST AND REPLY MESSAGE LAYOUTS. THE REQUEST | S
ALWAYS SPACE FI LLED BECAUSE THE SUBSI DI ARY SERVER | S NEVER ASKED TO
MAKE A REQUEST OF ANOTHER SERVER.

b

01 SUBSI DI ARY- REQUEST.
03 SUBSI DI ARY- SERVER.

05 PATHMON- ASSI GN- NAME Pl C X(31).
05 PATHMON- SYSTEM AND- PROCESS Pl C X(15).
05 SERVER- CLASS Pl C X(15).
01 SUBSI DI ARY- REPLY.
03 REPLY- CCDE PI C S9(4) COwP.
03 THI S- SERVER
05 SYSTEM NAME Pl C X(8).
05 PROCESS- NAME PI C X(8).
03 SUBSI DI ARY- SERVER.
05 SYSTEM NAME Pl C X(8).
05 PROCESS- NAME Pl C X(8).
03 TMr- ABORT- REQUI RED PIC X
03 ERROR- MESSAGE.
05 PATHSEND- ERROR PI C X(78).
05 FI LE- SYSTEM ERROR PI C X(78).
03 NON- SEND- ERROR- MESSAGE PI C X(78).

* THE FOLLOW NG FLAG | NDI CATES THE SUCCESS OR FAI LURE OF A CALL TO
* SERVERCLASS_SEND_ . "Y" MEANS SUCCESS. "N' MEANS FAI LURE.

01 W6- SERVERCLASS- SEND- CKAY PIC X

/
PROCEDURE DI VI SI ON.

DECLARATI VES.

DECL- MESSAGE- | N- FI LE SECTI ON.
USE AFTER ERROR PROCEDURE ON MESSAGE- | N-FI LE.
MOVE " MESSAGE- | N- FI LE" TO WS- LOG CAL- FI LE- NAME.
MOVE W5- FI LE- STATUS TO W6- FI LE- STATUS- ERROR- MESSAGE.

DECL- MESSAGE- OUT- FI LE SECTI ON.
USE AFTER ERROR PROCEDURE ON MESSAGE- OUT- FI LE.
MOVE " MESSAGE- OUT- FI LE" TO W5- LOG CAL- FI LE- NAME.
MOVE W5- FI LE- STATUS TO W6- FI LE- STATUS- ERROR- MESSAGE.

DECL- ERROR- LOG- FI LE SECTI ON.
USE AFTER ERROR PROCEDURE ON ERROR- LOG- FI LE.
MOVE " ERROR- LOG- FI LE" TO W5- LOG CAL- FI LE- NAME.
MOVE W5- FI LE- STATUS TO W6- FI LE- STATUS- ERROR- MESSAGE.

END DECLARATI VES.
0000- MAI NLI NE.

THI S PARAGRAPH CONTAI NS THE OVERALL LOG C OF THE PROGRAM AFTER

I NI TI ALI ZATI ON, $RECEIVE | S READ. | F THE READ | S SUCCESSFUL, THE
REQUEST MESSAGE | S PROCESSED | N 0200- PROCESS- TRANSACTI ON AND THE
REPLY (PATHSRV-REPLY) |'S WRI TTEN TO $RECEI VE. $RECEI VE | S THEN READ
AGAI'N. THE LOOP CONTI NUES UNTIL A CLOSE IS RECElI VED FROM THE

[I I

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-58

Examples Nested Server Example

REQUESTER ON $RECEI VE.

IF AN ERROR | S FOUND WHI LE READI NG $RECEI VE, A MESSAGE | S WRI TTEN
TO THE ERRCR-LOG- FI LE AND THE PROGRAM STOPS.

PERFORM 0100-1 NI Tl ALI ZE.
PERFORM UNTI L W5- CLOSE- FROW REQUESTER
READ MESSAGE- I N-FI LE
| F W5- FI LE- STATUS = ZERO
PERFORM 0200- PROCESS- TRANSACTI ON
VRl TE PATHSRV- REPLY
ELSE
I F NOT' W6- CLOSE- FROM REQUESTER
MOVE W5- FI LE- SYSTEM ERROR- MESSACGE TO ERROR- LOG- REC
PERFORM 9000- VWRI TE- ERROR- LOG- REC
PERFORM 9900- STOP- RUN
END- | F
END- | F
END- PERFORM
PERFORM 0300- CLOSEDOVN
PERFCORM 9900- STOP- RUN.

0100-1 NI TI ALI ZE.
OPEN EXTEND ERROR- LOG- FI LE SHARED.
OPEN | NPUT MESSACGE- | N-FI LE.
OPEN OUTPUT MESSAGE- OUT- FI LE.
PERFORM 0400- BUI LD- ASSI GN- TABLE.
PERFORM 0410- GET- MY- SYSTEM PROCESS.
PERFORM 0420- GET- MOM SYSTEM PROCESS.

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-59

Examples Nested Server Example

0200- PROCESS- TRANSACTI ON.

TH S PARAGRAPH PRCCESSES ONE MESSAGE FROM $RECEI VE. THE FORMAT OF
THE MESSAGE | S PATHSRV- REQUEST. FI RST THE PATHSRV- REPLY MESSAGE | S
I NI TI ALI ZED. THE SYSTEM AND PROCESS NAME OF THE CURRENT SERVER
PROCESS ARE ALWAYS RETURNED TO THE REQUESTER I N THE PATHSRV- REPLY
MESSAGE.

L

I F THE SUBSI DI ARY SERVER CLASS | S SPECI FI ED | N THE REQUEST, THEN A
PATHSEND SEND |'S DONE TO THAT SUBSI DI ARY SERVER CLASS.

MOVE SPACES TO PATHSRV- REPLY.
MOVE ZERO TO REPLY- CODE OF PATHSRV- REPLY.
MOVE "N' TO TMF- ABORT- REQUI RED OF PATHSRV- REPLY.
MOVE W5- PROCESS- NAME OF WS- MY- PROCESS
TO PROCESS- NAME OF THI S- SERVER OF PATHSRV- REPLY.
MOVE WS- SYSTEM NAME OF WS- MY- PROCESS
TO SYSTEM NAME OF THI S- SERVER OF PATHSRV- REPLY.

* | F SERVER- CLASS I N SPECI FI ED I N THE REQUEST MESSAGE THEN PROCESSI NG
* |'S DONE TO PREPARE FOR A PATHSEND SEND TO A SUBSI DI ARY SERVER.

| F SERVER- CLASS OF PATHSRV- REQUEST NOT = SPACES
MOVE "Y" TO WS- VALI D- PATHSRV- REQUEST
PERFORM 0440- VALI DATE- PATHSRV- REQUEST
I F W&- VALI D- PATHSRV- REQUEST = " Y"

* | F THE PATHMON- ASSI GN NAME |'S SPECI FI ED, THEN THE PATHMON SYSTEM
* AND PROCESS NAME | S LOOKED UP I N THE TABLE OF ASSI GNs. THI S PATHMON
* SYSTEM AND PROCESS NAME |'S USED FOR THE PATHSEND SEND.

| F PATHMON- ASSI GN- NAME OF PATHSRV- REQUEST NOT = SPACES
PERFORM 0450- LOOKUP- PATHMON- ASSI GN
ELSE

| F THE PROGRAM LOG C ARRI VES HERE, THEN AN ASSI GN TO | DENTI FY THE
PATHVON |'S NOT SPECI FIED. (I F AN EXPLI CI T PATHVON SYSTEM AND
PROCESS NAME ARE SPECI FI ED THEN THEY W LL BE USED FOR THE PATHSEND
SEND.)

* % F X

I F PATHMON- SYSTEM AND- PROCESS OF PATHSRV- REQUEST NOT = SPACES
MOVE PATHMON- SYSTEM- AND- PROCESS OF PATHSRV- REQUEST
TO W5- PATHMON- PROCESS- NAME OF W5- SERVERCLASS- SEND- PARAM
ELSE

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-60

Examples Nested Server Example

I F THE PROGRAM LOG C ARRI VES HERE, THEN NEI THER AN ASSI GN NOR AN
EXPLI CI' T SYSTEM AND PROCESS NAME ARE USED TO | DENTI FY THE PATHVON
TO WHI CH THE PATHSEND SEND SHOULD BE DONE. | F THE MOM OF THE
CURRENT SERVER PROCESS | S A PATHMON (1.E. W5 SERVER- | S- ASSOCI ATI VE
= "N') THEN I TS SYSTEM AND PROCESS NAME | S USED FOR THE PATHSEND
SEND.

* Ok Xk Ok F

I F W5- SERVER- | S- ASSOCI ATI VE = "N’
MOVE W5- SYSTEM AND- PROCESS OF Ws- MOM- PROCESS
TO W5- PATHMON- PROCESS- NAME
OF W6- SERVERCLASS- SEND- PARAM
ELSE
MOVE " PATHMON NOT KNOWN - SERVER | S ASSCCI ATl VE" TO
NON- SEND- ERROR- MESSAGE OF PATHSRV- REPLY
MOVE "N' TO Ws- VALI D- PATHSRV- REQUEST
END- | F
END- | F
END- | F
END- | F

I F W&- VALI D- PATHSRV- REQUEST = " Y"

THE REQUEST MESSAGE TO THE SUBSI DI ARY SERVER | S ALWAYS SPACES. THE
SUBSI DI ARY SERVER | S NOT ASKED TO MAKE A REQUEST OF ANOTHER (THI RD
LEVEL) SERVER RATHER IT IS JUST BEI NG ASKED FOR I TS OAN GUARDI AN
PROCESS- | D.

* % F X

MOVE SPACES TO SUBSI DI ARY- REQUEST
PERFORM 0460- SEND- TO- SUBSI DI ARY- SERVER
I F W5- SERVERCLASS- SEND- CKAY = " Y"
MOVE SYSTEM NAME OF THI S- SERVER OF SUBSI DI ARY- REPLY
TO SYSTEM NAME OF SUBSI DI ARY- SERVER OF PATHSRV- REPLY
MOVE PROCESS- NAME OF THI S- SERVER OF SUBSI DI ARY- REPLY
TO PROCESS- NAME COF SUBSI DI ARY- SERVER OF PATHSRV- REPLY

ELSE
MOVE "Y" TO TMF- ABORT- REQUI RED OF PATHSRV- REPLY
END- | F
ELSE
MOVE "Y" TO TMF- ABORT- REQUI RED OF PATHSRV- REPLY
END- | F
END- | F.

0300- CLOSEDOWN.
CLOSE ERROR- LOG- FI LE.
CLOSE MESSAGE- | N-FI LE.
CLOSE MESSAGE- OUT- FI LE.

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-61

Examples Nested Server Example

L S I I

0400- BUI LD- ASSI G\- TABLE.

THI S PARAGRAPH LOADS WS- ASSI GN- TABLE FROM THE STARTUP ASSI GN
MESSAGES.

WS- ASSI GN- TABLE IS USED TO STORE UP TO FI FTY ASSI GN' s. THESE

ASSI GN's ARE FOR PATHMON SYSTEM AND PROCESS NAMES OF SUBSI DI ARY
SERVERS. | F PATHMON- ASSI GN- NAMVE |'S USED | N THE REQUEST MESSAGE

(PATHSRV- REQUEST) THEN THE ASSOCI ATED PATHMON SHOULD BE IN THI S
TABLE. THIS I S ONE WAY OF AVO DI NG HARD- CODI NG PATHMON SYSTEM AND
PROCESS NAMES.

PERFORM VARYI NG W5- MESSAGE- NUMBER OF WS- GETASSI GNTEXT- PARAM
FROM 1 BY 1
UNTI L WS- RESULT OF WS- GETASSI GNTEXT- PARAM = -1 OR
WS- MESSAGE- NUMBER COF WS- GETASSI GNTEXT- PARAM = 51
MOVE " LOG CALNAME" TO W5- PORTI ON OF WS- GETASSI GNTEXT- PARAM
ENTER " GETASSI GNTEXT"

USI NG
W5- PORTI ON OF W6- GETASSI GNTEXT- PARAM
WS- TEXT OF WS- GETASSI GNTEXT- PARAM
WS- MESSAGE- NUMBER OF W5- GETASSI GNTEXT- PARAM
G VI NG
WS- RESULT OF W5- GETASSI GNTEXT- PARAM
| F W5- RESULT OF W6- GETASSI GNTEXT- PARAM NOT = -1

ADD 1 TO W& NUMBER- OF- ENTRI ES OF W5- ASSI GN- TABLE
MOVE WS- TEXT OF WS- GETASSI GNTEXT- PARAM TO
WS- ASSI GN- NAVE OF W6- ASSI GN- TABLE
(W5- NUMBER- OF- ENTRI ES OF W6- ASSI GN- TABLE)
END- | F

MOVE " TANDEMNAME" TO WS- PORTI ON OF WS- GETASSI GNTEXT- PARAM
ENTER " GETASSI GNTEXT"

USI NG
W5- PORTI ON OF W6- GETASSI GNTEXT- PARAM
WS- TEXT OF W6- GETASSI GNTEXT- PARAM
WS- MESSAGE- NUMBER OF W5- GETASSI GNTEXT- PARAM
G VI NG
WS- RESULT OF W5- GETASSI GNTEXT- PARAM
I F W5- RESULT OF W6- GETASSI GNTEXT- PARAM NOT = -1

MOVE W5- TEXT OF WS- GETASSI GNTEXT- PARAM TO
W5- SYSTEM AND- PROCESS OF WS- ASSI GN- TABLE
(W5- NUMBER- OF- ENTRI ES OF WS- ASSI GN- TABLE)
END- | F
END- PERFORM

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-62

Examples Nested Server Example

0410- GET- MY- SYSTEM PROCESS.

* TH' S PARAGRAPH CGETS THE PROCESS-|1 D FOR THE CURRENT SERVER PROCESS.
* TH' S PROCESS-I1D IS RETURNED TO THE REQUESTER I N PATHSRV- REPLY.

ENTER TAL "MYPI D' G VI NG Ws- CPU- PI N OF WS- MY- PROCESS.
ENTER TAL "GETCRTPI D' USI NG W5-CPU-PIN OF W5- MY- PROCESS
WS- PROCESS- 1 D OF WS- MY- PROCESS.
ENTER TAL " MYSYSTEMNUMBER" G VI NG WS- SYSTEM NUMBER OF WS- MY- PROCESS.
ENTER TAL " GETSYSTEMNAME" USI NG WS- SYSTEM NUMBER OF WS- MY- PROCESS
W5- SYSTEM NAME ~ OF W5- MY- PROCESS.
0420- GET- MOM SYSTEM PROCESS.

TH S PARAGRAPH GETS | NFORVATI ON ABOUT THE MOM OF THE CURRENT SERVER
PROCESS. THI S | NFCRVATION |'S USED TO DETERM NE |F THE MOM IS A
PATHMON. THE MOM PROCESS | S USED | N PATHSEND SENDS | F THE REQUEST
(I' N PATHSRV- REQUEST) DOES NOT SPECI FY A PATHMON (El THER EXPLI Cl TLY
OR WTH AN ASSI GN).

