
Compaq NonStop™
Pathway/iTS TCP and
Terminal Programming
Guide
Abstract

This manual is a guide for programmers who are writing SCREEN COBOL requesters to be
used in Pathway applications.

Product Version

Pathway/iTS 1.0

Part Number Published

426751-001 October 2000

Document History
Part Number Product Version Published

110075 Pathway/TS D30+ July 1995

121308 Pathway/TS D40 December 1995

426751-001 Pathway/iTS 1.0 October 2000
Ordering Information
For manual ordering information: domestic U.S. customers, call 1-800-243-6886; international customers, contact
your local sales representative.

Document Disclaimer
Information contained in a manual is subject to change without notice. Please check with your authorized
representative to make sure you have the most recent information.

Export Statement
Export of the information contained in this manual may require authorization from the U.S. Department of
Commerce.

Examples
Examples and sample programs are for illustration only and may not be suited for your particular purpose. The
inclusion of examples and sample programs in the documentation does not warrant, guarantee, or make any
representations regarding the use or the results of the use of any examples or sample programs in any
documentation. You should verify the applicability of any example or sample program before placing the software
into productive use.

U.S. Government Customers
FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE:

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
Section 52.227-19 of the FARS Computer Software—Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in
DAR 7-104.9(a). This computer software is submitted with “restricted rights.” Use, duplication or disclosure is
subject to the restrictions as set forth in NASA FAR SUP 18-52 227-79 (April 1985) “Commercial Computer
Software—Restricted Rights (April 1985).” If the contract contains the Clause at 18-52 227-74 “Rights in Data
General” then the “Alternate III” clause applies.

U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished — All rights reserved under the Copyright Laws of the United States.

Compaq NonStop™ Pathway/iTS
TCP and Terminal Programming
Guide
Index Examples Figures Tables
What’s New in This Manual ix

Manual Information ix

New and Changed Information ix

About This Manual xi

Who Should Read This Manual xi

Related Documentation xi

Your Comments Invited xii

Notation Conventions xiii

1. Introduction to TCP and Terminal Application Programming
Advantages of the Pathway Environment 1-2

Ease of Development 1-2

Manageability 1-3

Data Integrity 1-4

Fault Tolerance 1-4

Other Fundamentals of NonStop™ Himalaya Systems 1-5

Pathway Applications 1-7

Servers and Server Classes 1-7

Requesters 1-8

Client/Server Capabilities 1-10

Other Transaction Processing Environments 1-10

Development Tools and Utilities 1-11

Programming Languages and Related Tools 1-11

The Inspect Symbolic Debugger 1-11

The SCREEN COBOL Utility Program (SCUP) 1-11

The Pathmaker Application Generator 1-12

The Enable Product 1-13
Compaq Computer Corporation—426751-001
i

Contents 1. Introduction to TCP and Terminal Application
Programming (continued)
1. Introduction to TCP and Terminal Application
Programming (continued)
Development Tools and Utilities (continued)

Client/Server Development Tools 1-13

Transaction Processing Scenarios 1-13

Transaction From a Terminal 1-14

Transaction From an Intelligent Device 1-15

2. Designing Your Application
Designing Transactions 2-1

Analyzing Data Flow 2-2

Identifying Transaction Components 2-4

Protecting Transactions 2-6

Designing the Database 2-8

Logical Design 2-8

Physical Design 2-9

Database Managers 2-9

Remote Duplicate Database Facility (RDF) 2-10

Designing Requester Programs 2-10

SCREEN COBOL Requesters 2-11

IDS Requesters 2-16

Pathsend Requesters 2-18

Clients Using RSC/MP 2-19

Requesters Using GDSX 2-20

Dividing Function Between Requester and Server 2-22

Designing Server Programs 2-22

Designing Applications for Batch Processing 2-23

3. Programming for Specific Terminals
Using IBM 3270 Terminals 3-1

Screen Size 3-1

Controlling the Screen Modes 3-2

Positioning the Screen Fields 3-3

Positioning the Cursor 3-3
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
ii

Contents 3. Programming for Specific Terminals (continued)
3. Programming for Specific Terminals (continued)
Using IBM 3270 Terminals (continued)

Using IBM 3270 Function Keys 3-4

Using Extended Field Attributes 3-4

Using 6520 Terminals 3-11

Controlling the Screen Modes 3-11

Positioning the Screen Fields 3-11

Using 6530 Terminals 3-12

Return-Key Function 3-12

Internal Function-Key Queuing 3-13

Using EM6530PC on a 6540 Personal Computer 3-13

Using Conversational Terminals 3-14

Conversational-Mode Program 3-14

Designating Conversational Terminals 3-15

Input Control Characters 3-15

Displaying Information 3-16

Accepting Information 3-16

Using Intelligent-Mode Devices 3-17

Using Simulated Devices 3-18

Using Dial-in Terminals 3-19

4. Writing User Conversion Procedures
User Conversion Procedures 4-1

User-Written User Conversion Procedures 4-2

Coding the User Conversion Procedures and Creating the User Library 4-2

Restrictions on User Conversion Procedures 4-4

Screen Input Procedures 4-4

Screen Output Procedures 4-6

3270 Key Mapping 4-7

Intelligent Device Input Procedures 4-10

Intelligent Device Output Procedures 4-13
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
iii

Contents 5. Managing Transactions With the TMF Subsystem
5. Managing Transactions With the TMF Subsystem
Task Overview 5-1

TMF Application Structure 5-2

TMF Programming in SCREEN COBOL 5-3

Transaction Mode Use 5-3

SCREEN COBOL Verbs for the TMF Subsystem 5-4

SCREEN COBOL Special Registers for the TMF Subsystem 5-7

Interaction Between the PATHMON Environment and the TMF Subsystem 5-8

SET SERVER Command and the TMF Subsystem 5-9

SET TERM and SET PROGRAM Commands and the TMF Subsystem 5-9

Effect of TMF Parameters on SCREEN COBOL SEND Operations 5-10

Timeouts on SEND Operations to Servers 5-11

TCP Checkpointing Strategy 5-12

Precautions for Using TMF Parameters 5-13

6. Programming for Intelligent Devices
The SEND MESSAGE Statement 6-2

Using Delimiters and the RESULTING COUNT Clause 6-3

Declaring Delimiters 6-3

Sample Declarations 6-3

Processing Field Delimiters on Input 6-5

Using Field Delimiters on Output 6-5

Using Message Delimiters 6-6

Using Delimited Format With Delimiters Turned Off 6-7

Using TRANSFORM Statements 6-8

Example 1: Disassembling Input Messages 6-8

Example 2: Assembling Output Messages 6-11

Using PRESENT IF Clauses 6-12

Error Processing and Debugging Techniques 6-15

ON ERROR Processing 6-15

FIELD STATUS Processing 6-15
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
iv

Contents 7. Processing Unsolicited Messages
7. Processing Unsolicited Messages
Detecting the Arrival of Unsolicited Messages 7-2

Accepting Unsolicited Messages 7-2

Replying to Unsolicited Messages 7-2

The PW-TCP-SYSTEM-NAME and PW-TCP-PROCESS-NAME Special
Registers 7-3

The PW-USE-NEW-CURSOR Special Register 7-3

Unsolicited-Message TERMINATION-STATUS Values 7-4

Pathway/iTS Error Codes 7-5

UMP Programming Examples 7-6

Polling the PW-UNSOLICITED-MESSAGE-QUEUED Register 7-6

Using Waited RECEIVE UNSOLICITED Statements 7-7

Using ESCAPE ON UNSOLICITED MESSAGE Clauses 7-8

ESCAPE ON UNSOLICITED MESSAGE Design Considerations 7-9

Message Processing Requiring No Terminal Interaction 7-11

Message Processing Requiring Only Terminal Output 7-12

Message Processing Requiring Both Input and Output 7-13

Sending Unsolicited Messages to SCREEN COBOL Requesters 7-14

Unsolicited-Message Layout, Reply Layout, and Error Codes 7-15

Unsolicited-Message Layout 7-15

Unsolicited-Message Reply Layout 7-17

Unsolicited-Message Error Codes 7-19

UMP Configuration Parameters 7-20

8. Processing Double-Byte Character Sets
Device Types 8-1

Determination of the Character Set 8-2

Data-Item Considerations 8-2

Mixed Data Items 8-2

Subscripting Considerations 8-3

Developing SCREEN COBOL Programs for Double-Byte Character Sets 8-4

Environment Division 8-4

Data Division 8-6

Procedure Division 8-13
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
v

Contents 8. Processing Double-Byte Character
Sets (continued)
8. Processing Double-Byte Character Sets (continued)
Example of Working-Storage Section and Screen Section 8-15

9. TCP SETMODE Functions and CONTROL Operations
SETMODE Functions 9-1

CONTROL Operations 9-3

Pathway/iTS and CONTROL 26 9-3

CONTROL 26 Defined 9-4

How CONTROL 26 Works 9-4

CONTROL 26 Initialization 9-5

Subsequent CONTROL 26 Calls 9-6

Testing TERMINATION Codes 9-6

10. Handling Errors
Terminal Errors 10-1

SEND Statement Errors 10-2

Responding to SEND Errors 10-2

Processing Variable-Length Server Replies 10-5

A. The MAKEUL Macro
Examples A-2

Error Messages A-3

Index

Examples
Example 2-1. Sample SCREEN COBOL Requester Program Structure 2-14

Example 2-2. Sample IDS Requester Program Structure 2-17

Example 7-1. UMP and the ACCEPT Statement 7-8

Example 7-2. UMP and the SEND MESSAGE Statement 7-9
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
vi

Contents Figures
Figures
Figure 1-1. Example of a Pathway/iTS Terminal Requester 1-15

Figure 1-2. Example of an IDS Requester 1-17

Figure 2-1. Data Flow for a Business Task 2-3

Figure 2-2. Relationships Between Transaction Functions 2-5

Figure 2-3. Creating SCREEN COBOL Requester Programs 2-12

Figure 2-4. GDSX as a Front-End Process 2-21

Figure 4-1. Screen Numeric Input Procedure Declaration 4-4

Figure 4-2. Screen Alphanumeric Input Procedure Declaration 4-4

Figure 4-3. Screen Numeric Output Procedure Declaration 4-6

Figure 4-4. Screen Alphanumeric Output Procedure Declaration 4-6

Figure 4-5. 3270 Key-Mapping Procedure Declaration 4-8

Figure 4-6. Message Input From an Intelligent Device 4-11

Figure 4-7. Device Numeric Input Procedure Declaration 4-11

Figure 4-8. Device Alphanumeric Input Procedure Declaration 4-12

Figure 4-9. Message Output to an Intelligent Device 4-14

Figure 4-10. Device Numeric Output Procedure Declaration 4-15

Figure 4-11. Device Alphanumeric Output Procedure Declaration 4-15

Figure 5-1. Pathway Application Programming for the TMF Subsystem 5-2

Figure 7-1. UMP Message Format 7-15

Figure 7-2. UMP Reply Format 7-17
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
vii

Contents Tables
Tables
Table 1-1. Task and Manual Correspondences 1-1

Table 2-1. Considerations for Requester Programs 2-10

Table 3-1. IBM 3270 Terminal Subclasses and Screen Sizes 3-1

Table 3-2. Minimum Character Separation for IBM 3270 Terminals 3-3

Table 3-3. Screen Modes for 6520 Terminals 3-11

Table 3-4. Minimum Character Separation for 6520 Terminals 3-12

Table 3-5. Screen Modes for 6540 Personal Computers 3-14

Table 4-1. Mapping of Internal 3270 Key Number to Pathway/iTS Key
Number 4-8

Table 5-1. SEND Operations With the TMF Subsystem 5-10

Table 7-1. Unsolicited-Message Error Codes 7-19

Table 8-1. Restrictions on MOVE Statements 8-15

Table 9-1. TCP SETMODE and CONTROL Activities 9-1

Table 9-2. TCP SETMODE Functions 9-2

Table 9-3. TCP CONTROL Operations 9-3

Table 9-4. ESCAPE ON UNSOLICITED MESSAGE Completions 9-7

Table 9-5. Timeout and Error Completions 9-8

Table 10-1. Requester SEND Errors for Transient Conditions 10-2

Table 10-2. Requester SEND Errors for Nonrecoverable Programming
Problems 10-3

Table 10-3. Requester SEND Errors for Configuration Problems 10-4

Table 10-4. Requester SEND Error for Invalid Reply Length 10-4

Table 10-5. Requester SEND Error for Transaction-Mode Violation 10-5
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
viii

What’s New in This Manual

Manual Information
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide

Abstract

This manual is a guide for programmers who are writing SCREEN COBOL requesters
to be used in Pathway applications.

Product Version

Pathway/iTS 1.0

Document History

New and Changed Information
The Compaq NonStop™ Pathway/iTS product was formerly called Pathway/TS. For the
Pathway/iTS 1.0 independent product release, the product was renamed to conform to
current Compaq product naming standards and to reflect the new internet (web client)
capabilities of the product. After the first reference to the product name in each section
of this manual, subsequent references use the shortened form of the name, Pathway/iTS.

Product Changes

This manual refers to the new capability of Pathway/iTS to convert SCREEN COBOL
object files to web clients. However, this manual focuses on programming for terminal
and IDS requesters; for details about web client programming, the reader is referred to
the new Compaq NonStop™ Pathway/iTS Web Client Programming Manual.

Corrections and Enhancements to the Manual
The following corrections and enhancements have been made to this manual:

• References have been added to context-sensitive Pathsend requesters, a feature that
was added to the NonStop™ TS/MP and Extended General Device Support (GDSX)
products since the last edition of this manual.

Part Number Published

426751-001 October 2000

Part Number Product Version Published

110075 Pathway/TS D30+ July 1995

121308 Pathway/TS D40 December 1995

426751-001 Pathway/iTS 1.0 October 2000
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
ix

What’s New in This Manual Corrections and Enhancements to the Manual
• The discussion of User-Written User Conversion Procedures on page 4-2 has been
corrected to reflect the use of pTAL and the nld utility.

• A repeated syntax error in the programming examples in Section 7, Processing
Unsolicited Messages has been corrected.

• References to Compaq trademarks have been updated.

• References to obsolete products have been removed.

• Miscellaneous terminology changes and editorial corrections have been made.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
x

About This Manual
This manual is a guide for programmers who are writing SCREEN COBOL requesters
to be used in Pathway applications. It describes how to use the major features and
capabilities available with SCREEN COBOL, such as transaction management and
intelligent device support.

This manual is intended to be used in conjunction with the Compaq NonStop™
Pathway/iTS SCREEN COBOL Reference Manual, which contains detailed reference
information about the SCREEN COBOL programming language.

Who Should Read This Manual
Readers of this manual should be experienced programmers familiar with the Guardian
operating environment on Compaq NonStop™ Himalaya systems and with the SCREEN
COBOL programming language.

Related Documentation
This manual is one in a set of Compaq manuals for the NonStop™ TS/MP and
Pathway/iTS products.

The following manuals may be useful:

Compaq NonStop™
Pathway/iTS
SCREEN COBOL
Reference Manual

Describes the SCREEN COBOL programming language
which is used for writing programs that define and control
terminal displays or intelligent devices for online
transaction processing applications running in a
PATHMON environment.

Compaq NonStop™
Pathway/iTS
SCUP Reference Manual

Describes managing a SCREEN COBOL library with the
SCREEN COBOL Utility Program (SCUP).

Compaq NonStop™
Pathway/iTS
Web Client
Programming Manual

Describes how to convert SCREEN COBOL requesters to
web clients, explains how to build and deploy those
clients, and also provides the information Java developers
and web designers need to to modify and enhance the Java
and HTML portions of the converted clients.

Compaq NonStop™
Pathway/iTS
System Management
Manual

Describes the interactive management interface to the
Pathway/iTS product and describes how to configure and
manage Pathway/iTS objects.

Compaq NonStop™
Pathway/iTS
Management
Programming Manual

Describes the management programming interface for
Pathway/iTS objects in the PATHMON environment.

Compaq NonStop™
Pathway Products
Glossary

Defines technical terms used in this manual and in other
manuals for the Pathway products: Pathway/iTS,
NonStop™ TS/MP, and Pathway/XM.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
xi

About This Manual Your Comments Invited
Your Comments Invited
After using this manual, please take a moment to send us your comments. You can do
this by returning a Reader Comment Card or by sending an Internet mail message.

A Reader Comment Card is located at the back of printed manuals and as a separate file
on the Compaq CD Read disc. You can either FAX or mail the card to us. The FAX
number and mailing address are provided on the card.

Also provided on the Reader Comment Card is an Internet mail address. When you
send an Internet mail message to us, we immediately acknowledge receipt of your
message. A detailed response to your message is sent as soon as possible. Be sure to
include your name, company name, address, and phone number in your message. If
your comments are specific to a particular manual, also include the part number and title
of the manual.

Many of the improvements you see in Compaq manuals are a result of suggestions from
our customers. Please take this opportunity to help us improve future manuals.

Operator Messages
Manual

Describes all messages that are distributed by the Event
Management Service (EMS), including those generated by
NonStop™ TS/MP and Pathway/iTS processes.

Guardian
Procedure Errors and
Messages Manual

Describes the Guardian messages for NonStop™
Himalaya systems. The manual covers various types of
error codes and error lists associated with Guardian
procedure calls and also the interprocess messages sent to
application programs by the operating system and the
command interpreter.

NonStop™ TM/MP
Application Programmer’s
Guide

Provides additional information, beyond what is covered
in this manual, about programming for the Transaction
Management Facility (TMF) subsystem.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
xii

About This Manual Notation Conventions
Notation Conventions

General Syntax Notation
The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

Punctuation. Parentheses, commas, semicolons, and other symbols not previously described
must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Notation for Messages

The following list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
xiii

About This Manual Notation for Messages
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
xiv

1
Introduction to TCP and Terminal
Application Programming

This section introduces Pathway transaction processing applications, which you write
and run with the assistance of the NonStop™ Transaction Services/MP
(NonStop™ TS/MP) and Compaq NonStop™ Pathway/iTS software. The emphasis of
this section is on applications that include SCREEN COBOL requesters for use with
terminals or intelligent devices.

Table 1-1. Task and Manual Correspondences

If Your Application Includes… You Need… To Perform the Following…

SCREEN COBOL requesters Section 2 Design an application including
SCREEN COBOL requesters

Section 3 Handle programming for specific
terminals, terminal emulators,
intelligent devices, or simulated devices

Section 4 Write user conversion procedures that
make custom validation checks or data
conversions

Section 5 Manage transactions with the Compaq
Transaction Management Facility
(TMF)

Section 6 Use the Pathway/iTS intelligent device
support (IDS) facility

Section 7 Accept and reply to unsolicited
messages from Guardian operating
environment processes outside the
Pathway environment

Section 8 Process double-byte character sets

Section 9 Set device-dependent functions with
SETMODE calls or perform device-
dependent I/O operations with
CONTROL calls

Section 10 Handle errors returned to a SCREEN
COBOL requester program

Appendix A Use the MAKEUL macro for creating
the native user library and facilitating
pTAL compilation
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-1

Introduction to TCP and Terminal Application
Programming

Advantages of the Pathway Environment
If you are writing SCREEN COBOL requesters that communicate with Compaq
NonStop™ TUXEDO servers, refer also to the manuals for the NonStop™ TUXEDO
system, particularly the Compaq NonStop™ TUXEDO System Application Development
Guide and the NonStop™ TUXEDO System Pathway Translation Servers Manual.

If you are writing Pathsend requesters or Pathway servers, refer to the
NonStop™ TS/MP Pathsend and Server Programming Manual.

If you are writing web clients created from SCREEN COBOL requesters, refer to the
Compaq NonStop™ Pathway/iTS Web Client Programming Manual.

Advantages of the Pathway Environment
NonStop™ TS/MP and Pathway/iTS provide ease of development, manageability, and
the fundamental strengths and benefits of Compaq NonStop™ Himalaya systems. The
strengths and benefits of NonStop™ Himalaya systems include data integrity, fault
tolerance, high performance and low cost, system security, scalability, and distributed
processing. The following paragraphs describe how NonStop™ TS/MP, Pathway/iTS,
and related products—known together as the Pathway environment—benefit the
application designer and programmer. The Introduction to NonStop™ Transaction
Processing provides a fuller description of how all the fundamentals of NonStop™
Himalaya systems apply to transaction processing.

Ease of Development
Development costs are one of the highest expenses associated with online transaction
processing (OLTP) systems. The more sophisticated the features and safeguards that are
built into your OLTP application—for example, multiprocessing, fault tolerance, and
data integrity—the greater the costs. When you use NonStop™ TS/MP, Pathway/iTS,
and related Compaq transaction processing products for NonStop™ Himalaya systems
to create your OLTP applications; development time and efforts, and therefore costs, can
be measurably reduced.

This cost reduction occurs because:

• NonStop™ TS/MP, Pathway/iTS, and related products provide the most complex
components of an OLTP application:

• NonStop™ TS/MP includes the transaction monitor (PATHMON), the
command interpreter for management (PATHCOM), and the means for
interprocess communication.

• Pathway/iTS provides a multithreaded terminal control process (TCP) for
communication with terminals, including fault tolerance and transaction
protection.

• The NonStop™ Transaction Manager/MP (NonStop™ TM/MP) product
provides transaction management.

• Compaq makes valuable application development tools and utilities available for the
Pathway environment. These development tools and utilities can significantly
reduce the amount of programming time and effort required to generate a working
Pathway application.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-2

Introduction to TCP and Terminal Application
Programming

Manageability
The Compaq NonStop™ Remote Server Call/MP (RSC/MP) product facilitates
client/server computing, allowing workstation applications to access Pathway
servers. A number of packaged tools and utilities are commercially available for use
with RSC/MP.

• The Pathway environment helps you standardize program code. You can repeat and
reuse code; you do not have to write the same requester and server programs over
and over again. This ability to reuse code saves development time.

• The Pathway environment allows you to isolate and test your requester and server
programs before adding them to a running application. This capability is important
because coding errors are difficult, time-consuming, and expensive to find after an
application is put into production.

• OLTP products that are compatible with the Pathway environment are available
from many third-party vendors.

In addition to making initial development faster and easier, the structured Pathway
environment allows you to implement enhancements and develop new applications by
simply adding new requesters, sharing existing servers, or adding new servers to the
existing application. You can use code modules in the existing application as templates
for new modules in the modified or new application.

Manageability

Online transaction processing operations present a dynamic environment in which
hundreds of different transactions—from disparate locations and many different I/O
devices—can be entered concurrently and processed within seconds. To process
hundreds of transactions, thousands to millions more application program instructions
must be executed. It is critical that you be able to control and monitor such a complex
processing environment.

To control and monitor your Pathway environment—as well as simplify the task of
system management—NonStop™ TS/MP provides the following:

• A PATHMON process, which provides a single point of control over your OLTP
applications and operations

• A choice of two different system management interfaces: the interactive
PATHCOM interface and the Subsystem Programmatic Interface (SPI)

• Status and error reporting capabilities, provided through a log file and through the
Event Management Service (EMS)

Because NonStop™ TS/MP provides these processes and capabilities, you do not have
to spend the time and money to develop, test, and implement comparable mechanisms.

For more information about the PATHMON process, the management interfaces, and
status and error reporting capabilities in the Pathway environment, refer to the
NonStop™ TS/MP System Management Manual, the Compaq NonStop™ Pathway/iTS
System Management Manual, the NonStop™ TS/MP Management Programming
Manual, and the Compaq NonStop™ Pathway/iTS Management Programming Manual.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-3

Introduction to TCP and Terminal Application
Programming

Data Integrity
Data Integrity

If your database is corrupted by a hardware or software failure, you might need weeks to
isolate and then correct the problem. Because an inaccessible or inconsistent database
can have a dramatic, adverse effect on business operations, the Transaction Management
Facility (TMF) subsystem, provided in the NonStop™ TM/MP product, was developed
as a way of ensuring database consistency. The TMF subsystem, which works with
NonStop™ TS/MP, protects the entire database from catastrophic system failures by
maintaining an audit trail of database changes (that is, transactions); an audit trail is also
commonly known as a transaction log. You can use the audit trail to rebuild the
database in the event of a hardware or software failure.

The design of Pathway servers supports the integrity of individual transactions and
therefore transaction processing protection as a whole. Because the requester/server
model allows a clear division of processing functions, application programmers can
code each server program to handle a specific set of transaction types: for example,
checking an account balance, entering a new customer, or updating the parts inventory.
The server processes service their transactions by performing the same set of tasks over
and over again. In this way, a valid transaction is defined as a specific set of tasks both
by the requester program and within the server logic.

If for any reason a server is unable to complete all tasks involved in processing a
transaction, it can abort the transaction and thereby maintain the transaction’s integrity.
The server does not have to wait for the requester to abort the transaction.

Fault Tolerance

Because OLTP systems automate core business operations and deliver key business
services, companies depend on OLTP applications to stay up and running—even if a
hardware or software component fails.

NonStop™ Himalaya systems, which are specifically intended for online transaction
processing, are designed to remain continuously available during the hours when
transactions are being entered and business is being conducted. Typically, a NonStop™
Himalaya system can continue processing despite the failure of any single software or
hardware component within that system. This ability is referred to as fault tolerance.

In the Pathway enviroment, automatic fault tolerance (that is, fault tolerance that does
not require any additional programming effort on your part) is provided by the use of
process pairs and the actions of the PATHMON process, the TMF subsystem, and the
terminal control process (TCP).

In the Guardian operating environment, the functions and tasks of an application are
performed by processes, which are running programs. A process pair consists of a
primary process, which does some specific function in the overall work of the
application, and a secondary (backup) process, which remains ready to take over if the
primary process fails. During processing, the primary process keeps the backup process
informed of what it is doing (for example, sending a request) by means of special
interprocess messages, in an activity called checkpointing. Through checkpointing, the
backup process has enough information to take over and continue if the primary process
fails.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-4

Introduction to TCP and Terminal Application
Programming

Other Fundamentals of NonStop™ Himalaya
Systems
Both the PATHMON process and the TCP can be configured as process pairs to support
Pathway applications. When the PATHMON process is configured as a process pair,
you are ensured the ability to control and monitor OLTP system operation even if the
primary PATHMON process fails. When a TCP is configured as a process pair and the
primary TCP fails, terminals controlled by the TCP can still be used.

Pathway server classes provide additional fault tolerance by allowing requests to be
rerouted to surviving server processes in a server class if one server process fails.

Besides process pairs and server classes, fault tolerance in a Pathway application is
ensured by the PATHMON process, the TCP, and the TMF subsystem. Using
information stored in the PATHMON configuration file, the PATHMON process
automatically restarts processes at their initialization level after a failure, allowing these
processes to resume work immediately.

For requesters written in SCREEN COBOL that use the TMF subsystem, the TCP
automatically restarts processing at the transaction boundary (for example, at the
BEGIN-TRANSACTION statement) after a failure. In addition to restarting processing,
the TCP directs the TMF subsystem to back out any incomplete or partial transaction
and restore the database to its pre-failure state of consistency. By both restarting
processing at the transaction boundary and directing the TMF subsystem to recover a
transaction, the TCP ensures that the application and the database are synchronized and
ready to continue processing.

Other Fundamentals of NonStop™ Himalaya Systems

Besides data integrity and fault tolerance, the Pathway environment also provides the
high performance and low cost, system security, scalability, and distributed processing
of NonStop™ Himalaya systems.

High Performance and Low Cost

The more transactions your system can process (preferably without degrading response
time), the lower the cost of each transaction. The Pathway environment supports fast
response time and high system throughput by allowing:

• Component processes in a Pathway application (for example, requester and server
processes) to reside and execute concurrently in different processors of a multi-CPU
system or even a network. This is called multiprocessing.

• More than one Pathway application to run in a NonStop™ Himalaya system.

• More than one requester program to execute in the TCP at the same time. This is
called multithreading. Multithreading permits the processing of multiple and
different transactions concurrently and permits multiple users to perform similar
tasks—for example, order entry—simultaneously.

The Pathway environment also supports fast response time and high system throughput
by allowing the replication of processes and programs and the distribution of processes.
For example:
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-5

Introduction to TCP and Terminal Application
Programming

Other Fundamentals of NonStop™ Himalaya
Systems
• The PATHMON process can dynamically create additional copies of server
processes at times of peak demand and delete the additional servers when activity
slows again.

• You can add copies of requester and server programs to your Pathway application to
maintain fast response time when the number of users or terminals increases.

• You can distribute processes such as TCPs and servers close to the resources they
manage, reducing interprocess communication time within a network.

• You can distribute requesters and servers to less active processors if peak activity on
a particular processor is affecting throughput or response time.

System Security

The Guardian operating environment includes basic mechanisms for controlling access
to files, whether they are data files or program files. Because NonStop™ TS/MP and
Pathway/iTS run in the Guardian operating environment, Guardian system security
parameters also apply to Pathway users and processes. In addition, you can supplement
the security features of the Guardian environment with the Safeguard product, which
provides authentication, authorization, and auditing capabilities for Guardian files.

Scalability
Your organization must be able to expand its transaction processing system as its
operations evolve and its technical requirements change. NonStop™ Himalaya systems
are expressly designed to support incremental, modular expansion, allowing you to
increase the size and processing power of your transaction processing system by:

• Adding hardware and application resources to your existing system

• Linking individual Pathway applications into a single network or adding more
Pathway applications to an existing network

• Supporting an open systems architecture in which standards-based networks as well
as devices and systems from other vendors can be connected to your NonStop™
Himalaya system

Distributed Processing

Data communications technology allows organizations to extend their online operations
over long distances to form global networks and to support distributed processing. The
Pathway environment, in conjunction with the Compaq NonStop™ Kernel operating
system, allows you to distribute application processes within a single system.
Additionally, NonStop™ TS/MP, NonStop™ TM/MP, and Pathway/iTS, in conjunction
with the Expand networking software, allow you to spread processes, data, and
transactions across a network of NonStop™ Himalaya systems. The coordination of
transactions among application servers residing within an Expand network and possibly
accessing different resource managers (Compaq NonStop™ SQL/MP and Enscribe) is
known as distributed transaction processing (DTP).
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-6

Introduction to TCP and Terminal Application
Programming

Pathway Applications
Pathway Applications
Pathway applications consist of two types of programs: requester programs and server
programs. This design allows application logic to be distributed near the resources it
manages. For example, presentation services are located near terminal devices or
workstations; database logic resides in server programs near that database. Requesters
and servers communicate by using the Guardian file system or the message system that
is part of the NonStop™ Kernel.

Users interact with your application by using devices and processes controlled by your
requester programs. Often these devices are terminals through which the users enter and
retrieve transaction data. They might also, however, be intelligent devices such as
personal computers, workstations, point-of-sale devices, or automatic teller machines
(ATMs). Or, they might be Guardian processes that provide transaction input from a
file or other batch medium.

Server processes receive requests from requester processes to access a database to add,
retrieve, or modify information. Server processes process request messages and send
reply messages with the results of the work on the database.

Servers and Server Classes
You can write Pathway server programs in C, C++, COBOL85, pTAL, TAL,
FORTRAN, or Pascal in the Guardian environment. Alternatively, you can write
Pathway server programs in C or COBOL85 in the Compaq NonStop™ Kernel Open
System Services (OSS) environment; you must program such servers to read the
Guardian $RECEIVE file as described in the Open System Services Programmer’s
Guide. In both cases, you configure and manage the servers using the PATHCOM
interactive interface or the Pathway management programming interface (based on the
Subsystem Programmatic Interface, or SPI) in the Guardian environment.

The same server programs, whether developed in the Guardian environment or in the
OSS environment, can be used with several different requester and client interfaces.
These interfaces include SCREEN COBOL, the Pathsend procedures, and the RSC/MP
interface.

The Pathway environment provides the feature of server classes. A server class is a
collection of replicated Pathway server processes. All server processes in a server class
provide the same set of functions; that is, they execute the same program.

Server Processes

Server processes provide the following benefits:

• Server processes help ensure transaction integrity and, therefore, the integrity of the
database.

• Server code can be reused by many requester programs, and you can separate
presentation services from database functions.

• You can control which transactions can be performed on your node. You can
control the logic of the servers, database names, disk names, and so on.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-7

Introduction to TCP and Terminal Application
Programming

Requesters
• In distributed environments, server processes provide high performance by allowing
you to use remote servers instead of performing multiple remote I/O operations,
placing transaction processing close to system resources.

Server Classes

Server classes provide the following benefits:

• You can minimize use of system resources—for example, processes and file
opens—because server classes are shared and highly utilized.

• You can maximize performance because server classes allow multiple copies of
server processe to run concurrently in multiple CPUs.

• Based on configuration settings determined by the system manager or operator, the
PATHMON process can dynamically create additional server processes within the
server class to maintain acceptable throughput as the workload increases.

• By temporarily freezing and stopping the server class and changing configuration
parameters, the system manager or operator can adjust the number of servers that are
active at any one time to suit response-time requirements.

• The system manager or operator can balance the workload over multiple processes
and across multiple CPUs, which provides fault tolerance in addition to load
balancing—if a CPU fails, the server class is still available.

Requesters

The Pathway application programming environment provides two programming
interfaces for requesters:

• The Pathsend application program interface (API), provided in the
NonStop™ TS/MP product

• The SCREEN COBOL language, provided in the Pathway/iTS product

Requesters written using these two interfaces are briefly described in the following
paragraphs. In addition, other Compaq products are available to assist you in writing
requesters and clients that communicate with Pathway servers. These products include
the RSC/MP product for workstation clients and the Extended General Device Support
(GDSX) product for front-end and back-end processes.

Section 2, Designing Your Application, provides additional information about how
Pathsend requesters, SCREEN COBOL requesters, RSC/MP clients, and GDSX
processes can be used in Pathway applications.

Pathsend Requesters

The Pathsend procedure calls and the LINKMON process allow Guardian processes to
access Pathway server classes. The Pathsend procedures bring the benefits of Pathway
server classes to a wide range of requesters, providing flexibility in application design.
They also provide high performance for requesters that do not need a complex,
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-8

Introduction to TCP and Terminal Application
Programming

Requesters
multithreaded interface to terminals or intelligent devices. Finally, they provide support
for both context-free and context-sensitive servers.

Pathsend requesters are described in the NonStop™ TS/MP Pathsend and Server
Programming Manual.

SCREEN COBOL Requesters

SCREEN COBOL requesters, which are compiled by the SCREEN COBOL compiler
and then interpreted and executed by the terminal control process (TCP), provide ease of
programming if you need to handle large numbers of terminals or intelligent devices or
if you need screen-presentation services. The TCP and the SCREEN COBOL language
produce a high-quality, manageable application. The TCP provides multithreading of
requesters, fault tolerance, terminal device configuration, and operations management so
that you do not need to program these features in your application.

The TCP provides the following features:

• Fault tolerance (when used in combination with TMF)

• Automatic retry of I/O operations to a server process if the primary process of a
server process pair fails

• Transaction protection through TMF

• Multithreading

• Interpretation of compiled pseudocode for programs written in the SCREEN
COBOL language, which offers a simple single-threaded programming environment
and a screen management system to drive IBM 3270 terminals and the 6530 family
of terminals (652x series, 653x series, and 654x series)

• Special syntax to facilitate message assembly, disassembly, and processing
(Pathway intelligent device support, or IDS)

• Access to server classes

• Unsolicited message processing (UMP) support

• Management interfaces (the PATHCOM process and the Subsystem Programmatic
Interface, or SPI) for TCP configuration and management, terminal configuration
and management, process management, error logging, and so on

You can use an Extended General Device Support (GDSX) process as a front-end
process to the TCP and SCREEN COBOL requesters to communicate with devices not
directly supported by the TCP. Use of the GDSX product is described in the Extended
General Device Support (GDSX) Manual.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-9

Introduction to TCP and Terminal Application
Programming

Client/Server Capabilities
Client/Server Capabilities
The RSC/MP product brings client/server capabilities to the Pathway environment by
allowing you to move requester functions to a workstation. This product allows client
programs residing on a workstation to access Pathway server classes in any of three
different ways:

• Through a Pathsend requester provided by RSC/MP, which works with the
LINKMON process

• Through a special intelligent device support (IDS) requester supplied with RSC/MP,
which works with the terminal control process (TCP)

• Through an IDS requester that you develop yourself in the SCREEN COBOL
language; this requester works with the TCP

RSC/MP also allows requesters to access Guardian processes directly. To facilitate
access to servers and Guardian processes, RSC/MP consists of multiple components
within both the workstation and NonStop™ Himalaya system environments.

For further information about RSC/MP, refer to the Compaq NonStop™ Remote Server
Call (RSC/MP) Programming Manual.

Other Transaction Processing Environments
The NonStop™ TS/MP product serves as the foundation for open transaction processing
on NonStop™ Himalaya systems. In addition to the Pathway environment, NonStop™
TS/MP supports the NonStop™ TUXEDO transaction processing system. The
NonStop™ TUXEDO system allows you to develop TUXEDO transaction processing
applications to run on NonStop™ Himalaya systems.

You can develop applications that use a combination of modules from the NonStop™
TUXEDO environment and the Pathway environment. In particular, you can write a
SCREEN COBOL requester that indirectly invokes the services of a NonStop™
TUXEDO server by using the Pathway to TUXEDO translation server provided with the
NonStop™ TUXEDO product. For more information about this translation server, refer
to the NonStop™ TUXEDO System Pathway Translation Servers Manual.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-10

Introduction to TCP and Terminal Application
Programming

Development Tools and Utilities
Development Tools and Utilities
When you are writing requester and server programs for your Pathway application, a
variety of program development tools and utilities are available to you. These tools and
utilities allow you to shorten the amount of time it takes to code, debug, and test your
programs.

Programming Languages and Related Tools

You can write application programs for the TNS environment on NonStop™ Himalaya
systems in C, C++, COBOL85, SCREEN COBOL, Transaction Application Language
(TAL), FORTRAN, and Pascal. You use the Binder product to bind TNS object files for
creating executable object files.

You can write application programs for the TNS/R native environment in C, C++, and
portable Transaction Application Language (pTAL). You use the native nld utility for
linking TNS/R native object files and for creating executable object files.

For D40 and later releases, you must use the pTAL compiler and nld utility for
compiling and linking your TCP user-conversion procedures.

The Inspect Symbolic Debugger

The Compaq Inspect product is the symbolic program debugging tool for NonStop™
Himalaya systems. You can use it interactively to examine and modify the execution of
Guardian processes (for example, Pathsend requesters and Pathway servers) as well as
SCREEN COBOL requesters. An online help facility is available for all Inspect
commands and topics.

Using the Inspect product in a Pathway environment requires the use of two terminals or
a terminal emulator with windowing capability. One terminal or window acts as the
application terminal, while the second terminal or window acts as a command or Inspect
terminal.

Because SCREEN COBOL programs are interpreted by the TCP and therefore are not
running directly as Guardian processes, you use the TCP for the Inspect session. To use
the TCP for an Inspect session, you set a TCP configuration parameter to support the
Inspect product and then issue a PATHCOM command to initiate the Inspect session.

The SCREEN COBOL Utility Program (SCUP)

The SCREEN COBOL Utility Program (SCUP) provides a means for maintaining
libraries of SCREEN COBOL pseudocode. SCUP also provides a means for obtaining
information about certain aspects of the code, such as versions and compile dates and
times, data sizes, screen sizes, programs called, and code sizes.

SCUP allows you to operate on the SCREEN COBOL object library files without
recompiling the source programs. In addition, SCUP allows you to:

• Display information about the library files or about programs in a SCREEN COBOL
library
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-11

Introduction to TCP and Terminal Application
Programming

The Pathmaker Application Generator
• Control access by a TCP to programs in a SCREEN COBOL library

• Copy programs from one SCREEN COBOL library to another

• Delete programs from a SCREEN COBOL library

• Reclaim file space by compressing SCREEN COBOL library files

• Convert a group of programs in a SCREEN COBOL library into a web client

SCUP is described in the Compaq NonStop™ Pathway/iTS SCUP Reference Manual.

The Pathmaker Application Generator

The Pathmaker product helps you create Pathway applications consisting of requester
programs written in SCREEN COBOL and server programs written in C or COBOL85.
To create applications with the Pathmaker product, you:

• Enter information about your application into a series of screen-based entry forms,
which the Pathmaker product then stores in a catalog

• Use the text editor TEDIT to create source files containing C or COBOL85 service
code

At your command, the Pathmaker product uses the information from the catalog and the
TEDIT file to generate SCREEN COBOL requester code, C or COBOL85 server code,
and command files to configure and start the finished Pathway environment for testing.

The Pathmaker product simplifies the creation of Pathway applications by:

• Generating application code in a uniform structure for all requesters and servers, to
help simplify maintenance and modification

• Producing program statements for tasks that are specific to Pathway

• Automatically generating TMF statements in your requester programs when you
indicate that you want your programs to have TMF protection

• Providing a central location for most application information

• Creating error-handling code for the most commonly encountered errors

• Letting you simulate application screens and navigate from one application screen to
another before you write a single line of code

Applications developed with the Pathmaker product can access data from databases
managed by either the NonStop™ SQL/MP relational database management system or
the Enscribe database record manager. If you are using Pathsend requesters, or clients
that use RSC/MP, you can use the Pathmaker tool to create prototype servers.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-12

Introduction to TCP and Terminal Application
Programming

The Enable Product
The Enable Product

The Enable product, used with the Enscribe database record manager, is a tool that
allows you to develop simple data management applications without using a
conventional programming language. You can use the Enable product to generate
SCREEN COBOL requester programs that use a generic server program provided with
the Enable product to record, maintain, or retrieve information stored within a single
database file or multiple database files. The Enable application performs these database
operations on a record-by-record basis and on one database file at a time. Finally, you
can use the Enable product to produce a PATHCOM command file to execute the
Enable application in the Pathway environment.

The Enable product reduces the amount of time needed to develop a simple application,
thereby decreasing application development costs. The Enable product, although not as
powerful as the Pathmaker product, allows you to:

• Control the format of the screen displayed by the application

• Limit the types of operations (delete, insert, read, or update) that the application can
perform on a database file

• Define a method that the application uses to ensure the integrity of a database file

Although applications generated by the Enable product may lack the sophistication of
custom-designed application programs (Enable applications cannot perform either
mathematical calculations or ensure database consistency), you can quickly generate
Enable applications to meet immediate processing needs. Among its many uses, you
can use an Enable application as a prototype for a more complex application, a data
entry program, or a tool to maintain a small database. Enable applications can be readily
integrated into the Pathway environment.

Client/Server Development Tools

As mentioned earlier, the RSC/MP product facilitates client/server computing, allowing
workstation applications to access Pathway servers. A number of packaged tools and
utilities are commercially available for use with RSC/MP.

