
NonStop SOAP 4.1 User's Manual

HP Part Number: 532118-006
Published: April 2014
Edition: J06.09 and subsequent J-series RVUs and H06.20 and subsequent H-series RVUs.

© Copyright 2010, 2014 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Apache Axis2/C is maintained by the Apache Software Foundation and is released under the Apache 2.0 License http://www.apache.org/
licenses/LICENSE-2.0.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The Open Group are trademarks of The Open
Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software Foundation, Inc. OSF MAKES
NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall not be liable for errors contained herein or for
incidental consequential damages in connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF software to which it relates are derived in part
from materials supplied by the following: © 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991
Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business Machines Corporation. © 1988, 1989
Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991,
1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989,
1990, 1991 Transarc Corporation.OSF software and documentation are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. OSF acknowledges the following individuals and institutions for their role in its development: Kenneth
C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985,
1986, 1987, 1988, 1989 Regents of the University of California.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Contents
About This Document...18

Supported Release Version Updates (RVUs)..18
Intended Audience..18
New and Changed Information..18

New and Changed Information in 532118–006 Edition...18
New and Changed Information in 532118–005 Edition...18
New and Changed Information in 532118–004 Edition...18
New and Changed Information in 532118–003 Edition...19
New and Changed Information in 532118–002 Edition...20

Document Organization..20
Notation Conventions..21

General Syntax Notation..21
Notation for Messages...23
Notation for Management Programming Interfaces...24
General Syntax Notation..24

Publishing History...26
HP Encourages Your Comments..26

1 Introduction to NonStop SOAP...27
Supported Standards..27
Features of NonStop SOAP..28
Architecture of NonStop SOAP...29

NonStop SOAP Server..30
CGI Interface..31
NonStop SOAP 4 Engine...31
TS/MP Message Receiver...31
XML Message Receiver..31
WS-Security Module..31
Transaction Module...31

NonStop SOAP Tools...31
SoapAdminCL Tool..31
WSDL2C Tool...31
WSDL2PWY Tool..31
NonStop SOAP Administration Utility...32

SOAP Clients..32
Request Processing in NonStop SOAP...32
Compatibility...34
Migration..34

2 Installing NonStop SOAP...36
Prerequisites...36
Setting Up NonStop SOAP on a NonStop System...36

Installing NonStop SOAP..36
Default location installation...36
Non-standard location installation...37

Using PINSTALL Utility in Guardian Environment...37
Using PAX Command in OSS Environment...37

Setting up the Deployment Environment...38
Running the Deployment Script..39
Modifying the local.config file..41

Tuning NonStop SOAP ..42
Running NonStop SOAP ..42

Contents 3

Accessing the echo service...43
Setting up Multiple NonStop SOAP Deployment Instances in a Single iTP WebServer.................43

Deploying a Sample Web Service..44
Deploying the empdb Service..44

Setting up the empdb environment...45
Accessing the empdb service..48

Deploying the adminserver Service...50
Setting up the adminserver Environment..50
Accessing the adminserver Service...51

3 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher
Versions...52

Prerequisites...52
Migrating the NonStop SOAP 3 Services...52

Generating SOAP 4 Service Artifacts and Client Files from NonStop SOAP 3............................52
Generating the SDL File from the NonStop SOAP 3 SDR File...53
Modifying the SDL File...54
Generating the HTML Client, WSDL, XML Schema, and services.xml Files to Deploy the
Service..54
Migration Considerations...56

Accessing the Migrated Application...56
Migrating NonStop SOAP 3 Transactions..58
Migrating NonStop SOAP 3 User-exits...61

Migrating the NonStop SOAP 3 User-exit Samples...62
Migrating the pre_process() and post_process() user-exits using mod_empdb.........................62

Implementation of the pre_process() user-exit in NonStop SOAP 3...................................63
Implementation of the post_process()user-exit in NonStop SOAP 3...................................63
Migration of the pre_process() and post_process() user-exits in NonStop SOAP
4..64

Migrating the pre_service() and pre_marshal() user-exits in NonStop SOAP 3 to Message
Receiver User Functions in NonStop SOAP 4.1..71

Implementation of the pre_service() and pre_marshal() user-exit in NonStop SOAP 3.........71
Migration of pre_service() and pre_marshal() user-exits in NonStop SOAP 4.1..................72

4 Getting Started with NonStop SOAP 4..77
Deploying a Pathway Application and a NonStop Process as a Web Service77

Getting the sample application files from sample_services...78
Creating DDL dictionary files...78
Creating SDL files..79
Creating Web Service files using SOAPAdminCL tool...79
Compiling reflector.c..81
Configuring and starting the reflector application...81
Accessing the Web Service deployment..82

Deploying a NonStop process as a Web Service..83
5 NonStop SOAP 4 Service APIs...85

Basic NonStop SOAP 4 Service APIs...85
APIs to Implement the Service Interface with NonStop SOAP 4...85

The axis2_get_instance()Function...85
Creating the service skeleton structure...86
Setting the service skeleton operations structure..86
Returning the service skeleton structure to the service...86

The axis2_remove_instance()Function...86
APIs to Implement the Service Skeleton Structure Interface..87

The init Function..87
The invoke Function...87

4 Contents

The fault Function..88
The free Function...88

APIs to Extract the Input Parameters and Return the Response...89
Reading an AXIOM node using NonStop SOAP 4 APIs..89

The axiom_element_get_qname()Function..89
The axiom_node_get_data_element()Function...90
The axiom_attribute_get_qname()Function..90
The axiom_element_get_attribute()Function...90

Creating an AXIOM node using NonStop SOAP 4 APIs...91
Creating an AXIOM node using AXIOM Node Create APIs...91
Creating an AXIOM node from an XML using AXIOM Document APIs.............................93

APIs for Logging..95
Creating the log file structure..95

Developing NonStop SOAP 4 Services using Service APIs..95
Defining the XML Request and Response Payload...96
Creating the SDL File for the Service...98
Generating the WSDL File and the services.xml File..99
Generating the Service Skeleton Files...100
Implementing the Business Logic in the Service Skeleton Files...102
Compiling the Service Code and Deploying the Service..102
Testing the Service...103

6 NonStop SOAP 4 Client APIs...105
NonStop SOAP 4 Client APIs...105

APIs to Implement the Client Interface with NonStop SOAP 4...105
The axis2_svc_client_create()Function...106
The axis2_svc_client_free()Function..106

APIs to Generate the Request Node and Consume the Response Node...................................106
Generating the Request AXIOM node using NonStop SOAP 4 APIs...................................107

Creating an AXIOM node using AXIOM Node Create APIs...107
Creating an AXIOM node from an XML using AXIOM Document APIs...........................110

Consuming the Response AXIOM node using NonStop SOAP 4 APIs.................................111
The axiom_element_get_qname()Function..111
The axiom_node_get_data_element()Function...112
The axiom_attribute_get_qname()Function..112
The axiom_element_get_attribute()Function...112

APIs to Invoke the Web Service..113
The axis2_svc_client_send_receive() Function..113
The axis2_svc_client_send_receive_non_blocking() Function..113
The axis2_svc_client_send_robust() Function..114
The axis2_svc_client_fire_and_forget() Function...114

APIs for Logging..115
Creating the log file structure..115
Logging messages at different log levels...115

The axutil_log_impl_log_warning()Function..116
The axutil_log_impl_log_info() Function..116
The axutil_log_impl_log_user()Function..116
The axutil_log_impl_log_debug()Function...116
The axutil_log_impl_log_trace()Function...116

Releasing the log structure..116
ADB APIs for creating requests...117

The adb_<messagename>_create()Function..117
The adb_<messagename>_free()Function...117
The adb_<complextype>_create_with_values() Function..117
The adb_<messagename>_set_<complextype>() Function...118

Contents 5

The adb_<messagename>_get_<complextype>() Function..118
Developing NonStop SOAP 4 Clients Using Client APIs...119

Generating NonStop SOAP 4 Client Stubs using the WSDL2C tool...119
Implementing Business Logic in Client Stubs...121
Compiling the Client Code and Deploying the Client..121

Compiling the Client Code using the Makefile...121
Compiling the Client Code manually...122

Testing the Client...123
7 Customizing NonStop SOAP 4 Message Processing....................................124

Overview..124
Modules and Handlers...124
Message Receiver User Functions...125
NonStop SOAP 4 Message Processing Customization...125

Customizing the NonStop SOAP 4 Message Process Using Handlers...126
Request Processing in NonStop SOAP 4..127

Flows...127
Phases...128

Pre-defined phases in inflow..128
User-defined phases in inflow...129
Pre-defined phases in outflow...129
User-defined phases in outflow...130

Handlers..130
Modules..130

Creating a User-Defined Phase..131
Deploying and Attaching a Module...132
Developing a Sample Module for NonStop SOAP 4...132

Running the SoapAdminCL Tool to Generate the Module Handler Stub Files.......................133
Implementing the Business Logic in the Module Handler Stub Files.....................................134

Implementing the invoke() Method for loggingInHandler..134
Implementing the invoke() Method for loggingOutHandler...134

Engaging the Module Handler at the Service Level..136
Verifying the Module Handler Output..137

Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions.........137
Configuring NonStop SOAP 4 Message Receiver User Functions..138

Configuring NonStop SOAP 4 Message Receiver User Functions at the service level.............138
Configuring NonStop SOAP 4 Message Receiver User Functions at the global level.............138

Modifying the Data Buffer Passed to the Service using NonStop SOAP 4 Message Receiver User
Functions..139

Setting the pre_service and pre_marshal Message Receiver User Functions.........................139
Creating an instance of the Message Receiver User Function structure............................139
Setting pre_service and pre_marshal function names...140

Implementing the pre_service and pre_marshal Message Receiver User Functions................141
Modifying the Pathway or Process Attributes using NonStop SOAP 4 Message Receiver User
Functions..143

The axis2_msg_recv_get_pathmonName()Function..143
The axis2_msg_recv_get_serverclassName()Function..143
The axis2_msg_recv_get_serviceName()Function...144
The axis2_msg_recv_get_operationName()Function...144
The axis2_msg_recv_get_processName()Function..145
The axis2_msg_recv_set_pathmonName()Function...145
The axis2_msg_recv_set_serverclassName()Function..145
The axis2_msg_recv_set_serviceName()Function..146
The axis2_msg_recv_set_operationName()Function..146
The axis2_msg_recv_set_processName()Function...147

6 Contents

Modifying the Message Flow in the Pathway Message Receiver using NonStop SOAP 4 Message
Receiver User Functions...147

The axis2_msg_recv_get_skipService()Function..147
The axis2_msg_recv_get_skipMarshal()Function..148
The axis2_msg_recv_set_skipService()Function..148
The axis2_msg_recv_set_skipMarshal()Function...149

Developing Sample Message Receiver User Functions for NonStop SOAP 4............................149
Running the SoapAdminCL Tool to Generate the Message Receiver User Functions Stub
Files..150
Implementing the Business Logic in the Message Receiver User Functions Stub Files..............150

Implementing the pre_service Message Receiver User Function.....................................151
Implementing the pre_marshal Message Receiver User Function....................................151

Engaging the Message Receiver User Functions at the Service Level...................................151
Verifying the Message Receiver User Functions Output...152

8 NonStop SOAP 4 Service Description Language...153
SDL File Elements and Attributes...153
SDL Service Types...154

The Pathway Element..154
The PathwayEnvironment Element..154

The Service Element..155
The Operation Element..159

The Process Element...174
The ProcessEnvironment Element..174

The ProcessDetails Element..174
The ServerAPI Element..176

9 NonStop SOAP 4 Configuration Files..177
The itp_axis2.config File..177

Linking iTP WebServer to the NonStop SOAP 4 Deployment..177
Specifying iTP WebServer Filemap for NonStop SOAP 4...177
Defining the Log Levels of the NonStop SOAP 4 Server...178
Defining the Log File Size..180
Defining Separate Log and Trace Files for NonStop SOAP 4 Servers.......................................180

The axis2.xml File...180
Setting the Message Receiver and the Message Exchange Pattern..180
Attaching a Module at the Global Level..181
Attaching Message Receiver User Functions at the Global Level..181
Specifying the Order of Phase Invocation in NonStop SOAP 4 Message Processing.................182

The services.xml File..182
Updating the Service Parameters..183

Configuring a service as a Pathway application..183
Configuring a service as a process..183
Configuring a service as a DLL..183
Other Service Parameters...184

Defining Multiple SOAP Response Selection Criteria...186
Controlling TMF Transaction Support..188
Engaging a Module at the Service Level...189
Setting the Operation-Specific MEP..189
Setting the Operation-Specific Message Receiver..190

The module.xml File..190
Specifying the Module Name and Module Class File Name..191
Defining a New Handler and Specifying its Invocation Order..191
Defining the Module-Specific Parameters...192

Contents 7

10 NonStop SOAP Tools..194
The SoapAdminCL Tool...194

Generating NonStop SOAP 4 Files using the SDL File...194
Generating Module and Handler Stubs..199
Generating Message Receiver User Functions Stubs..200
Generating the NonStop SOAP 4 SDL File from the NonStop SOAP 3 SDR File........................201
Additional Options..202

The WSDL2PWY Tool...203
Generating NonStop SOAP 4 Client Stubs..204
Generating Service Stubs..205
XML Schema and C Data Types Mapping...206
Migrating to Contract-First Services...208
WSDL2PWY Limitations..210

The WSDL2C Tool..211
Generating NonStop SOAP 4 Client Stubs..211
Generating NonStop SOAP 4 Service Skeleton Files...213

The NonStop SOAP 4 Administration Utility...215
Installing NonStop SOAP 4 Administration Utility...215

11 NonStop SOAP 4 Features...217
DDL Comments...217

Specifying DDL Fields as Optional..218
Exposing DDL Fields as XML Attributes..221

Setting the SoapDDLAttribute in the SDL File...222
Flagging a DDL Field with SOAP DDL Comment Tags...222

Specifying Base64 Encoding...225
Using the SOAP_OCCURS_DEP_ON DDL Comment Tag...226

Hot-Deployment of the NonStop SOAP 4 Server...229
Hot-Update for the Deployed Services...229
Internationalization and Encoding...230

Configuring the request encoding..230
Configuring the response encoding..230
Configuring the server encoding..231

Communicating with a Non-Pathway Process..231
Creating an SDL File to Communicate with a Non-Pathway Process..232
Creating a DDL File with the Request/Response Structures...232
Generating NonStop SOAP 4 Files using the SoapAdminCL Tool...232

Validation Module..233
SOAP_WSDL_NAME DDL Comment...233
Support for Multiple DDL Definitions..234
Check on SOAP Service Deployment...235
Unbounded data elements support..235

12 Transaction Management...236
Transaction Module Configuration..237
SOAP Server Transaction Management...238
SOAP Client Transaction Management..238

Begin a New Transaction..239
Continue a Transaction...241
Commit a Transaction...242
Abort a Transaction..244

Configuring the Level of Transaction Support..245
Transaction Timeouts...246

Configuring Transaction Timeout..247
Configuring Transactions to Abort on Fault..248

Session Management and Transactions...249

8 Contents

Begin a New Session...250
Begin Transaction within a Session...251
Continue a Transaction within a Session..253
Commit a Transaction within a Session...254
Abort a Transaction within a Session..255
End the Session...256
The Cookie File..258
Session Timeout...258
Subsessions...259
The SOAP_COOKIE_DELETION_INTERVAL Parameter...259

13 Using the Contract-First Approach in NonStop SOAP 4..............................260
NonStop SOAP 4 Tools for Developing Web Services Using the Contract-First Approach................260
WSDL Considerations...260

Using a Pre-defined WSDL File..260
Developing a NonStop SOAP 4 Pathway Web Service Using the WSDL2PWY Tool......................262

Deploying a NonStop SOAP 4 Pathway Web Service...269
Accessing a NonStop SOAP 4 Pathway Web Service...269

Developing a NonStop SOAP 4 Non-Pathway Web Service Using the WSDL2C Tool....................270
14 WS–Security in NonStop SOAP 4...271

Overview of Encryption and Signing...271
Supported WS–Security Features ...273
Securing a NonStop SOAP 4 Service..274
Rampart Specific Assertions ..275
Publishing the Security Requirements...277
Configuring the Client to Invoke a Secured Web Service..277

Configuring the Axis2c Client..277
Configuring Non–Axis2c Clients..278

Extensible Modules ..278
Sample Programs...279

Functionality of the Sample Client and Server Program..280
Running the Web Services Security Sample Programs...280
WS-Security Scenarios ...281

Scenario 1: Timestamp...281
Scenario 2: UsernameToken...281
Scenario 3: Encryption..282
Scenario 4: Signature..282
Scenario 5: Combining TimeStamp, UsernameToken, Encryption, and Signature with Protection
order Sign->Encrypt...283
Scenario 6: Combining TimeStamp, UsernameToken, Encryption, and Signature with Protection
Order Encrypt->Sign..283
Scenario 7: Symmetric Binding. Encryption using Derived Keys..283
Scenario 8: Symmetric Binding, Signature..283
Scenario 9: Symmetric Binding. Both Encryption and Signature with Protection Order
Encrypt->Sign...283
Scenario 10: Symmetric Binding. Both Encryption and Signature with Protection Order
Sign->Encrypt...283
Scenario 11: Symmetric Binding. Both Encryption and Signature with Protection Order
Encrypt->Signature Encryption...283
Scenario 12: Symmetric Binding. Both Encryption and Signature with Protection Order
Sign->Encrypt. Signature Encryption..283

Recommendations...284
A NonStop SOAP 4 Error and Warning Messages..285

NonStop SOAP 4 Error Messages...285

Contents 9

Client API Errors...285
NonStop SOAP 4 Engine Errors...286
NonStop SOAP 4 Utility Errors...290
Pathway Message Receiver Errors...290
CGI Errors..294
Transaction Management Errors...294
SoapAdminCL Errors..296

Pathway Service Definition Errors...296
Memory Allocation Errors...298
SoapAdminCL Error Messages..298
WSDL2PWY and WSDL2C Error Messages..303

NonStop SOAP 4 Warning Messages...304
B Install Files and Folders..308

Verifying the Extracted Product Files..308
Verifying the Deployed Files...312

C SoapAdminCL DDL datatype to XML datatype conversion............................314
D NonStop SOAP 4 APIs..316

AXIOM APIs..316
Attributes..316

The axiom_attribute_create()Function..316
The axiom_attribute_free() Function..316
The axiom_attribute_get_qname() Function..317
The axiom_attribute_serialize() Function..317
The axiom_attribute_get_localname() Function...317
The axiom_attribute_get_value()Function...318
The axiom_attribute_get_namespace() Function...318
The axiom_attribute_set_localname() Function...318
The axiom_attribute_set_value() Function..319
The axiom_attribute_set_namespace() Function..319

Comment..320
The axiom_comment_create() Function...320
The axiom_comment_free() Function...320
The axiom_comment_get_value() Function...321
The axiom_comment_set_value() Function...321

Document...321
axiom_document_create...321
axiom_document_free..322
axiom_document_get_root_element...322
axiom_document_set_root_element..322
axiom_document_build_all...323

Element..323
axiom_element_create...323
axiom_element_create_with_qname ..324
axiom_element_add_attribute...324
axiom_element_get_attribute...325
axiom_element_get_attribute_value..325
axiom_element_free...325
axiom_element_get_localname...326
axiom_element_set_localname..326
axiom_element_get_namespace..326
axiom_element_set_namespace...327
axiom_element_get_all_attributes..327
axiom_element_get_children...327

10 Contents

axiom_element_get_children_with_qname..328
axiom_element_remove_attribute...328
axiom_element_set_text..329
axiom_element_get_text...329
axiom_element_to_string..330
axiom_element_get_child_elements..330
axiom_element_extract_attributes...330
axiom_element_get_attribute_value_by_name...331
axiom_element_get_localname_str...331
axiom_element_set_localname_str...331

Namespace..332
axiom_namespace_create..332
axiom_namespace_free...332
axiom_namespace_equals...332
axiom_namespace_serialize...333
axiom_namespace_get_uri...333
axiom_namespace_get_prefix...334
axiom_namespace_to_string...334
axiom_namespace_create_str...334
axiom_namespace_set_uri_str...334
axiom_namespace_get_uri_str..335
axiom_namespace_get_prefix_str..335

Node...335
axiom_node_create...335
axiom_node_free_tree..336
..336
axiom_node_insert_sibling_after...336
axiom_node_insert_sibling_before...337
axiom_node_serialize..337
axiom_node_get_parent...338
axiom_node_get_first_child..338
axiom_node_get_first_element..338
axiom_node_get_last_child...339
axiom_node_get_previous_sibling ..339
axiom_node_get_next_sibling...339
axiom_node_get_node_type...340
axiom_node_get_data_element...340
..340
axiom_node_to_string..341

Text..341
axiom_text_create...341
axiom_text_free...341
axiom_text_serialize..342
axiom_text_set_value...342
axiom_text_get_value..343
axiom_text_get_text...343

Client API Module..343
client service...343

axis2_svc_client_get_svc ...343
axis2_svc_client_set_options ..344
axis2_svc_client_get_options ...344
axis2_svc_client_engage_module ...344
axis2_svc_client_disengage_module ...345
axis2_svc_client_add_header ..345
axis2_svc_client_remove_all_headers ..346

Contents 11

axis2_svc_client_fire_and_forget_with_op_qname..346
axis2_svc_client_fire_and_forget...346
axis2_svc_client_send_receive ..347
axis2_svc_client_send_receive_with_op_qname...347
axis2_svc_client_send_receive_non_blocking_with_op_qname..348
axis2_svc_client_get_svc_ctx ..348
axis2_svc_client_free ..349
axis2_svc_client_create ...349

Options..349
axis2_options_get_action...349
axis2_options_get_fault_to...350
axis2_options_get_from...350
axis2_options_get_transport_receiver...350
axis2_options_get_transport_in...351
axis2_options_get_transport_in_protocol..351
axis2_options_get_message_id...351
axis2_options_get_properties..352
axis2_options_get_property..352
axis2_options_get_property..352
axis2_options_get_reply_t..353
axis2_options_get_transport_out...353
axis2_options_get_sender_transport_protocol...353
xis2_options_get_soap_version_uri..354
axis2_options_get_timeout_in_milli_seconds...354
axis2_options_get_parent...354
axis2_options_set_parent...355
axis2_options_set_action..355
axis2_options_set_fault_to..355
axis2_options_set_from..356
axis2_options_set_to..356
axis2_options_set_transport_receiver...356
axis2_options_set_transport_in..357
axis2_options_set_transport_in_protocol...357
axis2_options_set_message_id..358
axis2_options_set_properties..358
axis2_options_set_property..358
axis2_options_set_reply_to...359
axis2_options_set_transport_out..359
axis2_options_set_sender_transport...360
axis2_options_set_soap_version_uri...360
axis2_options_set_timeout_in_milli_seconds..360
axis2_options_set_transport_info...361
axis2_options_get_manage_session...361
axis2_options_set_manage_session...362
axis2_options_set_msg_info_headers...362
axis2_options_get_msg_info_headers..362
axis2_options_get_soap_version...363
axis2_options_set_soap_version..363
axis2_options_get_soap_action...363
axis2_options_set_soap_action...364
axis2_options_free..364
axis2_options_set_http_headers..364
axis2_options_create...365

Context Hierarchy...365
message context..365

12 Contents

The axis2_msg_ctx_get_base()Function...365
The axis2_msg_ctx_get_parent()Function..365
The axis2_msg_ctx_set_parent()Function...366
The axis2_msg_ctx_free()Function..366
The axis2_msg_ctx_get_soap_envelope()Function..366
The axis2_msg_ctx_get_response_soap_envelope()Function..367
The axis2_msg_ctx_get_fault_soap_envelope()Function...367
The axis2_msg_ctx_set_msg_id()Function..367
The axis2_msg_ctx_get_msg_id()Function...368
The axis2_msg_ctx_get_server_side()Function..368
The axis2_msg_ctx_set_soap_envelope()Function...368
The axis2_msg_ctx_set_response_soap_envelope()Function...369
The axis2_msg_ctx_set_fault_soap_envelope()Function...369
The axis2_msg_ctx_set_message_id()Function...370
The axis2_msg_ctx_set_server_side()Function..370
The axis2_msg_ctx_get_msg_info_headers()Function..370
The axis2_msg_ctx_is_keep_alive()Function...371
The axis2_msg_ctx_set_keep_alive()Function...371
The axis2_msg_ctx_get_op_ctx()Function..371
The axis2_msg_ctx_get_svc_ctx_id()Function...372
The axis2_msg_ctx_set_svc_ctx_id()Function..372
The axis2_msg_ctx_get_conf_ctx()Function..373
The axis2_msg_ctx_get_svc_ctx() Function..373

Service Skeleton API..373
AXIS2_SVC_SKELETON_INIT ..373
AXIS2_SVC_SKELETON_INIT_WITH_CONF..373
AXIS2_SVC_SKELETON_FREE..374
AXIS2_SVC_SKELETON_INVOKE..374
AXIS2_SVC_SKELETON_ON_FAULT...374

Utilities..374
Utilities For Logging..374

The axutil_log_impl_log_critical()Function...374
The axutil_log_impl_log_error()Function..375
The axutil_log_impl_log_warning() Function..375
The axutil_log_impl_log_info() Function..375
The axutil_log_impl_log_user()Function...376
The axutil_log_impl_log_debug()Function...376
The axutil_log_impl_log_trace()Function..376
The axutil_log_free()Function...377
The axutil_log_create()Function..377
The axutil_log_create_default()Function...377

Utilities For Error Reporting..378
The axutil_error_free() Function..378
The axutil_error_get_message() Function...378
The axutil_error_set_error_message() Function...378
The axutil_error_set_error_number() Function...379
The axutil_error_set_status_code() Function...379
The axutil_error_get_status_code() Function...379

Utilities For String Operations..379
The axutil_strdup()Function..380
The axutil_strndup()Function..380
The axutil_strmemdup()Function...380
The axutil_strcmp()Function...381
The axutil_strncmp()Function...381
The axutil_strlen()Function...381

Contents 13

The axutil_strcasecmp() Function..382
The axutil_strncasecmp() Function..382
The axutil_stracat() Function..382
The axutil_strcat() Function..383
The axutil_strstr() Function...383
The axutil_strcasestr() Function...383
The axutil_strchr() Function..384
The axutil_replace()Function..384
The axutil_strltrim()Function...385
The axutil_strrtrim() Function..385
The axutil_strtrim() Function...385
The axutil_string_replace()Function...386
The axutil_string_substring_starting_at()Function...386
The axutil_string_substring_ending_at()Function...386
The axutil_string_tolower() Function..387
The axutil_string_toupper() Function...387

Utilities For Array List..387
The axutil_array_list_create() Function..387
The axutil_array_list_size()Function...388
The axutil_array_list_is_empty() Function...388
The axutil_array_list_contains() Function...388
The axutil_array_list_add() Function...389
The axutil_array_list_add_at()Function..389
The axutil_array_list_remove() Function...390
The axutil_array_list_free() Function..390

Utilities For Hash Tables..390
The axutil_hash_first()Function...390
The axutil_hash_next()Function..390
The axutil_hash_count()Function..391
The axutil_hash_free()Function...391
The axutil_hash_contains_key()Function..391
The axutil_hash_make()Function..392
The axutil_hash_get()Function..392
The axutil_hash_set()Function..392

qname...393
The axutil_qname_create()Function..393
The axutil_qname_create_from_string()Function..393
The axutil_qname_free()Function..393
The axutil_qname_equals()Function..393
The axutil_qname_clone()Function...394
The axutil_qname_get_uri()Function...394
The axutil_qname_get_prefix()Function...394
The axutil_qname_get_localpart()Function...394
The axutil_qname_to_string()Function...395

parameter...395
The axutil_param_create()Function...395
..395
..395
..396
..396
..396
The axutil_param_set_locked() Function..396
The axutil_param_free()Function..397
The axutil_param_set_attributes()Function..397
..397

14 Contents

The axutil_param_set_value_free()Function..397
E Transaction Management Model in NonStop SOAP 3 and NonStop SOAP 4..398
Glossary..399
Index...405

Contents 15

Figures
1 NonStop SOAP Architecture..30
2 SOAP Clients and their Capabilities...32
3 The SOAP Message Format...33
4 The SOAP Message Format (in XML format)...33
5 NonStop SOAP 4 Request Processing Flow for TS/MP or NonStop process-based Web

Services..34
6 NonStop SOAP 4 Installation and Deployment Environment...38
7 Processing Logic in NonStop SOAP 3 and NonStop SOAP 4.1..53
8 Stylesheet Based Formatted Output...70
9 Web Service deployment of NonStop Process/Pathway Application77
10 Client APIs in NonStop SOAP 4...105
11 Customizing NonStop SOAP 4..124
12 Modified Message Process in NonStop SOAP 4..126
13 Message Process in NonStop SOAP 4..127
14 Files Generated by the SoapAdminCL Tool...195
15 Files Generated by the WSDL2PWY Tool..203
16 Files Generated by the WSDL2C Tool..211
17 Beginning a New Transaction..240
18 Beginning a New Session...250
19 ...272
20 ...272
21 ...273

Tables
1 Transaction Management Parameters in NonStop SOAP 3 and NonStop SOAP 4.1..................61
2 User-exits Mapped with Equivalent Functions in NonStop SOAP 4.1..62
3 C89 Compiler Options...122
4 The DDL Comments values..164
5 Conversion Operator Values Table...172
6 Comparison Operator Values Table..173
7 Logging Levels...178
8 Valid AlignmentRule setting for existing C services that use DDL generated header files...........184
9 Valid AlignmentRule setting for existing C services that does not use DDL generated header

files..184
10 Valid AlignmentRule setting for existing COBOL services that use DDL generated header files....185
11 Valid AlignmentRule setting for existing COBOL services that does not use DDL generated header

files..185
12 Displaying BLANK element in response XML..185
13 Location of Files Generated by the SoapAdminCL Tool..196
14 XML schema to C data type mapping...206
15 XML schema definitions, which deviate from WSDL specification..210
16 Comment Tags...217
17 SDL Values and DDL Comment Tags...225
18 Attributes in the Transaction Header Block...239
19 Transaction Timeout..247
20 Session Header Attributes...249
21 Unsupported WSDL File Elements...261
22 WSDL File Elements with Limited Support..261
23 Rampart Specific Assertions...276

24 WS-Security Sample Programs Directory...279
25 SoapAdminCL conversion table for DDL datatype to XML datatype Conversion:....................314
26 Transaction Management Models in NonStop SOAP 3 and NonStop SOAP 4.......................398

Examples
1 A Sample itp_axis2.config Configuration File..179
2 A Sample services.xml Configuration File...189
3 A Sample module.xml File Structure..190
4 A Sample module.xml Configuration File...192
5 A Sample DDL file with the @SOAP_OPTIONAL Tag...219
6 An XSD Schema for a Sample DDL file with the @SOAP_OPTIONAL Tag220
7 An XML Message-I for a Sample DDL file with the @SOAP_OPTIONAL Tag...........................221
8 An XML Message-II for a Sample DDL file with the @SOAP_OPTIONAL Tag...........................221
9 A Sample XML file with DDL fields mapped to the Corresponding Elements............................221
10 A Sample XML file with DDL fields represented as XML attributes..221
11 A Sample SDL File with SoapDDLAttribute...222
12 A Sample DDL File with the @SOAP_ATTRIBUTE and @SOAP_ELEMENT Tag........................224
13 An XML Message for a Sample DDL file with the @SOAP_ATTRIBUTE and @SOAP_ELEMENT

Tag..224
14 A Sample DDL file with the @SOAP_BASE64 Tag...226
15 An XML Schema for a Sample DDL file with the @SOAP_BASE64 Tag...................................226
16 XML Message for a DDL file with the @SOAP_BASE64 Tag..226
17 A Sample DDL file with the @SOAP_OCCURS_DEP_ON Tag..227
18 A Sample DDL file with the @SOAP_OCCURS_DEP_ON Tag..228
19 An XML Schema for a Sample DDL file with the @SOAP_OCCURS_DEP_ON Tag....................228
20 The SOAP Message Body for a Sample DDL file with the @SOAP_OCCURS_DEP_ON Tag.........229
21 Begin a New Transaction..241
22 Continue a Transaction...242
23 Commit a Transaction...243
24 Abort a Transaction..244
25 Begin a New Session...251
26 Begin a New Transaction within a Session..252
27 Begin a New Session and Transaction Combined...253
28 Continue a Transaction...254
29 Commit a Transaction within a Session...255
30 Abort a Transaction within a Session..256
31 End a Session..257
32 Commit a Transaction and End a Session..258

About This Document
This manual describes how to install, configure, and use NonStop SOAP 4.1.

Supported Release Version Updates (RVUs)
This manual supports J06.09 and all subsequent J-series RVUs and H06.20 and all subsequent
H-series RVUs until otherwise indicated in a replacement publication.

Intended Audience
This manual is intended for customers who wish to develop Web applications deployed in NonStop
SOAP 4.

New and Changed Information

New and Changed Information in 532118–006 Edition
• Removed sample codes by providing references to the samples in the installation directory.

• Updated “Installing NonStop SOAP” (page 36) section to include information about multiple
installations.

• Updated the declaration of AXIS2C_HOME locations throughout the manual in relevant
sections.

• Modified WSDL2C tool options in the “The WSDL2C Tool” (page 211) section.

• Added a note to the “The ResponseSelection Element” (page 171) section.

New and Changed Information in 532118–005 Edition
• Added additional SOAPAdminCL [-w] option [-w]

New and Changed Information in 532118–004 Edition
• Added a section that explains SOAP_WSDL_NAME DDL Comment (page 233)

• Added a section that explains Support for Multiple DDL Definitions (page 234)

• Added additional SoapAdminCL Error Messages (page 298)

• Added a section that explains WS–Security in NonStop SOAP 4 (page 271)

• Added the following sub sections in the WS-Security chapter:

Added a section that explains Supported WS–Security Features (page 273)◦
◦ Added a section that explains Securing a NonStop SOAP 4 Service (page 274)

◦ Added a section that explains Rampart Specific Assertions (page 275)

◦ Added a section that explains Publishing the Security Requirements (page 277)

◦ Added a section that explains Configuring the Client to Invoke a Secured Web Service
(page 277)

◦ Added a section that explains Extensible Modules (page 278)

◦ Added a section that explains Sample Programs (page 279)

◦ Added a section that explains WS-Security Scenarios (page 281)

18

◦ Added a section that explains Recommendations (page 284)

◦ Added additional SOAPAdminCL [-w] option [-w]

New and Changed Information in 532118–003 Edition
• Added the Other Service Parameters (page 184) section containing descriptions for

DDLMapping, AlignmentRule and responseType service parameters.
• Updated the examples in the following sections:

Defining the XML Request and Response Payload (page 96)◦
◦ Testing the Service (page 103)

◦ The Service Element (page 155)

◦ The ProcessDetails Element (page 174)

◦ DDL Comments (page 217)

◦ Specifying DDL Fields as Optional (page 218)

◦ Flagging a DDL Field with SOAP DDL Comment Tags (page 222)

◦ Specifying Base64 Encoding (page 225)

◦ Using the SOAP_OCCURS_DEP_ON DDL Comment Tag (page 226)

• Modified sections throughout the manual for better readability.

• Added the appendices, “SoapAdminCL DDL datatype to XML datatype conversion” (page 314),
“NonStop SOAP 4 APIs” (page 316) and “Transaction Management Model in NonStop SOAP
3 and NonStop SOAP 4” (page 398).

• Added the “Defining the Log File Size” (page 180) and “Defining Separate Log and Trace Files
for NonStop SOAP 4 Servers” (page 180) sections containing information to configure the log
file size and specify separate log files for NonStop SOAP 4 servers.

• Added the “Hot-Update for the Deployed Services” (page 229) section.

• Updated the “Hot-Deployment of the NonStop SOAP 4 Server” (page 229) section

• Added the “Unbounded data elements support” (page 235) appendix explaining the unbounded
data elements feature support.

• Added the “Validation Module” (page 233) section explaining the validation module feature.

• Updated the “Internationalization and Encoding” (page 230) section.

• Added the “WSDL2PWY and WSDL2C Error Messages” (page 303) section listing the errors
returned by WSDL2PWY and WSDL2C utilities.

• Added the “Migration Considerations” (page 56) section listing the differences between
NonStop SOAP 3 and NonStop SOAP 4 for migration.

• Updated the explanation for defaultResp attribute in “The ResponseSelection Element”
(page 171)

• Added the ADB APIs “The adb_<messagename>_create()Function” (page 117), “The
adb_<messagename>_free()Function” (page 117), “The
adb_<complextype>_create_with_values() Function” (page 117), “The
adb_<messagename>_set_<complextype>() Function” (page 118) and “The
adb_<messagename>_get_<complextype>() Function” (page 118)

New and Changed Information 19

New and Changed Information in 532118–002 Edition
• Updated information about the procedure for “Installing NonStop SOAP” (page 36)

• Updated one of the prerequisites “Prerequisites” (page 36) to install NonStop SOAP 4 on
NonStop system.

• Updated information about “Running the Deployment Script” (page 39) procedure.

• Updated information about the procedure to set up empdb environment on “Setting up the
empdb environment” (page 45).

• Updated information about the procedure to deploy a Pathway application and a NonStop
process as a Web service (page 77)

Document Organization
This document is organized as follows:

This chapter describes supported standards, features,
architecture, and components of NonStop SOAP 4.1.

Chapter 1: Introduction to NonStop SOAP

This chapter describes the procedure to install NonStop
SOAP 4 on the NonStop system. It also describes the steps

Chapter 2: Installing NonStop SOAP

to deploy a sample Web service and the adminserver
service, which helps you to verify if you have successfully
installed NonStop SOAP 4 on the NonStop system.

This chapter describes the procedure to migrate the existing
NonStop SOAP 3 services, transactions, and user-exits to
NonStop SOAP 4.

Chapter 3: Migrating NonStop SOAP 3 Services to
NonStop SOAP 4 or Higher Versions

This chapter describes the procedure to deploy a Web
service as a Pathway application and a NonStop process.

Chapter 4: Getting Started with NonStop SOAP 4

This chapter describes the NonStop SOAP 4 application
programming interfaces you can use to develop a
DLL-based Web service deployed in NonStop SOAP 4.

Chapter 5: NonStop SOAP 4 Service APIs

This chapter describes the NonStop SOAP 4 APIs you can
use to develop client applications that consume SOAPWeb
services.

Chapter 6: NonStop SOAP 4 Client APIs

This chapter provides information on customizing the default
NonStop SOAP 4 message process using Phases, Modules,
Handlers, and Message Receiver User Functions.

Chapter 7: Customizing NonStop SOAP 4 Message
Processing

This chapter describes the SDL file and its elements:Chapter 8: NonStop SOAP 4 Service Description Language

This chapter describes the NonStop SOAP 4 configuration
files, namely, the itp_axis2.config file, the

Chapter 9: NonStop SOAP 4 Configuration Files

axis2.xmlfile, the services.xml file, and the
module.xml file.

This chapter describes the SoapAdminCL tool, the
WSDL2PWY tool, and the WSDL2C tool that is available with

Chapter 10: NonStop SOAP Tools

the NonStop SOAP 4 distribution. It also provides and
overview of the NonStop SOAP 4 Administration Utility.

This chapter provides information about NonStop SOAP
4 features, namely, DDL comments, hot-deployment of the

Chapter 11: NonStop SOAP 4 Features

NonStop SOAP 4 server, internationalization and
encoding, and communicating with a non-Pathway process.

This chapter discusses transaction management in NonStop
SOAP 4.

Chapter 12: Transaction Management

This chapter
nl

Chapter 13: Using the Contract-First Approach in NonStop
SOAP 4

20

the contract (WSDL file) is defined first, which states the
type of service interface description that the service expects.
The service code is generated based on this information.

This chapter provides a brief introduction to WS-Security
and describes how WS-Security can be used in NonStop
SOAP 4.

Chapter 14: WS–Security in NonStop SOAP 4

This appendix provides cause, effect, and recovery of
NonStop SOAP 4 error and warning messages.

Appendix A: NonStop SOAP 4 Error and Warning
Messages

Notation Conventions

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.
UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
Items not enclosed in brackets are required. For example:
MAXATTACH

Italic Letters

Italic letters, regardless of font, indicate variable items that you supply. Items not enclosed in
brackets are required. For example:
file-name

Computer Type

Computer type letters indicate:
• C and Open System Services (OSS) keywords, commands, and reserved words. Type

these items exactly as shown. Items not enclosed in brackets are required. For example:
Use the cextdecs.h header file.

• Text displayed by the computer. For example:
Last Logon: 14 May 2006, 08:02:23

• A listing of computer code. For example
if (listen(sock, 1) < 0)
{
perror("Listen Error");
exit(-1);
}

Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
[] Brackets

Brackets enclose optional syntax items. For example:
TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of

Notation Conventions 21

the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:
FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces
A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:
LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
INSPECT { OFF | ON | SAVEABEND }

… Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:
M address [, new-value]…

 -] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:
"s-char…"

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:
error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol, such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:
"[" repetition-constant-list "]"

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol,
such as a parenthesis or a comma. For example:
CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no spaces
are permitted between the period and any other items:
$process-name.#su-name

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:
ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

22

!i and !o
In procedure calls, the !i notation follows an input parameter (one that passes data to the called
procedure); the !o notation follows an output parameter (one that returns data to the calling
program). For example:
CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o
In procedure calls, the !i,o notation follows an input/output parameter (one that both passes
data to the called procedure and returns data to the calling program). For example:
error := COMPRESSEDIT (filenum) ; !i,o

!i:i
In procedure calls, the !i:i notation follows an input string parameter that has a corresponding
parameter specifying the length of the string in bytes. For example:
error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i
In procedure calls, the !o:i notation follows an output buffer parameter that has a corresponding
input parameter specifying the maximum length of the output buffer in bytes. For example:
error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed messages in this
manual.
Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
Nonitalic Text

Nonitalic letters, numbers, and punctuation indicate text that is displayed or returned exactly
as shown. For example:
Backup Up.

Italic Text

Italic text indicates variable items whose values are displayed or returned. For example:
p-register

process-name

[] Brackets
Brackets enclose items that are sometimes, but not always, displayed. For example:
Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be displayed, of
which one or none might actually be displayed. The items in the list can be arranged either
vertically, with aligned brackets on each side of the list, or horizontally, enclosed in a pair of
brackets and separated by vertical lines. For example:
proc-name trapped [in SQL | in SQL file system]

Notation Conventions 23

{ } Braces
A group of items enclosed in braces is a list of all possible items that can be displayed, of
which one is actually displayed. The items in the list can be arranged either vertically, with
aligned braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:
obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
Transfer status: { OK | Failed }

% Percent Sign
A percent sign precedes a number that is not in decimal notation. The % notation precedes an
octal number. The %B notation precedes a binary number. The %H notation precedes a
hexadecimal number. For example:
%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming Interfaces
This list summarizes the notation conventions used in the boxed descriptions of programmatic
commands, event messages, and error lists in this manual.
UPPERCASE LETTERS

Uppercase letters indicate names from definition files. Type these names exactly as shown. For
example:
ZCOM-TKN-SUBJ-SERV

lowercase letters
Words in lowercase letters are words that are part of the notation, including Data Definition
Language (DDL) keywords. For example:
token-type

!r
The !r notation following a token or field name indicates that the token or field is required. For
example:
ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o
The !o notation following a token or field name indicates that the token or field is optional. For
example:
ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.

24

UPPERCASE LETTERS
Uppercase letters indicate keywords and reserved words. Type these items exactly as shown.
Items not enclosed in brackets are required. For example:
SELECT

Italic Letters

Italic letters, regardless of font, indicate variable items that you supply. Items not enclosed in
brackets are required. For example:
file-name

Computer Type

Computer type letters within text indicate case-sensitive keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For example:
myfile.sh

Bold Text

Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE

?123
CODE RECEIVED: 123.00

The user must press the Return key after typing the input.
[] Brackets

Brackets enclose optional syntax items. For example:
DATETIME [start-field TO] end-field

A group of items enclosed in brackets is a list from which you can choose one item or none.
The items in the list can be arranged either vertically, with aligned brackets on each side of
the list, or horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:
DROP SCHEMA schema [CASCADE]
 [RESTRICT]

DROP SCHEMA schema [CASCADE | RESTRICT]

{ } Braces
Braces enclose required syntax items. For example:
FROM { grantee[, grantee]...}

A group of items enclosed in braces is a list from which you are required to choose one item.
The items in the list can be arranged either vertically, with aligned braces on each side of the
list, or horizontally, enclosed in a pair of braces and separated by vertical lines. For example:
INTERVAL { start-field TO end-field }
 { single-field }

INTERVAL { start-field TO end-field | single-field }

| Vertical Line
A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.
For example:
{expression | NULL}

… Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat
the enclosed sequence of syntax items any number of times. For example:
ATTRIBUTE[S] attribute [, attribute]...

{, sql-expression}...

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax
item any number of times. For example:

Notation Conventions 25

expression-n…

Punctuation
Parentheses, commas, semicolons, and other symbols not previously described must be typed
as shown. For example:
DAY (datetime-expression)

@script-file

Quotation marks around a symbol, such as a bracket or brace indicate the symbol is a required
character that you must type as shown. For example:
"{" module-name [, module-name]... "}"

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol,
such as a parenthesis or a comma. For example:
DAY (datetime-expression)

DAY(datetime-expression)

If there is no space between two items, spaces are not permitted. In this example, no spaces
are permitted between the period and any other items:
myfile.sh

Line Spacing
If the syntax of a command is too long to fit on a single line, each continuation line is indented
three spaces and is separated from the preceding line by a blank line. This spacing distinguishes
items in a continuation line from items in a vertical list of selections. For example:
match-value [NOT] LIKE pattern

 [ESCAPE esc-char-expression]

Publishing History

Publication DateProduct VersionPart Number

February 2010N.A.532118-001

May 2011SOAP 4532118–002

March 2012SOAP 4532118–003

February 2013SOAP 4.1532118–004

April 2013SOAP 4.1532118–005

April 2014SOAP 4.1532118–006

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to providing
documentation that meets your needs. Send any errors found, suggestions for improvement, or
compliments to docsfeedback@hp.com.
Include the document title, part number, and any comment, error found, or suggestion for
improvement you have concerning this document.

26

mailto:docsfeedback@hp.com

1 Introduction to NonStop SOAP
NonStop SOAP is a product that runs on an HP NonStop system and enables a Simple Object
Access Protocol (SOAP) client to communicate with the Pathway services and NonStop processes.
NonStop SOAP is based on Apache Axis2/C version 1.5.0. Apache Axis2/C is a Web services
engine developed and maintained by the Apache Software Foundation. For information about the
Apache Axis2/C, see http://ws.apache.org/axis2/c/.
Along with the features provided by Apache Axis2/C, NonStop SOAP customizes Apache Axis2/C
to provide the following additional features:

• Expose NonStop legacy applications as Web services

• Create SOAP protocol-based Web services that run on the NonStop platform

• Create SOAP protocol-based clients that can communicate with SOAP protocol-based services
The NonStop SOAP server implements the SOAP protocol that enables objects running on diverse
platforms to communicate with Pathway applications or NonStop processes. It enables you to
develop applications where the participating entities can reside on different systems and be
implemented using different programming languages. As a result, NonStop SOAP exposes NonStop
applications as Web services that can participate in a service-oriented architecture (SOA)
environment.
The NonStop SOAP key components are:

• NonStop SOAP 4 server – the SOAP server

• SoapAdminCL tool – the SOAP server administration tool

• WSDL2PWY tool – code-generation tool for Pathway services

• WSDL2C tool – code-generation tool for non-Pathway services

• Client and server application programming interface (API) library – collection of C language
API calls that enable you to use NonStop SOAP 4 features.

Supported Standards
The tools provided with NonStop SOAP produce artifacts and code that complies with the following
standards:
• XML version 1.0

• SOAP version 1.1 and 1.2

• XML schema 1.0

• JavaScript version 1.3

• HTTP version 1.1

• HTML version 3.2

• WSDL specification 1.1

• SOAP attachments support implemented using handlers

Supported Standards 27

http://ws.apache.org/axis2/c/

Features of NonStop SOAP
The key features of NonStop SOAP are:

• Support for SOAP 1.1 and SOAP 1.2 standards
NonStop SOAP implements the World Wide Web Consortium (W3C) SOAP 1.1 and SOAP
1.2 standards.

• Support for WS standards
NonStop SOAP implements the following WS standards:

◦ WS-Policy

◦ WS-Security

For more information on NonStop SOAP support for WS standards, see “WS–Security in
NonStop SOAP 4” (page 271) .

• Tools for the service-first development approach
NonStop SOAP provides the SoapAdminCL tool that implements the service-first approach
for developing TS/MP applications. For more information on using the SoapAdminCL tool,
see “NonStop SOAP Tools” (page 194).

• Tools for the contract-first development approach
NonStop SOAP provides the WSDL2C and WSDL2PWY tools that support the contract-first
approach for developing TS/MP and non-TS/MP Web services. For more information on
using the WSDL2C and WSDL2PWY tools, see “NonStop SOAP Tools” (page 194).

• Tools for SOAP client development
NonStop SOAP 4 provides the WSDL2C tool that helps generation of SOAP clients in the C
programming language. For more information on building SOAP clients, see “NonStop SOAP
4 Client APIs” (page 105) .

• Transaction management
NonStop SOAP 4 provides transaction management support for Pathway applications exposed
as Web services using Transaction Management Facility (TMF). For more information on
transaction management in NonStop SOAP 4, see “Transaction Management” (page 236).

• Support for TS/MP and non-TS/MP applications
NonStop SOAP 4 enables you to expose the following applications as Web services:

◦ Pathway application written in C or COBOL programming language

◦ NonStop process-based application written in C or COBOL programming language

◦ DLL-based applications written in the C programming language

• Powerful modular architecture
NonStop SOAP has a modular architecture that can be used to modify the default message
process of the NonStop SOAP 4 server using pluggable modules. For more information about
modules, see “Customizing NonStop SOAP 4 Message Processing” (page 124).
Message Receiver User Functions (MRUF) can be used to modify the message buffer and
Pathway or NonStop process service invocation attributes. For more information about MRUF,
see “Customizing NonStop SOAP 4 Message Processing” (page 124).

28 Introduction to NonStop SOAP

• Hot deployment of services
New services can be deployed or existing services can be removed from NonStop SOAP
without stopping the server.

• Dynamic invocation
A single deployment of NonStop SOAP can be used to expose applications as Web services.
Every application is deployed as a Web service under NonStop SOAP.

• Advanced caching
NonStop SOAP provides built-in caching of services it hosts. The caching functionality helps
you to access the frequently accessed services faster by caching the request and response
structures.

• Encoding support
NonStop SOAP provides native support for more than 1000 character encodings. For more
information on supported encodings, see “NonStop SOAP 4 Features” (page 217).

Architecture of NonStop SOAP
NonStop SOAP server runs under the iTP WebServer and uses it to communicate with SOAP clients
using HTTP.
NonStop SOAP has a modular architecture with individual modules to:

• interact with the iTP WebServer

• process SOAP 1.1 and 1.2 messages

• communicate with Pathway applications and NonStop processes

• manage transactions and WS-Security headers
Figure 1 illustrates the NonStop SOAP architecture.

Architecture of NonStop SOAP 29

Figure 1 NonStop SOAP Architecture

Pathway based
application

NonStop Process
based Application

Pathway dialog
based application

NonStop Process
dialog based
application

SOAP 4 API
based application

CGI Interface

iTP WebServer

NonStop SOAP 4
Administration Utility

SOAP Clients built
SOAP 4 client API

WS-Security

module.xml

Validation

module.xml

Encoding

module.xml

Transaction

module.xml

axis2.xml

iTP_axis2.config

Tools

WSDL2PWY

WSDL2C

SoapAdminCL

services.xml

NonStop SOAP 4 Engine

NonStop SOAP 4

Pathway
Message
Receiver

Pathway XML
Message
Receiver

AXIOM object
Message
Receiver

Web Service

WSDL services.xml

Web Service

WSDL services.xml

Web Service

WSDL services.xml

Web Service

WSDL services.xml

Web Service

services.xml

adminserver

NonStop SOAP 4 has the following components:

• “NonStop SOAP Server” (page 30)

• “NonStop SOAP Tools” (page 31)

• “NonStop SOAP Administration Utility” (page 32)

• “SOAP Clients” (page 32)

NonStop SOAP Server
NonStop SOAP server has the following components:

• “CGI Interface” (page 31)

• “NonStop SOAP 4 Engine” (page 31)

• “TS/MP Message Receiver” (page 31)

• “XML Message Receiver” (page 31)

• “WS-Security Module” (page 31)

• “Transaction Module” (page 31)

30 Introduction to NonStop SOAP

CGI Interface
NonStop SOAP runs as a server class under iTP WebServer. The CGI interface component of
NonStop SOAP is an interface between iTP WebServer and the NonStop SOAP engine. The CGI
interface component processes the Hypertext Transfer Protocol (HTTP) headers in SOAP requests
and adds HTTP headers to the SOAP response.

NonStop SOAP 4 Engine
The NonStop SOAP engine processes the SOAP 1.1 or SOAP 1.2 requests and creates the
appropriate SOAP response. The processing of the NonStop SOAP engine can be customized
using pluggable modules attached to it.

TS/MP Message Receiver
The TS/MP message receiver is an interface between the NonStop SOAP engine and the TS/MP
Web service. The TS/MP message receiver converts the request XML to a buffer that is understood
by the underlying TS/MP application or NonStop process. In response processing, the TS/MP
message receiver converts the response buffer from a TS/MP application or NonStop process to
response XML.

XML Message Receiver
The XML message receiver is an interface between the dynamic-link library (DLL) based Web
services and the NonStop SOAP 4 engine. The XML message receiver creates a data structure in
the C programming language from the XML input and sends it to the DLL-based Web service.

WS-Security Module
The WS-Security module provides support for processing WS-Security headers in SOAP messages.

Transaction Module
The transaction module implements transaction management in SOAP communication between the
client and the Web service.

NonStop SOAP Tools
NonStop SOAP 4 provides the following tools to ease the development of Web services:

• “SoapAdminCL Tool” (page 31)

• “WSDL2C Tool” (page 31)

• “WSDL2PWY Tool” (page 31)

SoapAdminCL Tool
The SoapAdminCL tool is used in the service-first development approach. The SoapAdminCL tool
exposes the underlying TS/MP application or NonStop process as a Web service and generates
the contract for the same.

WSDL2C Tool
The WSDL2C tool is used in the contract-first development approach to create DLL-based Web
services in the C programming language from the WSDL contract.

WSDL2PWY Tool
The WSDL2PWY tool is used in the contract-first development approach to create a C-language
TS/MP application-based Web service from the WSDL contract.

Architecture of NonStop SOAP 31

NonStop SOAP Administration Utility
The NonStop SOAP Administration Utility (T0904) is a Java-based GUI tool that provides functionality
to create and deploy the service definition language (SDL) file from a remote system such as
Microsoft Windows. For more information about the NonStop SOAP 4 Administration Utility, see
“NonStop SOAP Tools” (page 194).

SOAP Clients
The WSDL2C tool can also be used to generate SOAP clients in the C programming language. The
SOAP clients developed using the WSDL2C tool can communicate with any SOAP service on any
platform. For more information on building SOAP clients using the WSDL2C tool, see “NonStop
SOAP 4 Client APIs” (page 105).
Figure 2 shows generation of SOAP clients and their capabilities.

Figure 2 SOAP Clients and their Capabilities

WSDL File

WSDL 2C Tool

Code generation files

SOAP service on
other platforms

SOAP service on
NonStop platforms

Business Logic

SOAP Client on
NonStop platform

The WSDL2C tool generates most of the code to create the SOAP client from the WSDL file. You
must add business logic to the generated code and build the SOAP client.
The SOAP clients generated using the WSDL2C tool can communicate with SOAP services running
on NonStop platforms and other platforms.

Request Processing in NonStop SOAP
NonStop SOAP 4 communicates with the client using the SOAP protocol.
A SOAP message is a well formed XML message that includes:
• An XML declaration (optional)

• A SOAP envelope (the root element) made up of the following:

SOAP Header (optional)◦
◦ SOAP Body

The SOAP envelope must use the SOAP 1.1 or SOAP 1.2 envelope namespace. A SOAP header
is used to transmit data that is not part of the SOAP protocol, but includes transaction-related
information or security-related information. The SOAP body element encapsulates the operation
name and data in the format specified by the WSDL file for the service.
Figure 3 shows a typical SOAP message sent through HTTP.

NOTE: In Figure 3 and Figure 4, all shades of green represent the XML part of the message and
the grey shade represents non-XML part of the message.

32 Introduction to NonStop SOAP

Figure 3 The SOAP Message Format

HTTP Headers

SOAP Envelope

SOAP Body

XML Data

SOAP Header

Figure 4 shows a typical SOAP message (in XML format) sent through HTTP.

Figure 4 The SOAP Message Format (in XML format)

Figure 5 shows the request processing flow for TS/MP based or NonStop process-based Web
services.

Request Processing in NonStop SOAP 33

Figure 5 NonStop SOAP 4 Request Processing Flow for TS/MP or NonStop process-based Web
Services

DLL based
Business Application

Pathway/Process-
based Business

Application

Buffer

Client
HTTP Headers

SOAP Envelope

SOAP Header

XML Data

SOAP Body

CGI Interface SOAP Engine Message
Receiver

SOAP Envelope

SOAP Header

XML Data
XML DataSOAP Body

AWeb service client sends a request to the NonStop SOAP server using the SOAP protocol through
the iTP WebServer. The request message is processed as follows:
1. When this request is received by the NonStop SOAP server, the CGI interface of NonStop

SOAP processes the HTTP headers in the request message and forwards the SOAP envelope
to the NonStop SOAP engine.

2. The NonStop SOAP engine processes the SOAP envelope, SOAP body, and the SOAP header.
The XML request inside the SOAP body is then sent to the message receiver.

3. The message receiver converts the XML request to a format understood by the underlying
business application and sends the request data to the business application. NonStop SOAP
converts the response received from the business application to a SOAP message and sends
this response to the Web service client through the iTP WebServer.
For example, in a Pathway or process service invocation, the XML request is converted to a
character buffer by the Pathway message receiver and is sent to a server class or process
respectively. The server class or process sends the response buffer which is then converted
into response XML by the Pathway message receiver.

Compatibility
NonStop SOAP 4 is backward compatible with NonStop SOAP 3.
Services developed in NonStop SOAP 4 are compatible with:
• SOAP clients that support SOAP 1.1 and SOAP 1.2 protocol.

• SOAP clients that communicate with NonStop SOAP 3 services.
Clients developed in NonStop SOAP 4 are compatible with:

• SOAP services that support SOAP 1.1 and SOAP 1.2 protocol

• SOAP services developed in NonStop SOAP 3.

Migration
NonStop SOAP 4 provides tools to migrate NonStop SOAP 3 services to NonStop SOAP 4 services.
The information in the SDR used by the NonStop SOAP 3 services, can be extracted into NonStop
SOAP 4 compatible SDL using the SoapAdminCL tool or the NonStop SOAP 4 Administration
Utility (T0904). The SDL generated from the SDR is then used to migrate NonStop SOAP 3 service
to a NonStop SOAP 4 service.
The SoapAdminCL tool or the NonStop SOAP 4 Administration Utility (T0904) can also be used
to generate WSDL files which are compatible with the NonStop SOAP 3 service that is being

34 Introduction to NonStop SOAP

migrated. This allows the WSDL-based clients to seamlessly communicate with the migrated NonStop
SOAP 4 service.
For information on how to migrate NonStop SOAP 3 services to NonStop SOAP 4 services, see
“Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions” (page 52).

Migration 35

2 Installing NonStop SOAP
This chapter describes the procedure to install NonStop SOAP on the NonStop system. It also
describes the steps to deploy a sample Web service and the adminserver service.
The following tasks are described in this chapter:
• “Setting Up NonStop SOAP on a NonStop System” (page 36)

• “Deploying a Sample Web Service” (page 44)

• “Deploying the adminserver Service” (page 50)

Prerequisites
Before you start, ensure that the following software is installed on the NonStop system:
• Open System Services (OSS) environment installed on a NonStop system H06.21 or later.

• NonStop iTP WebServer 6.0 or later

• NonStop TS/MP 2.0 or later

• Data Definition Language (DDL) compiler 6.0 or later

• NonStop XML parser

NOTE: Ensure that you have read/write access to the OSS directory.

Setting Up NonStop SOAP on a NonStop System
Setting up NonStop SOAP on a NonStop system involves the following steps:
1. “Installing NonStop SOAP” (page 36)
2. “Setting up the Deployment Environment” (page 38)
3. “Tuning NonStop SOAP ” (page 42)
4. “Running NonStop SOAP ” (page 42)
5. “Setting up Multiple NonStop SOAP Deployment Instances in a Single iTP WebServer”

(page 43)

Installing NonStop SOAP
Install NonStop SOAP on the target system using one of the following methods:
1. Default location installation

• Using the DSM/SCM Planner Interface
2. Non-standard location installation

• Using PINSTALL utility in Guardian environment

• Using PAX command in OSS environment

Default location installation
This is the default method of installation to the target location. You can use the Distributed Systems
Management/Software Configuration Manager (DSM/SCM) Planner Interface for this method of
installation. Receive the file from disk or tape to a guardian location on the target system and
follow the steps as described below:
1. RECEIVE the product SPR files from the disk (distribution subvolume (DSV) locations) or tape.
2. COPY the SPR to a new revision of the software configuration that is being updated.

36 Installing NonStop SOAP

3. BUILD and APPLY the configuration revision.
In the DSM/SCM planner interface, if you select Maintain > Target Maintenance > Modify >
MANAGE OSS FILES option, the files are automatically extracted by DSM/SCM into the default
location /usr/tandem/nssoap/t0865h01_<XXX>, where <XXX> is the SPR ID.
If you do not select the MANAGE OSS FILES option, the PAX file is only copied to the
$tsvvol.ZOSSUTL subvolume, but not extracted to the /usr/tandem/nssoap/ location.
You must then manually extract the PAX file using the PINSTALL utility or the PAX command
as described in the subsequent sections.

4. Run ZPHIRNM to perform the RENAME.

NOTE: The DSM/SCM interface does not support multiple installations. If you install NonStop
SOAP 4 using DSM/SCM, the existing installation of NonStop SOAP 4 is replaced by the new
installation. However, if you want to have multiple installations on the target system, follow the
Non-standard location installation method, using the PINSTALL utility or the PAX command.

Non-standard location installation
In this method of installation, you can use either PINSTALL utility or the PAX command to extract
the PAX file to any location.

Using PINSTALL Utility in Guardian Environment
1. Go to the Guardian subvolume $ISV.ZOSSUTL where the PAX file is located:

TACL> VOLUME $ISV.ZOSSUTL

where, ISV is the installation volume where SUT or OSS Utils are installed.

2. Extract the T0865PAX file using the PINSTALL command:
TACL> PINSTALL -s:<version-specific directory>:<your-install-dir>: -rvf T0865PAX

where,
<version-specific directory> is of the form /usr/tandem/nssoap/
t0865h01_<XXX> (<XXX> being the SPR ID). For example, /usr/tandem/nssoap/
t0865h01_AAA, and
<your-install-dir> is an OSS directory of your choice.

NOTE:
• $ISV.ZOSSUTL is the target location specified during export of PAX file from DSM/SCM

or when installing SUT via DSM/SCM.
• If the –s option is not given, PINSTALL by default extracts the PAX to the

<version-specific directory>.
• For more information about using PINSTALL, see theOpen System Services Management

and Operations Guide.

Using PAX Command in OSS Environment
Go to the folder where T0865PAX is located and use the following command:
pax -rvf T0865PAX

NOTE: The PAX command extracts the product files from the T0865PAX file and places them in
a version specific OSS directory, like /usr/tandem/nssoap/t0865h01_AAA where, AAA is
the SPR ID.

For more details on the files and folder structure, see “Install Files and Folders” (page 308).

Setting Up NonStop SOAP on a NonStop System 37

Setting up the Deployment Environment
After NonStop SOAP is installed, you must create at least one NonStop SOAP deployment
environment by running the NonStop SOAP deployment script. The deployment script will create
a new NonStop SOAP deployment under the iTP WebServer you choose, and install the echo
sample service and echo client. You can deploy multiple instances of NonStop SOAP on the same
NonStop system. Multiple instances of NonStop SOAP can be deployed under different iTP
WebServers or under the same iTP WebServer.
For more information see “Setting up Multiple NonStop SOAP Deployment Instances in a Single
iTP WebServer” (page 43).
Figure 6 shows the NonStop SOAP 4 deployment directory that is created after running the
deployment script and its relationship with the NonStop SOAP Installation directory.

Figure 6 NonStop SOAP 4 Installation and Deployment Environment

/logs

/client
/client/echo

/services
/services/echo

deploy_instructions

/include

/lib

/modules/rampart/
/modules/transaction/
/modules/validation/
/modules/encoding/

/bin/
axis2cgi.pway

itp_axis2.config

axis2.xml

create

copy

softlink

softlink

softlink

softlink

create

create

create

create

axis2.xml

/bin/
axis2cgi.pway

/lib

/include

/sample_services

/tools

/bin/deploy.sh

Installation NonStop SOAP 4
Installation Directory Deployment

NonStop SOAP 4 Deployment

local.config

iTP Web Server

create/update

/modules/rampart/
/modules/transaction/
/modules/validation/
/modules/encoding/

NOTE: If you reinstall NonStop SOAP, you must redeploy it to create the soft links.

To deploy NonStop SOAP on the iTP WebServer, complete the following steps:

• “Running the Deployment Script” (page 39)

• “Modifying the local.config file” (page 41)

38 Installing NonStop SOAP

Running the Deployment Script
To set up the deployment environment, complete the following steps:
1. Ensure that the iTP WebServer is installed on your NonStop server. For more details, see iTP

WebServer Installation Manual.
2. Go to <NonStop SOAP 4 Installation Directory>/bin and run the deploy.sh

script.
For example:
 OSS> cd /usr/tandem/nssoap/t0865h01/bin
 OSS> ./deploy.sh

where,
/usr/tandem/nssoap/t0865h01

is the NonStop SOAP installation directory.
3. Select a task from the following deploy.sh script main menu:

1. Setup NonStop SOAP deployment environment.
2. Setup the empdb sample Web services environment.
3. Setup the adminserver Web services environment.
4. Quit.

4. Select "1 Setup NonStop SOAP deployment environment" in the deploy.sh
script menu.
The following messages appear.
 --- The NonStop SOAP 4 installation location is /usr/tandem/nssoap/t0865h01

 === Enter the directory where NonStop SOAP 4 will be deployed
:

5. Enter the path where you want to create the deployment directory.
For example:
/home/usr/my_nssoap

NOTE:
• The deployment directory will be referred as <NonStop SOAP Deployment

Directory> throughout this chapter.
• While specifying the deployment directory, do not give a location that has the $ character

in it.

The following message appears.
 === Enter a string value which will be used to define the URL pattern for accessing the web services
deployed in this environment (default axis2c)
:

6. Enter a string value that will be used to define the url_pattern for accessing Web services
or
Press Enter to accept the default value, that is, axis2c.
The Web address pattern must be a unique string. It must be unique among all other instances
of NonStop SOAP deployment on that iTP WebServer. The following messages appears.
 --- The URL pattern to access your wsdl files will be:
http://<your_ip_address>:< your_port>/<url_pattern>/services/< your service>?wsdl

--- The URL pattern to access your generated HTML files will be:
http://<your_ip_address>:< your_port>/<url_pattern>/client
 === Enter a string value which will be used to define the Serverclass name for this Soap Server deployment
 under iTP WebServer (default axis2cgi)
:

Here the string value will be a part of the Web address to access Web services deployed in
this deployment environment. The Web address pattern is shown in the previous message.

Setting Up NonStop SOAP on a NonStop System 39

where,
< ip address> : <port>

is the IP address and port of iTP WebServer with which NonStop SOAP 4 is integrated.
url_pattern

is the string value entered in this step.
services

is the name of the directory in < NonStop SOAP 4 Deployment Directory > where
NonStop SOAP services are present.

NOTE: Do not rename this directory. This directory must be named as services and placed
in < NonStop SOAP 4 Deployment Directory >. All services in NonStop SOAP have
their individual sub-directories in the services directory.

< service_name>

is a sub-directory in the services directory that includes the runtime files needed to deploy
a service in NonStop SOAP. For example, if you accept the default value (axis2c), the Web
address to access a service called myservice will be:
http://127.0.0.1:8088/axis2c/services/myservice

The following message appears.
=== Enter a string value which will be used to define the Serverclass name for
this Soap Server deployment under iTP WebServer (default axis2cgi)
:

7. In the following step enter a string value that will be used to define the Soap ServerClass name
for current Soap 4 deployment
or,
Press Enter to accept the default value, that is, axis2cgi. The Soap ServerClass name must
be a unique string. It must not be similar to any other instance of NonStop SOAP deployment
on that iTP WebServer. This is used to create the softlink for < NonStop SOAP
Installation Directory>/bin/axis2cgi.pway file and create entry in < NonStop
SOAP Deployment Directory>/itp_axis2.config file.
The following message appears:
 === Enter iTP Webserver's location

=== Press Enter if you do not want to deploy under running web server

8. In the following step enter the location where the iTP WebServer is installed. If you enter your
WebServer's location, the local.config file for your WebServer will be modified to start
this SOAP 4 deployment. Press ENTER if you do not know the location of the iTP WebServer
you plan to use this SOAP 4 deployment.
For example: /home/usr/my_webserver

NOTE:
• Enter the absolute path where the iTP WebServer is installed. This location must include

httpd.config file.

• While specifying the WebServer’s directory, you must not include $ character in location.

• If httpd.config file does not include the reference to local.config file, a reference
will be created. If local.config file does not exist, then it will be created. The
local.config will be modified to source in the SOAP server's config file during iTP
WebServer startup.

9. The following message appears:
nl

40 Installing NonStop SOAP

=== Press ENTER to deploy NonStop SOAP 4 at the deployment location and install the echo
sample service.
If web server's location is provided in earlier steps, The following message appears:
 === Do you want to restart the iTP Webserver now? (y/n)

Provide your option Y/N. If 'Y' is provided, this will restart the iTP Web server under which
the current SOAP server is deployed.
The following message appears:
 === Press ENTER to return to the main menu

10. After NonStop SOAP is deployed and the echo sample service is installed, select a task from
the following options:
• Select option 2 for “Deploying the empdb Service” (page 44)

• Select option 3 for “Deploying the adminserver Service” (page 50)

• Select option 4 to Quit

NOTE: For the complete list of folders and files, see “Install Files and Folders” (page 308).

Modifying the local.config file
If you have not specified the location of your iTP WebServer deployment during the execution of
the SOAP 4 deployment script, then you must manually edit the local.config file in your iTP
WebServer's conf directory according to the following instructions:
Copy the following lines of code from the deploy_instructions file (created in <NonStop
SOAP Deployment Directory>) and append it to the local.config file (in the <iTP
WebServer Deployment Directory>/conf directory):
 #### Begin (lines to be added to iTP WebServer's local.config file) ####

 if { [file exists <NonStop SOAP 4 deployment directory>/itp_axis2.config] } {
 source <NonStop SOAP deployment directory>/itp_axis2.config
 }

 #### End (lines to be added to iTP WebServer's local.config file) ####

For example:
 #### Begin (lines to be added to iTP WebServer's local.config file) ####

 if { [file exists /home/usr/my_nssoap/itp_axis2.config] } {
 source /home/usr/my_nssoap/itp_axis2.config
 }

 #### End (lines to be added to iTP WebServer's local.config file) ####

where,
/home/usr/my_nssoap

is the <NonStop SOAP 4 Deployment Directory>.

Setting Up NonStop SOAP on a NonStop System 41

NOTE:
• <iTP WebServer Deployment Directory> is the OSS directory where iTP WebServer

is deployed using the iTP WebServer setup script.
• If the iTP WebServer is configured to use a TCP/IP process other than /G/ZTC0, check the

following directive is there in the itp_axis2.config file. If it is not there then add it in the
file:
Server $Axis2c {

 ...

 MapDefine =TCPIP^PROCESS^NAME $transport

 ...

}

For additional information on how to verify the iTP WebServer configuration, see the iTP
Secure WebServer System Administrator’s Guide. For information on the itp_axis2.config
file, see “NonStop SOAP 4 Configuration Files”.

NonStop SOAP is now deployed on the iTP WebServer and is set up in the <NonStop SOAP 4
Deployment Directory>. The same way NonStop SOAP can be deployed on secure iTP
WebServer by updating the local.config in the < Secure iTP WebServer Deployment
Directory>/conf directory. You can set up multiple deployment instances of NonStop SOAP
on the same NonStop system. For more information on setting up multiple deployment instances,
see “Setting up Multiple NonStop SOAP Deployment Instances in a Single iTP WebServer”
(page 43).

Tuning NonStop SOAP
The AXIS2CGI server class that implements the SOAP 4 server is a single-threaded process and
only services one SOAP request at a time. If you want that multiple SOAP requests be serviced
concurrently, you must configure the iTP WebServer PATHMON in which SOAP 4.1 is running to
have additional static or dynamic copies of the AXIS2CGI server class.
For information on how to tune a server class, see the TS/MP System Management Manual.

Running NonStop SOAP
After deploying NonStop SOAP on the iTP WebServer, you can run it on a NonStop system.
To run NonStop SOAP on a NonStop system, complete the following steps:

NOTE: You can skip step1, if iTP Webserver is restarted while deploying NonStop SOAP 4.

1. Go to the <iTP WebServer Deployment Directory>/conf directory and run the
restart script:
OSS> cd <iTP_WebServer_Deployment Directory>/conf
OSS> ./restart

This command restarts the iTP WebServer and NonStop SOAP 4.
2. Verify that iTP WebServer and NonStop SOAP 4 are running:

OSS> gtacl -c 'pathcom <PATHMON_name>; status server *'

where,
<PATHMON_name>

is the name of the PATHMON on which iTP WebServer is running.
This command returns the following statistics to verify if iTP WebServer and NonStop SOAP
4 are running:
 SERVER #RUNNING ERROR INFO
 AXIS2CGI 1

42 Installing NonStop SOAP

 GENERIC-CGI 1
 HTTPD 1

NOTE:
• AXIS2CGI represents a server class name.

• A value of 1 for GENERIC-CGI or HTTPD indicates that iTP WebServer is running.

• A value of 0 for GENERIC-CGI or HTTPD indicates that iTP WebServer is not running
and an error number is displayed in the respective ERROR column. For more information
about the error and its resolution, see the NonStop TS/MP Pathsend and Server
Programming Manual.

After NonStop SOAP 4 is deployed and running, you can access the echo sample service. The
echo sample returns the same value in the response which you send in the request.

Accessing the echo service
To access the echo service, run the command-line client echo.exe. The echo.exe file is located
in the <NonStop SOAP 4 Deployment Directory>/client/echo directory.
OSS> cd <NonStop SOAP 4 Deployment Directory>/client/echo
OSS> ./echo.exe http://<ip address>:<port>/<url_pattern>/services/echo

The echo.exe file sends requests to the NonStop SOAP 4 server and displays the following output:
No CLIENT HOME specified. Using default AXIS2C_HOME=<NonStop SOAP 4 Deployment Directory>

Using endpoint : http://www.nonstopsoap.com/axis2c/services/echo

Sending OM : <ns1:echoString xmlns:ns1="http://ws.apache.org/axis2/services/echo
"><text>Hello</text></ns1:echoString>

Received OM : <ns1:echoString xmlns:ns1="http://ws.apache.org/axis2/c/samples"><
text>Hello</text></ns1:echoString>

echo client invoke SUCCESSFUL!

The echo sample generates echo.log and echo.log.trc log files in the <NonStop SOAP 4
Deployment Directory>/logs directory.
The echo.log file contains log messages from NonStop SOAP libraries. The log levels are set in
itp_axis2.config file. For information on setting the log levels, see “Defining the Log Levels
of the NonStop SOAP 4 Server” (page 178).
The echo.file.trc file contains the message processing details. The log contains both the entry
and exit points for functions in the order in which they are run. The messages in echo.file.trc
file are used for debugging the echo sample.

Setting up Multiple NonStop SOAP Deployment Instances in a Single iTP WebServer
To set up multiple deployment instances of NonStop SOAP to run in a single instance of iTP
WebServer, complete the following steps:
1. Create more than one NonStop SOAP deployment directories using deploy.sh script.“Setting

up the Deployment Environment” (page 38):
• <NonStop SOAP Deployment Directory 1>

• <NonStop SOAP Deployment Directory 2>
For multiple directories, you can create directories, such as NonStop SOAP Deployment
Directory 3, 4.....

Setting Up NonStop SOAP on a NonStop System 43

NOTE: Ensure the following while creating the directories:
• When running the deploy.sh script, the Soap ServerClass name must be a unique

string. It must not be similar to any other instance of NonStop SOAP deployment on that
iTP WebServer.

• If you want to manually edit the local.config file, update the file for both the NonStop
SOAP deployment directories, by using the instructions mentioned in “Setting up the
Deployment Environment” (page 38).

• When running the deploy.sh script, the Web address pattern must be a unique string.
It must not be similar to any other instance of NonStop SOAP deployment on that iTP
WebServer.

2. The Soap ServerClass name is used to create the softlink for < Installation_Dir>/bin/
axis2cgi.pway file as follows.
<NonStop SOAP 4 Deployment Directory 2>/bin/< $Soap ServerClass>.pway

3. The deploy.sh script also uses Soap ServerClass name to make the entry in < NonStop
SOAP 4 Deployment Directory>/itp_axis2.config file as follows.
set Axis2c $AXIS2_DEPLOYMENT_ROOT/bin/< $Soap ServerClass>.pway

NOTE: You can skip step 4 if iTP Webserver is restarted while deploying the NonStop SOAP
4.

4. Go to the < iTP WebServer Deployment Directory>/conf directory and run the
restart script using the following command:
OSS> cd < iTP_WebServer_Deployment Directory>/conf

OSS> ./restart

This command restarts the iTP WebServer and the NonStop SOAP system with more than one
deployment instance of NonStop SOAP.

For accessing the Web services deployed on multiple NonStop SOAP Deployment instances in a
Single iTP WebServer by using different url_pattern.

NOTE: Ensure that the url_pattern is different for all deployment instances.

Deploying a Sample Web Service
The NonStop SOAP distribution includes the following sample services: empdb, echo, reflector,
and math. This section describes the steps to deploy the empdb service.

NOTE: The deploy.sh script enables you to set up only the empdb, and the echo services.

Deploying the empdb Service
The empdb service enables you to:

• Add an employee and the employee details, such as Employee number, Firstname,
Middlename, Lastname, Registration number, and Branch number.

• Search for an employee using Employee number.

• Delete an employee using Employee number.
Deploying the empdb sample service involves the following steps:
1. “Setting up the empdb environment” (page 45)
2. “Accessing the empdb service” (page 48)

44 Installing NonStop SOAP

Setting up the empdb environment
To set up the empdb service environment, complete the following steps:
1. Go to <NonStop SOAP 4 Installation Directory>/bin and run the deploy.sh

script.
For example:
 OSS> cd /usr/tandem/nssoap/t0865h01/bin
 OSS>./deploy.sh

where,
/usr/tandem/nssoap/t0865h01 is the NonStop SOAP 4 installation directory.

2. The following messages appear showing the installation location being used:
Setting up NonStop SOAP 4 empdb sample web services

--- The NonStop SOAP 4 installation location is /usr/tandem/nssoap/t0865h01

=== Enter a NonStop SOAP 4 deployment directory path
:

NOTE:
1. If you did not exit the deploy.sh script after “Setting up the Deployment Environment”

(page 38), you will be prompted with default deployment path. Press Enter to accept
default path or enter the different deployment path.

2. If you try to deploy empdb service in the location where the empdb service is already
deployed then you will be prompted to redeploy it or not as in following message:
The empdb service already deployed.

Do you want to redeploy it? y/n

Note: This will overwrite the existing deployment and will shutdown and restart the existing Pathmon:

3. Enter the path of the <NonStop SOAP 4 Deployment Directory> to get the following
message.
 Enter a Pathmon name for the sample Employee Serverclass (e.g. $pmon)
:

NOTE: If you specify a PATHMON name which already exists, you will be prompted with
options as in the following message:

The Pathmon name you have entered already exists. Please select a task from the following options:

1. Give different PATHMON name

2. Proceed with the given PATHMON name

Note: This will shutdown and restart the existing PATHMON

3. Quit

Enter Your Choice:

where,
Option 1 allows you to specify a different PATHMON name.
Option 2 proceeds with the same PATHMON name, you will be prompted with the following
message:

=== Are you sure?(y/n):

 All server configurations under this pathmon will be lost

 and the servers will be stopped.

Option 3 exits the script.

Deploying a Sample Web Service 45

4. Enter the PATHMON name where the empdb server class will run the empdb server instance.
The following message appears.
Enter the Guardian location where the DDL dictionary for the empdb sample will be created (e.g. $data.dict)
Note: You should have write access to this location:

NOTE: If you specify a Guardian location which already exists, you will be prompted with
options as in the following message.
The Guardian location you have entered already contains dictionary files.

Please select a task from the following options:

1. Give different guardian location

2. Append or Update to existing dictionary files and purge empdb sample specific files

3. Purge all existing dictionary and empdb sample specific files

4. Quit

Enter your Choice:

where,
Option 1 allows you to specify a different Guardian location.
Option 2 , will cause empdb sample specific files to be purged and existing dictionaries to
be appended/updated with the empdb service dictionaries.
Option 3 purges the existing dictionaries and empdb service related files and proceed with
current dictionary location.
Option 4 exits the script.

5. Enter the $<volume>.<subvolume> location to which you have write access.
For example:
$data.empdict

The deploy.sh script sets up the empdb environment and starts the empdb service. If the
setup is successful, the deploy.sh script displays the following message:
"empdb sample web service setup completed SUCCESSFULLY"

If the setup is not successful, the deploy.sh script displays the following message:
"empdb sample web service setup failed".

For more information on the errors, see the < NonStop SOAP 4 Deployment
Directory>/services/empdb/src/deploy_out file. This file includes the execution
summary and detailed error messages of the deploy.sh script.

46 Installing NonStop SOAP

6. The following files and folders are present in the <NonStop SOAP 4 Deployment
Directory>:
• /services

◦ /empdb

– SoapPW_empdb.wsdl - the WSDL file for the empdb sample application

– /bin

– empdb - employee database service executable

– services.xml - the service configuration file for the empdb sample application

– /src
– Makefile - Makefile for the empdb service

– README - readme file describing steps to use the empdb application

– deploy_out - log file generated during deployment.

