Compag NonStop ™
Pathway/ITSTCP and
Terminal Programming
Guide

Abstract

This manual is a guide for programmers who are writing SCREEN COBOL requestersto be
used in Pathway applications.

Product Version
Pathway/iTS 1.0

Part Number Published
426751-001 October 2000

Document History

Part Number Product Version Published
110075 Pathway/TS D30+ July 1995
121308 Pathway/TS D40 December 1995
426751-001 Pathway/iTS 1.0 October 2000

Ordering Information

For manual ordering information: domestic U.S. customers, call 1-800-243-6886; international customers, contact
your local sales representative.

Document Disclaimer

Information contained in a manual is subject to change without notice. Please check with your authorized
representative to make sure you have the most recent information.

Export Statement

Export of the information contained in this manual may require authorization from the U.S. Department of
Commerce.

Examples

Examples and sample programs are for illustration only and may not be suited for your particular purpose. The
inclusion of examples and sample programs in the documentation does not warrant, guarantee, or make any
representations regarding the use or the results of the use of any examples or sample programsin any
documentation. You should verify the applicability of any example or sample program before placing the software
into productive use.

U.S. Government Customers

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE:

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
Section 52.227-19 of the FARS Computer Software—Restricted Rights clause.

RESTRICTED RIGHTSNOTICE: Use, duplication, or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 52.227-7013.

RESTRICTED RIGHTSLEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the rightsin Technical Data and Computer Software clause in

DAR 7-104.9(a). This computer software is submitted with “restricted rights” Use, duplication or disclosureis
subject to the restrictions as set forth in NASA FAR SUP 18-52 227-79 (April 1985) “Commercial Computer
Software—Restricted Rights (April 1985).” If the contract contains the Clause at 18-52 227-74 “Rightsin Data
Genera” then the “Alternate | 11" clause applies.

U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished — All rights reserved under the Copyright Laws of the United States.

——— Compag NonStop™ Pathway/iTS
—— TCPand Terminal Programming
—— Guide

What's New in ThisManual X
Manua Information ix
New and Changed Information X

About ThisManua xi
Who Should Read ThisManual xi
Related Documentation Xi
Your Comments Invited xii
Notation Conventions Xiii

1. Introductionto TCP and Terminal Application Programming

Advantages of the Pathway Environment 1-2
Ease of Development 1-2
Manageability 1-3
Data Integrity 1-4
Fault Tolerance 1-4
Other Fundamentals of NonStop™ Himalaya Systems 1-5
Pathway Applications 1-7
Serversand Server Classes 1-7
Requesters 1-8
Client/Server Capabilities 1-10
Other Transaction Processing Environments 1-10
Development Tools and Utilities 1-11
Programming Languages and Related Tools 1-11
The Inspect Symbolic Debugger 1-11
The SCREEN COBOL Utility Program (SCUP) 1-11
The Pathmaker Application Generator 1-12
The Enable Product 1-13

Compaq Computer Corporation—426751-001
i

Contents 1. Introduction to TCP and Terminal Application
Programming (continued)

1. Introductionto TCP and Terminal Application
Programming (continued)
Development Tools and Utilities (continued)
Client/Server Development Tools 1-13
Transaction Processing Scenarios 1-13
Transaction Froma Termina 1-14
Transaction From an Intelligent Device 1-15

2. Designing Your Application
Designing Transactions 2-1
Anayzing DataFlow 2-2
|dentifying Transaction Components 2-4
Protecting Transactions 2-6
Designing the Database 2-8
Logical Design 2-8
Physical Design 2-9
Database Managers 2-9
Remote Duplicate Database Facility (RDF) 2-10
Designing Requester Programs 2-10
SCREEN COBOL Requesters 2-11
IDS Requesters 2-16
Pathsend Requesters 2-18
ClientsUsing RSC/MP 2-19
Requesters Using GDSX 2-20
Dividing Function Between Requester and Server 2-22
Designing Server Programs 2-22
Designing Applications for Batch Processing 2-23

3. Programming for Specific Terminals
Using IBM 3270 Terminals 3-1
Screen Size 3-1
Controalling the Screen Modes 3-2
Positioning the Screen Fields 3-3
Positioning the Cursor 3-3

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
ii

Contents 3. Programming for Specific Terminals (continued)

3. Programming for Specific Terminals (continued)

Using IBM 3270 Terminals (continued)
Using IBM 3270 Function Keys 3-4
Using Extended Field Attributes 3-4
Using 6520 Terminals 3-11
Controalling the Screen Modes 3-11
Positioning the Screen Fields 3-11
Using 6530 Terminals 3-12
Return-Key Function 3-12
Internal Function-Key Queuing 3-13
Using EM6530PC on a 6540 Personal Computer 3-13
Using Conversational Terminals 3-14
Conversational-Mode Program 3-14
Designating Conversational Terminals 3-15
Input Control Characters 3-15
Displaying Information 3-16
Accepting Information 3-16
Using Intelligent-Mode Devices 3-17
Using Simulated Devices 3-18
Using Dia-in Terminals 3-19

4. Writing User Conversion Procedures

User Conversion Procedures 4-1

User-Written User Conversion Procedures 4-2
Coding the User Conversion Procedures and Creating the User Library 4-2
Restrictions on User Conversion Procedures 4-4

Screen Input Procedures 4-4

Screen Output Procedures 4-6

3270 Key Mapping 4-7

Intelligent Device Input Procedures 4-10

Intelligent Device Output Procedures 4-13

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
i

Contents 5. Managing Transactions With the TMF Subsystem

5. Managing Transactions With the TM F Subsystem

Task Overview 5-1

TMF Application Structure 5-2

TMF Programming in SCREEN COBOL 5-3
Transaction ModeUse 5-3
SCREEN COBOL Verbs for the TMF Subsystem 5-4
SCREEN COBOL Specia Registersfor the TMF Subsystem 5-7

I nteraction Between the PATHMON Environment and the TMF Subsystem 5-8
SET SERVER Command and the TMF Subsystem 5-9
SET TERM and SET PROGRAM Commands and the TMF Subsystem 5-9
Effect of TMF Parameters on SCREEN COBOL SEND Operations 5-10
Timeouts on SEND Operationsto Servers 5-11

TCP Checkpointing Strategy 5-12

Precautions for Using TMF Parameters 5-13

6. Programming for Intelligent Devices

The SEND MESSAGE Statement 6-2
Using Delimiters and the RESULTING COUNT Clause 6-3
Declaring Delimiters 6-3
Sample Declarations 6-3
Processing Field Delimiterson Input 6-5
Using Field Delimiters on Output 6-5
Using Message Delimiters 6-6
Using Delimited Format With Delimiters Turned Off 6-7
Using TRANSFORM Statements 6-8
Example 1. Disassembling Input Messages 6-8
Example 2. Assembling Output Messages 6-11
Using PRESENT IF Clauses 6-12
Error Processing and Debugging Techniques 6-15
ON ERROR Processing 6-15
FIELD STATUS Processing 6-15

Compag NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
iv

Contents 7. Processing Unsolicited Messages

7. Processing Unsolicited M essages
Detecting the Arrival of Unsolicited Messages 7-2
Accepting Unsolicited Messages 7-2
Replying to Unsolicited Messages 7-2
The PW-TCP-SY STEM-NAME and PW-TCP-PROCESS-NAME Special
Registers 7-3
The PW-USE-NEW-CURSOR Specia Register 7-3
Unsolicited-Message TERMINATION-STATUS Values 7-4
Pathway/iTS Error Codes 7-5
UMP Programming Examples 7-6
Polling the PW-UNSOLICITED-MESSAGE-QUEUED Register 7-6
Using Waited RECEIVE UNSOLICITED Statements 7-7
Using ESCAPE ON UNSOLICITED MESSAGE Clauses 7-8
ESCAPE ON UNSOLICITED MESSAGE Design Considerations 7-9
M essage Processing Requiring No Terminal Interaction 7-11
M essage Processing Requiring Only Terminal Output 7-12
M essage Processing Requiring Both Input and Output 7-13
Sending Unsolicited Messages to SCREEN COBOL Requesters 7-14
Unsolicited-Message Layout, Reply Layout, and Error Codes 7-15
Unsolicited-Message Layout 7-15
Unsolicited-Message Reply Layout 7-17
Unsolicited-Message Error Codes 7-19
UMP Configuration Parameters 7-20

8. Processng Double-Byte Character Sets

Device Types 8-1
Determination of the Character Set 8-2

Data-ltem Considerations 8-2
Mixed Data ltems 8-2
Subscripting Considerations 8-3
Developing SCREEN COBOL Programsfor Double-Byte Character Sets 8-4
Environment Divison 8-4
DataDivison 8-6
Procedure Division 8-13

Compag NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
v

Contents 8. Processing Double-Byte Character
Sets (continued)

8. Processing Double-Byte Character Sets (continued)
Example of Working-Storage Section and Screen Section 8-15

9. TCP SETMODE Functionsand CONTROL Operations

SETMODE Functions 9-1

CONTROL Operations 9-3

Pathway/iTS and CONTROL 26 9-3
CONTROL 26 Defined 9-4
How CONTROL 26 Works 9-4
CONTROL 26 Initialization 9-5
Subsequent CONTROL 26 Calls 9-6
Testing TERMINATION Codes 9-6

10. Handling Errors

Termina Errors 10-1
SEND Statement Errors 10-2
Responding to SEND Errors 10-2
Processing Variable-L ength Server Replies 10-5

A. The MAKEUL Macro

Examples A-2
Error Messages A-3

| ndex

Examples
Example2-1. Sample SCREEN COBOL Requester Program Structure 2-14
Example 2-2. Sample IDS Requester Program Structure 2-17
Example 7-1. UMP and the ACCEPT Statement 7-8
Example7-2. UMP and the SEND MESSAGE Statement 7-9

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Vi

Contents

Figures

Figure1-1. Example of a Pathway/iTS Terminal Requester 1-15
Figure1-2. Example of an IDS Requester 1-17

Figure2-1. DataFlow for aBusiness Task 2-3

Figure2-2. Relationships Between Transaction Functions 2-5
Figure2-3. Creating SCREEN COBOL Requester Programs 2-12
Figure2-4. GDSX asaFront-End Process 2-21

Figure4-1. Screen Numeric Input Procedure Declaration 4-4
Figure4-2. Screen Alphanumeric Input Procedure Declaration 4-4
Figure4-3. Screen Numeric Output Procedure Declaration 4-6
Figure4-4. Screen Alphanumeric Output Procedure Declaration 4-6
Figure4-5. 3270 Key-Mapping Procedure Declaration 4-8
Figure4-6. Message Input From an Intelligent Device 4-11
Figure4-7. Device Numeric Input Procedure Declaration 4-11
Figure4-8. Device Alphanumeric Input Procedure Declaration 4-12
Figure4-9. Message Output to an Intelligent Device 4-14

Figure 4-10. Device Numeric Output Procedure Declaration 4-15
Figure4-11. Device Alphanumeric Output Procedure Declaration 4-15
Figure5-1. Pathway Application Programming for the TMF Subsystem 5-2
Figure7-1. UMP Message Format 7-15

Figure7-2. UMP Reply Format 7-17

Compag NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

Vii

Figures

Contents

Tables

Tables

Table 1-1. Task and Manual Correspondences 1-1

Table 2-1. Considerations for Requester Programs 2-10

Table 3-1. IBM 3270 Terminal Subclassesand Screen Sizes 3-1

Table 3-2. Minimum Character Separation for IBM 3270 Terminals 3-3

Table 3-3. Screen Modesfor 6520 Terminals 3-11

Table 3-4. Minimum Character Separation for 6520 Terminals 3-12

Table 3-5. Screen Modes for 6540 Personal Computers 3-14

Table 4-1. Mapping of Internal 3270 Key Number to Pathway/iTS Key
Number 4-8

Table 5-1. SEND Operations With the TMF Subsystem 5-10

Table 7-1. Unsolicited-Message Error Codes 7-19

Table 8-1. Restrictions on MOVE Statements 8-15

Table 9-1. TCP SETMODE and CONTROL Activities 9-1

Table 9-2. TCP SETMODE Functions 9-2

Table 9-3. TCP CONTROL Operations 9-3

Table 9-4. ESCAPE ON UNSOLICITED MESSAGE Completions 9-7

Table 9-5. Timeout and Error Completions 9-8

Table10-1. Requester SEND Errorsfor Transient Conditions 10-2

Table 10-2. Requester SEND Errorsfor Nonrecoverable Programming
Problems 10-3

Table 10-3. Requester SEND Errorsfor Configuration Problems 10-4

Table 10-4. Requester SEND Error for Invalid Reply Length 10-4

Table 10-5. Requester SEND Error for Transaction-Mode Violation 10-5

Compag NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

viii

—— What’sNew in ThisManual

M anual | nformation

Abstract

This manual is aguide for programmers who are writing SCREEN COBOL requesters
to be used in Pathway applications.

Product Version

Pathway/iTS 1.0
Part Number Published
426751-001 October 2000

Document History

Part Number Product Version Published
110075 Pathway/TS D30+ July 1995
121308 Pathway/TS D40 December 1995
426751-001 Pathway/iTS 1.0 October 2000

New and Changed I nfor mation

The Compag NonStop™ Pathway/i TS product was formerly called Pathway/TS. For the
Pathway/iTS 1.0 independent product release, the product was renamed to conform to
current Compaqg product naming standards and to reflect the new internet (web client)
capabilities of the product. After thefirst reference to the product name in each section
of this manual, subsequent references use the shortened form of the name, Pathway/iTS.

Product Changes

This manual refers to the new capability of Pathway/iTS to convert SCREEN COBOL
object filesto web clients. However, this manual focuses on programming for terminal
and IDS requesters; for details about web client programming, the reader isreferred to
the new Compag NonStop™ Pathway/i TS Web Client Programming Manual.

Corrections and Enhancementsto the Manual
The following corrections and enhancements have been made to this manual:

* References have been added to context-sensitive Pathsend requesters, afeature that
was added to the NonStop™ TS/MP and Extended General Device Support (GDSX)
products since the last edition of this manual.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
iX

What's New in This Manual Corrections and Enhancements to the Manual

® Thediscussion of User-Written User Conversion Procedures on page 4-2 has been
corrected to reflect the use of pTAL and thenl d utility.

* A repeated syntax error in the programming examples in Section 7, Processing
Unsolicited M essages has been corrected.

® Referencesto Compaq trademarks have been updated.
® Referencesto obsolete products have been removed.

* Miscellaneous terminology changes and editorial corrections have been made.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
X

— About ThisManual

This manual is aguide for programmers who are writing SCREEN COBOL requesters
to be used in Pathway applications. It describes how to use the major features and
capabilities available with SCREEN COBOL, such as transaction management and
intelligent device support.

This manual isintended to be used in conjunction with the Compag NonStop™
Pathway/iTS SCREEN COBOL Reference Manual, which contains detailed reference
information about the SCREEN COBOL programming language.

Who Should Read This M anual

Readers of this manual should be experienced programmers familiar with the Guardian
operating environment on Compag NonStop™ Himalaya systems and with the SCREEN
COBOL programming language.

Related Documentation

This manual is one in a set of Compag manuals for the NonStop™ TS/MP and
Pathway/i TS products.

The following manuals may be useful:

Compag NonStop™ Describes the SCREEN COBOL programming language

Pathway/iTS which is used for writing programs that define and control

SCREEN COBOL terminal displays or intelligent devices for online

Reference Manual transaction processing applications running in a
PATHMON environment.

Compag NonStop™ Describes managing a SCREEN COBOL library with the

Pathway/iTS SCREEN COBOL Utility Program (SCUP).

SCUP Reference Manual

Compag NonStop™ Describes how to convert SCREEN COBOL requesters to

Pathway/i TS web clients, explains how to build and deploy those

Web Client clients, and also provides the information Java devel opers

Programming Manual and web designers need to to modify and enhance the Java
and HTML portions of the converted clients.

Compag NonStop™ Describes the interactive management interface to the

Pathway/iTS Pathway/i TS product and describes how to configure and

System Management manage Pathway/i TS objects.

Manual

Compag NonStop™ Describes the management programming interface for

Pathway/iTS Pathway/i TS objectsin the PATHMON environment.

Management

Programming Manual

Compag NonStop™ Defines technical terms used in this manual and in other

Pathway Products manuals for the Pathwgy products. Pathway/iTS,

Glossary NonStop™ TS/MP, and Pathway/XM.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Xi

About This Manual Your Comments Invited

Operator Messages Describes all messages that are distributed by the Event

Manual Management Service (EMYS), including those generated by
NonStop™ TS/MP and Pathway/i TS processes.

Guardian Describes the Guardian messages for NonStop™

Procedure Errors and Himalaya systems. The manual covers various types of

Messages Manual error codes and error lists associated with Guardian

procedure calls and also the interprocess messages sent to
application programs by the operating system and the
command interpreter.

NonStop™ TM/MP Provides additional information, beyond what is covered
Application Programmer’s in this manual, about programming for the Transaction
Guide Management Facility (TMF) subsystem.

Your Comments|Invited

After using this manual, please take a moment to send us your comments. You can do
this by returning a Reader Comment Card or by sending an Internet mail message.

A Reader Comment Card islocated at the back of printed manuals and as a separate file
on the Compaq CD Read disc. You can either FAX or mail the card tous. The FAX
number and mailing address are provided on the card.

Also provided on the Reader Comment Card is an Internet mail address. When you
send an Internet mail message to us, we immediately acknowledge receipt of your
message. A detailed response to your message is sent as soon as possible. Be sure to
include your name, company name, address, and phone number in your message. |f
your comments are specific to a particular manual, also include the part number and title
of the manual.

Many of the improvements you see in Compag manuals are aresult of suggestions from
our customers. Please take this opportunity to help us improve future manuals.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
xii

About This Manual Notation Conventions

Notation Conventions

General Syntax Notation

The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For example:

MAXATTACH

lowercaseitalic letters. Lowercaseitalic lettersindicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-nane
Punctuation. Parentheses, commas, semicolons, and other symbols not previously described
must be entered as shown. For example:
error := NEXTFILENAME (file-nane) ;
LI STOPENS SU $pr ocess- nane. #su- nanme

Quotation marks around a symbol such as a bracket or brace indicate the symbol isa
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of theitemsisa
punctuation symbol such as a parenthesis or acomma. For example:
CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process- nane. #su- nane

Notation for M essages

The following list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercaseitalic letters. Lowercaseitalic letters indicate variable items whose values are
displayed or returned. For example:
p-regi ster
process- nane

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Xiii

About This Manual Notation for Messages

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Xiv

1

Introduction to TCP and Terminal
Application Programming

This section introduces Pathway transaction processing applications, which you write
and run with the assistance of the NonStop™ Transaction ServicessMP

(NonStop™ TS/MP) and Compag NonStop™ Pathway/i TS software. The emphasis of
this section is on applications that include SCREEN COBOL requesters for use with

terminals or intelligent devices.

Table 1-1. Task and Manual Correspondences

If Your Application Includes... You Need...
SCREEN COBOL requesters Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8
Section 9

Section 10

Appendix A

To Perform the Following...

Design an application including
SCREEN COBOL requesters

Handle programming for specific
terminals, terminal emulators,
intelligent devices, or simulated devices

Write user conversion procedures that
make custom validation checks or data
conversions

Manage transactions with the Compaq
Transaction Management Facility
(TMF)

Use the Pathway/i TS intelligent device
support (IDS) facility

Accept and reply to unsolicited
messages from Guardian operating
environment processes outside the
Pathway environment

Process double-byte character sets

Set device-dependent functions with
SETMODE calls or perform device-
dependent 1/O operations with
CONTROL cdls

Handle errors returned to a SCREEN
COBOL requester program

Use the MAKEUL macro for creating
the native user library and facilitating
pTAL compilation

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

1-1

Introduction to TCP and Terminal Application Advantages of the Pathway Environment
Programming

If you are writing SCREEN COBOL requesters that communicate with Compaq
NonStop™ TUXEDO servers, refer also to the manuals for the NonStop™ TUXEDO
system, particularly the Compag NonStop™ TUXEDO System Application Devel opment
Guide and the NonStop™ TUXEDO System Pathway Translation Servers Manual.

If you are writing Pathsend requesters or Pathway servers, refer to the
NonSop™ TSMP Pathsend and Server Programming Manual.

If you are writing web clients created from SCREEN COBOL requesters, refer to the
Compag NonStop™ Pathway/i TSWeb Client Programming Manual.

Advantages of the Pathway Environment

NonStop™ TS/MP and Pathway/i TS provide ease of development, manageability, and
the fundamental strengths and benefits of Compag NonStop™ Himalaya systems. The
strengths and benefits of NonStop™ Himalaya systems include data integrity, fault
tolerance, high performance and low cost, system security, scalability, and distributed
processing. The following paragraphs describe how NonStop™ TS/MP, Pathway/i TS,
and rel ated products—known together as the Pathway environment—Dbenefit the
application designer and programmer. The Introduction to NonSop™ Transaction
Processing provides afuller description of how all the fundamentals of NonStop™
Himalaya systems apply to transaction processing.

Ease of Development

Development costs are one of the highest expenses associated with online transaction
processing (OLTP) systems. The more sophisticated the features and safeguards that are
built into your OLTP application—for example, multiprocessing, fault tolerance, and
data integrity—the greater the costs. When you use NonStop™ TS/MP, Pathway/i TS,
and related Compaq transaction processing products for NonStop™ Himalaya systems
to create your OLTP applications; development time and efforts, and therefore costs, can
be measurably reduced.

This cost reduction occurs because:

* NonStop™ TS/MP, Pathway/iTS, and related products provide the most complex
components of an OLTP application:

®* NonStop™ TS/MP includes the transaction monitor (PATHMON), the
command interpreter for management (PATHCOM), and the means for
interprocess communication.

® Pathway/iTS provides a multithreaded terminal control process (TCP) for
communication with terminals, including fault tolerance and transaction
protection.

®* TheNonStop™ Transaction Manager/MP (NonStop™ TM/MP) product
provides transaction management.

* Compag makes valuable application development tools and utilities available for the
Pathway environment. These development tools and utilities can significantly
reduce the amount of programming time and effort required to generate a working
Pathway application.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-2

Introduction to TCP and Terminal Application Manageability
Programming

The Compag NonStop™ Remote Server Call/MP (RSC/MP) product facilitates
client/server computing, alowing workstation applications to access Pathway
servers. A number of packaged tools and utilities are commercially available for use
with RSC/MP.

® The Pathway environment helps you standardize program code. You can repeat and
reuse code; you do not have to write the same requester and server programs over
and over again. Thisability to reuse code saves development time.

® The Pathway environment allows you to isolate and test your requester and server
programs before adding them to arunning application. This capability isimportant
because coding errors are difficult, time-consuming, and expensive to find after an
application is put into production.

® OLTP products that are compatible with the Pathway environment are available
from many third-party vendors.

In addition to making initial development faster and easier, the structured Pathway
environment allows you to implement enhancements and devel op new applications by
simply adding new requesters, sharing existing servers, or adding new serversto the
existing application. You can use code modulesin the existing application as templates
for new modules in the modified or new application.

M anageability

Online transaction processing operations present a dynamic environment in which
hundreds of different transactions—from disparate locations and many different 1/0
devices—can be entered concurrently and processed within seconds. To process
hundreds of transactions, thousands to millions more application program instructions
must be executed. It iscritical that you be able to control and monitor such a complex
processing environment.

To control and monitor your Pathway environment—as well as ssimplify the task of
system management—NonStop™ TS/MP provides the following:

e A PATHMON process, which provides a single point of control over your OLTP
applications and operations

® A choice of two different system management interfaces. the interactive
PATHCOM interface and the Subsystem Programmatic Interface (SPI)

e Status and error reporting capabilities, provided through alog file and through the
Event Management Service (EMYS)

Because NonStop™ TS/MP provides these processes and capabilities, you do not have
to spend the time and money to devel op, test, and implement comparable mechanisms.

For more information about the PATHMON process, the management interfaces, and
status and error reporting capabilities in the Pathway environment, refer to the
NonSop™ TSMP System Management Manual, the Compag NonStop™ Pathway/i TS
System Management Manual, the NonStop™ TS/MP Management Programming
Manual, and the Compag NonStop™ Pathway/i TS Management Programming Manual.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-3

Introduction to TCP and Terminal Application Data Integrity
Programming

Data Integrity

If your database is corrupted by a hardware or software failure, you might need weeks to
isolate and then correct the problem. Because an inaccessible or inconsi stent database
can have a dramatic, adverse effect on business operations, the Transaction Management
Facility (TMF) subsystem, provided in the NonStop™ TM/MP product, was developed
asaway of ensuring database consistency. The TMF subsystem, which works with
NonStop™ TS/MP, protects the entire database from catastrophic system failures by
maintaining an audit trail of database changes (that is, transactions); an audit trail is also
commonly known as atransaction log. You can use the audit trail to rebuild the
database in the event of a hardware or software failure.

The design of Pathway servers supports the integrity of individual transactions and
therefore transaction processing protection as awhole. Because the requester/server
model allows a clear division of processing functions, application programmers can
code each server program to handle a specific set of transaction types. for example,
checking an account balance, entering a new customer, or updating the parts inventory.
The server processes service their transactions by performing the same set of tasks over
and over again. Inthisway, avalid transaction is defined as a specific set of tasks both
by the requester program and within the server logic.

If for any reason a server is unable to complete all tasks involved in processing a
transaction, it can abort the transaction and thereby maintain the transaction’s integrity.
The server does not have to wait for the requester to abort the transaction.

Fault Tolerance

Because OLTP systems automate core business operations and deliver key business
services, companies depend on OLTP applications to stay up and running—even if a
hardware or software component fails.

NonStop™ Himalaya systems, which are specifically intended for online transaction
processing, are designed to remain continuously available during the hours when
transactions are being entered and businessis being conducted. Typically, a NonStop™
Himalaya system can continue processing despite the failure of any single software or
hardware component within that system. This ability is referred to as fault tolerance.

In the Pathway enviroment, automatic fault tolerance (that is, fault tolerance that does
not require any additional programming effort on your part) is provided by the use of
process pairs and the actions of the PATHMON process, the TMF subsystem, and the
terminal control process (TCP).

In the Guardian operating environment, the functions and tasks of an application are
performed by processes, which are running programs. A process pair consists of a
primary process, which does some specific function in the overall work of the
application, and a secondary (backup) process, which remains ready to take over if the
primary process fails. During processing, the primary process keeps the backup process
informed of what it is doing (for example, sending a request) by means of special
interprocess messages, in an activity called checkpointing. Through checkpointing, the
backup process has enough information to take over and continue if the primary process
fails.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-4

Introduction to TCP and Terminal Application Other Fundamentals of NonStop™ Himalaya
Programming Systems

Both the PATHMON process and the TCP can be configured as process pairs to support
Pathway applications. When the PATHMON process is configured as a process pair,
you are ensured the ability to control and monitor OLTP system operation even if the
primary PATHMON process fails. When a TCP is configured as a process pair and the
primary TCP fails, terminals controlled by the TCP can still be used.

Pathway server classes provide additional fault tolerance by allowing requeststo be
rerouted to surviving server processes in a server classif one server processfails.

Besides process pairs and server classes, fault tolerance in a Pathway application is
ensured by the PATHMON process, the TCP, and the TMF subsystem. Using
information stored in the PATHMON configuration file, the PATHMON process
automatically restarts processes at their initialization level after afailure, allowing these
processes to resume work immediately.

For requesters written in SCREEN COBOL that use the TMF subsystem, the TCP
automatically restarts processing at the transaction boundary (for example, at the
BEGIN-TRANSACTION statement) after afailure. In addition to restarting processing,
the TCP directs the TMF subsystem to back out any incomplete or partial transaction
and restore the database to its pre-failure state of consistency. By both restarting
processing at the transaction boundary and directing the TMF subsystem to recover a
transaction, the TCP ensures that the application and the database are synchronized and
ready to continue processing.

Other Fundamentals of NonStop™ Himalaya Systems

Besides dataintegrity and fault tolerance, the Pathway environment also provides the
high performance and low cost, system security, scalability, and distributed processing
of NonStop™ Himalaya systems.

High Performance and Low Cost

The more transactions your system can process (preferably without degrading response
time), the lower the cost of each transaction. The Pathway environment supports fast
response time and high system throughput by allowing:

* Component processesin a Pathway application (for example, requester and server
processes) to reside and execute concurrently in different processors of amulti-CPU
system or even anetwork. Thisis called multiprocessing.

® More than one Pathway application to run in aNonStop™ Himalaya system.

* More than one requester program to execute in the TCP at the sametime. Thisis
called multithreading. Multithreading permits the processing of multiple and
different transactions concurrently and permits multiple users to perform similar
tasks—for example, order entry—simultaneously.

The Pathway environment also supports fast response time and high system throughput
by allowing the replication of processes and programs and the distribution of processes.
For example:

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-5

Introduction to TCP and Terminal Application Other Fundamentals of NonStop™ Himalaya
Programming Systems

® The PATHMON process can dynamically create additional copies of server
processes at times of peak demand and delete the additional servers when activity
dows again.

® You can add copies of requester and server programs to your Pathway application to
maintain fast response time when the number of users or terminals increases.

® You can distribute processes such as TCPs and servers close to the resources they
manage, reducing interprocess communication time within a network.

® You can distribute requesters and serversto less active processors if peak activity on
a particular processor is affecting throughput or response time.

System Security

The Guardian operating environment includes basic mechanisms for controlling access
to files, whether they are datafiles or program files. Because NonStop™ TS/MP and
Pathway/i TS run in the Guardian operating environment, Guardian system security
parameters also apply to Pathway users and processes. In addition, you can supplement
the security features of the Guardian environment with the Safeguard product, which
provides authentication, authorization, and auditing capabilities for Guardian files.

Scalability

Your organization must be able to expand its transaction processing system as its
operations evolve and its technical requirements change. NonStop™ Himalaya systems
are expressly designed to support incremental, modular expansion, allowing you to
increase the size and processing power of your transaction processing system by:

® Adding hardware and application resources to your existing system

® Linking individual Pathway applicationsinto a single network or adding more
Pathway applications to an existing network

® Supporting an open systems architecture in which standards-based networks as well
as devices and systems from other vendors can be connected to your NonStop™
Himal aya system

Distributed Processing

Data communi cations technology allows organizations to extend their online operations
over long distances to form global networks and to support distributed processing. The
Pathway environment, in conjunction with the Compag NonStop™ Kernel operating
system, allows you to distribute application processes within a single system.
Additionally, NonStop™ TS/MP, NonStop™ TM/MP, and Pathway/i TS, in conjunction
with the Expand networking software, allow you to spread processes, data, and
transactions across a network of NonStop™ Himalaya systems. The coordination of
transactions among application servers residing within an Expand network and possibly
accessing different resource managers (Compagq NonSop™ SQL/MP and Enscribe) is
known as distributed transaction processing (DTP).

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-6

Introduction to TCP and Terminal Application Pathway Applications
Programming

Pathway Applications

Pathway applications consist of two types of programs. requester programs and server
programs. Thisdesign allows application logic to be distributed near the resources it
manages. For example, presentation services are located near terminal devicesor
workstations; database logic resides in server programs near that database. Requesters
and servers communicate by using the Guardian file system or the message system that
is part of the NonStop™ Kernel.

Usersinteract with your application by using devices and processes controlled by your
requester programs. Often these devices are terminals through which the users enter and
retrieve transaction data. They might also, however, be intelligent devices such as
personal computers, workstations, point-of-sale devices, or automatic teller machines
(ATMs). Or, they might be Guardian processes that provide transaction input from a
file or other batch medium.

Server processes receive requests from requester processes to access a database to add,
retrieve, or modify information. Server processes process request messages and send
reply messages with the results of the work on the database.

Serversand Server Classes

You can write Pathway server programsin C, C++, COBOLS85, pTAL, TAL,
FORTRAN, or Pascal in the Guardian environment. Alternatively, you can write
Pathway server programsin C or COBOL85 in the Compag NonSop™ Kernel Open
System Services (OSS) environment; you must program such serversto read the
Guardian $RECEIVE file as described in the Open System Services Programmer’s
Guide. In both cases, you configure and manage the servers using the PATHCOM
interactive interface or the Pathway management programming interface (based on the
Subsystem Programmatic Interface, or SPI) in the Guardian environment.

The same server programs, whether devel oped in the Guardian environment or in the
OSS environment, can be used with severa different requester and client interfaces.
These interfaces include SCREEN COBOL, the Pathsend procedures, and the RSC/MP
interface.

The Pathway environment provides the feature of server classes. A server classisa
collection of replicated Pathway server processes. All server processesin aserver class
provide the same set of functions; that is, they execute the same program.

Server Processes

Server processes provide the following benefits:

® Server processes help ensure transaction integrity and, therefore, the integrity of the
database.

® Server code can be reused by many requester programs, and you can separate
presentation services from database functions.

® You can control which transactions can be performed on your node. You can
control the logic of the servers, database names, disk names, and so on.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-7

Introduction to TCP and Terminal Application Requesters
Programming

¢ [Indistributed environments, server processes provide high performance by allowing
you to use remote serversinstead of performing multiple remote I/O operations,
placing transaction processing close to system resources.

Server Classes
Server classes provide the following benefits:

® You can minimize use of system resources—for example, processes and file
opens—because server classes are shared and highly utilized.

® You can maximize performance because server classes allow multiple copies of
server processe to run concurrently in multiple CPUs,

® Based on configuration settings determined by the system manager or operator, the
PATHMON process can dynamically create additional server processes within the
server class to maintain acceptable throughput as the workload increases.

* By temporarily freezing and stopping the server class and changing configuration
parameters, the system manager or operator can adjust the number of serversthat are
active at any one time to suit response-time requirements.

® The system manager or operator can balance the workload over multiple processes
and across multiple CPUs, which provides fault tolerance in addition to load
balancing—if a CPU fails, the server classis still available.

Requesters

The Pathway application programming environment provides two programming
interfaces for requesters:

® The Pathsend application program interface (API), provided in the
NonStop™ TS/MP product

® The SCREEN COBOL language, provided in the Pathway/i TS product

Requesters written using these two interfaces are briefly described in the following
paragraphs. In addition, other Compag products are available to assist you in writing
requesters and clients that communicate with Pathway servers. These products include
the RSC/MP product for workstation clients and the Extended General Device Support
(GDSX) product for front-end and back-end processes.

Section 2, Designing Your Application, provides additional information about how
Pathsend requesters, SCREEN COBOL requesters, RSC/MP clients, and GDSX
processes can be used in Pathway applications.

Pathsend Requesters

The Pathsend procedure calls and the LINKMON process allow Guardian processesto
access Pathway server classes. The Pathsend procedures bring the benefits of Pathway
server classesto awide range of requesters, providing flexibility in application design.
They also provide high performance for requesters that do not need a complex,

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-8

Introduction to TCP and Terminal Application Requesters
Programming

multithreaded interface to terminals or intelligent devices. Finally, they provide support
for both context-free and context-sensitive servers.

Pathsend requesters are described in the NonStop™ TSMP Pathsend and Server
Programming Manual.

SCREEN COBOL Requesters

SCREEN COBOL requesters, which are compiled by the SCREEN COBOL compiler
and then interpreted and executed by the terminal control process (TCP), provide ease of
programming if you need to handle large numbers of terminals or intelligent devices or
If you need screen-presentation services. The TCP and the SCREEN COBOL language
produce a high-quality, manageable application. The TCP provides multithreading of
requesters, fault tolerance, terminal device configuration, and operations management so
that you do not need to program these features in your application.

The TCP provides the following features:
® Fault tolerance (when used in combination with TMF)

* Automatic retry of I/O operationsto a server process if the primary process of a
server process pair fails

® Transaction protection through TMF
* Multithreading

* Interpretation of compiled pseudocode for programs written in the SCREEN
COBOL language, which offers a simple single-threaded programming environment
and a screen management system to drive IBM 3270 terminals and the 6530 family
of terminals (652x series, 653x series, and 654x series)

® Special syntax to facilitate message assembly, disassembly, and processing
(Pathway intelligent device support, or IDS)

® Accessto server classes
® Unsolicited message processing (UMP) support

* Management interfaces (the PATHCOM process and the Subsystem Programmatic
Interface, or SPI) for TCP configuration and management, terminal configuration
and management, process management, error logging, and so on

You can use an Extended General Device Support (GDSX) process as a front-end
process to the TCP and SCREEN COBOL requesters to communicate with devices not
directly supported by the TCP. Use of the GDSX product is described in the Extended
General Device Support (GDSX) Manual.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-9

Introduction to TCP and Terminal Application Client/Server Capabilities
Programming

Client/Server Capabilities

The RSC/MP product brings client/server capabilities to the Pathway environment by
allowing you to move requester functions to a workstation. This product allows client
programs residing on a workstation to access Pathway server classesin any of three
different ways:

® Through a Pathsend requester provided by RSC/MP, which works with the
LINKMON process

® Through a specia intelligent device support (IDS) requester supplied with RSC/MP,
which works with the terminal control process (TCP)

® Through an IDS requester that you develop yourself in the SCREEN COBOL
language; this requester works with the TCP

RSC/MP also allows requesters to access Guardian processes directly. To facilitate
access to servers and Guardian processes, RSC/MP consists of multiple components
within both the workstation and NonStop™ Himalaya system environments.

For further information about RSC/MP, refer to the Compag NonStop™ Remote Server
Call (RSC/MP) Programming Manual.

Other Transaction Processing Environments

The NonStop™ TS/MP product serves as the foundation for open transaction processing
on NonStop™ Himalaya systems. In addition to the Pathway environment, NonStop™
TS/MP supports the NonStop™ TUXEDO transaction processing system. The
NonStop™ TUXEDO system allows you to develop TUXEDO transaction processing
applications to run on NonStop™ Himalaya systems.

You can develop applications that use a combination of modules from the NonStop™
TUXEDO environment and the Pathway environment. In particular, you can write a
SCREEN COBOL requester that indirectly invokes the services of a NonStop™
TUXEDO server by using the Pathway to TUXEDO trandlation server provided with the
NonStop™ TUXEDO product. For more information about this translation server, refer
to the NonSop™ TUXEDO System Pathway Translation Servers Manual.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-10

Introduction to TCP and Terminal Application Development Tools and Utilities
Programming

Development Tools and Utilities

When you are writing requester and server programs for your Pathway application, a
variety of program development tools and utilities are available to you. These tools and
utilities allow you to shorten the amount of time it takes to code, debug, and test your
programs.

Programming L anguages and Related Tools

You can write application programs for the TNS environment on NonStop™ Himalaya
systemsin C, C++, COBOL85, SCREEN COBOL, Transaction Application Language

(TAL), FORTRAN, and Pascal. You use the Binder product to bind TNS object files for
creating executable object files.

You can write application programs for the TNS/R native environment in C, C++, and
portable Transaction Application Language (pTAL). You use the native nl d utility for
linking TNS/R native object files and for creating executable object files.

For D40 and later releases, you must use the pTAL compiler and nl d utility for
compiling and linking your TCP user-conversion procedures.

The Inspect Symbolic Debugger

The Compaq Inspect product is the symbolic program debugging tool for NonStop™
Himalaya systems. You can use it interactively to examine and modify the execution of
Guardian processes (for example, Pathsend requesters and Pathway servers) aswell as
SCREEN COBOL requesters. Anonline help facility is available for al Inspect
commands and topics.

Using the Inspect product in a Pathway environment requires the use of two terminals or
aterminal emulator with windowing capability. One terminal or window acts as the
application terminal, while the second terminal or window acts as a command or Inspect
terminal.

Because SCREEN COBOL programs are interpreted by the TCP and therefore are not
running directly as Guardian processes, you use the TCP for the Inspect session. To use
the TCP for an Inspect session, you set a TCP configuration parameter to support the
Inspect product and then issue a PATHCOM command to initiate the Inspect session.

The SCREEN COBOL Utility Program (SCUP)

The SCREEN COBOL Utility Program (SCUP) provides a means for maintaining
libraries of SCREEN COBOL pseudocode. SCUP also provides a means for obtaining
information about certain aspects of the code, such as versions and compile dates and
times, data sizes, screen sizes, programs called, and code sizes.

SCUP alows you to operate on the SCREEN COBOL object library files without
recompiling the source programs. In addition, SCUP allows you to:

® Display information about the library files or about programsin a SCREEN COBOL
library

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-11

Introduction to TCP and Terminal Application The Pathmaker Application Generator
Programming

e Control access by aTCP to programsin a SCREEN COBOL library

® Copy programsfrom one SCREEN COBOL library to another

® Deéelete programs from a SCREEN COBOL library

® Reclaim file space by compressing SCREEN COBOL library files

e Convert agroup of programsin a SCREEN COBOL library into a web client

SCUP is described in the Compag NonStop™ Pathway/i TS SCUP Reference Manual.

The Pathmaker Application Generator

The Pathmaker product helps you create Pathway applications consisting of requester
programs written in SCREEN COBOL and server programswritten in C or COBOL 85.
To create applications with the Pathmaker product, you:

* Enter information about your application into a series of screen-based entry forms,
which the Pathmaker product then stores in a catalog

o Usethetext editor TEDIT to create source files containing C or COBOL 85 service
code

At your command, the Pathmaker product uses the information from the catalog and the
TEDIT fileto generate SCREEN COBOL requester code, C or COBOL 85 server code,
and command files to configure and start the finished Pathway environment for testing.

The Pathmaker product simplifies the creation of Pathway applications by:

® Generating application code in a uniform structure for all requesters and servers, to
help ssimplify maintenance and modification

® Producing program statements for tasks that are specific to Pathway

e Automatically generating TMF statements in your requester programs when you
indicate that you want your programs to have TMF protection

® Providing acentral location for most application information
® Creating error-handling code for the most commonly encountered errors

® Letting you simulate application screens and navigate from one application screen to
another before you write asingle line of code

Applications devel oped with the Pathmaker product can access data from databases
managed by either the NonStop™ SQL/MP relational database management system or
the Enscribe database record manager. If you are using Pathsend requesters, or clients
that use RSC/MP, you can use the Pathmaker tool to create prototype servers.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-12

Introduction to TCP and Terminal Application The Enable Product
Programming

The Enable Product

The Enable product, used with the Enscribe database record manager, is atool that
allows you to develop simple data management applications without using a
conventional programming language. You can use the Enable product to generate
SCREEN COBOL requester programs that use a generic server program provided with
the Enable product to record, maintain, or retrieve information stored within asingle
database file or multiple database files. The Enable application performs these database
operations on a record-by-record basis and on one database file at atime. Finally, you
can use the Enable product to produce a PATHCOM command file to execute the
Enable application in the Pathway environment.

The Enable product reduces the amount of time needed to develop asimple application,
thereby decreasing application development costs. The Enable product, although not as
powerful as the Pathmaker product, allows you to:

e Control the format of the screen displayed by the application

¢ Limit the types of operations (delete, insert, read, or update) that the application can
perform on a database file

* Define amethod that the application uses to ensure the integrity of a database file

Although applications generated by the Enable product may lack the sophistication of
custom-designed application programs (Enable applications cannot perform either
mathematical calculations or ensure database consistency), you can quickly generate
Enable applications to meet immediate processing needs. Among its many uses, you
can use an Enable application as a prototype for a more complex application, adata
entry program, or atool to maintain asmall database. Enable applications can be readily
integrated into the Pathway environment.

Client/Server Development Tools

As mentioned earlier, the RSC/MP product facilitates client/server computing, alowing
workstation applications to access Pathway servers. A number of packaged tools and
utilities are commercialy available for use with RSC/MP.