Transaction Processing Scenarios
This subsection provides two examples of how transactions from SCREEN COBOL
requesters are processed. The two scenarios illustrate the following:

• A transaction from a Pathway/iTS terminal to a Pathway server

• A transaction from an intelligent device to a Pathway server
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-13

Introduction to TCP and Terminal Application
Programming

Transaction From a Terminal
Transaction From a Terminal

Figure 1-1 illustrates the path of a transaction from a Pathway/iTS terminal, which is
controlled by a SCREEN COBOL program executed by the TCP, to a Pathway server.
For this example, consider a clerk at an order entry office who must update customer
information for account number 1234567.

1. The clerk displays the order screen, a data entry screen, on a terminal. To the
Pathway application, the terminal is defined as object TERM-1.

2. The clerk enters the account number in the appropriate field and requests an update
to customer information by pressing a function key.

3. The requester, which is the TCP interpreting a SCREEN COBOL program, checks
the input data, confirming that the account number has no more than seven
characters. The requester then displays a new screen showing the customer
information as it is currently recorded in the database.

4. The clerk enters the new information (for example, a new customer address) in the
appropriate field and requests that the information be updated by pressing a function
key.

5. The requester checks the input data for validity and confirms that there are no input
errors.

6. The SCREEN COBOL program formats a request message containing the name of
the server class and the data needed by the server to complete its work. The TMF
transaction begins.

7. The SCREEN COBOL program executes a SEND statement, directing the request
message to be sent to the specified server class.

8. If the TCP does not have a link to the specified server class, the TCP asks the
PATHMON process for a link to a server process in the server class. The
PATHMON process replies that a server process is available. If the TCP already
has a link to the server class, this step is not performed.

9. The TCP forwards the request to the server process by using the interproces
communication mechanism of the NonStop™ Kernel operating system.

10. The server process receives and reads the request message.

11. Executing NonStop™ SQL/MP statements in its program, the server process
accesses the database, using the account number as the key, and updates the
specified customer information.

12. The server process formats a reply message verifying the database update and
replies to the TCP using the interproces communication mechanism of the
NonStop™ Kernel operating system.

13. The TCP receives, interprets, and then forwards the reply message to TERM-1. The
TMF transaction ends.The SCREEN COBOL requester program displays a message
on the terminal screen verifying that the specified information has been updated.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-14

Introduction to TCP and Terminal Application
Programming

Transaction From an Intelligent Device
Transaction From an Intelligent Device

Figure 1-2 illustrates the path of a transaction from an intelligent device, communicating
with a SCREEN COBOL program that uses the IDS facility of the TCP, to a Pathway
server. For this example, consider again a clerk at an order entry office. Using a
workstation, the clerk must update customer information for account number 2345678.

1. The clerk displays the order screen, a data entry screen, on a workstation. To the
Pathway application, the terminal is defined as object TERM-1.

2. The clerk enters the account number in the appropriate field and requests an update
to customer information by pressing a function key.

Figure 1-1. Example of a Pathway/iTS Terminal Requester

011CDT .CDD

TCP

PATHMON

NonStop
SQL/MP

NonStopTM Himalaya System

Pathmon Environment

TERM-1

Server

Server Class

Request

Reply

Account
Database
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-15

Introduction to TCP and Terminal Application
Programming

Transaction From an Intelligent Device
3. The workstation application checks the input data, confirming that the account
number entered has no more than seven characters. The workstation application
then displays a new screen showing the customer information as it is currently
recorded in the database.

4. The clerk enters the new information (for example, a new customer telephone
number) in the appropriate field and requests that the information be updated by
pressing a function key.

5. The requester checks the input data for validity and confirms that there are no input
errors.

6. The workstation application formats a request message containing the name of the
server class and the data needed by the server to complete its work. The workstation
application—with the aid of user-developed conversion procedures—converts its
data to SCREEN COBOL format, a representation acceptable to the TCP.

7. The workstation application executes a SEND statement, directing the request
message to be sent to the specified server class. A user-developed communications
subsystem forwards the request to the TCP using a supported protocol. The IDS
requester, which is the TCP interpreting a SCREEN COBOL program, receives the
request message as part of an IDS SEND MESSAGE statement. The TMF
transaction begins.

8. If the TCP does not have a link to the specified server class, the TCP asks the
PATHMON process for a link to a server process in the server class. The
PATHMON process replies that a server process is available. If the TCP already
has a link to the server class, this step is not performed.

9. The TCP forwards the request to the server process by using the interproces
communication mechanism of the NonStop™ Kernel operating system.

10. The server process receives and reads the request message.

11. Executing NonStop™ SQL/MP statements in its program, the server process
accesses the database, using the account number as the key, and updates the
specified customer information.

12. The server process formats a reply message verifying the database update and
replies to the TCP using the interproces communication mechanism of the
NonStop™ Kernel operating system.

13. The TCP receives, interprets, and then forwards the reply message to TERM-1 using
the IDS SEND MESSAGE statement. The TMF transaction ends.

14. The workstation application displays a message on the workstation screen verifying
that the specified information has been updated.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-16

Introduction to TCP and Terminal Application
Programming

Transaction From an Intelligent Device

Figure 1-2. Example of an IDS Requester

012CDT .CDD

TCP

PATHMON

NonStopTM

SQL/MP

Pathmon Environment

Server

Server Class

Request

Reply

IDS

TERM-1

Account
Database

NonStopTM Himalaya System
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-17

Introduction to TCP and Terminal Application
Programming

Transaction From an Intelligent Device
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-18

2 Designing Your Application
To develop a functioning Pathway application, you must identify the individual
transactions in your business operations, design and build the application database, and
design and code requester programs and server programs. This section describes the
design of transactions and databases for Pathway applications and the design of
requester and server programs.

To explain these application design tasks, this section uses as an example an application
that processes sales orders for a distributorship. The example shows how the Pathway
environment can be used to create an OLTP application that supports the
distributorship’s order-processing operations.

The distributorship in the example has three offices linked by telecommunications:

• \CORP is a network node at corporate headquarters where the purchasing, accounts
receivable, and accounts payable functions are managed.

• \WHS is a network node in a warehouse where the inventory, shipping, and
receiving functions are performed.

• \REG is a network node in a sales office that is responsible for processing all
customer orders in a particular geographic region. Order-processing functions
consist of entering orders as input and maintaining records of each order. To
perform these two functions, the order processing group:

• Checks with inventory control to determine if items to be ordered are in stock

• Sends inventory control shipping and ordered-items information about each
order

• Gets customer credit information from accounts receivable

• Sends billing information to accounts receivable

• Answers customer inquiries about order status

• Records complete information about each order in the database

Designing Transactions
The first step in developing a Pathway application is to identify and define the
transactions that your application will process. To do this, you isolate the business tasks
you plan to automate, analyze the flow of information within those tasks, list the
transactions that result from the analysis, and then identify the various components of
the transactions. After these tasks are performed, you protect each transaction, and
therefore the integrity and consistency of the database, with the Transaction
Management Facility (TMF) subsystem.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-1

Designing Your Application Analyzing Data Flow
Analyzing Data Flow

Analyzing the flow of data involves identifying what information is required for a
business task, determining the order in which that information is required, and
specifying how the information is to be handled. To automate the order-processing
tasks of the previously described distributorship, for example, you could analyze the
flow of information as follows:

1. Accept the customer’s identification number, a requested delivery date for the order,
and shipping instructions such as the delivery address.

2. Check the customer’s identification number to ensure that the customer is defined in
the \REG database; get the customer’s name and address from the \REG database;
and get a new order identification from the \REG database.

3. Accept a list of order items along with the requested quantity for each order item.

4. Check the current quantity available, in the database on \WHS, of each ordered item
to ensure that sufficient quantity exists to fill the order.

5. Accept any special instructions, such as back-ordering out-of-stock items, required
to process the order.

6. Calculate the total order cost; get the current customer balance and credit limit from
the \REG database; add the total order cost to current customer balance; and ensure
that the new balance does not exceed the customer’s credit limit.

7. Ask the customer to confirm the order.

8. After the customer has confirmed the order, subtract the quantity ordered from the
current quantity available, in the \WHS database, for each ordered item.

9. Add the total order cost to the customer’s current balance in the \REG database.

10. Record the order information in the \REG database.

11. Transmit the order information in the accounts receivable files to the \CORP
database and record the information in the database.

12. Record the order shipping information in inventory files on the \WHS database.

Assume that your analysis of the previous flow of information shows that only two
transactions need to be created to support order processing: an Add New Customers
transaction and an Enter Sales transaction. The Enter Sales transaction, which accepts
and records all the information associated with a customer order, is the example used in
the rest of this section.

The data flow outlined in the previous steps is illustrated in Figure 2-1.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-2

Designing Your Application Analyzing Data Flow

Figure 2-1. Data Flow for a Business Task

021CDT .CDD

 — Customer ID
 — Requested shipping date
 — Shipping instructions

— Check customer ID.
— Get customer's name
 and address.
— Get order ID.

2.1.
Accept:

— List of ordered items
— Quantity of each item

— Check quantity available

 for delivery of each
 ordered item.

4.3.
Accept:

— Back-order information

— Calculate order cost.
— Get customer balance
 and credit limit.

— Subtract order cost from
 balance and check limit.

5.
Accept:

6.

— Confirmation

7.
Accept:

— Subtract quantity ordered
 from quantity available.

8.

— Update customer balance.
— Record order data.

9, 10.

— Record order information.

— Record order information.

12.

11.

\WHS

Inventory
Data

\REG

Customer

Information
Order IDs

\REG

Customer
Credit
Data

\REG

Customer
Credit Data/
Order Data

\WHS

Inventory
Data/

Shipping

Data

\CORP

Accounts
Receivable

Data

\WHS

Inventory
Data/

Shipping

Data
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-3

Designing Your Application Identifying Transaction Components
Identifying Transaction Components

After you have identified the Enter Sales transaction for the order-processing
application, you list the functions performed by the transaction and group them either
into data collection and validation operations or into database update operations. For
example, the key functions performed by the Enter Sales transaction during data
collection and validation are:

• Assembling information for the order header, including:

• Obtaining the order-ID

• Accepting the customer-ID

• Accepting the requested delivery date

• Accepting shipping instructions

• Checking the customer-ID

• Obtaining the customer’s name and address from the database

• Assembling the order, including:

• Accepting the list of order items and the quantity of each item

• Checking the current quantity available for each item ordered

• Accepting special instructions

• Calculating total order cost

• Obtaining the customer’s balance and credit limit from the database

• Adding the total cost to the customer’s balance and ensuring that it does not
exceed the credit limit

The key function performed by the Enter Sales transaction during database update
operations is order completion. The order completion function includes:

• Subtracting the quantity ordered from the current quantity available for each ordered
item

• Adding the total order cost to the customer’s current account balance

• Recording the order in the database

• Recording the order invoice in the accounts receivable files

• Recording order shipping information in the inventory files

The relationships of the various functions for the Enter Sales transaction are illustrated
in Figure 2-2. The dark arrows in the figure show the sequence of actions from Step 1
through Step 3. The lighter arrows show the flow of information.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-4

Designing Your Application Identifying Transaction Components
Figure 2-2. Relationships Between Transaction Functions

Display totals at terminal and get confirmation; update item quantity and customer balance;
add totals to database; inform related applications about order.

022CDT .CDD

Items

Order-ID

Customer
Customer Information

Order-ID

Quantity
Available

Customer Balance

Item Detail

Accept
Items

Assemble

Header

Customer-ID

Order Totals

Quantity Ordered

Order Cost

Order

Complete
Order

Shipping Request Ship-ID

Display Totals

"Done"

Order Header

1

2

3

4

Invoice Request Invoice-ID

Assemble information for order header; display at terminal and add to database;
optionally change customer information.
Accept items in order, check item availability and customer credit; display item details
at terminal and add to database.

Later, when order is shipped and customer billed, add shipping and invoice numbers to
database.

1

2

3

4

Legend
A/R

Customer
Credit

Item Qualtity Available

I/C

Item-ID, Quantity

Display Item Details

Confirm Order

Customer-Details
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-5

Designing Your Application Protecting Transactions
Protecting Transactions

After listing and grouping the components of the Enter Sales transaction, you protect the
integrity of each transaction, and ultimately the consistency of the database, with the
TMF subsystem. The following pages outline how to integrate the TMF subsystem with
your business transactions.

For details about TMF programming in SCREEN COBOL requesters, see Section 5,
Managing Transactions With the TMF Subsystem For information about the overall
features of the TMF subsystem, including database file recovery and audit trails, refer to
the Introduction to NonStop™ Transaction Processing.

Defining TMF Transactions

From a systems perspective, a transaction includes all the steps necessary to transform a
database from one consistent state to another. A TMF transaction must be constructed
as a logical unit of work: that is, all parts of a transaction, which usually consists of
multiple operations, must be handled as a single entity. If any parts of a TMF
transaction are not successfully completed or applied to a database, then none of the
transaction parts are applied to the database. By forcing all components of a transaction
to be handled as a single unit of work, the TMF subsystem prevents inaccurate or partial
updates to the database and protects database consistency.

At the application level, a TMF transaction is defined by special procedure calls or
statements that specify the beginning and end of a transaction. For example, in
SCREEN COBOL, a transaction begins with a BEGIN-TRANSACTION statement and
ends with an END-TRANSACTION or ABORT-TRANSACTION statement. The
procedure calls that define TMF transactions act as brackets; that is, the statements are
placed before and after the add record, update record, and delete record procedures in
your requester program.

Database Consistency and Concurrency
Potentially, all operations that alter the database are candidates for TMF protection. But
before you can apply TMF protection to your transactions, you need to determine:

• When to begin a TMF transaction

• Whether all of the database update operations have to happen together in the same
TMF transaction or whether they can be parts of different transactions

To answer these issues, you have to establish your criteria for database consistency and
decide how much processing concurrency you can achieve in the application. For
example, the Enter Sales transaction affects several pieces of information: order data,
inventory data, shipping data, customer credit, and receivables. Upon examination of
this transaction, you will see that it is possible to make one general assertion about order
processing and about the Enter Sales transaction in particular: An order is not complete
until every piece of information associated with the order is recorded in the \REG,
\CORP, and \WHS databases.

To illustrate this assertion, consider a situation where a transaction fails after it changes
the customer’s balance, records the order information, and records the order invoice, but
before it records the shipping information. In this scenario, the customer is going to be
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-6

Designing Your Application Protecting Transactions
billed for an order never received. Consequently, your basic criterion for database
consistency is as follows: all database updates that are related to the order must be part
of one TMF transaction.

Any record modified or inserted by a database operation that is protected by the TMF
subsystem is locked and unavailable to other transactions until the initial transaction
ends successfully. This type of locking protocol means that you always have a design
tradeoff—consistency versus concurrency—with respect to locking records that are
actively accessed by the application. If records are locked too early, other transactions
cannot access them and the application’s concurrency (its ability to process many
transactions at the same time) suffers.

As the Enter Sales transaction demonstrates, all of the data collection and validation
operations can happen before you begin the TMF transaction—although some
revalidation may be done again as part of the transaction. Assembling the order header
and assembling the order involve reading records in the database but not changing the
records. The rest of the operations change the database and should all be done within a
TMF transaction.

As a general rule, you should design the application’s transactions to maintain
consistency under all circumstances. After the application is installed and running
successfully, you can look for ways to improve its concurrency.

Aborting Transactions
If the requester or the server program detects a problem during the processing of a TMF
transaction, the requester or server causes the transaction to be aborted with a special
statement or procedure call (for example, an ABORT-TRANSACTION statement in a
SCREEN COBOL program). For requesters, the statement that aborts a transaction is
executed in lieu of the statement that ends a transaction; for example, in a SCREEN
COBOL program the requester either completes the transaction with an END-
TRANSACTION statement or causes it to be backed out, because of an error, with an
ABORT-TRANSACTION statement.

In the past, program designs typically assigned the task of aborting transactions to
requesters. Current program design often assigns that task to servers. Servers abort
transactions and inform the requesters of those actions, thus ensuring protection of data.
The aborting of transactions by servers is described further under “Designing Server
Programs” later in this section.

The TMF subsystem backs out aborted transactions by using information contained in
the TMF audit-trail files. For more information about transaction backout and audit-trail
files, refer to the NonStop™ TM/MP Application Programmer’s Guide.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-7

Designing Your Application Designing the Database
Designing the Database
The next step in developing a Pathway application is to design the database that will be
accessed and updated by the application. Designing the database, which is a highly
specialized activity typically performed by experienced database administrators,
involves:

• Precisely identifying the meaning and use of the data as it exists in your business
and specifying the database files and records that will store this data. This step is
referred to as logical design.

• Choosing file types and keys for the records. This step is referred to as physical
design.

In addition to completing a logical and physical design of your database, you must also
select a database manager and ensure that your server programs can interface with that
database manager.

Logical Design
During the logical design process, you determine which classes of data must be
maintained by your application and identify the relationships that exist between the
classes. Each class of data names something that the database will store information
about. For example, in an application that processes sales orders, orders is a class of
data and order-items is a relationship between a particular order and the inventory
items within the order. These data classes and relationships generally become records in
files accessed by the application.

After specifying data classes, you list the attributes (data items) for each class of data.
For example, some of the attributes are order-ID, cust-ID, and order-total.
These attributes become fields in the records of the database. After specifying attributes
for data classes, you diagram the relationships between each of the files in the database
and then normalize your database files. To normalize files is to ensure, at a minimum,
that:

• There are no repeating fields.

• Data is dependent on the entire key (a unique element) of a field.

• Data is dependent on nothing but the key.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-8

Designing Your Application Physical Design
Physical Design

You undertake the physical design of your database by selecting the appropriate file
types and record keys for each of the files in the database. Whether you are using the
Compaq NonStop™ Structured Query Language/MP (SQL/MP) software or the
Enscribe software as your database management system (DBMS), these file types can be
classified as key-sequenced, relative, entry-sequenced, or unstructured:

Although the file type you choose depends on your application requirements, generally
you should choose key-sequenced files for a database that will be accessed and
maintained by a Pathway application. Key-sequenced files provide more flexibility than
the other file types.

Database Managers

Databases supporting Pathway applications can run under either the NonStop™
SQL/MP relational database management system or the Enscribe database record
manager. Both of these products support the creation and use of large databases capable
of operating in local or distributed systems.

The NonStop™ SQL/MP product is both a database management system (DBMS) for
production environments and a relational database management system (RDBMS) for
decision-making in an information-center environment. The NonStop™ SQL/MP
product allows you to think about and represent files in the database as a collection of
similarly structured lists. For more information about designing NonStop™ SQL/MP
databases, refer to the Compaq NonStop™ SQL/MP Reference Manual.

The Enscribe database record manager provides a record-at-a-time interface between
Pathway servers and your database. For more information about designing Enscribe
databases, refer to the Enscribe Programmer’s Guide.

Key-Sequenced Each record in the file has a primary key and up to 255 alternate
keys. The primary key is a field or combination of fields within
the record.

Relative Each record in the file has a unique record number, which is the
primary key, and can have up to 255 alternate keys. The record
number is a unique value that corresponds to the physical location
of the record within the file.

Entry-Sequenced Each record in the file has a unique record number and can have
up to 255 alternate keys. The record number corresponds to the
order in which a record is stored in the file. The primary key is
the relative byte address of the record.

Unstructured Each record in the file has a unique record number that can be
used as the primary key. Alternate keys are not supported.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-9

Designing Your Application Remote Duplicate Database Facility (RDF)
Remote Duplicate Database Facility (RDF)

If disaster recovery of your database is important, the Remote Duplicate Database
Facility (RDF) is available to maintain a copy of the database on a remote system. The
RDF product monitors database updates audited by the TMF subsystem and applies
those updates to the remote copy of the database. For more information about the RDF
product, refer to the Remote Duplicate Database Facility (RDF) System Management
Manual.

Designing Requester Programs
To facilitate the accessing of Pathway server classes from different transaction sources,
you can develop requester programs for a Pathway application that use any of the
following access approaches:

• SCREEN COBOL and the TCP

• SCREEN COBOL and the TCP with the intelligent device support (IDS) facility

• The Pathsend procedure calls

• The Compaq NonStop™ Remote Server Call/MP (RSC/MP) product

• The Extended General Device Support (GDSX) product

In Table 2-1, key technical and business considerations are mapped to each way of
accessing Pathway servers. More information about each approach is provided
following the table.

Table 2-1. Considerations for Requester Programs

Server Access
Approach L

ar
ge

 N
um

be
r

of
 I

/O
 D

ev
ic

es

Su
pp

or
t

fo
r

In
te

lli
ge

nt
 D

ev
ic

es

M
ul

ti
-T

hr
ea

di
ng

C

ap
ab

ili
ty

H
ig

h
P

er
fo

rm
an

ce

E
as

e
of

 D
ev

el
op

m
en

t

F
au

lt
 T

ol
er

an
ce

T
M

F
 S

up
po

rt

Su
pp

or
t

fo
r

C
on

te
xt

 S
en

si
ti

vi
ty

TCP X X X X X

TCP with IDS X X X X X X

Pathsend X X X X

RSC/MP X X X X X X

GDSX X X X X X X
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-10

Designing Your Application SCREEN COBOL Requesters
SCREEN COBOL Requesters

Screen programs for Pathway terminals perform a variety of front-end functions for your
Pathway application and are typically written as single-threaded programs in the
SCREEN COBOL language. This language offers a simple programming environment
and screen-management system to drive 65xx terminals and IBM 3270 terminals.
SCREEN COBOL supports both conversational mode (for either block-mode or
conversational-mode terminals) and intelligent mode (for intelligent devices and
communications lines).

When you write a screen program in SCREEN COBOL, you can take advantage of the
features of the Compaq NonStop™ Pathway/iTS TCP. As supplied by Compaq, the
TCP supports:

• Fault tolerance

• TMF transactions

• Multitasking of single-threaded screen programs

• Access to server processes with Pathway server classes

• Unsolicited message processing (UMP)

• System management interfaces (that is, PATHCOM or the Pathway management
programming interface)

SCREEN COBOL requester programs do not perform any file I/O operations except to
terminals and server classes. A file I/O operation to a server class, which is in the form
of a request message, is initiated by the requester program by using the SCREEN
COBOL SEND statement.

Programming Tasks
Most Pathway applications comprise five types of screen program units that are linked
by some type of calling sequence. Each program unit allows the user to perform one
specific type of action. The program unit types are:

Another type of program unit often used is a router program. This is a special type of
program used to route communication (calls) between the other program units by using a
hierarchy called flat-tree design. This design facilitates random screen manipulation by
terminal users. A flat-tree design is typically two layers deep: the first layer is the
router and the second layer consists of all the other programs.

Logon Allows users to gain access to the application

Menu Allows users to select applications or particular application functions

List-only Allows users to select line items (for instance, an inventory item and its
price) for processing

Data entry Allows users to add, delete, and update specific data

Help Assists users in responding to application screens
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-11

Designing Your Application SCREEN COBOL Requesters
As a programmer, your task is to create each required program unit. For each program
unit, you use the text editor TEDIT to create a screen program as a SCREEN COBOL
source file. You then use the SCREEN COBOL compiler to read the source file and
create:

• A program label entry in the SCREEN COBOL library directory (*DIR)

• Pseudocode (code that is interpreted by the TCP) in the SCREEN COBOL library
code file (*COD)

Once the pseudocode resides in *COD, it is immediately usable by the TCP, which
reads programs from the library file, interprets them, and executes them on behalf of the
terminals logically attached to the TCP. The SCREEN COBOL library files may
contain copies of many different screen programs.

Figure 2-3 illustrates the tasks and components involved in the creation of a SCREEN
COBOL requester program.

Program Structure

The logon, menu, list-only, data entry, and help program units each consist of four
required divisions. These divisions are very similar to standard COBOL divisions,
except that the Data Division in a SCREEN COBOL program contains a section for
screen description and entry formatting, and there are no file descriptions in a SCREEN
COBOL program because the requester does not access data files.

• The Identification Division identifies the program unit to the SCREEN COBOL
compiler. It contains one required paragraph and five optional paragraphs.

Figure 2-3. Creating SCREEN COBOL Requester Programs

POBJDIR

CDT 023.CDD

Identification Division
Environment Division

Data Division
Procedure Division

TEDIT Source
File

POBJCOD

SCREEN
COBOL
Compiler
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-12

Designing Your Application SCREEN COBOL Requesters
• The Environment Division declares the operating environment of the program unit
and optionally allows modification of the TCP’s error-reporting operations. It
contains one required section (the Configuration Section) and one optional section
(the Input-Output Section).

• The Data Division defines the program data structures by their format and usage.
Both the Working-Storage Section, which describes data local to the program, and
the Screen Section, which describes data displayed on and accepted from a terminal,
are required.

• The Procedure Division includes all the processing steps for the program. The steps
are organized into SCREEN COBOL statements and sentences and grouped into
sections, paragraphs, and procedures.

The example of a SCREEN COBOL program structure in Example 2-1 illustrates a
program unit containing the four required divisions previously described. This program
unit, which is in outline form, would handle data entry for the order-processing
application introduced at the beginning of this section.

Note. The program in Example 2-1 illustrates program structure only; it is not a complete
program. For examples of complete, running SCREEN COBOL requester programs, refer to
the Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-13

Designing Your Application SCREEN COBOL Requesters
Example 2-1. Sample SCREEN COBOL Requester Program
Structure (page 1 of 2)

IDENTIFICATION DIVISION. Declares program unit name.

 PROGRAM-ID. ORDER

ENVIRONMENT DIVISION. Defines type of terminals
 this program unit will
 OBJECT COMPUTER. control.
 TERMINAL IS T16-6530
 SPECIAL NAMES. Defines special names for:
 ENTER F1,. . . 1. Function key names
 BRIGHT IS BRIGHT 2. Video attributes
 PROTECTED IS PROTECTED 3. Flow control data
 attributes

DATA DIVISION.

 WORKING-STORAGE SECTION. Declares structure of
 01 WS-ORD-MSG server messages, variables
 . passed to called program
 . units, and local variables
 . used to manage screens and
 server communication.
 01 SERVER-REQ-FUNCTION-CODE
 .
 .
 .

 LINKAGE SECTION. Declares structure of
 01 LOGON-INFO variables passed from
 . calling program units.
 .
 .

 SCREEN SECTION. Declares format of all
 01 ORDER-SCREEN screens managed by this
 . program unit, including
 . screen fields and video
 . attributes of fields.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-14

Designing Your Application SCREEN COBOL Requesters
Unsolicited Message Processing
The unsolicited-message processing (UMP) feature of Pathway/iTS makes it possible
for terminals running SCREEN COBOL requesters to accept and reply to unsolicited
messages sent to them by Guardian operating environment processes outside of the
Pathway environment. These external processes can reside anywhere within a Compaq
Expand network. Guardian processes send unsolicited messages to terminals through
their controlling TCP. Such messages consist of an UMP header, which gets interpreted
by the receiving TCP, and the body of the message, which gets passed to the SCREEN
COBOL requester program running at the specified terminal.

Each Pathway/iTS terminal has its own unsolicited-message queue. When the TCP
receives an unsolicited message addressed to one of its terminals, it places the message
in the appropriate queue.

To support the processing of unsolicited messages, you code specific SCREEN COBOL
clauses, statements, and registers in your requester programs. UMP works as follows:

1. A requester detects the arrival of an unsolicited message by testing the contents of
its PW-UNSOLICITED-MESSAGE-QUEUED special register, by performing a
RECEIVE UNSOLICITED MESSAGE statement as a waited input operation, or by
including an ESCAPE ON UNSOLICITED MESSAGE clause in an ACCEPT or
SEND MESSAGE statement.

2. Requesters obtain the text of an unsolicited message by performing a RECEIVE
UNSOLICITED MESSAGE statement.

PROCEDURE DIVISION.

 MAIN SECTION.
 PERFORM 0100 START
 .
 .
 .

 SCREEN MANAGER SECTION. Displays operator screen
 DISPLAY ORDER-SCREEN and accepts data from
 ACCEPT ORDER-SCREEN UNTIL screen.

 SERVER MANAGER SECTION. Sends requests to server,
 0200 MOVE ORDER TO. . . handles server reply,
 BEGIN-TRANSACTION and commits transaction.
 SEND ORDER-MSG TO. . .
 .
 .
 .
 REPLY CODE 0 YIELDS. . .
 END-TRANSACTION Specifies END-TRANSACTION
 unless results of SEND
 require ABORT-TRANSACTION.

Example 2-1. Sample SCREEN COBOL Requester Program
Structure (page 2 of 2)
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-15

Designing Your Application IDS Requesters
3. After constructing an appropriate response, requesters reply to an unsolicited
message by performing a REPLY TO UNSOLICITED MESSAGE statement.

IDS Requesters

Standard SCREEN COBOL requesters are screen oriented; they send data back and
forth between the Working-Storage Section of the program and a terminal’s display
screen by using screen templates defined in the Screen Section. Standard SCREEN
COBOL requesters use SCREEN COBOL ACCEPT and DISPLAY statements in the
Procedure Division to interact with display terminals.

SCREEN COBOL requesters that employ the intelligent device support (IDS) facility
within the TCP send data back and forth between the Working-Storage Section and an
intelligent device (or a front-end process that controls the device) by using message
templates defined in the Message Section in the Data Division. IDS requesters use
SCREEN COBOL SEND MESSAGE statements and their associated REPLY clauses in
the Procedure Division to interact with the intelligent devices or front-end processes.

Although the IDS facility sends and receives data through Message Section templates
instead of Screen Section templates, the TCP still provides:

• Link management for access to Pathway server classes

• TMF support to ensure transaction protection and database integrity

• Fault tolerance through process pairs

• Multithreading and multitasking

• Expanded I/O editing support for data streams from intelligent devices

Design Considerations

When using IDS to facilitate access to Pathway servers by intelligent devices, consider
the following:

• IDS requester programs are written and compiled in the same way as standard
SCREEN COBOL requesters.

• A controlling SCREEN COBOL program unit does not control the intelligent device
or front-end process or use any information about the characteristics of the device.
The programming within the device or process must start the device or process
itself, accept messages from the TCP, and determine if and when to reply to the
TCP.

• The intelligent device supplies the presentation services (that is, screen displays)
suitable to its capabilities.

• Terminal types not supported by the TCP can use a front-end process (such as a
GDSX process) in conjunction with IDS, as described under Requesters Using
GDSX later in this section.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-16

Designing Your Application IDS Requesters
Program Structure

The example in Example 2-2 outlines an IDS SCREEN COBOL requester program.
Except for the inclusion of the Message Section and the deletion of the Screen Section,
the structure of an IDS requester program is the same as that of a standard SCREEN
COBOL requester program.

Example 2-2. Sample IDS Requester Program Structure (page 1 of 2)

IDENTIFICATION DIVISION.

 PROGRAM-ID. ORDER

ENVIRONMENT DIVISION.

 OBJECT COMPUTER.
 TERMINAL IS INTELLIGENT

DATA DIVISION.

 WORKING-STORAGE SECTION.
 01 WS-ORD-MSG
 .
 .
 .

 01 SERVER-REQ-FUNCTION-CODE
 .
 .
 .

 LINKAGE SECTION.
 01 LOGON-INFO
 .
 .
 .

 MESSAGE SECTION. Declares structure of
 01 MSG-FORMAT data passed to or from
 . a device or process.
 .
 .
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-17

Designing Your Application Pathsend Requesters
Pathsend Requesters

As an alternative to writing SCREEN COBOL requesters, you can write Pathsend
requesters in C, C++, COBOL85, Pascal, or TAL. In such requesters, you use Pathsend
procedure calls to communicate with Pathway servers. The LINKMON process
manages links to your server processes on behalf of Pathsend requesters.

Design Considerations

The following considerations should help you decide whether to use Pathsend requesters
in your applications:

Pathsend requesters are a good choice for your applications if you need to do the
following:

• Take a high volume of transactions from a limited number of devices. In this
scenario, there are relatively few requester processes, the requesters are busy, and
configuration and management is minimal.

• Access servers that are shared by Pathway requesters and applications other than
OLTP applications; for example, a security-checking server or a logging server. If
such servers are used infrequently or if the workload varies, server processes can be
automatically deleted when not needed and restarted through the PATHMON
process when needed again.

• Access servers from environments containing a mix of online transaction processing
and batch processing; that is, environments where the same set of servers handle
both online requests and requests from batch applications such as NetBatch Plus
processes.

PROCEDURE DIVISION.

 MAIN SECTION.
 PERFORM 0100 START
 .
 .
 .

 DEVICE HANDLING SECTION.
 SEND MSG MSG-FORMAT Sends messages to and
 receives messages from
 intelligent device.

 SERVER MANAGER SECTION.
 0200 MOVE ORDER TO. . .
 BEGIN-TRANSACTION
 SEND ORDER-MSG TO. . .
 REPLY CODE 0 YIELDS. . .
 END-TRANSACTION

Example 2-2. Sample IDS Requester Program Structure (page 2 of 2)
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-18

Designing Your Application Clients Using RSC/MP
• Write nested servers, which act as requesters by making requests to servers in other
server classes, perhaps server classes managed by a different PATHMON process.

• Write context-sensitive servers (servers that retain information about the processing
of previous requests).

Pathsend procedure calls give you more flexibility than WRITEREAD calls for server-
to-server communication. The application gets all the advantages of server classes,
including advantages not readily available with WRITEREAD; for example, load
balancing, adjusting the number of servers to fit response-time requirements, and
configuration and operations management. You can use the Pathsend procedure calls in
C, C++, COBOL85, Pascal, and TAL programs.

The Pathsend procedures and the LINKMON process, however, do not provide
multithreading, fault tolerance, device configuration, or operations management for
requesters. Therefore, if you need these capabilities in a Pathsend requester, you must
provide the programming for them.

In addition, Pathsend procedure calls that send messages to server classes must be
protected by the TMF subsystem to ensure data integrity in your Pathway application.

The Pathsend procedures and the LINKMON process do not support the checkpointing
of Guardian interprocess message synchronization IDs. This lack of checkpointing
support is an important consideration when writing fault-tolerant requester programs
that do not use the TMF subsystem.

For more information about designing and coding Pathsend requesters, refer to the
NonStop™ TS/MP Pathsend and Server Programming Manual.

Clients Using RSC/MP
The RSC/MP product facilitates client/server computing, allowing workstation
applications to access Pathway server classes and Guardian processes. This product
supports a number of different transport protocols and workstation platforms. For
detailed information about the supported platforms and protocols, refer to the Compaq
NonStop™ Remote Server Call (RSC/MP) Programming Manual.

Transactions are transmitted from the workstation application (the client) to a Pathway
application running on a Compaq NonStop™ Himalaya system (the server) by means of
a supported communications protocol, such as NETBIOS, TCP/IP, or an asynchronous
connection.

RSC/MP includes a process called the Transaction Delivery Process (TDP), which
resides on the NonStop™ Himalaya system. The TDP is a multithreaded process that
can handle multiple workstations. It routes request messages from workstations to
Pathway server classes by using either the Pathsend API and the LINKMON process or
the terminal control process (TCP) provided in the Pathway/iTS product. If the TCP is
used, it can route a request message to a Pathway server by using either the intelligent
device support (IDS) requester supplied as part of RSC/MP or an IDS requester that you
develop yourself. The TDP can also send request messages from a workstation to a
Guardian process.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-19

Designing Your Application Requesters Using GDSX
For information about designing and coding requesters with the RSC/MP product, refer
to the Compaq NonStop™ Remote Server Call (RSC/MP) Programming Manual.

Requesters Using GDSX

The Extended General Device Support (GDSX) communications subsystem product
simplifies the development of front-end processes and back-end processes for
communication with I/O devices. These devices can be of any type, including
workstations, terminals, ATMs, point-of-sale (POS) devices, and industrial robots.
GDSX supplies code that provides multitasking and other features useful for developing
these front-end and back-end processes.

A GDSX process can act as a front-end process for LINKMON processes or a
Pathway/iTS terminal control process (TCP).

A GDSX process contains two primary parts:

• TSCODE, supplied by Compaq

• USCODE, supplied by the application programmer

TSCODE provides generic routines and management services that help you build a
multithreaded, fault-tolerant process. TSCODE provides the following functions:

• Creates new tasks and stops tasks

• Receives all system messages and I/O requests

• Dispatches (wakes up and executes) the appropriate active task to process messages
and requests

• Handles errors

USCODE consists of user exits that are called by TSCODE to handle the application-
specific, data communications-related functions, such as data manipulation, protocol
conversion, and message routing for the I/O process. USCODE is typically written in
the Transaction Application Language (TAL) and bound with TSCODE to produce a
functional GDSX process.

GDSX provides its own interface to Guardian procedures, NonStop™ TM/MP
procedures, and Pathsend procedures. The names of the GDSX procedures typically
look like their Guardian, NonStop™ TM/MP, or Pathsend equivalents, but they have a
circumflex (^) character inserted before the procedure name. For example,
BEGINTRANSACTION becomes ^BEGINTRANSACTION.

When a GDSX process is used as a front-end process, multiple threads of a user-coded
device handler provide separate tasks to manage the input from I/O devices and provide
functions such as data-stream conversion, implementation of a communications
protocol, and network communications error handling. One instance of the device
handler manages one I/O device.

In the Pathway environment, the GDSX process often simulates a terminal supported by
the TCP; the simulated terminal is typically run by an IDS requester program. When the
IDS facility is used, the GDSX product can be used to manage the line protocol
controlling the connected devices. The GDSX line handler (LH) task can be used to
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-20

Designing Your Application Requesters Using GDSX
coordinate multiple GDSX device handler tasks or the GDSX device handler task can
directly communicate with a back-end line.

Figure 2-4 shows the path of a transaction from a general device to a Pathway server
through a GDSX process.

When developing a front-end process using GDSX, consider the following:

• A GDSX front-end process is a good choice when a specified data communications
protocol is not supported by the Pathway TCP but is supported by GDSX.

• A GDSX front-end process is also a good choice when performance is critical.
SCREEN COBOL may not be efficient enough to handle a large amount of
application function.

• GDSX processes are managed either through the Subsystem Control Facility (SCF)
interactive interface or through a management application program using the
Subsystem Programmatic Interface (SPI).

Figure 2-4. GDSX as a Front-End Process

CDT 024.CDD

Database

Server Class

ServerGDSX

PATHMON

NonStop
 SQL/MP

NonStop
TM/MP

TCPIDS

General Device

LH

General Device

General Device

NonStopTM Himalaya System
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-21

Designing Your Application Dividing Function Between Requester and Server
For further information about designing and coding GDSX processes, refer to the
Extended General Device Support (GDSX) Manual.

Dividing Function Between Requester and Server

In designing a Pathway application, you must decide how to divide function between
requester and server. In making this decision, you should consider the type of requester
or client you are writing (SCREEN COBOL, Pathsend, RSC/MP, or GDSX), and you
should also consider performance, maintainability, and other factors.

For example, what module should check entry fields for validity? If you are writing a
SCREEN COBOL requester, you can easily code it so that the TCP performs these
checks. However, a special edit-checking server could provide better performance.
If your application includes a workstation requester that communicates with servers
using RSC/MP, having the requester check the entry fields would save communications
overhead.

As another example, what module should change screen field attributes such as color,
blink, brightness, or reverse video for such purposes as highlighting an entry field that
contains an error? The SCREEN COBOL language allows such work to be done by the
requester, but it could also be done by the server.

For more considerations about dividing function among modules within an application,
refer to the NonStop™ TS/MP Pathsend and Server Programming Manual.

Designing Server Programs
Request validations, security checks, calculations, database inquiries, and database
changes made in response to a request message are performed by individual units of
code within Pathway server programs. As an application programmer, your task is to
create a server program to perform specific tasks (for example, create a customer
account).

You can write Pathway server programs in C, C++, COBOL85, pTAL, TAL,
FORTRAN, or Pascal in the Guardian environment. Alternatively, you can write
Pathway server programs in C or COBOL85 in the NonStop™ Kernel Open System
Services (OSS) environment; you must program such servers to read the Guardian
$RECEIVE file as described in the Open System Services Programmer’s Guide. In both
cases, you configure and manage the servers by using the PATHCOM interactive
interface or the Pathway management programming interface (based on the Subsystem
Programmatic Interface, or SPI) in the Guardian environment.

Regardless of which operating environment or programming language you use, your
Pathway server programs can access database files through the NonStop™ SQL/MP
relational database management system or the Enscribe database record manager. See
Designing the Database on page 2-8 for information about these two database managers.

You can use the same server programs, whether developed in the Guardian environment
or in the OSS environment, with several different requester and client interfaces. These
interfaces include SCREEN COBOL, the Pathsend procedures, and the RSC/MP
interface. Requesters or clients using different interfaces can share the same Pathway
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-22

Designing Your Application Designing Applications for Batch Processing
server classes if you ensure that the server program’s request and reply formats are
consistent for all requesters.

After you code and compile your server program, the server object code and library code
are shared among all processes of the same server class.

For information about designing and coding Pathway servers, refer to the NonStop™
TS/MP Pathsend and Server Programming Manual.

Designing Applications for Batch Processing
If your Pathway application includes batch processing, consider the different needs of
this type of processing in your design.

For example, you might code a Pathsend program that takes its input from a file rather
than from a terminal, then sends requests to a server to make updates to a database. This
program could be configured as a server, thus operating as a nested server. Its input file
might be TMF protected, and the Pathsend program might make updates to it.

An application that does several updates to a database, with each update coded as a
separate TMF transaction, could be slow when it performs these updates as a batch job
rather than performing them online. For batch processing, it is usually faster to group a
number of updates in a single transaction. However, if your batch jobs are very large,
note that you should not try to group more than about one thousand updates in one TMF
transaction.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-23

Designing Your Application Designing Applications for Batch Processing
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-24

3
Programming for Specific Terminals

Compaq NonStop™ Pathway/iTS currently supports IBM 3270 terminals, the 6530
family of terminals (652x series, 653x series, and 654x series), any device that is
recognized by the file system as a conversational-mode terminal, and any entity that is
identified as an intelligent-mode device. Each type of device has its unique set of
requirements. This section summarizes those requirements.

Using IBM 3270 Terminals
When communicating with IBM 3270 terminals in the Pathway environment, there are
several important things to consider:

• The screen size of the terminal models

• The rules for controlling the screen mode

• The rules for positioning the screen fields

• The rules for positioning the cursor

• The use of the terminal’s function keys

• The use of extended field attributes

Screen Size

The supported IBM 3270 terminals have a number of different physical screen sizes.
Table 3-1 lists the various terminal subclasses with their maximum screen sizes (lines by
columns), alternate screen sizes, and model names.