– emp.c - source file for the empdb service

– emp.h - header file for the empdb service

– empddl - DDL file for the empdb service

– empsdl.xml - SDL file for the empdb sample application

• /client

Deploying a Sample Web Service 47

◦ /empdb

– SoapPW_EmpAdd.html - client for the add employee operation

– SoapPW_EmpDel.html - client for the delete employee operation

– SoapPW_EmpInfo.html - client for the Info employee operation

– /pway-xml - sample request/response files
– SoapPW_EmpAdd.xml - employee Add operation request file

– SoapPW_EmpAddResponse0.xml - employee Add operation response
file

– SoapPW_EmpAddResponse1.xml - employee Add operation fault
response file

– SoapPW_EmpDel.xml - employee Delete operation request file

– SoapPW_EmpDelResponse0.xml - employee Delete operation response
file

– SoapPW_EmpDelResponse1.xml - employee Delete operation fault
response file

– SoapPW_EmpInfo.xml - employee Information operation request file

– SoapPW_EmpInfoResponse0.xml - employee Information operation
response file

– SoapPW_EmpInfoResponse1.xml - employee Information operation
fault response file

– /pway-xsd - XML schema files
– SoapPW_EmpAdd.xsd - employee Add operation request schema file

– SoapPW_EmpAddResponse0.xsd - employee Add operation response
schema file

– SoapPW_EmpAddResponse1.xsd - employee Add operation fault
response schema file

– SoapPW_EmpDel.xsd - employee Delete operation request schema file

– SoapPW_EmpDelResponse0.xsd - employee Delete operation response
schema file

– SoapPW_EmpDelResponse1.xsd - employee Delete operation fault
response schema file

– SoapPW_EmpInfo.xsd - employee Information operation request schema
file

– SoapPW_EmpInfoResponse0.xsd - employee Information operation
response schema file

– SoapPW_EmpInfoResponse1.xsd - employee Information operation fault
response schema file

Accessing the empdb service
To access the empdb service, complete the following steps:
1. Ensure that the iTP WebServer/ Pathmon is deployed on the NonStop server. Please see the

iTP WebServer Installation Manual.
2. Verify that the empdb service is running, using the command:

 OSS> gtacl -c 'pathcom <PATHMON_name>; status server *'

48 Installing NonStop SOAP

where,
<PATHMON_name> is the name of the PATHMON entered while setting up the empdb
environment.
This command returns the following statistics:
 SERVER #RUNNING ERROR INFO
 EMPDB 1

3. Access the empdb service using the following Web address pattern:
http://<ip address>:<port>/<url_pattern>/client/empdb/<html_client_name>

where,
<ip address>:<port>

is the IP address and port of iTP WebServer integrated with NonStop SOAP.
url_pattern

is the string entered in Step 6 in “Setting up the Deployment Environment” (page 38). The
default value is axis2c.

client

is the name of the directory in <NonStop SOAP 4 Deployment Directory> where
NonStop SOAP 4 HTML clients for the empdb service are located.

empdb

is a sub-directory in the client directory. The empdb sub-directory includes the HTML clients
that you must access the operations offered by the empdb service.

<html_client_name>

is the name of the HTML client in the client/empdb directory.

NOTE: To access the WSDL file for the empdb service, enter the following Web address on
your browser:
http://<ip address>:<port>/<url_pattern>/services/empdb?wsdl

To create a client for the empdb service using the WSDL file, ensure that the <soap:address
location> element in the WSDL file is updated to reflect the correct iTP WebServer IP address
and port number.
For example:
 <service name="empdbService">

 <port name="portempdb" binding="def:empdbBinding">

 <soap:address location="http://www.nonstopsoap.com/axis2c/services/empdb"/>

 </port>

 </service>

where,
www.nonstopsoap.com

is the iTP WebServer IP address and port number in the format <ip address>:<port>.
axis2c

is the url_pattern. If you have entered a different string for your url_pattern, the
same will be reflected in the WSDL file instead of axis2c.

4. You can access the HTML clients using the following Web address:
http://<ip address>:<port>/<url-pattern>/client

Deploying a Sample Web Service 49

The links to HTML clients for the following empdb service operations are displayed on the
browser:

DescriptionFilename

HTML client for the employee add operation.
For Example:

SoapPW_EmpAdd.html

request_code : 02 (request code for add
 employee operation)
employee_info
employee_number : 0001 (employee number
 is the primary key)
empname
 first : John
 last : Doe
 middle : M
 regnum : 12
branchnum : 12

The request code for the add employee operation is 02.

HTML client for the employee info operation.
For Example:

SoapPW_EmpInfo.html

request_code : 01 (request code for Info
 Employee operation)
employee_number : 0001

The request code to receive employee information
operation is 01.

HTML client for the employee delete operation.
request_code : 03 (request code for
delete employee operation)
employee_number : 0001

SoapPW_EmpDel.html

The request code to delete an employee operation is
03.

Deploying the adminserver Service
Deploying the adminserver service enables you to use the NonStop SOAP Administration Utility.
To deploy the adminserver service, you must set up the adminserver environment, which
involves the following steps:
1. “Setting up the adminserver Environment” (page 50)
2. “Accessing the adminserver Service” (page 51)

Setting up the adminserver Environment
To set up the adminserver environment, complete the following steps:
1. Go to <NonStop SOAP 4 Installation Directory>/bin and run the deploy.sh

script.
For example:
 OSS> cd /usr/tandem/nssoap/t0865h01/bin
 OSS>./deploy.sh

2. Select "3 Setup the adminserver web services environment".
The following message appears displaying the installation location being used:

--- The NonStop SOAP 4.1 installation location is /usr/tandem/nssoap/t0865h01
=== Enter a NonStop SOAP 4 deployment directory path:

50 Installing NonStop SOAP

NOTE:
• If you did not exit the deploy.sh script after “Setting up the Deployment Environment”

(page 38), you will be prompted with default deployment path. Press Enter to accept
default path or enter the different deployment path.

• If you try to deploy adminserver service in the location where the adminserver
service is already deployed then you will be prompted to redeploy it or not as in following
message:

=== Enter a NonStop SOAP 4 deployment directory path

: /home/username/soap0

*** Warning: The Adminserver already deployed.

Do you want to redeploy it? (y/n)

Note: This will overwrite the existing deployment.

3. Enter the absolute path of the <NonStop SOAP 4 Deployment Directory> directory.
The deploy.sh script sets up the adminserver environment.

4. The following files and directories are present in <NonStop SOAP 4 Deployment
Directory>:
• /services

◦ /adminserver

– libadminserver.so - the adminserver service built using NonStop SOAP
4 server APIs.

– services.xml - NonStop SOAP 4 service configuration file for the
adminserver service.

Accessing the adminserver Service
You can access the adminserver service using the NonStop SOAP Administration Utility running
on your Microsoft Windows system. For information on NonStop SOAP 4 Administration Utility,
see “The NonStop SOAP 4 Administration Utility” (page 215).

Deploying the adminserver Service 51

3 Migrating NonStop SOAP 3 Services to NonStop SOAP
4 or Higher Versions

NonStop SOAP enables migration of existing NonStop SOAP 3 services to NonStop SOAP 4 or
4.1.
This chapter includes the following topics:
• “Prerequisites” (page 52)

• “Migrating the NonStop SOAP 3 Services” (page 52)

• “Migrating NonStop SOAP 3 Transactions” (page 58)

• “Migrating NonStop SOAP 3 User-exits” (page 61)

Prerequisites
Before you start, ensure that you have the following information:

• <NonStop SOAP 4 Installation Directory>

This is the directory where NonStop SOAP 4 is installed.
For information on installing NonStop SOAP 4, see Chapter 2: “Installing NonStop SOAP”
(page 36).

• <NonStop SOAP 4 Deployment Directory>

This is the directory where NonStop SOAP is deployed.
For information on deploying NonStop SOAP , see “Setting up the Deployment Environment”
(page 38).

• Read and write permissions for the NonStop SOAP deployment directory.

• Read permission to the Guardian location of the DDL dictionary files of the service to be
migrated.

• Read permission to the Guardian location of the service definition repository (SDR) file for the
Pathway application that is deployed as a Web service in NonStop SOAP 3.

• The IP address and port number of iTP WebServer, in which NonStop SOAP 4 is deployed.

Migrating the NonStop SOAP 3 Services
Migrating the NonStop SOAP 3 services involves the following:

• “Generating SOAP 4 Service Artifacts and Client Files from NonStop SOAP 3” (page 52)

• “Accessing the Migrated Application” (page 56)

Generating SOAP 4 Service Artifacts and Client Files from NonStop SOAP 3
NonStop SOAP 3 uses the SDR file to map the request and response patterns for the services
deployed in it. NonStop SOAP uses the WSDL file with integrated XML schema to map the request
and response patterns for the services deployed in it .

NOTE: The SDR file is a key-sequenced Enscribe file stored at a Guardian location.

Figure 7 shows the processing logic in NonStop SOAP 3 and NonStop SOAP 4.1.

52 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

Figure 7 Processing Logic in NonStop SOAP 3 and NonStop SOAP 4.1

Service

WSDL

</>

</>

Services.xml

SDR

NonStop
SOAP 3 Server

NonStop
SOAP 4 Server

You can use the SoapAdminCL tool (available with the NonStop SOAP 4.1 distribution) to convert
the NonStop SOAP 3 SDR file and the DDL dictionary files to the NonStop SOAP 4.1
services.xml file and WSDL files. For all the operations of the service, the SoapAdminCL tool
generates the SOAP request and response XML files, XML schema files, and HTML client files.

NOTE: You must not stop a service to migrate it from NonStop SOAP 3 to NonStop SOAP 4.1.
This means that your clients using the service do not experience any downtime.

Migrating and deploying an application from NonStop SOAP 3 to NonStop SOAP 4.1 requires
the following tasks:
• “Generating the SDL File from the NonStop SOAP 3 SDR File” (page 53)

• “Modifying the SDL File” (page 54)

• “Generating the HTML Client, WSDL, XML Schema, and services.xml Files to Deploy the
Service” (page 54)

• “Migration Considerations” (page 56)

Generating the SDL File from the NonStop SOAP 3 SDR File
If you do not have the SDL file for the NonStop SOAP application, you can generate it from the
NonStop SOAP 3 SDR file using the SoapAdminCL tool.

NOTE: For information about using the SoapAdminCL tool, see Chapter 10: “NonStop SOAP
Tools” (page 194).

To generate the SDL file from the NonStop SOAP 3 SDR file, complete the following steps:
1. Set the OSS environment variable SOAP_SDLDB_LOC to the Guardian location where the

SDR file for the NonStop SOAP 3 application is available:
OSS> export SOAP_SDLDB_LOC=\$<datavol>.<subvol>

For example:
OSS> export SOAP_SDLDB_LOC=\$data.soapapp

2. Add the directory containing the SoapAdminCL executable image to the OSS PATH variable.
OSS>export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS>export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

3. Go to the OSS directory where you want to generate the SDL file:
OSS> cd <My SDL location>

For example:

Migrating the NonStop SOAP 3 Services 53

OSS> cd /home/usr/mysdl

4. Generate the SDL file using the SoapAdminCL tool:
OSS> SoapAdminCL –e <SDL file name>

For example:
OSS> SoapAdminCL –e soapapp.sdl

The SoapAdminCL command extracts all the services defined in the SDR file and generates
the SDL file for the NonStop SOAP 3 application in the current directory.

NOTE:
• The default values of the Url and ServerAddress attributes in the sdl element are filled

in with default values of /axis2c and http://www.nonstopsoap.com respectively. You
must modify these values in the extracted SDL file so that it conforms to your NonStop SOAP
deployment environment.

• The DDL dictionaries must be available at the Guardian location specified in the
DDLDictionaryLocation attribute of the generated SDL file. If the DDL dictionaries are
not available, compile the DDL file to generate the DDL dictionaries at the location mentioned
in the DDLDictionaryLocation.

• You must have read access to the Guardian location where the DDL dictionaries are present.

Modifying the SDL File
After generating the SDL file, modify the Url and ServerAddress attributes in the sdl element
to the NonStop SOAP 4 deployment values.
To modify the SDL file, complete the following steps:
1. Add or update the value of the Url attribute in the SDL element to access the NonStop SOAP

4 service in the SDL file:
Url="/<url_pattern>"

For example:
<sdl Url="/axis2c" ServerAddress=”http://127.0.0.1:8080” >

where,
axis2c is the string entered for the <url_pattern> during the installation procedure.

2. Add or update the IP address and port number of iTP WebServer integrated with the NonStop
SOAP 4 deployment:
ServerAddress="http://<ip address>:<port>"

For example:
<sdl Url="/axis2c" ServerAddress=”http://127.0.0.1:8080” >

NOTE: You must retain the generated SDL file because NonStop SOAP 4 does not allow
you to generate the SDL file from the WSDL files.

Generating the HTML Client, WSDL, XML Schema, and services.xml Files to Deploy the Service
Generate the HTML client file, the WSDL file, XML schema files, and the services.xml file to
deploy the service in NonStop SOAP, using the SoapAdminCL tool:
OSS> SoapAdminCL –o <NonStop SOAP 4 Deployment Directory> -i <SDL file> -m

where,
-o <NonStop SOAP Deployment Directory>

specifies that the client and service must be created in the <NonStop SOAP 4.1 Deployment
Directory>.

54 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

-i <SDL file>

specifies the location of the input SDL file.
-m

is the migration option, and specifies that a separate WSDL file must be created for all
operations provided by the service in the <NonStop SOAP 4 Deployment
Directory>/client/<service_name>/wsdl directory. The operation-specific WSDL
files generated are compatible with NonStop SOAP 3.

NOTE: On running the SoapAdminCL tool, the SOAP request and response XML files, XML
schema files, and Migration WSDL files are also generated.

On successful execution, the following files and directories are generated in the directory specified
in the -o option (when the SDL file used as an input to the SoapAdminCL tool includes one service
containing two operations and each operation containing two responses).
 /client
 /<service_name>
 SoapPW_<operation1_name>.html
 SoapPW_<operation2_name>.html
 /wsdl
 SoapPW_<operation1_name>.wsdl
 SoapPW_<operation2_name>.wsdl
 /pway-xml
 SoapPW_<operation1_name>.xml
 SoapPW_<operation1_name>Response0.xml
 SoapPW_<operation1_name>Response1.xml
 SoapPW_<operation2_name>.xml
 SoapPW_<operation2_name>Response0.xml
 SoapPW_<operation2_name>Response1.xml
 /pway-xsd
 SoapPW_<operation1_name>.xsd
 SoapPW_<operation1_name>Response0.xsd
 SoapPW_<operation1_name>Response1.xsd
 SoapPW_<operation2_name>.xsd
 SoapPW_<operation2_name>Response0.xsd
 SoapPW_<operation2_name>Response1.xsd

 /services
 /<service_name>
 SoapPW_<service_name>.wsdl
 services.xml

For example:
OSS> SoapAdminCL –o /home/soap_usr/nssoap -i soapapp.sdl -m

The directory appears as:
/home/soap_usr/nssoap
 /client
 /myservice
 SoapPW_myoperation1.html
 SoapPW_myoperation2.html
 /wsdl
 SoapPW_myoperation1.wsdl
 SoapPW_myoperation2.wsdl
 /pway-xml
 SoapPW_myoperation1.xml
 SoapPW_myoperation1Response0.xml
 SoapPW_myoperation1Response1.xml
 SoapPW_myoperation2.xml
 SoapPW_myoperation2Response0.xml
 SoapPW_myoperation2Response1.xml
 /pway-xsd
 SoapPW_myoperation1.xsd

Migrating the NonStop SOAP 3 Services 55

 SoapPW_myoperation1Response0.xsd
 SoapPW_myoperation1Response1.xsd
 SoapPW_myoperation2.xsd
 SoapPW_myoperation2Response0.xsd
 SoapPW_myoperation2Response1.xsd

 /services
 /myservice
 SoapPW_myservice.wsdl
 services.xml

In the example, myservice is the service name and myoperation1 and myoperation2 are
the operation names.
The HTML client file, the WSDL file, XML schema files, SOAP request and response XML files, and
the services.xml file is generated in the NonStop SOAP deployment directory. The service is
now deployed in NonStop SOAP.

NOTE: Though the SDL file is not required during runtime, you must retain it in case the HTML
client, the WSDL file, XML schema files, SOAP request and response XML files, or the
services.xml file must be regenerated.

Migration Considerations

• The RemoveRedundantElementName SDL attribute is not supported. All the element names
are unique in NonStop SOAP.

• The XSD and XML files are generated with NonStop SOAP 3 rules.

• The SQL DATETIME HOUR TO FRACTION DDL element is generated as time, instead of
string,15 data type.

• The SOAP_MAP_DEF attribute in the nssoap.config file can have the strict or lenient
value, which map to the responseType attribute values in the services.xml file. The
lenient and liberal values in NonStop SOAP 3 are combined as the lenient value
in NonStop SOAP.

• The NonStop SOAP 4 server maps DDL elements accurately to the XSD data types, and
generates fault response for some data values. The NonStop SOAP 3 server does not generate
fault response for these data values. Correct the data values for which fault response is returned
in the SOAP client.

Accessing the Migrated Application
You can access the generated files of the migrated service using the following Web address
patterns:
• To access the HTML client, use the following Web address pattern:

http://<ip address>:<port>/<url_pattern>/client/
<service_name>/<html_client_name>

where,
<ip address>:<port>

is the IP address and port number of iTP WebServer where NonStop SOAP is deployed.
<url_pattern>

is the unique string value entered during the installation procedure. For more information
on <url_pattern>, see Chapter 2: “Installing NonStop SOAP” (page 36).

client

is the directory in <NonStop SOAP Deployment Directory> where the HTML client
for the services is created.

56 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

<service_name>

is the name of the service migrated from NonStop SOAP 3 and deployed in NonStop
SOAP 4.

<html_client_name>

is the name of the generated HTML client that is used to access the migrated service.

• To access the endpoint Web address of the deployed service, use the following Web address
pattern:
http://<ip address>:<port>/<url_pattern>/services/<service_name>

where,
<ip address>:<port>

is the IP address and port number of iTP WebServer where NonStop SOAP is deployed.
<url_pattern>

is the unique string value entered during the installation procedure. For more information
on <url_pattern>, see Chapter 2: “Installing NonStop SOAP” (page 36).

services

is the directory in <NonStop SOAP 4.1 Deployment Directory> where the WSDL
file and the services.xml file for the services is created.

<service_name>

is the name of the service migrated from NonStop SOAP 3 and deployed in NonStop
SOAP 4.1.

• To access the operation-specific WSDL file (using the -m option provided by SoapAdminCL
tool) for compatibility with NonStop SOAP 3 of the deployed service, use the following Web
address pattern:
http://<ip address>:<port>/<url_pattern>/client/<service_name>
 /wsdl/SoapPW_<operation_name>.wsdl

where,
<ip address>:<port>

is the IP address and port number of iTP WebServer where NonStop SOAP 4.1 is deployed.
<url_pattern>

is the unique string value entered during the installation procedure. For more information
on <url_pattern>, see Chapter 2: “Installing NonStop SOAP” (page 36).

client

is the directory in <NonStop SOAP Deployment Directory> where the HTML client
and operation-specific WSDL files for the services is created.

<service_name>

is the name of the service migrated from NonStop SOAP 3 and deployed in NonStop
SOAP 4.1.

<operation_name>

is the name of the generated operation-specific WSDL file for the migrated service.

• To access the WSDL file when generating a new NonStop SOAP client for the deployed
service, use the following Web address pattern:
http://<ip address>:<port>/<url_pattern>/services/<service_name>?wsdl

where,
<ip address>:<port>

is the IP address and port number of iTP WebServer where NonStop SOAP is deployed.

Migrating the NonStop SOAP 3 Services 57

<url_pattern>

is the unique string value entered during NonStop SOAP installation.
For more information on <url_pattern>, see Chapter 2: “Installing NonStop SOAP”
(page 36).

services

is the directory in <NonStop SOAP 4.1 Deployment Directory> where the WSDL
file and the services.xml file for the services is created.

<service_name>

is the name of the service migrated from NonStop SOAP 3 and deployed in NonStop
SOAP 4.1.

• To access the XML schema files, use the following Web address pattern:
http://<ip address>:<port>/<url_pattern>/client/
<service_name>/pway-xsd/<XML_schema_filename>

where,
<ip address>:<port>

is the IP address and port number of iTP WebServer where NonStop SOAP 4.1 is deployed.
<url_pattern>

is the unique string value entered during the installation procedure. For more information
on <url_pattern>, see Chapter 2: “Installing NonStop SOAP” (page 36).

client

is the directory in <NonStop SOAP 4 Deployment Directory> where the client for
the services is created.

<service_name>

is the name of the service migrated from NonStop SOAP 3 and deployed in NonStop
SOAP 4.1.

pway-xsd

is the directory in <NonStop SOAP 4 Deployment
Directory>/client/<service_name> where the XML schema files for each request
and response is created.

<XML_schema_filename>

is the name of the generated XML schema file that is used to access the schema.

Migrating NonStop SOAP 3 Transactions
The Transaction Management module in NonStop SOAP deprecates the session object, cookie
file, and other session related parameters. Therefore, all NonStop SOAP 3 services that use
transactions must observe the following steps to seamlessly migrate their transaction and session
management environment to NonStop SOAP:

58 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

1. Modify the SDL file.
You must modify the following parameters in the SDL file to migrate transaction management
to NonStop SOAP 4:

• Add or update the value of the GenerateSessionHeader attribute to generate the
XSD schema for the session header block in the WSDL file.
GenerateSessionHeader =“yes”

• Add or update the value of the AbortTransactionOnFault attribute to instruct
NonStop SOAP 4 whether it needs to internally abort the transactions when the service
responds with a fault.
AbortTransactionOnFault=”yes"|"no”

• Add or update the value of the TMFTransactionSupport attribute to inform NonStop
SOAP 4 about the level of transaction support desired by the service.
TMFTransactionSupport=”Required"|"Supports"|"Never”

NOTE: For more information about the TMFTransactionSupport attribute, its permissible
values, and semantics, see “Transaction Management” (page 236).

2. Generate the WSDL file and the services.xml file to deploy the service in NonStop SOAP
, using the SoapAdminCL tool:
OSS> SoapAdminCL –o <NonStop SOAP 4 Deployment Directory> -i <SDL file> -m

where,
-o <NonStop SOAP 4 Deployment Directory>

specifies that the client and service must be created in the <NonStop SOAP 4
Deployment Directory>.

-i <SDL file>

specifies the location of the input SDL file.
-m

is the migration option, and specifies that a separate WSDL file must be created for all
the operations provided by the service in the <NonStop SOAP 4 Deployment
Directory>/client/<service_name>/WSDL directory. The operation-specific WSDL
files generated are compatible with NonStop SOAP 3.

NOTE: On running the SoapAdminCL tool, the SOAP request and response XML files, XML
schema files, and migration WSDL files are also generated.

On successful execution, the following files and directories are generated in the directory
specified in the -o option (when the SDL file used as an input to the SoapAdminCL tool
includes one service containing two operations and each operation containing two responses).
/client
 /<service_name>
 SoapPW_<operation1_name>.html
 SoapPW_<operation2_name>.html
 /wsdl
 SoapPW_<operation1_name>.wsdl
 SoapPW_<operation2_name>.wsdl
 /pway-xml
 SoapPW_<operation1_name>.xml
 SoapPW_<operation1_name>Response0.xml
 SoapPW_<operation1_name>Response1.xml
 SoapPW_<operation2_name>.xml
 SoapPW_<operation2_name>Response0.xml
 SoapPW_<operation2_name>Response1.xml
 /pway-xsd

Migrating NonStop SOAP 3 Transactions 59

 SoapPW_<operation1_name>.xsd
 SoapPW_<operation1_name>Response0.xsd
 SoapPW_<operation1_name>Response1.xsd
 SoapPW_<operation2_name>.xsd
 SoapPW_<operation2_name>Response0.xsd
 SoapPW_<operation2_name>Response1.xsd

 /services
 /<service_name>
 SoapPW_<service_name>.wsdl
 services.xml

For example:
OSS> SoapAdminCL –o /home/soap_usr/nssoap -i soapapp.sdl -m

The directory appears as:
/home/soap_usr/nssoap
 /client
 /myservice
 SoapPW_myoperation1.html
 SoapPW_myoperation2.html
 /wsdl
 SoapPW_myoperation1.wsdl
 SoapPW_myoperation2.wsdl
 /pway-xml
 SoapPW_myoperation1.xml
 SoapPW_myoperation1Response0.xml
 SoapPW_myoperation1Response1.xml
 SoapPW_myoperation2.xml
 SoapPW_myoperation2Response0.xml
 SoapPW_myoperation2Response1.xml
 /pway-xsd
 SoapPW_myoperation1.xsd
 SoapPW_myoperation1Response0.xsd
 SoapPW_myoperation1Response1.xsd
 SoapPW_myoperation2.xsd
 SoapPW_myoperation2Response0.xsd
 SoapPW_myoperation2Response1.xsd

 /services
 /myservice
 SoapPW_myservice.wsdl
 services.xml

In the example, myservice is the service name and myoperation1 and myoperation2
are the operation names.
The HTML client, the WSDL file, SOAP request and response XML files, XML schema files, and
the services.xml file is generated in the NonStop SOAP 4.1 deployment directory. The
service is now deployed in NonStop SOAP 4.1.

NOTE: Though the SDL file is not required during runtime, you must retain it in case the
HTML client, the WSDL file, SOAP request and response XML files, XML schema files, or the
services.xml file need to be regenerated.

3. Engage the Transaction module with NonStop SOAP.
Transaction management is implemented through a NonStop SOAP module. Therefore, the
NonStop SOAP server administrator needs to engage the transaction module for transaction

60 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

management to work for the migrated service. The transaction management module can be
engaged at the following levels:

• Global Level
If you engage the transaction module at this level, all the services deployed in the NonStop
SOAP 4 server deployment can avail themselves of the transaction management feature.
To engage the transaction module at the global level, add the following line in the
axis2.xml file located in <NonStop SOAP 4 Deployment Directory> :
<module ref=”transaction” />

• Service Level
If you engage the transaction module at this level, the specific service will avail the
transaction management feature. To engage the transaction module at the service level,
add the line in the services.xml file located in <NonStop SOAP 4 Deployment
Directory>/services/<service_name>:
<module ref=”transaction” />

4. Generate the clients.
Generate the NonStop SOAP clients using the WSDL file generated by the SoapAdminCL
tool, as shown in Step 2. There is no change to the way clients used to access the session
management functionality using the session header block.
For more information on how to utilize the session and transaction management features in
NonStop SOAP using the session header block, see “Transaction Management” (page 236).

Because the transaction management module of NonStop SOAP completely deprecates the Cookie
file, the following NonStop SOAP 3 specific configuration parameters have also either been
deprecated or overridden.
Table 1 lists the NonStop SOAP 3 transaction management parameters and its corresponding
parameters in NonStop SOAP 4.1.

Table 1 Transaction Management Parameters in NonStop SOAP 3 and NonStop SOAP 4.1.

DescriptionNonStop SOAP 4.1
Parameter

NonStop SOAP 3 Parameter

The timeout is now restricted to individual
transactions. There is no separate timeout
for sessions.

TMFTimeoutSOAP_SESSION_TIMEOUT

This parameter is deprecated because there
is no cookie file.

NoneSOAP_COOKIE_DELETION_INTERVAL

Migrating NonStop SOAP 3 User-exits
User-exits in NonStop SOAP 3 enable you to customize the default NonStop SOAP 3 behavior.
NonStop SOAP 4 does not support user-exits but provides modules, handlers, and Message Receiver
User Functions that enable you to customize NonStop SOAP 4 message processing. Modules,
handlers, and Message Receiver User Functions are functionally equivalent to user-exits in NonStop
SOAP 3.
This section describes the migration of user-exits from NonStop SOAP 3 to NonStop SOAP 4.1.

NOTE: You must have a good understanding of modules and handlers to migrate user-exits from
NonStop SOAP 3 to NonStop SOAP 4.1. For information on Modules and Handlers, see
“Customizing NonStop SOAP 4 Message Processing” (page 124).

Modules, handlers, and Message Receiver User Functions in NonStop SOAP 4 can be engaged
at the service level and at the global level. When engaged at the service level, they enable you

Migrating NonStop SOAP 3 User-exits 61

to customize a service. When engaged at the global level, they enable you to customize all the
services deployed in a NonStop SOAP 4 deployment.
Table 2 lists the functions of user-exits provided by NonStop SOAP 3, and the equivalent modules,
handlers, and Message Receiver User Functions provided by NonStop SOAP 4.

Table 2 User-exits Mapped with Equivalent Functions in NonStop SOAP 4.1

FunctionEquivalent Handlers and Message
Receiver User Functions in NonStop

SOAP 4.1

User-exits in NonStop
SOAP 3

Enables you to modify the input XML/SOAP document
sent by the client.

NonStop SOAP 4 module and
handler (engaged in the
PostDispatch phase)

pre_process()

Enables you to modify the request buffer passed to
the service, the PATHMON name, server class name,
and NonStop process name.

pre_service Message Receiver
User Function (fixed deployment
before service invocation)

pre_service()

Enables you to modify the response buffer returned
by the service.

pre_marshal Message Receiver
User Function (fixed invocation
before marshalling)

pre_marshal()

Enables you to modify the output XML document.pre_marshal Message Receiver
User Function (engaged in the
MessageOut phase)

pre_marshal_header()

Enables you to modify the XML/SOAP response to the
client.

NonStop SOAP 4 module and
handler function (engaged in the
MessageOut phase)

post_process()

NOTE: NonStop SOAP 4.1 does not support the skipParse flag. NonStop SOAP 3 supported
this flag, which indicated NonStop SOAP 3 to skip the parsing of the request.

Migrating the NonStop SOAP 3 User-exit Samples
The NonStop SOAP 3 user-exit samples you can migrate are:

• The mod_empdb sample: This sample shows the migration of the pre_process()and
post_process()user-exits.

• The empdb_MRUF sample: This sample shows the migration of the pre_service() and
pre_marshal()user-exits.

• The skipMarshal sample: This sample shows the migration of the skipMarshal flag.

NOTE: The NonStop SOAP 3 user-exits samples are located in the <NonStop SOAP 3
Installation Directory>/samples/pathway/UserExits directory.

This section describes the following steps:

• “Migrating the pre_process() and post_process() user-exits using mod_empdb”
(page 62)

• “Migrating the pre_service() and pre_marshal() user-exits in NonStop SOAP 3 to
Message Receiver User Functions in NonStop SOAP 4.1” (page 71)

Migrating the pre_process() and post_process() user-exits using mod_empdb
The mod_empdb sample shows the migration of the pre_process()and
post_process()user-exits in NonStop SOAP 3 to the corresponding mod_empdb module in
NonStop SOAP 4.1.

62 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

This section describes the following:

• “Implementation of the pre_process() user-exit in NonStop SOAP 3” (page 63)

• “Implementation of the post_process()user-exit in NonStop SOAP 3” (page 63)

• “Migration of the pre_process() and post_process() user-exits in NonStop SOAP 4”
(page 64)

Implementation of the pre_process() user-exit in NonStop SOAP 3
In NonStop SOAP 3, the pre_process()user-exit logs the name of the service being invoked in
an audit file. The pre_process() user-exit is implemented in the <NonStop SOAP 3
Installation Directory>/samples/pathway/UserExits/SoapUEHandler_impl.cpp
file, using the SoapUEHandler_Generic::audit()method. The
SoapUEHandler_Generic::audit()function is called from the
SoapUEHandler_Generic::pre_process()method.
The following code sample shows the business logic implemented for the pre_process()
user-exit.
1 void
2 SoapUEHandler_Generic::audit() {
3 if (SoapUEHandler_Generic::auditFP == NULL) {
4 SoapUEHandler_Generic::auditFP = fopen("emp.audit", "a+");
5 if (SoapUEHandler_Generic::auditFP == NULL) {
6 gSoapError.log("Error while opening the audit file %ld\n", errno);
7 return;
8 }
9 gSoapError.log("Opened the audit file\n");
10 }
11 fprintf(SoapUEHandler_Generic::auditFP, "%s\n", serviceName);
12 fflush(SoapUEHandler_Generic::auditFP);
13 }

Checks for an existing file.Line 3

Opens a new file (with append permissions) using the fopen command, if the emp.audit file
does not exist.

Line 4

Error handling of File creation failure error.Line 5 – 8

Logs the serviceName in the emp.audit file.Line 11

Flush the file pointer to complete the write.Line 12

Implementation of the post_process()user-exit in NonStop SOAP 3
In NonStop SOAP 3, the post_process()user-exit adds the following XML processing instruction
to the response message for the empdb service:
<?xml-stylesheet type="text/xsl" href="empinfo.xsl" ?>

The post_process()user-exit is implemented in the <NonStop SOAP 3 Installation
Directory>/samples/pathway/UserExits/SoapUEHandler_impl.cpp file using the
stuffXSLT() method. The stuffXSLT()function is called from the
SoapUEHandler_Generic::post_process()method.
The following code sample shows the business logic implemented for the post_process()user-exit:
1 Static void stuffXSLT(OutputXML &outputXml, char *XSLTFileName)
2 {

3 if (!XSLTFileName || !XSLTFileName[0]) {
4 return;
5 }

Migrating NonStop SOAP 3 User-exits 63

6 int iPos = 0;

7 iPos = outputXml.find("?>");
8 if (iPos > 0) {

9 char replStr[500];

10 memset(replStr, 0, sizeof(replStr));
11 strcpy(replStr, "\n<?xml-stylesheet type=\"text/xsl\" href=\"");

12 strcat(replStr, XSLTFileName);
13 strcat(replStr, "\" ?>\n");

14 outputXml.replace(iPos + 2,1, replStr);

15 }

16 }

Checks if the Extensible Stylesheet Language (XSL) template file specified in the argument
exists.

Line 3-5

Invokes the outputXml.find function to search for the ?> tag.Line 7

Builds the Extensible Stylesheet Language Tranns (XSLT) processing instruction to be
appended to the response XML message.

Line 8-15

Migration of the pre_process() and post_process() user-exits in NonStop SOAP 4
NonStop SOAP 3 user-exits cannot be migrated directly to NonStop SOAP 4.1. You must develop
a module and handler to implement the same functionality in NonStop SOAP 4.1.
To migrate the pre_process()user-exit to an equivalent module and handler in NonStop SOAP
4.1:

• Implement the empdbPreProcessHandler as a part of the mod_empdb module.

• Attach the handler to the PostDispatch phase of the inflow.
To migrate the post_process()user-exit to an equivalent module and handler in NonStop SOAP
4.1:

• Implement empdbPostProcessHandler handler as a part of the mod_empdb module.

• Attach the handler to the MessageOut phase of the outflow.
Developing the mod_empdb module for NonStop SOAP 4.1 involves the following tasks:
1. Running the SoapAdminCL tool to create the module stub and configuration files (page 64)
2. Migrating the pre_process() user-exit business logic (page 66)
3. Migrating the post_process() user-exit business logic (page 67)
4. Compiling the mod_empdb module (page 69)
5. Deploying the mod_empdb module (page 69)
6. Running the NonStop SOAP empdb sample with the mod_empdb module (page 70)

Running the SoapAdminCL tool to create the module stub and configuration files

The first step is to generate the module stub and configuration files required to implement the
mod_empdb module. You must have the empdb service deployed in NonStop SOAP 4.1. For more

64 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

information about deploying the empdb service, see Chapter 2: “Installing NonStop SOAP”
(page 36).
• The empdb service is located in:

<NonStop SOAP 4 Deployment Directory>/services/empdb/

• The SDL file for the empdb service is located in:
<NonStop SOAP 4 Deployment Directory>/services/empdb/src/empsdl.xml

To generate the module stub and configuration files, complete the following steps:
1. Open the empsdl.xml SDL file for the empdb service located at <NonStop SOAP 4

Deployment Directory>/services/empdb/src and modify the file using an editor
of your choice.

2. Edit the following parameters in the empsdl.xml file:
Url

Update the Url attribute of the SDL element with the Web address pattern entered while
running the deploy.sh setup script for the deployment. This attribute must have a valid
relative path to the ServerAddress attribute.
By default, the value of the Url attribute is /axis2c.
For example:
Url= "/mytest"

where,
mytest

is the Web address pattern entered while running the deploy.sh deployment script
to create the NonStop SOAP deployment directory.

ServerAddress

Update the ServerAddress attribute with the IP and port number of the iTP WebServer
where the NonStop SOAP has been deployed. By default, the value of the
ServerAddress attribute is http://www.nonstopsoap.com.
For example:
ServerAddress ="http://<ip address>:<port>"

GenerateModuleHandlerFiles

Set the GenerateModuleHandlerFiles attribute of the <Service> element to "yes".
For example:
 <Service Name="empdb"
 ServerClassName="empdb"
 GenerateModuleHandlerFiles="yes"
 ...

3. Add the directory containing the SoapAdminCL executable image to the OSS PATH variable,
if the path has not been set.
OSS>export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS>export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

4. Run the SoapAdminCL tool using the OSS command:
OSS> SoapAdminCL –i <SDL file for the empdb service>
 -o <NonStop SOAP 4 Deployment Directory>

For example:
OSS>SoapAdminCL –i empsdl.xml –o /home/usr1/mynssoap

Migrating NonStop SOAP 3 User-exits 65

This command will generate only the module handler files.

NOTE:
• Use the -f option with the SoapAdminCL command to overwrite the existing files. If

you do not specify the -f option, SoapAdminCL will generate new files based on the
SDL attributes and report a failure for the existing files which are not overwritten.

5. Verify that the following directory structure is created in <NonStop SOAP Deployment
Directory>:
<NonStop SOAP 4 Deployment Directory>
 /modules
 /mod_empdb
 module.xml
 /src
 Makefile
 mod_empdb.c
 mod_empdb.h
 empdb_pre_process_handler.c
 empdb_post_process_handler.c

where,
module.xml

is the configuration file for the mod_empdb module.
Makefile

is the Makefile for the mod_empdb module.
mod_empdb.c

is the C skeleton source file that implements the interface between the NonStop SOAP 4
server and the mod_empdb module.

mod_empdb.h

is the header file for the mod_empdb.c source.
empdb_pre_process_handler.c

is the C stub file where you must implement the pre_process business logic for the
handler. In this example, the business logic logs the name of the service invoked in an
audit file.

empdb_post_process_handler.c

is the C stub file where you must implement the post_process business logic for the
handler. In this example, the business logic inserts an XML processing instruction in the
response XML message.

Migrating the pre_process() user-exit business logic

To migrate the business logic for the pre_process() user-exit to the pre_process handler, complete
the following steps:
1. Open the empdb_pre_process_handler.c stub file generated in the <NonStop SOAP

4 Deployment Directory>/modules/mod_empdb/src directory.
2. Implement the business logic of the pre_process() user-exits to the

axutil_empdb_pre_process_invoke() function.
The following code sample shows the business logic implemented in the
axutil_empdb_pre_process_invoke()function in the empdb_pre_process_handler.c
file:
 1 axis2_status_t AXIS2_CALL
 2 axutil_empdb_pre_process_invoke(
 3 struct axis2_handler * handler,
 4 const axutil_env_t * env,
 5 struct axis2_msg_ctx * msg_ctx)
 6 {

66 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

 7 axiom_soap_envelope_t *soap_envelope = NULL;
 8 axis2_svc_t* service_struct = NULL;
 9 axis2_op_t* operation_struct = NULL;
 10 const axis2_char_t* service_name = NULL;
 11 const axis2_char_t* operation_name = NULL;
 12 const axutil_qname_t* operation_qname = NULL;
 13
 14 int bytes_written = 0;
 15 FILE* fp = NULL;
 16
 17 AXIS2_ENV_CHECK(env, AXIS2_FAILURE);
 18 AXIS2_PARAM_CHECK(env->error, msg_ctx, AXIS2_FAILURE);
 19 AXIS2_LOG_DEBUG(env->log,AXIS2_LOG_SI, "Starting empdb pre_process handler");
 20
 21 service_struct= axis2_msg_ctx_get_svc (msg_ctx,env);
 22 service_name = axis2_svc_get_name(service_struct, env);
 23
 24 fp = fopen("../modules/mod_empdb/emp.audit", "a+");
 25 if(!fp){
 26 AXIS2_LOG_DEBUG(env->log,AXIS2_LOG_SI,"Error in opening theemp.audit file");
 27 fclose(fp);
 28 return AXIS2_FAILURE;
 29 }
 30 bytes_written = fwrite(axutil_strcat(env,service_name,"\n",NULL),
 31 sizeof(axis2_char_t), axutil_strlen(service_name), fp);
 32 fclose(fp);
 33
 34 /* The following section should be used when one needs to implement
 35 the business logic at the operation level*/
 36 /*operation_struct = axis2_msg_ctx_get_op(msg_ctx,env);*/
 37 /*operation_qname = axis2_op_get_qname(operation_struct, env);*/
 38 /*operation_name = axutil_qname_get_localpart(operation_qname, env);*/
 39 /*if(!axutil_strcmp(operation_name,"EmpInfo")){*/
 40 /* TODO :: Insert your business logic here */
 41 /*}*/
 42 /*if(!axutil_strcmp(operation_name,"EmpDel")){*/
 43 /* TODO :: Insert your business logic here */
 44 /*}*/
 45 /*if(!axutil_strcmp(operation_name,"EmpAdd")){*/
 46 /* TODO :: Insert your business logic here */
 47 /*}*/
 48 return AXIS2_SUCCESS;
 49 }

The SoapAdminCL tool generates the code that lists the function and variable declaration.Line 1 - 13

Initializes a file pointer variable.Line 15

Checks for errors.Line 17 - 19

Fetches the service structure that includes details about the invoked service.Line 21

Retrieves the service structure name fetched in step 21.Line 22

Opens the emp.audit file and writes the service name in it.Line 24 - 32

This code is useful when you have a business logic that needs to be implemented at the
operation level.

Line 36 - 47

NOTE: The NonStop SOAP distribution includes the complete implementation of the
pre_process() handler. You can either write your own business logic or copy the source code
of the pre_process() handler from the NonStop SOAP installation directory using the following
command:
OSS>cp <NonStop SOAP 4 Installation Directory>/sample_services/modules

 /mod_empdb/src/empdb_pre_process_handler.c

<NonStop SOAP 4 Deployment Directory>/modules

 /mod_empdb/src/empdb_pre_process_handler.c

Migrating the post_process() user-exit business logic

To migrate the business logic for the post_process() user-exit to the post_process handler,
complete the following steps:
1. Open the empdb_post_process_handler.c stub file generated in the <NonStop SOAP

Deployment Directory>/modules/mod_empdb/src directory.

Migrating NonStop SOAP 3 User-exits 67

2. Implement the business logic of the post_process()user-exits to the
axutil_empdb_post_process_invoke() function.

The following code sample shows the business logic implemented in the
axutil_empdb_post_process_invoke() function in the empdb_post_process_handler.c
file.
 1 axis2_status_t AXIS2_CALL
 2 axutil_empdb_post_process_invoke(
 3 struct axis2_handler * handler,
 4 const axutil_env_t * env,
 5 struct axis2_msg_ctx * msg_ctx)
 6 {
 7 axiom_soap_envelope_t *soap_envelope = NULL;
 8 axis2_svc_t* service_struct = NULL;
 9 axis2_op_t* operation_struct = NULL;
 10 const axis2_char_t* service_name = NULL;
 11 const axis2_char_t* operation_name = NULL;
 12 const axutil_qname_t* operation_qname = NULL;
 13
 14 axis2_char_t* target = "xml-stylesheet";
 15 axis2_char_t* data = "type='text/xsl' href='../../empdb.xsl'";
 16 axutil_hash_t* processing_instructions_ht = NULL;
 17
 18 AXIS2_ENV_CHECK(env, AXIS2_FAILURE);
 19 AXIS2_PARAM_CHECK(env->error, msg_ctx, AXIS2_FAILURE);
 20 AXIS2_LOG_DEBUG(env->log,AXIS2_LOG_SI, "Starting empdb post_processhandler");
 21
 22 processing_instructions_ht = axutil_hash_make(env);
 23 axutil_hash_set(processing_instructions_ht,target,
 24 AXIS2_HASH_KEY_STRING , data);
 25 axis2_msg_ctx_set_processing_instructions(msg_ctx, env,
 26 processing_instructions_ht);
 27
 28 /* The following section should be used when one needs to implement
 29 the business logic at the service level*/
 30
 31 /* service_struct= axis2_msg_ctx_get_svc (msg_ctx,env);*/
 32 /* service_name = axis2_svc_get_name(service_struct, env); */
 33 /* The following section should be used when one needs to implement
 34 the business logic at the operation level*/
 35
 36 /*operation_struct = axis2_msg_ctx_get_op(msg_ctx,env);*/
 37 /*operation_qname = axis2_op_get_qname(operation_struct, env);*/
 38 /*operation_name = axutil_qname_get_localpart(operation_qname, env);*/
 39 /*if(!axutil_strcmp(operation_name,"EmpInfo")){*/
 40 /* TODO :: Insert your business logic here */
 41 /*}*/
 42 /*if(!axutil_strcmp(operation_name,"EmpDel")){*/
 43 /* TODO :: Insert your business logic here */
 44 /*}*/
 45 /*if(!axutil_strcmp(operation_name,"EmpAdd")){*/
 46 /* TODO :: Insert your business logic here */
 47 /*}*/
 48 return AXIS2_SUCCESS;
 49 }

The SoapAdminCL tool generates the code that lists the function and variable declaration.Line 1 - 13

Initializes variables.Line 14 - 16

Checks for errors.Line 18 - 20

Creates the processing instruction.Line 22 - 24

Adds the processing instruction to the SOAP message.Line 25 - 26

This code is useful when you have a business logic that needs to be implemented at the
operation level.

Line 31 - 47

68 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

NOTE: The NonStop SOAP distribution includes the complete implementation of the
post_process()handler. You can either write your own business logic or copy the source code
of the post_process()handler from the NonStop SOAP 4.1 installation directory using the
following command:
OSS>cp <NonStop SOAP 4 Installation Directory>/sample_services/modules

 /mod_empdb/src/empdb_post_process_handler.c

<NonStop SOAP 4 Deployment Directory>/modules

 /mod_empdb/src/empdb_post_process_handler.c

Compiling the mod_empdb module

After implementing the business logic in the axutil_empdb_pre_process_invoke() and
axutil_empdb_post_process_invoke()methods, you must compile the mod_empdbmodule.
To compile the mod_empdb module, complete the following steps:
1. Go to the <NonStop SOAP 4 Deployment Directory>/modules/mod_empdb/src

directory using the OSS command:
OSS> cd <NonStop SOAP Deployment Directory>/modules/mod_empdb/src

For example:
OSS> cd /home/usr1/mynssoap/modules/mod_empdb/src

2. Set the environment variable AXIS2C_HOME to <NonStop SOAP 4 Deployment
Directory> directory using the OSS command:
OSS> export AXIS2C_HOME=<NonStop SOAP 4 Deployment Directory>

For example:
OSS> export AXIS2C_HOME=/home/usr1/mynssoap

3. To compile and generate the module DLL, run the make command on the OSS prompt:
OSS>make

On successful completion of the make command, the libaxis2_mod_empdb.so file is
created in the <NonStop SOAP 4 Deployment Directory>/modules/mod_empdb
directory.

Deploying the mod_empdb module

After creating the libaxis2_mod_empdb.so file, complete the following steps to deploy the
module:
1. Attach the pre_process()handler to the PostDispatch phase. To do so, edit the

module.xml file in <NonStop SOAP Deployment Directory>/modules/mod_empdb
to set the phase attribute of the order element in inflow to PostDispatch.
<inflow>
 <handler name="empdbPreProcessHandler" class="axis2_mod_empdb">
 <order phase="PostDispatch"/>
 </handler>
</inflow>

2. Attach the post_process()handler to the MessageOut phase. To do so, in the
module.xml file, set the phase attribute of the order element in outflow to MessageOut.
<outflow>
 <handler name="empdbPostProcessHandler" class="axis2_mod_empdb">
 <order phase="MessageOut"/>
 </handler>
</outflow>

3. Add the module name to the ref attribute of the module element in the services.xml file
in the <NonStop SOAP 4 Deployment Directory>/services/empdb directory.
<module ref="mod_empdb"/>

Migrating NonStop SOAP 3 User-exits 69

where,
mod_empdb

is the name of the module attached.
4. Restart iTP WebServer using the OSS commands:

OSS> cd <iTP_Installation_Directory>/conf
OSS> ./restart

Running the NonStop SOAP empdb sample with the mod_empdb module

To verify if the empdbPreProcessHandler handler of the mod_empdbmodule has been engaged,
complete the following steps:
1. Access the EmpInfo, EmpAdd, or EmpDel operations of the empdb application using the

HTML client available at the following Web address:
http://<ip address>:<port_number>/<url_pattern>/client/empdb

where,
<ip address>:<port_number>

is the IP address and port number of iTP WebServer integrated with NonStop SOAP.
<url_pattern>

is the URL pattern entered during NonStop SOAP installation.
2. On receiving the response from the service, verify if the emp.audit file is created in the

<NonStop SOAP Deployment Directory>/modules/mod_empdb directory.
3. Open the emp.audit file and verify that the entry with the service name empdb is present.
To verify if the empdbPostProcessHandler handler of the mod_empdb module is engaged,
complete the following steps:
1. Copy the empdb.xsl file from the <NonStop SOAP 4 Installation Directory>

directory to the <iTP_Installation_Directory>/root directory using the OSS
command:
OSS> cp <NonStop SOAP 4 Installation Directory>/sample_services/modules/mod_empdb/empdb.xsl
 <iTP WebServer Installation Directory>/root/empdb.xsl

2. Access the EmpInfo operation of the empdb application using the HTML client.
The response is a formatted output based on the style sheet specifications.
Figure 8 shows the formatted output.

Figure 8 Stylesheet Based Formatted Output

70 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

Migrating the pre_service() and pre_marshal() user-exits in NonStop SOAP 3 to Message
Receiver User Functions in NonStop SOAP 4.1

The empdb_MRUF sample shows the migration of the pre_service() and pre_marshal()
user-exits in NonStop SOAP 3 to the corresponding Message Receiver User Functions attached to
the empdb sample service deployed in NonStop SOAP 4.1. For more information about deploying
the empdb service, see Chapter 2: “Installing NonStop SOAP” (page 36).
The following sections describe:

• “Implementation of the pre_service() and pre_marshal() user-exit in NonStop SOAP
3” (page 71)

• “Migration of pre_service() and pre_marshal() user-exits in NonStop SOAP 4.1”
(page 72)

Implementation of the pre_service() and pre_marshal() user-exit in NonStop SOAP 3
The pre_service()user-exit in NonStop SOAP 3 sets the least significant digit of the branchnum
parameter to 0 if it is set to 9 and the operation being invoked is EmpAdd. The
pre_service()user-exit is implemented in the SoapUEHandler_impl.cpp file located in the
<NonStop SOAP 3 Installation Directory>/samples/pathway/UserExits directory
using the SoapUEHandler_Generic::pre_service() method.
The following code implements the business logic for the pre_service() user-exit in NonStop
SOAP 3:
1 long
2 SoapUEHandler_Generic::pre_service(ServiceReqResponse *req,
 SoapFault *sf)
3 {
4 gSoapTrace.log("Entered SoapUEHandler_Generic::pre_service\n");
5 gSoapTrace.log("DDL Buf Len: %ld\n", req->getDDLBufferLen());

6 if (!strcmp(serviceName, "EmpAdd")) {
7 employee_add_def *eadd_req;

8 eadd_req = (employee_add_def *) req->getDDLBuffer();

9 // If the branch number is not set.. set it to '9'
10 if (eadd_req->employee_info.branchnum[0] == 9) {
11 eadd_req->employee_info.branchnum[0] = '0';
12 }
13 }

14 gSoapTrace.log("Leaving SoapUEHandler_Generic::pre_service\n");

15 return 0;
 }

Checks if the service name is EmpAdd.Line 6

Extracts the request structure.Line 8

Sets branchnum to 0 if it is 9.Line 10-11

The pre_marshal() user-exit in NonStop SOAP 3 sets the skipMarshal flag, which skips the
marshalling routine of NonStop SOAP 3 if the service name is EmpAdd.
This functionality is implemented in the SoapUEHandler_impl_2.cpp file located in the
<NonStop SOAP 3 Installation Directory>/samples/pathway/UserExits directory
using the SoapUEHandler_Generic::pre_marshal() method, which implements the business
logic for the pre_marshal() user-exits.

Migrating NonStop SOAP 3 User-exits 71

The following code sample shows the implementation of business logic for the pre_marshal()
Message Receiver User Function:
1 long
2 SoapUEHandler_Generic::pre_marshal(ServiceReqResponse *resp,
3 SoapFault *sf)
4 {
5 if (!strcmp(serviceName, "EmpAdd")) {
6 getServiceEnv()->skipMarshal();
7 }
8
9 return 0;
10 }

Checks if the service name is EmpAdd.Line 5

Sets the skipMarshal flag.Line 6

NOTE: When migrating user-exits from NonStop SOAP 3 to NonStop SOAP 4 Message Receiver
User Functions, take the following into consideration:
• NonStop SOAP 3 user-exit codes are written using C++ classes but modules and handlers in

NonStop SOAP 4 must be implemented using the C programming language.
• NonStop SOAP 3 works through environment variables. NonStop SOAP 4 works on AXIOM

nodes and configuration context structures. Therefore, you must derive the service name from
these structures.

Migration of pre_service() and pre_marshal() user-exits in NonStop SOAP 4.1
The pre_service()and pre_marshal()user-exits in NonStop SOAP 3 must be migrated to
an equivalent Message Receiver User Function in NonStop SOAP 4.1.
Developing the empdb_MRUF sample for NonStop SOAP involves the following tasks:
1. Running the SoapAdminCL tool to generate the empdb_MRUF stub files (page 72)
2. Migrating the business logic for the pre_service() user-exit (page 73)
3. Compiling the Message Receiver user Functions (page 75)
4. Deploying the Message Receiver user Functions (page 75)
5. Running the NonStop SOAP 4 empdb sample with empdb_MRUF (page 75)

Running the SoapAdminCL tool to generate the empdb_MRUF stub files

The first step is to generate the empdb_MRUF stub files using the SoapAdminCL tool. You must
have the empdb service deployed in NonStop SOAP. For more information about deploying the
empdb service, see Chapter 2: “Installing NonStop SOAP” (page 36).
• The empdb service is located in:

<NonStop SOAP 4.1 Deployment Directory>/services/empdb/

• The SDL file for the empdb service is located in:
<NonStop SOAP 4.1 Deployment Directory>/services/empdb/src/empsdl.xml

To generate the empdb_MRUF stub files, complete the following steps:

72 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

1. Open the empsdl.xml file and complete the following:
Set the GenerateMessageReceiverUserFunctionsFiles attribute in the <Service>
element to "yes".
For example:
<Service Name="empdb"
 ServerClassName="empdb"
 GenerateMessageReceiverUserFunctionsFiles="yes"
 ...

2. Add the directory containing the SoapAdminCL executable image to the OSS PATH variable,
if the path has not been previously set.
OSS>export PATH=<NonStop SOAP 4.1 Installation Directory>/tools:$PATH

For example:
OSS>export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

3. Run the SoapAdminCL tool to generate the required stub files.
OSS> SoapAdminCL –i <name of the empdb SDL file>
 -o <NonStop SOAP Deployment Directory>

For example:
OSS>SoapAdminCL –i empsdl.xml –o /home/usr1/mynssoap

NOTE:
• Use the -f option with the SoapAdminCL command to overwrite the existing files. If

you do not specify the -f option, SoapAdminCL will generate new files based on the
SDL attributes and report a failure for the existing files which are not overwritten.

4. Verify that the following directory structure is created in <NonStop SOAP 4 Deployment
Directory>:
<NonStop SOAP 4 Deployment Directory>
 /services
 /empdb
 /MRUF_src
 Makefile
 empdb_MRUF.c
 empdb_MRUF.h
 SoapPW_empdb.wsdl
 services.xml

where,
Makefile

is the Makefile to build the empdb_MRUF.c code
empdb_MRUF.c

is the source file that implements the pre_service() and pre_marshal() business
logic for the handler.

empdb_MRUF.h

is the header file for the empdb_MRUF.c file.

Migrating the business logic for the pre_service() user-exit

After the empdb_MRUF stub files are generated, migrate the business logic for the pre_service()
user-exit to Message Receiver User Function. To do so, edit the empdb_MRUF.c file located in the
<NonStop SOAP 4.1 Deployment Directory>/services/empdb/MRUF_src directory
to implement the business logic of the pre_service user-exit in the
empdb_pre_service_function().

Migrating NonStop SOAP 3 User-exits 73

The following code sample shows the business logic implemented in the
empdb_pre_service_function()in the empdb_MRUF.c file.
1 int empdb_pre_service_function(
2 axis2_MessageReceiverUserFunctions_t *MessageReceiverUserFunctions,
3 axis2_char_t * payload,
4 const axutil_env_t * env,
5 int ReqLen,
6 struct axis2_msg_ctx * in_msg_ctx,
7 struct axis2_msg_ctx * out_msg_ctx){
8
9 axis2_char_t* operation_name = NULL;
10
11 operation_name = axis2_msg_recv_get_operationName(MessageReceiverUserFunctions, env);
12 if(!axutil_strcmp(operation_name,"EmpAdd")){
13 if (payload)
14 {
15 if(payload[ReqLen-2] == '0' && payload[ReqLen-1] == '9'){
16 payload[ReqLen-1] = '0';
17 }
18 }
19 }
20 if(!axutil_strcmp(operation_name,"EmpDel")){
21 /* TODO :: Insert your business logic here */
22 }
23 if(!axutil_strcmp(operation_name,"EmpInfo")){
24 /* TODO :: Insert your business logic here */
25 }
26 return ReqLen;
27}

Gets the operation name.Line 11

Checks whether the operation name is EmpAdd.Line 12

Modifies the branchnum value.Line 15-16

NOTE: NonStop SOAP provides the complete implementation of the pre_service Message
Receiver User Function. Copy the source code of the pre_service Message Receiver User
Function from the NonStop SOAP installation location using the following command:
OSS> cp <NonStop SOAP 4 Installation Directory>/sample_services/modules/empdb_MRUF

 /src/empdb_MRUF.c

<NonStop SOAP 4 Deployment Directory>/services/

 empdb/MRUF_src/empdb_MRUF.c

The business logic for the pre_marshal handler is also implemented in the
empdb_pre_marshal_function() method in the empdb_MRUF.c file. The following code
sample shows the business logic for the pre_marshal() method:
1int empdb_pre_marshal_function(
2 axis2_MessageReceiverUserFunctions_t *MessageReceiverUserFunctions,
3 axis2_char_t * payload,
4 const axutil_env_t * env,
5 int ResLen,
7 struct axis2_msg_ctx * in_msg_ctx,
8 struct axis2_msg_ctx * out_msg_ctx)
9{
10
11 axis2_char_t* operation_name = NULL;
12 operation_name = axis2_msg_recv_get_operationName(MessageReceiverUserFunctions, env);
13
14 if(!axutil_strcmp(operation_name,"EmpInfo")){
15 /* TODO :: Insert your business logic here */
16 }
17 if(!axutil_strcmp(operation_name,"EmpDel")){
18 /* TODO :: Insert your business logic here */
19 }
20 if(!axutil_strcmp(operation_name,"EmpAdd")){
21 axis2_msg_recv_set_skipMarshal(MessageReceiverUserFunctions, env, AXIS2_TRUE);
22 }
23
24 return ResLen;

74 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

25}

Gets the operation name.Line 12

Checks whether the operation name is EmpAdd.Line 20

Sets the skipMarshal flag.Line 21

Compiling the Message Receiver user Functions

To build empdb_MRUF, complete the following steps:
1. Go to the source code location of Message Receiver User Functions using the OSS command:

OSS> cd <NonStop SOAP 4 Deployment Directory>/
 services/empdb/MRUF_src/

2. Set the environment variable AXIS2C_HOME to <NonStop SOAP 4 Deployment
Directory> directory using the OSS command:
OSS> export AXIS2C_HOME=<NonStop SOAP 4 Deployment Directory>

3. Run the make command to compile and generate the module DLL:
OSS> make

On successful completion of the make command, the libaxis2_MRUF_empdb.so module
is created in the <NonStop SOAP 4 Deployment Directory>/MRUserFunctions
directory.

Deploying the Message Receiver user Functions

After creating the Message Receiver user Function DLL , you must engage the
libaxis2_MRUF_empdb.so module with the empdb application in the NonStop SOAP 4
deployment.
1. Verify that the following entry is present in the services.xml file in the <NonStop SOAP

4 Deployment Directory>/services/empdb directory to engage the Message Receiver
User Functions.
<parameter name="MessageReceiverUserFunctions">axis2_MRUF_empdb</parameter>

where,
axis2_MRUF_empdb

is the name of the DLL for Message Receiver User Functions. NonStop SOAP 4 generates
the name of the DLL by adding lib as the prefix and so as the suffix.

2. Restart iTP WebServer to engage the new Message Receiver User Functions:
OSS> cd <iTP_Installation_Directory>/conf
OSS> ./restart

Running the NonStop SOAP 4 empdb sample with empdb_MRUF

To verify if the empdb_MRUF is engaged, complete the following steps:
1. Verify if the pre_service()Message Receiver User Function is attached correctly with

NonStop SOAP 4:
1. Access the EmpAdd operation of the empdb application using the HTML client. Ensure

that you enter the value of the branchnum as 09. This will generate an empty body
response.

2. Access the EmpInfo operation for the same empdb record.
3. On receiving the response, verify if the value of the branchnum is set to 00.

Migrating NonStop SOAP 3 User-exits 75

2. Verify if the pre_marshal() Message Receiver User Function is attached correctly with
NonStop SOAP 4:
1. Access the EmpAdd operation of the empdb application using the HTML client.
2. On receiving the response, you will receive an empty SOAP body indicating that the

marshal procedure of the response is skipped.
This indicates that the pre_service() and pre_marshal() Message Receiver User
Functions are successfully engaged with the empdb service.

76 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions

4 Getting Started with NonStop SOAP 4
This chapter describes the procedure to deploy a Pathway application and a NonStop process as
a Web service.
For information on developing DLL as a Web service, see Chapter 5: “NonStop SOAP 4 Service
APIs” (page 85).
NonStop SOAP 4 can be used to develop SOAP clients that can communicate with SOAP services.
For information on developing NonStop SOAP 4 clients, see Chapter 6: “NonStop SOAP 4 Client
APIs” (page 105).
This chapter includes the following topic:
“Deploying a Pathway Application and a NonStop Process as a Web Service ” (page 77).

Deploying a Pathway Application and a NonStop Process as a Web
Service

This section describes the procedure to deploy a pathway application as a Web service. Figure 9
shows the Web service deployment and message flow between Web client , Pathway application
and Nonstop process.

Figure 9 Web Service deployment of NonStop Process/Pathway Application

TS/MP

NonStop
Process

NonStop SOAP 4
Adminstration Utility

Reflector
server class

Run Time

Design Time

iTP web server
(httpd)

Migration
WSDL

itp_axis2.config axis2.xml

SDL File

XML
Schema

DDL
Mapping File

WSDL
File

Services.xml

DDL
Dictionaries

SOAP
Service
Client

NonStop
SOAP 4 Server

Deploying a Pathway Application and a NonStop Process as a Web Service 77

NOTE: The following example has the steps to deploy the Web service using the sample reflector
Pathway application. However, if you already have an existing pathway server class and a
corresponding WSDL, then making changes to the services.xml should suffice in being able
to get the server class deployed as a Web service.

The steps to deploy the Web service using the sample reflector Pathway application are as follows:
1. Getting the sample application files from sample_services
2. Creating DDL dictionary files
3. Creating SDL files
4. Creating Web service files using SOAPAdminCL tools
5. Compiling reflector.c
6. Configuring and starting the reflector application
7. Accessing the Web service

NOTE: The steps mentioned can be used to deploy any server class other than reflector.

Getting the sample application files from sample_services
To copy the files from sample_services, complete the following steps:
1. Navigate to the <Reflector Source Directory> folder. This is a directory

of your choice where all reflector service related files reside.

2. Copy the reflector sample from <NonStop SOAP 4 Installation
Directory>/sample_services/reflector.
OSS>cp —r <NonStop SOAP 4 Installation Directory>/sample_services/reflector .

Creating DDL dictionary files
A DDL dictionary is required to expose a NonStop server class or Pathway application as a Web
service. The DDL data definitions are used to create the data fields in the WSDL file. To create the
DDL dictionaries, compile the DDL files that include the request and response structure for the
Pathway application.
The <Reflector Source Directory>/src directory includes the reflectorddl file for the
reflector application. Navigate to this folder and edit the following parameter in the reflectorddl
file:
$<VOLUME>.<SUBVOLUME>

is a Guardian location where you want the dictionary files for the reflector service to be created.
for example, $DATA.REFL. You must have read and write permissions for this directory. The
specified dictionary location should NOT have any existing dictionary files.
Create the DDL dictionaries using the following command:
OSS > gtacl –p ddl < reflectorddl

NOTE: Make sure that the command returns no errors. For information on developing DDL
definitions, see the Data Definition Language (DDL) Reference Manual.

For example, if you specified $DATA.REFL as the dictionary location, successful compilation of
reflectorddl generates the following output:
OSS> gtacl -p fup info \$DATA.REFL.*
 CODE EOF LAST MODIFIED OWNER RWEP PExt SExt
DICTALT 201A 12288 07NOV2008 18:40 255,255 NUNU 4 32
DICTCDF 207A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTDDF 200 30 07NOV2008 18:40 255,255 NUNU 14 14
DICTKDF 206A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTMAP 209A 0 07NOV2008 18:40 255,255 NUNU 4 32

78 Getting Started with NonStop SOAP 4

DICTOBL 204A 12288 07NOV2008 18:40 255,255 NUNU 4 32
DICTODF 202A 12288 07NOV2008 18:40 255,255 NUNU 4 32
DICTOTF 203A 12288 07NOV2008 18:40 255,255 NUNU 4 32
DICTOUF 208A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTOUK 208A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTRDF 205A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTTKN 209A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTTYP 209A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTVER 209A 0 07NOV2008 18:40 255,255 NUNU 4 32

Creating SDL files
For any new service creation the sdl file has to be created manually or using SOAP administrators
utility. For convenience, in this example the reflectorsdl.xml is shipped along with the product
and is located in the following directory.
Open the reflectorsdl.xml file which is located <Reflector Source Directory>/src
and edit the following parameters:

• PathwayEnvironment
Update the PathmonName attribute of the PathwayEnvironment element to reflect the
PATHMON process name specified in the pathConf file. The pathConf file is located at
<Reflector Source Directory>/src)

<PathwayEnvironment PathmonName=”$REFL”>

• ServerAddress
Update the ServerAddress attribute with the IP and port number of the iTP WebServer
where NonStop SOAP 4 has been deployed. For example:
ServerAddress =“http://<ip address>:<port>"

• Url
Update the Url attribute of the SDL element. This attribute must have a valid relative path to
the ServerAddress attribute. For example, Url ="/mytest" where, mytest is the URL
pattern entered while running the deploy.sh deployment script to create the NonStop SOAP
4 deployment directory.

• DDLDictionary Location
Update the DDLDictionaryLocation attribute of the service tag with the dictionary file
location you have mentioned in the reflectorddl file see (page 78)
DDLDictionaryLocation="$DATA.REFL"

NOTE: The DDLDictionaryLocationmust be the same as the dictionary location specified
in the reflectorddl file.

Creating Web Service files using SOAPAdminCL tool
To invoke the SoapAdminCL tool from the <NonStop SOAP 4 Installation
Directory>/tools directory,complete the following steps:
1. Add the directory containing the SoapAdminCL executable image to the OSS PATH variable,

using the following command:
OSS> export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example, if NonStop SOAP 4 is installed at the default location
(/usr/tandem/nssoap/t0865h01),

the OSS command is:
OSS> export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

Deploying a Pathway Application and a NonStop Process as a Web Service 79

2. Run SoapAdminCL to generate the WSDL file, HTML clients, XML schema files, SOAP request
and response XML files, and the services.xml file for the reflector service. Navigate to
<Reflector Source Directory>/src and enter the following command:
OSS> SoapAdminCL -o <NonStop SOAP 4 Deployment Directory> -i reflectorsdl.xml

The SoapAdminCL tool generates the following files in the <NonStop SOAP 4 Deployment
Directory> directory:

DescriptionFile Name

This file contains the service definition details and the XML schema definitions
for the reflector service. NonStop SOAP 4 uses this file at runtime.

SoapPW_reflector.wsdl

This file is the HTML client used to access the reflector service.SoapPW_REFLECTOR.html

This file contains the service configuration details used by the NonStop SOAP
4 server at runtime.

services.xml

This file contains the XML schema for the SOAP request structure.SoapPW_REFLECTOR.xsd

This file contains the XML schema for the SOAP response structure.SoapPW_REFLECTORRESPONSE0.xsd

This file is a sample SOAP request XML file.SoapPW_REFLECTOR.xml

This file is a sample SOAP response XML file.SoapPW_REFLECTORRESPONSE0.xml

80 Getting Started with NonStop SOAP 4

3. Verify that the SOAP server is running.
OSS> gtacl -c "pathcom \<PATHMON name>;status server *"

where,
<PATHMON_name> is the name of the PATHMON on which iTP WebServer is running.

This command returns the following statistics:
SERVER #RUNNING ERROR INFO
AXIS2CGI 1
GENERIC-CGI 1
HTTPD 1

NOTE:
• AXIS2CGI represents the ServerClass name.

• A value of 1 for GENERIC-CGI or HTTPD indicates that iTP WebServer is running.

• A value of 0 for GENERIC-CGI or HTTPD indicates that iTP WebServer is not running
and an error number is displayed in the respective ERROR column. For more information
about the error and its resolution, see the NonStop TS/MP Pathsend and Server
Programming Manual.

• Use the -f option with the SoapAdminCL command to overwrite the existing files. If you
do not specify the -f option, SoapAdminCL will generate new files based on the SDL
attributes and report a failure for the existing files which are not overwritten.
If it is not running, start the SOAP server, go to the <iTP WebServer Deployment
Directory>/conf directory and run the restart script
OSS> cd <iTP _WebServer_Deployment Directory>/conf

OSS> ./restart

This command restarts the iTP WebServer and NonStop SOAP 4 and the reflector
service is deployed.

• NonStop SOAP 4 also provides a NonStop SOAP 4 administrator tool that provides a
GUI interface to develop and deploy NonStop SOAP 4 SDL files. For more information
about the NonStop SOAP 4 administrator tool, see “NonStop SOAP Tools” (page 194)

Compiling reflector.c
To compile reflector.c, complete the following step:

• Go to the <Reflector Service Directory>/src directory. This directory contains the
reflector.c source file. Compile the reflector.c file using the command:
OSS> cd <Reflector Service Directory>/src

OSS> c89 -I . –Wextensions reflector.c –o reflector

The reflector server object is created.

NOTE: This step is optional if you already have the binary available on your system. This
is applicable only for the reflector application.

Configuring and starting the reflector application
To configure and start the reflector application for a particular PATHMON process, use the
pathConf script file.
To configure and start the reflector application, complete the following steps:

Deploying a Pathway Application and a NonStop Process as a Web Service 81

1. Go to the <Reflector Service Directory>/conf directory to access the pathConf
script file. Provide execute permissions to the pathConf file, using the following command:
OSS> cd <Reflector Service Directory>/conf
OSS> chmod u+x pathConf

2. Update the PATHWAY_SUBVOL variable in the pathConf file, to point to a Guardian location
where the PATHMON process configuration files will be created. For example,
PATHWAY_SUBVOL=\$DATA.SOAP

3. Run the pathConf script file to start the Pathway environment and reflector application. The
pathConf file uses the PATHMON name in which the reflector server class must be started
as a command-line argument.
For example,
OSS> ./pathConf \$REFL

where,
$REFL is the name of the PATHMON process in which the reflector service will run.

4. Verify that the reflector application is running under the PATHMON named $REFL. Run the
pathcom command to invoke the PATHCOM interface.
OSS>gtacl -c "pathcom \$REFL; status server *"

This command displays the following statistics:
SERVER #RUNNING ERROR INFO
REFLECTOR 1

NOTE: 1 indicates that one instance of the reflector application is running under $REFL.
These steps need to be carried out only if you have created a new PATHMON process.

The reflector application is deployed under the PATHMON named $REFL.

Accessing the Web Service deployment
You can access the Web service, WSDL file, and HTML clients after the service is deployed on
NonStop SOAP 4.

• You can access the WSDL file for your service using the following Web address:
http://<ip address>:<port>/<url_pattern>/services/<service_name>? wsdl

where,
<ip address>:<port>

is the IP address and port of iTP WebServer where NonStop SOAP 4 is deployed.
<url_pattern>

is the unique string value you entered during installation. For more information on url_pattern,
see “Installing NonStop SOAP” (page 36)
For example, the Web address to access the WSDL file will be:
http://127.0.0.1:8088/mytest/services/reflector?wsdl

• You can access the HTML clients for your service using the following Web address:
http://<ip address>:<port>/<url_pattern>/client/<service_name>/SOAP_PW<operation_name>.html

where,
<ip address>:<port>

is the IP address and port of iTP WebServer where NonStop SOAP 4 is deployed.
<url_pattern>

is the unique string value you entered during installation. For more information on url_pattern,
see “Installing NonStop SOAP” (page 36)

82 Getting Started with NonStop SOAP 4

client is the directory in <NonStop SOAP 4 Deployment Directory> where the
HTML clients for the services are located.
To verify the deployed service, complete the following steps:
1. Access the SoapPW_REFLECTOR.html using the following Web address:

http://<ip address>:<port>/<url_pattern>/client/reflector/SoapPW_REFLECTOR.html

2. Enter the string Welcome in the text box in the SoapPW_REFLECTOR.html file and click
Submit.

The string you entered as the SOAP response, in XML format, appears. For example, the
following is a sample SOAP Response XML file:
<soapenv:Envelope xmlns:soapenv=”http://www.w3.org/2003/05/soap-envelope”>
<soapenv:Header/>
<soapenv:Body>
<tns1:REFLECTORResponse0 xmlns:tns1=”urn:cpq_tns_REFLECTOR”
xmlns=”urn:cpq_tns_REFLECTOR” xmnls:xsd=”https://www.w3.org/2001/XMLSchema”>
<outstr>Welcome</outstr>
</tns1:REFLECTORResponse0>
</soapenv:Body>
<soapenv:Envelope>

Deploying a NonStop process as a Web Service
Deploying NonStop process as a Web service involves the following steps:
1. Compile the reflector application. Please refer “Compiling reflector.c” (page 81) for compilation

steps.
2. “Creating DDL dictionary files” (page 78)
3. Creating SDL files

The procedure to deploy a service running as a NonStop process in NonStop SOAP 4 is
similar to the procedure used to deploy a Pathway application. However, the SDL needs to
specify the attributes of the NonStop process being deployed under NonStop SOAP. In the
SDL, this is accomplished using the Process element rather than the Pathway element.
Create an SDL file reflectorsdl_process.xml file which contains the following:
<sdl Url="/axis2c" ServerAddress ="http://www.nonstopsoap.com">
<Process>
 <ProcessEnvironment Name="$<PROCESS>”>
 <ProcessDetails Name="Reflector"
 DDLDictionaryLocation="$<Volume>.<SubVolume>”
 SrvrEncoding="UTF-8"
 language="C"
 stringTermination="NullTerminated">
 <Operation Name="REFLECTOR"
 TMFTransactionSupport="Never"
 AbortTransactionOnFault="yes"
 NameSpaceQualified="yes"
 SoapMessageType="document"
 ProcessSoapDDLComments="no"
 SoapDDLAttribute="no"
 UseDDLDefaultValue="no">
 <OperationDescription>Reflector</OperationDescription>
 <RequestInfo>
 <DDLDefinitionName>INPUT</DDLDefinitionName>
 </RequestInfo>
 <ResponseInfo>
 <DDLDefinitionName>OUTPUT</DDLDefinitionName>
 <ResponseSelection defaultResp="yes"/>
 </ResponseInfo>
 </Operation>
 </ProcessDetails>
 </ProcessEnvironment>

Deploying a NonStop process as a Web Service 83

</Process>
</sdl>

Update the following parameters in the reflectorsdl_process.xml file:
Url

Update the Url attribute of the SDL element. This attribute must have a valid relative path to
the ServerAddress attribute. For example:
Url= "/mytest"

where,
mytest is the URL pattern entered while running the deploy.sh deployment script to create
the NonStop SOAP 4 deployment directory.
ServerAddress

Update the ServerAddress attribute with the IP and port number of the iTP WebServer where
the NonStop SOAP 4 has been deployed. For example:
ServerAddress ="http://<ip address>:<port>"

ProcessEnvironment

Update the Process name of the ProcessEnvironment element to reflect the process name
specified in the Step 2. For example:
<ProcessEnvironment Name="$REF">

DDLDictionaryLocation

Update the DDLDictionaryLocation attribute of the service tag with the dictionary file location
you have mentioned in the reflectorddl file (see “Creating DDL dictionary files” (page 78)).
DDLDictionaryLocation="$DATA.REFL"

NOTE: The DDLDictionaryLocation must be the same as the dictionary location specified in
the reflectorddl file.

For more information on developing SDL files for NonStop process-based services, see
“NonStop SOAP 4 Service Description Language” (page 153).

NOTE: You can generate the SDL file using the NonStop SOAP 4 Administration Utility. For
information about generating the SDL file using the NonStop SOAP 4 Administration Utility,
see “NonStop SOAP Tools” (page 194).

4. “Creating Web Service files using SOAPAdminCL tool” (page 79)
5. Starting the reflector application. Go to the <Reflector Service Directory>/src

directory where the reflector object is created. Run the following command:
run -name=/G/<PROCESS> ./<reflector_object>

where,
<PROCESS>

is the NonStop process you want to create.
<reflector_object>

is the reflector object you have created in previous step.

6. “Accessing the Web Service deployment” (page 82)

84 Getting Started with NonStop SOAP 4

5 NonStop SOAP 4 Service APIs
This chapter describes the NonStop SOAP 4 application programming interfaces (APIs) you can
use to develop a DLL-based Web service deployed in NonStop SOAP 4.
This chapter includes the following topics:

• “Basic NonStop SOAP 4 Service APIs” (page 85)

• “Developing NonStop SOAP 4 Services using Service APIs” (page 95)

Basic NonStop SOAP 4 Service APIs
NonStop SOAP 4 service APIs provide a stack of function calls to develop Web services that you
can deploy in NonStop SOAP 4.
The following service APIs are described in this section:
• “APIs to Implement the Service Interface with NonStop SOAP 4” (page 85)

• “APIs to Implement the Service Skeleton Structure Interface” (page 87)

• “APIs to Extract the Input Parameters and Return the Response” (page 89)

• “APIs for Logging” (page 95)

APIs to Implement the Service Interface with NonStop SOAP 4
Services developed using NonStop SOAP 4 service APIs must implement the following functions:

• “The axis2_get_instance()Function” (page 85)

• “The axis2_remove_instance()Function” (page 86)

The axis2_get_instance()Function
NonStop SOAP 4 calls the axis2_get_instance() function when it loads the service for the
first time. It does not call this function in subsequent invocations of the service. The
axis2_get_instance()function creates an instance of the service skeleton structure.
The following tasks are performed by the axis2_get_instance()function implemented in your
service:
1. “Creating the service skeleton structure” (page 86)
2. “Setting the service skeleton operations structure” (page 86)
3. “Returning the service skeleton structure to the service” (page 86)
Synopsis:
AXIS2_EXPORT int axis2_get_instance(
 struct axis2_svc_skeleton **inst,
 const axutil_env_t * env)

Parameters:
inst

is an output parameter that points to the service skeleton structure.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

Basic NonStop SOAP 4 Service APIs 85

Creating the service skeleton structure
To create the service skeleton, you must:
1. Define the service skeleton structure of type axis2_svc_skeleton_t.
2. Allocate memory for the service skeleton structure.
For example:
axis2_svc_skeleton_t *soap4service_svc_skeleton = NULL;
 soap4service_svc_skeleton = AXIS2_MALLOC
 (env->allocator, sizeof(axis2_svc_skeleton_t));

Setting the service skeleton operations structure
After you create the service skeleton structure, the callback functions that implement the service
initialization, business logic, and fault handling must be set in the operations structure of the service
skeleton structure of type axis2_svc_skeleton_ops_t.
Synopsis:
static const axis2_svc_skeleton_ops_t
 soap4service_svc_skeleton_ops_var =
{
 soap4service_init
 soap4service_invoke
 soap4service_on_fault
 soap4service_free
}

where,
soap4service_init

is the function that implements the service initialization logic for the service.
soap4service_invoke

is the function that implements the business logic for the service.
soap4service_on_fault

is the function that implements the fault handling for the service.
soap4service_free

is the function that implements the service cleanup activities.

NOTE: The soap4service_svc_skeleton_ops_var structure must be a global variable in
the service implementation.

After you create the service skeleton operations structure, assign it to the ops field in the created
service skeleton structure.
For example:
soap4service_svc_skeleton->ops = &soap4service_svc_skeleton_ops_var;

Returning the service skeleton structure to the service
After you create and set the service skeleton structure, return the service skeleton structure to NonStop
SOAP 4.
For example:
return soap4service_svc_skeleton;

The axis2_remove_instance()Function
The axis2_remove_instance()function removes the service skeleton structure from the memory.
NonStop SOAP 4 calls the axis2_remove_instance()function when the NonStop SOAP 4
server exits.

86 NonStop SOAP 4 Service APIs

Synopsis:
AXIS2_EXPORT int axis2_remove_instance(
 axis2_svc_skeleton_t * inst,
 const axutil_env_t * env)

Parameters:
inst

is an input parameter and is an instance of the service skeleton structure for the service.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

APIs to Implement the Service Skeleton Structure Interface
After you create the service skeleton structure, implement the following functions defined in the
service skeleton operations structure:

• “The init Function” (page 87)

• “The invoke Function” (page 87)

• “The fault Function” (page 88)

• “The free Function” (page 88)

The init Function
The init function, set in the service skeleton structure, implements the service initialization logic for
the service and is called by NonStop SOAP 4 while processing a request.
Synopsis:
int AXIS2_CALL soap4service_init(axis2_svc_skeleton_t *svc_skeleton,
 const axutil_env_t *env);

Parameters:
svc_skeleton

is an input parameter that points to the service skeleton structure created in the
axis2_get_instance()function.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

The invoke Function
The invoke function, set in the service skeleton structure, implements the business logic for the
service and is called by NonStop SOAP 4 while processing a request.
Synopsis:
axiom_node_t *AXIS2_CALL soap4service_invoke(axis2_svc_skeleton_t *svc_skeleton,
 const axutil_env_t *env,

Basic NonStop SOAP 4 Service APIs 87

 axiom_node_t* node,
 axis2_msg_ctx_t *msg_ctx);

Parameters:
svc_skeleton

is an input parameter that points to the service skeleton structure created in the
axis2_get_instance()function.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

node

is an input parameter and is an AXIOM node that contains the SOAP request from the client.
msg_ctx

is an input parameter and is the message context structure of the service.

NOTE:
• The AXIOM node is the principle data structure exposed by the NonStop SOAP 4 server that

defines the request and response data elements.
• Message context is the structure that contains the request-specific parameters for a SOAP

request.

Return values:
Pointer to the AXIOM node that points to the response received from the service.

The fault Function
The fault function, set in the service skeleton structure, implements the fault handling logic of the
service and is called by NonStop SOAP 4 if a fault occurs while processing a request in the service.
Synopsis:
axiom_node_t *AXIS2_CALL soap4service_on_fault(axis2_svc_skeleton_t *srv_skeleton,
 const axutil_env_t *env,
 axiom_node_t* node);

Parameters:
srv_skeleton

is an input parameter that points to the service skeleton structure created in the
axis2_get_instance()function.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

node

is an input parameter and is the address of the AXIOM node that contains the SOAP request
from the client.

Return values:
Pointer to the AXIOM node that points to the fault received from the service.