Transaction Processing Scenarios

This subsection provides two examples of how transactions from SCREEN COBOL
requesters are processed. The two scenarios illustrate the foll owing:

® A transaction from a Pathway/i TS terminal to a Pathway server
* A transaction from an intelligent device to a Pathway server

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-13

Introduction to TCP and Terminal Application Transaction From a Terminal
Programming

Transaction From a Terminal

Figure 1-1 illustrates the path of atransaction from a Pathway/iTS terminal, which is

controlled by a SCREEN COBOL program executed by the TCP, to a Pathway server.
For this example, consider aclerk at an order entry office who must update customer

information for account number 1234567.

1.

10.
11.

12.

13.

The clerk displays the order screen, a dataentry screen, on aterminal. To the
Pathway application, the terminal is defined as object TERM-1.

The clerk enters the account number in the appropriate field and requests an update
to customer information by pressing a function key.

The requester, which isthe TCP interpreting a SCREEN COBOL program, checks
the input data, confirming that the account number has no more than seven
characters. The requester then displays a new screen showing the customer
information as it is currently recorded in the database.

The clerk enters the new information (for example, anew customer address) in the
appropriate field and requests that the information be updated by pressing afunction

key.

The requester checks the input data for validity and confirms that there are no input
errors.

The SCREEN COBOL program formats a request message containing the name of
the server class and the data needed by the server to completeitswork. The TMF
transaction begins.

The SCREEN COBOL program executes a SEND statement, directing the request
message to be sent to the specified server class.

If the TCP does not have a link to the specified server class, the TCP asks the
PATHMON processfor alink to a server process in the server class. The
PATHMON process replies that a server processis available. If the TCP aready
has alink to the server class, this step is not performed.

The TCP forwards the request to the server process by using the interproces
communication mechanism of the NonStop™ Kernel operating system.

The server process receives and reads the request message.

Executing NonStop™ SQL/MP statements in its program, the server process
accesses the database, using the account number as the key, and updates the
specified customer information.

The server process formats a reply message verifying the database update and
replies to the TCP using the interproces communication mechanism of the
NonStop™ Kernel operating system.

The TCP receives, interprets, and then forwards the reply message to TERM-1. The
TMF transaction ends.The SCREEN COBOL requester program displays a message
on the terminal screen verifying that the specified information has been updated.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-14

Introduction to TCP and Terminal Application Transaction From an Intelligent Device
Programming

Figure 1-1. Example of a Pathway/iTS Terminal Requester

NonStop TM Himalaya System

Pathmon Environment

Server Class

1)

NonStop
SQL/MP

Account
Database

CDT 011CDD

Transaction From an Intelligent Device

Figure 1-2 illustrates the path of atransaction from an intelligent device, communicating
with a SCREEN COBOL program that uses the IDS facility of the TCP, to a Pathway
server. For thisexample, consider again a clerk at an order entry office. Using a
workstation, the clerk must update customer information for account number 2345678.

1. Theclerk displays the order screen, a data entry screen, on aworkstation. To the
Pathway application, the terminal is defined as object TERM-1.

2. The clerk enters the account number in the appropriate field and requests an update
to customer information by pressing a function key.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-15

Introduction to TCP and Terminal Application Transaction From an Intelligent Device
Programming

3.

10.
11.

12.

13.

14.

The workstation application checks the input data, confirming that the account
number entered has no more than seven characters. The workstation application
then displays a new screen showing the customer information asit is currently
recorded in the database.

The clerk enters the new information (for example, anew customer telephone
number) in the appropriate field and requests that the information be updated by
pressing a function key.

The requester checks the input data for validity and confirms that there are no input
errors.

The workstation application formats a request message containing the name of the
server class and the data needed by the server to complete itswork. The workstation
application—with the aid of user-developed conversion procedures—converts its
datato SCREEN COBOL format, a representation acceptable to the TCP,

The workstation application executes a SEND statement, directing the request
message to be sent to the specified server class. A user-developed communications
subsystem forwards the request to the TCP using a supported protocol. The IDS
requester, which isthe TCP interpreting a SCREEN COBOL program, receives the
request message as part of an IDS SEND MESSAGE statement. The TMF
transaction begins.

If the TCP does not have a link to the specified server class, the TCP asks the
PATHMON processfor alink to a server process in the server class. The
PATHMON process replies that a server processis available. If the TCP aready
has alink to the server class, this step is not performed.

The TCP forwards the request to the server process by using the interproces
communication mechanism of the NonStop™ Kernel operating system.

The server process receives and reads the request message.

Executing NonStop™ SQL/MP statements in its program, the server process
accesses the database, using the account number as the key, and updates the
specified customer information.

The server process formats a reply message verifying the database update and
replies to the TCP using the interproces communication mechanism of the
NonStop™ Kernel operating system.

The TCP receives, interprets, and then forwards the reply message to TERM-1 using
the IDS SEND MESSAGE statement. The TMF transaction ends.

The workstation application displays a message on the workstation screen verifying
that the specified information has been updated.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-16

Introduction to TCP and Terminal Application Transaction From an Intelligent Device
Programming

Figure 1-2. Example of an IDS Requester

NonStop TM Himalaya System

Pathmon Environment

Server Class

Request

= EERE (oo

TERM-1 Reply

NonStopTM
SQL/MP

Account
Database

CDT 012CDD

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-17

Introduction to TCP and Terminal Application Transaction From an Intelligent Device
Programming

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
1-18

% Designing Your Application

To develop afunctioning Pathway application, you must identify the individual
transactions in your business operations, design and build the application database, and
design and code requester programs and server programs. This section describes the
design of transactions and databases for Pathway applications and the design of
requester and server programs.

To explain these application design tasks, this section uses as an example an application
that processes sales orders for a distributorship. The example shows how the Pathway
environment can be used to create an OLTP application that supports the
distributorship’s order-processing operations.

The distributorship in the example has three offices linked by telecommunications:

* \CORPisanetwork node at corporate headquarters where the purchasing, accounts
receivable, and accounts payable functions are managed.

* \WHSisanetwork node in awarehouse where the inventory, shipping, and
receiving functions are performed.

¢ \REG isanetwork nodein asales office that is responsible for processing all
customer orders in a particular geographic region. Order-processing functions
consist of entering orders as input and maintaining records of each order. To
perform these two functions, the order processing group:

® Checkswith inventory control to determine if items to be ordered are in stock

® Sendsinventory control shipping and ordered-items information about each
order

® Gets customer credit information from accounts receivable

® Sends billing information to accounts receivable

® Answers customer inquiries about order status

® Records complete information about each order in the database

Designing Transactions

Thefirst step in developing a Pathway application is to identify and define the
transactions that your application will process. To do this, you isolate the business tasks
you plan to automate, analyze the flow of information within those tasks, list the
transactions that result from the analysis, and then identify the various components of
the transactions. After these tasks are performed, you protect each transaction, and
therefore the integrity and consistency of the database, with the Transaction
Management Facility (TMF) subsystem.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-1

Designing Your Application Analyzing Data Flow

Analyzing Data Flow

Analyzing the flow of data involves identifying what information isrequired for a
business task, determining the order in which that information is required, and
specifying how the information isto be handled. To automate the order-processing
tasks of the previously described distributorship, for example, you could analyze the
flow of information asfollows:

1. Accept the customer’s identification number, arequested delivery date for the order,
and shipping instructions such as the delivery address.

2. Check the customer’s identification number to ensure that the customer is defined in
the \REG database; get the customer’s name and address from the \REG database;
and get anew order identification from the \REG database.

Accept alist of order items along with the requested quantity for each order item.

Check the current quantity available, in the database on \WHS, of each ordered item
to ensure that sufficient quantity existsto fill the order.

5. Accept any specia instructions, such as back-ordering out-of-stock items, required
to process the order.

6. Calculatethe total order cost; get the current customer balance and credit limit from
the \REG database; add the total order cost to current customer balance; and ensure
that the new balance does not exceed the customer’s credit limit.

Ask the customer to confirm the order.

After the customer has confirmed the order, subtract the quantity ordered from the
current quantity available, in the \WHS database, for each ordered item.

9. Add thetota order cost to the customer’s current balance in the \REG database.
10. Record the order information in the \REG database.

11. Transmit the order information in the accounts receivable files to the \CORP
database and record the information in the database.

12. Record the order shipping information in inventory files on the \WHS database.

Assume that your analysis of the previous flow of information shows that only two
transactions need to be created to support order processing: an Add New Customers
transaction and an Enter Sales transaction. The Enter Sales transaction, which accepts
and records al the information associated with a customer order, isthe example used in
the rest of this section.

The data flow outlined in the previous stepsisillustrated in Figure 2-1.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-2

Designing Your Application

Analyzing Data Flow

Figure 2-1. Data Flow for a Business Task

1. 2.
, N
Accept: — Check customer ID. \REG
—»| — Customer ID - . — Get customer's name ™~
— quu.estgd shlpplng date and address. Information
— Shipping instructions — Get order ID. Order ID
3. 4. /\
Accept: — Check quantity available \WHS
41— — List of.ordered itgms — for delivery of each — Inventory
— Quantity of each item ordered item. Data
5. 6.
Accept: — Calculate order cost.
— Get customer balance
| I »| — Back-orderinformation | g and credit limit. —=| Customer
bl — Subtract order cost from
balance and check limit.
7. 8.
Accept:
— Subtract quantity ordered Inventory
i : > f i Data/
— Confirmation from quantity available.
Shipping
9. 10. /\
\REG
— Update customer balance. | 5| Customer
— Record order data. Credit Data/
I \Qrder Datg/
»| — Record order information. L‘ ACCQUMS
Receivable
\._ Data _/
12.
L] — Record order information. Inventory
Data/
Shipping

CDT 021CDD

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-3

Designing Your Application Identifying Transaction Components

| dentifying Transaction Components

After you have identified the Enter Sales transaction for the order-processing
application, you list the functions performed by the transaction and group them either
into data collection and validation operations or into database update operations. For
example, the key functions performed by the Enter Sales transaction during data
collection and validation are:

® Assembling information for the order header, including:

Obtaining the order-1D

Accepting the customer-1D
Accepting the requested delivery date
Accepting shipping instructions
Checking the customer-1D

Obtaining the customer’s name and address from the database

® Assembling the order, including:

Accepting the list of order items and the quantity of each item
Checking the current quantity available for each item ordered
Accepting special instructions

Calculating total order cost

Obtaining the customer’s balance and credit limit from the database

Adding the total cost to the customer’s balance and ensuring that it does not
exceed the credit limit

The key function performed by the Enter Sales transaction during database update
operations is order completion. The order completion function includes:

® Subtracting the quantity ordered from the current quantity available for each ordered
item

® Adding the total order cost to the customer’s current account balance

® Recording the order in the database

® Recording the order invoice in the accounts receivable files

® Recording order shipping information in the inventory files

The relationships of the various functions for the Enter Sales transaction are illustrated
in Figure 2-2. The dark arrows in the figure show the sequence of actions from Step 1
through Step 3. The lighter arrows show the flow of information.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

2-4

Designing Your Application

Identifying Transaction Components

Figure 2-2. Relationships Between Transaction Functions

Customer-ID

Order-ID

D

N

"‘

Customer-Details

Assemble

_Customer Information .

Order Header

Order-ID

N
N

Customer ’

Item-1D, Quantity

Header

Item Detail

Customer Balance

Customer
Credit

BT

“Available
Accep;L\ Item Qualtity Available |

Quantity

)

B 1 Display Item Details ltems Order

|

B , I
Quantity Ordered
‘Order Cost
.
Display Totals
i Complete Order Totals
“Done” Order [4]
Shipping Request Ship-ID
I/IC
Invoice Request Invoice-ID
AR
Legend

Assemble information for order header; display at terminal and add to database;

optionally change customer information.
Accept items in order, check item availability and customer credit; display item details

at terminal and add to database.
Display totals at terminal and get confirmation; update item quantity and customer balance;

add totals to database; inform related applications about order.
Later, when order is shipped and customer billed, add shipping and invoice numbers to

database.

CDT 022CDD

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

2-5

Designing Your Application Protecting Transactions

Protecting Transactions

After listing and grouping the components of the Enter Sales transaction, you protect the
integrity of each transaction, and ultimately the consistency of the database, with the
TMF subsystem. The following pages outline how to integrate the TMF subsystem with
your business transactions.

For details about TMF programming in SCREEN COBOL requesters, see Section 5,
Managing Transactions With the TMF Subsystem For information about the overall
features of the TMF subsystem, including database file recovery and audit trails, refer to
the Introduction to NonStop™ Transaction Processing.

Defining TMF Transactions

From a systems perspective, a transaction includes al the steps necessary to transform a
database from one consistent state to another. A TMF transaction must be constructed
asalogical unit of work: thatis, all parts of atransaction, which usually consists of
multiple operations, must be handled as asingle entity. If any partsof a TMF
transaction are not successfully completed or applied to a database, then none of the
transaction parts are applied to the database. By forcing all components of atransaction
to be handled as a single unit of work, the TMF subsystem prevents inaccurate or partial
updates to the database and protects database consistency.

At the application level, a TMF transaction is defined by special procedure calls or
statements that specify the beginning and end of atransaction. For example, in
SCREEN COBOL, atransaction begins with a BEGIN-TRANSACTION statement and
ends with an END-TRANSACTION or ABORT-TRANSACTION statement. The
procedure calls that define TMF transactions act as brackets; that is, the statements are
placed before and after the add record, update record, and delete record proceduresin
your requester program.

Database Consistency and Concurrency

Potentialy, all operations that ater the database are candidates for TMF protection. But
before you can apply TMF protection to your transactions, you need to determine:

* When to begin a TMF transaction

* Whether al of the database update operations have to happen together in the same
TMF transaction or whether they can be parts of different transactions

To answer these issues, you have to establish your criteriafor database consistency and
decide how much processing concurrency you can achieve in the application. For
example, the Enter Sales transaction affects several pieces of information: order data,
inventory data, shipping data, customer credit, and receivables. Upon examination of
thistransaction, you will seethat it is possible to make one general assertion about order
processing and about the Enter Sales transaction in particular: An order is not complete
until every piece of information associated with the order is recorded in the \REG,
\CORP, and \WHS databases.

To illustrate this assertion, consider a situation where a transaction fails after it changes
the customer’s bal ance, records the order information, and records the order invoice, but
before it records the shipping information. In this scenario, the customer isgoing to be

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-6

Designing Your Application Protecting Transactions

billed for an order never received. Consequently, your basic criterion for database
consistency isasfollows. all database updates that are related to the order must be part
of one TMF transaction.

Any record modified or inserted by a database operation that is protected by the TMF
subsystem is locked and unavailable to other transactions until the initial transaction
ends successfully. Thistype of locking protocol means that you always have a design
tradeoff—consistency versus concurrency—with respect to locking records that are
actively accessed by the application. If records are locked too early, other transactions
cannot access them and the application’s concurrency (its ability to process many
transactions at the same time) suffers.

Asthe Enter Sales transaction demonstrates, al of the data collection and validation
operations can happen before you begin the TMF transaction—although some
revalidation may be done again as part of the transaction. Assembling the order header
and assembling the order involve reading records in the database but not changing the
records. Therest of the operations change the database and should all be done within a
TMF transaction.

Asageneral rule, you should design the application’s transactions to maintain
consistency under all circumstances. After the application isinstalled and running
successfully, you can look for ways to improve its concurrency.

Aborting Transactions

If the requester or the server program detects a problem during the processing of a TMF
transaction, the requester or server causes the transaction to be aborted with a special
statement or procedure call (for example, an ABORT-TRANSACTION statement in a
SCREEN COBOL program). For requesters, the statement that aborts atransaction is
executed in lieu of the statement that ends a transaction; for example, in a SCREEN
COBOL program the requester either compl etes the transaction with an END-
TRANSACTION statement or causesit to be backed out, because of an error, with an
ABORT-TRANSACTION statement.

In the past, program designs typically assigned the task of aborting transactionsto
requesters. Current program design often assigns that task to servers. Servers abort
transactions and inform the requesters of those actions, thus ensuring protection of data.
The aborting of transactions by serversis described further under “Designing Server
Programs’ later in this section.

The TMF subsystem backs out aborted transactions by using information contained in
the TMF audit-trail files. For more information about transaction backout and audit-trail
files, refer to the NonSop™ TM/MP Application Programmer’s Guide.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-7

Designing Your Application Designing the Database

Designing the Database

The next step in developing a Pathway application isto design the database that will be
accessed and updated by the application. Designing the database, whichis ahighly
specialized activity typically performed by experienced database administrators,
involves:

® Precisdly identifying the meaning and use of the data asit existsin your business
and specifying the database files and records that will storethisdata. Thisstepis
referred to aslogical design.

® Choosing file types and keys for the records. Thisstep isreferred to as physical
design.

In addition to completing alogical and physical design of your database, you must also
select a database manager and ensure that your server programs can interface with that
database manager.

L ogical Design

During the logical design process, you determine which classes of data must be
maintained by your application and identify the relationships that exist between the
classes. Each class of data names something that the database will store information
about. For example, in an application that processes sales orders, or der s isaclass of
dataand or der - i t ens isarelationship between a particular order and the inventory
items within the order. These data classes and rel ationships generally become recordsin
files accessed by the application.

After specifying data classes, you list the attributes (data items) for each class of data.
For example, some of the attributesareor der - | D, cust - | D,and or der -t ot al .
These attributes become fields in the records of the database. After specifying attributes
for data classes, you diagram the relationships between each of thefiles in the database
and then normalize your database files. To normalizefilesisto ensure, at a minimum,
that:

® Thereare no repeating fields.
¢ Datais dependent on the entire key (a unique element) of afield.
¢ Datais dependent on nothing but the key.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-8

Designing Your Application Physical Design

Physical Design

You undertake the physical design of your database by selecting the appropriate file
types and record keys for each of the filesin the database. Whether you are using the
Compag NonStop™ Structured Query Language/MP (SQL/MP) software or the
Enscribe software as your database management system (DBMS), these file types can be
classified as key-sequenced, relative, entry-sequenced, or unstructured:

Key-Sequenced Each record in the file has a primary key and up to 255 alternate
keys. The primary key isafield or combination of fields within
the record.

Relative Each record in the file has a unique record number, which isthe
primary key, and can have up to 255 alternate keys. The record
number is a unique value that corresponds to the physical location
of the record within thefile.

Entry-Sequenced Each record in the file has a unique record number and can have
up to 255 alternate keys. The record number correspondsto the
order in which arecord is stored in the file. The primary key is
the relative byte address of the record.

Unstructured Each record in the file has a unique record number that can be
used asthe primary key. Alternate keys are not supported.

Although the file type you choose depends on your application requirements, generally
you should choose key-sequenced files for a database that will be accessed and
maintained by a Pathway application. Key-sequenced files provide more flexibility than
the other file types.

Database M anagers

Databases supporting Pathway applications can run under either the NonStop™

SQL/MP relational database management system or the Enscribe database record
manager. Both of these products support the creation and use of large databases capable
of operating in local or distributed systems.

The NonStop™ SQL/MP product is both a database management system (DBMYS) for
production environments and a relational database management system (RDBMS) for
decision-making in an information-center environment. The NonStop™ SQL/MP
product allows you to think about and represent files in the database as a collection of
similarly structured lists. For more information about designing NonStop™ SQL/MP
databases, refer to the Compag NonSop™ SQL/MP Reference Manual.

The Enscribe database record manager provides arecord-at-a-time interface between
Pathway servers and your database. For more information about designing Enscribe
databases, refer to the Enscribe Programmer’s Guide.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-9

Designing Your Application Remote Duplicate Database Facility (RDF)

Remote Duplicate Database Facility (RDF)

If disaster recovery of your database is important, the Remote Duplicate Database
Facility (RDF) is available to maintain a copy of the database on aremote system. The
RDF product monitors database updates audited by the TMF subsystem and applies
those updates to the remote copy of the database. For more information about the RDF
product, refer to the Remote Duplicate Database Facility (RDF) System Management
Manual.

Designing Requester Programs

To facilitate the accessing of Pathway server classes from different transaction sources,
you can develop requester programs for a Pathway application that use any of the
following access approaches:

e SCREEN COBOL and the TCP

e SCREEN COBOL and the TCP with the intelligent device support (IDS) facility
® The Pathsend procedure calls

¢ The Compag NonSop™ Remote Server Call/MP (RSC/MP) product

® The Extended General Device Support (GDSX) product

In Table 2-1, key technical and business considerations are mapped to each way of
accessing Pathway servers. More information about each approach is provided
following the table.

Table 2-1. Considerationsfor Requester Programs

2

>

5 2

(0D) ()

_Q > 2 £ £

S 3 S =2 & 3 5§ 2 b5

28 S8 £ ©§ 2 © (%‘ =

Server Access 5= 22 Sg 5 8 3 s 2

Approach a5 BE sSsO T w £ E @
TCP X X X X X
TCPwithIDS X X X X X X

Pathsend X X X X
RSC/MP X X X X

GDSX X X X X X X

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-10

Designing Your Application SCREEN COBOL Requesters

SCREEN COBOL Requesters

Screen programs for Pathway terminals perform avariety of front-end functions for your
Pathway application and are typically written as single-threaded programs in the
SCREEN COBOL language. Thislanguage offers a simple programming environment
and screen-management system to drive 65xx terminals and IBM 3270 terminals.
SCREEN COBOL supports both conversational mode (for either block-mode or
conversational-mode terminals) and intelligent mode (for intelligent devices and
communications lines).

When you write a screen program in SCREEN COBOL, you can take advantage of the
features of the Compag NonStop™ Pathway/iTS TCP. As supplied by Compaq, the
TCP supports:

* Fault tolerance

®* TMF transactions

® Multitasking of single-threaded screen programs

® Accessto server processes with Pathway server classes
® Unsolicited message processing (UMP)

® System management interfaces (that is, PATHCOM or the Pathway management
programming interface)

SCREEN COBOL requester programs do not perform any file I/O operations except to
terminals and server classes. A filel/O operation to a server class, which isin the form
of arequest message, is initiated by the requester program by using the SCREEN
COBOL SEND statement.

Programming Tasks

Most Pathway applications comprise five types of screen program units that are linked
by some type of calling sequence. Each program unit allows the user to perform one
specific type of action. The program unit types are:

Logon Allows usersto gain accessto the application
Menu Allows usersto select applications or particular application functions

List-only Allows usersto select line items (for instance, an inventory item and its
price) for processing

Dataentry Allows usersto add, delete, and update specific data
Help Assists users in responding to application screens

Another type of program unit often used isarouter program. Thisis a special type of
program used to route communication (calls) between the other program units by using a
hierarchy called flat-tree design. This design facilitates random screen manipulation by
terminal users. A flat-tree design istypically two layers deep: thefirst layer isthe
router and the second layer consists of all the other programs.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-11

Designing Your Application SCREEN COBOL Requesters

As a programmer, your task isto create each required program unit. For each program
unit, you use the text editor TEDIT to create a screen program as a SCREEN COBOL
sourcefile. You then use the SCREEN COBOL compiler to read the source file and
create:

* A program label entry in the SCREEN COBOL library directory (*DIR)

® Pseudocode (code that isinterpreted by the TCP) in the SCREEN COBOL library
code file (*COD)

Once the pseudocode resides in * COD, it isimmediatel y usable by the TCP, which
reads programs from the library file, interprets them, and executes them on behalf of the
terminalslogically attached to the TCP. The SCREEN COBOL library files may
contain copies of many different screen programs.

Figure 2-3 illustrates the tasks and components involved in the creation of a SCREEN
COBOL requester program.

Figure 2-3. Creating SCREEN COBOL Requester Programs

POBJDIR

SCREEN

Source

Identification Division
Environment Division
Data Division
Procedure Division

CDT 023.CDD

Program Structure

The logon, menu, list-only, data entry, and help program units each consist of four
required divisions. These divisions are very similar to standard COBOL divisions,
except that the Data Division in a SCREEN COBOL program contains a section for
screen description and entry formatting, and there are no file descriptionsin a SCREEN
COBOL program because the requester does not access data files.

® Theldentification Division identifies the program unit to the SCREEN COBOL
compiler. It contains one required paragraph and five optional paragraphs.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-12

Designing Your Application SCREEN COBOL Requesters

® The Environment Division declares the operating environment of the program unit
and optionally allows modification of the TCP's error-reporting operations. It
contains one required section (the Configuration Section) and one optional section
(the Input-Output Section).

® The Data Division defines the program data structures by their format and usage.
Both the Working-Storage Section, which describes datalocal to the program, and
the Screen Section, which describes data displayed on and accepted from aterminal,
are required.

® The Procedure Division includes all the processing steps for the program. The steps
are organized into SCREEN COBOL statements and sentences and grouped into
sections, paragraphs, and procedures.

The example of a SCREEN COBOL program structure in Example 2-1 illustrates a
program unit containing the four required divisions previously described. This program
unit, which isin outline form, would handle data entry for the order-processing
appllcanon introduced at the begl nning of this section.

Note. The program in Example 2-1 illustrates program structure only; it is not a complete
program. For examples of complete, running SCREEN COBOL requester programs, refer to
the Compaqg NonStop™ Pathway/iTS SCREEN COBOL Reference Manual.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-13

Designing Your Application SCREEN COBOL Requesters

Example 2-1. Sample SCREEN COBOL Requester Program
Structure (page 1 of 2)

| DENTI FI CATI ON DI VI SI ON. Decl ares program unit nane.
PROGRAM | D. ORDER

ENVI RONVENT DI VI SI ON. Defines type of termnals
this programunit wll
OBJECT COVPUTER control .
TERM NAL | S T16-6530
SPECI AL NAMES. Def i nes speci al nanes for:
ENTER F1,. . . 1. Function key nanes
BRI GHT |'S BRI GHT 2. Video attributes
PROTECTED | S PROTECTED 3. Flowcontrol data

attri butes
DATA DI VI SI ON.

WORKI NG STORAGE SECTI ON. Decl ares structure of
01 W5- ORD- MSG server mnessages, variables
. passed to call ed program
units, and | ocal vari ables
used to manage screens and
server communi cation
01 SERVER- REQ FUNCTI ON- CODE

LI NKAGE SECTI ON. Decl ares structure of
01 LOGON-I NFO vari abl es passed from
. calling programunits.

SCREEN SECTI ON. Decl ares format of al
01 ORDER- SCREEN screens nmanaged by this
. program unit, including
screen fields and video

attri butes of fields.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-14

Designing Your Application SCREEN COBOL Requesters

Example 2-1. Sample SCREEN COBOL Requester Program
Structure (page 2 of 2)

PROCEDURE DI VI SI ON.

MAI N SECTI O\.
PERFORM 0100 START

SCREEN MANAGER SECTI ON.
DI SPLAY ORDER- SCREEN
ACCEPT ORDER- SCREEN UNTI L

SERVER MANAGER SECTI ON.
0200 MOVE ORDER TO.
BEG N- TRANSACTI ON

Di spl ays operator screen
and accepts data from
screen.

Sends requests to server,
handl es server reply,
and conmts transaction.

SEND ORDER- MSG TO.

REPLY C(DE O YI ELDS.
END- TRANSACTI ON Speci fi es END- TRANSACTI ON
unl ess results of SEND

requi re ABORT- TRANSACTI ON

Unsolicited M essage Processing

The unsolicited-message processing (UMP) feature of Pathway/iTS makesit possible
for terminals running SCREEN COBOL requesters to accept and reply to unsolicited
messages sent to them by Guardian operating environment processes outside of the
Pathway environment. These external processes can reside anywhere within a Compaqg
Expand network. Guardian processes send unsolicited messages to terminals through
their controlling TCP. Such messages consist of an UMP header, which gets interpreted
by the receiving TCP, and the body of the message, which gets passed to the SCREEN
COBOL requester program running at the specified terminal.

Each Pathway/i TS terminal has its own unsolicited-message queue. When the TCP
receives an unsolicited message addressed to one of itsterminals, it places the message
in the appropriate queue.

To support the processing of unsolicited messages, you code specific SCREEN COBOL
clauses, statements, and registersin your requester programs. UMP works as follows.

1. A requester detectsthe arrival of an unsolicited message by testing the contents of
its PW-UNSOLICITED-MESSAGE-QUEUED special register, by performing a
RECEIVE UNSOLICITED MESSAGE statement as awaited input operation, or by
including an ESCAPE ON UNSOLICITED MESSAGE clausein an ACCEPT or
SEND MESSAGE statement.

2. Requesters obtain the text of an unsolicited message by performing a RECEIVE
UNSOLICITED MESSAGE statement.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-15

Designing Your Application IDS Requesters

3. After constructing an appropriate response, requesters reply to an unsolicited
message by performing aREPLY TO UNSOLICITED MESSAGE statement.

|DS Requesters

Standard SCREEN COBOL requesters are screen oriented; they send data back and
forth between the Working-Storage Section of the program and aterminal’s display
screen by using screen templates defined in the Screen Section. Standard SCREEN
COBOL requesters use SCREEN COBOL ACCEPT and DISPLAY statements in the
Procedure Division to interact with display terminals.

SCREEN COBOL requesters that employ the intelligent device support (IDS) facility
within the TCP send data back and forth between the Working-Storage Section and an
intelligent device (or afront-end process that controls the device) by using message
templates defined in the Message Section in the Data Division. IDS requesters use
SCREEN COBOL SEND MESSAGE statements and their associated REPLY clausesin
the Procedure Division to interact with the intelligent devices or front-end processes.

Although the IDS facility sends and receives data through Message Section templates
instead of Screen Section templates, the TCP still provides:

* Link management for accessto Pathway server classes

* TMF support to ensure transaction protection and database integrity

* Fault tolerance through process pairs

* Multithreading and multitasking

* Expanded I/O editing support for data streams from intelligent devices

Design Consider ations

When using IDS to facilitate access to Pathway servers by intelligent devices, consider
the following:

* |IDSrequester programs are written and compiled in the same way as standard
SCREEN COBOL requesters.

e A controlling SCREEN COBOL program unit does not control the intelligent device
or front-end process or use any information about the characteristics of the device.
The programming within the device or process must start the device or process
itself, accept messages from the TCP, and determine if and when to reply to the
TCP.

* Theintelligent device suppliesthe presentation services (that is, screen displays)
suitable to its capabilities.

* Terminal types not supported by the TCP can use a front-end process (such as a
GDSX process) in conjunction with IDS, as described under Requesters Using
GDSX later in this section.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-16

Designing Your Application IDS Requesters

Program Structure

The examplein Example 2-2 outlinesan IDS SCREEN COBOL requester program.
Except for the inclusion of the Message Section and the deletion of the Screen Section,
the structure of an IDS requester program is the same as that of a standard SCREEN
COBOL requester program.

Example 2-2. Sample DS Requester Program Structure (page 1 of 2)
| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. ORDER
ENVI RONVENT DI VI SI ON.

OBJECT COWPUTER
TERM NAL | S | NTELLI GENT

DATA DI VI SI ON.

WORKI NG STORAGE SECTI ON.
01 W5- ORD- MG

01 SERVER- REQ- FUNCTI ON- CODE

L1 NKAGE SECTI ON.
01 LOGON-1 NFO

MESSAGE SECTI ON. Declares structure of
01 MSG FORVAT data passed to or from
: a device or process.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-17

Designing Your Application Pathsend Requesters

Example 2-2. Sample DS Requester Program Structure (page 2 of 2)
PROCEDURE DI VI SI ON.

MAI N SECTI O\
PERFORM 0100 START

DEVI CE HANDLI NG SECTI ON.
SEND MSG MSG- FORNAT Sends messages to and
receives messages from
intelligent device.

SERVER MANAGER SECTI ON.
0200 MOVE ORDER TO.
BEG N- TRANSACTI ON
SEND ORDER- MSG TO. .
REPLY CODE O Yl ELDS.
END- TRANSACTI ON

Pathsend Requesters

Asan aternative to writing SCREEN COBOL requesters, you can write Pathsend
requestersin C, C++, COBOLS8S5, Pascal, or TAL. In such requesters, you use Pathsend
procedure calls to communicate with Pathway servers. The LINKMON process
manages links to your server processes on behalf of Pathsend requesters.

Design Consider ations

The following considerations should help you decide whether to use Pathsend requesters
in your applications:

Pathsend requesters are a good choice for your applications if you need to do the
following:

® Takeahigh volume of transactions from alimited number of devices. Inthis
scenario, there are relatively few requester processes, the requesters are busy, and
configuration and management is minimal.

® Access serversthat are shared by Pathway requesters and applications other than
OLTP applications; for example, a security-checking server or alogging server. If
such servers are used infrequently or if the workload varies, server processes can be
automatically deleted when not needed and restarted through the PATHMON
process when needed again.

® Access servers from environments containing amix of online transaction processing
and batch processing; that is, environments where the same set of servers handle
both online requests and requests from batch applications such as NetBatch Plus
Processes.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-18

Designing Your Application Clients Using RSC/MP

* Write nested servers, which act as requesters by making requests to serversin other
server classes, perhaps server classes managed by adifferent PATHMON process.

* Write context-sensitive servers (servers that retain information about the processing
of previous requests).

Pathsend procedure calls give you more flexibility than WRITEREAD calls for server-
to-server communication. The application gets al the advantages of server classes,
including advantages not readily available with WRITEREAD; for example, load
balancing, adjusting the number of serversto fit response-time requirements, and
configuration and operations management. You can use the Pathsend procedure callsin
C, C++, COBOLS8S5, Pascal, and TAL programs.

The Pathsend procedures and the LINKMON process, however, do not provide
multithreading, fault tolerance, device configuration, or operations management for
requesters. Therefore, if you need these capabilities in a Pathsend requester, you must
provide the programming for them.

In addition, Pathsend procedure calls that send messages to server classes must be
protected by the TMF subsystem to ensure data integrity in your Pathway application.

The Pathsend procedures and the LINKMON process do not support the checkpointing
of Guardian interprocess message synchronization IDs. Thislack of checkpointing
support is an important consideration when writing fault-tolerant requester programs
that do not use the TMF subsystem.

For more information about designing and coding Pathsend requesters, refer to the
NonSop™ TSMP Pathsend and Server Programming Manual.

ClientsUsing RSC/MP

The RSC/MP product facilitates client/server computing, alowing workstation
applications to access Pathway server classes and Guardian processes. This product
supports a number of different transport protocols and workstation platforms. For
detailed information about the supported platforms and protocols, refer to the Compaq
NonSop™ Remote Server Call (RSC/MP) Programming Manual.

Transactions are transmitted from the workstation application (the client) to a Pathway
application running on a Compag NonStop™ Himalaya system (the server) by means of
a supported communications protocol, such as NETBIOS, TCP/IP, or an asynchronous
connection.

RSC/MP includes a process called the Transaction Delivery Process (TDP), which
resides on the NonStop™ Himalaya system. The TDP is amultithreaded process that
can handle multiple workstations. It routes request messages from workstations to
Pathway server classes by using either the Pathsend API and the LINKMON process or
the terminal control process (TCP) provided in the Pathway/iTS product. If the TCPis
used, it can route a request message to a Pathway server by using either the intelligent
device support (IDS) requester supplied as part of RSC/MP or an IDS requester that you
develop yourself. The TDP can also send request messages from a workstation to a
Guardian process.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-19

Designing Your Application Requesters Using GDSX

For information about designing and coding requesters with the RSC/MP product, refer
to the Compaq NonSlop™ Remote Server Call (RSC/MP) Programming Manual.

Reguesters Using GDSX

The Extended General Device Support (GDSX) communications subsystem product
simplifies the devel opment of front-end processes and back-end processes for
communication with I/O devices. These devices can be of any type, including
workstations, terminals, ATMs, point-of-sale (POS) devices, and industrial robots.
GDSX supplies code that provides multitasking and other features useful for developing
these front-end and back-end processes.

A GDSX process can act as afront-end process for LINKMON processes or a
Pathway/i TS terminal control process (TCP).

A GDSX process contains two primary parts.
e TSCODE, supplied by Compaq
e USCODE, supplied by the application programmer

TSCODE provides generic routines and management services that help you build a
multithreaded, fault-tolerant process. TSCODE provides the following functions:

® Creates new tasks and stops tasks
® Recevesal system messages and I/O requests

* Dispatches (wakes up and executes) the appropriate active task to process messages
and requests

e Handleserrors

USCODE consists of user exits that are called by TSCODE to handle the application-
specific, data communications-related functions, such as data manipulation, protocol
conversion, and message routing for the 1/0 process. USCODE istypically writtenin
the Transaction Application Language (TAL) and bound with TSCODE to produce a
functional GDSX process.

GDSX providesits own interface to Guardian procedures, NonStop™ TM/MP
procedures, and Pathsend procedures. The names of the GDSX procedures typically
look like their Guardian, NonStop™ TM/MP, or Pathsend equivalents, but they have a
circumflex () character inserted before the procedure name. For example,
BEGINTRANSACTION becomes *BEGINTRANSACTION.

When a GDSX process is used as a front-end process, multiple threads of a user-coded
device handler provide separate tasks to manage the input from I/O devices and provide
functions such as data-stream conversion, implementation of a communications
protocol, and network communications error handling. One instance of the device
handler manages one |/O device.

In the Pathway environment, the GDSX process often simulates a terminal supported by
the TCP; the simulated terminal istypically run by an IDS requester program. When the
IDS facility isused, the GDSX product can be used to manage the line protocol
controlling the connected devices. The GDSX line handler (LH) task can be used to

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-20

Designing Your Application Requesters Using GDSX

coordinate multiple GDSX device handler tasks or the GDSX device handler task can
directly communicate with a back-end line.

Figure 2-4 shows the path of atransaction from a general device to a Pathway server
through a GDSX process.

Figure 2-4. GDSX as a Front-End Process

NonStop M Himalaya System

~—,

1332 PATHMON
4444 3
s (=

i [
General Device \ Server Class
pN

———,

= , \ /\
444 4 23]
HE @) G

General Device >

— A
ffi f =\ L_| NonStop
sl TM/MP

General Device

NonStop
SQL/MP
[

\

When devel oping a front-end process using GDSX, consider the following:

CDT 024.CDD

e A GDSX front-end processis agood choice when a specified data communications
protocol is not supported by the Pathway TCP but is supported by GDSX.

e A GDSX front-end processis aso agood choice when performanceis critical.
SCREEN COBOL may not be efficient enough to handle a large amount of
application function.

® GDSX processes are managed either through the Subsystem Control Facility (SCF)
interactive interface or through a management application program using the
Subsystem Programmatic Interface (SPI).

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-21

Designing Your Application Dividing Function Between Requester and Server

For further information about designing and coding GDSX processes, refer to the
Extended General Device Support (GDSX) Manual.

Dividing Function Between Requester and Server

In designing a Pathway application, you must decide how to divide function between
requester and server. In making this decision, you should consider the type of requester
or client you are writing (SCREEN COBOL, Pathsend, RSC/MP, or GDSX), and you
should also consider performance, maintainability, and other factors.

For example, what module should check entry fields for validity? If you arewriting a
SCREEN COBOL requester, you can easily code it so that the TCP performs these
checks. However, a special edit-checking server could provide better performance.

If your application includes aworkstation requester that communicates with servers
using RSC/MP, having the requester check the entry fields would save communications
overhead.

As another example, what module should change screen field attributes such as color,
blink, brightness, or reverse video for such purposes as highlighting an entry field that
contains an error? The SCREEN COBOL language allows such work to be done by the
requester, but it could also be done by the server.

For more considerations about dividing function among modules within an application,
refer to the NonSop™ TSMP Pathsend and Server Programming Manual.

Designing Server Programs

Request validations, security checks, calculations, database inquiries, and database
changes made in response to a request message are performed by individual units of
code within Pathway server programs. As an application programmer, your task isto
create a server program to perform specific tasks (for example, create a customer
account).

You can write Pathway server programsin C, C++, COBOLS85, pTAL, TAL,
FORTRAN, or Pascal in the Guardian environment. Alternatively, you can write
Pathway server programsin C or COBOLS85 in the NonStop™ Kernel Open System
Services (OSS) environment; you must program such serversto read the Guardian
$RECEIVE file as described in the Open System Services Programmer’s Guide. In both
cases, you configure and manage the servers by using the PATHCOM interactive
interface or the Pathway management programming interface (based on the Subsystem
Programmatic Interface, or SPI) in the Guardian environment.

Regardless of which operating environment or programming language you use, your
Pathway server programs can access database files through the NonStop™ SQL/MP
relational database management system or the Enscribe database record manager. See
Designing the Database on page 2-8 for information about these two database managers.

You can use the same server programs, whether developed in the Guardian environment
or in the OSS environment, with several different requester and client interfaces. These
interfaces include SCREEN COBOL, the Pathsend procedures, and the RSC/MP
interface. Requesters or clients using different interfaces can share the same Pathway

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-22

Designing Your Application Designing Applications for Batch Processing

server classesif you ensure that the server program’s request and reply formats are
consistent for al requesters.

After you code and compile your server program, the server object code and library code
are shared among all processes of the same server class.

For information about designing and coding Pathway servers, refer to the NonStop™
TSMP Pathsend and Server Programming Manual.

Designing Applications for Batch Processing

If your Pathway application includes batch processing, consider the different needs of
thistype of processing in your design.

For example, you might code a Pathsend program that takes itsinput from afile rather
than from aterminal, then sends requests to a server to make updates to a database. This
program could be configured as a server, thus operating as a nested server. Itsinput file
might be TMF protected, and the Pathsend program might make updates to it.

An application that does several updates to a database, with each update coded as a
separate TMF transaction, could be slow when it performs these updates as a batch job
rather than performing them online. For batch processing, it is usually faster to group a
number of updates in asingle transaction. However, if your batch jobs are very large,
note that you should not try to group more than about one thousand updates in one TMF
transaction.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-23

Designing Your Application Designing Applications for Batch Processing

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
2-24

Programming for Specific Terminals

Compag NonStop™ Pathway/i TS currently supports IBM 3270 terminals, the 6530
family of terminals (652x series, 653x series, and 654x series), any devicethat is
recognized by the file system as a conversational-mode terminal, and any entity that is
identified as an intelligent-mode device. Each type of device has its unique set of
requirements. This section summarizes those requirements.

Using IBM 3270 Terminals

When communicating with IBM 3270 terminals in the Pathway environment, there are
several important things to consider:

® The screen size of the termina models

The rules for controlling the screen mode
® Therulesfor positioning the screen fields
® Therulesfor positioning the cursor

® Theuse of the terminal’s function keys

® The use of extended field attributes

Screen Size

The supported IBM 3270 terminals have a number of different physical screen sizes.
Table 3-1 lists the various terminal subclasses with their maximum screen sizes (lines by
columns), alternate screen sizes, and model names.

Table 3-1. IBM 3270 Terminal Subclasses and Screen Sizes

Subclass Screen Size M odel

1 12 x 40 IBM 3277 M1
2 24 x 80 IBM 3277 M2
3 24 x 80, alternate 32x 80 IBM 3278 M3
4 24 x 80, alternate 43x 80 IBM 3278 M4
5 12 x 40, alternate 12x 80 IBM 3278 M1
6 ig 2x 80, alternate 27 x IBM 3278 M5

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-1

Programming for Specific Terminals Controlling the Screen Modes

When running a SCREEN COBOL application on the IBM terminals, consider the
following:

A single screen definition can be displayed successfully on any model aslong asits
logical screen sizeisless than or equal to the maximum physical screen size
capability of theterminal. If thelogical screen size is greater than the maximum
physical screen size, the terminal suspends operation with the following error:

ERROR - *3990* REFERENCED SCREEN | S | LLEGAL FOR TERM NAL
TYPE

A singlefield that wraps from one line to the next in the logical screen definition
does not wrap, or wraps differently, if the physical screen width exceeds the logical
screen width. The field wraps around to the next line only at the end of the physical
line. Thiswrapping isan important consideration if a screen isintended to run on
both 40-column displays and 80-column displays.