Table 3-1. IBM 3270 Terminal Subclasses and Screen Sizes

Subclass Screen Size Model

1 12 x 40 IBM 3277 M1

2 24 x 80 IBM 3277 M2

3 24 x 80, alternate 32 x 80 IBM 3278 M3

4 24 x 80, alternate 43 x 80 IBM 3278 M4

5 12 x 40, alternate 12 x 80 IBM 3278 M1

6 24 x 80, alternate 27 x
132

IBM 3278 M5
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-1

Programming for Specific Terminals Controlling the Screen Modes
When running a SCREEN COBOL application on the IBM terminals, consider the
following:

• A single screen definition can be displayed successfully on any model as long as its
logical screen size is less than or equal to the maximum physical screen size
capability of the terminal. If the logical screen size is greater than the maximum
physical screen size, the terminal suspends operation with the following error:

ERROR - *3990* REFERENCED SCREEN IS ILLEGAL FOR TERMINAL
TYPE

• A single field that wraps from one line to the next in the logical screen definition
does not wrap, or wraps differently, if the physical screen width exceeds the logical
screen width. The field wraps around to the next line only at the end of the physical
line. This wrapping is an important consideration if a screen is intended to run on
both 40-column displays and 80-column displays.

Controlling the Screen Modes

As shown in Table 3-1, some IBM terminals have alternate screen sizes. The logical
screen size specified in the SCREEN COBOL screen definition of the current base
screen determines which mode the terminal operates in.

For example, terminal model IBM 3278 M5 has these two screen modes:

When a SCREEN COBOL application is run on the IBM 3278 M5 terminal, the screen
mode is determined as follows:

• If the screen size definition is equal to or less than the line limit of 24 and the
column limit of 80, the 80-column mode is used.

• If the screen size definition is in the line range of 25 through 27, or in the column
range of 81 through 132, the 132-column mode is used.

• If no screen size is specified, the 80-column mode is used.

Base Screen Size

Mode Lines Columns

80-column (80-column screen with standard characters) 1-24 1-80

132-column (132-column screen with compressed characters) 1-27 1-132

Note. Switching screen modes can decrease performance because the terminal memory
is cleared to spaces on every mode switch. For the best performance for your SCREEN
COBOL application, use the same screen mode for all the screens.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-2

Programming for Specific Terminals Positioning the Screen Fields
Positioning the Screen Fields

All fields must reserve a blank character position immediately before the field.
For example:

• If a single-character field is to be located at line 2, column 2, on the terminal screen,
then both character positions 2,1 and 2,2 must be reserved for that field. In that
case, a second field could not begin at character position 2,3 on the terminal screen
because the preceding character position (2,2) is already in use by the preceding
field and is therefore no longer available as a blank character position.

• A field cannot be at character position 1,1 because the character position preceding
1,1 does not exist and thus cannot be reserved.

The minimum separation, in bytes, between screen elements for the IBM 3270 is
indicated in Table 3-2.

Positioning the Cursor

Cursor positioning on screens with protected fields after an ACCEPT operation acts
differently on an IBM 3270 than such cursor positioning does on a 6520. The IBM
3270 does not prevent cursor positioning at a protected field. The 6520, however,
automatically repositions a cursor to the next unprotected field if the cursor initially
positions at a protected field. If you do not want the cursor to be positioned at a
protected field on an IBM 3270 before an ACCEPT operation, you can use the SET
command to specify NEW-CURSOR at the desired, unprotected screen field.

Table 3-2. Minimum Character Separation for IBM 3270 Terminals

 Second Element

First Element Field Literal Overlay Area End of Screen

Start of base screen 1 1 0* N. A.

Start of overlay screen
occupying area that does not
have the same width as its
base screen **

1 1 0 N. A.

Field 1 (3)*** 1 0 (1)****
(2)***

0 (2)***

Literal 1 1 0 (1)**** 0

Overlay Area 1 1 0 0*

* Does not support WHEN FULL TAB.

** When an overlay screen occupies an overlay area that does not have the same width as its base screen, an
overlay field cannot wrap from one line to the next.

*** Extra separation (two or three bytes) required to support WHEN FULL LOCK.

**** Extra separation required to support WHEN FULL TAB. Use one byte to separate the elements.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-3

Programming for Specific Terminals Using IBM 3270 Function Keys
Using IBM 3270 Function Keys

The IBM terminals have a unique set of function keys that can be used by a SCREEN
COBOL application. The function keys are:

• PA1 through PA3

• PA4 through PA10

• PF1 through PF24

The PA4 though PA10 keys are optional keys, and the values they transmit when
pressed may vary from vendor to vendor. Assigning a unique function-key value to one
of those keys’ logical PA program name can be done with the user-replaceable
procedures in the TCP user library. See Section 4, Writing User Conversion Procedures,
for more details.

Using Extended Field Attributes

Pathway/iTS supports extended field attributes on terminals in the IBM 3270 family.
Depending on the terminal, Pathway/iTS supports the following kinds of extended field
attributes:

• Color display attributes

• Highlight display attributes (REVERSE, BLINK, and UNDERSCORE)

• Outline display attributes

• Audible alarm feature

Because of differences in terminals in the IBM 3270 family, you should consider the
following when you use extended field attributes:

• Some terminals do not support any color display attributes.

• Some terminals that support color display attributes support seven colors, while
others support only four.

• Some terminals support highlight display attributes only.

• Some terminals support outline display attributes only.

• Some terminals support both highlight and outline display attributes.

• Some terminals support neither highlight nor outline display attributes.

When specifying the extended field attributes in a SCREEN COBOL program unit,
consider:

• In the SPECIAL-NAMES paragraph, define mnemonic names to identify the system
names (or combinations of system names) that correspond to one or more of the
color, highlight, or outline display attributes.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-4

Programming for Specific Terminals Using Extended Field Attributes
• Use the mnemonic names in either the Screen Section or the Procedure Division of
the program unit to refer to the color, highlight, or outline display attributes. For
example:

MNEMONIC-NAME-1 IS RED.

When the program unit is run, the TCP determines which extended field attributes
are supported by the terminal.

• The TCP uses only the extended field attributes that the terminal supports.

If, for example, your SCREEN COBOL program unit uses color display attributes
that are available on an IBM 3279 color terminal, but the program unit is run on an
IBM 3278 terminal that does not support color display attributes:

• The TCP ignores the color display attributes used in the program unit.

• The screen appears correctly on the terminal, but without color.

You can use the optional SET MINIMUM-COLOR and SET MINIMUM-ATTR
statements in the Procedure Division if you must establish the minimum level of
support for color, highlight, and outline display attributes for that program unit and
all other program units called by that program unit. The TCP uses the information
provided by the SET MINIMUM-COLOR and SET MINIMUM-ATTR statements
to determine the level of support for color, highlight, and outline display attributes
required by a program unit.

For example, if your program unit requires seven colors, or both reverse and blink
highlight display attributes, you can use the following statements to establish those
requirements:

• The SET MINIMUM-COLOR statement establishes the minimum level of
support for color display attributes.

• The SET MINIMUM-ATTR statement establishes the minimum level of
support for highlight and outline display attributes.

For further information about the SET MINIMUM-ATTR and SET MINIMUM-
COLOR statements and their default values, see the Compaq NonStop™
Pathway/iTS SCREEN COBOL Reference Manual.

To establish the attributes required for a program unit, you issue statements such as
the following before a DISPLAY BASE statement:

MOVE 1 TO IBM-FULL-COLOR OF WS-MINIMUM-COLOR.
MOVE 1 TO IBM-FIELD-OUTLINE OF WS-MINIMUM-ATTRIBUTE.
SET MINIMUM-COLOR USING WS-MINIMUM-COLOR.
SET MINIMUM-ATTR USING WS-MINIMUM-ATTRIBUTE.

Note. The minimum level of support for color display attributes does not change until a
subsequent SET MINIMUM-COLOR statement is executed, even if you use a CALL
statement to move between program units. Likewise, the minimum level of support for
highlight or outline display attributes does not change until a subsequent SET MINIMUM-
ATTR statement is executed, even if you use a CALL statement to move between program
units.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-5

Programming for Specific Terminals Using Extended Field Attributes
The SET MINIMUM-ATTR and SET MINIMUM-COLOR statements cause the
information in the working-storage definitions to be extracted and stored in a control
block with other information related to the program unit.

• When a terminal or program unit is started, the TCP initializes the extended field
attribute requirements of the program unit as follows:

• No support for color display attributes is required.

• No support for highlight display attributes is required.

• No support for outline display attributes is required.

• You need not modify existing program units for terminals in the IBM 3270 family
unless you want to use the color, highlight, or outline display attributes.

• When a SET MINIMUM-ATTR or SET MINIMUM-COLOR statement is
executed, the TCP updates the requirements of the program unit for the appropriate
extended field attributes.

• When a DISPLAY BASE statement is executed, the TCP compares the capabilities
of the terminal with the requirements of the program unit:

• If the program unit requires extended field attributes that the terminal does not
support, the TCP aborts the program. Termination status 71 indicates
insufficient support for the color, highlight, or outline display attributes
required.

• If the program unit requires extended field attributes that the terminal does
support, the program unit runs.

• If the TCP determines that a program unit was compiled with color, highlight, or
outline display attributes:

• The TCP uses the default foreground color, green, if you do not specify a
foreground color.

• The TCP issues a READ PARTITION structured field message to the terminal.
The TCP uses the reply to this message to determine the capabilities of the
terminal. If the terminal does not support query reply, the TCP ignores the
extended field attributes. See the IBM 3270 Information System Data Stream
Programmer's Reference Manual for information about building and
transmitting specific reply sequences.

To determine the level of support for these attributes on a given terminal, you can use
the TERMINALINFO statement. This statement determines which extended field
attributes a terminal supports; you can issue the statement at any place in the program.
You usually issue a TERMINALINFO statement before the first DISPLAY BASE
statement in a program unit. You can then determine whether a terminal supports
extended field attributes and take action in the program unit accordingly.

For further information about the TERMINALINFO statement, see the Compaq
NonStop™ Pathway/iTS SCREEN COBOL Reference Manual.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-6

Programming for Specific Terminals Using Extended Field Attributes
Color, highlight, and outline display attributes associated with a mnemonic name
declared in the SPECIAL-NAMES paragraph can be used in the TURN statement,
which changes the display attributes of fields, as in the following example:

TURN ALERT IN SCREEN-FIELD-01 SHADOWED.
TURN TEMP BLUE IN SCREEN-FIELD-02 SHADOWED.
TURN BG-YELLOW IN SCREEN-FIELD-03 SHADOWED.
TURN ATTRS-AND-COLOR IN SCREEN-FIELD-04 SHADOWED.

Using Color Display Attributes

Terminals in the IBM 3270 family that support color and allow query reply can support
some or all of the following colors:

BLUE
RED
PINK
GREEN
TURQUOISE
YELLOW
NEUTRAL

Terminals in the IBM 3270 family can be grouped in three categories according to the
level of support for color display attributes.

• The following terminals in the IBM 3270 family that support color display attributes
support four colors (BLUE, GREEN, RED, and NEUTRAL):

3287-1C
3287-2C

• The following terminals in the IBM 3270 family that support color display attributes
support seven colors (BLUE, GREEN, PINK, RED, TURQUOISE, YELLOW, and
NEUTRAL):

3192
3194
3279

• The following terminals in the IBM 3270 family do not support color display
attributes:

3178
3191
3278
3230
3262
3268
3287-1
3287-2
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-7

Programming for Specific Terminals Using Extended Field Attributes
You cannot use more than one foreground color (that is, the color of characters
displayed on the terminal screen). In other words, you can assign only one foreground
color display attribute to a single mnemonic-name. For example:

LEGAL-MNEMONIC-6 IS RED.

Attempting to combine more than one foreground color display attribute in a mnemonic-
name parameter results in a syntax error. In the following example, ACTION-FIELD3
and ACTION-FIELD4 are not the same, because attributes are applied in chronological
order. ACTION-FIELD5 and ACTION-FIELD6, however, are exactly the same.

SPECIAL-NAMES.
 RED IS RED, INPUT-ERROR IS BLINK,
 DRIVE-CRAZY IS (RED, BLINK, BRIGHT),
 ACTION-FIELD1 IS (BLINK, PINK, UNDERLINE, TOPLINE),
 ACTION-FIELD2 IS (BLINK, BLUE, BOXFIELD),
 ACTION-FIELD3 IS (REVERSE, BOXFIELD, NOTOPLINE),
 ACTION-FIELD4 IS (REVERSE, NOTOPLINE, BOXFIELD),
 ACTION-FIELD5 IS (UNDERLINE, GREEN, BOXFIELD),
 ACTION-FIELD6 IS (UNDERLINE, GREEN, TOPLINE, LEFTLINE,
 RIGHTLINE, BOTTOMLINE).

SPECIAL-NAMES.
 STOP IS RED,
 GO IS GREEN,
 CAUTION IS YELLOW,
 NORMAL IS NEUTRAL,
 ALERT IS REVERSE,
 BLINK-VIDEO IS BLINK,
 ALTER-VIDEO IS BRIGHT,
 INCORRECT-DATA IS BLINK.

Using Highlight Display Attributes

Pathway/iTS supports the following highlight display attributes on terminals in the IBM
3270 family:

BLINK
NOBLINK
BRIGHT
NORMAL
HIDDEN
NOTHIDDEN
MDTON
MDTOFF
NUMERIC-SHIFT
PROTECTED
UNPROTECTED
REVERSE
NOREVERSE
UNDERLINE
NOUNDERLINE
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-8

Programming for Specific Terminals Using Extended Field Attributes
Using Outline Display Attributes

Pathway/iTS supports the following outline display attributes on terminals in the IBM
3270 family:

TOPLINE
NOTOPLINE
LEFTLINE
NOLEFTLINE
RIGHTLINE
NORIGHTLINE
BOTTOMLINE
NOBOTTOMLINE
BOXFIELD

If the terminal does not support TOPLINE, BOTTOMLINE, RIGHTLINE, or
LEFTLINE, the TCP marks the device as unable to do outlining.

Using Other Extended Attributes

Pathway/iTS supports the following additional extended display attribute on terminals in
the IBM 3270 family:

BELL

Combining Extended Field Attributes
Pathway/iTS and the terminals in the IBM 3270 family support certain combinations of
color, highlight, and outline display attributes. You must observe the following
restrictions when combining color, highlight, and outline display attributes in a
mnemonic name declared in the SPECIAL-NAMES paragraph:

• You must not combine extended field attributes that Pathway/iTS supports with
those that Pathway/iTS does not support. Pathway/iTS does not support the
following extended field attribute on terminals in the IBM 3270 family:

DIM

• You can combine any of the following highlight display attributes with one another:

BRIGHT
HIDDEN
MDTON
NUMERIC-SHIFT
PROTECTED

Note. BOXFIELD is equivalent to the combination of TOPLINE, LEFTLINE, RIGHTLINE, and
BOTTOMLINE.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-9

Programming for Specific Terminals Using Extended Field Attributes
• You can combine one of the following highlight display attributes with one or more
of the other highlight display attributes (that is, with BRIGHT, HIDDEN, MDTON,
NUMERIC-SHIFT, or PROTECTED). You cannot combine the following highlight
display attributes with each other:

BLINK
REVERSE
UNDERLINE

• If a terminal in the IBM 3270 family supports the following outline display
attributes, you can combine them with one another and with any highlight display
attribute (that is, with BRIGHT, HIDDEN, MDTON, NUMERIC-SHIFT,
PROTECTED, BLINK, REVERSE, or UNDERLINE):

TOPLINE
NOTOPLINE
LEFTLINE
NOLEFTLINE
RIGHTLINE
NORIGHTLINE
BOTTOMLINE
NOBOTTOMLINE
BOXFIELD

Examples:

(BLINK, TOPLINE, BOTTOMLINE)

(REVERSE, LEFTLINE, RIGHTLINE)

(UNDERLINE, BOTTOMLINE, TOPLINE)

Valid Language and Terminal Combinations

The keyword KANJI-KATAKANA specifies the only language that can be declared for
IBM 3270 terminals.

If the language does not match the valid language choices for a terminal class, the
compiler marks the statement as an error.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-10

Programming for Specific Terminals Using 6520 Terminals
Using 6520 Terminals
When communicating with 6520 terminals in the Pathway environment, you need to
consider:

• The rules for controlling the screen mode

• The rules for positioning the screen fields

Controlling the Screen Modes

The 6520 terminal has two screen modes, as shown in Table 3-3. You control which
screen mode is used by a SCREEN COBOL screen definition.

When running a SCREEN COBOL application on the 6520 terminal, the screen mode is
determined as follows:

• If the screen definition is equal to or less than the column limit of 40, the 40-column
mode is used.

• If the screen definition is in the column limit range of 41 through 80, the 80-column
mode is used.

• If no screen size is specified, the 80-column mode is used.

Switching screen modes can decrease performance because the terminal memory is
cleared to spaces on every mode switch. For the best performance for your SCREEN
COBOL application, use the same screen mode for all the screens.

Positioning the Screen Fields

All nonliteral fields must reserve a blank character immediately before the field. For
example:

• If a field is at line 2, column 2, and is one character long, then 2,1 and 2,2 are
reserved for the field. A second field cannot be at 2,3 because both fields would
attempt to use location 2,2.

• A field cannot be at 1,1 because the character before 1,1 does not exist and thus
cannot be reserved.

Fields cannot wrap from the bottom to the top line of the screen.

The minimum separation between screen elements for the 6520 terminal is indicated in
Table 3-4.

Table 3-3. Screen Modes for 6520 Terminals

Base Screen Size

Mode Lines Columns

40-column (80-column screen with double-wide characters) 1-24 1-40

80-column (80-column screen with standard characters) 1-24 41-80
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-11

Programming for Specific Terminals Using 6530 Terminals

Using 6530 Terminals
The 6530 terminal has all the capabilities of the 6520 terminal plus some additional
features. The considerations discussed previously for the 6520 also apply to the 6530.
These include the rules for controlling the screen mode and the rules for positioning the
screen fields.

The 6530 terminal is upwardly compatible with the 6520. Program units compiled for a
6520 can be run on a 6530; however, features unique to the 6530 do not function on the
6520.

The 6530 terminal enables the use of other devices to put data into screen fields. For
more information about this ability, refer to the description of the RECEIVE clause in
the Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual.

Return-Key Function

Pathway/iTS can enable the Return key to behave as a function key when a SCREEN
COBOL program takes control of a 6530 terminal. For the RETURN-KEY function to
become effective, the program's SPECIAL-NAMES paragraph must contain a
RETURN-KEY phrase as the system-name parameter. The RETURN-KEY definition is
local to a SCREEN COBOL program and must be defined in the program or no
RETURN-KEY function exists. To use this function in a program that was previously
compiled, you must recompile the program and include the RETURN-KEY phrase. If a
program is defined for a 6520 terminal and run on a 6530 terminal, you cannot use the
RETURN-KEY function.

Table 3-4. Minimum Character Separation for 6520 Terminals

 Second Element

First Element Field Literal Overlay Area End of Screen

Start of base screen 1 1 0 0

Start of overlay screen
occupying an overlay area that
does not have the same width
as its base screen *

1 1 0 0

Field 1 1 0 0

Literal 1 0 or 1** 0 0

Overlay Area 1 1 0 0

* When an overlay screen occupies an overlay area that does not have the same width as its base screen, an
overlay field cannot wrap from one line to the next.

** If two successive literals have the same attributes, no separation is necessary. Otherwise, at least one
position must separate them.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-12

Programming for Specific Terminals Internal Function-Key Queuing
Internal Function-Key Queuing

6530 terminals have the unique capability of internally queuing a function key without a
read operation being posted. When no terminal read operation is in progress and a
terminal key is pressed, the function key value is stored inside the terminal. The value is
read upon the next ACCEPT statement that the SCREEN COBOL program executes.

This terminal feature provides a significant convenience for most Pathway applications.
You might, however, write an application that uses ESCAPE clauses in which this
terminal feature is inappropriate.

In this situation, a function key is queued during the interval between the cancellation of
one read and the arrival of another read so that the function key intended for the first
operation is in fact applied to the second operation. The terminal operator cannot tell
that the first read has been canceled; when the operator presses the function key
intending to execute that original action, the key is automatically queued and executed at
the next read.

Your program can avoid this situation by causing the keyboard to lock after the
cancellation of a read in the following cases:

• After the ESCAPE ON UNSOLICITED MESSAGE clause

• After the ESCAPE ON TIMEOUT clause

The Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual describes
the following two SCREEN COBOL special registers that control locking the keyboard
when an ESCAPE operation has been performed:

• PW-QUEUE-FKEY-UMP

• PW-QUEUE-FKEY-TIMEOUT

Using EM6530PC on a 6540 Personal Computer
The 6540 personal computer (PC) was originally equipped with the terminal emulator
EM6530PC. EM6530PC emulates the capabilities of the 6530 terminal. The
EM6530PC terminal emulator is upwardly compatible with the 6520 and 6530
terminals. Program units compiled for a 6520 or 6530 terminal run successfully with
EM6530PC.

The following differences exist between the 6530 terminal and the EM6530PC
emulator:

• The EM6530PC emulator does not support alternate input devices; the 6530
terminal does support them.

• The EM6530PC emulator has more screen modes than the 6530 terminal.

The EM6530PC emulator has four screen modes, as shown in Table 3-5. The logical
screen size specified in the SCREEN COBOL screen definition of the current base
screen determines which mode the terminal operates in.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-13

Programming for Specific Terminals Using Conversational Terminals

Given the screen size definition, the TCP searches a screen mode definition table to find
the first appropriate base size. The table search occurs in the order that the modes are
listed. Therefore, you must ensure that the screen size specified results in the desired
screen mode being selected. For example, if you want the 66-column mode, you must
specify a width between 41 and 66 to prevent the 40-column mode from being used.

If no screen size is specified in the base screen definition, the 80-column mode (24,80)
is used.

Switching screen modes can decrease performance because the terminal memory is
cleared to spaces on every mode switch. For the best performance for your SCREEN
COBOL application, use the same screen mode for all screens.

Using Conversational Terminals
A conversational terminal is any terminal that the file system recognizes as operating in
conversational mode. A conversational terminal processes carriage return, line feed, and
bell operations. If the data entered during ACCEPT processing exceeds the size of the
I/O buffer, the terminal simply redisplays a field prompt without an advisory error
message.

Some of the SCREEN COBOL statements and clauses act differently in block mode
than in conversational mode. This discussion summarizes information about using
conversational mode.

Conversational-Mode Program
A SCREEN COBOL program written for conversational-mode operation can run on
either a block-mode terminal or a conversational-mode terminal. When a program is
specified as conversational, that program performs according to the restrictions for a
conversational terminal regardless of the type of terminal on which the program runs.

A SCREEN COBOL program running in conversational mode performs as follows:

• Displays information on the terminal during an ACCEPT statement, one line at a
time

• Accepts data entered from the terminal one line at a time

Table 3-5. Screen Modes for 6540 Personal Computers

Base Screen Size

Mode Lines Columns

40-column (80-column screen with double-wide characters) 1-24 1-40

66-column (132-column screen with double-wide characters) 1-27 1-66

80-column (80-column screen with standard characters) 1-24 67-80

132-column (132-column screen with standard characters) 1-27 67-132
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-14

Programming for Specific Terminals Designating Conversational Terminals
• Responds to a set of input-control characters when the terminal is enabled to accept
data

• Recognizes only keyboard characters, carriage returns, and line feeds (not function
keys)

• Restricts the display field attributes to BELL and HIDDEN

Designating Conversational Terminals

You designate a conversational terminal by specifying the following clause in the
OBJECT-COMPUTER paragraph of the Environment Division:

TERMINAL IS CONVERSATIONAL

This clause causes a terminal to operate in conversational mode regardless of the
terminal type. Program units compiled for conversational mode can be run on 652x
series, 653x series, 654x series, and IBM 3270 terminals or on any other device that the
file system recognizes as operating as a conversational-mode terminal.

The available screen field attributes for conversational terminals are: BELL, HIDDEN,
NOBELL, and NOTHIDDEN.

Error enhancement is available only for the first field found to be in error. If additional
fields are specified, they are ignored. BELL is the applicable error enhancement for
conversational terminals. You must explicitly specify ERROR-ENHANCEMENT IS
BELL to have error enhancement.

Input Control Characters

The Screen Section has input-control entries available for terminals in conversational
mode. These clauses define the specific input-control characters to be used during
execution of an ACCEPT statement. The clauses are as follows:

• ABORT-INPUT defines the characters used to terminate the processing of the
current ACCEPT statement with an abort termination status.

• END-OF-INPUT defines the characters used to indicate the end of the last input
field for the current ACCEPT statement. If used, the END-OF-INPUT clause must
be specified at the 01 screen level. A character defined for END-OF-INPUT cannot
be specified for another input-control character.

• FIELD-SEPARATOR defines the character used to separate one screen field from
another during an ACCEPT statement. If a screen field description includes an
OCCURS clause, each occurrence is treated as one field.

• GROUP-SEPARATOR defines the character used during the processing of an
ACCEPT statement to mark the end of the last item in an OCCURS clause or the
last field of a group declaration that does not contain an OCCURS.

• RESTART-INPUT defines the characters used to restart input processing during the
current ACCEPT statement.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-15

Programming for Specific Terminals Displaying Information
Displaying Information

The DISPLAY BASE statement establishes the current screen.

A DISPLAY statement in conversational mode causes the TCP to write to the terminal
display, which can be a screen, printer paper, and so forth.

The DISPLAY statement presents output in order by rows. A screen field value appears
on the screen at the column number position specified in the screen field description.
Blank lines for formatting purposes are not generated. Therefore, screen lines generally
do not correspond with the line numbers specified in the Screen Section.

To display fully line-formatted screens, define at least one item for every line (row) of
the screen. If a row of spacing is required, define the screen item for that row with a
VALUE clause specifying blanks, for example, VALUE " ". Then, display the entire
screen by specifying the screen name as the screen identifier in the DISPLAY statement.

For more information, see the descriptions of the DISPLAY BASE and DISPLAY
statements in the Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference
Manual.

Accepting Information

If the terminal associated with the SCREEN COBOL program is operating in
conversational mode, the ACCEPT statement performs the following:

• Displays the prompt value defined for the first screen field described with a
PROMPT clause. The prompt value is always displayed in the first column of the
screen line.

• Waits for a response from the terminal. If the TIMEOUT phrase is used, ACCEPT
waits the length of time specified in this phrase.

• Receives input from the terminal and stores the data into the associated working-
storage items of the program data area. Input can be accepted from the terminal one
screen field at a time, one field per line. However, the capability referred to as type
ahead enables data entry for more than one field on the same line.

• Returns only valid data to the program (checking the definitions in the Screen
Section of the Data Division to determine the validity of the data). All
SHADOWED fields associated with the input fields of the ACCEPT statement have
their ENTERED and RETURNED bits set appropriately.

If invalid data is entered and an ADVISORY field is defined, an error message is
displayed, the prompt is redisplayed for the field in error, and the data can be reentered.
If an ADVISORY field is not defined for the base screen, only the prompt is redisplayed
for the field in error and the data can be reentered.

For more information, see the description of the ACCEPT statement in the Compaq
NonStop™ Pathway/iTS SCREEN COBOL Reference Manual.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-16

Programming for Specific Terminals Using Intelligent-Mode Devices
Using Intelligent-Mode Devices
A SCREEN COBOL program operates in intelligent mode when it communicates with
an intelligent device. An intelligent device is any device that can receive and reply to
messages sent by the SEND MESSAGE statement in a SCREEN COBOL program. An
intelligent device could be a personal computer, an automatic teller machine, a point-of-
sale device, a Guardian operating environment process, a communications line, or a
6540 terminal operating as a personal computer.

When writing a program to communicate with such a device, you should be aware of the
following:

• The SCREEN COBOL program has no control over the device. It is up to the
person writing code for the device to start up the device; accept any messages from
the SCREEN COBOL program; send any replies back to the SCREEN COBOL
program; supply the operator interface, if any; and so forth.

• The SCREEN COBOL program is responsible for synchronizing messages between
the program and the intelligent device. The program must check for duplicate
messages from the device.

• Pathway/iTS does not establish modem connections for intelligent devices. If you
want a modem connection, you must use the RECONNECT MODEM statement.

• The TCP does not collect messages for intelligent devices in a buffer as it does for
data sent to a terminal screen. Each message is sent when the SEND MESSAGE
statement is executed.

• The Message Section provides some formatting of data sent to and received from an
intelligent device. When data is passed directly between the intelligent device and
data areas in the Working-Storage or Linkage Sections, it is not formatted.

• Programs that communicate with intelligent devices cannot use the following
SCREEN COBOL statements:

ACCEPT RESET

CLEAR INPUT SCROLL

DISPLAY SET NEW-CURSOR AT

DISPLAY BASE TURN

DISPLAY OVERLAY USE FOR SCREEN RECOVERY

DISPLAY
RECOVERY

USE FOR TERMINAL-ERRORS

PRINT SCREEN
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-17

Programming for Specific Terminals Using Simulated Devices
• The following special registers have no meaning for programs that communicate
with intelligent devices:

• In order for a SCREEN COBOL program unit to communicate with an intelligent
device, the OBJECT-COMPUTER paragraph of the Environment Division must
specify that the terminal type is INTELLIGENT. In addition, the PATHMON
environment must be configured for intelligent devices; this is accomplished by
setting the terminal type in a SET TERM or SET PROGRAM command. Refer to
the Compaq NonStop™ Pathway/iTS System Management Manual for details.

Using Simulated Devices
Compaq provides the means for you to write nonprivileged programs that function as a
terminal, printer, tape driver, or other device. In the terminology of the Compaq
NonStop™ Kernel operating system, these programs are called subtype 30 processes.

Specifying device subtype 30 tells the system that the terminal-simulation process will
supply device information in response to a request for the device-type information.
Hence device subtype 30 must be specified for a terminal-simulation process; otherwise,
the file system will reply to the DEVICEINFO request.

All the devices that Pathway/iTS interfaces with can be emulated with a subtype 30
process. The device list includes:

• Terminals

RUN PROGRAM terminals have a DEVICEINFO time limit of five minutes.
START TERM terminals do not have a DEVICEINFO time limit.

• Log files

Log files have a DEVICEINFO time limit of two minutes if PATHMON is starting.
However, log files have a time limit of five minutes if PATHMON is running.

• Associative servers

Associative servers have a DEVICEINFO time limit of five minutes.

When a DEVICEINFO error occurs, an error is not logged. Instead, the following error
message is sent to the operator:

ERROR - *1040* UNABLE TO DETERMINE DEVICE TYPE (nnn)

where nnn is an operating system error.

REDISPLAY

PW-QUEUE-FKEY-UMP

PW-QUEUE-FKEY-TIMEOUT

PW-TERMINAL-ERROR-OCCURRED

TELL-ALLOWED
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-18

Programming for Specific Terminals Using Dial-in Terminals
Using Dial-in Terminals
When dial-in terminals are in use, the terminal control process (TCP) issues a
CONTROL 11 operation (wait for modem connect) immediately after the terminal file is
opened. At terminal startup time, no program unit or data area is attached to the
terminal; therefore, the terminal is using a minimum of TCP resources while waiting for
modem connect. When the terminal is stopped, the terminal file is closed. The close
causes the modem to disconnect if no other process has the terminal file open.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-19

Programming for Specific Terminals Using Dial-in Terminals
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-20

4
Writing User Conversion Procedures

If you include a USER CONVERSION clause in a screen description entry, a message
description entry, or a SEND MESSAGE statement, you must provide a corresponding
user conversion procedure. The user conversion procedure lets you make your own
validation checks or conversions of data passed between a SCREEN COBOL program
and a terminal screen or intelligent device.

This section presents information about the following topics:

• User conversion procedures

• User-written user conversion procedures

• Screen input procedures

• Screen output procedures

• 3270 key mapping

• Intelligent device input procedures

• Intelligent device output procedures

User Conversion Procedures
Compaq provides nine user conversion procedures with the Compaq NonStop™
Pathway/iTS software: four to convert terminal screen data, four to convert intelligent
device message data, and one to support IBM 3270 attention keys. The data conversion
procedures consist of input and output procedures. The input procedures provide
conversion and data validation; the output procedures provide output conversion. The
key-mapping procedure supports the program attention keys (PA4 through PA10) on an
IBM 3270 (or analogous) terminal. In summary, the user conversion procedures are as
follows:

The five terminal procedures and four intelligent-device procedures exist in the TCP
object library. The TCP calls the specified procedure whenever you include a USER

Conversion Procedures Data

Terminals Screen input Numeric data
Alphanumeric data

Screen output Numeric data
Alphanumeric data

3270 key mapping Attention keys

Intelligent Devices Device input Numeric data
Alphanumeric data

Device output Numeric data
Alphanumeric data
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-1

Writing User Conversion Procedures User-Written User Conversion Procedures
CONVERSION clause as part of either a field definition or a SEND MESSAGE
statement.

User-Written User Conversion Procedures
You can write your own user conversion procedures in the Portable Transaction
Application Language (pTAL) and use the nld utility to link your procedures in the
native TCP user library object file, PATHTCPL.

In releases prior to D40, user conversion procedures were written in TAL. In D40 and
later releases (including all G-series releases), user conversion procedures must be
written in pTAL. pTAL is based on TAL. The pTAL language excludes architecture-
specific TAL constructs and includes new constructs that replace the architecture-
specific constructs. You can write user conversion procedures that can be compiled by
both the TAL and the pTAL compilers, thus enabling you to use the same source code
for different releases of Pathway/iTS.

If you are converting existing user-written user conversion routines to pTAL for use
with a D40 or later version of Pathway/iTS, refer to the pTAL Conversion Guide and the
pTAL Reference Manual for further information. Many user conversion routines are
simple enough that no changes will be needed. However, there is an interface change in
the four user conversion procedures for intelligent devices, as shown in Figure 4-7 and
Figure 4-8 later in this section.

User conversion routines and alternative advisory message routines (described in the
Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual) are the only
routines that must be compiled with the pTAL compiler.

Coding the User Conversion Procedures and Creating the User Library

There are four files provided in the installation subvolume:

You should code the user conversion procedures only in the TLIB file.

Use the following four steps to code your user conversion procedures:

1. Copy the files SLIB, ILIB, and TLIB from the installation subvolume to your
subvolume: for example, $MY.USERCNV. Make changes to the user conversion
procedures that you want to use.

SLIB An auxiliary source file that is passed to the pTAL compiler for
compiling the user conversion procedures

ILIB An interface source file containing all the definitions and data
structures used by the user conversion procedures

TLIB A source file containing the stubs of the user conversion
procedures

TCPLIB An object file that is required to build the native user library
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-2

Writing User Conversion Procedures Coding the User Conversion Procedures and
Creating the User Library
2. Compile the source using pTAL as follows:

user-conversion-object

is a pTAL object file.

3. Remove all compilation errors.

4. Build the user library using the nld utility as follows:

user-conversion-object

is a pTAL object file.

$volume

is the volume where the installation subvolume ZPATHWAY resides.

native-user-library

is the native user library object file used by the TCP.

Using the MAKEUL Macro

A Compaq Tandem Advanced Command Language (TACL) macro called MAKEUL is
provided to facilitate the process of creating the user library. If you are using MAKEUL,
perform the following two steps instead of the four steps described in the previous
subsection:

1. Copy the files SLIB, ILIB, and TLIB from the installation subvolume to your
subvolume, for example $MY.USERCNV. Make changes to the user conversion
procedures that you want to use.

2. Compile and build the native user library as follows:

native-user-library

is the native user library source file used by the TCP.

$volume

is the volume where the installation subvolume ZPATHWAY resides.

See Appendix A, The MAKEUL Macro, for further information on the MAKEUL
macro and related examples.

PTAL/IN $MY.USERCNV.SLIB/user-conversion-object

NLD user-conversion-object $volume.ZPATHWAY.TCPLIB
-UL-O native-user-library

MAKEUL -SRC $MY.USERCNV.SLIB -LIB native-user-library
-LOC $volume.ZPATHWAY
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-3

Writing User Conversion Procedures Restrictions on User Conversion Procedures
Restrictions on User Conversion Procedures

Do not code your user conversion procedures to perform any I/O operations. Such I/O
operations could interfere with the operation of the TCP.

Screen Input Procedures
Two procedures provide conversion during screen input, one procedure for input of
numeric data items and the other for input of alphanumeric items. When the USER
CONVERSION clause is declared for the field, the appropriate procedure is called:

• Before value checks are applied

• After the input has been stripped of fill characters

• After standard conversion is attempted

The procedure is called even if an error occurs during the standard conversion attempt;
if a length error occurs, however, the procedure is not called.

Most of the parameters of the two procedures are the same; they differ only for the
internal data item. Declarations for the numeric and alphanumeric screen input
conversion procedures are shown in Figure 4-1 and Figure 4-2.

Note. If an alphanumeric field is declared with the UPSHIFT and USER CONVERSION
clauses, the TCP upshifts the field both before and after the user conversion procedure is
called.

Figure 4-1. Screen Numeric Input Procedure Declaration

PROC USER^NUMERIC^INPUT^CONVERSION (USERCODE, ERROR,
 INPUT, INPUT^LEN, INTERNAL, INTERNAL^SCALE);

INT USERCODE;
INT .ERROR;
STRING .INPUT;
INT INPUT^LEN;
FIXED .INTERNAL;
INT INTERNAL^SCALE;

Figure 4-2. Screen Alphanumeric Input Procedure Declaration

PROC USER^ALPHA^INPUT^CONVERSION (USERCODE, ERROR,
 INPUT, INPUT^LEN, INTERNAL, INTERNAL^LEN);

INT USERCODE;
INT .ERROR;
STRING .INPUT;
INT INPUT^LEN;
STRING .INTERNAL;
INT INTERNAL^LEN;
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-4

Writing User Conversion Procedures Screen Input Procedures
USERCODE

is the value given in the USER CONVERSION field characteristic clause. This
parameter can be used to select a particular type of conversion.

ERROR

is both an input and an output parameter. When the procedure is called, the
parameter contains either 0 (indicating no error) or the number of a conversion error
detected during the attempted standard conversion. Refer to the Compaq NonStop™
Pathway/iTS SCREEN COBOL Reference Manual for a listing of the possible error
codes.

The value of the ERROR parameter after the call determines whether an error for
the field is reported back to the terminal. If the value is nonzero, that value is used
to select the error message to be displayed. Processing depends on the purpose of
the procedure as follows:

• If the user conversion procedure simply performs additional checking on the
input it has received, then the procedure should return immediately if the
ERROR is nonzero: that is, skip the additional checking. This is because having
a nonzero ERROR indicates that an error has already been encountered and
hence it is not necessary to do any further checks. However if the ERROR is
zero, then the procedure should proceed with its own checking and set the
ERROR accordingly.

• If the user conversion procedure is performing some conversion, then the
ERROR may have no meaning because you may have entered some values
which will cause the ERROR to be set, but programmatically you would like to
convert the entered value to some value which would be understood by your
application. Hence in these cases, you should ignore the value present in the
ERROR, perform the conversion, and set the ERROR parameter accordingly.

INPUT

contains the string of characters input from the terminal. Alphanumeric input is
stripped of fill characters from the right; numeric input is stripped of fill characters
from both the right and the left.

INPUT^LEN

gives the number of bytes in the input string after the string is stripped of fill
characters. The byte before and the byte after the input string are set to null values.

INTERNAL

contains the result of the standard conversion (if no error occurred) and should
contain the result of the user conversion (unless ERROR is nonzero upon return).

• For the numeric procedure, INTERNAL is a FIXED parameter; if necessary,
this value is later converted to the final data type by the TCP. The
INTERNAL^SCALE parameter gives the scale that INTERNAL should have.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-5

Writing User Conversion Procedures Screen Output Procedures
• For the alphanumeric procedure, INTERNAL is a STRING parameter.
INTERNAL^LEN represents the maximum number of bytes that the result of
the conversion can occupy; therefore, the conversion routine should use
INTERNAL^LEN to control the maximum amount of data moved to
INTERNAL.

Screen Output Procedures
Two procedures provide conversion during screen output. One procedure is for output
of numeric data items, and the other is for alphanumeric items. When the USER
CONVERSION clause is declared for the field, the appropriate procedure is called after
standard conversion has completed.

Most of the parameters of the two procedures are the same; they differ only for the
internal data item. Declarations for the numeric and alphanumeric screen output
conversion procedures are shown in Figure 4-3 and Figure 4-4.

Note. If an alphanumeric field is declared with the UPSHIFT and USER CONVERSION
clauses, the TCP upshifts the field both before and after the user conversion procedure is
called.

Figure 4-3. Screen Numeric Output Procedure Declaration

PROC USER^NUMERIC^OUTPUT^CONVERSION (USERCODE, OUTPUT,
 OUTPUT^LEN, MAX^OUTPUT^LEN, INTERNAL,
 INTERNAL^SCALE);

INT USERCODE;
STRING .OUTPUT;
INT .OUTPUT^LEN;
INT MAX^OUTPUT^LEN;
FIXED .INTERNAL;
INT INTERNAL^SCALE;

Figure 4-4. Screen Alphanumeric Output Procedure Declaration

PROC USER^ALPHA^OUTPUT^CONVERSION (USERCODE, OUTPUT,
 OUTPUT^LEN, MAX^OUTPUT^LEN, INTERNAL, INTERNAL^LEN);

INT USERCODE;
STRING .OUTPUT;
INT .OUTPUT^LEN;
INT MAX^OUTPUT^LEN;
STRING .INTERNAL;
INT INTERNAL^LEN;
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-6

Writing User Conversion Procedures 3270 Key Mapping
USERCODE

contains the value given in the USER CONVERSION field characteristic clause.
This parameter can be used to select a particular type of conversion.

OUTPUT

indicates where the string of characters for output to the terminal is to be placed.
When the procedure is called, the location designated by this parameter contains the
result of the standard conversion.

OUTPUT^LEN

contains the length of the output string. If the procedure changes the output string,
the procedure should set OUTPUT^LEN to the associated length; in no case should
OUTPUT^LEN be greater than MAX^OUTPUT^LEN. If OUTPUT^LEN is less
than the field length, the fill character is used to pad the field.

MAX^OUTPUT^LEN

represents the maximum possible length of the particular converted output field.
This value should be used to control the maximum amount of data moved to
OUTPUT.

INTERNAL

contains the data to be converted.

• For the numeric procedure, INTERNAL is a FIXED parameter. The
INTERNAL^SCALE parameter contains the number of decimal places.

• For the alphanumeric procedure, INTERNAL is a STRING parameter. The
INTERNAL^LEN parameter contains the number of bytes in the string.

3270 Key Mapping
The user-replaceable procedure USER^3270^KEY^MAPPING is provided to support
program attention keys PA4 through PA10. These keys are used on terminals analogous
to the IBM 3270 terminal.