The free Function
The free function, set in the service skeleton structure, is called to free the memory after request
processing.
Synopsis:
int AXIS2_CALL soap4service_free(axis2_svc_skeleton_t *srv_skeleton,
 const axutil_env_t *env);

88 NonStop SOAP 4 Service APIs

Parameters:
srv_skeleton

is an input parameter which points to the service skeleton structure created in the
axis2_get_instance()function.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

APIs to Extract the Input Parameters and Return the Response
NonStop SOAP 4 calls the invoke() function from the service skeleton operation structure to
pass the request to the Web service in the form of an AXIOM node. After processing the request,
the Web service builds the response in the AXIOM node and returns the response to NonStop
SOAP 4.
The AXIOM APIs, from the NonStop SOAP 4 service APIs, that enable you to read and create
AXIOM nodes are described in the following sections:

• “Reading an AXIOM node using NonStop SOAP 4 APIs” (page 89)

• “Creating an AXIOM node using NonStop SOAP 4 APIs” (page 91)

Reading an AXIOM node using NonStop SOAP 4 APIs
NonStop SOAP 4 provides the following functions to read an AXIOM node to process a request:

• “The axiom_element_get_qname()Function” (page 89)

• “The axiom_node_get_data_element()Function” (page 90)

• “The axiom_attribute_get_qname()Function” (page 90)

• “The axiom_element_get_attribute()Function” (page 90)

The axiom_element_get_qname()Function
The axiom_element_get_qname()function returns the qualified name of a given AXIOM
element.
Synopsis:
AXIS2_EXTERN axutil_qname_t* axiom_element_get_qname
 (axiom_element_t* om_element,
 const axutil_env_t * env,
 axiom_node_t* om_node)

Parameters:
om_element

is an input parameter and is a pointer to the element whose qname must be retrieved.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

om_node

is an input parameter and is a pointer to the axiom_node_t node that contains om_element.
Return Values:
Pointer to the qname of the element. If an error occurs, it returns NULL.

Basic NonStop SOAP 4 Service APIs 89

The axiom_node_get_data_element()Function
The axiom_node_get_data_element()function retrieves the AXIOM element structure from
the AXIOM node.
Synopsis:
AXIS2_EXTERN void axiom_node_get_data_element
 (axiom_node_t* om_node,
 const axutil_env_t * env)

Parameters:
om_node

is an input parameter and is a pointer to the node for which a data element is required.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
Pointer to the structure included in the AXIOM node. If an error occurs, it returns NULL.

NOTE: You must cast the returned void pointer into an axiom_element_t* data type. This will
allow you to use the data element present in the AXIOM node.

The axiom_attribute_get_qname()Function
The axiom_attribute_get_qname()function retrieves the qualified name of an AXIOM
attribute.
Synopsis:
AXIS2_EXTERN axutil_qname_t* axiom_attribute_get_qname
 (struct axiom_attribute_t* om_attribute,
 const axutil_env_t * env)

Parameters:
om_attribute

is an input parameter and is a pointer to the attribute structure for which qname must be
returned.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
Pointer to the qname for a given attribute. If an error occurs, it returns NULL.

The axiom_element_get_attribute()Function
The axiom_element_get_attribute()function finds the attribute using the given qualified
name.
Synopsis:
AXIS2_EXTERN axiom_attribute_t* axiom_element_get_attribute
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axutil_qname_t * qname)

Parameters:
element

is an input parameter and is a pointer to the element whose attribute must be found.

90 NonStop SOAP 4 Service APIs

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
Pointer to the attribute with the given qname. If an error occurs, it returns NULL and sets the error
code in the environment error structure.

Creating an AXIOM node using NonStop SOAP 4 APIs
NonStop SOAP 4 provides APIs to create the AXIOM node using one of the following two
approaches:

• “Creating an AXIOM node using AXIOM Node Create APIs” (page 91)

• “Creating an AXIOM node from an XML using AXIOM Document APIs” (page 93)

Creating an AXIOM node using AXIOM Node Create APIs
NonStop SOAP 4 provides the following functions to create the response AXIOM node:

• “The axiom_node_create()Function” (page 91)

• “The axiom_node_add_child()Function” (page 91)

• “The axiom_element_create()Function” (page 92)

• “The axiom_element_add_attribute()Function” (page 92)

• “The axiom_attribute_create()Function” (page 93)

The axiom_node_create()Function

The axiom_node_create()function creates an AXIOM node structure.
Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_node_create
 (const axutil_env_t * env)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
Pointer to the newly created node structure. If an error occurs, it returns NULL.

The axiom_node_add_child()Function

The axiom_node_add_child() function adds an AXIOM node as a child to a parent AXIOM
node.
Synopsis:
AXIS2_EXTERN axis2_status_t axiom_node_add_child
 (axiom_node_t* om_node,
 const axutil_env_t * env,
 axiom_node_t* child
)

Parameters:
om_node

is an input parameter and points to the parent node. It cannot have a NULL value.

Basic NonStop SOAP 4 Service APIs 91

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

child

is an input parameter and is a pointer to the child node of type axiom_node_t. It cannot
have a NULL value.

Return Values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

The axiom_element_create()Function

The axiom_element_create()function creates an AXIOM element using the name specified.
Synopsis:
AXIS2_EXTERN axiom_element_t* axiom_element_create
 (const axutil_env_t * env,
 axiom_node_t * parent,
 const axis2_char_t * localname,
 axiom_namespace_t * ns,
 axiom_node_t ** node)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

parent

is an input parameter and is the pointer to the parent of the element node to be created. It
cannot have a NULL value.

localname

is an input parameter and is the pointer to the local name of the element. It cannot have a
NULL value.

ns

is an input parameter and is the pointer to the namespace, if any, of the attribute. It can have
a NULL value.

node

is an output parameter and is a pointer to the parameter that returns the node corresponding
to the element created.

Return Values:
Pointer to the newly created element structure. If an error occurs, it returns NULL.

The axiom_element_add_attribute()Function

The axiom_element_add_attribute() function adds an attribute to the current element.
Synopsis:
AXIS2_EXTERN axis2_status_t axiom_element_add_attribute
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_attribute_t * attribute,
 axiom_node_t * node)

92 NonStop SOAP 4 Service APIs

Parameters:
om_element

is an input parameter and is a pointer to the element to which the attribute is added. It cannot
have a NULL value.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

attribute

is an input parameter and is a pointer to the attribute to be added to the element. It cannot
have a NULL value.

node

is an input parameter and is a pointer to the axiom_node_t node that contains om_element.
It cannot have a NULL value.

Return Values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

The axiom_attribute_create()Function

The axiom_attribute_create()function creates an AXIOM attribute structure.
Synopsis:
AXIS2_EXTERN axiom_attribute_t* axiom_attribute_create
 (const axutil_env_t * env,
 const axis2_char_t * localname,
 const axis2_char_t * value,
 axiom_namespace_t * ns)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

localname

is an input parameter and is a pointer to the local name of the attribute. It cannot have a NULL
value.

value

is an input parameter and is a pointer to the normalized attribute value. It cannot have a NULL
value.

ns

is an input parameter and is a pointer to the namespace, if any, of the attribute. It is an optional
parameter and can have a NULL value.

Return Values:
Pointer to the newly created attribute structure. If an error occurs, it returns NULL.

Creating an AXIOM node from an XML using AXIOM Document APIs
If you create the service response from an XML format, use the AXIOM document APIs to create
the AXIOM node from the response XML.

Basic NonStop SOAP 4 Service APIs 93

NOTE: You need not use the AXIOM document APIs if the service builds the response using
AXIOM APIs. The AXIOM document APIs interpret the hierarchy and relationship between the
elements in an XML message and generates the AXIOM node that mirrors the relationships in the
XML message. Unlike the AXIOM document APIs, when you use the AXIOM API to build the
AXIOM node, you need to set the relationships between the elements.

NonStop SOAP 4 uses the StAX parser to convert the XML payload into an AXIOM node. The
parser traverses the XML payload and converts the payload into the corresponding AXIOM node.
The StAX parser consumes the XML payload and produces an AXIOM document structure. The
AXIOM document structure is queried to retrieve the AXIOM nodes.
The NonStop SOAP 4 APIs provide the following functions to process the AXIOM document structure:

• “The axiom_document_create()Function” (page 94)

• “The axiom_document_build_all()Function” (page 94)

• “The axiom_document_free()Function” (page 95)

The axiom_document_create()Function

The axiom_document_create()function creates an axiom_document_t structure. This
structure holds the AXIOM node representation of the input XML payload.
Synopsis:
AXIS2_EXTERN axiom_document_t* axiom_document_create
 (const axutil_env_t * env,
 axiom_node_t * root,
 struct axiom_stax_builder * builder)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

root

is an input parameter and is a pointer to the root node of the XML document.
builder

is an input parameter and is a pointer to the StAX parser.
Return Value:
Pointer to the newly created AXIOM document. If an error occurs, it returns NULL.

The axiom_document_build_all()Function

The axiom_document_build_all()function builds the XML input stream from the current
position of the StAX parser till the root element is complete.
Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_document_build_all
 (struct axiom_document * document,
 const axutil_env_t * env)

Parameters:
document

is an input parameter and is a pointer to the axiom_document_t structure to be built.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

94 NonStop SOAP 4 Service APIs

Return Value:
Pointer to the AXIOM node built from the document. If an error occurs, it returns NULL.

The axiom_document_free()Function

The axiom_document_free()function is used to free the document structure from the memory.
Synopsis:
AXIS2_EXTERN void axiom_document_free
 (struct axiom_document_t* document,
 const axutil_env_t * env)

Parameters:
document

is an input parameter and is a pointer to the document structure that becomes free from the
memory.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Value:
Void.

APIs for Logging
The NonStop SOAP 4 service API includes the logging APIs to create and log messages.
Logging APIs enable you to create the log file structure, which includes the location and the name
of the log file.

Creating the log file structure
The axutil_log_create()function is called to create the log file structure.
Synopsis:
 AXIS2_EXTERN axutil_log_t * axutil_log_create
 (axutil_allocator_t *allocator,
 axutil_log_ops_t *ops,
 const axis2_char_t *stream_name)

Parameters:
allocator

is an input parameter and is a pointer to the axutil_allocator structure.
ops

is an input parameter and is a pointer to the options structure for logging.
stream_name

is an input parameter and is a pointer to the file name and location where the log must be
created.

Return Values:
Pointer to the newly created log structure. If an error occurs, it returns NULL.

Developing NonStop SOAP 4 Services using Service APIs
This section describes the procedure to develop and deploy a NonStop SOAP 4 service, using the
math service as an example.

Developing NonStop SOAP 4 Services using Service APIs 95

The math service can implement the following mathematical operations:

• Addition of two integers

• Subtraction of two integers

• Multiplication of two integers

• Division of two integers

NOTE: The source file for the math service is available in the <NonStop SOAP 4
Installation Directory>/sample_services/math directory.

To develop NonStop SOAP 4 services, use one of the following:
• The service API stack

The service API stack enables you to develop NonStop SOAP 4 services manually. This
approach provides higher flexibility to customize the services based on your business
requirement.

• The WSDL2C tool
The WSDL2C tool is a Java-based tool that is distributed with NonStop SOAP 4. You can use
this tool to generate the client and service skeleton files in the C programming language,
based on the WSDL file for the service. Your application business logic must be integrated
with the skeleton files.
For most applications, the WSDL2C tool is an optimal way to generate the service skeleton
files because you do not need to write the skeleton files. For more information on the WSDL2C
tool, see “NonStop SOAP Tools” (page 194).

Developing and deploying NonStop SOAP 4 services, involves the following tasks:
1. “Defining the XML Request and Response Payload” (page 96)
2. “Creating the SDL File for the Service” (page 98)
3. “Generating the WSDL File and the services.xml File” (page 99)
4. “Generating the Service Skeleton Files” (page 100)
5. “Implementing the Business Logic in the Service Skeleton Files” (page 102)
6. “Compiling the Service Code and Deploying the Service” (page 102)
7. “Testing the Service” (page 103)

Defining the XML Request and Response Payload
To develop a NonStop service, you must specify the XML request and response payload in the DDL
file of the service. The XML payload helps to specify the parameters and their relationship in the
XML tree structure.
To define the XML request and response payload and to compile the DDL file, complete the following
steps:

96 NonStop SOAP 4 Service APIs

1. Define the request and response XML payload for the service.
For example, for the math service:

• The request XML payload for the add operation is:
<Body>
 <add>
 <param1>1< /param1>
 <param2>2< /param2>
 </add>
</Body>

• The response XML payload for the add operation is:
< Body>
 < addResponse>
 <result>3< /result>
 < /addResponse>
</Body>

2. Copy the mathddl file from the <NonStop SOAP 4 Installation
Directory>/sample_services/math/service to an OSS location.
This OSS location will be referred as <Math Source Directory>.

NOTE: The NonStop SOAP 4 distribution includes the mathddl DDL file for all the operations
of the math service.

3. Edit the DDL file copied to the <Math Source Directory> to modify the ?DICT location.
Set the ?DICT location to a valid subvolume location on your system.

NOTE: You can create the DDL file for the math service using a text editor in the <Math
Source Directory>.

The DDL file must contain the following entries:
?dict $<volume>.<subvolume>
?comments
 DEFINITION PARAMETER.
 10 PARAM1 TYPE binary 32.
 10 PARAM2 TYPE binary 32.
 END

 DEFINITION RESULT.
 10 Response TYPE binary 32.
 END

where,
$<volume>.<subvolume>

is a valid Guardian location where you want to create the dictionary files for the math
service.

Ensure that you have read and write permissions for this directory.
4. To compile the DDL file, use the following command:

oss> gtacl –p ddl < “service DDL file”

For example:
OSS> gtacl –p ddl < mathddl

Ensure that the DDL command does not return any errors. For information about DDL errors,
see the Data Definition Language (DDL) Reference Manual.

On successfully completing the DDL dictionary compilation, the dictionary files are generated in
the Guardian subvolume specified in the service DDL file.

Developing NonStop SOAP 4 Services using Service APIs 97

For example, if you specified $DATA.MATH as the dictionary location in the mathddl file, successful
compilation of mathddl generates the following files in the $DATA.MATH location:
oss> exit

GUARDIAN> volume $DATA.MATH
$DATA.MATH> fileinfo *
 CODE EOF LAST MODIFIED OWNER RWEP PExt SExt
DICTALT 201A 12288 07NOV2008 18:40 255,255 NUNU 4 32
DICTCDF 207A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTDDF 200 30 07NOV2008 18:40 255,255 NUNU 14 14
DICTKDF 206A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTMAP 209A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTOBL 204A 12288 07NOV2008 18:40 255,255 NUNU 4 32
DICTODF 202A 12288 07NOV2008 18:40 255,255 NUNU 4 32
DICTOTF 203A 12288 07NOV2008 18:40 255,255 NUNU 4 32
DICTOUF 208A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTOUK 208A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTRDF 205A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTTKN 209A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTTYP 209A 0 07NOV2008 18:40 255,255 NUNU 4 32
DICTVER 209A 0 07NOV2008 18:40 255,255 NUNU 4 32

$DATA.MATH> osh

OSS>

Creating the SDL File for the Service
After you define the XML request and response payload, you must create the SDL file for the service
because the SoapAdminCL tool uses the SDL file as an input to generate the WSDL file. NonStop
SOAP 4 uses the generated WSDL file to process requests.
You can create an SDL file manually or you can use the NonStop SOAP 4 Administration Utility
to create the SDL file. For the math sample, the completed SDL file, mathsdl.xml is available
in the <NonStop SOAP 4 Installation Directory>/sample_services/math/service
directory.
After the SDL file is available, complete the following steps:
1. Create the SDL file for the service using one of the following approaches:

• Manually write the SDL file for the service. Create the directory structure /math/src
under the <NonStop SOAP 4 Deployment Directory>/services using the
following OSS commands:
OSS>mkdir <NonStop SOAP 4 Deployment Directory>/services/math

OSS>mkdir <NonStop SOAP 4 Deployment Directory>/services/math/src

• Use the NonStop SOAP 4 Administration Utility.

NOTE: If you have created the SDL file using the NonStop SOAP 4 Administration
Utility, do not copy the mathsdl.xml file. The NonStop SOAP 4 Administration Utility
replaces the SDL file in the appropriate location.
For information on generating the SDL file using the NonStop SOAP 4 Administration
Utility, see “NonStop SOAP Tools” (page 194).

You must place the SDL file for the math service at this location. The SDL file for the math
service is provided with the NonStop SOAP 4 distribution and is available in <NonStop
SOAP 4 Installation
Directory>/sample_services/math/service/mathsdl.xml.
You may choose to copy this SDL file to <NonStop SOAP 4 Deployment
Directory>/services/math/src.

98 NonStop SOAP 4 Service APIs

2. Update the following attributes in the mathsdl.xml file:
• Url

Verify the Url attribute of the sdl element. This attribute must have a Web address
pattern.
For example,
Url= “/mytest”

where,
"/mytest" is the Web address pattern entered while creating the NonStop SOAP 4
deployment directory by running the deploy.sh deployment script. For more information,
see Step 6 in “Setting up the Deployment Environment” (page 38).

• ServerAddress

Update the ServerAddress attribute of the sdl element with the iTP WebServer IP
address and port number, where NonStop SOAP 4 is deployed. You must set the value
for the ServerAddress attribute in the following format:
ServerAddress ="http://<ip address>:<port>"

where,
<ip address>:<port>

is the IP address and port of iTP WebServer integrated with NonStop SOAP 4.

• DDLDictionaryLocation

Update the DDLDictionaryLocation attribute of the Service element with the
Guardian subvolume location specified in the service DLL file.
For example:
DDLDictionaryLocation="$DATA.MATH"

Generating the WSDL File and the services.xml File
To generate the WSDL file and the services.xml file using the SoapAdminCL tool, complete
the following steps:
1. Add the directory containing the SoapAdminCL executable image to the OSS PATH variable:

OSS> export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example, if you have installed NonStop SOAP 4 in the default location (/usr/tandem/
nssoap/t0865h01), the OSS command to update the PATH environment variable is:
OSS> export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

2. Run the SoapAdminCL tool to generate the WSDL file and the services.xml file for the
service using the command:
OSS> SoapAdminCL -o <NonStop SOAP 4 Deployment Directory> -i <SDL filename>

The SoapAdminCL command generates the following files:

• <NonStop SOAP 4 Deployment
Directory>/services/<service_name>/SoapPW_<service_name>.wsdl

The SoapPW_<service_name>.wsdl file contains the service definition details and
the XML schema definitions generated for the service.

• <NonStop SOAP 4 Deployment
Directory>/services/<service_name>/services.xml

The services.xml file contains the service configuration details that are required by
the NonStop SOAP 4 server during runtime.

Developing NonStop SOAP 4 Services using Service APIs 99

• <NonStop SOAP 4 Deployment
Directory>/client/<service_name>/SoapPW_<operation name>.html

The SoapPW_<operation name>.html file is HTML client for an operation of the
service.

• <NonStop SOAP 4 Deployment
Directory>/client/<service_name>/pway-xsd/SoapPW_<request_name>.xsd

The SoapPW_<request_name>.xsd file is XML schema file for request structure of an
operation of the service.

• <NonStop SOAP 4 Deployment
Directory>/client/<service_name>/pway-xsd/SoapPW_<request_name>Response0.xsd

The SoapPW_<request_name>Response0.xsd file is XML schema file for response
structure of an operation of the service.

NOTE: On successful execution, the SoapAdminCL tool generates client-specific XML, .html
files, and .xsd files in the <NonStop SOAP 4 Deployment
Directory>/client/<service_name> directory.

For the math service, invoke the SoapAdminCL tool by running the following OSS commands:
OSS>cd <Math Source Directory>
OSS>SoapAdminCL –o <NonStop SOAP 4 Deployment Directory> -i mathsdl.xml

On successful execution, the following files are generated:
• <NonStop SOAP 4 Deployment

Directory>/services/math/SoapPW_math.wsdl

• <NonStop SOAP 4 Deployment Directory>/services/math/services.xml

• <NonStop SOAP 4 Deployment Directory>/client/math/SoapPW_add.html

• <NonStop SOAP 4 Deployment Directory>/client/math/SoapPW_sub.html

• <NonStop SOAP 4 Deployment Directory>/client/math/SoapPW_mul.html

• <NonStop SOAP 4 Deployment Directory>/client/math/SoapPW_div.html

The request and response XML files and the XML schema files are also generated with the
WSDL file, services.xml file, and HTML clients.

Generating the Service Skeleton Files
After you generate the WSDL file and the services.xml file for the service, either create the
service skeleton and client stub files manually, or use the WSDL2C tool to automate the creation of
the files.
To create the service skeleton files using the WSDL2C tool, complete the following steps:
1. Set the OSS environment variable NSSOAP_HOME to the OSS location where the NonStop

SOAP 4 installation directory is located:
OSS> export NSSOAP_HOME=<NonStop SOAP 4 Installation Directory>

For example:
OSS> export NSSOAP_HOME=/usr/tandem/nssoap/t0865h01

where,
/usr/tandem/nssoap/t0865h01 is the NonStop SOAP 4 installation directory location.

2. Add the directory containing the WSDL2C executable image to the OSS PATH variable, using
the command:
OSS> export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

100 NonStop SOAP 4 Service APIs

For example:
OSS> export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

where,
/usr/tandem/nssoap/t0865h01

is the NonStop SOAP 4 installation directory.
3. Add the <Java Installation Directory>/bin directory to the PATH environment

variable, using the command:
OSS> export PATH=<Java Installation Directory>/bin:$PATH

For example:
OSS> export PATH=/usr/tandem/java/bin:$PATH

where,
/usr/tandem/java/

is the Java installation directory.
4. Generate the service skeleton files using the WSDL2C tool. You can generate the service skeleton

files using the following command:
OSS> WSDL2C [options] –ss -uri [wsdl path]

where,
-ss

creates the server side skeleton files.
-uri [wsdl path]

specifies the location of the WSDL file.
[options] include the following:
-d <data binding name>

specifies the data binding option to be used.
-o

specifies a directory path for the generated code.
-pn <port_name>

enables you to select a specific port when there are multiple ports in the WSDL file.
-sn <service_name>

enables you to select a specific service when there are multiple services in the WSDL file.
-wv <version>

specifies the WSDL versions.
For example:
OSS> WSDL2C -o "<NonStop SOAP 4 Deployment Directory>/services/math/src" -ss -d none
 -uri "<NonStop SOAP 4 Deployment Directory>/services/math/SoapPW_math.wsdl"

Developing NonStop SOAP 4 Services using Service APIs 101

5. On successful execution, the following service skeleton files are generated:
• The NonStop SOAP 4 skeleton source file, where the axis2_svc_skeleton interface

functions are implemented
• The service skeleton source file, where you must implement the business logic for your

application
• Header file for the service skeleton file
For example, for the math service, the following files are generated in the <NonStop SOAP
4 Deployment Directory>/services/math/ directory:
• axis2_svc_skel_mathService.c

• axis2_skel_mathService.c

• axis2_skel_mathService.h

Implementing the Business Logic in the Service Skeleton Files
After you generate the service skeleton and client stub files for the service, you must implement the
business logic.
For example, for the math service, you need to implement the business logic in the
axis2_skel_mathService.c file. To add the business logic for the add operation, update the
axis2_skel_mathService_add()function.
A sample implementation of the axis2_skel_mathService_add() is available in the <NonStop
SOAP 4 Installation Directory
>/sample_services/math/service/axis2_skel_mathService.c file. If you do not
want to edit the source files, you can replace the <NonStop SOAP 4 Deployment
Directory>/services/math/src/axis2_skel_mathService.c file with the <NonStop
SOAP 4 Installation
Directory>/sample_services/math/service/axis2_skel_mathService.c file, which
implements the business logic for all the math operations.

Compiling the Service Code and Deploying the Service
After you implement the business logic in the service skeleton file, you must deploy the service.
To deploy the service complete the following steps:
1. Copy the Makefile from the <NonStop SOAP Installation

Directory>/sample_services/math/service directory to the <NonStop SOAP
Deployment Directory>/services/math/src directory.

2. Set AXIS2C_HOME to <NonStop SOAP 4 Deployment Directory> using the following
command:
OSS> export AXIS2C_HOME=<NonStop SOAP 4 Deployment Directory>

3. Run the make command to build the libmath.so DDL file:
OSS> make

The make command copies the libmath.so file to the <NonStop SOAP 4 Deployment
Directory>/services/math directory.

4. Ensure that the services.xml and the service DLL (.so) files are located in the <NonStop
SOAP 4 Deployment Directory>/services/math directory.
OSS> cd <NonStop SOAP 4 Deployment Directory>/services/<service_name>
OSS> ls
 libmath.so services.xml

The math service is deployed in NonStop SOAP 4. To access the service WSDL, go to the
following Web address:
http://< ip address>:< port number>/url_pattern/services/math?wsdl

102 NonStop SOAP 4 Service APIs

In case of the math service, the libmath.so file and the services.xml file must be located
in the <NonStop SOAP 4 Deployment Directory>/services/math directory.
The math service is now deployed.

Testing the Service
To test the math service, you must create the math client. For information on creating a math
client, see “NonStop SOAP 4 Client APIs” (page 105).
To run the math client complete the following steps:
1. Access the options offered by the math service using the following Web address pattern:

http://<ip address>:<port>/<url_pattern>/client/math/<html_client_name>

where,
<ip address>:<port>

is the IP address and port of iTP WebServer integrated with NonStop SOAP 4.
url_pattern

is the string entered in Step 6 in “Setting up the Deployment Environment” (page 38). The
default value is axis2c.

client

is the name of the directory in <NonStop SOAP 4 Deployment Directory> where
NonStop SOAP 4 HTML clients for the math service are located.

math

is a sub-directory in the client directory. The math sub-directory includes the HTML clients
needed to access the operations offered by the math Web service.

<html_client_name>

is the name of the HTML client in the client/math directory.

NOTE: You can access the HTML clients for the math service using the following Web
address:
http://<ip address>:<port>/<url-pattern>/client/math

The links to HTML clients for the following math service operations are displayed on the
browser:
SoapPW_add.html – HTML client for the addition operation

SoapPW_sub.html – HTML client for the subtraction operation

SoapPW_mul.html – HTML client for the multiplication operation

SoapPW_div.html – HTML client for the division operation

2. Perform the required operation. For example, to perform an addition operation, complete the
following steps:
1. Go to the SoapPW_add.html Web page.

Developing NonStop SOAP 4 Services using Service APIs 103

2. Enter the values for the two parameters to be added, and then click submit.
For example:
param1 : 20
param2 : 30

On successful submission, the following result appears in the Web browser:
- <soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
 < soapenv:Header />
 < soapenv:Body>
 < ns1:addResponse0 xmlns:ns1="urn:cpq_tns_add">
 < ns1:response>50< /ns1:response>
 < /ns1:addResponse0>
 < /soapenv:Body>
 < /soapenv:Envelope>

NOTE: You can use similar steps to perform subtraction, multiplication, and division
operations.

104 NonStop SOAP 4 Service APIs

6 NonStop SOAP 4 Client APIs
This chapter describes the NonStop SOAP 4 APIs you can use to develop client applications that
consume SOAP Web services.
This chapter includes the following topics:
• “NonStop SOAP 4 Client APIs” (page 105)

• “Developing NonStop SOAP 4 Clients Using Client APIs” (page 119)

NonStop SOAP 4 Client APIs
NonStop SOAP 4 client APIs provide the following stack of function calls to develop client
applications that consume SOAP Web services.
• “APIs to Implement the Client Interface with NonStop SOAP 4” (page 105)

• “APIs to Generate the Request Node and Consume the Response Node” (page 106)

• “APIs to Invoke the Web Service” (page 113)

• “APIs for Logging” (page 115)

• “ADB APIs for creating requests” (page 117)
Figure 10 shows the NonStop SOAP 4 client APIs and how they communicate with the NonStop
SOAP 4 server.

Figure 10 Client APIs in NonStop SOAP 4

Client Log File Logging API

Client Interface
API

Request
Generation API

AXIOM
Request Node

AXIOM
Response Node

Service
Invocation API

Response
Consume API

NonStop SOAP 4
Server

NonStop
SOAP 4 Client

APIs to Implement the Client Interface with NonStop SOAP 4
Clients that are developed using NonStop SOAP 4 client APIs must implement the following functions:

• “The axis2_svc_client_create()Function” (page 106)

• “The axis2_svc_client_free()Function” (page 106)

NonStop SOAP 4 Client APIs 105

NOTE: The axis2_svc_client_create()and axis2_svc_client_free()functions are
generated by the WSDL2C tool for NonStop SOAP 4 clients. This tool consumes the WSDL file of
the service to generate client stubs which contain the definition for these functions. For more
information about the WSDL2C tool, see “NonStop SOAP Tools” (page 194).

The axis2_svc_client_create()Function
The axis2_svc_client_create() function creates and returns a pointer to the
axis2_svc_client_t NonStop SOAP 4 client structure. This function also allocates memory to
the service client structure and initializes the structure parameters to contain default values.
Synopsis:
AXIS2_EXTERN axis2_svc_client_t* axis2_svc_client_create
(const axutil_env_t * env,
 const axis2_char_t * client_home
)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

client_home
is name of the directory that contains the Axis2/C repository.

Return values:
Pointer to the newly created service client structure. It returns NULL in case of an error and sets the
corresponding error code in environment's error structure.

The axis2_svc_client_free()Function
The axis2_svc_client_free() function frees the NonStop SOAP 4 client structure from
memory. This function is called to release the memory allocated to the service client structure that
is no longer needed. This helps in reducing the memory footprint of the NonStop SOAP 4 client.
Synopsis:
AXIS2_EXTERN void axis2_svc_client_free
(axis2_svc_client_t * svc_client,
 const axutil_env_t * env
)

Parameters:
svc_client

is a pointer to the service client structure.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return values:
None

APIs to Generate the Request Node and Consume the Response Node
NonStop SOAP 4 client sends a request and receives a response from the Nonstop SOAP 4 server
in the form of an AXIOM node.

106 NonStop SOAP 4 Client APIs

The AXIOM APIs that enable you to generate the request AXIOM node and consume the response
AXIOM node are described in the following section:

• “Generating the Request AXIOM node using NonStop SOAP 4 APIs” (page 107)

• “Consuming the Response AXIOM node using NonStop SOAP 4 APIs” (page 111)

Generating the Request AXIOM node using NonStop SOAP 4 APIs
NonStop SOAP 4 provides APIs to generate the request AXIOM node using one of the following
approaches:

• “Creating an AXIOM node using AXIOM Node Create APIs” (page 107)

• “Creating an AXIOM node from an XML using AXIOM Document APIs” (page 110)

Creating an AXIOM node using AXIOM Node Create APIs
NonStop SOAP 4 provides the following functions to create the response AXIOM node:

• “The axiom_node_create()Function” (page 107)

• “The axiom_node_add_child()Function” (page 107)

• “The axiom_element_create()Function” (page 108)

• “The axiom_element_add_attribute()Function” (page 108)

• “The axiom_attribute_create()Function” (page 109)

• “The axiom_document_build_all()Function” (page 109)

The axiom_node_create()Function

The axiom_node_create()function creates an AXIOM node structure.
Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_node_create
 (const axutil_env_t * env)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return value:
Pointer to the newly created node structure. If an error occurs, it returns NULL.

The axiom_node_add_child()Function

The axiom_node_add_child()function adds an AXIOM node as a child to a parent AXIOM
node.
Synopsis:
AXIS2_EXTERN axis2_status_t* axiom_node_add_child
 (axiom_node_t* om_node,
 const axutil_env_t * env,
 axiom_node_t* child
)

Parameters:
om_node

is an input parameter and points to the parent node. It cannot have a NULL value.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

NonStop SOAP 4 Client APIs 107

child

is an input parameter and is a pointer to the child node of type axiom_node_t. It cannot
have a NULL value.

Return values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

The axiom_element_create()Function

The axiom_element_create()function creates an AXIOM element using the specified name.
Synopsis:
AXIS2_EXTERN axiom_element_t* axiom_element_create
 (const axutil_env_t * env,
 axiom_node_t * parent,
 const axis2_char_t * localname,
 axiom_namespace_t * ns,
 axiom_node_t ** node)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

parent

is an input parameter and is a pointer to the parent of the element node to be created. It cannot
have a NULL value.

localname

is an input parameter and is a pointer to the local name of the element. It cannot have a NULL
value.

ns

is an input parameter and is a pointer to the namespace, if any, of the element. It can have a
NULL value.

node

is an output parameter and is a pointer to the node corresponding to the created element.
Return value:
Pointer to the newly created element structure. If an error occurs, it returns NULL.

The axiom_element_add_attribute()Function

The axiom_element_add_attribute() function adds an attribute to the current element.
Synopsis:
AXIS2_EXTERN axis2_status_t axiom_element_add_attribute
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_attribute_t * attribute,
 axiom_node_t * node)

Parameters:
om_element

is an input parameter and is a pointer to the element to which the attribute is added. It cannot
have a NULL value.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

108 NonStop SOAP 4 Client APIs

attribute

is an input parameter and is a pointer to the attribute to be added to the element. It cannot
have a NULL value.

node

is an input parameter and is a pointer to the axiom_node_t node that contains om_element.
It cannot have a NULL value.

Return values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

The axiom_attribute_create()Function

The axiom_attribute_create()function creates an AXIOM attribute structure.
Synopsis:
AXIS2_EXTERN axiom_attribute_t* axiom_attribute_create
 (const axutil_env_t * env,
 const axis2_char_t * localname,
 const axis2_char_t * value,
 axiom_namespace_t * ns)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

localname

is an input parameter and is a pointer to the local name of the attribute. It cannot have a NULL
value.

value

is an input parameter and is a pointer to the normalized attribute value. It cannot have a NULL
value.

ns

is an input parameter and is a pointer to the namespace, if any, of the attribute. It is an optional
parameter and can have a NULL value.

Return values:
Pointer to the newly created attribute structure. If an error occurs, it returns NULL.

The axiom_document_build_all()Function

The axiom_document_build_all()function builds the XML input stream from the current
position of the XML input stream till the end of the root element.
AXIS2_EXTERN axiom_node_t* axiom_document_build_all
 (struct axiom_document * document,
 const axutil_env_t * env)

Parameters:
document

is an input parameter and is a pointer to the axiom_document_t structure to be built.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

NonStop SOAP 4 Client APIs 109

Return values:
Pointer to the AXIOM node created from the XML stream.

Creating an AXIOM node from an XML using AXIOM Document APIs
If you create the service response AXIOM node from an XML message, use the AXIOM document
APIs to create the AXIOM node from the response XML.

NOTE: You need not use the AXIOM document APIs if the service builds the response using
AXIOM APIs. The AXIOM document APIs interpret the hierarchy and relationship between the
elements in an XML message and generate the AXIOM node that mirrors the relationships in the
XML message. Unlike the AXIOM document APIs, when you use the AXIOM API to build the
AXIOM node, you need to set the relationships between the elements.

NonStop SOAP 4 uses the Streaming API for XML (StAX) parser to convert the XML payload into
an AXIOM node. The StAX parser is a pull-based XML parser that transfers the parsing control to
the client. This allows the NonStop SOAP 4 clients to request the next token from the parser. StAX
parses the XML payload and converts it into the corresponding AXIOM node. The StAX parser
consumes the XML payload and produces an AXIOM document structure. The AXIOM document
structure is queried to retrieve the AXIOM nodes.
The NonStop SOAP 4 APIs provide the following functions to process the AXIOM document structure:

• “The axiom_document_create()Function” (page 110)

• “The axiom_document_build_all()Function” (page 110)

• “The axiom_document_free()Function” (page 111)

The axiom_document_create()Function

The axiom_document_create()function creates an axiom_document_t structure. This
structure holds the AXIOM node representation of the input XML payload.
Synopsis:
AXIS2_EXTERN axiom_document_t* axiom_document_create
 (const axutil_env_t * env,
 axiom_node_t * root,
 struct axiom_stax_builder * builder)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

root

is an input parameter and is a pointer to the root node of the XML document.
builder

is an input parameter and is a pointer to the StAX parser.
Return Value:
Pointer to the newly created AXIOM document. If an error occurs, it returns NULL.

The axiom_document_build_all()Function

The axiom_document_build_all()function builds the XML input stream from the current
position of the StAX parser till the root element is complete.
Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_document_build_all
 (struct axiom_document * document,
 const axutil_env_t * env)

110 NonStop SOAP 4 Client APIs

Parameters:
document

is an input parameter and is a pointer to the axiom_document_t structure to be built.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Value:
Pointer to the AXIOM node built from the document. If an error occurs, it returns NULL.

The axiom_document_free()Function

The axiom_document_free()function is used to free the document structure from memory.
Synopsis:
AXIS2_EXTERN void axiom_document_free
 (struct axiom_document_t* document,
 const axutil_env_t * env)

Parameters:
document

is an input parameter and is a pointer to the document structure that becomes free from the
memory.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return values:
None.

Consuming the Response AXIOM node using NonStop SOAP 4 APIs
NonStop SOAP 4 provides the following functions to consume the response AXIOM node:

• “The axiom_element_get_qname()Function” (page 111)

• “The axiom_node_get_data_element()Function” (page 90)

• “The axiom_attribute_get_qname()Function” (page 112)

• “The axiom_element_get_attribute()Function” (page 112)

The axiom_element_get_qname()Function
The axiom_element_get_qname()function returns the qualified name of a given AXIOM
element.
Synopsis:
AXIS2_EXTERN axutil_qname_t* axiom_element_get_qname
 (axiom_element_t* om_element,
 const axutil_env_t * env,
 axiom_node_t* om_node)

Parameters:
om_element

is an input parameter and is a pointer to the element whose qname must be retrieved.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

NonStop SOAP 4 Client APIs 111

om_node

is an input parameter and is a pointer to the axiom_node_t node that contains om_element.
Return Values:
Pointer to the qname of the element. If an error occurs, it returns NULL.

The axiom_node_get_data_element()Function
The axiom_node_get_data_element()function retrieves the AXIOM element structure from
the AXIOM node.
Synopsis:
AXIS2_EXTERN void axiom_node_get_data_element
 (axiom_node_t* om_node,
 const axutil_env_t * env)

Parameters:
om_node

is an input parameter and is a pointer to the node for which a data element is required.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
Pointer to the structure included in the AXIOM node. If an error occurs, it returns NULL. You must
cast the returned void pointer into an axiom_element_t* data type before using the pointed
data element further in the code.

The axiom_attribute_get_qname()Function
The axiom_attribute_get_qname()function retrieves the qualified name of an AXIOM
attribute.
Synopsis:
AXIS2_EXTERN axutil_qname_t* axiom_attribute_get_qname
 (struct axiom_attribute_t* om_attribute,
 const axutil_env_t * env)

Parameters:
om_attribute

is an input parameter and is a pointer to the attribute structure for which qname must be
returned.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
Pointer to the qname for a given attribute. If an error occurs, it returns NULL.

The axiom_element_get_attribute()Function
The axiom_element_get_attribute()function finds the attribute using the given qualified
name.
Synopsis:
AXIS2_EXTERN axiom_attribute_t* axiom_element_get_attribute
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axutil_qname_t * qname)

112 NonStop SOAP 4 Client APIs

Parameters:
element

is an input parameter and is a pointer to the element whose attribute must be found.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
Pointer to the attribute with the given qname. If an error occurs, it returns NULL and sets the error
code in the environment error structure.

APIs to Invoke the Web Service
NonStop SOAP 4 clients can invoke their respective NonStop SOAP 4 services in synchronous
(blocking) or asynchronous (non-blocking) mode using the following APIs:

• “The axis2_svc_client_send_receive() Function” (page 113)

• “The axis2_svc_client_send_receive_non_blocking() Function” (page 113)

• “The axis2_svc_client_send_robust() Function” (page 114)

• “The axis2_svc_client_fire_and_forget() Function” (page 114)

The axis2_svc_client_send_receive() Function
The axis2_svc_client_send_receive() function sends an XML request and receives the
XML response. This function is used to interact with a service operation whose message exchange
pattern (MEP) is IN-OUT.
Synopsis:
AXIS2_EXTERN axiom_node_t* axis2_svc_client_send_receive
(axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axiom_node_t * payload
)

Parameters:
svc_client

is a pointer to the service client structure.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

payload

is a pointer to the AXIOM node, which represents the XML payload to be sent. The caller
controls the payload until the service client releases it.

Return Value:
Is a pointer to the OM node representing the XML response.

The axis2_svc_client_send_receive_non_blocking() Function
The axis2_svc_client_send_receive_non_blocking() function sends an XML request
and receives the XML response, but it does not block for the response. This function is used to
interact in the non-blocking mode with a service operation, which has an IN-OUT message exchange
pattern.
Synopsis:
AXIS2_EXTERN void axis2_svc_client_send_receive_non_blocking
(axis2_svc_client_t * svc_client,

NonStop SOAP 4 Client APIs 113

 const axutil_env_t * env,
 const axiom_node_t * payload,
 axis2_callback_t * callback
)

Parameters:
svc_client

is a pointer to the service client structure.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

payload

is a pointer to the AXIOM node representing the XML payload to be sent. The caller controls
the payload until the service client releases it.

callback

is a pointer to the callback structure used to capture response. The callback structure is passed
as an argument to the axis2_svc_client_send_receive_non_blocking() function.
The program runs in parallel and returns the response back to the calling function as and when
it becomes available.

Return values:
Void

The axis2_svc_client_send_robust() Function
The axis2_svc_client_send_robust() function is used to send an XML message. This
function invokes a service operation whose MEP is Robust Out-Only. If a fault triggers on the server
side, the axis2_svc_client_send_robust() function reports an error to the caller.
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_svc_client_send_robust
(axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axiom_node_t * payload
)

Parameters:
svc_client

is a pointer to the service client structure.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

payload

is a pointer to the AXIOM node representing the XML payload to be sent. The caller controls
the payload until the service client releases it.

Return values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

The axis2_svc_client_fire_and_forget() Function
The axis2_svc_client_fire_and_forget() function sends a message and forgets about
it. This function is used to interact with a service operation whose MEP is In-Only.

114 NonStop SOAP 4 Client APIs

Synopsis:
AXIS2_EXTERN void axis2_svc_client_fire_and_forget
(axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axiom_node_t * payload
)

Parameters:
svc_client

is a pointer to the service client structure.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

payload

is a pointer to the AXIOM node representing the XML payload to be sent. The caller controls
the payload until the service client releases it.

Return Value:
Void

APIs for Logging
The NonStop SOAP 4 API includes the AXIOM logging APIs used to create and log messages.
The logging API enables you to specify the name and location of the log file and the level of
messages to be logged.

Creating the log file structure
The axutil_log_create()function is called to create the log file structure.
Synopsis:
 AXIS2_EXTERN axutil_log_t * axutil_log_create
 (axutil_allocator_t *allocator,
 axutil_log_ops_t *ops,
 const axis2_char_t *stream_name)

Parameters:
allocator

is an input parameter and a pointer to the axutil_allocator structure.
ops

is an input parameter and is a pointer to the options structure for logging.
stream_name

is an input parameter and is a pointer to the file name and location where the log must be
created.

Return Values:
Pointer to the newly created log structure. If an error occurs, it returns NULL.

Logging messages at different log levels
After you have created the log structure, use the following functions to log messages at different
logging levels:

• “The axutil_log_impl_log_warning()Function” (page 116)

• “The axutil_log_impl_log_info() Function” (page 116)

• “The axutil_log_impl_log_user()Function” (page 116)

NonStop SOAP 4 Client APIs 115

• “The axutil_log_impl_log_debug()Function” (page 116)

• “The axutil_log_impl_log_trace()Function” (page 116)

The axutil_log_impl_log_warning()Function
The axutil_log_impl_log_warning()function logs warning messages in the specified log
file.
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_warning
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

The axutil_log_impl_log_info() Function
The axutil_log_impl_log_info() function logs information messages in the specified log
file.
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_info
 (axutil_log_t *log, const axis2_char_t *filename, const int linenumber, const axis2_char_t
 *format,...)

The axutil_log_impl_log_user()Function
The axutil_log_impl_log_user()function logs user-level debug messages in the specified
log file.
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_user
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

The axutil_log_impl_log_debug()Function
The axutil_log_impl_log_debug()function logs the debug level logs. It logs all the information
in the specified log file.
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_debug
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

The axutil_log_impl_log_trace()Function
The axutil_log_impl_log_trace()function logs the trace level logs. It is enabled with the
compiler time option AXIS2_TRACE.
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_trace
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

Releasing the log structure
You can use the axutil_log_free AXIOM API call to release the log structure.
Synopsis:
 AXIS2_EXTERN void axutil_log_free
 (axutil_allocator_t *allocator,
 struct axutil_log *log)

116 NonStop SOAP 4 Client APIs

ADB APIs for creating requests
The WSDL2C with ADB (Axis2) data binding creates getter and setter methods at both schema
level and the message level. You can use these APIs to create SOAP requests. You must implement
the following functions to develop applications using NonStop SOAP 4 client ADB APIs.

• “The adb_<messagename>_create()Function”

• “The adb_<messagename>_free()Function”

• “The adb_<complextype>_create_with_values() Function”

• “The adb_<messagename>_set_<complextype>() Function”

• “The adb_<messagename>_get_<complextype>() Function”

The adb_<messagename>_create()Function
The adb_<messagename>_create() function creates and returns a pointer to the
<messagetype> structure. This function allocates memory for the <messagetype> structure and
initializes the structure parameters with default values.
Synopsis:
 adb_<messagetype> * AXIS2_CALL adb_<messagename>_create
 (axutil_env_t *env)

Parameters:
env

is an input parameter and points to the axutil_env_t environment structure. The value
cannot be NULL.

Return value:
The function returns a pointer to the adb_<messagetype> structure. It returns NULL in case of
an error and sets the corresponding error code in the environment's error structure.

The adb_<messagename>_free()Function
The adb_<messagename>_free()function frees the memory allocated to a <messagetype>
structure.
Synopsis:
 axis2_status_t AXIS2_CALL adb_<messagename>_free
 (<messagetype *> _object, const axutil_env_t *env)

Parameters:
_object

is an input parameter and points to the structure to be freed. The value cannot be NULL.
env

is an input parameter and points to the axutil_env_t structure.
Return value:
The return value is the status of the operation. The function returns AXIS2_SUCCESS if the object
is freed, else returns AXIS2_FAILURE.

The adb_<complextype>_create_with_values() Function
The adb_<complextype>_create_with_values() function creates and returns a pointer to
the <complextype> element in the NonStop SOAP 4 client structure. This function also allocates
memory to the <complextype> element in the structure and initializes the structure parameters
with the values provided.

NonStop SOAP 4 Client APIs 117

Synopsis:
 adb_<complextype> * AXIS2_CALL adb_<complextype>_create_with_values
 (const axutil_env_t *env, paramtype param)

Parameters:
env

is an input parameter and points to the axutil_env_t structure.
param

is an input parameter.
Return value:
The function returns the pointer to the <complextype> element in the structure. It returns NULL in
case of an error and sets the error code in the environment's error structure.

The adb_<messagename>_set_<complextype>() Function
The adb_<messagename>_set_<complextype>() function sets the <complextype> element
in the message.
Synopsis:
 axis2_status AXIS2_CALL adb_<messagename>_set_<complextype>
 (adb_<messagetype>* _messageStruct,
 const axutil_env_t *env,
 <complextype> _complesStruct)

Parameters:
_messageStruct

is an input parameter and points to the <messagetype> structure, which must be updated
with the <complextype> element.

env

is an input parameter and points to the axutil_env_t structure. The value cannot be NULL.
_complexStruct

is an input parameter and points to the <complextype> element, which will be set in
_messageStruct.

Return value:
The function returns the status of the operation. It returns AXIS2_SUCCESS if the message structure
is set, else returns AXIS2_FAILURE.

The adb_<messagename>_get_<complextype>() Function
The adb_<messagename>_get_<complextype>() function gets the <complextype> elements
from the response message.
Synopsis:
 <complextype> AXIS2_CALL adb_<messagename>_get_<complextype>
 (adb_<messagetype>* _messageStruct, const axutil_env_t *env)

Parameters:
_messageStruct

is an input parameter and points to the <messagetype> structure. The <complextype>
element is extracted from this structure.

env

is an input parameter and points to the axutil_env_t structure. The value cannot be NULL.
Return value:
Returns the <complextype> element structure that is extracted from _messageStruct.

118 NonStop SOAP 4 Client APIs

Developing NonStop SOAP 4 Clients Using Client APIs
This section describes the procedure to develop and deploy a NonStop SOAP 4 client using the
NonStop SOAP 4 client API. This section describes the procedure to develop a client for the math
service.
To develop NonStop SOAP 4 clients, use one of the following:
• The client API stack

The client API stack enables you to develop NonStop SOAP 4 clients manually. This approach
provides higher flexibility to customize the client applications based on your business
requirements.

• The WSDL2C tool
The WSDL2C tool is a Java-based tool that is distributed with NonStop SOAP 4. You can use
this tool to generate the client stub and service skeleton files in the C programming language,
based on the WSDL file for the service. Your application business logic must be integrated
with the stub files.
For most applications, the WSDL2C tool is used to generate the client stub files because you
need not write the basic interface code manually. For more information on the WSDL2C tool,
see “NonStop SOAP Tools” (page 194).

Developing and deploying NonStop SOAP 4 clients involves the following tasks:

• Generating NonStop SOAP 4 Client Stubs using the WSDL2C tool

• Implementing Business Logic in Client Stubs

• Compiling the Client Code and Deploying the Client

• Testing the Client

Generating NonStop SOAP 4 Client Stubs using the WSDL2C tool
To create client stubs using the WSDL2C tool, complete the following steps:

NOTE: Ensure that the WSDL file for your service is located at < NonStop SOAP 4
Deployment Directory>/services/< service_name>. If the WSDL file is not present,
to create a WSDL file for your service, use the SoapAdminCL tool. For information, see NonStop
SOAP 4 Configuration Files (page 177).

1. Set the OSS environment variable NSSOAP_HOME to the OSS location where the NonStop
SOAP 4 installation directory is located:
OSS> export NSSOAP_HOME=<NonStop SOAP 4 Installation Directory>

For example:
OSS> export NSSOAP_HOME=/usr/tandem/nssoap/t0865h01

where,
/usr/tandem/nssoap/t0865h01

is the NonStop SOAP 4 installation directory location.
2. Add the directory containing the WSDL2C executable image to the OSS PATH variable.

OSS> export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS> export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

3. Add the <Java Installation Directory>/bin directory to the PATH environment
variable, using the command:
OSS> export PATH=<Java Installation Directory>/bin:$PATH

Developing NonStop SOAP 4 Clients Using Client APIs 119

For example:
OSS> export PATH=/usr/tandem/java/bin:$PATH

where,
/usr/tandem/java/

is the Java installation directory.
4. Create a directory named src in <NonStop SOAP 4 Deployment

Directory>/client/<service_name> using the following command:
OSS> mkdir <NonStop SOAP 4 Deployment Directory>/client/<service_name>/src

For example:
OSS> mkdir <NonStop SOAP 4 Deployment Directory>/client/math/src

The <NonStop SOAP 4 Deployment Directory>/client/math/src directory will
be called the <Math Client Source Directory> throughout the chapter.

5. Generate the client stub files using the WSDL2C command:
OSS> WSDL2C [options] –uri [wsdl path]

where,
[options] includes the following:

-o <output location>

specifies an output location where the client stubs and build scripts (build.sh) must
be generated.

-a

generates the client stubs to invoke a Web service in asynchronous or non-blocking
mode. In this mode, the client sends a request to the Web service and continues
processing without waiting for a response.

-d <data binding>

specifies the data binding, if any, to be used by the client while communicating with
the service.

NOTE: Use the -u option if the data binding value is “adb”.

-s

generates the client stubs to invoke a Web service in synchronous mode or blocking
mode. In this mode, the client sends a request to the Web service and waits for a
response.

NOTE: By default, the WSDL2C tool runs in the synchronous mode.

-wv <version>

specifies the WSDL file version.
-f

flattens the generated files.
-or

overwrites the existing files.
-u

unpacks the data binding classes.

NOTE: Do not use the -a and -s options together.

-uri <wsdl_path>

specifies the location of the WSDL file.

120 NonStop SOAP 4 Client APIs

For example:
OSS> WSDL2C -o "<NonStop SOAP 4 Deployment Directory>/client/math/src" -d none
 -uri "<NonStop SOAP 4 Deployment Directory>/services/math/SoapPW_math.wsdl"

NOTE: In this example, ensure that the math service is deployed in the NonStop SOAP 4
deployment before running the OSS> WSDL2C [options] -u –uri [wsdl path]
command.

6. On successful execution, the following client stubs will be generated:
• Client source stub file that will implement the main() function called when an executable

file is run.
• The header file for the client source stub file that holds the declarations of the functions

that are implemented in the client stub source file.
In case of the math service, the following files are generated in the <NonStop SOAP 4
Deployment Directory>/client/math/src directory:
• axis2_stub_mathService.c

• axis2_stub_mathService.h

Implementing Business Logic in Client Stubs
After generating the client stubs, you must implement the processing logic in the main() function
in the axis2_stub_mathService.c file.
You must code the business logic to implement all four operations, namely addition, subtraction,
multiplication, and division using the NonStop SOAP 4 Client API.
The complete code for the math client is present in the <NonStop SOAP 4 Installation
Directory>/sample_services/math/client/axis2_stub_mathService.c file. You
may choose to replace the <Math Client Source
Directory>/axis2_stub_mathService.c file with this file.
You can also copy the axis2_stub_mathservice.c file from <NonStop SOAP 4
Installation Directory>/sample_services/math/client to the OSS location
<NonStop SOAP 4 Deployment Directory>/client/math/src.

Compiling the Client Code and Deploying the Client
After the client stubs are generated and updated with the main() function, and the business logic
is implemented in the service skeleton, you must compile the client code.
The client code can be complied either using the Makefile or manually.

Compiling the Client Code using the Makefile
To compile the client code using the Makefile and deploy the client, complete the following steps:
1. Copy the Makefile of the math client to <Math Client Source Directory>.

NOTE:
• You must copy the Makefile of the math client to <Math Client Source Directory>

because the WSDL2C tool does not generate the Makefile.
• The Makefile of the math client is located in <NonStop SOAP 4 Installation

Directory>/sample_services/math/client/Makefile.

2. Set AXIS2C_HOME to <NonStop SOAP 4 Deployment Directory> using the following
command:
OSS> export AXIS2C_HOME=<NonStop SOAP 4 Deployment Directory>

3. Run the Make command to build your math.exe file:

Developing NonStop SOAP 4 Clients Using Client APIs 121

OSS> make

The math.exe file is created at <NonStop SOAP 4 Deployment
Directory>/client/math/src.

4. Ensure that the services.xml and the service DLL (.so) files are located in the <NonStop
SOAP 4 Deployment Directory>/services/<service_name> directory.
OSS> cd <NonStop SOAP 4 Deployment Directory>/services/<service_name>
OSS> ls
 lib <service_name>.so services.xml

For the math service, the libmath.so and the services.xml file must be located in
<NonStop SOAP 4 Deployment Directory>/services/math.
This completes the deployment of the math client.

Compiling the Client Code manually
To compile the client code manually and deploy the client, complete the following steps:
1. Compile the client code using the C89 compiler with the following options:

Table 3 lists the C89 compiler options.

Table 3 C89 Compiler Options

DescriptionC89 Compiler Options

Enables HP extensions.-Wextensions

Generates debugging symbols.-g

Includes the directory that contains the required header files. In NonStop SOAP
4 the required header files are located at <NonStop SOAP 4 Installation
Directory>/include.

-I

Specifies the OSS execution environment.-Wsystype=oss

Specifies the tns/e system environment.-Wtarget=tns/e

Ignores the missing symbol reference.-Weld="-unres_symbols
Ignore"

Avoids printing the library file locations on the screen.-Weld=-Noverbose

Includes the libraries to be linked.-l

Dynamically links the libraries specified in the -l command. In NonStop SOAP
4 the required library files are located at <NonStop SOAP 4 Installation
Directory>/lib.

-WBdynamic

2. Run the following command:
c89 -c axis2_stub_mathService.c -o math.exe \
-Wextensions \
-g \
-I/usr/tandem/nssoap/t0865h01/include \
-Wsystype=oss \
-Wtarget=tns/e \
-Weld="-unres_symbols Ignore" \
-Weld=-Noverbose \
-Weld="-first_l /usr/tandem/nssoap/t0865h01/lib" "-L /usr/local/lib" \
-WBdynamic \
-l /usr/tandem/nssoap/t0865h01/lib/libaxis2_engine.so \
-l /usr/tandem/nssoap/t0865h01/lib/libneethi.so \
-l /usr/tandem/nssoap/t0865h01/lib/libaxutil.so \
-l /usr/tandem/nssoap/t0865h01/lib/libaxis2_axiom.so \
-l /usr/tandem/nssoap/t0865h01/lib/libaxis2_parser.so \
-l /usr/tandem/nssoap/t0865h01/lib/libaxis2_http_receiver.so \

122 NonStop SOAP 4 Client APIs

-l /usr/tandem/nssoap/t0865h01/lib/libaxis2_http_sender.so \
-l /usr/tandem/nssoap/t0865h01/lib/libguththila.so

3. Ensure that the services.xml and the service DLL (.so) files are located in the <NonStop
SOAP 4 Deployment Directory>/services/<service_name> directory.
OSS> cd <NonStop SOAP 4 Deployment Directory>/services/<service_name>
OSS> ls
 lib <service_name>.so services.xml

For the math service, the libmath.so and the services.xml file must be located in
<NonStop SOAP 4 Deployment Directory>/services/math.
This completes the deployment of the math client.

Testing the Client
To run the math client, complete the following steps:
1. Provide execute permissions to the executable file math.exe:

OSS> chmod +x math.exe

2. Set the AXIS2C_HOME environment variable to <NonStop SOAP 4 Deployment
Directory> for the log files to be generated inside the <NonStop SOAP 4 Deployment
Directory>/logs folder.
OSS> export AXIS2C_HOME=<NonStop SOAP 4 Deployment Directory>

3. Execute the math client using the following command.
OSS> cd <Math Client Source Directory>
OSS> ./math.exe <operation> <param1> <param2> <endpoint url>

where,
<operation> is the operation name: add, sub, mul, or div.
<param1> and <param2> are the integer values being passed to the service.
<endpoint url> is the iTP WebServer address in the format.
http://<iTP WebServer address>:<portnumber>
 /<url_pattern>/services/math

Developing NonStop SOAP 4 Clients Using Client APIs 123

7 Customizing NonStop SOAP 4 Message Processing
NonStop SOAP 4 processes a request based on the default message process. This chapter provides
information on customizing the default NonStop SOAP 4 message process using Phases, Modules,
Handlers, and Message Receiver User Functions.
This chapter describes the following topics:
• “Overview” (page 124)

• “Customizing the NonStop SOAP 4 Message Process Using Handlers” (page 126)

• “Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions”
(page 137)

Overview
You can customize NonStop SOAP 4 using:
• “Modules and Handlers” (page 124)

• “Message Receiver User Functions” (page 125)

Figure 11 Customizing NonStop SOAP 4

iTP Webserver

Web Service

Message Receiver User Functions

Modules and Handlers XML

Buffer

CGI Interface and
NonStop SOAP 4

Engine

Pathway Message
Receiver

Modules and Handlers
Modules and handlers are the user-written plug-ins that attach to the NonStop SOAP 4 engine
during different stages in the SOAP message process and modify the SOAP message headers.
Modules and handlers interrupt the default process of the SOAP message inside NonStop SOAP
4 and change the SOAP message. Modules and handlers can be attached at the global level,
which means that the handlers are called for every service invocation in a NonStop SOAP 4
deployment, or at the service level, which means that the handlers are called only when a particular
service in invoked.
For more information on modules and handlers, see “Request Processing in NonStop SOAP 4”
(page 127).

124 Customizing NonStop SOAP 4 Message Processing

Message Receiver User Functions
In the NonStop SOAP 4 architecture, a message receiver converts the incoming SOAP request
from the NonStop SOAP 4 internal format (AXIOM node) to a format that is compatible with the
deployed service.
NonStop SOAP 4 supports the following message receivers:

• Pathway message receiver: used to invoke services running as Pathway applications or NonStop
processes.

• Raw XML message receiver: used when the service is developed using NonStop SOAP 4
service APIs and is implemented as a DLL.

NOTE: MRUF can be attached only to the pathway message receiver.

The message receiver is attached by NonStop SOAP 4 during service invocation and is configured
using the messageReceiver element in the axis2.xml or services.xml configuration file.
For example:
<messageReceiver class="axis2_pway_receiver"/>

NonStop SOAP 4 allows you to customize or extend the default behavior of the Pathway message
receiver using Message Receiver User Functions (MRUF). MRUFs enable you to modify the message
buffer, Pathway, or NonStop process service invocation attributes, and customize the message
flow in the Pathway message receiver phase. MRUFs can be attached at the global level, which
means that the MRUF is called for every service invocation in a NonStop SOAP 4 deployment, or
at the service level, which means that the MRUF is called only when a particular service in invoked.
For more information about customizing the Pathway message receiver, see “Customizing the
NonStop SOAP 4 Message Process Using Message Receiver User Functions” (page 137).

NonStop SOAP 4 Message Processing Customization
NonStop SOAP 4 allows you to customize the default message process using user-defined phases,
modules, handlers, and MRUFs attached to the Pathway message receiver.
Figure 12 shows the execution points where handlers can be attached to the default NonStop
SOAP 4 message process to customize its behavior.

Overview 125

Figure 12 Modified Message Process in NonStop SOAP 4

PreDispatch
Phase Handlers

Dispatch
Phase Handlers

Post Dispatch
Phase Handlers

User Defined
Phase Handlers

Pre Service
MRUF

PreDispatch
Phase

Dispatch
Phase

PostDispatch
Phase

UserDefined
Phases

User Defined
Phases

Message Out
Phase

User Defined
Phases

Message Receiver
Phase

Service Provider

User Defined
Phase Handlers

Message Out
Phase Handlers

User Defined
Phase Handlers

Pre Marshal
MRUF

Transport in
Phase Handlers

Service
Consumer

Transport Phase Transport in
Phase Handlers

Customizing the NonStop SOAP 4 Message Process Using Handlers
To customize the NonStop SOAP 4 message process using handlers, you must have a good
understanding of the request process in NonStop SOAP 4.
Customizing the NonStop SOAP 4 server using handlers involves the following steps:
• “Creating a User-Defined Phase” (page 131)

• “Deploying and Attaching a Module” (page 132)

• “Developing a Sample Module for NonStop SOAP 4” (page 132)

NOTE: In most cases, handlers that are attached with the default phases of NonStop SOAP 4
meet most of the customization requirements. Therefore, you rarely need to create a user-defined
phase.

This section describes the request processing flow in NonStop SOAP 4 followed by the steps to
customize NonStop SOAP 4 message using handlers.

126 Customizing NonStop SOAP 4 Message Processing

Request Processing in NonStop SOAP 4
Request processing in NonStop SOAP 4 takes place through the interaction of the following
components:
• “Flows” (page 127)

• “Phases” (page 128)

• “Handlers” (page 130)

• “Modules” (page 130)
The default message process in NonStop SOAP 4 uses only flows and phases; it does not use
handlers and modules. You can customize the default message process using handlers and modules
to meet your business requirements.

Flows
A Flow is a sequence of activities where messages flow in and out of NonStop SOAP 4.
NonStop SOAP 4 invokes the following flows based on the configured message exchange pattern
(MEP):

• inflow: invoked when a client sends a request to the service.

• infaultflow: invoked during request processing.

• outflow: invoked when a service sends a response to a client.

• outfaultflow: invoked during response processing.
Figure 13 illustrates the message process in NonStop SOAP 4.

Figure 13 Message Process in NonStop SOAP 4

Service Consumer

iTP Webserver

Message Receiver

Service Provider

Transport Phase

PreDispatch Phase

Dispatch Phase

PostDispatch Phase

Transport Phase

MessageOut Phase

Outflowinflow

Customizing the NonStop SOAP 4 Message Process Using Handlers 127

Phases
A Phase is a stage of processing or a time interval in the message process. A collection of phases
forms a Flow. The phases within a flow, and the order in which they are invoked, are defined
within the phaseOrder element in the axis2.xml configuration file.
For more information on the axis2.xml configuration file, see “NonStop SOAP 4 Configuration
Files” (page 177).

Pre-defined phases in inflow
The inflow comprises a set of pre-defined phases in the following sequence:
1. “Transport” (page 128)
2. “PreDispatch” (page 128)
3. “Dispatch” (page 128)
4. “PostDispatch” (page 129)

Transport

This phase processes transport-specific information, such as validating incoming messages and
adding data to the message context structure.
The handlers attached to the Transport phase can access transport-specific information and
perform the following tasks:
• Receive raw XML requests

• Read Transport headers

• Modify Transport headers

• Validate incoming messages by examining the Transport headers

• Add data to the message context structure

• Update data in the message context structure

PreDispatch

This phase populates the message context structure before forwarding the message to the Dispatch
phase. For example, the addressing headers of the SOAP message are processed in this phase.
The addressing handlers extract information from the message headers and include the information
in the message context structure.
The handlers attached to the PreDispatch phase can access the message context structure. The
handlers in this phase perform the following tasks:

• Read SOAP headers for SOAP messages

• Modify SOAP headers for SOAP messages

• Remove SOAP headers from SOAP messages

• Add data to the message context structure

• Update data in the message context structure

Dispatch

This phase locates the required service and operation for which the message in the request is
intended.

128 Customizing NonStop SOAP 4 Message Processing

The handlers attached to the PostDispatch phase can access the service name and operation
name of the target service for which the message is intended after the PostDispatch phase. The
handlers in this phase perform the following tasks:

• Get/Set the service name

• Get/Set the operation name

• Update the message context structure

PostDispatch

This phase verifies if the dispatchers have been able to find a service and an operation for the
message. If not, the processing of the message halts and an error is reported.

NOTE: NonStop SOAP 4 does not allow you to change the sequence of inflow.

The handlers in this phase verify if the dispatchers have been able to find a service and an operation
for the message. If a service is not found, the handlers report an error. The handlers in this phase
perform the following tasks:

• Get/Set the service name

• Get/Set the operation name

• Skip the service invocation

• Update the message context structure

User-defined phases in inflow
You can define phases in the inflow only after the PostDispatch phase. This is because the
default phase order of pre-defined phases cannot be changed and the first phase in inflow must
be the transport phase.
The handlers in the user-defined phase perform the following tasks:

• Get/Set the service name

• Get/Set the operation name

• Skip the service invocation

• Update the message context structure
For example:
 <phaseOrder type="inflow">
 <phase name="Transport"/>
 <phase name="PreDispatch"/>
 <phase name="Dispatch"/>
 <phase name="PostDispatch"/>
 <phase name="myPhase"/>
 </phaseOrder>

where,
myPhase

is a user-defined phase.

Pre-defined phases in outflow
The outflow comprises a set of pre-defined phases in the following sequence:
1. “MessageOut” (page 130)
2. “Transport” (page 130)

Customizing the NonStop SOAP 4 Message Process Using Handlers 129

MessageOut

This phase executes the transport handlers from the associated transport configuration. The last
handler is always a transport sender that sends the SOAP message to the target endpoint.
The handlers attached to the MessageOut phase can access the response message. Handlers
attached to this phase perform the following tasks:
• Modify the response buffer

• Modify the response XML

Transport

This phase is part of the inflow and outflow. In the outflow, it adds HTTP-specific header
elements to the SOAP response message received from the MessageOut and forwards it to the
iTP WebServer.

User-defined phases in outflow
You can define phases in the outflow either before or after the MessageOut phase.
The handlers attached to the User-Defined phase can access the response message. Handlers
attached to this phase perform the following tasks:
• Modify the response buffer

• Modify the response XML
For example:
 <phaseOrder type="outflow">
 <phase name="myPhase1"/>
 <phase name="MessageOut"/>
 <phase name="myPhase2"/>
 </phaseOrder>

where,
myPhase1 and myPhase2

are user-defined phases.

Handlers
A handler is the smallest unit of invocation within a phase. Handlers are an independent unit of
execution that perform specific activities, such as logging a message, consuming addressing
headers, and so on.
Phases define the handlers that need to be invoked in each phase and the sequence of invocation
based on the sequence defined in the module.xml configuration file.

Modules
A module is a collection of one or more handlers along with their configuration information, such
as handler names, the phase in which they must be invoked, and so on. You can use modules to
customize end the behavior of the NonStop SOAP 4 server by adding new handlers to the phases.

NOTE: Handlers and modules cannot be used to modify or extend the default behavior of a
message receiver.

A module includes the module.xml configuration file that determines the sequence of the handlers
in a phase. Each NonStop SOAP 4 module is configured using its module.xml file located in
the <NonStop SOAP 4 Deployment Directory>/modules/<module_name> directory.
When configuring a module, you must place the handlers in the pre-defined phase or user-defined
phase of the NonStop SOAP 4 server.
The following is a sample module.xml file for a module that includes four handlers:

130 Customizing NonStop SOAP 4 Message Processing

<module name="samplemodule" class="axis2_mod_sam">
 <inflow>
 <handler name="handler1" class="axis2_mod_sam">
 <order phase="Transport"/>
 </handler>
 <handler name="handler2" class="axis2_mod_sam">
 <order phase="PreDispatch"/>
 </handler>
 </inflow>
 <outflow>
 <handler name="handler3" class="axis2_mod_sam">
 <order phase="MessageOut"/>
 </handler>
 </outflow>
 <Outfaultflow>
 <handler name="handler4" class="axis2_mod_sam">
 <order phase="MessageOut"/>
 </handler>
 </Outfaultflow>
</module>

NOTE: For more information on the module.xml configuration file, see “NonStop SOAP 4
Configuration Files” (page 177).

The following table lists the configuration to achieve the handler deployment in the sample
module.xml file.

Deployment PhaseDeployment FlowHandler Name

TransportInHandler1

PreDispatchInHandler2

MessageOutOutHandler3

MessageOutOutHandler4

Creating a User-Defined Phase
NonStop SOAP 4 allows you to create user-defined phases using the axis2.xml configuration
file.
You can engage user-defined phases at different stages of the NonStop SOAP 4 message process.
The following restrictions are applicable when defining user-defined phases:
• You cannot modify the sequence of the pre-defined phases for inflow.

• You can define one or more user-defined phases to the inflow but only after the
PostDispatch phase.

• You must assign a unique name to each user-defined phase.
User-defined phases can be configured in the inflow and outflow under the phaseOrder
element of the axis2.xml configuration file.
For example, to add:
• userPhase1 to the inflow and

• userPhase2 and userPhase3 to the outflow
add the highlighted entries to the phaseOrder elements in the axis2.xml configuration file:
<phaseOrder type="inflow">
 <phase name="Transport"/>
 <phase name="PreDispatch"/>
 <phase name="Dispatch"/>
 <phase name="PostDispatch"/>

Customizing the NonStop SOAP 4 Message Process Using Handlers 131

<phase name="userPhase1"/>
</phaseOrder>
<phaseOrder type="outflow">

<phase name="userPhase2"/>
 <phase name="MessageOut"/>

<phase name="userPhase3"/>
</phaseOrder>

Update the axis2.xml configuration file and restart the NonStop SOAP 4 server. A user-defined
phase is added to the phase order. You can now attach handlers and modules to the user-defined
phase.

Deploying and Attaching a Module
Modules can be attached to a user-defined phase or a pre-defined phase in a NonStop SOAP 4
deployment.
A module is deployed by copying the handler DLLs and the module.xml file to the <NonStop
SOAP Deployment Directory>/modules/<module_ name> directory. The NonStop SOAP
4 server loads each module.xml configuration file during startup and attaches the handlers with
the phase defined in the module.xml configuration file.
For more information about developing handlers and modules, see “Developing a Sample Module
for NonStop SOAP 4” (page 132).
You can attach a module at the global level or service level. When a module is configured at the
global level, it will be attached to all the services in a particular NonStop SOAP 4 deployment.
To attach a module at the global level, set the ref attribute of the module element in the axis2.xml
configuration file.
When a module is configured at the service level, it will be attached only for a specific service in
the NonStop SOAP 4 deployment. To attach a module at the service level, set the ref attribute of
the module element in the services.xml configuration file.
For example, to attach the transaction module available in the NonStop SOAP 4 distribution
for a particular service in your NonStop SOAP 4 deployment, add the <module
ref="transaction"/> element under the Service element in the services.xml file. Similarly,
to attach the transaction module at the global level, add the <module
ref="transaction"/> element under the global module section in the axis2.xml file.
During startup, NonStop SOAP 4 will load the transaction handler DLL from the <NonStop SOAP
4 Deployment Directory>/modules/transaction/<transaction handler DLL
name>.so . The transaction handler will be attached to the phase defined in the <NonStop SOAP
4 Deployment Directory>/modules/transaction/module.xml configuration file. For
more information about services.xml, axis2.xml, and module.xml, see “NonStop SOAP 4
Configuration Files” (page 177).

Developing a Sample Module for NonStop SOAP 4
This section describes the procedure to develop a sample module named logging and its handlers:
loggingInHandler and loggingOutHandler.
The logging module enables you to log the input and output XML message in a log file.
• The loggingInHandler handler is engaged in the inflow and logs the request message

to a log file.
• The loggingOutHandler handler is engaged in the outflow and logs the response

message to a log file.
The logging module is engaged with the empdb service. You must have the empdb service
deployed in your NonStop SOAP 4 deployment. For more information on deploying the empdb
service, see “Installing NonStop SOAP” (page 36).

Developing the logging module involves the following tasks:

132 Customizing NonStop SOAP 4 Message Processing

1. “Running the SoapAdminCL Tool to Generate the Module Handler Stub Files” (page 133)
2. “Implementing the Business Logic in the Module Handler Stub Files” (page 134)
3. “Engaging the Module Handler at the Service Level” (page 136)
4. “Verifying the Module Handler Output” (page 137)

Running the SoapAdminCL Tool to Generate the Module Handler Stub Files
The SoapAdminCL tool enables you to generate the module handler stub files and the module.xml
file. The SoapAdminCL tool generates the skeleton files for handlers in the inflow and outflow.
To run the SoapAdminCL tool, complete the following steps:
1. Add the directory that includes the SoapAdminCL executable image to the OSS PATH variable.

OSS>export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS>export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

2. Run the SoapAdminCL tool to generate the module handler stub files:
OSS> SoapAdminCL -o <output directory>
 -mod <module_name>

where,
<output directory>

specifies the output directory where the module handler stub files will be generated.
<module_name>

specifies the name of the generated module.
For example:
OSS> SoapAdminCL –o /home/user1/mynssoap –mod logging

3. Verify that the following directory structure is created in the <output directory>:
modules
 /mod_logging
 module.xml
 /src
 mod_logging.h
 mod_logging.c
 logging_in_handler.c
 logging_out_handler.c
 Makefile

where,
module.xml

is the configuration file for the logging module.
mod_logging.h

is the header file for the mod_logging.c source.
mod_logging.c

is the C stub file that implements the interface between the NonStop SOAP 4 server and
the logging module.

logging_in_handler.c

is the C stub file where you must implement the loggingInHandler business logic for
the handler. For the logging module, the business logic is designed to log the input XML
message.

Customizing the NonStop SOAP 4 Message Process Using Handlers 133

logging_out_handler.c

is the C stub file where you must implement the loggingOutHandler business logic for
the handler. For the logging module, the business logic is designed to log the output
XML message.

Makefile

is the Makefile for the logging module.

NOTE: If the specified directory is not created with all the listed files, repeat Step 1 through
Step 3. Do not attempt to manually create the directory structure or the files in it.

Implementing the Business Logic in the Module Handler Stub Files
After generating the module handler stub files using the SoapAdminCL tool, you must implement
the business logic in the invoke methods as described in:

• “Implementing the invoke() Method for loggingInHandler” (page 134)

• “Implementing the invoke() Method for loggingOutHandler” (page 134)

Implementing the invoke() Method for loggingInHandler
Each handler in a module has an invoke() method associated with it. The application logic of
the handler must be coded in this method:
axis2_status_t AXIS2_CALL axutil_logging_in_handler_invoke
 (axis2_handler_t *handler,
 const axis2_env_t *env,
 struct axis2_msg_ctx *msg_ctx);

where,
axis2_handler_t *handler

is the address of a handler object.
const axis2_env_t *env

is the address of an environment structure.
struct axis2_msg_ctx *msg_ctx

is the address of a message context structure. The message context structure includes information
about the XML message and the message context structure.

Implement the following business logic for the logging module:
1. Get the SOAP envelope from the message context structure.
2. Get the SOAP message body from the SOAP envelope.
3. Get the root node of the SOAP body.
4. Get the XML message by serializing the root node.
5. Log the XML message to the log file.
For the sample source code for invoke() method of loggingInHandler, see the <NonStop
SOAP 4 Installation Directory
>/sample_services/modules/mod_logging/src/logging_in_handler.c file.

Implementing the invoke() Method for loggingOutHandler
Each handler in a module has an invoke() method associated with it. The application logic of
the handler must be coded in this method:
axis2_status_t AXIS2_CALL axutil_logging_out_handler_invoke(
 struct axis2_handler * handler,
 const axutil_env_t * env,
 struct axis2_msg_ctx * msg_ctx)

134 Customizing NonStop SOAP 4 Message Processing

where,
axis2_handler *handler

is the address of a handler object.
const axutil_env_t *env

is the address of the environment structure.
struct axis2_msg_ctx *msg_ctx

is the address of a message context structure. The message context structure includes information
about the XML message and the message context.

Implement the following business logic for the logging module:
1. Get the SOAP envelope from the message context structure.
2. Get the SOAP message body from the SOAP envelope.
3. Get the root node of the SOAP body.
4. Get the XML message by serializing the root node.
5. Log the XML message to the log file.
For the sample source code for invoke() method of loggingOutHandler, see the <NonStop
SOAP 4 Installation Directory
>/sample_services/modules/mod_logging/src/logging_out_handler.c file.
The logging_in_handler.c and logging_out_handler.c files contain the complete
implementation of the handlers and are located in the <NonStop SOAP 4 Installation
Directory>/sample_services/modules/mod_logging/src directory.
To build your logging module, complete the following steps:
1. Copy the logging_in_handler.c and logging_out_handler.c files to the <NonStop

SOAP 4 Deployment Directory>/modules/logging/src directory.
2. Set the environment variable AXIS2C_HOME to <NonStop SOAP 4 Deployment

Directory> using the OSS command:
OSS> export AXIS2C_HOME=<NonStop SOAP 4 Deployment Directory>

3. Build the logging module using the following command:
OSS>cd <NonStop SOAP 4 Deployment Directory>/modules/logging/src
OSS>make

The make command builds the libaxis2_mod_logging.so DLL.

NOTE: NonStop SOAP 4 obtains the name of the DLL file by adding lib to the class name
and adding the .so file extension. For example, if the class name of the module is
axis2_logging, the DLL name must be libaxis2_mod_logging.so.

Customizing the NonStop SOAP 4 Message Process Using Handlers 135

4. Edit the module.xml file as follows:
• Set the value of the phase attribute of the order element in the inflow to

PostDispatch. The loggingInHandler is invoked in the PostDispatch phase.
• Set the value of the phase attribute of the order element in outflow to MessageOut.

The loggingOutHandler is invoked in the MessageOut phase.
<module name="mod_logging" class="axis2_mod_logging">
 <inflow>
 <handler name="loggingInHandler" class="axis2_mod_logging">
 <order phase="PostDispatch"/>
 </handler>
 </inflow>
 <outflow>
 <handler name="loggingOutHandler" class="axis2_mod_logging">
 <order phase="MessageOut"/>
 </handler>
 </outflow>
</module>

NOTE: If you encounter an error while building the logging module, repeat the steps listed
in “Running the SoapAdminCL Tool to Generate the Module Handler Stub Files” (page 133)
and “Implementing the Business Logic in the Module Handler Stub Files” (page 134).

Engaging the Module Handler at the Service Level
After the DLL for the libaxis2_mod_logging.so module is built, you must engage the DLL with
NonStop SOAP 4. The module can be engaged in NonStop SOAP 4 only if the module.xml
and DLL files are present in <NonStop SOAP 4 Deployment Directory>.

NOTE: If you do not generate the module handler stub files in <NonStop SOAP 4 Deployment
Directory>, you must:
1. Create the <NonStop SOAP 4 Deployment Directory>/modules/<module_name>

directory.
2. Copy the module.xml file and the generated DLL file in the <NonStop SOAP 4 Deployment

Directory>/modules/<module_name> directory. For information about generating DLL
files, see “Implementing the Business Logic in the Module Handler Stub Files” (page 134).

If the module.xml and the libaxis2_mod_logging.so DLL files are not present in <NonStop
SOAP 4 Deployment Directory>/modules/mod_logging, complete the following steps:
1. Create the <module_name> directory in the <NonStop SOAP 4 Deployment

Directory>/modules directory.
OSS> mkdir <NonStop SOAP 4 deployment location>/modules/mod_logging

2. Copy the libaxis2_mod_logging.so DLL file and the module.xml file from the <output
directory> to the <NonStop SOAP 4 Deployment Directory>.
OSS> cp <output directory>/modules/mod_logging/libaxis2_mod_logging.so <NonStop SOAP 4 deployment
location>/modules/mod_logging/.

OSS> cp <output directory>/modules/mod_logging/module.xml <NonStop SOAP 4 deployment
location>/modules/mod_logging/.

The module.xml file and the libaxis2_mod_logging.so DLL file is now present in the
<NonStop SOAP 4 Deployment Directory>.

To engage the module handler at the service level, add the following entry to the services.xml
file located in the <NonStop SOAP 4 Deployment Directory>/services/empdb directory:
<module ref =“mod_logging"/>

The value of the ref attribute of the module element must refer to the name of a directory in the
modules folder of the NonStop SOAP 4 deployment location.

136 Customizing NonStop SOAP 4 Message Processing

NOTE: You can engage the module at the global level, which makes the module intercept
messages for every service. To engage the module at the global level, add the following entry in
the axis2.xml file.
<module ref =“mod_logging"/>

Verifying the Module Handler Output
To verify the module handler output, complete the following steps:
1. Remove the log files using the following OSS command:

OSS> cd <NonStop SOAP 4 Deployment Directory>/logs
OSS> rm –rf *

2. Set the LOG_MODE environment variable to 4 in the itp_axis2.config file to enable the
debug level log setting:
Server $Axis2c {
 CWD $AXIS2_DEPLOYMENT_ROOT/bin
 Env AXIS2C_HOME=$AXIS2_DEPLOYMENT_ROOT

 Env LOG_MODE=4

3. Restart the iTP WebServer on which NonStop SOAP 4 is deployed, using the following
command:
OSS> ./<iTP WebServer Deployment Directory>/conf/restart

4. Send a request to the empdb service using the empdb HTML client.
The empdb HTML client can be accessed using the following Web address:
http://<ip address>:<port>/<url_pattern>/client/empdb/SoapPW_EmpInfo.html

where,
<ip address>:<port>

is the location of the iTP WebServer where NonStop SOAP 4 is deployed.
url_pattern

is the pattern string specified while installing NonStop SOAP 4.
5. Verify that the following output is present in the soaperror.log file to confirm that the

module handler is attached to the service:
Input Message: <SOAP request XML>
Output Message: <SOAP response XML>

Customizing the NonStop SOAP 4 Message Process Using Message
Receiver User Functions

The Message Receiver phase of NonStop SOAP 4 uses the information in the services.xml file
to convert the incoming SOAP message into a Pathsend buffer and send it to the $RECEIVE queue
of the designated server class. Message Receiver User Functions (MRUFs) serve the purpose of
accessing and modifying data that are not part of the SOAP message. This includes the destination
PATHMON and the server class name or the destination process name. MRUFs also have access to
the Pathsend buffer and only MRUFs can be attached to the Message Receiver phase of NonStop
SOAP 4.
Customizing the NonStop SOAP 4 message process using Message Receiver User Functions,
involves the following tasks:
1. “Configuring NonStop SOAP 4 Message Receiver User Functions” (page 138)
2. “Modifying the Data Buffer Passed to the Service using NonStop SOAP 4 Message Receiver

User Functions” (page 139)
3. “Modifying the Pathway or Process Attributes using NonStop SOAP 4 Message Receiver User

Functions” (page 143)

Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions 137

4. “Modifying the Message Flow in the Pathway Message Receiver using NonStop SOAP 4
Message Receiver User Functions” (page 147)

Configuring NonStop SOAP 4 Message Receiver User Functions
Message Receiver User Functions can be configured in NonStop SOAP 4 at the service level and
at the global level.
This section includes the following topics:

• “Configuring NonStop SOAP 4 Message Receiver User Functions at the service level” (page 138)

• “Configuring NonStop SOAP 4 Message Receiver User Functions at the global level” (page 138)

Configuring NonStop SOAP 4 Message Receiver User Functions at the service level
To configure Message Receiver User Functions at the service level, complete the following steps:
1. Add the parameter name MessageReceiverUserFunctions under the service element

in the services.xml configuration file. The value of the
MessageReceiverUserFunctions parameter must be set to the DLL (.so file) that
implements the Message Receiver User Functions:
<parameter name=”MessageReceiverUserFunctions”>[Message Receiver User Functions DLL]</parameter>

For example:
<parameter name=”MessageReceiverUserFunctions”>axis2_MRUF_empdb</parameter>

NOTE: The parameter element that defines the MessageReceiverUserFunctions
must always be written on a single line.