Controlling the Screen Modes

Asshown in Table 3-1, some IBM terminals have alternate screen sizes. The logical
screen size specified in the SCREEN COBOL screen definition of the current base
screen determines which mode the terminal operatesin.

For example, terminal model IBM 3278 M5 has these two screen modes:

Base Screen Size

Mode Lines Columns
80-column (80-column screen with standard characters) 1-24 1-80
132-column (132-column screen with compressed characters) 1-27 1-132

When a SCREEN COBOL application is run on the IBM 3278 M5 terminal, the screen
mode is determined as follows:

If the screen size definition is equal to or less than the line limit of 24 and the
column limit of 80, the 80-column mode is used.

If the screen size definition isin the line range of 25 through 27, or in the column
range of 81 through 132, the 132-column mode is used.

If no screen size is specified, the 80-column modeis used.

Note. Switching screen modes can decrease performance because the terminal memory
is cleared to spaces on every mode switch. For the best performance for your SCREEN
COBOL application, use the same screen mode for all the screens.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-2

Programming for Specific Terminals Positioning the Screen Fields

Positioning the Screen Fields

All fields must reserve ablank character position immediately before the field.
For example:

* |f asingle-character field isto be located at line 2, column 2, on the terminal screen,
then both character positions 2,1 and 2,2 must be reserved for that field. In that
case, a second field could not begin at character position 2,3 on the terminal screen
because the preceding character position (2,2) is already in use by the preceding
field and istherefore no longer available as a blank character position.

e A field cannot be at character position 1,1 because the character position preceding
1,1 does not exist and thus cannot be reserved.

The minimum separation, in bytes, between screen elementsfor the IBM 3270 is
indicated in Table 3-2.

Table 3-2. Minimum Character Separation for IBM 3270 Terminals

Second Element
First Element Field Literal Overlay Area End of Screen
Start of base screen 1 1 o* N. A.
Start of overlay screen 1 1 0 N. A.
occupying area that does not
have the same width asits
base screen **
Field 1(3)*** 1 0 (1)**** 0 (2)***

(2)***

Literal 1 1 0 (1)**** 0
Overlay Area 1 1 0 0*

* Does not support WHEN FULL TAB.

*x When an overlay screen occupies an overlay areathat does not have the same width as its base screen, an
overlay field cannot wrap from one line to the next.

**% Extraseparation (two or three bytes) required to support WHEN FULL LOCK.
**xx Extraseparation required to support WHEN FULL TAB. Use one byte to separate the elements.

Positioning the Cur sor

Cursor positioning on screens with protected fields after an ACCEPT operation acts
differently on an IBM 3270 than such cursor positioning does on a6520. The IBM
3270 does not prevent cursor positioning at a protected field. The 6520, however,
automatically repositions a cursor to the next unprotected field if the cursor initially
positions at a protected field. If you do not want the cursor to be positioned at a
protected field on an IBM 3270 before an ACCEPT operation, you can use the SET
command to specify NEW-CURSOR at the desired, unprotected screen field.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-3

Programming for Specific Terminals Using IBM 3270 Function Keys

Using IBM 3270 Function Keys

The IBM terminals have a unique set of function keys that can be used by a SCREEN
COBOL application. The function keys are:

* PA1lthrough PA3
* PA4through PA10
* PF1through PF24

The PA4 though PA10 keys are optional keys, and the values they transmit when
pressed may vary from vendor to vendor. Assigning a unique function-key value to one
of those keys' logical PA program name can be done with the user-replaceable
proceduresin the TCP user library. See Section 4, Writing User Conversion Procedures,
for more details.

Using Extended Field Attributes

Pathway/i TS supports extended field attributes on terminalsin the IBM 3270 family.
Depending on the terminal, Pathway/i TS supports the following kinds of extended field
attributes:

® Color display attributes

e Highlight display attributes (REVERSE, BLINK, and UNDERSCORE)
® Qutline display attributes

® Audible alarm feature

Because of differencesin terminalsin the IBM 3270 family, you should consider the
following when you use extended field attributes:

® Someterminals do not support any color display attributes.

* Someterminals that support color display attributes support seven colors, while
others support only four.

® Some terminals support highlight display attributes only.

® Some terminals support outline display attributes only.

® Some terminals support both highlight and outline display attributes.

® Some terminals support neither highlight nor outline display attributes.

When specifying the extended field attributesin a SCREEN COBOL program unit,
consider:

® Inthe SPECIAL-NAMES paragraph, define mnemonic names to identify the system
names (or combinations of system names) that correspond to one or more of the
color, highlight, or outline display attributes.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-4

Programming for Specific Terminals Using Extended Field Attributes

® Usethe mnemonic namesin either the Screen Section or the Procedure Division of
the program unit to refer to the color, highlight, or outline display attributes. For
example:

MNEMONI G- NAME-1 | S RED.

When the program unit is run, the TCP determines which extended field attributes
are supported by the terminal.

®* The TCP usesonly the extended field attributes that the terminal supports.

If, for example, your SCREEN COBOL program unit uses color display attributes
that are available on an IBM 3279 color terminal, but the program unit is run on an
IBM 3278 terminal that does not support color display attributes:

* TheTCPignoresthe color display attributes used in the program unit.
® The screen appears correctly on the terminal, but without color.

You can use the optional SET MINIMUM-COLOR and SET MINIMUM-ATTR
statements in the Procedure Division if you must establish the minimum level of
support for color, highlight, and outline display attributes for that program unit and
all other program units called by that program unit. The TCP usesthe information
provided by the SET MINIMUM-COLOR and SET MINIMUM-ATTR statements
to determine the level of support for color, highlight, and outline display attributes
required by a program unit.

Note. The minimum level of support for color display attributes does not change until a
subsequent SET MINIMUM-COLOR statement is executed, even if you use a CALL
statement to move between program units. Likewise, the minimum level of support for
highlight or outline display attributes does not change until a subsequent SET MINIMUM-
ATTR statement is executed, even if you use a CALL statement to move between program
units.

For example, if your program unit requires seven colors, or both reverse and blink
highlight display attributes, you can use the following statements to establish those
requirements:

* TheSET MINIMUM-COLOR statement establishes the minimum level of
support for color display attributes.

®* TheSET MINIMUM-ATTR statement establishes the minimum level of
support for highlight and outline display attributes.

For further information about the SET MINIMUM-ATTR and SET MINIMUM -
COLOR statements and their default val ues, see the Compag NonStop™
Pathway/iTS SCREEN COBOL Reference Manual.

To establish the attributes required for a program unit, you issue statements such as
the following before a DISPLAY BASE statement:

MOVE 1 TO | BM FULL- COLOR O W- M NI MUM COLOR.
MOVE 1 TO | BM FI ELD- QUTLI NE W5- M NI MUM ATTRI BUTE.
SET M NI MUM COLOR USI NG W- M NI MUM- COLOR.

SET M NI MUM ATTR USI NG W5- M NI MUM- ATTRI BUTE.

zz%

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-5

Programming for Specific Terminals Using Extended Field Attributes

The SET MINIMUM-ATTR and SET MINIMUM-COLOR statements cause the
information in the working-storage definitions to be extracted and stored in a control
block with other information related to the program unit.

* When aterminal or program unit is started, the TCP initializes the extended field
attribute requirements of the program unit as follows:

* No support for color display attributesis required.
® No support for highlight display attributesis required.
* No support for outline display attributesis required.

® You need not modify existing program units for terminalsin the IBM 3270 family
unless you want to use the color, highlight, or outline display attributes.

* When aSET MINIMUM-ATTR or SET MINIMUM-COLOR statement is
executed, the TCP updates the requirements of the program unit for the appropriate
extended field attributes.

e When aDISPLAY BASE statement is executed, the TCP compares the capabilities
of the terminal with the requirements of the program unit:

* |f the program unit requires extended field attributes that the terminal does not
support, the TCP aborts the program. Termination status 71 indicates
insufficient support for the color, highlight, or outline display attributes
required.

* |f the program unit requires extended field attributes that the terminal does
support, the program unit runs.

® |f the TCP determinesthat a program unit was compiled with color, highlight, or
outline display attributes:

® The TCP uses the default foreground color, green, if you do not specify a
foreground color.

* TheTCPissuesaREAD PARTITION structured field message to the terminal.
The TCP uses the reply to this message to determine the capabilities of the
terminal. If the terminal does not support query reply, the TCP ignores the
extended field attributes. See the IBM 3270 Information System Data Stream
Programmer's Reference Manual for information about building and
transmitting specific reply sequences.

To determine the level of support for these attributes on a given terminal, you can use
the TERMINALINFO statement. This statement determines which extended field
attributes aterminal supports; you can issue the statement at any place in the program.
You usually issuea TERMINALINFO statement before thefirst DISPLAY BASE
statement in a program unit. You can then determine whether a terminal supports
extended field attributes and take action in the program unit accordingly.

For further information about the TERMINALINFO statement, see the Compaq
NonSop™ Pathway/i TS SCREEN COBOL Reference Manual.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-6

Programming for Specific Terminals Using Extended Field Attributes

Color, highlight, and outline display attributes associated with a mnemonic name
declared in the SPECIAL-NAMES paragraph can be used in the TURN statement,
which changes the display attributes of fields, as in the following example:

TURN ALERT I N SCREEN- FI ELD- 01 SHADOWED.
TURN TEMP BLUE I N SCREEN- FI ELD- 02 SHADOWED.
TURN BG YELLOW I N SCREEN- FI ELD- 03 SHADOWED.

TURN ATTRS- AND- COLOR | N SCREEN- FI ELD- 04 SHADOWED.

Using Color Display Attributes

Terminasin the IBM 3270 family that support color and allow query reply can support
some or all of the following colors:

BLUE

RED

PINK
GREEN
TURQUOISE
YELLOW
NEUTRAL

Terminasin the IBM 3270 family can be grouped in three categories according to the
level of support for color display attributes.

® Thefollowing terminalsinthe IBM 3270 family that support color display attributes
support four colors (BLUE, GREEN, RED, and NEUTRAL):

3287-1C
3287-2C

® Thefollowing terminalsinthe IBM 3270 family that support color display attributes
support seven colors (BLUE, GREEN, PINK, RED, TURQUOISE, YELLOW, and
NEUTRAL):

3192
3194
3279

® Thefollowing terminasin the IBM 3270 family do not support color display
attributes:

3178
3191
3278
3230
3262
3268
3287-1
3287-2

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-7

Programming for Specific Terminals Using Extended Field Attributes

You cannot use more than one foreground color (that is, the color of characters
displayed on the terminal screen). In other words, you can assign only one foreground
color display attribute to a single mnemonic-name. For example:

LEGAL- MNEMONI C-6 | S RED.

Attempting to combine more than one foreground color display attribute in a mnemonic-
name parameter resultsin asyntax error. Inthe following example, ACTION-FIELD3
and ACTION-FIEL D4 are not the same, because attributes are applied in chronological
order. ACTION-FIELD5 and ACTION-FIELD®6, however, are exactly the same.

SPECI AL- NAMES.

RED I'S RED, | NPUT-ERROR | S BLI NK,

DRI VE- CRAZY | S (RED, BLINK, BRI GHT),

ACTI ON-FI ELD1 IS (BLINK, PI NK, UNDERLINE, TOPLINE),

ACTI ON-FI ELD2 I'S (BLINK, BLUE, BOXFIELD),

ACTI ON- FI ELD3 |'S (REVERSE, BOXFI ELD, NOTOPLI NE),

ACTI ON- FI ELD4 |'S (REVERSE, NOTOPLI NE, BOXFI ELD),

ACTI ON- FI ELD5 |'S (UNDERLI NE, GREEN, BOXFI ELD),

ACTI ON- FI ELD6 |'S (UNDERLI NE, GREEN, TOPLINE, LEFTLI NE,
RI GHTLI NE, BOTTOM.I NE) .

SPECI AL- NAMES.

STOP IS RED,

&0 I S GREEN,
CAUTI ON IS YELLOW
NCRIVAL 'S NEUTRAL,
ALERT | S REVERSE,
BLI NK- VI DEO 'S BLI NK,
ALTER- VI DEO 'S BRI GHT,

| NCORRECT- DATA |'S BLI NK.

Using Highlight Display Attributes

Pathway/i TS supports the following highlight display attributes on terminalsin the IBM
3270 family:

BLINK
NOBLINK
BRIGHT
NORMAL
HIDDEN
NOTHIDDEN
MDTON
MDTOFF
NUMERIC-SHIFT
PROTECTED
UNPROTECTED
REVERSE
NOREVERSE
UNDERLINE
NOUNDERLINE

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-8

Programming for Specific Terminals Using Extended Field Attributes

Using Outline Display Attributes

Pathway/i TS supports the following outline display attributes on terminalsin the IBM
3270 family:

TOPLINE
NOTOPLINE
LEFTLINE
NOLEFTLINE
RIGHTLINE
NORIGHTLINE
BOTTOMLINE
NOBOTTOMLINE
BOXFIELD

Note. BOXFIELD is equivalent to the combination of TOPLINE, LEFTLINE, RIGHTLINE, and
BOTTOMLINE.

If the terminal does not support TOPLINE, BOTTOMLINE, RIGHTLINE, or
LEFTLINE, the TCP marks the device as unable to do outlining.

Using Other Extended Attributes

Pathway/i TS supports the following additional extended display attribute on terminalsin
the IBM 3270 family:

BELL

Combining Extended Field Attributes

Pathway/i TS and the terminals in the IBM 3270 family support certain combinations of
color, highlight, and outline display attributes. You must observe the following
restrictions when combining color, highlight, and outline display attributesin a
mnemonic name declared in the SPECIAL-NAMES paragraph:

® You must not combine extended field attributes that Pathway/i TS supports with
those that Pathway/i TS does not support. Pathway/iTS does not support the
following extended field attribute on terminals in the IBM 3270 family:

DIM
® You can combine any of the following highlight display attributes with one another:

BRIGHT
HIDDEN

MDTON
NUMERIC-SHIFT
PROTECTED

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-9

Programming for Specific Terminals Using Extended Field Attributes

You can combine one of the following highlight display attributes with one or more
of the other highlight display attributes (that is, with BRIGHT, HIDDEN, MDTON,
NUMERIC-SHIFT, or PROTECTED). You cannot combine the following highlight
display attributes with each other:

BLINK
REVERSE
UNDERLINE

If aterminal in the IBM 3270 family supports the following outline display
attributes, you can combine them with one another and with any highlight display
attribute (that is, with BRIGHT, HIDDEN, MDTON, NUMERIC-SHIFT,
PROTECTED, BLINK, REVERSE, or UNDERLINE):

TOPLINE
NOTOPLINE
LEFTLINE
NOLEFTLINE
RIGHTLINE
NORIGHTLINE
BOTTOMLINE
NOBOTTOMLINE
BOXFIELD

Examples:
(BLI NK, TOPLI NE, BOTTOM.I NE)

(REVERSE, LEFTLINE, RI GHTLI NE)
(UNDERLI NE, BOTTOMLI NE, TOPLI NE)

Valid Language and Terminal Combinations

The keyword KANJI-KATAKANA specifies the only language that can be declared for
IBM 3270 terminals.

If the language does not match the valid language choices for aterminal class, the
compiler marks the statement as an error.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-10

Programming for Specific Terminals Using 6520 Terminals

Using 6520 Terminals

When communicating with 6520 terminals in the Pathway environment, you need to
consider:

® Therulesfor controlling the screen mode
® Therulesfor positioning the screen fields

Controlling the Screen Modes

The 6520 terminal has two screen modes, as shown in Table 3-3. You control which
screen mode is used by a SCREEN COBOL screen definition.

Table 3-3. Screen Modes for 6520 Ter minals

Base Screen Size

Mode Lines Columns
40-column (80-column screen with double-wide characters) 1-24 1-40
80-column (80-column screen with standard characters) 1-24 41-80

When running a SCREEN COBOL application on the 6520 terminal, the screen modeis
determined asfollows:

® |If the screen definition is equal to or less than the column limit of 40, the 40-column
mode is used.

® |f the screen definition is in the column limit range of 41 through 80, the 80-column
mode is used.

® |f no screen size is specified, the 80-column mode is used.

Switching screen modes can decrease performance because the terminal memory is
cleared to spaces on every mode switch. For the best performance for your SCREEN
COBOL application, use the same screen mode for all the screens.

Positioning the Screen Fields

All nonliteral fields must reserve ablank character immediately before thefield. For
example:

e |[fafieldisatline 2, column 2, and is one character long, then 2,1 and 2,2 are
reserved for the field. A second field cannot be at 2,3 because both fields would
attempt to use location 2,2.

e A field cannot be at 1,1 because the character before 1,1 does not exist and thus
cannot be reserved.

Fields cannot wrap from the bottom to the top line of the screen.

The minimum separation between screen elements for the 6520 terminal isindicated in
Table 3-4.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-11

Programming for Specific Terminals Using 6530 Terminals

Table 3-4. Minimum Character Separation for 6520 Terminals

Second Element
First Element Field Literal Overlay Area End of Screen
Start of base screen 1 1 0 0
Start of overlay screen 1 1 0 0
occupying an overlay areathat
does not have the same width
asits base screen *
Field 1 1 0 0
Literal 1 Oor1** O 0
Overlay Area 1 1 0 0

* When an overlay screen occupies an overlay area that does not have the same width asits base screen, an
overlay field cannot wrap from one line to the next.

** |f two successive literals have the same attributes, no separation is necessary. Otherwise, at |east one
position must separate them.

Using 6530 Terminals

The 6530 terminal has al the capabilities of the 6520 terminal plus some additional
features. The considerations discussed previously for the 6520 also apply to the 6530.
These include the rules for controlling the screen mode and the rules for positioning the
screen fields.

The 6530 terminal is upwardly compatible with the 6520. Program units compiled for a
6520 can be run on a 6530; however, features unique to the 6530 do not function on the
6520.

The 6530 terminal enables the use of other devices to put datainto screen fields. For
more information about this ability, refer to the description of the RECEIVE clausein
the Compaq NonSop™ Pathway/i TS SCREEN COBOL Reference Manual.

Return-Key Function

Pathway/i TS can enable the Return key to behave as a function key when a SCREEN
COBOL program takes control of a 6530 terminal. For the RETURN-KEY function to
become effective, the program’'s SPECIAL-NAMES paragraph must contain a
RETURN-KEY phrase as the system-name parameter. The RETURN-KEY definitionis
local to a SCREEN COBOL program and must be defined in the program or no
RETURN-KEY function exists. To use thisfunction in a program that was previously
compiled, you must recompile the program and include the RETURN-KEY phrase. If a
program is defined for a 6520 terminal and run on a 6530 terminal, you cannot use the
RETURN-KEY function.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-12

Programming for Specific Terminals Internal Function-Key Queuing

Internal Function-Key Queuing

6530 terminals have the unique capability of internally queuing afunction key without a
read operation being posted. When no terminal read operation isin progress and a
terminal key is pressed, the function key value is stored inside the terminal. The valueis
read upon the next ACCEPT statement that the SCREEN COBOL program executes.

Thisterminal feature provides a significant convenience for most Pathway applications.
You might, however, write an application that uses ESCAPE clauses in which this
terminal feature is inappropriate.

In this situation, afunction key is queued during the interval between the cancellation of
one read and the arrival of another read so that the function key intended for the first
operation isin fact applied to the second operation. The terminal operator cannot tell
that the first read has been canceled; when the operator presses the function key
intending to execute that original action, the key is automatically queued and executed at
the next read.

Your program can avoid this situation by causing the keyboard to lock after the
cancellation of aread in the following cases:

* After the ESCAPE ON UNSOLICITED MESSAGE clause
* After the ESCAPE ON TIMEOUT clause

The Compag NonStop™ Pathway/iTS SCREEN COBOL Reference Manual describes
the following two SCREEN COBOL special registers that control locking the keyboard
when an ESCA PE operation has been performed:

e PW-QUEUE-FKEY-UMP
e PW-QUEUE-FKEY-TIMEOUT

Using EM 6530PC on a 6540 Personal Computer

The 6540 personal computer (PC) was originally equipped with the terminal emulator
EM6530PC. EM6530PC emulates the capabilities of the 6530 terminal. The
EM6530PC terminal emulator is upwardly compatible with the 6520 and 6530
terminals. Program units compiled for a6520 or 6530 terminal run successfully with
EM6530PC.

The following differences exist between the 6530 terminal and the EM6530PC
emulator:

®* The EM6530PC emulator does not support aternate input devices; the 6530
terminal does support them.

* The EM6530PC emulator has more screen modes than the 6530 terminal.

The EM6530PC emulator has four screen modes, as shown in Table 3-5. The logical
screen size specified in the SCREEN COBOL screen definition of the current base
screen determines which mode the terminal operatesin.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-13

Programming for Specific Terminals Using Conversational Terminals

Table 3-5. Screen M odes for 6540 Per sonal Computers

Base Screen Size

Mode Lines Columns
40-column (80-column screen with double-wide characters) 1-24 1-40
66-column (132-column screen with double-wide characters) 1-27 1-66
80-column (80-column screen with standard characters) 1-24 67-80
132-column (132-column screen with standard characters) 1-27 67-132

Given the screen size definition, the TCP searches a screen mode definition table to find
thefirst appropriate base size. The table search occursin the order that the modes are
listed. Therefore, you must ensure that the screen size specified resultsin the desired
screen mode being selected. For example, if you want the 66-column mode, you must
specify awidth between 41 and 66 to prevent the 40-column mode from being used.

If no screen sizeis specified in the base screen definition, the 80-column mode (24,80)
IS used.

Switching screen modes can decrease performance because the terminal memory is
cleared to spaces on every mode switch. For the best performance for your SCREEN
COBOL application, use the same screen mode for all screens.

Using Conversational Terminals

A conversational terminal is any terminal that the file system recognizes as operating in
conversational mode. A conversational terminal processes carriage return, line feed, and
bell operations. If the data entered during ACCEPT processing exceeds the size of the
I/O buffer, the terminal simply redisplays a field prompt without an advisory error

message.

Some of the SCREEN COBOL statements and clauses act differently in block mode
than in conversational mode. This discussion summarizes information about using
conversational mode.

Conversational-M ode Program

A SCREEN COBOL program written for conversational-mode operation can run on

either a block-mode terminal or a conversational-mode terminal. When a programis
specified as conversational, that program performs according to the restrictions for a
conversational terminal regardless of the type of terminal on which the program runs.

A SCREEN COBOL program running in conversational mode performs as follows:

® Displaysinformation on the terminal during an ACCEPT statement, oneline at a
time

® Accepts data entered from the terminal one line at atime

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-14

Programming for Specific Terminals Designating Conversational Terminals

* Respondsto aset of input-control characters when the terminal is enabled to accept
data

® Recognizes only keyboard characters, carriage returns, and line feeds (not function
keys)

® Restrictsthe display field attributesto BELL and HIDDEN

Designating Conver sational Terminals

You designate a conversational terminal by specifying the following clause in the
OBJECT-COMPUTER paragraph of the Environment Division:

TERM NAL | S CONVERSATI ONAL

This clause causes aterminal to operate in conversational mode regardless of the
terminal type. Program units compiled for conversational mode can be run on 652x
series, 653x series, 654x series, and IBM 3270 terminals or on any other device that the
file system recognizes as operating as a conversational-mode terminal.

The available screen field attributes for conversational terminas are: BELL, HIDDEN,
NOBELL, and NOTHIDDEN.

Error enhancement is available only for thefirst field found to be in error. If additional
fields are specified, they are ignored. BELL isthe applicable error enhancement for
conversational terminals. You must explicitly specify ERROR-ENHANCEMENT IS
BELL to have error enhancement.

I nput Control Characters

The Screen Section has input-control entries available for terminalsin conversational
mode. These clauses define the specific input-control characters to be used during
execution of an ACCEPT statement. The clauses are as follows:

e ABORT-INPUT defines the characters used to terminate the processing of the
current ACCEPT statement with an abort termination status.

* END-OF-INPUT defines the characters used to indicate the end of the last input
field for the current ACCEPT statement. If used, the END-OF-INPUT clause must
be specified at the 01 screen level. A character defined for END-OF-INPUT cannot
be specified for another input-control character.

* FIELD-SEPARATOR defines the character used to separate one screen field from
another during an ACCEPT statement. |f ascreen field description includes an
OCCURS clause, each occurrence is treated as one field.

® GROUP-SEPARATOR defines the character used during the processing of an
ACCEPT statement to mark the end of the last item in an OCCURS clause or the
last field of a group declaration that does not contain an OCCURS.

e RESTART-INPUT defines the characters used to restart input processing during the
current ACCEPT statement.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-15

Programming for Specific Terminals Displaying Information

Displaying I nformation
The DISPLAY BASE statement establishes the current screen.

A DISPLAY statement in conversational mode causes the TCP to write to the termina
display, which can be a screen, printer paper, and so forth.

The DISPLAY statement presents output in order by rows. A screen field value appears
on the screen at the column number position specified in the screen field description.
Blank lines for formatting purposes are not generated. Therefore, screen lines generally
do not correspond with the line numbers specified in the Screen Section.

To display fully line-formatted screens, define at |east one item for every line (row) of
the screen. If arow of spacing is required, define the screen item for that row with a
VALUE clause specifying blanks, for example, VALUE " ". Then, display the entire
screen by specifying the screen name as the screen identifier in the DISPLAY statement.

For more information, see the descriptions of the DISPLAY BASE and DISPLAY
statements in the Compaq NonSiop™ Pathway/i TS SCREEN COBOL Reference
Manual.

Accepting I nfor mation

If the terminal associated with the SCREEN COBOL program is operating in
conversational mode, the ACCEPT statement performs the following:

® Displaysthe prompt value defined for the first screen field described with a
PROMPT clause. The prompt value is always displayed in the first column of the
screen line.

* Waitsfor aresponse from theterminal. If the TIMEOUT phraseis used, ACCEPT
walits the length of time specified in this phrase.

® Recevesinput from the terminal and stores the data into the associated working-
storage items of the program data area. Input can be accepted from the terminal one
screen field at atime, one field per line. However, the capability referred to as type
ahead enables data entry for more than one field on the sameline.

¢ Returnsonly valid data to the program (checking the definitions in the Screen
Section of the Data Division to determine the validity of the data). All
SHADOWED fields associated with the input fields of the ACCEPT statement have
their ENTERED and RETURNED hbits set appropriately.

If invalid datais entered and an ADVISORY field is defined, an error message is
displayed, the prompt is redisplayed for the field in error, and the data can be reentered.
If an ADVISORY field is not defined for the base screen, only the prompt is redisplayed
for thefield in error and the data can be reentered.

For more information, see the description of the ACCEPT statement in the Compaq
NonSop™ Pathway/i TS SCREEN COBOL Reference Manual.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-16

Programming for Specific Terminals Using Intelligent-Mode Devices

Using I ntelligent-M ode Devices

A SCREEN COBOL program operates in intelligent mode when it communicates with
an intelligent device. Anintelligent device isany device that can receive and reply to
messages sent by the SEND MESSAGE statement in a SCREEN COBOL program. An
intelligent device could be a personal computer, an automatic teller machine, a point-of-
sale device, a Guardian operating environment process, acommunications line, or a
6540 terminal operating as a personal computer.

When writing a program to communicate with such a device, you should be aware of the
following:

The SCREEN COBOL program has no control over the device. Itisup tothe
person writing code for the device to start up the device; accept any messages from
the SCREEN COBOL program; send any replies back to the SCREEN COBOL
program; supply the operator interface, if any; and so forth.

The SCREEN COBOL program is responsible for synchronizing messages between
the program and the intelligent device. The program must check for duplicate
messages from the device.

Pathway/i TS does not establish modem connections for intelligent devices. If you
want a modem connection, you must use the RECONNECT MODEM statement.

The TCP does not collect messages for intelligent devicesin a buffer asit does for
data sent to aterminal screen. Each message is sent when the SEND MESSAGE
statement is executed.

The Message Section provides some formatting of data sent to and received from an
intelligent device. When datais passed directly between the intelligent device and
data areas in the Working-Storage or Linkage Sections, it is not formatted.

Programs that communicate with intelligent devices cannot use the following
SCREEN COBOL statements:

ACCEPT RESET

CLEARINPUT SCROLL

DISPLAY SET NEW-CURSOR AT
DISPLAY BASE TURN

DISPLAY OVERLAY USE FOR SCREEN RECOVERY
DISPLAY USE FOR TERMINAL-ERRORS
RECOVERY

PRINT SCREEN

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-17

Programming for Specific Terminals Using Simulated Devices

* Thefollowing special registers have no meaning for programs that communicate
with intelligent devices:

REDISPLAY

PW-QUEUE-FKEY-UMP
PW-QUEUE-FKEY-TIMEOUT
PW-TERMINAL-ERROR-OCCURRED
TELL-ALLOWED

® |norder for aSCREEN COBOL program unit to communicate with an intelligent
device, the OBJECT-COMPUTER paragraph of the Environment Division must
specify that the terminal type is INTELLIGENT. In addition, the PATHMON
environment must be configured for intelligent devices; thisis accomplished by
setting the terminal typein a SET TERM or SET PROGRAM command. Refer to
the Compaqg NonSop™ Pathway/i TS System Management Manual for details.

Using Simulated Devices

Compaq provides the means for you to write nonprivileged programs that function as a
terminal, printer, tape driver, or other device. In the terminology of the Compaq
NonSop™ Kernel operating system, these programs are called subtype 30 processes.

Specifying device subtype 30 tells the system that the terminal-simulation process will
supply device information in response to a request for the device-type information.
Hence device subtype 30 must be specified for a terminal-simulation process; otherwise,
thefile system will reply to the DEVICEINFO request.

All the devices that Pathway/i TS interfaces with can be emulated with a subtype 30
process. Thedevicelist includes:

® Terminas

RUN PROGRAM terminals have a DEVICEINFO time limit of five minutes.
START TERM terminals do not have a DEVICEINFO time limit.

® Logfiles

Log files have a DEVICEINFO time limit of two minutesif PATHMON is starting.
However, log files have atime limit of five minutesif PATHMON is running.

e Associative servers
Associative servers have aDEVICEINFO time limit of five minutes.

When a DEVICEINFO error occurs, an error is not logged. Instead, the following error
message is sent to the operator:

ERRCOR - *1040* UNABLE TO DETERM NE DEVI CE TYPE (nnn)
where nnn is an operating system error.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-18

Programming for Specific Terminals Using Dial-in Terminals

Using Dial-in Terminals

When dial-in terminals are in use, the terminal control process (TCP) issuesa
CONTROL 11 operation (wait for modem connect) immediately after the terminal fileis
opened. At terminal startup time, no program unit or data area is attached to the
terminal; therefore, the terminal is using a minimum of TCP resources while waiting for
modem connect. When the terminal is stopped, the terminal fileisclosed. The close
causes the modem to disconnect if no other process has the terminal file open.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-19

Programming for Specific Terminals Using Dial-in Terminals

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
3-20

Writing User Conversion Procedures

If you include a USER CONVERSION clause in a screen description entry, a message
description entry, or a SEND M ESSAGE statement, you must provide a corresponding
user conversion procedure. The user conversion procedure |ets you make your own
validation checks or conversions of data passed between a SCREEN COBOL program
and aterminal screen or intelligent device.

This section presents information about the following topics:
® User conversion procedures

® User-written user conversion procedures

® Screen input procedures

e Screen output procedures

® 3270 key mapping

¢ Intelligent device input procedures

¢ Intelligent device output procedures

User Conversion Procedures

Compaq provides nine user conversion procedures with the Compag NonStop™
Pathway/iTS software: four to convert terminal screen data, four to convert intelligent
device message data, and one to support IBM 3270 attention keys. The data conversion
procedures consist of input and output procedures. The input procedures provide
conversion and data validation; the output procedures provide output conversion. The
key-mapping procedure supports the program attention keys (PA4 through PA10) on an
IBM 3270 (or analogous) terminal. In summary, the user conversion procedures are as

follows:
Conversion Procedures Data
Terminals Screen input Numeric data
Alphanumeric data
Screen output Numeric data
Alphanumeric data
3270 key mapping Attention keys
Intelligent Devices Device input Numeric data

Alphanumeric data

Device output Numeric data
Alphanumeric data

The five terminal procedures and four intelligent-device procedures exist in the TCP
object library. The TCP calls the specified procedure whenever you include a USER

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-1

Writing User Conversion Procedures User-Written User Conversion Procedures

CONVERSION clause as part of either afield definition or a SEND MESSAGE
statement.

User-Written User Conversion Procedures

You can write your own user conversion procedures in the Portable Transaction
Application Language (pTAL) and use the nl d utility to link your proceduresin the
native TCP user library object file, PATHTCPL.

In releases prior to D40, user conversion procedures were written in TAL. In D40 and
later releases (including all G-series releases), user conversion procedures must be
written in pTAL. pTAL isbased on TAL. The pTAL language excludes architecture-
gpecific TAL constructs and includes new constructs that replace the architecture-
specific constructs. You can write user conversion procedures that can be compiled by
both the TAL and the pTAL compilers, thus enabling you to use the same source code
for different releases of Pathway/iTS.

If you are converting existing user-written user conversion routines to pTAL for use
with a D40 or later version of Pathway/iTS, refer to the pTAL Conversion Guide and the
pPTAL Reference Manual for further information. Many user conversion routines are
simple enough that no changes will be needed. However, there is an interface change in
the four user conversion procedures for intelligent devices, as shown in Figure 4-7 and
Figure 4-8 later in this section.

User conversion routines and alternative advisory message routines (described in the
Compag NonStop™ Pathway/iTS SCREEN COBOL Reference Manual) are the only
routines that must be compiled with the pTAL compiler.

Coding the User Conversion Procedures and Creating the User Library
There arefour files provided in the installation subvolume:

SLIB An auxiliary source file that is passed to the pTAL compiler for
compiling the user conversion procedures

ILIB An interface source file containing al the definitions and data
structures used by the user conversion procedures

TLIB A source file containing the stubs of the user conversion
procedures

TCPLIB Anobject filethat is required to build the native user library
You should code the user conversion proceduresonly inthe TLIB file.
Use the following four stepsto code your user conversion procedures:

1. Copy thefilesSLIB, ILIB, and TLIB from the installation subvolume to your
subvolume: for example, $MY.USERCNV. Make changes to the user conversion
procedures that you want to use.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-2

Writing User Conversion Procedures Coding the User Conversion Procedures and
Creating the User Library

2. Compilethe source using pTAL asfollows:

PTAL/ I N $My. USERCNV. SLI B/ user - conver si on- obj ect

user-conver si on- obj ect
isapTAL object file.
3. Remove al compilation errors.
4. Buildthe user library using thenl d utility asfollows:

NLD user - conver si on- obj ect $vol ume. ZPATHWAY. TCPLI B
-UL-O native-user-library

user-conver si on- obj ect

isapTAL object file.

$vol une
is the volume where the install ation subvolume ZPATHWAY resides.

native-user-library

isthe native user library object file used by the TCP.

Usingthe MAKEUL Macro

A Compag Tandem Advanced Command Language (TACL) macro called MAKEUL is
provided to facilitate the process of creating the user library. If you are using MAKEUL,
perform the following two steps instead of the four steps described in the previous
subsection:

1. Copy thefilesSLIB, ILIB, and TLIB from the installation subvolume to your
subvolume, for example $MY.USERCNV. Make changes to the user conversion
procedures that you want to use.

2. Compile and build the native user library as follows:

MAKEUL - SRC $MY. USERCNV. SLI B -LIB native-user-library
-LOC $vol une. ZPATHWAY

native-user-library

isthe native user library source file used by the TCP.

$vol une
is the volume where the install ation subvolume ZPATHWAY resides.

See Appendix A, The MAKEUL Macro, for further information on the MAKEUL
macro and related exampl es.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-3

Writing User Conversion Procedures Restrictions on User Conversion Procedures

Restrictions on User Conversion Procedures

Do not code your user conversion procedures to perform any /O operations. Such 1/0
operations could interfere with the operation of the TCP.

Screen Input Procedures

Two procedures provide conversion during screen input, one procedure for input of
numeric dataitems and the other for input of aphanumeric items. When the USER
CONVERSION clause isdeclared for the field, the appropriate procedure is called:

* Before value checks are applied
* After the input has been stripped of fill characters
e After standard conversion is attempted

The procedureis called even if an error occurs during the standard conversion attempt;
if alength error occurs, however, the procedure is not called.

Note. If an alphanumeric field is declared with the UPSHIFT and USER CONVERSION
clauses, the TCP upshifts the field both before and after the user conversion procedure is
called.

Most of the parameters of the two procedures are the same; they differ only for the
internal dataitem. Declarations for the numeric and al phanumeric screen input
conversion procedures are shown in Figure 4-1 and Figure 4-2.

Figure4-1. Screen Numeric Input Procedure Declaration

PROC USERMNUMERI C*"l NPUTAMCONVERSI ON (USERCODE, ERROR,
I NPUT, | NPUTALEN, | NTERNAL, | NTERNALMSCALE);

I NT USERCODE;

I NT . ERROR;

STRI NG . | NPUT;

I NT | NPUT”LEN;

FI XED . | NTERNAL;

I NT | NTERNAL" SCALE;

Figure4-2. Screen Alphanumeric Input Procedure Declar ation

PROC USERMALPHA™ NPUTACONVERSI ON (USERCODE, ERRCR,
I NPUT, | NPUTALEN, | NTERNAL, | NTERNALMLEN);

I NT USERCODE;

I NT . ERROR;

STRI NG . | NPUT;

I NT | NPUT”LEN;
STRI NG . | NTERNAL;

I NT | NTERNALM LEN;

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-4

Writing User Conversion Procedures Screen Input Procedures

USERCODE

isthe value given in the USER CONVERSION field characteristic clause. This
parameter can be used to select a particular type of conversion.

ERRCOR

is both an input and an output parameter. When the procedureis called, the
parameter contains either O (indicating no error) or the number of a conversion error
detected during the attempted standard conversion. Refer to the Compag NonStop™
Pathway/iTS SCREEN COBOL Reference Manual for alisting of the possible error
codes.

The value of the ERROR parameter after the call determines whether an error for
the field is reported back to the terminal. If the value is nonzero, that valueis used
to select the error message to be displayed. Processing depends on the purpose of
the procedure as follows:

® |f the user conversion procedure simply performs additional checking on the
input it has received, then the procedure should return immediately if the
ERROR is nonzero: that is, skip the additional checking. Thisis because having
anonzero ERROR indicates that an error has already been encountered and
henceit is not necessary to do any further checks. However if the ERROR is
zero, then the procedure should proceed with its own checking and set the
ERROR accordingly.

® |f the user conversion procedure is performing some conversion, then the
ERROR may have no meaning because you may have entered some values
which will cause the ERROR to be set, but programmatically you would like to
convert the entered value to some val ue which would be understood by your
application. Hence in these cases, you should ignore the value present in the
ERROR, perform the conversion, and set the ERROR parameter accordingly.

I NPUT

contains the string of characters input from the terminal. Alphanumeric input is
stripped of fill characters from the right; numeric input is stripped of fill characters
from both the right and the | eft.

I NPUTALEN

gives the number of bytesin the input string after the string is stripped of fill
characters. The byte before and the byte after the input string are set to null values.

| NTERNAL

contains the result of the standard conversion (if no error occurred) and should
contain the result of the user conversion (unless ERROR is nonzero upon return).

® For the numeric procedure, INTERNAL isaFIXED parameter; if necessary,
thisvalue islater converted to the final datatype by the TCP. The
INTERNAL/MSCALE parameter gives the scale that INTERNAL should have.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-5

Writing User Conversion Procedures Screen Output Procedures

® For the alphanumeric procedure, INTERNAL isa STRING parameter.
INTERNAL”LEN represents the maximum number of bytes that the result of
the conversion can occupy; therefore, the conversion routine should use
INTERNAL”LEN to control the maximum amount of data moved to
INTERNAL.

Screen Output Procedures

Two procedures provide conversion during screen output. One procedureisfor output
of numeric data items, and the other is for alphanumeric items. When the USER
CONVERSION clause isdeclared for the field, the appropriate procedure is called after
standard conversion has compl eted.

Note. If an alphanumeric field is declared with the UPSHIFT and USER CONVERSION
clauses, the TCP upshifts the field both before and after the user conversion procedure is
called.

Most of the parameters of the two procedures are the same; they differ only for the
internal dataitem. Declarations for the numeric and a phanumeric screen output
conversion procedures are shown in Figure 4-3 and Figure 4-4.

Figure 4-3. Screen Numeric Output Procedure Declaration

PROC USERMNUMERI C*OUTPUT” CONVERSI ON (USERCODE, OUTPUT,
OUTPUTMLEN, MAXMOUTPUTALEN, | NTERNAL,
| NTERNAL" SCALE) ;

I NT USERCODE;

STRI NG . QUTPUT,;

I NT . QUTPUT”LEN,

I NT MAXN OQUTPUTM LEN,
FI XED . | NTERNAL;

I NT | NTERNAL" SCALE;

Figure 4-4. Screen Alphanumeric Output Procedure Declar ation

PROC USERMALPHA™ OUTPUT” CONVERSI ON (USERCCDE, QOUTPUT,
OQUTPUTALEN, MAXMOQUTPUTALEN, | NTERNAL, | NTERNALMLEN);

I NT USERCODE;

STRI NG . QUTPUT,

I NT . QUTPUT”LEN;

I NT MAXN OQUTPUTM LEN,
STRI NG . | NTERNAL;

I NT | NTERNAL™ LEN;

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-6

Writing User Conversion Procedures 3270 Key Mapping

USERCODE

contains the value given in the USER CONVERSION field characteristic clause.
This parameter can be used to select a particular type of conversion.

QUTPUT

indicates where the string of characters for output to the terminal is to be placed.
When the procedure is called, the location designated by this parameter contains the
result of the standard conversion.

OUTPUTALEN

contains the length of the output string. If the procedure changes the output string,
the procedure should set OUTPUTALEN to the associated length; in no case should
OUTPUTALEN be greater than MAX OUTPUTALEN. If OUTPUTALEN isless
than the field length, the fill character is used to pad the field.

MAXN OUTPUT” LEN

represents the maximum possible length of the particular converted output field.
This value should be used to control the maximum amount of data moved to
OUTPUT.

| NTERNAL
contains the data to be converted.

® For the numeric procedure, INTERNAL isa FIXED parameter. The
INTERNAL/MSCALE parameter contains the number of decimal places.

® For the alphanumeric procedure, INTERNAL isa STRING parameter. The
INTERNAL”LEN parameter contains the number of bytesin the string.

Note. Do not expect the string represented by the INTERNAL parameter to be bounded by
nulls.

3270 Key M apping

The user-replaceable procedure USERMN3270"KEY"MAPPING is provided to support
program attention keys PA4 through PA10. These keys are used on terminals analogous
tothe IBM 3270 terminal.

Keys PA4 through PA 10 transmit a code called an attention-1D (AID) byte. The actual
codes vary among terminals of different vendors. To use these keys, you need to write
your own procedure that associates the AID byte transmitted by your terminal with the
appropriate Pathway/iTS key number.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-7

Writing User Conversion Procedures 3270 Key Mapping

Declarations for the key-mapping procedure are shown in Figure 4-5.