Keys PA4 through PA10 transmit a code called an attention-ID (AID) byte. The actual
codes vary among terminals of different vendors. To use these keys, you need to write
your own procedure that associates the AID byte transmitted by your terminal with the
appropriate Pathway/iTS key number.

Note. Do not expect the string represented by the INTERNAL parameter to be bounded by
nulls.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-7

Writing User Conversion Procedures 3270 Key Mapping
Declarations for the key-mapping procedure are shown in Figure 4-5.

AID

contains the code transmitted by the attention key (PA4 through PA10). A value for
AID is passed to the procedure.

KEYNUM

contains the Pathway/iTS key number for the SCREEN COBOL program. A value
for KEYNUM is passed on the call and return. KEYNUM is set to -1 if the
Pathway/iTS key number is undefined.

The procedure could include logic to test for the AID byte values represented by keys
PA4 through PA10 and return the appropriate KEYNUM. The logic could test for
KEYNUM value of -1; this value means that the key number is undefined. If
KEYNUM is -1, you should then test the AID byte value:

• If the AID byte value indicates a key PA4 through PA10, change KEYNUM to the
appropriate Pathway/iTS key number (31 through 37).

• If the AID byte value indicates something other than key PA4 through PA10, merely
return, leaving KEYNUM as -1.

Table 4-1 shows the defined relationships between AID byte values and Pathway/iTS
key numbers.

Figure 4-5. 3270 Key-Mapping Procedure Declaration

PROC USER^3270^KEY^MAPPING (AID, KEYNUM);

INT AID; ! 3270 AID BYTE -- AID byte from terminal
INT .KEYNUM; ! ON THE CALL -- Associated with 3270 AID
 ! byte (Table 4-1) or -1 if
 ! key is undefined
 ! ON THE RETURN -- Pathway/iTS key number (Figure 4-1)
 ! or -1 if undefined

Table 4-1. Mapping of Internal 3270 Key Number to Pathway/iTS Key
Number (page 1 of 3)

SCREEN COBOL Special-Name 3270 AID Byte Pathway/iTS Key Number

ENTER %047 0

PA1 %045 1

PA2 %076 2

PA3 %054 3

CLEAR %137 4

PF1 %061 5

PF2 %062 6

* The AID byte value for this key varies from terminal vendor to terminal vendor. Refer to the manual that
came with your terminal for the value.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-8

Writing User Conversion Procedures 3270 Key Mapping
PF3 %063 7

PF4 %064 8

PF5 %065 9

PF6 %066 10

PF7 %067 11

PF8 %070 12

PF9 %071 13

PF10 %072 14

PF11 %043 15

PF12 %100 16

PF13 %101 17

PF14 %102 18

PF15 %103 19

PF16 %104 20

PF17 %105 21

PF18 %106 22

PF19 %107 23

PF20 %110 24

PF21 %111 25

PF22 %133 26

PF23 %056 27

PF24 %074 28

Undefined %060 29 (Test Request)

Undefined %127 30 (Op ID Card Reader)

PA4* Undefined 31

PA5* Undefined 32

PA6* Undefined 33

PA7* Undefined 34

PA8* Undefined 35

PA9* Undefined 36

PA10* Undefined 37

Table 4-1. Mapping of Internal 3270 Key Number to Pathway/iTS Key
Number (page 2 of 3)

* The AID byte value for this key varies from terminal vendor to terminal vendor. Refer to the manual that
came with your terminal for the value.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-9

Writing User Conversion Procedures Intelligent Device Input Procedures
Intelligent Device Input Procedures
Two procedures can be called to convert input received from an intelligent device: one
procedure to convert numeric input and the other to convert alphanumeric input.

You can use the input procedures to:

• Receive and format an input message

• Specify the actual scale of a numeric item or the actual length of a nonnumeric item

• Convert any fill characters in the message

• Right justify alphanumeric data in the message

• Report whether data was actually sent and, if sent, whether the data is nonblank

When USER CONVERSION is specified for a message field, the TCP calls the numeric
procedure if the data is to be moved to a numeric working-storage field; it calls the
alphanumeric procedure if the data is to be moved to an alphanumeric field.

When USER CONVERSION is specified in a SEND MESSAGE statement, the TCP
calls the alphanumeric procedure regardless of the message data type. The input
procedures are performed before the standard conversion or formatting of the send-
message data.

If a USER CONVERSION clause is specified for both a Message Section message field
and the SEND MESSAGE statement that sends the message, the TCP first calls the
procedure for the SEND MESSAGE statement, then calls the procedure for the message,
and finally calls the procedure for the message field.

Figure 4-6 illustrates the data flow of the processing of Message Section items on input.
The sequence of events performed for each elementary data field input from an
intelligent device is shown; processing steps relevant to user conversion routines are
highlighted.

Undefined %075 -1 (Selector Pen Attn)

Undefined %055 -1 (No AID--Display)

Undefined %131 -1 (No AID--Printer)

Other -- -1

Table 4-1. Mapping of Internal 3270 Key Number to Pathway/iTS Key
Number (page 3 of 3)

* The AID byte value for this key varies from terminal vendor to terminal vendor. Refer to the manual that
came with your terminal for the value.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-10

Writing User Conversion Procedures Intelligent Device Input Procedures
Most of the parameters for the two input procedures are the same; they differ in their
internal data representation and in that alphanumeric items can be justified but numeric
items cannot. Declarations for the numeric and alphanumeric intelligent device input
conversion procedures are shown in Figure 4-7 and Figure 4-8.

Figure 4-6. Message Input From an Intelligent Device

Figure 4-7. Device Numeric Input Procedure Declaration

PROC USER^NUMERIC^INPUT^MSG^CONV (USERCODE, ERROR, INPUT,
 INPUT^LEN, INTERNAL, INTERNAL^SCALE, FILL^CHAR,
 FILL^OFF, FIELD^RETURNED, FIELD^PRESENT);

INT USERCODE; ! Supplied by TCP
INT .ERROR; ! Generated by user procedure
STRING .EXT INPUT; ! Supplied by TCP
INT .INPUT^LEN; ! Supplied by TCP; modifiable by user
FIXED .INTERNAL; ! Generated by user procedure
INT INTERNAL^SCALE; ! Supplied by TCP
STRING .FILL^CHAR; ! Supplied by TCP
INT FILL^OFF; ! Supplied by TCP
INT .FIELD^RETURNED; ! Generated by user procedure
INT .FIELD^PRESENT; ! Generated by user procedure

CDT 046.CDD

Message Level
Message Level

Message Level

Group Level

Field Level
Field Level
Field Level

Field Level

Field Level
Field Level

VARYING1 and VARYING2 handling
SEND MESSAGE Verb’s
 USER CONVERSION

Message Level USER CONVERSION

OCCURS Processing

OCCURS Processing
PRESENT IF checking
FIELD-DELIMITER testing/
 RESULTING COUNT
Field conversion to
 WORKING-STORAGE format

or
Field Level USER CONVERSION
TO/USING destination location

Intelligent Device message TCP
 TCP message MESSAGE SECTION

 MESSAGE SECTION
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-11

Writing User Conversion Procedures Intelligent Device Input Procedures
USERCODE

contains the numeric literal specified in the USER CONVERSION clause. The
procedure uses the supplied value of this parameter to determine which subset of
code to execute.

ERROR

contains 0 when the procedure is called. If an error indication is to be returned, the
procedure should set ERROR to a nonzero value. If ERROR is nonzero after the
call, the TCP reports an error.

INPUT

contains the string of characters input from the intelligent device. This string is the
raw data for the conversion.

INPUT^LEN

contains the length, in bytes, of the data item.

• At the message level, the length is the number of characters received from the
intelligent device, that is, the I/O transfer count.

• At the field level, length is relevant only if the item is alphabetic or alphanumeric.
Length is the effective length of the field; that is, either the declared length of the
field for fixed-format messages or the actual length of the field for delimited
(FIELD DELIMITERS ON) messages. Additionally, the TCP adjusts the length
(INPUT^LEN) by subtracting the number of trailing blanks found in a field. This
adjustment is performed for both fixed-format and delimited-format fields.

Figure 4-8. Device Alphanumeric Input Procedure Declaration

PROC USER^ALPHA^INPUT^MSG^CONV (USERCODE, ERROR, INPUT,
 INPUT^LEN, INTERNAL, INTERNAL^LEN, FILL^CHAR,
 FILL^OFF, RIGHT^JUSTIFIED, FIELD^RETURNED,
 FIELD^PRESENT);

INT USERCODE; ! Supplied by TCP
INT .ERROR; ! Generated by user procedure
STRING .EXT INPUT; ! Supplied by TCP
INT .INPUT^LEN; ! Supplied by TCP; modifiable by user
STRING .EXT INTERNAL; ! Generated by user procedure
INT INTERNAL^LEN; ! Supplied by TCP
STRING .FILL^CHAR; ! Supplied by TCP
INT FILL^OFF; ! Supplied by TCP
INT .FIELD^RETURNED; ! Generated by user procedure
INT .FIELD^PRESENT; ! Generated by user procedure
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-12

Writing User Conversion Procedures Intelligent Device Output Procedures
INTERNAL

is where the TCP expects to find the results of the conversion routine; that is, it is
the destination of the data from the INPUT parameter—of length INPUT^LEN—
that the conversion routine has processed.

INTERNAL^SCALE

is a parameter in the numeric procedure only. The procedure should set it to the
number of decimal places of the value stored in INTERNAL when it is a FIXED
field.

INTERNAL^LEN

is the size of the destination buffer INTERNAL. It is set to the length of the
maximum expected reply message for the current SEND MESSAGE operation. The
conversion routine should use INTERNAL^LEN to control the maximum amount of
data moved into INTERNAL, the destination of the conversion operation.

FILL^CHAR

is always set to either 0 (for numeric conversions) or blank (for alphanumeric
conversions) by the TCP.

FILL^OFF

is always set to -1 by the TCP.

RIGHT^JUSTIFIED

contains -1 (TRUE) if an alphanumeric value is to be right justified and contains 0
(FALSE) if not.

FIELD^RETURNED

should be set to -1 (TRUE) if any data was sent from the device or be set to 0
(FALSE) if there was no data.

FIELD^PRESENT

should be set to -1 (TRUE) if the data sent from the device is nonblank or be set to 0
(FALSE) if the data is blanks.

Intelligent Device Output Procedures
Two procedures can be called to convert output being sent to an intelligent device: one
procedure to convert numeric output and the other to convert alphanumeric output.

You can use the output procedures to:

• Add fill characters to the message, increasing the length up to the maximum
message length allowed

• Right justify alphanumeric data in the message
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-13

Writing User Conversion Procedures Intelligent Device Output Procedures
When USER CONVERSION is specified in a message entry, the TCP calls the numeric
procedure for data moved from a numeric data field in working storage; it calls the
alphanumeric procedure for data moved from an alphanumeric data field in working
storage.

When USER CONVERSION is specified in a SEND MESSAGE statement, the TCP
calls the alphanumeric procedure regardless of the message data type. The user
procedures are performed after any standard conversion of the data.

If a USER CONVERSION clause is specified for both a Message Section message field
and the SEND MESSAGE statement that sends the message, the TCP first calls the
procedure for the message field, then calls the procedure for the message, and finally
calls the procedure for the SEND MESSAGE statement. This calling order is the
inverse of the order for intelligent device input procedures.

Figure 4-9 illustrates the data flow of the processing of Message Section items on
output. The sequence of events performed for data output to an intelligent device is
shown; processing steps relevant to user conversion routines are highlighted.

Most of the parameters for the two output procedures are the same; they differ in their
internal data representation and in that alphanumeric items can be justified and numeric

Figure 4-9. Message Output to an Intelligent Device

s

 MESSAGE SECTION

MESSAGE SECTION message TCP

 TCP message Intelligent Device

CDT 049.CDD

WORKING-STORAGE SECTION

Field Level
Field Level
Field Level

Field Level

Field Level

Field Level

Group Level

Message Level

Message Level

Message Level

Process field PRESENT IF
FROM/USING source location
Field conversion to
 MESSAGE SECTION format
or
Field Level USER CONVERSION

FIELD LENGTH/append
 FIELD-SEPARATOR
OCCURS Processing

OCCURS Processing

Message Level USER CONVERSION

SEND MESSAGE Verb’s
 USER CONVERSION
VARYING1 and VARYING2 handling
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-14

Writing User Conversion Procedures Intelligent Device Output Procedures
items cannot. Declarations for the numeric and alphanumeric device output procedures
are shown in Figure 4-10 and Figure 4-11.

USERCODE

contains the numeric literal specified in the USER CONVERSION clause. The
procedure uses the supplied value of this parameter to determine which subset of
code to execute.

OUTPUT

contains the string of characters to be sent to the intelligent device. The TCP
expects OUTPUT to contain the value from INTERNAL as converted by this
procedure.

OUTPUT^LEN

contains the number of characters in the output message (the data pointed to by
INTERNAL). If the user conversion procedure changes this length, it should set

Figure 4-10. Device Numeric Output Procedure Declaration

PROC USER^NUMERIC^OUTPUT^MSG^CONV (USERCODE, OUTPUT,
 OUTPUT^LEN, MAX^OUTPUT^LEN, INTERNAL, INTERNAL^SCALE,
 FILL^CHAR, FILL^OFF);

INT USERCODE; ! Supplied by TCP
STRING .EXT OUTPUT; ! Generated by user procedure
INT .OUTPUT^LEN; ! Supplied by TCP; modifiable by user
INT MAX^OUTPUT^LEN ! Supplied by TCP
FIXED .INTERNAL; ! Supplied by TCP
INT INTERNAL^SCALE; ! Supplied by TCP
STRING .FILL^CHAR; ! Supplied by TCP
INT FILL^OFF; ! Supplied by TCP

Figure 4-11. Device Alphanumeric Output Procedure Declaration

PROC USER^ALPHA^OUTPUT^MSG^CONV (USERCODE, OUTPUT,
 OUTPUT^LEN, MAX^OUTPUT^LEN, INTERNAL, INTERNAL^LEN,
 FILL^CHAR, FILL^OFF, RIGHT^JUSTIFIED);

INT USERCODE; ! Supplied by TCP
STRING .EXT OUTPUT; ! Generated by user procedure
INT .OUTPUT^LEN; ! Supplied by TCP; modifiable by
user
INT MAX^OUTPUT^LEN ! Supplied by TCP
STRING .EXT INTERNAL ! Supplied by TCP
INT INTERNAL^LEN; ! Supplied by TCP
STRING .FILL^CHAR; ! Supplied by TCP
INT FILL^OFF; ! Supplied by TCP
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-15

Writing User Conversion Procedures Intelligent Device Output Procedures
OUTPUT^LEN to the new length. In no case should OUTPUT^LEN be greater
than MAX^OUTPUT^LEN. OUTPUT^LEN can vary from the user-defined length
in cases of delimited-format messages.

MAX^OUTPUT^LEN

represents the maximum possible length of the particular converted output field.
This value should be used to control the maximum amount of data moved to
OUTPUT.

INTERNAL

points to the data to be converted. The procedure converts this data and stores it in
OUTPUT.

INTERNAL^SCALE

is a parameter in the numeric procedure only. It contains the number of decimal
places in INTERNAL when INTERNAL is a FIXED field.

INTERNAL^LEN

is a parameter in the alphanumeric procedure only. It contains the number of
characters in INTERNAL when INTERNAL is a STRING field.

FILL^CHAR

is always set to either 0 (for numeric conversions) or blank (for alphanumeric
conversions) by the TCP.

FILL^OFF

is always set to -1 by the TCP.

RIGHT^JUSTIFIED

 contains -1 (TRUE) if an alphanumeric value is to be right justified and contains 0
(FALSE) if the data is not to be justified.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-16

5
Managing Transactions With the TMF
Subsystem

This section provides information about the Compaq Transaction Management Facility
(TMF) subsystem for SCREEN COBOL programmers. It also briefly discusses
PATHCOM and SPI parameter options for Pathway applications that use SCREEN
COBOL requesters and the TMF subsystem.

The general environment for Pathway applications that use SCREEN COBOL
requesters and the TMF subsystem is a requester/server environment where SCREEN
COBOL programs accept input from terminal operators and transform the input into
requests to servers for database services. The servers, in turn, satisfy the requests by
reading, locking, and changing (or adding or deleting) records in audited database files.
Servers can be written in C, C++, COBOL85, pTAL, TAL, FORTRAN, or Pascal, and
they must follow the record-locking rules imposed by the TMF subsystem.

To write application requesters that use the TMF subsystem, you should be familiar with
the following information, which is provided in this section:

• The recommended structure for applications that use the TMF subsystem

• How to use the SCREEN COBOL statements that support the TMF subsystem

For information about writing servers that use the TMF subsystem, you should refer to
the NonStop™ TS/MP Pathsend and Server Programming Manual.

In addition, you should refer to the NonStop™ TM/MP Application Programmer's
Guide for discussions of the following topics related to the TMF subsystem:

• How to access audited database files

• General guidelines for coding servers

• Locking rules that must be followed by processes that change records in audited
database files

• How to cope with transaction deadlock

• Anomalies that can occur during transaction backout

Task Overview
Figure 5-1 illustrates the basic tasks involved in programming Pathway applications that
use SCREEN COBOL requesters and the TMF subsystem.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-1

Managing Transactions With the TMF Subsystem TMF Application Structure
TMF Application Structure
This subsection describes the recommended structure for applications that use the TMF
subsystem.

One process (usually the SCREEN COBOL requester) coordinates all of the work
required to do a single TMF transaction; this process identifies the beginning and ending
points of each transaction. Additionally, if the server replies to a request message by
indicating that it failed to complete all of the changes, this process can either abort and
abandon the transaction or abort and retry the transaction according to the SCREEN
COBOL application.

The communication between requesters and servers is by standard interprocess I/O. The
SCREEN COBOL requester does the SEND operation, and the server does the
READUPDATE call for $RECEIVE and the REPLY call. Each request message and
the server’s reply to the message is for a single transaction.

Any disk I/O request is for a single transaction. The TMF subsystem appends the
process’s current transaction identifier to each disk-request message so that the audit

Figure 5-1. Pathway Application Programming for the TMF Subsystem

COBOL85, C,
C++, Pascal,

TAL, ...

TRANSID TRANSID

Audited
Database Files

Requester Server

SCREEN
COBOL

BEGIN- TRANSACTION

Request database

services

Abort and restart
transaction if necessary

ABORT- TRANSACTION
or

Process request by:

—Reading files

—Locking records
 (following TMF
 record-locking rules)

—Changing records
 in files (changes are
 associated with
 TRANSID supplied
 by requester)

—Aborting transaction
 if necessary
 •
 •

051CDT .CDD
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-2

Managing Transactions With the TMF Subsystem TMF Programming in SCREEN COBOL
trails (transaction logs) can include the identity of the transaction responsible for each
database change.

Servers should not reply to request messages until all work for the request has been
completed. The contents of the reply message indicate the outcome of the request,
which is one of the following:

• All the work for the request was completed successfully.

• None of the work for the request was completed.

• The work for the request was only partially completed.

In the first case, the requester can commit the transaction. In the second case, the
requester can abort the transaction and then retry it. In both these cases, the information
in the server’s reply is sufficient to ensure the integrity of the transaction.

However, if the transaction work was only partially completed, the application needs to
ensure that the transaction is not committed so that the incomplete work can be backed
out. To ensure transaction backout, the server should call the ABORTTRANSACTION
procedure after reading the request and before sending its reply. A call to
ABORTTRANSACTION by the server does not end the transaction—only the requester
can end it—but such a call imposes the requirement that the requester use the ABORT-
TRANSACTION statement, rather than the END-TRANSACTION statement, after the
requester’s reply.

The remainder of this section contains detailed information related to writing SCREEN
COBOL requesters that use the TMF subsystem.

TMF Programming in SCREEN COBOL
The SCREEN COBOL language provides the following features to support TMF
transactions:

• SCREEN COBOL statements that begin and end a transaction, abort a transaction,
and restart a transaction

• Special registers TRANSACTION-ID, TERMINATION-STATUS, and
RESTART-COUNTER

Transaction Mode Use

A terminal program unit (that is, a SCREEN COBOL program executing on behalf of a
terminal) configured for use with the TMF subsystem enters transaction mode when the
BEGIN-TRANSACTION statement is executed and leaves transaction mode when the
END-TRANSACTION or ABORT-TRANSACTION statement is executed.

When BEGIN-TRANSACTION is executed, the transaction is assigned a unique
transaction identifier that distinguishes one transaction from all other transactions. If the
program unit is configured with TMF OFF, the TCP does not allow that program unit to
enter transaction mode, but causes BEGIN-TRANSACTION to issue a null transaction
identifier.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-3

Managing Transactions With the TMF Subsystem SCREEN COBOL Verbs for the TMF Subsystem
When END-TRANSACTION or ABORT-TRANSACTION is executed, the transaction
identifier is discarded and can no longer be used.

For the PATHCOM or SPI SUSPEND, STOP, or FREEZE commands, the effect of
operating in transaction mode is like setting the STOP-MODE special register to a
nonzero value; none of these commands can take effect until the terminal leaves
transaction mode and the terminal STOP-MODE register is 0.

The SUSPEND! and FREEZE! commands take effect immediately and cause
transaction backout.

The ABORT command takes effect immediately. If the terminal is in transaction mode
when this command is executed, the transaction is aborted.

For details regarding SUSPEND, FREEZE, STOP, and ABORT, refer to the NonStop™
TS/MP System Management Manual and the Compaq NonStop™ Pathway/iTS System
Management Manual.

SCREEN COBOL Verbs for the TMF Subsystem

In a SCREEN COBOL requester, you invoke the functions of the TMF subsystem by
using the following transaction-control statements:

• ABORT-TRANSACTION aborts and backs out a transaction.

• BEGIN-TRANSACTION begins a transaction.

• END-TRANSACTION ends a transaction.

• RESTART-TRANSACTION backs out a transaction and then starts it from the
BEGIN-TRANSACTION point with a new transaction identifier.

When you use these transaction statements in your SCREEN COBOL programs,
Pathway/iTS handles a number of failure cases itself by automatically aborting the
transaction and restarting it at the BEGIN-TRANSACTION point. The TCP does the
following:

• Takes care of all details involved in handling concurrent active transactions

• Keeps track of the transaction identifiers for multiple transactions

• Checkpoints the transaction identifier

• Operates as a fault-tolerant process pair

• Handles the TMF programming involved when the backup process takes over

Note. To work appropriately with the ORDERLY option of the PATHCOM SHUTDOWN2
command, SEND requests must be coded so that a terminal can be stopped after the last I/O
operation in the logical transaction completes. In other words, the requester must end or abort
the current transaction after the last SEND request in the transaction, based on the server’s
reply to the SEND request. For details regarding the SHUTDOWN2 command, refer to the
NonStop™ TS/MP System Management Manual.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-4

Managing Transactions With the TMF Subsystem SCREEN COBOL Verbs for the TMF Subsystem
You should include an ON ERROR clause in each BEGIN-TRANSACTION statement
and provide coding to check for file-system errors that could occur on any of the
transaction statements. Failure to perform these checks could cause important parts of
your application to fail. For a list of the file-system errors that can be returned by the
TMF procedure calls corresponding to these transaction statements, refer to the
NonStop™ TM/MP Application Programmer’s Guide.

ABORT-TRANSACTION Use

Generally the ABORT-TRANSACTION statement is used when the SCREEN COBOL
program detects an unrecoverable error and abandons the transaction. When this
statement is executed, the transaction is aborted; all updates made by the transaction to
audited data files are backed out. The aborted transaction is not restarted automatically.

The form of the ABORT-TRANSACTION statement is:

Execution of the ABORT-TRANSACTION statement causes the terminal to leave
transaction mode and sets the special register TRANSACTION-ID to SPACES.

If the terminal is not in transaction mode when ABORT-TRANSACTION is executed, it
is suspended; in such a case terminal execution cannot be restarted with a PATHCOM
or SPI RESUME command.

If a fatal error occurs while the transaction is being aborted and the current BEGIN-
TRANSACTION statement does not have an ON ERROR clause, the terminal is
suspended; in such a case the current transaction is backed out and terminal execution
cannot be resumed with a RESUME command. If the BEGIN-TRANSACTION
statement has an ON ERROR clause, that clause is executed and the terminal is not
suspended.

BEGIN-TRANSACTION Use

The BEGIN-TRANSACTION statement begins a new transaction; this statement
identifies the beginning of a sequence of operations that are treated by the TMF
subsystem as a single transaction. When this statement is executed, the following
occurs:

• The terminal enters transaction mode.

• The TMF subsystem is requested to begin a new transaction.

• The transaction identifier for the new transaction is assigned to the
TRANSACTION-ID special register.

• RESTART-COUNTER and TERMINATION-STATUS special registers are reset to
0 for the first occurrence of the transaction.

The form of the BEGIN-TRANSACTION statement is:

ABORT-TRANSACTION

BEGIN-TRANSACTION [ON ERROR imperative-statement]
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-5

Managing Transactions With the TMF Subsystem SCREEN COBOL Verbs for the TMF Subsystem
The BEGIN-TRANSACTION statement indicates the restarting point to be used if a
failure occurs while the terminal is in transaction mode. If the transaction fails for any
reason, its database changes are backed out. Except when the SCREEN COBOL
program issues an ABORT-TRANSACTION, execution of the SCREEN COBOL
program can be restarted at that point if these conditions are met:

• If the ON ERROR clause is omitted, the TCP compares the number of times that the
transaction has been restarted with the global transaction-restart limit specified with
the MAXTMFRESTARTS option of the SET PATHWAY command in
PATHCOM. If the number of restarts is less than that limit, the transaction is
restarted with a new transaction identifier, the RESTART-COUNTER special
register is incremented by 1, and the TERMINATION-STATUS special register
remains set to 1. If the number of restarts equals the transaction-restart limit, the
terminal is suspended but its execution can be resumed manually.

• If ON ERROR is present and if the requester restarts the transaction, RESTART-
COUNTER is incremented by 1, TERMINATION-STATUS remains set to 1, and
the ON ERROR branch is executed. The ON ERROR branch of the SCREEN
COBOL program can then include a check to determine whether or not the
transaction should be restarted; for example, the program can compare RESTART-
COUNTER to a local restart limit established within the program.

If the terminal is already in transaction mode when BEGIN-TRANSACTION is issued,
it is suspended; in such a case the current transaction is backed out and terminal
execution cannot be resumed with a PATHCOM or SPI RESUME command.

The following code sequence accepts input data from the operator and starts a new
transaction. In the event of an error, the ON ERROR code tests the RESTART-
COUNTER to determine if the particular transaction has been restarted more than two
times. If the transaction has been started more than twice, it is aborted and the operator
is asked to enter the data again. If the transaction has not been restarted more than two
times, the TCP makes another attempt to process the transaction.

enter-data
 .
 .
ACCEPT screen...
BEGIN-TRANSACTION
 ON ERROR PERFORM check-error.
IF abort-flag NOT = 0
 GO TO enter-data.
 .
 .
SEND ...
END-TRANSACTION.
.
.
stop-trans.
 GO TO enter-data.
 .
 .
check-error.
 MOVE 0 TO abort-flag.
IF TERMINATION-STATUS = 1
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-6

Managing Transactions With the TMF Subsystem SCREEN COBOL Special Registers for the TMF
Subsystem
 IF RESTART-COUNTER > 2
 ABORT-TRANSACTION
 DISPLAY "No" IN MSG
 MOVE 1 TO abort-flag.

END-TRANSACTION Use

The END-TRANSACTION statement indicates that the transaction is complete. When
this statement is successfully executed, the database updates made by the transaction
become permanent, the terminal leaves transaction mode, and the special register
TRANSACTION-ID is set to SPACES.

If the TMF subsystem rejects END-TRANSACTION, the SCREEN COBOL program is
restarted at the previous BEGIN-TRANSACTION point.

The form of the END-TRANSACTION statement is:

If the terminal is not in transaction mode when END-TRANSACTION is executed, it is
suspended; in such a case terminal execution cannot be resumed with a RESUME
command.

RESTART-TRANSACTION Use

The RESTART-TRANSACTION statement is used when the SCREEN COBOL
program detects an error that might be temporary, abandons the current attempt, and
retries the transaction. When this statement is executed, the following occurs:

• The current execution of the transaction is backed out.

• The transaction is restarted at the previous BEGIN-TRANSACTION point with a
new transaction identifier.

• The special register RESTART-COUNTER is incremented by 1.

The form of the RESTART-TRANSACTION statement is:

The restart due to executing RESTART-TRANSACTION counts as a restart for
purposes of the global transaction-restart limit.

If the terminal is not in transaction mode when RESTART-TRANSACTION is
executed, the terminal is suspended; in such a case terminal execution cannot be
resumed with a PATHCOM or SPI RESUME command.

SCREEN COBOL Special Registers for the TMF Subsystem
Special registers are data items defined automatically by the SCREEN COBOL
compiler, not by the programmer. Three special registers have been provided for TMF
subsystem users: TRANSACTION-ID, TERMINATION-STATUS, and
RESTART-COUNTER.

END-TRANSACTION

RESTART-TRANSACTION
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-7

Managing Transactions With the TMF Subsystem Interaction Between the PATHMON Environment and
the TMF Subsystem
• TRANSACTION-ID

Executing BEGIN-TRANSACTION sets TRANSACTION-ID to the value of the
transaction identifier. Executing END-TRANSACTION or ABORT-
TRANSACTION sets this register to SPACES.

TRANSACTION-ID has this implicit declaration:

01 TRANSACTION-ID PIC X(8).

• TERMINATION-STATUS

Executing BEGIN-TRANSACTION sets the value of TERMINATION-STATUS to
indicate the outcome of BEGIN-TRANSACTION. The following values are
possible:

TERMINATION-STATUS has this implicit declaration:

01 TERMINATION-STATUS PIC 9999 COMP.

• Executing BEGIN-TRANSACTION sets RESTART-COUNTER to the number of
times the transaction has been restarted. RESTART-COUNTER is reset to 0 when
BEGIN-TRANSACTION is first executed for a particular transaction.

RESTART-COUNTER has this implicit declaration:

01 RESTART-COUNTER PIC 9999 COMP.

See BEGIN-TRANSACTION Use on page 5-5 for an example of how to use
RESTART-COUNTER to limit selectively the number of times a transaction is
retried.

Interaction Between the PATHMON Environment
and the TMF Subsystem

When you are configuring and controlling Pathway applications that include SCREEN
COBOL requesters and use the TMF subsystem, you need information about three basic
questions related to the interaction between the PATHMON environment and the TMF
subsystem:

• How do the settings you specify for the TMF parameter of the PATHCOM
SET SERVER, SET TERM, and SET PROGRAM commands affect SCREEN
COBOL SEND statements?

1 The transaction is started or restarted.

2 The TMF subsystem is not installed. If there is no ON ERROR clause, the
default system action is to suspend the terminal for the pending abort.

3 The TMF subsystem is not started. If there is no ON ERROR clause, the
default system action is to suspend the terminal, but the terminal can be
restarted by the PATHCOM or SPI RESUME command.

4 A fatal error occurred. If there is no ON ERROR clause, the default system
action is to suspend the terminal for the pending abort.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-8

Managing Transactions With the TMF Subsystem SET SERVER Command and the TMF Subsystem
• How is TCP checkpointing strategy affected by the settings you specify for the TMF
parameter of the SET SERVER command?

• What problems are caused by using the TMF OFF option of the SET TERM or SET
PROGRAM commands as a switch to turn TMF subsystem operation off for a
SCREEN COBOL requester that is communicating with servers running under the
TMF subsystem?

Understanding the answers to these questions ensures the consistency of the database
and helps you to improve the reliability and performance of the applications that use the
database.

SET SERVER Command and the TMF Subsystem

The SET SERVER command contains a TMF parameter with an ON or OFF option. By
setting this parameter you control how a TCP allows access to a server class, that is, the
types of operations a server class can perform.

• TMF ON means the TCP allows a SEND operation to members of this server class
whether or not the SCREEN COBOL program is in transaction mode.

• TMF OFF means the TCP allows a SEND operation to the members of this server
class only if the SCREEN COBOL program is not in transaction mode. OFF is the
default setting.

In addition, the TCP makes checkpointing decisions based in part upon the option
specified for the TMF parameter. You must match the TMF parameter setting to the
application environment. For further information, see TCP Checkpointing Strategy on
page 5-12.

SET TERM and SET PROGRAM Commands and the TMF Subsystem
The SET TERM and SET PROGRAM commands each contain a TMF parameter with
an ON or OFF option.

• TMF ON causes the TCP to invoke the corresponding Guardian procedure call for
any TMF statement issued from a SCREEN COBOL program. This setting allows
your SCREEN COBOL program to perform SEND operations to a server for which
the TMF parameter is set to ON. ON is the default setting whether or not the TMF
subsystem is running.

• TMF OFF does not cause the TCP to invoke a corresponding Guardian procedure
call for any TMF statement issued from a SCREEN COBOL program. Instead, the
TMF statement appears (to the SCREEN COBOL program) to complete
successfully, and the program can continue to execute.

For most Pathway applications, you should use the default parameter settings, whether
or not the TMF subsystem is running.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-9

Managing Transactions With the TMF Subsystem Effect of TMF Parameters on SCREEN COBOL
SEND Operations
Effect of TMF Parameters on SCREEN COBOL SEND Operations

Table 5-1 illustrates how the various combinations of settings of the TMF parameter in
the PATHCOM SET TERM, SET PROGRAM, and SET SERVER commands affect a
SCREEN COBOL SEND statement when the PATHMON process and the TMF
subsystem are both running on the system. Depending on the type of file access
attempted, the TCP either allows the SEND statement to execute or issues the
appropriate error message.

Table 5-1. SEND Operations With the TMF Subsystem (page 1 of 2)

PATHCOM Commands Audited Files

Transaction Mode Nontransaction Mode

SET SERVER
SET TERM
SET PROGRAM

TMF ON
TMF ON
TMF ON

SEND statement executes1 SEND statement executes.
possible file-system
error 75 in server2

SET SERVER
SET TERM
SET PROGRAM

TMF ON
TMF OFF
TMF OFF

SEND statement executes.
possible file-system
error 75 in server2

SEND statement executes.
possible file-system
error 75 in server2

SET SERVER
SET TERM
SET PROGRAM

TMF OFF
TMF ON
TMF ON

SEND error 133 SEND statement executes.
possible file-system
error 75 in server2

SET SERVER
SET TERM
SET PROGRAM

TMF OFF
TMF OFF
TMF OFF

SEND error 133 SEND statement executes.
possible file-system
error 75 in server2

PATHCOM Commands Non-Audited Files

Transaction Mode Nontransaction Mode

SET SERVER
SET TERM
SET PROGRAM

TMF ON
TMF ON
TMF ON

SEND statement executes4 SEND statement executes5

SET SERVER
SET TERM
SET PROGRAM

TMF ON
TMF OFF
TMF OFF

SEND statement executes4 SEND statement executes5
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-10

Managing Transactions With the TMF Subsystem Timeouts on SEND Operations to Servers
In a PATHMON environment that normally runs with the TMF subsystem, do not use
the following commands to turn off TMF subsystem operations temporarily:

SET SERVER TMF ON
SET TERM TMF OFF
SET PROGRAM TMF OFF

The condition resulting from these commands appears to allow normal operation
because the BEGIN-TRANSACTION statement that would have failed if the TMF
subsystem were stopped now appears to work; the TCP allows a SEND operation to a
server that can access and update only nonaudited files. Files updated by servers are not
protected by the TMF subsystem, and the TCP does not perform checkpoints before or
after SEND statements.

Timeouts on SEND Operations to Servers

Although the syntax of the SCREEN COBOL SEND statement does not include a
TIMEOUT clause, you can effectively supply one with the PATHCOM SET SERVER
command. When you include a TIMEOUT clause in the SET SERVER command, all
SENDs to that server class are timed by the TCP. If the specified number of seconds
elapses after a SEND operation is initiated and before a reply is received, the TCP issues
a Guardian CANCEL procedure call against the outstanding I/O to the server. If the
SEND operation was performed while the requester program was in transaction mode,

SET SERVER
SET TERM
SET PROGRAM

TMF OFF
TMF ON
TMF ON

SEND error 133 SEND statement executes5

SET SERVER
SET TERM
SET PROGRAM

TMF OFF
TMF OFF
TMF OFF

SEND error 133 SEND statement executes5

LEGEND
Transaction Mode. The SEND statement is executed after the SCREEN COBOL program has issued a

BEGIN-TRANSACTION statement, but before the program has issued an END-TRANSACTION or an
ABORT-TRANSACTION statement. Note that a program is considered to be in transaction mode if it
executes a BEGIN-TRANSACTION statement even if the TMF parameter is set to OFF for the terminal or
program.

Note 1. These are PATHCOM command parameter settings for normal TMF and Pathway operations; SET
SERVER TMF ON must be set within PATHCOM or SPI.

Note 2. Although no transaction identifier was present, Pathway/iTS has allowed the SEND operation. If the
server attempts a file lock or update operation on an audited file, Guardian file-system error 75 is returned to
the server. How this information is returned by the server to the SCREEN COBOL requester is application
dependent.

Note 3. TMF mode violation: the error is returned in the SCREEN COBOL TERMINATION-STATUS special
register.

Note 4. These are PATHCOM command parameter settings for special program testing. These settings provide
a convenient way to partially test or debug a SCREEN COBOL program on a system that does not yet have
the TMF subsystem configured. The program will execute, but all SEND requests to audited files will
receive Guardian file-system error 75 replies.

Note 5. These are PATHCOM command parameter settings for normal Pathway operations without the TMF
subsystem.

Table 5-1. SEND Operations With the TMF Subsystem (page 2 of 2)

PATHCOM Commands Audited Files
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-11

Managing Transactions With the TMF Subsystem TCP Checkpointing Strategy
the transaction is automatically aborted by the file system. In such a case the requester
program discovers that the transaction was aborted when it subsequently attempts to
update the database (with another SEND statement) or issues an END-TRANSACTION
statement.

TCP Checkpointing Strategy
In a PATHMON environment with the TMF subsystem running, the TCP uses the
following checkpointing strategy:

• At the BEGIN-TRANSACTION statement, a full copy of the task’s context is made
to a secondary area (slot 1) in the extended data segment, and a checkpoint to the
backup is performed.

• At the END-TRANSACTION statement, a full-context checkpoint is performed.

• At the SEND statement with the SET SERVER TMF parameter defined as OFF, a
checkpoint is performed before and after the SEND statement when the SCREEN
COBOL program is outside of transaction mode.

Any time a SEND operation is performed outside of a transaction boundary and the
server attempts to lock or update a record in an audited file, the operation fails with
a Guardian file-system error 75.

• At the SEND statement with the SET SERVER TMF parameter defined as ON, no
checkpoints are performed, whether or not the SCREEN COBOL program is in
transaction mode. Therefore, SEND requests to TMF protected servers that operate
on audited files require fewer checkpoints than SEND requests to servers that do not
operate under TMF protection.

TCP checkpointing requirements can be reduced significantly if Pathway applications
that use the TMF subsystem have the servers read outside of transaction mode before
updating the database.

You can improve the performance of a Pathway application by taking advantage of the
TCP checkpointing strategy for TMF protected servers, as follows:

• Do not use transaction mode for a server with read-only access to a database if the
requester displays the data before any attempt is made to change the data. In the
event of a failure, the requester can retry the read operations and fault-tolerant
operation is maintained.

• Do not use transaction mode for a server that writes to an entry-sequenced logging
file in which duplicates are acceptable. In the event of a failure, the requester can
retry the write operations, so there is no need to back out the write. In contrast, a
key-sequenced file requires a backout; otherwise, the transaction fails when the
second write is attempted at the same location.

Caution. If a SEND request outside of transaction mode is sent to a TMF protected server that
operates on nonaudited files, data might be lost because the TMF subsystem is not invoked,
and the TCP performs fewer checkpoints.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-12

Managing Transactions With the TMF Subsystem Precautions for Using TMF Parameters
Precautions for Using TMF Parameters
If a TMF error occurs and makes normal operation impossible, you should not try to
solve the problem by setting the PATHCOM TMF parameter options to OFF. Setting
these options to OFF can have the following results:

• A server intended for operation with TMF protection probably does not send the
checkpoint messages necessary to function as a fault-tolerant server when the TMF
subsystem is not invoked.

• A SCREEN COBOL program that uses ABORT-TRANSACTION or RESTART-
TRANSACTION statements to handle exceptions to normal program operation only
appears to execute; the ABORT-TRANSACTION or RESTART-TRANSACTION
statements have no effect.

• With the SET SERVER TMF parameter defined as ON and the SET TERM or SET
PROGRAM TMF parameters defined as OFF, the TCP sends checkpoint messages,
performs retries, and sets the sync depth as if the TMF subsystem were running. For
example, the TCP performs fewer checkpoints and opens servers with a sync depth
of 0 instead of 1. In this case, the TCP does not take full advantage of fault
tolerance, and a single CPU failure can cause the application to fail.

Refer to the NonStop™ TM/MP Operations and Recovery Guide to determine how to
address the TMF error.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-13

Managing Transactions With the TMF Subsystem Precautions for Using TMF Parameters
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-14

6
Programming for Intelligent Devices

Standard SCREEN COBOL requesters interact with a limited set of video display
terminals. Standard requesters are screen-oriented; they send data from working storage
to the display screen of a terminal by using screen templates defined in the Screen
Section of the Data Division. Similarly, they receive data from the terminal into
working storage by using Screen Section templates. Standard requesters use ACCEPT
and DISPLAY statements in the Procedure Division to interact with the display
terminals.

Intelligent device support (IDS) SCREEN COBOL requesters interact either directly or
indirectly with intelligent devices such as automated teller machines, airline reservation
terminals, and personal computers. IDS requesters are message-oriented; they send data
from working storage to the device (or to a front-end process that controls the device)
and receive data from the device or process into working storage by using Message
Section templates. IDS requesters use SEND MESSAGE statements and their REPLY
clauses in the Procedure Division to interact with the intelligent devices or front-end
processes.

Because of the wide variety of message formats that IDS devices must be able to
process, the IDS extensions to Compaq NonStop™ Pathway/iTS have been designed to
provide the following capabilities:

• The ability to use field delimiters, message delimiters, and RESULTING COUNT
clauses to process compacted messages containing variable-length fields

• The ability to use a TRANSFORM statement to move data elements from source
data structures in working storage to target data structures and, in the process of
doing so, reorder and convert the data by using one or more templates in the
Message Section

• The ability to use fields within Message Section templates to determine, on either
input or output, which fields that follow in the template are present in an actual
message

In addition, there are other capabilities (such as data-item editing and conversion, scatter
reads, and gather writes) used in the standard requester environment that also apply to
the IDS environment.