2. Place the DLL that implements the Message Receiver User Functions in the <NonStop SOAP
4 Deployment Directory>/MRUserFunctions directory.
NonStop SOAP 4 generates the name of the DLL by adding lib as the prefix and .so as the
suffix to the Message Receiver User Functions DLL class defined in the services.xml
configuration file.
For example:
If axis2_MRUF_empdb is the Message Receiver User Functions class name, the name of the
DLL that implements the Message Receiver User Functions must be
libaxis2_MRUF_empdb.so.

NOTE: Message Receiver User Functions are different from the handlers that are used to
customize the default NonStop SOAP 4 phases or user-defined phases, in the following ways:
• Message Receiver User Functions are called from the Message Receiver.

• Message Receiver User Functions do not have a module configuration file.

• Message Receiver User Functions DLLs must be placed in the <NonStop SOAP 4
Deployment Directory>/MRUserFunctions directory. Handlers must be placed
in the <NonStop SOAP 4 Deployment Directory>/Modules/<module_name>
directory.

Configuring NonStop SOAP 4 Message Receiver User Functions at the global level
To configure Message Receiver User Functions at the global level, complete the following steps:

138 Customizing NonStop SOAP 4 Message Processing

1. Add the parameter name MessageReceiverUserFunctions under the axisconfig
element in the axis2.xml file. The value of the MessageReceiverUserFunctions
parameter must be set to the DLL (.so file) class that implements the Message Receiver User
Functions:
<parameter name=”MessageReceiverUserFunctions”>[Message Receiver User Functions DLL]</parameter>

For example:
<parameter name=”MessageReceiverUserFunctions”>axis2_MRUF_empdb</parameter>

2. Place the DLL that implements the Message Receiver User Functions in the <NonStop SOAP
Deployment Directory>/MRUserFunctions directory.
NonStop SOAP 4 generates the name of the DLL by adding lib as the prefix and .so as the
suffix to the Message Receiver User Functions DLL class defined in the axis2.xml configuration
file.

NOTE: If Message Receiver User Functions are configured both at the service level and the
global level, NonStop SOAP 4 calls the Message Receiver User Functions at the global level
before the Message Receiver User Functions at the service level. For example, if the global
Message Receiver User Functions change the PATHMON name from $pmon1 to $pmon2, the
service level Message Receiver User Functions will receive the PATHMON value as $pmon2,
not $pmon1.

Modifying the Data Buffer Passed to the Service using NonStop SOAP 4 Message
Receiver User Functions

Message Receiver User Functions enable you to modify the data buffer before it is passed to the
Pathway or NonStop process-based service.
Modifying the data buffer involves the following steps:

• “Setting the pre_service and pre_marshalMessage Receiver User Functions” (page 139)

• “Implementing the pre_service and pre_marshal Message Receiver User Functions”
(page 141)

Setting the pre_service and pre_marshal Message Receiver User Functions
After loading the Message Receiver User Function DLL, the Pathway Message Receiver invokes the
get_instance()function in the Message Receiver User Function.
The following tasks are performed in the get_instance()function that is implemented as a part
of the Message Receiver User Function:
1. “Creating an instance of the Message Receiver User Function structure” (page 139)
2. “Setting pre_service and pre_marshal function names” (page 140)

NOTE: The SoapAdminCL tool generates the stub files along with integration functions, such as
get_instance(), create(), and remove_instance(). It also sets the pre_service
and pre_marshal Message Receiver User Functions names and generates the skeleton code for
these functions. You must implement the business logic in the pre_service and pre_marshal
Message Receiver User Functions skeleton code generated by the SoapAdminCL tool.

Creating an instance of the Message Receiver User Function structure
You must invoke the MessageReceiverUserFunctions_create()API from the
axis2_get_instance()function to create an instance of the Message Receiver User Functions
structure call.
Synopsis:
AXIS2_EXPORT axis2_MessageReciverUserFunctions_t *MessageReceiverUserFunctions_create (
 const axutil_env_t * env)

Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions 139

where,
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
Returns a pointer to the axis2_MessageReviverUserFunction_t structure. If an error occurs,
it returns NULL.

Setting pre_service and pre_marshal function names
After you create a pointer of the Message Receiver User Functions structure, the callback functions
that implement the pre_service and pre_marshal functions must be set in the Message
Receiver User Functions structure pointer.
This section includes the following topics:

• “Setting the name of the pre_service callback function in the Message Receiver User
Functions structure” (page 140)

• “Setting the name of the pre_marshal callback function in the Message Receiver User
Functions” (page 140)

Setting the name of the pre_service callback function in the Message Receiver User Functions structure

To set the name of the pre_service callback function in the Message Receiver User Functions
structure, invoke the axis2_msg_recv_set_pre_service_function() API from the
get_instance() function.
Synopsis:
AXIS2_EXPORT axis2_status_t axis2_msg_recv_set_pre_service_function (
 struct axis2_MessageReceiverUserFunctions *inst,
 const axutil_env_t * env
 PRE_SERVICE_FUNCTION func)

Parameters:
inst

is an input parameter and is a pointer to the Message Receiver User Functions structure created
using the MessageReceiverUserFunctions_create() function.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

func

is an input parameter that holds the name of function that implements the pre_service
functionality.

Return Values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

Setting the name of the pre_marshal callback function in the Message Receiver User Functions

To set the name of the pre_marshal callback function in the Message Receiver User Functions
structure, invoke the axis2_msg_recv_set_pre_marshal_function() API from the
get_instance() function.
Synopsis:
AXIS2_EXPORT axis2_status_t axis2_msg_recv_set_pre_marshal_function (
 struct axis2_MessageReceiverUserFunctions *inst,

140 Customizing NonStop SOAP 4 Message Processing

 const axutil_env_t * env
 PRE_MARSHAL_FUNCTION func)

Parameters:
inst

is an input parameter and is a pointer to the Message Receiver User Functions structure created
using the MessageReceiverUserFunctions_create() function.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

func

is an input parameter that holds the name of function that implements the pre_marshal
functionality.

Return Values:

• AXIS2_SUCCESS on success.

• AXIS2_FAILURE on failure.

Implementing the pre_service and pre_marshal Message Receiver User Functions
The pre_service and pre_marshal user functions, implemented in the Message Receiver User
Functions, can be used to modify the request and response buffers, and Pathway and NonStop
process-specific parameters, such as PATHMON name, Process name, and serverclass name.
The pre_service and pre_marshal functions also enable you to modify the default Pathway
message receiver flow by setting the skip_service and skip_marshal flags.

The pre_service Message Receiver User Function
The pre_service Message Receiver User Function is called after the request buffer is created
and before the request buffer is sent to the Pathway or NonStop process-based service.
You can use the pre_service Message Receiver User Function to change the following
parameters:

• Request message buffer

• PATHMON and server class name (for Pathway-based services)

• Process name (for process-based service)
You can modify the default process of NonStop SOAP 4 using the following flags:
• Skip service invocation

• Skip response creation

NOTE: For more information on customizing the NonStop SOAP 4 default message process, see
“Modifying the Message Flow in the Pathway Message Receiver using NonStop SOAP 4 Message
Receiver User Functions” (page 147).

Synopsis:
int <service name>_pre_service_function(
 axis2_MessageReceiverUserFunctions_t *MessageReceiverUserFunctions,
 axis2_char_t * payload,
 const axutil_env_t * env,
 int ReqLen,
 struct axis2_msg_ctx * in_msg_ctx,
 struct axis2_msg_ctx * out_msg_ctx)

Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions 141

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

payload

is an input parameter and is a pointer to the request message buffer.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

ReqLen

is an input parameter and is a pointer to the request length of the buffer.
in_msg_ctx

is an input parameter and is a pointer to the message context structure for the inflow.
out_msg_ctx

is an input parameter and is a pointer to the message context structure for the outflow.
Return value:
Returns the modified length of the request message buffer as int.
If you want to modify the request buffer in the pre_service function, you must modify the length
of the request buffer (ReqLen) before the returning statement of the pre_service function.

NOTE: For more information on message context structure, see the msg_ctx.h header file
located in the <NonStop SOAP Installation Directory>/include directory.

The pre_marshal Message Receiver User Function
The pre_marshal Message Receiver User Function is called after the response is received from
the Pathway or NonStop process-based service. You can use the pre_marshalMessage Receiver
User Function to modify the response message buffer and to skip the response creation.
In the pre_marshal Message Receiver User Function, you can access the service name and the
operation name to perform the service-specific processing and/or operation-specific processing.
Synopsis:
int <service name>_pre_marshal_function(
 axis2_MessageReceiverUserFunctions_t *MessageReceiverUserFunctions,
 axis2_char_t * payload,
 const axutil_env_t * env,
 int ResLen,
 struct axis2_msg_ctx * in_msg_ctx,
 struct axis2_msg_ctx * out_msg_ctx)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

payload

is an input parameter and is a pointer to the response message buffer.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

ResLen

is an input parameter and is a pointer to the response length of the payload.

142 Customizing NonStop SOAP 4 Message Processing

in_msg_ctx

is an input parameter and is a pointer to the message context structure for inflow.
out_msg_ctx

is an input parameter and is a pointer to the message context structure for outflow.
Return value:
Returns the length of the response message buffer as int.
If you are modifying the response buffer in the pre_marshal function, you must modify the length
of the response buffer (ResLen) before the returning statement of the pre_marshal function.

Modifying the Pathway or Process Attributes using NonStop SOAP 4 Message Receiver
User Functions

The axis2_MessageReceiverUserFunctions_t structure provides the following functions
that can be used to modify the Pathway or process attributes:

• “The axis2_msg_recv_get_pathmonName()Function” (page 143)

• “The axis2_msg_recv_get_serverclassName()Function” (page 143)

• “The axis2_msg_recv_get_serviceName()Function” (page 144)

• “The axis2_msg_recv_get_operationName()Function” (page 144)

• “The axis2_msg_recv_get_processName()Function” (page 145)

• “The axis2_msg_recv_set_pathmonName()Function” (page 145)

• “The axis2_msg_recv_set_serverclassName()Function” (page 145)

• “The axis2_msg_recv_set_serviceName()Function” (page 146)

• “The axis2_msg_recv_set_operationName()Function” (page 146)

• “The axis2_msg_recv_set_processName()Function” (page 147)

The axis2_msg_recv_get_pathmonName()Function
The axis2_msg_recv_get_pathmonName()function returns the value of the PATHMON name
for the service.
Synopsis:
AXIS2_EXPORT axis2_char_t *AXIS2_CALL
axis2_msg_recv_get_pathmonName(
axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
const axutil_env_t * env)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Value:
Returns the value of the pathmon name as an axis2_char_t pointer.

The axis2_msg_recv_get_serverclassName()Function
The axis2_msg_recv_get_serverclass()function returns the value of the server class name
for the service.

Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions 143

Synopsis:
AXIS2_EXPORT axis2_char_t *AXIS2_CALL
axis2_msg_recv_get_serverclassName(
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
 const axutil_env_t * env)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Value:
Returns the value of the server class name as an axis2_char_t pointer.

The axis2_msg_recv_get_serviceName()Function
The axis2_msg_recv_get_serviceName()function returns the value of the service name for
the service.
Synopsis:
AXIS2_EXPORT axis2_char_t *AXIS2_CALL
axis2_msg_recv_get_serviceName(
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
 const axutil_env_t * env)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Value:
Returns the value of the service name as an axis2_char_t pointer.

The axis2_msg_recv_get_operationName()Function
The axis2_msg_recv_get_operationName()function returns the value of the operation name
for the service.
Synopsis:
AXIS2_EXPORT axis2_char_t *AXIS2_CALL
axis2_msg_recv_get_ operationName (
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
 const axutil_env_t * env)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

144 Customizing NonStop SOAP 4 Message Processing

Return Value:
Returns the value of the operation name as an axis2_char_t pointer.

The axis2_msg_recv_get_processName()Function
The axis2_msg_recv_get_processName()function returns the value of the process name
for the service.
Synopsis:
AXIS2_EXPORT axis2_char_t *AXIS2_CALL
axis2_msg_recv_get_processName(
axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
const axutil_env_t * env)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Value:
Returns the value of the process name as an axis2_char_t pointer.

The axis2_msg_recv_set_pathmonName()Function
The axis2_msg_recv_set_pathmonName()function sets the pathmon name for the service.
Synopsis:
AXIS2_EXPORT axis2_status_t AXIS2_CALL
axis2_msg_recv_set_pathmonName (
axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
const axutil_env_t * env,
const axis2_char_t * pathmon)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

pathmon

is the pathmon you want to set for the service.
Return Value:

• AXIS2_SUCCESS on success

• AXIS2_FAILURE on failure

The axis2_msg_recv_set_serverclassName()Function
The axis2_msg_recv_set_serverclass()function sets the serverclass name for the
service.
Synopsis:
AXIS2_EXPORT axis2_status_t AXIS2_CALL
axis2_msg_recv_set_serverclassName (
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,

Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions 145

 const axutil_env_t * env,
 const axis2_char_t * serverclass)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

serverclass

is the name of the server class you want to set for the service.
Return Value:

• AXIS2_SUCCESS on success

• AXIS2_FAILURE on failure

The axis2_msg_recv_set_serviceName()Function
The axis2_msg_recv_set_serviceName()function sets the service name for the service.
Synopsis:
AXIS2_EXPORT axis2_status_t AXIS2_CALL
axis2_msg_recv_set_serviceName (
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
 const axutil_env_t * env,
 const axis2_char_t * serviceName)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

serviceName

is the service name you want to set for the service.
Return Value:

• AXIS2_SUCCESS on success

• AXIS2_FAILURE on failure

The axis2_msg_recv_set_operationName()Function
The axis2_msg_recv_set_operationName()function sets the operation name for the service.
Synopsis:
AXIS2_EXPORT axis2_status_t AXIS2_CALL
axis2_msg_recv_set_operationName (
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
 const axutil_env_t * env,
 const axis2_char_t * operationName)

146 Customizing NonStop SOAP 4 Message Processing

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

operationName

is the operation name you want to set for the service.
Return Value:

• AXIS2_SUCCESS on success

• AXIS2_FAILURE on failure

The axis2_msg_recv_set_processName()Function
The axis2_msg_recv_set_processName()function sets the process name for the service.
Synopsis:
AXIS2_EXPORT axis2_status_t AXIS2_CALL
axis2_msg_recv_set processName (
axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
const axutil_env_t * env,
const axis2_char_t * process)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

process

is the process you want to set for the service.
Return Value:

• AXIS2_SUCCESS on success

• AXIS2_FAILURE on failure

Modifying the Message Flow in the Pathway Message Receiver using NonStop SOAP
4 Message Receiver User Functions

The axis2_MessageReceiverUserFunctions_t structure provides the following functions
to modify the message flow in the Pathway Message Receiver:

• “The axis2_msg_recv_get_skipService()Function” (page 147)

• “The axis2_msg_recv_get_skipMarshal()Function” (page 148)

• “The axis2_msg_recv_set_skipService()Function” (page 148)

• “The axis2_msg_recv_set_skipMarshal()Function” (page 149)

The axis2_msg_recv_get_skipService()Function
The axis2_msg_recv_get_skipService()function returns the value of the skipService
flag.

Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions 147

Synopsis:
AXIS2_EXPORT axis2_bool_t AXIS2_CALL
axis2_msg_recv_get_skipService(
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
 const axutil_env_t * env)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Value:
Returns the value of the skipService flag.
• AXIS2_TRUE if the skipService flag is set

• AXIS2_FALSE if the skipService flag is not set

NOTE: When the skipService flag is set, NonStop SOAP 4 will not perform the service
invocation. To skip the service invocation, this flag must be set to AXIS2_TRUE.

The axis2_msg_recv_get_skipMarshal()Function
The axis2_msg_recv_get_skipMarshal()function returns the value of the skipMarshal
flag.
Synopsis:
AXIS2_EXPORT axis2_bool_t AXIS2_CALL
axis2_msg_recv_get_ skipMarshal (
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
 const axutil_env_t * env)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Value:
Returns the value of the skipMarshal flag.
• AXIS2_TRUE if the skipMarshal flag is set

• AXIS2_FALSE if the skipMarshal flag is not set

NOTE: When the skipMarshal flag is set, NonStop SOAP 4 will not perform the service
invocation. To skip the service invocation, this flag must be set to AXIS2_TRUE.

The axis2_msg_recv_set_skipService()Function
The axis2_msg_recv_set_skipService()function sets the value of the skipService flag.

148 Customizing NonStop SOAP 4 Message Processing

Synopsis:
AXIS2_EXPORT axis2_status_t AXIS2_CALL
axis2_msg_recv_set_skipService(
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
 const axutil_env_t * env,
 const axis2 bool t * skipService)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

skipService

is a flag that skips the service.
Return Value:

• AXIS2_SUCCESS on success

• AXIS2_FAILURE on failure

The axis2_msg_recv_set_skipMarshal()Function
The axis2_msg_recv_set_skipMarshal() function sets the value of the skipMarshal flag.
If the skipMarshal flag is set to AXIS2_TRUE, the NonStop SOAP 4 server will not generate
the response XML from the response buffer. To modify the response XML, you can skip the NonStop
SOAP 4 marshalling and write your own logic to generate the response XML in the pre_marshal
function.
Synopsis:
AXIS2_EXPORT axis2_status_t AXIS2_CALL
axis2_msg_recv_set_skipMarshal (
 axis2_MessageReceiverUserFunctions_t * MessageReceiverUserFunctions,
 const axutil_env_t * env,
 const axis2_bool_t * skipMarshal)

Parameters:
MessageReceiverUserFunctions

is an input parameter and is a pointer to the address of the
axis2_MessageReceiverUserFunctions_t structure.

env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

skipMarshal

is a flag that skips the marshalling (response XML generation) process.
Return Value:

• AXIS2_SUCCESS on success

• AXIS2_FAILURE on failure

Developing Sample Message Receiver User Functions for NonStop SOAP 4
NonStop SOAP 4 Message Receiver User Functions use the C programming language to modify
the message process in the NonStop SOAP 4 server.

Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions 149

Developing the Message Receiver User Functions involves the following tasks:
1. “Running the SoapAdminCL Tool to Generate the Message Receiver User Functions Stub

Files” (page 150)
2. “Implementing the Business Logic in the Message Receiver User Functions Stub Files” (page 150)
3. “Engaging the Message Receiver User Functions at the Service Level” (page 151)
4. “Verifying the Message Receiver User Functions Output” (page 152)

Running the SoapAdminCL Tool to Generate the Message Receiver User Functions Stub Files
To run the SoapAdminCL tool to generate the Message Receiver User Functions stub files, complete
the following steps:
1. Add the directory that includes the SoapAdminCL executable image to the OSS PATH variable.

OSS>export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS>export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

2. Run the SoapAdminCL tool to generate the Message Receiver User Functions stub files:
OSS> SoapAdminCL -MRUF <MRUF_name> -o <output directory>

where,
<output directory>

specifies the output directory where the Message Receiver User Functions stub files will be
generated.

<MRUF_name>

specifies the name of the generated Message Receiver User Functions.
For example:
OSS> SoapAdminCL –MRUF logging –o /home/usr/mynssoap

3. Verify that the following directory structure is created in the <output directory>:
MRUserFunctions
 /logging
 /MRUF_src
 logging_MRUF.h
 logging_MRUF.c
 Makefile

where,
logging_MRUF.h

is the header file for the Message Receiver User Functions.
logging_MRUF.c

is the C stub file where you can implement the business logic for the pre_service and
pre_marshal Message Receiver User Functions.

Makefile

is the Makefile to build the Message Receiver User Functions DLL.

Implementing the Business Logic in the Message Receiver User Functions Stub Files
After generating the Message Receiver User Functions stub files using the SoapAdminCL tool, you
must implement the business logic in the pre_service and pre_marshal Message Receiver
User Functions as described in:

• “Implementing the pre_service Message Receiver User Function” (page 151)

• “Implementing the pre_marshal Message Receiver User Function” (page 151)

150 Customizing NonStop SOAP 4 Message Processing

Implementing the pre_service Message Receiver User Function
For the implementation of business logic for the pre_service Message Receiver User Function,
see the sample code in the <NonStop SOAP 4 Installation Directory
>/sample_services/modules/logging_MRUF/src/logging_MRUF.c file.

Implementing the pre_marshal Message Receiver User Function
For the implementation of business logic for the pre_marshal Message Receiver User Function,
see the sample code in the <NonStop SOAP 4 Installation Directory
>/sample_services/modules/logging_MRUF/src/logging_MRUF.c file.
The logging_MRUF.c file contains the source code and is located in <NonStop SOAP 4
Installation Directory>/sample_services/modules/logging_MRUF/src.
To build your logging module, complete the following steps:
1. Copy the MRUserFunctions_logging directory to the <NonStop SOAP 4 Deployment

Directory> directory.
OSS>cp -rf
 <NonStop SOAP 4 Installation Directory>/sample_services/modules/logging_MRUF/src
 <NonStop SOAP 4 Deployment Directory>/MRUserFunctions/logging/MRUF_src

2. Set the environment variable AXIS2C_HOME to <NonStop SOAP 4 Deployment
Directory> using the OSS command:
OSS> export AXIS2C_HOME=<NonStop SOAP 4 Deployment Directory>

3. Run the following OSS command to build the logging module DLL:
OSS>cd <NonStop SOAP 4 Deployment Directory>/MRUserFunctions/logging/MRUF_src

OSS>make

The make command builds the libaxis2_MRUF_logging.so DLL and places it in the
<NonStop SOAP 4 Deployment Directory>/MRUserFunctions directory.

NOTE: If you encounter an error while building the logging module, repeat the steps listed
in “Running the SoapAdminCL Tool to Generate the Message Receiver User Functions Stub
Files” (page 150) and “Implementing the Business Logic in the Module Handler Stub Files”
(page 134).

Engaging the Message Receiver User Functions at the Service Level
After the DLL Message Receiver User Functions (libaxis2_MRUF_logging.so) are built, you
must engage the DLL with NonStop SOAP 4.
The Message Receiver User Functions can be engaged in NonStop SOAP 4 only if the
libaxis2_MRUF_logging.so DLL file is present in the <NonStop SOAP 4 Deployment
Location>/MRUserFunctions.

NOTE: If you do not generate the Message Receiver User Functions stub files in the <NonStop
SOAP 4 Deployment Directory>, you must copy the generated DLL file in the <NonStop
SOAP 4 Deployment Directory>/MRUserFunctions directory. For information about
generating DLL files, see “Implementing the Business Logic in the Message Receiver User Functions
Stub Files” (page 150).

Copy the libaxis2_MRUF_logging.so file in the <NonStop SOAP 4 Deployment
Directory>/MRUserFunctions directory, using the following command:
OSS> cp <output directory>/MRUserFunctions/libaxis2_MRUF_logging.so <NonStop SOAP 4 deployment
location>/MRUserFunctions/.

To engage the Message Receiver User Functions at the service level, add the following entry in the
services.xml file located in the <NonStop SOAP 4 Deployment
Directory>/services/empdb directory:

Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions 151

<parameter name="MessageReceiverUserFunctions">axis2_MRUF_logging</parameter>

where,
axis2_MRUF_logging

is the name of the DLL containing the Message Receiver User Functions.

NOTE: You can also engage the module at the global level, which makes the module intercept
messages for every service. To engage the module at the global level, add the following entry in
the axis2.xml file.
<parameter name="MessageReceiverUserFunctions">axis2_MRUF_logging</parameter>

Verifying the Message Receiver User Functions Output
To verify the Message Receiver User Functions output, complete the following steps:
1. Remove the log files using the following OSS command:

OSS> cd <NonStop SOAP 4 Deployment Directory>/logs
OSS> rm –rf *

2. Set the LOG_MODE environment variable to 4 in the itp_axis2.config file to enable the
debug level log setting.
Server $Axis2c {
 CWD $AXIS2_DEPLOYMENT_ROOT/bin
 Env AXIS2C_HOME=$AXIS2_DEPLOYMENT_ROOT

 Env LOG_MODE=4

3. Restart the iTP WebServer on which NonStop SOAP 4 is deployed, using the following
command:
OSS> <iTP WebServer Deployment Directory>/conf/restart

4. Send a request to the empdb service using the empdb HTML client.
The empdb HTML client can be accessed using the following Web address:
http://<ip address>:<port>/<url_pattern>/client/empdb/SoapPW_EmpInfo.html

where,
<ip address>:<port>

is the location of the iTP WebServer in which NonStop SOAP 4 is deployed.
url_pattern

is the pattern string specified while installing NonStop SOAP 4.
5. Verify that the following output is present in the soaperror.log file to confirm that the

Message Receiver User Functions are attached to the service:
Input buffer: <request buffer>
Output Buffer: <response buffer>

NonStop SOAP 4 is now customized to log input and output buffers using MRUFs.

152 Customizing NonStop SOAP 4 Message Processing

8 NonStop SOAP 4 Service Description Language
The NonStop SOAP 4 SDL file is an XML file that describes the Web services deployed in NonStop
SOAP 4. The SDL file along with the data definition language file for the Web service is used as
an input by the SoapAdminCL tool to generate the WSDL file, HTML clients, XML schema files,
SOAP request and response XML files, and the services.xml file for NonStop SOAP 4 services.
NonStop SOAP 4 does not use the SDL file during runtime.
You can generate an SDL file for NonStop SOAP 4 services by:
• Using the NonStop SOAP 3 service definition repository file with the NonStop SOAP 4

SoapAdminCL tool
• Copying and updating the SDL files distributed with the NonStop SOAP 4 distribution

• Using the NonStop SOAP 4 Administration Utility
This chapter describes the SDL file and its elements:

• “SDL File Elements and Attributes” (page 153)

• “SDL Service Types” (page 154)

SDL File Elements and Attributes
The SDL file describes the target service to be deployed in NonStop SOAP 4. The hierarchy of the
elements in the SDL document type definition (DTD) file is as follows:
<sdl>
 <Pathway | Process | ServerAPI>
 <PathwayEnvironment | ProcessEnvironment>
 <Service | ProcessDetails>
 <Operation>
 <OperationDescription>
 <RequestInfo>
 <DDLDefinitionName>
 <ResponseInfo>
 <DDLDefinitionName>
 <ResponseSelection>

NOTE: All attribute values are case-sensitive. Use these values as detailed in this manual.

The following sections describe the SDL file elements and their attributes.

The sdl Element
The sdl element is the base element of the SDL file. This element is mandatory and its definition
appears in the SDL file as:
<sdl Url="/<url_pattern>" ServerAddress="http://<ip address>:<port>">

The sdl element has the following attributes:
• ServerAddress

• Url

The ServerAddress attribute
The ServerAddress attribute specifies the location (the protocol, ip address, and port) of the
iTP WebServer where the NonStop SOAP 4 server is deployed. The default location is
http://www.nonstopsoap.com.
For example:
SDL file:

SDL File Elements and Attributes 153

ServerAddress = “http://www.nonstopsoap.com”

Generated WSDL file:
<soap:address location="http://www.nonstopsoap.com/<url_pattern>/
 services/<service_name>"/>

The Url attribute
The optional Url attribute specifies the Web address of the NonStop SOAP 4 deployment location.
The value of this attribute is the <url_pattern> or the Filemap value specified in the
itp_axis2.config file. The default value of this attribute is nssoap.
For example:
SDL file:
Url = “/nssoap”

Generated HTML file:
ACTION =/nssoap/services/<service_name>

Generated WSDL file:
<soap:address location="http://<ip address>:<port>/
 nssoap/services/<service_name>"/>

SDL Service Types
The child element of the sdl element describes the service type. NonStop SOAP 4 supports the
following service types:
• “The Pathway Element” (page 154)

• “The Process Element” (page 174)

• “The ServerAPI Element” (page 176)
The SoapAdminCL tool, when run with the import option, checks the name of the child element
of the sdl element and generates the HTML files, WSDL files, XML schema files, SOAP request
and response XML files, and the services.xml file.

The Pathway Element
The Pathway element indicates that the service is a Pathway application. The SDL file uses the
Pathway element to define services in multiple Pathway environments. The Pathway element
definition appears in the SDL file as:
<Pathway>

The Pathway element has a child element named PathwayEnvironment.

The PathwayEnvironment Element
The PathwayEnvironment element specifies the Pathway environment of the target service. This
element is mandatory for the Pathway application. The element definition appears in the SDL file
as follows:
<PathwayEnvironment PathmonName="$<PATHMON Name>">

The PathwayEnvironment element includes the PathmonName attribute.

The PathmonName attribute
The PathmonName attribute specifies the name of the PATHMON under which the target service is
running as a serverclass. The value of this element is stored in the services.xml file. The
NonStop SOAP 4 server uses this attribute value during runtime.
For example:
SDL file:

154 NonStop SOAP 4 Service Description Language

PathmonName="$PMON"

Generated services.xml file:
<parameter name="pathmon">$PMON</parameter>

The PathwayEnvironment has a child element named Service.

The Service Element
The Service element includes information about the services to be deployed in the NonStop
SOAP 4 server. The element definition appears in the SDL file as:
<Service
 Name="<service_name>"
 ServerClassName="<ServerClassName>"
 DDLDictionaryLocation="$<volumename>.<subvolumename>"
 language="[C | COBOL]"
 SrvrEncoding="UTF-8"
 GenerateSessionHeader="[yes | no]"
 GenerateTransactionHeader="[yes | no]"
 GenerateModuleHandlerFiles="[yes | no]"
 GenerateMessageReceiverUserFunctionsFiles="[yes | no]"
 stringTermination="[NonNull | NullTerminated]">

The Service element includes the following attributes:
• Name

• ServerClassName

• DDLDictionaryLocation

• language

• SrvrEncoding

• GenerateSessionHeader

• GenerateTransactionHeader

• GenerateModuleHandlerFiles

• GenerateMessageReceiverUserFunctionsFiles

• stringTermination

The Service element contains a child element named Operation. For more information about
the Operation element, see “The Operation Element” (page).
The Service element has the following attributes:
Name

The Name attribute specifies the name of the target service to deploy in NonStop SOAP 4. The
name is translated to the target service name for NonStop SOAP 4 and the value is the endpoint
of the target service. The Name attribute can take alphanumeric characters and underscores
(_). The Name attribute is mandatory and the value must be unique for a NonStop SOAP 4
deployment.
Using the value of this attribute, the SoapAdminCL tool generates the directory structure in the
client and services directory of the NonStop SOAP 4 deployment location.

NOTE: The Name attribute is included in NonStop SOAP 4 to support multiple services pointing
to the same serverclass in a single NonStop SOAP 4 deployment.

For example:
SDL file:
Name="MyService"

The generated directory structure is as follows:

SDL Service Types 155

<NonStop SOAP 4 Deployment Directory>
 Client

MyService
 SoapPW_<OperationName>.html
 Services

MyService
 SoapPW_MyService.wsdl
 services.xml

Generated WSDL file:
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MyService-interface"
 targetNamespace="urn:MyService-interface"
 xmlns:def="urn:MyService-interface"
 .
 .>
.
.
<portType
 name="portMyService">
.
.
</portType>
<binding
 name="MyServiceBinding"
 type="def:portMyService">
.
.
</binding>
<service_name="MyServiceService">
 <port name="portMyService"
 binding="def:MyServiceBinding">
 <soap:address location="http://www.nonstopsoap.com/nssoap/services/MyService"/>
 </port>
</service>
</definitions>

Generated services.xml file:
<service_name="MyService">

<parameter name="ServiceClass" locked="xsd:false">MyService</parameter>
<parameter name="wsdl_path">
<NonStop SOAP deployment dir>/services/reflector/SoapPW_MyService.wsdl
</parameter>
.
.
</service>

ServerClassName

The ServerClassName attribute specifies the serverclass name running in PATHMON.
The value of this element is stored in the services.xml file for the NonStop SOAP 4 server
to use during runtime. This is a mandatory attribute for the Pathway application service.
For example:
SDL file:
ServerClassName="MYSERVERCLASS"

Generated services.xml file:
<parameter name="serverclass">MYSERVERCLASS</parameter>

DDLDictionaryLocation

The DDLDictionaryLocation attribute specifies the Guardian location of the DDL dictionary
files. The SoapAdminCL tool uses the DDL definitions from the specified location to generate
elements for the HTML clients and the XML schema definitions for XSD files and WSDL files.
This is a mandatory attribute for all types of services.
For example:
SDL file:

156 NonStop SOAP 4 Service Description Language

DDLDictionaryLocation="$volume.subvolume"

NOTE: The DDL dictionary includes the SOAP request and response structures for the particular
service. If the dictionary is not available at the specified location, the SoapAdminCL tool
reports the following error and ends the operation.
SOAPADMIN ERROR >> Error generating files for <request/response> of service <service_name>

language

The language attribute specifies the language in which the service is written. The following
languages are available in NonStop SOAP 4:
• COBOL

• C

For example:
SDL file:
language="COBOL"

Generated services.xml file:
<parameter name="language">COBOL</parameter>

SrvrEncoding

The SrvrEncoding attribute specifies the character encoding used by the target PATHWAY
server. The default value is UTF-8. This attribute is optional.
For example:
SDL file:
SrvrEncoding=”UTF-16“

Generated WSDL file:
<xsd:complexType name="InEncodingType">
<xsd:element name="InEncoding">
<xsd:complexType>
<xsd:attribute name="InputEncoding" default="UTF-16" type="xsd:string" use="optional" />
</xsd:complexType>
</xsd:element>
</xsd:complexType>

GenerateSessionHeader

The GenerateSessionHeader attribute specifies that the WSDL file schema should be
generated with the Session element definition in the SOAP header namespace.
For more information about the Session element, see “Transaction Management” (page 236).
For example:
SDL file:
GenerateSessionHeader="yes"

Generated WSDL file:
<xsd:schema
 elementFormDefault="qualified"
 targetNamespace="urn:compaq_nsk_oss_SoapHeader"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="Session">
 <xsd:complexType>
 <xsd:attribute use="optional"
 name="SessionID"
 type="xsd:string" />
 <xsd:attribute use="optional"
 name="BeginNewTransaction"
 type="xsd:string" />
 <xsd:attribute use="optional"
 name="CurrentTransactionCommand"

SDL Service Types 157

 type="xsd:string" />
 <xsd:attribute use="optional"
 name="SessionCommand"
 type="xsd:string" />
 <xsd:attribute use="optional"
 name="Subsession"
 type="xsd:string" />

GenerateTransactionHeader

The GenerateTransactionHeader attribute specifies that the WSDL file schema should
be generated with the Transaction element definition in the SOAP header namespace.
For more information about the Transaction element, see “Transaction Management”
(page 236) .
For example:
SDL file:
GenerateTransactionHeader="yes"

Generated WSDL file:
<xsd:schema
 elementFormDefault="qualified"
 targetNamespace="urn:compaq_nsk_oss_SoapHeader"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="Transaction">
 <xsd:complexType>
 <xsd:attribute use="optional"
 name="Command"
 type="xsd:string" />
 <xsd:attribute use="optional"
 name="TransactionID"
 type="xsd:string" />
 <xsd:attribute use="optional"
 name="Timeout"
 type="xsd:string" />
 </xsd:complexType>
 </xsd:element>

NOTE: When the GenerateSessionHeader and the GenerateTransactionHeader
attributes are set to yes, the SoapAdminCL tool returns the following error:
SOAPADMIN ERROR >> Error in definition of service "<service_name>".

Both attributes "GenerateSessionHeader" and "GenerateTransactionHeader" cannot have a value "yes"

GenerateModuleHandlerFiles

The GenerateModuleHandlerFiles attribute specifies whether the module handler files
must be generated. The default value is no. This attribute is optional.
For example:
SDL file:
GenerateModuleHandlerFiles ="yes"

Generated services.xml file:
<!-- uncomment the following parameter to engage the module -->
<!-- module ref="mod_<service_name>"/-->

Generated directory structure:
 <NonStop SOAP 4 Deployment Directory>
 /modules
 /mod_<service_name>
 module.xml
 /src
 Makefile

158 NonStop SOAP 4 Service Description Language

 mod_<service_name>.h
 mod_<service_name>.c
 <service_name>_pre_process_handler.c
 <service_name>_post_process_handler.c

GenerateMessageReceiverUserFunctionsFiles

The GenerateMessageReceiverUserFunctionsFiles attribute specifies whether the
Message Receiver User Functions skeletons stubs must be generated. The default value is no.
This attribute is optional.
For example:
SDL file:
GenerateMessageReceiverUserFunctionsFiles="yes"

Generated services.xml file:
<!-- uncomment the following parameter to engage Message Receiver User Functions -->
<!-- parameter name="MessageReceiverUserFunctions">axis2_MRUF_<service_name></parameter -->

Generated directory structure:
<NonStop SOAP 4 Deployment Directory>

 /services
 /<service_name>
 /MRUserFunction_src
 Makefile
 <service_name>_MRUF.c
 <service_name>_MRUF.h

stringTermination

The stringTermination attribute denotes the type of string that the target Pathway server
expects. It specifies whether the string is NullTerminated or NonNull. The value of this
element is stored in the services.xml file for the NonStop SOAP 4 server to use during
runtime. The default value is NullTerminated. This attribute is optional.
For example:
SDL file:
stringTermination="NullTerminated"

Generated services.xml file:
<parameter name="stringTermination">NullTerminated</parameter>

The Operation Element
The Operation element describes the operations supported by each service. In NonStop SOAP
4, the SoapAdminCL tool translates this element into operations in the WSDL file. The
SoapAdminCL tool generates HTML files for each of these operations. An SDL file may contain
only one operation of a given name, even if the operations apply to different services.

NOTE: When the -m|-migration option is used, the SoapAdminCL tool generates a separate
WSDL file for each operation in the WSDL directory.

Following is a sample Operation element definition in the SDL file:
<Operation
 Name="<operation Name>"
 TMFTransactionSupport="[Required | Supports | Never]"
 AbortTransactionOnFault="[yes | no]"
 NameSpaceQualified="[yes | no]"
 SoapMessageType="[document | rpc]"
 ProcessSoapDDLComments="[yes | no]"
 SoapDDLAttribute="[yes | no]"
 OutputFileNamePrefix="<Character string value>"
 UseDDLDefaultValue="[yes | no]"
 EnableOutputSensitive="[yes | no]"
 RspEncoding="UTF-8"

SDL Service Types 159

The Operation element includes the following attributes:

• Name

• TMFTransactionSupport

• AbortTransactionOnFault

• NameSpaceQualified

• SoapMessageType

• ProcessSoapDDLComments

• SoapDDLAttribute

• OutputFileNamePrefix

• UseDDLDefaultValue

• EnableOutputSensitive

• RspEncoding

The Operation element includes the following attributes:
Name

The Name attribute specifies the name of the operation. The value of this attribute should be
unique in a single NonStop SOAP 4 deployment. This is a mandatory attribute and can have
alphanumeric characters and an underscore (_).
The value of this element is reflected in the WSDL file and the services.xml file.
For example:
SDL file:
Name="MyOperation"

Generated directory structure:
<NonStop SOAP 4 Deployment Directory>
 Client
 MyService
 SoapPW_MyOperation.html
 wsdl
 SoapPW_MyOperation.wsdl
 Services
 MyService
 SoapPW_MyService.wsdl
 services.xml

Generated WSDL file:
<?xml version="1.0" encoding="UTF-8"?>
<definitions
 .
 .
 xmlns:tns1="urn:cpq_tns_MyOperation"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 .
 .
<xsd:schema
 elementFormDefault="qualified"
 targetNamespace="urn:cpq_tns_MyOperation"
 xmlns="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="MyOperationResponse0">
 <xsd:sequence>
 <xsd:element name="request" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>

160 NonStop SOAP 4 Service Description Language

 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="12"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MyOperation">
 <xsd:sequence>
 <xsd:element name="request" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="12"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>
</xsd:schema>
</types>

<message name="outMyOperationResponse0">
 <part name="MyOperationResponse0"
 type="tns1:MyOperationResponse0"/>
</message>

<message name="inMyOperation">
 <part name="MyOperation"
 type="tns1:MyOperation"/>
</message>
 .
 .

<portType ...>

<operation
 name="MyOperation">

 <input
 name="inMyOperation"
 message="def:inMyOperation"/>
 <output
 name="outMyOperationResponse0"
 message="def:outMyOperationResponse0"/>
 </operation>

</portType>

<binding ...>
 .
 .
 <operation
 name="MyOperation">

 <soap:operation
 soapAction="MyOperation"/>

 <input name="inMyOperation">
 .
 .
 </input>
 <output name="outMyOperationResponse0">
 .
 .

SDL Service Types 161

 </output>
 </operation>
 </binding>
 .
 .
</definitions>

Generated services.xml file:
<service ...>
 .
 .
 <operation name="MyOperation">
 .
 .
 </operation>
</service>

TMFTransactionSupport

The TMFTransactionSupport attribute specifies if the service will interact with the TMF
subsystem. This attribute has three values: Required, Supports, and Never. Based on these
values, the NonStop SOAP 4 server decides on the state of the transaction before invoking the
service. This value is reflected in the services.xml file.
If you set the value of the TMFTransactionSupport attribute to Required, the service will
always be accessed under a transaction. If the client does not explicitly start a transaction, the
NonStop SOAP 4 server will start a transaction, invoke the service, and end the transaction.
For example:
SDL file:
TMFTransactionSupport ="Required"

Generated services.xml file:
<parameter name="TMFTransactionSupport">Required</parameter>

If you set the value of the attribute to Supports, the service can be accessed with or without
a transaction. If the client starts a transaction, NonStop SOAP 4 will start a transaction. If the
client does not start a transaction, NonStop SOAP 4 will serve the request but will not start a
transaction.
For example:
SDL file:
TMFTransactionSupport ="Supports"

Generated services.xml file:
<parameter name="TMFTransactionSupport">Supports</parameter>

If you set the value of the attribute to Never, the NonStop SOAP 4 server will not support a
transaction. If the client starts a transaction, the NonStop SOAP 4 server will return an error.
For example:
SDL file:
TMFTransactionSupport ="Never"

Generated services.xml file:
<parameter name="TMFTransactionSupport">Never</parameter>

The default value is Never. This attribute is optional.
AbortTransactionOnFault

The AbortTransactionOnFault attribute specifies that the associated TMF transaction
must be aborted if the NonStop Soap 4 server generates a fault. The default value is no. This
attribute is optional.
For example:

162 NonStop SOAP 4 Service Description Language

SDL file:
AbortTransactionOnFault ="yes"

Generated services.xml file:
<parameter name="AbortTransactionOnFault">yes</parameter>

NameSpaceQualified

The NameSpaceQualified attribute specifies whether the element names in the WSDL file
generated must be namespace qualified. The default value is no. This attribute is optional.
For example:

SDL file:SDL file:
 NameSpaceQualified ="no" NameSpaceQualified ="yes"

Generated WSDL file:Generated WSDL file:
 <xsd:schema <xsd:schema

elementFormDefault="qualified"
targetNamespace="urn:cpq_tns_MyOperation"

targetNamespace="urn:cpq_tns_MyOperation"

xmlns="http://www.w3.org/2001/XMLSchema">
xmlns="http://www.w3.org/2001/XMLSchema">

SoapMessageType

The SoapMessageType attribute specifies whether the operation is remote procedure call
(RPC) oriented (messages containing parameters and return values) or document-oriented
(messages containing documents). When the value of the attribute is rpc, the OperationName
element (the immediate child of the Operation element) must contain only one immediate
child element. If the SoapMessageType attribute is not specified, its value is assumed to be
document. This attribute is optional.
For example:

SDL file:SDL file:
SoapMessageType="document"SoapMessageType="rpc"

Schema in the generated WSDL file:Schema in the generated WSDL file:
<xsd:element name="MyOperationResponse0"
type="tns1:MyOperationResponse0"/>

<xsd:complexType
name="MyOperationResponse0">

<xsd:complexType <xsd:sequence>
name="MyOperationResponse0"> <xsd:element name="request"
 <xsd:sequence>minOccurs="1" maxOccurs="1">
 <xsd:element name="request" <xsd:simpleType>
minOccurs="1" <xsd:restriction base="xsd:string">
 maxOccurs="1"> <xsd:maxLength value="12"/>
 <xsd:simpleType> </xsd:restriction>
 <xsd:restriction base="xsd:string"> </xsd:simpleType>
 <xsd:maxLength value="12"/></xsd:sequence>

</xsd:complexType> </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

Message definition in the generated WSDL file:Message definition in the generated WSDL file:
<message name="inMyOperation">
 <part name="MyOperation"

<message name="inMyOperation">
 <part name="MyOperation"

element="tns1:MyOperation"/>
</message>

type="tns1:MyOperation"/>
</message>

Binding style in the generated WSDL file:Binding style in the generated WSDL file:

SDL Service Types 163

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

In the services.xml file, the following parameter is added to support different SOAP message
types:
<parameter name="SoapMessageType">document</parameter>

The value of this parameter can be either document or rpc based on the value in SDL.

NOTE: If SOAPMessageType is set to rpc, NonStop SOAP 4 does not validate the incoming
request with schema using its validation module, and even if it is engaged it will be skipped.

ProcessSoapDDLComments

The ProcessSoapDDLComments option processes the comments in the DDL files. If the
ProcessSoapDDLComments option is set to yes, the SoapAdminCL tool processes the
comments in the DDL files and takes the appropriate action while generating the files. The
default value is no.

NOTE: To enable DDL comments, you must specify ?comments in the DDL file.

Table 4 lists the various actions the SoapAdminCL tool performs for different DDL comment
values.

Table 4 The DDL Comments values

DescriptionDDL Comment

This specifies an element as optional. It sets the minOccurs value of the element as
0 and maxOccurs value to 1 in the generated WSDL file.
For example:

@SOAP_OPTIONAL

DDL file:
 * @SOAP_OPTIONAL
 input type binary 32.

WSDL file translation:
 <input type="xsd:long"
 minOccurs="0"
 maxOccurs="1">
 </input>

This specifies that a field is optional in the SOAP request message because the DDL
field might be a group field or a leaf field. This comment is activated only when it

@SOAP_SUPPRESS_IN

appears in combination with @SOAP_OPTIONAL. In the WSDL file, this comment is
translated as minOccurs=0 and maxOccurs depending on the selected DDL comment.
For example:
DDL file:
 * @SOAP_OPTIONAL @SOAP_SUPPRESS_IN
 20 Bin3 type binary 32.

WSDL file translation:
 <xsd:element name="bin3"
 type="xsd:int"

minOccurs="0"
 maxOccurs="1" />

This specifies that a field is optional in the SOAP response message because the DDL
field might be a group field or a leaf field. This comment is activated only when it

@SOAP_SUPPRESS_OUT
appears in combination with @SOAP_OPTIONAL. In the WSDL file, this comment is
translated as minOccurs=0 and maxOccurs depending on the selected DDL comment.
For example:
DDL file:

164 NonStop SOAP 4 Service Description Language

Table 4 The DDL Comments values (continued)

DescriptionDDL Comment

 * @SOAP_OPTIONAL @SOAP_SUPPRESS_OUT
 input type binary 32.

WSDL file translation:
 <xsd:element name="input"
 type="xsd:int"
 minOccurs="0"
 maxOccurs="1" />

This specifies that a field is optional in the SOAP request and the SOAP response
message because the DDL field might be a group field or a leaf field. This comment

@SOAP_SUPPRESS_INOUT

is activated only when it appears in combination with @SOAP_OPTIONAL. In the WSDL
file, this comment is translated as minOccurs=0 and maxOccurs depending on the
selected DDL comment.
For example:
DDL file:
 * @SOAP_OPTIONAL @SOAP_SUPPRESS_INOUT
 input type binary 32

WSDL file translation:
 <xsd:element name="input"
 type="xsd:int"
 minOccurs="0"
 maxOccurs="1" />

The SoapAdminCL tool adds the DDL comment in the generated WSDL file and the
HTML client files to indicate if the occurrences of the current field are dependent on

@SOAP_OCCURS_DEP_ON

the value of the field mentioned in the comment. This comment must appear with the
element that has more than one Occurs value. In the SOAP request, the element must
appear as many times as the value of the dependent element occurs at runtime.
For example:
DDL file:
* @SOAP_OCCURS_DEP_ON Bin2
 20 Bin3 type binary 32 OCCURS 5 times

WSDL file translation:
<!-- The following element occurs 0 to 5 times,
 depending upon the value of the element:
 bin2:urn:cpq_tns_reflector-->
 <xsd:element name="bin3"
 type="xsd:int"
 minOccurs="0"
 maxOccurs="5" />

NOTE: For the OCCURS .. DEPENDING ON .. clause, the SoapAdminCL tool
generates the following output:
DDL file:
 20 Bin3 type binary 32
 OCCURS 2 to 5 times
 DEPENDING ON Bin2

WSDL file translation:
<!-- The following element occurs 2 to 5 times,
 depending upon the value of the element:
 bin2:urn:cpq_tns_reflector-->
<xsd:element name="bin3"
 type="xsd:int"
 minOccurs="2"
 maxOccurs="5" />

You must define the depending on element one level above where it is used in the
DDL. To overcome this limitation, use the @SOAP_OCCURS_DEP_ON comment tag.

SDL Service Types 165

Table 4 The DDL Comments values (continued)

DescriptionDDL Comment

This generates the <xsd:base64binary> element in the WSDL file.
For example:

@SOAP_BASE64

DDL file:
 * @SOAP_BASE64 15 CH2 type character 13

WSDL file translation:
<!-- The following xsd:base64Binary type,
 represents a xsd:type="xsd:string"
 type -->
<xsd:element name="ch2base64Binary"
 type="xsd:base64Binary"
 minOccurs="1"
 maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="13" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

This marks the field as an element in the WSDL file. All the DDL fields appear as
elements in the WSDL file.
If the SoapDDLAttribute value is set to yes, this comment forces the particular field
to appear as an element.

@SOAP_ELEMENT

For example:
DDL file:
 * @SOAP_ELEMENT 10 mystr TYPE character 10

WSDL file translation:
<xsd:sequence>
 <xsd:element name="mystr" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="10"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>

This exposes the DDL field as an attribute in the WSDL file.
For example:

@SOAP_ATTRIBUTE

DDL file:
 * @SOAP_ATTRIBUTE 10 mystr TYPE character 10

WSDL file translation:
<xsd:attribute name="mystr" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="10"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:attribute>

SoapDDLAttribute

The SoapDDLAttribute specifies whether all the leaf fields of the request and response DDL
definitions of the particular service must be represented as XML attributes in the generated
WSDL file. The specified value is yes or no; the default value is no. This attribute is optional.

166 NonStop SOAP 4 Service Description Language

For example:

SDL file:SDL file:
SoapDDLAttribute ="no"SoapDDLAttribute ="yes"

Generated schema in the WSDL file:Generated schema in the WSDL file:
<xsd:complexType name="request">
 <xsd:sequence>

<xsd:complexType name="request">
<xsd:attribute name="req1"

<xsd:element name="req1" use="required">
 minOccurs="1" maxOccurs="1"> <xsd:simpleType>
 <xsd:simpleType> <xsd:restriction base="xsd:string">
 <xsd:restriction base="xsd:string"> <xsd:maxLength value="5"/>
 <xsd:maxLength value="5"/> </xsd:restriction>
 </xsd:restriction> </xsd:simpleType>
 </xsd:simpleType></xsd:attribute>
 </xsd:element><xsd:attribute name="req2"

<xsd:element name="req2" use="required">
 minOccurs="1" maxOccurs="1"> <xsd:simpleType>
 <xsd:simpleType> <xsd:restriction base="xsd:string">
 <xsd:restriction base="xsd:string"> <xsd:maxLength value="5"/>
 <xsd:maxLength value="5"/> </xsd:restriction>
 </xsd:restriction> </xsd:simpleType>
 </xsd:simpleType></xsd:attribute>
 </xsd:element><xsd:attribute name="req3"

<xsd:element name="req3" use="required">
 minOccurs="1" maxOccurs="1"> <xsd:simpleType>
 <xsd:simpleType> <xsd:restriction base="xsd:string">
 <xsd:restriction base="xsd:string"> <xsd:maxLength value="2"/>
 <xsd:maxLength value="2"/> </xsd:restriction>
 </xsd:restriction> </xsd:simpleType>
 </xsd:simpleType></xsd:attribute>

</xsd:complexType> </xsd:element>
 </xsd:sequence>
</xsd:complexType>

OutputFileNamePrefix

The OutputFileNamePrefix attribute specifies the prefix of the generated files. The default
value is "". This attribute is optional and supports alphanumeric characters and an underscore(_).
For example:
SDL file:
OutputFileNamePrefix = "John_"

Generated directory structure:
<NonStop SOAP 4 Deployment Directory>
 Client
 MyService

John_SoapPW_MyOperation.html
 Services
 MyService

John_SoapPW_MyService.wsdl
 services.xml

Generated services.xml file:
<parameter name="wsdl_path"><NonStop SOAP Deployment Directory>
/services/MyService/John_SoapPW_reflector.wsdl</parameter>

UseDDLDefaultValue

The UseDDLDefaultValue attribute specifies whether the default value of the element or
attribute must be used. The default value is no. This attribute is optional.
For example:

SDL file:SDL file:

SDL Service Types 167

UseDDLDefaultValue="no"UseDDLDefaultValue="yes"

DDL file:DDL File:
 DEFINITION REQ.
 10 Request.

 DEFINITION REQ.
 10 Request.

 20 req1 type character 5 Value 20 req1 type character 5 Value
"R"."R".
 20 req2 type character 5 value 20 req2 type character 5 value
"B"."B".
 20 req3 type character 2 Value 20 req3 type character 2 Value
"R".
 END

"R".
 END

Schema in the generated WSDL file:Schema in the generated WSDL file:
<xsd:complexType name="request">
 <xsd:sequence>

<xsd:complexType name="request">
 <xsd:sequence>

 <xsd:element name="req1" <xsd:element name="req1" default="R"
 minOccurs="1" minOccurs="1"
maxOccurs="1">maxOccurs="1">
 <xsd:simpleType> <xsd:simpleType>
 <xsd:restriction base="xsd:string"> <xsd:restriction base="xsd:string">
 <xsd:maxLength value="5"/> <xsd:maxLength value="5"/>
 </xsd:restriction> </xsd:restriction>
 </xsd:simpleType> </xsd:simpleType>
 </xsd:element> </xsd:element>
 <xsd:element name="req2" <xsd:element name="req2" default="B"
 minOccurs="1" minOccurs="1"
maxOccurs="1">maxOccurs="1">
 <xsd:simpleType> <xsd:simpleType>
 <xsd:restriction base="xsd:string"> <xsd:restriction base="xsd:string">
 <xsd:maxLength value="5"/> <xsd:maxLength value="5"/>
 </xsd:restriction> </xsd:restriction>
 </xsd:simpleType> </xsd:simpleType>
 </xsd:element> </xsd:element>
 <xsd:element name="req3" <xsd:element name="req3" default="R"
 minOccurs="1" minOccurs="1"
maxOccurs="1">maxOccurs="1">
 <xsd:simpleType> <xsd:simpleType>
 <xsd:restriction base="xsd:string"> <xsd:restriction base="xsd:string">
 <xsd:maxLength value="2"/> <xsd:maxLength value="2"/>
 </xsd:restriction> </xsd:restriction>
 </xsd:simpleType> </xsd:simpleType>
 </xsd:element> </xsd:element>
 </xsd:sequence>
</xsd:complexType>

 </xsd:sequence>
</xsd:complexType>

EnableOutputSensitive

The EnableOutputSensitive attribute determines whether the output files generated by
SoapAdminCL must be case-sensitive. The default value of the attribute is no. Therefore, the
output files generated by SoapAdminCL would have all the field names in lowercase.
If the EnableOutputSensitive attribute is set to yes in the SDL file, then:

• In the DDL, only the structure of the DDL definition must be compiled using the
output_sensitive option and not the definition name.

• The DDL must not be compiled with the output_sensitive flag in the command line.
For example:
DDL file:
Definition TestN.
?output_sensitive
02 NaMeS.
03 First Pic X(10).
03 Middle Pic X(10).
03 Last Pic X(10).

168 NonStop SOAP 4 Service Description Language

?nooutput_sensitive
End.

Now, compile the DDL using the following command:
gtacl -p ddl < "ddl file-name"

CAUTION: The DDL must not be compiled with the output_sensitive flag in the command
line.

RspEncoding

The RspEncoding attribute specifies any default output encoding for a Pathway service other
than UTF-8. The SOAP request and response XML file reflects the value of this attribute. The
default value is UTF-8. This attribute is optional.
For example:
SDL file:
RspEncoding="Shift-JIS"

SOAP Message(SOAP Request/Response):
<?xml version="1.0" encoding="Shift_JIS"?>

The Operation element contains the following child elements:

• “The OperationDescription Element” (page 169)

• “The RequestInfo Element” (page 169)

• “The ResponseInfo Element” (page 170)

The OperationDescription Element

The OperationDescription element specifies the text description of the operation. The maximum
size of the text description is 256 bytes. If the length specified is greater than the maximum length,
the first 256 bytes are used. This is a mandatory element. The element definition appears in the
SDL file as:
<OperationDescription>Reflect the Response</OperationDescription>

The RequestInfo Element

The RequestInfo element specifies the SOAP request information for the particular operation.
This is a mandatory element. The element definition appears in the SDL file as:
<RequestInfo> </RequestInfo>

SDL Service Types 169

The RequestInfo element has a child element named DDLDefinitionName.
• The DDLDefinitionName Element

The DDLDefinitionName element specifies the DDL definition of the NonStop SOAP 4
request that is accepted by the Pathway service. This is a mandatory element. The element
definition appears in the SDL file as:
For example:
DDL file:
 DEFINITION REQ.
 10 request TYPE character 12.
 END

SDL file:
<DDLDefinitionName>REQ</DDLDefinitionName>

NOTE: You can use multiple <DDLDefinitionName> element. For more information, see
“Support for Multiple DDL Definitions” (page 234)

Generated WSDL file:
<xsd:element name="MyOperation" type="tns1:MyOperation"/>
<xsd:complexType name="MyOperation">
 <xsd:sequence>
 <xsd:element name="request" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="12"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

The ResponseInfo Element

The ResponseInfo element specifies the SOAP response information for the particular operation.
This is a mandatory element. The element definition appears in the SDL file as:
<ResponseInfo> </ResponseInfo>

The ResponseInfo element has the following child elements:

• “The DDLDefinitionName Element” (page 170)

• “The ResponseSelection Element” (page 171)

The DDLDefinitionName Element

The DDLDefinitionName element specifies the DDL definition of the NonStop SOAP 4 response
that is accepted by the Pathway service. This is a mandatory element. The element definition
appears in the SDL file as:
DDLDefinitionName>[DDL response definition]</DDLDefinitionName>

For example:
DDL file:
DEFINITION RES.
 10 response TYPE character 12.
END

SDL file:
<DDLDefinitionName>RES</DDLDefinitionName>

170 NonStop SOAP 4 Service Description Language

NOTE: You can use multiple <DDLDefinitionName> element. For more information about
support for multiple DDL elements, see “Support for Multiple DDL Definitions” (page 234)

Generated WSDL file:
<xsd:element name="MyOperationResponse0" type="tns1:MyOperationResponse0"/>
<xsd:complexType name="MyOperationResponse0">
 <xsd:sequence>
 <xsd:element name="response" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="12"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

The ResponseSelection Element

The ResponseSelection element specifies the selection criteria of a NonStop SOAP 4 response.
This element supports the multiple non-fault response feature.

NOTE: NonStop SOAP supports multiple non-fault messages per request. However, wsdl standard
mandates only one non-fault message and maximum one fault message per request. If multiple
messages are marked as non-fault messages, the generated wsdl is not parsed by wsdl2c and
wsdl2pwy tools and may result in error.

The value of the attributes guide the NonStop SOAP 4 server to select a particular response. The
information is stored in the services.xml file, which the server uses during runtime. This is a
mandatory element. The element definition appears in the SDL file as:
<ResponseSelection
 Start="0"
 End="2"
 BufVal="00"
 ConversionOp="[string | decimal]"
 ComparisonOp="[eq | gt | lt | ne]"
 Fault="[yes | no]"
 defaultResp="[yes | no]"/>

The ResponseSelection element includes the following attributes:

• Start

• End

• BufVal

• ConversionOp

• ComparisonOp

• Fault

• defaultResp

•
Start

The Start attribute specifies the start index of the response buffer for the response selection
criteria. There is no default value for this attribute. This attribute is optional.
For example:
SDL file:
Start="0"

SDL Service Types 171

Generated services.xml file:
<parameter name="Response0_StartIndex">0</parameter>

End

The End attribute specifies the end index of the response buffer for the response selection
criteria. There is no default value for this attribute. This attribute is optional. This attribute is
mandatory if the Start attribute is defined.
For example:
SDL file:
End="2"

Generated services.xml file:
<parameter name="Response0_EndIndex">2</parameter>

BufVal

The BufVal attribute specifies the response buffer value that must be checked between the
start index and the end index for the response selection criteria (Response[Start:End-1]).
There is no default value for this attribute. This attribute is optional. It is mandatory if the Start
and End attributes are defined.
For example:
SDL file:
BufVal="12"

Generated services.xml file:
<parameter name="Response0_BufferValue">12</parameter>

ConversionOp

The ConversionOp attribute specifies the conversion operation for the response selection
criteria. Based on the value of this attribute, the response buffer value is converted to the string
or decimal data type and compared with the value of the BufVal parameter. Table 5 lists the
values for the ConversionOp attribute.

Table 5 Conversion Operator Values Table

EffectValue

Converts the response buffer value between the start and
end index to string datatype before comparing them for
the response selection.

string

Converts the response buffer value between the start and
end index to decimal datatype before comparing them
for the response selection.

decimal

For example:
SDL file:
ConversionOp="string"

Generated services.xml file:
<parameter name="Response0_ConversionOp">string</parameter>

ComparisonOp

The ComparisonOp attribute specifies the comparison operation for the response selection
criteria. Based on the value of this attribute, the response buffer value is compared with the
value mentioned in the BufferValue parameter of the services.xml file. Table 6 lists the
values for the ComparisonOp attribute.

172 NonStop SOAP 4 Service Description Language

Table 6 Comparison Operator Values Table

EffectValue

Response is selected if the Response buffer value between
the start and end index matches the value mentioned in
the BufVal attribute.

eq

Response is selected if the Response buffer value between
the start and end index is greater than the value
mentioned in the BufVal attribute.

gt

Response is selected if the Response buffer value between
the start and end index is less than the value mentioned
in the BufVal attribute.

lt

Response is selected if the Response buffer value between
the start and end index does not match the value
mentioned in the BufVal attribute.

ne

For example:
SDL file:
ComparisonOp="eq"

Generated services.xml file:
<parameter name="Response0_ComparisonOp">eq</parameter>

Fault

The Fault attribute specifies the fault response selection criteria. If the comparison is true
and this attribute value is yes, it returns the message as a Fault Message.
For example:
SDL file:
Fault="yes"

Generated services.xml file:
<parameter name="Response0_Fault">yes</parameter>

defaultResp

The defaultResp attribute specifies the selection of the default response. If the value of this
parameter is set to yes, then it overrides the response selection criterion specified for the current
element, and selects the current response when no other matching response element is found.
For example:
SDL file:
defaultResp="yes"

Generated services.xml file:
<parameter name="Response0_Default">yes</parameter>

For example, a sample SDL file for Pathway service will appear as follows:
<!--NonStop SOAP 4 SDL file -->
<sdl Url="/axis2c" ServerAddress="http://www.nonstopsoap.com">
 <Pathway>
 <PathwayEnvironment PathmonName="$jae">
 <Service Name="reflector"
 ServerClassName="reflector"
 DDLDictionaryLocation="$FC3.SOL3379"
 SrvrEncoding="UTF-8"
 language="C"
 GenerateSessionHeader="no"
 GenerateTransactionHeader="no"
 GenerateModuleHandlerFiles="no"
 GenerateMessageReceiverUserFunctionsFiles="no"
 stringTermination="NonNull">
 <Operation Name="REFLECTOR"
 TMFTransactionSupport="Never"

SDL Service Types 173

 AbortTransactionOnFault="no"
 NameSpaceQualified="no"
 SoapMessageType="document"
 ProcessSoapDDLComments="yes"
 SoapDDLAttribute="yes"
 UseDDLDefaultValue="no"
 EnableOutputSensitive="no">
 <OperationDescription>Retrieve user and model profiles</OperationDescription>
 <RequestInfo>
 <DDLDefinitionName>INPUT</DDLDefinitionName>
 </RequestInfo>
 <ResponseInfo>
 <DDLDefinitionName>OUTPUT</DDLDefinitionName>
 <ResponseSelection Start="0" End="2" BufVal="11"
 ComparisonOp="eq" defaultResp="yes" Fault="no"/>
 </ResponseInfo>
 </Operation>
 </Service>
 </PathwayEnvironment>
 </Pathway>
</sdl>

The Process Element
The Process element specifies that the service is running as a process on a NonStop system. The
SDL file can define multiple process environments. Multiple environments are separated by the
Process element. The element definition appears in the SDL file as:
<Process> </Process>

The Process element has a child element named ProcessEnvironment.

NOTE: The CreateDDLDefFile attribute of the <Process> element is not included in NonStop
SOAP 2.4 and later releases. It appears in the SDL DTD for backward compatibility. The NonStop
SOAP 4 SoapAdminCL tool ignores the occurrence of this attribute.

The ProcessEnvironment Element
The ProcessEnvironment element specifies the process environment of the target service. This
is a mandatory element for the NonStop process. The element definition appears in the SDL file
as:
<ProcessEnvironment Name="$<Process Name>">

The ProcessEnvironment element contains the <Name> attribute.

Name

The Name attribute specifies the value of the NonStop process name in which the target service is
running. The value of this element is stored in the services.xml file for the NonStop SOAP 4
server to use during runtime.
For example:
SDL file:
Name="$PROC"

Generated services.xml file:
<parameter name="process">$PROC</parameter>

The ProcessEnvironment has a child element named ProcessDetails.

The ProcessDetails Element
The ProcessDetails element specifies the details of the services to be deployed in the NonStop
SOAP 4 server. The element definition appears in the SDL file as:
<ProcessDetails
 Name="<Service Name>"
 DDLDictionaryLocation="$<volumename>.<subvolumename>"
 language="[C | COBOL]"

174 NonStop SOAP 4 Service Description Language

 SrvrEncoding="UTF-8"
 GenerateSessionHeader="[yes | no]"
 GenerateTransactionHeader="[yes | no]"
 GenerateModuleHandlerFiles="[yes | no]"
 GenerateMessageReceiverUserFunctionsFiles="[yes | no]"
 stringTermination="[NonNull | NullTerminated]">

The ProcessDetails element includes the following attributes:
• Name

• DDLDictionaryLocation

• language

• SrvrEncoding

• GenerateSessionHeader

• GenerateTransactionHeader

• GenerateModuleHandlerFiles

• GenerateMessageReceiverUserFunctionsFiles

• stringTermination

For example:
<sdl>
 <Process>
 <ProcessEnvironment Name="$REFL">
 <ProcessDetails Name="Reflector"
 DDLDictionaryLocation="$FC3.AXTE1"
 SrvrEncoding="UTF-8"
 language="C"
 stringTermination="NullTerminated">
 <Operation Name="REFLECTOR"
 TMFTransactionSupport="Required"
 AbortTransactionOnFault="yes"
 NameSpaceQualified="yes"
 SoapMessageType="document"
 ProcessSoapDDLComments="no"
 SoapDDLAttribute="no"
 UseDDLDefaultValue="no">
 <OperationDescription>Reflector</OperationDescription>
 <RequestInfo>
 <DDLDefinitionName>INPUT</DDLDefinitionName>
 </RequestInfo>
 <ResponseInfo>
 <DDLDefinitionName>OUTPUT</DDLDefinitionName>
 <ResponseSelection defaultResp="yes"/>
 </ResponseInfo>
 </Operation>
 </ProcessDetails>
 </ProcessEnvironment>
 </Process>
</sdl>

The ProcessDetails element includes the Operation element as a child element. For information
about the Operation element and its attributes, see “The Service Element” (page 155).

NOTE: The ServerClassName attribute is not applicable for the ProcessDetails element.
It returns an error when used in the ProcessDetails element.

SDL Service Types 175

The ServerAPI Element
The ServerAPI element specifies that the service is a server API service. The SDL file can define
multiple ServerAPI environments. Multiple environments are separated by the ServerAPI
element. The element definition appears in the SDL file as:
<ServerAPI>

The ServerAPI element has one child element named Service. The ServerAPI element
contains attributes that are same as the Service element. Except for the ServerClass attribute
in the Service element, the ServerAPI elements support all the attributes in the Service
element.
For example:
<sdl Url="/nssoap" ServerAddress="http://www.nonstopsoap.com">
 <ServerAPI>
 <Service
 Name="math"
 DDLDictionaryLocation="$DSMSCM.API">
 <Operation
 Name="add"
 NameSpaceQualified="yes"
 SoapMessageType="document"
 ProcessSoapDDLComments="no"
 SoapDDLAttribute="no"
 UseDDLDefaultValue="no">
 <OperationDescription>
 Add two numbers
 </OperationDescription>
 <RequestInfo>
 <DDLDefinitionName>PARAMETER</DDLDefinitionName>
 </RequestInfo>
 <ResponseInfo>
 <DDLDefinitionName>RESULT</DDLDefinitionName>
 <ResponseSelection defaultResp="yes" Fault="no"/>
 </ResponseInfo>
 </Operation>
 </Service>
 </ServerAPI>
</sdl>

176 NonStop SOAP 4 Service Description Language

9 NonStop SOAP 4 Configuration Files
The NonStop SOAP 4 distribution includes configuration files that can be used to configure the
NonStop SOAP 4 server, its modules, and the services running under it.
This chapter describes the following NonStop SOAP 4 configuration files:

• “The itp_axis2.config File” (page 177)

• “The axis2.xml File” (page 180)

• “The services.xml File” (page 182)

• “The module.xml File” (page 190)

• “Defining the Log File Size” (page 180)

• “Defining Separate Log and Trace Files for NonStop SOAP 4 Servers” (page 180)

The itp_axis2.config File
After installing NonStop SOAP 4, run the NonStop SOAP 4 deployment script (<NonStop SOAP
4 Installation Directory>/bin/deploy.sh) to create the default itp_axis2.config
file in the <NonStop SOAP 4 Deployment Directory>. The configurations set in the
itp_axis2.config file are loaded by the iTP WebServer during startup.
You must specify the location of the itp_axis2.config file in the <iTP WebServer
Deployment directory>/conf/local.config file.
The itp_axis2.config file is used to perform the following tasks:
• “Linking iTP WebServer to the NonStop SOAP 4 Deployment” (page 177)

• “Specifying iTP WebServer Filemap for NonStop SOAP 4” (page 177)

• “Defining the Log Levels of the NonStop SOAP 4 Server” (page 178)

• “Defining the Log File Size” (page 180)

• “Defining Separate Log and Trace Files for NonStop SOAP 4 Servers” (page 180)

Linking iTP WebServer to the NonStop SOAP 4 Deployment
The itp_axis2.config file is read by the iTP WebServer during startup. The
AXIS2_DEPLOYMENT_ROOT variable is set to the location of the <NonStop SOAP 4
Deployment Directory> that is entered while running the NonStop SOAP 4 deployment script,
deploy.sh.
For information on setting up the location of the NonStop SOAP 4 deployment directory, see
“Setting up the Deployment Environment” (page 38).
For example:
set AXIS2_DEPLOYMENT_ROOT /home/usr1/t0865h01

This command instructs iTP WebServer to run the NonStop SOAP 4 deployment located at
/home/usr1/t0865h01.

Specifying iTP WebServer Filemap for NonStop SOAP 4
The iTP WebServer identifies the NonStop SOAP 4 requests by locating a unique string specified
in the url_pattern of the request to a FileMap variable. The FileMap variable is specified
in the itp_axis2.config file.

The itp_axis2.config File 177

NOTE: You must specify the location of the itp_axis2.config file in the <iTP WebServer
Deployment directory>/conf/local.config file.
The unique string specified as the <url_pattern> is the string entered while setting the deployment
environment for NonStop SOAP 4. For more information, see Step 6 in “Setting up the Deployment
Environment” (page 38).

For example:
http://<ip address>:<port>/<url_pattern>/services/<service_name>

where,
<ip address>:<port>

is the IP address and port of iTP WebServer integrated with NonStop SOAP 4.
<url_pattern>

is the value of the <url_pattern>. By default, this value is set to axis2c.
services

is the name of the directory in <NonStop SOAP 4 Deployment Directory> where the
services are present.

NOTE: This directory must be named services.

<service_name>

is the name of the service to be accessed.
For information about deploying additional SOAP servers in a given iTP WebServer, see “Setting
up Multiple NonStop SOAP Deployment Instances in a Single iTP WebServer” (page 43).

Defining the Log Levels of the NonStop SOAP 4 Server
NonStop SOAP 4 supports seven logging levels that define the extent of information to be logged
in the NonStop SOAP 4 log files. The logging level is specified by setting the LOG_MODE OSS
environment variable in the itp_axis2.config file.
The NonStop SOAP 4 log files (soaperror.log) are located at <NonStop SOAP 4
Deployment Directory>/logs. You can read the log files using an editor of your choice.
For example, to log only critical errors, set the LOG_MODE variable to 0. The default LOG_MODE
value in NonStop SOAP 4 is 2.
Table 7 lists the different logging levels and the corresponding LOG_MODE values:

Table 7 Logging Levels

DescriptionLOG_MODE Value

Logs only critical errors.0

Logs errors and critical errors.1

Logs warnings, errors, and critical errors.2

Logs information, warnings, errors, and critical errors.3

Logs debug messages, information, warnings, errors, and critical errors.4

Logs user-level log messages, errors, and critical errors.5

Logs traces, debug messages, information, warnings, errors, and critical errors.6

Example 1 shows a sample itp_axis2.config configuration file.

178 NonStop SOAP 4 Configuration Files

Example 1 A Sample itp_axis2.config Configuration File

#
i t p _ a x i s 2 . c o n f i g
#
This file resides in / and contains
information for the deployment described at /home/usr1/t0865h01
#
This file was generated by /usr/tandem/nssoap/t0865h01/bin/deploy.sh

##
Set environment variables used by this deployment
#
#

--
Axis2_DEPLOYMENT_ROOT is the root directory for the
deployment/operational files for this particular NSSOAP 4 SOAP
SERVER deployment

set AXIS2_DEPLOYMENT_ROOT /home/usr1/t0865h01

Axis2c is the full pathname of the axis2cgi.pway file

set Axis2c $AXIS2_DEPLOYMENT_ROOT/bin/axis2cgi.pway

##
#
Add a Filemap for a "nssoap" region. The URL to this new region
would be http://www.yourserver.com:port/axis
#
Filemap /axis2c $Axis2c
Filemap /axis2c/client $AXIS2_DEPLOYMENT_ROOT/client
##
Force decoding of form encoded data and Query String
directly into environment variables without user
intervention.
##

Region /axis2c/* {
 AddCGI AUTOMATIC_FORM_DECODING ON
}

Server $Axis2c {
 CWD $AXIS2_DEPLOYMENT_ROOT/bin
 Env AXIS2C_HOME=$AXIS2_DEPLOYMENT_ROOT
 Env ICU_DATA=/usr/tandem/xml/T0563H01/lib/icu/data/
 Env LOG_MODE=2
 Priority 160
 Numstatic 1
 Maxlinks 1
 Maxservers 5
 set env(HOMETERM) [exec tty]
 Stdin $AXIS2_DEPLOYMENT_ROOT/logs/ss_stdin.log
 Stdout $AXIS2_DEPLOYMENT_ROOT/logs/ss_stdout.log
 Stderr $AXIS2_DEPLOYMENT_ROOT/logs/ss_stderr.log
}

In the itp_axis2.config file sample, the Stdout, Stdin and Stderr parameters define the
filenames for standard output, input streams, and error streams, respectively.

NOTE: NonStop SOAP 4 logs output to the soaperror.log file. If the log level is set to tracing,
then NonStop SOAP 4 logs trace messages to the soaperror.log.trc file.

The itp_axis2.config File 179

NOTE: The location specified for ICU_DATA must be a valid, existing location containing the
ICU files to be used for encoding. If the location does not exist, SOAP server logs an error message.
If the files in the given location are missing or corrupt, then encoding features will work only for
the UTF-8 encoding type.

Defining the Log File Size
The NonStop SOAP 4 server supports log and trace file rollover after the files reach a specific size.
The default file size is set to 20 MB, after which the logging and tracing rolls over for
soaperror.log and soaperror.log.trc files.
For specifying a different rollover size, set the LOG_SIZE OSS environment variable in the
itp_axis2.config file. The value must be numeric and the base unit is in MB. The minimum
value is 1, which indicates that the file size of 1 MB triggers a rollover.

CAUTION: A negative or zero value indicates that rollover must not be attempted. In this case
the file sizes can reach the maximum file size supported by the underlying file system. HP does
not recommend a negative or zero value for LOG_SIZE.

Defining Separate Log and Trace Files for NonStop SOAP 4 Servers
By default all the static and dynamic SOAP servers running in a specific iTP WebServer PATHMON
logs information to the same soaperror.log or soaperror.log.trc files.
To create separate log and trace files for individual NonStop SOAP 4 servers, in the
itp_axis2.config file, set the LOG_PER_PROCESS OSS environment variable to Yes. With
this setting, different files are created with the process name as a suffix to the log or trace file name.

The axis2.xml File
The axis2.xml file in the <NonStop SOAP 4 Installation Directory> directory is used
to configure a specific instance of a NonStop SOAP 4 deployment. The axis2.xml file is created
when the <NonStop SOAP 4 Deployment Directory>/bin/deploy.sh script is run to
deploy NonStop SOAP 4.
The configurations set in the axis2.xml configuration file are loaded during the NonStop SOAP
4 server startup, and applied to all the services deployed under the specific NonStop SOAP 4
deployment.
The axis2.xml file is used to perform the following tasks:
• “Setting the Message Receiver and the Message Exchange Pattern” (page 180)

• “Attaching a Module at the Global Level” (page 181)

• “Attaching Message Receiver User Functions at the Global Level” (page 181)

• “Specifying the Order of Phase Invocation in NonStop SOAP 4 Message Processing” (page 182)

Setting the Message Receiver and the Message Exchange Pattern
During startup, NonStop SOAP 4 reads the name of the Message Receiver class and the default
message exchange pattern (MEP) from the axis2.xml file.
NonStop SOAP 4 enables you to set the Message Receiver and the MEP to communicate with the
service. For more information about Message Receiver and Message Exchange Pattern, see
“Introduction to NonStop SOAP” (page 27).
You can set the Message Receiver and MEP using the class and mep attribute of the Message
Receiver elements in the axis2.xml configuration file as follows:
<messageReceiver class="message-receiver-class" mep="name of the mep"/>

where,

180 NonStop SOAP 4 Configuration Files

class [axis2_pway_receiver | axis2_receivers]

is the Message Receiver class to be attached with NonStop SOAP 4. This is a mandatory
attribute.
The NonStop SOAP 4 distribution supports the following Message Receivers:
axis2_pway_receiver

specifies the Pathway Message Receiver to be used for communication with NonStop
processes or Pathway services. The default value is axis2_pway_receiver.

axis2_receivers

specifies the XML Message Receiver to be used for services developed using server APIs.
mep [IN-OUT | IN-ONLY]

specifies the message exchange pattern to be used when communicating with the client. This
is a mandatory attribute. The default value is IN-OUT.

Attaching a Module at the Global Level
A module can be attached at the global level so that its handlers are invoked every time a service
is called in the NonStop SOAP 4 deployment. For more information about modules, see Chapter 7:
“Customizing NonStop SOAP 4 Message Processing” (page 124).
The module element in the axis2.xml file is optional and is used to attach a particular module
with NonStop SOAP 4. This module is attached globally and will be invoked on every service
request.
For example, to globally add a new module, mod_logging, add the following entry in the
axis2.xml file.
<module ref="mod_logging"/>

where,
ref

is the attribute that accepts the module name of the module being referenced.

NOTE: To attach a module, the module DLL must be added to the /modules directory in the
NonStop SOAP 4 deployment directory. In the mod_logging example, the DLL object of
mod_logging is located in the <NonStop SOAP 4 Installation
Directory>/sample_services/modules/mod_logging directory.

Attaching Message Receiver User Functions at the Global Level
A Message Receiver User Function can be attached at the global level so that it is invoked every
time a service is called in the NonStop SOAP 4 deployment. For more information about the
Message Receiver User Function, see Chapter 3: “Migrating NonStop SOAP 3 Services to NonStop
SOAP 4 or Higher Versions” (page 52).
For example, to add a new Message Receiver User Function axis2_MRUF_log globally, add the
following entry in the axis2.xml file.
<parameter name="MessageReceiverUserFunctions">axis2_MRUF_log</parameter>

where,
axis2_MRUF_log

is the class name of the Global Message Receiver User Function.
The parameter element in the axis2.xml file is optional and is used to define the custom
parameters in NonStop SOAP 4. The MessageReceiverUserFunctions parameter is used
to define DLLs, which are attached as Message Receiver User Functions. If the parameter is defined
in axis2.xml file, then the Message Receiver User Functions are attached globally and invoked
on every service request.

The axis2.xml File 181

Specifying the Order of Phase Invocation in NonStop SOAP 4 Message Processing
NonStop SOAP 4 enables you to specify the order in which the pre-defined and user-defined
phases can be invoked during a message processing cycle. To specify the invocation order of the
phases, modify the phaseorder attribute to reflect the desired order of invocation. You can also
customize user–defined phases using the phaseOrder attribute.

NOTE: For more information about the phaseOrder element attribute, see Chapter 7:
“Customizing NonStop SOAP 4 Message Processing” (page 124).