* % F X X

MOVE W5- PROCESS- NAME OF WS- MY- PROCESS
TO W5- PROCESS- NAME OF W5- L OOKUPPROCESSNAME- PARAM
ENTER TAL " LOOKUPPROCESSNAME" USI NG WS- LOOKUPPROCESSNAME- PARAM
MOVE W5- ANCESTOR- PROCESS- | D OF W5- L OOKUPPROCESSNAME- PARAM
TO W5- PROCESS- | D- GENERI C OF Ws- MOM- PROCESS.
I F NOT' W6- LOCAL OF W5- MOM PROCESS
MOVE ZERO TO W5- SYSTEM NUMBER OF W5- MOM- PROCESS
MOVE W5- SYSTEM NUMBER- 1- BYTE OF W5- MOM PROCESS TO
W6- BYTE- 2 OF W5- SYSTEM NUMBER- 2- BYTES OF Ws- MOM- PROCESS
ELSE
ENTER TAL " MYSYSTEMNUMBER' G VI NG W5s- SYSTEM NUMBER OF Ws- MOM- PROCESS
END- | F.
ENTER TAL " PROCESSI NFO' USI NG Ws- CPU- PI N OF WS- PROCESS- | D- GENERI C
OF W5- MOM PROCESS
W6- PROCESS- | D- GENERI C OF Ws- MOM- PROCESS
OM TTED
OM TTED
OM TTED
WS- PROGRAM FI LENAME OF WS- MOM- PROCESS
OM TTED
W5- SYSTEM NUMBER OF W5- MOM- PROCESS
OM TTED
OM TTED
OM TTED
OM TTED
OM TTED
OM TTED
OM TTED
G VING Ws-ERRCOR OF WS- PROCESSI NFO- PARAM

I F W6- ERROR OF W5- PROCESSI NFO- PARAM NOT = ZERO
MOVE "Y" TO WS- SERVER- | S- ASSOCI ATl VE
ELSE
I F W&- FI LE OF W5- PROGRAM- FI LENAME OF W5- MOMF PROCESS = " PATHMON'
MOVE " N' TO W5- SERVER- | S- ASSOCI ATl VE
ELSE
MOVE "Y" TO W5- SERVER- | S- ASSOCI ATI VE
END- | F
END- | F.

I F W5- SERVER- | S- ASSOCI ATI VE = "N
I F Ws- LOCAL OF W5- MOM- PROCESS
MOVE W5- PROCESS- | D OF W5- PROCESS- | D- LOCAL OF W5- MOM PROCESS
TO W5- PROCESS- NAME OF W5- MOM PROCESS
ELSE

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-63

Examples Nested Server Example

STRI NG " $"
W5- PROCESS- | D OF W5- PROCESS- | D- NETWORK OF WS- MOM PROCESS
DELIM TED BY " "
I NTO W5- PROCESS- NAME OF W5- MOM PROCESS
END- | F
ENTER TAL " GETSYSTEWMNAME" USI NG W5- SYSTEM NUMBER COF WS- MOM PROCESS
WS- SYSTEM NAME COF WS- MOM PROCESS
STRI NG W5- SYSTEM NAME OF WS- MOM- PROCESS DELIM TED BY " "
o DELI M TED BY SI ZE
W5- PROCESS- NAME OF W5- MOMF PROCESS DELIM TED BY " "
I NTO W5- SYSTEM AND- PROCESS OF W5- MOM- PROCESS
END- | F.

0440- VAL| DATE- PATHSRV- REQUEST.
I F PATHMON- ASSI GN- NAME OF PATHSRV- REQUEST NOT = SPACES AND
PATHMON- SYSTEM AND- PROCESS OF PATHSRV- REQUEST NOT = SPACES
MOVE " BOTH ASSI GN NAME AND PROCESS NAME SHOULD NOT BE NON- BLANK"
TO NON- SEND- ERROR- MESSAGE OF PATHSRV- REPLY
MOVE " N' TO WS- VALI D- PATHSRV- REQUEST
END- | F.

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-64

Examples Nested Server Example

0450- LOOKUP- PATHVON- ASSI GN.

TH S PARAGRAPH LOOKS UP AN ASSI GN FROM THE REQUEST MESSAGE TO SEE
VWHETHER A CORRESPONDI NG PATHMON SYSTEM AND PROCESS NAME CAN BE
FOUND I N THE TABLE OF ASSI GNS BUI LT WHEN THE SERVER PROCESS
STARTED. THE RESULTI NG PATHMON SYSTEM AND PROCESS NAME | S PUT | NTO
THE PARAMETER VARI ABLE THAT IS USED I N THE PATHSEND SEND.

b

PERFORM VARYI NG W5- | NDEX OF W5- ASSI GN- TABLE
FROM 1 BY 1 UNTIL WS-1 NDEX OF W5- ASS| GN- TABLE >
WS- NUMBER- OF- ENTRI ES OF W5- ASSI GN- TABLE
| F WS- ASSI GN- NAME OF WS- ASSI GN- TABLE (WS- 1 NDEX OF WS- ASSI GN- TABLE) =
PATHMON- ASSI GN- NAME OF PATHSRV- REQUEST
MOVE WS- SYSTEM- AND- PROCESS OF W5- ASSI GN- TABLE
(W5- 1 NDEX OF W5- ASSI GN- TABLE)
TO W5- PATHMON- PROCESS- NAME OF W5- SERVERCLASS- SEND- PARAM
MOVE 99 TO W5- 1 NDEX OF WS- ASSI GN- TABLE
END- | F
END- PERFORM
I F W5- 1 NDEX OF W5- ASSI GN- TABLE LESS 99
MOVE " N' TO WS- VALI D- PATHSRV- REQUEST
STRI NG "ASSI GN NAME M SSI NG : "
PATHMON- ASSI GN- NAME OF PATHSRV- REQUEST
DELI M TED BY SI ZE
I NTO NON- SEND- ERROR- MESSAGE OF PATHSRV- REPLY
END- | F.

0460- SEND- TO- SUBSI DI ARY- SERVER.

* TH' S PARAGRAPH PERFORMS THE PATHSEND SEND TO THE SUBSI DI ARY SERVER

MOVE " N' TO WS- SERVERCLASS- SEND- OKAY.
MOVE SERVER- CLASS OF PATHSRV- REQUEST
TO W5- SERVER- CLASS- NAME COF W5- SERVERCLASS- SEND- PARAM
MOVE SUBSI DI ARY- REQUEST TO W5- MESSAGE- BUFFER
OF W6- SERVERCLASS- SEND- PARAM

ENTER TAL " SERVERCLASS_SEND_"
USI NG

WS- PATHMON- PROCESS- NAME OF W6- SERVERCLASS- SEND- PARAM
W5- PATHMON- PROCESS- NAME- LEN OF W6- SERVERCLASS- SEND- PARAM
W5- SERVER- CLASS- NAME OF W5- SERVERCLASS- SEND- PARAM
W5- SERVER- CLASS- NAME- LEN OF W6- SERVERCLASS- SEND- PARAM
W5- MESSAGE- BUFFER OF W6- SERVERCLASS- SEND- PARAM
WS- REQUEST- LEN OF W5- SERVERCLASS- SEND- PARAM
WS- MAXI MUM- REPLY- LEN OF W6- SERVERCLASS- SEND- PARAM
W5- ACTUAL- REPLY- LEN OF W6- SERVERCLASS- SEND- PARAM
WS- TI MEOUT OF W6- SERVERCLASS- SEND- PARAM
G VI NG
W5- ERROR OF W6- SERVERCLASS- SEND- PARAM

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-65

Examples Nested Server Example

THE SERVER CLASS OPERATI ON NUMBER <SCSEND- OP- NUM> PARAMETER | S
OM TTED BECAUSE THE SEND IS BEI NG DONE I N WAI T MODE. | N NOMAI T
MODE THE <SCSEND-OP-NUM> |'S USED | N CALLS TO AWAI TI OX.

THE <TAG> AND <FLAGS> PARAMETER ARE OM TTED BECAUSE THE SEND | S
BEI NG DONE I N WAIT MODE. THEY ARE ONLY NEEDED | N NOMAI T MODE.

* Ok Xk Ok F

I F W5- ERROR OF W5- SERVERCLASS- SEND- PARAM = 0
MOVE " SUCCESSFUL" TO PATHSEND- ERROR OF PATHSRV- REPLY
MOVE WS- MESSACE- BUFFER OF WS- SERVERCLASS- SEND- PARAM
TO SUBSI DI ARY- REPLY
MOVE "Y" TO WS- SERVERCLASS- SEND- OKAY
ELSE
I F W6- ERROR COF W5- SERVERCLASS- SEND- PARAM = 233

* A "233" (SERVER CLASS ERROR) ERROR MJUST BE FURTHER ANALYZED W TH
* SERVERCLASS_SEND_| NFO_ TO GET THE PATHSEND ERROR NUMBER AND FI LE
* SYSTEM ERROR NUMBER.

PERFORM 0500- ANALYZE- SEND- ERROR- 233
ELSE
MOVE " UNEXPECTED ERROR FOUND AFTER SERVERCLASS SEND CALL"
TO PATHSEND- ERROR OF PATHSRV- REPLY
END- | F
END- | F.

0500- ANALYZE- SEND- ERROR- 233.
* TH' S PARAGRAPH CALLS SERVERCLASS_SEND_| NFO_ TO GET THE PATHSEND

* ERROR NUMBER AND TO GET THE FI LE SYSTEM ERROR NUMBER.
ENTER TAL " SERVERCLASS_SEND_| NFO_"

USI NG
W5- PATHSEND- ERROR OF W6- SERVERCLASS- SEND- | NFO- PARAM
W5- FI LE- SYSTEM ERROR OF W6- SERVERCLASS- SEND- | NFO- PARAM
G VI NG
W5- ERROR OF W6- SERVERCLASS- SEND- | NFO- PARAM

I F W6- ERROR CF W6- SERVERCLASS- SEND- | NFO- PARAM NOT = ZERO
PERFORM 0700- SERVERCLASS- SEND- | NFO- ERR
ELSE

I F W6- PATHSEND- ERRCOR OF W5- SERVERCLASS- SEND- | NFO- PARAM = 907 OR
W5- PATHSEND- ERROR OF WS- SERVERCLASS- SEND- | NFO- PARAM = 908 OR
W5- PATHSEND- ERROR OF WS- SERVERCLASS- SEND- | NFO- PARAM = 909 OR
W5- PATHSEND- ERROR OF WS- SERVERCLASS- SEND- | NFO- PARAM = 910 OR
W5- PATHSEND- ERROR OF WS- SERVERCLASS- SEND- | NFO- PARAM = 911 OR
W5- PATHSEND- ERROR OF WS- SERVERCLASS- SEND- | NFO- PARAM = 912 OR
W5- PATHSEND- ERROR OF WS- SERVERCLASS- SEND- | NFO- PARAM = 919

ERRCR 907 : | NVALI D (EXTENDED) SEGVENT |D

ERRCR 908 : NO (EXTENDED) SEGMENT | N USE

ERROR 909 : | NVALID VALUE FOR FLAGS PARAMETER

ERROR 910 : REQUI RED PARAMETER NOT SUPPLI ED

ERROR 911 : ONE OF THE BUFFER LENGIH PARAMETERS IS | NVALI D
ERROR 912 : A REFERENCE PARAMETER IS OUT OF BOUNDS

ERROR 919 : | NVALID VALUE FOR TI MEQUT PARAMETER

* % ok ¥ ¥ kX

MOVE WS- PATHSEND- ERROR OF W6- SERVERCLASS- SEND- | NFO- PARAM
TO W5- NUMERI C- DI SPLAY
STRI NG " BAD PARAMETER PASSED TO SERVERCLASS _SEND_ (ERROR = "
WS- NUMERI C- DI SPLAY

DELI M TED BY SI ZE

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-66

Examples Nested Server Example

I NTO PATHSEND- ERROR OF PATHSRV- REPLY
ELSE
MOVE W5- PATHSEND- ERROR OF W6- SERVERCLASS- SEND- | NFO- PARAM
TO W5- NUMERI C- DI SPLAY
STRI NG " SERVERCLASS_SEND _ PATHSEND ERROR NUMBER : "
WS- NUMERI C- DI SPLAY
DELI M TED BY SI ZE
I NTO PATHSEND- ERROR OF PATHSRV- REPLY
END- | F

| F W5- FI LE- SYSTEM ERROR OF W5- SERVERCLASS- SEND- | NFO- PARAM = 48
MOVE " SERVERCLASS_SEND SECURI TY VI OLATI ON (ERROR 48)"
TO FI LE- SYSTEM ERROR OF PATHSRV- REPLY
ELSE
| F W&- FI LE- SYSTEM ERROR OF W5- SERVERCLASS- SEND- | NFO- PARAM = 40
MOVE " SERVERCLASS_SEND_ TI MED OUT (ERROR 40)"
TO FI LE- SYSTEM ERROR OF PATHSRV- REPLY
ELSE
MOVE W5- FI LE- SYSTEM ERRCR OF W5- SERVERCLASS- SEND- | NFO- PARAM
TO W5- NUMERI C- DI SPLAY
STRI NG " SERVERCLASS_SEND_ FI LE SYSTEM ERROR NUMBER : "
WS- NUMERI C- DI SPLAY
DELI M TED BY SI ZE
I NTO FI LE- SYSTEM ERROR CF PATHSRV- REPLY
END- | F
END- | F
END- | F.

0700- SERVERCLASS- SEND- | NFO- ERR.

* TH' S PARAGRAPH | S CALLED WHEN AN ERROR | S ENCOUNTERED CALLI NG
* SERVERCLASS_SEND_I NFO .

EVALUATE W5- ERROR OF WS- SERVERCLASS- SEND- | NFO- PARAM
VWHEN 2
MOVE " SERVERCLASS_SEND | NFO_ EXTENDED SEGVENT USAGE ERROR'
TO NON- SEND- ERROR- MESSAGE OF PATHSRV- REPLY
VWHEN 22
MOVE " SERVERCLASS_SEND | NFO_ PARAMETER OUT OF BOUNDS"
TO NON- SEND- ERROR- MESSAGE OF PATHSRV- REPLY
VWHEN 29
MOVE " SERVERCLASS_SEND | NFO_ M SSI NG REQUI RED PARAMETER'
TO NON- SEND- ERROR- MESSAGE OF PATHSRV- REPLY
VWHEN OTHER
MOVE " UNEXPECTED ERROR FOUND I N CALL TO SERVERCLASS_SEND_| NFO_ "
TO NON- SEND- ERROR- MESSAGE OF PATHSRV- REPLY
END- EVALUATE.

9000- WRI TE- ERROR- LOG- REC.
VRl TE ERROR- LOG- REC.

9900- STOP- RUN.
STOP RUN.

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-67

Examples Nested Server Example

NonStop TS/MP Pathsend and Server Programming Manual—132500
B-68

— Glossary

Note. This glossary does not include terms for elements of the SCREEN COBOL language
that are also found in standard COBOL. For definitions of such terms, refer to standard COBOL
texts or to the text of the Pathway/TS SCREEN COBOL Reference Manual.

absolute pathname. An OSS pathname that begins with a slash (/) character and is resolved
beginning with the root directory. See also OSS pathname, relative pathname, and root
directory.

accept operation. An operation in which a screen program waits for a response from the
terminal and allows data to be input into the program data area from the terminal.

advisory message. A message displayed in the terminal advisory field to inform the terminal
operator of errors detected during input checking.

API. See application program interface (API).

application. A complete set of programs or routines that perform a function. See a'so
Pathway application and NonStop TUXEDO application.

application program interface (API). A set of services (such as programming language
functions or procedures) that are called by an application program to communicate with
other software components. For example, an APl might consist of a set of procedure
callsthat provide a workstation application with a standard interface for communicating
with a Tandem system. Other examples of APIs are the ATMI in BEA TUXEDO
systems and NonStop TUXEDO systems and the Pathsend procedures.

application terminal. A terminal on which a Pathway application runs. See also command
terminal.

Application-Transaction Monitor Interface (ATMI). The application programming
interface to the System/T transaction monitor in aNonStop TUXEDO system. This
interface includes transaction routines, message handling routines, service interface
routines, and buffer-management routines.

assignment. The use of an ASSIGN command to make logical file assignments for programs
in the Guardian environment. A logical assignment equates a Tandem file name with a
logical file of aprogram and, optionally, attributes characteristics to that file.

associative server. A processwithin a server classthat can be started outside the Pathway
environment by a process other than the PATHMON process that controls the server
class.