Figure 4-5. 3270 Key-Mapping Procedure Declaration
PROC USER*32707KEYAMAPPI NG (Al D, KEYNUM);

I NT Al D 3270 AID BYTE -- AID byte fromterm nal

|
I NT . KEYNUM ! ON THE CALL -- Associated with 3270 AID
! byte (Table 4-1) or -1 if
! key is undefined
! ON THE RETURN -- Pathway/i TS key nunber (Figure 4-1)
! or -1 if undefined
Al D

contains the code transmitted by the attention key (PA4 through PA10). A valuefor
AID is passed to the procedure.

KEYNUM

contains the Pathway/i TS key number for the SCREEN COBOL program. A value
for KEYNUM is passed on the call and return. KEYNUM isset to -1 if the
Pathway/iTS key number is undefined.

The procedure could include logic to test for the AID byte values represented by keys
PA4 through PA 10 and return the appropriate KEYNUM. The logic could test for
KEYNUM value of -1, this value means that the key number isundefined. If
KEYNUM is-1, you should then test the AID byte value:

¢ |f the AID byte value indicates a key PA4 through PA10, change KEYNUM to the
appropriate Pathway/i TS key number (31 through 37).

* |f the AID byte value indicates something other than key PA4 through PA10, merely
return, leaving KEYNUM as -1.

Table 4-1 shows the defined relationships between AID byte values and Pathway/iTS
key numbers.

Table 4-1. Mapping of Internal 3270 Key Number to Pathway/iTS Key

Number (page 1 of 3)

SCREEN COBOL Special-Name 3270 AID Byte Pathway/iTS Key Number

ENTER %047 0
PA1 %045 1
PA2 %076 2
PA3 %054 3
CLEAR %137 4
PF1 %061 5
PF2 %062 6

* The AID byte valuefor this key varies from terminal vendor to terminal vendor. Refer to the manual that
came with your terminal for the value.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-8

Writing User Conversion Procedures

3270 Key Mapping

Table 4-1. Mapping of Internal 3270 Key Number to Pathway/iTS Key

Number (page 2 of 3)

PF3
PF4
PF5
PF6
PF7
PF8
PF9
PF10
PF11
PF12
PF13
PF14
PF15
PF16
PF17
PF18
PF19
PF20
PF21
PF22
PF23
PF24
Undefined
Undefined
PA4*
PAS*
PAG*
PAT7*
PA8*
PAO*
PA10*

%063
%064
%065
%066
%067
%070
%071
%072
%043
%100
%101
%102
%103
%104
%105
%106
%107
%110
%111
%133
%056
%074
%060
%127
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined
Undefined

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 (Test Request)
30 (Op ID Card Reader)
31
32
33
34
35
36
37

* The AID byte valuefor this key varies from terminal vendor to terminal vendor. Refer to the manual that

came with your terminal for the value.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

4-9

Writing User Conversion Procedures Intelligent Device Input Procedures

Table 4-1. Mapping of Internal 3270 Key Number to Pathway/iTS Key
Number (page 3 of 3)

Undefined %075 -1 (Selector Pen Attn)
Undefined %055 -1 (No AID--Display)
Undefined %131 -1 (No AID--Printer)
Other -- -1

* The AID byte valuefor this key varies from terminal vendor to terminal vendor. Refer to the manual that
came with your terminal for the value.

Intelligent Device Input Procedures

Two procedures can be called to convert input received from an intelligent device: one
procedure to convert numeric input and the other to convert alphanumeric input.

You can use the input procedures to:

® Receive and format an input message

e Specify the actual scale of a numeric item or the actual length of a nonnumeric item
® Convert any fill charactersin the message

® Right justify alphanumeric data in the message

* Report whether data was actually sent and, if sent, whether the data is nonblank

When USER CONVERSION is specified for a message field, the TCP calls the numeric
procedure if the data is to be moved to a numeric working-storage field; it callsthe
alphanumeric procedure if the datais to be moved to an alphanumeric field.

When USER CONVERSION is specified in a SEND MESSAGE statement, the TCP
calls the alphanumeric procedure regardless of the message data type. The input
procedures are performed before the standard conversion or formatting of the send-
message data.

If aUSER CONVERSION clause is specified for both a Message Section message field
and the SEND MESSAGE statement that sends the message, the TCP first calls the
procedure for the SEND MESSAGE statement, then calls the procedure for the message,
and finally calls the procedure for the message field.

Figure 4-6 illustrates the data flow of the processing of Message Section items on input.
The sequence of events performed for each elementary datafield input from an
intelligent device is shown; processing steps relevant to user conversion routines are
highlighted.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-10

Writing User Conversion Procedures

Intelligent Device Input Procedures

Figure 4-6. Message Input From

an Intelligent Device

Intelligent Device ——message —®E€P
TCP —message —MESSAGE SECTION

MESSAGE SECTION —
Message Leve| —1—==
Message Level ——%
Message Level L

Group Level —1—
Field Level —1—==
Field Level ——%
Field Level —1—==
Field Level —1—==
Field Level —T1—®
Field Level —1—==

VARYING1 and VARYING2 handling
SEND MESSAGE Verb's
USER CONVERSION

Message Level USER CONVERSION

OCCURS Processing

OCCURS Processing

PRESENT IF checking

FIELD-DELIMITER testing/
RESULTING COUNT

Field conversion to
WORKING-STORAGE format

or

Field Level USER CONVERSION

TO/USING destination location

_»

CDT 046.CDD

Most of the parameters for the two input procedures are the same; they differ in their
internal data representation and in that al phanumeric items can be justified but numeric
items cannot. Declarations for the numeric and alphanumeric intelligent device input
conversion procedures are shown in Figure 4-7 and Figure 4-8.

Figure 4-7. Device Numeric Input Procedure Declaration

PROC USERNUMERI C*l NPUTAMNMSGYCONV - (
| NPUTALEN, | NTERNAL, | NTERNALASCALE, FI LLM"CHAR

FI LLA"OFF, FI ELD*RETURNED, FI ELD"PRESENT);

USERCODE; !
. ERROR; !
NG . EXT | NPUT; !
. I NPUTALEN; !
. | NTERNAL; !
| NTERNALMSCALE; !
|
g
g
g

2355

NG . FILL"CHAR

FI LLNOFF;

. FI ELD*RETURNED,
. FI ELD" PRESENT;

———p—T—n—-—
X
m
O

25535

Suppl i ed by TCP

Gener ated by user procedure

Suppl i ed by TCP

Supplied by TCP; nodifiable
Gener ated by user procedure

Suppl i ed by TCP
Suppl i ed by TCP
Suppl i ed by TCP

Gener ated by user procedure
Gener ated by user procedure

USERCODE, ERROR

I NPUT,

by user

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

4-11

Writing User Conversion Procedures Intelligent Device Input Procedures

Figure 4-8. Device Alphanumeric I nput Procedure Declar ation

PROC USERMALPHAM NPUTAMSGCONV (USERCODE, ERROR, | NPUT
| NPUTALEN, | NTERNAL, | NTERNALMLEN, FILLMCHAR
FI LLAOFF, RI GHTMJUSTI FI ED, FI ELDMRETURNED
FI ELD"PRESENT) ;

I NT USERCODE; I Supplied by TCP

I NT . ERROR; I Generated by user procedure

STRI NG . EXT | NPUT; I Supplied by TCP

I NT . | NPUTALEN, I Supplied by TCP; nodifiable by user
STRING . EXT | NTERNAL; I Generated by user procedure

| NT | NTERNAL”LEN, I Supplied by TCP

STRING . Fl LLN"CHAR, ' Supplied by TCP

I NT FI LL"OFF; I Supplied by TCP

I NT . FI ELD"RETURNED; ! Cenerated by user procedure

I NT . FI ELD"PRESENT; I Generated by user procedure

USERCODE

contains the numeric literal specified in the USER CONVERSION clause. The
procedure uses the supplied value of this parameter to determine which subset of
code to execute.

ERRCOR

contains O when the procedure is called. If an error indication is to be returned, the
procedure should set ERROR to a honzero value. If ERROR is nonzero after the
call, the TCP reports an error.

I NPUT

contains the string of characters input from the intelligent device. Thisstring isthe
raw data for the conversion.

| NPUTALEN
contains the length, in bytes, of the data item.

e At the messagelevel, the length is the number of characters received from the
intelligent device, that is, the I/O transfer count.

e Atthefieldlevel, length isrelevant only if the item is alphabetic or alphanumeric.
Length is the effective length of the field; that is, either the declared length of the
field for fixed-format messages or the actual |ength of the field for delimited
(FIELD DELIMITERS ON) messages. Additionally, the TCP adjusts the length
(INPUTALEN) by subtracting the number of trailing blanksfound in afield. This
adjustment is performed for both fixed-format and delimited-format fields.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-12

Writing User Conversion Procedures Intelligent Device Output Procedures

| NTERNAL

is where the TCP expects to find the results of the conversion routine; that is, itis
the destination of the data from the INPUT parameter—of length INPUTALEN—
that the conversion routine has processed.

| NTERNAL"N SCALE

is aparameter in the numeric procedure only. The procedure should set it to the
number of decimal places of the value stored in INTERNAL when it isa FIXED
field.

| NTERNAL*LEN

isthe size of the destination buffer INTERNAL. It isset to the length of the
maximum expected reply message for the current SEND MESSAGE operation. The
conversion routine should use INTERNAL”LEN to control the maximum amount of
data moved into INTERNAL, the destination of the conversion operation.

FI LLACHAR

is always set to either O (for numeric conversions) or blank (for alphanumeric
conversions) by the TCP.

FI LL"OFF
isalways set to -1 by the TCP.

Rl GHT*JUSTI FI ED

contains -1 (TRUE) if an alphanumeric value is to be right justified and contains O
(FALSE) if not.

FI ELD*RETURNED

should be set to -1 (TRUE) if any data was sent from the device or be set to 0
(FALSE) if there was no data.

FI ELDM PRESENT

should be set to -1 (TRUE) if the data sent from the device is nonblank or be set to 0
(FALSE) if the datais blanks.

Intelligent Device Output Procedures

Two procedures can be called to convert output being sent to an intelligent device: one
procedure to convert numeric output and the other to convert alphanumeric output.

You can use the output procedures to:

e Addfill charactersto the message, increasing the length up to the maximum
message length allowed

* Right justify alphanumeric data in the message

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-13

Writing User Conversion Procedures Intelligent Device Output Procedures

When USER CONVERSION is specified in amessage entry, the TCP calls the numeric
procedure for data moved from a numeric data field in working storage; it calls the
alphanumeric procedure for data moved from an aphanumeric datafield in working
storage.

When USER CONVERSION is specified in a SEND MESSAGE statement, the TCP
calls the alphanumeric procedure regardless of the message data type. The user
procedures are performed after any standard conversion of the data.

If aUSER CONVERSION clause is specified for both a Message Section message field
and the SEND MESSAGE statement that sends the message, the TCP first calls the
procedure for the message field, then calls the procedure for the message, and finally

calls the procedure for the SEND MESSAGE statement. This calling order isthe
inverse of the order for intelligent device input procedures.

Figure 4-9 illustrates the data flow of the processing of Message Section items on
output. The sequence of events performed for data output to an intelligent deviceis
shown; processing steps relevant to user conversion routines are highlighted.

Figure 4-9. Message Output to an Intelligent Device

WORKI NG- STORAGE SECTI ON—

Field Level ™ Process field PRESENT IF
Field Level = FROM/USING source location
Field Level & Field conversion to
MESSAGE SECTION format
or
Field Level & Fjeld Level USER CONVERSION
Field Level # FIELD LENGTH/append
FIELD-SEPARATOR
Field Level # OCCURS Processing
Group Level # (OCCURS Processing
Message Level # Message Level USER CONVERSION
Message Level & SEND MESSAGE Verb's
USER CONVERSION
Message Level # VARYING1 and VARYING2 handling

™ MESSAGE SECTION

MESSAGE SECTION message —®TCP
TCP —message —®itntelligent Device

CDT 049.CDD

Most of the parameters for the two output procedures are the same; they differ in their
internal data representation and in that al phanumeric items can be justified and numeric

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-14

Writing User Conversion Procedures Intelligent Device Output Procedures

items cannot. Declarations for the numeric and al phanumeric device output procedures
are shown in Figure 4-10 and Figure 4-11.

Figure 4-10. Device Numeric Output Procedure Declaration

PROC USERMNUMERI C*OUTPUTAMSGCONV (USERCCDE, OUTPUT
OUTPUTALEN, MAXMOUTPUTALEN, | NTERNAL, | NTERNALNSCALE
FI LLANCHAR, FILLMOFF);

I NT USERCODE; I Supplied by TCP

STRI NG . EXT OUTPUT, I Cenerated by user procedure

I NT . QUTPUT~LEN,; ' Supplied by TCP; nodifiable by user
| NT MAX"OQUTPUTALEN | Supplied by TCP

FI XED .| NTERNAL; I Supplied by TCP

| NT | NTERNALASCALE; ! Supplied by TCP

STRING . FI LLN"CHAR, ' Supplied by TCP

I NT FI LLNOFF; I Supplied by TCP

Figure4-11. Device Alphanumeric Output Procedure Declaration

PROC USERMALPHAM OQUTPUTAMSGMCONV (USERCODE, OUTPUT
OUTPUTALEN, MAXMOQUTPUTALEN, | NTERNAL, | NTERNALMLEN
FI LLACHAR, FI LL"CFF, RI GHTAJUSTI FI ED);

I NT USERCODE; ! Supplied by TCP

STRI NG . EXT OUTPUT, ! Gener ated by user procedure

I NT . QUTPUT~LEN,; ! Supplied by TCP; nodifiable by
user

| NT MAXN OUTPUTALEN Supplied by TCP

|
STRING . EXT | NTERNAL ! Suppl i ed by TCP
| NT | NTERNAL”LEN, ! Suppl i ed by TCP
STRING . FI LLN"CHAR, ! Suppl i ed by TCP
I NT FI LL"OFF; ! Supplied by TCP
USERCODE

contains the numeric literal specified in the USER CONVERSION clause. The
procedure uses the supplied value of this parameter to determine which subset of
code to execute.

OUTPUT

contains the string of characters to be sent to the intelligent device. The TCP
expects OUTPUT to contain the value from INTERNAL as converted by this
procedure.

OUTPUTALEN

contains the number of characters in the output message (the data pointed to by
INTERNAL). If the user conversion procedure changes this length, it should set

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-15

Writing User Conversion Procedures Intelligent Device Output Procedures

OUTPUTALEN to the new length. In no case should OUTPUT”LEN be greater
than MAX*OUTPUTALEN. OUTPUT”LEN can vary from the user-defined length
in cases of delimited-format messages.

MAXN OUTPUT” LEN

represents the maximum possible length of the particular converted output field.
This value should be used to control the maximum amount of data moved to
OUTPUT.

| NTERNAL

points to the data to be converted. The procedure converts this data and storesit in
OUTPUT.

| NTERNAL"N SCALE

is aparameter in the numeric procedure only. It contains the number of decimal
placesin INTERNAL when INTERNAL isaFIXED field.

| NTERNAL*LEN

is a parameter in the alphanumeric procedure only. It contains the number of
charactersin INTERNAL when INTERNAL isa STRING field.

FI LLACHAR

is always set to either O (for numeric conversions) or blank (for alphanumeric
conversions) by the TCP.

FI LL"OFF
isalways set to -1 by the TCP.

Rl GHT*JUSTI FI ED

contains -1 (TRUE) if an aphanumeric value isto beright justified and contains O
(FALSE) if the datais not to be justified.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
4-16

Managing Transactions With the TMF
Subsystem

This section provides information about the Compaqg Transaction Management Facility
(TMF) subsystem for SCREEN COBOL programmers. It also briefly discusses
PATHCOM and SPI parameter options for Pathway applications that use SCREEN
COBOL requesters and the TMF subsystem.

The general environment for Pathway applications that use SCREEN COBOL
requesters and the TMF subsystem is a requester/server environment where SCREEN
COBOL programs accept input from terminal operators and transform the input into
requests to serversfor database services. The servers, in turn, satisfy the requests by
reading, locking, and changing (or adding or deleting) records in audited database files.
Servers can be written in C, C++, COBOLS85, pTAL, TAL, FORTRAN, or Pascal, and
they must follow the record-locking rulesimposed by the TMF subsystem.

To write application requesters that use the TMF subsystem, you should be familiar with
the following information, which is provided in this section:

® Therecommended structure for applications that use the TMF subsystem
* How to usethe SCREEN COBOL statements that support the TMF subsystem

For information about writing servers that use the TMF subsystem, you should refer to
the NonSop™ TSYMP Pathsend and Server Programming Manual.

In addition, you should refer to the NonStop™ TM/MP Application Programmer's
Guide for discussions of the following topics related to the TMF subsystem:

® How to access audited database files
® General guidelinesfor coding servers

® Locking rulesthat must be followed by processes that change records in audited
database files

® How to cope with transaction deadlock
e Anomaliesthat can occur during transaction backout

Task Overview

Figure 5-1 illustrates the basic tasks involved in programming Pathway applications that
use SCREEN COBOL requesters and the TMF subsystem.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-1

Managing Transactions With the TMF Subsystem TMF Application Structure

Figure 5-1. Pathway Application Programming for the TMF Subsystem

: |
SCREEN g?f(;LSS' Ic
COBOL , Pascal,
T TA
Y ¥
é N r N

Process request by:

TRANSIE —Reading files TRANSI
| —Locking records :5
Request database (following TMF

services

BEGIN- TRANSACTION

record-locking rules) Audited
Database Files
—Changing records

in files (changes are
Abort and restart sEmE e

transaction if necessary TRANSID supplied

by requester)

< —Aborting transaction
ABORT- TRANSACTION

if necessary
or

. J . ° J

Requester Server

CDT 051CDD

TMF Application Structure

This subsection describes the recommended structure for applications that use the TMF
subsystem.

One process (usually the SCREEN COBOL requester) coordinates all of the work
required to do a single TMF transaction; this process identifies the beginning and ending
points of each transaction. Additionally, if the server replies to a request message by
indicating that it failed to complete all of the changes, this process can either abort and
abandon the transaction or abort and retry the transaction according to the SCREEN
COBOL application.

The communication between requesters and serversis by standard interprocess /0. The
SCREEN COBOL requester does the SEND operation, and the server does the
READUPDATE call for $RECEIVE and the REPLY call. Each request message and
the server’s reply to the message is for a single transaction.

Any disk 1/0 request isfor asingle transaction. The TMF subsystem appends the
process's current transaction identifier to each disk-request message so that the audit

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-2

Managing Transactions With the TMF Subsystem TMF Programming in SCREEN COBOL

trails (transaction logs) can include the identity of the transaction responsible for each
database change.

Servers should not reply to request messages until all work for the request has been
completed. The contents of the reply message indicate the outcome of the request,
which is one of the following:

e All the work for the request was completed successfully.
* None of thework for the request was completed.
* Thework for the request was only partially completed.

In thefirst case, the requester can commit the transaction. In the second case, the
requester can abort the transaction and then retry it. In both these cases, the information
in the server’'sreply is sufficient to ensure the integrity of the transaction.

However, if the transaction work was only partially completed, the application needs to
ensure that the transaction is not committed so that the incomplete work can be backed
out. To ensure transaction backout, the server should call the ABORTTRANSACTION
procedure after reading the request and before sending itsreply. A call to
ABORTTRANSACTION by the server does not end the transaction—only the requester
can end it—but such acall imposes the requirement that the requester use the ABORT-
TRANSACTION statement, rather than the END-TRANSACTION statement, after the
requester’s reply.

The remainder of this section contains detailed information related to writing SCREEN
COBOL requesters that use the TMF subsystem.

TMF Programming in SCREEN COBOL

The SCREEN COBOL language provides the following features to support TMF
transactions:

e SCREEN COBOL statementsthat begin and end a transaction, abort a transaction,
and restart atransaction

e Special registers TRANSACTION-ID, TERMINATION-STATUS, and
RESTART-COUNTER

Transaction Mode Use

A terminal program unit (that is, a SCREEN COBOL program executing on behalf of a
terminal) configured for use with the TMF subsystem enters transaction mode when the
BEGIN-TRANSACTION statement is executed and |eaves transaction mode when the
END-TRANSACTION or ABORT-TRANSACTION statement is executed.

When BEGIN-TRANSACTION is executed, the transaction is assigned a unique
transaction identifier that distinguishes one transaction from all other transactions. If the
program unit is configured with TMF OFF, the TCP does not allow that program unit to
enter transaction mode, but causes BEGIN-TRANSACTION to issue anull transaction
identifier.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-3

Managing Transactions With the TMF Subsystem SCREEN COBOL Verbs for the TMF Subsystem

When END-TRANSACTION or ABORT-TRANSACTION is executed, the transaction
identifier is discarded and can no longer be used.

For the PATHCOM or SPI SUSPEND, STOP, or FREEZE commands, the effect of
operating in transaction mode is like setting the STOP-MODE special register to a
nonzero value; none of these commands can take effect until the terminal leaves
transaction mode and the terminal STOP-MODE register isO.

The SUSPEND! and FREEZE! commands take effect immediately and cause
transaction backout.

The ABORT command takes effect immediately. If the terminal isin transaction mode
when this command is executed, the transaction is aborted.

For details regarding SUSPEND, FREEZE, STOP, and ABORT, refer to the NonStop™
TSMP System Management Manual and the Compag NonStop™ Pathway/i TS System
Management Manual.

Note. To work appropriately with the ORDERLY option of the PATHCOM SHUTDOWN2
command, SEND requests must be coded so that a terminal can be stopped after the last I/0
operation in the logical transaction completes. In other words, the requester must end or abort
the current transaction after the last SEND request in the transaction, based on the server’s
reply to the SEND request. For details regarding the SHUTDOWN2 command, refer to the
NonStop™ TS/MP System Management Manual.

SCREEN COBOL Verbsfor the TMF Subsystem

Ina SCREEN COBOL requester, you invoke the functions of the TMF subsystem by
using the following transaction-control statements:

e ABORT-TRANSACTION aborts and backs out a transaction.
e BEGIN-TRANSACTION begins atransaction.
e END-TRANSACTION ends a transaction.

e RESTART-TRANSACTION backs out a transaction and then starts it from the
BEGIN-TRANSACTION point with a new transaction identifier.

When you use these transaction statementsin your SCREEN COBOL programs,
Pathway/i TS handles a number of failure casesitself by automatically aborting the
transaction and restarting it at the BEGIN-TRANSACTION point. The TCP doesthe
following:

® Takescareof adl detailsinvolved in handling concurrent active transactions
* Keepstrack of the transaction identifiers for multiple transactions

® Checkpoints the transaction identifier

e QOperates as afault-tolerant process pair

¢ Handlesthe TMF programming involved when the backup process takes over

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-4

Managing Transactions With the TMF Subsystem SCREEN COBOL Verbs for the TMF Subsystem

You should include an ON ERROR clause in each BEGIN-TRANSACTION statement
and provide coding to check for file-system errors that could occur on any of the
transaction statements. Failure to perform these checks could cause important parts of
your application to fail. For alist of the file-system errorsthat can be returned by the
TMF procedure calls corresponding to these transaction statements, refer to the
NonSop™ TM/MP Application Programmer’s Guide.

ABORT-TRANSACTION Use

Generally the ABORT-TRANSACTION statement is used when the SCREEN COBOL
program detects an unrecoverable error and abandons the transaction. When this
statement is executed, the transaction is aborted; all updates made by the transaction to
audited datafiles are backed out. The aborted transaction is not restarted automatically.

The form of the ABORT-TRANSACTION statement is:

ABORT- TRANSACTI ON

Execution of the ABORT-TRANSACTION statement causes the terminal to leave
transaction mode and sets the special register TRANSACTION-ID to SPACES.

If the terminal is not in transaction mode when ABORT-TRANSACTION is executed, it
Is suspended; in such acase terminal execution cannot be restarted with a PATHCOM
or SPI RESUME command.

If afatal error occurs while the transaction is being aborted and the current BEGIN-
TRANSACTION statement does not have an ON ERROR clause, the terminal is
suspended; in such a case the current transaction is backed out and terminal execution
cannot be resumed with a RESUME command. If the BEGIN-TRANSACTION
statement has an ON ERROR clause, that clause is executed and the terminal is not
suspended.

BEGIN-TRANSACTION Use

The BEGIN-TRANSACTION statement begins anew transaction; this statement
identifies the beginning of a sequence of operations that are treated by the TMF
subsystem as a single transaction. When this statement is executed, the following
OCCUr'S:

®* Theterminal enters transaction mode.
®* The TMF subsystem is requested to begin a new transaction.

® Thetransaction identifier for the new transaction is assigned to the
TRANSACTION-ID special register.

e RESTART-COUNTER and TERMINATION-STATUS specia registers are reset to
O for the first occurrence of the transaction.

The form of the BEGIN-TRANSACTION statement is:

BEG N- TRANSACTI ON [ON ERROR i nperative-statenment |

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-5

Managing Transactions With the TMF Subsystem SCREEN COBOL Verbs for the TMF Subsystem

The BEGIN-TRANSACTION statement indicates the restarting point to be used if a
failure occurs while the terminal isin transaction mode. If the transaction fails for any
reason, its database changes are backed out. Except when the SCREEN COBOL
program issues an ABORT-TRANSACTION, execution of the SCREEN COBOL
program can be restarted at that point if these conditions are met:

¢ |f the ON ERROR clause is omitted, the TCP compares the number of times that the
transaction has been restarted with the global transaction-restart limit specified with
the MAXTMFRESTARTS option of the SET PATHWAY command in
PATHCOM. If the number of restartsislessthan that limit, the transaction is
restarted with a new transaction identifier, the RESTART-COUNTER special
register isincremented by 1, and the TERMINATION-STATUS special register
remains set to 1. If the number of restarts equals the transaction-restart limit, the
terminal is suspended but its execution can be resumed manually.

¢ |f ON ERROR is present and if the requester restarts the transaction, RESTART-
COUNTER isincremented by 1, TERMINATION-STATUS remains set to 1, and
the ON ERROR branch is executed. The ON ERROR branch of the SCREEN
COBOL program can then include a check to determine whether or not the
transaction should be restarted; for example, the program can compare RESTART-
COUNTER to alocal restart limit established within the program.

If the terminal is aready in transaction mode when BEGIN-TRANSACTION isissued,
it is suspended; in such a case the current transaction is backed out and terminal
execution cannot be resumed with a PATHCOM or SPI RESUME command.

The following code sequence accepts input data from the operator and starts a new
transaction. Inthe event of an error, the ON ERROR code tests the RESTART-
COUNTER to determineif the particular transaction has been restarted more than two
times. If the transaction has been started more than twice, it is aborted and the operator
is asked to enter the data again. If the transaction has not been restarted more than two
times, the TCP makes another attempt to process the transaction.

enter-data

ACCEPT screen...
BEG N- TRANSACTI ON

ON ERROR PERFCORM check-error.
| F abort-flag NOT = O

GO TO ent er-dat a.

SEND . ..
END- TRANSACTI ON.

ét op-trans.
GO TO ent er-dat a.

checi(-error.
MOVE O TO abort-fl ag.
| F TERM NATI ON- STATUS = 1

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-6

Managing Transactions With the TMF Subsystem SCREEN COBOL Special Registers for the TMF
Subsystem

| F RESTART- COUNTER > 2
ABORT- TRANSACTI ON
DI SPLAY "No" | N MSG
MOVE 1 TO abort-fl ag.

END-TRANSACTION Use

The END-TRANSACTION statement indicates that the transaction is complete. When
this statement is successfully executed, the database updates made by the transaction
become permanent, the terminal leaves transaction mode, and the special register
TRANSACTION-ID is set to SPACES.

If the TMF subsystem rejects END-TRANSACTION, the SCREEN COBOL program is
restarted at the previous BEGIN-TRANSACTION point.

The form of the END-TRANSACTION statement is:

END- TRANSACTI ON

If the terminal is not in transaction mode when END-TRANSACTION is executed, it is
suspended; in such a case terminal execution cannot be resumed with a RESUME
command.

RESTART-TRANSACTION Use

The RESTART-TRANSACTION statement is used when the SCREEN COBOL
program detects an error that might be temporary, abandons the current attempt, and
retries the transaction. When this statement is executed, the following occurs:

® The current execution of the transaction is backed out.

® Thetransaction isrestarted at the previous BEGIN-TRANSACTION point with a
new transaction identifier.

® The specia register RESTART-COUNTER isincremented by 1.
The form of the RESTART-TRANSACTION statement is:

RESTART- TRANSACTI ON

Therestart due to executing RESTART-TRANSACTION counts as a restart for
purposes of the global transaction-restart limit.

If the terminal is not in transaction mode when RESTART-TRANSACTION is
executed, the terminal is suspended; in such acase terminal execution cannot be
resumed with a PATHCOM or SPI RESUME command.

SCREEN COBOL Special Registersfor the TMF Subsystem

Special registers are data items defined automatically by the SCREEN COBOL
compiler, not by the programmer. Three special registers have been provided for TMF
subsystem users:. TRANSACTION-ID, TERMINATION-STATUS, and
RESTART-COUNTER.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-7

Managing Transactions With the TMF Subsystem Interaction Between the PATHMON Environment and

the TMF Subsystem

TRANSACTION-ID

Executing BEGIN-TRANSACTION sets TRANSACTION-ID to the value of the
transaction identifier. Executing END-TRANSACTION or ABORT-
TRANSACTION sets this register to SPACES.

TRANSACTION-ID hasthisimplicit declaration:
01 TRANSACTION-1D PI C X(8).
TERMINATION-STATUS

Executing BEGIN-TRANSACTION setsthe value of TERMINATION-STATUS to
indicate the outcome of BEGIN-TRANSACTION. Thefollowing values are
possible:

1 Thetransaction is started or restarted.

2 The TMF subsystem isnot installed. If thereis no ON ERROR clause, the
default system action is to suspend the terminal for the pending abort.

3 The TMF subsystem is not started. If thereis no ON ERROR clause, the
default system action is to suspend the terminal, but the terminal can be
restarted by the PATHCOM or SPI RESUME command.

4 A fata error occurred. If thereisno ON ERROR clause, the default system
action is to suspend the terminal for the pending abort.

TERMINATION-STATUS has thisimplicit declaration:
01 TERM NATI ON- STATUS Pl C 9999 COWP.

Executing BEGIN-TRANSACTION sets RESTART-COUNTER to the number of
times the transaction has been restarted. RESTART-COUNTER isreset to O when
BEGIN-TRANSACTION isfirst executed for aparticular transaction.

RESTART-COUNTER hasthisimplicit declaration:
01 RESTART- COUNTER Pl C 9999 COWP.

See BEGIN-TRANSACTION Use on page 5-5 for an example of how to use
RESTART-COUNTER to limit selectively the number of times atransactionis
retried.

| nter action Between the PATHM ON Environment
and the TMF Subsystem

When you are configuring and controlling Pathway applications that include SCREEN
COBOL requesters and use the TMF subsystem, you need information about three basic
questions related to the interaction between the PATHMON environment and the TMF
subsystem:

How do the settings you specify for the TMF parameter of the PATHCOM
SET SERVER, SET TERM, and SET PROGRAM commands affect SCREEN
COBOL SEND statements?

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-8

Managing Transactions With the TMF Subsystem SET SERVER Command and the TMF Subsystem

* How is TCP checkpointing strategy affected by the settings you specify for the TMF
parameter of the SET SERVER command?

® What problems are caused by using the TMF OFF option of the SET TERM or SET
PROGRAM commands as a switch to turn TMF subsystem operation off for a
SCREEN COBOL requester that is communicating with servers running under the
TMF subsystem?

Understanding the answers to these questions ensures the consistency of the database
and helps you to improve the reliability and performance of the applications that use the
database.

SET SERVER Command and the TMF Subsystem

The SET SERVER command contains a TMF parameter with an ON or OFF option. By
setting this parameter you control how a TCP allows accessto a server class, that is, the
types of operations a server class can perform.

® TMF ON meansthe TCP allowsa SEND operation to members of this server class
whether or not the SCREEN COBOL program isin transaction mode.

® TMF OFF meansthe TCP allows a SEND operation to the members of this server
classonly if the SCREEN COBOL program is not in transaction mode. OFF isthe
default setting.

In addition, the TCP makes checkpointing decisions based in part upon the option
specified for the TMF parameter. You must match the TMF parameter setting to the
application environment. For further information, see TCP Checkpointing Strategy on
page 5-12.

SET TERM and SET PROGRAM Commandsand the TMF Subsystem

The SET TERM and SET PROGRAM commands each contain a TMF parameter with
an ON or OFF option.

® TMF ON causesthe TCP to invoke the corresponding Guardian procedure call for
any TMF statement issued from a SCREEN COBOL program. This setting allows
your SCREEN COBOL program to perform SEND operations to a server for which
the TMF parameter isset to ON. ON isthe default setting whether or not the TMF
subsystem is running.

® TMF OFF does not cause the TCP to invoke a corresponding Guardian procedure
call for any TMF statement issued from a SCREEN COBOL program. Instead, the
TMF statement appears (to the SCREEN COBOL program) to complete
successfully, and the program can continue to execute.

For most Pathway applications, you should use the default parameter settings, whether
or not the TMF subsystem is running.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-9

Managing Transactions With the TMF Subsystem

Effect of TMF Parameters on SCREEN COBOL

SEND Operations

Effect of TMF Parameterson SCREEN COBOL SEND Operations

Table 5-1 illustrates how the various combinations of settings of the TMF parameter in
the PATHCOM SET TERM, SET PROGRAM, and SET SERVER commands affect a
SCREEN COBOL SEND statement when the PATHMON process and the TMF
subsystem are both running on the system. Depending on the type of file access
attempted, the TCP either alows the SEND statement to execute or issues the

appropriate error message.

Table5-1. SEND Operations With the TMF Subsystem (page 1 of 2)
PATHCOM Commands

SET SERVER
SET TERM
SET PROGRAM

SET SERVER
SET TERM
SET PROGRAM

SET SERVER
SET TERM
SET PROGRAM

SET SERVER
SET TERM
SET PROGRAM

TMF ON
TMF ON
TMF ON

TMF ON
TMF OFF
TMF OFF

TMF OFF
TMF ON
TMF ON

TMF OFF
TMF OFF
TMF OFF

Audited Files

Transaction Mode
SEND statement executesl

SEND statement executes.
possible file-system
error 75 in server2

SEND error 133

SEND error 133

Nontransaction M ode

SEND statement executes.
possible file-system
error 75 in server2

SEND statement executes.
possible file-system
error 75 in server2

SEND statement executes.
possible file-system
error 75 in server2

SEND statement executes.
possible file-system
error 75 in server2

PATHCOM Commands

SET SERVER
SET TERM
SET PROGRAM

SET SERVER
SET TERM
SET PROGRAM

TMF ON
TMF ON
TMF ON

TMF ON
TMF OFF
TMF OFF

Non-Audited Files

Transaction Mode
SEND statement executes?

SEND statement executes?

Nontransaction M ode
SEND statement executesd

SEND statement executesd

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

5-10

Managing Transactions With the TMF Subsystem Timeouts on SEND Operations to Servers

Table5-1. SEND Operations With the TMF Subsystem (page 2 of 2)

PATHCOM Commands Audited Files
SET SERVER TMF OFF SEND error 133 SEND statement executesd
SET TERM TMF ON
SET PROGRAM TMF ON
SET SERVER TMF OFF SEND error 133 SEND statement executesd
SET TERM TMF OFF
SET PROGRAM TMF OFF
LEGEND

Transaction Mode. The SEND statement is executed after the SCREEN COBOL program hasissued a
BEGIN-TRANSACTION statement, but before the program has issued an END-TRANSACTION or an
ABORT-TRANSACTION statement. Note that a program is considered to be in transaction mode if it
executesa BEGIN-TRANSACTION statement even if the TMF parameter is set to OFF for the terminal or
program.

Notel. These are PATHCOM command parameter settings for norma TMF and Pathway operations; SET
SERVER TMF ON must be set within PATHCOM or SPI.

Note 2. Although no transaction identifier was present, Pathway/iTS has allowed the SEND operation. If the
server attempts afile lock or update operation on an audited file, Guardian file-system error 75 is returned to
the server. How thisinformation is returned by the server to the SCREEN COBOL requester is application
dependent.

Note 3. TMF mode violation: the error isreturned in the SCREEN COBOL TERMINATION-STATUS special
register.

Note4. These are PATHCOM command parameter settings for specia program testing. These settings provide
a convenient way to partially test or debug a SCREEN COBOL program on a system that does not yet have
the TMF subsystem configured. The program will execute, but all SEND requests to audited files will
receive Guardian file-system error 75 replies.

Note5. These are PATHCOM command parameter settings for normal Pathway operations without the TMF
subsystem.

Ina PATHMON environment that normally runs with the TMF subsystem, do not use
the following commands to turn off TMF subsystem operations temporarily:

SET SERVER TMF ON
SET TERM TM- OFF
SET PROGRAM TMF OFF

The condition resulting from these commands appears to allow normal operation
because the BEGIN-TRANSACTION statement that would have failed if the TMF
subsystem were stopped now appears to work; the TCP allows a SEND operationto a
server that can access and update only nonaudited files. Files updated by servers are not
protected by the TMF subsystem, and the TCP does not perform checkpoints before or
after SEND statements.

Timeouts on SEND Operationsto Servers

Although the syntax of the SCREEN COBOL SEND statement does not include a
TIMEOUT clause, you can effectively supply one with the PATHCOM SET SERVER
command. When you include a TIMEOUT clause in the SET SERVER command, all
SENDs to that server class aretimed by the TCP. If the specified number of seconds
elapses after a SEND operation isinitiated and before areply is received, the TCP issues
aGuardian CANCEL procedure call against the outstanding I/O to the server. If the
SEND operation was performed while the requester program was in transaction mode,

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-11

Managing Transactions With the TMF Subsystem TCP Checkpointing Strategy

the transaction is automatically aborted by the file system. In such a case the requester
program discovers that the transaction was aborted when it subsequently attempts to
update the database (with another SEND statement) or issues an END-TRANSACTION
statement.

TCP Checkpointing Strategy

Ina PATHMON environment with the TMF subsystem running, the TCP usesthe
following checkpointing strategy:

e Atthe BEGIN-TRANSACTION statement, afull copy of the task’s context is made
to asecondary area (dot 1) in the extended data segment, and a checkpoint to the
backup is performed.

e Atthe END-TRANSACTION statement, a full-context checkpoint is performed.

¢ At the SEND statement with the SET SERVER TMF parameter defined as OFF, a
checkpoint is performed before and after the SEND statement when the SCREEN
COBOL program is outside of transaction mode.

Any time a SEND operation is performed outside of a transaction boundary and the
server attempts to lock or update arecord in an audited file, the operation fails with
a Guardian file-system error 75.

e At the SEND statement with the SET SERVER TMF parameter defined as ON, no
checkpoints are performed, whether or not the SCREEN COBOL programisin
transaction mode. Therefore, SEND requests to TMF protected servers that operate
on audited files require fewer checkpoints than SEND requests to serversthat do not
operate under TMF protection.

TCP checkpointing requirements can be reduced significantly if Pathway applications
that use the TMF subsystem have the servers read outside of transaction mode before
updating the database.

A Caution. If a SEND request outside of transaction mode is sent to a TMF protected server that
operates on nonaudited files, data might be lost because the TMF subsystem is not invoked,
and the TCP performs fewer checkpoints.

You can improve the performance of a Pathway application by taking advantage of the
TCP checkpointing strategy for TMF protected servers, as follows:

* Do not use transaction mode for a server with read-only access to a database if the
requester displays the data before any attempt is made to change the data. Inthe
event of afailure, the requester can retry the read operations and fault-tolerant
operation is maintained.

* Do not use transaction mode for a server that writesto an entry-sequenced logging
filein which duplicates are acceptable. In the event of afailure, the requester can
retry the write operations, so thereis no need to back out the write. In contrast, a
key-sequenced file requires a backout; otherwise, the transaction fails when the
second write is attempted at the same location.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-12

Managing Transactions With the TMF Subsystem Precautions for Using TMF Parameters

Precautionsfor Using TMF Parameters

If aTMF error occurs and makes normal operation impossible, you should not try to
solve the problem by setting the PATHCOM TMF parameter optionsto OFF. Setting
these options to OFF can have the following results:

A server intended for operation with TMF protection probably does not send the
checkpoint messages necessary to function as a fault-tolerant server when the TMF
subsystem is not invoked.

A SCREEN COBOL program that uses ABORT-TRANSACTION or RESTART-
TRANSACTION statements to handle exceptions to normal program operation only
appears to execute; the ABORT-TRANSACTION or RESTART-TRANSACTION
statements have no effect.

With the SET SERVER TMF parameter defined as ON and the SET TERM or SET
PROGRAM TMF parameters defined as OFF, the TCP sends checkpoint messages,
performsretries, and sets the sync depth as if the TMF subsystem were running. For
example, the TCP performs fewer checkpoints and opens servers with a sync depth
of Oinstead of 1. Inthis case, the TCP does not take full advantage of fault
tolerance, and a single CPU failure can cause the application to fail.

Refer to the NonStop™ TM/MP Operations and Recovery Guide to determine how to
address the TMF error.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-13

Managing Transactions With the TMF Subsystem Precautions for Using TMF Parameters

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
5-14

Programming for Intelligent Devices

Standard SCREEN COBOL requesters interact with alimited set of video display
terminals. Standard requesters are screen-oriented; they send data from working storage
to the display screen of aterminal by using screen templates defined in the Screen
Section of the Data Division. Similarly, they receive data from the terminal into
working storage by using Screen Section templates. Standard requesters use ACCEPT
and DISPLAY statements in the Procedure Division to interact with the display
terminals.

Intelligent device support (IDS) SCREEN COBOL requesters interact either directly or
indirectly with intelligent devices such as automated teller machines, airline reservation
terminals, and personal computers. 1DS requesters are message-oriented; they send data
from working storage to the device (or to afront-end process that controls the device)
and receive data from the device or process into working storage by using Message
Section templates. 1DS requesters use SEND MESSAGE statements and their REPLY
clauses in the Procedure Division to interact with the intelligent devices or front-end
Processes.

Because of the wide variety of message formatsthat IDS devices must be able to
process, the IDS extensions to Compag NonStop™ Pathway/i TS have been designed to
provide the following capabilities:

® Theahility to use field delimiters, message delimiters, and RESULTING COUNT
clauses to process compacted messages contai ning variable-length fields

® Theahility to use a TRANSFORM statement to move data elements from source
data structures in working storage to target data structures and, in the process of
doing so, reorder and convert the data by using one or more templatesin the
M essage Section

® Theahility to use fields within Message Section templates to determine, on either
input or output, which fields that follow in the template are present in an actual

message

In addition, there are other capabilities (such as data-item editing and conversion, scatter
reads, and gather writes) used in the standard requester environment that also apply to
the IDS environment.

This section describes both the IDS extensions and the standard capabilities that apply to
IDSrequesters. It presents information about the following topics:

e Useof the SEND MESSAGE statement

e Useof delimitersand RESULTING COUNT clauses
® Useof the TRANSFORM statement

e Useof PRESENT IF clauses

® |DSerror processing and debugging techniques

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-1

Programming for Intelligent Devices The SEND MESSAGE Statement

The SEND MESSAGE Statement

The SEND MESSAGE statement moves data from working storage to an external
process (outside the PATHMON environment). The associated REPLY statement
accepts data from the external process and movesit into working storage.