For example, to add a phase named UserPhase to the inflow after the pre-defined phases,
add the highlighted entry in the axis2c.xml file:
<phaseOrder type = “inflow”>
 <!-- System pre defined phases -->
 <phase name="Transport"/>
 <phase name="PreDispatch"/>
 <phase name="Dispatch"/>
 <phase name="PostDispatch"/>
 <!-- End system pre defined phases -->
 <!-- User defined phases could be added here -->

<phase name="UserPhase”/>
</phaseOrder>

The services.xml File
The services.xml file describes a particular service deployed in a NonStop SOAP 4 deployment
and enables you to configure the service.
The services.xml file is located in the service directory of a particular NonStop SOAP
deployment. For example, if the deployment directory for NonStop SOAP 4 is/home/usr1/
t0865h01, and a service named test is deployed in it, the services.xml file for the test
service will be located in the /home/usr1/t0865h01/services/test directory.
OSS> cd /home/usr1/t0865h01/services/test
OSS> ls
 services.xml test.wsdl

To be a valid service, each service must have a services.xml file in the service directory.
NonStop SOAP 4 provides service-level customization by allowing the services.xml file to
override the values defined globally using the axis2.xml file. Sample services.xml files are
available with the sample services distributed with NonStop SOAP 4.
The services.xml file can be generated for Pathway services using the SoapAdminCL tool.
For more information about the SoapAdminCL tool, see Chapter 10: “NonStop SOAP Tools”
(page 194).
The services.xml file is used to perform the following tasks:
• “Updating the Service Parameters” (page 183)

• “Defining Multiple SOAP Response Selection Criteria” (page 186)

• “Controlling TMF Transaction Support” (page 188)

• “Engaging a Module at the Service Level” (page 189)

• “Setting the Operation-Specific MEP” (page 189)

• “Setting the Operation-Specific Message Receiver” (page 190)

NOTE: The services.xml file is an output file produced by the SoapAdminCL tool in response
to a particular SDL file. Modifications to services.xml should be undertaken carefully, as they
will be overwritten when SoapAdminCL is subsequently run on the input SDL file.

182 NonStop SOAP 4 Configuration Files

Updating the Service Parameters
The services.xml file is used to set the service parameters to configure a service as a Pathway
application, a process, or as a DLL.

NOTE: The service parameters are set using the parameter tag and are defined as name-value
pairs. You need not modify the service parameters because the services.xml file is generated
by the SoapAdminCL tool.

This section describes the following topics:

• “Configuring a service as a Pathway application” (page 183)

• “Configuring a service as a process” (page 183)

• “Configuring a service as a DLL” (page 183)

• “Other Service Parameters” (page 184)

Configuring a service as a Pathway application
To configure a service as a Pathway application, use the axis2_pway_receiver Message
Receiver and set the following parameters in the services.xml file:
• wsdl_path: specifies the location of the WSDL file of the service.

• pathmon: specifies the name of the PATHMON on which the Pathway service is running.

• serverclass: specifies name of the server class for the Pathway service.

• serverLanguage: specifies the language in which the service is implemented.
For example, to update the parameters, add the following entries in the services.xml file:
<parameter name="wsdl_path">/home/t0865h01/services/
 empdb/SoapPW_empdb.wsdl</parameter>
<parameter name="pathmon">$AXIS</parameter>
<parameter name="serverclass">EMPDB</parameter>
<parameter name="serverLanguage">C</parameter>

Configuring a service as a process
To configure a service as a process, use the axis2_pway_receiver Message Receiver and set
the following parameters in the services.xml file:
• wsdl_path: specifies the location of the WSDL file of the service.

• process: specifies name of the process that is running.

• serverLanguage: specifies the language in which the service is implemented.
For example, to update the parameters, add the following entries in the services.xml file:
<parameter name="wsdl_path">/home/t0865h01/services/
 empdb/SoapPW_empdb.wsdl</parameter>
<parameter name="process">$AXIS</parameter>
<parameter name="serverLanguage">C</parameter>

Configuring a service as a DLL
To configure a service as a DLL, use the axis2_receiversMessage Receiver and set the following
parameters in the services.xml file:
• wsdl_path: specifies the location of the WSDL file of the service.

• serviceClass: specifies the class name of the service DLL. If the service DLL name is
libecho.so, the class value will be echo.

For example, to update the parameters, add the following entries in the services.xml file:

The services.xml File 183

<parameter name="wsdl_path">/home/t0865h01/services/
 empdb/SoapPW_empdb.wsdl</parameter>
<parameter name="serviceClass">echo</parameter>

Other Service Parameters

• The DDLMapping parameter setting determines the use of the DDLMapping.xml file for
processing a SOAP message. If the parameter is set to Yes, then the NonStop SOAP 4 server
uses the DDLMapping.xml file for processing the SOAP message, otherwise, it uses the
WSDL file for processing the SOAP message. For example, when the NonStop SOAP 4 server
finds the following entry in the services.xml file, it reads the DDLMapping.xml file:
< parameter name=”DDLMapping”>Yes< /parameter>

The SoapAdminCL tool generates the DDLMapping.xml file for specific conditions that
cannot be processed by the NonStop SOAP 4 server with the information in the WSDL file.
The SoapAdminCL tool sets this parameter in the generated services.xml file.

• The AlignmentRule parameter setting determines the alignment rule. For information about
the valid parameter settings, see the following tables. The default is even for COBOL services
and datatype for C services. For example, the NonStop SOAP 4 server aligns the data
elements according to the element datatype when it finds the following entry in the
services.xml file.
< parameter name=”AlignmentRule”>datatype< /parameter>

NOTE: The COBOL services cannot have specific elements of a structure marked as SYNC.
All elements within a structure must be marked as SYNC. If all the elements of a structure are
marked as SYNC, use the datatype setting.

The following tables list the valid settings for this parameter for C and COBOL services.

Table 8 Valid AlignmentRule setting for existing C services that use DDL generated header files

AlignmentRule settingDDL settingC option

evenC00CALIGNCSHARED2

shared2CFIELDALIGN_MATCHED2SHARED2

shared2C_MATCH_HISTORIC_TALSHARED2

shared8SHARED8SHARED8

datatypeSHARED8AUTO

datatypeSHARED8PLATFORM

Table 9 Valid AlignmentRule setting for existing C services that does not use DDL generated
header files

AlignmentRule settingC option

evenCSHARED2

shared2SHARED2

shared8SHARED8

datatypeAUTO

datatypePLATFORM

184 NonStop SOAP 4 Configuration Files

Table 10 Valid AlignmentRule setting for existing COBOL services that use DDL generated
header files

AlignmentRule settingDDL settingCOBOL option

evenC00CALIGNDefault

shared2CFIELDALIGN_MATCHED2Default

shared2C_MATCH_HISTORIC_TALDefault

shared8SHARED8Default

Table 11 Valid AlignmentRule setting for existing COBOL services that does not use DDL
generated header files

AlignmentRule settingCOBOL option

evenDefault

datatypeAll elements marked as SYNC

NOTE: For C and COBOL services that do not include DDL generated header files, use the
SOAPAdminCL tool with -fs option.

• The responseType parameter setting determines the processing of BLANK response elements.
If the parameter is set to strict, then the NonStop SOAP 4 server builds the XML response,
according to the service definition, even if BLANK elements are present. If the parameter is
set to lenient, then the NonStop SOAP 4 server does not create the BLANK elements and
builds the minimal size XML response.
In C services, all bytes of an element filled with the null character (\0) denote a BLANK element.
In COBOL services, all bytes of an alphabetic, alpha-edited, or alphanumeric element filled
with spaces, or all bytes of a numeric or numeric-edited element filled with zero denote a
BLANK element.
An entity is considered optional if:

◦ The corresponding DDL field is marked with a @SOAP_OPTIONAL comment tag

◦ It is an element in WSDL, minOccurs value is set to 0

◦ It is an attribute in WSDL, use="optional" is set

The following table lists the display behavior for different responseType parameter and
BLANK element settings.

Table 12 Displaying BLANK element in response XML

responseType set to lenientresponseType set to strictBLANK element is

NoNoOPTIONAL

NoYesMANDATORY

NoNoGreater than minOccurs and less
than maxOccurs

NoYesGreater than minOccurs and less
than OccDependON

NoYesLess than minOccurs

NOTE: If an optional element or attribute is omitted in XML request, BLANK value is sent.

The services.xml File 185

Defining Multiple SOAP Response Selection Criteria
NonStop SOAP 4 enables you to define multiple response messages for each operation in a Web
service based on a multiple response selection criterion. The response selection criterion can be
defined using the following name attributes of the parameter element in the services.xml
configuration file.

• TotalResponse

This element defines the total number of responses that must be considered while selecting a
single response for a given operation. This is a mandatory attribute.
 <parameter name="TotalResponse"><total response></parameter>

For example, to define two responses for an operation:
 <parameter name="TotalResponse">2</parameter>

• Response(x)

An operation can expect multiple responses for a given request. Each response must mention
the corresponding element name from the WSDL file. In the Response(x) parameter, x is
an integer, and its value varies from 0 to total response -1. Therefore, if the total
response parameter value is 3, there will be three Response(x) parameters with the
following sample syntax:
<parameter name="Response0">Element Name</parameter>
<parameter name="Response1">Element Name 1</parameter>
<parameter name="Response2">Element Name 2</parameter>

This is a mandatory attribute.

• Response(x)_BufferValue

This element defines a buffer value. The buffer value is compared with the response returned
from the service.
<parameter name="Response0_BufferValue">00</parameter>

This is an optional element. It is mandatory only if the Response(x)_StartIndex and
Response(x)_EndIndex parameters are specified for a response selection criterion.

• Response(x)_ComparisonOp [eq | gt | lt | ne]

This element defines the comparison operator that compares the Response(x)_BufferValue
parameter specified with the response buffer [start index : endIndex-1] received from
the service. The values defined for the comparison operator are:
eq

Buffer value must be equal to response[start-index: end-index-1].
gt

Buffer value must be greater than response[start-index: end-index-1].
lt

Buffer value must be less than response[start-index: end-index-1].
ne

Buffer value must not be equal to response[start-index: end-index-1].
<parameter name="Response0_ComparisonOp">ne</parameter>

This is an optional parameter. If not specified, the default comparison operator used by
NonStop SOAP 4 is eq.

• Response(x)_StartIndex

This element defines the offset in the response buffer for the data to be evaluated using the
ComparisonOP and BufferValue defined for a particular Response.

186 NonStop SOAP 4 Configuration Files

For example, if the StartIndex is specified for the first response selection criterion, the
sample syntax will be:
<parameter name="Response0">Element Name</parameter>
<parameter name="Response0_StartIndex">0</parameter>

This is an optional element.

• Response(x)_EndIndex

This element defines the offset in the response buffer up to which the data must be evaluated
against the response selection criterion. The data selected from the response buffer ranges
from the Response(x)_StartIndex parameter to the Response(x)_EndIndex parameter.
For example:
<parameter name="Response0">Element Name</parameter>
<parameter name="Response0_StartIndex">0</parameter>
<parameter name="Response0_EndIndex">2</parameter>

This is an optional element. It is mandatory only if the Response(x)_StartIndex parameter
is specified for the response selection criterion.

• Response(x)_ConversionOp [string | decimal]

This tag defines the conversion that must be done on the Response(x)_BufferValue
parameter before comparing it with the response[start-index:end-index-1] buffer.
The permissible values for this parameter are:
string

performs the string conversion on the Response(x)_BufferValue parameter before
comparing it with response[start-index:end-index-1].

decimal

performs the decimal conversion on the Response(x)_BufferValue parameter before
comparing it with response[start-index:end-index-1].

For example:
<parameter name="Response0_ConversionOp">string</parameter>

This is an optional parameter. If not specified, the default conversion value is string.

• Response(x)_Default [true | false]

If this parameter is set to true, it indicates that this is the default response element to be
selected if no matching response selection criteria specified for the operation is found. This is
an optional parameter.
<parameter name="Response0_Default">true</parameter>

• Response(x)_Fault [true | false]

If this parameter is set to true and the response received from the service matches the response
selection criterion, NonStop SOAP 4 considers the response received to be a fault response.
This parameter is optional. For example:
<parameter name="Response0_Fault">true</parameter>

For example:
<parameter name= "Response0">TestElementResponse</parameter>
<parameter name= "Response0_StartIndex">0</parameter>
<parameter name= "Response0_EndIndex">2</parameter>
<parameter name= "Response0_BufferValue">00</parameter>

In the example, on receiving a response from the service, NonStop SOAP 4 compares bytes 0
(StartIndex) to 1 (EndIndex – 1) received in the response with the specified
Response0_BufferValue. If a comparison operator is not specified, the default value is “equal

The services.xml File 187

to” and the default conversion operator is “string”. If the buffers match, the response structure
in Response0 is selected to return the response to the client.

Controlling TMF Transaction Support
NonStop SOAP 4 enables you to specify whether a TMF transaction must be started for a given
operation. To achieve this, specify the TMFTransactionSupport parameter in the name attribute
of the parameter element in the services.xml file. This is an optional element. For example:
<parameter name="TMFTransactionSupport"><parameter-value></parameter>

where,
<parameter-value> [Required | Supports | Never]

is the parameter value. The options are Required, Supports,or Never. The default value
is Supports.
Required

indicates that the operation in the SOAP request will always be performed within a TMF
transaction.
• If the client request does not have the Transaction element as a part of the SOAP

request header, NonStop SOAP server will begin a TMF transaction before invoking
the service and commit or abort the transaction.

• If the client request has a Transaction element in the SOAP request header, NonStop
SOAP will process the transaction element.

• For server initiated transactions, NonStop SOAP 4 will set the transaction timeout equal
to the value of the TransactionTimeOut parameter in the services.xml file
(effective timeout will be lower than the timeout set in the services.xml file and
TMFAutoAbort timeout system configuration).

Supports

indicates that the operation in the SOAP request will be performed within a client-initiated
TMF transaction. If the client request does not have the transaction or session element in
the SOAP request header, NonStop SOAP 4 will perform the operation in the SOAP request
without starting any transaction.

Never

indicates that NonStop SOAP 4 will not initiate a transaction.

NOTE: For more information about transaction initiated by the client request, see Transaction
Management (page 236) .

Example 2 shows a sample services.xml configuration file.

188 NonStop SOAP 4 Configuration Files

Example 2 A Sample services.xml Configuration File

<service name="EMPDB">

 <parameter name="ServiceClass" locked="xsd:false">EMPDB</parameter>

 <!--Uncomment to specify static WSDL path-->
 <parameter name="wsdl_path">/home/usr1/t0865h01/services/empdb_p
athway/SoapPW_EMPSVR.wsdl</parameter>
 <parameter name="pathmon">$AXIS</parameter>
 <parameter name="serverclass">EMPDB</parameter>
 <description>
 Service template file
 </description>

 <operation name="EmpInfo">
 <messageReceiver class="axis2_pway_receiver" />

 <parameter name="TMFTransactionSupport">Supports</parameter>
 <parameter name="TotalResponse">2</parameter>

 <parameter name="Response0">EmpInfoResponse0</parameter>
 <parameter name="Response0_Default">yes</parameter>

 <parameter name="Response1">EmpInfoResponse1</parameter>
 <parameter name="Response1_StartIndex">0</parameter>
 <parameter name="Response1_EndIndex">2</parameter>
 <parameter name="Response1_BufferValue">00</parameter>
 <parameter name="Response1_ComparisonOp">eq</parameter>
 <parameter name="Response1_ConversionOp">string</parameter>
 <parameter name="Response1_Fault">yes</parameter>

 </operation>
</service>

Engaging a Module at the Service Level
A module can be attached at the service level so that its handlers are invoked every time a service
is called. A module can be attached with a service using the module element. This element specifies
the module that is referenced by the service. The sample syntax for the module element is:
<module ref="module class name"/>

where,
ref

is the attribute that accepts the module name of the module being referenced. This is a
mandatory attribute.

Setting the Operation-Specific MEP
The operation-specific MEP information for a service can be specified using the operation
element. The sample syntax for the operation element is:
<operation name="operation-name" mep="mep-uri">
</operation>

where,
name

is the operation name specified in the WSDL file for the service. This is a mandatory attribute.

The services.xml File 189

mep

is the MEP Web address to be used for this operation. If not specified, the default MEP Web
address is http://www.w3.org/2004/08/wsdl/in-out, which maps to the IN-OUT MEP.

Setting the Operation-Specific Message Receiver
NonStop SOAP 4 enables you to override the Message Receiver configurations set in the
axis2.xml file at the operation level. You can specify the Message Receiver to be invoked by
NonStop SOAP 4 for an operation.
For example, to specify the Message Receiver to be invoked for the EmpInfo operation of the
empdb service, include the following entry in the services.xml file for the empdb service.
<operation name="EmpInfo">
 <messageReceiver class="axis2_pway_receiver" />
</operation>

where,
class [axis2_pway_receiver | axis2_receiver]

is the attribute for the Message Receiver that is used for request processing. This is a mandatory
attribute. The NonStop SOAP 4 distribution supports the following:
axis2_pway_receiver

specifies the Pathway Message Receiver to be used for communication with NonStop
processes or Pathway services.

axis2_receiver

specifies the XML Message Receiver to be used for services developed using server APIs.
In addition to axis2_pway_receiver and axis2_receiver, you can also customize Message
Receivers.

The module.xml File
The module.xml file is a module descriptor that contains configuration contexts for the modules
configured in NonStop SOAP 4. Each module directory must have a module.xml file in the
module directory.

NOTE: For more information about modules, see the “Customizing NonStop SOAP 4 Message
Processing” (page 124).

Sample module.xml files are available in the NonStop SOAP 4 distribution. For example, if the
installation directory of NonStop SOAP 4 is /usr/tandem/nssoap/t0865h01, the module.xml
file for the addressing module will be located at:
 /usr/tandem/nssoap/t0865h01/modules/addressing

Example 3 shows a sample module.xml configuration file structure.

Example 3 A Sample module.xml File Structure

<module>
 <inflow>
 <handler>
 <order/>
 </handler>
 </inflow>
 <outflow>
 <handler>
 <order/>
 </handler>
 </outflow>
 <INfaultflow>
 <handler>

190 NonStop SOAP 4 Configuration Files

http://www.w3.org/2004/08/wsdl/in-out

 <order/>
 </handler>
 </INfaultflow>
 <Outfaultflow>
 <handler>
 <order/>
 </handler>
 </Outfaultflow>
</module>

where,
<module>

represents the entire module to be configured.
<inflow>

represents a collection of one or more <handler> elements that must be invoked while
processing the input flow for a particular message.

<handler>

represents the unit or class that must be invoked by the NonStop SOAP 4 server. Multiple
handlers can be used.

<order>

represents the order and phase in which its parent handler must be invoked.
The module.xml file is used to perform the following tasks:
• “Specifying the Module Name and Module Class File Name” (page 191)

• “Defining a New Handler and Specifying its Invocation Order” (page 191)

Specifying the Module Name and Module Class File Name
The module element must be updated with the module name and the class name. The sample
syntax to specify the module name and class file name in the module.xml file is:
<module name="module-name" class="module-class">

where,
name

is the name of the module to be configured. This is a mandatory attribute.
class

is the module class name. If the module DLL name is libaxis2_mod_log.so, the class value
will be axis2_mod_log. This is a mandatory attribute.

Defining a New Handler and Specifying its Invocation Order
A module is a collection of handlers. To add a handler, specify the handler name and the handler
class name in the <handler> element of the module.xml file as:
<handler name=”handler-name” class=”handler-class”>

where,
name

is the name of the handler. This is a mandatory attribute.
class

specifies the DLL that implements the handler. If the name of the DLL is
libaxis2_loghandler.so, the class value will be loghandler.

The module.xml file provides the flexibility to decide when a particular handler must be invoked
within a given phase. The <order> element has attributes that can help invoke handlers depending

The module.xml File 191

on when another handler is invoked. To specify the order of invoking handlers, include the following
entry with the required information in the module.xml file:
<order phase=”phase-name” phaseLast=”true” phaseFirst=”first”
before=”handler-name” after=”handler-name”/>

where,
phase

indicates the phase in which this handler must be invoked. This is a mandatory attribute.
phaseLast [true | false]

indicates that the parent handler is the last handler that must be invoked for the given phase.
This is an optional attribute.

phaseFirst [true | false]

indicates that the parent handler is the first handler that must be invoked for the given phase.
This is an optional attribute.

before

is the attribute value that takes the name of a valid handler. The valid handler is invoked before
the handler specified in the before attribute. This is an optional attribute.

after

is the attribute value that takes the name of a valid handler. The valid handler is invoked after
the handler specified in the after attribute. This is an optional attribute.

Defining the Module-Specific Parameters
You can define the module-specific parameters by using the <parameter> element. This element
is a child of the <module> element. To add module-specific parameters, include the following
entry with the required information in the module.xml file:
<parameter name="parameter-name" locked="false"><parameter-value></parameter>

where,
name

is the parameter name. This is a mandatory attribute for the parameter tag.
locked [true | false]

specifies whether the parameter can be modified within the user code. If this attribute is set to
true, the parameters can be modified. The default value is false.

<parameter-value>

is the parameter value associated with the parameter name.
Example 4 shows a sample module.xml configuration file.

Example 4 A Sample module.xml Configuration File

<module name="addressing" class="axis2_mod_addr">
 <inflow>
 <handler name="AddressingInHandler" class="axis2_mod_addr">
 <order phase="Transport" before="addressing_based_dispatcher"/>
 </handler>
 </inflow>

 <outflow>
 <handler name="AddressingOutHandler" class="axis2_mod_addr">
 <order phase="MessageOut"/>
 </handler>
 </outflow>

 <Outfaultflow>
 <handler name="AddressingOutHandler" class="axis2_mod_addr">

192 NonStop SOAP 4 Configuration Files

 <order phase="MessageOut"/>
 </handler>
 </Outfaultflow>
</module>

For more information about modules and handlers, see “Customizing NonStop SOAP 4 Message
Processing” (page 124).

The module.xml File 193

10 NonStop SOAP Tools
The NonStop SOAP 4 distribution includes tools that help perform important tasks, such as:

• Generating the WSDL file, the services.xml file, HTML clients, and SOAP request and
response XML files for NonStop SOAP 4

• Migrating services from NonStop SOAP 3 to NonStop SOAP 4

• Generating client stubs and service skeleton files using WSDL files as input
This chapter describes the following tools that are available with the NonStop SOAP 4 distribution:
• “The SoapAdminCL Tool” (page 194)

• “The WSDL2PWY Tool” (page 203)

• “The WSDL2C Tool” (page 211)
This chapter also describes the “The NonStop SOAP 4 Administration Utility” (page 215).

The SoapAdminCL Tool
The SoapAdminCL tool is a standalone command-line tool that runs in the OSS environment on
NonStop systems. You can use the SoapAdminCL tool to perform the following tasks:

• Generate the WSDL file, the services.xml file, HTML clients, XML schema files, and SOAP
request and response XML files using the SDL file as an input

• Generate module and handler stubs

• Generate Message Receiver User Functions stubs

• Generate the SDL file from the NonStop SOAP 3 SDR file

NOTE: All the options are case sensitive.

This section describes the following topics:

• “Generating NonStop SOAP 4 Files using the SDL File” (page 194)

• “Generating Module and Handler Stubs” (page 199)

• “Generating Message Receiver User Functions Stubs” (page 200)

• “Generating the NonStop SOAP 4 SDL File from the NonStop SOAP 3 SDR File” (page 201)

• “Additional Options” (page 202)

Generating NonStop SOAP 4 Files using the SDL File
The SoapAdminCL tool uses the SDL file and the DDL dictionaries to generate the following:

• WSDL file: used by NonStop SOAP 4 during runtime

• The services.xml file: used by NonStop SOAP 4 during runtime

• HTML client files: used to test your services

• XML schema files: used to provide request and response structure in XML schema

• SOAP request and response XML files: used to provide request and response structure in XML

• Migration WSDL files: used to migrate your applications from NonStop SOAP 3 to NonStop
SOAP 4

194 NonStop SOAP Tools

NOTE:
• The migration WSDL files are generated only when the -m migration flag is used.

• You can generate an SDL file for NonStop SOAP 4 services using the following:

◦ NonStop SOAP 4 Administration Utility

◦ NonStop SOAP 3 SDR file with the NonStop SOAP 4 SoapAdminCL tool

◦ Copying and updating the SDL files distributed with the NonStop SOAP 4 distribution

For more information about the SDL file, see “NonStop SOAP 4 Service Description Language”
(page 153).

• To use request encoding or response encoding, set the ICU_DATA environment variable to
the location of the ICU data files before executing SoapAdminCL command:
OSS> export ICU_DATA=/usr/tandem/xml/T0563H01/lib/icu/data/

You can set the request encoding using the SrvrEncoding attribute of the Service element
and response encoding using the RspEncoding attribute of the Operation element in the
SDL file. For more information on using the encoding attributes in the SDL file, see “Configuring
the response encoding” (page 230).

Figure 14 shows the files generated by the SoapAdminCL tool.

Figure 14 Files Generated by the SoapAdminCL Tool

SoapAdminCL tool

WSDL file

services.xml file

HTML file

Request and Response XML file

Migration WSDL file

XML Schema file

DDLMapping.xml

SDL file DDL
Dictionaries

Table 13 lists the location of the files generated by the SoapAdminCL tool.

The SoapAdminCL Tool 195

Table 13 Location of Files Generated by the SoapAdminCL Tool

LocationFile Name

<output directory>/services/<service_
name>/SoapPW_<service_name>.wsdl

WSDL

<output directory>/services/<service_
name>/DDLMapping.xml

DDLMapping.xml

<output directory>/services/<service_
name>/services.xml

services.xml

<output directory>/client/<service_
name>/SoapPW_<operation_name>.html

HTML

<output directory>/client/<service_
name>/pway-xml/SoapPW_<operation_name>.xml

<output directory>/client/<service_
name>/pway-xml/SoapPW_<operation_name>Response0.xml

Request and Response XML file

<output directory>/client/<service_
name>/wsdl/SoapPW_<operation_name>.wsdl

Migration WSDL file

<output directory>/client/<service_
name>/pway-xsd/SoapPW_<operation_name>.xsd

<output directory>/client/<service_
name>/pway-xsd/SoapPW_<operation_name>Response0.xsd

XML Schema file

To generate WSDL files, the services.xml file, HTML clients, XML schema files, and SOAP
request and response XML files using the SoapAdminCL tool, complete the following steps:
1. Ensure that the DDL dictionaries are available at the location specified in the

DDLDictionaryLocation attribute of the SDL file.

NOTE: If the DDL dictionaries are not available in the specified location, the SoapAdminCL
command fails.

2. Generate HTML clients, XML schema files, SOAP request and response XML files, the WSDL
file, and the services.xml file using the SoapAdminCL command:
OSS> SoapAdminCL -i <SDL file name>
 [-o | -outdir] <output directory>
 [-m | -migration]
 [-f | -force]
 [-w]

where,
-i <sdl file name>

specifies the name of the SDL file to be processed.
[-o | -outdir] <output directory>

specifies the directory path, where the HTML clients, XML schema files, SOAP request and
response XML files, the WSDL file, and the services.xml file is generated.

NOTE: If the -o option is not used, the files are placed in the current working directory.

The directory structure appears as:
<output directory>
 /client
 /<service_name>
 SoapPW_<operation_name>.html
 /pway-xml
 SoapPW_<operation_name>.xml

196 NonStop SOAP Tools

 SoapPW_<operation_name>Response0.xml
 /pway-xsd
 SoapPW_<operation_name>.xsd
 SoapPW_<operation_name>Response0.xsd

 /services
 /<service_name>
 SoapPW_<service_name>.wsdl
 services.xml

where,
<service_name>

is the name of the service specified in the name attribute of the service element in
the SDL file.

[-m | -migration]

specifies that a separate file for each operation will be generated.
The [-m |-migration] option is useful when you need to ensure that the WSDL files
generated in NonStop SOAP 4 match as closely as possible with the WSDL files generated
by NonStop SOAP 3.
The generated file structure appears as:
<output directory>
 /client
 /<service_name>
 SoapPW_<operation_name>.html
 /pway-xml
 SoapPW_<operation_name>.xml
 SoapPW_<operation_name>Response0.xml
 /pway-xsd
 SoapPW_<operation_name>.xsd
 SoapPW_<operation_name>Response0.xsd
 /wsdl
 SoapPW_<operation_name>.wsdl
 /services
 /<service_name>
 SoapPW_<service_name>.wsdl
 services.xml

NOTE: NonStop SOAP 3 generates theWSDL file based on each <operation> element
present in the SDL file. In NonStop SOAP 4, you can generate the WSDL file in a similar
manner by using the SoapAdminCL tool with the -m option. This helps you to migrate a
NonStop SOAP 3 application to NonStop SOAP 4.

[-f | -force]

specifies that the existing files (if any) created by the SoapAdminCL tool will be overwritten.
Ensure that you use this option only when customizing an existing service. If the [-f |
-force] option is not used, the existing output files for the service will not be overwritten.

[-w]
This option validates the NonStop SOAP server and PORT that are mentioned in SDL file.
This option works when SDL is provided by using –i option. This option checks if iTP
WebServer is running on a given PORT (For example, default PORT is 80). If yes, It also
checks if the NonStop SOAP 4 server is running under this iTP Webserver.

For example:

• The following command generates the HTML client files, XML schema files, the WSDL file,
the services.xml file, and the SOAP request and response XML files in the current
directory (when the SDL file contains definitions for a single service with two operations):

The SoapAdminCL Tool 197

OSS> SoapAdminCL -i mysdl.xml

The generated directory structure appears in the current directory as:
<current directory>
 /client
 /myservice
 SoapPW_myoperation1.html
 SoapPW_myoperation2.html
 /pway-xml
 SoapPW_myoperation1.xml
 SoapPW_myoperation1Response0.xml
 SoapPW_myoperation2.xml
 SoapPW_myoperation2Response0.xml
 /pway-xsd
 SoapPW_myoperation1.xsd
 SoapPW_myoperation1Response0.xsd
 SoapPW_myoperation2.xsd
 SoapPW_myoperation2Response0.xsd
 /services
 /myservice
 SoapPW_myservice.wsdl
 services.xml

• The following command generates the HTML client files, XML schema files, the WSDL file,
the services.xml file, and the SOAP request and response XML files at the location
mentioned using the -o option (when the SDL file contains definitions for a single service
with two operations):
OSS> SoapAdminCL -i mysdl -o /home/usr/my_nssoap

The generated directory structure appears at the location mentioned using the -o option
as:
/home/usr/my_nssoap
 /client
 /myservice
 SoapPW_myoperation1.html
 SoapPW_myoperation2.html
 /pway-xml
 SoapPW_myoperation1.xml
 SoapPW_myoperation1Response0.xml
 SoapPW_myoperation2.xml
 SoapPW_myoperation2Response0.xml
 /pway-xsd
 SoapPW_myoperation1.xsd
 SoapPW_myoperation1Response0.xsd
 SoapPW_myoperation2.xsd
 SoapPW_myoperation2Response0.xsd
 /services
 /myservice
 SoapPW_myservice.wsdl
 services.xml

• The following command generates the HTML client files, XML schema files, WSDL files,
the services.xml file, and the SOAP request and response XML files at the location
mentioned with the -o option. The -m option generates the operation-based WSDL file
to facilitate migration of applications from NonStop SOAP 3 to NonStop SOAP 4 (when
the SDL file includes definitions for a single service with two operations):
 SoapAdminCL -i mysdl -o /home/usr/my_nssoap -m

/home/usr/my_nssoap
 /client
 /myservice
 SoapPW_myoperation1.html
 SoapPW_myoperation2.html
 /pway-xml

198 NonStop SOAP Tools

 SoapPW_myoperation1.xml
 SoapPW_myoperation1Response0.xml
 SoapPW_myoperation2.xml
 SoapPW_myoperation2Response0.xml
 /pway-xsd
 SoapPW_myoperation1.xsd
 SoapPW_myoperation1Response0.xsd
 SoapPW_myoperation2.xsd
 SoapPW_myoperation2Response0.xsd
 /wsdl
 SoapPW_myoperation1.wsdl
 SoapPW_myoperation2.wsdl
 /services
 /myservice
 SoapPW_myservice.wsdl
 services.xml

Generating Module and Handler Stubs
To generate the module and handler stubs, use the SoapAdminCL tool with the –mod command
line option.
Use the following command to generate the module and handler stub files:
OSS> SoapAdminCL [-mod | -module] <module_name>
 [-o | -outdir] <output directory>
 [-f | -force]

where,
[-mod | -module] <module_name>

specifies the name of the global module handler.
[-o | -outdir] <output directory>

specifies the directory where the module handler stub files are generated.
[-f | -force]

specifies that the existing files (if any) created by the SoapAdminCL tool will be overwritten.
The directory structure appears as:
<output directory>
 /modules
 /<module_name>
 module.xml
 /src
 <module_name>.c
 <module_name>.h
 <module_name>_in_handler.c
 <module_name>_out_handler.c
 Makefile

For example:
SoapAdminCL -mod logging -o /home/usr/my_nssoap -f

where,
/home/usr/my_nssoap

is the directory where the global module handler stub files are generated.
The directory structure appears as:
/home/usr/my_nssoap
 /modules
 /logging
 module.xml
 /src
 logging.c

The SoapAdminCL Tool 199

 logging.h
 logging_in_handler.c
 logging_out_handler.c
 Makefile

Generating Message Receiver User Functions Stubs
Message Receiver User Functions (MRUF) enable you to modify the message buffer, Pathway or
service attributes, and customize the message flow in the Message Receiver phase. For more
information about MRUF, see “Customizing NonStop SOAP 4 Message Processing” (page 124).

NOTE: The SoapAdminCL tool can generate MRUF stubs that can be customized as required.

Use the following command to generate the MRUF stubs:
OSS> SoapAdminCL -MRUF <Message Receiver User Functions name>
 [-o | -outdir] <output directory>
 [-f | -force]

where,
-MRUF <Message Receiver User Functions name>

specifies the name of the Message Receiver User Functions.
-o <output directory>

specifies the directory where the MRUF stub files are generated.
-f | -force

specifies that the existing files (if any) created by the SoapAdminCL tool will be overwritten.
The directory structure appears as:
<output directory>
 /MRUserFunctions
 /<Message Receiver User Functions Name>
 /src
 <Message Receiver User Functions Name>_MRUF.c
 <Message Receiver User Functions Name>_MRUF.h
 Makefile

For example:
SoapAdminCL -MRUF sample_MRUF -o /home/usr/my_nssoap -f

where,
sample_MRUF

is the name of the MRUF.
/home/usr/my_nssoap

is the directory where the MRUF stub files are generated.
The directory structure appears as:
/home/usr/my_nssoap
 /MRUserFunctions
 /myapplication
 /src
 myapplication_MRUF.c
 myapplication_MRUF.h
 Makefile

NOTE: The SoapAdminCL tool also generates the stub files for service-level module handlers
and Message Receiver User Functions if the GenerateModuleHandlerFiles and
GenerateMessageReceiverUserFunctionFiles attributes of the service element of the
SDL file are set to yes. For more information about these attributes, see “NonStop SOAP 4 Service
Description Language” (page 153).

200 NonStop SOAP Tools

Generating the NonStop SOAP 4 SDL File from the NonStop SOAP 3 SDR File
The SoapAdminCL tool enables you to generate the NonStop SOAP 4 SDL file from the NonStop
SOAP 3 SDR file to migrate services from NonStop SOAP 3 to NonStop SOAP 4.
For information about the SDL file, see “NonStop SOAP 4 Service Description Language” (page 153).
To generate the NonStop SOAP 4 SDL file from the NonStop SOAP 3 SDR file using the
SoapAdminCL tool, complete the following steps:
1. Set the OSS environment variable SOAP_SDLDB_LOC to the Guardian location where the

SDR file is available:
OSS> export SOAP_SDLDB_LOC=\<vol-name>.<subvol-name>

For example:
OSS> export SOAP_SDLDB_LOC=\$data.sdrdb

where,
$data

is the volume name.
sdrdb

is the subvolume name.
2. Go to the OSS location where you want to generate the SDL file.
3. To generate the SDL file, run the SoapAdminCL tool with the following options:

OSS> SoapAdminCL -e <SDL file name>
 [-pathway [-env <space separated Pathmon environment list>]]
 [-process [-env <space separated Process environment list>]]
 [-casesensitive]

where,
-e

specifies the SDL file you want to generate from an existing NonStop SOAP 3 SDR file.
<SDL file name>

specifies the name of the SDL file. This is a mandatory parameter when the –e flag is set.
-pathway

specifies that the attributes for the Pathway services in the SDR file must be extracted to
the SDL file. This is an optional parameter.
To export the attributes for specific Pathway services, use the –env option with the
–pathway option:
-env <space separated Pathmon environment list>

specifies that the attributes for Pathway services, entered in the <space separated
Pathmon environment list> in the SDR file, must be extracted to the SDL file
only.

-process

specifies that the attributes for the NonStop processes in the SDR file must be extracted to
the SDL file. This is an optional parameter.
To export the attributes for specific NonStop processes, use the –env option with the
–process option:
-env <space separated Process environment list>

specifies that the attributes for NonStop processes, entered in the <space separated
Process environment list> in the SDR file, must be extracted to the SDL file
only.

The SoapAdminCL Tool 201

-casesensitive

specifies the case in which the service name is generated.
• when the –casesensitive option is used:

If the SDR file defines a service name in mixed case, the SoapAdminCL –e <SDL
file name> -casesensitive command generates the service names in mixed
case.
For example, if the SDR file has an employee database service defined thrice in mixed
cases in the following order:
EmpDB … Empdb …. EMPDB … , the SoapAdminCL –e <SDL file name>
-casesensitive command will generate the service names as EmpDB, Empdb,
and EMPDB.

• when the –casesensitive option is not used:
If the SDR file defines a service name in mixed case, the SoapAdminCL –e <SDL
file name> command generates the service names in the same case as that used
in the first instance of the service definition in the SDR file.
For example, if the SDR file has an employee database service defined thrice in mixed
cases in the following order:
EmpDB … Empdb …. EMPDB … , the SoapAdminCL –e <SDL file name>
command will generate the service name as EmpDB, that is, the first employee
database service definition in the SDR file. The other two definitions of the service
name (Empdb and EMPDB) in the SDR file will be converted to EmpDB.

For example:
• The following command generates the mysdl.xml file that includes information about

the Pathway services and NonStop processes deployed in the SDR file:

NOTE: The mysdl.xml file is a NonStop SOAP 4 SDL file.

OSS> SoapAdminCL -e mysdl.xml

• The following command generates the mysdl.xml file that includes information about
the Pathway services deployed in the SDR file:
OSS> SoapAdminCL -e mysdl.xml -pathway

• The following command generates the mysdl.xml file that includes information about
the Pathway services running in the $pmon1 and $pmon2 PATHMONs deployed in the
SDR file:
OSS> SoapAdminCL -e mysdl.xml -pathway -env $pmon1 $pmon2

• The following command generates the mysdl.xml file that includes information about
the NonStop processes deployed in the SDR file:
SoapAdminCL -e mysdl.xml -process

• The following command generates the mysdl.xml file that includes information about
the $proc1 and $proc2 processes deployed in the SDR file:
OSS> SoapAdminCL -e mysdl.xml -process -env $proc1 $proc2

Additional Options
The SoapAdminCL tool provides additional options to perform the following activities:
• View the DTD of the SDL file using the following command:

202 NonStop SOAP Tools

OSS>SoapAdminCL –dtd

• Check the version of the SoapAdminCL tool using the following command:
OSS>SoapAdminCL –v | -version

• Invoke the command-line help of the SoapAdminCL tool using the following command:
OSS>SoapAdminCL -h | -help | -?

• Convert a transaction identifier from an external ASCII form to an internal form
(\system-name(tm-flags).cpu.sequence).
OSS>SoapAdminCL -t | -TMFTransactionId <Transaction identified in external ASCII format>

The WSDL2PWY Tool
The WSDL2PWY tool is a standalone Java-based command-line tool that runs in the OSS environment
on NonStop systems. This tool uses a WSDL file as an input to generate client stubs and Pathway
service skeleton files in the C programming language. The Pathway service skeleton files are used
to create a Pathway application that can be deployed as a Web service in NonStop SOAP 4.
Figure 15 shows the files generated by the WSDL2PWY tool.

Figure 15 Files Generated by the WSDL2PWY Tool

WSDL

Clients stubs
(using client APIs)

Pathway service skeleton
and setter getter for

XML schema elements f iles

WSDL2PWY

This section describes the following topics:

• “Generating NonStop SOAP 4 Client Stubs” (page 204)

• “Generating Service Stubs” (page 205)

• “XML Schema and C Data Types Mapping” (page 206)

The WSDL2PWY Tool 203

• “Migrating to Contract-First Services” (page 208)

• “WSDL2PWY Limitations” (page 210)

Generating NonStop SOAP 4 Client Stubs
The WSDL2PWY tool generates the NonStop SOAP 4 client stubs in the C programming language.
The generated client stubs contain the interface code to be implemented when developing a client
using NonStop SOAP 4 client APIs.
To generate the NonStop SOAP 4 client stubs using the WSDL2PWY tool, complete the following
steps:
1. Set the OSS environment variable NSSOAP_HOME to the OSS location where the NonStop

SOAP 4 installation directory is located:
OSS> export NSSOAP_HOME=<NonStop SOAP 4 Installation Directory>

For example:
OSS> export NSSOAP_HOME=/usr/tandem/nssoap/t0865h01

where,
/usr/tandem/nssoap/t0865h01 is the NonStop SOAP 4 installation directory.

2. Add the directory containing the WSDL2PWY executable image to the OSS PATH variable.
OSS> export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS> export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

3. Add the <Java Installation Directory>/bin directory to the PATH environment
variable, using the command:
OSS> export PATH=<Java Installation Directory>/bin:$PATH

For example:
OSS> export PATH=/usr/tandem/java/bin:$PATH

where,
/usr/tandem/java/

is the Java installation directory.
4. Generate the client stubs using the WSDL2PWY command:

OSS> WSDL2PWY [options] –uri [wsdl_path]

where,
[options] includes the following:

-o <output location>

specifies the output location where the client stubs and the Makefile
(Makefile_client)must be generated.

-a

generates the client stubs to invoke a Web service in asynchronous or non-blocking
mode. In this mode, the client sends a request to the Web service and continues
processing without waiting for a response.

-s

generates the client stubs to invoke a Web service in synchronous mode or blocking
mode. In this mode, the client sends a request to the Web service and waits for a
response.

-uri <wsdl_path>

specifies the location of the WSDL file.

204 NonStop SOAP Tools

For example, use the following command to generate synchronous client stubs using the
WSDL2PWY tool:
OSS> WSDL2PWY –o "/home/nssoap/test/client" –s
 –uri "/home/nssoap/test/services/test_service/SoapPW_test.wsdl"

where,
/home/nssoap/test/client

is the output location where the client stubs and the Makefile (Makefile_client) are
generated. The client stubs are placed in the src directory in the output location. If the
-o option is not specified, then the files are generated in the src directory under the
current directory.

-uri /home/nssoap/test/services/test_service/SoapPW_test.wsdl

is a WSDL Web address provided to the WSDL2PWY tool.
5. On successful execution, the following files will be generated:

• Client source stub file which needs to implement the main function called when an
executable file is run.

• The header file for the client source stub file that holds the declarations of the functions
that are implemented in the client stub source file.

Generating Service Stubs
The WSDL2PWY tool generates the service stubs based on the WSDL definition. The generated
service stubs are:

• Request and response structure definitions in C programming language.

• Code for TS/MP communication.

• Placeholders for the business logic function for every operation.
To generate the NonStop SOAP 4 service stubs using the WSDL2PWY tool, complete the following
steps:
1. Set the OSS environment variable NSSOAP_HOME to the OSS location where the NonStop

SOAP 4 installation directory is located:
OSS> export NSSOAP_HOME=<NonStop SOAP 4 Installation Directory>

For example:
OSS> export NSSOAP_HOME=/usr/tandem/nssoap/t0865h01

where,
/usr/tandem/nssoap/t0865h01

is the NonStop SOAP 4 installation directory.
2. Add the directory containing the WSDL2PWY executable image to the OSS PATH variable.

OSS> export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS> export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

3. Add the <Java Installation Directory>/bin directory to the PATH environment
variable, using the command:
OSS> export PATH=<Java Installation Directory>/bin:$PATH

For example:
OSS> export PATH=/usr/tandem/java/bin:$PATH

where,
/usr/tandem/java/

is the Java installation directory.

The WSDL2PWY Tool 205

4. Generate the Pathway service skeleton files using the WSDL2PWY command:
OSS> WSDL2PWY [options] –ss –uri [wsdl_path]

where,
[options] includes the following:

-o <output location>

specifies the output location where the Pathway service skeleton files must be generated.
-ss

generates the Pathway service skeleton files.
-uri <wsdl_path>

specifies the location of the WSDL file.
For example, use the following command to generate the Pathway service skeleton files using
the WSDL2PWY tool:
OSS> WSDL2PWY –o "/home/nssoap/test/client" -ss
 –uri "/home/nssoap/test/services/test_service/SoapPW_test.wsdl"

where,
/home/nssoap/test/client

is the output location where the Pathway service skeleton files are generated.
-uri /home/nssoap/test/services/test_service/SoapPW_test.wsdl

is a WSDL Web address provided to the WSDL2PWY tool.
5. On successful execution, The WSDL2PWY tool generates the following files for the service stubs::

• DataConverter.c and DataConverter.h – include the utility functions to convert
the XML value to C structure and vice-versa.

• Msg<messagename>SetterGetter.c and Msg<messagename>SetterGetter.h
– include the functions to set and get the value from C structure. The .h and .c files are
generated for each message defined in the WSDL.

• Svc<servicename>SetterGetter.c and Svc<servicename>SetterGetter.h
– implement the interface functions, which identify the request and response structures for
the operation.

• pway<servicename>.c – includes the code to communicate with the NonStop SOAP
4 server.

• pway<servicename>.h – includes the C structure definitions for the messages.

• pway<servicename>Impl.c – includes the skeletons to implement the business logic.
For each WSDL operation, you must add the business logic code in this file.

NOTE: If the -o option is not specified, the files are generated in the src directory under
the current directory.

XML Schema and C Data Types Mapping
The following table lists the WSDL2PWY tool mapping of XML schema and C data types.

Table 14 XML schema to C data type mapping

C data type mappingSample schemaXml schema type

char *Not ApplicableanyType

char *Not ApplicableanySimpleType

206 NonStop SOAP Tools

Table 14 XML schema to C data type mapping (continued)

C data type mappingSample schemaXml schema type

char *<xs:element
name="elapsedTime"
type="xs:duration”/>

Duration

char *<xs:element name="orderDate"
 type="xs:datetime”/>

dateTime

char *<xs:element name="now"
type="xs:time”/>

time

char *<xs:element name="shipdate"
 type="xs:date”/>

date

char *<xs:element
name="winterStart"
type="xs:gYearMonth”/>

gYearMonth

int<xs:element name="yy"
type="xs:gYear”/>

gYear

char *<xs:element name="salaryDay"
 type="xs:gMonthDay”/>

gMonthDay

char *<xs:element name="secSat"
type="xs:gDay”/>

gDay

char *<xs:element name="fyResults"
 type="xs:gMonth”/>

gMonth

char *<part name="greeting"
type="xsd:string" />

string

char *<part name="greeting"
type="xsd:normalizedString"
 />

normalizedString

char *Not Applicabletoken

char *Not ApplicableNMTOKEN

char *Not ApplicableNMTOKENS

char *Not ApplicableName

char *Not ApplicableNCName

char *Not ApplicableID

char *Not ApplicableIDREF

char *Not ApplicableIDREFS

char *Not ApplicableENTITY

char *Not ApplicableENTITIES

char *Not Applicablelanguage

short<part name="say"
type="xsd:boolean" />

Boolean

char *<part
name="noOfItemInbase64"
type="xsd:base64Binary" />

base64Binary

char *<part name="noOfItemInHex"
type="xsd:hexBinary" />

hexBinary

The WSDL2PWY Tool 207

Table 14 XML schema to C data type mapping (continued)

C data type mappingSample schemaXml schema type

float<part name="cost"
type="xsd:float" />

float

float<part name="numberOfItems"
type="xsd:float" />

Decimal

int<part name="numberOfItems"
type="xsd:integer" />

integer

int<part name="numberOfItems"
type="xsd:nonPositiveInteger"
 />

nonPositiveInteger

int<part name="numberOfItems"
type="xsd:negativeInteger"
/>

negativeInteger

unsigned int<part name="numberOfItems"
type="xsd:nonNegativeInteger"
 />

nonNegativeInteger

unsigned int<part name="numberOfItems"
type="xsd:positiveInteger"
/>

positiveInteger

unsigned long long<part name="numberOfItems"
type="xsd:unsignedLong" />

unsignedLong

unsigned int<part name="numberOfItems"
type="xsd:unsignedInt" />

unsignedInt

unsigned short<part name="numberOfItems"
type="xsd:unsignedShort" />

unsignedShort

long long<part name="numberOfItems"
type="xsd:long" />

long

int<part name="numberOfItems"
type="xsd:int" />

int

short<part name="numberOfItems"
type="xsd:short" />

short

short<part name="numberOfItems"
type="xsd:byte" />

byte

double<part name="precision"
type="xsd:double" />

Double

char *<part name="myURI"
type="xsd:anyURI" />

anyURI

char *<part name="name"
type="xsd:QName" />

QName

char *<part name="not"
type="xsd:NOTATION" />

NOTATION

Migrating to Contract-First Services
The existing service stubs must be regenerated to enable the unbounded data elements feature.
The business logic and server configurations must be updated. The migration procedure is listed
as follows:

208 NonStop SOAP Tools

1. For every operation, add the axis2_pway_xml_receiver message receiver in the
services.xml file. For example:
<operation name=”<operation name>”>
 <messageReceiver class=”axis2_pway_xml_receiver”/>

 </operation>

2. Run the WSDL2PWY tool to regenerate the service skeletons.
WSDL2PWY -o <output_directory> —ss —uri <wsdl_file_name>

3. Move the existing business logic code to the newly generated service skeletons. The WSDL2PWY
tool generates a function for each operation to add the business logic. The signature of this
function is changed and the earlier versions have the following signature:
void operation_pway_<operation_name> (char *request_buffer,
char **response_buffer,
long *reply_count,
unsigned short count_read)
{
}

The new function signature is:
void operation_pway_<operation_name> (<req_structure_name> *reqStruct,
<response_structure_name> **respStruct,
<fault_struct_name> **faultStruct)
{
}

The function operation_pway_<operation_name> is in pway<ServiceName>Impl.c
file. In the earlier versions, this function is in pway<ServiceName>.c file.
Move the operation_pway_<operation_name> implementation code from
pway<ServiceName>.c file to the newly generated skeletons in
pway<ServiceName>Impl.c file.

NOTE: The newly generated skeletons have the sample implementation code, and you must
remove them completely before you move the existing business logic code.

4. Modify the following in the business logic.
• The field names in the newly generated structure definitions will not have

_type<numeric_number> at the end. The field name change has considerable impact
on the business logic, and the name must be changed wherever it is used in the code.

• Dynamic arrays will not have an impact on how the data is accessed, but to find out the
length of the array, use the _size<array_name> field. If there are any dynamic arrays
in the response structure, explicitly allocate the memory and then set the value. Also,
populate _size<array_name> field with the number of elements in the array.

• Nested structures are removed and independent structures are created for each complex
type in the WSDL. These independent structures are used as reference in other structures.
Removal of nested structures does not have any impact on data access from the structure
but to find the length of dynamic array, use _size<array_name> field.

• For the function signature, see Step 3.
5. Compile the modified code.
6. Deploy the service in Pathway environment.

The WSDL2PWY Tool 209

WSDL2PWY Limitations
The NonStop SOAP 4 WSDL2PWY tool is used to generate the Pathway service artifacts for
contract-first development approach. This tool has some deviations from the WSDL specification
and some limitations, which are discussed in this section.
Table 26 lists the XML schema definitions, which deviate from WSDL specification and WSDL2PWY
tool behavior for these XML schema definitions.

Table 15 XML schema definitions, which deviate from WSDL specification

WSDL2PWY behaviorWSDL specificationXML schema definitions

Tool parses the WSDL and generates
element with type axiom_node_t *,
which results in a compilation error

Elements cannot have
simpleContent or
complexContent

Elements having complexContent
and simpleContent

Generates either pointer (for unbounded
data elements) or an array

maxOccurs must be 1 and
minOccurs must be either 0 or 1 for
elements within <all>

maxOccurs != 1 or minOccurs
>1 for elements within <all>

Ignores such attributes without returning
any error

Attributes can have only simpleTypeAttributes having complexContent,
simpleContent or complexType

Generates variables for attributesAttributes along with
complexContent or
simpleContent are not allowed

Attributes along with
complexContent
orsimpleContent

The following XML schema definitions are part of the WSDL specification but are not supported
by WSDL2PWY tool:

• <any> element type. For example,
<xsd:any minoccurs=”0” maxoccurs=”unbounded”/>

• Nested <group> or <choice> or <sequence> elements. For example,
<xsd:element name="ele1" type="xsd:string”/>
<xsd:element name="ele2" type="xsd:int”/>
 <xsd:group name="group1”>
 <xsd:choice>
 <xsd:element name="ele3" type="xsd:string”/>
 <xsd:element name="ele4" type="xsd:string”/>
 </xsd:choice>
 </xs:group>
</xsd:sequence>

• Substitution group. For example,
<xs:element name="name" type="xs:string”/>
<xs:element name="navn" substitutionGroup="name”/>

• <extension> element. For example,
<xsd:extension base="xsd:decimal”>
 <xsd:attribute name="my_attri" type="tns1:internationalPrice1" use="optional”/>
 <xsd:attribute name="currency" type="xsd:int" use="optional”/>
</xsd:extension>

The following parameters are not supported by contract-first development approach, but are
supported by service-first development approach. In contract-first development approach, these
parameters are ignored if they are present in services.xml file.

• stringTermination = NullTerminated/NonNULL

• responseType = strict/lenient

210 NonStop SOAP Tools

The WSDL2C Tool
The WSDL2C tool is a standalone Java-based command-line tool that runs in the OSS environment
on NonStop systems. This tool uses a WSDL file as an input to generate the client stubs and service
skeleton files. The generated service skeleton files implement the basic interface code required
while developing a service using NonStop SOAP 4 service APIs.

NOTE:
• The WSDL2PWY tool must be used when developing services implemented as Pathway

applications.
• The WSDL2C tool must be used when developing services implemented as dynamic-link libraries

using NonStop SOAP 4 service APIs.

Figure 16 shows the files generated by the WSDL2C tool.

Figure 16 Files Generated by the WSDL2C Tool

WSDL

Clients stubs
(using client APIs) Service skeleton

WSDL2C

This section describes the following topics:
• “Generating NonStop SOAP 4 Client Stubs” (page 211)

• “Generating NonStop SOAP 4 Service Skeleton Files” (page 213)

Generating NonStop SOAP 4 Client Stubs
The WSDL2C tool generates the NonStop SOAP 4 client stubs in the C programming language.
The generated client stubs contain the basic interface code to be implemented when developing
a client using NonStop SOAP 4 client APIs.
To generate the NonStop SOAP 4 client stubs using the WSDL2C tool, complete the following steps:

NOTE: Ensure that the WSDL file for your service is located in <NonStop SOAP 4 Deployment
Directory>. If the WSDL file is not present, use the SoapAdminCL tool to create a WSDL file
for your service. For information on generating the WSDL file, see NonStop SOAP 4 Configuration
Files (page 177).

1. Set the OSS environment variable NSSOAP_HOME to the OSS location where the NonStop
SOAP 4 installation directory is located:
OSS> export NSSOAP_HOME=<NonStop SOAP 4 Installation Directory>

For example:
OSS> export NSSOAP_HOME=/usr/tandem/nssoap/t0865h01

The WSDL2C Tool 211

where,
/usr/tandem/nssoap/t0865h01

is the NonStop SOAP 4 installation directory location.
2. Add the directory containing the WSDL2C executable image to the OSS PATH variable.

OSS> export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS> export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

3. Add the <Java Installation Directory>/bin directory to the PATH environment
variable, using the command:
OSS> export PATH=<Java Installation Directory>/bin:$PATH

For example:
OSS> export PATH=/usr/tandem/java/bin:$PATH

where,
/usr/tandem/java/

is the Java installation directory.
4. Generate the client stubs using the WSDL2C command:

OSS> WSDL2C [options] –u –uri [wsdl_path]

where,
-u

unpacks the databinding classes. This attribute must be specified if you use option -d and
specify its value as “adb”. If you specify option -d as “none”, then -u becomes optional
attribute.

-uri <wsdl_path>

specifies the location of the WSDL file.
[options] include the following:

-d

specifies the data binding option to be used.
-o <output location>

specifies the output location where the client stubs and build scripts must be generated.
-a

generates the client stubs to invoke a Web service in asynchronous or non-blocking
mode. In this mode, the client sends a request to the Web service and continues
processing without waiting for a response.

-s

generates the client stubs to invoke a Web service in synchronous mode or blocking
mode. In this mode, the client sends a request to the Web service and waits for a
response.

-wv <version>

specifies the WSDL file version. The valid options are 2, 2.0, and 1.1.
-f

flattens the generated files.
-or

overwrites the existing files.

NOTE: Do not use the -a and -s options together.

212 NonStop SOAP Tools

For example, use the following command to generate asynchronous client stubs using the
WSDL2C tool:
OSS> WSDL2C –o "/home/nssoap/test/client" –a –u
 –uri "/home/nssoap/test/services/test_service/SoapPW_test.wsdl"

where,
/home/nssoap/test/client

is the output location.
-uri /home/nssoap/test/services/test_service/SoapPW_test.wsdl

specifies the WSDL Web address provided to the WSDL2C tool.

5. On successful execution, the following files will be generated:
• Client source stub files to implement the SOAP client application business logic.

• Header files that hold the declarations for the functions generated in the client source stub
files.

• Data binding header files that hold declarations for the data structures present in the
WSDL schema.

Generating NonStop SOAP 4 Service Skeleton Files
The WSDL2C tool generates the NonStop SOAP 4 service skeleton files in the C programming
language. The generated service skeleton files contain the basic interface code to be implemented
when developing services implemented as DLLs using NonStop SOAP 4 service APIs.
To generate the NonStop SOAP 4 service skeleton files using the WSDL2C tool, complete the
following steps:
1. Set the OSS environment variable NSSOAP_HOME to the OSS location where the NonStop

SOAP 4 installation directory is located:
OSS> export NSSOAP_HOME=<NonStop SOAP 4 Installation Directory>

For example:
OSS> export NSSOAP_HOME=/usr/tandem/nssoap/t0865h01

where,
/usr/tandem/nssoap/t0865h01

is the NonStop SOAP 4 installation directory.
2. Add the directory containing the WSDL2C executable image to the OSS PATH variable.

OSS> export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS> export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

3. Add the <Java Installation Directory>/bin directory to the PATH environment
variable, using the command:
OSS> export PATH=<Java Installation Directory>/bin:$PATH

For example:
OSS> export PATH=/usr/tandem/java/bin:$PATH

where,
/usr/tandem/java/

is the Java installation directory.
4. Generate the service skeleton files using the WSDL2C command:

OSS> WSDL2C [options] –u –uri [wsdl_path]

where,

The WSDL2C Tool 213

[options] include the following:
-o<output location>

specifies the output location where the service skeleton files must be generated.
-g

generates the client stubs and the service skeleton files. This option can be used only
if the –ss option is specified.

-f

flattens the generated files.
-or

overwrites the existing files.
-wv <version>

specifies the WSDL file version.
-d <databinding_option>

specifies that the databinding option must be used. NonStop SOAP 4 provides the
axisdatabinding (adb) databinding option to generate the service skeleton files
in the C programming language. If you do not want to use the databinding option,
use the -d none option.

NOTE: Databinding is an option provided by NonStop SOAP 4 that helps the XML
schema parsing process. By default, the WSDL2C tool develops services with the
databinding option set to axisdatabinding (adb).

-ss

generates the service skeleton files.
-uri <wsdl_path>

specifies the location of the WSDL file.
For example, use the following commands to generate the service skeleton files:
OSS> export NSSOAP_HOME=/usr/tandem/nssoap/t0865h01
OSS> WSDL2C –o "/home/nssoap/test/client" –ss –d adb
–uri "/home/nssoap/test/services/test_service/SoapPW_test.wsdl"

where,
/home/nssoap/test/client

is the output location.
-uri /home/nssoap/test/services/test_service/SoapPW_test.wsdl

specifies the WSDL Web address provided to the WSDL2C tool.
5. On successful execution, the following service skeleton files are generated under the src

directory in the location specified in the -o option of the WSDL2PWY command:
• Service skeleton source file to implement your application business logic.

• Header file that holds the declarations for the functions generated in the service skeleton
source file.

• Data binding header files that hold declarations for the data structures present in the
WSDL schema.

NOTE: If the -o option is not specified, the files are generated in the src directory under
the current directory.

214 NonStop SOAP Tools

The NonStop SOAP 4 Administration Utility
The NonStop SOAP 4 Administration Utility is a graphical user interface (GUI) based utility that
runs in the Microsoft Windows environment. This utility allows you to perform the following tasks:

• Create new NonStop SOAP 4 SDL files.

• Deploy new services on the NonStop SOAP 4 server using an existing SDL file.
When deploying a Web service, the following files are deployed in <NonStop SOAP 4
Deployment Directory>:

◦ Service directory for the new NonStop SOAP 4 Web service

◦ Service configuration file (services.xml)

◦ HTML clients

◦ WSDL file (.wsdl)

• Migrate NonStop SOAP 3 services to NonStop SOAP 4.
Migrating a NonStop SOAP 3 Web service to NonStop SOAP 4 involves the following tasks:
1. Creating a NonStop SOAP 4 SDL file using an existing NonStop SOAP 3 SDR.
2. Deploying the SDL file on the NonStop system.

NOTE: The NonStop SOAP 4 Administration Utility does not generate or deploy the NonStop
SOAP 3 services.
Multiple instances of the NonStop SOAP 4 Administration Utility (T0904) supports multiple releases
of NonStop SOAP 4. These instances can be started by executing the AdminTool.bat multiple
times on the Windows system. A single instance of the SOAP Administration utility can be configured
for only a single SOAP 4 release.

Installing NonStop SOAP 4 Administration Utility
The NonStop SOAP 4 Administration Utility is distributed in the T0904.zip file.
To install the NonStop SOAP 4 Administration Utility on a Windows system, complete the following
steps:
1. Extract the T0904.zip file to the standard OSS directory (/usr/tandem/nssoap/t0904)

by completing the following steps:
a. Receive the product files from the disk (distribution subvolume (DSV) locations) or tape.
b. In the DSM/SCM planner interface, select the Manage OSS Files option for the target

configuration.

NOTE: If you do not select the Manage OSS Files option in the DSM/SCM planner
interface, DSM/SCM will place the T0865PAX file in the Guardian subvolume
$ISV.ZOSSUTL (where, ISV is the installation volume). Use the COPYOSS command to
extract and place the contents of the T0904.zip file into the OSS file system.

c. Copy the received product files to a new software revision of the configuration you want
to update.

d. Run the Build request and the Apply request on the configuration revision.
e. Run ZPHIRNM to rename the product files.

2. Copy (or transfer using FTP) the T0904.zip file to a location on your Windows system.
3. Extract the contents of the T0904.zip file.

The NonStop SOAP 4 Administration Utility 215

4. Double-click the AdminTool.bat file (\T0904\SoapAdmin). The NonStop SOAP 4
Administration Utility screen appears.
The NonStop SOAP 4 Administration Utility is now ready for use.

NOTE: For information on using the NonStop SOAP 4 Administration Utility, see the NonStop
SOAP 4 Administration Utility online help integrated with the NonStop SOAP 4 Administration
Utility.

216 NonStop SOAP Tools

11 NonStop SOAP 4 Features
This chapter provides information about the following features of NonStop SOAP 4:
• “DDL Comments” (page 217)

• “Hot-Deployment of the NonStop SOAP 4 Server” (page 229)

• “Hot-Update for the Deployed Services” (page 229)

• “Internationalization and Encoding” (page 230)

• “Communicating with a Non-Pathway Process” (page 231)

• “Validation Module” (page 233)

• “SOAP_WSDL_NAME DDL Comment” (page 233)

• “Support for Multiple DDL Definitions” (page 234)

• “Check on SOAP Service Deployment” (page 235)

• “Unbounded data elements support” (page 235)

DDL Comments
NonStop SOAP 4 allows you to flag the DDL fields in the DDL file using DDL comments. The DDL
comments feature enables you to modify the request and response SOAP message structures at
runtime. The comment tags should be the first set of nonwhite space character following the *
character (which denotes DDL line as a comment). There could be spaces or tabs following the *
character. If there are more than one comment tags, then the tags should be separated by a space
and adjacent to each other.

NOTE: The DDL Comments must not be applied for a DDL Definition Name. For example:
* @SOAP_OPTIONAL @SOAP_SUPPRESS_IN DEFINITION REQ.

This is wrong and should be avoided.

“Comment Tags” describes the effect of specifying two comment tags. The order in which the
comment tags are specified is not significant.

Table 16 Comment Tags

EffectComment Tag 2Comment Tag 1

@SOAP_SUPPRESS_IN@SOAP_SUPPRESS_IN@SOAP_OPTIONAL

Optional for a request message,
suppressed for the output message

@SOAP_SUPPRESS_OUT@SOAP_OPTIONAL

@SOAP_SUPPRESS_INOUT@SOAP_SUPPRESS_INOUT@SOAP_OPTIONAL

@SOAP_SUPPRESS_INOUT@SOAP_SUPPRESS_OUT@SOAP_SUPPRESS_IN

@SOAP_SUPPRESS_INOUT@SOAP_SUPPRESS_INOUT@SOAP_SUPPRESS_IN

@SOAP_SUPPRESS_INOUT@SOAP_SUPPRESS_INOUT@SOAP_SUPPRESS_OUT

NOTE: For more information about @SOAP_SUPPRESS_IN @SOAP_SUPPRESS_OUT and
@SOAP_SUPPRESS_INOUT comment tags refer to (page 164)

Before you begin using the DDL comments feature, please ensure the following:
• For the DDL comment tags to be parsed by the SoapAdminCL tool, the DDL file must include

the ?comments complier directive.
For example:

DDL Comments 217

?comments
DEF FLD1.
02 FLD11.
03 FLD12.
*@SOAP_ATTRIBUTE
04 FLD13 PIC X(20).
END

• The Operation tag in the SDL file must have the ProcessSoapDDLComments attribute set
to yes.
For example:
<Operation
 Name="<operation Name>"
 TMFTransactionSupport="[yes | no]"
 AbortTransactionOnFault="[yes | no]"
 NameSpaceQualified="[yes | no]"
 SoapMessageType="[document | rpc]"

ProcessSoapDDLComments="yes"
 ...>

You can proceed to the following tasks:
• “Specifying DDL Fields as Optional” (page 218)

• “Exposing DDL Fields as XML Attributes” (page 221)

• “Specifying Base64 Encoding” (page 225)

• “Using the SOAP_OCCURS_DEP_ON DDL Comment Tag” (page 226)

Specifying DDL Fields as Optional
NonStop SOAP 4 allows you to flag a DDL field as optional, using the @SOAP_OPTIONAL DDL
comment tag. If this tag is set for a group field in the DDL file, the entire hierarchy of the group
field is treated as optional.
In Example 5, the HOSPITAL group field is tagged as optional (the associated children fields are
also treated as optional).

218 NonStop SOAP 4 Features

Example 5 A Sample DDL file with the @SOAP_OPTIONAL Tag

?comments
 DEF PATIENT.
 02 PATIENT-DATA.
 03 ID PIC 9(5).
 03 AGE PIC 9(3).

* @SOAP_OPTIONAL
 03 HOSPITAL.
 04 HOSP-NAME PIC X(30).
 04 ADDRESS.
 05 STREET PIC X(50).
 05 CITY PIC X(25).
 05 STATE PIC X(2).
 05 ZIP PIC 9(5).
 04 COUNTY.
 05 CODE PIC 9(6).
 05 Details.
 06 COUNTY-NAME PIC X(15).
 06 STATUS PIC X.
 05 DESCRIPTION PIC X(100).
 END

Example 6 shows the corresponding WSDL file generated using the SoapAdminCL tool. In the
WSDL file and the XML schema file, the highlighted attribute entry minOccurs ="0" specifies
that the corresponding fields are optional.

DDL Comments 219

Example 6 An XSD Schema for a Sample DDL file with the @SOAP_OPTIONAL Tag

<xsd:complexType name="patient_data">
<xsd:sequence>
<xsd:element name="id" type="xsd:long" minOccurs="1" maxOccurs="1"/>
<xsd:element name="age" type="xsd:long" minOccurs="1" maxOccurs="1"/>
<xsd:element name="hospital" type="tns:hospital" minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="hospital">
<xsd:sequence>
<xsd:element name="hosp_name" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="address" type="tns:address" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="county" type="tns:county" minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="address">
<xsd:sequence>
<xsd:element name="street" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="city" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="state" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="zip" type="xsd:long" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="county">
<xsd:sequence>
<xsd:element name="code" type="xsd:long" minOccurs="0" maxOccurs="1"/>
<xsd:element name="details" type="tns:details" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="details">
<xsd:sequence>
<xsd:element name="county_name" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="status" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

Because the hospital node and all its leaf nodes are specified as optional in the DDL file, the
hospital element and all its child elements also have the XSD schema attribute minOccurs set
to 0 in the WSDL file and the XML schema file.
Example 7 and Example 8 show valid XML message representations based on the XML schema
shown in Example 6.

220 NonStop SOAP 4 Features

Example 7 An XML Message-I for a Sample DDL file with the @SOAP_OPTIONAL Tag

<patient_data>
 <id></id>
 <age></age>
</patient_data>

In Example 7, the hospital element is not present; however, it is valid because the HOSPITAL
field is optional.

Example 8 An XML Message-II for a Sample DDL file with the @SOAP_OPTIONAL Tag

<patient_data>
 <id></id>
 <age></age>
 <hospital>
 <hosp_name></hosp_name>
 <county>
 <code></code>
 <details>
 <county_name></county_name>
 <status></status>
 </details>
 <description></description>
 </county>
 </hospital>
</patient_data>

In Example 8, the ADDRESS element is not present; however, it is valid because the parent element
is hospital, which is an optional element.

Exposing DDL Fields as XML Attributes
Each DDL field in the DDL file is mapped to a corresponding element in the XML schema. As a
result of the mapping, the size of the SOAP messages exchanged between the client and the
NonStop SOAP 4 server increases and impacts the runtime performance.

Example 9 A Sample XML file with DDL fields mapped to the Corresponding Elements

<AccountDetails>
 <AccountNumber>120012</AccountNumber>
 <MemberName>
 <First>John</First>
 <Middle>K</Middle>
 <Last>Doe</Last>
 </MemberName>
</AccountDetails>

NonStop SOAP 4 allows you to specify a DDL field as an XML attribute, which helps reduce the
size of the SOAP message.

Example 10 A Sample XML file with DDL fields represented as XML attributes

<AccountDetails AccountNumber="120012">
 <MemberName First="John" Middle="K" Last="Doe"/>
</AccountDetails>

The DDL fields can be represented in XML as attributes or elements by doing one of the following:
• “Setting the SoapDDLAttribute in the SDL File” (page 222)

• “Flagging a DDL Field with SOAP DDL Comment Tags” (page 222)

DDL Comments 221

Setting the SoapDDLAttribute in the SDL File
The SDL file provides SoapDDLAttribute at the Service element level that accepts a value of
yes or no. This enables you to flag all the DDL fields of a definition file without changing the DDL
dictionary.
• When set to yes, SoapDDLAttribute specifies that all the leaf fields of the request and

response DDL definitions of the service must be represented as XML attributes.
• When set to no, SoapDDLAttribute specifies that all the leaf fields of the request and

response DDL definitions of the service must be represented as XML elements.
• All DDL leaf fields, except the OCCURS and OCCURS_DEP_ON fields, are XML attributes.
The default value is no.
Example 11 shows a sample SDL file with SoapDDLAttribute.

Example 11 A Sample SDL File with SoapDDLAttribute

<sdl ...>
 <Pathway ...>
 ...
 <ServerClass Name="SC-1" ...>
 <Service ServiceName="Service-A"
 SoapMessageType="document"
 SoapDDLAttribute="yes">
 </Service>
 </ServerClass>
 </Pathway>
</sdl>

The SoapDDLAttribute attribute is not applicable for services when the SoapMessageType
attribute in the SDL file is set to rpc because the message format in the rpc style resembles a
function call.
In this message format, the order of the elements is important, which cannot be achieved when
the message fields are represented as XML attributes. Therefore, do not set the SoapDDLAttribute
to yes if a service in the SDL file has the SoapMessageType attribute set to rpc. The
SoapAdminCL tool validates this condition when adding or updating a service. Any validation
errors encountered are displayed as follows:
SOAPADMIN ERROR >> Error in definition of the service <service name>.
 The attribute "SoapDDLAttribute" cannot have a value "yes"
 when the attribute "SoapMessageType" is set to "rpc".

Flagging a DDL Field with SOAP DDL Comment Tags
DDL fields can be selectively represented as XML attributes or elements by tagging them
appropriately in the DDL dictionary. You can use the following DDL comment tags to flag the DDL
fields in the request/response definitions as attributes or elements:
@SOAP_ATTRIBUTE

Flags a DDL field(s) to be represented as XML attribute(s).
@SOAP_ELEMENT

Flags a DDL field(s) to be represented as XML element(s).
For example, a DDL file with the field tagged with the @SOAP_ATTRIBUTE will appear as:
?comments
DEF PATIENT.
02 PATIENT.
03 NAME.
*@SOAP_ATTRIBUTE
04 FIRST PIC X(20).
END

222 NonStop SOAP 4 Features

The presence of the @SOAP_ATTRIBUTE comment tag at the leaf level denotes that the field must
be translated to an XML attribute. If the @SOAP_ATTRIBUTE tag is present at the group level, it
denotes that all the child leaf fields must be translated to XML attributes.
The @SOAP_ELEMENT comment tag also works in the same manner as the @SOAP_ATTRIBUTE
comment tag for the leaf and group levels, but translates the field(s) as XML elements, not as XML
attributes.

NOTE: A service that uses a DDL file with the @SOAP_ELEMENT and @SOAP_ATTRIBUTE
comment tags must have its ProcessSoapDDLComments attribute set to yes in an SDL file for
NonStop SOAP 4 to process the comment tags.

To customize the XML representation of the DDL fields, the @SOAP_ELEMENT and
@SOAP_ATTRIBUTE comment tags can be combined and matched within the same group level
based on the following rules:
• A single DDL field cannot have both the @SOAP_ATTRIBUTE and @SOAP_ELEMENT comment

tags present.
• A service using a DDL file with the @SOAP_ATTRIBUTE or @SOAP_ELEMENT comment tags

must have its ProcessSoapDDLComments attribute set to yes in an SDL file for NonStop
SOAP 4 to process the comment tags.

• If the comments appear on a particular field, it is valid for the entire hierarchy under that field
(if any) unless overridden by another tag at a child level. The default value is controlled by
the value of the SoapDDLAttribute attribute set in the SDL file.

• If the SoapDDLAttribute attribute is present and is set to yes, by default, all the leaf fields
are treated as attributes, unless a comment pertaining to a DDL hierarchy changes it (provided
that the ProcessSoapDDLComments attribute is set to yes).

• The @SOAP_ATTRIBUTE and @SOAP_ELEMENT comment tags are ignored for services that
have the SoapMessageType attribute set to rpc.

Examples
Example 12 shows the @SOAP_ATTRIBUTE and @SOAP_ELEMENT comment tag at the leaf and
group levels.

DDL Comments 223

Example 12 A Sample DDL File with the @SOAP_ATTRIBUTE and @SOAP_ELEMENT Tag

?comments
DEF PATIENT.
 02 PATIENT-DATA.

* @SOAP_ATTRIBUTE
 03 ID PIC 9(5).
 03 AGE PIC 9(3).

* @SOAP_ATTRIBUTE
 03 NAME.
 04 FIRST PIC X(20).
 04 MIDDLE PIC X.
 04 LAST PIC X(25).

* @SOAP_ATTRIBUTE
 03 HOSPITAL.
 04 HOSP-NAME PIC X(30).

* @SOAP_ELEMENT
 04 ADDRESS.
 05 STREET PIC X(50).
 05 CITY PIC X(25).
 05 STATE PIC X(2).
 05 ZIP PIC 9(5).
 04 COUNTY.

* @SOAP_ATTRIBUTE
 05 CODE PIC 9(6).

* @SOAP_ELEMENT
 05 COUNTY-NAME PIC X(15).

* @SOAP_ATTRIBUTE
 05 STATUS PIC X.

* @SOAP_ELEMENT
 05 DESCRIPTION PIC X(100).
END

Example 13 shows the XML message and schema representation corresponding to the DDL file.

Example 13 An XML Message for a Sample DDL file with the @SOAP_ATTRIBUTE and
@SOAP_ELEMENT Tag

<patient_data id="12345">
 <age>55</age>
 <name first="John" middle=" " last="Smith"></name>
 <hospital hosp_name="Valley Hospital">
 <address>
 <street>365 Hospital Dr.</street>
 <city>San Jose</city>
 <state>CA</state>
 <zip>95129</zip>
 </address>
 <county code="012345" status="L">
 <county_name>Santa Clara</county_name>
 <description></description>
 </county>
 </hospital>
</patient_data>

Because the first, middle, and last leaf fields are flagged with the @SOAP_ATTRIBUTE
comment tag in the DDL file, they are represented as XML attribute values for the XML element
<name>. The leaf nodes of the address node are also flagged with the @SOAP_ELEMENT comment
tag in the DDL file and are represented as XML elements.
Table 17 lists the results of the XML representation of a DDL file based on the associated SDL values
and DDL comment tags.

224 NonStop SOAP 4 Features

Table 17 SDL Values and DDL Comment Tags

EffectDDL Comment tag
present?

ProcessSoapDDL
Comments Value

SOAPDDLAttribute
Value

All the DDL leaf fields, except OCCURS
and OCCURS_DEP_ON leaf fields are
XML attributes.

Not ApplicableNoYes

All the DDL leaf fields are XML
attributes.

NoYesYes

The DDL fields overridden with a
comment tag are handled

YesYesYes

appropriately. All the other fields are
XML attributes.

Only the fields containing the comment
tags are processed.

YesYesNo

Specifying Base64 Encoding
A SOAP message might need to carry binary data or other characters that are considered invalid
by the W3C XML specifications. To represent the binary data or invalid XML characters as valid
XML content, the data must be transformed or encoded appropriately.
The NonStop SOAP 4 server enables the client to send encoded binary data or invalid XML
characters by using the Base64 encoding feature. The Base64 encoding feature, overrides any
other Request, Service, or Response encoding. To apply the Base64 encoding for an XML attribute
or element, in the DDL file, flag the @SOAP_BASE64 DDL comment tag.
The Base64 encoding was introduced by the Multipurpose Internet Mail Exchange (MIME) standard
(IETF MIME RFC) as a method for transmitting data that was binary in nature or contained values
representing control characters that would have undesired effects on the transmission. The Base64
encoding consists of 64 encoding characters (A-Z, a-z, 0-9, +, /) that are a subset of the ASCII
system and are considered valid in the XML specification.
The @SOAP_BASE64 comment tag can be present only at the DDL leaf level. The SoapAdminCL
tool validates this before creating the WSDL file. If this tag is present for a group field, it is flagged
as an error and the following error message is displayed:
SOAPADMIN ERROR >> Error processing DDL definition <definition name> for service
 <service name>. The "@SOAP_BASE64" DDL comment tag cannot be
 present at a group level DDL field <field name>.

Example 14 shows the @SOAP_BASE64 comment tag in the DDL file, the corresponding sample
XML message containing the Base64 data, and the XML schema representation with the Base64
schema type.

DDL Comments 225

Example 14 A Sample DDL file with the @SOAP_BASE64 Tag

?comments
DEF PATIENT.
02 PATIENT-DATA.
03 ID PIC 9(5).
03 AGE PIC 9(3).
03 NAME.
04 FIRST PIC X(20).
04 MIDDLE PIC X.
04 LAST PIC X(25).
* @SOAP_BASE64
03 BINARY-CONTENT type binary 32.
END

In the DDL file, the BINARY-CONTENT field is tagged as @SOAP_BASE64. This is indicated by the
element type xsd:base64Binary in the XML schema present in the WSDL file and the XML
schema file (shown in Example 15), created by the SoapAdminCL tool.

Example 15 An XML Schema for a Sample DDL file with the @SOAP_BASE64 Tag

<xsd:complexType name="name">
<xsd:sequence>
<xsd:element name="first" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="middle" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="last" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="patient_data">
<xsd:sequence>
<xsd:element name="id" type="xsd:long" minOccurs="1" maxOccurs="1"/>
<xsd:element name="age" type="xsd:long" minOccurs="1" maxOccurs="1"/>
<xsd:element name="name" type="tns:name" minOccurs="1" maxOccurs="1"/>
<xsd:element name="binary_content" type="xsd:base64Binary"
minOccurs="1" maxOccurs="1"/>
</xsd:simpleType>
<xsd:restriction base="xsd:base64Binary">
<xsd:maxLength value="4">
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

Example 16 is a valid XML representation based on the XML schema shown in Example 15.

Example 16 XML Message for a DDL file with the @SOAP_BASE64 Tag

<patient_data>
 <id>12345</id>
 <age>55</age>
 <name>
 <first>John</first>
 <middle></middle>
 <last>Smith</last>
 </name>

<binary_content>m6Lp</binary_content>
</patient_data>

The information passed in the binary_content tag is processed by NonStop SOAP 4 as Base64
Encoded data.

Using the SOAP_OCCURS_DEP_ON DDL Comment Tag
NonStop SOAP 4 allows you to flag a DDL field as SOAP_OCCURS_DEP_ON (occurs depending
on), which declares that a field or a group is repeated a variable number of times depending on
the value of another DDL field.

226 NonStop SOAP 4 Features

Example 17 shows that the occurrence of the fiction-details element in the SOAP message
depends on the value of the fiction_count element.

Example 17 A Sample DDL file with the @SOAP_OCCURS_DEP_ON Tag

?comments
DEF books-in-lib.
02 fiction_count PIC 9(4) COMP.
02 libraries_fic PIC 9(4) COMP.
02 magazines_count PIC 9(4) COMP.
02 libraries_mag PIC 9(4) COMP.
* @SOAP_OCCURS_DEP_ON fiction_count
02 fiction-details OCCURS 1000 TIMES.
03 call-num PIC 9(10).
END

Among other valid field types for the integer variable, the following are frequently used:
• TYPE BINARY 16,2

• TYPE BINARY 32

• TYPE BINARY 32, UNSIGNED

• PIC 9

• PIC S9

• PIC 9(10)

• PIC 9(4) COMP

• PIC S9(5)

• PIC S9(5) COMP
Some of the invalid field types are:
• PIC X

• PIC X(10)

• PIC 9999V99

• TYPE FLOAT

• TYPE FLOAT 64

• TYPE LOGICAL 4
Example 18 shows the DDL file that shows the use of the SOAP_OCCURS_DEP_ON comment.

DDL Comments 227

Example 18 A Sample DDL file with the @SOAP_OCCURS_DEP_ON Tag

?comments

 DEFINITION REQ.
 10 CH1 type character 2.
 10 Bin32 type binary 32.
 10 Complex1.
 15 CH2 type character 4.
 15 CH3 type character 1.
 15 Bin2 type binary 32.
 15 Complex2.
 20 custnum PIC X(20) UPSHIFT.
* @SOAP_OCCURS_DEP_ON Bin2
 20 Bin3 type binary 32 OCCURS 5 times.
 END

Example 19 shows the corresponding XML schema generated by the SoapAdminCL tool.