ATMI. See Application-Transaction Monitor Interface (ATMI).

attributes. Those characteristics of an object that influence the operation of that object and
establish its capabilities.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-1

Glossary audited file

audited file. A databasefile that isflagged for auditing by the TMF subsystem; auditing is
the monitoring of transactions in preparation for recovery efforts.

audit trail. A record of database changes that can be used by the TMF subsystem to rebuild a
database in the event of a hardware or software failure. An audit trail isalso known in
the industry as a transaction log.

availability. The amount of time an application running on a Tandem system can be used
effectively by a user of that application.

backup process. The member of aprocess pair that takes over the application work when the
primary process fails. See also primary process, process pair, and checkpoint message.

base screen. In SCREEN COBOL, a screen that occupies the entire physical display area of a
terminal and can be displayed independently of other screens. This type of screen can
contain areas on which overlay screens are displayed. See also screen and overlay
screen.

batch processing. A method of transaction processing in which transactions are first grouped
together and then processed at regular intervals. See also online transaction processing
(OLTP).

block mode. A termina operating mode in which dataisread from the terminal and
displayed on the terminal one screen at atime. See also conversational mode.

cache. A temporary storage buffer.
cascading server. A term formerly used for a nested server. See nested server.

checkpoint message. In the Guardian environment, a message sent by a primary process to
its backup process that keeps the backup process up to date on the state of the
application. A checkpoint message provides a snapshot of process activity that can be
used in the event of atakeover by abackup process to allow the backup process to
maintain fault-tolerant operation.

CISC. Seecomplex instruction-set computing (CISC).

client. An application program that requests servicesto be performed. In discussions of the
Pathway environment, thisterm is used to refer to the part of an application that runs on
some other vendor’s hardware, such as a personal computer, Macintosh computer, UNIX
workstation, or mainframe computer system, and makes requests of a server process.
See also requester, server, and client/server model.

client/server model. A model for distributing applications. In general, but not always, in this
model the client process resides on a workstation and the server process resides on a
second workstation, minicomputer, or mainframe system. Communication takes the
form of request and reply pairs, which are initiated by the client and serviced by the
server. (A server can make requests of another server, thus acting as a client.)
Client/server computing is often used to connect different types of workstations or

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-2

Glossary client/transaction server model

personal computers to a host computer system by means of supported communications
protocols. See also requester/server model.

client/transaction server model. A model for client/server applications. The
client/transaction server model isthe model of choice for high-volume OLTP
applications in which transaction volume is great and the processing requirements
change infrequently.

In the Tandem environment, an application following this model divides processing
between a client running on aworkstation and servers running on a Tandem system. The
client handles the user interface and business logic and processing. The servers store
information for use by the client and handle database input and output functions.
Interprocess communication (1PC) messages transfer data between client and server.

COBOL85. The Tandem compiler and run-time support for the American National Standards
Institute (ANSI) programming language COBOL, X.3.23-1985. Pathway server
processes are often written in this language.

cold start. The operation that startsa PATHMON environment for the first time. This
operation either creates anew PATHMON configuration file (PATHCTL file) that
defines the PATHMON environment and its objects or overwrites an existing
PATHMON configuration file (which effectively createsa new PATHMON
environment). See also cool start.

command file. A filethat serves as a source for command input. For example, users can
prepare a command file containing PATHCOM or SCREEN COBOL Utility Program
(SCUP) commands. They can then cause the commands in the file to be executed by
issuing the PATHCOM or SCUP OBEY command and specifying the name of thefile,
Alternatively, they can specify thisfile astheinput file when they execute PATHCOM or
SCUP.

command interpreter. An interactive program used to run programs, check system status,
create and delete disk files, and alter hardware states.

command terminal. A terminal at which a system manager or operator enters commands for
configuration and management, such asthe PATHCOM commands that configure and
manage a PATHMON environment. See also application terminal.

complex instruction-set computing (CI1SC). A processor architecture based on alarge
instruction set, characterized by numerous addressing modes, multicycle machine
instructions, and many special-purpose instructions. See aso reduced instruction-set
computing (RISC).

configuration. The definition or ateration of characteristics of an object. See aso object.

configured TERM object. A TERM object that is explicitly configured with an ADD TERM
command. Such a TERM object exists until it is explicitly deleted. Names of configured
TERM objects begin with aletter. See also temporary TERM object and TERM object.

consistency. See database consistency.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-3

Glossary context

context. Information required by a server to process the current request in an exchange of
multiple request and reply messages: for example, identification of the last item
processed. See also context-free server and terminal context.

context-free server. A server that does not retain any information about the processing of
previous requests. A context-free server accepts a single message from arequester,
performs the requested tasks, and issues a single reply to respond to the requester. After
the reply message is issued, the server retains no information, or context, that can be
used in subsequent requests. In general, context-free servers are relatively smple to
program and can be restarted quickly, but they require the requester to pass context
information to the server on each request. Servers handling requests from Pathsend
requesters can be either context-free or context-sensitive, but servers servicing requests
from SCREEN COBOL requesters must be context-free. A context-free server is
analogous to a NonStop TUXEDO request/response server. Tandem subsystems are
context-free servers; therefore, management applications using the Subsystem
Programmatic Interface (SPI) to communicate with Tandem subsystems must pass back
context information in continuation requests. See aso context, context-sensitive server, |
and Subsystem Programmatic Interface (SPI).

context-sensitive server. A server that retains information about the processing of previous
requests. A context-sensitive Pathway server can engage in a multiple-message
communication, or dialog, with a requester. Because context-sensitive servers must
maintain message context for the dialog, they are more complex to program than
context-free servers. They typically have longer restart times because they must recover
the requester context. See also context and context-free server.

context sensitivity. The ability of a requester to exchange a series of multiple request and
reply messages (that is, a dialog) with a particular server process. See also context-
sensitive server and dialog.

conversation. Seedialog.

conver sational mode. (1) A terminal operating mode in which datais read from the terminal
and displayed on the terminal screen one line at atime. See also block mode and
intelligent mode. (2) The mode of communication that enables an ongoing dialog
between a client (or requester) and a server. Data is sent and received in an iterating
fashion without return to the transaction monitor until the application dialog is
completed. Multiple messages can be exchanged between the client and server
participating in the communication. See also conversational server.

conver sational model. A model for requester-server communication that enables an ongoing
dialog between a client (or requester) and a server. Multiple messages can be exchanged
between the client and server process before control is returned to the transaction
monitor. See also request/response model and conversational server.

conversational server. A server that offers conversational services and can participatein a
conversation, or dialog, with a client; that is, a context-sensitive server. See aso
conversational mode (definition 2), request/response server, and context-sensitive server.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-4

Glossary cool start

cool start. The operation that restartsa PATHMON environment, using the information in an
existing PATHMON configuration file (PATHCTL file). The PATHMON environment
must have been previously started with a cold start operation. See also cold start.

Crossref cross-reference generator. A Tandem software tool that produces a cross-
referenced listing of selected identifiers—such as data variables, statement labels, or
subprograms—in an application program.

current working directory. The OSS directory from which relative pathnames are resolved.
See also OSS pathname and rel ative pathname.

database consistency. The state of a database in which items satisfy established criteria. For
example, an account balance must equal credits to the balance minus debits to the
balance. When the database satisfies these criteria, the database is considered to be
consistent. In general, a database is consistent when it is accurate and all changes
generated by transactions are complete. Database consistency is defined by the
application, which establishes the values and relationships of database fields and
records.

database management system (DBMS). A product, such as NonStop SQL/MP or Enscribe,
that serves as the interface between a user or program (for example, a Pathway server)
and the database. Among its many functions, the DBMS controls access to and
organization of data within the database.

Data Definition Language (DDL). (1) The set of data definition statements within the
Structured Query Language (SQL). (2) A Tandem product for defining data objectsin
Enscribe files and translating object definitions into source code.

dataintegrity. The condition of a database when its data values are accurate, valid, and
consistent according to rules established for changing the database. See also database
consistency.

DBCS. Seedouble-byte character set (DBCS).
DDL. See Data Definition Language (DDL).

deadlock. (1) A situation in which two processes cannot proceed because each is waiting for
areply from the other. (2) A situation in which two transactions cannot proceed because
each is waiting for the other to release alock.

dedicated device. A term formerly used for aterminal or other input/output device controlled
by a configured TERM object, so that a Pathway application always ran on that device
without having to be started from PATHCOM with aRUN PROGRAM command. (No
new term replaces thisterm; instead, the manual text now refers to such devices as those
associated with configured TERM objects.) See aso nondedicated device and
configured TERM object.

default value. The value that the system uses for a particular attribute or parameter when a
val ue has not been supplied by the user.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-5

Glossary DEFINE

DEFINE. A named set of attributes and associated values. In a DEFINE (as with an ASSIGN
command), users can specify information to be communicated to processes they start.

definition files. A set of files containing data declarations for itemsrelated to SPI messages
and their processing. The core definitions required to use SPI are provided in aDDL file
and in severa language-specific definition files, one for each programming language
that supports SPI. The Tandem DDL compiler generates the language-specific files from
the DDL file. Subsystems that support SPI provide additional definition files containing
subsystem-specific definitions.

delimiters. Charactersthat makeit possible for a SCREEN COBOL requester and an external
device or front-end process to exchange compact variable-length messages efficiently;
delimiters can be message delimiters or field delimiters.

descriptor. For each elementary dataitem, the SCREEN COBOL compiler builds adata
structure that describes the size, type, usage, and dependencies of theitem. All of the
information that pertains to agiven item makes up the descriptor for that item. For
example, the PICTURE specification is included in the descriptor. The descriptors are
passed to the TCP in the pseudocode and provide a dictionary of information for
interpreting and handling incoming data. When the MAP or SMAP compiler optionis
used, the descriptors appear in the compiler map at the end of the listing.

diagnostic screen. A screen of information that is displayed to inform the terminal operator
of error conditions and termination status.

dialog. A multiple-message communication between arequester and a context-sensitive
server. A dialog is aso called a conversation. See also context sensitivity and context-
sensitive server.

disk process. Inthe Tandem NonStop Kernel operating environment, the portion of the
operating-system software that performs read, write, and lock operations on disk
volumes and creates TMF audit records. See aso file system.

display attribute. A terminal display feature that is given a screen data name. The screen
data name can be associated with a predefined system name in the SPECIAL-NAMES
paragraph and thus be manipulated by a SCREEN COBOL program.

distributed data. Information (for example, customer names and addresses, inventory items,
and personnel records) that resides on more than one node in a network and can be
accessed by authorized users from any node in that network.

distributed processing. A type of processing environment in which resources are distributed
among CPUs within a single system or spread across a network of systems. A user on
any network node can, if properly authorized, access resources and database files
anywhere within the network.

Distributed Systems Management (DSM). A group of tools for managing avariety of
subsystems in a distributed processing environment.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-6

Glossary distributed transaction processing (DTP)

distributed transaction processing (DTP). The coordination of transactions among
application servers residing within an Expand network and possibly accessing different
database management systems (NonStop SQL/MP and Enscribe). DTP allows the
coordination of multiple, autonomous actions as a single logical unit of work.

double-byte character. A character represented in two bytes. See also double-byte character
Set.

double-byte character set (DBCS). A character set, such as Tandem Kanji, that usestwo
bytes of datato represent a single character.

DSM. SeeDistributed Systems Management (DSM).
dumb terminal. See fixed-function terminal.

dynamic server. A server process that the PATHMON process creates after a TCP or
LINKMON process has waited for a specified time period for a static server to become
available. A dynamic server process exists only aslong asit is needed. See also static
Server.

EDIT file. A sourcetext file that can be augmented and modified by the user through a
Tandem text editor program such as TEDIT (PS Text Edit).

EMS. See Event Management Service (EMS).
EMSIlogfile. Seeevent log file.

Enable product. A tool provided by Tandem that allows users to develop simple data
management applications without using a conventional programming language. The
Enable product can generate SCREEN COBOL programs for use with Enscribe
databases.

Enscribe database record manager. Tandem database management software that provides a
record-at-a-time interface between servers and a distributed database. See also NonStop
SQL/MP.

event log file. A file maintained by the Event Management Service (EMS) for logging of
event messages.

Event Management Service (EMS). A part of DSM used to provide event collection, event
logging, and event distribution facilities. It provides for different descriptions of events
for people and for programs, lets an operator or application select specific event-
message data, and allows for flexible distribution of event messages within a system or
network. EM S has an SPI-based programmatic interface for reporting and retrieving
events. See also event message.

event message. A special kind of SPI message that describes an event occurring in the system
or network. Event messages are collected, logged, and distributed by EMS. See also
Event Management Service (EMS).

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-7

Glossary expandability

expandability. See scalability.

Expand networ king software. Tandem software that can connect up to 255 Tandem
NonStop systems into a single network.

Extended General Device Support (GDSX). A Tandem product that facilitates
communication between general 1/0O devices and a PATHMON environment by acting as
afront-end or a back-end process.

extensible structured token. In the Subsystem Programmatic Interface (SPI), atoken with a
value that can be extended by appending new fields in |ater releases. The token is
accessed through reference to atoken map containing field-version and null-value
information, allowing SPI to provide compatibility between different versions of the
structure. See also simple token and token (definition 2).

external PATHMON process. See external process.

external process. A processin adifferent PATHMON environment from the process with
which it is communicating. For example, suppose a TCP managed by PATHMON
process $PM B requests a link to a server processin a server class that is managed by
PATHMON process $PMA. Both the TCP and PATHMON process $PMB are external
processes with respect to PATHMON process $PMA and the server class managed by
$PMA.

external server. See external process.
external TCP. See external process.

fault tolerance. The ability of a Tandem NonStop system to continue processing despite the
failure of any single software or hardware component within the system.

field-characteristic clause. In SCREEN COBOL, an ordered set of characters that specify
the characteristics of a screen field.

fileidentifier (filel1D). Inthe Guardian environment, the portion of afile name following the
subvolume name. In the OSS environment, a portion of the internal information used to
identify afilein the OSS file system. The two identifiers are not comparable.

filename. Inthe Guardian environment, the set of node name, volume name, subvolume
name, and and file identifier characters that uniquely identifies afile. Thisnameis used
to open afile and thereby provide a connection between the opening process and thefile.
See also fully qualified file name, partially qualified file name, OSS filename, and OSS
pathname.

file-name expansion. The expansion of a partialy qualified Guardian file name for a disk file
to include the associated node, volume, and subvolume names.

file system. (1) In the Guardian environment, the application program interface for
communication between a process and afile. A file can be a disk file, a device other than
adisk, or another process. (2) In the OSS environment, a collection of files and file

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-8

Glossary File Utility Program (FUP)

attributes. A file system provides the namespace for the file serial numbers that uniquely
identify itsfiles.

File Utility Program (FUP). A Tandem product that allows users to create, copy, purge, and
otherwise manipulate disk files interactively.

fixed-function terminal. A nonintelligent device (that is, a device without processing ability)
capable of sending and receiving information over communications lines. Fixed-function
terminals are often referred to as dumb terminals.

freeze condition. A condition in which communication between aterminal and a server class
is prohibited. See also thaw condition.

front-end process. A process, such as the process that accepts the TCP terminal -data stream,
that serves as the intermediary between one system, process, or device and another.

fully qualified file name. The complete name of afilein the Guardian environment. For a
permanent disk file, this consists of a node name (system name), volume name,
subvolume name, and fileidentifier (file ID). In interactive interfaces such as
PATHCOM and TACL, the parts of afile name are separated by periods. See aso
partially qualified file name.

gateway process. A process, such as the Transaction Delivery Process (TDP) that is part of
RSC, that manages communications between dissimilar environments (for example, a
workstation and a Tandem system). A gateway process both transfers information and
converts it to aform compatible with the protocols used by the destination environment.