This section describes both the IDS extensions and the standard capabilities that apply to
IDS requesters. It presents information about the following topics:

• Use of the SEND MESSAGE statement

• Use of delimiters and RESULTING COUNT clauses

• Use of the TRANSFORM statement

• Use of PRESENT IF clauses

• IDS error processing and debugging techniques
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-1

Programming for Intelligent Devices The SEND MESSAGE Statement
The SEND MESSAGE Statement
The SEND MESSAGE statement moves data from working storage to an external
process (outside the PATHMON environment). The associated REPLY statement
accepts data from the external process and moves it into working storage.

Besides moving the data, both the SEND MESSAGE statement and its REPLY
statement edit and convert the individual data fields according to the pertinent
PICTURE clauses in the Working-Storage Section and the Message Section data
declarations.

The SEND MESSAGE statement also allows you to use the gather-write capability
(whereby individual items in the outgoing message are extracted from noncontiguous
locations in working storage). The associated REPLY statement allows you to use the
scatter-read capability (whereby individual items in the incoming message are stored
into noncontiguous locations in working storage).

When you send data to the process or device, you can use only a single message
template. When you receive data from the process or device, however, you can do so
through any of several input message templates. You use the REPLY CODE and
YIELDS clauses with the SEND MESSAGE statement to determine which input
message template the response has been mapped through.

You code SEND MESSAGE statements in a manner similar to the way in which you
code SEND statements (by using REPLY CODE and YIELDS clauses and the
TERMINATION-STATUS register). An example of the use of the SEND MESSAGE
statement is as follows:

SEND MESSAGE MSG-3-OUT
 REPLY CODE FIELD IS WS-MSG-IN-CODE
 CODE 1 YIELDS MSG-3-IN
 CODE 2 YIELDS MSG-4-IN
 CODE 3 YIELDS MSG-3-IN
 CODE 4 YIELDS MSG-4-IN
 ON ERROR PERFORM IDS-SERVER-SEND-ERROR.

PERFORM ONE OF
 PROC-MSG-3-IN
 PROC-MSG-4-IN
 PROC-MSG-3-IN
 PROC-MSG-4-IN
 DEPENDING ON TERMINATION-STATUS.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-2

Programming for Intelligent Devices Using Delimiters and the RESULTING COUNT
Clause
Using Delimiters and the RESULTING COUNT
Clause

Among the IDS extensions to the SCREEN COBOL programming language is one that
provides the ability to send and receive messages that contain message-delimiter and
field-delimiter characters.

The use of delimiters makes it possible for your requester and the external device or
front-end process to exchange compact variable-length messages efficiently.

The presence and use of delimiters is not an optional choice for you but rather
something that is dictated by the design characteristics of whatever entity your requester
is communicating with. When the external device or process uses a message delimiter,
your message template must also declare the same message delimiter. When the
external device or process uses a field delimiter, your message template must also
declare the same field delimiter.

Declaring Delimiters
You declare a message format to be delimited by including a MESSAGE FORMAT IS
DELIMITED clause or a MESSAGE FORMAT IS FIXED-DELIMITED clause at the
01 level of the particular message template in the Message Section. The only difference
between the two formats is that DELIMITED messages contain entirely variable-length
fields while FIXED-DELIMITED messages contain entirely fixed-length fields.

Having declared the message format to be delimited, you then declare (again at the 01
level):

1. Whether the message includes a message delimiter and, if so, what characters it
consists of (The default message delimiter is //.)

2. Whether the message includes field delimiters and, if so, what characters they
consist of (The default field delimiter is , [comma].)

Sample Declarations
In the examples that appear later in this section, assume that the following data
structures have been declared in the Working-Storage Section and the Message Section:

DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 WS-ITEM1.
 05 WS-ITEM1-CNT PIC 9(2) COMP.
 05 WS-ITEM1-GROUP.
 10 WS-ITEM1-DATA PIC X(1)
 OCCURS 1 TO 30 TIMES
 DEPENDING ON ws-item1-cnt.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-3

Programming for Intelligent Devices Sample Declarations
 01 WS-ITEM2.
 05 WS-ITEM2-CNT PIC 9(2) COMP.
 05 WS-ITEM2-GROUP.
 10 WS-ITEM2-DATA PIC X(1)
 OCCURS 1 TO 30 TIMES
 DEPENDING ON ws-item2-cnt.

 01 WS-ITEM3.
 05 WS-ITEM3-CNT PIC 9(2) COMP.
 05 WS-ITEM3-GROUP.
 10 WS-ITEM3-DATA PIC X(1)
 OCCURS 1 TO 30 TIMES
 DEPENDING ON ws-item3-cnt.

 01 WS-ITEM4.
 05 WS-ITEM4-CNT PIC 9(2) COMP.
 05 WS-ITEM4-GROUP.
 10 WS-ITEM4-DATA PIC X(1)
 OCCURS 1 TO 30 TIMES
 DEPENDING ON ws-item4-cnt.

 01 WS-ITEM5.
 05 WS-ITEM5-CNT PIC 9(2) COMP.
 05 WS-ITEM5-GROUP.
 10 WS-ITEM5-DATA PIC X(1)
 OCCURS 1 TO 30 TIMES
 DEPENDING ON ws-item5-cnt.

 MESSAGE SECTION.

 01 msg-format4 MESSAGE FORMAT IS DELIMITED
 MESSAGE DELIMITER IS OFF.

 05 item1 PIC X(30)
 USING ws-item1-group
 RESULTING COUNT IS ws-item1-cnt.

 05 item2 PIC X(30)
 USING ws-item2-group
 RESULTING COUNT IS ws-item2-cnt.

 05 item3 PIC X(30)
 USING ws-item3-group
 RESULTING COUNT IS ws-item3-cnt.

 05 item4 PIC X(30)
 USING ws-item4-group
 RESULTING COUNT IS ws-item4-cnt.

 05 item5 PIC X(30)
 USING ws-item5-group
 RESULTING COUNT IS ws-item5-cnt.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-4

Programming for Intelligent Devices Processing Field Delimiters on Input
The message template declares that the associated message will contain a field delimiter
(a comma, by default) but no message delimiter.

Each field in the message template is fixed in length, to accommodate the maximum-
size data item, whereas the corresponding fields in working storage are variable in
length and rely on the content of an associated count field to determine their length.

Processing Field Delimiters on Input

When a message is received from a Message Section template MSG-FORMAT4, the
data for each field is stored in the working-storage item specified by the associated
USING clause, and a count of the actual number of characters received before
encountering the field delimiter is stored in the working-storage item specified by the
associated RESULTING COUNT clause.

For example, suppose that the incoming message is as follows:

JOHN DOE,MARIA GONZALES,WILLIAM DEFOE,TONY ALLEN,SUE QUICK,

and that it is received from the Message Section template MSG-FORMAT4:

SEND MESSAGE
 YIELDS msg-format4
 ON ERROR GO TO error-exit.

Upon successful completion of the SEND MESSAGE statement, the various working-
storage data items referred to by the MSG-FORMAT4 message-template declaration
contain the following data. (The apostrophes merely illustrate the beginning and ending
of each field; they do not actually occupy any space within the fields themselves.)

ws-item1-cnt '8'
ws-item1-data 'JOHN DOE'

ws-item2-cnt '14'
ws-item2-data 'MARIA GONZALES'

ws-item3-cnt '13'
ws-item3-data 'WILLIAM DEFOE'

ws-item4-cnt '10'
ws-item4-data 'TONY ALLEN'

ws-item5-cnt '9'
ws-item5-data 'SUE QUICK'

Using Field Delimiters on Output

When sending a message to the external device or front-end process by using a Message
Section template MSG-FORMAT4, you move the appropriate data values and the byte
counts into the working-storage structure and then issue a SEND MESSAGE statement
specifying the MSG-FORMAT4 template.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-5

Programming for Intelligent Devices Using Message Delimiters
For example, suppose you want to send the following message to the external device or
process:

BILL WINN,GIUSEPPE PINELLI,JOE BLOW,LING CHIN,SARAH HARRAH,

To do so, you would move the following values to the specified working-storage
locations:

'BILL WINN' ws-item1-data
'9' ws-item1-cnt

'GIUSEPPE PINELLI' ws-item2-data
'16' ws-item2-cnt

'JOE BLOW' ws-item3-data
'8' ws-item3-cnt

'LING CHIN' ws-item4-data
'9' ws-item4-cnt

'SARAH HARRAH' ws-item5-data
'12' ws-item5-cnt

and then issue a SEND MESSAGE statement such as:

SEND MESSAGE msg-format4
 ON ERROR GO TO error-exit.

Before moving a data element from working storage to its output buffer, the TCP
examines the location referenced by the associated RESULTING COUNT clause to find
out how many bytes of data the field actually contains. After retrieving the specified
number of bytes from the particular working-storage location, the TCP appends a field-
delimiter character (in this case, a comma) to the end of the outbound field.

Thus, you can directly control the placement of field delimiters in the output stream.

Using Message Delimiters

The use of a RESULTING COUNT clause at the message level allows you to determine,
on input, how long an incoming variable-length record was, without having to do a
backward search through your working-storage data structure.

If the external device or process requires the message to include a message delimiter,
you must declare the message delimiter in your message template; otherwise, the TCP
mistakes the message-delimiter characters for actual data.

For example, if the external device or process requires that each message be terminated
by a colon (:), you must change the beginning of the preceding sample message template
declaration to the following:

01 msg-format4
 MESSAGE IS DELIMITED
 MESSAGE DELIMITER IS ":".
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-6

Programming for Intelligent Devices Using Delimited Format With Delimiters Turned Off
Using Delimited Format With Delimiters Turned Off

By declaring a message template to be delimited but turning off both the field and
message delimiters, you can effectively create a new type of variable-length record
format that has no prefix byte count or delimiters.

SCREEN COBOL supports two other types of variable-length message formats, known
as VARYING1 and VARYING2, that include a one-byte or two-byte count field at the
beginning of each message specifying the total number of bytes contained in the
message. The use of delimited format with the delimiters turned off creates a variable-
length message with no count field preceding it.

For all three types of messages, if the message contains variable-length fields, the
structure of the message must include a count field preceding each individual field. This
count-field value allows the receiving device or process to know how long the field is,
because no delimiter is present.

The following Working-Storage Section and Message Section declarations define data
structures and a message template suitable for sending and receiving this new type of
variable-length message.

DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 WS-RECORD1-COUNT PIC 9(4).

 01 WS-RECORD1.

 05 WS-RECORD1-DATA PIC X(1)
 OCCURS 1 TO 100 TIMES
 DEPENDING ON ws-record1-count.

 MESSAGE SECTION.

 01 msg-format1 PIC X(100) USING ws-record1
 MESSAGE FORMAT IS DELIMITED
 FIELD-DELIMITER IS OFF
 MESSAGE-DELIMITER IS OFF
 RESULTING COUNT IS ws-record1-count.

The preceding message template declares that the associated message is of variable
length with a maximum size of 100 bytes, that it includes no count field (such as is
found in a VARYING1 or VARYING2 format record), and that the TCP is to use the
working-storage data item WS-RECORD1-COUNT for storing (on input) or retrieving
(on output) the appropriate record length value.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-7

Programming for Intelligent Devices Using TRANSFORM Statements
Using TRANSFORM Statements
The TRANSFORM statement lets you move multiple data items from one place in
working storage to another, converting them in the process by a single statement. You
can achieve the same results without the TRANSFORM statement, but you must use a
whole paragraph of MOVE statements to do so.

The data items specified in a TRANSFORM statement can be any mixture of 01-level,
group, or elementary items defined in the Working-Storage Section, the Linkage
Section, or the Message Section.

The two primary uses of the TRANSFORM statement are:

• To disassemble incoming messages and scatter and convert, if necessary, the data
fields into diverse Working-Storage Section or Linkage Section locations according
to codes nested within the message itself.

• To gather, and convert if necessary, individual data items from diverse Working-
Storage Section or Linkage Section locations and assemble them into a single
message to be passed to a server process by a subsequent SEND statement.

Example 1: Disassembling Input Messages

Assume the general format of messages being passed between a front-end process and
an IDS requester is as follows:

Then assume the presence of the following Working-Storage Section data declarations:

01 PROCESSING-STATE PIC X(4), VALUE "GO ".

01 MSG-OUT.
 05 TRANSMISSION-HEADER.
 10 OUT-REPLY-CODE PIC 9(4) comp.
 10 OUT-SESSION-ID PIC 9(4) comp.
 05 MSG-OUT-DATA.
 10 OUT-SELECT-CODE PIC 9(4) comp.
 10 OUT-DATA PIC X(100).

01 MSG-IN.
 05 TRANSMISSION-HEADER.
 10 IN-REPLY-CODE PIC 9(4) comp.
 10 IN-SESSION-ID PIC 9(4) comp.
 05 MSG-IN-DATA.
 10 IN-SELECT-CODE PIC 9(4) comp.
 10 IN-DATA PIC X(100).

01 CONTROL-RECORD-1.
 05 CTL-FLD-1 PIC X(10).
 05 CTL-FLD-3 PIC X(10).
 05 CTL-FLD-5 PIC X(10).
 05 CTL-FLD-6 PIC X(10).

4 Bytes 2 Bytes Up to 100 Bytes

Transmission Header Select Code Data or Control Information
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-8

Programming for Intelligent Devices Example 1: Disassembling Input Messages
01 CONTROL-RECORD-2.
 05 CTL-FLD-2 PIC X(10).
 05 CTL-FLD-4 PIC X(10).
01 DATA-RECORD-1.
 05 DATA-FLD-A PIC X(10).
 05 DATA-FLD-B PIC X(10).
 05 DATA-FLD-C PIC X(10).
 05 DATA-FLD-D PIC X(10).
 05 DATA-FLD-E PIC X(10).

01 DATA-RECORD-2.
 05 DATA-FLD-F PIC X(10).
 05 DATA-FLD-G PIC X(10).
 05 DATA-FLD-H PIC X(10).

Because the type of information (either control information or data) contained in the
message can vary from one transmission to another, there are two levels at which the
requester must process such a message:

1. The requester must first accept the entire message and determine, by checking a
reply code in the transmission header, whether or not the overall message itself was
transmitted and received successfully.

MAIN-PARAGRAPH.

 PERFORM send-message-processing
 THRU send-message-processing-exit
 UNTIL processing-state = "STOP".

MAIN-PARAGRAPH-EXIT.

 EXIT.

SEND-MESSAGE-PROCESSING.

 SEND MESSAGE msg-out
 REPLY CODE 0 YIELDS msg-in
 ON ERROR GO TO error-exit.

 PERFORM disassemble-message.

 GO TO send-message-processing-exit.

ERROR-EXIT.

 MOVE "STOP" TO processing-state.

SEND-MESSAGE-PROCESSING-EXIT.

 EXIT.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-9

Programming for Intelligent Devices Example 1: Disassembling Input Messages
2. If the reply code in the transmission header indicates successful transmission (0 in
the preceding case), the requester processes the message as either control
information or application data, depending upon the value of the select code within
the message itself. The requester does this by using a TRANSFORM statement as
follows:

DISASSEMBLE-MESSAGE.
 TRANSFORM msg-in-data
 CODE 1 YIELDS ctl-fld-2, ctl-fld-5, ctl-fld-1
 CODE 2 YIELDS control-record-2
 CODE 3 YIELDS data-fld-A, data-fld-F, data-fld-C
 CODE 4 YIELDS data-record-1
 ON ERROR GO TO error-exit.

The TRANSFORM statement is operating upon a subset of the overall message
(MSG-IN-DATA), ignoring the transmission header completely. The statement can
then operate by using a select code defined within that subset of the message; in this
case, by default, the code occurs in the first two bytes of MSG-IN-DATA.

The message string following the select code varies in length and number of fields,
depending upon the value of the select code.

• If the select code is 1, the TCP extracts three 10-character fields from its input
buffer and stores them in the fields named CTL-FLD-2, CTL-FLD-5, and
CTL-FLD-1 of the Working-Storage data structures CONTROL-RECORD-2
and CONTROL-RECORD-1.

• If the select code is 2, the TCP extracts two 10-character fields from its input
buffer and stores them in the fields named CTL-FLD-2 and CTL-FLD-4 of the
Working-Storage data structure CONTROL-RECORD-2.

• If the select code is 3, the TCP extracts three 10-character fields from its input
buffer and stores them in the fields named DATA-FLD-A, DATA-FLD-F, and
DATA-FLD-C of the Working-Storage data structures DATA-RECORD-1 and
DATA-RECORD-2.

• If the select code is 4, the TCP extracts five 10-character fields from its input
buffer and stores them in the fields named DATA-FLD-A, DATA-FLD-B,
DATA-FLD-C, DATA-FLD-D, and DATA-FLD-E of the Working-Storage
data structure DATA-RECORD-1.

You can specify elementary, group, or 01-level items in the YIELDS lists of the
TRANSFORM statement. You can also intermix these three within the same
YIELDS list.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-10

Programming for Intelligent Devices Example 2: Assembling Output Messages
Example 2: Assembling Output Messages

The next example uses a TRANSFORM statement to gather a set of data values from
diverse locations in working storage, to convert them from one format to another, and to
assemble them into a completely different field structure to form a single record. That
record will subsequently be sent, through a SEND statement, to a server process.

Assume that the source data structures in working storage are DATA-RECORD-1,
DATA-RECORD-2, and DATA-RECORD-3, and the target data structure is
SERVER-RECORD-1.

01 DATA-RECORD-1.
 05 DATA-FLD-A PIC A(10).
 05 DATA-FLD-B PIC 9(10).

01 DATA-RECORD-2.
 05 DATA-FLD-C PIC 9(3).
 05 DATA-FLD-D PIC A(5). 54 bytes total
 05 DATA-FLD-E PIC A(5).

01 DATA-RECORD-3.
 05 DATA-FLD-F PIC X(10).
 05 DATA-FLD-G PIC A(5).
 05 DATA-FLD-H PIC X(6).

01 SERVER-RECORD-1.
 05 SRVR-FLD-1 PIC X(21).
 05 SRVR-FLD-2 PIC 9.
 05 SRVR-FLD-3 PIC 9. 54 bytes total
 05 SRVR-FLD-4 PIC 9.
 05 SRVR-FLD-5 PIC A(10).
 05 SRVR-FLD-6 PIC X(20).

Then assume that the program must transmit the data from the following sequence of
source fields to the server process:

DATA-FLD-A
DATA-FLD-H
DATA-FLD-G
DATA-FLD-C
DATA-FLD-D DATA-RECORD-2
DATA-FLD-E
DATA-FLD-B
DATA-FLD-F

Notice that the first three and last two fields are from the structures DATA-RECORD-1
and DATA-RECORD-3. Not only are they separated from one another in the target
record, but also they appear in a different order from that defined for them in the DATA-
RECORD-1 and DATA-RECORD-2 Working-Storage Section definitions. You,
therefore, must refer to those fields by their elementary data-item names when
specifying where the data to be transformed is coming from.

In contrast, because the fourth, fifth, and sixth fields are all from the data structure
DATA-RECORD-2 and appear in the same order as the one defined for that structure in
working storage, you can refer to them collectively by their shared 01-level name.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-11

Programming for Intelligent Devices Using PRESENT IF Clauses
When it is time to gather all of the specified data values from their diverse locations in
working storage, convert them from alphabetic or numeric to alphanumeric format if
necessary, and store them in the proper order into the data structure
SERVER-RECORD-1, the requester can use a TRANSFORM statement such
as the following:

TRANSFORM data-fld-A, data-fld-H, data-fld-G,
 data-record-2, data-fld-B, data-fld-F
 YIELDS server-record-1
 ON ERROR GO TO error-exit.

You can specify a mixture of 01-level, group, and elementary items in either the source
or target list of the TRANSFORM statement.

When the TRANSFORM statement is executed, the TCP uses the source list to construct
a buffer filled with alphanumeric, alphabetic, and numeric bytes. The TCP then
disperses the bytes from that buffer to the target data structure on a byte-for-byte basis,
converting the data as necessary. When the target list comprises working-storage items,
the total number of bytes in the source list must exactly match the total number of bytes
in the target list, or a run-time error occurs.

When moving bytes from the buffer to the target structure, all of the standard MOVE
statement rules apply, as described in the Compaq NonStop™ Pathway/iTS SCREEN
COBOL Reference Manual. For example, a byte that originates as part of a numeric
data item in the source list cannot be moved to an alphabetic data item in the target list;
it can, however, be moved to either a numeric or alphanumeric data item. The transfer
of data bytes from source to target data items in this particular example can be illustrated
as follows:

10 bytes DATA-FLD-A
 6 bytes DATA-FLD-H SRVR-FLD-1 21 bytes
 5 bytes DATA-FLD-G

 SRVR-FLD-2 1 byte
 3 bytes DATA-FLD-C SRVR-FLD-3 1 byte
 SRVR-FLD-4 1 byte

 5 bytes DATA-FLD-D SRVR-FLD-5 10 bytes
 5 bytes DATA-FLD-E

10 bytes DATA-FLD-B

Using PRESENT IF Clauses
The SCREEN COBOL programming language PRESENT IF clause lets you declare
that certain fields in Message Section data structures are present only if a particular
preceding field is nonzero (if numeric) or nonblank (if nonnumeric).

The following sample code illustrates two ways that you might use this capability. In
the first example (which uses the Message Section template MSG-IN-FLAVOR1), the
presence of the alias address, city, state, and ZIP fields all depend on the presence of the
alias name field. In the second example (which uses the Message Section template
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-12

Programming for Intelligent Devices Using PRESENT IF Clauses
MSG-IN-FLAVOR2), the presence of the alias name, address, city, state, and ZIP fields
is determined by bit-mask values contained earlier in the message.

The Working-Storage Section declarations for MSG-IN-FLAVOR1 are as follows:

WORKING-STORAGE SECTION.

 01 WS-MSG-IN.
 05 NAME PIC X(20).
 05 ADDRESS PIC X(20).
 05 CITY PIC X(15).
 05 STATE PIC X(3).
 05 ZIP PIC 9(5).

 05 ALIAS-NAME PIC X(20).
 05 ALIAS-ADDRESS PIC X(20).
 05 ALIAS-CITY PIC X(15).
 05 ALIAS-STATE PIC X(3).
 05 ALIAS-ZIP PIC 9(5).

 01 FIELD-STATUS.
 05 FS-NAME.
 10 FS-NAME-SHADOW PIC 9(4) COMP.
 10 FS-NAME-ERROR PIC 9(4) COMP.
 05 FS-ADDRESS.
 10 FS-ADDRESS-SHADOW PIC 9(4) COMP.
 10 FS-ADDRESS-ERROR PIC 9(4) COMP.
 05 FS-CITY.
 10 FS-CITY-SHADOW PIC 9(4) COMP.
 10 FS-CITY-ERROR PIC 9(4) COMP.
 05 FS-STATE.
 10 FS-STATE-SHADOW PIC 9(4) COMP.
 10 FS-STATE-ERROR PIC 9(4) COMP.
 05 FS-ZIP.
 10 FS-ZIP-SHADOW PIC 9(4) COMP.
 10 FS-ZIP-ERROR PIC 9(4) COMP.

 01 WS-MSG-IN-BIT-MASK.
 05 ALIAS-NAME-PRESENT PIC 9.
 05 ALIAS-ADDRESS-PRESENT PIC 9.
 05 ALIAS-CITY-PRESENT PIC 9.
 05 ALIAS-STATE-PRESENT PIC 9.
 05 ALIAS-ZIP-PRESENT PIC 9.

The Message Section declarations for the MSG-IN-FLAVOR1 template are as follows:

MESSAGE SECTION.

 01 MSG-IN-FLAVOR1.
 05 MS-NAME PIC X(20) TO NAME.
 05 MS-ADDRESS PIC X(20) TO ADDRESS.
 05 MS-CITY PIC X(15) TO CITY.
 05 MS-STATE PIC X(3) TO STATE.
 05 MS-ZIP PIC 9(5) TO ZIP.
 05 MS-ALIAS-NAME PIC X(20) TO ALIAS-NAME.
 05 MS-ALIAS-ADDRESS PIC X(20) TO ALIAS-ADDRESS
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-13

Programming for Intelligent Devices Using PRESENT IF Clauses
 PRESENT IF MS-ALIAS-
 NAME FIELD-STATUS IS
 FS-ADDRESS.
 05 MS-ALIAS-CITY PIC X(15) TO ALIAS-CITY
 PRESENT IF MS-ALIAS-
 NAME FIELD-STATUS IS
 FS-CITY.
 05 MS-ALIAS-STATE PIC 9(3) TO ALIAS-STATE
 PRESENT IF MS-ALIAS-
 NAME FIELD-STATUS IS
 FS-STATE.
 05 MS-ALIAS-ZIP PIC 9(5) TO ALIAS-ZIP
 PRESENT IF MS-ALIAS-
 NAME FIELD-STATUS IS
 FS-ZIP.

When the MSG-IN-FLAVOR1 template is used for receiving incoming messages, the
fields NAME through ALIAS-NAME are always physically present. The overall
content, blank or nonblank, of the field ALIAS-NAME determines whether the fields
ALIAS-ADDRESS through ALIAS-ZIP are present. If ALIAS-NAME is entirely
blank, the remaining ALIAS fields are not present. If ALIAS-NAME contains any
nonblank characters, the remaining ALIAS fields are present.

The Message Section declarations for the MSG-IN-FLAVOR2 template are as follows:

MESSAGE SECTION.

01 MSG-IN-FLAVOR2.
 05 PRESENCE-MASK.
 10 ALIAS-NAME-PM PIC 1 TO ALIAS-NAME-PRESENT.
 10 ALIAS-ADDRESS-PM PIC 1 TO ALIAS-ADDRESS-PRESENT.
 10 ALIAS-CITY-PM PIC 1 TO ALIAS-CITY-PRESENT.
 10 ALIAS-STATE-PM PIC 1 TO ALIAS-STATE-PRESENT.
 10 ALIAS-ZIP-PM PIC 1 TO ALIAS-ZIP-PRESENT.
 10 FILLER PIC 1(3).
 05 MS-NAME PIC X(20) TO NAME.
 05 MS-ADDRESS PIC X(20) TO ADDRESS.
 05 MS-CITY PIC X(15) TO CITY.
 05 MS-STATE PIC X(3) TO STATE.
 05 MS-ZIP PIC 9(5) TO ZIP.
 05 MS-ALIAS-NAME PIC X(20) TO ALIAS-NAME.
 PRESENT IF ALIAS-NAME-PM
 FIELD-STATUS IS FS-NAME.
 05 MS-ALIAS-ADDRESS PIC X(20) TO ALIAS-ADDRESS
 PRESENT IF ALIAS-ADDRESS-PM
 FIELD-STATUS IS FS-ADDRESS.
 05 MS-ALIAS-CITY PIC X(15) TO ALIAS-CITY
 PRESENT IF ALIAS-CITY-PM
 FIELD-STATUS IS FS-CITY.

 05 MS-ALIAS-STATE PIC 9(3) TO ALIAS-STATE
 PRESENT IF ALIAS-STATE-PM
 FIELD-STATUS IS FS-STATE.
 05 MS-ALIAS-ZIP PIC 9(5) TO ALIAS-ZIP
 PRESENT IF ALIAS-ZIP-PM
 FIELD-STATUS IS FS-ZIP.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-14

Programming for Intelligent Devices Error Processing and Debugging Techniques
When the MSG-IN-FLAVOR2 template is used for receiving incoming messages, the
fields PRESENCE-MASK through ZIP are always physically present. Each single-bit
elementary item within PRESENCE-MASK determines whether one of the ALIAS
fields (following ZIP) is present. For example, a value of 1 in the ALIAS-STATE-PM
field indicates that the ALIAS-STATE field is present, a value of 0 in the ALIAS-
NAME-PM field indicates that the ALIAS-NAME field is not present, and so forth.

Error Processing and Debugging Techniques
Use the ON ERROR clause to detect errors that occur on input or output of the message
to or from working storage. Use the FIELD STATUS clause to test for edit errors.

ON ERROR Processing

If an error is detected in either phase of the SEND MESSAGE operation, the ON
ERROR path is taken. The processing of the ON ERROR clause for the SEND
MESSAGE statement is the same as that for the CALL and SEND statements.
TERMINATION-STATUS values for the SEND MESSAGE statement are summarized
in the Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual.

As part of the ON ERROR processing you need to check for a TERMINATION-
STATUS of 5 or 15; 5 indicates input phase and 15 indicates output phase. If
TERMINATION-STATUS is 5 or 15, you can then process the FIELD STATUS data
item to detect an edit error.

FIELD STATUS Processing

The FIELD STATUS clause identifies a working-storage data group or item that
receives status information about the field during SEND MESSAGE operations.

The FIELD STATUS clause is used to obtain information on editing errors in fields
where editing is specified.

The method of deciding which message template the FIELD STATUS data item belongs
to differs for input and output messages.

Message Template Input Case

For input messages, you need to know which of the message templates of the YIELDS
list you were processing when the errors occurred.

The relative position of the YIELDS list is returned in TERMINATION-SUBSTATUS.

The position is returned in TERMINATION-SUBSTATUS instead of TERMINATION-
STATUS because this is the ON ERROR case. At this point TERMINATION-
STATUS holds the error number. If this were the normal case, rather than ON ERROR,
TERMINATION-STATUS would be used to define the relative position in the
YIELDS list.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-15

Programming for Intelligent Devices FIELD STATUS Processing
The following SEND MESSAGE statement shows the YIELDS clauses associated with
the input messages:

SEND MESSAGE MSG-3-OUT-M-1
 REPLY CODE FIELD IS WS-MSG-4-IN-FROM-MSG-4-IN-CODE
 CODE 1 YIELDS MSG-3-IN
 CODE 2 YIELDS MSG-4-IN
 CODE 3 YIELDS MSG-3-IN
 CODE 4 YIELDS MSG-4-IN
 ON ERROR PERFORM IDS-SERVER-SEND-ERROR.

The following PERFORM statement shows how to use TERMINATION- SUBSTATUS
to decide which input message template to process:

PERFORM ONE OF
 PROC-MSG-3-IN-EDIT-STATUS
 PROC-MSG-4-IN-EDIT-STATUS
 PROC-MSG-3-IN-EDIT-STATUS
 PROC-MSG-4-IN-EDIT-STATUS
 DEPENDING ON TERMINATION-SUBSTATUS.

The following table shows the input message that correlates with TERMINATION-
SUBSTATUS:

Message Template Output Case

Because only one message template can be specified on output, you know which set of
FIELD STATUS data items to test.

Recommended Format of FIELD STATUS Item

The recommended format of the FIELD STATUS item is:

02 FIELD-STATUS-AREA.
 03 SHADOW-INFO PIC 9(4) COMP.
 03 FIELD-ERROR PIC 9(4) COMP.

This format, although not required by the compiler, allows for easy processing of the
FIELD STATUS information. The SHADOW information is the same as that within the
Screen Section. The FIELD-ERROR area allows the TCP to report specific errors that
relate to this individual Message Section field.

Message Template TERMINATION-SUBSTATUS

YIELDS MSG-3-IN 1

YIELDS MSG-4-IN 2

YIELDS MSG-3-IN 3

YIELDS MSG-4-IN 4
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-16

7 Processing Unsolicited Messages
The unsolicited-message processing (UMP) feature of Compaq NonStop™ Pathway/iTS
makes it possible for SCREEN COBOL requesters to accept and reply to unsolicited
messages sent to them by processes that are outside the PATHMON environment.
These external processes can reside anywhere within a Compaq Expand network.

The following clauses, statements, and registers in the SCREEN COBOL language
support the processing of unsolicited messages:

• An escape condition for the ACCEPT and SEND MESSAGE statements: ESCAPE
ON UNSOLICITED MESSAGE

• The statements RECEIVE UNSOLICITED MESSAGE and REPLY TO
UNSOLICITED MESSAGE

• The read-only special registers PW-UNSOLICITED-MESSAGE-QUEUED,
PW-TCP-SYSTEM-NAME, PW-TCP-PROCESS-NAME, and
PW-USE-NEW-CURSOR

• The read-write special register PW-QUEUE-FKEY-UMP

This section presents information about the following topics:

• Detecting the arrival of unsolicited messages

• Accepting unsolicited messages

• Replying to unsolicited messages

• The SCREEN COBOL special registers used with unsolicited messages

• TERMINATION-STATUS values and Pathway/iTS error codes related to
unsolicited messages

• UMP programming examples

• Sending unsolicited messages to SCREEN COBOL requesters

• Unsolicited-message layout, reply layout, and error codes

• Configuration parameters related to the UMP feature

The Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual contains
additional information about the unsolicited-message processing feature.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-1

Processing Unsolicited Messages Detecting the Arrival of Unsolicited Messages
Detecting the Arrival of Unsolicited Messages
Each requester program has its own unsolicited-message queue. In addition, each
requester program has its own copy of the PW-UNSOLICITED-MESSAGE-QUEUED
special register that is global to any program units called by that requester.

When the TCP receives an unsolicited message addressed to one of its requesters, it
places the message in the appropriate queue and sets the value of the associated
PW-UNSOLICITED-MESSAGE- QUEUED register to YES.

A requester can detect the arrival of an unsolicited message in any of the following
ways:

• By testing the content of its PW-UNSOLICITED-MESSAGE-QUEUED special
register

YES signifies that one or more messages have arrived and are waiting to be
processed; NO signifies that the queue is empty.

• By performing a RECEIVE UNSOLICITED MESSAGE statement as a waited input
operation

• By including an ESCAPE ON UNSOLICITED MESSAGE clause in ACCEPT or
SEND MESSAGE statements

Accepting Unsolicited Messages
Requesters obtain the text of an unsolicited message by performing a RECEIVE
UNSOLICITED MESSAGE statement. Messages can move either directly into
working-storage or move indirectly there from a Message Section templates.

Replying to Unsolicited Messages
When a requester has constructed an appropriate response message, it replies to an
unsolicited message by performing a REPLY TO UNSOLICITED MESSAGE
statement. After replying to the message, the requester is then free to accept and process
another unsolicited message.

Having received one message (by performing a RECEIVE UNSOLICITED MESSAGE
statement), the requester cannot perform another RECEIVE UNSOLICITED
MESSAGE statement until it has replied to the first message (by using a REPLY TO
UNSOLICITED MESSAGE statement).
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-2

Processing Unsolicited Messages The PW-TCP-SYSTEM-NAME and PW-TCP-
PROCESS-NAME Special Registers
The PW-TCP-SYSTEM-NAME and PW-TCP-
PROCESS-NAME Special Registers

The read-only special registers, PW-TCP-SYSTEM-NAME and PW-TCP-PROCESS-
NAME, contain the system name and Guardian process name of the requester's TCP.

They are intended for use by a requester, in conjunction with the LOGICAL-
TERMINAL-NAME special register, when the requester is identifying itself to a process
that is a member of an active Pathway server class.

A requester can identify itself to such a process by formatting a message containing the
TCP system name and process name and the requester's name and passing the message
to the server process through a SEND statement. The server process can then use those
values in the UMP header of unsolicited messages to communicate with the requester.

Programs attempting to modify the content of either of these special registers are flagged
at compilation with the following message:

** ERROR 454 ** READ-ONLY SPECIAL REGISTER; MAY NOT BE ALTERED

These registers have the following implicit declarations. (The VALUE clauses are for
illustrative purposes only.)

PW-TCP-SYSTEM-NAME PIC X(8) VALUE "\STLOUIS".
PW-TCP-PROCESS-NAME PIC X(6) VALUE "$STCP".

The PW-USE-NEW-CURSOR Special Register
For all terminals supported by Pathway/iTS, except the 6510, information is displayed
on the screen without altering the location of the visible cursor. Terminals other than
the 6510 have a buffer pointer, independent of the visible cursor, whose value
determines where information is displayed on the screen; the visible cursor position is
altered separately. Thus, when PW-USE-NEW-CURSOR is set to NO, the visible
cursor can be left unchanged.

The 6510 visible cursor functions as both a user next-character marker and a buffer
pointer; consequently, there is no way to avoid altering the cursor position when writing
to the screen on a 6510. Because of this, the PW-USE-NEW-CURSOR special register
has no effect on 6510 terminal operation. The TCP performs all I/O operations on a
6510 as if PW-USE-NEW-CURSOR had the YES value

You can use basically the same source code for program units of different terminal
types, changing only the terminal type in the Environment Division

For example, the following code is acceptable to either 6510 or other terminals:

For example, the following code is acceptable to any supported terminal:

SET NEW-CURSOR AT a-field.
MOVE "NO" TO PW-USE-NEW-CURSOR.
ACCEPT field names.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-3

Processing Unsolicited Messages Unsolicited-Message TERMINATION-STATUS
Values
The ACCEPT verb in this example acts differently on a 6510 terminal than it does on
other terminals. On a terminal that is not a 6510, the visible cursor position is
unchanged because of the NO value in PW-USE-NEW-CURSOR; on a 6510, however,
the PW-USE-NEW-CURSOR special register has no effect and the visible cursor moves
to the screen location designated by a-field.

Unsolicited-Message TERMINATION-STATUS
Values

SCREEN COBOL requesters that process unsolicited messages should test for the
following TERMINATION-STATUS error codes:

13 A timeout or ESCAPE ON UNSOLICITED MESSAGE caused the TCP to issue
a CONTROL 26 call to the external front-end process. An I/O error occurred in
conjunction with the CONTROL 26 call; however, TERMINATION-
SUBSTATUS specifies the file system error code that was returned with the
CONTROL 26 completion. This value is returned only for SEND MESSAGE
statements.

14 A timeout or ESCAPE ON UNSOLICITED MESSAGE caused the TCP to issue
a CONTROL 26 call to the external front-end process. The front-end process did
not respond within the maximum allowable amount of time, however. This value
is returned only for SEND MESSAGE statements.

16 A RECEIVE UNSOLICITED MESSAGE statement was issued when a REPLY
TO UNSOLICITED MESSAGE was required. When processing unsolicited
messages, the requester must always reply to each received message before
issuing any subsequent RECEIVE UNSOLICITED MESSAGE statements.

17 A REPLY TO UNSOLICITED MESSAGE statement was issued when no
corresponding RECEIVE UNSOLICITED MESSAGE statement had been
previously executed.

18 A RECEIVE UNSOLICITED MESSAGE statement was issued when the
PATHCOM SET TERM parameter MAXINPUTMSGS was set, or defaulted, to
0. That PATHCOM parameter specifies the maximum number of unsolicited
messages that the TCP can have queued at any given time for the particular
requester.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-4

Processing Unsolicited Messages Pathway/iTS Error Codes
Pathway/iTS Error Codes
The following Pathway/iTS error codes can appear in the PATHMON log as the result
of unsolicited-message processing.

Unsolicited messages were queued for a requester when the requester was stopped,
suspended, or aborted, either programmatically or by operator command. The INFO
field specifies the number of unsolicited messages that were rejected.

An attempt was made to receive an unsolicited message when a previously received one
had not yet been replied to. After accepting an unsolicited message, a requester must
always perform a REPLY TO UNSOLICITED MESSAGE statement.

An attempt was made to reply to an unsolicited message when none was pending.

An attempt was made to RECEIVE UNSOLICITED MESSAGE, but the requester is
not configured to accept unsolicited messages.

The value specified for the PATHCOM SET TCP MAXINPUTMSGS parameter
exceeded 2045. Because PATHCOM disallows a value greater than 2045, the
appearance of this message in the log reflects an internal Pathway/iTS error.

The TCP rejected an unsolicited message for the reason specified by the INFO field.
This message can be generated on behalf of either an individual requester or the entire
TCP, as appropriate.

3125 - MULTIPLE UNSOLICITED MESSAGES REJECTED DUE TO TERM
STOP/SUSPEND

3176 - ATTEMPT TO RECEIVE UNSOLICITED MESSAGE WITH ONE NOT
YET REPLIED TO

3177 - NO UNSOLICITED MESSAGE TO REPLY TO

3178 - ATTEMPT TO RECEIVE UNSOLICITED MESSAGE WHEN TERM
MAXINPUTMSGS = 0

3240 - VALUE FOR MAXINPUTMSGS TOO LARGE—MAX IS 2045

3241 - UNSOLICITED MESSAGE REJECTED BY TCP
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-5

Processing Unsolicited Messages UMP Programming Examples
The TCP rejected one or more unsolicited messages and replied to their sender without
delivering them to their target requester. This message is seen only if unsolicited
messages are arriving and being rejected with sufficient frequency that the TCP cannot
log individual error messages for each rejected unsolicited message.

For cause, effect, and recovery information for these messages and other TCP messages,
refer to the Compaq NonStop™ Pathway/iTS System Management Manual.

UMP Programming Examples
The subsections that follow present a series of annotated programming examples
illustrating various approaches to unsolicited-message processing within SCREEN
COBOL requesters.

Polling the PW-UNSOLICITED-MESSAGE-QUEUED Register

One method of detecting the arrival of unsolicited messages is to branch periodically to
a paragraph that acts upon the current state of the PW-UNSOLICITED-MESSAGE-
QUEUED register. If the register contains the value YES, the paragraph processes
unsolicited messages from the requester's queue. When the register finally contains the
value NO, control returns to the main processing stream.

 .
 .
 .
 PERFORM CHECK-FOR-UNSOLICITED-MESSAGES.
 .
 .
 .

 CHECK-FOR-UNSOLICITED-MESSAGES.
 IF PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "YES"
 PERFORM process-unsolicited-message
 UNTIL PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "NO".

 PROCESS-UNSOLICITED-MESSAGE.
 RECEIVE UNSOLICITED MESSAGE
 YIELDS ws-unsolicited-message
 ON ERROR GO TO analyze-error.
* Do something with ws-unsolicited-message
* and format a reply message.
 REPLY TO UNSOLICITED MESSAGE reply-message.

3242 - MULTIPLE UNSOLICITED MESSAGES REJECTED
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-6

Processing Unsolicited Messages Using Waited RECEIVE UNSOLICITED Statements
Using Waited RECEIVE UNSOLICITED Statements

Another way of detecting the arrival of unsolicited messages is to branch to a paragraph
that issues a RECEIVE UNSOLICITED MESSAGE statement; the statement may or
may not include a TIMEOUT clause. If there are no unsolicited messages currently
queued, the RECEIVE UNSOLICITED statement acts as a waited input request
comparable to ACCEPT. If the statement does not include a TIMEOUT clause, it waits
indefinitely for a message. If the statement includes a TIMEOUT clause and the
specified timeout period elapses without the receipt of an unsolicited message, control
passes to the ON ERROR code, if present. If there is no ON ERROR paragraph, the
requester suspends.