Besides moving the data, both the SEND MESSAGE statement and its REPLY
statement edit and convert the individual data fields according to the pertinent
PICTURE clauses in the Working-Storage Section and the Message Section data
declarations.

The SEND MESSAGE statement also allows you to use the gather-write capability
(whereby individual itemsin the outgoing message are extracted from noncontiguous
locations in working storage). The associated REPLY statement allows you to use the
scatter-read capability (whereby individual items in the incoming message are stored
into noncontiguous locations in working storage).

When you send data to the process or device, you can use only a single message
template. When you receive data from the process or device, however, you can do so
through any of several input message templates. You use the REPLY CODE and
YIELDS clauses with the SEND MESSAGE statement to determine which input
message template the response has been mapped through.

You code SEND MESSAGE statements in a manner similar to the way in which you
code SEND statements (by using REPLY CODE and YIELDS clauses and the
TERMINATION-STATUS register). An example of the use of the SEND MESSAGE
statement is as follows:

SEND MESSAGE MsSG 3- QUT
REPLY CODE FI ELD I S W5- MG | N- CODE
CODE 1 YIELDS MSG 3
CODE 2 YI ELDS MSG 4
CODE 3 YI ELDS MSG 3

4

S

Z2zZ2Z2Z

CODE 4 Y| ELDS MsG

ON ERROR PERFCORM | DS- SE

2

ER- SEND- ERROR.

PERFORM ONE OF

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-2

Programming for Intelligent Devices Using Delimiters and the RESULTING COUNT
Clause

Using Delimitersand the RESULTING COUNT
Clause

Among the IDS extensions to the SCREEN COBOL programming language is one that
provides the ability to send and receive messages that contain message-delimiter and
field-delimiter characters.

The use of delimiters makes it possible for your requester and the external device or
front-end process to exchange compact variable-length messages efficiently.

The presence and use of delimitersis not an optional choice for you but rather
something that is dictated by the design characteristics of whatever entity your requester
is communicating with. When the external device or process uses a message delimiter,
your message template must also declare the same message delimiter. When the
external device or process uses a field delimiter, your message template must also
declare the same field delimiter.

Declaring Delimiters

You declare a message format to be delimited by including a MESSAGE FORMAT IS
DELIMITED clause or aMESSAGE FORMAT IS FIXED-DELIMITED clause at the
01 level of the particular message template in the Message Section. The only difference
between the two formatsis that DELIMITED messages contain entirely variable-length
fieldswhile FIXED-DELIMITED messages contain entirely fixed-length fields.

Having declared the message format to be delimited, you then declare (again at the 01
level):

1. Whether the message includes a message delimiter and, if so, what charactersit
consists of (The default message delimiter is//.)

2. Whether the message includes field delimiters and, if so, what charactersthey
consist of (The default field delimiter is, [comma].)

Sample Declarations

In the examples that appear |ater in this section, assume that the following data
structures have been declared in the Working-Storage Section and the M essage Section:

DATA DI VI SI ON.
WWORKI NG- STORAGE SECTI ON.

01 Ws-1 TEML.
05 WS- 1 TEML- CNT PIC 9(2) COW,.
05 W5- | TEML- GROUP.
10 W5- | TEML- DATA Pl C X(1)
OCCURS 1 TO 30 TI MES
DEPENDI NG ON ws-iteml-cnt.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-3

Programming for Intelligent Devices

01 W&-
05
05

01 W&-

05
05

01

01

| TEMR.

W5- | TEMR- CNT PIC 9(2) COW,.

WE- | TEM2- GROUP.

10 W5- | TEMR- DATA Pl C X(1)
OCCURS 1 TO 30 TI MES
DEPENDI NG ON ws-itenmR-cnt.

| TEMB.

WB- | TEMB- CNT PIC 9(2) COW,.

WE- | TEMB- GROUP.

10 W5- | TEM3- DATA Pl C X(1)
OCCURS 1 TO 30 TI MES
DEPENDI NG ON ws-itenB-cnt.

W5- | TEMA.
05 Ws- | TEMA- CNT PIC 9(2) COWP.
05 W&- | TEMA- GROUP.
10 W5-1 TEMA- DATA PIC X(1)
OCCURS 1 TO 30 TI MES

Sample Declarations

DEPENDI NG ON ws-i temd-cnt.

W5- | TEMbG.
05 W5- | TEMb- CNT PIC 9(2) COWP.
05 W&- | TEMb- GROUP.
10 W5-1 TEM6- DATA PIC X(1)
OCCURS 1 TO 30 TI MES

DEPENDI NG ON ws-i t enb-cnt.

MESSACGE SECTI ON.

01 nsg-format4

05

05

05

05

05

MESSACGE FORVAT IS DELI M TED

MESSACGE DELIM TER | S OFF.

itenl Pl C X(30)
USI NG ws-itemdl- group

RESULTI NG COUNT IS ws-itenil-cnt.

iten? Pl C X(30)
USI NG ws-itenR-group

RESULTI NG COUNT IS ws-itenR-cnt.

itenB PI C X(30)
USI NG ws-itenB-group

RESULTI NG COUNT IS ws-itenB-cnt.

itemd PI C X(30)
USI NG ws-itemi-group

RESULTI NG COUNT IS ws-item-cnt.

itenb PI C X(30)
USI NG ws- it enb- group

RESULTI NG COUNT IS ws-itenb-cnt.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

6-4

Programming for Intelligent Devices Processing Field Delimiters on Input

The message templ ate declares that the associated message will contain afield delimiter
(acomma, by default) but no message delimiter.

Each field in the message template is fixed in length, to accommodate the maximum-
size data item, whereas the corresponding fields in working storage are variable in
length and rely on the content of an associated count field to determine their length.

Processing Field Delimiterson Input

When a message is received from a Message Section template MSG-FORMATA4, the
datafor each field is stored in the working-storage item specified by the associated
USING clause, and a count of the actual number of characters received before
encountering the field delimiter is stored in the working-storage item specified by the
associated RESULTING COUNT clause.

For example, suppose that the incoming message is as follows:
JOHN DOE, MARI A GONZALES, W LLI AM DEFCE, TONY ALLEN, SUE QUI CK,

and that it is received from the M essage Section template MSG-FORMAT4:

SEND MESSAGE
Yl ELDS nsg-f ornmat 4
ON ERROR GO TO error-exit.

Upon successful completion of the SEND MESSAGE statement, the various working-
storage data items referred to by the MSG-FORM AT 4 message-templ ate declaration
contain the following data. (The apostrophes merely illustrate the beginning and ending
of each field; they do not actually occupy any space within the fields themselves.)

ws-iteml-cnt '8

ws-iteml-dat a " JOHN DCE'
Ws-iten-cnt '14'
Wws-itenk-data ' MARI A GONZALES'
wWs-itenB-cnt '13'
Wws-itenB-dat a "W LLI AM DEFCE'
Ws-itemd-cnt '10'
Wws-itemd-dat a " TONY ALLEN

Ws- it enb-cnt "9
ws-itenb-data " SUE QUI CK

Using Field Delimiterson Output

When sending a message to the external device or front-end process by using a Message
Section template M SG-FORMAT4, you move the appropriate data values and the byte
counts into the working-storage structure and then issue a SEND MESSAGE statement
specifying the M SG-FORMAT4 templ ate.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-5

Programming for Intelligent Devices Using Message Delimiters

For example, suppose you want to send the following message to the external device or
process:

Bl LL W NN, G USEPPE PI NELLI , JOE BLOW LI NG CHI N, SARAH HARRAH,
To do so, you would move the following values to the specified working-storage

|ocations:

"Bl LL W NN ws-iteml-dat a
"9 ws-iteml-cnt

' 3 USEPPE PI NELLI"' Wws-itenk-data
'16' Ws-iten-cnt
"JOE BLOW Ws-itenB-dat a
'8 wWs-itenB-cnt
"LING CH N wWs-itemd-dat a
"9 wWs-itemd-cnt

' SARAH HARRAH Ws- it enb-dat a
12" Wws- it enb-cnt

and then issue a SEND M ESSAGE statement such as:

SEND MESSAGE nsg-fornat4
ON ERROR GO TO error-exit.

Before moving a data element from working storage to its output buffer, the TCP
examines the location referenced by the associated RESULTING COUNT clause to find
out how many bytes of data the field actually contains. After retrieving the specified
number of bytes from the particular working-storage location, the TCP appends afield-
delimiter character (in this case, acomma) to the end of the outbound field.

Thus, you can directly control the placement of field delimiters in the output stream.

Using M essage Delimiters

The use of aRESULTING COUNT clause at the message level allows you to determine,
on input, how long an incoming variable-length record was, without having to do a
backward search through your working-storage data structure.

If the external device or process requires the message to include a message delimiter,
you must declare the message delimiter in your message template; otherwise, the TCP
mi stakes the message-delimiter characters for actual data.

For example, if the external device or process requires that each message be terminated
by a colon (), you must change the beginning of the preceding sample message template
declaration to the following:

01 neg-fornat4
MESSAGE | S DELIM TED
MESSAGE DELIMTER IS ":".

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-6

Programming for Intelligent Devices Using Delimited Format With Delimiters Turned Off

Using Delimited Format With Delimiters Turned Off

By declaring a message template to be delimited but turning off both the field and
message delimiters, you can effectively create a new type of variable-length record
format that has no prefix byte count or delimiters.

SCREEN COBOL supports two other types of variable-length message formats, known
as VARYING1 and VARYING2, that include a one-byte or two-byte count field at the
beginning of each message specifying the total number of bytes contained in the
message. The use of delimited format with the delimiters turned off creates a variable-
length message with no count field preceding it.

For all three types of messages, if the message contains variable-length fields, the
structure of the message must include a count field preceding each individual field. This
count-field value allows the receiving device or process to know how long the field is,
because no delimiter is present.

The following Working-Storage Section and M essage Section declarations define data
structures and a message templ ate suitable for sending and receiving this new type of
variable-length message.

DATA DI VI SI ON.
WORKI NG- STORAGE SECTI ON.
01 WS- RECORD1- COUNT PIC 9(4).
01 W5- RECORDL.

05 W5B- RECORD1- DATA Pl C X(1)
OCCURS 1 TO 100 TI MES
DEPENDI NG ON ws-recor dl1-count.

MESSACGE SECTI ON.

01 nmeg-formatl PIC X(100) USING ws-recordl
MESSAGE FORMAT | S DELI M TED
FI ELD- DELIM TER | S OFF
MESSAGE- DELI M TER | S OFF
RESULTI NG COUNT IS ws-recordl-count.

The preceding message templ ate declares that the associated message is of variable
length with a maximum size of 100 bytes, that it includes no count field (such asis
found in a VARYING1 or VARYING2 format record), and that the TCPisto use the
working-storage data item WS-RECORD1-COUNT for storing (on input) or retrieving
(on output) the appropriate record length value.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-7

Programming for Intelligent Devices Using TRANSFORM Statements

Using TRANSFORM Statements

The TRANSFORM statement lets you move multiple dataitems from one place in
working storage to another, converting them in the process by a single statement. You
can achieve the same results without the TRANSFORM statement, but you must use a
whole paragraph of MOV E statements to do so.

The data items specified in a TRANSFORM statement can be any mixture of 01-level,
group, or elementary items defined in the Working-Storage Section, the Linkage
Section, or the Message Section.

The two primary uses of the TRANSFORM statement are:

® To disassemble incoming messages and scatter and convert, if necessary, the data
fields into diverse Working-Storage Section or Linkage Section locati ons according
to codes nested within the message itself.

® To gather, and convert if necessary, individual data items from diverse Working-
Storage Section or Linkage Section locations and assemble them into asingle
message to be passed to a server process by a subsequent SEND statement.
Example 1. Disassembling I nput M essages

Assume the general format of messages being passed between a front-end process and
an IDS requester is asfollows:

4 Bytes 2 Bytes Up to 100 Bytes
Transmission Header Select Code Data or Control Information

Then assume the presence of the following Working-Storage Section data declarations:

01 PROCESSI NG STATE Pl C X(4), VALUE "GO
01 MSG OUT.
05 TRANSM SSI ON- HEADER.
10 OUT- REPLY- CODE Pl C 9(4) conp.
10 OUT- SESSI ON-1 D Pl C 9(4) conp.
05 MSG OUT- DATA.
10 OUT- SELECT- CODE Pl C 9(4) conp.
10 OUT- DATA Pl C X(100).
01 MSG I N.

05 TRANSM SSI ON- HEADER.

10 | N- REPLY- CODE Pl C 9(4) conp.
10 | N- SESSI ON-1 D Pl C 9(4) conp.
05 MSG- | N- DATA.
10 | N- SELECT- CODE Pl C 9(4) conp
10 | N- DATA Pl C X(100).

01 CONTROL- RECORD- 1.
05 CTL-FLD-1 PIC X(10).
05 CTL-FLD-3 PIC X(10).
05 CTL-FLD-5 PIC X(10).
05 CTL-FLD-6 PIC X(10).

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-8

Programming for Intelligent Devices Example 1: Disassembling Input Messages

01

01

01

CONTROL- RECORD- 2.

05 CTL-FLD-2 PIC X(10).
05 CTL-FLD-4 PIC X(10).
DATA- RECORD- 1.

05 DATA-FLD-A PIC X(10).
05 DATA-FLD-B PIC X(10).
05 DATA-FLD-C PIC X(10).
05 DATA-FLD-D PIC X(10).
05 DATA-FLD-E PIC X(10).

DATA- RECORD- 2.

05 DATA-FLD-F PIC X(10).
05 DATA-FLD-G PIC X(10).
05 DATA-FLD-H PIC X(10).

Because the type of information (either control information or data) contained in the
message can vary from one transmission to another, there are two levels at which the
requester must process such a message:

1.

The requester must first accept the entire message and determine, by checking a
reply code in the transmission header, whether or not the overall message itself was
transmitted and received successfully.

MAI' N- PARAGRAPH.

PERFORM send- nessage- pr ocessi ng
THRU send- nessage- processi ng- exi t
UNTI L processing-state = "STOP".

MAI N- PARAGRAPH- EXI T.
EXIT.
SEND- MESSAGE- PROCESSI NG
SEND MESSAGE nsg- out
REPLY CODE O YIELDS nsg-in
ON ERROR GO TO error-exit.
PERFORM di sassenbl e- nessage.
GO TO send- message- processi ng-exit.
ERROR- EXI T.
MOVE " STOP" TO processi ng-state.
SEND- MESSAGE- PROCESSI NG- EXI T.

EXIT.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-9

Programming for Intelligent Devices Example 1: Disassembling Input Messages

2. If thereply code in the transmission header indicates successful transmission (0in
the preceding case), the requester processes the message as either control
information or application data, depending upon the value of the select code within
the message itself. The requester does this by using a TRANSFORM statement as
follows:

DI SASSEMBLE- MESSAGE.
TRANSFORM nsg- i n- dat a
CODE 1 YIELDS ctl-fld-2, ctl-fld-5, ctl-fld-1
CODE 2 YIELDS control -record-2
CODE 3 YIELDS data-fld-A, data-fld-F, data-fld-C
CODE 4 YI ELDS dat a-record-1
ON ERROR GO TO error-exi t.

The TRANSFORM statement is operating upon a subset of the overall message
(MSG-IN-DATA), ignoring the transmission header completely. The statement can
then operate by using a select code defined within that subset of the message; in this
case, by default, the code occursin the first two bytes of MSG-IN-DATA.

The message string following the select code varies in length and number of fields,
depending upon the value of the select code.

* |f theselect codeis 1, the TCP extracts three 10-character fields from its input
buffer and stores them in the fields named CTL-FLD-2, CTL-FLD-5, and
CTL-FLD-1 of the Working-Storage data structures CONTROL-RECORD-2
and CONTROL-RECORD-1.

¢ |f the select codeis 2, the TCP extracts two 10-character fields from its input
buffer and stores them in the fields named CTL-FLD-2 and CTL-FLD-4 of the
Working-Storage data structure CONTROL -RECORD-2.

* |f the select codeis 3, the TCP extracts three 10-character fields from its input
buffer and stores them in the fields named DATA-FLD-A, DATA-FLD-F, and
DATA-FLD-C of the Working-Storage data structures DATA-RECORD-1 and
DATA-RECORD-2.

¢ |f the select code is 4, the TCP extracts five 10-character fields from its input
buffer and stores them in the fields named DATA-FLD-A, DATA-FLD-B,
DATA-FLD-C, DATA-FLD-D, and DATA-FL D-E of the Working-Storage
data structure DATA-RECORD-1.

You can specify elementary, group, or 01-level itemsin the YIELDS lists of the
TRANSFORM statement. You can aso intermix these three within the same
YIELDSist.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-10

Programming for Intelligent Devices Example 2: Assembling Output Messages

Example 2. Assembling Output M essages

The next example uses a TRANSFORM statement to gather a set of data values from
diverse locations in working storage, to convert them from one format to another, and to
assemble them into a completely different field structure to form asingle record. That
record will subsequently be sent, through a SEND statement, to a server process.

Assume that the source data structures in working storage are DATA-RECORD-1,
DATA-RECORD-2, and DATA-RECORD-3, and the target data structureis
SERVER-RECORD-1.

01 DATA- RECORD- 1.
05 DATA-FLD-A PIC A(10).
05 DATA-FLD-B PIC 9(10).

01 DATA- RECORD- 2.

05 DATA-FLD-C PIC 9(3).
05 DATA-FLD-D PIC A(5). 54 bytes total
05 DATA-FLD-E PIC A(5).

01 DATA- RECORD- 3.
05 DATA-FLD-F PIC X(10).
05 DATA-FLD-G PIC A(5).
05 DATA-FLD-H PIC X(6).

01 SERVER- RECORD- 1.
05 SRVR-FLD-1 PIC X(21).
05 SRVR-FLD-2 PIC 9.
05 SRVR-FLD-3 PIC 9. 54 bytes total
05 SRVR-FLD-4 PIC 9.
05 SRVR-FLD-5 PIC A(10).
05 SRVR-FLD-6 PIC X(20).

Then assume that the program must transmit the data from the following sequence of
source fields to the server process:

DATA- FLD- A
DATA- FLD-H
DATA- FLD- G
DATA- FLD- C
DATA- FLD- D DATA- RECORD- 2
DATA- FLD- E
DATA- FLD- B
DATA- FLD- F

Notice that the first three and last two fields are from the structures DATA-RECORD-1
and DATA-RECORD-3. Not only are they separated from one another in the target
record, but also they appear in adifferent order from that defined for them in the DATA-
RECORD-1 and DATA-RECORD-2 Working-Storage Section definitions. You,
therefore, must refer to those fields by their elementary data-item names when
specifying where the data to be transformed is coming from.

In contrast, because the fourth, fifth, and sixth fields are all from the data structure
DATA-RECORD-2 and appear in the same order as the one defined for that structurein
working storage, you can refer to them collectively by their shared 01-level name.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-11

Programming for Intelligent Devices Using PRESENT IF Clauses

When it istime to gather all of the specified data values from their diverse locations in
working storage, convert them from alphabetic or numeric to alphanumeric format if
necessary, and store them in the proper order into the data structure
SERVER-RECORD-1, the requester can use a TRANSFORM statement such

asthe following:

TRANSFORM data-fl d-A, data-fld-H data-fld-G
data-record-2, data-fld-B, data-fld-F
Yl ELDS server-record-1
ON ERROR GO TO error-exit.

You can specify amixture of 01-level, group, and elementary itemsin either the source
or target list of the TRANSFORM statement.

When the TRANSFORM statement is executed, the TCP uses the source list to construct
abuffer filled with aphanumeric, alphabetic, and numeric bytes. The TCP then
disperses the bytes from that buffer to the target data structure on a byte-for-byte basis,
converting the data as necessary. When the target list comprises working-storage items,
the total number of bytesin the source list must exactly match the total number of bytes
in the target list, or arun-time error occurs.

When moving bytes from the buffer to the target structure, all of the standard MOVE
statement rules apply, as described in the Compaq NonSop™ Pathway/iTS SCREEN
COBOL Reference Manual. For example, abyte that originates as part of anumeric
dataitem in the source list cannot be moved to an aphabetic dataitem in the target list;
it can, however, be moved to either a numeric or alphanumeric dataitem. The transfer
of data bytes from source to target dataitemsin this particular example can be illustrated
asfollows:

10 bytes DATA- FLD- A
6 bytes DATA- FLD-H SRVR- FLD- 1 21 bytes
5 bytes DATA- FLD- G
SRVR- FLD- 2 1 byte
3 bytes DATA- FLD-C SRVR- FLD- 3 1 byte
SRVR- FLD- 4 1 byte
5 bytes DATA- FLD-D SRVR- FLD- 5 10 bytes
5 bytes DATA- FLD- E
10 bytes DATA- FLD- B

Using PRESENT IF Clauses

The SCREEN COBOL programming language PRESENT IF clause lets you declare
that certain fields in M essage Section data structures are present only if a particular
preceding field is nonzero (if numeric) or nonblank (if nonnumeric).

The following sample code illustrates two ways that you might use this capability. In
the first example (which uses the Message Section template M SG-IN-FLAVOR1), the
presence of the alias address, city, state, and ZIP fields all depend on the presence of the
aliasnamefield. Inthe second example (which usesthe Message Section template

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-12

Programming for Intelligent Devices Using PRESENT IF Clauses

MSG-IN-FLAVOR?2), the presence of the alias name, address, city, state, and ZIP fields
is determined by bit-mask values contained earlier in the message.

The Working-Storage Section declarations for MSG-IN-FLAVORL1 are as follows:
WORKI NG- STORAGE SECTI ON.

01 Ws- MSG- I N.

05 NAME Pl C X(20).

05 ADDRESS Pl C X(20).

05 C TY Pl C X(15).

05 STATE PI C X(3).

05 ZI P PI C 9(5).

05 ALl AS- NAME Pl C X(20).

05 AL| AS- ADDRESS Pl C X(20).

05 ALl AS-Cl TY Pl C X(15).

05 ALl AS- STATE PI C X(3).

05 ALl AS-ZI P PI C 9(5).

01 FI ELD- STATUS.

05 FS- NAME.
10 FS- NAME- SHADOW Pl C 9(4) COWP.
10 FS- NAME- ERROR Pl C 9(4) COWP.

05 FS- ADDRESS.
10 FS- ADDRESS- SHADOW Pl C 9(4) COWP.
10 FS- ADDRESS-ERROR Pl C 9(4) COWP.

05 FS-Cl TY.
10 FS- Cl TY- SHADOW Pl C 9(4) COWP.
10 FS- Cl TY- ERROR Pl C 9(4) COWP.

05 FS- STATE.
10 FS- STATE- SHADOW Pl C 9(4) COWP.
10 FS- STATE- ERROR Pl C 9(4) COWP.

05 FS-ZIP.
10 FS- ZI P- SHADOW Pl C 9(4) COWP.
10 FS- ZI P- ERROR Pl C 9(4) COWP.

01 WS- MSG | N- BI T- MASK.

05 ALI AS- NAME- PRESENT PIC 9.

05 ALl AS- ADDRESS- PRESENT PI C 9.

05 ALl AS- Cl TY- PRESENT PIC 9.

05 ALl AS- STATE- PRESENT PIC 9.

05 ALl AS- ZI P- PRESENT PIC 9.

The M essage Section declarations for the M SG-IN-FLAVORL1 templ ate are as follows:
MESSAGE SECTI ON.

01 MSG | N- FLAVORL.

05 Ms- NAVE PI C X(20) TO NAME.

05 Ms- ADDRESS PI C X(20) TO ADDRESS.

05 Ms-A'TY PIC X(15) TO CTY.

05 Ms- STATE PIC X(3) TO STATE.

05 Ms-ZIP PIC 9(5) TO ZIP.

05 Ms- ALI AS- NAVE PI C X(20) TO ALI AS- NAME.

05 MS-ALI AS-ADDRESS PIC X(20) TO ALI AS- ADDRESS

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-13

Programming for Intelligent Devices

05 M5-ALIAS-CTY

05 Ms- ALl AS- STATE

05 Ms-ALIAS-ZIP

Using PRESENT IF Clauses

PRESENT | F Ms- ALl AS-
NAVE FI ELD- STATUS | S
FS- ADDRESS.

TO ALIAS-CI TY
PRESENT | F Ms- ALl AS-
NAVE FI ELD- STATUS | S
FS-CITY.

Pl C X(15)

PIC 9(3) TO ALI AS- STATE
PRESENT | F Ms- ALl AS-
NAVE FlI ELD- STATUS | S
FS- STATE.

PIC 9(5) TO ALIAS-ZIP

PRESENT | F Ms- ALl AS-
NAVE FI ELD- STATUS | S
FS-ZI P.

When the MSG-IN-FLAVOR1 template is used for receiving incoming messages, the
fields NAME through ALIAS-NAME are always physically present. The overall
content, blank or nonblank, of the field ALIAS-NAME determines whether the fields
ALIAS-ADDRESS through ALIAS-ZIP are present. If ALIAS-NAME isentirely
blank, the remaining ALIASfields are not present. If ALIAS-NAME contains any
nonblank characters, the remaining ALIASfields are present.

The M essage Section declarations for the M SG-IN-FLAVOR2 templ ate are as follows:

MESSACGE SECTI ON.

01 MSG | N- FLAVORZ.
05 PRESENCE- MASK.
10 ALI AS- NAMVE- PM

10 ALI AS- ADDRESS- PM

10 ALI AS-CI TY- PM
10 ALI AS- STATE- PM
10 ALI AS-ZI P-PM
10 FILLER

M5- NAME

05 Ms- ADDRESS

05 Ms-A'TY

05 Ms- STATE

05 Ms-ZIP

05 Ms- ALI AS- NAME

05 Ms- ALI AS- ADDRESS

05 M5-ALIAS-ATY

05 Ms- ALl AS- STATE

05 Ms-ALIAS-ZI P

PIC 1 TO ALl AS- NAVE- PRESENT.
PIC 1 TO ALl AS- ADDRESS- PRESENT.
PIC 1 TO ALI AS- Cl TY- PRESENT.
PIC 1 TO ALl AS- STATE- PRESENT.
PIC 1 TO ALI AS- ZI P- PRESENT.
PIC 1(3).
Pl C X(20) TO NAME.
X(20) TO ADDRESS.
X(15) TO C TY.
X(3) TO STATE.
9(5) TO ZIP.
X(20) TO ALI AS- NAME.
PRESENT | F ALl AS- NAVE- PM
FI ELD- STATUS | S FS- NAMVE.
X(20) TO ALI AS- ADDRESS
PRESENT | F ALl AS- ADDRESS- PM
FI ELD- STATUS | S FS- ADDRESS.
X(15) TO ALI AS-CI TY
PRESENT | F ALI AS- Cl TY- PM
FI ELD- STATUS IS FS-CI TY.

TO ALI AS- STATE
PRESENT | F ALI AS- STATE- PM
FI ELD- STATUS | S FS- STATE.
TO ALI AS-ZI P
PRESENT | F ALI AS-ZI P- PM
FI ELD- STATUS I S FS-ZI P.

PI C

PI C

Pl C 9(3)

Pl C 9(5)

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

6-14

Programming for Intelligent Devices Error Processing and Debugging Techniques

When the MSG-IN-FLAVOR2 template is used for receiving incoming messages, the
fields PRESENCE-MASK through ZIP are always physically present. Each single-bit
elementary item within PRESENCE-MASK determines whether one of the ALIAS
fields (following ZIP) is present. For example, avaue of 1inthe ALIAS-STATE-PM
field indicates that the ALIAS-STATE field is present, avalue of 0 inthe ALIAS
NAME-PM field indicates that the ALIAS-NAME field is not present, and so forth.

Error Processing and Debugging Techniques

Use the ON ERROR clause to detect errors that occur on input or output of the message
to or from working storage. Usethe FIELD STATUS clause to test for edit errors.

ON ERROR Processing

If an error is detected in either phase of the SEND MESSAGE operation, the ON
ERROR path istaken. The processing of the ON ERROR clause for the SEND
MESSAGE statement is the same asthat for the CALL and SEND statements.
TERMINATION-STATUS values for the SEND MESSAGE statement are summarized
in the Compag NonStop™ Pathway/i TS SCREEN COBOL Reference Manual.

As part of the ON ERROR processing you need to check for a TERMINATION-
STATUS of 5 or 15; 5 indicates input phase and 15 indicates output phase. If
TERMINATION-STATUSIs5 or 15, you can then processthe FIELD STATUS data
item to detect an edit error.

FIELD STATUS Processing

The FIELD STATUS clause identifies aworking-storage data group or item that
receives status information about the field during SEND MESSAGE operations.

The FIELD STATUS clause is used to obtain information on editing errorsin fields
where editing is specified.

The method of deciding which message template the FIELD STATUS data item belongs
to differs for input and output messages.

M essage Template | nput Case

For input messages, you need to know which of the message templates of the YIELDS
list you were processing when the errors occurred.

Therelative position of the YIELDS list isreturned in TERMINATION-SUBSTATUS.

The position is returned in TERMINATION-SUBSTATUS instead of TERMINATION-
STATUS because thisis the ON ERROR case. At this point TERMINATION-
STATUS holds the error number. |If this were the normal case, rather than ON ERROR,
TERMINATION-STATUS would be used to define the relative position in the
YIELDS list.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-15

Programming for Intelligent Devices FIELD STATUS Processing

The following SEND MESSAGE statement shows the YIELDS clauses associated with
the input messages:

SEND MESSAGE MSG 3- OQUT-
REPLY CODE FIELD I'S
CODE 1 YI ELDS
CODE 2 YI ELDS
CODE 3 Yl ELDS Ms

CODE 4 YI ELDS M5G-4-1 N
ON ERROR PERFORM | DS- SERVER- SEND- ERROR.

The following PERFORM statement shows how to use TERMINATION- SUBSTATUS
to decide which input message template to process:

PERFORM ONE OF

1
W5- MSG- 4- | N- FROW MSG- 4- | N- CCDE

M
G 3-1N
G 4-1N
G 3-1N

PROC- M5G- 3- | N- EDI T- STATUS
PROC- M5G- 4- | N- EDI T- STATUS
PROC- M5G- 3- | N- EDI T- STATUS
PROC- M5G- 4- | N- EDI T- STATUS

DEPENDI NG ON TERM NATI ON- SUBSTATUS.

The following table shows the input message that correlates with TERMINATION-
SUBSTATUS:

M essage Template TERMINATION-SUBSTATUS
YIELDS MSG-3-IN 1
YIELDS MSG-4-IN 2
YIELDS MSG-3-IN 3
YIELDS MSG-4-IN 4

M essage Template Output Case

Because only one message template can be specified on output, you know which set of
FIELD STATUS dataitemsto test.

Recommended Format of FIELD STATUS Item

The recommended format of the FIELD STATUS item is:

02 FI ELD- STATUS- AREA.
03 SHADOW | NFO PIC 9(4) COWP.
03 FI ELD- ERROR PIC 9(4) COWP.

Thisformat, although not required by the compiler, allows for easy processing of the
FIELD STATUS information. The SHADOW information is the same as that within the
Screen Section. The FIELD-ERROR area alowsthe TCP to report specific errors that
relate to this individual M essage Section field.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
6-16

% Processing Unsolicited M essages

The unsolicited-message processing (UMP) feature of Compag NonStop™ Pathway/iTS
makes it possible for SCREEN COBOL requesters to accept and reply to unsolicited
messages sent to them by processes that are outside the PATHMON environment.

These external processes can reside anywhere within a Compag Expand network.

The following clauses, statements, and registers in the SCREEN COBOL language
support the processing of unsolicited messages.

An escape condition for the ACCEPT and SEND MESSAGE statements. ESCAPE
ON UNSOLICITED MESSAGE

The statements RECEIVE UNSOLICITED MESSAGE and REPLY TO
UNSOLICITED MESSAGE

The read-only specia registers PW-UNSOLICITED-MESSAGE-QUEUED,
PW-TCP-SY STEM-NAME, PW-TCP-PROCESS-NAME, and
PW-USE-NEW-CURSOR

The read-write specia register PW-QUEUE-FKEY-UMP

This section presents information about the following topics:

Detecting the arrival of unsolicited messages

Accepting unsolicited messages

Replying to unsolicited messages

The SCREEN COBOL special registers used with unsolicited messages

TERMINATION-STATUS values and Pathway/i TS error codes related to
unsolicited messages

UMP programming examples

Sending unsolicited messages to SCREEN COBOL requesters
Unsolicited-message layout, reply layout, and error codes
Configuration parameters related to the UMP feature

The Compag NonStop™ Pathway/i TS SCREEN COBOL Reference Manual contains
additional information about the unsolicited-message processing feature.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-1

Processing Unsolicited Messages Detecting the Arrival of Unsolicited Messages

Detecting the Arrival of Unsolicited M essages

Each requester program has its own unsolicited-message queue. In addition, each
requester program has its own copy of the PW-UNSOLICITED-MESSAGE-QUEUED
specia register that is global to any program units called by that requester.

When the TCP receives an unsolicited message addressed to one of its requesters, it
places the message in the appropriate queue and sets the value of the associated
PW-UNSOLICITED-MESSAGE- QUEUED register to YES.

A requester can detect the arrival of an unsolicited message in any of the following
ways:

* By testing the content of its PW-UNSOLICITED-MESSAGE-QUEUED special
register

Y ES signifies that one or more messages have arrived and are waiting to be
processed; NO signifies that the queue is empty.

* By performing a RECEIVE UNSOLICITED MESSAGE statement as awaited input
operation

¢ By including an ESCAPE ON UNSOLICITED MESSAGE clause in ACCEPT or
SEND MESSAGE statements

Accepting Unsolicited M essages

Requesters obtain the text of an unsolicited message by performing a RECEIVE
UNSOLICITED MESSAGE statement. Messages can move either directly into
working-storage or move indirectly there from a Message Section templates.

Replying to Unsolicited M essages

When arequester has constructed an appropriate response message, it repliesto an
unsolicited message by performing a REPLY TO UNSOLICITED MESSAGE
statement. After replying to the message, the requester is then free to accept and process
another unsolicited message.

Having received one message (by performing a RECEIVE UNSOLICITED MESSAGE
statement), the requester cannot perform another RECEIVE UNSOLICITED
MESSAGE statement until it has replied to the first message (by using aREPLY TO
UNSOLICITED MESSAGE statement).

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-2

Processing Unsolicited Messages The PW-TCP-SYSTEM-NAME and PW-TCP-
PROCESS-NAME Special Registers

The PW-TCP-SYSTEM-NAME and PW-TCP-
PROCESS-NAME Special Registers

The read-only special registers, PW-TCP-SY STEM-NAME and PW-TCP-PROCESS-
NAME, contain the system name and Guardian process name of the requester's TCP.

They are intended for use by arequester, in conjunction with the LOGICAL-
TERMINAL-NAME special register, when the requester is identifying itself to a process
that is a member of an active Pathway server class.

A requester can identify itself to such a process by formatting a message containing the
TCP system name and process name and the requester's name and passing the message
to the server process through a SEND statement. The server process can then use those
valuesin the UMP header of unsolicited messages to communicate with the requester.

Programs attempting to modify the content of either of these special registers are flagged
at compilation with the following message:

** ERROR 454 ** READ-ONLY SPECI AL REAQ STER; MAY NOT BE ALTERED

These registers have the following implicit declarations. (The VALUE clauses arefor
illustrative purposes only.)

PW TCP- SYSTEM NAME PIC X(8) VALUE "\ STLOU S".
PW TCP- PROCESS- NAME PI C X(6) VALUE "$STCP".

The PW-USE-NEW-CURSOR Special Register

For all terminals supported by Pathway/i TS, except the 6510, information is displayed
on the screen without altering the location of the visible cursor. Terminals other than
the 6510 have a buffer pointer, independent of the visible cursor, whose value
determines where information is displayed on the screen; the visible cursor positionis
altered separately. Thus, when PW-USE-NEW-CURSOR is set to NO, thevisible
cursor can be left unchanged.

The 6510 visible cursor functions as both a user next-character marker and a buffer
pointer; consequently, there is no way to avoid altering the cursor position when writing
to the screen on a6510. Because of this, the PW-USE-NEW-CURSOR special register
has no effect on 6510 terminal operation. The TCP performsall I/O operations on a
6510 as if PW-USE-NEW-CURSOR had the YES value

You can use basically the same source code for program units of different terminal
types, changing only the terminal type in the Environment Division

For example, the following code is acceptable to either 6510 or other terminals:

For example, the following code is acceptable to any supported terminal:

SET NEW CURSOR AT a-fi el d.
MOVE "NO' TO PW USE- NEW CURSOR.
ACCEPT field nanes.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-3

Processing Unsolicited Messages Unsolicited-Message TERMINATION-STATUS

Values

The ACCEPT verb in this example acts differently on a 6510 terminal than it does on
other terminals. On aterminal that is not a 6510, the visible cursor position is
unchanged because of the NO value in PW-USE-NEW-CURSOR; on a 6510, however,
the PW-USE-NEW-CURSOR special register has no effect and the visible cursor moves
to the screen location designated by a- f i el d.

Unsolicited-M essage TERMINATION-STATUS
Values

SCREEN COBOL requesters that process unsolicited messages should test for the
following TERMINATION-STATUS error codes:

13

14

16

17

18

A timeout or ESCAPE ON UNSOLICITED MESSAGE caused the TCP to issue
a CONTROL 26 call to the external front-end process. An /O error occurred in
conjunction with the CONTROL 26 call; however, TERMINATION-
SUBSTATUS specifies the file system error code that was returned with the
CONTROL 26 completion. Thisvalueisreturned only for SEND MESSAGE
statements.

A timeout or ESCAPE ON UNSOLICITED MESSAGE caused the TCP to issue
aCONTROL 26 call to the external front-end process. The front-end process did
not respond within the maximum allowable amount of time, however. Thisvalue
isreturned only for SEND MESSAGE statements.

A RECEIVE UNSOLICITED MESSAGE statement was issued when a REPLY
TO UNSOLICITED MESSAGE was required. When processing unsolicited
messages, the requester must always reply to each received message before
issuing any subsequent RECEIVE UNSOLICITED MESSAGE statements.

A REPLY TO UNSOLICITED MESSAGE statement was issued when no
corresponding RECEIVE UNSOLICITED MESSAGE statement had been
previously executed.

A RECEIVE UNSOLICITED MESSAGE statement was issued when the
PATHCOM SET TERM parameter MAXINPUTM SGS was set, or defaulted, to
0. That PATHCOM parameter specifies the maximum number of unsolicited
messages that the TCP can have queued at any given time for the particular
requester.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-4

Processing Unsolicited Messages Pathway/iTS Error Codes

Pathway/ITS Error Codes

The following Pathway/i TS error codes can appear in the PATHMON log as the result
of unsolicited-message processing.

3125 - MJLTI PLE UNSQOLI CI TED MESSAGES REJECTED DUE TO TERM
STOP/ SUSPEND

Unsolicited messages were queued for arequester when the requester was stopped,
suspended, or aborted, either programmatically or by operator command. The INFO
field specifies the number of unsolicited messages that were rejected.

3176 - ATTEMPT TO RECEI VE UNSOLI Cl TED MESSAGE W TH ONE NOT
YET REPLIED TO

An attempt was made to receive an unsolicited message when a previously received one
had not yet been replied to. After accepting an unsolicited message, a requester must
always perform a REPLY TO UNSOLICITED MESSAGE statement.

3177 - NO UNSCLI Cl TED MESSAGE TO REPLY TO

An attempt was made to reply to an unsolicited message when none was pending.

3178 - ATTEMPT TO RECEI VE UNSCLI Cl TED MESSAGE WHEN TERM
MAXI NPUTMSGS = 0

An attempt was made to RECEIVE UNSOLICITED MESSAGE, but the requester is
not configured to accept unsolicited messages.

3240 - VALUE FOR MAXI NPUTMSGS TOO LARGE—AX | S 2045

The value specified for the PATHCOM SET TCP MAXINPUTM SGS parameter
exceeded 2045. Because PATHCOM disallows a value greater than 2045, the
appearance of this message in the log reflects an internal Pathway/iTS error.

3241 - UNSQOLI Cl TED MESSAGE REJECTED BY TCP

The TCP regjected an unsolicited message for the reason specified by the INFO field.
This message can be generated on behalf of either an individual requester or the entire
TCP, as appropriate.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-5

Processing Unsolicited Messages UMP Programming Examples

3242 - MULTI PLE UNSOLI CI TED MESSAGES REJECTED

The TCP rejected one or more unsolicited messages and replied to their sender without
delivering them to their target requester. This message is seen only if unsolicited
messages are arriving and being rejected with sufficient frequency that the TCP cannot
log individual error messages for each rejected unsolicited message.

For cause, effect, and recovery information for these messages and other TCP messages,
refer to the Compaq NonSop™ Pathway/i TS System Management Manual .

UM P Programming Examples

The subsections that follow present a series of annotated programming examples

illustrating various approaches to unsolicited-message processing within SCREEN
COBOL requesters.

Polling the PW-UNSOL | CITED-M ESSAGE-QUEUED Register

One method of detecting the arrival of unsolicited messagesis to branch periodically to
aparagraph that acts upon the current state of the PW-UNSOLICITED-MESSAGE-
QUEUED register. If theregister containsthe value Y ES, the paragraph processes

unsolicited messages from the requester's queue. When the register finally contains the
value NO, control returns to the main processing stream.

PERFORM CHECK- FOR- UNSOLI Cl TED- MESSAGES.

CHECK- FOR- UNSOLI Cl TED- MESSAGES.
| F PW UNSCLI Cl TED- MESSAGE- QUEUED | S EQUAL TO " YES"
PERFORM pr ocess-unsol i ci t ed- nessage
UNTI L PW UNSOLI Cl TED- MESSAGE- QUEUED |'S EQUAL TO "NO'.

PROCESS- UNSCLI Cl TED- MESSAGE.
RECEI VE UNSCLI CI TED MESSAGE
Yl ELDS ws-unsol i cited- message
ON ERROR GO TO anal yze-error.
Do sonething with ws-unsolicited-nmessage
* and format a reply nessage.
REPLY TO UNSCLI Cl TED MESSAGE repl y- nessage.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-6

Processing Unsolicited Messages Using Waited RECEIVE UNSOLICITED Statements

Using Waited RECEIVE UNSOLICITED Statements

Another way of detecting the arrival of unsolicited messagesis to branch to a paragraph
that issues a RECEIVE UNSOLICITED MESSAGE statement; the statement may or
may not include a TIMEOUT clause. If there are no unsolicited messages currently
queued, the RECEIVE UNSOLICITED statement acts as a waited input request
comparable to ACCEPT. If the statement does not include a TIMEOUT clausg, it waits
indefinitely for amessage. If the statement includesa TIMEOUT clause and the
specified timeout period el apses without the receipt of an unsolicited message, control
passes to the ON ERROR code, if present. If thereis no ON ERROR paragraph, the
requester suspends.

This approach has two apparent drawbacks when compared with the preceding example:
it processes only a single message, regardless of how many might currently be on the
gueue, and it causes the requester to halt either indefinitely or up to the specified timeout
period if the queue is empty and no unsolicited message arrives. Thisisavalid
approach, however, that might be appropriate in certain application environments.

PERFORM CHECK- FOR- UNSOLI Cl TED- MESSAGE.