GDSX. See Extended General Device Support (GDSX).

graphical user interface (GUI). A type of screen interface that typically includes pull-down
menus, icons, dialog boxes, and online help.

Guardian. An environment available for interactive or programmatic use with the Tandem
NonStop Kernel. Processes that run in the Guardian environment use the Guardian
system procedure calls as their application program interface, and might also use related
APIs such as the Pathsend and TMF procedure calls. See also Open System Services
(OSS).

Guardian environment. The Guardian AP, tools, and utilities. See also Guardian.
Guardian operating environment. See Guardian environment.

high PIN. A process identification number (PIN) in the range 256 through 65535. See also
process identification number (PIN) and low PIN.

IDS. Seeintelligent device support (IDS) facility.

Inspect. The Tandem debugging tool that can be used interactively to examine and modify
the execution of Guardian processes and SCREEN COBOL requester programs.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-9

Glossary Inspect command terminal

Inspect command terminal. Theterminal on which programmers enter commands to
Inspect when debugging a SCREEN COBOL program or a Pathway server.

intelligent device. A device such as an automatic teller machine, a point-of-sale device, or a
communications line, or a process such as a Guardian process, that can communicate
with the Pathway environment through the intelligent device support (IDS) facility, the
Remote Server Call (RSC) product, or the Pathsend procedure calls.

intelligent device support (IDS) facility. A feature of the TCP that supports access to
Pathway server classes by intelligent devices. Thisfacility allows SCREEN COBOL
requester programsto interact with external processes that, in turn, control devices such
as personal computers, automated teller machines, and point-of-sale devices.

intelligent mode. An operating mode in which data and messages are sent between an
intelligent device and the Pathway environment. See also conversational mode
(definition 1), intelligent device, and message-oriented requester.

interactive mode. An operating mode in which commands are entered from a terminal
keyboard.

interoper ability. The ability to communicate, execute programs, or transfer data between
dissimilar environments.

interoperate. To communicate, execute programs, or transfer data between dissimilar
environments.

inter process communication (IPC) message. The unit of communication between
requesters and servers. An |PC message consists of arequest message and areply

message.

I/O process. Inthe Guardian environment, a system process to manage i nput/output devices.
Applications use the Guardian file system to send requests to 1/0 processes. See also file
system.

IPC message. See interprocess communication (IPC) message.

keyword. A word in acommand string or programming language that must be spelled and
positioned in a prescribed way, usually to indicate the meaning of an adjacent parameter.

library. A set of related files or common files that can be accessed by multiple programs or
Processes.

linear expandability. See scalahility.

link. (1) An open of a server process within a server class. When alink manager—that is, a
TCP or aLINKMON process—sends arequest to a PATHMON processfor alink to a
server in a specified server class, the PATHMON process selects a server processin that
server class (possibly starting a new server process if necessary) and then returns the
name of the server process to the requesting link manager. See also link granting and
link manager. (2) To examine, collect, associate together, and modify code and data

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-10

Glossary link access

blocks from one or more object files to produce atarget object file. On Tandem NonStop
systems, linking for TNS/R native object files is performed by the nl d utility.

link access. The actual transfer of data from arequester to a server process. In the Pathway
environment, link access is provided by TCPs and LINKMON processes. See also link
granting.

link granting. The process of selecting a particular server process in a server classto handle
arequest from alink manager (TCP or LINKMON process) on behalf of arequester.
In the Pathway environment, link granting is done by the PATHMON process. See also
link and link access.

link management. The act of coordinating the sharing of links between requester or client
processes and Server processes.

link manager. A processthat requests links to server processes and provides link access after
thelink is granted. TCPs and LINKMON processes are the link managersin the
Pathway environment. See also link access and link granting.

LINKMON process. A Guardian process that supports access to serversin the Pathway and
NonStop TUXEDO environments. LINKMON processes act as link managers for
requesters and clients that use the Pathsend procedure calls and other interfaces such as
RSC, POET, and the NonStop TUXEDO ATMI. See also link manager.

lock. A mechanism that coordinates access to the same data; locks are either shared or
exclusive.

log file. See PATHMON log file and event log file.

low PIN. A process identification number (PIN) in the range O through 255. (PIN 255 is
reserved by the system; it is never assigned to arunning process, but is used by high-PIN
processes to communicate with low-PIN processes.) See also process identification |
number (PIN) and high PIN.

manageability. The ability to easily and comprehensively manage a subsystem, system, or
network.

MAKEUL. A TACL macro used to perform pTAL compilation of user-written conversion
routines for use with the Pathway/TS TCP and SCREEN COBOL requesters and to
create the TNS/R native TCP user library containing these routines.

management application. An application program that automates configuration and
management tasks. Such a program can request from the PATHMON process the same
kinds of services that system managers can request through the PATHCOM interface. A
management application can also interact with subsystems other than the Pathway
subsystem. Management applications use the Subsystem Programmatic Interface (SPI)
to send commands to subsystems and the Event Management Service (EMS) to receive
notification of significant events.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-11

Glossary message-oriented requester

message-oriented requester. A SCREEN COBOL requester that sends data from working
storage to a device (or to afront-end process that controls a device) and receives data
from the device or process into working storage by way of Message Section templates.
SCREEN COBOL requesters that use the intelligent device support (IDS) facility are
message-oriented. These requesters use SEND MESSAGE statements and their REPLY
clauses in the Procedure Division to interact with the intelligent devices or front-end
processes. See also screen-oriented requester.

M essage Section. A section in the Data Division of a SCREEN COBOL source program that
describes the data type, size, and relative position (sequence) of each field in amessage
template. This section also defines the editing and conversion that must be performed on
each field. See also message-oriented requester.

mixed dataitem. A dataitem that contains both single-byte and double-byte characters; in a
COBOL or SCREEN COBOL program, these data items are declared as PIC X.

modified datatag (MDT). In SCREEN COBOL, abit that is set or reset to indicate whether
datain an associated field is to be sent to the computer from the terminal.

multithreaded. A programming model that provides more than one thread of control within a
program. Multithreading allows multiple sequential processing tasks to be executed
concurrently within a process. for example, aterminal control process (TCP). See also
thread and single-threaded.

native System/T client. Inthe NonStop TUXEDO environment, a client program that
executes in the Open System Services (OSS) environment and communicates directly
with System/T. An example of thistype of client isthe Pathway translation server for the
NonStop TUXEDO system. Also called a NonStop TUXEDO native client.

nested server. A server that acts as arequester by sending requeststo other servers. In the
Pathway environment, such requests are made by calls to Pathsend procedures.

nid utility. A utility that collects, links, and modifies code and data blocks from one or more
object filesto produce atarget TNS/R native object file.

node. A Tandem NonStop system that is part of an Expand network. The name of the node,
also called the system name, is thefirst of four parts of afile name in the Guardian
environment. See also Expand networking software.

no-early-reply rule. Therule that states that when a server process reads a request message,
it should completely process the request beforeit repliestoit.

nondedicated device. A term formerly used for aterminal or other input/output device on
which a Pathway application could be started from PATHCOM with a RUN PROGRAM
command. The RUN PROGRAM command resultsin the creation of atemporary
TERM object to control the terminal. (No new term replaces this term; instead, the
manual text now refers to such devices as those associated with temporary TERM
objects.) See also dedicated device and temporary TERM object.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-12

Glossary noninteractive mode

noninteractive mode. An operating mode in which commands are entered through a
command file.

NonStop Kernel. See Tandem NonStop Kernel.

NonStop processing. On Tandem NonStop systems, processing characterized by continued
operation even when a component fails, when equipment is being repaired or replaced,
or while new processors or peripheral devices are being added to the system. In the
Guardian environment, NonStop processing is provided by means of fault tolerance and
process pairs.

NonStop SQL/MP. The Tandem relational database management system that promotes
efficient online access to large distributed databases. See al'so Structured Query
Language (SQL) and Enscribe database record manager.

NonStop Transaction Manager/MP (NonStop TM/MP). A Tandem software product that
provides transaction management, transaction protection, and database consistency in
online transaction processing (OLTP) environments. It gives full protection to
transactions that access NonStop SQL/MP and Enscribe databases, as well as recovery
capabilities for transactions, online disk volumes, and entire databases. The component
of NonStop TM/M P that provides these featuresis the TMF subsystem. See also
Transaction Management Facility (TMF) subsystem.

NonStop Transaction ServicessMP (NonStop TS/MP). A Tandem product that provides
process management and link management functions for OLTP applications on Tandem
NonStop systems. NonStop TS/MP consists of the PATHMON process, the LINKMON
process, the PATHCOM process and interface, and the Pathsend procedures. Together
with NonStop Transaction Manager/MP (NonStop TM/MP), NonStop TS/MP forms the
foundation for Tandem’s open transaction processing services, including those provided
by the RSC and POET products and the NonStop TUXEDO system. See also
Pathway/TS and NonStop Transaction Manager/MP (NonStop TM/MP).

NonStop TUXEDO application. The collection of machines, servers and services, and
System/T components defined by a single configuration filein the NonStop TUXEDO
environment. See also NonStop TUXEDO transaction processing environment and
Pathway application.

NonStop TUXEDO environment. See NonStop TUXEDO transaction processing
environment.

NonStop TUXEDO native client. See native System/T client.

NonStop TUXEDO server. A server process or program managed by the NonStop
TUXEDO system administrative facilities. See a'so Pathway server.

NonStop TUXEDO system. Tandem'’simplementation of the BEA Systems, Inc., TUXEDO
enterprise transaction processing system. Magjor features of the NonStop TUXEDO
implementation include the use of the Tandem core services (Tandem NonStop Kernel,
NonStop Transaction ServicesyM P, and NonStop Transaction Manager/MP) to provide
the Tandem fundamental s (scal ability, availability, and manageability) for TUXEDO

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-13

Glossary NonStop TUXEDO transaction processing
environment

applications. The NonStop TUXEDO system runs in the OSS operating environment on
Tandem NonStop systems. See also OSS environment.

NonStop TUXEDO transaction processing environment. An environment that providesthe
API and transaction monitor functions of the BEA Systems, Inc., TUXEDO transaction
processing system in addition to the benefits provided by the Tandem core services:
Tandem NonStop Kernel, NonStop Transaction Services/M P, and NonStop Transaction
Manager/MP. See also Pathway transaction processing environment.

OBEY command. A command in a Tandem interactive interface, such as PATHCOM or the
SCREEN COBOL Utility Program (SCUP), that allows users to execute the commands
in acommand file. See also command file.

object. An entity that is subject to independent reference or control by one or more
subsystems. Examples of objects are devices, communications lines, processes, and
files. In the PATHMON environment, the types of objects referred to or controlled by
PATHCOM are PATHMON, PATHWAY, LINKMON, SERVER, TCP, TERM,
PROGRAM, and TELL. The PATHWAY object, used with the SET PATHWAY and
STATUS PATHWAY commands, refers to an entire PATHMON environment. The
LINKMON object isonly referred to, not controlled, by PATHCOM: that is, users can
use PATHCOM to obtain information about LINKMON processes but cannot use it to
make any changes in the configuration or state of those processes. See also PATHMON
environment.

object attributes. See attributes.

object file. A filegenerated by acompiler, linker, or binder that contains machine instructions |
and other information needed to construct the executable code spaces and initial data for
aprocess. Thefile can be a complete program that is ready for immediate execution, or
it can be incomplete and require linking with other object files before execution.
Compilers for languages such as COBOL 85 produce object code. See also pseudocode
file.

object type. In the Subsystem Programmatic Interface (SPI) or in an interactive interface
such as PATHCOM, a category of objects to which a specific object belongs. Object
types for PATHCOM include PATHMON, PATHWAY, LINKMON, SERVER, TCP,
TERM, PROGRAM, and TELL. The SPI interface to the Pathway subsystem uses
different names for some of these object types and defines additional object types; for
example, PM, LM, PROGTERM, and TCPTERM are object typesin the SPI interface.

OLTP. Seeonlinetransaction processing (OLTP).
OLTP application. Seeonline transaction processing (OLTP) application.

online transaction processing (OLTP). A method of processing transactions in which
entered transactions are immediately applied to the database. The information within the
database isreadily availableto all users through online screens and printed reports. The
transactions are processed while the requester waits, as opposed to queued or batched
transactions, which are processed at a later time. Online transaction processing can be

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-14

Glossary online transaction processing (OLTP) application

used for many different kinds of business tasks such as order processing, inventory
control, accounting functions, and banking operations. See also batch processing.

online transaction processing (OLTP) application. A set of programs that perform online
transaction processing (OLTP) tasks on behalf of the user. With an OLTP application,
many terminal users can update data simultaneously, recording the changesin the
database as they are entered. OLTP applications generally display, check, and accept
input data; manipulate the input data; and perform some type of data-output activity.

Open System Services (0OSS). An open system environment available for interactive or
programmatic use with the Tandem NonStop Kernel. Processes that run in the OSS
environment use the OSS application program interface; interactive users of the OSS
environment use the OSS shell for their command interpreter. See also Guardian and
Guardian environment.

OSS. See Open System Services (0OSS).

OSS environment. The NonStop Kernel Open System Services (OSS) API, tools, and
utilities. See also Open System Services (0OSS).

OSSfilename. A component of an OSS pathname containing any valid characters other than
adash (/) or anull. See also file name, OSS pathname, and file system (definition 2).

OSS operating environment. See OSS environment.

OSS pathname. The string of characters that uniquely identifies afile within its file system
in the OSS environment. A pathname can be either absolute or relative. See also
absolute pathname, relative pathname, and file system (definition 2).

OSS username. A string that uniquely identifies a user within the user database for a node.

overlay area. In SCREEN COBOL, an area of a base screen within which an overlay screen
can be displayed.

overlay screen. In SCREEN COBOL, ascreen that is displayed in an overlay area of a base
screen. A base screen can be used with various overlay screens. See also screen and base
screen.

partially qualified file name. A Guardian file name in which only the right-hand file-name
parts are specified. The remaining parts of the file name assume default values. See aso
fully qualified file name.

PATHCOM. (1) Theinteractive interface to the PATHMON process, through which users
enter commands to configure and manage Pathway applications. (2) The process that
provides this interface.

PATHCOM command file. A fileof PATHCOM commands that define and add the
PATHM ON-controlled objects required to execute an application. Thisfile can contain
all of the commands needed to start a PATHMON environment.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-15

Glossary PATHCOM command terminal

PATHCOM command terminal. See command terminal.
PATHCTL. See PATHMON configuration file.

Pathmaker product. A menu-driven application generator, provided by Tandem, that
increases the productivity of programmers devel oping Pathway applications. The
Pathmaker software generates requester programsin SCREEN COBOL and server
programsin C or COBOL85.

PATHMON configuration file. A disk fileinwhich a PATHMON process maintains
configuration information for the objects under its control. The name of thisfileis
PATHCTL.

PATHM ON-controlled object. An object defined and managed by a PATHMON process,
through PATHCOM or the Pathway management programming interface. In the
PATHCOM interface, such an object can be of type PATHWAY, PATHMON, SERVER,
TCP, TERM, PROGRAM, or TELL. See also object and Pathway object.

PATHMON environment. The servers, server classes, TCPs, terminals, SCREEN COBOL
programs, and tell messages that run together under the control of one PATHMON
process.

PATHMON logfile. A file used by aPATHMON process for reporting errors and changesin
status.

PATHMON object. An object of type PATHMON; that is, aPATHMON process. See also
PATHMON process and PATHM ON-controlled object.

PATHMON process. The central controlling process in the Pathway environment. The
PATHMON process maintains configuration-related data; grants links to server classes
in response to requests from TCPs and LINKMON processes; and performs all process
control (starting, monitoring, restarting, and stopping) of server processes and TCPs.

pathname. See OSS pathname.