This approach has two apparent drawbacks when compared with the preceding example:
it processes only a single message, regardless of how many might currently be on the
queue, and it causes the requester to halt either indefinitely or up to the specified timeout
period if the queue is empty and no unsolicited message arrives. This is a valid
approach, however, that might be appropriate in certain application environments.

 .
 .
 .
 PERFORM CHECK-FOR-UNSOLICITED-MESSAGE.
 .
 .
 CHECK-FOR-UNSOLICITED-MESSAGE.
 RECEIVE UNSOLICITED MESSAGE
 YIELDS ws-unsolicited-message
 TIMEOUT one-minute
 ON ERROR GO TO analyze-error.
* Do something with ws-unsolicited-message
* and format a reply message.
 REPLY TO UNSOLICITED MESSAGE reply-message.

 ANALYZE-ERROR.
 IF TERMINATION-STATUS = 1 and
 TERMINATION-SUBSTATUS = 40
* The statement timed out, which in this
* case is not really an error condition;
* at the very least you must specify some
* kind of declarative clause here, such as
* MOVE TIMED-OUT TO LATEST-COMPLETION, even
* if it amounts to a no op.
 ELSE
* Respond appropriately to other types
* of errors.

If a message arrives before the RECEIVE UNSOLICITED statement times out, the
message is moved to ws-unsolicited-message in working storage and control
proceeds with the statements immediately following the RECEIVE UNSOLICITED
statement.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-7

Processing Unsolicited Messages Using ESCAPE ON UNSOLICITED MESSAGE
Clauses
Using ESCAPE ON UNSOLICITED MESSAGE Clauses

One of the most common methods of detecting and reacting to unsolicited messages is
the interrupt technique, whereby you include ESCAPE ON UNSOLICITED MESSAGE
clauses in ACCEPT or SEND MESSAGE statements.

Example 7-1 illustrates the use of such clauses with an ACCEPT statement;
Example 7-2 does the same with a SEND MESSAGE statement.

Example 7-1. UMP and the ACCEPT Statement

 GET-OPERATOR-INPUT.
 ACCEPT my-screen
 UNTIL f1-key
 sf16-key
 ESCAPE ON
 TIMEOUT one-hour
 UNSOLICITED MESSAGE.
 PERFORM ONE OF f1-key-action
 sf16-key-action
 timed-out
 unsolicited-message-arrival
 DEPENDING ON TERMINATION-STATUS.
 GO TO get-operator-input.

 F1-KEY-ACTION.
* TERMINATION-STATUS = 1; respond to function-key 1 condition.

 SF16-KEY-ACTION.
* TERMINATION-STATUS = 2; respond to shifted function-key 16
* condition.

 TIMED-OUT.
* TERMINATION-STATUS = 3; respond to time-out condition.

 UNSOLICITED-MESSAGE-ARRIVAL.
* TERMINATION-STATUS = 4; receive, process, and reply to the
* unsolicited message.
 IF PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "YES"
 PERFORM process-unsolicited-message
 UNTIL PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "NO".

 PROCESS-UNSOLICITED-MESSAGE.
 RECEIVE UNSOLICITED MESSAGE
 YIELDS unsolicited-latest-prices
 ON ERROR GO TO analyze-error.
* Do something with unsolicited-latest-prices and format a
* reply message.
 REPLY TO UNSOLICITED MESSAGE reply-message.
 MOVE "NO" TO PW-USE-NEW-CURSOR.
* Preserves the old cursor position.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-8

Processing Unsolicited Messages ESCAPE ON UNSOLICITED MESSAGE Design
Considerations

ESCAPE ON UNSOLICITED MESSAGE Design Considerations

When writing an application that uses ESCAPE ON UNSOLICITED MESSAGE
clauses, you have several design considerations.

When using the interrupt method, if there is a chance that a UMP message might get
canceled, it is recommended that a check to the PW-UNSOLICITED-MESSAGE-
QUEUE be made before executing the RECEIVE UNSOLICITED MESSAGE verb.
This prevents the SCREEN COBOL program from indefinitely waiting on the
RECEIVE UNSOLICITED MESSAGE verb when the UMP message that caused the
interrupt is canceled before the RECEIVE UNSOLICITED MESSAGE verb is
executed.

Example 7-2. UMP and the SEND MESSAGE Statement

 SEND-MESSAGE-AND-RECEIVE-REPLY.
 SEND MESSAGE request-message
 REPLY CODE "AA" YIELDS aa-reply
 ESCAPE ON UNSOLICITED MESSAGE
 TIMEOUT five-minutes
 ON ERROR GO TO analyze-error.
 PERFORM ONE OF aa-reply
 unsolicited-message-arrival
 DEPENDING ON TERMINATION-STATUS.
 GO TO send-message-and-receive-reply.

 AA-REPLY.
* TERMINATION-STATUS = 1. This is a normal (expected)
completion.
* Do whatever is appropriate for an AA-type reply and then
resume
* regular processing.

 UNSOLICITED-MESSAGE-ARRIVAL.
* TERMINATION-STATUS = 2. The statement was interrupted by
the
* arrival of an unsolicited message.
*
* If CONTROL 26 is enabled, at this point you should check
* TERMINATION-SUBSTATUS for the values 187, 188, or 189.
*
* If CONTROL 26 is not enabled, you should check
* TERMINATION-SUBSTATUS for the value 0.

 IF PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "YES"
 PERFORM process-unsolicited-message
 UNTIL PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "NO".

 PROCESS-UNSOLICITED-MESSAGE.
 RECEIVE UNSOLICITED MESSAGE
 YIELDS unsolicited-statistics-request.
* Gather the requested statistics and format a reply message.
 REPLY TO UNSOLICITED MESSAGE requested-statistics.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-9

Processing Unsolicited Messages ESCAPE ON UNSOLICITED MESSAGE Design
Considerations
Applications for Intelligent Terminals

If your application is for intelligent terminals, consider the following:

• You can use the interrupt method of responding to unsolicited messages (ESCAPE
ON UNSOLICITED MESSAGE) with SEND MESSAGE statements in IDS
requesters that communicate with front-end processes whether the front-end
processes support the use of CONTROL 26. If the front-end process supports the
use of CONTROL 26, an ESCAPE ON UNSOLICITED MESSAGE can be
performed with no loss of data. If the front-end process does not support the use of
CONTROL 26, then the TCP uses only CANCEL calls (no CONTROL 26 calls) to
terminate the underlying read operation. In the latter case, the amount of data that
could be lost is application-dependent or device-dependent.

• If a UMP message is already queued when a SEND MESSAGE with an ESCAPE
ON UNSOLICITED MESSAGE clause is executed, the TCP still issues the SEND
MESSAGE call. To process the ESCAPE ON UNSOLICITED MESSAGE clause,
however, the TCP immediately cancels the SEND MESSAGE WRITEREAD or
issues a CONTROL 26 call against the WRITEREAD. To prevent unnecessary
processing on a SEND MESSAGE, poll the PW-UNSOLICITED-MESSAGE-
QUEUED register for a YES value to detect the arrival of UMP messages prior to
issuing the SEND MESSAGE statement.

Applications for Block-Mode Terminals

If your application is for block-mode terminals, consider the following:

• You can also use the interrupt technique with ACCEPT statements in standard
requesters that control block-mode terminals supported by Pathway/iTS. In that
context, however, the TCP uses only CANCEL calls (no CONTROL 26 calls) to
terminate the underlying read operation; it does so with a minimal loss of data. (At
most, the loss is a single function-key stroke.)

• See Internal Function-Key Queuing on page 3-13 for implications of the function-
key queuing capability of 6530 terminals and ESCAPE ON UNSOLICITED
MESSAGE clauses within ACCEPT verbs.

Applications for Conversational Terminals

If your application is for conversational terminals, the interrupt technique of processing
must be used judiciously with conversational-mode requesters. This is because the
arrival of an unsolicited message causes all data entered by the terminal user for all
fields being accepted by the interrupted ACCEPT verb to be discarded.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-10

Processing Unsolicited Messages Message Processing Requiring No Terminal
Interaction
Message Processing Requiring No Terminal Interaction

Assume that an ACCEPT statement issued by a standard requester controlling a
supported block-mode terminal is interrupted by the arrival of an unsolicited message.
Also assume that the message requires no terminal input-output. For example, the
message asks the requester to return statistics maintained in its working storage.

The applicable UMP-code constructs for handling this situation are as follows:

 PROCEDURE DIVISION.
 MAIN-LOOP.
 DISPLAY BASE name-screen.

 MAIN-INPUT.
 ACCEPT name-screen
 UNTIL f1
 ESCAPE ON
 TIMEOUT one-hour
 UNSOLICITED MESSAGE.
 PERFORM ONE OF
 normal-f1-completion
 operation-timed-out
 unsolicited-message-arrival
 DEPENDING ON termination-status
 GO TO main-input.

 UNSOLICITED-MESSAGE-ARRIVAL.
 IF PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "YES"
 PERFORM process-unsolicited-message
 UNTIL PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "NO".

 PROCESS-UNSOLICITED-MESSAGE.
 RECEIVE UNSOLICITED MESSAGE YIELDS receive-msg.
* Build the reply.
 REPLY TO UNSOLICITED MESSAGE WITH reply-msg.
* Prevent the ACCEPT statement from moving the cursor.
 MOVE "NO" TO PW-USE-NEW-CURSOR.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-11

Processing Unsolicited Messages Message Processing Requiring Only Terminal
Output
Message Processing Requiring Only Terminal Output

The next example illustrates the case where the arrival of an unsolicited message
requires the displaying of information on the terminal whose I/O operation was
interrupted. Assume that the unsolicited message contains latest price information that
must be displayed to the terminal.

Following message processing, the program reissues the interrupted ACCEPT operation.

 PROCEDURE DIVISION.
 MAIN-LOOP.
 DISPLAY BASE normal-screen.

* The following ACCEPT operation is reissued when
* unsolicited-message processing is complete. At that time,
* any data typed on the screen is preserved. At worst,
* the operator will have to reissue a single function-key
* stroke.

 MAIN-INPUT.
 ACCEPT normal-screen UNTIL f5
 ESCAPE ON UNSOLICITED MESSAGE.
 PERFORM ONE OF
 normal-f5-completion
 unsolicited-message-arrival
 DEPENDING ON termination-status
 GO TO main-input.

 UNSOLICITED-MESSAGE-ARRIVAL.
 IF PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "YES"
 PERFORM process-unsolicited-message
 UNTIL PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "NO".

 PROCESS-UNSOLICITED-MESSAGE
 RECEIVE UNSOLICITED MESSAGE YIELDS rcv-msg.
* Reply immediately to sender because no actual information
* is contained in the reply.
* Shorten the wait for $RECEIVE response.
 REPLY TO UNSOLICITED MESSAGE WITH reply-msg.
* Set up screen to request system status.
 MOVE CORRESPONDING price-info OF rcv-msg
 TO latest-prices.
* The latest information displays on the screen; operator
* continues screen interaction.
 DISPLAY latest-price-overlay.
* Prevent the ACCEPT statement from moving the cursor.
 MOVE "NO " TO PW-USE-NEW-CURSOR.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-12

Processing Unsolicited Messages Message Processing Requiring Both Input and
Output
Message Processing Requiring Both Input and Output

The next example illustrates a case when the arrival of an unsolicited message requires
that information be displayed on the terminal where I/O was interrupted and that the
terminal operator enter a reply.

Following message processing, the program reissues the interrupted ACCEPT operation.
Because the unsolicited message required operator input, the previous cursor position is
lost and the operator has to reposition the cursor manually at the appropriate screen
location.

For brevity, error handling has been omitted from the example.

 PROCEDURE DIVISION.
 MAIN-LOOP.
 DISPLAY BASE normal-screen.

* The following ACCEPT operation is reissued when
* unsolicited-message processing is complete.
* At that time, any data typed on the screen is preserved.
* The operator might have to reposition the cursor or
* reissue a function-key stroke.

 MAIN-INPUT.
 ACCEPT normal-screen-data UNTIL f5
 ESCAPE ON UNSOLICITED MESSAGE.
 PERFORM ONE OF
 normal-processing
 unsolicited-message-arrival
 DEPENDING ON termination-status
 GO TO main-input.

 UNSOLICITED-MESSAGE-ARRIVAL.
 IF PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "YES"
 PERFORM process-unsolicited-message
 UNTIL PW-UNSOLICITED-MESSAGE-QUEUED IS EQUAL TO "NO".

 PROCESS-UNSOLICITED-MESSAGE.
* Accept, process, and reply to unsolicited message.
 RECEIVE UNSOLICITED MESSAGE YIELDS rcv-msg.
* Set up window for operator response.
 DISPLAY urgent-op-overlay.
* Accept operator input to urgent overlay.
 ACCEPT ws-urgent-op-reply UNTIL f1.
 MOVE ws-urgent-op-reply TO reply-msg-op-reply.
* Reply to sender with operator's response.
 REPLY TO UNSOLICITED MESSAGE WITH reply-msg.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-13

Processing Unsolicited Messages Sending Unsolicited Messages to SCREEN COBOL
Requesters
Sending Unsolicited Messages to SCREEN COBOL
Requesters

Guardian processes send unsolicited messages to SCREEN COBOL requesters by using
the appropriate TCP. An application that sends multiple unsolicited messages to a TCP
should open the TCP only once and close it at the end of processing.

Such messages consist of two parts:

• A UMP header that gets interpreted by the receiving TCP

• The body of the message that gets passed to the SCREEN COBOL requester
program

The length of the receiving buffer within the requester program is established by the
application designer. The maximum length of a message can be configured through
PATHCOM. The length is that of the body of the maximum message, exclusive of the
UMP header.

To send a message to a SCREEN COBOL requester program, the sending process must
build a message whose header contains the Pathway/iTS terminal name; this message is
then sent to the TCP controlling the terminal.

There are two methods for obtaining the information necessary to complete the header
of an unsolicited message to a SCREEN COBOL requester.

• The Subsystem Programmatic Interface (SPI), a token-oriented programmatic
interface provided by Compaq, provides the means whereby Guardian processes
outside of a PATHMON environment can communicate with the PATHMON
process to obtain the information necessary to complete the UMP header of a
message intended for a known terminal.

Given the Pathway/iTS terminal name, the management programming interface gets
the TCP system name and the Guardian process name. The procedure for doing this
for the terminal TERM-X is as follows:

1. Issue an INFO TERM TERM-X request. The response from PATHMON
contains the TCP name, such as TCP-X.

2. Issue a STATUS TCP TCP-X request. The response contains both the system
name and the Guardian process name of TCP-X.

Detailed information about the management programming interface to the Pathway
subsystem is presented in the NonStop™ TS/MP Management Programming
Manual and the Compaq NonStop™ Pathway/iTS Management Programming
Manual.

• Assuming the requester has access (direct or indirect) to the process that will be
sending the unsolicited messages, the requester can initially send its information—
its Pathway/iTS terminal name, its TCP system name, and its TCP process name—
from the special registers LOGICAL-TERMINAL-NAME, PW-TCP-SYSTEM-
NAME, and PW-TCP-PROCESS-NAME by using the SEND (to server) verb.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-14

Processing Unsolicited Messages Unsolicited-Message Layout, Reply Layout, and
Error Codes
For requesters that are started by a PATHCOM RUN PROGRAM command, only the
second method is appropriate because the logical name of the terminal is determined
dynamically by the PATHMON process.

The reply returned to the sender of an unsolicited message includes error information
when either of the following is true:

• The supplied terminal name is not currently active. (The terminal is either stopped
or suspended.)

• The unsolicited-message queue of the target requester is full.

Unsolicited-Message Layout, Reply Layout, and
Error Codes

The subsections that follow describe the format of unsolicited messages as sent by an
external process (outside the PATHMON environment) to the TCP, the format of replies
sent by the TCP to the external process, and the various reply codes that the TCP can
include in the reply record.

Unsolicited-Message Layout

Figure 7-1 illustrates, in a COBOL-like representation, the format of an unsolicited
message as viewed by both the TCP that receives it and the external process (outside the
PATHMON environment) that sends it.

Upon receipt of a message, the TCP strips off the header and stores only the text portion
in the target requester's queue.

Figure 7-1. UMP Message Format

01 UMP-MSG.
 02 TCP-UMP-HDR.
 03 PROTOCOL-ID PIC 9(4) COMP VALUE 42.
 03 MSG-ID PIC 9(4) COMP VALUE 1.
 03 MSG-VERSION PIC 9(4) COMP VALUE 1.
 03 MSG-HEADER-LEN PIC 9(4) COMP VALUE 40.
 03 DEST-NODE PIC X(8).
 03 DEST-TCP-PROC PIC X(6).
 03 LOGICAL-TERM-NAM PIC X(15).
 03 FILLER PIC X.
 03 MSG-SEQUENCE-NUM PIC 9(4) COMP.
 02 SCOBOL-MSG.
 03 MSG-TEXT PIC X(number-of-characters).
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-15

Processing Unsolicited Messages Unsolicited-Message Layout
The text that follows briefly describes each field.

01 UMP-MSG.

Sent to the appropriate TCP by a Guardian process by making a WRITEREAD call
with a read-count large enough to contain the reply header and reply text. The target
SCREEN COBOL requester accepts the text portion by using a RECEIVE
UNSOLICITED MESSAGE statement.

02 TCP-UMP-HDR.

The header is seen only by the TCP (not by the SCREEN COBOL requester).

03 PROTOCOL-ID PIC 9(4) COMP VALUE 42.

Unsolicited message protocol indicator. Must be 42.

03 MSG-ID PIC 9(4) COMP VALUE 1.

Message identification number. Must be 1.

03 MSG-VERSION PIC 9(4) COMP VALUE 1.

Message format version number. Must be 1.

03 MSG-HEADER-LEN PIC 9(4) COMP VALUE 40.

Number of bytes in TCP-UMP-HDR. Must be 40.

03 DEST-NODE PIC X(8).

The symbolic name of the destination node of this message (such as
\CORPHQ), left justified and blank filled.

03 DEST-TCP-PROC PIC X(6).

The Guardian process name of the destination TCP of this message (such as
$BTCP), left justified and blank filled.

03 LOGICAL-TERM-NAM PIC X(15).

The name of the destination terminal as defined by the PATHCOM ADD
TERM command.

03 FILLER PIC X.

Filler ensuring that the next field starts on word boundary.

03 MSG-SEQUENCE-NUM PIC 9(4) COMP.

A 16-bit binary number that uniquely identifies this particular message
within the context of the program that generated the message.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-16

Processing Unsolicited Messages Unsolicited-Message Reply Layout
02 SCOBOL-MSG.

CODE FIELD in the RECEIVE UNSOLICITED MESSAGE verb is relative to
this point.

03 MSG-TEXT PIC X(number-of-characters).

Text being sent to the SCREEN COBOL requester (can be null).

If the fields PROTOCOL-ID, DEST-NODE, and DEST-TCP-PROC are not filled out in
TCP-UMP-HDR, the TCP returns a file system security-violation error (48), with no
data, in response to the unsolicited message. If the unsolicited message has fewer bytes
than the 40-byte TCP-UMP-HDR header, the message is also rejected with an error 48.

Unsolicited-Message Reply Layout

Figure 7-2 illustrates, in a COBOL-like representation, the format of a reply to an
unsolicited message as viewed by both the TCP that sends it and the external process
(outside the PATHMON environment) that receives it.

On execution of a REPLY TO UNSOLICITED MESSAGE statement, the TCP adds the
appropriate UMP header to the reply text supplied by the requester.

The text that follows briefly describes each field.

01 UMP-REPLY.

Built by the TCP (with reply text supplied by the requester) and sent to the Guardian
process that sent the unsolicited message. The requester passes the reply text to the
TCP by using a REPLY TO UNSOLICITED MESSAGE statement.

02 TCP-UMP-HDR.

03 MSG-ID PIC 9(4) COMP.

Copied from the MSG-ID field of the unsolicited message.

Figure 7-2. UMP Reply Format

01 UMP-REPLY.
 02 TCP-UMP-HDR.
 03 MSG-ID PIC 9(4) COMP.
 03 REPLY-ID PIC 9(4) COMP VALUE 1.
 03 REPLY-VERSION PIC 9(4) COMP.
 03 REPLY-HEADER-LEN PIC 9(4) COMP.
 03 ERROR-CODE PIC 9(4) COMP.
 03 INFO1 PIC 9(4) COMP.
 03 INFO2 PIC 9(4) COMP.
 03 REPLY-SEQ-NUM PIC 9(4) COMP.
 02 SCOBOL-REPLY.
 03 REPLY-TEXT PIC X(number-of-characters).
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-17

Processing Unsolicited Messages Unsolicited-Message Reply Layout
03 REPLY-ID PIC 9(4) COMP VALUE 1.

Reply identification number. Must be 1.

03 REPLY-VERSION PIC 9(4) COMP.

Reply format version number. This number is less than or equal to the value
of the MSG-VERSION field in the corresponding unsolicited message. The
TCP converts this field to:

$MIN (MSG-VERSION, version the TCP recognizes)

This line lets the message sender, when it receives the reply back from the
TCP, know what version level of the UMP protocol the TCP is using,
thereby allowing message senders to interact more effectively with TCPs
that are using older versions of the UMP protocol.

03 REPLY-HEADER-LEN PIC 9(4) COMP.

The number of bytes in the header of the reply message (currently 16).

03 ERROR-CODE PIC 9(4) COMP.

Zero or an error code returned by the TCP.

03 INFO1 PIC 9(4) COMP.

See error code 10 in "Unsolicited Message Error Codes" in this section.

03 INFO2 PIC 9(4) COMP.

Reserved for future use.

03 REPLY-SEQ-NUM PIC 9(4) COMP.

The sequence number (MSG-SEQ-NUM) from the message that is being
replied to. The COMP VALUE is a 16-bit binary number.

02 SCOBOL-REPLY.

The requester furnishes this data by using a REPLY TO UNSOLICITED
MESSAGE statement.

03 REPLY-TEXT PIC X(number-of-characters).

The text being returned.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-18

Processing Unsolicited Messages Unsolicited-Message Error Codes
Unsolicited-Message Error Codes

Table 7-1 lists the error codes returned by the TCP to the sender of an unsolicited
message. The codes are passed through the ERROR-CODE field of the UMP-REPLY
record.

Table 7-1. Unsolicited-Message Error Codes

Error Code Meaning

0 No errors.

1 Guardian procedure error occurred.

2 Target terminal suspended.

3 Target terminal queue full. (The TERM MAXINPUTMSGS configuration
value has been exceeded.)

4 Target TCP queue area full

5 Target queuing not enabled. (The TCP MAXINPUTMSGS configuration
value is set to 0.)

6 Length field in message exceeds the configured maximum for the TCP.

7 Unrecognizable request code (refers to MSG-ID and MSG-VERSION
fields).

8 Named terminal not found.

9 MAXINPUTMSGS exceeded.

10 RECEIVE UNSOLICITED MESSAGE error occurred—INFO1 gives the
reason (the value obtained from the TERMINATION-STATUS register).

11 Number of bytes in reply message sent by SCREEN COBOL requester was
more than had been asked for by the sender of the unsolicited message.
This is merely a warning and should occur only during the application-
debugging phase.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-19

Processing Unsolicited Messages UMP Configuration Parameters
UMP Configuration Parameters
The following PATHCOM configuration parameters support the processing of
unsolicited messages:

• SET TERM MAXINPUTMSGS number

Specifies the total number of unsolicited messages that can be queued by the TCP
for a particular requester at any one time. When that number is reached, the TCP
rejects all subsequent unsolicited messages addressed to that requester until the
requester replies to one of its currently queued messages. This parameter is
particularly useful for ensuring that no single requester can consume a TCP's entire
space for unsolicited-message processing.

• SET TCP MAXINPUTMSGS number

Specifies the total number of unsolicited messages that a particular TCP can have
queued at any one time for all its requesters. When that number is reached, the TCP
rejects all subsequent unsolicited messages until one of its requesters replies to a
currently queued message.

• SET TCP MAXINPUTMSGLEN number

Specifies the maximum-size unsolicited message (in bytes) that the TCP will accept.
Messages that are longer than the maximum length are rejected by the TCP with an
appropriate error code. The specified length does not include the standard UMP
message header (currently 40 bytes).

The Compaq NonStop™ Pathway/iTS System Management Manual gives details about
UMP configuration parameters.

Note. The value that you specify for the SET TCP TERMPOOL parameter must be large
enough to accommodate the largest UMP message (or the largest terminal I/O operation).
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-20

8
Processing Double-Byte Character Sets

As a Pathway application programmer, you can develop SCREEN COBOL program
units that use double-byte character sets for selected devices.

The TCP supports these devices with the aid of translation routines in the TCP user
library. The TCP uses the Shift-JIS format as its internal representation of double-byte
characters. When a message is output to a device, the translation routines convert Shift
JIS to double-byte characters suitable for display on the terminal or printer, inserting
shift-out/shift-in (SO/SI) characters if necessary. When a message is input to a device,
the process is reversed; the translation routines strip the SO/SI characters.

This section presents information about the following topics:

• Device types on which Compaq NonStop™ Pathway/iTS supports double-byte
character sets

• How the character set is determined

• Data-item considerations

• Developing SCREEN COBOL programs for double-byte character sets

• Example of Working-Storage Section and Screen Section for double-byte character
sets

Device Types
The TCP supports double-byte character sets on the following terminals or personal
computers running terminal emulators. To use SNA 3270 devices with double-byte
character sets, you must have the C11 version or a later version of the SNAX/XF
product installed.

• Selected Japanese versions of 6530 terminal emulators

• Selected Fujitsu 3270 terminals, terminal emulators, and printers

• Selected IBM 3270 terminals, terminal emulators, and printers

To run SCREEN COBOL program units that use Kanji characters on IBM 3270
devices, the devices must support Start Field Extended (SFE) orders. To run
applications that use Katakana characters, IBM 3270 devices need support only Start
Field (SF) orders.

Defining fields with only double-byte characters on an IBM 3270-class device or
emulator requires the use of the field attribute DBC-Asia (attribute type X'43'). To
enter double-byte characters on IBM 3270 terminals, the operator must be able to
create shift-out/shift-in (SO/SI) characters.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-1

Processing Double-Byte Character Sets Determination of the Character Set
In general, an IBM device must have double-byte character set (DBCS) capability,
as defined in the IBM 3270 Information System Data Stream Programmer's
Reference, to support the processing of double-byte characters.

Determination of the Character Set
By default, your Pathway application uses the character set supported by the device.
The default double-byte character set is determined as follows:

• For 3270 devices connected by the SNAX/XF subsystem, call SETMODE 144 to
determine the character set.

• For 3270 devices connected by other access methods, the default character set is
IBM-EBCDIC.

• For 6530-series terminals, read the device configuration to determine the double-
byte character set.

For both 6530-class devices and 3270-class devices, the program unit is aborted if a
SCREEN COBOL program unit is compiled with the statement CHARACTER-SET IS
KANJI-KATAKANA but the run-time device does not support double-byte characters.
In this case, you get the following error message:

ERROR - *3060* DEVICE DOESN'T SUPPORT DOUBLEBYTE CHARACTERS

Data-Item Considerations
The Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual describes
the SCREEN COBOL programming language that you use to write Pathway
applications. In developing SCREEN COBOL program units with double-byte
characters, you have particular considerations for mixed data items and subscripting.

Mixed Data Items

The Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual discusses
SCREEN COBOL language elements in general. When you develop Pathway
applications for double-byte character sets, you especially need to be aware of mixed
data items.

One-byte characters (Katakana and alphanumeric) and 2-byte (double-byte) characters
can coexist in data items declared as PIC X. Such data items are called mixed data
items. A PIC X(10) field can contain, for example, any of the following combinations
in a mixed data item:

• Five 2-byte characters and no 1-byte Katakana or alphanumeric characters

• Four 2-byte characters and up to two 1-byte Katakana or alphanumeric characters

• Three 2-byte characters and up to four 1-byte Katakana or alphanumeric characters

• Two 2-byte characters and up to six 1-byte Katakana or alphanumeric characters
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-2

Processing Double-Byte Character Sets Subscripting Considerations
• One 2-byte character and up to eight 1-byte Katakana or alphanumeric characters

If a data item contains fewer than the maximum number of characters allowed, the
appropriate number of padding space characters are added to the right. If a PIC X field
contains no double-byte (2-byte) characters, it is not a mixed data item.

When manipulating a PIC X field, you must remember two points:

• Double-byte characters take two bytes of storage.

• On output to 3270-class devices, the data-conversion function converts the data
stream from internal format to a format suitable for the external device. When the
external device is an IBM 3270-class device, SO/SI (shift-out/shift-in) characters are
inserted around each double-byte character substring. These SO/SI characters each
take up one column of screen space. When the external device is a Fujitsu 3270-
class device, a similar operation to that for an IBM 3270-class device is performed,
but the substring framing characters do not occupy screen space.

The use of SO/SI characters to bracket double-byte character set data is discussed
later in this section.

Mixed data items are allowed in the Working-Storage Section, the Linkage Section, and
the Screen Section of the Data Division of a SCREEN COBOL program. For both
Working-Storage Section and Linkage Section entries, the maximum size of a data item
is 16,000 double-byte characters or its equivalent (32,000 bytes). Mixed data items are
not allowed in the Message Section of the Data Division of a SCREEN COBOL
program.

Subscripting Considerations

Subscripts are used to refer to elements in a table. Subscripts are needed because all
table elements have the same name.

When you develop a Pathway application that uses double-byte characters, you must
code the OCCURS clause to accommodate PIC X data items that might contain double-
byte characters, as explained in the following paragraphs.

The left or right byte of a double-byte character in itself has no meaning. Referring to a
subscripted data item, defined by using a PIC X clause containing double-byte data and
redefined as PIC X(1) OCCURS n TIMES, might refer to only the left or right byte of a
double-byte character. That half of the double-byte character by itself is undefined. For
example:

WORKING-STORAGE SECTION.
 .
 :
01 WS-KANJI-DATA PIC N(05).
01 WS-UNDEFINED-DATA PIC X.
01 WS-NAME-1 PIC N(05).
01 WS-GROUP-REDEF REDEFINES WS-NAME-1.
 02 WS-BYTE-DATA PIC X OCCURS 10 TIMES.

Note. Katakana characters are not classed as alphanumeric characters in PIC A items.
PIC A items can consist only of letters of the Roman alphabet or space characters.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-3

Processing Double-Byte Character Sets Developing SCREEN COBOL Programs for Double-
Byte Character Sets
 :
 :
PROCEDURE DIVISION.
 :
 :
 MOVE WS-KANJI-DATA TO WS-NAME-1.
 MOVE WS-BYTE-DATA(1) TO WS-UNDEFINED-DATA.

The receiving data in this example (WS-UNDEFINED-DATA) is undefined because an
individual byte of a double-byte character is meaningless.

Arrays defined by using a PIC N clause, rather than a PIC X clause, are referred to in
units of two bytes.

Developing SCREEN COBOL Programs for
Double-Byte Character Sets

Program units written in SCREEN COBOL have four divisions: the Identification
Division, the Environment Division, the Data Division, and the Procedure Division. In
developing Pathway applications for double-byte character sets, you define specific
attributes in the last three of these divisions.

Environment Division

The Configuration Section of the Environment Division declares the operating
environment of a SCREEN COBOL program. When you write Pathway applications
for double-byte character sets, you need to consider the following syntax in the
OBJECT-COMPUTER paragraph:

TERMINAL IS Statement
All 3270 class devices—both IBM and Fujitsu—are identified by the keyword IBM-
3270. All 6530 class devices are identified by the keyword T16-6530.

IBM 3270 devices use Start Field Extended (SFE) orders to support Kanji characters and
Start Field (SF) orders to support Katakana characters. Fujitsu 3270 devices use Start
Field (SF) orders for both Kanji and Katakana character sets.

OBJECT-COMPUTER. comment-word,

[TERMINAL IS terminal-type [,]]

[CHARACTER-SET IS character-set-type] .
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-4

Processing Double-Byte Character Sets Environment Division
CHARACTER-SET IS Statement

The character-set-type provides support of national-use characters, that is, character sets
that are not USASCII. The Compaq NonStop™ Pathway/iTS SCREEN COBOL
Reference Manual lists the available character sets. To specify a double-byte character
set, you use the keyword KANJI-KATAKANA:

The KANJI-KATAKANA keyword indicates that the program source file can contain
double-byte characters in data fields or literals. It instructs the compiler to allow the
PIC N PICTURE clause described later in this section.

The following rules govern the use of the KANJI-KATAKANA keyword:

• The PIC N data type is supported only for program units that specify
CHARACTER-SET IS KANJI-KATAKANA.

• Program units that do not use double-byte characters need not specify
CHARACTER-SET IS KANJI-KATAKANA even if 1-byte Katakana characters
are used.

• If a program unit specifies CHARACTER-SET IS KANJI-KATAKANA, both 1-
byte and 2-byte Katakana character sets are supported; you can use whichever
Katakana character set the device supports.

Depending on the terminal, support for 1-byte Katakana characters, 2-byte Katakana
characters, and alphabetic characters varies:

• Applications that use only 1-byte alphabetic characters can run on any device for
which the CHARACTER-SET IS KANJI-KATAKANA clause is valid.

• Applications that use 1-byte alphabetic characters as well as 1-byte Katakana
characters can run only on 6530 Katakana terminals, on 6530 Kanji terminals, or on
IBM 3270 terminals configured to support EBCDIC-Katakana.

• On 6530 Kanji terminals, both 1-byte and 2-byte Katakana character sets, as well as
uppercase and lowercase alphabetic characters, are supported.

• IBM 3270 terminals support uppercase alphabetic characters with either lowercase
alphabetic characters or 1-byte Katakana characters.

• On IBM 3270 terminals configured to use both lowercase and uppercase
alphabetic characters, a program unit cannot use 1-byte Katakana characters.

• For IBM 3270 terminals configured to use 1-byte Katakana characters, the data
stream conversion function of the TCP upshifts lowercase alphabetic characters
in the outbound data stream. Such terminals can run applications with both
lowercase and uppercase alphabetic characters as well as 1-byte Katakana
characters. Inbound data from these devices does not contain lowercase
alphabetic characters.

[CHARACTER-SET IS KANJI-KATAKANA]

Note. The SCREEN COBOL compiler does not allow the use of double-byte characters as
program names (for instance, paragraph names or variable names).
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-5

Processing Double-Byte Character Sets Data Division
Data Division

The Data Division describes the data that a SCREEN COBOL program creates, accepts
as input, manipulates, or produces as input. As explained in the Compaq NonStop™
Pathway/iTS SCREEN COBOL Reference Manual, the Data Division has four sections.

In developing Pathway applications for double-byte character sets, you define specific
attributes in the Working-Storage Section, the Linkage Section, and the Screen Section
of the Data Division. There is no support for double-byte character sets in the Message
Section. Special guidelines for writing the Screen Section of applications that use
double-byte data are discussed in “Screen Section Considerations” later in this section.

PICTURE Clause

The PICTURE clause of the Working-Storage Section, the Linkage Section, and the
Screen Section of the Data Division supports the PIC N data type for double-byte
character sets. The Message Section does not support PIC N.

The PICTURE clause is as follows:

As well as the other character strings described in the Compaq NonStop™ Pathway/iTS
SCREEN COBOL Reference Manual, you can define the character-string N to represent
double-byte characters.

Working-Storage Section

The PICTURE clause of the Working-Storage Section defines the characteristics of an
elementary item. In developing applications that use PIC N, consider the following:

• PIC N is valid only in program units that specify the KANJI-KATAKANA keyword
in the CHARACTER SET clause of the OBJECT-COMPUTER paragraph of the
Environment Division.

• The length of a double-byte-only data item can be 16,000 characters for a Working-
Storage Section entry. Each double-byte character occupies two bytes per data item
in memory, for a maximum of 32,000 bytes.

• SCREEN COBOL supports the character-string N only in PICTURE clauses that are
not mixed with other character-string symbols. In other words, any data field that
uses the N character-string symbol can have only contiguous Ns as a character-
string symbol in the corresponding PICTURE clause. Only the following N
PICTURE clauses are allowed:

PIC N
PIC N ... N (maximum of 30 contiguous Ns)
PIC N(n) (where n is 1 to 16,000)

{ PIC } [IS] character-string

{ PICTURE }
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-6

Processing Double-Byte Character Sets Data Division
Because variables defined with PIC X can contain mixed data—alphanumeric,
numeric, and double-byte characters—you can combine double-byte characters with
other data types in the Working-Storage Section by defining the entire data item
with PIC X.

• If a VALUE clause is declared for a PIC N Working-Storage Section field, the value
can consist only of characters from the Shift-JIS character set enclosed in quotation
marks ("").

• You can use the THRU/THROUGH clause with 88-level data items associated with
double-byte character set literals. Byte-by-byte comparisons of all items in the
THRU/THROUGH clause are performed.

Linkage Section

The Linkage Section associates the data items defined in the section with the data items
defined in the Working-Storage Section of the calling program. In developing
applications that use PIC N, consider the following:

• Data descriptions defined in the Linkage Section must have the same PIC clause
specifications and use as the corresponding items in the Working-Storage Section.

• The length of a double-byte-only data item can be 16,000 characters for a Linkage
Section entry. Each double-byte character occupies two bytes per data item in
memory, for a maximum of 32,000 bytes.

• SCREEN COBOL supports the character-string N only in PICTURE clauses that are
not mixed with other character-string symbols. In other words, any data field that
uses the N character-string symbol can have only contiguous Ns as a character-
string symbol in the corresponding PICTURE clause. Only the following N
PICTURE clauses are allowed:

PIC N
PIC N ... N (maximum of 30 contiguous Ns)
PIC N(n) (where n is 1 to 16,000)

Because variables defined with PIC X can contain mixed data—alphanumeric,
numeric, and double-byte characters—you can combine double-byte characters with
other data types in the Linkage Section by defining the entire data item with PIC X.

Screen Section

The PICTURE clause of the Screen Section defines the format in which the data appears
on the terminal screen. In developing applications that use PIC N, consider the
following:

• PIC N is valid only in SCREEN COBOL program units that specify the KANJI-
KATAKANA keyword in the CHARACTER SET clause of the OBJECT-
COMPUTER paragraph of the Environment Division.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-7

Processing Double-Byte Character Sets Data Division
• Data items declared as PIC N in the Screen Section must declare the PIC N attribute
before all other attributes:

SCREEN SECTION.
 :
05 FIELD-10 AT 10, 20 PIC N
 MUST BE
 FILL
 USING WS-FIELD-10.

• The length of a double-byte-only data item can be 128 double-byte characters for a
Screen Section entry. Each double-byte character occupies two bytes per data item
in memory, for a maximum of 256 bytes.

• Unlike the Working-Storage Section and the Linkage Section, the Screen Section
allows data items with mixed character-string symbols. A data field that uses the
double-byte character-string symbol, N, can be combined with data types X, A, 9, 0,
and B.

REDEFINES Clause

In addition to the general rules that the Compaq NonStop™ Pathway/iTS SCREEN
COBOL Reference Manual outlines for the REDEFINES clause, there are special
considerations for using it when you develop a Pathway application for double-byte
character sets.

Working-Storage Section

The REDEFINES clause in the Working-Storage Section of the Data Division allows
the same computer storage area to be described in more than one way. The
REDEFINES clause specifies that the storage area being defined is an alternate
interpretation of a previously defined storage area:

If you try to move a numeric field, a numeric edited field, a numeric noninteger, or a
numeric literal to a PIC N data item, you get a syntax error. By redefining the double-
byte-only PIC N field as an alphanumeric PIC X data item, you can make the move. For
example:

WORKING-STORAGE SECTION.
 :
01 WS-KANJI-ONLY-FLD PIC N(10).
01 WS-KANJI-TO-PICX-REDEF REDEFINES WS-KANJI-ONLY-FLD PIC X(20).

Only Screen Section data items may be defined as alphanumeric edited.

REDEFINES data-name-2
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-8

Processing Double-Byte Character Sets Data Division
Screen Section

In the Screen Section of the Data Division, the REDEFINES clause allows the same
screen field to be described in more than one way. The REDEFINES clause specifies
that the screen field being defined is an alternate interpretation of a previously defined
field:

IBM 3270 terminals have a limitation that affects the use of Screen Section
redefinitions. PIC N fields on IBM devices allow only double-byte character set data;
no single-byte data—including shift-out/shift-in characters—is allowed.

When you are redefining data items for Pathway applications that run on IBM 3270
devices, you must remember the following:

• A PIC N field implies that no single-byte characters are to be found in the data
stream.

• A PIC X field is a mixed field. It can contain double-byte and single-byte
characters. Double-byte character set substrings contained within a mixed field
must be bracketed by SO/SI characters.

The data type of the field used in the operation determines the translation to be applied
to the field and also the way the field is defined on the terminal. Translation is
automatically done by the TCP, based on the field and the terminal. The TCP thus adds
or strips shift-out/shift-in characters as needed.

Translation errors can occur if you redefine PIC N data items and then perform a
DISPLAY or ACCEPT of the item by the name specified in the REDEFINES clause.
On output to the terminal, this confusion can generate a terminal error by causing the
TCP to insert SO/SI characters in a field initially defined as PIC N through a DISPLAY
BASE operation. On input, DBCS substrings can appear with SO/SI framing characters
in mixed data items, causing translation errors. A translation error is considered an
editing error.

For instance, a PIC X field redefined as a PIC N results in a display error on the terminal
because the PIC X clause creates a screen field that requires SO/SI insertion for display
of double-byte characters, but the PIC N field used in subsequent DISPLAY writes
double-byte data to the terminal, which does not contain SO/SI characters.

An ACCEPT of the PIC N redefinition causes a translation error because the terminal
transmits double-byte character set data containing SO/SI characters, but the PIC N
definition of the field implies that no single-byte data or SO/SI characters are in the data
stream. Therefore, the translation fails and the TCP reports an editing error to the
operator.

The following subsection, Screen Section Considerations, discusses the need for SO/SI
characters more fully.

REDEFINES field-name-2
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-9

Processing Double-Byte Character Sets Data Division
Screen Section Considerations

When you develop Pathway applications for double-byte character sets, you must
consider the following when you write the Screen Section of the Data Division of your
SCREEN COBOL program unit.

Permissible Character-String Symbols

In the Screen Section the character-string symbol N can be mixed with only the X, A, 9,
0, and B character-string symbols. Some examples are:

 SCREEN SECTION.
 :
 03 SS-KANJI-ONLY PIC N at ...
 :
 03 SS-KANJI-CONTIG PIC N....N at ...
 * (maximum of 30 Ns)
 :
 03 SS-KANJI-IMPLIED PIC N(n) at ...
 * (where n is 1 to 256)
 :
 03 SS-KANJI-MIXED-ALPHA PIC NXN at ...
 :
 05 SS-KANJI-MIXED PIC NXNXAAXN at ...
 * (mixed)
 :
 03 SS-KANJI-MIXED-EDITED PIC NXN0NBXN at ...
 * (mixed edited)
 :
 03 SS-PICX-DATA PIC X(70) at ...
 * (Any data can be entered here.
 * It can consist of a
 * combination of single and
 * double-byte data.)