Example 19 An XML Schema for a Sample DDL file with the @SOAP_OCCURS_DEP_ON Tag

<xsd:complexType name="complex2">
 <xsd:sequence>
 <xsd:element name="custnum" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="20"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <!-- The following element occurs 0 to 5 times, depending upon the
 value of the element:bin2:urn:cpq_tns_reflector-->
 <xsd:element name="bin3" type="xsd:int" minOccurs="0" maxOccurs="5"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="complex1">
 <xsd:sequence>
 <xsd:element name="ch2" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="4"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="ch3" minOccurs="1" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="bin2" type="xsd:int" minOccurs="1" maxOccurs="1"/>
 <xsd:element name="complex2" type="tns:complex2" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>

Example 20 shows the corresponding SOAP message body that the NonStop SOAP 4 server
expects from the client.

228 NonStop SOAP 4 Features

Example 20 The SOAP Message Body for a Sample DDL file with the @SOAP_OCCURS_DEP_ON
Tag

<complex1>
<ch2>abc</ch2>
<ch3>d</ch3>
<bin2>3</bin2>
<complex2>
<custnum>10</custnum>
<bin3>1</bin3>
<bin3>2</bin3>
<bin3>3</bin3>
</complex2>
</complex1>

In Example 20, the <bin2> element in the <complex1> structure dictates the number of <bin3>
occurrences in the <complex2> structure in accordance with the @SOAP_OCCURS_DEP_ON DDL
comment.

Hot-Deployment of the NonStop SOAP 4 Server
NonStop SOAP 4 server allows you to deploy Web services while it is operational, running, and
serving requests. The process of deploying Web services while the NonStop SOAP 4 server is
actively serving requests is known as Hot-Deployment. This feature enables you to deploy new
Web services in your NonStop SOAP 4 installation without bringing down the NonStop SOAP 4
server.
The NonStop SOAP 4 server scans all the services under the services directory of your NonStop
SOAP 4 deployment and adds the new services in the service repository.
When a client sends a request to the NonStop SOAP 4 server, the NonStop SOAP 4 server checks
the service repository and loads the services listed in the service repository. Because the service is
added to the service repository during Deployment, the DLL loader can locate the requested service
and process the client request.
The Hot-Deployment approach avoids reconfiguration downtime for businesses because the NonStop
SOAP 4 server immediately makes the service available (that is, without restarting the iTP
WebServer).
The Hot-Deployment feature is enabled by default. To disable this feature, set the hotdeployment
attribute to false in the axis2.xml file. For example, the following entry in the axis2.xml file
turns off the Hot-Deployment feature:
<parameter name=”hotdeployment” locked="false”>false< /parameter>

NOTE: The Hot-Deployment feature is applicable only for services and not for modules.

Hot-Update for the Deployed Services
The NonStop SOAP 4 server enables you to update configuration or definition of a Web service
while it is still operating, running, or serving requests. This feature enables you to make changes
to Web services in your NonStop SOAP 4 installation without bringing down the NonStop SOAP
4 server or the service.
When a client sends a request to the NonStop SOAP 4 server, the NonStop SOAP 4 server checks
the modification date of the services.xml file and the WSDL file. If either of these files are
modified, the NonStop SOAP 4 server loads the information into the service repository, which is
then used for current and subsequent requests, unless a change occurs. However, the modification
date check adds overhead to the SOAP message processing, therefore this feature is disabled by
default.
To enable this feature, set the hotupdate attribute to true in axis2.xml file. For example, the
following entry in axis2.xml file enables this feature:

Hot-Deployment of the NonStop SOAP 4 Server 229

<parameter name=”hotupdate” locked="false”>true< /parameter>

NOTE: The Hot-Update feature is applicable only for services and not for modules or the
axis2.xml configuration.

Internationalization and Encoding
The NonStop SOAP 4 server supports encoding for SOAP messages. You can specify the encoding
for incoming request XML, outgoing response XML and for the TS/MP service data. The encoding
module manages the encoding, and is distributed with the NonStop SOAP 4 server. The default
encoding is UTF-8, unless otherwise specified. By default, this module is enabled by specifying the
following entry in the axis2.xml configuration file:
<module ref=”encoding”/>

NOTE: For specifying an encoding other than UTF-8, set the ICU_DATA environment variable to
point to installed ICU data location in the itp_axis2.config file:
Server $Axis2c {

...

Env ICU_DATA=/usr/tandem/xml/T0563H01/lib/icu/data/

...

}

The NonStop SOAP 4 server supports the following encodings:
• UTF-8 (default encoding)

• ISO-2022-JP

• Other single byte encodings supported by the ICU library

NOTE: The NonStop SOAP 4 server does not support UTF-16 or any multi byte encoding as the
target service encoding or response encoding. They can still be specified as a SOAP request
encoding. A request or response message with an encoding other than UTF-8 has an XML
declaration node (< ?xml version="1.0" encoding="encoding-name"?>) as the first
node in the SOAP XML document.

Configuring the request encoding
To specify a request encoding other than UTF-8, set the encoding attribute of the XML declaration
element to the desired encoding.
For example, the following sample specifies a request XML encoding as Shift_JIS:
<?xml version="1.0" encoding=”Shift_JIS” ?>
<SOAP_ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body
xmlns:admin="urn:compaq_nsk_oss_soapquery">
 <admin:ListServices serviceType="all"/>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Configuring the response encoding
To set the encoding for SOAP response messages, use one of the following options.
1. Specify the encoding of individual responses in the encoding element of the SOAP request

message header. For example, the following SOAP header specifies ISO-2022-jp as the
response message encoding:
<SOAP_ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header xmlns:nskhdr="urn:compaq_nsk_oss_EncodingHeader">

230 NonStop SOAP 4 Features

<nskhdr:Encoding OutputEncoding="ISO-2022-JP"/>
</SOAP-ENV:Header>
<SOAP-ENV:Body xmlns:admin="urn:compaq_nsk_oss_soapquery">
 <admin:ListServices serviceType="all"/>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

2. Specify the default encoding for the SOAP response messages from a target service using one
of these two options.
• Set the RspEncoding attribute in the SDL file at design time and run the SOAPAdminCL

tool to generate the required files.

NOTE: For this option, you must set theICU_DATA environment variable to the location
of the ICU data library before running the SOAPAdminCL tool. For example,
OSS> export ICU_DATA=/usr/tandem/xml/T0563H01/lib/icu/data/

• Set the operation level attribute RspEncoding, which will be used at runtime, in the
services.xml file. For example, the following entry sets the encoding to ISO-2022–JP:
<parameter name="RspEncoding">ISO-2022-JP</parameter>

If the RspEncoding attribute is set in the services.xml file and OutputEncoding is set in
the encoding header, OutputEncoding overrides RspEncoding. If the RspEncoding attribute
is not set in the services.xml file and OutputEncoding is not set in the encoding header,
the response message encoding is the same as request message encoding.

Configuring the server encoding
You can configure the server encoding by using one of these two options:
• Set the SrvrEncoding attribute in the SDL file at design time and run SOAPAdminCL tool

to generate the required files.

NOTE: For this option, you must set theICU_DATA environment variable to the location of
the ICU data library before running the SOAPAdminCL tool. For example,
OSS> export ICU_DATA=/usr/tandem/xml/T0563H01/lib/icu/data/

• Set the service level attribute SrvrEncoding, which will be used at runtime, in the
services.xml file.

the SrvrEncoding attribute in the SDL file or by modifying the services.xml file. For example,
the following entry sets the encoding to ISO-2022–JP:
<parameter name="SrvrEncoding">ISO-2022-JP</parameter>

Communicating with a Non-Pathway Process
NonStop SOAP 4 can expose a non-Pathway process as a Web service. This section describes
the configuration of NonStop SOAP 4 to enable it to communicate with a process.
Configuring NonStop SOAP 4 to communicate with a non-Pathway process involves the following
tasks:
• “Creating an SDL File to Communicate with a Non-Pathway Process” (page 232)

• “Creating a DDL File with the Request/Response Structures” (page 232)

• “Generating NonStop SOAP 4 Files using the SoapAdminCL Tool” (page 232)

Communicating with a Non-Pathway Process 231

Creating an SDL File to Communicate with a Non-Pathway Process
The SDL file has a different hierarchy for a service, which is provided by a non-Pathway process.
The new element <process> appears under the root <sdl> element. The DTD schema for the
SDL file appears as:
<!ELEMENT sdl (Pathway | Process | Enscribe | Tuxedo | XmlSql)+>
<!ELEMENT Process (ProcessEnvironment)+>
<!ELEMENT ProcessEnvironment (ProcessDetails)>
<!ATTLIST ProcessEnvironment Name CDATA #REQUIRED>
<!ELEMENT ProcessDetails (Service)+>
<!ATTLIST ProcessDetails Name CDATA #IMPLIED language (C | COBOL) "COBOL"
stringTermination (NullTerminated | NonNull) "NonNull" DDLDictionaryLocation
CDATA #REQUIRED SrvrEncoding CDATA "UTF-8">

For more information about the SDL file structure and its attributes, see “NonStop SOAP 4 Service
Description Language” (page 153).
The sample SDL file for the process communication appears as:
<sdl>
 <Process>
 <ProcessEnvironment Name="$echo">
 <ProcessDetails Name="Reflector"
 DDLDictionaryLocation="$FC3.AXTE1"
 SrvrEncoding="UTF-8"
 language="C"
 stringTermination="NullTerminated">
 <Operation Name="REFLECTOR"
 TMFTransactionSupport="yes"
 AbortTransactionOnFault="yes"
 NameSpaceQualified="yes"
 SoapMessageType="document"
 ProcessSoapDDLComments="no"
 SoapDDLAttribute="no"
 UseDDLDefaultValue="no">
 <OperationDescription> Reflector </OperationDescription>
 <RequestInfo>
 <DDLDefinitionName>INPUT</DDLDefinitionName>
 </RequestInfo>
 <ResponseInfo>
 <DDLDefinitionName>INPUT</DDLDefinitionName>
 <ResponseSelection defaultResp="yes" />
 </ResponseInfo>
 </Operation>
 </ProcessDetails>
 </ProcessEnvironment>
 </Process>
</sdl>

Creating a DDL File with the Request/Response Structures
The request and response message structures for the process must be defined in the DDL file. The
location of the DDL dictionary and other details of the process must be specified within the
appropriate attributes of the ProcessDetails element.
The name attribute of the ProcessDetails element has a maximum length of 64 characters. If
a value greater than the maximum length is specified, the characters after the 64th character are
ignored. The remaining attributes in the process SDL hierarchy are similar to their counterparts in
the Pathway hierarchy.

Generating NonStop SOAP 4 Files using the SoapAdminCL Tool
After the DDL and SDL files are created, run the SoapAdminCL tool to generate the NonStop
SOAP 4 files. For information on using the SoapAdminCL tool to generate NonStop SOAP 4 files,
see “NonStop SOAP Tools” (page 194).

232 NonStop SOAP 4 Features

Validation Module
The SOAP messages sent by the clients must be validated against the WSDL schema to ensure that
correct data is received. The NonStop SOAP 4 validation module validates the received data. The
validation module is a global module, and it is enabled by default.
All the service requests to the NonStop SOAP 4 server are validated against the service WSDL
schema by default. If the requests confirm to the schema, then the NonStop SOAP 4 server processes
the requests. If the requests do not confirm to the schema, then the validation module sends back
a Module Validation Failed message to the client, and does not process the request. For
more information about the failure, see the log files in the <NonStop SOAP 4 Deployment
Directory>/logs folder.
The Global Modules section of axis2.xml file contains the configuration for the validation
module. To turn off this feature, comment the line in axis2.xmlfile.
<!-- === -->
<!-- Global Modules -->
<!-- === -->
!-- <module ref="validation”/> -->

NOTE: Even if the validation module is turned off, the NonStop SOAP 4 server validates for most
of the data type values. However, the validations for XML constructs are not very strict.
The validation module feature impacts performance. The first request for a service takes a longer
time than the subsequent requests as the schema has to be loaded into the memory for the first
request. The time taken by the validation module to process the request is directly proportional to
the size of the request (that is the number of XML elements in the request). In cases where the service
response time is extremely important, to gauge the overhead caused by the module, HP recommends
measuring the NonStop SOAP 4 server response times with and without this feature. Decide to
enable or disable this feature, based on these measurements.

SOAP_WSDL_NAME DDL Comment
The SoapAdminCL generates the WSDL file and DDL mapping file to display the TS/MP application
as a Web service. You can add a comment in DDL file that defines the WSDL file name to be used
in the WSDL file for a field.
The following example describes the use of the SOAP_WSDL_NAME DDL a comment in the DDL
definition and the generated WSDL and DDL mapping files:
DDL Definition
DEFINITION INPUTDEF
 02 A1 PIC X(1)
*@SOAP_WSDL_NAME wsdlnamea2
 02 A2 PIC X(4)
END

The following example displays a generated sample WSDL file:
<xsd:element name="REFLECTOR" type="tns1:REFLECTOR"/>
<xsd:complexType name="REFLECTOR">
<xsd:sequence>
<xsd:element name="a1" minOccurs="1" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="1"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="wsdlnamea2" minOccurs="1" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="4"/>

Validation Module 233

</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

For this conversion, NonStop SOAP 4 server uses DDLMapping.xml file to convert the request
data to character buffer and response character buffer to XML. The server uses data definition
structures stored in DDLMapping.xml file and their qualified names as a key for mapping.
The considerations for using comment names in DDL Definition are:
1. More than one alternate name for the same field cannot be used in the DDL definition file.
2. You must use the DDL field name as a reference along with SOAP DDL comment.

Support for Multiple DDL Definitions
You can use multiple DDL definitions in a single SOAP request or response. You can implement
this feature by specifying multiple <DDLDefinitionName> elements in a <RequestInfo> or
<ResponseInfo> element in the SDL file.
The following example illustrates the use of separate DDL definitions A1 and A2:
DDL Definition:
DEFINITION A1
 02 A11 PIC X(10000)
 02 A12 PIC X(20000)
END
DEFINITION A2
 02 A21 PIC X(10000)
 02 A22 PIC X(20000)
END

To specify that the Inter Process Communication (IPC) contains both definitions, A1 and A2, one
after another, specify each of them by using <DDLDefinitionName> elements in the
<RequestInfo> element:

<RequestInfo>
 <DDLDefinitionName>A1</DDLDefinitionName>
 <DDLDefinitionName>A2</DDLDefinitionName>
</RequestInfo>

The generated SOAP message contains the following XML structure:

<Req>
 <A1>
 <A11>temp</A11>
 <A12>temp</A12>
 </A1>
 <A2>
 <A21>temp</A21>
 <A22>temp</A22>
 </A2>
</Req>

234 NonStop SOAP 4 Features

NOTE: The same <DDLDefinitionName> element must not be used more than once in a single
<RequestInfo> or <ResponseInfo> element. For example, the following sample implementation
is incorrect:

<RequestInfo>

 <DDLDefinitionName>A1</DDLDefinitionName>

<DDLDefinitionName>A1</DDLDefinitionName>

</RequestInfo>

Check on SOAP Service Deployment
The SoapAdminCL tool uses DDL Dictionaries and the SDL as an input to deploy a service under
the SOAP server. In SDL DTD, the SDL element contains two attributes that denote the location of
the SOAP server.
<sdl Url="/axis2c"> ServerAddress = "http://15.146.233.43:3001">

In NonStop SOAP 4 server, the SoapAdminCL tool detects whether the server is running at the
defined location and also generates a warning message if the server is not running at the defined
location.
You can trigger this facility by providing -w option along with -i and -o options to the SoapAdminCL
tool.

Unbounded data elements support
The NonStop SOAP 4 server supports unbounded data elements for Contract-First SOAP services.
The C services can process data greater than 2 MB with unbounded data elements. For enabling
the unbounded data elements feature, configure the message receiver
(axis2_pway_xml_receiver) in the services.xml file.
Earlier versions of NonStop SOAP 4 server convert the XML message in the SOAP body to a
character buffer, and dispatch the message to a TS/MP service as shown in “NonStop SOAP 4
Request Processing Flow for TS/MP or NonStop process-based Web Services” (page 34). This
conversion causes buffer size variations for unbounded XML, which cannot be processed by the
TS/MP service. Also, the data cannot be greater than 2 MB.
For more information, see “The WSDL2PWY Tool” (page 203).

Check on SOAP Service Deployment 235

12 Transaction Management
As a value-added feature, NonStop SOAP 4 provides comprehensive support for Web services
that implement transactions. A transaction, in this context, is defined as a series of logical operations
against a database resulting from the receipt of one or more SOAP messages. All database changes
must be done in their entirety, or all must be backed-out, to ensure that the database is in a consistent
state once the transaction is complete.
NonStop SOAP 4 is fully integrated into the HP Transaction Management Facility (TMF) product,
which is used to ensure database integrity. To use the transaction management feature of NonStop
SOAP 4, TMF must be installed and running on your NonStop system. For more information about
TMF, see the TMF Reference Manual.
You can perform a simple logical transaction by invoking an operation requested by a single SOAP
message, or a more complex logical transaction can result from many SOAP requests that can
span multiple invocations of the same or different operations within any service (a multi-step
transaction).
For a simple transaction, the boundary of the transaction is confined to the processing of a single
SOAP message; it starts with the invocation of the operation and ends when the operation is
complete and control returns back to NonStop SOAP 4. Thus, NonStop SOAP 4 can begin and
end the transaction as a part of processing that SOAP message; that is, SOAP Server Transaction
Management. NonStop SOAP 4 requires an indication that the operation requires transaction
protection, which can be done by setting the TMFTransactionSupport attribute in the
services.xml configuration file (for information on the TMFTransactionSupport attribute,
see “Configuring the Level of Transaction Support” (page 245)). For a multi-step (or complex)
transaction, NonStop SOAP 4 requires some help from the SOAP client to indicate that a particular
SOAP message is starting a transaction, and to subsequently signal when that transaction should
be ended; that is, SOAP Client Transaction Management.
All the semantics for the SOAP Client Transaction Management are contained in a Transaction
Header Block that may be sent in a SOAP message. The client can set the values of a Command
attribute to start or end a transaction, and indicate that an existing transaction should be continued
or aborted. In addition, the client can use another attribute to control the transaction timeout values.
The TransactionID attribute coordinates between the client and NonStop SOAP 4, and is set
to a unique value by NonStop SOAP 4 when a transaction is started. The TransactionID
attribute is subsequently used as a handle that is passed back and forth between the client and
server to associate SOAP messages to particular transactions.
The following attributes can be set in the services.xml file to define the kind of transaction
support requested of the NonStop SOAP 4 server:
• TMFTransactionSupport

• AbortTransactionOnFault

• TMFTimeout

236 Transaction Management

NOTE:
• For information on the TMFTransactionSupport, AbortTransactionOnFault, and

TMFTimeout attributes, see “Configuring the Level of Transaction Support” (page 245) and
“Transaction Timeouts” (page 246).

• Previous versions of NonStop SOAP (SOAP 3 and earlier) defined the need to contain a
multi-step transaction within a session, which was defined in a session header block in the
SOAP message. With NonStop SOAP 4, sessions are no longer required (which enables
transaction management to be greatly simplified). NonStop SOAP 4 will continue to process
session attributes and commands for compatibility with previous releases, and the syntax and
semantics of this mechanism is described in “Session Management and Transactions” (page 249).
There is an intent to discontinue the session construct in a future release of NonStop SOAP,
though no date has been set for this action.

This chapter describes the following topics:

• “Transaction Module Configuration” (page 237)

• “SOAP Server Transaction Management” (page 238)

• “SOAP Client Transaction Management” (page 238)

• “Configuring the Level of Transaction Support” (page 245)

• “Transaction Timeouts” (page 246)

• “Session Management and Transactions” (page 249)

NOTE: It must be remembered that NonStop SOAP 4 runs as a TS/MP server class, so throughout
this chapter and elsewhere in this manual, when the term SOAP server is used it is not referring to
a single process instance.

Transaction Module Configuration
To enable NonStop SOAP 4 to recognize and correctly process the transaction (and session)
header blocks in the SOAP request header, you must configure it to include the Transaction Module
that is part of the product distribution.
To configure the transaction module in NonStop SOAP 4, complete the following steps:
1. Open the <NonStop SOAP 4 Deployment Directory>/axis2.xml file and locate

the following commented section:
<!-- ============================ -->
 <!-- Global Modules -->
<!-- ============================ -->

2. After the Global Modules section, add the module element and set its ref attribute value
to transaction.
<module ref=”transaction”/>

NOTE: When defining the module element, do not add a space between < and the module
element.

3. Save and close the axis2.xml file.
4. Restart the iTP WebServer.

OSS>./<iTP WebServer Deployment Directory>/conf/restart

The transaction module is now attached with your NonStop SOAP 4 deployment and can intercept
each request and perform the requested transaction related operations.

Transaction Module Configuration 237

SOAP Server Transaction Management
The NonStop SOAP 4 server can manage a simple transaction without a Transaction header block
in the SOAP message. A client can invoke a service on the NonStop server and be certain that all
the changes made to the database by that service are completed in their entirety or, should the
transaction fail, the database restored to a prior state, using a single SOAP message.
When the NonStop SOAP 4 server receives a SOAP message that does not contain a Transaction
header block (and before invoking the requested operation), it examines the setting of the
TMFTransactionSupport attribute for this operation in the appropriate services.xml file.
If the value is set to Required, the SOAP server will start a transaction through TMF and then
continue with the service request. When the operation is complete and the service returns control
back after executing the transaction, NonStop SOAP 4 will invoke TMF to commit the transaction
before replying with a SOAP message back to the client.
If the call to the service fails, or the operation itself returns a fault indication, the SOAP server will
abort the transaction, and the client will be notified that the operation failed.

NOTE: The AbortTransactionOnFault attribute has no effect on the feature being described
here – the SOAP server will always abort the transaction as a result of an error when it is managing
the transaction irrespective of the setting of AbortTransactionOnFault, if present for this
operation.
For information on the AbortTransactionOnFault attribute, see “Configuring Transactions to
Abort on Fault” (page 248)e.

It is possible to set a timeout for this transaction using the optional TMFTimeout attribute in the
services.xml file. If not set, the default TMFAutoAbort timeout will apply. For information on
the TMFAutoAbort attribute, see “Transaction Timeouts” (page 246).

SOAP Client Transaction Management
NonStop SOAP 4 allows clients to control when transactions are started, continued, and ended
through values set for the Command attribute in a Transaction header block in the SOAP message.
Based on these values, the SOAP server calls TMF to begin, resume, commit, or abort transactions
before and following the invocation of one or more service operations indicated by the SOAP
request. The Transaction header block can be defined in the WSDL file for a service by setting the
service-level GenerateTransactionHeader attribute to yes in the SDL file for the service. After
the transaction header block is defined in the WSDL file, tools that generate client code from the
WSDL file (such as, wsimport) will create routines to access the transaction header block fields.
In addition to the Command attribute, there are two other important attributes used in the Transaction
Header:
• TransactionID

• TimeOut

Table 18 lists the attributes in the transaction header element and their values.

238 Transaction Management

Table 18 Attributes in the Transaction Header Block

DescriptionValuesAttributes of the Header Element

Specifies the transaction command. Note that it is
case-sensitive.

Begin, Continue, Commit,
Abort

Command

Contains the value set by TMF to identify a specific
transaction.

TMF TransactionIDTransactionID

Specifies the transaction timeout in seconds.

NOTE: The TimeOut attribute can be used only
when the Command attribute in the transaction
header block of the SOAP request header element
is set to Begin.

Transaction timeoutTimeOut

The TimeOut attribute can be used to provide more granular control of the TimeOut value to be
used by TMF before it automatically aborts a transaction and frees any resources (for example,
database locks) that might be held by that transaction. For more information on the timeout settings,
see “Transaction Timeouts” (page 246).
The value passed in the TransactionID attribute is a TMF transaction ID set by NonStop SOAP
4 in a Transaction header block contained in the SOAP response message. This attribute value is
then sent by the SOAP client in the Transaction header block of subsequent SOAP requests as a
handle to be used by NonStop SOAP 4 to associate messages received to a specific active
transaction.

WARNING! The client must not alter the value of this attribute, or else the transaction will almost
certainly fail.

During the processing of a multi-step transaction, the SOAP messages submitted by a client will
probably be processed by different SOAP server instances. The only thing that associates messages
to any particular logical transaction is the TransactionID attribute carried in a Transaction
header block. Before a response is sent back to a client, the SOAP server instance suspends the
active transaction. This makes the server available to receive another message from another or the
same client to do work on behalf of another transaction; that is, each SOAP server instance is
context-free – it retains no knowledge of any particular transaction.
It also follows from this that a client can also be involved simultaneously in multiple transactions.
For a GUI application that is used by a human operator at a workstation, this probably does not
make sense. However, for a complex application requester in a Services Oriented Architecture
(SOA) accessing services on the NonStop server through NonStop SOAP, it is perfectly possible
for it to be managing multiple parallel transactions and use the TransactionID attribute as the
handle for each of its processing threads.
The following sections will detail how each of the four transaction commands (Begin, Continue,
Commit, End) are processed by NonStop SOAP 4 with examples of the Transaction header block
sent by the client and responses back from SOAP for each command.

Begin a New Transaction
To begin a new TMF transaction, the client must set the value of the Command attribute (in the
transaction header block of the NonStop SOAP 4 request header element) to Begin and send it
as a part of the SOAP request header element.

NOTE: The body of a request that starts a transaction can invoke a target service, or it can be
empty.

Figure 17 shows the schematic flow for beginning a new transaction.

SOAP Client Transaction Management 239

Figure 17 Beginning a New Transaction

Request to begin
a transaction

Transaction ID

TMF

Command = “Begin”

Transaction ID

Invoke Service

Response

SOAP
Client

NonStop
SOAP 4
Server

NonStop
SOAP 4
Service

When beginning a new TMF transaction, NonStop SOAP 4 performs the following activities:
1. The NonStop SOAP 4 server begins a new TMF transaction on behalf of a client request and

optionally sets a value for the transaction timeout in its call to TMF. The timeout value used
depends on whether the client has set the TimeOut attribute in the SOAP request header
block, and also if there is a value set for the TMFTimeout attribute in the services.xml
configuration file.
For more information about TMF transaction timeout, see “Transaction Timeouts” (page 246).

2. If the SOAP message body contains a request, NonStop will invoke it under the new TMF
transaction. When the service returns control back to NonStop SOAP, or if the body of the
request is empty, NonStop SOAP suspends the new TMF transaction and returns the TMF
transaction ID in the TransactionID attribute in a Transaction header block in the SOAP
response message back to the client. This value can then be used by the client in a subsequent
request to continue the transaction. The value of the TransactionID attribute is in an external
ASCII form. To convert the value to the internal form displayed in TMFCOM, use the
SoapAdminCL tool with the –t option.
For information on the SoapAdminCL tool, see “NonStop SOAP Tools” (page 194).

3. If the invoked service returns a fault and the AbortTransactionOnFault attribute is set
to no, the NonStop SOAP server suspends the TMF transaction (it does not abort the transaction)
and returns the TMF transaction ID in the TransactionID attribute in a Transaction header
block along with a SOAP fault. This allows the SOAP client to decide the appropriate error
handling and control whether the transaction should be aborted, or the operation retried.
For more information about configuring the AbortTransactionOnFault attribute, see
“Configuring Transactions to Abort on Fault” (page 248).

NOTE: The NonStop SOAP 4 server recognizes that the application has returned a fault
using the Response Selection Criteria specified in the services.xml file. The NonStop SOAP
4 server upon receiving the response buffer from the application, processes it based on the
response selection criteria to derive the appropriate response structure to be used. Therefore,
when the NonStop SOAP 4 server deduces that the matching response structure is indeed a
Fault response, it prepares a SOAP fault envelope and returns it back to the client.
For example, in case of the EmpInfo operation of the employee_db service, the service
returns a fault when it is queried for a non-existent employee. In such a scenario, the response
buffer’s first two bytes carry the value 01. The corresponding response selection criteria,
specified in the services.xml file, instructs the NonStop SOAP 4 server to select the Fault
response structure when the first two bytes of the response buffer are 01. The NonStop SOAP
4 server then prepares a fault response.

240 Transaction Management

4. If the invoked service returns a fault and the AbortTransactionOnFault attribute is set
to yes, then the NonStop SOAP 4 server aborts the transaction and returns a SOAP fault to
the client. The NonStop SOAP 4 server generates a temporary session identifier, because the
current SessionID is no longer valid. The NonStop SOAP 4 server returns the session identifier
in the session block header of the response message and sets this value for the SessionID
attribute.

Example 21 shows a request/response pair of messages to begin a new transaction.

Example 21 Begin a New Transaction

Client Request
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_TransactionHeader">
<soapenv:Header>
 < urn:Transaction Command="Begin"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_TransactionHeader">
<soapenv:Header>
 <urn:Transaction TransactionID="234567"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NOTE: The response includes the TMF transaction ID that will be used in all subsequent requests
associated with the transaction.

Continue a Transaction
To perform an operation under an active TMF transaction, the client must include a Transaction
header block that sets the Command attribute to Continue and sets the value of the TransactionID
attribute to the value of the TransactionID attribute provided by a previous response from
NonStop SOAP 4 associated with this transaction.
On receiving a SOAP request to perform an operation under an active transaction:
1. The SOAP server resumes the TMF transaction specified in the TransactionID attribute of

the transaction header block in the SOAP request header.
2. The operation specified in the body of the SOAP message is then invoked under the resumed

TMF transaction ID.
3. When the service responds back to NonStop SOAP 4, the TMF transaction is suspended once

again, the transaction ID value is set in the TransactionID attribute of the Transaction
header block, and the response message is sent back to the client.

4. If the invoked service returns a fault and the AbortTransactionOnFault attribute is set
to yes, then the NonStop SOAP 4 server aborts the transaction and returns a SOAP fault to

SOAP Client Transaction Management 241

the client. The NonStop SOAP 4 server generates a temporary session identifier because the
current SessionID is no longer valid. The NonStop SOAP 4 server returns the session identifier
in the session block header of the response message and sets this value for the SessionID
attribute.

5. If the invoked service returns a fault and the AbortTransactionOnFault attribute is set
to yes, NonStop SOAP 4 aborts the transaction and returns a SOAP fault to the client. The
SOAP message does not contain a Transaction header block because there is no
TransactionID to return back to the client.

6. This series of request/response actions can continue until the client decides that the transaction
needs to be ended with either a commit or an abort request.

Example 22 shows a request/response pair of messages to continue a transaction.

Example 22 Continue a Transaction

Client Request
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_TransactionHeader">
<soapenv:Header>
 <urn:Transaction Command="Continue" TransactionID="234567"/>
</soapenv:Header>
<soapenv:Body>
.
.
.
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_TransactionHeader">
<soapenv:Header>
 <urn:Transaction TransactionID="234567"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

where,
234567

is the value assigned to the TransactionID attribute that was provided in a previous response
by NonStop SOAP for this transaction.

Commit a Transaction
To commit an active TMF transaction, the client must include a Transaction header block that sets
the Command attribute to Commit and sets the value of the TransactionID attribute to the value
of the TransactionID attribute provided by a previous response from NonStop SOAP 4
associated with this transaction.

NOTE: If the SOAP request invokes a target service, the operation in the request will be executed
as a part of the active TMF transaction.

242 Transaction Management

When the SOAP server receives a request to commit an active TMF transaction, the following
occurs:
1. The SOAP server resumes the TMF transaction specified in the TransactionID attribute of

the transaction header block of the SOAP request.
2. The SOAP server invokes the operation (if specified in the body of the request) under the

resumed TMF transaction.
3. When the service responds back to NonStop SOAP 4, a commit transaction request is sent

to TMF and the SOAP response is sent back to the client. The response message will not
contain a transaction header block because there is no TransactionID value to communicate
back to the client.

4. If the service returns a fault and the AbortTransactionOnFault attribute is set to no, the
transaction is not aborted. The TransactionID is sent back to the client in a Transaction
header block in the response message along with the fault returned by the operation. This
allows the client to decide whether to abort the transaction, or retry the operation.

5. If the service returns a fault and the AbortTransactionOnFault attribute is set to yes,
the SOAP server aborts the transaction and returns the SOAP fault to the client. The response
message will not contain a transaction header block because there is no TransactionID
value to communicate back to the client.

Example 23 shows a request/response pair of messages to commit a transaction.

Example 23 Commit a Transaction

Client Request
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_TransactionHeader">
<soapenv:Header> <
 urn:Transaction TransactionID="234567" Command="Commit"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_TransactionHeader">
<soapenv:Header>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

where,
234567

is the identifier of the transaction to be committed, and was provided in a previous response
from NonStop SOAP.

SOAP Client Transaction Management 243

Abort a Transaction
To abort an active TMF transaction, the client must set the value of the TransactionID attribute
(in the transaction header block of the NonStop SOAP request header element) to the value of the
TransactionID attribute provided by a previous response from NonStop SOAP 4 associated
with that transaction, and set the Command attribute to Abort.

NOTE: HP recommends that the body of a request that aborts a transaction be empty. The
sequence of the following events indicates that the transaction is aborted before any service
invocation. This means that there will not be an active transaction when the service is invoked.

When a message is received by the SOAP server to abort a message, the following occurs:
1. The SOAP server resumes the TMF transaction specified in the TransactionID attribute of

the Transaction header block of the SOAP request header element.
2. The SOAP server issues an abort transaction request to the TMF subsystem.
3. If the SOAP message body requests a target service, it will be invoked, but there will not be

any active TMF transaction, because it has been aborted in step 2.
4. NonStop SOAP 4 returns the response from the service. The response message will not contain

a transaction header block because there is no TransactionID value to communicate back
to the client.

Example 24 shows a request/response pair of messages to abort a transaction.

Example 24 Abort a Transaction

Client Request
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_TransactionHeader">
<soapenv:Header>
 <urn:Transaction TransactionID="234567" Command="Abort"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_TransactionHeader">
<soapenv:Header>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

where,
234567

is the identifier of the transaction to be aborted, and was provided in a previous response from
NonStop SOAP.

244 Transaction Management

Configuring the Level of Transaction Support
You can configure the level of transaction management support for services deployed in NonStop
SOAP 4 using the TMFTransactionSupport attribute. The TMFTransactionSupport attribute
is configured at the operation level.
The TMFTransactionSupport attribute can be set to one of the following values:

• Required

All operations in the SOAP request must be performed within a TMF transaction.

◦ If the client request does not include a transaction header block in the SOAP request
header, NonStop SOAP 4 begins a TMF transaction before invoking the service and
subsequently commits or aborts the transaction once a response is received from the
service. For more information, see “SOAP Server Transaction Management” (page 238).

◦ If the client request does include a transaction header block in the SOAP request header,
NonStop SOAP proceeds to examine the value of the Command attribute in the transaction
header block and processes the TMF transaction. For information on the Command attribute,
see “SOAP Client Transaction Management” (page 238).

• Supports

Operations in the SOAP request may be performed within a TMF transaction.

◦ If the client request does not include a transaction header block in the SOAP request
header, no TMF transaction calls will be made and the service will be invoked outside
any TMF transaction. For example, a browse or get operation does not need to be
performed inside a transaction.

◦ If the client request includes a transaction header block in the SOAP request header,
NonStop SOAP 4 proceeds to examine the value of the Command attribute in the
Transaction header block and proceeds to perform the requested action. For more
information on the Command attribute, see “SOAP Client Transaction Management”
(page 238).

• Never

Operations in the SOAP request must not be performed within a TMF transaction. If the client
request includes a transaction header block in the SOAP request header element, NonStop
SOAP 4 will return a SOAP fault response.

NOTE: Previous versions of NonStop SOAP used values for the TMFTransactionSupport
attribute of yes and no. When migrating from SOAP 3 to SOAP 4, these values will be mapped
by the SoapAdminCL tool to Required and Never respectively.

To configure the level of transaction support for your service, complete the following steps:
1. Open the services.xml configuration file located in <NonStop SOAP 4 Deployment

Directory>/services/<service_name>.
where,
<service_name> is the name of the service for which you want to set the level of transaction
management.

2. Set the value of the TMFTransactionSupport attribute to either Required, Supports,
or Never.
<operation>
 .
 .
TMFTransactionSupport="[Required | Supports | Never]"
 .

Configuring the Level of Transaction Support 245

 .
</operation>

3. Save and close the services.xml configuration file.
The TMFTransactionSupport attribute is an optional attribute. The default value of the
TMFTransactionSupport attribute is Supports. Thus, if a client request includes a transaction
header block in the SOAP request header, then NonStop SOAP 4 will process the Command
attribute contained within it, even if the TMFTransactionSupport attribute is not set in the
services.xml file.

NOTE:
• When developing a service the TMFTransactionSupport attribute can be set as an

operation level attribute in the SDL file.
• When deploying a service using the SoapAdminCL tool, the services.xml configuration

file will have the TMFTransactionSupport attribute set to a value specified in the SDL file.
For more information about setting the TMFTransactionSupport attribute in the SDL file,
see “NonStop SOAP 4 Service Description Language” (page 153).

Transaction Timeouts
During the processing of a transaction, it is typical for resources in the database to be locked (for
example, a table row, or even a complete table) until the transaction is committed (or aborted) to
ensure data integrity. For a multi-step transaction, this can pose a problem in the event that the
client that started the transaction does not continue or end the transaction in a reasonably short
timeframe. There could be many reasons, including loss of communication between the client and
the NonStop server, or it could be as simple as a client-side operator stepping away from his/her
desk in mid-transaction for a while. In the meantime, database resources remain locked and could
potentially cause significant performance degradation and loss of service for other clients. It is
therefore important that an application have a variety of tools available to cause a transaction to
timeout and be aborted. NonStop SOAP 4 allows several configuration options to set timeout
values at the operation level from the client or on the server using the services.xml file, or
globally at a system level within TMF:
• TimeOut:

The TimeOut attribute can be set to a timeout value by the client in the transaction header
block of the SOAP request header element, which is used to begin a transaction.

• TMFTimeout:
The TMFTimeout attribute can be specified at the operation level within the services.xml
file. For more information on how to configure the TMFTimeout attribute, see “Configuring
Transaction Timeout” (page 247).

• TMFAutoAbort:
TMFAutoAbort is a system-defined timeout that specifies the time duration, after which all
TMF transactions are aborted automatically by the TMF subsystem. The system default value
is 2 hours. This timeout value can be changed by the system administrator using the TMFCOM
utility.
For information on customizing the TMFAutoAbort timeout value using the TMFCOM utility,
see the TMF Reference Manual.

After comparing the values of TimeOut and TMFTimeout, if specified, the SOAP server takes
the minimum value and uses it in the call to TMF that begins the transaction. If neither is specified,
the value of TMFAutoAbort will determine transaction timeout.

246 Transaction Management

NOTE: It is not possible to specify a timeout greater than the system-wide TMFAutoAbort value,
which will supersede any attempt to set a higher value.

Table 19 summarizes the timeout value that will be derived if any combination of attributes is
defined by the SOAP client, SOAP server, and system-wide.

Table 19 Transaction Timeout

Effective timeoutTMF AutoAbort
Timeout

Timeout specified in
TMFTimeout attribute

Timeout specified in the
TimeOut attribute

TMFAutoAbort timeout.YesNoNo

Minimum of the TMFAutoAbort
timeout and the value specified in the
TMFTimeout attribute.

YesYesNo

Minimum of the TMFAutoAbort
timeout and the value specified in the
TimeOut attribute.

YesNoYes

Minimum of the TMFAutoAbort
timeout, the TimeOut attribute and the
TMFTimeout attribute.

YesYesYes

Configuring Transaction Timeout
You can configure the TMFTimeout attribute at the operation level in the services.xml
configuration file to control transaction timeout. An individual SOAP request can override this value
using the TimeOut attribute in a Transaction header block but it can only set it to a lower value;
any attempt to set a higher value for the transaction timeout will be ignored.
Similarly, the TMFTimeout attribute cannot be used to set a higher transaction timeout than
configured for TMF with the AutoAbort timeout because TMF will ignore any value submitted to it
that exceeds AutoAbort.
To configure transaction timeout in NonStop SOAP 4, complete the following steps:
1. Open the services.xml configuration file located in <NonStop SOAP 4 Deployment

Directory>/services/<service_name>.
where,
<service_name> is the name of the service for which you want to configure the transaction
timeout period.

2. Set the value of the TMFTimeout attribute in seconds.
<operation>
 .
 .
TMFTimeout=<transaction time out in seconds>
 .
 .
</operation>

where,
TMFTimeout is the timeout value specified in seconds.

3. Save and close the services.xml configuration file.

Transaction Timeouts 247

NOTE:
• When developing a service, you can set the TMFTimeout attribute as an operation level

attribute in the SDL file.
• When deploying a service using the SoapAdminCL tool, the services.xml configuration

file will have the TMFTimeout attribute set to a value specified in the SDL file.
For more information about setting the TMFTimeoutattribute in the SDL file, see “NonStop
SOAP 4 Service Description Language” (page 153).

Configuring Transactions to Abort on Fault
When SOAP client-managed transactions are used, by default, the SOAP server suspends the TMF
transaction when it receives a fault indication back from a service. The SOAP server then sends a
message containing the error back to the client. The client decides what action to take next; that
is, NonStop SOAP 4 does not abort the transaction without instructions from the client. (The only
exception is that a transaction can be aborted by TMF if it exceeds its timeout limit. In this case,
NonStop SOAP 4 will receive an error back from TMF whenever it attempts its next call on behalf
of this transaction, and will return the TMF error to the client in a SOAP fault message.)
This default action can be overridden through the use of the AbortTransactionOnFault
attribute, which can be configured at the operation level in the services.xml configuration file.
The AbortTransactionOnFault attribute can be set to one of the following values:

• yes

NonStop SOAP will abort a client-managed transaction if the service returns a fault or an error
occurs in NonStop SOAP 4 during request processing.

• no

Nonstop SOAP 4 server will not abort a client-managed transaction if the service returns a
fault or an error occurs in NonStop SOAP 4 during request processing. NonStop SOAP 4
suspends the transaction and returns the error to the client, which then needs to decide the
error action to take. The response message sent by the SOAP server will include a transaction
header block with TransactionID set to the TMF transaction ID of the suspended transaction.
This allows the client to send an abort request to NonStop SOAP 4, if that is the appropriate
action for the application.

NOTE: For SOAP server-managed transactions (that is, the TMFTransactionSupport attribute
is set to Required and there is no transaction header block in the SOAP request), the value of
the AbortTransactionOnFault attribute, if set to no, is ignored and processing will proceed
as if set to the value of yes. That is, the transaction will be aborted if the service returns a fault or
an error occurs in NonStop SOAP 4 during request processing.

To configure NonStop SOAP 4 to abort a client-initiated transaction in case of an error or fault,
complete the following steps:
1. Open the services.xml configuration file located in <NonStop SOAP 4 Deployment

Directory>/services/<service_name>.
where,
<service_name> is the name of the service for which you want to enable or disable the
AbortTransactionOnFault attribute.

2. Set the value of the AbortTransactionOnFault attribute to either yes or no.
<operation>
 .
 .
AbortTransactionOnFault="[yes | no]"

248 Transaction Management

 .
 .
</operation>

3. Save and close the services.xml configuration file.

NOTE:
• When developing a service, the AbortTransactionOnFault attribute can be set as an

operation-level attribute in the SDL file.
• When deploying a service using the SoapAdminCL tool, the services.xml configuration

file will have the AbortTransactionOnFault attribute set to a value specified in the SDL
file.
For more information about setting the TMFTimeoutattribute in the SDL file, see “NonStop
SOAP 4 Service Description Language” (page 153).

Session Management and Transactions
Previous versions of NonStop SOAP (SOAP 3 and earlier), defined the concept of a session as a
logical grouping of a series of requests and were required for transaction control; a transaction
could occur only within a session. However, with the release of NonStop SOAP 4, the logical
grouping of requests is now defined as a transaction, and sessions are no longer required to
perform a multi-step transaction.

NOTE: If you are new to NonStop SOAP, you need not read further in this chapter because the
remaining sections describe features that are simply retained to aid in compatibility and migration
from earlier releases.

NonStop SOAP 4 defines the concept of a session header block that can be contained within a
SOAP request, and may include the use of the attributes listed in Table 20.

Table 20 Session Header Attributes

DescriptionValuesAttribute

Used to begin or end a session.Begin, EndSessionCommand

Contains a unique value set by the SOAP server
in a response message to a begin session request

Set by SOAP serverSessionID

to act as a 'handle' for the session in subsequent
client requests.

Starts a new transaction within an active session.yesBeginNewTransaction

Commits or aborts a transaction.End, AbortCurrentTransactionCommand

The session header block can be defined in the WSDL file for a service by setting the service-level
attribute GenerateSessionHeader to yes in the SDL file for the service.

NOTE: For any given service, the WSDL file generated by the SoapAdminCL tool will not define
both session header blocks and transaction header blocks. The inclusion of the session and
transaction header blocks in the WSDL file is controlled by the GenerateSessionHeader and
GenerateTransactionHeader attributes of the Service element in the SDL file. Only one of
these attributes may be set to yes for a given service. An error is issued by SoapAdminCL if both
the attributes are set to yes for a particular service.

The following sections describe how each of these session attributes may be used to start and end
sessions, and to begin and end transactions within these sessions.

Session Management and Transactions 249

Begin a New Session
To start a new session, the client must set the value of the SessionCommand attribute (in the
session header block of the NonStop SOAP 4 request header element) to Begin.
Figure 18 shows a schematic flow for beginning a new session.

Figure 18 Beginning a New Session

Session Command = “Begin”

SessionID = “<TemporaryID>”

Invoke Service

Response

SOAP
Client

NonStop
SOAP 4
Server

NonStop
SOAP 4
Service

When starting a new session, NonStop SOAP 4 performs the following activities:
1. The SOAP server generates a temporary SessionID.
2. If the body of the SOAP message requests a target service, NonStop SOAP 4 invokes the

operation.
3. When the invoked service responds back to NonStop SOAP 4, or if there is no service request

in the SOAP message body, the SOAP server constructs a session header block containing
the SessionID attribute set to the temporary value created earlier.

4. The response is sent back to the client.
Example 25 shows a request/response pair of messages to begin a new session.

250 Transaction Management

Example 25 Begin a New Session

Client Request
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn:Session SessionCommand="Begin"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn:Session SessionID="Tempmj12rty67"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NOTE: The SessionID value created in this step is called temporary because it has no practical
use. The SessionID assumes the value once a transaction has started, which can be requested
in the same SOAP message as that used to start the session (and is recommended for efficiency).

Begin Transaction within a Session
To start a new transaction under an active session, the client must set the value of the SessionID
attribute (in the session header block of the NonStop SOAP 4 request header element) to the session
identifier. The client must also set the value of the BeginNewTransaction attribute in the session
header block of the SOAP request header element to yes.
To start a new TMF transaction within a session, NonStop SOAP 4 performs the following activities:
1. The SOAP server begins a TMF transaction in response to a client request.
2. If the body of the request invokes a target service, the SOAP server invokes the operation

specified in the body under the transaction that has started.
3. The NonStop SOAP 4 server suspends the TMF transaction and returns the response to the

client if the service does not return a fault or if the AbortTransactionOnFault attribute
is set to no.

4. The NonStop SOAP 4 server sets the TMF transaction ID in the SessionID attribute of the
session header block.

5. If the service returns a fault and the AbortTransactionOnFault attribute is set to yes,
the SOAP 4 server aborts the TMF transaction and returns a fault response to the client. The
SOAP server generates a temporary session identifier to set in the SessionID attribute (there
is no valid TMF Transaction ID to use), and returns it in the session header block in the response
message.

Example 26 shows shows a request/response pair of messages to begin a new transaction within
a session.

Session Management and Transactions 251

Example 26 Begin a New Transaction within a Session

Client Request

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn: Session SessionID="Tempmj12rty67" BeginNewTransaction="yes"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn: Session SessionID="234567"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
</soapenv:Body>
</soapenv:Envelope>

where,
Tempmj12rty67

is the temporary session identifier provided by NonStop SOAP 4 in its response to starting the
session.

234567

is the TMF transaction ID.
For efficiency, it is recommended that you combine the two requests described into a single request
as shown in Example 27.

252 Transaction Management

Example 27 Begin a New Session and Transaction Combined

Client Request
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn:Session SessionCommand="Begin" BeginNewTransaction="yes"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn: Session SessionID="234567"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NOTE: The value returned in the SessionID attribute (234567) is the TMF transaction ID.

Continue a Transaction within a Session
To continue an active transaction under a session, the client must set the value of the SessionID
attribute (in the session header block of the NonStop SOAP 4 request header element) to the
SessionID value supplied in the previous response from NonStop SOAP 4 for this session.
On receiving a SOAP request to continue an active transaction under a session:
1. The NonStop SOAP 4 server resumes the TMF transaction specified in the SessionID attribute

of the transaction header block in the SOAP request header element.
2. The NonStop SOAP 4 server performs the operation specified in the body under the resumed

transaction.
3. If the service does not return a fault or the AbortTransactionOnFault attribute is set to

no, the NonStop SOAP 4 server suspends the TMF transaction and returns the TMF transaction
ID in the SessionID attribute of the session header block in the SOAP response header
element.

4. If the service returns a fault and the AbortTransactionOnFault attribute is set to yes,
the SOAP 4 server will abort the TMF transaction and return a fault response to the client.
Because the previous value for SessionID is no longer valid (the transaction ID it represents
has been committed), the SOAP server generates a temporary session identifier to set in the
SessionID attribute, and returns it in the session header block in the response message.

Example 28 shows a request/response pair of messages to continue a transaction within a session.

Session Management and Transactions 253

Example 28 Continue a Transaction

Client Request

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn:Session SessionID="234567"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn: Session SessionID="234567"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

Commit a Transaction within a Session
To commit an active transaction, the client must set the value of the
CurrentTransactionCommand attribute to Commit in the session header block and also
provide the appropriate SessionID – that is, the SessionID value supplied in the previous
response from NonStop SOAP 4 for this session.
On receiving a SOAP request to commit an active TMF transaction:
1. The SOAP server resumes the TMF transaction specified in the SessionID attribute of the

session header block in the SOAP request header element.
2. The NonStop SOAP 4 server invokes the operation (if specified in the body of the request)

under the resumed TMF transaction.
3. If the service does not return a fault, the SOAP server will commit the transaction.
4. If the service returns a fault and the AbortTransactionOnFault attribute is set to yes,

the SOAP 4 server will abort the TMF transaction and return a fault response to the client.
Because the previous value for SessionID is no longer valid (the transaction ID it represents
has been committed), the SOAP server generates a temporary session identifier to set in the
SessionID attribute, and returns it in the session header block in the response message

5. If the invoked service returns a fault and the AbortTransactionOnFault attribute is set
to no, the SOAP server suspends the TMF transaction and returns the TMF transaction ID in
the SessionID attribute in a session header block along with a SOAP fault.

Example 29 shows a request/response pair of messages to commit a transaction within a session.

254 Transaction Management

Example 29 Commit a Transaction within a Session

Client Request

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn:Session SessionID="234567"
 CurrentTransactionCommand="Commit"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn:Session SessionID="Tempmj12rty67"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

where,
234567

is the TMF transaction identifier of the transaction to be committed.

NOTE: The SOAP request to commit a transaction can also be combined with a request to end
the session.

Abort a Transaction within a Session
To abort an active transaction, the client must set the value of the CurrentTransactionCommand
attribute to Abort in the session header block and provide the appropriate SessionID – that is,
the SessionID value supplied in the previous response from NonStop SOAP 4 for this session.
On receiving a SOAP request to abort an active transaction under a session:
1. The SOAP server resumes the TMF transaction specified in the SessionID attribute of the

session header block of the SOAP request header element.
2. The SOAP server aborts the TMF transaction.
3. If the SOAP message body requests a target service, it will be invoked but there will not be

any active TMF transaction because it has been aborted in step 2.
4. Because the previous value for SessionID is no longer valid (the transaction ID it represents

has been aborted), the SOAP server generates a temporary session identifier to set in the
SessionID attribute, and returns it in the session header block in the response message.

Example 30 shows a request/response pair of messages to abort a transaction within a session.

Session Management and Transactions 255

Example 30 Abort a Transaction within a Session

Client Request

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn:Session SessionID="234567" Command="Abort"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SessionHeader">
<soapenv:Header>
 <urn:Session SessionID="Tempmj12rty67"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

where,
234567

is the TMF transaction identifier of the transaction to be aborted.

NOTE: HP recommends that the body of a request that aborts a transaction be empty. The
transaction is aborted before any service invocation. This means that there will not be an active
transaction when the service is invoked.

End the Session
To end an active session, the client must set the value of the SessionCommand attribute in the
session header block of the SOAP request header element to End and also provide the appropriate
SessionID – that is, the SessionID value supplied in the previous response from NonStop
SOAP 4 for this session.
On receiving a SOAP request to end a session:
1. The NonStop SOAP 4 server ends the temporary session in response to a client request.
2. If the body of the request invokes a target service, the NonStop SOAP 4 server performs the

operation specified in the body without a session.
3. The NonStop SOAP 4 server returns the response to the client.
4. The NonStop SOAP 4 server does not include a session header block in the response message.
Example 31 shows a request/response pair of messages to end a session.

256 Transaction Management

Example 31 End a Session

Client Request

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn:Session SessionCommand="End" SessionID="Tempmj12rty67"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

In this example, the response does not contain a session header block because there is no relevant
session information to be communicated back to the client.
As noted earlier, a client can also choose to commit a transaction and end a session in the same
request as shown in “End the Session” (page ?).

Session Management and Transactions 257

Example 32 Commit a Transaction and End a Session

Client Request

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
 <urn:Session SessionCommand="End" SessionID="234567"
 CurrentTransactionCommand="Commit"/>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

NonStop SOAP 4 Response
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:urn="urn:compaq_nsk_oss_SoapHeader">
<soapenv:Header>
</soapenv:Header>
<soapenv:Body>
 .
 .
 .
</soapenv:Body>
</soapenv:Envelope>

Again, the response does not contain a session header block because there is no relevant session
information to be communicated back to the client now that the session closed.

The Cookie File
The implementation of sessions in previous releases (NonStop SOAP 3 and earlier) used an Enscribe
key-sequenced file (the Cookie file) to maintain a relationship between a unique SessionID
generated by NonStop SOAP and the TMF transaction ID. This was required because the NonStop
SOAP server runs as a TS/MP server class under iTP WebServer and each process instance is
context-free.
Transaction management within NonStop SOAP 4 no longer requires the presence of a session,
and therefore, you do not have to maintain the relationship between session and transaction. While
the session concept has been retained for compatibility with earlier releases, the examples in this
chapter show that the value placed in the SessionID attribute is the actual TMF transaction ID.
New users of NonStop SOAP 4 do not have to use the session construct.
As a result of this new implementation, the Cookie file is no longer required and will not be seen
in this and future NonStop SOAP releases. This improves performance and simplifies management
of the product.

Session Timeout
In NonStop SOAP 3 and earlier releases, the SOAP_SESSION_TIMEOUT attribute was used to
terminate a session. This was an ineffective mechanism, because it did not result in the abort of
any active transaction contained within that session. As a result, SOAP 3 was updated to improve
the meaning of this attribute and use it as the timeout parameter to TMF when a transaction was
started in addition to its previous role of triggering the end of a session.
In NonStop SOAP 4, the SOAP_SESSION_TIMEOUT attribute is no longer used. Instead, the
TMFTimeout attribute is used. The SOAP_SESSION_TIMEOUT attribute is no longer required

258 Transaction Management

because once a transaction is committed or aborted, a session does not have any meaning, and
does not hold any resources in NonStop SOAP, whereas in previous releases, its context was still
maintained in the Cookie file and needed to be deleted once a session was ended.

Subsessions
Previous releases of NonStop SOAP (NonStop SOAP 3 and earlier) supported a feature called
Subsessions, which was designed to allow the SOAP server to maintain a dialog with a
context-sensitive server class. This feature is no longer supported with NonStop SOAP 4.

The SOAP_COOKIE_DELETION_INTERVAL Parameter
In the previous releases, NonStop SOAP supported the configuration parameter
SOAP_COOKIE_DELETION_INTERVAL, which denotes the minimum time interval between two
automated cookie file cleanup operations. NonStop SOAP performs the automated cookie file
cleanup activity when serving the next SOAP request after the cookie file cleanup interval.
This parameter has been removed in NonStop SOAP 4 because the cookie file is no longer present.

Session Management and Transactions 259

13 Using the Contract-First Approach in NonStop SOAP 4
You can use the following approaches to develop client applications and services in NonStop
SOAP 4:

• Contract-first Approach - In this approach, the contract (WSDL file) is defined first, which states
the type of service interface description that the service expects. The service code is generated
based on this information.

• Service-first Approach -In this approach, the service code is written first and the contract (WSDL
file) is generated from the written code.

This chapter describes the procedure to develop a Web service using the contract-first development
approach and includes the following topics:

• “NonStop SOAP 4 Tools for Developing Web Services Using the Contract-First Approach”
(page 260)

• “WSDL Considerations” (page 260)

• “Developing a NonStop SOAP 4 PathwayWeb Service Using the WSDL2PWY Tool” (page 262)

• “Developing a NonStop SOAP 4 Non-PathwayWeb Service Using the WSDL2C Tool” (page 270)

NonStop SOAP 4 Tools for Developing Web Services Using the
Contract-First Approach

NonStop SOAP 4 provides the following tools to develop Web services using the contract-first
approach:
• WSDL2PWY – The WSDL2PWY tool uses a WSDL file as input to generate client stubs and

Pathway service skeleton files. The Pathway service skeleton files are used to generate a
Pathway application that can be deployed as a Web service in NonStop SOAP 4.
The WSDL2PWY tool must be used when developing services implemented as Pathway
applications.

• WSDL2C – The WSDL2C tool uses a WSDL file as input to generate the client stubs and service
skeleton files. The generated service skeleton files implement the basic interface code required
while developing a service using NonStop SOAP 4 service APIs.
The WSDL2C tool must be used when developing services implemented as DLLs using NonStop
SOAP 4 service APIs.
For more information about NonStop SOAP 4 tools, see Chapter 10: “NonStop SOAP Tools”
(page 194).

WSDL Considerations
To develop client applications and services using the contract-first approach, you can use a
pre-defined contract (WSDL file).

Using a Pre-defined WSDL File
To generate the service skeleton files, you can provide a pre-defined WSDL file as an input to
WSDL2PWY tool. The WSDL2PWY tool accepts any WSDL file that conforms to the World Wide
Web Consortium (W3C) standards. WSDL versions 1.1 and 2.0 are supported.

NOTE: The NonStop SOAP 4 server does not support or provides limited support for some WSDL
file elements for the services deployed in Pathway applications.

Table 21 lists the WSDL file elements that are not supported by the NonStop SOAP 4 server.

260 Using the Contract-First Approach in NonStop SOAP 4

NOTE: Ensure that the elements listed in Table 21 are not present in the WSDL file that is provided
as an input to the WSDL2PWY tool. If present, your service may not function as expected.

Table 21 Unsupported WSDL File Elements

DescriptionElements Not SupportedWSDL Components

This element is application-specific and not
supported on Pathway services.

appInfo

Element

This element is not supported because
Pathway can work only with a fixed buffer

Notation

size whereas this element can have variable
buffer sizes.

This element is not supported because it
selects the elements based on constraints,

Selector

such as Key or Keyref elements that are
also not supported.

This element is not supported because the
Pathway service requires a fixed buffer size

Enumeration

XSD Restrictions whereas this element can have variable
buffer sizes.

This option is not supported in the DDL.Whitespace

This element is not supported, because the
Pathway service requires a fixed buffer sizeDatatypes hexBinary whereas this element can have variable
buffer sizes.

Table 22 lists the WSDL file elements that receive limited support from the NonStop SOAP 4 server.

Table 22 WSDL File Elements with Limited Support

DescriptionElements with Limited SupportWSDL Components

NonStop SOAP 4 does not validate or verify
the data sent in the Key element of the
SOAP message.

KeyElement

NonStop SOAP 4 does not validate or verify
the data sent in the Keyref element of the
SOAP message.

Keyref

NonStop SOAP 4 does not validate the
uniqueness of the data sent in the Unique
element of the SOAP message.

Unique

NonStop SOAP 4 does not validate the data
against the specified regular expression
pattern.

PatternXSD Restrictions

NonStop SOAP 4 does not verify the range
of data sent in a NonStop message.

MaxExclusive

NonStop SOAP 4 does not verify the range
of data sent in a NonStop message.

MinExclusive

NonStop SOAP 4 does not validate if the
Web address sent is valid.

anyURI

Datatypes
NonStop SOAP 4 does not validate if the
qualified name sent is valid.

Qname

WSDL Considerations 261

Table 22 WSDL File Elements with Limited Support (continued)

DescriptionElements with Limited SupportWSDL Components

NonStop SOAP 4 does not normalize the
string, sent in the Datatype for white
spaces.

normalizedString

NonStop SOAP 4 handles Duration as
xsd:string.

Duration

NOTE: If you are not using a pre-defined WSDL file, you can create a new WSDL file from the
DDL and SDL files by using the SoapAdminCL tool. For more information on generating a WSDL
file using the SoapAdminCL tool, see “Deploying a Pathway Application and a NonStop Process
as a Web Service ” (page 77).

Developing a NonStop SOAP 4 Pathway Web Service Using the
WSDL2PWY Tool

With the WSDL file for the service, you can create the client stubs and the Pathway service skeleton
files using the WSDL2PWY tool.
To generate the stubs, complete the following steps:
1. Set the OSS environment variable NSSOAP_HOME to the OSS location where the NonStop

SOAP 4 installation directory is located:
OSS> export NSSOAP_HOME=<NonStop SOAP 4 Installation Directory>

For example:
OSS> export NSSOAP_HOME=/usr/tandem/nssoap/t0865h01

where,
/usr/tandem/nssoap/t0865h01 is the NonStop SOAP 4 installation directory location.

2. Add the directory containing the SoapAdminCL executable image to the OSS PATH variable.
OSS> export PATH=<NonStop SOAP 4 Installation Directory>/tools:$PATH

For example:
OSS> export PATH=/usr/tandem/nssoap/t0865h01/tools:$PATH

3. Add the <Java Installation Directory>/bin directory to the PATH environment
variable, using the command:
OSS> export PATH=<Java Installation Directory>/bin:$PATH

For example:
OSS> export PATH=/usr/tandem/java/bin:$PATH

where,
/usr/tandem/java/

is the Java installation directory.
4. Generate the service skeleton files using the WSDL2PWY tool, using the following command:

OSS> WSDL2PWY -o <output directory> -ss -uri <wsdl path>

where,
-o

specifies the directory path for the generated files.
-ss

generates the service skeleton files. If this option is not specified, the service skeleton files
are not generated by the WSDL2PWY tool.

262 Using the Contract-First Approach in NonStop SOAP 4

-uri

specifies the location where the WSDL file is available.
For example:
OSS> WSDL2PWY -o "/home/usr/my_nssoap/services/reflector" -ss
 -uri "/home/usr/my_nssoap/services/reflector/SoapPW_reflector.wsdl"

where,
/home/usr/my_nssoap/services/reflector is the location where the service skeleton
files will be generated.

NOTE: Verify that the location of the Java executable object is included in the PATH
environment variable. If not included, the WSDL2PWY tool will not be able to detect the Java
object during runtime and will return an error.

On successful execution, the following files are generated:
• Service skeleton files

The following service skeleton files are generated under the src directory in the location
specified in the -o option of the WSDL2PWY command:

◦ Service skeleton source file to implement your application business logic.

◦ Header file that holds the declarations for the functions generated in the service
skeleton source file.

NOTE: If the -o option is not specified, the files are generated in the src directory
under the current directory.

For example:
In case of the reflector service, the following files are generated in the <NonStop
SOAP 4 Deployment Directory>/services/reflector/src directory:

◦ pwayreflectorService.c

◦ pwayreflectorService.h

• Makefile
The Makefile_serviceMakefile is generated in the location specified in the –o option
of the WSDL2PWY command. If the -o option is not specified, the file is generated in the
current directory.

5. Update the service skeleton files with the service business logic.
The WSDL2PWY tool generates a source code file and a header file for each service specified
in the WSDL file. The source code file for the service contains the following functions:
a. main()

The main function expects two arguments, a character pointer array (char *argv[])
and an integer value (int argc). argv includes arguments passed to the function while
starting the server executable, whereas argc includes a value equivalent to the number
of arguments passed to the function.
i. The main()function opens the $RECEIVE file and waits till a request is received by

the service using the READUPDATEX procedure call.
ii. After a request is received, the main()function checks if any error occurred while

reading the request.
iii. If no error is found, the request buffer is passed to the

process_application_message()function.

Developing a NonStop SOAP 4 Pathway Web Service Using the WSDL2PWY Tool 263

iv. If an error occurs, the request is passed to the process_system_message() or
file_error()function based on the error value.

v. After a response is returned to the calling NonStop SOAP 4 server, the $RECEIVE
file is closed.

NOTE: The response buffer size is 32k. Use the -lps option while generating the
skeleton files to pass large data. The data size limit is 2M.

b. process_application_message()

The process_application_message() function expects a character buffer as an
argument (char *recv_buff). The character buffer includes the request received by
the service. You must update this function to include calls to any operation-specific functions
based on your requirements.
The call to REPLYX is generated by the WSDL2PWY tool in the
process_application_message function. This call returns the reply generated by
the service to the calling NonStop SOAP 4 server.

c. operation_pway_<operation_name>

The WSDL2PWY tool generates a function skeleton file for each operation specified in the
WSDL file. The operation_pway_<operation_name> function has the following
information passed as arguments in it:
• A character buffer that includes the request received by the service

• A pointer to a character buffer including the response that the function will generate

• A pointer to a short datatype that contains the size of the response being returned
The operation_pway_<operation name> function contains the structure definitions
of the request, response, and fault structures defined in the WSDL file. These structures
are defined in the generated header file.

For the reflector service, the following functions defined by the WSDL2PWY tool must be
customized as follows:
• main

In the case of the reflector service, the main function appears as follows:
 1 int main (int argc, char *argv[])
 2 {
 3 /**
 4 * Variable Definitions
 5 */
 6
 7 /**
 8 * recv_num contains the file identifier for $RECEIVE
 9 */
 10 short recv_num = 0;
 11
 12 /**
 13 * receiveinfo variable is defined to be passed as argument
 14 * to FILE_GETRECEIVEINFO_
 15 */
 16 short receive_info[17];
 17
 18 /**
 19 * recv_name_length contains the length of variable recv_name
 20 */
 21 short recv_name_length = 0;
 22
 23 /**
 24 * count_read is passed as argument to READUPDATEX and will contain
 25 * the number of bytes read from $RECEIVE
 26 */
 27 unsigned int count_read = 0;
 28 short error = 0;
 29
 30 /**
 31 * recv_buff is a character buffer to contain
 32 * the client request buffer received
 33 */
 34 char recv_buff[RECV_BUFFER_LENGTH];
 35 const char recv_name[] = "$RECEIVE";

264 Using the Contract-First Approach in NonStop SOAP 4

 36
 37 recv_name_length = (short)strlen(recv_name);
 38
 39 /**
 40 * FILE_OPEN_ is called to obtain a unique file identifier (recv_num)
 41 * for $RECEIVE
 42 */
 43 error = FILE_OPEN_(recv_name,
 44 recv_name_length,
 45 &recv_num,
 46 , /* Access */
 47 , /* Exclusion */
 48 , /* Nowait depth */
 49 1); /* Receive Depth */
 50
 51 if (recv_num == -1)
 52 {
 53 printf(" Error while Opening $RECEIVE \n ");
 54 printf(" Error is = %d \n " , error);
 55 exit(1);
 56 }
 57
 58 while (1)
 59 {
 60 /**
 61 * Initialising the request buffer
 62 */
 63 memset(recv_buff, '\0', RECV_BUFFER_LENGTH);
 64
 65 /**
 66 * Read $RECEIVE file and return the number of bytes read in
 67 * variable count_read and the data in recv_buff
 68 */
 69 READUPDATEX(recv_num,
 70 (char *)recv_buff,
 71 RECV_BUFFER_LENGTH - 1,
 72 &count_read);
 73
 74 /**
 75 * FILE_GETINFO_ will return the file system error resulting
 76 * from the last operation on file id recv_num in variable error
 77 */
 78 FILE_GETINFO_(recv_num, &error);
 79
 80 /**
 81 * FILE_GETRECEIVEINFO_ will return information about the last
 82 * message read on $RECEIVE file in variable receiveinfo
 83 */
 84 FILE_GETRECEIVEINFOL_((short *)&receive_info);
 85
 86 switch (error) {
 87 /**
 88 * Process Application message.
 89 */
 90 case NO_ERROR:
 91 process_application_message(recv_buff, count_read);
 92 break;
 93
 94 /**
 95 * Process System message.
 96 */
 97 case SYSTEM_MSG:
 98 process_system_message((short *)receive_info);
 99 break;
 100
 101 default:
 102 file_errors(error);
 103
 104 } /* End of switch statement */
 105
 106 /**
 107 * Setting the value of count_read to 0 at the end of request processing
 108 */
 109 count_read = 0;
 110
 111 /**
 112 * if no opens are pending, then break the while loop and exit
 113 */
 114 if (!totalOpenCnt)
 115 break;
 116 } /* while end */
 117
 118 error = FILE_CLOSE_(recv_num);
 119 if (error != 0)
 120 {
 121 printf(" Error while Closing $RECEIVE \n ");
 122 printf(" Error number is = %d \n " , error);
 123 }
 124 return 0;

Developing a NonStop SOAP 4 Pathway Web Service Using the WSDL2PWY Tool 265

 125 } /* End of main() */
 126

The recv_num variable contains the file identifier for the $RECEIVE file and must be
initialized to 0.

Line 10

Defines the receiveinfo variable. The receiveinfo variable is passed as an
argument to the FILE_GETRECEIVEINFO_ call.

Line 16

The recv_name_length variable contains the length of the recv_name variable
and must be initialized to 0.

Line 21

The count_read variable contains the number of bytes read from $RECEIVE and is
passed as an argument to READUPDATEX. The count_read variable must be initialized
to 0.

Line 27

Checks the returned error.Line 28

recv_buff is a character buffer that contains the received client request. Set the
length of recv_buff to the maximum size of the response buffer (32KB).

Line 34

Initializes a variable with the $RECEIVE file name and another variable with the length
of the $RECEIVE file name.

Line 35 - Line 37

The FILE_OPEN_ call is called to obtain a unique file identifier (recv_num) for
$RECEIVE. FILE_OPEN_ opens the $RECEIVE file.

Line 43 - Line 49

Error handling if the FILE_OPEN is not able to open the $RECEIVE file.Line 51 - Line 56

Breaks the continuous loop if the server stops because of some error.Line 58- Line 116

Initializes the request buffer with NULL values.Line 63

Reads the $RECEIVE file and returns the number of bytes read in count_read variable
and the data in recv_buff. At this point, the server waits until it receives a request
from the client.

Line 69- Line 72

The FILE_GETINFO_ call returns a file system error if an error occurred in the last
operation on recv_num file id. The error is returned in the error variable.

Line 78

FILE_GETRECEIVEINFO_ call returns information about the last message read in
the $RECEIVE file.

Line 84

The switch statement handles the error returned by FILE_GETINFO.Line 86 - Line 104

In case of no error (NO_ERROR), call the process_application_message()
function.

Line 90 - Line 92

In case of system message (SYSTEM_MSG), call the process_system message()
function.

Line 97 - Line 99

In case of other errors, call the file_errors() function.Line 101 - Line 102

Sets the value of count_read to 0 at the end of request processingLine 109

If no files are open, break the while loop and exit.Line 114- Line 115

Close the $RECEIVE file if the while loop breaks.Line 118

Error handling if an error occurs while closing the $RECEIVE file.Line 119 - Line 123

Return statementLine 124

• process_application_message

In the case of the reflector service, the process_application_message() function
appears as:
 1 void process_application_message(char * recv_buff, unsigned long count_read) {
 2
 3 short error = 0;
 4
 5 /**

266 Using the Contract-First Approach in NonStop SOAP 4

 6 * count_transferred defined to be passed as argument
 7 * to operation_pway_<operation name> function.
 8 * This variable will contain size of the
 9 * response buffer.
 10 */
 11 unsigned long count_transferred = 0;
 12
 13 /**
 14 * response_buffer defined to be passed as argument
 15 * to operation_pway_<operation name> function.
 16 * This variable will contain the response buffer
 17 */
 18 char *response_buffer;
 19
 20 /**
 21 * TO DO :
 22 * Write the logic to invoke the functions defined for each operation.
 23 * Sample call:
 24 * operation_pway_<operation name>(recv_buff,
 25 * &response_buffer,
 26 * &count_transferred,
 27 * count_read);
 28 */
 29
 30 error = REPLYX(response_buffer, count_transferred) ;
 31 if (error != 0) {
 32 printf(" Error while using REPLYXL to transfer application message \n ");
 33 printf(" Error number is = %d \n ", error);
 34 file_errors(error);
 35 }
 36
 37 } /* End of process_application_message() */
 38

The error variable is used to check the returned error and is initialized to 0.Line 3

The count_transferred variable is defined to be passed as an argument to the
operation_pway_<operation name> function. The count_transferred
variable contains the size of the response buffer.

Line 11

Function call for each operation.Line 20- Line28

Write a response to the $RECEIVE file using the REPLYX call.Line 30

Error handling if an error occurs while writing the response to the $RECEIVE file.Line 31- Line 35

• operation_pway_REFLECTOR

The WSDL file for the reflector service defines a single operation named REFLECTOR.
Therefore, the WSDL2PWY tool generates a function for the REFLECTOR operation named
operation_pway_REFLECTOR. The code snippet for the operation_pway_REFLECTOR()
function is:
 1 /**
 2 * This function contains the business logic for operation: REFLECTOR
 3 *
 4 * Arguments:
 5 * request_buffer - This is a character pointer that contains the request
 6 * buffer received from NonStop SOAP 4 server.
 7 * response_buffer - This is an output variable and will contain the response
 8 * buffer
 9 * reply_count - This is an output variable and will contain the size of
 10 * the response buffer
 11 * count_read - This is a variable of unsigned long datatype which contains the
 12 * size of the request buffer
 13 * Return Type: void
 14 */
 15 void operation_pway_REFLECTOR(char *request_buffer, char **response_buffer, unsigned long
*reply_count, unsigned long count_read)
 16 {
 17
 18 short fileError; 19
 20 /**
 21 * Request structure variable definition
 22 */
 23 pwayREFLECTOR_t* req_1;
 24
 25 /**
 26 * Response structure variable definition
 27 */
 28 pwayREFLECTORResponse0_t* resp_1;
 29
 30
 31 /**
 32 *

Developing a NonStop SOAP 4 Pathway Web Service Using the WSDL2PWY Tool 267

 33 * Write the code implement business logic. The response buffer
 34 * needs to be written into variable response_buffer and response
 35 * size needs to be written into variable reply_count.
 36 * The memory needed for the response structure also needs to be
 37 * allocated.
 38 */
 39 }
 40

Following is a list of functions based on the code sample:

FunctionLine Number(s)

The fileError variable is used to check the returned error and must be
initialized to 0.

Line 18

Request structure variable definition.Line 23

Response structure variable definition.Line 28

Write the code to implement your business logic. The response buffer must be
written in the response_buffer variable and the response size must be
written in the reply_count variable.

Line 31- Line 38

After customizing the service skeleton files generated by the WSDL2PWY tool, build the service
object by running the Makefile_service file generated by the WSDL2PWY tool. To run the
Makefile_service file, enter the following command:
OSS> make –f Makefile_service

On successful execution of the previous command, an object named <service_name>.pway
is created in the same location as the Makefile (Makefile_service). For example, the
reflector service will have an object name reflectorService.pway.
After generating the service object, you must configure it as a Pathway server class.
To configure the service object as a Pathway server class, complete the following steps:
1. Create the <service_name>/src directory in <NonStop SOAP 4 Deployment

Directory>/services/<service_name>.
2. Copy the conf directory from /usr/tandem/nssoap/t0865h01/sample_services/

reflector/ to <NonStop SOAP 4 Deployment
Directory>/services/<service_name>.

For example, in case of the reflector service, copy the conf directory to the <NonStop
SOAP 4 Deployment Directory>/services/reflector directory.

3. Copy the <service_name>.pway object from its existing location to <NonStop SOAP
4 Deployment Directory>/services/<service_name>/src.
For example, in case of the reflector service, copy reflectorService.pway to
the <NonStop SOAP 4 Deployment Directory>/services/reflector/src
directory.

4. Rename the <service_name>.pway object to service name.
For example, in case of the reflector service, rename reflectorService.pway
to reflector.

5. Run the pathConf script:
OSS> ./pathConf <Pathmon name>

For example, to configure the reflector service under the PATHMON named $ECHO,
use the following command:
OSS> ./pathConf \$ECHO

The service object is now configured as a Pathway server class.

268 Using the Contract-First Approach in NonStop SOAP 4

Deploying a NonStop SOAP 4 Pathway Web Service
A NonStop SOAP 4 Pathway Web service can be deployed using an external WSDL file (a WSDL
file not generated by the SoapAdminCL tool).
To deploy the Pathway Web service using an external WSDL file, complete the following steps:
1. Place the WSDL file in the <NonStop SOAP 4 Deployment

Directory>/services/<service_name> directory.
For example, in case of the reflector service, place the WSDL file for the reflector
service in the <NonStop SOAP 4 Deployment Directory>/services/reflector
directory.

2. Next, you must create a services.xml file for your service. You can start by copying an
existing services.xml file to your service directory and then modify it to reflect information
about your particular service. A sample services.xml file is found in the <NonStop SOAP
4 Installation Directory>/sample_services/echo directory.

3. Edit the services.xml file to reflect the configuration settings for your business environment.
NonStop SOAP 4 reads the services.xml file at run-time to deploy the service based on
the instructions set in the services.xml file.
The services.xml file is used to set the following configuration parameters:
1. Define service description parameters, such as name of the service, name of the service

class, path of the service WSDL file, name of the PATHMON or process, and the server
language.

2. Define the response selection criteria in case the service is designed to support multiple
valid responses.

3. Configure transaction management specific parameters such as, granularity of the TMF
transaction support and the operation-specific timeout.

4. Specify references of any modules that need to be engaged at the service level.
5. Specify the message exchange pattern and the message receiver that each operation

needs to use.

NOTE: For more information on services.xml file, see “NonStop SOAP 4 Configuration
Files” (page 177).

4. Save and close the services.xml file.

Accessing a NonStop SOAP 4 Pathway Web Service
To access the deployed reflector service, complete the following steps:
1. Go to the <iTP WebServer Deployment Directory>/conf directory and run the

restart script:
OSS> cd <iTP_WebServer_Deployment Directory>/conf
OSS> ./restart

Developing a NonStop SOAP 4 Pathway Web Service Using the WSDL2PWY Tool 269

2. Access the reflector service, using the following Web address pattern:
http://<ip address>:<port>/<url_pattern>/client

where,
<ip address>:<port>

is the IP address and port of iTP WebServer integrated with NonStop SOAP 4.
url_pattern

is the string entered in Step 6 in “Setting up the Deployment Environment” (page 38). The
default value is axis2c.

client

is the name of the directory in <NonStop SOAP 4 Deployment Directory> where
NonStop SOAP 4 HTML clients for the reflector service are located.

Developing a NonStop SOAP 4 Non-Pathway Web Service Using the
WSDL2C Tool

The WSDL2C tool helps in generating a service that can be deployed as a non-Pathway service in
NonStop SOAP 4. This tool is located in the <NonStop SOAP 4 Installation
Directory>/tools directory. For more information on the WSDL2C tool, see Chapter 10:
“NonStop SOAP Tools” (page 194).
The WSDL2C tool accepts any WSDL file that complies with the W3C standards. However, the
WSDL file restrictions for the WSDL2PWY tool (see Table 21 (page 261)) are not applicable for the
WSDL2C tool.
To create a service using the WSDL2C tool, complete the following steps:
1. Use an existing WSDL file or create a new WSDL file.
2. Develop a non-Pathway service using the WSDL2C tool.
3. Compile the service and deploy it in the NonStop SOAP 4 server.
For more information on creating services and clients using the WSDL2C tool, see “Generating the
Service Skeleton Files” (page 100) and “Generating NonStop SOAP 4 Client Stubs using the WSDL2C
tool” (page 119).

270 Using the Contract-First Approach in NonStop SOAP 4

14 WS–Security in NonStop SOAP 4
WS-Security provides a platform to secure your services beyond transport level protocols, such as
HTTPS. HTTPS performs a secure message transfer from one end point to another. However, in the
real world, the message is transferred over multiple domains and you must preserve the identity,
integrity, and security of the message across multiple trusted domains or points. WS-Security
provides an end-to-end solution for Web service security.
WS-Security allows you to perform the following:

• Pass authentication tokens between services

• Encrypt messages or part of messages

• Sign messages

• Timestamp messages
NonStop SOAP 4 uses Axis2c Rampart module to implement WS-Security. WS-Security can be
activated by using WS-SecurityPolicy 1.1. WS-SecurityPolicy 1.1 provides a set of standards for
validating the security properties of a received message.
You can configure the client with the help of algorithms that are supported in WS-SecurityPolicy.
You cannot secure the NonStop SOAP service with a non WS-SecurityPolicy approach.
The Axis2c Rampart module provides an implementation of the primary security standards for Web
Services, such as the OASIS Web Services Security specification from the OASIS Web Services
Security TC.
The Rampart module provides an implementation of the following WS-Security standards:

• SOAP Message Security V1.0 (http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0.pdf)

• Username Token Profile V1.0 (http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0.pdf)

• X.509 Certificate Token Profile V1.0 (http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-x509-token-profile-1.0.pdf)

This chapter includes the following topics:
• “Overview of Encryption and Signing” (page 271)

• “Supported WS–Security Features ” (page 273)

• “Securing a NonStop SOAP 4 Service” (page 274)

• “Rampart Specific Assertions ” (page 275)

• “Publishing the Security Requirements” (page 277)

• “Configuring the Client to Invoke a Secured Web Service” (page 277)

• “Extensible Modules ” (page 278)

• “Sample Programs” (page 279)

• “Recommendations” (page 284)

Overview of Encryption and Signing
WS-Security uses public or private key cryptography. Public key cryptography contains a pair of
public and private keys. Although different, the two parts of the key pair are mathematically linked.
These are generated by using a large prime number and a key function.

Overview of Encryption and Signing 271

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

Figure 19

52ED879E
70F71D92

Big Random Number

Alice’s Public Key Alice’s Private Key

Key Generation
Function

Alice

These keys are used to encrypt the messages. For example, if Bob wants to send a message to
Alice, he can encrypt a message using her public key. Alice can then decrypt this message using
her private key. Only Alice can decrypt this message as she is the only one with the private key.

Figure 20

Alice’s Public Key

Hello Alice! Encrypt

6EB69570
08E03CE4

Alice’s Private Key

Hello Alice! Decrypt

Alice

Bob

Messages can also be signed. You can ensure the authenticity of the message. If Alice wants to
send a message to Bob, and Bob wants to be sure that it is from Alice, then Alice can sign the
message by using her private key. Bob can then verify that the message is from Alice by using her
public key.