Pathsend procedures. The set of Guardian procedure calls that provide general access to
Pathway server classes from any process on a Tandem system.

Pathsend process. A process, written as a Guardian program in C, C++, COBOL 85, Pascal,
pTAL, or TAL, that makes callsto Pathsend procedures to request services from a
Pathway server. A Pathsend process can be either a standard requester, which initiates
application requests, or a nested server, which is configured as a server class but acts as
areguester by making requests to other servers. A Pathsend processis also known as a
Pathsend requester.

Pathsend program. A Guardian program, written in C, C++, COBOLSS, Pascal, pTAL, or |
TAL, that makes calls to Pathsend procedures to request services from a Pathway server.
A running Pathsend program is called a Pathsend process. See also Pathsend process.
Pathsend requester. See Pathsend process.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-16

Glossary PATHTCP2

PATHTCP2. The TCP object file, usualy identified by the file name
$SYSTEM.SY STEM.PATHTCP2.

PATHTCPL. The TCP user library object file.

Pathway application. A set of programs that perform online transaction processing tasksin
the Guardian environment, using interfaces defined by Tandem. A Pathway application
can include SCREEN COBOL requesters, Pathsend requesters, and Pathway servers
running on Tandem NonStop systems. It can also include GDSX front-end processes and
clients that use RSC or POET. See also NonStop TUXEDO application.

Pathway application development environment. A set of tools supporting the devel opment
of applicationsfor the Pathway transaction processing environment. Depending on the
customer’s needs and software configuration, this set of tools could include the
SCREEN COBOL compiler and the SCREEN COBOL Utility Program (SCUP), the
POET application development tools, the Pathmaker product, and various tools from
Tandem Alliance partners. See al'so Pathway transaction processing environment.

Pathway environment. See Pathway transaction processing environment.

Pathway management programming interface. A set of programmatic commands that
allow users to write management application programs that communicate directly with
the PATHMON process for configuration and management. This interface is based on
the Subsystem Programmatic Interface (SPI) within the Distributed Systems
Management (DSM) software. Programmatic commands communicating with the
PATHMON process use the Pathway subsystem ID. See also Pathway subsystem and
subsystem ID.

Pathway monitor process. See PATHMON process.

Pathway object. An object in the Pathway transaction processing environment. The set of
Pathway objectsis amore inclusive set than the set of PATHMON-controlled objects:
for example, aLINKMON processis aPathway object but not a PATHMON-controlled
object. See also object, PATHMON-controlled object, and Pathway transaction
processing environment.

Pathway Open Environment Toolkit (POET). A set of programs and utilities that helps
programmers create and run client/transaction server applications. In the POET
environment, the client is a program running on aworkstation, and the server isa
Pathway server running on a Tandem NonStop system. POET uses the services of the
Remote Server Call (RSC) product. The programming tools provided by POET include
asimplified programming interface, name mapping, and conversion mapping.

Pathway server. A server process or program in the Pathway transaction processing
environment. See also NonStop TUXEDO server.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-17

Glossary Pathway subsystem

Pathway subsystem. The PATHMON environment components to which SPI commands are
sent under the Pathway subsystem ID and which generate EM S event messages with the
Pathway subsystem ID. All SPI commands for the Pathway subsystem are sent to the
PATHMON process, but the processsing for the command might involve other
processes, such asa TCP. Likewise, all EMS messages from the Pathway subsystem are
generated by the PATHMON process, but the information might originate from another
process. See also subsystem ID.

Pathway system. A term formerly used for the set of objects managed by a particular
PATHMON process; now called PATHMON environment. See PATHMON environment.

Pathway transaction processing environment. A run-time environment consisting of
Tandem'’s transaction-processing products for the Guardian operating environment. This
term is often shortened to “ Pathway environment.” Depending on the customer’s needs
and software configuration, the Pathway environment could include NonStop TS/MP,
the run-time portions of Pathway/TS (the TCP and the SCREEN COBOL run-time
environment), NonStop TM/MP, GDSX processes, the run-time portion of the RSC
product, the POET run-time environment, and the TRANSFER delivery system (when
used as aworkflow aid in transaction processing). See also NonStop TUXEDO
transaction processing environment.

Pathway trandlation server for the NonStop TUXEDO system. A server process, provided
by Tandem as part of the NonStop TUXEDO product, that allows a Pathway (SCREEN
COBOL or Pathsend) requester to use the services of a NonStop TUXEDO server. The
trandation server thus acts as a gateway process between the Pathway environment and
the NonStop TUXEDO environment. Requesters that use this translation server must
include special information in the header of each request message to identify the target
NonStop TUXEDO application and service.

Pathway/TS. A Tandem product that providestools for developing and interpreting screen
programs to support OLTP applications in the Guardian environment on Tandem
NonStop systems. Pathway/TS screen programs communicate with terminals and
intelligent devices. Pathway/TS includes the TCP, the SCREEN COBOL compiler and
run-time environment, and the SCREEN COBOL Utility Program (SCUP). It requires
the services of the NonStop TS/MP product. See also NonStop Transaction ServicessM P
(NonStop TS/MP).

PIN. See process identification number (PIN).

POBJ. The default prefix, or file-name root, used by the SCREEN COBOL compiler in
naming its output files. If no prefix is specified in the RUN command to run the
compiler, the compiler produces a code file named POBJCOD, adirectory file named
POBJDIR, and (if the SYMBOLS option is enabled) a symbols file named POBJSY M.

POET. See Pathway Open Environment Toolkit (POET).

Portable Transaction Application Language (pTAL). A machine-independent systems
programming language based on TAL. The pTAL language excludes architecture-
gpecific TAL constructs and includes new constructs that replace the architecture-
specific constructs. See also Transaction Application Language (TAL).

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-18

Glossary primary process

primary process. The currently active process of aprocess pair in the Guardian environment.
See also backup process and process pair.

process. (1) A unique execution of a program in the Guardian environment. (2) An entity in
the OSS environment consisting of an address space, a single thread of control that
executes within that address space, and the system resources required by that thread of
control. See also process type.

process identification number (PIN). An unsigned integer that identifies a process within a
processor module in a Tandem NonStop system.

process management. The act of configuring, creating, and initializing processes; the
monitoring and stopping of processes; and the recovery of failed processes. The
PATHMON process provides process management functions for OLTP applications on
Tandem NonStop systems.

process pair. A fault-tolerant arrangement of processes in the Guardian environment,
whereby two processes in separate processors share the same name and execute identical
code. One process functions as the primary process and the other functions as the
backup process. The two processes are kept in sync through checkpoint messages sent
from the primary to the backup process. If the primary processfails, the backup process
isnotified that it is now the primary, and it resumes the application work from the last
valid checkpoint message.

processtype. An attribute of a server class indicating whether the server processes in that
server class are Guardian processes or OSS processes. See aso process.

program file. An executable object file. See also object file.

PROGRAM object. A template for creating and starting temporary TERM objects. See also
temporary TERM object.

pseudocode file. A file containing compiled code that isinterpreted by software instead of
being executed by the hardware. The SCREEN COBOL compiler produces pseudocode
to be interpreted by the TCP. See also object file.

pseudo Pathsend procedure. In the Extended General Device Support (GDSX) software,
one of the TSCODE-supported procedures that have Pathsend procedure counterparts.

PTAL. See Portable Transaction Application Language (pTAL).

reduced instruction-set computing (RISC). A processor architecture based on arelatively
small and simple instruction set, a large number of general-purpose registers, and an
optimized instruction pipeline that supports high-performance instruction execution. See
also complex instruction-set computing (CISC).

relative pathname. An OSS pathname that does not begin with a slash (/) character.
A relative pathname is resolved beginning with the current working directory. See also
OSS pathname, absolute pathname, and current working directory.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-19

Glossary Remote Duplicate Database Facility (RDF)

Remote Duplicate Database Facility (RDF). The Tandem software product that assists in
disaster recovery for OLTP production databases, monitors database updates audited by
the TMF subsystem on a primary system, and applies those updates to a copy of the
database on a remote system.

Remote Server Call (RSC). A Tandem software product that facilitates client/server
computing, allowing personal computer (PC) or workstation applications running under
Microsoft Windows software or the MS-DOS or OS/2 operating system to access
Pathway server classes and Guardian processes. Transactions are transmitted from the
PC or workstation application (the client) to a Pathway application running on a Tandem
NonStop system (the server) by means of a supported communications protocol, such as
NETBIOS, TCP/IP, or an asynchronous connection.

reply message. The part of an interprocess communication message that is formatted by a
server and returned to the original requester. The message contains the results of the
server's work. See aso request message.

reply translation header. A group of header fields that the Pathway trandlation server for the
NonStop TUXEDO system inserts at the beginning of each reply message it relays from
the application service to a SCREEN COBOL or Pathsend requester. This header
indicates whether the request was processed successfully and whether the reply contains
data returned by the application service. See also request tranglation header.

requester. A process or program that runs in the Guardian environment on a Tandem
NonStop system and requests services from a server process. For example, a SCREEN
COBOL program is a requester program that is interpreted by the terminal control
process (TCP), which provides link access to Pathway server classes. Another type of
requester program makes requests through Pathsend procedure calls; such arequester
uses the LINKMON process for link access to server classes. A third type of requester
communicates with server processes directly by calling the Guardian WRITEREAD
procedure; this kind of requester does not use server classes. A requester is a specific
type of client. See also client, server, and requester/server model.

requester/server model. A model for application design that divides the tasks of data input,
data manipulation, and data output between two basic types of process. requesters and
servers. A requester sends arequest to a server. The server takes the requested action and
then replies to the requester. The requester and server may reside on the same processor
or on different processors. This model is used for interprocess communication in the
Guardian environment. See also requester and server.

request message. The part of an interprocess communication message that is formatted by a
requester and sent to a specific server. The message contains any data and instructions
needed by the server to perform its processing. See also reply message.

request/response model. A model for requester/server communication in which arequester
passes asingle request to a server process and receives a single response. See also
conversational model and request/response server.

request/response server. A server that provides request/response services. A service of type
request/response is handled like a procedure and has the following properties: it is

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-20

Glossary request translation header

executed until completion, it does not have any dialog with the requester, and it sends
back a return value to the requester. A request/response server is analogous to a context-
free Pathway server.

request trandation header. A group of header fields that must be included at the beginning
of each request message a SCREEN COBOL or Pathsend requester sends to the
Pathway trandlation server for the NonStop TUXEDO system. This header specifies the
NonStop TUXEDO application service for which the message is destined, the NonStop
TUXEDO huffer types of the request and reply messages as seen by the service, and
options that modify the invocation of the service. The trandation server removes this
header from the request message before sending it to the application service. See also
reply tranglation header.

reserved word. A word that can be used only as a keyword.

resources. The components of a computer system that work together to process transactions.
Terminals, workstations, CPUs, memory, 1/0O controllers, disk drives, processes, files,
and applications are examples of resources.

response time. The amount of time it takes to receive a response from the system after
initiating a request message (for example, by pressing afunction key).

retryable operation. An operation that can be interrupted and repeated an indefinite number
of times without affecting the consistency of the database; for example, al read
operations are retryable.

RISC. Seereduced instruction-set computing (RISC).

root directory. An OSS directory associated with a process that the system uses for pathname
resol ution when a pathname begins with a slash (/) character. See also OSS pathname.

RSC. See Remote Server Call (RSC).

scalability. The ability to increase the size and processing power of an online transaction
processing system by adding processors and devices to a system, systems to a network,
and so on, and to do so easily and transparently without bringing systems down.
Scalability is aso sometimes called expandability.

SCOBOLX. The object file for the SCREEN COBOL compiler program. This nameis given
ina TACL command to invoke the compiler. See also SCREEN COBOL.

screen. A group of datafields that represent formatted data to be displayed on aterminal.
A screen is defined by a screen description entry in the Screen Section of a SCREEN
COBOL program. There are two types of screen: base screens and overlay screens. See
also base screen, overlay screen, and screen description entry.

SCREEN COBOL. A procedural language developed by Tandem and based on COBOL that
is used to define and control screen displays on terminals and other input/output devices.
SCREEN COBOL allows programmers to write requester programs that communicate
with operator terminals and intelligent input/output devices, and that send data to server

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-21

Glossary SCREEN COBOL Utility Program (SCUP)

processes that manage application databases. SCREEN COBOL programs are compiled
into pseudocode form by the SCREEN COBOL compiler and then interpreted by the
TCP. See aso terminal control process (TCP).

SCREEN COBOL Utility Program (SCUP). A utility that provides control and
manipulation of SCREEN COBOL object files.

screen description entry. A declaration of abase screen, and, optionally, an overlay screen,
in the Screen Section of a SCREEN COBOL program. See also screen, base screen, and
overlay screen.

screen-oriented requester. A SCREEN COBOL requester that sends data from working
storage to the display screen of aterminal by way of screen templates defined in the
Screen Section of the Data Division. Similarly, such arequester receives data from the
terminal into working storage by way of Screen Section templates. It uses ACCEPT and
DISPLAY statements in the Procedure Division to interact with the display terminals.
Standard SCREEN COBOL requesters are screen-oriented. See al so message-oriented
requester.

screen overlay area. See overlay area.
screen program. A SCREEN COBOL requester program. See also SCREEN COBOL.

Screen Section. A section in the Data Division of a SCREEN COBOL source program that
describes the types and locations of fields in screens that can be displayed on aterminal.

SCUP. See SCREEN COBOL Utility Program (SCUP).

SEND operation. In SCREEN COBOL, an operation in which a transaction request message
Issent to aserver process and areply is received back from the server process. See also
server-class send operation.

server. (1) A process or program that provides services to aclient or arequester. Servers are
designed to receive request messages from clients or requesters; perform the desired
operations, such as database inquiries or updates, security verifications, numerical
calculations, or data routing to other computer systems; and return reply messagesto the
clients or requesters. A server process is arunning instance of a server program. (2) A
combination of hardware and software designed to provide services in response to
requests received from clients across a network. For example, Tandem’s Himalaya
servers provide transaction processing, database access, and other services. (In the
NonStop TS/MP and Pathway/TS manual set, the word “server” is generally used only
when definition 1 is meant; for definition 2, “system” is usually used instead of
“server.”) See also client, requester, client/server model, and requester/server model.

server class. A group of duplicate copies of a single server process, al of which execute the
same object program. Server classes are configured through the PATHMON process.

server-class send operation. The sending of a message to a Pathway server class by making
acall to aPathsend procedure. The SERVERCLASS SEND _,

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-22

Glossary SERVER object

SERVERCLASS DIALOG _BEGIN_, and SERVERCLASS DIALOG_SEND_
procedures perform server-class send operations. See also SEND operation.

SERVER object. A definition of aserver class within the configuration of a PATHMON
process.

service. A function performed by a server process or program on behalf of arequester or
client. A server can perform one or several services. The concept of a serviceis built
into the design of the BEA TUXEDO system and the NonStop TUXEDO system; for
these products, a serviceis amodule of application code that carries out a service
request.

simple token. Inthe Subsystem Programmatic Interface (SPI), atoken consisting of a token
code and a value that is either a single elementary field, such as an integer or a character
string, or afixed (nonextensible) structure. See also extensible structured token and
token (definition 2).

single-threaded. A programming model that provides a single thread of control within a
program. For example, a single-threaded server handles only one request at atime and
must compl ete that request before accepting another. See also thread and multithreaded.

special register. A dataitem defined by the SCREEN COBOL compiler, rather than
explicitly in the program. Each special register has a particular purpose and should be
used only as defined. The SCREEN COBOL language defines a different set of special
registers from those defined by the standard COBOL |anguage.

SPI. See Subsystem Programmatic Interface (SPI).

static server. A server process that the PATHMON process creates when a START SERVER
command isissued. The PATHMON process starts the number of static servers defined
by the NUMSTATIC attribute for the server class. See also dynamic server.