Screen Field Limits

You need to be aware of special limitations when you design applications for IBM 3270
devices that declare screen fields containing double-byte or mixed (single-byte
alphanumeric and double-byte) data and for Fujitsu terminals that include screen fields
that wrap from one line to the next. Of course, no screen-field data item can be greater
than 256 bytes. When one is too long, it is truncated, regardless of the device.

In creating screen fields for mixed items for IBM and Fujitsu equipment, the translation
library inserts shift-out/shift-in characters into the data stream to bracket double-byte
character substrings. On IBM equipment the shift characters occupy display space. On
Fujitsu equipment the shift characters do not take display space and, therefore, do not
affect the data displayed. Because the JET 6530 terminal and the 6530 terminal
emulator use double-byte characters in Shift-JIS format, it is not necessary to insert shift
characters into the data stream to be transmitted when using those terminals.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-10

Processing Double-Byte Character Sets Data Division
The TCP does the following when generating fields with possible double-byte characters
that are to be written to a 3270 device:

1. Loads the data into the work buffer

This operation includes all editing operations. It also ensures that the number of
characters placed into the buffer does not exceed the size of the screen field.

2. Calls the appropriate translation routine

Operations performed by the translation routines include the insertion of shift-
out/shift-in characters. As a result of this insertion, the number of characters in the
work buffer that must be sent to the device can increase. If the increase because of
the insertion of shift characters exceeds the original buffer field size, the following
occurs:

• For an IBM device:

The field is truncated to fit into the screen field. Because shift characters
occupy display space, some user data might not appear on the screen. An error
message is logged once for each program unit that truncates data. The
translation routines make sure that no partial double-byte characters are included
in a truncated string and also that the last double-byte string is terminated by a
shift-out character.

• For Fujitsu devices:

The expanded field is sent to the device if no double-byte characters start in the
last column of the screen. Because the load of the work buffer results in the
actual number of data characters being less than or equal to the screen field,
overflow does not occur. If a double-byte character starts in the last column of
the screen, a space is inserted in the last column and the character that would
have started at that position is started in the first column of the next line. The
addition of the extra space can cause data sent to the Fujitsu to be truncated by
one or two bytes.

• For JET 6530 terminals and any PCT 6530 terminal emulator released by
Compaq Japan:

These devices do not correctly handle double-byte characters that start in
column 80. They behave in the same way that a Fujitsu 3270 does when a
screen field wraps from one line to the next.

As a programmer, you must be aware that an ACCEPT of a field truncated by a previous
DISPLAY operation can result in the accepted data being different from what you
intended.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-11

Processing Double-Byte Character Sets Data Division
Additional Clause Considerations

The following conventions are checked by the compiler for these screen-field
characteristics clauses. The Compaq NonStop™ Pathway/iTS SCREEN COBOL
Reference Manual discusses each of these clauses fully. A double-byte-only field is a
field that is declared by using only Ns in the PICTURE clause character string.

• The ADVISORY clause cannot be associated with a field that allows only double-
byte data.

• When a FILL clause is used with a field that allows only double-byte data, the fill
character must be a double-byte character.

When a FILL clause is used with a PIC X or PIC A field, the fill literal must be a
valid ASCII (single-byte) character.

• When the LENGTH clause is used with double-byte fields, the values assigned to
the clause indicate the number of characters of the given type that are required for
operator input. For example, the clause:

LENGTH MUST BE 6

means one of the following:

• Six single-byte displayable ASCII characters must be entered for a PIC X(10)
field.

• Six single-byte alphabetic ASCII characters must be entered for a PIC A(50)
field.

• Six double-byte characters (having a total of 12 bytes) must be entered for a PIC
N(30) screen field.

If you use a mixed field, the LENGTH MUST BE clause refers to the absolute
number of bytes that the operator must enter. For example, PIC A(10)N(5)X(5)
with a LENGTH MUST BE 6 clause means that the operator must enter six
alphabetic characters. A LENGTH MUST BE 11 clause is not possible here
because the operator would have to enter ten alphabetic characters for the first ten
bytes—and half of a double-byte character for the eleventh byte.

The THRU or THROUGH variant of the functions in the same way.

The LENGTH value for a screen field must be 256 or less.

• The THRU or THROUGH variant of the MUST BE clause is supported for fields
that allow only double-byte data in the same way as it is in the Working-Storage
Section.

You can use the THRU/THROUGH with 88-level data items associated with
double-byte character set literals. Byte-by-byte comparisons of all items in the
THRU/THROUGH are performed.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-12

Processing Double-Byte Character Sets Procedure Division
• The UPSHIFT clause is a valid screen-field attribute for PIC N fields, but it is useful
only on mixed fields—for example, PIC N(10)A(10).

The translation routines upshift lowercase characters on output to IBM 3270 devices
configured to use 1-byte Katakana characters. Upshifting of lowercase characters is
not done on input for these devices because they cannot generate lowercase
characters.

Upshifting on output is not done for 3270-type devices configured to use both
lowercase and uppercase 1-byte alphabetic characters. These devices cannot display
or generate 1-byte Katakana characters.

• When the VALUE clause is used for a field that allows only double-byte data, the
literal string provided must follow the same rules as those defined for a VALUE
clause associated with a Working-Storage PIC N field.

• Programs that use a double-byte character set, identified by the CHARACTER-SET
IS KANJI-KATAKANA clause, are restricted in their ability to define input control-
character clauses. They can use only single-byte characters from the ASCII
character set.

Procedure Division
The Procedure Division includes all of the processing steps for the program. As the
Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual explains, these
steps consist of SCREEN COBOL statements and sentences, grouped into paragraphs,
procedures, and sections.

IF Statement

SCREEN COBOL program units use an IF statement to evaluate a condition and then
transfer control depending on whether the value of a condition is true or false. In
addition to the general conventions for IF statements described in the Compaq
NonStop™ Pathway/iTS SCREEN COBOL Reference Manual, when developing
Pathway applications for double-byte character sets you must consider the following:

• Comparisons (using GREATER THAN, LESS THAN, EQUAL, and so on) of a
PIC N data item or literal with a numeric data item (PIC 9) are not allowed.

• All other comparisons are allowed and are done on a byte-by-byte basis.

If a comparison of a numeric data item and a double-byte character set data item is
attempted, the compiler issues an error message at the time of compiling.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-13

Processing Double-Byte Character Sets Procedure Division
IF...DOUBLEBYTE Statement

The IF...DOUBLEBYTE statement tests for the existence of double-byte characters in
an alphanumeric data item:

Aligned double spaces are seen as %H2020 and are valid double-byte characters. A
single space or a nonaligned space is not a double-byte character.

MOVE Statements

SCREEN COBOL program units use MOVE and MOVE CORRESPONDING
statements to transfer data from one data item to one or more other data items. In
developing Pathway applications for double-byte character sets, you need to consider
the conventions and restrictions for MOVE statements defined in the Compaq
NonStop™ Pathway/iTS SCREEN COBOL Reference Manual, especially the following:

• Numeric integers, numeric nonintegers, and numeric edited data items must not be
moved to a data item that allows only double-byte (PIC N) data.

• A data item or literal that allows only double-byte (PIC N) data must not be moved
to a numeric integer, a numeric noninteger, or a numeric edited data item.

• Violation of either of these rules causes the SCREEN COBOL compiler to issue a
compilation error 453:

ILLEGAL SENDING OR RECEIVING ITEM IN MOVE STATEMENT

• Moving any of the following figurative constants to a PIC N field is flagged as a
compiler error:

HIGH-VALUE
HIGH-VALUES
ZERO
ZEROS
ZEROES
LOW-VALUE
LOW-VALUES
QUOTE
QUOTES

Moving the figurative constants SPACE or SPACES to a PIC N field is allowed.

See the Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual for a
list of the SCREEN COBOL compiler error messages.

• Only selected devices can be used to create SCREEN COBOL source images that
contain double-byte characters. These devices must be capable of transmitting
double-byte characters to the host in Shift-JIS format. Contact the Compaq Tokyo
office for a list of such devices.

Table 8-1 summarizes the restrictions that apply to MOVE statements.

IF data-name [IS] [NOT] DOUBLEBYTE
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-14

Processing Double-Byte Character Sets Example of Working-Storage Section and Screen
Section

Example of Working-Storage Section and Screen
Section

The following example shows a sample Working-Storage Section and its corresponding
Screen Section.

For this Working-Storage Section,

WORKING-STORAGE SECTION.
 :
01 WS-KANJI-ONLY-FLD PIC N(10).
01 WS-KANJI-TO-PICX-REDEF REDEFINES WS-KANJI-ONLY-FLD PIC X(20).
01 WS-KANJI-ONLY-FLD2 PIC N(10).
01 WS-KANJI-ONLY-FLD3 PIC N(10).
01 WS-KANJI-ONLY-FLD4 PIC N(10).
01 WS-ALPHA-NUMERIC-FLD PIC X(20).
01 WS-ALPHA-NUMERIC-FLD2 PIC X(20).
01 WS-ALPHA-NUMERIC-FLD3 PIC X(20).

Table 8-1. Restrictions on MOVE Statements

Category of Receiving Data Item

Category of Sending
Data Item A

lp
ha

be
ti

c

A
lp

ha
nu

m
er

ic

A
lp

ha
nu

m
er

ic

E
di

te
d

N
um

er
ic

 I
nt

eg
er

,
N

um
er

ic
 N

on
in

te
ge

r,
N

um
er

ic
 E

di
te

d

D
ou

bl
e-

B
yt

e
C

ha
ra

ct
er

Alphabetic Yes Yes No No Yes*

Alphanumeric Yes Yes No Yes Yes*

Alphanumeric Edited Yes No No No Yes*

Numeric Integer No No No Yes No

Numeric Noninteger No No No Yes No

Numeric Edited No No No No No

Double-Byte Character No Yes Yes No Yes

* Such MOVE operations move string data byte by byte; no editing or conversion is done.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-15

Processing Double-Byte Character Sets Example of Working-Storage Section and Screen
Section
the Screen Section would be as follows:

SCREEN SECTION.

* Data translation occurs, if necessary, for each field
* declared in these screen examples. Data translation
* consists of converting double-byte characters in
* external form to internal form (Shift JIS) on
* input or from internal form to device-specific
* external form on output. Such translation is normally
* required only for the 3270-class devices produced by IBM
* and Fujitsu. Data entered from the Japanese version of
* PCT, running on IBM or Fujitsu personal computers, does
* not require input or output translation because the

* emulators transmit double-byte characters in Shift-JIS
* format.
 .
 :
05 SS-ALPHA-NUMERIC PIC X(20) at
 USING WS-KANJI-TO-PICX-REDEF.

* No editing. This is effectively a PIC X to PIC X move.
* The programmer is responsible for data integrity.

05 SS-ALPHA-NUMERIC-EDITED1 PIC AANXBAAN0NXNXNX at

* This PIC field uses 20 bytes.

 USING WS-ALPHA-NUMERIC-FLD.

* Outbound editing performed by the TCP consists of simple
* insertion only, for example, the B here. Inbound
* editing performed by the TCP is done according to the
* screen-item characters in the PIC clause. For example,
* the TCP expects an alphabetic character, followed by a
* numeric, followed by a double-byte character set
* character,and so on.

05 SS-ALPHA-NUMERIC-EDITED2 PIC AXNXBAXN0NXNXNX at
 USING WS-KANJI-ONLY-FLD2.

* Outbound editing performed by the TCP consists of simple
* insertion only, for example, the B here. Inbound
* editing is performed by the TCP according to the screen-
* item PICTURE clause. The Working-Storage field cannot
* contain data that has only double-byte characters. The
* programmer is responsible for data integrity.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-16

Processing Double-Byte Character Sets Example of Working-Storage Section and Screen
Section
05 SS-KANJI-ONLY3 PIC N(10) at
 USING WS-KANJI-ONLY-FLD3.

* On outbound editing, the TCP ensures that the data
* displayed contains only DBCS characters. The program is
* aborted if this is not the case. On inbound editing,
* the TCP requires the operator to enter DBCS characters.

05 SS-ALPHA-NUMERIC-FLD3 PIC X(20) at
 USING WS-KANJI-ONLY-FLD4.

* No outbound or inbound editing is done.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-17

Processing Double-Byte Character Sets Example of Working-Storage Section and Screen
Section
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-18

9
TCP SETMODE Functions and
CONTROL Operations

As a Pathway application programmer, you might need to know the Guardian operating
environment SETMODE functions and CONTROL operations used by the TCP. This
section describes the TCP’s use of SETMODE functions and CONTROL operations.

The Guardian Procedure Calls Reference Manual provides full descriptions of all
SETMODE functions and CONTROL operations. For programming information about
the SETMODE and CONTROL file-system procedures, refer to the Guardian
Programmer's Guide, the Enscribe Programmer's Guide, and the relevant data
communications manuals.

Table 9-1 describes SETMODE functions and CONTROL operations that the TCP
executes on terminal files when performing the indicated actions.

SETMODE Functions
SETMODE is used to set device-dependent functions. When you design an intelligent
device support (IDS) requester to communicate with a front-end process (FEP), you are
concerned with the SETMODE functions described in Table 9-2.

Table 9-1. TCP SETMODE and CONTROL Activities

TCP Activity Guardian SETMODE Function Guardian CONTROL Operation

8 11 20 54 144 150 1 11 12 22 26

START/RUN
TERM (Open)2

x x
(A)

x
(B)

x x
(C)

Program
Termination
(Close)3

x x
(A)

x x x
(D)

DISPLAY1 x x x
(A)

x x
(A)

ACCEPT1 x x
(A)

SEND
MESSAGE1

x x x x
(D)

x
(E)

PRINT
SCREEN1

x x x
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-1

TCP SETMODE Functions and CONTROL
Operations

SETMODE Functions
Table 9-2. TCP SETMODE Functions

Operation Description

8 Set system transfer mode (default is configured).

param1.15 = 0 conversational mode
 = 1 page mode

param2 sets the number of retries for I/O operations.

NOTE: param2 is used with 6530 terminals only.

11 Set break ownership

param1 = BREAK disabled (default setting)
 = cpu, pin BREAK enabled

Terminal access mode after BREAK is pressed:

param2 = 0 normal mode (any type file access permitted)
 = 1 BREAK mode (only BREAK-type file access permitted)

20 Set system echo mode (default is configured).

param1.15 = 0 system does not echo characters as read
 = 1 system echoes characters as read

param2 is not used with function 20.

54 Return control unit and device assigned to subdevice.

param1 is not used with function 54.
param2 is not used with function 54.

last-params[0].0:7 = 0
 .8:15 = subdevice number known by AM3270
 [1].0:7 = standard 3270 control-unit address
 .8:15 = standard 3270 device address

144 Set LU character set and double-byte character code.

param1 must be omitted for function 144.
param2 must be omitted for function 144.

last-params[0].0 = 1 : EBCDIC ASCII conversion is done by ACCESS
 process
 .1:7 = IBM device type
 1 : IBM-3277
 2 : not 3277 or 3276
 3 : IBM-3276
 .8:15 = value of LU attribute ALLOWEDMIX
 [1].0:7 = LU characterset
 0 : ASCII (USASCII)
 9 : EBCDIC (IBM-EBCDIC)
 14 : KATAKANA EBCDIC
 [1].8:15 = LU DBCS
 0 : No DBCS
 2 : IBMKANJI
 3 : IBMMIXED
 5 : JEFKANJI
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-2

TCP SETMODE Functions and CONTROL
Operations

CONTROL Operations
CONTROL Operations
CONTROL is used to perform device-dependent I/O operations. When you design an
intelligent device support (IDS) requester to communicate with a front-end process
(FEP), you are concerned with the CONTROL operations described in Table 9-3.
CONTROL 26 is discussed in detail later in this section.

Pathway/iTS and CONTROL 26
Compaq NonStop™ Pathway/iTS intelligent device support (IDS) SCREEN COBOL
requesters can interact with front-end processes outside of the PATHMON environment
that control intelligent devices such as automated teller machines, airline reservation
terminals, and personal computers. One type of front-end process, for example, could
be a SNAX/HLS application process.

The IDS requester sends messages to the FEP through SEND MESSAGE statements
and receives responses by the associated REPLY clauses.

As it interprets SEND MESSAGE statements and the associated REPLY clauses, the
TCP initiates the necessary write and read operations by issuing file system procedure
calls such as WRITE, READ, and WRITEREAD.

When a SEND MESSAGE statement includes a TIMEOUT or ESCAPE ON
UNSOLICITED MESSAGE clause, the TCP might have to terminate the underlying
read operation prematurely if either of those events occurs.

Ordinarily the TCP does this by issuing a CANCEL file system procedure call.
CANCEL calls are, however, ineffective for determining loss of data between the TCP
and the FEP. If the TCP uses a CANCEL call to terminate an outstanding read request,
the FEP cannot detect that the read no longer exists. When the FEP eventually responds
to the canceled read, it is likely that data will be lost and the integrity of the context for
subsequent operations compromised.

CONTROL 26 provides a better alternative.

Table 9-3. TCP CONTROL Operations

Operation Description Parameter

1 Control forms for conversational mode
(subtypes 0,2,3)

0 = form feed (send %014)
1-15 = vertical tab (send %013)
16-79 = skip param - 16 lines

11 Wait for modem connect none

12 Disconnect modem (hang up) none

22 Cancel an AM3270 I/0 operation none

26 Request immediate completion of all
outstanding I/O requests without loss of
data by the recipient of the CONTROL
26 request

none
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-3

TCP SETMODE Functions and CONTROL
Operations

CONTROL 26 Defined
CONTROL 26 Defined

CONTROL 26 is a CONTROL file system procedure call that allows nonprivileged
processes to cooperate with one another in bringing about the orderly termination of
outstanding read operations.

When an IDS requester is communicating with an FEP that supports the use of
CONTROL 26, the two processes use CONTROL 26 calls and the appropriate responses
jointly to terminate execution of the underlying read operation with no loss of data or
context. As used within the Pathway environment, the general format of a CONTROL
26 procedure call is as follows:

fnum

identifies the file to the FEP.

parameter

= 1 triggers an initialization sequence.

= 300 specifies that a CONTROL 26 request is to be issued to the FEP and that both
the original read and the CONTROL 26 must be completed within five minutes (300
seconds).

tag

is an optional tag field.

In the rest of this section, the phrase CONTROL 26,1 refers to a CONTROL 26 call
whose parameter field contains the value 1, while the phrase CONTROL 26,300
refers to a CONTROL 26 call whose parameter field contains the value 300.

How CONTROL 26 Works

Essentially, the TCP uses CONTROL 26 as follows. When a timeout or escape on
unsolicited message occurs, the TCP issues a CONTROL 26 call to the FEP that is
responsible for completing the read. That process then has up to five minutes (300
seconds) to do any of the following:

• Complete the outstanding read by sending the requested data (return code = 0)

• Complete the outstanding read by specifying that it has no data to send (return code
= 187)

• Complete the outstanding read by specifying that something wrong has happened
that compromises the integrity of subsequent data (return code = 188)

CONTROL (fnum
 , 26
 , parameter
 , tag) ;
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-4

TCP SETMODE Functions and CONTROL
Operations

CONTROL 26 Initialization
• Complete the outstanding read by specifying that an associated input operation
within the FEP is still in progress and that the resultant data can be obtained by a
subsequent read operation (return code = 189)

The FEP must complete both the original read request and the CONTROL 26 call within
the allotted five minutes or the TERMINATION-STATUS register is set to 14 and
control passes to the SEND MESSAGE statement’s ON ERROR clause. If there is no
ON ERROR clause, the TCP suspends the requester and logs error 3174 to the devices
specified by the PATHCOM commands LOG1 and LOG2.

CONTROL 26 Initialization

As soon as the TCP opens the front-end process, the two processes engage in an
initialization sequence in which the TCP determines whether the FEP detects the use of
CONTROL 26.

That sequence is as follows:

1. The TCP issues a CONTROL 26,1 call.

2. The FEP sends back a reply code of 70 to indicate that it supports CONTROL 26.

Under normal circumstances, the TCP opens front-end processes with a nowait depth of
1 (allowing only a single I/O request to be outstanding at any given time).

To be able to use CONTROL 26 calls, however, the TCP must open the FEP with a
nowait depth of 2 (allowing both the original read request and a CONTROL 26 request
to be outstanding concurrently).

The IOPROTOCOL parameter of the PATHCOM SET TERM command allows you to
tell the TCP that the FEP supports the use of CONTROL 26. The TCP still performs the
initialization sequence but does it differently depending upon the value of
IOPROTOCOL.

IOPROTOCOL = 0

IOPROTOCOL = 0, which is the default value, declares that you do not know if the FEP
supports CONTROL 26.

In this case, the TCP opens the FEP with a nowait depth of 1 and then issues the
CONTROL 26,1 call.

If the FEP responds with 70, the TCP closes the file, reopens it with a nowait depth of 2,
and subsequently uses CONTROL 26 calls to terminate read requests prematurely.

If the FEP responds with any code other than 70, the TCP presumes that it does not
understand the use of CONTROL 26; the TCP subsequently uses CANCEL calls to
terminate read requests prematurely.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-5

TCP SETMODE Functions and CONTROL
Operations

Subsequent CONTROL 26 Calls
IOPROTOCOL = 1

IOPROTOCOL = 1 declares that the FEP does support CONTROL 26.

In this case, the TCP opens the FEP with a nowait depth of 2 and then issues the
CONTROL 26,1 call.

If the FEP responds with 70, the TCP subsequently uses CONTROL 26 calls to
terminate read requests prematurely.

If the FEP responds with any code other than 70, the TCP suspends the IDS requester
and records the event with an error code of 3054 in the PATHMON log file.

By specifying IOPROTOCOL = 1 when you are certain that CONTROL 26 will be
used, you eliminate some of the overhead inherent to the initialization sequence.
Overhead could be substantial if you are configuring and starting many requesters.

A requester written to handle CONTROL 26 does not operate properly if the FEP does
not support CONTROL 26.

Subsequent CONTROL 26 Calls
After the IDS requester and FEP have agreed to use CONTROL 26, the FEP should
always respond to any subsequent CONTROL 26 calls with a return code of 0.

The other supported return codes (187, 188, and 189) should be used only with the
underlying read operation—never with a CONTROL 26 call.

When the TCP issues a CONTROL 26 call, the FEP must, if it is able to do so, respond
in either of the following ways:

• By completing the read with valid data and a return code of 0 and by completing the
CONTROL 26 call with a return code of 0

• By completing the read with a return code of 187, 188, or 189 and by completing the
CONTROL 26 call with a return code of 0

Testing TERMINATION Codes

As a SCREEN COBOL programmer designing and coding an IDS requester, you do
nothing to initiate the use of CONTROL 26. The TCP determines whether to use
CONTROL 26, based on whether the external FEP supports the use of CONTROL 26
and on the SET TERM IOPROTOCOL specified at configuration.

What you must do, however, is test for certain TERMINATION-STATUS and
TERMINATION-SUBSTATUS codes in your ON ERROR and ESCAPE ON
UNSOLICITED MESSAGE paragraphs that can be generated by the use of
CONTROL 26.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-6

TCP SETMODE Functions and CONTROL
Operations

Testing TERMINATION Codes
Unsolicited Message Completions

When a CONTROL 26 call is issued as the result of an escape on unsolicited message,
th TERMINATION-STATUS register contains an index pointing to the location of
ESCAPE ON UNSOLICITED MESSAGE clause in the SEND MESSAGE statement.
Table 9-4 summarizes the various TERMINATION-SUBSTATUS values that should
then be tested for. The action in the Meaning column is only suggested; the action taken
depemds on the FEP itself.

Timeout and Error Completions

When a CONTROL 26 call is issued as the result of a timeout, control passes to the ON
ERROR code associated with the SEND MESSAGE statement. Table 9-5 summarizes
the various TERMINATION-SUBSTATUS values that your ON ERROR clauses
should test for.

Table 9-4. ESCAPE ON UNSOLICITED MESSAGE Completions

Terminatio
nStatus

Terminatio
nSubstatus Meaning

* 187 The FEP assisted in terminating the outstanding read. No
data was returned or lost by the FEP and the context is intact.

Process the unsolicited message and start another normal
SEND MESSAGE statement.

* 188 The FEP assisted in terminating the outstanding read. The
FEP might have lost some data, or the integrity of the context
might have been compromised.

After processing the unsolicited message, terminate the
session with the FEP and try to start a new one.

* 189 The FEP assisted in terminating the outstanding read;
however, the operation is still in progress within the domain
of the FEP. The data will be queued and you can retrieve it at
a later time with a subsequent read operation. No data was
lost by the FEP and the context is intact.

Process the unsolicited message and then issue a SEND
MESSAGE statement that causes only a read operation to be
posted. This allows for the retrieval of the outstanding read
when it completes.

* Index of the user's ESCAPE ON UNSOLICITED MESSAGE clause in the SEND MESSAGE statement.

Note: When the TCP issues a CONTROL 26 and the FEP replies to the original I/O request with data and error 0
instead of with data and one of the above errors, the ESCAPE ON UNSOLICTED clause is not processed
even though a UMP message arrived. Instead, the SEND MESSAGE statement completes normally, using
the returned data, and the UMP message is queued for processing at a later time. To detect the arrival of
an unsolicited message, poll the PW-UNSOLICITED-MESSAGE-QUEUED register for a YES value.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-7

TCP SETMODE Functions and CONTROL
Operations

Testing TERMINATION Codes

Table 9-5. Timeout and Error Completions

Terminatio
nStatus

Terminatio
nSubstatus Meaning

1 40 A timeout occurred. The FEP assisted in terminating the
outstanding read. No data was lost by the FEP and the
context is intact.

Perform whatever timeout recovery action is appropriate for
your particular application.

1 188 A timeout occurred. The FEP assisted in terminating the
outstanding read. The FEP might have lost some data, or the
integrity of the context might have been compromised.

Terminate the session with the FEP and try to start a new one.

1 189 A timeout occurred. The FEP assisted in terminating the
outstanding read; however, the operation is still in progress
within the domain of the FEP. The data will be queued, and
you can retrieve it later with a subsequent read operation. No
data was lost by the FEP and the context is intact.

Issue a new read operation with another SEND MESSAGE
statement..

1 Any other
value

An I/O error occurred in conjunction with the original read
operation. TERMINATION-SUBSTATUS specifies the file
system error code returned with the read completion.

Perform whatever recovery action is appropriate for the
particular type of file system error.

13 Nonzero
value

A timeout or ESCAPE ON UNSOLICITED MESSAGE
occurred. An I/O error also occurred in conjunction with the
CONTROL 26 call. TERMINATION-SUBSTATUS
specifies the file system error code returned with the
CONTROL 26 completion.

Perform whatever recovery action is appropriate for the
particular type of file system error.

14 Not used A timeout or ESCAPE ON UNSOLICITED MESSAGE
occurred. The FEP did not, however, respond to both the
original read and the CONTROL 26 within the allotted five
minutes.

Perform whatever timeout recovery action is appropriate for
your particular application. Subsequent operation with the
FEP can result in errors.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-8

10 Handling Errors
This section discusses the following topics related to error handling in SCREEN
COBOL requesters:

• Terminal Errors

• Handling of SEND statement errors

The Pathway to TUXEDO translation server can also return error messages to
requesters. Information about these errors is given in the NonStop™ TUXEDO System
Pathway Translation Servers Manual.

Terminal Errors
During terminal startup, the TCP retries, aborts, or suspends a terminal depending on the
terminal error that had occured.

If an error occurs after the application is running on the terminal, the TCP invokes the
user recovery routines in the SCREEN COBOL program whenever possible. The USE
FOR SCREEN RECOVERY clause is invoked when there are terminal or
communications errors, processor failures, or terminal suspension. Typically, the
SCREEN COBOL program displays an advisory text message on the screen, and the
user must then take corrective action.

If no user error recovery is provided in the SCREEN COBOL program, then the TCP
takes its own action on terminal errors. The USE FOR TERMINAL-ERRORS clause is
invoked when there is an irrecoverable error due to a terminal error or communications
device error. This clause cannot be used for programs that communicate with intelligent
devices. If the USE FOR TERMINAL-ERRORS clause is present, suspension is
overridden (in most cases), so the USE FOR SCREEN RECOVERY clause would not
be invoked.

Error 140 Suspends the terminal immediately, unless user exception-
handling code is available in the the USE FOR TERMINAL-
ERRORS clause or in an ON ERROR clause within a CALL
statement, and invokes SCREEN COBOL exception-handling
code if available.

Error 191 Initiates a DISPLAY RECOVERY operation, and invokes any
code in the USE FOR SCREEN RECOVERY clause.

Errors 300 to 511 Suspends the program immediately, unless user exception code is
available in the USE FOR TERMINAL-ERRORS clause or in an
ON ERROR clause within a CALL statement, and invokes
SCREEN COBOL exception-handling code if available.

Other Errors If the retries do not succeed, then the TCP suspends the terminal,
unless user exception-handling code is available in the USE FOR
TERMINAL ERRORS clause or in an ON ERROR clause within
a CALL statement, and invokes SCREEN COBOL exception-
handling code, if available.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-1

Handling Errors SEND Statement Errors
SEND Statement Errors
This subsection suggests ways to handle the processing of SEND statement errors. You
can decide what is most appropriate to your particular application environment. For
additional information about SEND and SEND MESSAGE errors, refer to the Compaq
NonStop™ Pathway/iTS SCREEN COBOL Reference Manual.

Responding to SEND Errors

Tables 10-1 through 10-5 suggest how your requester ON ERROR code can respond to
error conditions arising from the execution of a SEND statement.

The specified numeric values represent the contents of the TERMINATION-STATUS
special register. The accompanying text indicates what the particular error code means.

For descriptions of what actions the system takes if you omit the ON ERROR clause,
refer to the Compaq NonStop™ Pathway/iTS SCREEN COBOL Reference Manual.

The codes in Table 10-1 reflect error conditions that could be transient; the problem
might go away spontaneously.

Because the error conditions might be recoverable, you can retry the failed SEND
statement, perhaps with a time delay, some finite number of times.

Before each retry, send a message to the terminal to let the operator know what is
happening (such as TRANSIENT ERROR, RETRYING).

If the SEND statement fails all of the allotted retries, the ON ERROR code should send
another message to the terminal telling the operator what is happening (such as
PERSISTENT ERROR, TERMINATING EXECUTION), log an error message to an
appropriate server, and then perform a STOP RUN statement.

Error 4 could be caused by the server’s allocating too little space for $RECEIVE
messages. To avoid this problem, the number of links specified in the server (for
example, in theCOBOL85 RECEIVE-TABLE OCCURS clause) should be greater than
the value specified in the SET SERVER MAXLINKS parameter in PATHCOM. The
default value for MAXLINKS is an unlimited number of links; therefore, to avoid this
problem, MAXLINKS must be set to a value.

Table 10-1. Requester SEND Errors for Transient Conditions

Numeric Value Meaning

1 Server class frozen

2,3 Resource unavailable

4 Link denied by PATHMON process or link rejected by server

12 I/O error

14 Maximum number of PATHMON processes has been reached

18 I/O error in attempt to communicate with the PATHMON process
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-2

Handling Errors Responding to SEND Errors
Other causes, such as a security violation, could also result in error 4.

Error 12 could be caused by a timeout error (termination substatus 40) when a server is
in debug mode. If this situation occurs, the operator should do the following:

Use the PATHCOM STATUS PATHMON command to find server classes in the
LOCKED state.

Identify the server program file for each locked server class.

Issue the TACL command STATUS *, PROG object-file-name to list all running
processes.

Stop these processes from TACL.

For more information about timeout errors for servers in debug mode, refer to the
NonStop™ TS/MP Pathsend and Server Programming Manual.

The codes in Table 10-1 reflect programming errors that are essentially nonrecoverable.

These errors typically occur only during application debugging. After the application
modules have been thoroughly tested, these codes do not normally occur in a production
environment.

Note that for error code 10 no data is available, even though a reply message is received.
If your application cannot anticipate all valid reply codes, use the REPLY CODE
OTHER syntax in the SEND statement to prevent error code 10.

Upon detecting any of these error conditions, your ON ERROR code should send a
message to the terminal telling the operator what is happening (such as FATAL
CONFIGURATION PROBLEM, TERMINATING EXECUTION), log an error record
to an appropriate server, and then perform a STOP RUN statement.

The codes in Table 10-1 reflect configuration errors that are essentially nonrecoverable.

Table 10-2. Requester SEND Errors for Nonrecoverable Programming Problems

Numeric Value Meaning

5 Server class undefined

6 Invalid server-class name

10 Undefined reply code

15 Undefined system name

16 Invalid system name

17 Invalid PATHMON process name
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-3

Handling Errors Responding to SEND Errors

These errors indicate that the SERVERPOOL (7) or MAXREPLY (8) parameter
supplied in the PATHCOM SET TCP command at configuration time is smaller than
that required by one of the message or reply definitions declared in the requester.

No message is sent and no reply data is available.

Upon detecting either of these error conditions, your ON ERROR code should send a
message to the terminal telling the operator what is happening (such as FATAL
CONFIGURATION ERROR, TERMINATING EXECUTION), log an error record to
an appropriate server, and then perform a STOP RUN statement.

The code in Table 10-1 indicates that the reply message received from the server was
either longer or shorter than the reply format defined within the requester.

If the received reply message is shorter than the working-storage structure defined for it,
the message is available in the target working-storage data structure. The actual length
of the received message is placed in the TERMINATION-SUBSTATUS special
register.

If the received reply message is longer than the working-storage structure defined for it,
the message is available in the target working-storage data structure; however, it is
truncated to the length of the working-storage structure. In this case, TERMINATION-
SUBSTATUS contains a value greater than the length of the working-storage structure.

You can design your program to use a value of 11 for the TERMINATION-STATUS
special register to process variable-length replies, as described in the section that follows
this table. If you design your program to reject variable length replies, your ON
ERROR code should send a message to the terminal telling the operator what is
happening (such as BAD MESSAGE LENGTH, TERMINATING EXECUTION), and
then log an error record to an appropriate server and perform a STOP RUN statement.

The code in Table 10-1 indicates that the requester program is operating in transaction
mode (that is, within the bounds of a BEGIN-TRANSACTION and END-
TRANSACTION statement pair), but the server to which it is attempting to send data is
not configured for Compaq Transaction Management Facility (TMF) operation
(TMF OFF was specified in the applicable PATHCOM SET SERVER command).

Table 10-3. Requester SEND Errors for Configuration Problems

Numeric Value Meaning

7 Message too large

8 Maximum reply too large

Table 10-4. Requester SEND Error for Invalid Reply Length

Numeric Value Meaning

11 Invalid reply length
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-4

Handling Errors Processing Variable-Length Server Replies

This error condition is essentially nonrecoverable. In this case, your ON ERROR code
should send a message to the terminal telling the operator what is happening (such as
SERVER NOT CONFIGURED FOR TMF, TERMINATING EXECUTION), log an
error record to an appropriate server, and then perform a STOP RUN statement.

Processing Variable-Length Server Replies

When your requester is designed to receive variable-length replies from a server, error
code 11 is a normal and common occurrence. In such a case, your ON ERROR code
must be designed to respond to it properly.

Assume that the requester sends a message to a server asking for the names of all
customers that have been added to the database during the past week. In this case, the
response from the server at any given time contains a greater or lesser number of names.

The requester's SEND statement can provide a reply data structure to accommodate a
reasonable maximum number of names. For example, if past performance shows that 10
to 12 new customers are typically added each week and that the best single week yielded
17 new customers, it is reasonable to use a reply data structure that can accommodate up
to 20 customer names.

The code in this case—where the data is shorter than the maximum allowed—looks like
the following. (If the data were longer than the maximum permitted, error 11 would
reflect a nonrecoverable programming error.)

 DATA DIVISION.

 01 PROCESSING-STATE PIC X(4), VALUE "GO ".

 01 NEW-NAME-REQUEST PIC 9(4) comp.

 01 NEW-NAME-REPLY.
 05 REPLY-CODE PIC 9(4) comp.
 05 FUNCTION-CODE PIC 9(4) comp.

* Function-code 1 signifies a new name query.

 05 NUMBER-OF-NAMES PIC 9(4) comp.
 05 NEW-CUSTOMER-NAMES
 PIC X(30) OCCURS 20 TIMES.

 PROCEDURE DIVISION.

 MAIN-PARAGRAPH.
 .
 .
 PERFORM new-name-query.

Table 10-5. Requester SEND Error for Transaction-Mode Violation

Numeric Value Meaning

13 Transaction-mode violation
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-5

Handling Errors Processing Variable-Length Server Replies
 IF PROCESSING-STATE = "STOP" GO TO
 MAIN-PARAGRAPH-EXIT.
 .
 .
 MAIN-PARAGRAPH-EXIT.
 EXIT.

 NEW-NAME-QUERY.
 SEND new-name-request TO customer-data-base
 REPLY CODE 1 YIELDS new-name-reply
 ON ERROR GO TO analyze-error.

 CONTINUE-PROCESSING.
*
* Process the returned names. Control passes here from the
* ANALYZE-ERROR paragraph when the number of names returned
* is greater than or less than 20. Control passes here
* from the NEW-NAME-QUERY paragraph when the number of
* names returned is exactly 20.
*
 GO TO send-processing-exit.

 ANALYZE-ERROR.
 IF TERMINATION-STATUS = 11 AND
 function-code = 1 THEN GO TO
 CONTINUE-PROCESSING
 ELSE MOVE "STOP" TO PROCESSING STATE.

 SEND-PROCESSING-EXIT.
 EXIT.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-6

A The MAKEUL Macro
The MAKEUL macro performs pTAL compilations of user-written user conversion
procedures and creates the TNS/R native user library for the TCP using the nld utility.

The syntax and options are as specified below:

command-option

is a space-separated list and can be one of the following:

-src source-filename

is the file name of the pTAL source file.

-obj object-filename

is the file name of the pTAL object file.

-out output filename

is the file name where the output is to be sent. If it is not specified, then the
output is sent to the terminal.

-lib library-filename

is the file name of the user libary.

-loc tcplib-location

is the volume and subvolume where the TCPLIB file resides. The TCPLIB file
is needed to build the user library. If this option is not specified, the MAKEUL
macro will search for the TCPLIB file in the current subvolume and then in
$SYSTEM.ZPATHWAY.

-pTAL ptal-location

is the volume and subvolume where the pTAL compiler resides. Default is taken
as $SYSTEM.SYSTEM.

-nld nld-location

is the volume and subvolume where the nld utility resides. Default is taken as
$SYSTEM.SYSTEM.

MAKEUL command-option [command-option....]
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-1

The MAKEUL Macro Examples
 The MAKEUL macro has the following features:

• If an option is specified twice, the second option is used. For example, if the -src
option is specified twice with two different file names, the second -src option
becomes effective.

• If the object file name and the library file name are the same, the object file name is
overwritten with the library file name.

• At the end of execution of the macro, status information is displayed. This
information includes the names of the source file, object file, and library file and the
locations of the TCPLIB file, the pTAL compiler, and the nld utility.

• If the -loc option is not specified, the MAKEUL macro looks for the TCPLIB file
first in the current subvolume, then in the installation subvolume (ISV)
$SYSTEM.ZPATHWAY. If the ISVs are in another volume, then you can write
another macro that invokes MAKEUL, as follows:

MAKEUL -loc $ISVVOL.ZPATHWAY %*%

You can also specify where the TCPLIB file is located by setting the default value
of the variable ISV_VOL to the volume where the ISVs are located, in the code of
MAKEUL macro: for example,

#SET ISV_VOL $MYISV

For more information about this variable, see “Set the Default Values” within the
MAKEUL code.

• By default, the SYMBOLS option is passed to the pTAL compiler. You can modify
this option by setting the variable PTAL_OPTIONS accordingly. This variable
should contain pTAL options separated by commas: for example,

#SET ptal_options SYMBOLS,SUPPRESS

For more information about this variable, see “Set the Default Values” within the
MAKEUL code.

Examples
For creating a pTAL object file called PTOBJ from the pTAL source file PTSRC and
sending the output to the terminal, the syntax is as follows:

> MAKEUL -src PTSRC -obj PTOBJ

For creating a pTAL object file called PTOBJ from the pTAL source file PTSRC and
sending the output to the file PTOUT, the syntax is as follows:

> MAKEUL -src PTSRC -obj PTOBJ -out PTOUT

For creating a user library file called USERLIB from the pTAL source file PTSRC and
sending the output to the terminal, the syntax is as follows:

> MAKEUL -src PTSRC -lib USERLIB
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-2

The MAKEUL Macro Error Messages
For creating a user library file called USERLIB from the pTAL object file PTOBJ and
sending the output to the file PTOUT, the syntax is as follows:

> MAKEUL -obj PTOBJ -lib USERLIB -out PTOUT

For creating a user library file called USERLIB from the pTAL source file PTSRC with
the intermediate pTAL object file as PTOBJ and sending the output to the terminal, the
syntax is as follows:

> MAKEUL -src PTSRC -obj PTOBJ -lib USERLIB

For creating a user library file called USERLIB from the pTAL source file PTSRC and
sending the output to the terminal, the syntax is as follows:

> MAKEUL -src XYZ -lib USERLIB -src PTSRC

Error Messages

Cause. An option other than -src, -obj, -lib, -out, -loc, -nld, or -ptal was specified.

Effect. The MAKEUL macro fails.

Recovery. Specify the correct option.

Cause. At least two out of the options -src, -lib, and -obj were not specified.

Effect. The MAKEUL macro fails.

Recovery. Specify at least two out of the options -src, -obj, and -lib.

Cause. The source file specified is not a valid Guardian file name.

Effect. The MAKEUL macro fails.

Recovery. Specify a valid Guardian file name as the pTAL source-file name.

ERROR Illegal command option specified. Can be only
-src, -obj, -lib, -out, -loc, -ptal, -nld

ERROR At least two out of the options -src, -obj, -lib
must be specified

ERROR Illegal source file specified
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-3

The MAKEUL Macro Error Messages
Cause. The specified source file name is not an EDIT type of file.

Effect. The MAKEUL macro fails.

Recovery. Specify a pTAL source file with the -src option.

Cause. The specified pTAL source file does not exist.

Effect. The MAKEUL macro fails.

Recovery. Specify an existing pTAL source file with the -src option.