272 WS–Security in NonStop SOAP 4

Figure 21

Alice’s Public Key

I will pay $500 Sign
(Encrypt)

DFCD3454
BBEA788A

I will pay $500 Verify
(Decrypt)

Bob

Alice

Alice’s Private Key

Supported WS–Security Features
The Rampart module, when engaged with NonStop SOAP 4, provides the following security
features:
1. SOAP message encryption

Any part of the SOAP message can be encrypted. NonStop SOAP 4 supports the following
levels of message encryption:

• Derived key support for additional security

• Symmetric and Asymmetric modes of operation

• Support for Advanced Encryption Standard (AES) and Triple Data Encryption Standard
(DES)

• Signature encryption

• Keys encryption

2. SOAP message signature
Any part of the SOAP message can be signed using a private key to maintain the integrity of
the SOAP message.
NonStop SOAP 4 supports the following levels of message signature:

• XML signature with RSA-SHA1 algorithm

• Message authentication with HMAC-SHA1 algorithm

• Signature confirmation support

• SOAP Header signing

3. Support for Key Store
X.509 certificates and private keys are supported. The keys are stored in the Privacy Enhanced
Mail (PEM) files.

Supported WS–Security Features 273

4. Timestamps
Allows timestamps to be added to a message to enable the server to verify the message validity
in terms of each SOAP message.

5. Username Tokens
NonStop SOAP 4 can send and verify username tokens with Username and plaintext password
or Username and digested password.

6. Protection Orders
NonStop SOAP 4 supports encrypt before signing and sign before encrypting.

7. Extensible Modules
NonStop SOAP 4 supports password provider module and authentication module.

8. Keys Management
NonStop SOAP 4 supports X.509 token profile and Key identifiers, Thumb prints, Issuer or
Serial pairs, embedded, and direct references key management techniques.

NOTE: Fault messages cannot be secured.

Securing a NonStop SOAP 4 Service
You can use the following steps to secure a NonStop SOAP 4 service:
1. Setting up the key store

To sign or encrypt messages back and forth, both the client and the service must posses
public-private key pairs. If you are going to secure your service with XML signature or encryption
techniques, you must have the X.509 certificates. For testing your service on a development
environment, you can either create the X.509 certificate yourself by using the required tools,
such as OpenSSL or you can use the certificates that are shipped with the sample programs.
You must get the certificates from a Certification Authority when the services are secured on
the production environment.

2. Writing the password provider
The Rampart module uses a password provider library to authenticate the username tokens
and to retrieve the private key to sign SOAP messages. Each private key has a password
associated with it. To retrieve the private key, you must provide the password of the relevant
key. The sample password provider included in the sample program reads password for the
username/private key from a flat file. You can change the sample password provider to
retrieve the passwords from a database, a LDAP server or any other storage by writing the
relevant password retrieval logic.

3. Constructing the security policy
In NonStop SOAP 4, a policy based configuration approach is followed to configure the
security. You must construct a suitable security policy using WS-SecurityPolicy1.1 to define
the security requirements of the Web service. WS-SecurityPolicy1.1 is built on top of WS-Policy
framework and defines a set of policy assertions that can be used in defining individual security
requirements or constraints. The individual policy assertions can be combined by using policy
operators defined in the WS-Policy framework to create security policies that can be used to
secure messages exchanged between a Web Service and a client. You can use the security
policies defined in the sample services.xml or policy.xml as template to build your
own policies. For more information on the sample programs, see “Sample Programs” (page 279).
The complete specification of WS-SecurityPolicy can be found at http://specs.xmlsoap.org/
ws/2005/07/securitypolicy/ws-securitypolicy.pdf .

274 WS–Security in NonStop SOAP 4

http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf

4. Providing Rampart specific configuration details
Rampart module uses RampartConfig assertion to provide Rampart specific configuration
details to Rampart Engine. You can use this configuration to specify the username, password
type, path to the password provider library, and the path to certificates used for signing and
encryption. Based on your security requirements, you can add the required RampartConfig
assertions to the security policies. For more information about Rampart configuration assertions,
see “Rampart Specific Assertions ” (page 275).

5. Applying the security policy
You can use the service descriptor services.xml file to engage the Rampart module and
to apply the security policy to the Web service. The services.xml file is located at
<Nonstop SOAP 4 Deployment Directory>/services/<service_name>.
To engage the Rampart module, you must add the element <module ref=”rampart”/> in
services.xml file.
To apply the security policy, add the policy that you have created for the service in the
services.xml file.
The following sample shows the rampart enabled and security policy enabled services.xml
file:
<service name="sec_echo1">
<parameter name="ServiceClass" locked="xsd:false">sec_echoparameter name="ServiceClass"
locked="xsd:false">sec_echo</parameter>
<description>This is a testing service.description>This is a testing service.</description>
<module ref="rampart"/>
<operation name="echoString">
<parameter name="wsamapping">http://example.com/ws/2004/09/policy/Test/EchoRequest</parameter>
</operation>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<!--Your policies are here-->
</wsp:Policy>
</service>

You can also engage the Rampart module for all the Web services by adding<module
ref=”rampart”/> in axis2.xml. The axis2.xml is located at <NonStop SOAP 4
deployment directory>.
The following sample displays the axis2.xml file with rampart module enabled:
<axisconfig name="Axis2/C">

<!-- ============= -->
<!-- Global Modules -->
<!-- ============= ->
.....
<module ref="rampart"/>
.....
</axisconfig>

If you add <module ref="rampart"/> element in axis2.xml, then you need not add this
element in services.xml.

6. Restart the NonStop SOAP 4 server.
OSS>./<iTP WebServer Deployment Directory>/conf/restart

NOTE: If the service is regenerated through SoapAdminCL, the security policies in the
services.xml are removed.

Rampart Specific Assertions
Rampart specific policy assertions can be used along with WS-SecurityPolicy assertions while
securing the services.
Table 23 displays the RampartConfig assertions:

Rampart Specific Assertions 275

Table 23 Rampart Specific Assertions

ExampleDescriptionParameter

<rampc:User>Bob</rampc:User>This denotes the username that must be
used in the UserNameToken.

User

<rampc:EncryptionUser>b
</rampc:EncryptionUser>

This denotes the username that must be
used to retrieve the password of the
private key. You can retrieve the

EncryptionUser

password by using a password
callback provider.

<rampc:PasswordType>Digest
</rampc:PasswordType>

This denotes the password type to be
used in UserNameToken. The valid
values are plainText or Digest.

PasswordType

<rampc:PasswordCallbackClass>
/usr/tandem/nssoap/t0865h01_AAL/sample_services/

This denotes the path to the password
provider library that provides the

PasswordCallbackClass

sec_echo/service/libpwcb.so
</rampc:PasswordCallbackClass>

password required to create the
UsernameToken or to sign the message.

<rampc:AuthnModuleName>
/usr/tandem/nssoap/t0865h01_AAL

This denotes the path to the
Authentication Module library. This can

AuthnModuleName

/sample_services/sec_echo/service
/libmod_authn.so</rampc:AuthnModuleName>

be used on the server side if you want
to have your own authentication logic
for validating the UserNameToken. The
Rampart module invokes this library by
passing the username and password.

<rampc:ReceiverCertificate>
/usr/tandem/nssoap/t0865h01_AAL/sample_services

This denotes the Path to the receiver’s
public key.

ReceiverCertificate

/sec_echo/service/alice_cert.cert
</rampc:ReceiverCertificate>

<rampc:Certificate/usr
/tandem/nssoap/t0865h01_AAL/sample_services

This denotes the Path to the public key.Certificate

/sec_echo/service/bob_cert.cert
</rampc:Certificate>

<rampc:PrivateKey>/usr
/tandem/nssoap/t0865h01_AAL/sample_services

This option denotes the path to the
private key.

PrivateKey

/sec_echo/service/bob_key.pem
</rampc:PrivateKey>

<rampc:TimeToLive>10</rampc:TimeToLive>This is used to create the Expires
element in the TimeStampToken. This

TimeToLive

parameter can be used to specify the
validity time for the message.

<rampc:ClockSkewBuffer>
10rampc:ClockSkewBuffer>10
</rampc: ClockSkewBuffer>

This option is used to adjust the server
time while validating the
TimeStampToken, if the client and
server clocks are not in sync. The

ClockSkewBuffer

TimeStampToken is considered valid
only if Message Created time in
the Request < Current time
of the Server < Message
Expires time in the Request.
If ClockSkewBuffer is mentioned, it is
added to the server time, while
validating the TimeStampToken. The
value is in seconds.

<rampc:PrecisionInMilliseconds>
truerampc:PrecisionInMilliseconds>
true</rampc:PrecisionInMilliseconds>

If this flag is set to true, the Rampart
module creates and validates the
TimeStampToken with milliseconds
precision.

PrecisionInMilliseconds

276 WS–Security in NonStop SOAP 4

Publishing the Security Requirements
The security requirements of the NonStop SOAP 4 service must be shared with the client program
developer to build a secured SOAP message. The service developer provides the client program
developer with a policy.xml file that contains the WS-SecurityPolicy assertions.
You can extract the <wsp:Policy>.....</wsp:Policy> tag from services.xml to create
a policy.xml file that can be sent to the client.
Apart from the policy.xml, the service developer must share the username and password if the
security requirement has username token policies. Service developer must communicate the username
details to the client developer in a secured way.
If your security requirement has encryption, then you must also share the public key. The public
key is used to encrypt SOAP message.

Configuring the Client to Invoke a Secured Web Service
Based on the security requirements of the service, you can configure the client to build a secure
SOAP message.

Configuring the Axis2c Client
Before you start the client configuration, you must have the Axis2c libraries that include the Rampart
module installed on your system. You can use the Rampart module library to build a secure SOAP
message.
NonStop SOAP service is based on Axis2c and hence configuring the Axis2c client is straightforward
with the artifacts shared by the service developer.
The steps used to configure the Axis2c client are:
1. Create a client repository

Client repository is a local directory which is used by the Axis2c client to read the configuration
files.
a. Create a local directory and copy the policy.xml file shared by the service developer.
b. Copy the axis2.xml, Axis2c libraries, and Rampart module from your Axis2c installation

directory to the client repository.
If you are planning to run the client program from the system where NonStop SOAP 4
server is installed, then you must not install Axis2c separately. The required objects can
be copied from <NonStop SOAP 4 Deployment Directory>
You can access the files from the following paths:
<NonStop SOAP 4 Deployment Directory> – This folder contains the axis2.xml file.
<NonStop SOAP 4 Deployment Directory>/lib – This folder contains the Axis2c libraries.
<NonStop SOAP 4 Deployment Directory>/modules/rampart – This folder contains the
Rampart module.

c. You must ensure that the Rampart module is enabled and the security phase is activated
in axis2.xml. The following shows the rampart module enabled in axis2.xml:
<axisconfig name="Axis2/C">
.............
<!-- ============= -->
<!-- Global Modules -->
<!-- =============== -->
.........
<module ref="rampart"/>
<!-- ============== -->
<!-- Phases -->
<!-- ============== -->
<phaseOrder type="inflow">
<!-- System pre defined phases-->
<phase name="Transport"/>
<phase name="PreDispatch"/>
<phase name="Dispatch"/>
<phase name="PostDispatch"/>

Publishing the Security Requirements 277

<!-- End system pre defined phases-->
<!-- After PostDispatch phase, module or service author can add any phase as required-->
<!-- User defined phases could be added here -->
<!--phase name="userphase1"/-->
<phase name="Security"/>
</phaseOrder>
<phaseOrder type="outflow">
<!-- User defined phases could be added here -->
<!--phase name="userphase1"/-->
<!--system predefined phase-->
<phase name="MessageOut"/>
<phase name="Security"/>
</phaseOrder>
......
</axisconfig>

2. Setting up the key store
To encrypt the message that is sent to the server, the client must have the public key of the
service. You can take the public key from the service developer.
If the client wants to sign a message, then you must have a private key (X.509 certificate).
You can use OpenSSL to create a certificate yourself or get it from Certification Authority.

3. Writing the password provider
This is similar to the password provider library provided by the service provider. This library
provides the password for the client’s private key and for the username token.

4. Configuring the Rampart module
The policy.xml file shared by the service developer, contains the Rampart specific
configuration details, such as password provider library location, public key, and private key
locations. You must change the path to your key store and the password provider library.

5. Invoking the service
For invoking a Web service from Axis2c client, you must provide the client repository path in
your program as follows:
svc_client = axis2_svc_client_create(env, "/my/path/to/client/repository");

Configuring Non–Axis2c Clients
You can invoke the NonStop SOAP 4 service from other client programs, such as .NET or Java.
The client program must have the required framework to build the secure SOAP message.
The two methods to configure the client are:

• WS-SecurityPolicy approach:
The policy.xml can be used by the tools to build the stubs. The policy.xml contains
Rampart specific assertions such as path to certificates. Based on your framework requirements,
these assertions must be replaced or removed.

• Non WS-SecurityPolicy approach:
The policy.xml shared by the service developer can be used for security requirements.
Accordingly, you can configure the client program to meet the security requirements.

Extensible Modules
The service developer or a client program developer can customize the password lookup functionality
of a Rampart module to suit the customer requirement. The service developer can also customize
the authentication functionality of the Rampart module.
The following are the two Rampart modules that can be extended:

278 WS–Security in NonStop SOAP 4

1. Password provider
• The service verifies if the incoming request message has the proper password set. For

this, the Rampart module must retrieve the password associated with the username from
the service and compare it with the one that is set in the request message.

• The password can be stored in a database, LDAP or some other storage based on the
service requirements.
To make the password retrieval logic more flexible, Rampart provides the password
callback provider. You can create a password callback provider with an user defined
password retrieval logic.
The provider can be linked with the rampart by specifying the rampart module assertion
“PasswordCallbackClass” in the security policies. While processing the request at runtime,
rampart module invokes the password provider library by passing the username, to get
the password for the user.

• You can notice the sample password provider placed at “Sample Programs” (page 279).
You can also use this provider to retrieve the password to read the private key for signing
the message.
The developer must add the rampart assertion ‘EncryptionUser’ in the policy file to retrieve
the password for the private key.

• You can use a flat file or database to associate the password to the user.
Rampart module invokes the provider with the help of the username to retrieve the
password. The password can be used to validate the UserNameToken or to read the
private key.

The client program developer who uses Axis2c service can also use the same steps to retrieve
the password.

2. Authentication provider
The Rampart module uses the username mentioned in the request message to invoke the
password provider. The actual authentication happens inside the Rampart module. To customize
the authentication functionality, the authentication provider can be added in the security policy
by using the rampart assertion AuthnModuleName.
For more information on the sample authentication provider, see “Sample Programs” (page 279).

Sample Programs
The developer can locate the WS-Security sample programs at <NonStop SOAP 4 Installation
Directory>/sample_services/sec_echo
The descriptions about the different directories that are placed in the sec_echo folder are:

Table 24 WS-Security Sample Programs Directory

DescriptionDirectory

This directory contains the source of the sample service. The developer
can configure different security scenarios that are described under

Service : ./service

the secpolicy folder. The service returns the same message that it
receives from the client.

This directory contains the source of the client program that can send
secured SOAP messages.

Client: ./client

This directory provides several scenarios that displays how the
WS-Security features can be configured through WS-SecurityPolicy

Security policies:
./secpolicy/scenarioX

language. For more information on WS-Security scenarios, see
“WS-Security Scenarios ” (page 281).

Sample Programs 279

Table 24 WS-Security Sample Programs Directory (continued)

DescriptionDirectory

This directory contains the source of sample password provider library
that can be used to retrieve the password for UserNameToken and
for a private key.

Password Provider :
./extensible_modules/password_provider

This directory contains the source of a sample authentication provider
library. The developer can customize the validation of UserNameToken
by using this library.

Authentication Provider :
./extensible_modules/authn_provider

This directory contains all the certificates and private keys that are
used in the samples. The files with the extension .pem contain the

Keys : ./keys

private key. The files with the extension .cert contain the certificate
that has the public key.

This directory contains the data files, such as passwords that are used
in the samples.

Data : ./data

This script sets up the client repository that is needed to run the client
program.

setup.sh

This script secures the client and service based on the given scenario
number and then runs the client program.

run_scenario.sh

This file is used by the client program to engage the rampart module.client_axis2.xml

This file has the instructions to run the sample programs.README

Functionality of the Sample Client and Server Program
The client builds a "Hello" request message and secures the message by using policies defined
in the policy.xml file. Then, the client invokes the secured service and prints the response to the
console. The client uses Axis2c Rampart module to secure the messages.
The server is an echo server. It responds with the same text it receives from the client. The response
message is secured by using the policies defined in the services.xml. The server also uses
Axis2c Rampart module to secure the messages.

Running the Web Services Security Sample Programs
Perform the following steps to run the sample WS-Security sample programs:
1. Set the NSSOAP_HOME environment variable to <NonStop SOAP 4 Installation

Directory>.
2. cd <NonStop SOAP 4 Installation Directory>/sample_services/sec_echo

3. ./setup.sh

This script sets up the client repository that is needed to run the Web service security client
program. Then, this script copies all the WS-Security scenarios. This script also copies source
files of client and server program, password provider library, and authentication provider
library.
The script will ask for a path to set up the repository.

4. cd <the directory where the client repository is created>/sample_services/sec_echo.
5. Set the AXIS2C_HOME environment variable to <NonStop SOAP 4 Deployment

Directory>.
This environment variable is used to create and secure the sample service program.

6. ./run_scenario.sh <NSSOAP 4 server URL> <scenario no>

Here, <NSSOAP 4 server URL> is the URL where the Non Stop SOAP 4 server is deployed.
For example, http://15.146.233.43:1434/axis2c.

280 WS–Security in NonStop SOAP 4

<scenario no> is the scenario number that you want to run.
For additional information on the sample scenarios, see “WS-Security Scenarios ” (page 281).
Based on the scenario number this script copies the policy.xml
nl

from ./ secpolicy/scenario(X) folder to the client repository. Then, this script deploys
the sample server program and secures it on the NonStop SOAP 4 server. Further, this script
executes the client program.
The <client repository>/logs directory contains the client program's log files.
The <NonStop SOAP 4 Deployment Directory>/logs contains the server program's
log files.

NOTE: For each scenario, a separate service folder scenario(X) is created in <NonStop
SOAP 4 Deployment Directory>/services.

WS-Security Scenarios
You can configure the sample client and service by using different security policies. For each
scenario, the secpolicy directory contains services.xml and policy.xml files.
You can secure the service by using the services.xml and secure the client by using the
policy.xml. The assertions that are explained in the following scenarios are available in the
sample policy.xml and services.xml.

Scenario 1: Timestamp
This scenario demonstrates the steps that are required to add a timestamp to the request message.
This also describes the steps required for using AsymmetricBinding.
To add a timestamp to the SOAP message, you can specify the timestamp details in the policy by
adding the following assertion:
<sp:IncludeTimestamp/>

Next, you must specify the duration of the validity of the message. You can add the following
rampart specific assertion:
<rampc:TimeToLive>360</rampc:TimeToLive>

The time duration is specified in seconds. The time difference is set to 360 seconds and if the
message does not arrive within these limits, NonStop SOAP 4 server rejects the message. The
following is a sample timestamp tag that is added to the security header:
<wsu:Timestamp xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd”>
<wsu:Created>2012-06-18T05:10:01.448Z</wsu:Created>
<wsu:Expires>2012-06-18T05:16:01.448Z</wsu:Expires>
</wsu:Timestamp>

You can use the following assertion in the services.xml file for configuring the NonStop SOAP
4 server to use ClockSkewBuffer for validating the timestamp:
<rampc:ClockSkewBuffer>60</rampc:ClockSkewBuffer>

Scenario 2: UsernameToken
To add a UsernameToken to the SOAP message, you have to specify the following:
1. The user

<rampc:User>

2. The password type
<rampc:PasswordType>

3. The password callback module
<rampc:PasswordCallbackClass>

You can add the following assertions to the policy file:

Sample Programs 281

<rampc:RampartConfig xmlns:rampc="http://ws.apache.org/rampart/c/policy">
<rampc:User>Alice</rampc:User>
<rampc:PasswordType>Digest</rampc:PasswordType>
<rampc:PasswordCallbackClass><Client Repository>/sample_services/sec_echo/extensible_modules/password_provider/
libpwcb.so</rampc:PasswordCallbackClass>
</rampc:RampartConfig>

Also, the following shows a sample inclusion of UsernameToken in the policy:
<sp:UsernameToken sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Always"/>

On the server side, you can enable the Authentication Module, if you do not want to use the
Rampart's inbuilt password authentication logic.

Scenario 3: Encryption
You can encrypt the SOAP message by using this scenario. To encrypt the message, you can refer
to the AlgorithmSuite assertion that defines the different algorithms. This scenario uses
Basic256Rsa15 algorithm suite.
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256Rsa15/>
</wsp:Policy>
</sp:AlgorithmSuite>

For additional information about algorithm suite, see http://specs.xmlsoap.org/ws/2005/07/
securitypolicy/ws-securitypolicy.pdf .
The scenario also includes the assertion that can be used to encrypt the whole body.
<sp:EncryptedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<sp:Body/>
</sp:EncryptedParts>

The public key of the NonStop SOAP 4 service is used to encrypt the content and it is specified in
policy.xml.
<rampc:ReceiverCertificate><Client
Repository>/sample_services/sec_echo/keys/bob_cert.cert</rampc:ReceiverCertificate>

To decrypt an incoming message, you must specify your own private key.
<rampc:PrivateKey><Client Repository>/sample_services/sec_echo/keys/alice_key.pem</rampc:PrivateKey>

Scenario 4: Signature
This scenario explains the steps required to sign the SOAP message. Similar to the encryption, to
apply the signature you have to specify the signing parts, certificates, and keys. To specify which
parts of the message must be signed, use the following assertion:
<sp:SignedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<sp:Body/>
</sp:SignedParts>

The assertion in the sample signs the whole body.
Optionally, the following sample can be used if you want to sign a header:
<sp:SignedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<sp:Header Namespace="http://www.w3.org/2005/08/addressing"/>
</sp:SignedParts>

For signature, you can use the following sample algorithm suite:
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic192Rsa15/>
</wsp:Policy>
</sp:AlgorithmSuite>

For additional information about algorithm suite, see http://specs.xmlsoap.org/ws/2005/07/
securitypolicy/ws-securitypolicy.pdf .

282 WS–Security in NonStop SOAP 4

http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf

Scenario 5: Combining TimeStamp, UsernameToken, Encryption, and Signature with Protection
order Sign->Encrypt

This scenario describes how TimeStamp, UsernameToken, Encryption, and Signature scenarios
can be combined together.
The following assertion can be used to encrypt the signature:
<sp:EncryptSignature/>

The default protection order is SignBeforeEncrypting. The protection order property indicates the
order in which integrity and confidentiality are applied to the message, in cases where both integrity
and confidentiality are required. The SignBeforeEncrypting property indicates that the content must
be signed first. The encryption is performed on the signed content.

Scenario 6: Combining TimeStamp, UsernameToken, Encryption, and Signature with Protection
Order Encrypt->Sign

This scenario is similar to Scenario 5, except the protection order. This scenario demonstrates how
the protection order “Encryption and then Sign” can be used. You can use the following assertion:
<sp:EncryptBeforeSigning/>

If this property is specified in the policies, the content is encrypted first and then the encrypted data
is signed.

Scenario 7: Symmetric Binding. Encryption using Derived Keys
A derived key is a cryptographic key created from a password or other user data. Derived keys
allow applications to create session keys as needed, eliminating the need to store a particular key.
The use of the same session key (for example, when using Secure Conversation) for repeated
message exchanges is sometimes considered a risk. To reduce this risk, Require Derived Keys is
used.
The first six scenarios demonstrate the AsymmetricBinding. The following scenarios demonstrate
the SymmetricBinding configuration. This scenario demonstrates how the encryption can be
performed using derived keys. You can use the following assertion:
<sp:RequireDerivedKeys/>

Scenario 8: Symmetric Binding, Signature
This scenario demonstrates how Signature can be used with SymmetricBinding. For additional
information about signature, see “Scenario 4: Signature” (page 282)

Scenario 9: Symmetric Binding. Both Encryption and Signature with Protection Order Encrypt->Sign
This scenario demonstrates how encryption and signature can be used with SymmetricBinding.
The protection order is encrypt and then sign. This scenario is similar to Scenario 6 except the
binding is different.

Scenario 10: Symmetric Binding. Both Encryption and Signature with Protection Order Sign->Encrypt
This scenario is similar to Scenario 9, except the protection order is different. The protection order
is sign and encrypt.

Scenario 11: Symmetric Binding. Both Encryption and Signature with Protection Order
Encrypt->Signature Encryption

This scenario is similar to Scenario 9, except that the signature is encrypted.

Scenario 12: Symmetric Binding. Both Encryption and Signature with Protection Order Sign->Encrypt.
Signature Encryption

This scenario is similar to Scenario 10, except that the signature is encrypted.

Sample Programs 283

Recommendations
While you design your security model for your services, you must study the potential threats to your
model and what technologies or protocol can be used to mitigate each threat. The developers can
use either the transport level security, such as HTTPS or WS-Security features or both to secure the
services. Based on your company’s security requirements, it is recommended to review the security
considerations section in the WS-Security specification.
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#seccon
You must also consider WS-I Security for designing your security model. The document explains
the different security challenges, threats, and security solutions.
http://www.ws-i.org/Profiles/BasicSecurity/2004-02/SecurityScenarios-0.15-WGD.pdf

284 WS–Security in NonStop SOAP 4

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html#seccon
http://www.ws-i.org/Profiles/BasicSecurity/2004-02/SecurityScenarios-0.15-WGD.pdf

A NonStop SOAP 4 Error and Warning Messages
If NonStop SOAP 4 encounters a situation that does not allow it to successfully serve a request, it
logs an error message or a warning message in the soaperror.log file found in the /logs
directory under the NonStop SOAP 4 deployment directory. The error and warning messages
provides a brief description of the condition that prohibited NonStop SOAP 4 from serving the
request.
You can set the level of log messages that you intend to capture by setting the LOG_MODE
environment variable in the itp_axis2.config file. For more information on setting the log
levels, see “Defining the Log Levels of the NonStop SOAP 4 Server” (page 178).
This appendix includes the following topics:
• “NonStop SOAP 4 Error Messages” (page 285)
• “NonStop SOAP 4 Warning Messages” (page 304)

NonStop SOAP 4 Error Messages
NonStop SOAP 4 error messages are classified in the following groups:

• “Client API Errors” (page 285)
• “NonStop SOAP 4 Engine Errors” (page 286)
• “NonStop SOAP 4 Utility Errors” (page 290)
• “Pathway Message Receiver Errors” (page 290)
• “CGI Errors” (page 294)
• “Transaction Management Errors” (page 294)

Client API Errors
NonStop SOAP 4 logs the following error messages when the client API functions are incorrectly
used.

Blocking invocation expects response.
Cause
The client has used an IN-OUT service invocation. This makes the client code wait for the response.
Effect
The client waits for a response from the NonStop SOAP 4 server.
Recovery
Change the service invocation call in the client code and rebuild the client executable.

Cannot infer transport from URL.
Cause
The NonStop SOAP 4 server cannot understand the transport used from the endpoint reference.
Effect
The request is not served.
Recovery
Correct the endpoint reference and try sending the request again.

MEP cannot be NULL in the MEP client.
Cause
The client is using a message exchange pattern (MEP) that is not supported or identified by the
NonStop SOAP 4 server.

NonStop SOAP 4 Error Messages 285

Effect
The request is not served.
Recovery
Correct the MEP used by the client for service invocation and try sending the request again.

MEP mismatch.
Cause
There is a mismatch between the MEP used by the client and the one allowed by the service.
Effect
The request is not served.
Recovery
Correct the MEP used by the client for service invocation and try sending the request again.

NonStop SOAP 4 Engine Errors
NonStop SOAP 4 logs the following error messages because of runtime inconsistencies or error
conditions in the NonStop SOAP 4 engine.

Invalid message context state.
Cause
The message context is either NULL or corrupt.
Effect
The request is not served.
Recovery
Check if the request message is well formed and try sending the request again.

Service accessed has invalid state.
Cause
The accessed service has no name for the server class mentioned in the services.xml file.
Effect
The request is not served.
Recovery
The service developer must mention a valid name for the server class.

Service not yet found.
Cause
The service accessed is not located by the NonStop SOAP 4 server.
Effect
The request is not served.
Recovery
Ensure that the service requested exists in the NonStop SOAP 4 deployment.

Invalid phase found in the phase validation.
Cause
NonStop SOAP 4 encountered an invalid phase during startup.
Effect
The request is not served.

286 NonStop SOAP 4 Error and Warning Messages

Recovery
Ensure that the invalid phase is removed from the NonStop SOAP 4 message flow. Edit the
axi2.xml file to verify the correct phase order of the NonStop SOAP 4 deployment.

Configuration file cannot be found.
Cause
NonStop SOAP 4 did not locate the axis2.xml configuration file.
Effect
The request is not served.
Recovery
Ensure that the valid axis2.xml file is present in the <NonStop SOAP 4 Deployment
Directory> directory and restart the NonStop SOAP 4 server.

Data element of the OM node is NULL.
Cause
The AXIOM node does not contain any data element.
Effect
The request is not served.
Recovery
Ensure that all the modules and services deployed in NonStop SOAP 4 have their shared libraries
and configuration files with the right permissions.

Invalid handler state.
Cause
The handler description and deployment details are not correct.
Effect
The request is not served.
Recovery
Ensure that the reported handler includes the deployment information mentioned in the
corresponding module.xml configuration file. Also, ensure that the handler is not set to be
deployed in a non-existent phase.

Invalid module reference encountered.
Cause
A non-existent module is referenced by the NonStop SOAP 4 server.
Effect
The request is not served.
Recovery
Ensure that the reported module exists in the NonStop SOAP 4 deployment. In case the module
does not exist, either deploy the module or remove the reference to the module from the
services.xml and axis2.xml file.

Module not found.
Cause
The referenced module does not exist or has not been engaged.
Effect
The request is not served.
Recovery
Check the module reference in the axis2.xml or services.xml file to ensure that the reported
module is deployed and engaged to the NonStop SOAP 4 server.

NonStop SOAP 4 Error Messages 287

Module validation failed.
Cause
The NonStop SOAP 4 server cannot engage the module.
Effect
The request is not served.
Recovery
Ensure that the shared libraries of all the modules are not corrupt and that they have proper
permissions.

Module XML file is not found in the given path.
Cause
The NonStop SOAP 4 server cannot engage the module.
Effect
The request is not served.
Recovery
Ensure that the module.xml file is placed in the <NonStop SOAP 4 Deployment
Directory>/modules/<module_name> location with proper permissions.

No dispatcher found.
Cause
The NonStop SOAP 4 server did not find any dispatchers.
Effect
The request is not served.
Recovery
Restart the NonStop SOAP 4 server.

Operation name is missing.
Cause
The NonStop SOAP 4 server found an invalid operation to load.
Effect
The request is not served.
Recovery
Check if the operation name is mentioned in the services.xml file.

Service XML file is not found in the given path.
Cause
The NonStop SOAP 4 server cannot locate the services.xml file.
Effect
The request is not served.
Recovery
Ensure that the services.xml file for the reported service exists in the <NonStop SOAP 4
Deployment Directory>/services/<service_name> location with proper permissions.

Invalid Service.
Cause
The NonStop SOAP 4 server cannot load the service.
Effect
The request is not served.

288 NonStop SOAP 4 Error and Warning Messages

Recovery
In case of non-Pathway services, ensure that the shared library of the service is proper and that
the corresponding services.xml file is present with appropriate permissions. In case of
Pathway services, ensure that the services.xml file and the WSDL file are present with
appropriate permissions.

Could not map the MEP URI to an Axis2/C MEP constant value.
Cause
An MEP other than the WSDL 2.0 specification is specified in the request.
Effect
The request is not served.
Recovery
Ensure that the client uses only the WSDL 2.0 specification MEPs.

Parameter container not set.
Cause
The NonStop SOAP 4 server cannot load the parameters specified in the configuration files.
Effect
The request is not served.
Recovery
Restart the NonStop SOAP 4 server and send the request again.

Parameter locked, cannot override.
Cause
The client or the service developer tried to programmatically override an immutable configuration
parameter.
Effect
The request is not served.
Recovery
Set the locked attribute of the corresponding parameter to false.

Message context processing a fault already.
Cause
The NonStop SOAP 4 server tried to create a new fault message for a response that has already
been assigned a fault context.
Effect
The request is not served.
Recovery
None.

Two services cannot have the same name, a service with same name already.
Cause
The NonStop SOAP 4 server encounters two services with the same name.
Effect
The request is not served.
Recovery
Ensure that all the services deployed in the NonStop SOAP 4 deployment have unique names
assigned to them.

NonStop SOAP 4 Error Messages 289

NonStop SOAP 4 Utility Errors
NonStop SOAP 4 logs the following error messages when utility functions are incorrectly used.

Could not open the file.
Cause
The NonStop SOAP 4 server cannot open the file.
Effect
The request is not served.
Recovery
Ensure that the reported file exists at the specified location with appropriate permissions.

Failed in creating DLL.
Cause
The NonStop SOAP 4 server cannot engage a shared library.
Effect
The request is not served.
Recovery
Check if the reported library is corrupt or has inappropriate permissions.

DLL description has invalid state of not having valid DLL create function, \ of valid delete function
or valid dll_handler
Cause
The NonStop SOAP 4 server cannot engage a shared library.
Effect
The request is not served.
Recovery
Check if the reported library is corrupt.

Trying to do operation on invalid file descriptor.
Cause
The NonStop SOAP 4 server tried to read or write to an invalid file.
Effect
The request is not served.
Recovery
Check if the reported file exists with proper permissions.

Parameter not set.
Cause
The NonStop SOAP 4 server tried to read a configuration parameter that has not been set.
Effect
The request is not served.
Recovery
Check to see if the reported parameter is listed in the relevant configuration file.

Pathway Message Receiver Errors
NonStop SOAP 4 logs the following error messages because of incorrect processing in the Pathway
message receiver.

WSDL file not found.

290 NonStop SOAP 4 Error and Warning Messages

Cause
The NonStop SOAP 4 server cannot locate the WSDL file for the service.
Effect
The request is not served.
Recovery
Check if the WSDL file is placed in the service directory and the correct reference is specified
in the corresponding services.xml file.

Error parsing WSDL file.
Cause
The NonStop SOAP 4 server cannot parse the WSDL file.
Effect
The request is not served.
Recovery
Check if the WSDL file is a well-formed XML file.

Communication with service failed.
Cause
The NonStop SOAP 4 server cannot communicate with the Pathway server class.
Effect
The request is not served.
Recovery
Ensure that the requested server class is running with no Pathway associated errors. In case the
requested server class is not running, perform the recovery procedure recommended by the
NonStop TS/MP Pathsend and Server Programming Manual.

Invalid response selection criteria in the services.xml file.
Cause
The NonStop SOAP 4 server cannot find one of the mandatory parameter tags related to response
selection criterion in the services.xml file.
Effect
The request is not served.
Recovery
Edit the services.xml file for the requested service and correct the response selection criterion.

Request passed does not match the WSDL request reference.
Cause
The NonStop SOAP 4 server cannot match the request with the request XSD structure described
in the WSDL file.
Effect
The request is not served.
Recovery
None.

Value of soapOccurs is greater than value of maxOccurs.
Cause
The client provided a value for the soapOccurs element, which exceeds the maxOccurs value
specified in the WSDL file.

NonStop SOAP 4 Error Messages 291

Effect
The request is not served.
Recovery
Pass a value for the soapOccurs element that is less than or equal to the value of maxOccurs.

Value of soapOccurs is less than value of minOccurs.
Cause
The client provided a value for the soapOccurs element, which is less than the minOccurs
value specified in the WSDL file.
Effect
The request is not served.
Recovery
Pass a value for the soapOccurs element that is greater than or equal to the value of
minOccurs.

Occurrence of an element in request was less than the minOccurs attribute specified in the WSDL
file.
Cause
The client request contains occurrences of an element less than the minOccurs attribute specified
for the element in the WSDL file.
Effect
The request is not served.
Recovery
Modify the request to include the occurrences of the element greater than or equal to the value
of the minOccurs attribute.

Input element length does not match WSDL specifications. For details refer error log.
Cause
The length of an element in the client request is greater than the value specified in the WSDL
file.
Effect
The request is not served.
Recovery
Modify the length of the element to be less than the value specified in the WSDL file.

No valid match found for response selection criteria in services.xml.
Cause
The NonStop SOAP 4 server cannot locate a valid response structure based on the response
selection criterion specified in the services.xml file.
Effect
The request is not served.
Recovery
Check the response selection criterion mentioned in the services.xml file to match the response
buffers.

The request size must be less than or equal to 2MB.
Cause
The NonStop SOAP 4 server cannot handle messages that are greater than 2MB in size.
Effect
The request is not served.

292 NonStop SOAP 4 Error and Warning Messages

Recovery
None.

The request XML is invalid.
Cause
The request message is not a well formed XML message.
Effect
The request is not served.
Recovery
Ensure that the request is a well formed XML message.

Error occurred while processing the xsd:choice element.
Cause
An internal error occurred while processing the xsd:choice element.
Effect
The request is not served.
Recovery
None.

Occurrence of an element in request was more than the soapOccurs comment specified in WSDL.
Cause
The client request has more occurrences of an element greater than those permitted by the
soapOccurs comment in the WSDL file.
Effect
The request is not served.
Recovery
Modify the client request to conform to the exact WSDL specification.

Invalid value for Boolean data type. Valid values are [true, yes, 1, false, no, 0].
Cause
The client request has specified a value for a Boolean data type that is different than the permitted
values, namely true, yes, false, no, 1,and 0.
Effect
The request is not served.
Recovery
Modify the client request to use one of the permitted values for the Boolean data type.

No valid match found for the response selection criteria in services.xml. The associated transaction
has been aborted.
Cause
The NonStop SOAP 4 server cannot locate a valid response structure based on the response
selection criterion specified in the services.xml file. The transactions, if any, associated with
the request are also rolled back.
Effect
The request is not served.
Recovery
Check the response selection criterion mentioned in the services.xml file to match the response
buffers.

NonStop SOAP 4 Error Messages 293

CGI Errors
NonStop SOAP 4 logs the following error messages when there is a communication failure between
the iTP WebServer and the CGI interface.

CGI failed while writing response.
Cause
An internal error occurred between iTP WebServer and CGI communication.
Effect
The request is not served.
Recovery
Resend the request.

CGI failed while writing response.
Cause
An internal error occurred between iTP WebServer and CGI communication.
Effect
The request is not served.
Recovery
Resend the request.

Transaction Management Errors
NonStop SOAP 4 logs the following error messages when faulty session or transaction headers
are found.

Invalid value for TMFTransactionSupport parameter in services.xml file.
Cause
The TMFTransactionSupport parameter carries a value other than Required, Supports
,or Never.
Effect
The transaction is not started.
Recovery
Send the request that conforms to the transaction settings for the requested service.

Session ID not found.
Cause
The client request does not contain a session ID that is required to perform the requested TMF
operation.
Effect
The request is not served.
Recovery
Send the request with the session ID.

Mandatory 'Command' tag absent in transaction header.
Cause
The client request does not contain the mandatory Command attribute as part of the transaction
header block.
Effect
The request is not served.

294 NonStop SOAP 4 Error and Warning Messages

Recovery
Send the request again with the Command attribute present in the transaction header block.

Invalid transaction ID in transaction header.
Cause
The client request contains an invalid transaction identifier.
Effect
The request is not served.
Recovery
Send the request again with a valid transaction identifier.

Invalid element in transaction header. Refer logs for detail.
Cause
The client request contains an invalid element or a combination of mutually exclusive elements
in the transaction header block.
Effect
The request is not served.
Recovery
Send the request again with a valid combination of transaction header block elements as specified
in the TMF Reference Manual.

Invalid transaction timeout in the transaction header.
Cause
The client request contains an invalid value for the TimeOut attribute in the transaction header
block.
Effect
The request is not served.
Recovery
Send the request again with a valid value for the TimeOut attribute in the transaction header
block.

Error occurred while resuming transaction.
Cause
TMF failed to resume the transaction specified by the transaction identifier supplied by the client.
Effect
The request is not served.
Recovery
The error message will report the associated TMF error number. To identify the recommended
recovery procedure, see the TMF Management Manual.

Error occurred while aborting transaction.
Cause
TMF failed to abort the transaction specified by the transaction identifier supplied by the client.
Effect
The request is not served.
Recovery
The error message will report the associated TMF error number. To identify the recommended
recovery procedure, see the TMF Management Manual.

Service does not support transactions.

NonStop SOAP 4 Error Messages 295

Cause
The client request tried to use transactions against a service that does not use transactions.
Effect
The request is not served.
Recovery
Access the service without using any transaction or session header block.

Error occurred while ending transactions.
Cause
TMF failed to commit the transaction specified by the transaction identifier supplied by the client.
Effect
The request is not served.
Recovery
The error message will report the associated TMF error number. To identify the recommended
recovery procedure, see the TMF Management Manual.

SoapAdminCL Errors
The errors generated by the SoapAdminCL tool can be categorized as:

• “Pathway Service Definition Errors” (page 296)
• “Memory Allocation Errors” (page 298)
• “SoapAdminCL Error Messages” (page 298)

Pathway Service Definition Errors
The Pathway service definition error messages report invalid values in the SDL file.

Error>> Invalid Pathmon Name: <Pathmon Name Specified in the SDL>.
Cause
The PATHMON name specified in the SDL file has an invalid format.
Effect
The command fails.
Recovery
Enter the PATHMON name in the valid format (that is, $ <alphabet> <alphanumeric
characters>) and run the SoapAdminCL command. Ensure that the PATHMON name does
not exceed seven characters.

Error>> Invalid Serverclass Name: <Server Class Name Specified in the SDL>.
Cause
The ServerClassName attribute in the SDL file has an invalid format.
Effect
The command fails.
Recovery
Enter the ServerClassName attribute in the valid format (that is, alphanumeric characters and
hyphens) and run the SoapAdminCL command.

Error>> Length of Server Class:<ServerClass> is greater than 15.
Cause
The serverclass name has more than 15 characters.

296 NonStop SOAP 4 Error and Warning Messages

Effect
The command fails.
Recovery
Update the serverclass name to contain less than or equal to 15 characters, and run the
SoapAdminCL command.

Error>> Invalid DDL Dictionary Name: <DDL Dictionary Specified>
Cause
The Guardian location specified in the DDLDictionaryLocation is invalid.
Effect
The command fails.
Recovery
Specify a valid Guardian location in the DDLDictionaryLocation and run the SoapAdminCL
command.

Parser - Error>> Invalid DDL Definition Name: <DDL Definition Specified>
Cause
A DDL definition name associated with either the RequestInfo element or the ResponseInfo
element in the SDL file is invalid.
Effect
The command fails.
Recovery
Specify a valid DDL definition name in the RequestInfo element and the ResponseInfo
element in the SDL file. Ensure that the DDL definition name contains only alphanumeric characters
and an underscore.

Parser - Error>> Response Selection Node <path> Attribute: <Attribute name>, Value:<Given value>
is not a number.
Cause
The Start and End attributes do not have numeric values or have other invalid characters or
special symbols in them.
Effect
The command fails.
Recovery
Update the Start and End attributes with numeric values and run the SoapAdminCL command.

Parser - Error>> Response Selection Node <path> Attribute:BufVal needs to be a Number when
the Attribute: ConversionOp is a number.
Cause
In the ResponseSelection element of the SDL file, the ConversionOp attribute specifies
decimal conversion; however the value of BufVal is not numeric.
Effect
The command fails.
Recovery
If the ConversionOp attribute specifies decimal conversion, ensure that you enter numeric value
for BufVal and then run the SoapAdminCL command.

Error>> For the Response Selection Element in the path <XML Path to the Response Selection
element>, either all the "Start', "End", "BufVal",attributes must be specified or none.

NonStop SOAP 4 Error Messages 297

Cause
The syntax of the ResponseSelection element is incorrect.
Effect
The command fails.
Recovery
Correct the syntax of the ResponseSelection element to specify all or none of the attributes
listed in the message, and run the SoapAdminCL command.

Memory Allocation Errors
The following log messages signify memory allocation errors.

Parser - Error>>Internal error(SdlPway:parse) in the construction
Cause
Insufficient memory to run the SoapAdminCL command.
Effect
The command fails.
Recovery
Run the SoapAdminCL command after some time. If the problem persists, contact the system
administrator.

Parser - Error>>SdlPway::parse - Unable to allocate memory
Cause
Insufficient memory to run the SoapAdminCL command.
Effect
The command fails.
Recovery
Run the SoapAdminCL command after some time. If the problem persists, contact the system
administrator.

Parser - Error>>SdlPway::getSrvrClasses - Unable to allocate memory
Cause
Insufficient memory to run the SoapAdminCL command.
Effect
The command fails.
Recovery
Run the SoapAdminCL command after some time. If the problem persists, contact the system
administrator.

SoapAdminCL Error Messages

SOAPADMIN ERROR >>SOAP server is not running at the defined location
Cause
The NonStop SOAP 4 server is not running at the defined server SDL location.
Effect
None
Recovery
You can restart the server at the defined SDL location. Or correct the location in the SDL file and
re-run SOAPAdminCL.

SOAPADMIN ERROR >>Duplicate entry for field name <field name> in DDL Definition

298 NonStop SOAP 4 Error and Warning Messages

Cause
This is due to the duplicate entry of the field name.
Effect
NonStop SOAP service deployment files will not be generated. Then, SoapAdminCL will exit.
Recovery
Remove the duplicate entry and use the same command again.

SOAPADMIN ERROR >>Duplicate entry of DDL Definition <DDLDefinition> in SDL
Cause
This is due to the duplicate entry of the DDL Definition name in SDL Requestinfo/ResponseInfo.
Effect
NonStop SOAP service deployment files will not be generated. Then, SoapAdminCL exits.
Recovery
Remove the duplicate entry and use the same command again.

SOAPADMIN ERROR >> Optional Element <element name> is used as soap occurs depending on
for <element name> You cannot use optional element as SOAP OCCURS DEPENDING ON field.
Cause
The @SOAP_OCCURS_DEP_ON field is defined as optional using @SOAP_OPTIONAL DDL
comment.
Effect
The command fails.
Recovery
The DDL field defined as optional using @SOAP_OPTIONAL cannot be used in
@SOAP_OCCURS_DEP_ON. Resolve the conflict in the DDL file, regenerate the DDL dictionaries,
and run the SoapAdminCL command.

SOAPADMIN ERROR >> Optional Element <element name> is used as occurs depending on for
<element name>. You cannot use optional element as OCCURS DEPENDING ON field.
Cause
The OCCURS DEPENDING ON clause cannot be applied to a field which is defined as optional
using @SOAP_OPTIONAL DDL comment.
Effect
The command fails.
Recovery
The DDL field defined as optional using @SOAP_OPTIONAL cannot be used in OCCURS
DEPENDING ON clause. Resolve the conflict in the DDL file, regenerate the DDL dictionaries,
and run the SoapAdminCL command.

SOAPADMIN ERROR >> Error in definition of the service <service name>. The attribute
"SoapDDLAttribute" cannot have a value "yes" when the attribute "SoapMessageType" is set to
"rpc".
Cause
The SoapDDLAttribute attribute has a value yes when the SoapMessageType attribute is
set to rpc.
Effect
The command fails.
Recovery
Resolve the conflict between the SoapDDLAttribute attribute and the SoapMessageType
attribute and run the SoapAdminCL command.

NonStop SOAP 4 Error Messages 299

SOAPADMIN ERROR >> Error processing DDL definition <definition name> for Service <service
name>. The SOAP DDL comment tags "@SOAP_ATTRIBUTE" and "@SOAP_ELEMENT" cannot be
present for a single DDL field.
Cause
The @SOAP_ATTRIBUTE and @SOAP_ELEMENT SOAP DDL comment tags are present for a
single DDL field.
Effect
The command fails.
Recovery
The same DDL field cannot be exposed either as an element or attribute. Resolve the conflict in
the DDL file, regenerate the DDL dictionaries, and run the SoapAdminCL command.

SOAPADMIN ERROR >> Error processing DDL definition <definition name> for service <service
name>. The "@SOAP_BASE64" DDL comment tag cannot be present at a group level DDL field
<field name>.
Cause
The @SOAP_BASE64 DDL comment tag is present at a group level DDL field <field name>.
Effect
The command fails.
Recovery
The @SOAP_BASE64 DDL comment is applicable at the leaf node level. This is not applicable
for the group field. Therefore, you must set the DDL comment to the appropriate DDL field,
regenerate the DDL dictionaries, and then run the SoapAdminCL command.

SOAPADMIN ERROR >> The depends on field <field name> applied to the
@SOAP_OCCURS_DEP_ON comment is not a numeric type. Exiting.
Cause
The depends on field <field name> applied to the @SOAP_OCCURS_DEP_ON DDL comment
does not have a numeric value.
Effect
The command fails.
Recovery
The @SOAP_OCCURS_DEP_ON DDL comment guides the NonStop SOAP 4 server to limit the
number of occurrences of the field in the SOAP request/response. It must have a numeric value.
Set the proper field for this comment, regenerate the DDL dictionaries, and run the SoapAdminCL
command.

SOAPADMIN ERROR >> The depends on field <field name>, applied to the
@SOAP_OCCURS_DEP_ON comment is not defined. Exiting.
Cause
The depends on field <field name> applied to the @SOAP_OCCURS_DEP_ON comment
is not defined.
Effect
The command fails.
Recovery
Define the depends on field <field name> applied to the @SOAP_OCCURS_DEP_ON DDL
comment, regenerate the DDL dictionaries, and then run the SoapAdminCL command.

SOAPADMIN ERROR >> The @SOAP_OCCURS_DEP_ON field cannot be applied to <field name>
as it is not an OCCURS field. Exiting.

300 NonStop SOAP 4 Error and Warning Messages

Cause
The @SOAP_OCCURS_DEP_ON comment is applied to the field, which is not an OCCURS field.
Effect
The command fails.
Recovery
Check the validity of the DDL field and resolve the conflict. Regenerate the DDL dictionaries and
run the SoapAdminCL command.

SOAPADMIN ERROR >> The depends on field for the SOAP_OCCURS_DEP_ON comment tag was
not found.
Cause
The depends on field is not defined in the DDL file mentioned in the @SOAP_OCCURS_DEP_ON
comment.
Effect
The command fails.
Recovery
Check the validity of the DDL field and resolve the conflict. Regenerate the DDL dictionaries and
then run the SoapAdminCL command.

SOAPADMIN ERROR >> The @SOAP_OCCURS_DEP_ON comment tag cannot be applied more
than once to the same field.
Cause
The @SOAP_OCCURS_DEP_ON comment appears more than once for the same element.
Effect
The command fails.
Recovery
Ensure that the @SOAP_OCCURS_DEP_ON comment appears only once for every element,
regenerate the DDL dictionaries, and run the SoapAdminCL command.

SOAPADMIN ERROR >> The depends on field <field-name> for the SOAP_OCCURS_DEP_ON
comment tag cannot be uniquely identified.
Cause
The depends on field is defined more than once in the DDL file mentioned in the
@SOAP_OCCURS_DEP_ON comment.
Effect
The command fails.
Recovery
Select a unique name for the depends on field, regenerate the DDL dictionaries, and run the
SoapAdminCL command.

Parser - Error while parsing the input at Line: x, Column: y Detail Error: <Error details>
Cause
The SDL file passed is not a valid XML document.
Effect
The command fails.
Recovery
Ensure that the SDL file is well formed and run the SoapAdminCL command.

SOAPADMIN Parser - Error >> The service <service name> already exists in the SDR within a
different hierarchy.

NonStop SOAP 4 Error Messages 301

Cause
The same service name appears twice in the SDL file.
Effect
The command fails.
Recovery
Select a unique name for each service in the SDL file and run the SoapAdminCL command.

SOAPADMIN ERROR >> HTML client file already exists...
Cause
The HTML client file exists at the mentioned location.
Effect
The command fails.
Recovery
Check whether the service is already deployed at the mentioned location. If you want to
regenerate the files or redeploy the services at the mentioned location, use the SoapAdminCL
command with the –f or –force option.

SOAPADMIN ERROR >> WSDL file already exists...
Cause
The WSDL file exists at the mentioned location.
Effect
The command fails.
Recovery
Check whether the service is already deployed at the mentioned location. If you want to
regenerate the files or redeploy the services at the mentioned location, use the SoapAdminCL
command with the –f or –force option.

SOAPADMIN ERROR >> Service configuration file already exists...
Cause
The service configuration file exists at the mentioned location.
Effect
The command fails.
Recovery
Check whether the service is already deployed at the mentioned location. If you want to
regenerate the files or redeploy the services at the mentioned location, use the SoapAdminCL
command with the –f or –force option.

SOAPADMIN ERROR >> Error in definition of service "<service_name>". Both attributes
"GenerateSessionHeader" and "GenerateTransactionHeader" cannot have a value "yes"
Cause
The GenerateSessionHeader and the GenerateTransactionHeader attributes are set
to yes.
Effect
The command fails.
Recovery
Ensure that the GenerateSessionHeader and the GenerateTransactionHeader attributes
are not set to yes.

302 NonStop SOAP 4 Error and Warning Messages

WSDL2PWY and WSDL2C Error Messages
The WSDL2PWY and WSDL2C utilities return the following errors when invalid options are specified.

Error: The -o option was specified without a specifying the folder or with an improper folder name.
Please note the tool usage:
Cause
The output folder is not specified or the folder name is incorrect.
Effect
The WSDL processing stops and the output files are not generated.
Recovery
Specify a valid folder name and run the tool.

Error: The –uri option was not specified. Please note the tool usage:
Cause
The –uri option is not specified for the WSDL file.
Effect
The WSDL processing stops and the output files are not generated.
Recovery
Specify the –uri option before the WSDL file name and run the tool.

Error: The -wv option was specified without a specifying version number. Please note the tool
usage:
Cause
The version number is not specified with the -wv option.
Effect
The WSDL processing stops and the output files are not generated.
Recovery
Specify the valid WSDL version (1.1 or 2.0) and run the tool.

Error: The parameter specified for -wv option is invalid. Please note the tool usage:
Cause
The version number is not specified with the -wv option.
Effect
The WSDL processing stops and the output files are not generated.
Recovery
Specify the valid WSDL version (1.1 or 2.0) and run the tool.

Error: The -uri option was specified without a WSDL location. Please note the tool usage:
Cause
The WSDL file name is not specified.
Effect
The WSDL processing stops and the output files are not generated.
Recovery
Specify a WSDL file name with –uri option before the file name and run the tool.

Error: Error Parsing Options
Error Details: The option -g was specified without specifying the option –ss
Cause
The –g generate all option is specified without specifying the –ss option.

NonStop SOAP 4 Error Messages 303

Effect
The WSDL processing stops and the output files are not generated.
Recovery
Specify the –ss option with the –g option and run the tool.

Error: Error Parsing Options
Error Details: The option -sd was specified without specifying the option –ss
Cause
The –sd generate service descriptor option is specified without specifying the –ss option.
Effect
The WSDL processing stops and the output files are not generated.
Recovery
Specify the –ss option with the –sd option and run the tool.

Error: Error Parsing Options
Error Details: An invalid option <option> been specified at the beginning. Unable to process the
request
Cause
An invalid first option is specified without - prefix.
Effect
The WSDL processing stops and the output files are not generated.
Recovery
Specify valid options, prefixed with - and run the tool.

NonStop SOAP 4 Warning Messages
NonStop SOAP 4 logs the following warning messages:

PathmonName not set in the message context.
Cause
The PATHMON name is not set using Message Receiver User Functions.
Effect
The NonStop SOAP 4 server continues to serve the request.
Recovery
None.

is_txn_started not set in the message context.
Cause
The transaction module is not attached to the NonStop SOAP 4 deployment.
Effect
The NonStop SOAP 4 server continues to serve the request.
Recovery
None.

InputEncoding not set in message context.
Cause
The input encoding is not specified in the SOAP request.
Effect
The NonStop SOAP 4 server continues to serve the request.

304 NonStop SOAP 4 Error and Warning Messages

Recovery
None.

OutputEncoding not set in message context.
Cause
The output encoding is not specified in the services.xml file.
Effect
The NonStop SOAP 4 server continues to serve the request.
Recovery
None.

Body Stream not available for writing.
Cause
A client sends an empty HTTP request.
Effect
Internal server error is returned.
Recovery
The client needs to send a well-formed SOAP message.

Byte buffer not available for writing.
Cause
A service sends an empty response.
Effect
The client receives an empty response.
Recovery
None.

Creation of Content-Type string failed.
Cause
The content-type of HTTP request is not understood by NonStop SOAP 4.
Effect
The request is not served.
Recovery
Set the content-type of the HTTP request as application/soap+xml (for SOAP 1.2) or
text/xml (SOAP 1.1) and resend the message.

Provided client repository path %s does not exist or no permission to read, therefore set axis2c
home to DEFAULT_REPO_PATH.
Cause
The AXIS2C_HOME variable is not set to the correct location or the location does not have read
permission.
Effect
Log messages will be returned to the DEFAULT_REPO_PATH directory instead of the
AXIS2C_HOME/logs directory.
Recovery
Set the correct location in the AXIS2C_HOME variable and ensure that it has read permission.

Retrieving Axis2 configuration from Axis2 configuration context failed. Initializing modules failed.

NonStop SOAP 4 Warning Messages 305

Cause
The axis2.xml file is corrupt.
Effect
None.
Recovery
Ensure that the axis2.xml file is well formed.

Retrieving Axis2 configuration from Axis2 configuration context failed, Loading services failed.
Cause
The axis2.xml file is corrupt.
Effect
None.
Recovery
Ensure that the axis2.xml file is well formed.

Retrieving Axis2 configuration from Axis2 configuration context failed. Initializing transports failed.
Cause
The axis2.xml file is corrupt.
Effect
None.
Recovery
Ensure that the axis2.xml file is well formed.

Worker is not ready. Cannot serve the request.
Cause
The server is busy and cannot handle more requests.
Effect
None.
Recovery
Send the request after some time or increase the instances of the Axis2CGI serverclass specified
in the itp_axis2.config file.

Error occurred in processing request.
Cause
A request processing error has occurred.
Effect
NonStop SOAP 4 will try to process the request using a new instance of worker.
Recovery
None.

An invalid option was specified. However, the WSDL was parsed. Please note the tool usage
Cause
An invalid option is specified.
Effect
This message is a warning, and the invalid option is ignored. The WSDL processing continues
and output files are generated.
Recovery
Ensure the valid options are specified.

306 NonStop SOAP 4 Error and Warning Messages

Skipping the validation for rpc type soap messages.
Cause
The SoapMessageType parameter is set to rpc in the services.xml file.
Effect
Validation of the request is skipped even when validation module is attached.
Recovery
Recommended to set the SoapMessageType parameter to document in the services.xml
file.

NonStop SOAP 4 Warning Messages 307

B Install Files and Folders
Verifying the Extracted Product Files

The following files and directories are extracted in the <NonStop SOAP 4 Installation
Directory>:

• LICENSE - the Apache license file
• axis2.xml - the default NonStop SOAP 4 configuration file
• /bin - includes the executable object for the NonStop SOAP 4 server and the installation

script

◦ axis2cgi.pway - the server object to access SOAP services through iTP WebServer

◦ deploy.sh - the script file that sets up the deployment directory environment and deploys
the sample services

• /include - includes all the header files to build the API-based clients and services
• /lib - includes the libraries required by NonStop SOAP 4

libaxis2_axiom.so - the NonStop SOAP 4 object model library◦
◦ libaxis2_engine.so - the NonStop SOAP 4 engine

◦ libaxis2_http_receiver.so - the NonStop SOAP 4 Hypertext Transfer Protocol
(HTTP) transport for request handling

◦ libaxis2_http_sender.so - the NonStop SOAP 4 HTTP transport for response
handling

◦ libaxis2_parser.so - the NonStop SOAP 4 parser

◦ libaxis2_pway_receiver.so - the NonStop SOAP 4 Pathway Message Receiver

◦ libaxis2_pway_xml_receiver.so - the NonStop SOAP 4 Pathway XML Message
Receiver

◦ libaxutil.so - the NonStop SOAP 4 utility

◦ libneethi.so - the NonStop SOAP 4 WS-Policy implementation

◦ libtsmp20.so - TS/MP 2.0 library

◦ libtsmp24.so - TS/MP 2.4 library

◦ libxml2.so - the XML parser library

◦ /tools - includes all the JAR files required to run the WSDL2C and WSDL2PWY tool

• /modules - includes a sub-directory for each of the following NonStop SOAP 4 modules

/encoding - includes the encoding module◦
– libaxis2_mod_encoding.so – the encoding module
– module.xml - the module configuration file for the encoding module

◦ /rampart - includes the rampart module
libmod_rampart.so – the rampart module–

– module.xml - the module configuration file for the rampart module

308 Install Files and Folders

◦ /transaction - includes the transaction module
libaxis2_mod_transaction.so – the transaction module–

– module.xml – the module configuration file for the transaction module

◦ /validation - includes the validation module
– libValidationModule.so – the validation module
– module.xml – the module configuration file for the validation module

• /sample_services

/echo◦
– /client

– Makefile - Makefile for the echo client application
– echo.c - source file for the echo client

– echo.exe - an echo client built using the NonStop SOAP 4 client APIs
– libecho.so - an echo service built using the NonStop SOAP 4 service APIs
– /service

Makefile - Makefile for the echo sample application–
– echo.c - source file for the echo sample application
– echo.h - header file for the echo sample application
– echo_skeleton.c - source file for the echo service
– echoddl - DDL file for the echo sample application
– echosdl.xml - SDL file for the echo sample application

– services.xml - NonStop SOAP 4 service configuration file for the echo service

◦ /empdb

– /src

– Makefile - Makefile for the empdb service
– README - readme file describing the steps to use the empdb application
– emp.c - source file for the empdb service
– emp.h - header file for the empdb service
– empsdl.xml - SDL file for the empdb sample application

◦ /math

/client - includes the source files for the math client–
– Makefile - Makefile for the math client
– axis2_stub_mathService.c - source file for the math client
– axis2_stub_mathService.h - header file for the math client

– /service - includes the source file and configuration file for the math service
– Makefile - Makefile for the math service
– axis2_skel_mathService.c - source file for the math service
– axis2_skel_mathService.h - header file for the math service
– axis2_svc_skel_mathService.c - source file for the math service
– mathddl - DDL file for the math service
– mathsdl.xml - SDL file for the math service

Verifying the Extracted Product Files 309

◦ /modules

/empdb_MRUF

– /src

– Makefile - Makefile for the empdb Message Receiver User Functions
module

– empdb_MRUF.c - source file for the empdbMessage Receiver User Functions
module

– empdb_MRUF.h - header file for the empdb Message Receiver User
Functions module

–

– /logging_MRUF

– /src

– Makefile - Makefile for the loggingMessage Receiver User Functions
module

– logging_MRUF.c - source file for the logging Message Receiver User
Functions module

– logging_MRUF.h - header file for the logging Message Receiver User
Functions module

– /mod_empdb

empdb.xsl - input stylesheet file for the mod_empdb module–
– module.xml - the module configuration file for the mod_empdb module
– /src

– Makefile - Makefile for the sample mod_empdb module
– empdb_post_process_handler.c - source file for the post_process

handler for the mod_empdb module
– empdb_pre_process_handler.c - source file for the pre_process

handler for the mod_empdb module
– mod_empdb.c - source file for the mod_empdb module
– mod_empdb.h - header file the mod_empdb module

– /mod_logging

– module.xml - the module configuration file for the mod_empdb module
– /src

– Makefile - Makefile for the sample mod_logging module
– logging_in_handler.c - source file for the in handler, for the

mod_logging module, for processing the request
– logging_out_handler.c - source file for the out handler, for the

mod_logging module, for processing the response
– mod_logging.c - source file for the mod_logging module
– mod_logging.h - header file the mod_logging module

310 Install Files and Folders

◦ /reflector

/conf

– pathConf - Pathway configuration file for the reflector service
–

– /src

– reflector.c - source file for the reflector service
– reflectorddl - DDL file for the reflector service
– reflectorsdl.xml - SDL file for the reflector service

◦ sec_echo

README - explains how to set up sample client repository and how to run the scenario
samples provided.

–

– /client

sec_echo.txe - sample client application used to access the sec_echo service.–
– /src

– Makefile - Makefile to build the sample sec_echo client.
– echo.c - source file for the sample sec_echo client.

– client_axis2.xml - axis2.xml for the client repository.
– data - passwords file containing username and password for authentication.
– extensible_modules

authn_provider - A module used for authentication.–
– Makefile - Makefile to build the authentication module.
– authn_module.c - source file for authentication module.

– password_provider - A module used to get password for a specific user
from the "passwords" file.
– /src

– Makefile - Makefile to build the password provider module.
– password_module.c - source file for password provider module.

– keys - contains sample certificates and private keys.
– run_scenario.sh - A script used to run the sample scenarios.
– secpolicy - contains policies and services.xml files for all the sample scenarios.
– /service

– libsec_echo.so - sec_echo service implementation library.
– src

– Makefile - Makefile to build the sec_echo service.
– echo.c - source file for the sec_echo service.

Verifying the Extracted Product Files 311

– echo.h - header file for the sec_echo service.
– echo_skeleton.c - source file for the sec_echo service.

◦ setup.sh - A script to set up sample WS-Security client repository used to run the
scenarios.

• /tools - includes the tools distributed with NonStop SOAP 4

SoapAdminCL.txe - tool to generate the HTML clients, the WSDL file, SOAP request
and response XML files, XML schema files, and the services.xml file using the NonStop
SOAP 4 Service Definition Language (SDL) file.

◦

◦ SoapAdminCL - A tool which is interface to SoapAdminCL.txe tool. It validates if the
NonStop SOAP Server mentioned in the Service Definition Language (SDL) file is running
or not (if -w option is specified) and then calls the SoapAdminCL.txe.

◦ WSDL2C - tool to generate services and clients in the C programming language using the
service-specific WSDL file.

◦ WSDL2PWY - tool to generate services and clients in the C programming language using
the service-specific WSDL file.

◦ /adminserver - tool to use the NonStop SOAP 4 Administration Utility.
– libadminserver.so -DLL file for adminserver.

NOTE: If all the files listed in this section are not present, delete all the files, check for write
permissions, and repeat the installation procedure.

Verifying the Deployed Files
The following files and directories are deployed in the <NonStop SOAP 4 Deployment
Directory>:

• axis2.xml - is the NonStop SOAP 4 configuration file
• /bin - includes the executable object for the NonStop SOAP 4 server and the installation

script

◦ axis2cgi.pway - is a soft link to axis2cgi.pway in <NonStop SOAP 4
Installation Directory>

• /client - is the NonStop SOAP 4 client directory
• deploy_instructions - includes instructions required to deploy the NonStop SOAP 4

server under iTP WebServer
• /include - is a soft link to the include directory in the <NonStop SOAP 4 Installation

Directory>

• itp_axis2.config - is the iTP WebServer configuration file
• /lib - is a soft link to the /lib directory in the <NonStop SOAP 4 Installation

Directory>

• /logs - is the NonStop SOAP 4 log file directory
• /modules

/encoding - is a soft link to the encoding module directory in <NonStop SOAP 4
Installation Directory>

◦

◦ /rampart - is a soft link to the rampart module directory in <NonStop SOAP 4
Installation Directory>

312 Install Files and Folders

◦ /transaction - is a soft link to the transaction module directory in <NonStop
SOAP 4 Installation Directory>

◦ /validation - is a soft link to the validation module directory in <NonStop SOAP
4 Installation Directory>

• /services - is the NonStop SOAP 4 service deployment directory

NOTE: If all the listed files are not present, run the deploy.sh script again, as mentioned in
Step 2 of “Running the Deployment Script” (page 39).

The following files and directories must be present in the <NonStop SOAP 4 Deployment
Directory> directory:
• /services

◦ /echo

– /client

– Makefile - Makefile for the echo client
– echo.c - source file for the echo client

– libecho.so - echo service built using NonStop SOAP 4 server APIs
– /service

– Makefile - Makefile for the echo service
– echo.c - source file for the echo service
– echo.h - header file for the echo service
– echo_skeleton.c - source file for the echo service
– echoddl - DDL file for the echo service
– echosdl.xml-SDL file for the echo service

– services.xml - NonStop SOAP 4 service configuration file for the echo service

• /client

◦ /echo

– echo.exe - client for the echo service

Verifying the Deployed Files 313

C SoapAdminCL DDL datatype to XML datatype conversion
SoapAdminCL converts the DDL datatypes to the corresponding XML schema type to generate the
WSDL. This maps the data structure defined in DDL to the XML schema in the WSDL.

Table 25 SoapAdminCL conversion table for DDL datatype to XML datatype Conversion:

Schema datatypeDDL Datatype

xsd:string maxLength = 10PIC A(10)

xsd:string maxLength = 10PIC X(10)

xsd:unsignedLong totalDigits=10PIC 9(10)

xsd:string maxLength = 19PIC A(2)X(10)9(2)A(5)

xsd:decimal totalDigits = 3, fractionDigits = 3PIC SV9(3)

xsd:decimal totalDigits = 3, fractionDigits = 2PIC 9V9(2)

xsd:decimal totalDigits = 2, fractionDigits = 1PIC T9V9

xsd:short totalDigits = 2PIC 9(2)T

xsd:string maxLength = 20PIC N(10)

xsd:unsignedShortPIC 9(4) COMP

xsd:shortPIC S9(4) COMP

xsd:unsignedIntPIC 9(5) COMP

xsd:intPIC S9(5) COMP

xsd:unsignedLong. Not supported for COBOL.PIC 9(10) COMP

xsd:longPIC S9(10) COMP

xsd:string maxLength=lenTYPE CHARACTER len

xsd:byteTYPE BINARY 8

xsd:unsignedByteTYPE BINARY 8 UNSIGNED

xsd:shortTYPE BINARY 16

xsd:unsignedShortTYPE BINARY 16 UNSIGNED

xsd:short for C, and for COBOL, xsd:decimal totalDigits =
4, fractionDigits = 2

TYPE BINARY 16,2

xsd:intTYPE BINARY 32

xsd:unsignedIntTYPE BINARY 32 UNSIGNED

xsd:longTYPE BINARY 64

xsd:long for C, and for COBOL xsd:decimal totalDigits = 18,
fractionDigits = 16

TYPE BINARY 64,16

xsd:unsignedLong. Not supported for COBOL.TYPE BINARY 64 UNSIGNED

xsd:floatTYPE FLOAT 32

xsd:doubleTYPE FLOAT 64

xsd:string maxLength = 1TYPE LOGICAL 1

xsd:shortTYPE LOGICAL 2

314 SoapAdminCL DDL datatype to XML datatype conversion

Table 25 SoapAdminCL conversion table for DDL datatype to XML datatype Conversion: (continued)

Schema datatypeDDL Datatype

xsd:intTYPE LOGICAL 4

xsd:short totalDigits = 2ENUM

NOTE: The following DDL elements are not supported by the SoapAdminCL tool:
• BINARY 64 UNSIGNED for COBOL.
• Bit Length for C and COBOL

315

D NonStop SOAP 4 APIs
This appendix lists the following NonStop SOAP 4 APIs:
• “AXIOM APIs” (page 316)
• “Client API Module” (page 343)
• “Context Hierarchy” (page 365)
• “Service Skeleton API” (page 373)
• “Utilities” (page 374)

AXIOM APIs

Attributes

The axiom_attribute_create()Function
The axiom_attribute_create()function creates an AXIOM attribute structure.
Synopsis:
AXIS2_EXTERN axiom_attribute_t* axiom_attribute_create
 (const axutil_env_t * env,
 const axis2_char_t * localname,
 const axis2_char_t * value,
 axiom_namespace_t * ns)

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

localname
is an input parameter and is a pointer to the local name of the attribute. It cannot have a NULL
value.

value
is an input parameter and is a pointer to the normalized attribute value. It cannot have a NULL
value.

ns
is an input parameter and is a pointer to the namespace, if any, of the attribute. It is an optional
parameter and can have a NULL value.

Return Values:
Pointer to the newly created attribute structure. If an error occurs, it returns NULL.

The axiom_attribute_free() Function
Synopsis:
AXIS2_EXTERN void axiom_attribute_free
 (struct axiom_attribute * om_attribute,
 const axutil_env_t * env)

Description:
This function frees an axiom_attribute structure.
Parameters:
om_attribute

is a pointer to the attribute structure to be freed.

316 NonStop SOAP 4 APIs

env
is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:

The axiom_attribute_get_qname() Function
Synopsis:
AXIS2_EXTERN axutil_qname_t* axiom_attribute_get_qname
 (struct axiom_attribute * om_attribute,
 const axutil_env_t * env)

Description:
This function creates and returns a qname structure for this attribute.
Parameters:
om_attribute

is a pointer to attribute structure for which the qname is to be returned
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
This function returns qname for a given attribute and returns NULL on error.

The axiom_attribute_serialize() Function
Synopsis:
AXIS2_EXTERN int axiom_attribute_serialize
 (struct axiom_attribute * om_attribute,
 const axutil_env_t * env,
 axiom_output_t * om_output)

Description:
This function provides the serialize op.
Parameters:
om_attribute

is a pointer to the attribute structure to be serialized.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

om_output
is the AXIOM output handler to be used in serializing

Return Values:
This function returns the status of the op. It returns:
• AXIS2_SUCCESS on success
• AXIS2_FAILURE on failure

The axiom_attribute_get_localname() Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_attribute_get_localname
 (struct axiom_attribute * om_attribute,
 const axutil_env_t * env)

Description:
This function returns the localname of this attribute

AXIOM APIs 317

Parameters:
om_attribute

is a pointer to attribute structure.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
This function returns the localname and returns NULL on error.

The axiom_attribute_get_value()Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_attribute_get_value
 (struct axiom_attribute * om_attribute,
 const axutil_env_t * env)

Description:
This function returns value of this attribute.
Parameters:
om_attribute

pointer to om_attribute structure
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
This function returns the attribute value on success or returns NULL on error.

The axiom_attribute_get_namespace() Function
Synopsis:
AXIS2_EXTERN axiom_namespace_t* axiom_attribute_get_namespace
 (struct axiom_attribute * om_attribute,
 const axutil_env_t * env)

Description:
This function returns namespace of this attribute.
Parameters:
om_attribute

pointer to om_attribute structure
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
This function returns a pointer to om_namespace structure and returns NULL on error.

The axiom_attribute_set_localname() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axiom_attribute_set_localname
 (struct axiom_attribute * om_attribute,
 const axutil_env_t * env,
 const axis2_char_t * localname)

Description:
This function sets the localname of the attribute.

318 NonStop SOAP 4 APIs

Parameters:
om_attribute

pointer to om_attribute structure
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

localname
is the localname that should be set for this attribute.

Return Values:
This function returns:
• AXIS2_SUCCESS on success
• AXIS2_FAILURE on failure

The axiom_attribute_set_value() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axiom_attribute_set_value
 (struct axiom_attribute * om_attribute,
 const axutil_env_t * env,
 const axis2_char_t * value)

Description:
Thie function sets the attribute value.
Parameters:
om_attribute

pointer to om_attribute structure
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

value
is the value that should be set for this attribute.

Return Values:
This function returns:
• AXIS2_SUCCESS on success
• AXIS2_FAILURE on failure

The axiom_attribute_set_namespace() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axiom_attribute_set_namespace
 (struct axiom_attribute * om_attribute,
 const axutil_env_t * env,
 axiom_namespace_t * om_namespace)

Description:
This function sets the namespace of the attribute.
Parameters:
om_attribute

pointer to om_attribute structure
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

AXIOM APIs 319

om_namespace
is a pointer to om_namespace structure that should be set for this attribute.

Return Values:
This function returns:
• AXIS2_SUCCESS on success
• AXIS2_FAILURE on failure

Comment

The axiom_comment_create() Function
Synopsis:
AXIS2_EXTERN axiom_comment_t* axiom_comment_create
 (const axutil_env_t * env,
 axiom_node_t * parent,
 const axis2_char_t * value,
 axiom_node_t ** node)

Description:
This function creates a comment structure.
Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

parent
is the parent node of the comment.

value
is the comment text

node
is an out parameter and returns the node corresponding to the comment created. Node type
will be set to AXIOM_COMMENT. It cannot be NULL.

Return Values:
This function returns a pointer to the newly created comment structure

The axiom_comment_free() Function
Synopsis:
AXIS2_EXTERN void axiom_comment_free
 (struct axiom_comment * om_comment,
 const axutil_env_t * env)

Description:
This function free the axis2_comment_t structure
Parameters:
om_comment

is a pointer to axis2_commnet_t structure to be freed.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
This function returns the status of the op. It returns:
• AXIS2_SUCCESS on success
• AXIS2_FAILURE on failure

320 NonStop SOAP 4 APIs

The axiom_comment_get_value() Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_comment_get_value
 (struct axiom_comment * om_comment,
 const axutil_env_t * env)

Description:
This function gets the comments data
Parameters:
om_comment

pointer to axis2_commnet_t structure to be freed
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
This function returns the comment text.

The axiom_comment_set_value() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axiom_comment_set_value
 (struct axiom_comment * om_comment,
 const axutil_env_t * env,
 const axis2_char_t * value)

Description:
This function sets the comment data.
Parameters:
om_comment

pointer to axis2_commnet_t structure to be freed.
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

value
is the comment text

Return Values:
This function returns:
• AXIS2_SUCCESS on success
• AXIS2_FAILURE on failure

Document

axiom_document_create

Synopsis:
AXIS2_EXTERN axiom_document_t* axiom_document_create
 (const axutil_env_t * env,
 axiom_node_t * root,
 struct axiom_stax_builder * builder)

Description:
this function creates an axiom_document_t structure.

AXIOM APIs 321

Parameters:
env

is a pointer to the environment structure. The env parameter must not be NULL.
root

pointer to document's root node. Optional, can be NULL.
builder

pointer to axiom_stax_builder.
Return Values:
This function returns a pointer to the newly created document.

axiom_document_free

Synopsis:
AXIS2_EXTERN void axiom_document_free
 (struct axiom_document * document,
 const axutil_env_t * env)

Description:
This function frees the document structure.
Parameters:
document

pointer to axiom_document_t structure to be freed
env

is a pointer to the environment structure. The env parameter must not be NULL.
Return Values:
This function returns the status of the op. It returns AXIS2_SUCCESS on success, else returns
AXIS2_FAILURE.

axiom_document_get_root_element

Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_document_get_root_element
 (struct axiom_document * document,
 const axutil_env_t * env)

Description:
This function gets the root element of the document.
Parameters:
document

document to return the root of.
env

is a pointer to the environment structure. The env parameter must not be NULL.
Return Values:
This function returns a pointer to the root node. If no root present, this method tries to build the
root. It returns NULL on error.

axiom_document_set_root_element

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_document_set_root_element
 (struct axiom_document * document,
 const axutil_env_t * env,
 axiom_node_t * om_node)

322 NonStop SOAP 4 APIs

Description:
This function sets the root element of the document. If a root node already exists, it is freed before
setting to root element.
Parameters:
document

document structure to return the root of.
env

is a pointer to the environment structure. The env parameter must not be NULL.
Return Values:
This function returns the status code AXIS2_SUCCESS on success , else returns AXIS2_FAILURE
on error.

axiom_document_build_all

Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_document_build_all
 (struct axiom_document * document,
 const axutil_env_t * env)

Description:
This method builds the rest of the xml input stream from current position till the root element is
completed .
Parameters:
document

pointer to axiom_document_t structure to be built.
env

is a pointer to the environment structure. The env parameter must not be NULL.
Return Values:
None

Element

axiom_element_create

Synopsis:
AXIS2_EXTERN axiom_element_t* axiom_element_create
 (const axutil_env_t * env,
 axiom_node_t * parent,
 const axis2_char_t * localname,
 axiom_namespace_t * ns,
 axiom_node_t ** node)

Description:
This function creates an AXIOM element with given localname.
Parameters:
env

is a pointer to the environment struct. The env parameter must not be NULL.
parent

parent of the element node to be created. can be NULL.
localname

localname of the elment. cannot be NULL.
ns

namespace of the element. can be NULL. If the value of the namespace has not already been
declared then the namespace structure ns will be declared and will be freed when the tree is

AXIOM APIs 323

freed. If the value of the namespace has already been declared using another namespace
structure then the namespace structure ns will be freed.

node
This is an out parameter. cannot be NULL. Returns the node corresponding to the comment
created. Node type will be set to AXIOM_ELEMENT

Return Values:
This function returns a pointer to the newly created element structure

axiom_element_create_with_qname

Synopsis:
AXIS2_EXTERN axiom_element_t* axiom_element_create_with_qname
 (const axutil_env_t * env,
 axiom_node_t * parent,
 const axutil_qname_t * qname,
 axiom_node_t ** node)

Description:
This function creates an AXIOM element with given qname.
Parameters:
env

is a pointer to the environment struct. The env parameter must not be NULL.
parent

parent of the element node to be created. It can be NULL.
qname

qname of the elment.cannot be NULL.
node

This is an out parameter. cannot be NULL. Returns the node corresponding to the comment
created. Node type will be set to AXIOM_ELEMENT.

Return Values:
This function returns a pointer to the newly created element structure.

axiom_element_add_attribute

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_element_add_attribute
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_attribute_t * attribute,
 axiom_node_t * node)

Description:
This function adds an attribute to current element. The current element takes responsibility of the
assigned attribute.
Parameters:
om_element

element to which the attribute is to be added. It cannot be NULL.
env

is a pointer to the environment struct. The env parameter must not be NULL.
attribute

attribute to be added.
node

axiom_node_t node that om_element is contained in

324 NonStop SOAP 4 APIs

Return Values:
This function returns the status of the op. AXIS2_SUCCESS on success else AXIS2_FAILURE.

axiom_element_get_attribute

Synopsis:
AXIS2_EXTERN axiom_attribute_t* axiom_element_get_attribute
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axutil_qname_t * qname)

Description:
This function gets (finds) the attribute with the given qname.
Parameters:
element

element whose attribute is to be found.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to the attribute with given qname if found, else returns NULL. On
error, returns NULL and sets the error code in environment's error structure.

axiom_element_get_attribute_value

Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_element_get_attribute_value
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axutil_qname_t * qname)

Description:
This function gets (finds) the attribute value with the given qname.
Parameters:
element

element whose attribute value is to be found.
env

is a pointer to the environment struct. The env parameter must not be NULL.
qname

qname of the attribute to be found. should not be NULL.
Return Values:
This function returns the attribute value with given qname if found, else returns NULL. On error,
returns NULL and sets the error code in environment's error structure.

axiom_element_free

Synopsis:
AXIS2_EXTERN void axiom_element_free
 (axiom_element_t * element,
 const axutil_env_t * env)

Description:
This function frees the given element.
Parameters:
element

AXIOM element to be freed.

AXIOM APIs 325

env
is a pointer to the environment struct. The env parameter must not be NULL.

qname
qname of the attribute to be found. should not be NULL.

Return Values:
This function returns the status of the operation. It returns AXIS2_SUCCESS on success , else returns
AXIS2_FAILURE on error.

axiom_element_get_localname

Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_element_get_localname
 (axiom_element_t * om_element,
 const axutil_env_t * env)

Description:
This function returns the local name of this element.
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the local name of element, returns NULL on error.

axiom_element_set_localname

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_element_set_localname
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 const axis2_char_t * localname)

Description:
This function sets the local name of this element.
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returs the status code of operation. It returns AXIS2_SUCCESS on success,
AXIS2_FAILURE on error.

axiom_element_get_namespace

Synopsis:
AXIS2_EXTERN axiom_namespace_t* axiom_element_get_namespace
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_node_t * ele_node)

Description:
This function gets the namespace of om_element.

326 NonStop SOAP 4 APIs

Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This pointer returns a pointer to axiom_namespace_t structureNULL if there is no namespace
associated with the element, NULL on error with error code set to environment's error.

axiom_element_set_namespace

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_element_set_namespace
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_namespace_t * ns,
 axiom_node_t * node)

Description:
This function sets the namespace of the element.
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
ns

pointer to namespace. If the value of the namespace has not already been declared then the
namespace structure ns will be declared and will be freed when the tree is freed.