Structured Query Language (SQL). A relationa database language used to define,
manipulate, and control databases.

subsystem. Inthe context of the Subsystem Programmatic Interface (SPI) and the Event
Management Service (EMS), a process or collection of processes that gives users access
to a set of related resources or services. A subsystem typically controls a cohesive set of
objects. The Pathway subsystem includes PATHMON processes, TCPs, and all other
components of the PATHMON environment.

subsystem ID. In management applications, a data structure that uniquely identifies a
subsystem. The subsystem ID is specified in SPI commands to identify the target
subsystem, and in EM S event messages to identify the source of the event message.
The Pathway subsystem 1D appliesto all components of the PATHMON environment,
including PATHMON processes and TCPs.

Subsystem Programmatic Interface (SPI). A set of Guardian procedures, message formats,
and definition files that alows management applications to communicate directly with

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-23

Glossary subtype 30 process

subsystem processes, such asthe PATHMON process, for configuration and control of
objects and for event management.

subtype 30 process. A nonprivileged process that simulates terminals and communications
devices.

subvolume. A related set of files, as defined by the user, within the Guardian environment.
The name of asubvolumeisthe third of the four parts of afile name.

swap file. A temporary file created by a process for temporary storage: for example, by the
Kernel Managed Swap Facility (KM SF) on behalf of a TCP for temporary storage of
terminal context.

syncdepth. A parameter to Guardian procedure calls that sets the maximum number of
operations or messages that a process is allowed to queue before action must be taken or
areply must be performed.

syncID. A vaue used in the Guardian environment to determine whether an I/O operation
has finished. In active backup programming, afile's sync ID is used to prevent the
backup process from repeating 1/0 operations that have already been completed by the
primary process.

system name. (1) Thefirst of the four parts of a Guardian file name; also called a node name.
(2) A name that identifies the Tandem system on which a PATHMON processis
running. In SCREEN COBOL programs, this nameisgiven in SEND statements. (3) A
SCREEN COBOL word that identifies part of the Tandem operating environment; a
name can be associated with function keys or terminal display attributes.

System/T. The transaction monitor for a NonStop TUXEDO system. See also NonStop
TUXEDO application.

TACL. See Tandem Advanced Command Language (TACL).
TAL. See Transaction Application Language (TAL).

Tandem Advanced Command Language (TACL). The user interface to the Tandem
NonStop Kernel in the Guardian environment. The TACL product is both a command
interpreter and a command language.

Tandem Alliance. Tandem’s marketing and technical support program for third-party
vendors, which encourages the development of application software for the Pathway
environment. The Alliance attracts software developers, value-added resellers, and other
vendors who can provide industry-specific and general business applications for Tandem
customers.

Tandem NonStop Kernel. The operating system for Tandem NonStop systems. The
operating system does not include any application program interfaces.

Tandem NonStop Series (TNS). Tandem computers that support the Tandem NonStop
Kernel and that are based on complex instruction-set computing (CI SC) technol ogy.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-24

Glossary Tandem NonStop Series/RISC (TNS/R)

TNS processors implement the TNS instruction set. See a'so complex instruction-set
computing (CISC) and Tandem NonStop Series/RISC (TNS/R).

Tandem NonStop Series/RISC (TNS/R). Tandem computers that support the Tandem
NonStop Kernel and that are based on reduced instruction-set computing (RISC)
technology. TNS/R processors implement the RISC instruction set and are upwardly
compatible with the TNS system-level architecture. See aso reduced instruction-set
computing (RISC) and Tandem NonStop Series (TNS).

task. The sequence of SCREEN COBOL program units that are executed as aresult of a
PATHCOM START TERM or RUN PROGRAM command or an SPI START TERM or
START PROG command.

TCLPROG file. A SCREEN COBOL object library file.
TCP. Seeterminal control process (TCP).
TDA. Seetermina dataarea (TDA).

TEDIT. A Tandem text editor used to create or modify a source text file. Also called PS Text
Edit.

tell message. An informational message sent by PATHCOM or a management application to
one or more terminals controlled by a SCREEN COBOL program, to be displayed for
the terminal operators.

TELL object. A temporary object used in PATHCOM and SPI commands to define atell
message.

temporary TERM object. A TERM object created by the PATHMON process when a
PATHCOM RUN PROGRAM command or an SPI START PROG command is issued.
Temporary TERM objects are deleted by the PATHMON process when application
processing is completed or when a STOP TERM or ABORT TERM command is issued.
Names of temporary TERM objects begin with a number. See also configured TERM
object and TERM object.

terminal. An 1/O device capable of sending and receiving information over communications
lines.

terminal context. Data maintained by a TCP for each active terminal under its control.

terminal control process (TCP). A process used for terminal management and transaction
control, provided by Tandem as part of the Pathway/TS product. ATCPisa
multithreaded process that interprets compiled SCREEN COBOL requester programs
(screen programs) in the user’s application, executing the appropriate program
instructions for each 1/0 device or process the TCP is configured to handle. The TCP
coordinates communication between screen programs and their 1/0 devices or processes
and, with the help of the PATHMON process, establishes links between screen programs
and server processes. See al so requester and SCREEN COBOL.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-25

Glossary terminal data area (TDA)

terminal dataarea (TDA). In SCREEN COBOL, the areathat the TCP allocates for
terminal context data. The MAXTERMDATA parameter of the PATHCOM SET TCP
command defines the upper limit for this data area.

TERM object. A definition of atask that usesa SCREEN COBOL program to control an
input/output device such as atermina or workstation, or an input/output process such as
afront-end process. A TERM object can be either explicitly configured with an ADD
command or created by the PATHMON process through a PATHCOM RUN PROGRAM
or SPI START PROG command. TERM objects created by the latter method are called
temporary TERM objects. See also configured TERM object and temporary TERM
object.

thaw condition. A condition in which prohibition of communication between aterminal and
aserver classislifted. See also freeze condition.

thread. A task that is separately dispatched and that represents a sequential flow of control
within aprocess (for example, a TCP).

throughput. The number of transactions a system can process in a given period, such as one
second.

TMF. See Transaction Management Facility (TMF) subsystem.

TMF level recovery. Recovery of the database to a consistent state through the use of the
TMF subsystem. When afailure occurs, the TMF subsystem allows the application to
back out the entire transaction, returning the contents of the database to the valuesiit
held when the transaction was started. The application can then retry the transaction.

TNS. See Tandem NonStop Series (TNS).
TNS/R. See Tandem NonStop SeriesRISC (TNS/R).

token. (1) An attribute control element in the CONTROLLED clause of a SCREEN COBOL
program, which allows run-time control of display attributes. This token consists of an
attribute identifier and an attribute value. (2) In the Subsystem Programmatic Interface
(SPI), adistinguishable unit in a message. An SPI token consists of an identifier (token
code or token map) and atoken value. Programs place tokensin an SPI buffer by calling
the SSPUT procedure and retrieve them from the buffer by using the SSGET procedure.

transaction. An operation or a series of operations that retrieves and updates information to
reflect an exchange of goods or services. In the process of retrieving and updating
information, a transaction transforms a database from one consistent state to another.
The TMF subsystem treats a transaction as a single unit; either all of the changes made
by atransaction are made permanent (the transaction is committed) or none of the
changes are made permanent (the transaction is aborted).

Transaction Application Language (TAL). A systems programming language with many
features specific to stack-oriented Tandem NonStop systems. See aso Portable
Transaction Application Language (pTAL).

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-26

Glossary transaction backout

transaction backout. A TMF subsystem activity in which the effects of a partially completed
transaction are canceled.

Transaction Delivery Process (TDP). A multithreaded gateway process, part of the Remote
Server Call (RSC) product, that runs on a Tandem NonStop system. The TDP can be
replicated and can manage many connections and workstations at one time, as well as
multiple sessions from each workstation.

transaction identifier. A unique name that the TMF subsystem assigns to a transaction.
transaction log. See audit trail.

transaction management. The ability to coordinate transaction control functions, such as
beginning and ending transactions, committing or aborting transactions, and recovering
transactions.

Transaction M anagement Facility (TMF) subsystem. The major component of the
NonStop TM/MP product, which protects databases in online transaction processing
environments. To furnish this service, the TMF subsystem manages database
transactions, keepstrack of database activity through audit trails, and provides database
recovery methods. See also NonStop Transaction Manager/MP (NonStop TM/MP) and
transaction.

transaction mode. The operating mode of arequester program between the execution of a
BEGINTRANSACTION procedure call or statement and the execution of the associated
ENDTRANSACTION or ABORTTRANSACTION call or statement.

transaction processing. See online transaction processing (OLTP).

transaction workload. The number of transactions to be processed by an online transaction
processing application.

TRANSFER delivery system. Aninformation delivery system that enables organizations to
move and manage information efficiently within a single Tandem system or across a
network of systems. The TRANSFER delivery system supports communications
between users, 1/0 devices, and processes in the Guardian environment.

TSCODE. The object code for the part of a GDSX process that is supplied by Tandem.
TSCODE includes generic routines and services that support the development of a
multithreaded, fault-tolerant front-end process. See also USCODE and Extended
General Device Support (GDSX).

tuning. The process by which a system manager allocates and balances resources for
optimum system performance.

UMP. See unsolicited-message processing (UMP).

unsolicited message. A message that is sent to a SCREEN COBOL program and includes
application-dependent information to be processed by the program. Although the
program does not do anything to initiate the message, the message must conform to the

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-27

Glossary unsolicited-message processing (UMP)

format defined by the program. The message is sent first to the TCP. It contains a header
with information that is used by the TCP and a body with information that the TCP

deliversto the SCREEN COBOL program.

unsolicited-message processing (UM P). The feature that allows terminals running SCREEN
COBOL requesters to accept and reply to unsolicited messages sent to them by Guardian
processes outside of the PATHMON environment.

USCODE. The object code for the part of a GDSX process that is developed by the user to
provide device or access-method specifics such as control operations or data-stream
trandation. USCODE is bound with TSCODE to produce an operational GDSX process.
See also TSCODE and Extended General Device Support (GDSX).

user conversion procedure. A procedure that lets users make their own validation checks or
conversions of data passed between a SCREEN COBOL program and aterminal screen

or intelligent device.

ViewPoint application. An extensible interactive application for managing operations in the
Guardian environment. It provides tools for interacting with multiple Tandem
subsystems, including PATHCOM, allowing a system manager to easily control an
integrated Tandem system from one location.

volume. A disk drive, or apair of disk drivesthat forms amirrored disk, in the Guardian
environment. The name of a volume is the second of the four parts of afile name.

$RECEIVE. A specia Guardian file name through which a process receives and optionally
replies to messages from other processes by using Guardian procedure calls. Thisfileis
analogous to a request queue defined for aNonStop TUXEDO server.

NonStop TS/MP Pathsend and Server Programming Manual—132500
Glossary-28

— |Index
A

Aborted dialog (error 929) 6-12
Aborted dialogs, detecting 4-16/4-17
Aborted send operation (error 918) 6-9
Aborted transaction (error 934) 6-14
Aborting transactions 2-8, 2-23, B-15
ABORTTRANSACTION procedure 4-6
Access Control Server (ACS) 3-7
Application development tools 1-3
Application generator, Pathmaker 1-14

Application Transaction Monitor Interface
(ATMI) 3-11

Applications, designing
batch processing 2-27
database 2-9/2-10
example, OLTP 2-1/2-8
requester programs 2-11/2-19
server programs 2-19/2-27
transactions 2-1/2-8

Applications, Pathway
client/server capabilities 1-12
dataintegrity 1-4
development of 1-3/1-4, 1-14/1-15
distributed processing 1-7
expansion fundamentals 1-7
fault tolerance 1-5/1-6
introduction 1-1
managing 1-4
overview 1-7
performance of 1-6, 1-8
requester programs 1-9/1-10
security fundamentals 1-6
server classes 1-8
server languages 1-8
server processes 1-8

support for NonStop TUXEDO
environment 1-13

Applications, Pathway (continued)

transaction processing
scenario 1-15/1-17

Applications, programming
examples
nested server program B-53/B-67

Pathsend requester
program B-1/B-52

skeleton Pathsend
program 2-14/2-15

skeleton server program 2-25/2-27
for TMF subsystem 4-5/4-10
invoking Pathsend procedures
from C and C++ programs 5-2
from COBOLS85 programs 5-3
from Pascal programs 5-4
from TAL and pTAL programs 5-5
overview 1-1
Pathsend environment 1-10/1-11
Pathsend requesters
See Requesters, writing Pathsend

Pathsend usage
considerations 5-23/5-28

Pathway servers

See Server programs, writing
writing Pathsend requesters 3-1/3-11
writing Pathway servers 4-1/4-17

Application-Transaction Monitor Interface
(ATMI) 1-13

ASSIGNs 3-7, B-5, B-12, B-18, B-55
ATM devices 2-16

é-lil\l/“ functions, NonStop TUXEDO 1-13,
Audit trails, TMF 1-4, 2-8, 4-5

Audited and nonaudited servers 2-24
Audited files 4-7

Automatic retry, Pathsend requesters 1-9,
36
Autonomy, node 1-8

NonStop TS/MP Pathsend and Server Programming Manual—132500

Index-1

Index

AWAITIOX procedure 5-7, 5-13, 5-17,
5-25, 5-28

B

Back-end process 2-16, 2-24

BASIC, Extended, for Pathway servers 1-8
Batch processing 1-7, 2-13, 2-27

Bounds error (error 912) 6-6

Buffer length invalid (error 911) 6-6
Buffer limits A-1

C

C and C++ languages

for Pathsend requesters 1-10

for Pathway servers 1-8

invoking Pathsend procedures 5-2
Calls

See Procedure calls, Pathsend,
individual procedures

CANCEL procedure 5-25/5-26
Canceling server-class send calls 5-25/5-26
CANCELREQ procedure 5-25/5-26
Changed transid (error 930) 6-13
Checkpointing

and Pathsend 3-6

explanation of 1-5

Pathsend limitations 2-14

server considerations 4-3
Classes of data in database 2-9
Clients, NonStop TUXEDO

interoperating with 4-17

Pathsend requesters acting as 3-11
Client/server computing 2-15

capabilities 1-12

development tools 1-15

COBOLS85

example Pathsend requester
program B-53/B-67

example server program B-53/B-67

for Pathsend requesters 1-10

for Pathway servers 1-8

invoking Pathsend procedures 5-3
Code, standardizing and testing 1-3

Colon, in Pathsend procedure
parameters 5-2

Common Run-Time Environment
(CRE) 4-3
Compilers provided 1-14
Concurrent processing 2-7/2-8, 4-5
Condition code

considerations 5-23

register 5-2
Context-free

servers, using with context-sensitive
requesters 3-8, 4-4

Context-sensitive programming, requesters
canceling server-class sends 3-10
failure recovery 3-9/3-10
overview 3-8
resource utilization 3-8
using with context-free servers 3-8, 4-4

Context-sensitive programming, servers
controlling dialogs 4-14
correlating messages with dialogs 4-16
detecting aborted dialogs 4-16/4-17
detecting new dialogs 4-14
functions performed 4-13
handling dialog messages 4-14/4-15
managing dialogs 4-16
overview 4-13

Control block examples B-8, B-13, B-14,
B-23, B-25

Conversational mode 2-12
Conversational servers 4-1
CPU hatsand LINKMON processes 4-3

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-2

Index

CRE (Common Run-Time
Environment) 4-3

Creation failure, servers (error 916) 6-8
Creator default for PATHMON names 3-7
CRE_Receive Read_procedure 4-14
Crossref product 1-14