Cause. The specified pTAL object file is an existing file that could not be deleted
because of the error specified in the error message.

Effect. The macro automatically recovers from this error and creates an object file
called ZZOB*. While doing so, it displays the following message:

*** Changing the object file to new-object-filename

Recovery. None required.

Cause. The specified object file is not a legal Guardian file name.

Effect. The MAKEUL macro fails.

Recovery. Specify a valid Guardian file as the pTAL object file name.

ERROR Source file is not an EDIT file (Code 101) :
source-filename

ERROR Source file specified does not exist :
source-filename

WARNING Unable to delete object file : object-filename.
Error # error-number

ERROR Illegal object file specified
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-4

The MAKEUL Macro Error Messages
Cause. The specified object file is not a pTAL object file. This error will occur only
when the user is trying to create a user library file from the pTAL object file by using
the following command :

> MAKEUL -obj object-filename -lib library-filename &
> [-out output-filename]

Effect. The MAKEUL macro fails.

Recovery. Specify a pTAL object file with the -obj option.

Cause. The specified object file does not exist. This error will occur only when the user
is trying to create a user library file from the pTAL object file by using the following
command :

> MAKEUL -obj object-filename -lib library-filename &
> [-out output-filename]

Effect. The MAKEUL macro fails.

Recovery. Specify an existing pTAL object file with the -obj option.

Cause. The specified user library file could not be deleted because of the error specified
in the error message.

Effect. The macro automatically recovers from this condition and creates a library file
called ZZUL*. While doing so, it displays the following message:

*** Changing the library file to new-library-filename

Recovery. None required.

ERROR Object file specified is not a pTAL object file
(Code 700) : object-filename

ERROR Object file specified does not exist :
object-filename

WARNING Unable to delete library file : library-filename.
Error # error-number
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-5

The MAKEUL Macro Error Messages
Cause. The specified library file is not a legal Guardian file name.

Effect. The MAKEUL macro fails.

Recovery. Specify a valid Guardian file as the user library file name.

Cause. The specified output file is an existing file that could not be deleted because of
the error specified in the error message.

Effect. The macro automatically recovers from this error and creates an output file
called $S.#MAKEUL. While doing so, it displays the following message:

*** Changing the output file to $S.#MAKEUL

Recovery. None required.

Cause. The specified output file is not a legal Guardian file name.

Effect. The MAKEUL macro fails.

Recovery. Specify a valid Guardian file as the output file name.

Cause. TCPLIB does not exist in the location specified.

Effect. The MAKEUL macro fails.

Recovery. Specify the correct location for TCPLIB.

ERROR Illegal library file specified

WARNING Unable to delete output file : output-filename.
Error # error-number

ERROR Illegal output file specified

ERROR TCPLIB does not exist in the location specified :
tcplib-location.TCPLIB
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-6

The MAKEUL Macro Error Messages
Cause. An invalid volume-subvolume name combination was specified as the location
for TCPLIB.

Effect. The MAKEUL macro fails.

Recovery. Specify the correct location for TCPLIB.

Cause. TCPLIB present in the location specified is not a valid TCPLIB.

Effect. The MAKEUL macro fails.

Recovery. Specify the location of a valid TCPLIB.

Cause. The user specified the user library to be the same file as TCPLIB.

Effect. The MAKEUL macro fails.

Recovery. Specify a correct user library file name.

Cause. The source file specified with the -src option and the object file specified with
the -obj option are the same.

Effect. The MAKEUL macro fails.

Recovery. Specify a different name for the object file name.

Cause. The source file specified with the -src option and the library file specified with
the -lib option are the same.

Effect. The MAKEUL macro fails.

Recovery. Specify a different name for the library file name.

ERROR Illegal location specified for TCPLIB

ERROR Invalid TCPLIB specified : tcplib-location.TCPLIB

ERROR User library cannot be the same as TCPLIB

ERROR Source filename cannot be the same as the object
filename

ERROR Source filename cannot be the same as the library
filename
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-7

The MAKEUL Macro Error Messages
Cause. The pTAL compiler in the specified location is not a valid pTAL compiler.

Effect. The MAKEUL macro fails.

Recovery. Specify the location of a valid pTAL compiler.

Cause. The pTAL compiler does not exist in the location specified.

Effect. The MAKEUL macro fails.

Recovery. Specify the correct location for the pTAL compiler.

Cause. An invalid volume-subvolume name combination was specified as the location
for the pTAL compiler.

Effect. The MAKEUL macro fails.

Recovery. Specify the correct location for the pTAL compiler.

Cause. The nld utility in the specified location is not valid.

Effect. The MAKEUL macro fails.

Recovery. Specify the location where a valid nld utility resides.

Cause. The nld utility does not exist in the location specified.

Effect. The MAKEUL macro fails.

Recovery. Specify the correct location for the nld utility.

ERROR Invalid pTAL compiler specified : ptal-location.PTAL

ERROR pTAL does not exist in the location specified :
ptal-location

ERROR Illegal location specified for pTAL

ERROR Invalid NLD specified : nld-location.NLD

ERROR NLD does not exist in the location specified :
nld-location
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-8

The MAKEUL Macro Error Messages
Cause. An invalid volume-subvolume name combination was specified as the location
for nld.

Effect. The MAKEUL macro fails.

Recovery. Specify the correct location for the nld utility.

.

Cause. Compilation errors were encountered while compiling the pTAL source file.

Effect. The MAKEUL macro fails.

Recovery. Check the output file and correct the compilation errors.

Cause. Warnings were encountered during pTAL compilation.

Effect. If the -lib option was specified, MAKEUL continues and attempts to build the
user library file. If the -lib option was not specified, it terminates.

Recovery. Check the output file and correct the warnings.

Cause. The nld utility reported errors while building the user library.

Effect. The MAKEUL macro fails.

Recovery. Check the output file, and correct the errors.

ERROR Illegal location specified for NLD

ERROR Error(s) encountered during pTAL compilation. Please
check the output file for details.

WARNING Warnings encountered during pTAL compilation.
Please check the output file for details.

ERROR Error(s) encountered during building the user
library. Please check the output file for details.
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-9

The MAKEUL Macro Error Messages
Cause. The nld utility reported warnings while building the user library.

Effect. The MAKEUL macro terminates.

Recovery. Check the output file and correct the warnings.

Cause. The pTAL compiler or nld utility in the specified location does not have
execution permission for the user running this macro.

Effect. The MAKEUL macro fails.

Recovery. Secure pTAL or nld to give execution permission to the user or change the
user to a user who has execution permission for the pTAL compiler and nld utility
being used.

WARNING Warning(s) encountered during building the user
library. Please check the output file for details.

ERROR File not properly secured for execution : filename
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-10

Index

Numbers
3270 terminals (Fujitsu)

double-byte character sets 8-1/8-2, 8-4
screen space limitations 8-10/8-11
shift-out/shift-in characters 8-3,
8-10/8-11

3270 terminals (IBM)
AID byte values 4-8/4-10
BELL support 3-9
color support 3-7/3-8
combining extended field attributes 3-9
cursor positioning 3-3
double-byte character sets 8-4
extended field attributes 3-4/3-10
highlight support 3-8
Kanji and Katakana characters 8-1/8-2
KANJI-KATAKANA keyword 3-10
key mapping 4-7/4-8
limitation on screen redefinition 8-9
minimum character separation 3-3
outline support 3-9
screen field positioning 3-3
screen modes 3-2
screen sizes 3-1/3-2
screen space limitations 8-10/8-11
shift-out/shift-in characters 8-3, 8-9,
8-10/8-11
uppercase and lowercase characters 8-5
WHEN FULL LOCK support 3-3
WHEN FULL TAB support 3-3

6520 terminals
emulation of 3-13
minimum character separation 3-11
screen field positioning 3-11
screen modes 3-11

6530 terminals
description 3-12
double-byte character sets 8-1/8-2, 8-4
emulation of 3-13
function key queuing 3-13
RETURN-KEY function 3-12
screen space limitations 8-10/8-11

6540 personal computer 3-13

A
ABORT command 5-4
Aborting transactions 2-7
ABORT-INPUT clause 3-15
ABORT-TRANSACTION statement 5-4,
5-5
ACCEPT statement 3-16, 7-8, 8-9
Accepting information, conversational
terminals 3-16
ADVISORY clause 8-12
AID byte values 4-8/4-10
AID key-mapping parameter 4-8
Alphanumeric fields

input 4-4, 4-12
output 4-6, 4-15

Applications, Pathway
See also Design
client/server capabilities 1-10
data integrity 1-4
development of 1-2/1-3, 1-11/1-13
distributed processing 1-6
expansion fundamentals 1-6
fault tolerance 1-4/1-5
for block-mode terminals 7-10
for conversational terminals 7-10
for intelligent terminals 7-10
introduction 1-1
managing 1-3
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-1

Index B
Applications, Pathway (continued)
overview 1-7
performance of 1-5, 1-8, 5-12
requester programs 1-8/1-9
requester structure, using TMF 5-2
security fundamentals 1-6
server classes 1-8
server languages 1-7
server processes 1-7
support for other environments 1-10

Attributes, screen field
BELL display 3-9
color display 3-7/3-8
conversational terminals 3-15
highlight display 3-8
IBM 3270 terminals 3-4/3-10
outline display 3-9

Audit trails, TMF 1-4, 2-7, 5-2
Audited files 5-1, 5-5, 5-12
Automatic retry 1-9

B
Batch processing 1-7, 2-23
BEGIN-TRANSACTION statement 5-3,
5-5/5-6
Block-mode terminals 7-10
By 8-2

C
CANCEL procedure, alternative to 9-3
Character separation

6520 terminals 3-11
IBM 3270 terminals 3-3

Character sets
See Double-byte character sets

CHARACTER-SET IS statement 8-5, 8-13
Character-string symbols allowed 8-10

Checkpointing
by TCP 5-12
explanation of 1-4
Pathsend limitations 2-19

CICS environment 1-10
Classes of data in database 2-8
Client/server computing 1-10, 1-13, 2-19
Color display attributes 3-7/3-8
Color support for IBM 3270
terminals 3-7/3-8
Commands

See individual commands
Compiler, SCREEN COBOL 2-12
Concurrent processing 2-6/2-7
Configuration of Pathway subsystem

interaction with the TMF
subsystem 5-8/5-13
unsolicited-message parameters 7-20

CONTROL operations
CONTROL 26

call format 9-4
how it works 9-4/9-5
initialization 9-5/9-6
return codes 9-6
TERMINATION codes 9-6/9-8
timeout and error
completions 9-7/9-8

for intelligent devices 9-3
TCP activities, table of 9-1

Conversational mode
designing for 2-11
using with conversational
terminals 3-14

Conversational terminals
accepting information 3-16
description 3-14
designating 3-15
designing for unsolicited messages 7-10
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-2

Index D
Conversational terminals (continued)
displaying information 3-16
input-control characters 3-15
screen field attributes 3-15

Conversion
See User conversion procedures

Crossref product 1-11
Cursor positioning

on screens 3-3
PW-USE-NEW-CURSOR
register 7-3/7-4

Customer Information Control System
(CICS) 1-10

D
Data

analyzing flow of 2-2
classes of 2-8
considerations for double-byte character
sets 8-2/8-4
entry, SCREEN COBOL program
unit 2-11
integrity 1-4
on conversational terminals 3-16

Data Division
description 2-13
double-byte character set
considerations 8-6/8-13
examples

delimiters 6-3
IDS 2-17
standard 2-14
variable-length server replies 10-5

Data items
mixed 8-2/8-3, 8-9
size 8-3, 8-6, 8-8

Database
concurrency 2-6/2-7
consistency 1-4, 2-6/2-7
fields in 2-8
files in, normalizing 2-8
integrity 1-7
logical design 2-8
management systems 2-9
physical design 2-9
records in 2-8

DBMS (database management system)
See Database

Debugging
intelligent devices 6-15/6-16
SCREEN COBOL requesters 1-11

Delimiters
declaring 6-3
description 6-3
example 6-3/6-5
field

processing on input 6-5
using on output 6-5/6-6

message 6-6
turning off 6-7

Design
application example 2-1/2-7
batch processing applications 2-23
database 2-8/2-9
requester programs 2-10/2-22
server programs 2-22
transactions 2-1/2-7

Designing 2-1
Development

considerations 1-2/1-3
tools 1-11/1-13

Device Handling Section 2-18
Devices, subtype 30 3-18
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-3

Index E
DISPLAY BASE statement 3-6, 3-16, 8-9
DISPLAY statement 8-9
Displaying information on conversational
terminals 3-16
Distributed processing 1-5, 1-6
Distributed transaction processing
(DTP) 1-6
Double-byte character sets

ADVISORY clause 8-12
CHARACTER-SET IS statement 8-5,
8-13
clause considerations 8-12/8-13
data-item considerations 8-2/8-4
determining 8-2
device types supported 8-1
example program 8-15/8-17
FILL clause 8-12
IF statement 8-13
IF...DOUBLEBYTE statement 8-14
KANJI-KATAKANA keyword 8-5
Katakana characters 8-2
LENGTH clause 8-12
mixed data items 8-2/8-3, 8-9
MOVE statement 8-14
MUST BE clause 8-12
OCCURS clause 8-3/8-4
permissible character-string
symbols 8-10
PIC X clause 8-2/8-3, 8-7
PICTURE clause 8-6/8-8
REDEFINES clause 8-8/8-9
SCREEN COBOL programming
for 8-4
screen field limits 8-10/8-11
Shift-JIS format 8-1, 8-14
shift-out/shift-in characters 8-1, 8-3,
8-9, 8-10/8-11
Start Field Extended (SFE) orders 8-1,
8-4
Start Field (SF) orders 8-1, 8-4

Double-byte character sets (continued)
subscripting considerations 8-3/8-4
TERMINAL IS statement 8-4
translation

errors 8-9
process 8-9, 8-10/8-11
routines provided by TCP 8-1

UPSHIFT clause 8-13
VALUE clause 8-7, 8-13

E
EM6530PC emulator 3-13
Enable product 1-13
END-OF-INPUT clause 3-15
END-TRANSACTION statement 5-4, 5-7
Enscribe product 2-9
Entry-sequenced files 2-9
Environment Division

description 2-13
double-byte character set
considerations 8-4/8-5
examples

IDS 2-17
standard 2-14

ERROR
device input declaration 4-12
screen input parameter 4-5

Errors
debugging intelligent devices 6-15/6-16
recovery, general information 10-1
SEND, responding to 10-2/10-5
subtype 30 devices 3-18
translation 8-9
unsolicited messages

Pathway/TS error codes 7-5/7-6
TERMINATION-STATUS
codes 7-4

variable-length server replies 10-5/10-6
with ESCAPE clauses 3-13
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-4

Index F
ESCAPE ON TIMEOUT clause 3-13
ESCAPE ON UNSOLICITED MESSAGE
clause 3-13, 7-2, 7-8/7-10
Event Management Service (EMS) 1-3
Examples 3-10
Extended field attributes, IBM 3270
terminals

color 3-7/3-8
combinations allowed 3-9/3-10
highlight 3-8
initializing 3-6
other 3-9
outline 3-9

Extended General Device Support (GDSX)
processes 1-9, 2-20/2-22

F
Fault tolerance 1-4/1-5
FEP (front-end process) 2-16, 2-20/2-22,
9-1/9-2
Field delimiters

processing on input 6-5
turning off 6-7
using on output 6-5/6-6

Field input procedures 4-4
Field output procedures 4-6
FIELD STATUS clause 6-15/6-16
Fields, database 2-8
Fields, positioning on screens 3-3, 3-11
FIELD-SEPARATOR clause 3-15
FIELD^PRESENT device input
declaration 4-13
FIELD^RETURNED device input
declaration 4-13
Files

audited 5-1, 5-5, 5-12
database 2-8/2-9
entry-sequenced 2-9
I/O 2-11
key-sequenced 2-9

Files (continued)
nonaudited 5-11, 5-12
POBJCOD 2-12
POBJDIR 2-12
relative 2-9
unstructured 2-9

FILL clause 8-12
FILL^CHAR

device input declaration 4-13
device output declaration 4-16

FILL^OFF
device input declaration 4-13
device output declaration 4-16

FIXED-DELIMITED clause 6-3
Flat-tree design 2-11
Format of unsolicited messages 7-18
FREEZE command 5-4
Front-end process (FEP) 2-16, 2-20/2-22,
9-1/9-2
Function key queuing, 6530 terminals 3-13

G
Gather-write capability 6-2
GDSX (Extended General Device Support)
processes 1-9, 2-20/2-22
GROUP-SEPARATOR clause 3-15
Guardian operating environment

CONTROL and SETMODE procedure
calls 9-8
distributed processing in 1-6
processes in 1-4
security features of 1-6
servers in 1-7, 2-22

H
Headers, unsolicited messages 7-14
Help, SCREEN COBOL program unit 2-11
Highlight support for IBM 3270
terminals 3-8
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-5

Index I
I
IBM 3270 terminals

See 3270 terminals (IBM)
Identification Division

description 2-12
examples

IDS 2-17
standard 2-14

IDS
See Intelligent device support (IDS)

IF statement 8-13
IF...DOUBLEBYTE statement 8-14
Initializing extended field attributes 3-6
INPUT

device input declaration 4-12
screen input parameter 4-5

INPUT^LEN
device input declaration 4-12
screen input parameter 4-5

Inspect product 1-11
Intelligent device support (IDS)

CONTROL 26
call format 9-4
how it works 9-4/9-5
initialization 9-5/9-6
return codes 9-6
TERMINATION codes 9-6/9-8

CONTROL operations, table of 9-3
description 2-16
design considerations 2-16
GDSX programming for 2-20
NonStop™ RSC/MP requesters 1-10,
2-19
program structure 2-17
SETMODE functions, table of 9-1/9-2

Intelligent devices
conversion input procedures 4-10/4-13
conversion output procedures 4-13/4-16
debugging techniques 6-15/6-16

Intelligent devices (continued)
delimiter declarations 6-3/6-5
designing for unsolicited messages 7-10
field delimiters

processing on input 6-5
using on output 6-5/6-6

IDS capabilities 6-1
message delimiters 6-6
PRESENT IF clause 6-12/6-15
programming for 3-17/3-18, 6-1/6-16
SEND MESSAGE statement 6-2
transaction scenario 1-15/1-17
TRANSFORM statement 6-8/6-12
turning off delimiters 6-7

Intelligent mode 2-11
INTERNAL

device input declaration 4-13
device output declaration 4-16
screen input parameter 4-5, 4-7

INTERNAL^LEN
device input declaration 4-13
device output declaration 4-16

INTERNAL^SCALE
device input declaration 4-13
device output declaration 4-16

Interrupt technique 7-10
IOPROTOCOL attribute 9-5/9-6

K
Kanji characters 8-5
KANJI-KATAKANA

IBM 3270 terminals 3-10
keyword 8-5

Katakana characters 8-2, 8-5
Key field 2-8
Key mapping, 3270 terminals
(IBM) 4-7/4-8
Keyboard locking, 6530 terminals 3-13
KEYNUM key-mapping parameter 4-8
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-6

Index L
Key-sequenced files 2-9

L
Languages

programming, for server programs 1-7
supported, IBM 3270 terminals 3-10

Layout of unsolicited messages 7-18
LENGTH clause 8-12
LENGTH MUST BE clause variant 8-12
Libraries

PATHTCPL 4-2
SCREEN COBOL pseudocode 1-11,
2-12

Link managers 2-18
Linkage Section

double-byte character sets 8-7
examples

IDS 2-17
standard 2-14

LINKMON process
description 2-18
NonStop™ RSC/MP, use by 2-19
relationship to NonStop™
RSC/MP 1-10

List-only, SCREEN COBOL program
unit 2-11
LOGICAL-TERMINAL-NAME special
register 7-3
Logon, SCREEN COBOL program
unit 2-11

M
Main Section 2-15, 2-18
Manageability

of Pathway applications 1-3
provided by server classes 1-8

Management interfaces 1-7, 1-9
See also PATHCOM interface, SPI
(Subsystem Programmatic Interface)

MAXINPUTMSGLEN parameter 7-20
MAXINPUTMSGS parameter 7-20
MAX^OUTPUT^LEN

device output declaration 4-16
screen output parameter 4-7

Menu, SCREEN COBOL program
unit 2-11
Message 4-14
MESSAGE FORMAT IS DELIMITED
clause 6-3
Message Section

examples
delimiters 6-4
general 2-17

formatting data 3-17
output data flow example 4-14
PRESENT IF example 6-13/6-15

Messages
delimiters

turning off 6-7
using 6-6

for checkpointing 1-4
formats, variable-length 6-7
templates

input 6-15
output 6-16

unsolicited
See Unsolicited message processing
(UMP)

Mixed data items 8-2/8-3
Mnemonic names 3-5
Modes, terminal 2-11
MOVE statement 8-14
MSG-FORMAT4 template 6-5
Multiple unsolicited messages… (error
3125) 7-5
Multiple unsolicited messages… (error
3242) 7-6
Multiprocessing 1-5
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-7

Index N
Multithreading
advantages of 1-5
GDSX feature 2-20

N
Names, mnemonic 3-5
nld utility 4-2, 4-3
No unsolicited message… (error 3177) 7-5
Nonaudited files 5-11, 5-12
Nonprivileged processes 9-4
NonStop™ Himalaya systems 1-4/1-6
NonStop™ Kernel Open System Services
(OSS) operating environment, servers
in 1-7, 2-22
NonStop™ Remote Server Call/MP
(RSC/MP) product 1-10, 2-19
NonStop™ SQL/MP product 2-9
NonStop™ TS/MP product 1-2
NonStop™ TUXEDO system 1-10
Numeric fields

input 4-4, 4-11
output 4-6, 4-15

O
Object code, SCREEN COBOL

See Pseudocode, SCREEN COBOL
OCCURS clause 8-3/8-4
OLTP

application design example 2-1/2-7
development considerations 1-2/1-3
expanding systems for 1-6
importance of fault tolerance for 1-4
Pathway environment 1-2/1-6
scenarios

from an intelligent device 1-15/1-17
support for other environments 1-10

ON ERROR clause 5-5, 5-6, 6-15, 9-5,
9-7/9-8

Online transaction processing (OLTP)
See OLTP

Open System Services (OSS) operating
environment, servers in 1-7, 2-22
Outline support for IBM 3270 terminals 3-9
OUTPUT

device output declaration 4-15
screen output parameter 4-7

OUTPUT^LEN
device output declaration 4-15
screen output parameter 4-7

P
PA (program attention) keys

mapping 4-7/4-8
using 3-4

PATHCOM interface
command file produced by Enable
product 1-13
commands 5-4/5-13
description 1-3
use in managing servers 1-7, 2-22
use in managing TCP 1-9

Pathmaker product 1-12
PATHMON environment

interaction with the TMF
subsystem 5-8/5-13
role of PATHMON process 1-5

Pathsend requesters
checkpointing 2-19
description 1-8, 2-18/2-19
design considerations 2-18
writing 1-2

PATHTCPL object library file
description 4-2

Pathway 7-5
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-8

Index R
Pathway application programming
development considerations 1-2/1-3
development tools 1-13
distributed processing 1-6
expansion fundamentals 1-6
fault tolerance 1-4/1-5
introduction 1-1
performance fundamentals 1-5
security fundamentals 1-6

Pathway applications
See Applications, Pathway

Pathway environment advantages 1-2/1-6
Pathway servers

description 1-7
writing 1-2

Pathway/TS error codes
See Errors

Pathway/TS product 1-2
Performance

improving 5-12
provided by server processes 1-8

Personal computer support 2-19
PIC N clause 8-4, 8-5
PIC X clause 8-2, 8-7
PICTURE (PIC) clause 8-6/8-8
POBJCOD file 2-12
POBJDIR file 2-12
PRESENT IF clause, example 6-12/6-15
Presentation services 1-7
Print devices 3-18
Procedure declaration

key mapping 4-8
Procedure Division

description 2-13
double-byte character set
considerations 8-13/8-15

Procedure Division (continued)
examples

IDS 2-18
standard 2-15
unsolicited message
processing 7-11, 7-12, 7-13
variable-length server replies 10-5

Process pairs 1-4
Processes

description 1-4
distribution of 1-5
nonprivileged 9-4
primary and backup 1-4
replication of 1-5

Program attention (PA) keys
mapping 4-7/4-8
using 3-4

Program divisions 2-12/2-15, 2-17
Programming languages 1-7
Pseudocode, SCREEN COBOL 1-11, 2-12
PW-QUEUE-FKEY-TIMEOUT special
register 3-13
PW-QUEUE-FKEY-UMP special
register 3-13
PW-TCP-PROCESS-NAME special
register 7-3
PW-TCP-SYSTEM-NAME special
register 7-3
PW-UNSOLICITED-MESSAGE-QUEUED
special register 7-2, 7-6
PW-USE-NEW-CURSOR special
register 7-3/7-4

R
RDBMS (Relational Database Management
System) 2-9
RDF

See Remote Duplicate Database Facility
(RDF)
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-9

Index S
Read-only special registers
See Special registers

RECEIVE UNSOLICITED MESSAGE
statement 7-2, 7-7
Records, database 2-8
Recovery, general information 10-1
REDEFINES clause 8-8/8-9
Relative files 2-9
Remote Duplicate Database Facility
(RDF) 2-10
Remote Server Call/MP (RSC/MP) product

See NonStop™ Remote Server Call/MP
(RSC/MP) product 1-10

Replies, variable-length, server 10-5/10-6
REPLY CODE clause 6-2
REPLY TO UNSOLICITED MESSAGE
statement 7-2
Requesters

clients using NonStop™ RSC/MP 2-19
description 1-7
designing 2-10/2-22
Pathsend

description 1-8, 2-18/2-19
design considerations 2-18
writing 1-2

SCREEN COBOL
comparison of standard and
intelligent 6-1
creating 2-12
debugging 1-11
description 1-9
IDS 2-16/2-18
standard 2-11/2-16

types of 1-8, 2-10
using GDSX 2-20/2-22

Response time 1-5
RESTART-COUNTER special register 5-5,
5-7, 5-8
RESTART-INPUT clause 3-15

RESTART-TRANSACTION statement 5-4,
5-7
RESULTING COUNT clause 6-5
RESUME command 5-5, 5-6, 5-7
Retries, automatic by TCP 1-9
Return codes, CONTROL 26 9-6
RETURN-KEY function, 6530
terminals 3-12
RIGHT^JUSTIFIED

device input declaration 4-13
device output declaration 4-16

Router programs 2-11
RSC/MP product

See NonStop™ Remote Server Call/MP
(RSC/MP) product 1-10

S
Scatter-read capability 6-2
SCF (Subsystem Control Facility), use in
managing GDSX processes 2-21
Screen

field attributes
conversational terminals 3-15
IBM 3270 terminals 3-4/3-10

field limits 8-10/8-11
input procedures 4-4/4-6
modes

6520 terminals 3-11
6540 personal computer 3-13
IBM 3270 terminals 3-2

output procedures 4-6/4-7
programs, designing 2-11/2-16
sizes

6540 personal computer 3-13
IBM 3270 terminals 3-1/3-2

space limitations
6520 terminals 3-11
IBM 3270 terminals 3-3
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-10

Index S
SCREEN COBOL
See also individual divisions, sections,
statements, and clauses
compiler 2-12
devices supported 2-11
double-byte character sets 8-1/8-17
Enable, using to develop 1-13
Inspect product and 1-11
intelligent mode 3-17/3-18
Pathmaker application generator 1-12
program structure

IDS 2-17/2-18
standard 2-12/2-15

requesters
comparison of types 6-1
description 1-9
designing 2-11/2-18
GDSX alternative 2-21

sending unsolicited messages to
requesters 7-14/7-15
SET MINIMUM-ATTR
statement 3-5/3-6
SET MINIMUM-COLOR
statement 3-5/3-6
special names 3-4, 4-8
special registers for TMF 5-7/5-8
TMF support features 5-3
unsolicited message processing (UMP)

See Unsolicited message processing
(UMP)

verbs for TMF 5-4/5-7
SCREEN COBOL Utility Program
(SCUP) 1-11
Screen Manager Section 2-15
Screen Section 3-15

double-byte character sets
considerations 8-10
example program 8-16/8-17
PICTURE clause 8-7
REDEFINES clause 8-9

Screen Section (continued)
examples

double-byte character
sets 8-16/8-17
skeleton program 2-14

Security, system 1-6
SEND 10-6
SEND MESSAGE statement 6-2
SEND statements

responding to SEND errors 10-2/10-5
variable-length server replies 10-5/10-6

Server classes
accessing

See Requesters
description 1-8
fault tolerance role 1-5

Server Manager Section 2-15, 2-18
Server processes

benefits 1-7
description 1-7
replies from, variable-length 10-5/10-6
TIMEOUT attribute and TMF 5-11
transaction integrity 1-4

Server programs
description 1-7
designing 2-22
Enable, generated by 1-13
languages for 1-7
Pathmaker, using to develop 1-12
writing 1-2

SET MINIMUM-ATTR statement 3-5/3-6
SET MINIMUM-COLOR
statement 3-5/3-6
SET PATHWAY command 5-6
SET PROGRAM command, TMF
option 5-9
SET SERVER command

MAXLINKS parameter 10-2, 10-3,
10-4, 10-5
TIMEOUT option 5-11
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-11

Index T
SET SERVER command (continued)
TMF option 5-9, 5-12

SET TCP command
MAXINPUTMSGLEN parameter 7-20
MAXINPUTMSGS parameter 7-5,
7-20
TERMPOOL parameter 7-20

SET TERM command
IOPROTOCOL attribute 9-5/9-6
MAXINPUTMSGS parameter 7-4,
7-20
TMF option 5-9

SETMODE functions
for 3270 devices connected by
SNAX/XF 8-2
for intelligent devices 9-1/9-2

SF (Start Field) orders 8-1, 8-4
SFE (Start Field Extended) orders 8-1, 8-4
Shift-JIS format

See Double-byte character sets
Shift-out/shift-in characters

3270 terminals, using 8-3, 8-9,
8-10/8-11
translation process 8-1

SHUTDOWN2 command 5-4
Simulated devices, programming for 3-18
Software development tools 1-11/1-13
SO/SI characters

See Shift-out/shift-in characters
Special names, SCREEN COBOL 3-4, 4-8
Special registers

LOGICAL-TERMINAL-NAME 7-3
PW-QUEUE-FKEY-TIMEOUT 3-13
PW-QUEUE-FKEY-UMP 3-13
PW-TCP-PROCESS-NAME 7-3
PW-TCP-SYSTEM-NAME 7-3
PW-UNSOLICITED-MESSAGE-
QUEUED 7-2, 7-6
PW-USE-NEW-CURSOR 7-3/7-4
RESTART-COUNTER 5-5, 5-7, 5-8

Special registers (continued)
TERMINATION-STATUS 5-5, 5-8,
7-4, 9-5, 9-8, 10-2/10-5
TMF subsystem, provided for 5-7/5-8
TRANSACTION-ID 5-5, 5-8

SPI (Subsystem Programmatic Interface)
commands 5-4/5-13
description 1-3
use in managing GDSX processes 2-21
use in managing servers 1-7
use in managing TCP 1-9
use in unsolicited message
processing 7-14

Start Field Extended (SFE) orders 8-1, 8-4
Start Field (SF) orders 8-1, 8-4
STOP command 5-4
Subscripting 8-3/8-4
Subsystem Programmatic Interface (SPI)

See SPI (Subsystem Programmatic
Interface)

Subtype 30 devices 3-18
SUSPEND command 5-4
Systems

expanding 1-6
NonStop™ Himalaya 1-4/1-6
security 1-6

T
Tables, NonStop™ SQL/MP 2-9
Tape devices 3-18
TCP TERMPOOL parameter 7-20
TCP (terminal control process)

checkpointing strategy 5-12
CONTROL operations performed by

See CONTROL operations
fault tolerance role 1-5
features provided by 1-9
IDS requesters 2-16
initializing extended field attribute 3-6
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-12

Index T
TCP (terminal control process) (continued)
NonStop™ RSC/MP requesters 2-19
PATHTCPL object file 4-2
SETMODE functions performed by

See SETMODE functions
TDP (Transaction Delivery Process) 2-19
TEDIT text editor 1-12, 2-12
TERMINAL IS statement 8-4
TERMINALINFO statement 3-6
Terminals

6520
See 6520 terminals

6530
See 6530 terminals

block mode, designing for unsolicited
messages 7-10
conversational

description 3-14
unsolicited message processing
for 7-10

devices supported 3-1
Fujitsu 3270 8-1/8-2
IBM 3270

See 3270 Terminals
intelligent-mode devices 3-17/3-18,
7-10
modes 2-11
SCREEN COBOL support 2-11
simulated devices 3-18

TERMINATION codes, CONTROL
26 9-6/9-8
TERMINATION-STATUS special
register 5-5, 5-8, 7-4, 9-5, 9-8
Third-party vendors 1-3
Throughput 1-5
THRU/THROUGH

clause 8-7
variant of LENGTH MUST BE 8-12

TIMEOUT attribute for servers 5-11

Timeout completions for unsolicited
messages 9-7/9-8
TMF

audit-trail files 1-4, 5-2
TMF (Transaction Management Facility)

application characteristics 5-2/5-3
audit-trail files 2-7
defining transactions 2-6
description 1-4, 5-1
fault tolerance role 1-5, 5-13
PATHMON environment 5-8/5-13
SCREEN COBOL special
registers 5-7/5-8
SCREEN COBOL verbs 5-4/5-7
SET commands, PATHCOM 5-9/5-13
TCP checkpointing strategy 5-12
TMF options in PATHMON
configuration, precautions 5-13
transaction identifier 5-3
transaction mode 5-3/5-4

Tools, software development 1-11/1-13
Transaction Delivery Process (TDP) 2-19
Transaction Management Facility (TMF)

See TMF (Transaction Management
Facility)

Transaction mode
See TMF(Transaction Management
Facility)

Transactions
aborting 2-7
backout 2-7
concurrency control 2-6/2-7
cost per 1-5
defining for the TMF subsystem 2-6
designing an application with 2-1/2-7
identifier 5-3
identifying components 2-4
integrity 1-4
programming with TMF 5-8
protecting 2-6/2-7
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-13

Index U
TRANSACTION-ID special register 5-5,
5-8
TRANSFORM statement

assembling output messages,
example 6-11/6-12
disassembling input messages,
example 6-8/6-10
using with intelligent devices 6-8

Translation
errors 8-9
process, double-byte 8-1, 8-9
routines in TCP user library 8-1

TSCODE, GDSX process 2-20
TUXEDO system

See NonStop™ TUXEDO system

U
UMP

See Unsolicited message processing
(UMP)

Unsolicited message processing (UMP)
6530 terminal keyboard locking
for 3-13
accepting 7-2
configuration parameters 7-20
CONTROL 26 operation 7-10
description 7-1
detecting arrival 7-2
ESCAPE ON UNSOLICITED clauses

6530 terminals 3-13
design 7-9/7-10

maximum number 7-20
maximum size 7-20
message format 7-15/7-17
message headers 7-14
Pathway/TS error codes 7-5/7-6
program structure 2-15/2-16

Unsolicited message processing
(UMP) (continued)

programming examples
ESCAPE ON UNSOLICITED
clauses 7-8/7-9
input and output 7-13
no terminal interaction 7-11
polling special register 7-6
terminal output only 7-12
waited RECEIVE UNSOLICITED
statements 7-7

reply format 7-17/7-18
replying to 7-2
sending 7-14/7-15
special registers 7-3/7-4
TERMINATION-STATUS error
codes 7-4

Unsolicited message rejected… (error
3241) 7-5
Unstructured files 2-9
UPSHIFT clause 8-13
USCODE, GDSX process 2-20
User conversion procedures

3270 key mapping 4-7/4-8
adding to TCP object library 4-2
description 4-1
device alphanumeric input 4-12
device alphanumeric output 4-15
device numeric input 4-11
device numeric output 4-15
intelligent devices, input 4-10/4-13
intelligent devices, output 4-13/4-16
message output to an intelligent
device 4-13/4-14
screen input 4-4/4-6
screen output 4-6/4-7
types of 4-1
user-written 4-2
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-14

Index V
USERCODE
device input declaration 4-12
device output declaration 4-15
screen input parameter 4-5
screen output parameter 4-7

Utilities, software development 1-11/1-13

V
VALUE clause 8-7, 8-13
Value for MAXINPUTMSGS… (error
3240) 7-5
Variable-length message formats 6-7
Variable-length server replies 10-5/10-6
VARYING1 and VARYING2 message
formats 6-7
Vendors, third-party 1-3
Visible cursor support 7-3/7-4

W
When 3-1
Working-Storage Section

double-byte character sets
example Pathway application 8-15
PICTURE clause 8-6/8-7
REDEFINES clause 8-8

examples
delimiters 6-3
IDS 2-17
PRESENT IF 6-13
standard 2-14

Y
YIELDS clause 6-2
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-15

Index Y
Compaq NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-16

	What’s New in This Manual
	Manual Information
	New and Changed Information
	Product Changes
	Corrections and Enhancements to the Manual

	About This Manual
	Who Should Read This Manual
	Related Documentation
	Your Comments Invited
	Notation Conventions
	General Syntax Notation
	Notation for Messages

	1 Introduction to TCP and Terminal Application Programming
	Advantages of the Pathway Environment
	Ease of Development
	Manageability
	Data Integrity
	Fault Tolerance
	Other Fundamentals of NonStop™ Himalaya Systems

	Pathway Applications
	Servers and Server Classes
	Requesters

	Client/Server Capabilities
	Other Transaction Processing Environments
	Development Tools and Utilities
	Programming Languages and Related Tools
	The Inspect Symbolic Debugger
	The SCREEN COBOL Utility Program (SCUP)
	The Pathmaker Application Generator
	The Enable Product
	Client/Server Development Tools

	Transaction Processing Scenarios
	Transaction From a Terminal
	Transaction From an Intelligent Device

	2 Designing Your Application
	Designing Transactions
	Analyzing Data Flow
	Identifying Transaction Components
	Protecting Transactions

	Designing the Database
	Logical Design
	Physical Design
	Database Managers
	Remote Duplicate Database Facility (RDF)

	Designing Requester Programs
	SCREEN COBOL Requesters
	IDS Requesters
	Pathsend Requesters
	Clients Using RSC/MP
	Requesters Using GDSX
	Dividing Function Between Requester and Server

	Designing Server Programs
	Designing Applications for Batch Processing

	3 Programming for Specific Terminals
	Using IBM 3270 Terminals
	Screen Size
	Controlling the Screen�Modes
	Positioning the Screen�Fields
	Positioning the Cursor
	Using IBM 3270 Function�Keys
	Using Extended Field Attributes

	Using 6520 Terminals
	Controlling the Screen�Modes
	Positioning the Screen�Fields

	Using 6530 Terminals
	Return-Key Function
	Internal Function-Key Queuing

	Using EM6530PC on a 6540 Personal Computer
	Using Conversational Terminals
	Conversational-Mode Program
	Designating Conversational Terminals
	Input Control Characters
	Displaying Information
	Accepting Information

	Using Intelligent-Mode Devices
	Using Simulated Devices
	Using Dial-in Terminals

	4 Writing User Conversion Procedures
	User Conversion Procedures
	User-Written User Conversion Procedures
	Coding the User Conversion Procedures and Creating the User Library
	Restrictions on User Conversion Procedures

	Screen Input Procedures
	Screen Output Procedures
	3270 Key Mapping
	Intelligent Device Input Procedures
	Intelligent Device Output Procedures

	5 Managing Transactions With the TMF Subsystem
	Task Overview
	TMF Application Structure
	TMF Programming in SCREEN COBOL
	Transaction Mode Use
	SCREEN COBOL Verbs for the TMF Subsystem
	SCREEN COBOL Special Registers for the TMF Subsystem

	Interaction Between the PATHMON Environment and the TMF Subsystem
	SET SERVER Command and the TMF Subsystem
	SET TERM and SET PROGRAM Commands and the TMF Subsystem
	Effect of TMF Parameters on SCREEN COBOL SEND�Operations
	Timeouts on SEND Operations to Servers

	TCP Checkpointing Strategy
	Precautions for Using TMF Parameters

	6 Programming for Intelligent Devices
	The SEND MESSAGE Statement
	Using Delimiters and the RESULTING COUNT Clause
	Declaring Delimiters
	Sample Declarations
	Processing Field Delimiters on Input
	Using Field Delimiters on Output
	Using Message Delimiters
	Using Delimited Format With Delimiters Turned Off

	Using TRANSFORM Statements
	Example 1: Disassembling Input Messages
	Example 2: Assembling Output Messages

	Using PRESENT IF Clauses
	Error Processing and Debugging Techniques
	ON ERROR Processing
	FIELD STATUS Processing

	7 Processing Unsolicited Messages
	Detecting the Arrival of Unsolicited Messages
	Accepting Unsolicited Messages
	Replying to Unsolicited Messages
	The PW-TCP-SYSTEM-NAME and PW-TCP- PROCESS-NAME Special Registers
	The PW-USE-NEW-CURSOR Special Register
	Unsolicited-Message TERMINATION-STATUS Values
	Pathway/iTS Error Codes
	UMP Programming Examples
	Polling the PW-UNSOLICITED-MESSAGE-QUEUED Register
	Using Waited RECEIVE UNSOLICITED Statements
	Using ESCAPE ON UNSOLICITED MESSAGE Clauses
	ESCAPE ON UNSOLICITED MESSAGE Design Considerations
	Message Processing Requiring No Terminal Interaction
	Message Processing Requiring Only Terminal Output
	Message Processing Requiring Both Input and Output

	Sending Unsolicited Messages to SCREEN COBOL Requesters
	Unsolicited-Message Layout, Reply Layout, and Error Codes
	Unsolicited-Message Layout
	Unsolicited-Message Reply Layout
	Unsolicited-Message Error Codes

	UMP Configuration Parameters

	8 Processing Double-Byte Character Sets
	Device Types
	Determination of the Character Set
	Data-Item Considerations
	Mixed Data Items
	Subscripting Considerations

	Developing SCREEN COBOL Programs for Double-Byte Character Sets
	Environment Division
	Data Division
	Procedure Division

	Example of Working-Storage Section and Screen Section

	9 TCP SETMODE Functions and CONTROL Operations
	SETMODE Functions
	CONTROL Operations
	Pathway/iTS and CONTROL 26
	CONTROL 26 Defined
	How CONTROL 26 Works
	CONTROL 26 Initialization
	Subsequent CONTROL 26 Calls
	Testing TERMINATION Codes

	10 Handling Errors
	Terminal Errors
	SEND Statement Errors
	Responding to SEND Errors
	Processing Variable-Length Server Replies

	A The MAKEUL Macro
	Examples
	Error Messages

	Index