CHECK- FOR- UNSCOLI Cl TED- MESSACGE.
RECEI VE UNSCLI CI TED MESSAGE
Yl ELDS ws-unsol i cited- message
TI MEQUT one-m nute
ON ERROR GO TO anal yze-error.
* Do sonething with ws-unsolicited-nmessage
* and format a reply nessage.
REPLY TO UNSCLI Cl TED MESSAGE repl y- nessage.

ANALYZE- ERROR
| F TERM NATI ON- STATUS =1 and
TERM NATI ON- SUBSTATUS = 40

* The statenment tined out, which in this
* case is not really an error condition;
* at the very |least you nust specify sone
* ki nd of declarative clause here, such as
* MOVE Tl MED- QUT TO LATEST- COVPLETI ON, even
* if it anpbunts to a no op
ELSE
* Respond appropriately to other types
* of errors.

If a message arrives before the RECEIVE UNSOLICITED statement times out, the
message ismoved tows- unsol i ci t ed- nessage inworking storage and control
proceeds with the statements immediately following the RECEIVE UNSOLICITED
statement.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-7

Processing Unsolicited Messages Using ESCAPE ON UNSOLICITED MESSAGE
Clauses

Using ESCAPE ON UNSOLICITED MESSAGE Clauses

One of the most common methods of detecting and reacting to unsolicited messages is
the interrupt technique, whereby you include ESCAPE ON UNSOLICITED MESSAGE
clausesin ACCEPT or SEND MESSAGE statements.

Example 7-1 illustrates the use of such clauses with an ACCEPT statement;
Example 7-2 does the same with a SEND MESSAGE statement.

Example 7-1. UMP and the ACCEPT Statement

GET- OPERATOR- | NPUT.
ACCEPT ny-screen
UNTI L f1-key
sf 16- key
ESCAPE ON
TI MEQUT one- hour
UNSOLI Cl TED MESSAGE.
PERFORM ONE OF f 1-key-action
sf 16- key-acti on
ti med- out
unsolicited-nmessage-arrival
DEPENDI NG ON TERM NATI ON- STATUS.
GO TO get -operator-i nput.

F1- KEY- ACTI ON.
* TERM NATI ON- STATUS

1; respond to function-key 1 condition.

SF16- KEY- ACTI ON.
* TERM NATI ON- STATUS
* condi tion.

2; respond to shifted function-key 16

TI MED- QUT.
* TERM NATI ON- STATUS

3; respond to tine-out condition.

UNSOLI Cl TED- MESSAGE- ARRI VAL.
* TERM NATI ON- STATUS = 4; receive, process, and reply to the
* unsolicited nmessage.
| F PW UNSCLI Cl TED- MESSAGE- QUEUED | S EQUAL TO " YES"
PERFORM process-unsol i ci t ed- nessage
UNTI L PW UNSOLI Cl TED- MESSAGE- QUEUED |'S EQUAL TO "NO'.

PROCESS- UNSCLI Cl TED- MESSAGE.
RECEI VE UNSCLI Cl TED MESSAGE
YI ELDS unsolicited-1atest-prices
ON ERROR GO TO anal yze-error.
* Do sonmething with unsolicited-latest-prices and format a
* reply nessage.
REPLY TO UNSCLI Cl TED MESSAGE repl y- nessage.
MOVE "NO' TO PW USE- NEW CURSCOR.
* Preserves the ol d cursor position.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-8

Processing Unsolicited Messages ESCAPE ON UNSOLICITED MESSAGE Design
Considerations

Example 7-2. UMP and the SEND MESSAGE Statement

SEND- MESSAGE- AND- RECEI VE- REPLY.
SEND MESSACE request - nessage
REPLY CODE "AA" YIELDS aa-reply
ESCAPE ON UNSOLI Cl TED MESSAGE
TI MEQUT five-m nutes
ON ERROR GO TO anal yze-error.
PERFORM ONE OF aa-reply
unsol icited-nmessage-arrival
DEPENDI NG ON TERM NATI ON- STATUS.
GO TO send- message- and-recei ve-reply.

AA- REPLY.

* TERM NATI ON- STATUS = 1. This is a nornal (expected)
conpl eti on.
* Do whatever is appropriate for an AA-type reply and then
resumne
* regul ar processi ng.

UNSOLI Cl TED- MESSAGE- ARRI VAL.
* TERM NATI ON- STATUS = 2. The statenent was interrupted by

t he

* arrival of an unsolicited nessage.

*

* If CONTROL 26 is enabled, at this point you should check
* TERM NATI ON- SUBSTATUS for the values 187, 188, or 189.

*

* If CONTROL 26 is not enabled, you should check

*

TERM NATI ON- SUBSTATUS for the val ue O.

| F PW UNSCLI Cl TED- MESSAGE- QUEUED | S EQUAL TO " YES"
PERFORM pr ocess-unsol i ci t ed- nessage
UNTI L PW UNSOLI Cl TED- MESSAGE- QUEUED |'S EQUAL TO "NO'.

PROCESS- UNSOLI Cl TED- MESSAGE.
RECEI VE UNSOLI Cl TED MESSAGE
YI ELDS unsolicited-statistics-request.
* Gat her the requested statistics and format a reply nessage.
REPLY TO UNSCLI Cl TED MESSAGE requested-statistics.

ESCAPE ON UNSOLICITED MESSAGE Design Consderations

When writing an application that uses ESCAPE ON UNSOLICITED MESSAGE
clauses, you have several design considerations.

When using the interrupt method, if there is a chance that a UMP message might get
canceled, it isrecommended that a check to the PW-UNSOLICITED-MESSAGE-
QUEUE be made before executing the RECEIVE UNSOLICITED MESSAGE verb.
This prevents the SCREEN COBOL program from indefinitely waiting on the
RECEIVE UNSOLICITED MESSAGE verb when the UMP message that caused the
interrupt is canceled before the RECEIVE UNSOLICITED MESSAGE verb is
executed.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-9

Processing Unsolicited Messages ESCAPE ON UNSOLICITED MESSAGE Design

Considerations

Applicationsfor Intelligent Terminals

If your application isfor intelligent terminals, consider the following:

You can use the interrupt method of responding to unsolicited messages (ESCAPE
ON UNSOLICITED MESSAGE) with SEND MESSAGE statementsin IDS
requesters that communicate with front-end processes whether the front-end
processes support the use of CONTROL 26. If the front-end process supports the
use of CONTROL 26, an ESCAPE ON UNSOLICITED MESSAGE can be
performed with no loss of data. If the front-end process does not support the use of
CONTROL 26, then the TCP uses only CANCEL calls (no CONTROL 26 calls) to
terminate the underlying read operation. In the latter case, the amount of data that
could be lost is application-dependent or device-dependent.

If aUMP message is already queued when a SEND MESSAGE with an ESCAPE
ON UNSOLICITED MESSAGE clause is executed, the TCP still issues the SEND
MESSAGE call. To process the ESCAPE ON UNSOLICITED MESSAGE clause,
however, the TCP immediately cancels the SEND MESSAGE WRITEREAD or
issues a CONTROL 26 call against the WRITEREAD. To prevent unnecessary
processing on a SEND MESSAGE, poll the PW-UNSOLICITED-MESSAGE-
QUEUED register for a' Y ES value to detect the arrival of UM P messages prior to
issuing the SEND MESSAGE statement.

Applicationsfor Block-Mode Terminals

If your application is for block-mode terminals, consider the following:

You can aso use the interrupt technique with ACCEPT statements in standard
requesters that control block-mode terminals supported by Pathway/iTS. In that
context, however, the TCP uses only CANCEL calls (no CONTROL 26 calls) to
terminate the underlying read operation; it does so with aminimal loss of data. (At
most, the loss is a single function-key stroke.)

See Internal Function-Key Queuing on page 3-13 for implications of the function-
key queuing capability of 6530 terminals and ESCAPE ON UNSOLICITED
MESSAGE clauses within ACCEPT verbs.

Applications for Conversational Terminals

If your application isfor conversational terminals, the interrupt technique of processing
must be used judiciously with conversational-mode requesters. Thisis because the
arrival of an unsolicited message causes all data entered by the terminal user for all
fields being accepted by the interrupted ACCEPT verb to be discarded.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-10

Processing Unsolicited Messages Message Processing Requiring No Terminal
Interaction

M essage Processing Requiring No Terminal Interaction

Assume that an ACCEPT statement issued by a standard requester controlling a
supported block-mode terminal isinterrupted by the arrival of an unsolicited message.
Also assume that the message requires no terminal input-output. For example, the
message asks the requester to return statistics maintained in its working storage.

The applicable UM P-code constructs for handling this situation are as follows:

PROCEDURE DI VI SI ON.
MAI N- LOOP.
DI SPLAY BASE nane-screen.

MAI N- | NPUT.
ACCEPT nane-screen
UNTI L fl
ESCAPE ON
TI MEQUT one- hour
UNSOLI Cl TED MESSAGE.
PERFORM ONE OF
normal -f 1- conpl eti on
operation-ti nmed- out
unsol icited-nmessage-arrival
DEPENDI NG ON t erm nati on-status
GO TO mai n-i nput .

UNSOLI Cl TED- MESSAGE- ARRI VAL.
| F PW UNSCLI Cl TED- MESSAGE- QUEUED | S EQUAL TO " YES"
PERFORM pr ocess- unsol i ci t ed- nessage
UNTI L PW UNSOLI Cl TED- MESSAGE- QUEUED | S EQUAL TO "NO'.

PROCESS- UNSOLI Cl TED- MESSAGE.
RECEI VE UNSOLI Cl TED MESSAGE YI ELDS recei ve- nsg.
* Build the reply.
REPLY TO UNSOLI Cl TED MESSAGE W TH repl y- nsg.
* Prevent the ACCEPT statenent from noving the cursor.
MOVE "NO' TO PW USE- NEW CURSOR.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-11

Processing Unsolicited Messages Message Processing Requiring Only Terminal

Output

M essage Processing Requiring Only Terminal Output

The next example illustrates the case where the arrival of an unsolicited message
requires the displaying of information on the terminal whose I/O operation was
interrupted. Assume that the unsolicited message contains latest price information that
must be displayed to the terminal.

Following message processing, the program reissues the interrupted ACCEPT operation.

* ok ok %

PROCEDURE DI VI SI ON.

MAI N- LOOP.
DI SPLAY BASE nor nal - scr een.

The foll ow ng ACCEPT operation is reissued when
unsolicited-nmessage processing is conplete. At that tine,
any data typed on the screen is preserved. At worst,

the operator will have to reissue a single function-key
stroke.

MAI N- | NPUT.
ACCEPT normal -screen UNTIL f5
ESCAPE ON UNSCLI Cl TED MESSAGE.
PERFORM ONE OF
nor mal - f 5-conpl eti on
unsolicited-nmessage-arrival
DEPENDI NG ON t erm nati on-status
GO TO mai n-i nput .

UNSOLI Cl TED- MESSAGE- ARRI VAL.
| F PWUNSCLI Gl TED- MESSAGE- QUEUED | S EQUAL TO " YES"
PERFORM pr ocess-unsol i ci t ed- nessage
UNTI L PW UNSOLI Cl TED- MESSAGE- QUEUED | S EQUAL TO "NO'.

PROCESS- UNSOLI Cl TED- MESSAGE
RECEI VE UNSOLI Cl TED MESSAGE YI ELDS rcv- nsg.
Reply immedi ately to sender because no actual information
is contained in the reply.
Shorten the wait for $RECEI VE response.
REPLY TO UNSOLI Cl TED MESSAGE W TH repl y- nsg.
Set up screen to request system status.
MOVE CORRESPONDI NG price-info OF rcv-nsg
TO | at est - pri ces.
The latest information displays on the screen; operator
conti nues screen interaction.
DI SPLAY | at est-price-overl ay.
Prevent the ACCEPT statenent from noving the cursor.
MOVE "NO " TO PW USE- NEW CURSOR.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-12

Processing Unsolicited Messages Message Processing Requiring Both Input and
Output

M essage Processing Requiring Both Input and Output

The next example illustrates a case when the arrival of an unsolicited message requires
that information be displayed on the terminal where I/O was interrupted and that the
terminal operator enter areply.

Following message processing, the program reissuestheinterrupted ACCEPT operation.
Because the unsolicited message required operator input, the previous cursor position is
lost and the operator hasto reposition the cursor manually at the appropriate screen
location.

For brevity, error handling has been omitted from the example.

PROCEDURE DI VI SI ON.
MAI N- LOOP.
DI SPLAY BASE nor nal - scr een.

The foll ow ng ACCEPT operation is reissued when

unsol i cited-nmessage processing i s conplete.

At that tinme, any data typed on the screen is preserved.
The operator m ght have to reposition the cursor or

rei ssue a function-key stroke.

* ok ok %

MAI N- | NPUT.
ACCEPT normal -screen-data UNTIL f5
ESCAPE ON UNSCLI Cl TED MESSAGE.
PERFORM ONE OF
nor mal - processi ng
unsolicited-nmessage-arrival
DEPENDI NG ON term nati on-status
GO TO mai n-i nput .

UNSOLI Cl TED- MESSAGE- ARRI VAL.
| F PWUNSCLI Gl TED- MESSAGE- QUEUED | S EQUAL TO " YES"
PERFORM pr ocess-unsol i ci t ed- nessage
UNTI L PW UNSOLI Cl TED- MESSAGE- QUEUED |'S EQUAL TO "NO'.

PROCESS- UNSCLI CI TED- MESSAGE.
* Accept, process, and reply to unsolicited nessage.
RECEI VE UNSCLI Cl TED MESSAGE YI ELDS rcv- nsg.
* Set up wi ndow for operator response.
DI SPLAY ur gent - op-over| ay.
* Accept operator input to urgent overlay.
ACCEPT ws-urgent-op-reply UNTIL f1.
MOVE ws-urgent-op-reply TO reply-nsg-op-reply.
* Reply to sender with operator's response.
REPLY TO UNSCLI Cl TED MESSAGE W TH repl y- nsg.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-13

Processing Unsolicited Messages Sending Unsolicited Messages to SCREEN COBOL
Requesters

Sending Unsolicited M essagesto SCREEN COBOL
Reguesters

Guardian processes send unsolicited messagesto SCREEN COBOL requesters by using
the appropriate TCP. An application that sends multiple unsolicited messagesto a TCP
should open the TCP only once and close it at the end of processing.

Such messages consist of two parts:
* A UMP header that gets interpreted by the receiving TCP

® Thebody of the message that gets passed to the SCREEN COBOL requester
program

The length of the receiving buffer within the requester program is established by the
application designer. The maximum length of a message can be configured through
PATHCOM. The length isthat of the body of the maximum message, exclusive of the
UMP header.

To send a message to a SCREEN COBOL requester program, the sending process must
build a message whose header contains the Pathway/i TS terminal name; this message is
then sent to the TCP controlling the terminal.

There are two methods for obtaining the information necessary to complete the header
of an unsolicited message to a SCREEN COBOL requester.

® The Subsystem Programmatic Interface (SPI), atoken-oriented programmatic
interface provided by Compag, provides the means whereby Guardian processes
outside of aPATHMON environment can communicate with the PATHMON
process to obtain the information necessary to complete the UMP header of a
message intended for a known terminal.

Given the Pathway/i TS terminal name, the management programming interface gets
the TCP system name and the Guardian process name. The procedure for doing this
for the terminal TERM-X is asfollows:

1. Issuean INFO TERM TERM-X request. The response from PATHMON
contains the TCP name, such as TCP-X.

2. Issuea STATUS TCP TCP-X request. The response contains both the system
name and the Guardian process name of TCP-X.

Detailed information about the management programming interface to the Pathway
subsystem is presented in the NonStop™ TS/ MP Management Programming
Manual and the Compaq NonSop™ Pathway/i TS Management Programming
Manual.

® Assuming the requester has access (direct or indirect) to the process that will be
sending the unsolicited messages, the requester can initially send its information—
its Pathway/i TS terminal name, its TCP system name, and its TCP process name—
from the special registers LOGICAL-TERMINAL-NAME, PW-TCP-SY STEM-
NAME, and PW-TCP-PROCESS-NAME by using the SEND (to server) verb.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-14

Processing Unsolicited Messages Unsolicited-Message Layout, Reply Layout, and
Error Codes

For requesters that are started by a PATHCOM RUN PROGRAM command, only the
second method is appropriate because the logical name of the terminal is determined
dynamically by the PATHMON process.

Thereply returned to the sender of an unsolicited message includes error information
when either of the following is true:

® Thesupplied terminal nameis not currently active. (The terminal is either stopped
or suspended.)

® The unsolicited-message queue of the target requester isfull.

Unsolicited-M essage L ayout, Reply L ayout, and
Error Codes

The subsections that follow describe the format of unsolicited messages as sent by an
external process (outside the PATHMON environment) to the TCP, the format of replies
sent by the TCP to the external process, and the various reply codes that the TCP can
include in the reply record.

Unsolicited-M essage L ayout

Figure 7-1 illustrates, in a COBOL-like representation, the format of an unsolicited
message as viewed by both the TCP that receivesit and the external process (outside the
PATHMON environment) that sendsit.

Upon receipt of a message, the TCP strips off the header and stores only the text portion
in the target requester's queue.

Figure 7-1. UMP M essage For mat

01 UwWP- MsG
02 TCP- UVP- HDR.

03 PROTOCOL-I D PIC 9(4) COWP VALUE 42.
03 MSG I D PIC 9(4) COWP VALUE 1.
03 MSG VERSI ON PIC 9(4) COWP VALUE 1.
03 MSG HEADER- LEN PIC 9(4) COWP VALUE 40.
03 DEST- NCDE PI C X(8).
03 DEST- TCP- PROC PI C X(6).
03 LOA CAL- TERMNAM PI C X(15).
03 FILLER PIC X

03 MSG SEQUENCE-NUM PIC 9(4) COWP.
02 SCOBOL- MSG.
03 MsSG TEXT Pl C X(nunber - of - char acters).

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-15

Processing Unsolicited Messages Unsolicited-Message Layout

Thetext that follows briefly describes each field.

01 UwWP- MsG

Sent to the appropriate TCP by a Guardian process by making aWRITEREAD call
with aread-count large enough to contain the reply header and reply text. The target
SCREEN COBOL requester accepts the text portion by using aRECEIVE
UNSOLICITED MESSAGE statement.

02 TCP- UWP- HDR.
The header is seen only by the TCP (not by the SCREEN COBOL requester).

03

03

03

03

03

03

03

03

03

PROTOCOL- | D PIC 9(4) COW VALUE 42.
Unsolicited message protocol indicator. Must be 42.

MSG- | D PIC 9(4) COW VALUE 1.
Message identification number. Must be 1.

MSG- VERSI ON PIC 9(4) COW VALUE 1.
Message format version number. Must be 1.

MSG- HEADER- LEN PIC 9(4) COW VALUE 40.
Number of bytesin TCP-UMP-HDR. Must be 40.

DEST- NODE PI C X(8).

The symbolic name of the destination node of this message (such as
\CORPHQ), left justified and blank filled.

DEST- TCP- PROC PI C X(6).

The Guardian process name of the destination TCP of this message (such as
$BTCP), left justified and blank filled.

LOG CAL- TERM NAM PI C X(15).

The name of the destination terminal as defined by the PATHCOM ADD
TERM command.

FI LLER PI C X
Filler ensuring that the next field starts on word boundary.

MSG SEQUENCE- NUM PI C 9(4) COVP.

A 16-bit binary number that uniquely identifies this particular message
within the context of the program that generated the message.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

7-16

Processing Unsolicited Messages Unsolicited-Message Reply Layout

02 SCOBCL- MG
CODE FIELD in the RECEIVE UNSOLICITED MESSAGE verb isrelative to
this point.
03 MsSG TEXT Pl C X(nunber - of - characters).
Text being sent to the SCREEN COBOL requester (can be null).

If the fields PROTOCOL-ID, DEST-NODE, and DEST-TCP-PROC are not filled out in
TCP-UMP-HDR, the TCP returns afile system security-violation error (48), with no
data, in response to the unsolicited message. If the unsolicited message has fewer bytes
than the 40-byte TCP-UM P-HDR header, the message is also rejected with an error 48.

Unsolicited-M essage Reply L ayout

Figure 7-2 illustrates, in a COBOL-like representation, the format of areply to an
unsolicited message as viewed by both the TCP that sends it and the external process
(outside the PATHMON environment) that receives it.

On execution of aREPLY TO UNSOLICITED MESSAGE statement, the TCP adds the
appropriate UMP header to the reply text supplied by the requester.

Figure 7-2. UMP Reply For mat

01 UMP- REPLY.
02 TCP- UVP- HDR.

03 MSG I D PIC 9(4) COWP.

03 REPLY-I1D PIC 9(4) COW VALUE 1.

03 REPLY- VERSI ON PIC 9(4) COWP.

03 REPLY-HEADER-LEN PIC 9(4) COWP.

03 ERROR- CODE PIC 9(4) COWP.

03 | NFOL PIC 9(4) COWP.

03 | NFO2 PIC 9(4) COWP.

03 REPLY- SEQ NUM PIC 9(4) COWP.

02 SCOBOL- REPLY.
03 REPLY- TEXT Pl C X(nunber - of - char acters).

Thetext that follows briefly describes each field.

01 UMP- REPLY.

Built by the TCP (with reply text supplied by the requester) and sent to the Guardian
process that sent the unsolicited message. The requester passes the reply text to the
TCP by using aREPLY TO UNSOLICITED MESSAGE statement.

02 TCP- UVP- HDR.

03 MG ID PIC 9(4) COWP.
Copied from the MSG-ID field of the unsolicited message.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-17

Processing Unsolicited Messages Unsolicited-Message Reply Layout

02

03

03

03

03

03

03

03

REPLY- 1| D PIC 9(4) COW VALUE 1.
Reply identification number. Must be 1.

REPLY- VERSI ON PIC 9(4) COWP.

Reply format version number. This number islessthan or equal to the value
of the MSG-VERSION field in the corresponding unsolicited message. The
TCP converts thisfield to:

$M N (MBG VERSI ON, version the TCP recognizes)

This line lets the message sender, when it receives the reply back from the
TCP, know what version level of the UMP protocol the TCP is using,
thereby allowing message sendersto interact more effectively with TCPs
that are using older versions of the UM P protocol.

REPLY- HEADER- LEN PIC 9(4) COWP.
The number of bytesin the header of the reply message (currently 16).

ERROR- CODE PIC 9(4) COWP.
Zero or an error code returned by the TCP.

| NFOL PI C 9(4) COWP.
See error code 10 in "Unsolicited Message Error Codes’ in this section.

| NFC2 PI C 9(4) COWP.
Reserved for future use.
REPLY- SEQ- NUM PIC 9(4) COWP.

The sequence number (M SG-SEQ-NUM) from the message that is being
replied to. The COMP VALUE isa 16-bit binary number.

SCOBOL- REPLY.

The requester furnishes this data by usinga REPLY TO UNSOLICITED
MESSAGE statement.

03 REPLY- TEXT Pl C X(nunber - of - characters).

The text being returned.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

7-18

Processing Unsolicited Messages Unsolicited-Message Error Codes

Unsolicited-M essage Error Codes

Table 7-1 lists the error codes returned by the TCP to the sender of an unsolicited
message. The codes are passed through the ERROR-CODE field of the UMP-REPLY

record.

Table 7-1. Unsolicited-M essage Error Codes

Error Code
0

1
2
3

I

10

11

Meaning

No errors.

Guardian procedure error occurred.
Target terminal suspended.

Target termina queue full. (The TERM MAXINPUTM SGS configuration
value has been exceeded.)

Target TCP queue areafull

Target queuing not enabled. (The TCP MAXINPUTM SGS configuration
valueissetto 0.)

Length field in message exceeds the configured maximum for the TCP.

Unrecognizable request code (refersto MSG-ID and M SG-VERSION
fields).

Named terminal not found.
MAXINPUTM SGS exceeded.

RECEIVE UNSOLICITED MESSAGE error occurred—INFOL1 gives the
reason (the value obtained from the TERMINATION-STATUS register).

Number of bytesin reply message sent by SCREEN COBOL requester was
more than had been asked for by the sender of the unsolicited message.
Thisis merely awarning and should occur only during the application-
debugging phase.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

7-19

Processing Unsolicited Messages UMP Configuration Parameters

UMP Configuration Parameters

The following PATHCOM configuration parameters support the processing of
unsolicited messages:

SET TERM MAXINPUTMSGS nunber

Specifies the total number of unsolicited messages that can be queued by the TCP
for a particular requester at any one time. When that number is reached, the TCP
rejects all subsequent unsolicited messages addressed to that requester until the
requester replies to one of its currently queued messages. This parameter is
particularly useful for ensuring that no single requester can consume a TCP's entire
space for unsolicited-message processing.

SET TCP MAXINPUTMSGS nunber

Specifies the total number of unsolicited messages that a particular TCP can have
queued at any onetime for all its requesters. When that number is reached, the TCP
rejects all subsequent unsolicited messages until one of its requestersrepliesto a
currently queued message.

SET TCP MAXINPUTMSGLEN nunber

Specifies the maximum-si ze unsolicited message (in bytes) that the TCP will accept.
Messages that are longer than the maximum length are rejected by the TCP with an
appropriate error code. The specified length does not include the standard UMP
message header (currently 40 bytes).

Note. The value that you specify for the SET TCP TERMPOOL parameter must be large
enough to accommodate the largest UMP message (or the largest terminal 1/0O operation).

The Compag NonStop™ Pathway/i TS System Management Manual gives details about
UMP configuration parameters.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
7-20

Processing Double-Byte Character Sets

As a Pathway application programmer, you can develop SCREEN COBOL program
units that use double-byte character sets for selected devices.

The TCP supports these devices with the aid of translation routines in the TCP user
library. The TCP usesthe Shift-JI'S format asits internal representation of double-byte
characters. When amessage is output to adevice, the translation routines convert Shift
JISto double-byte characters suitable for display on the terminal or printer, inserting
shift-out/shift-in (SO/SI) characters if necessary. When a message isinput to adevice,
the process is reversed; the trandlation routines strip the SO/SI characters.

This section presents information about the following topics:

® Device types on which Compagq NonSop™ Pathway/i TS supports double-byte
character sets

® How the character set is determined
e Dataitem considerations
* Developing SCREEN COBOL programs for double-byte character sets

* Example of Working-Storage Section and Screen Section for double-byte character
sets

Device Types

The TCP supports double-byte character sets on the following terminals or personal
computers running terminal emulators. To use SNA 3270 devices with double-byte
character sets, you must have the C11 version or alater version of the SNAX/XF
product installed.

® Selected Japanese versions of 6530 terminal emulators
® Sdected Fujitsu 3270 terminals, terminal emulators, and printers
* Sdected IBM 3270 terminals, terminal emulators, and printers

To run SCREEN COBOL program units that use Kanji characterson IBM 3270
devices, the devices must support Start Field Extended (SFE) orders. To run
applicationsthat use K atakana characters, IBM 3270 devices need support only Start
Field (SF) orders.

Defining fields with only double-byte characters on an IBM 3270-class device or
emulator requires the use of the field attribute DBC-Asia (attribute type X'43"). To
enter double-byte characters on IBM 3270 terminals, the operator must be able to
create shift-out/shift-in (SO/SI) characters.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-1

Processing Double-Byte Character Sets Determination of the Character Set

In general, an IBM device must have double-byte character set (DBCS) capability,
as defined in the IBM 3270 Information System Data Stream Programmer's
Reference, to support the processing of double-byte characters.

Deter mination of the Character Set

By default, your Pathway application uses the character set supported by the device.
The default double-byte character set is determined as follows:

® For 3270 devices connected by the SNAX/XF subsystem, call SETMODE 144 to
determine the character set.

® For 3270 devices connected by other access methods, the default character set is
IBM-EBCDIC.

® For 6530-seriesterminals, read the device configuration to determine the double-
byte character set.

For both 6530-class devices and 3270-class devices, the program unit is aborted if a
SCREEN COBOL program unit is compiled with the statement CHARACTER-SET IS
KANJ-KATAKANA but the run-time device does not support double-byte characters.
In this case, you get the following error message:

ERROR - *3060* DEVI CE DOESN T SUPPORT DOUBLEBYTE CHARACTERS

Data-1tem Consider ations

The Compag NonStop™ Pathway/iTS SCREEN COBOL Reference Manual describes
the SCREEN COBOL programming language that you use to write Pathway
applications. In developing SCREEN COBOL program units with double-byte
characters, you have particular considerations for mixed data items and subscripting.

Mixed Data ltems

The Compag NonStop™ Pathway/iTS SCREEN COBOL Reference Manual discusses
SCREEN COBOL language elementsin general. When you develop Pathway
applications for double-byte character sets, you especially need to be aware of mixed
dataitems.

One-byte characters (K atakana and al phanumeric) and 2-byte (double-byte) characters
can coexist in dataitems declared as PIC X. Such dataitems are called mixed data
items. A PIC X(10) field can contain, for example, any of the following combinations
inamixed data item:

® Five 2-byte characters and no 1-byte Katakana or alphanumeric characters

* Four 2-byte characters and up to two 1-byte Katakana or al phanumeric characters
® Three 2-byte characters and up to four 1-byte Katakana or alphanumeric characters
® Two 2-byte characters and up to six 1-byte Katakana or alphanumeric characters

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-2

Processing Double-Byte Character Sets Subscripting Considerations

® One 2-byte character and up to eight 1-byte Katakana or alphanumeric characters

Note. Katakana characters are not classed as alphanumeric charactersin PIC A items.
PIC A items can consist only of letters of the Roman alphabet or space characters.

If adataitem contains fewer than the maximum number of characters allowed, the
appropriate number of padding space characters are added to theright. If aPIC X field
contains no doubl e-byte (2-byte) characters, it is not amixed data item.

When manipulating a PIC X field, you must remember two points:
® Double-byte characters take two bytes of storage.

® On output to 3270-class devices, the data-conversion function converts the data
stream from internal format to aformat suitable for the external device. When the
external deviceisan IBM 3270-class device, SO/SI (shift-out/shift-in) characters are
inserted around each double-byte character substring. These SO/SI characters each
take up one column of screen space. When the external deviceis a Fujitsu 3270-
class device, asimilar operation to that for an 1BM 3270-class deviceis performed,
but the substring framing characters do not occupy screen space.

The use of SO/SI characters to bracket double-byte character set data is discussed
later in this section.

Mixed data items are allowed in the Working-Storage Section, the Linkage Section, and
the Screen Section of the Data Division of a SCREEN COBOL program. For both
Working-Storage Section and Linkage Section entries, the maximum size of a dataitem
is 16,000 double-byte characters or its equivalent (32,000 bytes). Mixed dataitems are
not allowed in the Message Section of the Data Division of a SCREEN COBOL
program.

Subscripting Considerations

Subscripts are used to refer to elementsin atable. Subscripts are needed because all
table elements have the same name.

When you develop a Pathway application that uses double-byte characters, you must
code the OCCURS clause to accommodate PIC X dataitems that might contain double-
byte characters, as explained in the following paragraphs.

The left or right byte of a double-byte character in itself has no meaning. Referring to a
subscripted dataitem, defined by using a PIC X clause containing double-byte data and
redefined as PIC X(1) OCCURS n TIMES, might refer to only the left or right byte of a
double-byte character. That half of the double-byte character by itself is undefined. For
example:

WORKI NG- STORAGE SECTI ON.

01 WS- KANJI - DATA Pl C N(05) .

01 \\5- UNDEFI NED- DATA PI C X.
01 WS- NAME- 1 Pl C N(05) .
01 WS- GROUP- REDEF REDEFI NES W5 NAME- 1.

02 \\5- BYTE- DATA Pl C X OCCURS 10 TI MES.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-3

Processing Double-Byte Character Sets Developing SCREEN COBOL Programs for Double-
Byte Character Sets

PROCEDURE DI VI SI O\

MOVE W\&- KANJI - DATA TO WS- NAME- 1.
MOVE WS- BYTE- DATA(1) TO WS- UNDEFI NED- DATA.

Thereceiving datain this example (WS-UNDEFINED-DATA) is undefined because an
individual byte of a double-byte character is meaningless.

Arrays defined by using aPIC N clause, rather than a PIC X clause, arereferred to in
units of two bytes.

Developing SCREEN COBOL Programsfor
Double-Byte Character Sets

Program units written in SCREEN COBOL have four divisions: the Identification
Division, the Environment Division, the Data Division, and the Procedure Division. In
developing Pathway applications for double-byte character sets, you define specific
attributes in the last three of these divisions.

Environment Division

The Configuration Section of the Environment Division declares the operating
environment of a SCREEN COBOL program. When you write Pathway applications
for double-byte character sets, you need to consider the following syntax in the
OBJECT-COMPUTER paragraph:

OBJECT- COWUTER. comment - wor d,
[TERMNAL IS termnal-type [,]]

[CHARACTER- SET | S character-set-type]

TERMINAL IS Statement

All 3270 class devices—both IBM and Fujitsu—are identified by the keyword IBM-
3270. All 6530 class devices are identified by the keyword T16-6530.

IBM 3270 devices use Start Field Extended (SFE) ordersto support Kanji characters and
Start Field (SF) orders to support Katakana characters. Fujitsu 3270 devices use Start
Field (SF) orders for both Kanji and Katakana character sets.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-4

Processing Double-Byte Character Sets

CHARACTER-SET IS Statement

Environment Division

The character-set-type provides support of national-use characters, that is, character sets

that are not USASCII. The Compaq NonStop™ Pathway/i TS SCREEN COBOL
Reference Manual lists the available character sets. To specify a double-byte character
set, you use the keyword KANJI-KATAKANA:

[CHARACTER- SET | S KANJI - KATAKANA]

The KANJI-KATAKANA keyword indicates that the program source file can contain
double-byte characters in datafields or literals. It instructs the compiler to allow the
PIC N PICTURE clause described later in this section.

Note. The SCREEN COBOL compiler does not allow the use of double-byte characters as

program names (for instance, paragraph names or variable names).

The following rules govern the use of the KANJI-KATAKANA keyword:

The PIC N data type is supported only for program units that specify
CHARACTER-SET ISKANJ-KATAKANA.

Program units that do not use double-byte characters need not specify
CHARACTER-SET ISKANJ-KATAKANA even if 1-byte Katakana characters
are used.

If aprogram unit specifies CHARACTER-SET IS KANJI-KATAKANA, both 1-
byte and 2-byte Katakana character sets are supported; you can use whichever
Katakana character set the device supports.

Depending on the terminal, support for 1-byte Katakana characters, 2-byte Katakana
characters, and al phabetic characters varies:

Applications that use only 1-byte alphabetic characters can run on any device for
which the CHARACTER-SET IS KANJI-KATAKANA clauseisvalid.

Applications that use 1-byte alphabetic characters as well as 1-byte Katakana
characters can run only on 6530 K atakanaterminals, on 6530 Kanji terminals, or on
IBM 3270 terminals configured to support EBCDIC-Katakana.

On 6530 Kanji terminals, both 1-byte and 2-byte Katakana character sets, aswell as
uppercase and lowercase al phabetic characters, are supported.

IBM 3270 terminals support uppercase alphabetic characters with either lowercase
alphabetic characters or 1-byte Katakana characters.

e OnIBM 3270 terminals configured to use both lowercase and uppercase
alphabetic characters, a program unit cannot use 1-byte Katakana characters.

* For IBM 3270 terminals configured to use 1-byte Katakana characters, the data
stream conversion function of the TCP upshifts lowercase al phabetic characters
in the outbound data stream. Such terminals can run applications with both
lowercase and uppercase a phabetic characters aswell as 1-byte Katakana
characters. Inbound data from these devices does not contain lowercase
alphabetic characters.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-5

Processing Double-Byte Character Sets Data Division

Data Division

The Data Division describes the data that a SCREEN COBOL program creates, accepts
as input, manipulates, or produces asinput. As explained in the Compaq NonSop™
Pathway/iTS SCREEN COBOL Reference Manual, the Data Division has four sections.

In developing Pathway applications for double-byte character sets, you define specific
attributes in the Working-Storage Section, the Linkage Section, and the Screen Section
of the Data Division. Thereis no support for double-byte character setsin the Message
Section. Specia guidelines for writing the Screen Section of applications that use
double-byte data are discussed in “ Screen Section Considerations” later in this section.

PICTURE Clause

The PICTURE clause of the Working-Storage Section, the Linkage Section, and the
Screen Section of the Data Division supports the PIC N datatype for double-byte
character sets. The Message Section does not support PIC N.

The PICTURE clauseis asfollows:

{ PIC } [IS] character-string
{ PICTURE }

Aswell asthe other character strings described in the Compag NonStop™ Pathway/iTS
SCREEN COBOL Reference Manual, you can define the character-string N to represent
double-byte characters.

Wor king-Stor age Section

The PICTURE clause of the Working-Storage Section defines the characteristics of an
elementary item. In developing applications that use PIC N, consider the following:

e PIC Nisvalidonly in program units that specify the KANJ-KATAKANA keyword
in the CHARACTER SET clause of the OBJECT-COMPUTER paragraph of the
Environment Division.

® Thelength of a double-byte-only data item can be 16,000 characters for a Working-
Storage Section entry. Each double-byte character occupies two bytes per dataitem
in memory, for a maximum of 32,000 bytes.

e SCREEN COBOL supports the character-string N only in PICTURE clauses that are
not mixed with other character-string symbols. In other words, any data field that
uses the N character-string symbol can have only contiguous Ns as a character-
string symbol in the corresponding PICTURE clause. Only thefollowing N
PICTURE clauses are allowed:

PIC N
PICN... N (maxi mum of 30 contiguous Ns)
PI C N(n) (where nis 1 to 16, 000)

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-6

Processing Double-Byte Character Sets Data Division

Because variables defined with PIC X can contain mixed data—al phanumeric,
numeric, and double-byte characters—you can combine double-byte characters with
other data types in the Working-Storage Section by defining the entire data item
with PIC X.

If aVALUE clause isdeclared for aPIC N Working-Storage Section field, the value
can consist only of characters from the Shift-JI'S character set enclosed in quotation
marks ("").

You can use the THRU/THROUGH clause with 88-level data items associated with
double-byte character set literals. Byte-by-byte comparisons of all itemsin the
THRU/THROUGH clause are performed.

Linkage Section

The Linkage Section associates the data items defined in the section with the data items
defined in the Working-Storage Section of the calling program. In developing
applications that use PIC N, consider the following:

Data descriptions defined in the Linkage Section must have the same PIC clause
specifications and use as the corresponding items in the Working-Storage Section.

The length of a double-byte-only data item can be 16,000 characters for a Linkage
Section entry. Each double-byte character occupies two bytes per dataitem in
memory, for a maximum of 32,000 bytes.

SCREEN COBOL supports the character-string N only in PICTURE clauses that are
not mixed with other character-string symbols. In other words, any data field that
uses the N character-string symbol can have only contiguous Ns as a character-
string symbol in the corresponding PICTURE clause. Only thefollowing N
PICTURE clauses are allowed:

PIC N
PICN... N (maxi mum of 30 contiguous Ns)
PI C N(n) (where nis 1 to 16, 000)

Because variables defined with PIC X can contain mixed data—al phanumeric,
numeric, and double-byte characters—you can combine double-byte characters with
other datatypes in the Linkage Section by defining the entire data item with PIC X.

Screen Section

The PICTURE clause of the Screen Section defines the format in which the data appears
on the terminal screen. In developing applicationsthat use PIC N, consider the
following:

PIC N isvalid only in SCREEN COBOL program units that specify the KANJI-
KATAKANA keyword in the CHARACTER SET clause of the OBJECT-
COMPUTER paragraph of the Environment Division.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-7

Processing Double-Byte Character Sets Data Division

e Dataitemsdeclared as PIC N in the Screen Section must declare the PIC N attribute
before all other attributes:

SCREEN SECTI ON.

05 FI ELD- 10 AT 10, 20 PICN
MUST BE
FI LL Ce
USI NG W5- FI ELD- 10.

® Thelength of adouble-byte-only data item can be 128 double-byte characters for a
Screen Section entry. Each double-byte character occupies two bytes per data item
in memory, for a maximum of 256 bytes.

* Unlike the Working-Storage Section and the Linkage Section, the Screen Section
allows data items with mixed character-string symbols. A datafield that usesthe
double-byte character-string symbol, N, can be combined with datatypes X, A, 9, 0,
and B.

REDEFINES Clause

In addition to the general rules that the Compaq NonSop™ Pathway/i TS SCREEN
COBOL Reference Manual outlines for the REDEFINES clause, there are special
considerations for using it when you develop a Pathway application for double-byte
character sets.

Wor king-Stor age Section

The REDEFINES clause in the Working-Storage Section of the Data Division allows
the same computer storage areato be described in more than oneway. The
REDEFINES clause specifies that the storage area being defined is an alternate
interpretation of a previously defined storage area:

REDEFI NES dat a- nane- 2

If you try to move a numeric field, anumeric edited field, a numeric noninteger, or a
numeric literal to a PIC N dataitem, you get a syntax error. By redefining the double-
byte-only PIC N field as an alphanumeric PIC X dataitem, you can make the move. For
example:

WWORKI NG- STORAGE SECTI ON.

01 WS- KANJI - ONLY- FLD Pl C N(10).
01 WS- KANJI - TO- PI CX- REDEF REDEFI NES W5- KANJI - ONLY- FLD PI C X(20).

Only Screen Section data items may be defined as al phanumeric edited.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-8

Processing Double-Byte Character Sets Data Division

Screen Section

In the Screen Section of the Data Division, the REDEFINES clause allows the same
screen field to be described in more than one way. The REDEFINES clause specifies
that the screen field being defined is an alternate interpretation of a previously defined
field:

REDEFI NES fi el d-nane-2

IBM 3270 terminals have alimitation that affects the use of Screen Section
redefinitions. PIC N fields on IBM devices alow only double-byte character set data;
no single-byte data—including shift-out/shift-in characters—is allowed.

When you are redefining dataitems for Pathway applications that run on IBM 3270
devices, you must remember the following:

e A PICN field implies that no single-byte characters are to be found in the data
stream.

e APICX fieldisamixedfield. It can contain double-byte and single-byte
characters. Double-byte character set substrings contained within a mixed field
must be bracketed by SO/SI characters.

The data type of the field used in the operation determines the translation to be applied
to the field and also the way the field is defined on the terminal. Trandlation is
automatically done by the TCP, based on the field and the terminal. The TCP thus adds
or strips shift-out/shift-in characters as needed.

Trandation errors can occur if you redefine PIC N data items and then perform a
DISPLAY or ACCEPT of the item by the name specified in the REDEFINES clause.
On output to the terminal, this confusion can generate aterminal error by causing the
TCPto insert SO/SI charactersin afield initially defined as PIC N through a DISPLAY
BASE operation. On input, DBCS substrings can appear with SO/SI framing characters
in mixed data items, causing translation errors. A translation error is considered an
editing error.

For instance, aPIC X field redefined asa PIC N resultsin adisplay error on the terminal
because the PIC X clause creates a screen field that requires SO/SI insertion for display
of double-byte characters, but the PIC N field used in subsequent DISPLAY writes
double-byte data to the terminal, which does not contain SO/SI characters.

An ACCEPT of the PIC N redefinition causes a trandation error because the terminal
transmits double-byte character set data containing SO/S| characters, but the PIC N
definition of the field implies that no single-byte data or SO/SI characters are in the data
stream. Therefore, the trandation fails and the TCP reports an editing error to the
operator.

The following subsection, Screen Section Considerations, discusses the need for SO/S|
characters more fully.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-9

Processing Double-Byte Character Sets Data Division

Screen Section Consider ations

When you develop Pathway applications for double-byte character sets, you must
consider the following when you write the Screen Section of the Data Division of your
SCREEN COBOL program unit.