D

Data
analyzing flow of 2-2/2-3
classes of 2-9
integrity 1-4
Database
concurrency 2-7/2-8
consistency 1-4, 2-7/2-8
consistency and concurrency 4-5
fieldsin 2-9
filesin, normalizing 2-9
integrity 1-8
logical design 2-9
management systems 2-10
physical design 2-10
recordsin 2-9
relational 2-10, 4-5
DBMS (database management system)
See Database
Deadlocks
for transactions 4-10
with nested servers 2-22
Debugging
Pathway servers 4-11/4-12
toolsfor 1-14
Declarations, global B-9
Declaratives, example B-58

Design
application example 2-1/2-8
batch processing applications 2-27
database 2-9/2-10
requester programs 2-11/2-19
server programs 2-19/2-27
transactions 2-1/2-8
Detecting aborted dialogs 4-16/4-17
Development
considerations 1-3/1-4
tools 1-14/1-15

Dialog abort system message (message
-121) 4-16

Dialogs
aborted (error 929) 6-12
continuing, aborting, terminating 4-16
controlling 4-14
correlating messages with 4-16
detecting aborted 4-16/4-17
detecting new 4-13, 4-14
ended (error 931) 6-13
handling messages 4-14/4-15
invalid (error 926) 6-11
models, typesof 3-9
model, specifying 5-10, 5-15
outstanding (error 933) 6-13
too many (error 927) 6-12
using TMF subsystem 4-15
Distributed processing 1-6, 1-7

Distributed transaction processing
(DTP) 1-7

Dynamic links 3-4

NonStop TS/MP Pathsend and Server Programming Manual—132500

Index-3

Index

E

Early replies 2-23
Enscribe product 2-10, 4-5
Entry-sequenced files 2-10
Errors

See dso Errors, file-system; Failure
recovery; individual errors

dialog abort system message (message
-121) 4-16

FESCErr (error 233) 5-6, 5-7, 5-12,
5-13,5-17

handling Pathsend 6-1/6-14
Pathsend server TIMEOUT 5-27
returned by serversinreplies 4-14
server process 3-4

Errors, file-system

associ ated with Pathsend
errors 6-1/6-14

FEBoundsErr (error 22) 5-21
FEContinue (error 70) 4-14,5-7,5-13
FEEOF (error 1) 4-14

FEINUse (error 12) 6-3
FEInvalOp (error 2) 5-21
FEMissParam (error 29) 5-21
FENoBuf Space (error 31) 6-9
FENoDiscSpace (error 43) 6-14
FENoSuchDev (error 14) 6-3, 6-4
FEOK (error 0) 4-14
FEPathDown (error 201) 6-3, 6-5
FESecViol (error 48) 6-3, 6-4
FETimeout (error 40) 6-3
FETimeout (error 440) 6-4

Requesting process has no... (error
75) 4-6

timeout error (error 40) 4-11/4-12
Event Management Service (EMS) 1-4
Examples

nested server program B-53/B-67

Pathsend requester program B-1/B-52
Extended BASIC, for Pathway servers 1-8

Extended General Device Support (GDSX)
processes 1-10, 2-16/2-18, 2-24

F

Failure recovery
context-sensitive requesters 3-9/3-10
fault-tolerant programming
requesters 3-5/3-6
servers 4-10
LINKMON limit errors 3-4
LINKMON process 4-3
overview 3-3/3-4
Pathsend and TMF subsystem 3-5
Pathsend requester 4-2
server process 3-4
servers and TMF subsystem 4-6/4-10
Fault tolerance

and servers using the TMF
subsystem 2-23

overview 1-5, 1-6

Pathsend requester
programming 3-5/3-6

Pathway server programming 4-10
FEBoundsErr (error 22) 5-21
FEContinue (error 70) 3-10, 4-14, 5-7, 5-13
FEEOF (error 1) 3-9,4-14
FEINUse (error 12) 6-3
FEInvalOp (error 2) 5-21
FEMissParam (error 29) 5-21
FENoBufSpace (error 31) 6-9
FENoDiscSpace (error 43) 6-14
FENoSuchDev (error 14) 6-3, 6-4
FEOK (error 0) 4-14
FEPathDown (error 201) 6-3, 6-5
FEScChangedTransid (error 930) 6-13

FEScDialogAborted (error 929) 3-4, 3-9,
6-12

FEScDialogEnded (error 931) 6-13
FEScDiaoglnvalid (error 926) 6-11
FEScDiaogOutstanding (error 933) 6-13

NonStop TS/MP Pathsend and Server Programming Manual—132500

Index-4

Index

FESCErr (error 233) 5-6, 5-7, 5-12, 5-13,
5-17

FEScError (error 233) 3-9
FEScInvalidBufferLength (error 911) 6-6
FEScInvalidFlagsValue (error 909) 6-6
FEScInvalidPathmonName (error 901) 6-2
FEScInvalidSegmentld (error 907) 6-5

FEScInvalidServerClassName (error
900) 6-2

FEScInvalidTimeoutValue (error 919) 6-9
FEScLinkmonConnect (error 947) 6-14
FEScMissingParameter (error 910) 6-6
FEScNoSegmentinUse (error 908) 6-5
FEScNoSendEverCalled (error 906) 6-5

FEScNoServerLinkAvailable (error
905) 4-3,6-5

FEScOutstandingSend (error 928) 6-12
FEScParameterBoundsError (error 912) 6-6

FEScPathmonConnect (error
902) 4-11/4-12, 6-3

FEScPathmonMessage (error 903) 6-4

FEScPathmonShutDown (error
915) 4-11/4-12, 6-7

FEScPFSUseError (error 920) 6-9
FEScSendOperationAborted (error 918) 6-9

FeScSendOperationAborted (error
918) 5-27

FEScServerClassFrozen (error 913) 6-7

FEScServerClassTmfViolation (error

917) 3-5,6-8

FEScServerCreationFailure (error 916) 6-8
gIELlScServerLi nkConnect (error 904) 3-4,
FEScTooManyDiaogs (error 927) 6-12
FEScTooManyPathmons (error 921) 6-9
FEScTooManyRequesters (error 925) 6-11

FEScTooManySendRequests (error
924) 6-11
FEScTooManyServerClasses (error
922) 6-10

FEScTooManyServerLinks (error 923) 4-3,
6-10

FEScTransactionAborted (error 934) 6-14
FEScUnknownServerClass (error 914) 6-7
FESecViol (error 48) 6-3, 6-4
FETimeout (error 40) 6-3, 6-4
Fields, database 2-9
FILEINFO 5-26
Files
database 2-9/2-10
entry-sequenced 2-10

1/0O, in SCREEN COBOL
requesters 2-12

key-sequenced 2-10

relative 2-10

unstructured 2-10
File-number parameter 5-26
File-system errors

See Errors, file-system

FILE_GETRECEIVEINFO _
procedure 4-14, 4-16

flag parameter 3-9

Flags, invalid value (error 909) 6-6
FORTRAN, for Pathway servers 1-8
Front-end process 2-16/2-18

Frozen server class (error 913) 6-7

Fundamentals of Tandem NonStop
systems 1-3/1-7

G

GDSX (Extended General Device Support)
processes 1-10, 2-16/2-18, 2-24

Guardian operating environment
distributed processing in 1-7
processesin 1-5
security features of 1-6
serversin 1-8, 2-19

H

Halts, CPU 4-3

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-5

Index

IDS
See Intelligent device support (IDS)
Industrial robots 2-16
Input file structure example B-6
Inspect product 1-14
Intelligent device support (IDS)
description 2-12
GDSX programming for 2-17
overview 1-7
RSC requesters 1-12, 2-15
Intelligent mode 2-12
Interoperation

of Pathsend requesters with NonStop
TUXEDO servers 1-13

of Pathway servers with NonStop
TUXEDO requesters (clients) 1-13

with NonStop TUXEDO requesters
(clients) 4-17

with NonStop TUXEDO servers 3-11

I nterprocess communication,
Pathsend 1-11, 3-2

Invalid buffer length (error 911) 6-6
Invalid dialog (error 926) 6-11
Invalid flagsValue (error 909) 6-6
Invalid PATHMON name (error 901) 6-2
Invalid server class name (error 900) 6-2
Invalid timeout value (error 919) 6-9
/0
cancel outstanding, example B-19
compl ete outstanding, example B-20
starting example B-13

K

Key field, database 2-9
Key-sequenced files 2-10

L

L anguages supported
Pathsend requesters 1-10
Pathway servers 1-8
Limits, Pathsend environment A-1
link denied (error 4) 4-3

Link management, with LINKMON
process 1-11, 2-13
LINKMON process
connect error (error 947) 6-14
description 1-11
fallures 4-3
GDSX, relationship to 2-17/2-18
limitserrors 3-4
RSC, relationshipto 1-12, 2-15
servers, relationship to 4-2
TMF transaction identifiers 5-24
Links
allocating space for 4-3
server connect error (error 904) 6-4
static and dynamic 3-4
too many server links (error 923) 6-10
Locking of records 4-8, 4-10

M
Manageability
of Pathway applications 1-4
provided by server classes 1-8
Management interfaces 1-8, 2-19
See also PATHCOM interface, SPI
(Subsystem Programmatic I nterface)
Message buffer

SERVERCLASS DIALOG BEGIN _
procedure 5-8

SERVERCLASS DIALOG_SEND _
procedure 5-14

SERVERCLASS SEND _
procedure 5-18

NonStop TS/MP Pathsend and Server Programming Manual—132500

Index-6

Index

Messages
dialog abort system message (message
-121) 4-16

error, checking for 2-14

example print to terminal and
abend B-15

for checkpointing 1-5
handling in adialog 4-14/4-15
processing example B-60
receiving by servers 4-2

reply size, specifying maximum 5-9,
5-14, 5-19

unrecognizable (error 903) 6-4
Missing parameter (error 910) 6-6
Modes, terminal 2-12
Modularity 1-8
Multiprocessing 1-6
Multithreading

GDSX feature 2-16

in server design 2-20

Pathsend requesters 1-9

N

Native System /T clients, NonStop
TUXEDO, interoperating with 4-17

Nested servers 4-4
deadlocks 2-22
designing 2-22/2-23
example program B-53/B-67
overview 2-13
Network security, Pathsend requesters 3-6
No send ever called (error 906) 6-5
No server link available (error 905) 6-5
Node autonomy 1-8
Nonaudited files 4-7
Nonretryable requests, Pathsend 3-6

NonStop Kernel Open System Services
(OSS) server processes
See Open System Services (OSS) server
processes

NONSTOP parameter 4-10

NonStop SQL/MP (Structured Query
Language/MP) product 2-10, 4-5

NonStop systems 1-5/1-7

NonStop Transaction Manager/MP
(NonStop TM/MP)

advantages 1-3

application restrictions 4-7

audited files 4-7

context-free Pathsend requesters 3-5
context-sensitive requesters 3-9/3-10
dialogs, using with 4-15
fault-tolerant servers 4-10

grouping transaction operations 4-8/4-9
limits A-1

Pathmaker software 1-15

Pathsend procedure calls 3-5

record locking 4-8

requester example B-1/B-52
retryable operations 4-7

server application structure 4-5/4-6
server classviolation (error 917) 6-8
server process pairs 2-23

TMF OFF server parameter 3-5
transaction deadlocks 4-10

usage considerations 5-24

writing serversto use 4-5/4-10

NonStop Transaction Servicess MP (NonStop
TS/MP) product xi, 1-1, 1-3

NonStop TUXEDO
applications, interoperation with 1-13,
3-11, 4-17
requesters (clients), writing Pathway
serversfor 1-13, 4-17
servers, writing Pathway requesters
for 3-11

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-7

Index

Nowait send operations
errorsfor 6-1
l[imit on number of A-1
procedure callsfor 5-7, 5-13, 5-17
specifying 5-9, 5-15, 5-20
usage considerations 5-23/5-24, 5-28
No-early-reply rule 2-23

O

OLTP
application design example 2-1/2-8
development considerations 1-3/1-4
expanding systemsfor 1-7
importance of fault tolerance for 1-5
manageability 1-4
Pathway environment 1-3/1-7

support for NonStop TUXEDO
environment 1-13

transaction processing
scenario 1-15/1-17

Online transaction processing (OLTP)
See OLTP

Open System Services (OSS)
processes 3-11

Pathway servers 2-19

Open System Services (OSS) server
processes 1-8, 2-19, 3-11

Operation number, server-class 5-24/5-26
Output record example B-6

Outstanding send (error 928) 6-12
OWNER attribute, server 3-7

P

Parameter bounds error (error 912) 6-6
Parameter missing (error 910) 6-6

Parameter pairs, in Pathsend procedure
syntax 5-2

PARAMs example B-6, B-13

Pascal
for Pathsend requesters 1-10
for Pathway servers 1-8
invoking Pathsend procedures 5-4
PATHCOM interface
description 1-4
use in managing servers 1-8, 2-19
Pathmaker product 1-14
PATHMON process
avoiding coded names 3-7
connect error (error 902) 6-3
description 1-4
fault-tolerance role 1-6
invalid name (error 901) 6-2
name, specifying 5-18

relationship to LINKMON
processes 1-11

shutdown (error 915) 6-7
too many (error 921) 6-9
unrecognizable message (error 903) 6-4

Pathsend application program interface
(API)

See aso Requesters, writing Pathsend,;
individual procedures

error handling 6-1/6-14

example nested server

program B-53/B-67

example requester program B-1/B-52

failures, LINKMON 4-3

failures, requester 4-2

interprocess communication 1-11, 3-2
limits, programming environment A-1

LINKMON processes, relationship
to 1-11

nonretryable requests 3-6
processes using 1-10
programming languages supported 1-10
requesters, overview 1-9
timeout considerations 5-27/5-28

NonStop TS/MP Pathsend and Server Programming Manual—132500

Index-8

Index

Pathsend application program interface
(API) (continued)

transaction processing
scenario 1-15/1-17

Pathsend procedure calls
See dso individual procedures
errorsreturned 6-1/6-14
invoking from C and C++ programs 5-2
invoking from COBOL 85 programs 5-3
invoking from Pascal programs 5-4

invoking from TAL and pTAL
programs 5-5

overview 5-1
return errors 6-1
usage considerations 5-23/5-28

use by NonStop TUXEDO
requesters 4-17

Pathsend requesters
checkpointing limitations 2-14
description 1-9
design considerations 2-13/2-14
program structure 2-14/2-15

Pathway applications
See Applications, Pathway;
Applications, programming;
Applications, designing

Pathway environment
See aso Applications, programming;
Applications, designing
advantages of 1-3/1-7
productsfor 1-1,2-11

Pathway servers

See also Server classes; Server
processes,; Server programs;
Applications, programming;
Applications, designing
description 1-7

Pathway to TUXEDO trandlation

server 1-13, 3-11

Pathway/TS product xi, 1-1, 1-3

Performance
provided by Pathsend requesters 1-9
provided by Pathway applications 1-6
provided by server processes 1-8

Personal computer support 2-15

PFS use error (error 920) 6-9

POET (Pathway Open Environment ToolKit)
product 1-3, 1-12, 2-16

Portable Transaction Application Language
See pTAL

POS (point-of-sale) devices 2-16

Presentation services 1-7

Procedure calls, Pathsend
See dso individual procedures
errorsreturned 6-1/6-14
invoking from C and C++ programs 5-2
invoking from COBOL 85 programs 5-3
invoking from Pascal programs 5-4

invoking from TAL and pTAL
programs 5-5

overview 3-1,5-1

return errors 6-1

summary 5-1

usage considerations 5-23/5-28
Process pairs 1-5, 2-23
Processes

description 1-5

distribution of 1-6

primary and backup 1-5

replication of 1-6

starting up example B-4
Programming

See Applications, programming;

Applications, designing
Programming languages

Pathsend requesters 1-10

Pathway servers 1-8
PROGRAM-STATUS special register 4-10

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-9

Index

pTAL

for Pathsend requesters 1-10

for Pathway servers 1-8

invoking Pathsend procedures 5-5
PWY 2TUX trandation server 1-13, 3-11

Q

Queuing of incomplete transactions 2-23

R

RDBMS (relational database management
system)

See Database management systems
RDF

See Remote Duplicate Database Facility
(RDF)

Read operations, repeatable 4-8
RECEIVE messages

allocating space 4-3

determining new dialogs 4-13
Record locking 4-8, 4-10
Records, database 2-9
Recovery

context-sensitive requesters 3-9/3-10

fault-tolerant programming

requesters 3-5/3-6
servers 4-10

LINKMON limit errors 3-4

LINKMON process 4-3

Pathsend and TMF subsystem 3-5

Pathsend requester failures 4-2

requester overview 3-3/3-4

server process failures 3-4

servers and TMF subsystem 4-5/4-10
Relational database management 2-10, 4-5
Relativefiles 2-10

Remote Duplicate Database Facility
(RDF) 2-11

Remote Server Call
See RSC (Remote Server Call)
Repeatabl e requests, Pathsend 3-6
Reply format, server program 4-1
Requesters
See aso Applications, programming;
Applications, designing; Requesters,
writing Pathsend
clientsusing POET 2-16
clientsusing RSC 2-15
debugging 1-14
description 1-7
designing 2-11/2-19
dividing functions with servers 2-19
Pathmaker, using to develop 1-14
Pathsend
description 1-9
design considerations 2-13/2-14
limits A-1
nested servers 2-22/2-23
program structure 2-14/2-15
SCREEN COBOL
description 1-10
IDS 2-12
standard 2-12
too many(error 925) 6-11

transaction processing
scenario 1-15/1-17

typesof 1-9, 2-11
using GDSX 2-16/2-18

Requesters, writing Pathsend
automatic retry 3-6
avoiding coded PATHMON names 3-7
context-sensitive programming 3-8/3-10
example program B-1/B-52
failure recovery overview 3-3/3-4
fault-tolerant programming 3-5/3-6
interprocess communication 3-2
LINKMON limit errors 3-4

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-10

Index

Requesters, writing Pathsend (continued)

NonStop TUXEDO, interoperating
with 3-11

overview 3-3
procedure calls,list of 3-1
retryable requests 3-6
security issues 3-6/3-7
server process failures 3-4
sharing servers 4-1
TMF subsystem 3-5
using ASSIGNs 3-7
Requesting process has no... (error 75) 4-6
Request/response servers 4-1
Resource utilization 3-8
Response time 1-6
Retry mechanism, Pathsend calls 3-5
See a'so Fault tolerance
Retryable requests, Pathsend 3-6
Retryable server operations, TMF 4-7
Return errors 6-1
Robots, industrial 2-16
RSC (Remote Server Call)
role in Pathway environment 1-12, 2-15
security issues 3-7
server programming considerations 4-4

S

SCF (Subsystem Control Facility), usein
managing GDSX processes 2-18

SCREEN COBOL
context sensitivity not supported 4-13
debugging 1-14
devices supported 2-12
Pathmaker application generator 1-14
requesters
description 1-10
designing 2-12/2-13
GDSX dlternative 2-18
server programming considerations 4-3

SCREEN COBOL (continued)

unsolicited message processing
(UMP) 2-12

Screen programs 2-12

scsend-op-num parameter 5-10, 5-15, 5-20,
5-24/5-26

Security

for Pathsend requesters 2-14

Pathsend programming issues 3-6/3-7

system 1-6
SECURITY attribute, server 3-7
Send operation aborted (error 918) 6-9
Send operation outstanding (error 928) 6-12
Send requests, too many (error 924) 6-11
Server classfrozen (error 913) 6-7
Server class unknown (error 914) 6-7
Server classes

accessing

See Requesters

description 1-8

fault tolerancerole 1-5

limits A-1

names, specifying 5-8, 5-18

security for Pathsend requesters 3-7

send operation number 5-10, 5-15,
5-20, 5-24/5-26

timeouts, specifying 5-27

TMF violation (error 917) 6-8
Server processes

benefits 1-8

description 1-7

transaction integrity 1-5

transaction processing
scenario 1-15/1-17

Server programs
aborting transactions 2-23
audited and nonaudited 2-24
debugging 1-14
description 1-7
designing 2-19/2-27

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-11

Index

Server programs (continued)
dividing functions with requesters 2-19
example nested server B-53/B-67
GDSX back-end process, using 2-24
languagesfor 1-8
nested 2-13
nested servers 2-22/2-23
no-early-reply rule 2-23

packaging individual
functions 2-21/2-22

Pathmaker, using to develop 1-14
single-threaded and multithreaded 2-20
structure of 2-25/2-27

TMF subsystem and fault
tolerance 2-23

utilization of 2-20
Server reply code
for RSC clients 4-4
for SCREEN COBOL requesters 4-3

SERVERCLASS DIALOG_ABORT _
procedure

overview 3-8
syntax and usage 5-6

SERVERCLASS DIALOG_BEGIN_
procedure

canceling 5-25/5-26

flag parameter 3-9
overview 3-8

syntax and usage 5-7/5-11
TMF considerations 5-24

SERVERCLASS DIALOG_END _
procedure

overview 3-8
syntax and usage 5-12

SERVERCLASS DIALOG_SEND _
procedure

canceling 5-25/5-26
syntax and usage 5-13/5-16
TMF considerations 5-24

SERVERCLASS SEND _ procedure
canceling 5-25/5-26
example B-31, B-56, B-65
nowait considerations 5-23/5-24, 5-28
overview 3-3
syntax and usage 5-17/5-20
TMF considerations 5-24
waited considerations 5-23, 5-27
SERVERCLASS SEND_INFO _ procedure
example B-17, B-56, B-66
overview 3-3
syntax and usage 5-21/5-22
Servers

See Server classes; Server processes;
Server programs; Applications,
programming; Applications, designing
canceling sends to server classes 3-10
context-sensitive

errors returned 4-14

functions of 4-13
Zo4ntext-sensitive requesters, using 3-8,
conversational (context-sensitive) 4-1
creation failure (error 916) 6-8
debugging 4-11/4-12
fallures and Pathsend 3-4, 4-2

interoperation with TUXEDO
requesters 4-17

link error (error 904) 6-4

nested 4-4

no link available (error 905) 6-5
NonStop TUXEDO 3-11

PWY 2TUX trandation server 3-11
request/response (context-free) 4-1
timeouts, specifying 5-27

too many links (error 923) 6-10

too many server classes (error 922) 6-10

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-12

Index

Servers, writing

context-free with context-sensitive
requesters 4-4

context-sensitive

programming 4-13/4-17
debugging 4-11/4-12

Guardian 4-2, 4-3

linkage space considerations 4-3
nested servers 4-4

overview 4-1

Pathway 4-2

reply formats 4-1

RSC requester considerations 4-4

SCREEN COBOL requester
considerations 4-3

sharing by different requesters 4-1
TMF subsystem
application structure 4-5/4-6
audited files 4-7
fault-tolerant programming 4-10

grouping transaction

operations 4-8/4-9

overview 4-5

record locking 4-8

restrictions 4-7

transaction deadlocks 4-10
Server-class nameinvalid (error 900) 6-2
Server-to-server communication

See Nested servers

Single-threading in server design 2-20, 2-23
Software development tools 1-14/1-15

Special registers, PROGRAM-
STATUS 4-10

SPI (Subsystem Programmatic I nterface)
description 1-4
use in managing GDSX processes 2-18
use in managing servers 1-8, 2-19

Standardizing and testing code 1-3

Static links 3-4

Subsystem Control Facility (SCF), usein
managing GDSX processes 2-18

Subsystem Programmatic Interface (SPI)

See SPI (Subsystem Programmatic
Interface)

Synchronization IDs 3-6
Syntax
Seeindividual procedures

System /T clients, NonStop TUXEDO,
interoperating with 4-17

Systems
expanding 1-7
NonStop 1-5/1-7
security 1-6

T

Tables, NonStop SQL/MP 2-10
TAL

example Pathsend requester
program B-1/B-52

for Pathsend requesters 1-10

for Pathway servers 1-8

invoking Pathsend procedures 5-5
Tandem

Alliance 1-4

computing fundamentals 1-3/1-7
TCP (terminal control process)

fault-tolerance role 1-6

features provided by 1-10

IDSrequesters 2-12

RSC requesters 2-15
TDP (Transaction Delivery Process) 2-15
TEDIT text editor 1-14
Terminals 2-12

TERMINATION-STATUS and -
SUBSTATUS 4-11/4-12

Testing and standardizing code 1-4
Third-party vendors 1-4
Throughput, system 1-6

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-13

Index

timelimit parameter, AWAITIOX
procedure 5-28

TIMEOUT attribute 5-27
Timeout error (error 40) 4-11/4-12
Timeout errors 4-11/4-12
Timeouts

invalid value (error 919) 6-9

Pathsend usage considerations 2-14,
5-27/5-28

send compl etion, specifying
maximum 5-9, 5-15, 5-19

servers, specifying 5-27
server-classes, specifying 5-27
TMF OFF server parameter 3-5, 5-24
TMF (Transaction Management Facility)
audit-trail files 2-8
defining transactions 2-6
description 1-4
fault-tolerance role 1-6
Too many dialogs (error 927) 6-12
Too many Pathmons (error 921) 6-9
Too many requesters (error 925) 6-11
Too many send requests (error 924) 6-11
Too many server classes (error 922) 6-10
Too many server links (error 923) 6-10
Tools, software development 1-14/1-15
tpinit() ATMI function 3-11
Transaction Application Language
See TAL

Transaction identifiers and LINKMON
processes 5-24

Transaction Management Facility
See TMF
Transaction processing
See OLTP
Transaction processing scenario 1-15/1-17
Transactions
aborted (error 934) 6-14
aborting 2-8, 2-23
backout 2-8

Transactions (continued)
concurrency control 2-7/2-8
cost per 1-6

database consistency and
concurrency 4-5

deadlocks 4-10

defining for the TMF subsystem 2-6

designing an application with 2-1/2-8

example abort B-15

grouping operations 4-8/4-9

identifier 2-6

identifier changed (error 930) 6-13

identifying components 2-4/2-5

integrity 1-5

protecting 2-6/2-8

start with TMF, example B-13
TSCODE, GDSX process 2-16
TUX2PWY trandation server 1-13, 4-17
TUXEDO

See NonStop TUXEDO
TUXEDO requesters (clients)

writing Pathway serversfor 1-13, 4-17

TUXEDO to Pathway translation
server 1-13,4-17

U

Unknown server class (error 914) 6-7

Unsolicited message processing
(UMP) 2-12

Unstructured files 2-10

USCODE, GDSX process 2-16

Utilities, software development 1-14/1-15
Utilization of resources 3-8

V

Vendors, third-party 1-4

NonStop TS/MP Pathsend and Server Programming Manual—132500

Index-14

Index

W

Waited send operations
errorsfor 6-1
procedure callsfor 5-7, 5-13, 5-17
specifying 5-9, 5-15, 5-20
usage considerations 5-23, 5-27

Workstation clients, NonStop TUXEDO,
interoperating with 4-17

Special Character

$RECEIVE messages
allocating space 4-3
determining new dialogs 4-13

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-15

Index Special Character

NonStop TS/MP Pathsend and Server Programming Manual—132500
Index-16

	New and Changed Information
	About This Manual
	Notation Conventions
	1 Introduction to Pathway Application Programming
	Which Sections Do You Need?
	Advantages of the Pathway Environment
	Ease of Development
	Manageability
	Data Integrity
	Fault Tolerance
	Other Tandem Fundamentals

	Pathway Applications
	Servers and Server Classes
	Requesters

	The Pathsend Environment
	Pathsend Processes
	LINKMON Processes

	Client/Server Capabilities
	Other Transaction Processing Environments
	Development Tools and Utilities
	Programming Languages and Related Tools
	The Inspect Symbolic Debugger
	The Pathmaker Application Generator
	Client/Server Development Tools

	Transaction Processing Scenario

	2 Designing Your Application
	Designing Transactions
	Analyzing Data Flow
	Identifying Transaction Components
	Protecting Transactions

	Designing the Database
	Logical Design
	Physical Design
	Database Managers
	Remote Duplicate Database Facility (RDF)

	Designing Requester Programs
	SCREEN COBOL Requesters
	IDS Requesters
	Pathsend Requesters
	Clients Using RSC and POET
	Requesters Using GDSX
	Dividing Function Between Requester and Server

	Designing Server Programs
	Design Considerations
	Server Program Structure

	Designing Applications for Batch Processing

	3 Writing Pathsend Requesters
	The Pathsend Procedure Calls
	Interprocess Communication in the Pathsend Environment
	Basic Pathsend Programming
	Programming for Failure Recovery
	Security Issues
	Avoiding Coded PATHMON Names

	Context-Sensitive Pathsend Programming
	Using Context-Sensitive Requesters With Context-Free Servers
	Resource Utilization
	Programming for Failure�Recovery
	Cancellation of Server-Class Send Operations

	Writing Requesters That Interoperate With NonStop�TUXEDO�Servers

	4 Writing Pathway Servers
	Basic Pathway Server Programming
	Servers Shared by Different Types of Requesters
	Guardian Servers and Pathway Servers
	Server Stop Protocol
	Handling of Messages from $RECEIVE
	Pathsend Requester Failures
	LINKMON Process Failures
	Linkage Space Considerations
	Considerations for Servers Used With SCREEN COBOL Requesters
	Consideration for Servers Used With Remote Server Call (RSC) Clients
	Nested Servers
	Using Context-Free Servers With Context-Sensitive Requesters

	Considerations for Servers That Use the TMF Subsystem
	Recommended Structure for Applications
	Writing a Server to Use the TMF Subsystem
	Using Audited and Nonaudited Files
	Locking Records
	Grouping Transaction Operations
	Servers as Process Pairs
	Transaction Deadlocks

	Considerations for Debugging Pathway�Servers
	LINKMON Process and TCP Timeouts
	PATHMON Process Timeouts
	Server Timeouts
	Avoiding Timeout Errors

	Writing Context-Sensitive Servers
	Functions of a Context-Sensitive Server
	Detecting a Newly Established Dialog
	Receiving, Servicing, and Replying to Messages�in�a�Dialog
	Correlating Messages With a Dialog
	Continuing a Dialog
	Aborting a Dialog
	Terminating a Dialog
	Detecting an Aborted Dialog

	Writing Pathway Servers That Interoperate With TUXEDO Requesters

	5 Pathsend Procedure Call Reference
	Calls From C or C++
	Calls From COBOL85
	Calls From Pascal
	Calls From TAL or pTAL
	SERVERCLASS_DIALOG_ABORT_ Procedure
	Syntax
	Considerations

	SERVERCLASS_DIALOG_BEGIN_ Procedure
	Syntax
	Considerations

	SERVERCLASS_DIALOG_END_ Procedure
	Syntax
	Considerations

	SERVERCLASS_DIALOG_SEND_ Procedure
	Syntax
	Considerations

	SERVERCLASS_SEND_ Procedure
	Syntax
	Considerations

	SERVERCLASS_SEND_INFO_ Procedure
	Syntax
	Considerations

	Usage Considerations for Pathsend�Procedures
	Condition Code
	Waited I/O
	Nowait I/O
	Calls Within a TMF Transaction
	Server-Class Send Operation Number
	Timeout Considerations for Pathsend Programming

	6 Pathsend Errors
	Types of Errors Returned by the Pathsend�Procedures
	Descriptions of Pathsend�Errors

	A NonStop TS/MP Limits for Pathsend Requesters
	B Examples
	Pathsend Requester Example
	Nested Server Example

	Glossary
	Index