Permissible Character-String Symbols

In the Screen Section the character-string symbol N can be mixed with only the X, A, 9,
0, and B character-string symbols. Some examples are:

SCREEN SECTI ON.

03 SS- KANJI - ONLY PIC N at
03 SS- KANJI - CONTI G PICN...Nat ...

* (maxi mum of 30 Ns)
03 SS- KANJI - | MPLI ED PIC N(n) at ...

* (where nis 1 to 256)

03 SS-KANJI - M XED-ALPHA Pl C NXN at

05 SS- KANJI - M XED Pl C NXNXAAXN at
* (m xed)

03 SS-KANJI - M XED- EDI TED Pl C NXNONBXN at
* (m xed edited)

03 SS- Pl CX- DATA PIC X(70) at ...
(Any data can be entered here.
It can consist of a
conbi nati on of single and
doubl e- byt e data.)

* ok ok ok

Screen Field Limits

You need to be aware of special limitations when you design applicationsfor IBM 3270
devicesthat declare screen fields containing double-byte or mixed (single-byte
alphanumeric and double-byte) data and for Fujitsu terminals that include screen fields
that wrap from one line to the next. Of course, no screen-field dataitem can be greater
than 256 bytes. When one istoo long, it istruncated, regardless of the device.

In creating screen fields for mixed items for IBM and Fujitsu equipment, the translation
library inserts shift-out/shift-in characters into the data stream to bracket double-byte
character substrings. On IBM equipment the shift characters occupy display space. On
Fujitsu equipment the shift characters do not take display space and, therefore, do not
affect the data displayed. Because the JET 6530 terminal and the 6530 terminal
emulator use double-byte characters in Shift-JIS format, it is not necessary to insert shift
characters into the data stream to be transmitted when using those terminals.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-10

Processing Double-Byte Character Sets Data Division

The TCP does the following when generating fields with possible doubl e-byte characters
that are to be written to a 3270 device:

1. Loadsthe datainto the work buffer

This operation includes all editing operations. It also ensures that the number of
characters placed into the buffer does not exceed the size of the screen field.

2. Callsthe appropriate trandlation routine

Operations performed by the trandlation routines include the insertion of shift-
out/shift-in characters. Asaresult of thisinsertion, the number of charactersin the
work buffer that must be sent to the device can increase. If the increase because of
the insertion of shift characters exceeds the original buffer field size, the following
OCCUr'S:

For an IBM device:

Thefield istruncated to fit into the screen field. Because shift characters
occupy display space, some user data might not appear on the screen. An error
message is logged once for each program unit that truncates data. The
trandation routines make sure that no partial double-byte characters are included
in atruncated string and also that the last double-byte string is terminated by a
shift-out character.

For Fujitsu devices:

The expanded field is sent to the device if no double-byte characters start in the
last column of the screen. Because the load of the work buffer resultsin the
actual number of data characters being less than or equal to the screen field,
overflow does not occur. If adouble-byte character startsin the last column of
the screen, a space isinserted in the last column and the character that would
have started at that position is started in the first column of the next line. The
addition of the extra space can cause data sent to the Fujitsu to be truncated by
one or two bytes.

For JET 6530 terminals and any PCT 6530 terminal emulator released by
Compag Japan:
These devices do not correctly handle double-byte characters that start in

column 80. They behave in the same way that a Fujitsu 3270 does when a
screen field wraps from one line to the next.

As a programmer, you must be aware that an ACCEPT of afield truncated by a previous
DISPLAY operation can result in the accepted data being different from what you
intended.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

8-11

Processing Double-Byte Character Sets Data Division

Additional Clause Consider ations

The following conventions are checked by the compiler for these screen-field
characteristics clauses. The Compaq NonStop™ Pathway/i TS SCREEN COBOL
Reference Manual discusses each of these clausesfully. A double-byte-only fieldisa
field that is declared by using only Nsin the PICTURE clause character string.

* The ADVISORY clause cannot be associated with afield that allows only double-
byte data.

® WhenaFILL clauseisused with afield that allows only double-byte data, the fill
character must be a double-byte character.

When aFILL clauseisused withaPIC X or PIC A field, the fill litera must be a
valid ASCII (single-byte) character.

¢ When the LENGTH clauseis used with double-byte fields, the values assigned to
the clause indicate the number of characters of the given type that are required for
operator input. For example, the clause:

LENGTH MJUST BE 6
means one of the following:
® Six single-byte displayable ASCII characters must be entered for a PIC X(10)

field.

® Six single-byte alphabetic ASCII characters must be entered for a PIC A(50)
field.

® Six double-byte characters (having atotal of 12 bytes) must be entered for aPIC
N(30) screen field.

If you use amixed field, the LENGTH MUST BE clause refers to the absolute
number of bytes that the operator must enter. For example, PIC A(10)N(5)X(5)
withaLENGTH MUST BE 6 clause means that the operator must enter six
alphabetic characters. A LENGTH MUST BE 11 clause is not possible here
because the operator would have to enter ten a phabetic charactersfor thefirst ten
bytes—and half of a double-byte character for the eleventh byte.

The THRU or THROUGH variant of the functions in the same way.
The LENGTH value for a screen field must be 256 or less.

¢ The THRU or THROUGH variant of the MUST BE clause is supported for fields
that alow only double-byte data in the same way as it is in the Working-Storage
Section.

You can use the THRU/THROUGH with 88-level data items associated with
double-byte character set literals. Byte-by-byte comparisons of all itemsin the
THRU/THROUGH are performed.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-12

Processing Double-Byte Character Sets Procedure Division

The UPSHIFT clauseisavalid screen-field attribute for PIC N fields, but it is useful
only on mixed fields—for example, PIC N(10)A(10).

The trangdlation routines upshift lowercase characters on output to IBM 3270 devices
configured to use 1-byte Katakana characters. Upshifting of lowercase charactersis
not done on input for these devices because they cannot generate lowercase
characters.

Upshifting on output is not done for 3270-type devices configured to use both
lowercase and uppercase 1-byte alphabetic characters. These devices cannot display
or generate 1-byte Katakana characters.

When the VALUE clause is used for afield that alows only double-byte data, the
literal string provided must follow the same rules as those defined for a VALUE
clause associated with a Working-Storage PIC N field.

Programs that use a double-byte character set, identified by the CHARACTER-SET
IS KANJI-KATAKANA clause, are restricted in their ability to define input control-
character clauses. They can use only single-byte characters from the ASCI|
character set.

Procedure Division

The Procedure Division includes al of the processing steps for the program. Asthe
Compag NonStop™ Pathway/iTS SCREEN COBOL Reference Manual explains, these
steps consist of SCREEN COBOL statements and sentences, grouped into paragraphs,
procedures, and sections.

|F Statement

SCREEN COBOL program units use an | F statement to evaluate a condition and then
transfer control depending on whether the value of a condition istrue or false. In
addition to the general conventions for |F statements described in the Compaq
NonSop™ Pathway/i TS SCREEN COBOL Reference Manual, when developing
Pathway applications for double-byte character sets you must consider the following:

Comparisons (using GREATER THAN, LESS THAN, EQUAL, and so on) of a
PIC N dataitem or literal with a numeric dataitem (PIC 9) are not allowed.

All other comparisons are allowed and are done on a byte-by-byte basis.

If a comparison of a numeric data item and a double-byte character set dataitemis
attempted, the compiler issues an error message at the time of compiling.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-13

Processing Double-Byte Character Sets Procedure Division

|F...DOUBLEBYTE Statement

The IF...DOUBLEBY TE statement tests for the existence of double-byte charactersin
an alphanumeric data item:

|F data-name [1S] [NOT | DOUBLEBYTE

Aligned double spaces are seen as %H2020 and are valid double-byte characters. A
single space or anonaligned space is not a double-byte character.

M OVE Statements

SCREEN COBOL program units use MOV E and MOV E CORRESPONDING
statements to transfer data from one data item to one or more other dataitems. In
developing Pathway applications for double-byte character sets, you need to consider
the conventions and restrictions for MOV E statements defined in the Compaq
NonSop™ Pathway/i TS SCREEN COBOL Reference Manual, especially the following:

* Numeric integers, numeric nonintegers, and numeric edited data items must not be
moved to a dataitem that allows only double-byte (PIC N) data.

* A dataitemor literal that allows only double-byte (PIC N) data must not be moved
to anumeric integer, a numeric noninteger, or a numeric edited data item.

® Violation of either of these rules causes the SCREEN COBOL compiler toissue a
compilation error 453:

| LLEGAL SENDI NG OR RECEI VING | TEM | N MOVE STATEMENT

* Moving any of the following figurative constantsto aPIC N field isflagged as a
compiler error:

HIGH-VALUE
HIGH-VALUES
ZERO

ZEROS
ZEROES
LOW-VALUE
LOW-VALUES
QUOTE
QUOTES

Moving the figurative constants SPACE or SPACESto aPIC N field is allowed.

See the Compag NonStop™ Pathway/iTS SCREEN COBOL Reference Manual for a
list of the SCREEN COBOL compiler error messages.

® Only selected devices can be used to create SCREEN COBOL source images that
contain double-byte characters. These devices must be capable of transmitting
double-byte characters to the host in Shift-JIS format. Contact the Compag Tokyo
office for alist of such devices.

Table 8-1 summarizes the restrictions that apply to MOV E statements.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-14

Processing Double-Byte Character Sets Example of Working-Storage Section and Screen
Section

Table 8-1. Restrictionson MOVE Statements

Category of Receiving Data Item

o
5
S Ez0 s
= S S Ao
[=) > 222 Y8
8 & &g oDog ¢
Categoryof Sending & & E% EEE 38
Data Item < < <wW ZzzZzzZ Q0
Alphabetic Yes Yes No No Yes*
Alphanumeric Yes Yes No Yes Yes*
Alphanumeric Edited Yes No No No Yes*
Numeric Integer No No No Yes No
Numeric Noninteger No No No Yes No
Numeric Edited No No No No No

Double-Byte Character No Yes Yes No Yes
* Such MOV E operations move string data byte by byte; no editing or conversion is done.

Example of Working-Stor age Section and Screen
Section

The following exampl e shows a sample Working-Storage Section and its corresponding
Screen Section.

For this Working-Storage Section,
WORKI NG STORAGE SECTI ON.

01 W5- KANJI - ONLY- FLD Pl C N(10).
01 W5- KANJI - TO- Pl CX- REDEF REDEFI NES WS- KANJI - ONLY- FLD PI C X(20) .
01 W5- KANJI - ONLY- FLD2 Pl C N(10).
01 W5- KANJI - ONLY- FLD3 Pl C N(10).
01 W5- KANJI - ONLY- FLD4 Pl C N(10).
01 W5- ALPHA- NUMERI C- FLD PI C X(20).
01 W5- ALPHA- NUMERI C- FLD2 PI C X(20).
01 W5- ALPHA- NUMERI C- FLD3 PI C X(20).

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-15

Processing Double-Byte Character Sets Example of Working-Storage Section and Screen
Section

the Screen Section would be asfollows:
SCREEN SECTI ON

Data transl ation occurs, if necessary, for each field
decl ared in these screen exanples. Data translation
consi sts of converting doubl e-byte characters in

external formto internal form (Shift JIS) on

input or frominternal formto device-specific

external formon output. Such translation is normally
required only for the 3270-cl ass devi ces produced by | BM
and Fujitsu. Data entered fromthe Japanese version of
PCT, running on IBMor Fujitsu personal conmputers, does
not require input or output translation because the

* ok ok ok ok ok % % k¥

*

emul ators transmt doubl e-byte characters in Shift-JIS
format.

*

05 SS- ALPHA- NUMERI C PIC X(20) at
USI NG WS- KANJI - TO- PI CX- REDEF

* No editing. This is effectively a PIC X to PIC X nove.
* The progranmer is responsible for data integrity.

05 SS- ALPHA- NUMERI C- EDI TED1L Pl C AANXBAANONXNXNX at
* This PIC field uses 20 bytes.
USI NG W5- ALPHA- NUMERI C- FLD

Qut bound editing perfornmed by the TCP consists of sinple
insertion only, for exanple, the B here. [Inbound
editing performed by the TCP is done according to the
screen-itemcharacters in the PIC clause. For exanple,
the TCP expects an al phabetic character, followed by a
nuneric, followed by a doubl e-byte character set
character,and so on.

* ok ok ok % * ¥

05 SS- ALPHA- NUMERI G- EDI TEDZ2 Pl C AXNXBAXNONXNXNX at . ..
USI NG WS- KANJI - ONLY- FLD2.

Qut bound editing perfornmed by the TCP consists of sinple
i nsertion only, for exanple, the B here. [Inbound
editing is performed by the TCP according to the screen-
item PI CTURE cl ause. The Wbrking-Storage field cannot
contain data that has only doubl e-byte characters. The
programmer is responsible for data integrity.

* ok ok % %

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-16

Processing Double-Byte Character Sets Example of Working-Storage Section and Screen
Section

05 SS- KANJI - ONLY3 PIC N(10) at
USI NG WS- KANJI - ONLY- FLD3.

* On out bound editing, the TCP ensures that the data
* di spl ayed contains only DBCS characters. The programis
* aborted if this is not the case. On inbound editing,
* the TCP requires the operator to enter DBCS characters.
05 SS- ALPHA- NUMVERI C- FLD3 PIC X(20) at

USI NG W5- KANJI - ONLY- FLD4.
* No out bound or inbound editing is done.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-17

Processing Double-Byte Character Sets Example of Working-Storage Section and Screen
Section

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
8-18

TCP SETMODE Functions and
CONTROL Operations

As a Pathway application programmer, you might need to know the Guardian operating
environment SETMODE functions and CONTROL operations used by the TCP. This
section describes the TCP's use of SETMODE functions and CONTROL operations.

The Guardian Procedure Calls Reference Manual provides full descriptions of all
SETMODE functions and CONTROL operations. For programming information about
the SETMODE and CONTROL file-system procedures, refer to the Guardian
Programmer's Guide, the Enscribe Programmer's Guide, and the relevant data
communications manuals.

Table 9-1 describes SETMODE functions and CONTROL operations that the TCP
executes on terminal files when performing the indicated actions.

Table9-1. TCP SETMODE and CONTROL Activities

TCP Activity Guardian SETM ODE Function Guardian CONTROL Operation
8 11 20 | 54 | 144 | 150 1 11 12 | 22 26

START/RUN X X X X X
TERM (Open)?2 (A) (B) (©€)
Program X X X X X
Termination (A) (D)
(Close)3
DISPLAY1 X X X X X

(A) (A)
ACCEPT1 X X

(A)
SEND X X X X X
MESSAGE! (D) | (E)
PRINT X X X
SCREEN1

SETMODE Functions

SETMODE is used to set device-dependent functions. When you design an intelligent
device support (IDS) requester to communicate with a front-end process (FEP), you are
concerned with the SETMODE functions described in Table 9-2.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-1

TCP SETMODE Functions and CONTROL SETMODE Functions

Operations

Table 9-2. TCP SETMODE Functions

Operation
8

11

20

144

Description
Set system transfer mode (default is configured).

param1.15 = O conversational mode
= 1 page mode

param2 sets the number of retries for I/0O operations.
NOTE: param2 is used with 6530 terminals only.
Set break ownership

paraml = BREAK disabled (default setting)
= cpu, pin BREAK enabled

Terminal access mode after BREAK is pressed:

param2 = 0 normal mode (any type file access permitted)
= 1 BREAK mode (only BREAK-type file access permitted)

Set system echo mode (default is configured).

param1.15 = 0 system does not echo characters as read
= 1 system echoes characters as read

param2 is not used with function 20.
Return control unit and device assigned to subdevice.

paraml is not used with function 54.
param2 is not used with function 54.

last-paramg[0].0:7 =0
.8:15 = subdevice number known by AM 3270
[1].0:7 = standard 3270 control-unit address
.8:15 = standard 3270 device address

Set LU character set and double-byte character code.

paraml must be omitted for function 144.
param2 must be omitted for function 144.

last-params[0].0 = 1: EBCDIC ASCII conversion is done by ACCESS
process
.1:7=1BM devicetype
1:1BM-3277
2:not 3277 or 3276
3:1BM-3276
.8:15 = value of LU attribute ALLOWEDMIX
[1].0:7 = LU characterset
0: ASCII (USASCII)
9: EBCDIC (IBM-EBCDIC)
14 : KATAKANA EBCDIC
[1].8:15=LU DBCS
0:NoDBCS
2 IBMKANJ
3:IBMMIXED
5: JEFKANJI

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

9-2

TCP SETMODE Functions and CONTROL CONTROL Operations
Operations

CONTROL Operations

CONTROL is used to perform device-dependent 1/0 operations. When you design an
intelligent device support (IDS) requester to communicate with a front-end process
(FEP), you are concerned with the CONTROL operations described in Table 9-3.
CONTROL 26 isdiscussed in detail later in this section.

Table 9-3. TCP CONTROL Operations

Operation Description Par ameter
1 Control formsfor conversational mode 0 = form feed (send %014)
(subtypes 0,2,3) 1-15 =vertical tab (send %013)
16-79 = skip param - 16 lines

11 Wait for modem connect none

12 Disconnect modem (hang up) none

22 Cancel an AM 3270 1/0 operation none

26 Request immediate completion of all none

outstanding 1/0 requests without |oss of
data by the recipient of the CONTROL
26 request

Pathway/ITSand CONTROL 26

Compag NonStop™ Pathway/i TS intelligent device support (IDS) SCREEN COBOL
requesters can interact with front-end processes outside of the PATHMON environment
that control intelligent devices such as automated teller machines, airline reservation
terminals, and personal computers. One type of front-end process, for example, could
be a SNAX/HLS application process.

The IDS requester sends messages to the FEP through SEND MESSAGE statements
and receives responses by the associated REPLY clauses.

Asit interprets SEND MESSAGE statements and the associated REPLY clauses, the
TCP initiates the necessary write and read operations by issuing file system procedure
callssuch as WRITE, READ, and WRITEREAD.

When a SEND MESSAGE statement includesa TIMEOUT or ESCAPE ON
UNSOLICITED MESSAGE clause, the TCP might have to terminate the underlying
read operation prematurely if either of those events occurs.

Ordinarily the TCP does this by issuing a CANCEL file system procedure call.
CANCEL cadlsare, however, ineffective for determining loss of data between the TCP
and the FEP. If the TCP uses a CANCEL call to terminate an outstanding read request,
the FEP cannot detect that the read no longer exists. When the FEP eventually responds
to the canceled read, it islikely that datawill be lost and the integrity of the context for
subsequent operations compromised.

CONTROL 26 provides a better alternative.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-3

TCP SETMODE Functions and CONTROL CONTROL 26 Defined
Operations

CONTROL 26 Defined

CONTROL 26 isaCONTROL file system procedure call that allows nonprivileged
processes to cooperate with one another in bringing about the orderly termination of
outstanding read operations.

When an IDS requester is communicating with an FEP that supports the use of
CONTROL 26, the two processes use CONTROL 26 calls and the appropriate responses
jointly to terminate execution of the underlying read operation with no loss of data or
context. As used within the Pathway environment, the general format of a CONTROL
26 procedure call isasfollows:

CONTROL (fnum
, 26
, paraneter

, tag) ;

f num
identifies the file to the FEP.

par anet er
=1 triggersan initialization sequence.

=300 specifiesthat a CONTROL 26 request is to be issued to the FEP and that both
the original read and the CONTROL 26 must be compl eted within five minutes (300
seconds).

tag
isan optional tag field.

In the rest of this section, the phrase CONTROL 26,1 refersto a CONTROL 26 call
whose par anet er field contains the value 1, while the phrase CONTROL 26,300
refersto a CONTROL 26 call whose par anet er field contains the value 300.

How CONTROL 26 Works

Essentially, the TCP uses CONTROL 26 as follows. When atimeout or escape on
unsolicited message occurs, the TCP issuesa CONTROL 26 call to the FEP that is
responsible for completing the read. That process then has up to five minutes (300
seconds) to do any of the following:

* Complete the outstanding read by sending the requested data (return code = 0)

* Complete the outstanding read by specifying that it has no data to send (return code
=187)

* Complete the outstanding read by specifying that something wrong has happened
that compromises the integrity of subsequent data (return code = 188)

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-4

TCP SETMODE Functions and CONTROL CONTROL 26 Initialization
Operations

* Complete the outstanding read by specifying that an associated input operation
within the FEP is till in progress and that the resultant data can be obtained by a
subsequent read operation (return code = 189)

The FEP must complete both the original read request and the CONTROL 26 call within
the allotted five minutes or the TERMINATION-STATUS register is set to 14 and
control passesto the SEND MESSAGE statement’s ON ERROR clause. If thereisno
ON ERROR clause, the TCP suspends the requester and logs error 3174 to the devices
specified by the PATHCOM commands LOG1 and LOG2.

CONTROL 26 Initialization

As soon as the TCP opens the front-end process, the two processes engage in an
initialization sequence in which the TCP determines whether the FEP detects the use of
CONTROL 26.

That sequenceis asfollows:
1. TheTCPissuesa CONTROL 26,1 call.
2. The FEP sends back areply code of 70 to indicate that it supports CONTROL 26.

Under normal circumstances, the TCP opens front-end processes with a nowait depth of
1 (allowing only asingle I/O request to be outstanding at any given time).

To be able to use CONTROL 26 calls, however, the TCP must open the FEP with a
nowait depth of 2 (allowing both the original read request and a CONTROL 26 request
to be outstanding concurrently).

The IOPROTOCOL parameter of the PATHCOM SET TERM command allows you to
tell the TCP that the FEP supports the use of CONTROL 26. The TCP still performs the
initialization sequence but does it differently depending upon the value of
IOPROTOCOL.

|OPROTOCOL =0

IOPROTOCOL = 0, which is the default value, declares that you do not know if the FEP
supports CONTROL 26.

In this case, the TCP opens the FEP with anowait depth of 1 and then issuesthe
CONTROL 26,1 call.

If the FEP responds with 70, the TCP closes the file, reopensit with a nowait depth of 2,
and subsequently uses CONTROL 26 calls to terminate read requests prematurely.

If the FEP responds with any code other than 70, the TCP presumes that it does not
understand the use of CONTROL 26; the TCP subsequently uses CANCEL callsto
terminate read requests prematurely.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-5

TCP SETMODE Functions and CONTROL Subsequent CONTROL 26 Calls
Operations

|IOPROTOCOL =1
IOPROTOCOL = 1 declares that the FEP does support CONTROL 26.

In this case, the TCP opens the FEP with a nowait depth of 2 and then issues the
CONTROL 26,1 call.

If the FEP responds with 70, the TCP subsequently uses CONTROL 26 callsto
terminate read requests prematurely.

If the FEP responds with any code other than 70, the TCP suspends the IDS requester
and records the event with an error code of 3054 in the PATHMON log file.

By specifying IOPROTOCOL = 1 when you are certain that CONTROL 26 will be
used, you eliminate some of the overhead inherent to the initialization sequence.
Overhead could be substantial if you are configuring and starting many requesters.

A requester written to handle CONTROL 26 does not operate properly if the FEP does
not support CONTROL 26.

Subsequent CONTROL 26 Calls

After the IDS requester and FEP have agreed to use CONTROL 26, the FEP should
always respond to any subsequent CONTROL 26 calls with areturn code of 0.

The other supported return codes (187, 188, and 189) should be used only with the
underlying read operation—never with a CONTROL 26 call.

When the TCP issues aCONTROL 26 call, the FEP must, if it isable to do so, respond
in either of the following ways.

* By completing the read with valid data and areturn code of O and by completing the
CONTROL 26 call with areturn code of O

* By completing the read with areturn code of 187, 188, or 189 and by completing the
CONTROL 26 call with areturn code of O

Testing TERMINATION Codes

Asa SCREEN COBOL programmer designing and coding an IDS requester, you do
nothing to initiate the use of CONTROL 26. The TCP determines whether to use
CONTROL 26, based on whether the external FEP supports the use of CONTROL 26
and on the SET TERM IOPROTOCOL specified at configuration.

What you must do, however, istest for certain TERMINATION-STATUS and
TERMINATION-SUBSTATUS codes in your ON ERROR and ESCAPE ON
UNSOLICITED MESSAGE paragraphs that can be generated by the use of
CONTROL 26.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-6

TCP SETMODE Functions and CONTROL Testing TERMINATION Codes
Operations

Unsolicited M essage Completions

When a CONTROL 26 call isissued asthe result of an escape on unsolicited message,
th TERMINATION-STATUS register contains an index pointing to the location of
ESCAPE ON UNSOLICITED MESSAGE clause in the SEND MESSAGE statement.
Table 9-4 summarizes the various TERMINATION-SUBSTATUS values that should
then be tested for. The action in the Meaning column is only suggested; the action taken
depemds on the FEP itself.

Table 9-4. ESCAPE ON UNSOLICITED MESSAGE Completions

Terminatio Terminatio
nStatus nSubstatus Meaning

* 187 The FEP assisted in terminating the outstanding read. No
data was returned or lost by the FEP and the context is intact.

Process the unsolicited message and start another normal
SEND MESSAGE statement.

* 188 The FEP assisted in terminating the outstanding read. The
FEP might have lost some data, or the integrity of the context
might have been compromised.

After processing the unsolicited message, terminate the
session with the FEP and try to start a new one.

* 189 The FEP assisted in terminating the outstanding read;
however, the operation is still in progress within the domain
of the FEP. The datawill be queued and you can retrieve it at
alater time with a subsequent read operation. No datawas
lost by the FEP and the context isintact.

Process the unsolicited message and then issue a SEND
MESSAGE statement that causes only aread operation to be
posted. Thisallowsfor theretrieval of the outstanding read
when it compl etes.

* Index of the user's ESCAPE ON UNSOLICITED MESSAGE clause in the SEND MESSAGE statement.

Note: When the TCP issues a CONTROL 26 and the FEP replies to the original 1/0 request with data and error O
instead of with data and one of the above errors, the ESCAPE ON UNSOLICTED clause is not processed
even though a UMP message arrived. Instead, the SEND MESSAGE statement completes normally, using
the returned data, and the UMP message is queued for processing at alater time. To detect the arrival of
an unsolicited message, poll the PW-UNSOLICITED-MESSAGE-QUEUED register for aYES value.

Timeout and Error Completions

When a CONTROL 26 call isissued asthe result of atimeout, control passes to the ON
ERROR code associated with the SEND MESSAGE statement. Table 9-5 summarizes
the various TERMINATION-SUBSTATUS values that your ON ERROR clauses
should test for.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-7

TCP SETMODE Functions and CONTROL Testing TERMINATION Codes
Operations

Table 9-5. Timeout and Error Completions

Terminatio Terminatio
nStatus nSubstatus Meaning

1 40 A timeout occurred. The FEP assisted in terminating the
outstanding read. No data was lost by the FEP and the
context isintact.

Perform whatever timeout recovery action is appropriate for
your particular application.

1 188 A timeout occurred. The FEP assisted in terminating the
outstanding read. The FEP might have lost some data, or the
integrity of the context might have been compromised.

Terminate the session with the FEP and try to start a new one.

1 189 A timeout occurred. The FEP assisted in terminating the
outstanding read; however, the operation is till in progress
within the domain of the FEP. The data will be queued, and
you can retrieve it later with a subsequent read operation. No
data was lost by the FEP and the context is intact.

I ssue a new read operation with another SEND MESSAGE

statement..
1 Any other An 1/O error occurred in conjunction with the original read
value operation. TERMINATION-SUBSTATUS specifiesthefile

system error code returned with the read completion.

Perform whatever recovery action is appropriate for the
particular type of file system error.

13 Nonzero A timeout or ESCAPE ON UNSOLICITED MESSAGE
value occurred. An 1/O error aso occurred in conjunction with the
CONTROL 26 call. TERMINATION-SUBSTATUS
specifies the file system error code returned with the
CONTROL 26 completion.

Perform whatever recovery action is appropriate for the
particular type of file system error.

14 Not used A timeout or ESCAPE ON UNSOLICITED MESSAGE
occurred. The FEP did not, however, respond to both the
original read and the CONTROL 26 within the allotted five
minutes.

Perform whatever timeout recovery action is appropriate for
your particular application. Subsequent operation with the
FEP can result in errors.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
9-8

E Handling Errors

This section discusses the following topics related to error handling in SCREEN
COBOL requesters:

®* Terminal Errors
® Handling of SEND statement errors

The Pathway to TUXEDO trandation server can also return error messages to
requesters. Information about these errorsis given in the NonSop™ TUXEDO System
Pathway Translation Servers Manual.

Terminal Errors

During terminal startup, the TCP retries, aborts, or suspends aterminal depending on the
terminal error that had occured.

If an error occurs after the application is running on the terminal, the TCP invokes the
user recovery routinesin the SCREEN COBOL program whenever possible. The USE
FOR SCREEN RECOVERY clause is invoked when there are terminal or
communications errors, processor failures, or termina suspension. Typically, the
SCREEN COBOL program displays an advisory text message on the screen, and the
user must then take corrective action.

If no user error recovery is provided in the SCREEN COBOL program, then the TCP
takes its own action on terminal errors. The USE FOR TERMINAL-ERRORS clauseis
invoked when there is an irrecoverable error dueto aterminal error or communications
device error. This clause cannot be used for programs that communi cate with intelligent
devices. If the USE FOR TERMINAL-ERRORS clause is present, suspension is
overridden (in most cases), so the USE FOR SCREEN RECOVERY clause would not
be invoked.

Error 140 Suspends the terminal immediately, unless user exception-
handling code is available in the the USE FOR TERMINAL-
ERRORS clause or in an ON ERROR clause withina CALL
statement, and invokes SCREEN COBOL exception-handling
codeif available.

Error 191 Initiates aDISPLAY RECOVERY operation, and invokes any
code in the USE FOR SCREEN RECOVERY clause.

Errors300to 511 Suspends the program immediately, unless user exception codeis
availablein the USE FOR TERMINAL-ERRORS clause or in an
ON ERROR clause within aCALL statement, and invokes
SCREEN COBOL exception-handling code if available.

Other Errors If the retries do not succeed, then the TCP suspends the terminal,
unless user exception-handling code is available in the USE FOR
TERMINAL ERRORS clause or in an ON ERROR clause within
a CALL statement, and invokes SCREEN COBOL exception-
handling code, if available.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-1

Handling Errors SEND Statement Errors

SEND Statement Errors

This subsection suggests ways to handle the processing of SEND statement errors. You
can decide what is most appropriate to your particular application environment. For
additional information about SEND and SEND MESSAGE errors, refer to the Compaq
NonSop™ Pathway/i TS SCREEN COBOL Reference Manual.

Responding to SEND Errors

Tables 10-1 through 10-5 suggest how your requester ON ERROR code can respond to
error conditions arising from the execution of a SEND statement.

The specified numeric values represent the contents of the TERMINATION-STATUS
specia register. The accompanying text indicates what the particular error code means.

For descriptions of what actions the system takes if you omit the ON ERROR clause,
refer to the Compaq NonStop™ Pathway/i TS SCREEN COBOL Reference Manual.

The codesin Table 10-1 reflect error conditions that could be transient; the problem
might go away spontaneously.

Table 10-1. Requester SEND Errorsfor Transient Conditions

Numeric Value Meaning

1 Server class frozen

2,3 Resource unavailable

4 Link denied by PATHMON process or link rejected by server

12 I/O error

14 Maximum number of PATHMON processes has been reached

18 I/O error in attempt to communicate with the PATHMON process

Because the error conditions might be recoverable, you can retry the failed SEND
statement, perhaps with atime delay, some finite number of times.

Before each retry, send a message to the terminal to let the operator know what is
happening (such as TRANSIENT ERROR, RETRYING).

If the SEND statement fails al of the allotted retries, the ON ERROR code should send
another message to the terminal telling the operator what is happening (such as
PERSISTENT ERROR, TERMINATING EXECUTION), log an error message to an
appropriate server, and then perform a STOP RUN statement.

Error 4 could be caused by the server’s allocating too little space for $SRECEIVE
messages. To avoid this problem, the number of links specified in the server (for
example, in theCOBOL 85 RECEIVE-TABLE OCCURS clause) should be greater than
the value specified in the SET SERVER MAXLINKS parameter in PATHCOM. The
default value for MAXLINKS is an unlimited number of links; therefore, to avoid this
problem, MAXLINKS must be set to avalue.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-2

Handling Errors Responding to SEND Errors

Other causes, such as a security violation, could also result in error 4.

Error 12 could be caused by atimeout error (termination substatus 40) when a server is
in debug mode. If this situation occurs, the operator should do the following:

Use the PATHCOM STATUS PATHMON command to find server classes in the
LOCKED state.

Identify the server program file for each locked server class.

Issue the TACL command STATUS *, PROG object-file-name to list all running
Processes.

Stop these processes from TACL.

For more information about timeout errors for serversin debug mode, refer to the
NonSop™ TSMP Pathsend and Server Programming Manual.

The codesin Table 10-1 reflect programming errors that are essentially nonrecoverable.

Table 10-2. Requester SEND Errorsfor Nonrecoverable Programming Problems

Numeric Value Meaning

5 Server class undefined

6 Invalid server-class name

10 Undefined reply code

15 Undefined system name

16 Invalid system name

17 Invalid PATHMON process name

These errorstypically occur only during application debugging. After the application
modules have been thoroughly tested, these codes do not normally occur in a production
environment.

Note that for error code 10 no datais available, even though areply message is received.
If your application cannot anticipate all valid reply codes, use the REPLY CODE
OTHER syntax in the SEND statement to prevent error code 10.

Upon detecting any of these error conditions, your ON ERROR code should send a
message to the terminal telling the operator what is happening (such as FATAL
CONFIGURATION PROBLEM, TERMINATING EXECUTION), log an error record
to an appropriate server, and then perform a STOP RUN statement.

The codesin Table 10-1 reflect configuration errors that are essentially nonrecoverable.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-3

Handling Errors Responding to SEND Errors

Table 10-3. Requester SEND Errorsfor Configuration Problems
Numeric Value Meaning
7 Message too large
8 Maximum reply too large

These errorsindicate that the SERVERPOOL (7) or MAXREPLY (8) parameter
supplied in the PATHCOM SET TCP command at configuration time is smaller than
that required by one of the message or reply definitions declared in the requester.

No messageis sent and no reply datais available.

Upon detecting either of these error conditions, your ON ERROR code should send a
message to the terminal telling the operator what is happening (such as FATAL
CONFIGURATION ERROR, TERMINATING EXECUTION), log an error record to
an appropriate server, and then perform a STOP RUN statement.

The codein Table 10-1 indicates that the reply message received from the server was
either longer or shorter than the reply format defined within the requester.

Table 10-4. Requester SEND Error for Invalid Reply Length

Numeric Value Meaning
11 Invalid reply length

If the received reply message is shorter than the working-storage structure defined for it,
the message is available in the target working-storage data structure. The actual length
of the received messageis placed in the TERMINATION-SUBSTATUS special

register.

If the received reply message is longer than the working-storage structure defined for it,
the message is available in the target working-storage data structure; however, it is
truncated to the length of the working-storage structure. In this case, TERMINATION-
SUBSTATUS contains avalue greater than the length of the working-storage structure.

You can design your program to use avalue of 11 for the TERMINATION-STATUS
specia register to process variable-length replies, as described in the section that follows
thistable. If you design your program to reject variable length replies, your ON
ERROR code should send a message to the terminal telling the operator what is
happening (such as BAD MESSAGE LENGTH, TERMINATING EXECUTION), and
then log an error record to an appropriate server and perform a STOP RUN statement.

The codein Table 10-1 indicates that the requester program is operating in transaction
mode (that is, within the bounds of a BEGIN-TRANSACTION and END-
TRANSACTION statement pair), but the server to which it is attempting to send datais
not configured for Compag Transaction Management Facility (TMF) operation

(TMF OFF was specified in the applicable PATHCOM SET SERVER command).

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-4

Handling Errors Processing Variable-Length Server Replies

Table 10-5. Requester SEND Error for Transaction-M ode Violation

Numeric Value Meaning
13 Transaction-mode violation

This error condition is essentially nonrecoverable. In this case, your ON ERROR code
should send a message to the terminal telling the operator what is happening (such as
SERVER NOT CONFIGURED FOR TMF, TERMINATING EXECUTION), log an
error record to an appropriate server, and then perform a STOP RUN statement.

Processing Variable-Length Server Replies

When your requester is designed to receive variable-length replies from a server, error
code 11 is anormal and common occurrence. In such acase, your ON ERROR code
must be designed to respond to it properly.

Assume that the requester sends a message to a server asking for the names of all
customers that have been added to the database during the past week. Inthis case, the
response from the server at any given time contains a greater or lesser number of names.

The requester's SEND statement can provide areply data structure to accommodate a
reasonable maximum number of names. For example, if past performance shows that 10
to 12 new customers are typically added each week and that the best single week yielded
17 new customers, it isreasonable to use a reply data structure that can accommodate up
to 20 customer names.

The codein this case—where the data is shorter than the maximum allowed—|ooks like
thefollowing. (If the data were longer than the maximum permitted, error 11 would
reflect a nonrecoverable programming error.)

DATA DI VI SI ON.
01 PROCESSI NG STATE PIC X(4), VALUE "GO
01 NEW NAME- REQUEST PIC 9(4) conp.
01 NEW NAME- REPLY.
05 REPLY- CODE PIC 9(4) conp.
05 FUNCTI ON- CODE PIC 9(4) conp.
* Function-code 1 signifies a new name query.
05 NUMBER- OF- NAMES PIC 9(4) conp.
05 NEW CUSTOVER- NAMES
PI C X(30) OCCURS 20 TI MES.
PROCEDURE DI VI SI ON.

MAI' N- PARAGRAPH.

PERFORM new- nare- query.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-5

Handling Errors Processing Variable-Length Server Replies

| F PROCESSI NG STATE = "STOP" GO TO
MAI' N- PARAGRAPH- EXI T.

MAI N- PARAGRAPH- EXI T.
EXI T.

NEW NAME- QUERY.
SEND new nane-request TO cust oner - dat a- base
REPLY CCODE 1 YIELDS new nane-reply
ON ERROR GO TO anal yze-error.

CONTI NUE- PROCESSI NG

Process the returned nanes. Control passes here fromthe
ANALYZE- ERROR par agr aph when t he nunber of nanes returned
is greater than or less than 20. Control passes here
fromthe NEW NAME- QUERY par agraph when the nunber of
nanes returned is exactly 20.

R N S N

GO TO send- processi ng-exit.

ANALYZE- ERROR
| F TERM NATI ON- STATUS = 11 AND
function-code = 1 THEN GO TO
CONTI NUE- PROCESSI NG
ELSE MOVE " STOP" TO PROCESSI NG STATE

SEND- PROCESSI NG- EXI T.
EXIT.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
10-6

ﬁ The MAKEUL Macro

The MAKEUL macro performs pTAL compilations of user-written user conversion
procedures and creates the TNS/R native user library for the TCP using thenl d utility.

The syntax and options are as specified below:

MAKEUL comrand- option [comand-option....]

command- opt i on

is a space-separated list and can be one of the following:

-src source-fil enane

isthe file name of the pTAL sourcefile.

-obj object-fil enane

isthe file name of the pTAL object file.

-out output filenane

isthe file name where the output isto be sent. If it is not specified, then the
output is sent to the terminal.

-lib library-filenane

isthe file name of the user libary.

-loc tcplib-location

is the volume and subvolume wherethe TCPLIB fileresides. The TCPLIB file
is needed to build the user library. If this option is not specified, the MAKEUL
macro will search for the TCPLIB file in the current subvolume and then in
$SY STEM.ZPATHWAY.

-pTAL ptal -1 ocation

is the volume and subvolume where the pTAL compiler resides. Default is taken
as $SY STEM.SY STEM.

-nld nld-location

is the volume and subvolume wherethe nl d utility resides. Default is taken as
$SYSTEM.SYSTEM.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-1

The MAKEUL Macro Examples

The MAKEUL macro has the following features:

* |f anoptionis specified twice, the second option is used. For example, if the -src
option is specified twice with two different file names, the second -src option
becomes effective.

* |f the object file name and the library file name are the same, the object file nameis
overwritten with the library file name.

* At the end of execution of the macro, status information is displayed. This
information includes the names of the source file, object file, and library file and the
locations of the TCPLIB file, the pTAL compiler, and the nl d utility.

® |f the-loc option is not specified, the MAKEUL macro looks for the TCPLIB file
first in the current subvolume, then in the installation subvolume (1SV)
$SY STEM.ZPATHWAY. If the ISV s are in another volume, then you can write
another macro that invokes MAKEUL, asfollows:

MAKEUL -1 oc $I SWOL. ZPATHVWAY % %

You can also specify where the TCPLIB file is located by setting the default value
of the variable ISV_VOL to the volume where the ISVs are |ocated, in the code of
MAKEUL macro: for example,

#SET | SV_VOL $MYI SV

For more information about this variable, see “ Set the Default Values’ within the
MAKEUL code.

* By default, the SYMBOLS option is passed to the pTAL compiler. You can modify
this option by setting the variable PTAL_OPTIONS accordingly. This variable
should contain pTAL options separated by commas: for example,

#SET ptal _opti ons SYMBOLS, SUPPRESS

For more information about this variable, see “ Set the Default Values’ within the
MAKEUL code.

Examples

For creating a pTAL object file called PTOBJ from the pTAL source file PTSRC and
sending the output to the terminal, the syntax is asfollows:

> MAKEUL -src PTSRC -obj PTOBJ

For creating a pTAL object file called PTOBJ from the pTAL source file PTSRC and
sending the output to the file PTOUT, the syntax is as follows:

> MAKEUL -src PTSRC -obj PTOBJ -out PTOUT

For creating a user library file called USERLIB from the pTAL source file PTSRC and
sending the output to the terminal, the syntax is asfollows:

> MAKEUL -src PTSRC -1ib USERLIB

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-2

The MAKEUL Macro Error Messages

For creating a user library file called USERLIB from the pTAL object file PTOBJ and
sending the output to the file PTOUT, the syntax is as follows:

> MAKEUL -obj PTOBJ -lib USERLIB -out PTOUT

For creating a user library file called USERLIB from the pTAL source file PTSRC with
the intermediate pTAL object file as PTOBJ and sending the output to the terminal, the
syntax isas follows:

> MAKEUL -src PTSRC -obj PTOBJ -lib USERLIB

For creating a user library file called USERLIB from the pTAL source file PTSRC and
sending the output to the terminal, the syntax is asfollows:

> MAKEUL -src XYZ -lib USERLIB -src PTSRC

Error Messages

ERROR |1l egal command option specified. Can be only
-src, -obj, -lib, -out, -loc, -ptal, -nld

Cause. An option other than -src, -obj, -lib, -out, -loc, -nld, or -ptal was specified.
Effect. The MAKEUL macro fails.
Recovery. Specify the correct option.

ERROR At | east two out of the options -src, -obj, -lib
nmust be specified

Cause. At least two out of the options -src, -lib, and -obj were not specified.
Effect. The MAKEUL macro fails.
Recovery. Specify at least two out of the options -src, -obj, and -lib.

ERROR |1l egal source file specified

Cause. The source file specified is not avalid Guardian file name.
Effect. The MAKEUL macro fails.
Recovery. Specify avalid Guardian file name asthe pTAL source-file name.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-3

The MAKEUL Macro Error Messages

ERROR Source file is not an EDIT file (Code 101)
source-fil enane

Cause. The specified source file nameis not an EDIT type of file.
Effect. The MAKEUL macro fails.

Recovery. Specify apTAL source file with the -src option.

ERROR Source file specified does not exist
source-fil enane

Cause. The specified pTAL source file does not exist.
Effect. The MAKEUL macro fails.

Recovery. Specify an existing pTAL source file with the -src option.

WARNI N& Unabl e to delete object file : object-filenane.
Error # error-nunber

Cause. The specified pTAL object fileis an existing file that could not be deleted
because of the error specified in the error message.

Effect. The macro automatically recoversfrom this error and creates an object file
called ZZOB*. While doing so, it displays the following message:

*** Changing the object file to new object-fil ename

Recovery. None required.

ERROR |1l egal object file specified

Cause. The specified object fileis not alegal Guardian file name.
Effect. The MAKEUL macro fails.
Recovery. Specify avalid Guardian file asthe pTAL object file name.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-4

The MAKEUL Macro Error Messages

ERROR Object file specified is not a pTAL object file
(Code 700) : object-filename

Cause. The specified object fileisnot apTAL object file. This error will occur only
when the user istrying to create a user library file from the pTAL object file by using
the following command :

> MAKEUL -obj object-filenane -lib library-filename &
> [-out output-filenane]

Effect. The MAKEUL macro fails.
Recovery. Specify apTAL object file with the -obj option.

ERROR Object file specified does not exist
obj ect-fil ename

Cause. The specified object file does not exist. This error will occur only when the user
istrying to create a user library file from the pTAL object file by using the following
command :

> MAKEUL -obj object-filename -lib library-filenane &
> [-out output-filenane]

Effect. The MAKEUL macro fails.
Recovery. Specify an existing pTAL object file with the -obj option.

WARNI NG& Unable to delete library file : library-fil enane.
Error # error-nunber

Cause. The specified user library file could not be deleted because of the error specified
in the error message.

Effect. The macro automatically recoversfrom this condition and creates alibrary file
called ZZUL*. While doing so, it displays the following message:

*** Changing the library file to newlibrary-filenane

Recovery. None required.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-5

The MAKEUL Macro Error Messages

ERROR Illegal library file specified

Cause. The specified library fileis not alegal Guardian file name.
Effect. The MAKEUL macro fails.

Recovery. Specify avalid Guardian file as the user library file name.

WARNI NG& Unabl e to delete output file : output-filenane.
Error # error-nunber

Cause. The specified output fileis an existing file that could not be deleted because of
the error specified in the error message.

Effect. The macro automatically recoversfrom this error and creates an outpult file
called $S#MAKEUL. While doing so, it displays the following message:

*** Changing the output file to $S. #MAKEUL
Recovery. None required.

ERROR |llegal output file specified

Cause. The specified output fileis not alegal Guardian file name.
Effect. The MAKEUL macro fails.

Recovery. Specify avalid Guardian file as the output file name.

ERROR TCPLI B does not exist in the |location specified:
tcplib-1ocation. TCPLIB

Cause. TCPLIB does not exist in the location specified.
Effect. The MAKEUL macro fails.
Recovery. Specify the correct location for TCPLIB.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-6

The MAKEUL Macro Error Messages

ERROR |1l egal |ocation specified for TCPLIB

Cause. Aninvalid volume-subvolume name combination was specified as the location
for TCPLIB.

Effect. The MAKEUL macro fails.
Recovery. Specify the correct location for TCPLIB.

ERROR Invalid TCPLIB specified : tcplib-location. TCPLIB

Cause. TCPLIB present in the location specified is not avalid TCPLIB.
Effect. The MAKEUL macro fails.
Recovery. Specify the location of avalid TCPLIB.

ERROR User |ibrary cannot be the sane as TCPLIB

Cause. The user specified the user library to be the samefile as TCPLIB.
Effect. The MAKEUL macro fails.

Recovery. Specify acorrect user library file name.

ERROR Source filenane cannot be the sane as the object
filename

Cause. The source file specified with the -src option and the object file specified with
the -obj option are the same.

Effect. The MAKEUL macro fails.
Recovery. Specify adifferent namefor the object file name.

ERROR Source filenane cannot be the sanme as the library
filename

Cause. The source file specified with the -src option and the library file specified with
the -lib option are the same.

Effect. The MAKEUL macro fails.

Recovery. Specify adifferent namefor thelibrary file name.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-7

The MAKEUL Macro Error Messages

ERROR Invalid pTAL conpiler specified : ptal-location. PTAL

Cause. ThepTAL compiler in the specified location is not avalid pTAL compiler.
Effect. The MAKEUL macro fails.
Recovery. Specify the location of avalid pTAL compiler.

ERROR pTAL does not exist in the |location specified :
ptal -1 ocation

Cause. ThepTAL compiler does not exist in the location specified.
Effect. The MAKEUL macro fails.

Recovery. Specify the correct location for the pTAL compiler.

ERROR |1l egal |ocation specified for pTAL

Cause. Aninvalid volume-subvolume name combination was specified as the location
for the pTAL compiler.

Effect. The MAKEUL macro fails.

Recovery. Specify the correct location for the pTAL compiler.

ERROR Invalid NLD specified : nld-location.NLD

Cause. The nl d utility in the specified location is not valid.
Effect. The MAKEUL macro fails.
Recovery. Specify the location where avalid nl d utility resides.

ERROR NLD does not exist in the location specified :
nl d-1 ocati on

Cause. The nl d utility does not exist in the location specified.
Effect. The MAKEUL macro fails.
Recovery. Specify the correct location for thenl d utility.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-8

The MAKEUL Macro Error Messages

ERROR |1l egal |ocation specified for NLD

Cause. Aninvalid volume-subvolume name combination was specified as the location
for nl d.

Effect. The MAKEUL macro fails.
Recovery. Specify the correct location for thenl d utility.

ERROR Error(s) encountered during pTAL conpil ation. Please
check the output file for details.

Cause. Compilation errors were encountered while compiling the pTAL sourcefile.
Effect. The MAKEUL macro fails.
Recovery. Check the output file and correct the compilation errors.

WARNI NG War ni ngs encount ered during pTAL conpil ati on.
Pl ease check the output file for details.

Cause. Warnings were encountered during pTAL compilation.

Effect. If the -lib option was specified, MAKEUL continues and attempts to build the
user library file. If the -lib option was not specified, it terminates.

Recovery. Check the output file and correct the warnings.

ERROR Error(s) encountered during building the user
library. Please check the output file for details.

Cause. The nl d utility reported errors while building the user library.
Effect. The MAKEUL macro fails.
Recovery. Check the output file, and correct the errors.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-9

The MAKEUL Macro Error Messages

WARNI NG War ni ng(s) encountered during building the user
library. Please check the output file for details.

Cause. The nl d utility reported warnings while building the user library.
Effect. The MAKEUL macro terminates.
Recovery. Check the output file and correct the warnings.

ERROR File not properly secured for execution : filenane

Cause. ThepTAL compiler or nl d utility in the specified location does not have
execution permission for the user running this macro.

Effect. The MAKEUL macro fails.

Recovery. Secure pTAL or nl d to give execution permission to the user or change the
user to a user who has execution permission for the pTAL compiler and nl d utility
being used.

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
A-10

— |Index

Numbers 6530 terminals
. . description 3-12
3270 terminals (Fujitsu SR
doubl e—byte(chfaract)er sets 8-1/8-2, 8-4 double-byte character sets 8-1/8-2, 8-4
P lation of 3-13
screen space limitations 8-10/8-11 ?J:ﬁlcj:ti O'I:'EO S a1a
shift-out/shift-in characters 8-3, €y queuing -5

8-10/8-11 RETURN-KEY function 3-12
3270 terminals (IBM) screen space limitations 8-10/8-11
AID byte values 4-8/4-10 6540 personal computer 3-13
BELL support 3-9
color support 3-7/3-8 A
combining extended field attributes 3-9 ABORT command 5-4
cursor positioning 3-3 Aborting transactions 2-7
double-byte character sets 8-4 ABORT-INPUT clause 3-15
extended field attributes 3-4/3-10 ABORT-TRANSACTION statement 5-4,

highlight support 3-8 5
Kanji and Katakana characters 8-1/8-2 ACCEPT statement 3-16, 7-8, 8-9
KANJI-KATAKANA keyword 3-10 Accepting information, conversational
K NG 4-7/4-8 7 terminals 3-16
ymappng £L2E ADVISORY clause 8-12
limitation on screen redefinition 8-9
- : AID bytevalues 4-8/4-10
minimum character separation 3-3 .
. AID key-mapping parameter 4-8
outline support 3-9 L
. A Alphanumeric fields
screen field positioning 3-3 :
screen modes 3-2 input 4-4, 4-12
Screen sizes 3-1/3-2 output 4-6, 4-15
L Applications, Path
screen space limitations 8-10/8-11 ppical Wey

shift-out/shift-in characters 8-3, 8-9, SeeasoDesgn
8-10/8-11 client/server capabilities 1-10

dataintegrity 1-4

uppercase and lowercase characters 8-5

WHEN FULL LOCK support 3-3 development of 1-2/1-3, 1-11/1-13
WHEN FULL TAB support 3-3 distributed processing 1-6
6520 terminals expansion fundamentals 1-6

fault tolerance 1-4/1-5

for block-mode terminals 7-10
for conversational terminals 7-10
for intelligent terminals 7-10
introduction 1-1

managing 1-3

emulation of 3-13

minimum character separation 3-11
screen field positioning 3-11
screen modes 3-11

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-1

Index

Applications, Pathway (continued)
overview 1-7
performance of 1-5, 1-8, 5-12
requester programs 1-8/1-9
requester structure, using TMF 5-2
security fundamentals 1-6
server classes 1-8
server languages 1-7
server processes 1-7
support for other environments 1-10
Attributes, screen field
BELL display 3-9
color display 3-7/3-8
conversational terminals 3-15
highlight display 3-8
IBM 3270 terminals 3-4/3-10
outlinedisplay 3-9
Audit trails, TMF 1-4, 2-7, 5-2
Audited files 5-1, 5-5, 5-1
Automatic retry 1-9

B

Batch processing 1-7, 2-23
BEGIN-TRANSACTION statement 5-3,
5-5/5-6

Block-mode terminals 7-10

By 8-2

C

CANCEL procedure, alternativeto 9-3
Character separation

6520 terminas 3-11

IBM 3270 terminas 3-3
Character sets

See Double-byte character sets
CHARACTER-SET IS statement 8-5, 8-13
Character-string symbols allowed 8-10

Checkpointing

by TCP 5-12

explanation of 1-4

Pathsend limitations 2-19
CICS environment 1-10
Classes of data in database 2-8
Client/server computing 1-10, 1-13, 2-19
Color display attributes 3-7/3-8

Color support for IBM 3270
terminals 3-7/3-8

Commands

See individual commands
Compiler, SCREEN COBOL 2-12
Concurrent processing 2-6/2-7
Configuration of Pathway subsystem

interaction with the TMF
subsystem 5-8/5-13

unsolicited-message parameters 7-20
CONTROL operations

CONTROL 26
cal format 9-4
how it works 9-4/9-5
initialization 9-5/9-6
return codes 9-6
TERMINATION codes 9-6/9-8

timeout and error
completions 9-7/9-8

for intelligent devices 9-3

TCP activities, table of 9-1
Conversational mode

designing for 2-11

using with conversational
terminals 3-14

Conversational terminals
accepting information 3-16
description 3-14
designating 3-15
designing for unsolicited messages 7-10

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

Index-2

Index

Conversational terminals (continued)
displaying information 3-16
input-control characters 3-15
screen field attributes 3-15

Conversion
See User conversion procedures

Crossref product 1-11

Cursor positioning
on screens 3-3

PW-USE-NEW-CURSOR
register 7-3/7-4

Customer Information Control System
(CICS) 1-10

D

Data
analyzing flow of 2-2
classes of 2-8

considerations for double-byte character
sets 8-2/8-4

entry, SCREEN COBOL program
unit 2-11

integrity 1-4

on conversational terminas 3-16
DataDivision

description 2-13

double-byte character set
considerations 8-6/8-13

examples
delimiters 6-3
IDS 2-17
standard 2-14
variable-length server replies 10-5
Dataitems
mixed 8-2/8-3, 8-9
size 8-3, 8-6, 8-8

Database
concurrency 2-6/2-7
consistency 1-4, 2-6/2-7
fieldsin 2-8
filesin, normalizing 2-8
integrity 1-7
logical design 2-8
management systems 2-9
physical design 2-9
recordsin 2-8
DBMS (database management system)
See Database
Debugging
intelligent devices 6-15/6-16
SCREEN COBOL requesters 1-11
Delimiters
declaring 6-3
description 6-3
example 6-3/6-5
field
processing on input 6-5
using on output 6-5/6-6
message 6-6
turning off 6-7
Design
application example 2-1/2-7
batch processing applications 2-23
database 2-8/2-9
requester programs 2-10/2-22
server programs 2-22
transactions 2-1/2-7
Designing 2-1
Development
considerations 1-2/1-3
tools 1-11/1-13
Device Handling Section 2-18
Devices, subtype 30 3-18

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-3

Index

DISPLAY BASE statement 3-6, 3-16, 8-9
DISPLAY statement 8-9

Displaying information on conversational
terminals 3-16

Distributed processing 1-5, 1-6

Distributed transaction processing
(DTP) 1-6

Double-byte character sets
ADVISORY clause 8-12

CHARACTER-SET IS statement 8-5,
8-13

clause considerations 8-12/8-13
data-item considerations 8-2/8-4
determining 8-2

device types supported 8-1
example program 8-15/8-17

FILL clause 8-12

IF statement 8-13
IF...DOUBLEBYTE statement 8-14
KANJ-KATAKANA keyword 8-5
Katakana characters 8-2

LENGTH clause 8-12

mixed data items 8-2/8-3, 8-9
MOVE statement 8-14

MUST BE clause 8-12

OCCURS clause 8-3/8-4

permissible character-string
symbols 8-10

PIC X clause 8-2/8-3, 8-7
PICTURE clause 8-6/8-8
REDEFINES clause 8-8/8-9

SCREEN COBOL programming
for 8-4

screen field limits 8-10/8-11
Shift-JISformat 8-1, 8-14

shift-out/shift-in characters 8-1, 8-3,
8-9, 8-10/8-11

Start Field Extended (SFE) orders 8-1,
8-4

Start Field (SF) orders 8-1, 8-4

Double-byte character sets (continued)
subscripting considerations 8-3/8-4
TERMINAL IS statement 8-4
trandation

errors 8-9
process 8-9, 8-10/8-11
routines provided by TCP 8-1
UPSHIFT clause 8-13
VALUE clause 8-7, 8-13

E

EM6530PC emulator 3-13
Enable product 1-13
END-OF-INPUT clause 3-15
END-TRANSACTION statement 5-4, 5-7
Enscribe product 2-9
Entry-sequenced files 2-9
Environment Division
description 2-13

double-byte character set
considerations 8-4/8-5

examples
IDS 2-17
standard 2-14
ERROR
device input declaration 4-12
screen input parameter 4-5
Errors
debugging intelligent devices 6-15/6-16
recovery, general information 10-1
SEND, responding to 10-2/10-5
subtype 30 devices 3-18
trandation 8-9
unsolicited messages
Pathway/TS error codes 7-5/7-6

TERMINATION-STATUS
codes 7-4

variable-length server replies 10-5/10-6
with ESCAPE clauses 3-13

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

Index-4

Index

ESCAPE ON TIMEOUT clause 3-13

ESCAPE ON UNSOLICITED MESSAGE
clause 3-13, 7-2, 7-8/7-10

Event Management Service (EMS) 1-3
Examples 3-10

Extended field attributes, IBM 3270
terminals

color 3-7/3-8

combinations allowed 3-9/3-10
highlight 3-8

initializing 3-6

other 3-9

outline 3-9

Extended General Device Support (GDSX)
processes 1-9, 2-20/2-22

F

Fault tolerance 1-4/1-5
FEP (front-end process) 2-16, 2-20/2-22,
9-1/9-2
Field delimiters
processing on input 6-5
turning off 6-7
using on output 6-5/6-6
Field input procedures 4-4
Field output procedures 4-6
FIELD STATUS clause 6-15/6-16
Fields, database 2-8
Fields, positioning on screens 3-3, 3-11
FIELD-SEPARATOR clause 3-15

FIELD"PRESENT device input
declaration 4-13

FIELD"RETURNED device input
declaration 4-13

Files
audited 5-1, 5-5, 5-12
database 2-8/2-9
entry-sequenced 2-9
/0 2-11
key-sequenced 2-9

Files (continued)

nonaudited 5-11, 5-12

POBJCOD 2-12

POBJDIR 2-12

relative 2-9

unstructured 2-9
FILL clause 8-12
FILLACHAR

device input declaration 4-13

device output declaration 4-16
FILL"OFF

device input declaration 4-13

device output declaration 4-16
FIXED-DELIMITED clause 6-3
Flat-tree design 2-11
Format of unsolicited messages 7-18
FREEZE command 5-4
Front-end process (FEP) 2-16, 2-20/2-22,
9-1/9-2
Function key queuing, 6530 terminals 3-13

G
Gather-write capability 6-2

GDSX (Extended General Device Support)
processes 1-9, 2-20/2-22

GROUP-SEPARATOR clause 3-15
Guardian operating environment

CONTROL and SETMODE procedure
cals 9-8

distributed processing in 1-6
processesin 1-4

security features of 1-6
serversin 1-7, 2-22

H

Headers, unsolicited messages 7-14
Help, SCREEN COBOL program unit 2-11

Highlight support for IBM 3270
terminals 3-8

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

Index-5

Index

IBM 3270 terminals
See 3270 terminals (IBM)
Identification Division
description 2-12

examples
IDS 2-17
standard 2-14
IDS

See Intelligent device support (IDS)
|F statement 8-13
IF...DOUBLEBY TE statement 8-14
Initializing extended field attributes 3-6
INPUT
device input declaration 4-12
screen input parameter 4-5
INPUTALEN
device input declaration 4-12
screen input parameter 4-5
Inspect product 1-11
Intelligent device support (IDS)
CONTROL 26
cal format 9-4
how it works 9-4/9-5
initialization 9-5/9-6
return codes 9-6
TERMINATION codes 9-6/9-8
CONTROL operations, table of 9-3
description 2-16
design considerations 2-16
GDSX programming for 2-20

NonStop™ RSC/MP requesters 1-10,

2-19
program structure 2-17

SETMODE functions, table of 9-1/9-2

Intelligent devices

conversion input procedures 4-10/4-13
conversion output procedures 4-13/4-16

debugging techniques 6-15/6-16

Intelligent devices (continued)
delimiter declarations 6-3/6-5

designing for unsolicited messages 7-10

field delimiters
processing on input 6-5
using on output 6-5/6-6

IDS capabilities 6-1

message delimiters 6-6

PRESENT IF clause 6-12/6-15

programming for 3-17/3-18, 6-1/6-16

SEND MESSAGE statement 6-2

transaction scenario 1-15/1-17

TRANSFORM statement 6-8/6-12

turning off delimiters 6-7
Intelligent mode 2-11
INTERNAL

device input declaration 4-13

device output declaration 4-16

screen input parameter 4-5, 4-7
INTERNALALEN

device input declaration 4-13

device output declaration 4-16
INTERNALASCALE

device input declaration 4-13

device output declaration 4-16
Interrupt technique 7-10
IOPROTOCOL attribute 9-5/9-6

K

Kanji characters 8-5
KANJ-KATAKANA
IBM 3270 terminals 3-10
keyword 8-5
Katakana characters 8-2, 8-5
Key field 2-8

Key mapping, 3270 terminals
(IBM) 4-7/4-8

Keyboard locking, 6530 terminals 3-13
KEYNUM key-mapping parameter 4-8

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

Index-6

Index

Key-sequenced files 2-9

L

Languages
programming, for server programs 1-7
supported, IBM 3270 terminals 3-10
Layout of unsolicited messages 7-18
LENGTH clause 8-12
LENGTH MUST BE clause variant 8-12
Libraries
PATHTCPL 4-2

SCREEN COBOL pseudocode 1-11,
2-12
Link managers 2-18
Linkage Section
double-byte character sets 8-7
examples
IDS 2-17
standard 2-14
LINKMON process
description 2-18
NonStop™ RSC/MP, useby 2-19

relationship to NonStop™
RSC/MP 1-10

List-only, SCREEN COBOL program
unit 2-11

LOGICAL-TERMINAL-NAME special
register 7-3

Logon, SCREEN COBOL program
unit 2-11

M

Main Section 2-15, 2-18
Manageability
of Pathway applications 1-3
provided by server classes 1-8
Management interfaces 1-7, 1-9

See also PATHCOM interface, SPI
(Subsystem Programmatic I nterface)

MAXINPUTMSGLEN parameter 7-20
MAXINPUTMSGS parameter 7-20
MAXMOUTPUTALEN
device output declaration 4-16
screen output parameter 4-7

Menu, SCREEN COBOL program
unit 2-11

Message 4-14

MESSAGE FORMAT ISDELIMITED
clause 6-3

M essage Section
examples
delimiters 6-4
general 2-17
formatting data 3-17
output data flow example 4-14
PRESENT IF example 6-13/6-15
Messages
delimiters
turning off 6-7
using 6-6
for checkpointing 1-4
formats, variable-length 6-7
templates
input 6-15
output 6-16
unsolicited

See Unsolicited message processing
(UMP)

Mixed dataitems 8-2/8-3
Mnemonic names 3-5

Modes, terminal 2-11

MOVE statement 8-14
MSG-FORMAT4 template 6-5

Multiple unsolicited messages... (error
3125) 7-5

Multiple unsolicited messages... (error
3242) 7-6

Multiprocessing 1-5

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

Index-7

Index

Multithreading
advantages of 1-5
GDSX feature 2-20

N

Names, mnemonic 3-5

nld utility 4-2, 4-3

No unsolicited message... (error 3177) 7-5
Nonaudited files 5-11, 5-12

Nonprivileged processes 9-4

NonStop™ Himalaya systems 1-4/1-6

NonStop™ Kernel Open System Services
(OSS) operating environment, servers
in 1-7, 2-22

NonStop™ Remote Server Call/MP
(RSC/MP) product 1-10, 2-19

NonStop™ SQL/MP product 2-9
NonStop™ TS/MP product 1-2
NonStop™ TUXEDO system 1-10
Numeric fields

input 4-4,4-11

output 4-6, 4-15

O

Object code, SCREEN COBOL
See Pseudocode, SCREEN COBOL
OCCURS clause 8-3/8-4
OLTP
application design example 2-1/2-7
development considerations 1-2/1-3
expanding systemsfor 1-6
importance of fault tolerance for 1-4
Pathway environment 1-2/1-6
scenarios
from anintelligent device 1-15/1-17
support for other environments 1-10

ON ERROR clause 5-5, 5-6, 6-15, 9-5,
9-7/9-8

Online transaction processing (OLTP)
See OLTP

Open System Services (OSS) operating
environment, serversin 1-7, 2-22

Outline support for IBM 3270 terminals 3-9
OUTPUT

device output declaration 4-15

screen output parameter 4-7
OUTPUTALEN

device output declaration 4-15

screen output parameter 4-7

P

PA (program attention) keys
mapping 4-7/4-8
using 3-4

PATHCOM interface

command file produced by Enable
product 1-13

commands 5-4/5-13
description 1-3
use in managing servers 1-7, 2-22
use in managing TCP 1-9
Pathmaker product 1-12
PATHMON environment

interaction with the TMF
subsystem 5-8/5-13

role of PATHMON process 1-5

Pathsend requesters
checkpointing 2-19
description 1-8, 2-18/2-19
design considerations 2-18
writing 1-2

PATHTCPL object library file
description 4-2

Pathway 7-5

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-8

Index

Pathway application programming
development considerations 1-2/1-3
development tools 1-13
distributed processing 1-6
expansion fundamentals 1-6
fault tolerance 1-4/1-5
introduction 1-1
performance fundamentals 1-5
security fundamentals 1-6

Pathway applications
See Applications, Pathway

Pathway environment advantages 1-2/1-6

Pathway servers
description 1-7
writing 1-2

Pathway/TS error codes
See Errors

Pathway/TS product 1-2

Performance
improving 5-12
provided by server processes 1-8

Personal computer support 2-19

PIC N clause 8-4, 8-5

PIC X clause 8-2, 8-7

PICTURE (PIC) clause 8-6/8-8

POBJCOD file 2-12

POBJDIR file 2-12

PRESENT IF clause, example 6-12/6-15

Presentation services 1-7

Print devices 3-18

Procedure declaration
key mapping 4-8

Procedure Division
description 2-13

double-byte character set
considerations 8-13/8-15

Procedure Division (continued)
examples
IDS 2-18
standard 2-15

unsolicited message
processing 7-11, 7-12, 7-13

variable-length server replies 10-5

Process pairs 1-4
Processes

description 1-4

distribution of 1-5

nonprivileged 9-4

primary and backup 1-4

replication of 1-5
Program attention (PA) keys

mapping 4-7/4-8

using 3-4
Program divisions 2-12/2-15, 2-17
Programming languages 1-7
Pseudocode, SCREEN COBOL 1-11, 2-12

PW-QUEUE-FKEY-TIMEOUT special
register 3-13

PW-QUEUE-FKEY-UMP specia
register 3-13
PW-TCP-PROCESS-NAME special
register 7-3

PW-TCP-SY STEM-NAME specia
register 7-3
PW-UNSOLICITED-MESSAGE-QUEUED
specia register 7-2, 7-6
PW-USE-NEW-CURSOR special
register 7-3/7-4

R

RDBMS (Relational Database Management
System) 2-9
RDF

See Remote Duplicate Database Facility
(RDF)

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

Index-9

Index

Read-only special registers
See Special registers

RECEIVE UNSOLICITED MESSAGE
statement 7-2, 7-7

Records, database 2-8

Recovery, general information 10-1
REDEFINES clause 8-8/8-9
Relativefiles 2-9

Remote Duplicate Database Facility
(RDF) 2-10

Remote Server Call/MP (RSC/MP) product

See NonStop™ Remote Server Call/MP
(RSC/MP) product 1-10

Replies, variable-length, server 10-5/10-6
REPLY CODE clause 6-2

REPLY TO UNSOLICITED MESSAGE
statement 7-2

Requesters
clients using NonStop™ RSC/MP 2-19
description 1-7
designing 2-10/2-22
Pathsend
description 1-8, 2-18/2-19
design considerations 2-18
writing 1-2
SCREEN COBOL

comparison of standard and
intelligent 6-1

creating 2-12
debugging 1-11
description 1-9
IDS 2-16/2-18
standard 2-11/2-16
types of 1-8, 2-10
using GDSX 2-20/2-22
Response time 1-5

RESTART-COUNTER specid register 5-5,

RESTART-INPUT clause 3-15

RESTART-TRANSACTION statement 5-4,
5-7

RESULTING COUNT clause 6-5
RESUME command 5-5, 5-6, 5-7

Retries, automatic by TCP 1-9

Return codes, CONTROL 26 9-6

RETURN-KEY function, 6530
terminals 3-12

RIGHTAJUSTIFIED
device input declaration 4-13
device output declaration 4-16
Router programs 2-11
RSC/MP product

See NonStop™ Remote Server Call/MP
(RSC/MP) product 1-10

S

Scatter-read capability 6-2

SCF (Subsystem Control Facility), usein
managing GDSX processes 2-21

Screen
field attributes
conversationa terminals 3-15
IBM 3270 terminals 3-4/3-10
field limits 8-10/8-11
input procedures 4-4/4-6
modes
6520 terminals 3-11
6540 personal computer 3-13
IBM 3270 terminals 3-2
output procedures 4-6/4-7
programs, designing 2-11/2-16
sizes
6540 personal computer 3-13
IBM 3270 terminals 3-1/3-2
space limitations
6520 terminas 3-11
IBM 3270 terminals 3-3

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-10

Index

SCREEN COBOL

See also individual divisions, sections,
statements, and clauses

compiler 2-12
devices supported 2-11
double-byte character sets 8-1/8-17
Enable, using to develop 1-13
Inspect product and 1-11
intelligent mode 3-17/3-18
Pathmaker application generator 1-12
program structure

IDS 2-17/2-18

standard 2-12/2-15
requesters

comparison of types 6-1

description 1-9

designing 2-11/2-18

GDSX dternative 2-21

sending unsolicited messages to
requesters 7-14/7-15

SET MINIMUM-ATTR
statement 3-5/3-6

SET MINIMUM-COLOR
statement 3-5/3-6

special names 3-4, 4-8

specia registersfor TMF 5-7/5-8
TMF support features 5-3

unsolicited message processing (UMP)

See Unsolicited message processing
(UMP)

verbsfor TMF 5-4/5-7

SCREEN COBOL Utility Program
(SCuP) 1-11

Screen Manager Section 2-15
Screen Section 3-15
double-byte character sets
considerations 8-10
example program 8-16/8-17
PICTURE clause 8-7
REDEFINES clause 8-9

Screen Section (continued)
examples

double-byte character
sets 8-16/8-17

skeleton program 2-14
Security, system 1-6
SEND 10-6
SEND MESSAGE statement 6-2
SEND statements
responding to SEND errors 10-2/10-5
variable-length server replies 10-5/10-6
Server classes
accessing
See Requesters
description 1-8
fault tolerancerole 1-5
Server Manager Section 2-15, 2-18
Server processes
benefits 1-7
description 1-7
replies from, variable-length 10-5/10-6
TIMEOUT attribute and TMF 5-11
transaction integrity 1-4
Server programs
description 1-7
designing 2-22
Enable, generated by 1-13
languagesfor 1-7
Pathmaker, using to develop 1-12
writing 1-2
SET MINIMUM-ATTR statement 3-5/3-6

SET MINIMUM-COLOR
statement 3-5/3-6

SET PATHWAY command 5-6

SET PROGRAM command, TMF
option 5-9
SET SERVER command

MAXLINKS parameter 10-2, 10-3,
10-4, 10-5

TIMEOUT option 5-11

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-11

Index

SET SERVER command (continued)
TMF option 5-9, 5-12
SET TCP command
MAXINPUTMSGLEN parameter 7-20

MAXINPUTMSGS parameter 7-5,
7-20
TERMPOOL parameter 7-20

SET TERM command
IOPROTOCOL attribute 9-5/9-6
MAXINPUTMSGS parameter 7-4,
7-20
TMF option 5-9

SETMODE functions

for 3270 devices connected by
SNAX/XF 8-2

for intelligent devices 9-1/9-2
SF (Start Field) orders 8-1, 8-4
SFE (Start Field Extended) orders 8-1, 8-4
Shift-JIS format

See Double-byte character sets
Shift-out/shift-in characters

3270 terminals, using 8-3, 8-9,
8-10/8-11

trandation process 8-1
SHUTDOWN2 command 5-4
Simulated devices, programming for 3-18
Software development tools 1-11/1-13
SO/SI characters
See Shift-out/shift-in characters
Special names, SCREEN COBOL 3-4, 4-8
Special registers
LOGICAL-TERMINAL-NAME 7-3
PW-QUEUE-FKEY-TIMEOUT 3-13
PW-QUEUE-FKEY-UMP 3-13
PW-TCP-PROCESS-NAME 7-3
PW-TCP-SYSTEM-NAME 7-3

PW-UNSOLICITED-MESSAGE-
QUEUED 7-2, 7-6

PW-USE-NEW-CURSOR 7-3/7-4
RESTART-COUNTER 5-5, 5-7, 5-8

Special registers (continued)

TERMINATION-STATUS 5-5, 5-8,
7-4, 9-5, 9-8, 10-2/10-5
TMF subsystem, provided for 5-7/5-8
TRANSACTION-ID 5-5,5-8

SPI (Subsystem Programmatic I nterface)
commands 5-4/5-13
description 1-3
use in managing GDSX processes 2-21
use in managing servers 1-7
use in managing TCP 1-9

use in unsolicited message
processing 7-14

Start Field Extended (SFE) orders 8-1, 8-4
Start Field (SF) orders 8-1, 8-4

STOP command 5-4

Subscripting 8-3/8-4

Subsystem Programmatic Interface (SPI)

See SPI (Subsystem Programmatic
Interface)

Subtype 30 devices 3-18
SUSPEND command 5-4
Systems

expanding 1-6

NonStop™ Himalaya 1-4/1-6

security 1-6

T

Tables, NonStop™ SQL/MP 2-9

Tape devices 3-18

TCP TERMPOOL parameter 7-20

TCP (terminal control process)
checkpointing strategy 5-12
CONTROL operations performed by

See CONTROL operations

fault tolerancerole 1-5
features provided by 1-9
IDS requesters 2-16
initializing extended field attribute 3-6

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-12

Index

TCP (terminal control process) (continued)
NonStop™ RSC/MP requesters 2-19
PATHTCPL object file 4-2
SETMODE functions performed by

See SETMODE functions

TDP (Transaction Delivery Process) 2-19

TEDIT text editor 1-12, 2-12

TERMINAL IS statement 8-4

TERMINALINFO statement 3-6

Terminals
6520

See 6520 terminas
6530
See 6530 terminals

block mode, designing for unsolicited
messages 7-10

conversational
description 3-14

unsolicited message processing
for 7-10

devices supported 3-1
Fujitsu 3270 8-1/8-2
IBM 3270

See 3270 Terminals

intelligent-mode devices 3-17/3-18,
7-10

modes 2-11
SCREEN COBOL support 2-11
simulated devices 3-18

TERMINATION codes, CONTROL
26 9-6/9-8

TERMINATION-STATUS special

Third-party vendors 1-3
Throughput 1-5
THRU/THROUGH
clause 8-7
variant of LENGTH MUST BE 8-12
TIMEOUT attribute for servers 5-11

Timeout completions for unsolicited
messages 9-7/9-8

TMF
audit-trail files 1-4, 5-2

TMF (Transaction Management Facility)
application characteristics 5-2/5-3
audit-trail files 2-7
defining transactions 2-6
description 1-4, 5-1
fault tolerancerole 1-5, 5-13
PATHMON environment 5-8/5-13

SCREEN COBOL specid
registers 5-7/5-8

SCREEN COBOL verbs 5-4/5-7
SET commands, PATHCOM 5-9/5-13
TCP checkpointing strategy 5-12

TMF optionsin PATHMON
configuration, precautions 5-13

transaction identifier 5-3

transaction mode 5-3/5-4
Tools, software development 1-11/1-13
Transaction Delivery Process (TDP) 2-19
Transaction Management Facility (TMF)

See TMF (Transaction Management
Facility)

Transaction mode
See TMF(Transaction Management
Facility)

Transactions
aborting 2-7
backout 2-7
concurrency control 2-6/2-7
cost per 1-5
defining for the TMF subsystem 2-6
designing an application with 2-1/2-7
identifier 5-3
identifying components 2-4
integrity 1-4
programming with TMF 5-8
protecting 2-6/2-7

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-13

Index

TRANSACTION-ID special register 5-5,
5-8
TRANSFORM statement

assembling output messages,
example 6-11/6-12

disassembling input messages,
example 6-8/6-10

using with intelligent devices 6-8
Tranglation

errors 8-9

process, double-byte 8-1, 8-9

routinesin TCP user library 8-1
TSCODE, GDSX process 2-20
TUXEDO system

See NonStop™ TUXEDO system

U

UMP

See Unsolicited message processing
(UMP)

Unsolicited message processing (UMP)

6530 terminal keyboard locking
for 3-13

accepting 7-2
configuration parameters 7-20
CONTROL 26 operation 7-10
description 7-1
detecting arrival 7-2
ESCAPE ON UNSOLICITED clauses
6530 terminas 3-13
design 7-9/7-10
maximum number 7-20
maximum size 7-20
message format 7-15/7-17
message headers 7-14
Pathway/TS error codes 7-5/7-6
program structure 2-15/2-16

Unsolicited message processing
(UMP) (continued)

programming examples

ESCAPE ON UNSOLICITED
clauses 7-8/7-9

input and output 7-13

no terminal interaction 7-11
polling special register 7-6
terminal output only 7-12

waited RECEIVE UNSOLICITED
statements 7-7

reply format 7-17/7-18
replyingto 7-2

sending 7-14/7-15
special registers 7-3/7-4

TERMINATION-STATUS error
codes 7-4

Unsolicited message rejected... (error
3241) 7-5

Unstructured files 2-9

UPSHIFT clause 8-13

USCODE, GDSX process 2-20

User conversion procedures
3270 key mapping 4-7/4-8
adding to TCP object library 4-2
description 4-1
device aphanumeric input 4-12
device aphanumeric output 4-15
device numeric input 4-11
device numeric output 4-15
intelligent devices, input 4-10/4-13
intelligent devices, output 4-13/4-16

message output to an intelligent
device 4-13/4-14

screen input 4-4/4-6
screen output 4-6/4-7
typesof 4-1
user-written 4-2

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

Index-14

Index

USERCODE
device input declaration 4-12
device output declaration 4-15
screen input parameter 4-5
screen output parameter 4-7
Utilities, software development 1-11/1-13

V

VALUE clause 8-7, 8-13

Valuefor MAXINPUTMSGS... (error
3240) 7-5

Variable-length message formats 6-7
Variable-length server replies 10-5/10-6

VARYINGL1 and VARY ING2 message
formats 6-7

Vendors, third-party 1-3
Visible cursor support 7-3/7-4

W
When 3-1
Working-Storage Section
double-byte character sets
example Pathway application 8-15
PICTURE clause 8-6/8-7
REDEFINES clause 8-8
examples
delimiters 6-3
IDS 2-17
PRESENT IF 6-13
standard 2-14

Y

YIELDS clause 6-2

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001

Index-15

Index

Compaqg NonStop™ Pathway/iTS TCP and Terminal Programming Guide—426751-001
Index-16

	What’s New in This Manual
	Manual Information
	New and Changed Information
	Product Changes
	Corrections and Enhancements to the Manual

	About This Manual
	Who Should Read This Manual
	Related Documentation
	Your Comments Invited
	Notation Conventions
	General Syntax Notation
	Notation for Messages

	1 Introduction to TCP and Terminal Application Programming
	Advantages of the Pathway Environment
	Ease of Development
	Manageability
	Data Integrity
	Fault Tolerance
	Other Fundamentals of NonStop™ Himalaya Systems

	Pathway Applications
	Servers and Server Classes
	Requesters

	Client/Server Capabilities
	Other Transaction Processing Environments
	Development Tools and Utilities
	Programming Languages and Related Tools
	The Inspect Symbolic Debugger
	The SCREEN COBOL Utility Program (SCUP)
	The Pathmaker Application Generator
	The Enable Product
	Client/Server Development Tools

	Transaction Processing Scenarios
	Transaction From a Terminal
	Transaction From an Intelligent Device

	2 Designing Your Application
	Designing Transactions
	Analyzing Data Flow
	Identifying Transaction Components
	Protecting Transactions

	Designing the Database
	Logical Design
	Physical Design
	Database Managers
	Remote Duplicate Database Facility (RDF)

	Designing Requester Programs
	SCREEN COBOL Requesters
	IDS Requesters
	Pathsend Requesters
	Clients Using RSC/MP
	Requesters Using GDSX
	Dividing Function Between Requester and Server

	Designing Server Programs
	Designing Applications for Batch Processing

	3 Programming for Specific Terminals
	Using IBM 3270 Terminals
	Screen Size
	Controlling the Screen�Modes
	Positioning the Screen�Fields
	Positioning the Cursor
	Using IBM 3270 Function�Keys
	Using Extended Field Attributes

	Using 6520 Terminals
	Controlling the Screen�Modes
	Positioning the Screen�Fields

	Using 6530 Terminals
	Return-Key Function
	Internal Function-Key Queuing

	Using EM6530PC on a 6540 Personal Computer
	Using Conversational Terminals
	Conversational-Mode Program
	Designating Conversational Terminals
	Input Control Characters
	Displaying Information
	Accepting Information

	Using Intelligent-Mode Devices
	Using Simulated Devices
	Using Dial-in Terminals

	4 Writing User Conversion Procedures
	User Conversion Procedures
	User-Written User Conversion Procedures
	Coding the User Conversion Procedures and Creating the User Library
	Restrictions on User Conversion Procedures

	Screen Input Procedures
	Screen Output Procedures
	3270 Key Mapping
	Intelligent Device Input Procedures
	Intelligent Device Output Procedures

	5 Managing Transactions With the TMF Subsystem
	Task Overview
	TMF Application Structure
	TMF Programming in SCREEN COBOL
	Transaction Mode Use
	SCREEN COBOL Verbs for the TMF Subsystem
	SCREEN COBOL Special Registers for the TMF Subsystem

	Interaction Between the PATHMON Environment and the TMF Subsystem
	SET SERVER Command and the TMF Subsystem
	SET TERM and SET PROGRAM Commands and the TMF Subsystem
	Effect of TMF Parameters on SCREEN COBOL SEND�Operations
	Timeouts on SEND Operations to Servers

	TCP Checkpointing Strategy
	Precautions for Using TMF Parameters

	6 Programming for Intelligent Devices
	The SEND MESSAGE Statement
	Using Delimiters and the RESULTING COUNT Clause
	Declaring Delimiters
	Sample Declarations
	Processing Field Delimiters on Input
	Using Field Delimiters on Output
	Using Message Delimiters
	Using Delimited Format With Delimiters Turned Off

	Using TRANSFORM Statements
	Example 1: Disassembling Input Messages
	Example 2: Assembling Output Messages

	Using PRESENT IF Clauses
	Error Processing and Debugging Techniques
	ON ERROR Processing
	FIELD STATUS Processing

	7 Processing Unsolicited Messages
	Detecting the Arrival of Unsolicited Messages
	Accepting Unsolicited Messages
	Replying to Unsolicited Messages
	The PW-TCP-SYSTEM-NAME and PW-TCP- PROCESS-NAME Special Registers
	The PW-USE-NEW-CURSOR Special Register
	Unsolicited-Message TERMINATION-STATUS Values
	Pathway/iTS Error Codes
	UMP Programming Examples
	Polling the PW-UNSOLICITED-MESSAGE-QUEUED Register
	Using Waited RECEIVE UNSOLICITED Statements
	Using ESCAPE ON UNSOLICITED MESSAGE Clauses
	ESCAPE ON UNSOLICITED MESSAGE Design Considerations
	Message Processing Requiring No Terminal Interaction
	Message Processing Requiring Only Terminal Output
	Message Processing Requiring Both Input and Output

	Sending Unsolicited Messages to SCREEN COBOL Requesters
	Unsolicited-Message Layout, Reply Layout, and Error Codes
	Unsolicited-Message Layout
	Unsolicited-Message Reply Layout
	Unsolicited-Message Error Codes

	UMP Configuration Parameters

	8 Processing Double-Byte Character Sets
	Device Types
	Determination of the Character Set
	Data-Item Considerations
	Mixed Data Items
	Subscripting Considerations

	Developing SCREEN COBOL Programs for Double-Byte Character Sets
	Environment Division
	Data Division
	Procedure Division

	Example of Working-Storage Section and Screen Section

	9 TCP SETMODE Functions and CONTROL Operations
	SETMODE Functions
	CONTROL Operations
	Pathway/iTS and CONTROL 26
	CONTROL 26 Defined
	How CONTROL 26 Works
	CONTROL 26 Initialization
	Subsequent CONTROL 26 Calls
	Testing TERMINATION Codes

	10 Handling Errors
	Terminal Errors
	SEND Statement Errors
	Responding to SEND Errors
	Processing Variable-Length Server Replies

	A The MAKEUL Macro
	Examples
	Error Messages

	Index