Return Values:
This function returns the status code of the op, with error code set to environment's error.

axiom_element_get_all_attributes

Synopsis:
AXIS2_EXTERN axutil_hash_t* axiom_element_get_all_attributes
 (axiom_element_t * om_element,
 const axutil_env_t * env)

Description:
This function gets the attribute list of the element.
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns axutil_hash pointer to attributes hash. This hash table is read only.

axiom_element_get_children

Synopsis:
AXIS2_EXTERN axiom_children_iterator_t* axiom_element_get_children
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_node_t * element_node)

AXIOM APIs 327

Description:
This function returns a list of children iterator returned iterator is freed when om_element structure
is freed iterators reset function must be called by user
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
element_node

pointer to this element node.
Return Values:
None

axiom_element_get_children_with_qname

Synopsis:
AXIS2_EXTERN axiom_children_qname_iterator_t* axiom_element_get_children_with_qname
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axutil_qname_t * element_qname,
 axiom_node_t * element_node)

Description:
This function returns a list of children iterator with qname returned iterator is freed when AXIOM
element structure is freed.
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
element_node

pointer to this element node.
Return Values:
This function returns the children qname iterator struct.

axiom_element_remove_attribute

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_element_remove_attribute
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_attribute_t * om_attribute)

Description:
This function removes an attribute from the element attribute list. You must free this attribute, element
free function does not free attributes that are not in its attribute list.
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
om_attribute

attribute to be removed.

328 NonStop SOAP 4 APIs

Return Values:
This function returns AXIS2_SUCCESS if the attribute was found and removed, else returns
AXIS2_FAILURE.

axiom_element_set_text

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_element_set_text
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 const axis2_char_t * text,
 axiom_node_t * element_node)

Description:
This function sets the text of the given element.

CAUTION: This method will wipe out all the text elements (and hence any mixed content) before
setting the text.

Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
text

text to set.
element_node

node of element.
Return Values:
This function returns AXIS2_SUCCESS if attribute was found and removed, else returns
AXIS2_FAILURE.

axiom_element_get_text

Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_element_get_text
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_node_t * element_node)

Description:
This function selects all the text children and concatenates them to a single string. The string returned
by this method call will be released by AXIOM when this method is called again. So it is
recomended to have a copy of the return value if this method is going to be called more than once
and the return values of the earlier calls are important.
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
element

node , the container node of this AXIOM element
Return Values:
This function returns the concatenated text of all text children's text values return null if no text
children is available or on error.

AXIOM APIs 329

axiom_element_to_string

Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_element_to_string
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_node_t * element_node)

Description:
This function returns the serilized text of this element and its children
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
element_node

the container node this element is contained on.
Return Values:
This function returns a character array of xml , returns NULL on error.

axiom_element_get_child_elements

Synopsis:
AXIS2_EXTERN axiom_child_element_iterator_t* axiom_element_get_child_elements
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_node_t * element_node)

Description:
This function returns an iterator with child elements of type AXIOM_ELEMENT iterator is freed when
om_element node is freed
Parameters:
om_element

pointer to om_element
env

is a pointer to the environment struct. The env parameter must not be NULL.
element_node

Return Values:
This function returns axiom_child_element_iterator_t if successful and returns NULL on
error.

axiom_element_extract_attributes

Synopsis:
AXIS2_EXTERN axutil_hash_t* axiom_element_extract_attributes
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axiom_node_t * ele_node)

Description:
This function extracts attributes and returns a clones hash table of attributes. If the attributes are
associated with a namespace, it is also cloned.
Parameters:
om_element

pointer to om_element.

330 NonStop SOAP 4 APIs

env
is a pointer to the environment struct. The env parameter must not be NULL.

om_node
pointer to this element node.

Return Values:

axiom_element_get_attribute_value_by_name

Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_element_get_attribute_value_by_name
 (axiom_element_t * om_ele,
 const axutil_env_t * env,
 axis2_char_t * attr_name)

Description:
This function returns the attribute value as a string for the given element.
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
attr_name

the attribute name.
Return Values:
This function returns the attribute value as a string.

axiom_element_get_localname_str

Synopsis:
AXIS2_EXTERN axutil_string_t* axiom_element_get_localname_str
 (axiom_element_t * om_element,
 const axutil_env_t * env)

Description:
This function returns the local name of the element.
Parameters:
om_element

pointer to om_element.
env

is a pointer to the environment struct. The env parameter must not be NULL.
om_node

pointer to this element node.
Return Values:
This function returns the local name of the element.

axiom_element_set_localname_str

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_element_set_localname_str
 (axiom_element_t * om_element,
 const axutil_env_t * env,
 axutil_string_t * localname)

Description:
This function sets the local name of the element.

AXIOM APIs 331

Parameters:
om_element

pointer to om_element
env

is a pointer to the environment struct. The env parameter must not be NULL.
localname

the local name of the element.
Return Values:

Namespace

axiom_namespace_create

Synopsis:
AXIS2_EXTERN axiom_namespace_t* axiom_namespace_create
 (const axutil_env_t * env,
 const axis2_char_t * uri,
 const axis2_char_t * prefix)

Description:
This function creates a namespace structure
Parameters:
uri

namespace URI
prefix

namespace prefix
Return Values:
This function returns a pointer to newly created namespace struct.

axiom_namespace_free

Synopsis:
AXIS2_EXTERN void axiom_namespace_free
 (struct axiom_namespace * om_namespace,
 const axutil_env_t * env)

Description:
This function frees given AXIOM namespcae.
Parameters:
om_namespace

namespace to be freed.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the status of the operation. AXIS2_SUCCESS on success else AXIS2_FAILURE.

axiom_namespace_equals

Synopsis:
AXIS2_EXTERN axis2_bool_t axiom_namespace_equals
 (struct axiom_namespace * om_namespace,
 const axutil_env_t * env,
 struct axiom_namespace * om_namespace1)

332 NonStop SOAP 4 APIs

Description:
This function compares two namepsaces.
Parameters:
om_namespace

first namespace to be compared
env

is a pointer to the environment struct. The env parameter must not be NULL.
om_namespace1

second namespace to be compared
Return Values:
This funtion returns AXIS2_TRUE if the two namespaces are equal, AXIS2_FALSE otherwise.

axiom_namespace_serialize

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_namespace_serialize
 (struct axiom_namespace * om_namespace,
 const axutil_env_t * env,
 axiom_output_t * om_output)

Description:
This function serializes given namespace.
Parameters:
om_namespace

namespace to be compared
env

is a pointer to the environment struct. The env parameter must not be NULL.
om_output

om_output
Return Values:
This function returns the status of the operation. It returns AXIS2_SUCCESS on success, else returns
AXIS2_FAILURE.

axiom_namespace_get_uri

Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_namespace_get_uri
 (struct axiom_namespace * om_namespace,
 const axutil_env_t * env)

Description:
Parameters:
om_namespace

pointer to om_namespace structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns namespace uri or NULL on error.

AXIOM APIs 333

axiom_namespace_get_prefix

Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_namespace_get_prefix
 (struct axiom_namespace * om_namespace,
 const axutil_env_t * env)

Description:
Parameters:
om_namespace

pointer to om_namespace structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the prefix or NULL on error.

axiom_namespace_to_string

Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_namespace_to_string
 (struct axiom_namespace * om_namespace,
 const axutil_env_t * env)

Description:
to string , returns the string by combining namespace_uri, and prefix seperated by a '|' character
Parameters:
om_namespace

env
is a pointer to the environment struct. The env parameter must not be NULL.

Return Values:
This function returns pointer to string , This is a property of namespace, should not be freed by
user.

axiom_namespace_create_str

Synopsis:
AXIS2_EXTERN axiom_namespace_t* axiom_namespace_create_str
 (const axutil_env_t * env,
 axutil_string_t * uri,
 axutil_string_t * prefix)

Description:
This funcion creates an AXIOM namespace from a URI and a Prefix.
Parameters:
om_namespace

pointer to the AXIOM namespace structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the created AXIOM namespace.

axiom_namespace_set_uri_str

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_namespace_set_uri_str
 (axiom_namespace_t * om_namespace,

334 NonStop SOAP 4 APIs

 const axutil_env_t * env,
 axutil_string_t * uri)

Description:
This function sets the uri string.
Parameters:
om_namespace

pointer to the AXIOM namespace structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axiom_namespace_get_uri_str

Synopsis:
AXIS2_EXTERN axutil_string_t* axiom_namespace_get_uri_str
 (axiom_namespace_t * om_namespace,
 const axutil_env_t * env)

Description:
This function gets the uri as a string.
Parameters:
om_namespace

pointer to the AXIOM namespace structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the uri as a string.

axiom_namespace_get_prefix_str

Synopsis:
AXIS2_EXTERN axutil_string_t* axiom_namespace_get_prefix_str
 (axiom_namespace_t * om_namespace,
 const axutil_env_t * env)

Description:
This function gets the prefix as a string.
Parameters:
om_namespace

pointer to the AXIOM namespace structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the prefix as a string.

Node

axiom_node_create

Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_node_create
 (const axutil_env_t * env)

AXIOM APIs 335

Description:
This function creates a node struct.
Parameters:
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to newly created node struct. NULL on error.

axiom_node_free_tree

Synopsis:
AXIS2_EXTERN void axiom_node_free_tree
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function frees an AXIOM node and all of its children. Please note that the attached
data_element will also be freed along with the node. If the node is still attached to a parent, it
will be detached first, then freed.
Parameters:
om_node

node to be freed.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the status of the op. It returns AXIS2_SUCCESS on success, else returns
AXIS2_FAILURE.

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_node_add_child
 (axiom_node_t * om_node,
 const axutil_env_t * env,
 axiom_node_t * child)

Description:
This function adds a given node as child to parent. child should not have a parent if child has
a parent it will be detached from existing parent.
Parameters:
om_node

parent node. cannot be NULL.
env

is a pointer to the environment struct. The env parameter must not be NULL.
child

child node.
Return Values:
This function returns the status of the operation. It returns AXIS2_SUCCESS on success, else returns
AXIS2_FAILURE.

axiom_node_insert_sibling_after

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_node_insert_sibling_after
 (axiom_node_t * om_node,

336 NonStop SOAP 4 APIs

 const axutil_env_t * env,
 axiom_node_t * node_to_insert)

Description:
This function inserts a sibling node after the given node.
Parameters:
om_node

parent node. cannot be NULL.
env

is a pointer to the environment struct. The env parameter must not be NULL.
node_to_insert

the node to be inserted. Cannot be NULL.
Return Values:
This function returns the status of the op. It returns AXIS2_SUCCESS on success, else returns
AXIS2_FAILURE.

axiom_node_insert_sibling_before

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_node_insert_sibling_before
 (axiom_node_t * om_node,
 const axutil_env_t * env,
 axiom_node_t * node_to_insert)

Description:
This function inserts a sibling node before the given node.
Parameters:
om_node

parent node. cannot be NULL.
env

is a pointer to the environment struct. The env parameter must not be NULL.
node_to_insert

the node to be inserted. Cannot be NULL.
Return Values:
This function returns the status of the op. It returns AXIS2_SUCCESS on success, else returns
AXIS2_FAILURE.

axiom_node_serialize

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_node_serialize
 (axiom_node_t * om_node,
 const axutil_env_t * env,
 struct axiom_output * om_output)

Description:
This function serializes the given node. This operation makes the node go through its children and
serialize them in order.
Parameters:
om_node

parent node. cannot be NULL.
env

is a pointer to the environment struct. The env parameter must not be NULL.

AXIOM APIs 337

om_output
AXIOM output handler to be used in serializing.

Return Values:
This function returns the status of the operation. This function returns AXIS2_SUCCESS on success,
else AXIS2_FAILURE.

axiom_node_get_parent

Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_node_get_parent
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function gets parent of om_node node.
Parameters:
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to parent node of om_node, returns NULL if no parent exists or when
an error occurs.

axiom_node_get_first_child

Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_node_get_first_child
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function gets the first child of om_node.
Parameters:
om_node

node
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to first child node , NULL is returned on error with error code set in
environments error.

axiom_node_get_first_element

Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_node_get_first_element
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function gets the first AXIOM_ELEMENT in om_node.
Parameters:
om_node

node
env

is a pointer to the environment struct. The env parameter must not be NULL.

338 NonStop SOAP 4 APIs

Return Values:
This function returns a pointer to first child AXIOM element, NULL is returned on error with error
code set in environments error.

axiom_node_get_last_child

Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_node_get_last_child
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function gets the last child of the node.
Parameters:
om_node

node
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to last child of this node , return NULL on error.

axiom_node_get_previous_sibling

Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_node_get_previous_sibling
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function gets the previous sibling.
Parameters:
om_node

om_node structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to previous sibling , NULL if a previous sibling does not exits (happens
when this node is the first child of a node).

axiom_node_get_next_sibling

Synopsis:
AXIS2_EXTERN axiom_node_t* axiom_node_get_next_sibling
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function gets the next sibling.
Parameters:
om_node

om_node structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the next sibling of this node.

AXIOM APIs 339

axiom_node_get_node_type

Synopsis:
AXIS2_EXTERN axiom_types_t axiom_node_get_node_type
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function gets the node type of this element Node type can be one of AXIOM_ELEMENT,
AXIOM_COMMENT, AXIOM_TEXT, AXIOM_DOCTYPE, AXIOM_PROCESSING_INSTRUCTION.
Parameters:
om_node

node of which node type is required
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the node type.

axiom_node_get_data_element

Synopsis:
AXIS2_EXTERN void* axiom_node_get_data_element
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function gets the structure contained in the node IF the node is on type AXIOM_ELEMENT ,
this method returns a pointer to axiom_element_t structure contained.
Parameters:
om_node

node of which node type is required
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to structure contained in the node returns NULL if no structure is
contained.

Synopsis:
AXIS2_EXTERN struct axiom_document* axiom_node_get_document
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function returns the associated document, only valid if built using builder and for a node of
type AXIOM_ELEMENT returns NULL if no document is available.
Parameters:
om_node

pointer to the AXIOM node structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the AXIOM document of the node.

340 NonStop SOAP 4 APIs

axiom_node_to_string

Synopsis:
AXIS2_EXTERN axis2_char_t* axiom_node_to_string
 (axiom_node_t * om_node,
 const axutil_env_t * env)

Description:
This function
Parameters:
om_node

pointer to the AXIOM node structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the string representation of the node

Text

axiom_text_create

Synopsis:
AXIS2_EXTERN axiom_text_t* axiom_text_create
 (const axutil_env_t * env,
 axiom_node_t * parent,
 const axis2_char_t * value,
 axiom_node_t ** node)

Description:
This function creates a new text struct.
Parameters:
env

is a pointer to the environment struct. The env parameter must not be NULL.
parent

parent of the new node. Optinal, can be NULL. The parent element must be of type
AXIOM_ELEMENT.

value
Text value. Optinal, can be NULL.

comment_node
This is an out parameter. cannot be NULL. Returns the node corresponding to the text structure
created. Node type will be set to AXIOM_TEXT.

Return Values:
This function returns a pointer to newly created text struct.

axiom_text_free

Synopsis:
AXIS2_EXTERN void axiom_text_free
 (struct axiom_text * om_text,
 const axutil_env_t * env)

Description:
This function frees an axiom_text struct.

AXIOM APIs 341

Parameters:
env

is a pointer to the environment struct. The env parameter must not be NULL.
om_text

pointer to AXIOM text structure to be freed.
Return Values:
This function returns the status of the op. It returns AXIS2_SUCCESS on success, else returns
AXIS2_FAILURE on error.

axiom_text_serialize

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_text_serialize
 (struct axiom_text * om_text,
 const axutil_env_t * env,
 axiom_output_t * om_output)

Description:
Serialize operation
Parameters:
env

is a pointer to the environment struct. The env parameter must not be NULL.
om_text

pointer to AXIOM text structure to be freed.
om_output

AXIOM output handler to be used in serializing.
Return Values:
This function returns the status of the operation. It returns AXIS2_SUCCESS on success, else returns
AXIS2_FAILURE on error.

axiom_text_set_value

Synopsis:
AXIS2_EXTERN axis2_status_t axiom_text_set_value
 (struct axiom_text * om_text,
 const axutil_env_t * env,
 const axis2_char_t * value)

Description:
This function sets the text value.
Parameters:
om_text

om_text structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
value

text
Return Values:
The function returns the status of the operation. It returns AXIS2_SUCCESS on success, else returns
AXIS2_FAILURE on error.

342 NonStop SOAP 4 APIs

axiom_text_get_value

Synopsis:
AXIS2_EXTERN const axis2_char_t* axiom_text_get_value
 (struct axiom_text * om_text,
 const axutil_env_t * env)

Description:
This function gets text value.
Parameters:
om_text

om_text structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the text value , NULL is returned if there is no text value.

axiom_text_get_text

Synopsis:
AXIS2_EXTERN const axis2_char_t* axiom_text_get_text
 (axiom_text_t * om_text,
 const axutil_env_t * env)

Description:
This function gets text value from the text node even when MTOM optimized.
Parameters:
om_text

om_text structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the text value base64 encoded text when MTOM optimized, NULL is returned
if there is no text value.

Client API Module

client service
The client service APIs are as follows:

axis2_svc_client_get_svc

Synopsis:
AXIS2_EXTERN axis2_svc_t* axis2_svc_client_get_svc
 (const axis2_svc_client_t * svc_client,
 const axutil_env_t * env
)

Description:
This function returns the axis2_svc_t this is a client for. This is useful when the service is created
anonymously or from a WSDL.
Parameters:
svc_client

pointer to service client structure

Client API Module 343

env
is a pointer to the environment struct. The env parameter must not be NULL.

Return Values:
This function returns a pointer to service context struct. The service client owns the returned
pointer.

axis2_svc_client_set_options

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_svc_client_set_options
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axis2_options_t * options
)

Description:
This function sets the options to be used by service client.
Parameters:
svc_client

pointer to service client struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
options

pointer to options structure to be set.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_svc_client_get_options

Synopsis:
AXIS2_EXTERN const axis2_options_t* axis2_svc_client_get_options
 (const axis2_svc_client_t * svc_client,
 const axutil_env_t * env
)

Description:
This function gets options used by service client.
Parameters:
svc_client

pointer to service client struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to the options structure if options set, else returns NULL. It returns a
reference and not a cloned copy.

axis2_svc_client_engage_module

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_svc_client_engage_module
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axis2_char_t * module_name
)

344 NonStop SOAP 4 APIs

Description:
This function engages the named module. The engaged modules extend the message processing
when consuming services. Modules help to apply QoS norms in messaging. After a module is
engaged to a service client, the axis2_engine invokes the module for all the interactions between
the client and the service.
Parameters:
svc_client

pointer to service client struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
module_name

name of the module to be engaged.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_svc_client_disengage_module

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_svc_client_disengage_module
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axis2_char_t * module_name)

Description:
This function disengages the specified module. Disengaging a module on a service client ensures
that the axis2_engine does not invoke the specified module when sending and receiving
messages.
Parameters:
svc_client

pointer to service client struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
module_name

name of the module to be engaged.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_svc_client_add_header

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_svc_client_add_header \
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 axiom_node_t * header)

Description:
This function adds an XML element as a header to be sent to the server side. This enables users to
go beyond the usual XML-in/XML-out pattern, and send custom SOAP headers. After being added,
the service client owns the header and cleans up when the service client is freed.
Parameters:
svc_client

pointer to service client struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.

Client API Module 345

header
AXIOM node representing the SOAP header in XML.

Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_svc_client_remove_all_headers

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_svc_client_remove_all_headers
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env)

Description:
This function removes all the headers added to service client.
Parameters:
svc_client

pointer to service client struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_svc_client_fire_and_forget_with_op_qname

Synopsis:
AXIS2_EXTERN void axis2_svc_client_fire_and_forget_with_op_qname
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axutil_qname_t * op_qname,
 const axiom_node_t * payload)

Description:
This function sends a message and forget about it. This method is used to interact with a service
operation whose MEP is In-Only. That is, there is no opportunity to get an error from the service
using this method; you may still get client-side errors, such as host unknown.
Parameters:
svc_client

pointer to service client structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
op_qname

operation qname. NULL is equivalent to an operation name of "__OPERATION_OUT_ONLY__"
payload

pointer to AXIOM node representing the XML payload to be sent. The caller has control over
the payload until the service client frees it.

Return Values:
None

axis2_svc_client_fire_and_forget

Synopsis:
AXIS2_EXTERN void axis2_svc_client_fire_and_forget
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axiom_node_t * payload)

346 NonStop SOAP 4 APIs

Description:
This function sends a message and forget about it. This method is used to interact with a service
operation whose MEP is In-Only. That is, there is no opportunity to get an error from the service
via this method; one may still get client-side errors, such as host unknown etc.
Parameters:
svc_client

pointer to service client struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
payload

pointer to AXIOM node representing the XML payload to be sent. The caller has control over
the payload until the service client frees it.

Return Values:
None

axis2_svc_client_send_receive

Synopsis:
AXIS2_EXTERN axiom_node_t* axis2_svc_client_send_receive
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axiom_node_t * payload)

Description:
This function sends an XML request and receives XML response. This method is used to interact
with a service operation whose MEP is IN-OUT.
Parameters:
svc_client

pointer to service client structure
env

pointer to the environment structure. The env parameter must not be NULL.
payload

pointer to AXIOM node representing the XML payload to be sent. The caller has control over
the payload until the service client frees it.

Return Values:
This function returns a pointer to AXIOM node representing the XML response. The caller owns the
returned node.

axis2_svc_client_send_receive_with_op_qname

Synopsis:
AXIS2_EXTERN axiom_node_t* axis2_svc_client_send_receive_with_op_qname
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axutil_qname_t * op_qname,
 const axiom_node_t * payload)

Description:
This function sends an XML request and receives XML response. This method is used to interact
with a service operation whose MEP is IN-OUT.
Parameters:
svc_client

pointer to service client structure

Client API Module 347

env
pointer to the environment structure

op_qname
operation qname. NULL is equivalent to an operation name of "__OPERATION_OUT_IN__".

payload
pointer to OM node representing the XML payload to be sent. The caller has control over the
payload until the service client frees it.

Return Values:
This function returns a pointer to OM node representing the XML response. The caller owns the
returned node.

axis2_svc_client_send_receive_non_blocking_with_op_qname

Synopsis:
AXIS2_EXTERN void axis2_svc_client_send_receive_non_blocking_with_op_qname
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env,
 const axutil_qname_t * op_qname,
 const axiom_node_t * payload,
 axis2_callback_t * callback)

Description:
This function sends XML request and receives XML response, but does not block for response. This
method is used to interact in non-blocking mode with a service operation whose MEP is IN-OUT.
Parameters:
svc_client

pointer to service client structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
op_qname

operation qname. NULL is equivalent to an operation name of "__OPERATION_OUT_IN__"
payload

pointer to AXIOM node representing the XML payload to be sent. The caller has control over
the payload until the service client frees it.

Return Values:
None

axis2_svc_client_get_svc_ctx

Synopsis:
AXIS2_EXTERN axis2_svc_ctx_t* axis2_svc_client_get_svc_ctx
 (const axis2_svc_client_t * svc_client,
 const axutil_env_t * env)

Description:
This function gets the service context.
Parameters:
svc_client

pointer to service client struct.
env

is a pointer to the environment structure. The env parameter must not be NULL.
Return Values:
This function returns a pointer to service context struct. The service client owns the returned pointer.

348 NonStop SOAP 4 APIs

axis2_svc_client_free

Synopsis:
AXIS2_EXTERN void axis2_svc_client_free
 (axis2_svc_client_t * svc_client,
 const axutil_env_t * env)

Description:
This function frees the service client.
Parameters:
svc_client

pointer to service client struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_svc_client_create

Synopsis:
AXIS2_EXTERN axis2_svc_client_t* axis2_svc_client_create
 (const axutil_env_t * env,
 const axis2_char_t * client_home)

Description:
This function creates a service client struct.
Parameters:
env

is a pointer to the environment struct. The env parameter must not be NULL.
client_home

name of the directory that contains the Axis2/C repository
Return Values:
This function returns a pointer to newly created service client struct, or returns NULL on error with
the error code set in the environment's error.

Options

axis2_options_get_action

Synopsis:
AXIS2_EXTERN const axis2_char_t* axis2_options_get_action
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets Web Services Addressing (WSA) action.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns WSA action string if set, else returns NULL.

Client API Module 349

axis2_options_get_fault_to

Synopsis:
AXIS2_EXTERN axis2_endpoint_ref_t* axis2_options_get_fault_to
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets WSA fault to address.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to endpoint reference structure representing fault to address if set,
else returns NULL.

axis2_options_get_from

Synopsis:
AXIS2_EXTERN axis2_endpoint_ref_t* axis2_options_get_from
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets WSA from address.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This funtion returns a pointer to endpoint reference structure representing the from address if set,
else returns NULL.

axis2_options_get_transport_receiver

Synopsis:
AXIS2_EXTERN axis2_transport_receiver_t* axis2_options_get_transport_receiver
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets the transport receiver.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns pointer to transport receiver structure if set, else returns NULL.

350 NonStop SOAP 4 APIs

axis2_options_get_transport_in

Synopsis:
AXIS2_EXTERN axis2_transport_in_desc_t* axis2_options_get_transport_in
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets transport in.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to transport in structure if set, else NULL.

axis2_options_get_transport_in_protocol

Synopsis:
AXIS2_EXTERN AXIS2_TRANSPORT_ENUMS axis2_options_get_transport_in_protocol
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets transport in protocol.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns pointer to transport in protocol string if set, else returns NULL.

axis2_options_get_message_id

Synopsis:
AXIS2_EXTERN const axis2_char_t* axis2_options_get_message_id
 (const axis2_options_t * options_t,
 const axutil_env_t * env)

Description:
This function gets the message ID.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to the message ID string if set, else returns NULL.

Client API Module 351

axis2_options_get_properties

Synopsis:
AXIS2_EXTERN axutil_hash_t* axis2_options_get_properties
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets the properties hash map.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to the properties hash map if set, else returns NULL.

axis2_options_get_property

Synopsis:
AXIS2_EXTERN void* axis2_options_get_property
 (const axis2_options_t * options,
 const axutil_env_t * env,
 const axis2_char_t * key)

Description:
This function gets a property corresponding to the given key.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
key

key of the property to be returned.
Return Values:
This function returns the value corresponding to the given key.

axis2_options_get_property

Synopsis:
AXIS2_EXTERN axis2_relates_to_t* axis2_options_get_property
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets relates_to information.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns pointer to relates_to structure if set, else returns NULL.

352 NonStop SOAP 4 APIs

axis2_options_get_reply_t

Synopsis:
AXIS2_EXTERN axis2_endpoint_ref_t* axis2_options_get_reply_to
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets the WSA reply_to address.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to the endpoint reference structure representing reply to address if
set, else returns NULL.

axis2_options_get_transport_out

Synopsis:
AXIS2_EXTERN axis2_transport_out_desc_t* axis2_options_get_transport_out
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets transport out.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns pointer to transport out structure if set, else NULL.

axis2_options_get_sender_transport_protocol

Synopsis:
AXIS2_EXTERN AXIS2_TRANSPORT_ENUMS axis2_options_get_sender_transport_protocol
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets transport out protocol.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns pointer to transport out protocol string if set, else returns NULL.

Client API Module 353

xis2_options_get_soap_version_uri

Synopsis:
AXIS2_EXTERN const axis2_char_t* axis2_options_get_soap_version_uri
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets the SOAP version URI.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns the string representing SOAP version URI.

axis2_options_get_timeout_in_milli_seconds

Synopsis:
AXIS2_EXTERN long axis2_options_get_timeout_in_milli_seconds
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets the wait time after which a client times out in a blocking scenario. The default is
AXIS2_DEFAULT_TIMEOUT_MILLISECONDS.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns timeout in milliseconds.

axis2_options_get_parent

Synopsis:
AXIS2_EXTERN axis2_options_t* axis2_options_get_parent
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets the parent options.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to the parent options structure if set, else returns NULL.

354 NonStop SOAP 4 APIs

axis2_options_set_parent

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_parent
 (axis2_options_t * options,
 const axutil_env_t * env,
 const axis2_options_t * parent)

Description:
This function sets the parent options.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
parent

pointer to parent options struct.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_action

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_action
 (axis2_options_t * options,
 const axutil_env_t * env,
 const axis2_char_t * action)

Description:
This function sets the WSA action.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
action

pointer to action string.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_fault_to

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_fault_to
 (axis2_options_t * options,
 const axutil_env_t * env,
 axis2_endpoint_ref_t * fault_to)

Description:
This function sets the fault_to address.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.

Client API Module 355

fault_to
pointer to endpoint reference structure representing fault_to address. options takes over
the ownership of the struct.

Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_from

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_from
 (axis2_options_t * options,
 const axutil_env_t * env,
 axis2_endpoint_ref_t * from)

Description:
This function sets from address.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
from

pointer to endpoint reference structure representing from to address. options takes over the
ownership of the struct.

Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_to

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_to
 (axis2_options_t * options,
 const axutil_env_t * env,
 axis2_endpoint_ref_t * to)

Description:
This function sets the to address.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
to

pointer to endpoint reference structure representing to address. options takes over the
ownership of the struct.

Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_transport_receiver

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_transport_receiver
 (axis2_options_t * options,
 const axutil_env_t * env,
 axis2_transport_receiver_t * receiver)

356 NonStop SOAP 4 APIs

Description:
This function sets transport receiver.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
receiver

pointer to transport receiver struct options takes over the ownership of the struct.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_transport_in

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_transport_in
 (axis2_options_t * options,
 const axutil_env_t * env,
 axis2_transport_in_desc_t * transport_in)

Description:
This function sets transport_in description.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
transport_in

pointer to transport_in struct. options takes over the ownership of the struct.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_transport_in_protocol

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_transport_in_protocol
 (axis2_options_t * options,
 const axutil_env_t * env,
 const AXIS2_TRANSPORT_ENUMS transport_in_protocol)

Description:
This function sets the transport_in_protocol.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
in_protocol

pointer to in_protocol struct.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

Client API Module 357

axis2_options_set_message_id

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_message_id
 (axis2_options_t * options,
 const axutil_env_t * env,
 const axis2_char_t * message_id)

Description:
This function sets message ID.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
message_id

pointer to message_id structure
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_properties

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_properties
 (axis2_options_t * options,
 const axutil_env_t * env,
 axutil_hash_t * properties)

Description:
This function sets the properties hash map.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
properties

pointer to properties hash map. options takes over the ownership of the hash struct.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_property

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_property
 (axis2_options_t * options,
 const axutil_env_t * env,
 const axis2_char_t * property_key,
 const void * property)

Description:
This function sets a property with the given key value.
Parameters:
options

pointer to options struct.

358 NonStop SOAP 4 APIs

env
is a pointer to the environment struct. The env parameter must not be NULL.

property_key
property key string.

property
pointer to property to be set.

Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_reply_to

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_reply_to
 (axis2_options_t * options,
 const axutil_env_t * env,
 axis2_endpoint_ref_t * reply_to)

Description:
This function sets reply to address.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
reply_to

pointer to endpoint reference structure representing reply to address. options takes over the
ownership of the struct.

Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_transport_out

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_transport_out
 (axis2_options_t * options,
 const axutil_env_t * env,
 axis2_transport_out_desc_t * transport_out)

Description:
This function sets the transport out description.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
transport_out

pointer to transport out description struct. options takes over the ownership of the struct.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

Client API Module 359

axis2_options_set_sender_transport

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_sender_transport
 (axis2_options_t * options,
 const axutil_env_t * env,
 const AXIS2_TRANSPORT_ENUMS sender_transport,
 axis2_conf_t * conf)

Description:
This function sets the sender transport.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
sender_transport

name of the sender transport to be set.
conf

pointer to conf struct, it is from the conf that the transport is picked with the given name.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_soap_version_uri

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_soap_version_uri
 (axis2_options_t * options,
 const axutil_env_t * env,
 const axis2_char_t * soap_version_uri)

Description:
This function sets the SOAP version URI.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
soap_version_uri

URI of the SOAP version to be set, can be either
AXIOM_SOAP11_SOAP_ENVELOPE_NAMESPACE_URI or
AXIOM_SOAP12_SOAP_ENVELOPE_NAMESPACE_URI.

Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_timeout_in_milli_seconds

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_timeout_in_milli_seconds
 (axis2_options_t * options,
 const axutil_env_t * env,
 const long timeout_in_milli_seconds)

Description:
This function sets timeout in milliseconds.

360 NonStop SOAP 4 APIs

Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
timeout_in_milli_seconds

timeout in milli seconds. The value can range from 0 to 2,147,483,647 milli seconds.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_transport_info

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_transport_info
 (axis2_options_t * options,
 const axutil_env_t * env,
 const AXIS2_TRANSPORT_ENUMS sender_transport,
 const AXIS2_TRANSPORT_ENUMS receiver_transport,
 const axis2_bool_t use_separate_listener)

Description:
This function sets transport information. Transport information includes the name of the sender
transport, name of the receiver transport and if a separate listener to be used to receive response.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
sender_transport

name of sender transport to be used.
receiver_transport

name of receiver transport to be used.
use_separate_listener

bool value indicating whether to use a separate listener or not.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_get_manage_session

Synopsis:
AXIS2_EXTERN axis2_bool_t axis2_options_get_manage_session
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets manage session bool value.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns AXIS2_TRUE if session is managed, else returns AXIS2_FALSE.

Client API Module 361

axis2_options_set_manage_session

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_manage_session
 (axis2_options_t * options,
 const axutil_env_t * env,
 const axis2_bool_t manage_session)

Description:
This function sets manage session bool value.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
manage_session

manage session bool value.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_set_msg_info_headers

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_msg_info_headers
 (axis2_options_t * options,
 const axutil_env_t * env,
 axis2_msg_info_headers_t * msg_info_headers)

Description:
This function sets WSA message information headers.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
pointer

to message information headers struct.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_get_msg_info_headers

Synopsis:
AXIS2_EXTERN axis2_msg_info_headers_t* axis2_options_get_msg_info_headers
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets WSA message information headers.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.

362 NonStop SOAP 4 APIs

Return Values:
This function returns pointer to message information headers structure if set, else returns NULL.

axis2_options_get_soap_version

Synopsis:
AXIS2_EXTERN int axis2_options_get_soap_version
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets SOAP version.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns AXIOM_SOAP11 if SOAP version 1.1 is in use, else returns AXIOM_SOAP12.

axis2_options_set_soap_version

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_soap_version
 (axis2_options_t * options,
 const axutil_env_t * env,
 const int soap_version)

Description:
This function sets the SOAP version.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
soap_version

soap version, either AXIOM_SOAP11 or AXIOM_SOAP12.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_get_soap_action

Synopsis:
AXIS2_EXTERN axutil_string_t* axis2_options_get_soap_action
 (const axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function gets the SOAP action.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.

Client API Module 363

Return Values:
This function returns SOAP Action string if set, else returns NULL.

axis2_options_set_soap_action

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_soap_action
 (axis2_options_t * options,
 const axutil_env_t * env,
 axutil_string_t * soap_action)

Description:
This function sets the SOAP action.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.
action

pointer to SOAP action string.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_free

Synopsis:
AXIS2_EXTERN void axis2_options_free
 (axis2_options_t * options,
 const axutil_env_t * env)

Description:
This function frees the options struct.
Parameters:
options

pointer to options structure
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns void.

axis2_options_set_http_headers

Synopsis:
AXIS2_EXTERN axis2_status_t axis2_options_set_http_headers
 (axis2_options_t * options,
 const axutil_env_t * env,
 axutil_array_list_t * http_header_list)

Description:
This function sets the additional HTTP headers to be sent.
Parameters:
options

pointer to options struct.
env

is a pointer to the environment struct. The env parameter must not be NULL.

364 NonStop SOAP 4 APIs

http_header_list
array list containing HTTP Headers.

Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

axis2_options_create

Synopsis:
AXIS2_EXTERN axis2_options_t* axis2_options_create
 (const axutil_env_t * env)

Description:
This function creates the options struct.
Parameters:
env

is a pointer to the environment struct. The env parameter must not be NULL.
Return Values:
This function returns a pointer to newly created options struct, or returns NULL on error with the
error code set in the environment's error.

Context Hierarchy

message context

The axis2_msg_ctx_get_base()Function
Synopsis:
AXIS2_EXTERN axis2_ctx_t* axis2_msg_ctx_get_base
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the base, which is of type context.
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns a pointer to base context structure.

The axis2_msg_ctx_get_parent()Function
Synopsis:
AXIS2_EXTERN struct axis2_op_ctx* axis2_msg_ctx_get_parent
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the parent. Parent of a message context is of type operation context.
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.

Context Hierarchy 365

Return Values:
This function returns a pointer to operation context which is the parent.

The axis2_msg_ctx_set_parent()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_msg_ctx_set_parent
 (axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env,
 struct axis2_op_ctx * parent)

Description:
This function sets the parent. Parent of a message context is of type operation context.
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.
parent

pointer to parent operation context
Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axis2_msg_ctx_free()Function
Synopsis:
AXIS2_EXTERN void axis2_msg_ctx_free
 (axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function frees the message context.
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
Void.

The axis2_msg_ctx_get_soap_envelope()Function
Synopsis:
AXIS2_EXTERN struct axiom_soap_envelope* axis2_msg_ctx_get_soap_envelope
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the SOAP envelope. This SOAP envelope could be either a request SOAP envelope
or the response SOAP envelope, based on the state the message context is in.
Parameters:
msg_ctx

is the message context

366 NonStop SOAP 4 APIs

env
is a pointer to an environment structure. It cannot have a NULL value.

Return Values:
This function returns a pointer to the SOAP envelope stored within message context.

The axis2_msg_ctx_get_response_soap_envelope()Function
Synopsis:
AXIS2_EXTERN struct axiom_soap_envelope* axis2_msg_ctx_get_response_soap_envelope (const axis2_msg_ctx_t *
msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the SOAP envelope of the response.
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns a pointer to response SOAP envelope stored within message context.

The axis2_msg_ctx_get_fault_soap_envelope()Function
Synopsis:
AXIS2_EXTERN struct axiom_soap_envelope* axis2_msg_ctx_get_fault_soap_envelope
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the fault SOAP envelope.
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns a pointer to the fault SOAP envelope stored within message context.

The axis2_msg_ctx_set_msg_id()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_msg_ctx_set_msg_id
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env,
 axis2_char_t * msg_id)

Description:
This function sets the message ID.
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.

Context Hierarchy 367

msg_id

Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axis2_msg_ctx_get_msg_id()Function
Synopsis:
AXIS2_EXTERN const axis2_char_t* axis2_msg_ctx_get_msg_id
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the message ID.
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns the message ID string corresponding to the message context.

The axis2_msg_ctx_get_server_side()Function
Synopsis:
AXIS2_EXTERN axis2_bool_t axis2_msg_ctx_get_server_side
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axis2_msg_ctx_set_soap_envelope()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_msg_ctx_set_soap_envelope
 (axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env,
 struct axiom_soap_envelope * soap_envelope)

Description:
This function sets the SOAP envelope. The fact that if it is the request SOAP envelope or that of
response depends on the current status represented by message context.
Parameters:
msg_ctx

is the message context

368 NonStop SOAP 4 APIs

env
is a pointer to an environment structure. It cannot have a NULL value.

soap_envelope
is a pointer to the SOAP envelope. The message context assumes ownership of SOAP envelope.

Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axis2_msg_ctx_set_response_soap_envelope()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_msg_ctx_set_response_soap_envelope (axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env,
 struct axiom_soap_envelope * soap_envelope
)

Description:
This function sets the response SOAP envelope.
Parameters:
msg_ctx

is the message context
env

is a pointer to an environment structure. It cannot have a NULL value.
soap_envelope

is a pointer to the SOAP envelope. The message context assumes ownership of SOAP envelope.
Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axis2_msg_ctx_set_fault_soap_envelope()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_msg_ctx_set_fault_soap_envelope
 (axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env,
 struct axiom_soap_envelope * soap_envelope)

Description:
This function sets the fault SOAP envelope.
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
soap_envelope

is a pointer to the SOAP envelope. The message context assumes ownership of SOAP envelope.
Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

Context Hierarchy 369

The axis2_msg_ctx_set_message_id()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_msg_ctx_set_message_id
 (axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env,
 const axis2_char_t * message_id)

Description:
This function sets the message ID.
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
message_id

Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axis2_msg_ctx_set_server_side()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_msg_ctx_set_server_side (axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env,
 const axis2_bool_t server_side
)

Description:
This function sets the boolean value indicating if it is the server side or the client side.
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
server_side

• AXIS2_TRUE if it is server side
• AXIS2_FALSE if it is client side

Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axis2_msg_ctx_get_msg_info_headers()Function
Synopsis:
AXIS2_EXTERN axis2_msg_info_headers_t* axis2_msg_ctx_get_msg_info_headers
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the WS-Addressing message information headers.
Parameters:
msg_ctx

is the message context.

370 NonStop SOAP 4 APIs

env
is a pointer to an environment structure. It cannot have a NULL value.

Return Values:
This function returns a pointer to message information headers structure with WS-Addressing
information. It returns a reference, not a cloned copy.

The axis2_msg_ctx_is_keep_alive()Function
Synopsis:
AXIS2_EXTERN axis2_bool_t axis2_msg_ctx_is_keep_alive
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the boolean value indicating the keep alive status. It is possible to keep alive the
message context by any handler. By calling this method one can see whether it is possible to clean
the message context.
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:

• AXIS2_TRUE if the message context is kept alive
• AXIS2_FALSE if the message context is not alive

The axis2_msg_ctx_set_keep_alive()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_msg_ctx_set_keep_alive
 (axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env,
 const axis2_bool_t keep_alive)

Description:
This function
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
keep_alive

Return Values:

• AXIS2_TRUE if the message context is kept alive
• AXIS2_FALSE if the message context is not alive

The axis2_msg_ctx_get_op_ctx()Function
Synopsis:
AXIS2_EXTERN struct axis2_op_ctx* axis2_msg_ctx_get_op_ctx
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Context Hierarchy 371

Description:
This function gets operation context related to the operation that this message context is related
to.
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns a pointer to operation context structure.

The axis2_msg_ctx_get_svc_ctx_id()Function
Synopsis:
AXIS2_EXTERN const axis2_char_t* axis2_msg_ctx_get_svc_ctx_id
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the ID of service context that relates to the service that is related to the message
context.
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns the service context ID string.

The axis2_msg_ctx_set_svc_ctx_id()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axis2_msg_ctx_set_svc_ctx_id
 (axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env,
 const axis2_char_t * svc_ctx_id)

Description:
This function sets the ID of the service context that relates to the service that is related to the message
context.
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
svc_ctx_id

is the service context ID string
Return Values:

• AXIS2_TRUE if the message context is kept alive
• AXIS2_FALSE if the message context is not alive

372 NonStop SOAP 4 APIs

The axis2_msg_ctx_get_conf_ctx()Function
Synopsis:
AXIS2_EXTERN struct axis2_conf_ctx* axis2_msg_ctx_get_conf_ctx
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function gets the configuration context.
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns pointer to configuration context.

The axis2_msg_ctx_get_svc_ctx() Function
Synopsis:
AXIS2_EXTERN struct axis2_svc_ctx* axis2_msg_ctx_get_svc_ctx
 (const axis2_msg_ctx_t * msg_ctx,
 const axutil_env_t * env)

Description:
This function
Parameters:
msg_ctx

is the message context.
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:

Service Skeleton API

AXIS2_SVC_SKELETON_INIT
Synopsis:
#define AXIS2_SVC_SKELETON_INIT (svc_skeleton,
 env) ((svc_skeleton)->ops->init (svc_skeleton, env))

Description:
Initialize the svc skeleton.

AXIS2_SVC_SKELETON_INIT_WITH_CONF
Synopsis:
#define AXIS2_SVC_SKELETON_INIT_WITH_CONF (svc_skeleton,
 env,
 conf) ((svc_skeleton)->ops->init_with_conf (svc_skeleton, env, conf))

Description:
Initialize the svc skeleton with axis2c configuration struct.

Service Skeleton API 373

AXIS2_SVC_SKELETON_FREE
Synopsis:
#define AXIS2_SVC_SKELETON_FREE (svc_skeleton,
 env) ((svc_skeleton)->ops->free (svc_skeleton, env))

Description:
Frees the svc skeleton.

AXIS2_SVC_SKELETON_INVOKE
Synopsis:
#define AXIS2_SVC_SKELETON_INVOKE (svc_skeleton,
 env,
 node,
 msg_ctx) ((svc_skeleton)->ops->invoke (svc_skeleton, env, node, msg_ctx))

Description:
Invokes axis2 service skeleton.

AXIS2_SVC_SKELETON_ON_FAULT
Synopsis:
#define AXIS2_SVC_SKELETON_ON_FAULT (svc_skeleton,
 env,
 node) ((svc_skeleton)->ops->on_fault (svc_skeleton, env, node))

Description:
Called on fault.

Utilities
NonStop SOAP 4 also provides APIs for Logging, error reporting, string operations, array list, and
hash tables.

Utilities For Logging
The following functions can be used to log messages during run time.

The axutil_log_impl_log_critical()Function
Synopsis:
AXIS2_EXTERN void axutil_log_impl_log_critical
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

Description:
This function logs the Critical Level logs in the specified log file.
Parameters:
log

is a pointer to the log structure.
filename

is the name of the file in which logs are recorded.
linenumber

specifies the line number where the message is generated.
format

is the string format of the message

374 NonStop SOAP 4 APIs

The axutil_log_impl_log_error()Function
Synopsis:
AXIS2_EXTERN void axutil_log_impl_log_error
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

Description:
This function logs the error messages in the specified log file.
Parameters:
log

is a pointer to the log structure.
filename

is the name of the file in which logs are recorded.
linenumber

specifies the line number where the message is generated.
format

is the string format of the message

The axutil_log_impl_log_warning() Function
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_warning
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

Description:
This function logs the warning messages in the specified log file.
Parameters:
log

is a pointer to the log structure.
filename

is the name of the file in which logs are recorded.
linenumber

specifies the line number where the message is generated.
format

is the string format of the message

The axutil_log_impl_log_info() Function
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_info
 (axutil_log_t *log, const axis2_char_t *filename, const int linenumber, const axis2_char_t
 *format,...)

Description:
This function logs information messages in the specified log file.
Parameters:
log

is a pointer to the log structure.
filename

is the name of the file in which logs are recorded.
linenumber

is the line number where the message is generated.

Utilities 375

format
is the string format of the message

The axutil_log_impl_log_user()Function
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_user
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

Description:
This function logs user-level debug messages in the specified log file.
Parameters:
log

is a pointer to the log structure.
filename

is the name of the file in which logs are recorded.
linenumber

specifies the line number where the message is generated.
format

is the string format of the message

The axutil_log_impl_log_debug()Function
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_debug
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

Description:
This function logs the debug level logs. It logs all the information in the specified log file.
Parameters:
log

is a pointer to the log structure.
filename

is the name of the file in which logs are recorded.
linenumber

specifies the line number where the message is generated.
format

is the string format of the message

The axutil_log_impl_log_trace()Function
Synopsis:
 AXIS2_EXTERN void axutil_log_impl_log_trace
 (axutil_log_t *log, const axis2_char_t *filename,
 const int linenumber, const axis2_char_t *format,...)

Description:
This function logs the trace level logs. It is enabled with the compiler time option AXIS2_TRACE.
Parameters:
log

is a pointer to the log structure.
filename

is the name of the file in which logs are recorded.

376 NonStop SOAP 4 APIs

linenumber
specifies the line number where the message is generated.

format
is the string format of the message

The axutil_log_free()Function
Synopsis:
 AXIS2_EXTERN void axutil_log_free
 (axutil_allocator_t *allocator,
 struct axutil_log *log)

Description:
This function releases the log files.
Parameters:
allocator

is the allocator to be used. It is a mandatory parameter and cannot have a Null value.
log

is a pointer to the log structure that is freed.
Return Values:
Void.

The axutil_log_create()Function
Synopsis:
 AXIS2_EXTERN axutil_log_t * axutil_log_create
 (axutil_allocator_t *allocator,
 axutil_log_ops_t *ops,
 const axis2_char_t *stream_name)

Description:
This function creates a log structure.
Parameters:
allocator

is the allocator to be used. It is a mandatory parameter and cannot have a Null value.
ops

is an options structure to set the log options. It is a mandatory parameter and cannot have a
Null value.

stream_name
is the name of the file to which the log is returned.

Return Values:
This function returns a pointer to the newly created log structure.

The axutil_log_create_default()Function
Synopsis:
 AXIS2_EXTERN axutil_log_t * axutil_log_create_default
 (axutil_allocator_t *allocator)

Description:
Creates the log structure with default settings.
Parameters:
-allocator

is the allocator to be used. It is a mandatory parameter and cannot have a Null value.

Utilities 377

Return Values:
This function returns a pointer to the newly created log structure.

Utilities For Error Reporting
The following functions set the error code and error message during run time.

The axutil_error_free() Function
Synopsis:
AXIS2_EXTERN void axutil_error_free
 (struct axutil_error * error)

Description:
This function de-allocates an error structure instance.
Parameters:
error

is a pointer to an error structure instance to be freed.
Return Values:
Void.

The axutil_error_get_message() Function
Synopsis:
AXIS2_EXTERN const axis2_char_t* axutil_error_get_message
 (const struct axutil_error * error)

Description:
This function gets the error message corresponding to the last error occurred.
Parameters:
error

is a pointer to an error structure instance.
Return Values:
This function returns the error message.

The axutil_error_set_error_message() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axutil_error_set_error_message
 (struct axutil_error * error,
 axis2_char_t * message)

Description:
This function sets error message to the given value.
Parameters:
error

is a pointer to an error structure instance.
message

is the error message to be set.
Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

378 NonStop SOAP 4 APIs

The axutil_error_set_error_number() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axutil_error_set_error_number
 (struct axutil_error * error,
 axutil_error_codes_t error_number)

Description:
This function sets the error number to the given value.
Parameters:
error

is a pointer to an error structure instance.
error_number

is the error number to be set.
Return Values:
This function returns AXIS2_SUCCESS on success, else returns AXIS2_FAILURE.

The axutil_error_set_status_code() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axutil_error_set_status_code
 (struct axutil_error * error,
 axis2_status_codes_t status_code)

Description:
This function sets the status code to the given value.
Parameters:
error

is a pointer to an error structure instance.
status_code

is the status code to be set
Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axutil_error_get_status_code() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axutil_error_get_status_code
 (struct axutil_error * error)

Description:
This function gets the status code.
Parameters:
error

is a pointer to an error structure instance.
Return Values:
This function returns the last status code set in the error structure instance.

Utilities For String Operations
The following functions enable you to perform string operations in NonStop SOAP 4.

Utilities 379

The axutil_strdup()Function
Synopsis:
AXIS2_EXTERN void * axutil_strdup
 (const axutil_env_t *env, const void *ptr)

Description:
This function duplicates the string passed to it.
Parameters:
env

is a pointer to an environment structure. It cannot have a NULL value.
ptr

is a pointer to the string that is duplicated.
Return Values:
This function returns a pointer to the newly created string.

The axutil_strndup()Function
Synopsis:
AXIS2_EXTERN void* axutil_strndup
 (const axutil_env_t * env,
 const void * ptr,
 int n)

Description:
This function duplicates the first n characters of a string in the memory.
Parameters:
env

is a pointer to an environment structure. It cannot have a NULL value.
ptr

The string to duplicate.
n

The number of characters to duplicate.
Return Values:
This function returns the new string.

The axutil_strmemdup()Function
Synopsis:
AXIS2_EXTERN void* axutil_strmemdup
 (const void * ptr,
 size_t n,
 const axutil_env_t * env)

Description:
This function creates a null-terminated string by making a copy of a sequence of characters and
appending a null byte. This is a faster alternative to axis2_strndup, for use when you know
that the string being duplicated has 'n' or more characters. If the string contains fewer characters,
use axis2_strndup.
Parameters:
ptr

is the block of characters that should be duplicated.
n

is the number of characters that should be duplicated.

380 NonStop SOAP 4 APIs

env
is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Return Values:
This function returns the new string.

The axutil_strcmp()Function
Synopsis:
AXIS2_EXTERN int axutil_strcmp
 (const axis2_char_t *s1,
 const axis2_char_t *s2)

Description:
This function compares the strings passed to it.
Parameters:
s1

is the first string passed to the function.
s2

is the second string passed to the function.
Return Values:

• The function returns zero if the two strings are identical.
• The function returns a non-zero integer if the two strings are different.

The axutil_strncmp()Function
Synopsis:
AXIS2_EXTERN int axutil_strncmp
 (const axis2_char_t *s1,
 const axis2_char_t *s2, int n)

Description:
This function compares the first n characters of a string in the memory.
Parameters:
s1

is the first string passed to the function.
s2

is the second string passed to the function.
n

is the number of characters to be compared.
Return Values:

• The function returns zero if the two strings are identical.
• The function returns a non-zero integer if the two strings are different.

The axutil_strlen()Function
Synopsis:
AXIS2_EXTERN axis2_ssize_t axutil_strlen
 (const axis2_char_t *s)

Description:
This function gets the length of the string passed to it .

Utilities 381

Parameters:
s

is the string passed.
Return Values:
This function returns the length of the string.

The axutil_strcasecmp() Function
Synopsis:
AXIS2_EXTERN int axutil_strcasecmp
 (const axis2_char_t *s1,
 const axis2_char_t *s2)

Description:
This function compares two strings.
Parameters:
s1

is the first string to be compared.
s2

is the second string to be compared.
Return Values:

• The function returns zero if the two strings are identical.
• The function returns a non-zero integer if the two strings are different.

The axutil_strncasecmp() Function
Synopsis:
AXIS2_EXTERN int axutil_strncasecmp
 (const axis2_char_t *s1,
 const axis2_char_t *s2, const int n)

Description:
This function compares two strings. It ignores the case of both arguments.
Parameters:
s1

is the first string to be compared.
s2

is the second string to be compared.
Return Values:

• The function returns zero if the two strings are identical.
• The function returns a non-zero integer if the two strings are different.

The axutil_stracat() Function
Synopsis:
AXIS2_EXTERN axis2_char_t * axutil_stracat
 (const axutil_env_t *env,
 const axis2_char_t *s1,
 const axis2_char_t *s2)

Description:
This function concatenates two strings.

382 NonStop SOAP 4 APIs

Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

s1
is the first string.

s2
is the second string.

Return Values:
This function returns the new string.

The axutil_strcat() Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_strcat
 (const axutil_env_t * env,
 ...)

Description:
This function concatenates multiple strings.
Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

...
strings, separated by commas, to be concatenated.

Return Values:
This function returns the new string.

The axutil_strstr() Function
Synopsis:
AXIS2_EXTERN axis2_char_t * axutil_strstr
 (const axis2_char_t *haystack,
 const axis2_char_t *needle)

Description:
This function finds finds the first occurrence of the substring needle in the string haystack.
Parameters:
haystack

is the string in which the given string is to be found.
needle

is the string to be found in haystack.
Return Values:
This function returns pointer to the beginning of the substring, or NULL if the substring is not found.

The axutil_strcasestr() Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_strcasestr
 (const axis2_char_t * haystack,
 const axis2_char_t * needle)

Utilities 383

Description:
This function finds the first occurrence of the substring needle in the string haystack. It ignores the
case of both arguments.
Parameters:
haystack

is the string in which the given string is to be found.
needle

is the string to be found in haystack.
Return Values:
This function returns pointer to the beginning of the substring, or NULL if the substring is not found.

The axutil_strchr() Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_strchr
 (const axis2_char_t * s,
 axis2_char_t ch)

Description:
This function finds the first occurrence of a character in a string.
Parameters:
s

is the string in which the character is searched.
ch

is the character to be searched.
Return Values:
This function returns pointer to the first occurrence of the character in the string.

The axutil_replace()Function
Synopsis:
AXIS2_EXTERN axis2_char_t * axutil_replace
 (const axutil_env_t *env,
 axis2_char_t *str,
 int s1, int s2)

Description:
This function replaces a string by another string.
Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

str
is the string in which the input string (s1) is searched .

s1
is the string to be searched in str.

s2
is the string that replaces s1.

Return Values:
This function returns the new string.

384 NonStop SOAP 4 APIs

The axutil_strltrim()Function
Synopsis:
AXIS2_EXTERN axis2_char_t * axutil_strltrim
 (const axutil_env_t *env,
 const axis2_char_t *s,
 const axis2_char_t *trim)

Description:
This function trims the sequence or pattern specified in trim from the left of the string.
Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

s
is the string which is trimmed.

trim
specifies the sequence or pattern to be trimmed.

Return Values:
This function returns the new string.

The axutil_strrtrim() Function
Synopsis:
AXIS2_EXTERN axis2_char_t * axutil_strrtrim
 (const axutil_env_t *env,
 const axis2_char_t *_s,
 const axis2_char_t *_trim)

Description:
This function trims the sequence or pattern specified in trim from the right of the string.
Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

s
is the string which is trimmed.

trim
specifies the sequence or pattern to be trimmed.

Return Values:
This function returns the new string.

The axutil_strtrim() Function
Synopsis:
AXIS2_EXTERN axis2_char_t * axutil_strtrim
 (const axutil_env_t *env,
 const axis2_char_t *_s,
 const axis2_char_t *_trim)

Description:
This function trims the sequence or pattern specified in trim from left or right of the string.
Parameters:
env

is an input parameter and is a pointer to the environment structure. It cannot have a NULL
value.

Utilities 385

s
is the string which is trimmed.

trim
specifies the sequence or pattern to be trimmed.

Return Values:
This function returns the new string.

The axutil_string_replace()Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_string_replace
 (axis2_char_t * str,
 axis2_char_t old_char,
 axis2_char_t new_char)

Description:
This function replaces the given axis2_character with a new one.
Parameters:
str

is the string in which an old character is replaced by a new character
old_char

is the old character that is replaced.
new_char

is the new character that replaces the new character.
Return Values:
This function returns the replaced string.

The axutil_string_substring_starting_at()Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_string_substring_starting_at
 (axis2_char_t * str,
 int s)

Description:
This function gives a substring starting from a given index.
Parameters:
str

is the source string.
c

is the starting index.
Return Values:
This function returns the substring.

The axutil_string_substring_ending_at()Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_string_substring_ending_at
 (axis2_char_t * str,
 int e)

Description:
This function gives a substring ending with a given index.

386 NonStop SOAP 4 APIs

Parameters:
str

is the source string.
c

is the ending index.
Return Values:
This function returns the substring.

The axutil_string_tolower() Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_string_tolower
 (axis2_char_t * str)

Description:
This function sets a string to lowercase.
Parameters:
str

is the string to be converted to lowercase.
Return Values:
This function returns the string with lowercase.

The axutil_string_toupper() Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_string_toupper
 (axis2_char_t * str)

Description:
This function sets a string to uppercase.
Parameters:
str

is the string to be converted to uppercase.
Return Values:
This function returns the string with uppercase.

Utilities For Array List
The following functions enable you to perform array operations in NonStop SOAP 4.

The axutil_array_list_create() Function
Synopsis:
AXIS2_EXTERN axutil_array_list_t* axutil_array_list_create
 (const axutil_env_t * env,
 int capacity)

Description:
This function constructs a new array list with the supplied initial capacity. If capacity is invalid (<=
0), the default capacity is used
Parameters:
env

is a pointer to an environment structure. It cannot have a NULL value.
capacity

is the initial capacity of thes array_list.

Utilities 387

Return Values:
This function returns the newly created array list.

The axutil_array_list_size()Function
Synopsis:
AXIS2_EXTERN int axutil_array_list_size
 (struct axutil_array_list * array_list,
 const axutil_env_t * env)

Description:
This function returns the number of elements in this list.
Parameters:
array_list

is a pointer to the array list.
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns the list size.

The axutil_array_list_is_empty() Function
Synopsis:
AXIS2_EXTERN axis2_bool_t axutil_array_list_is_empty
 (struct axutil_array_list * array_list,
 const axutil_env_t * env)

Description:
This function checks if the list is empty.
Parameters:
array_list

is a pointer to the array list
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axutil_array_list_contains() Function
Synopsis:
AXIS2_EXTERN axis2_bool_t axutil_array_list_contains
 (struct axutil_array_list * array_list,
 const axutil_env_t * env,
 void * e)

Description:
This function returns true if the element is in the array_list.
Parameters:
array_list

is a pointer to the array list.
env

is a pointer to an environment structure. It cannot have a NULL value.

388 NonStop SOAP 4 APIs

e
is the element whose inclusion in the list is being tested.

Return Values:
This function returns true if the list contains e.

The axutil_array_list_add() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axutil_array_list_add
 (struct axutil_array_list * array_list,
 const axutil_env_t * env,
 const void * e)

Description:
This function appends the supplied element to the end of this list. The element, e, can be a pointer
of any type or NULL.
Parameters:
array_list

is a pointer to the array list.
env

is a pointer to an environment structure. It cannot have a NULL value.
e

is the element whose inclusion in the list is being tested
Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

The axutil_array_list_add_at()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axutil_array_list_add_at
 (struct axutil_array_list * array_list,
 const axutil_env_t * env,
 const int index,
 const void * e)

Description:
This function adds the supplied element at the specified index, shifting all elements currently at that
index or higher one to the right. The element, e, can be a pointer of any type or NULL.
Parameters:
array_list

is a pointer to the array list.
env

is a pointer to an environment structure. It cannot have a NULL value.
index

is the index at which the element is being added.
e

is the element whose inclusion in the list is being tested.
Return Values:

• AXIS2_SUCCESS on success.
• AXIS2_FAILURE on failure.

Utilities 389

The axutil_array_list_remove() Function
Synopsis:
AXIS2_EXTERN void* axutil_array_list_remove
 (struct axutil_array_list * array_list,
 const axutil_env_t * env,
 int index)

Description:
This function removes the element at the user-supplied index.
Parameters:
array_list

is a pointer to the array list.
env

is a pointer to an environment structure. It cannot have a NULL value.
index

is the index at which the element is being added.
Return Values:
This function returns the the removed void* pointer.

The axutil_array_list_free() Function
Synopsis:
AXIS2_EXTERN void axutil_array_list_free
 (struct axutil_array_list * array_list,
 const axutil_env_t * env)

Parameters:
array_list

is a pointer to the array list.
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
Void.

Utilities For Hash Tables

The axutil_hash_first()Function
Synopsis:
AXIS2_EXTERN axutil_hash_index_t* axutil_hash_first
 (axutil_hash_t * ht,
 const axutil_env_t * env)

Description:
Parameters:
Return Values:

The axutil_hash_next()Function
Synopsis:
AXIS2_EXTERN axutil_hash_index_t* axutil_hash_next
 (const axutil_env_t * env,
 axutil_hash_index_t * hi)

Description:
Continue iterating over the entries in a hash table.

390 NonStop SOAP 4 APIs

Parameters:
hi

The iteration state.
Return Values:
This function returns a pointer to the updated iteration state. It returns NULL if there are no more
entries.

The axutil_hash_count()Function
Synopsis:
AXIS2_EXTERN unsigned int axutil_hash_count
 (axutil_hash_t * ht)

Description:
This function gets the number of key/value pairs in the hash table.
Parameters:
ht

is the hash table.
Return Values:
This function returns the number of key/value pairs in the hash table.

The axutil_hash_free()Function
Synopsis:
AXIS2_EXTERN void axutil_hash_free
 (axutil_hash_t * ht,
 const axutil_env_t * env)

Description:
Parameters:
ht

hash table to be freed
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns the status code.

The axutil_hash_contains_key()Function
Synopsis:
AXIS2_EXTERN axis2_bool_t axutil_hash_contains_key
 (axutil_hash_t * ht,
 const axutil_env_t * env,
 const axis2_char_t * key)

Description:
Query whether the hash table provided as parameter contains the key provided as parameter.
Parameters:
ht

hash table to be queried for key
Return Values:
This function returns whether the hash table contains key

Utilities 391

The axutil_hash_make()Function
Synopsis:
AXIS2_EXTERN axutil_hash_t* axutil_hash_make
 (const axutil_env_t * env)

Description:
This function creates a hash table.
Parameters:
env

is a pointer to an environment structure. It cannot have a NULL value.
Return Values:
This function returns the newly created hash table.

The axutil_hash_get()Function
Synopsis:
AXIS2_EXTERN void* axutil_hash_get
 (axutil_hash_t * ht,
 const void * key,
 axis2_ssize_t klen)

Description:
This function looks up the value associated with a key in a hash table.
Parameters:
ht

The hash table
key

Pointer to the key
klen

Length of the key. Can be AXIS2_HASH_KEY_STRING to use the string length.
Return Values:
This function returns NULL if the key is not present.

The axutil_hash_set()Function
Synopsis:
AXIS2_EXTERN void axutil_hash_set
 (axutil_hash_t * ht,
 const void * key,
 axis2_ssize_t klen,
 const void * val)

Description:
This function associates a value with a key in a hash table.
Parameters:
ht

The hash table
key

Pointer to the key
klen

Length of the key. Can be AXIS2_HASH_KEY_STRING to use the string length.
val

Value to associate with the key.

392 NonStop SOAP 4 APIs

Return Values:
If the value is NULL the hash entry is deleted.

qname

The axutil_qname_create()Function
Synopsis:
AXIS2_EXTERN axutil_qname_t* axutil_qname_create
 (const axutil_env_t * env,
 const axis2_char_t * localpart,
 const axis2_char_t * namespace_uri,
 const axis2_char_t * prefix)

Description:
This function creates a qname structure returns a pointer to a qname structure mandatory mandatory
optional The prefix. Must not be null. Use "" (empty string) to indicate that no namespace URI is
present or the namespace URI is not relevant if null is passed for prefix and uri , ""(empty string
) will be assinged to those fields.
Return Values:
This function a pointer to newly created qname structure

The axutil_qname_create_from_string()Function
Synopsis:
AXIS2_EXTERN axutil_qname_t* axutil_qname_create_from_string
 (const axutil_env_t * env,
 const axis2_char_t * string)

Description:
Parameters:
Return Values:
This function returns a newly created qname using a string genarated from axutil_qname_to_string
method freeing the returned qname is users responsibility

The axutil_qname_free()Function
Synopsis:
AXIS2_EXTERN void axutil_qname_free
 (struct axutil_qname * qname,
 const axutil_env_t * env)

Description:
This function frees a qname structure
Parameters:
Return Values:
This function returns the status code.

The axutil_qname_equals()Function
Synopsis:
AXIS2_EXTERN axis2_bool_t axutil_qname_equals (const struct axutil_qname * qname,
 const axutil_env_t * env,
 const struct axutil_qname * qname1
)

Description:
This function compare two qname. The prefix is ignored when comparing. If ns_uri and localpart
of qname1 and qname2 are equal, returns true.

Utilities 393

Parameters:
Return Values:
This function returns true if qname1 equals qname2, false otherwise.

The axutil_qname_clone()Function
Synopsis:
AXIS2_EXTERN struct axutil_qname* axutil_qname_clone
 (struct axutil_qname * qname,
 const axutil_env_t * env)

Description:
This function clones a given qname.
Parameters:
qname,qname

structure instance to be cloned environment , double pointer to environment
Return Values:
This function returns the newly cloned qname structure instance

The axutil_qname_get_uri()Function
Synopsis:
AXIS2_EXTERN axis2_char_t * axutil_qname_get_uri
 (const struct axutil_qname *qname,
 const axutil_env_t *env)

Description:
Parameters:
Return Values:

The axutil_qname_get_prefix()Function
Synopsis:
AXIS2_EXTERN axis2_char_t * axutil_qname_get_prefix
 (const struct axutil_qname *qname,
 const axutil_env_t *env)

Description:
Parameters:
klen

val

Return Values:

The axutil_qname_get_localpart()Function
Synopsis:
AXIS2_EXTERN axis2_char_t * axutil_qname_get_localpart
 (const struct axutil_qname *qname,
 const axutil_env_t *env)

394 NonStop SOAP 4 APIs

Description:
Parameters:
Return Values:

The axutil_qname_to_string()Function
Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_qname_to_string
 (struct axutil_qname * qname,
 const axutil_env_t * env)

Description:
Parameters:
Return Values:
This function returns a unique string created by concatenating namespace uri and localpart. The
string is of the form localpart|url. When the qname free function is called, the returned char* is
freed.

parameter

The axutil_param_create()Function
Synopsis:
AXIS2_EXTERN axutil_param_t* axutil_param_create
 (const axutil_env_t * env,
 axis2_char_t * name,
 void * value)

Description:
This function creates the param struct.
Parameters:
Return Values:

Synopsis:
AXIS2_EXTERN axis2_char_t* axutil_param_get_name
 (struct axutil_param * param,
 const axutil_env_t * env)

Description:
Parameter name accessor.
Parameters:
Return Values:
This function returns name of the param.

Synopsis:
AXIS2_EXTERN void* axutil_param_get_value
 (struct axutil_param * param,
 const axutil_env_t * env)

Description:
Parameter value accessor

Utilities 395

Parameters:
Return Values:
Thjis function returns the object.

Synopsis:
AXIS2_EXTERN axis2_status_t axutil_param_set_name
 (struct axutil_param * param,
 const axutil_env_t * env,
 const axis2_char_t * name)

Description:
param name mutator
Parameters:
name

Return Values:

Synopsis:
AXIS2_EXTERN axis2_status_t axutil_param_set_value
 (struct axutil_param * param,
 const axutil_env_t * env,
 const void * value)

Description:
Method setValue
Parameters:
value

Return Values:

Synopsis:
AXIS2_EXTERN axis2_bool_t axutil_param_is_locked
 (struct axutil_param * param,
 const axutil_env_t * env)

Description:
Method isLocked
Parameters:
Return Values:
This fuction returns a boolean value.

The axutil_param_set_locked() Function
Synopsis:
AXIS2_EXTERN axis2_status_t axutil_param_set_locked
 (struct axutil_param * param,
 const axutil_env_t * env,
 axis2_bool_t value)

Description:
Method setLocked

396 NonStop SOAP 4 APIs

Parameters:
value

Return Values:

The axutil_param_free()Function
Synopsis:
AXIS2_EXTERN void axutil_param_free
 (struct axutil_param *param,
 const axutil_env_t *env)

Description:
Parameters:
Return Values:

The axutil_param_set_attributes()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axutil_param_set_attributes
 (struct axutil_param *param,
 const axutil_env_t *env,
 axutil_hash_t *attrs)

Description:
Parameters:
Return Values:

Synopsis:
AXIS2_EXTERN axutil_hash_t * axutil_param_get_attributes
 (struct axutil_param *param,
 const axutil_env_t *env)

Description:
Parameters:
Return Values:

The axutil_param_set_value_free()Function
Synopsis:
AXIS2_EXTERN axis2_status_t axutil_param_set_value_free
 (struct axutil_param *param,
 const axutil_env_t *env,
 AXIS2_PARAM_VALUE_FREE free_fn)

Description:
Parameters:
Return Values:

Utilities 397

E Transaction Management Model in NonStop SOAP 3
and NonStop SOAP 4

The transaction management model followed by NonStop SOAP 4 is different from the transaction
management model of NonStop SOAP 3.
“Transaction Management Models in NonStop SOAP 3 and NonStop SOAP 4” (page 398) highlights
the differences between NonStop SOAP 3 Transaction Management Model and the NonStop
SOAP 4 Transaction Management model.

Table 26 Transaction Management Models in NonStop SOAP 3 and NonStop SOAP 4

NonStop SOAP 4 Transaction Management ModelNonStop SOAP 3 Transaction Management Model

Dummy session ID has no bearing on transactionsPersistent session object encapsulates all transactions

Transaction ID is exposed to the client.Session ID is exposed to the client

Cookie file is not maintained.Cookie file is maintained

Two distinct SOAP header blocks are used for handling
sessions and transactions.

Single SOAP header block is used for handling sessions
and transactions

Transaction management, implemented as a module, can
be detached from the NonStop SOAP 4 server.

Session management is permanently implemented in the
SOAP server object.

The TMFTransactionSupport attribute accepts the
following values:

The TMFTransactionSupport attribute accepts the
following values:

• Required• yes

• •no Supports

• Never

398 Transaction Management Model in NonStop SOAP 3 and NonStop SOAP 4

Glossary
A

administrator For a NonStop system, the person responsible for the installation and configuration of a software
subsystem on a NonStop node. Contrast with operator.

ANSI The American National Standards Institute.
API See application program interface.
application
program interface

A set of services (such as programming language functions or procedures) that are called by an
application program to communicate with other software components.

attribute An item of descriptive data associated with an XML element. An attribute has a name and a
value.

B

Business Logic A set of the functional algorithms that handle information exchange between a data store and a
user interface.

C

cache A temporary storage buffer.
CGI See Common Gateway Interface (CGI)..
client An application program that requests services to be performed. In discussions of the Pathway

environment, this term is used to refer to the part of an application that runs on some other vendor’s
hardware, such as a personal computer, Macintosh computer, UNIX workstation, or mainframe
computer system, and makes requests of a server process.

Client APIs A set of function calls that can be used to create client applications.
client stub files Template files generated using the WSDL2C tool, to design the NonStop SOAP application client.
client/server model A model for distributing applications. In general, but not always, in this model the client process

resides on a workstation and the server process resides on a second workstation, minicomputer,
or mainframe system. Communication takes the form of request and reply pairs, which are initiated
by the client and serviced by the server. (A server can make requests of another server, thus
acting as a client.) Client/server computing is often used to connect different types of workstations
or personal computers to a host computer system by means of supported communications protocols.

command line
client

A NonStop SOAP 4 client that can be run from the OSS command prompt.

Common Gateway
Interface (CGI).

A standard protocol used as the interface between Web servers and the programs these servers
use to process requests from Web clients.

configuration The definition or alteration of characteristics of an object.
configuration
context

The configuration data needed to start an instance of NonStop SOAP 4.

configuration file A file that includes configuration information for NonStop SOAP 4 server and itp WebServer
and underlying Web services. The configuration files for NonStop SOAP 4 include axis2.xml,
module.xml, services.xml, and itp_axis2.config.

context free A style of application access in which the application regards each request as independent of
all other requests. As a result, a different process can handle each request in a set or series.

context sensitive A style of application access in which a series of requests are logically related, requiring the
same server process to handle all requests in the series.

Contract-First
development

This approach of application development considers a WSDL definition as the starting point of
the development process. The WSDL becomes a contract between the service provider and the
client. The WSDL definition is created usingWeb services standards and the service implementation
is performed, based on this contract.

399

D

Data Definition
Language (DDL).

The set of data definition statements within the Structured Query Language (SQL). An HP product
for defining data objects in Enscribe files on NonStop™ systems and translating object definitions
into source code.

data type A categorization of values, operations, and arguments that usually cover both behavior and
representation.

deployment
directory

This is an OSS directory that can be considered as the working directory where all the services,
modules, and log files are available.

deployment script A script file used to deploy the NonStop SOAP 4 server and setup the deploy environment.
directory A type of Open System Services (OSS) special file that contains directory entries that name links

to other files. No two directory entries in the same directory can have the same name.
DLL A DLL is a library that contains code and data, which can be used by more than one program

at the same time.

E

element The basic unit of information in an XML document. An element has a name and can have content
and attributes.

envelope The elements of a SOAP message that precede and follow the body of the message.
environment
variable

An element of a system or product-specific configuration file used to specify the path to a
processing component or to control some aspect of system or product operation. For example,
you use an environment variable in the OSS profile file to specify the location of the NonStop
configuration file.

Event Management
Service (EMS)

A part of DSM used to provide event collection, event logging, and event distribution facilities.
It provides for different descriptions of events for people and for programs, lets an operator or
application select specific event message data, and allows for flexible distribution of event
messages within a system or network. EMS has an SPI-based programmatic interface for reporting
and retrieving events.

event message A special kind of SPI message that describes an event occurring in the system or network. Event
messages are collected, logged, and distributed by EMS.

F

file An object to which data can be written or from which data can be read. A file has attributes,
such as access permissions and a file type. In the Open System Services (OSS) environment, file
types include regular file, character special file, block special file, FIFO, and directory.

file descriptor A non-negative integer that uniquely identifies a single open of a file to a running process. Each
file descriptor is associated with an open file description that contains data about the file.

file identifier (file
ID)

In the OSS environment, a portion of the internal information used to identify a file in the OSS
file system. In the Guardian environment, the portion of a file name following the subvolume
name. The two identifiers are not comparable.

file name In the Guardian environment, the set of node name, volume name, subvolume name, and file
identifier characters that uniquely identifies a file. This name is used to open a file and thereby
provide a connection between the opening process and the file. In the Open System Services
(OSS) environment, a component of a pathname containing any valid characters other than a
slash (/) or a null.

file system (1) In the Guardian environment, the application program interface for communication between
a process and a file. A file can be a disk file, a device other than a disk, or another process. (2)
In the OSS environment, a collection of files and file attributes. A file system provides the
namespace for the file serial numbers that uniquely identify its files.

File Transfer
Protocol (FTP).

The Internet standard, high-level protocol for transferring files from one machine to another.
Usually implemented as application-level programs, FTP uses the TELNET and Transmission Control
Protocol (TCP) protocols. The server side requires a Web client to supply a login identifier and
password before it will honor requests.

400 Glossary

File Utility Program
(FUP).

An HP product on NonStop™ systems that allows users to create, copy, purge, and otherwise
manipulate disk files interactively.

Flows A Flow is a sequence of activities where messages flow in and out of NonStop SOAP 4.
FTP See File Transfer Protocol (FTP).
fully qualified file
name.

The complete name of a file in the Guardian environment. For a permanent disk file, this consists
of a node name (system name), volume name, subvolume name, and file identifier (file ID). In
interactive interfaces, such as PATHCOM and TACL, the parts of a file name are separated by
periods.

G

generated class A class, derived from one of the base SOAP classes, but specific to a TS/MP service or NonStop
process defined in an SDL file.

generated file A file created by the SoapAdminCL tool and included in a custom SOAP server for TS/MP or
NonStop process.

graphical user
interface (GUI).

A type of screen interface that typically includes pull-down menus, icons, dialog boxes, and online
help.

Guardian An environment available for interactive or programmatic use with the NonStop™ Kernel operating
system. Processes that run in the Guardian environment use the Guardian system procedure calls
as their application program interface, and might also use related APIs, such as the Pathsend
and TMF procedure calls.

Guardian services An application program interface (API) to the HP NonStop operating system, plus the tools and
utilities associated with that API.

H

handler A handler is the smallest unit of invocation within a phase. Handlers are an independent unit of
execution, which perform specific activities, such as logging a message, and consuming addressing
headers.

Hot deployment Hot deployment is the process of deploying Web services while the NonStop SOAP 4 server is
actively serving requests.

Hypertext Markup
Language (HTML).

The tagging language used to format Hypertext documents on the World Wide Web. It is built
on top of Standard Generalized Markup Language (SGML).

Hypertext
Transport Protocol
(HTTP)

The communications protocol used for transmitting data between servers and Web clients
(browsers) on the World Wide Web.

I

Internationalization
Internationalization (or "I18N") is the provision for conversion of data to the encoding a client
requires.

J

Java A programming language for browser-based internet applications.

M

marshal To serialize a C++/Java object into a data stream, for example, to convert a C++/Java object
into an XML document.

MEP See message exchange pattern.
Message Context An object for every message, regardless of whether it is from the client or server or processed

within NonStop SOAP 4. It stores information related to a particular message in the object.
message exchange
pattern

A message exchange pattern (MEP) describes the pattern of messages required by a
communications protocol to establish or use a communication channel.

401

Message Receiver
User Functions
(MRUFs)

These are a set functions that can be used to customize the Pathway message receiver process
flow.

N

NonStop Process A process running on a NonStop server.
NonStop SOAP
configuration file

An XML document that defines the environment variables used by a SOAP server at runtime.

O

Open System
Services (OSS)

An open system environment available for interactive or programmatic use with the NonStop™
operating system. Processes that run in the OSS environment use the OSS application program
interface; interactive users of the OSS environment use the OSS shell for their command interpreter.

Operation Context Operation context is the runtime representation of an operation; it is the direct map to the operation
that is being invoked by a given message.

OSS environment See Open System Services (OSS).
OSS pathname The string of characters that uniquely identifies a file within its file system in the OSS environment.

A pathname can be either absolute or relative.

P

PATHCOM (1) The command interface to the PATHMON process, through which users enter commands to
configure and manage Pathway applications when Pathway/XM is not used. (2) The process
that provides and supports the PATHCOM interface. In a Pathway/XM environment, PATHCOM
processes are used internally only, to interpret management commands directed to individual
PATHMON processes. You configure a Pathway/XM environment by using PXMCFG and start
up, maintain, and shut down that environment by using PXMCOM.

PATHMON The central controlling process for a NonStop TS/MP application.
PATHMON
environment

The set of servers, server classes, TCPs, terminals, SCREEN COBOL programs, and tell messages
that run together under the control of one PATHMON process.

PATHMON process (1) In a Pathway environment without Pathway/XM, the central controlling process for the
environment. The PATHMON process maintains configuration-related data; grants links to server
classes in response to requests from TCPs and LINKMON processes; and performs all process
control (starting, monitoring, restarting, and stopping) of server processes and TCPs. (2) In a
Pathway/XM environment, a process that monitors and manages a set of requester and server
objects such as TCPs, TERM objects, and server classes (SERVER objects). A Pathway/XM
environment can include multiple PATHMON processes, and all are configured and managed
centrally through the SuperCTL file.

pathname See OSS pathname
Pathway The former name of NonStop TS/MP, a product providing transaction services for persistent,

scalable, transaction-processing applications.
Pathway
application

A set of programs that perform online transaction processing tasks in the Guardian environment
on NonStop™ systems , using interfaces defined by Compaq software. A Pathway application
can include SCREEN COBOL requesters, Pathsend requesters, and Pathway servers. It can also
include GDSX front-end processes and clients that use RSC/MP.

Pathway
environment

A run-time environment consisting of transaction-processing products provided by HP for the
Guardian operating environment on NonStop™ systems . This term is often shortened to “Pathway
environment.” Depending on the needs of your application, your Pathway environment could
include NonStop™ TS/MP, the run-time portions of Pathway/iTS (the TCP and the SCREEN
COBOL run-time environment), and processes from related products, such as NonStop™ TM/MP,
GDSX, and RSC/MP.

Pathway server. A server process or program in the Pathway transaction processing environment.
Payload The payload is the actual content in the message that is sent to an application.

402 Glossary

Phase A Phase is a stage of processing or a time interval in the message process. A collection of phases
forms a Flow.

process A running entity that is managed by the operating system, as opposed to a program, which is a
collection of code and data. When a program is taken from a file on a disk and run in a processor,
the running entity is called a process.

R

request message
buffer

A character buffer created by the NonStop SOAP 4 server to be sent to the Pathway application
or NonStop process.

response message
buffer

A character buffer received by the NonStop SOAP 4 server from the Pathway application or
NonStop process.

response selection
criteria

NonStop SOAP 4 facilitates multiple non-fault response structures for a single request. To select
which response structure must be selected the NonStop SOAP 4 server uses the response buffer
value based on the values mentioned in the services.xml file, and generate a proper SOAP
response. The values that are stored in the services.xml file like StartIndex, EndIndex, BufVal,
ComparisionOp, ConversionOp, FaultResponse, and DefaultResponse are collectively known as
the response selection criteria.

root directory An OSS directory associated with a process that the system uses for pathname resolution when
a pathname begins with a slash (/) character. See also OSS pathname.

S

SDL Service Definition Language.
SDR Service Definition Repository.
server A process or set of processes that satisfy requests from Web clients in a clientserver environment.
server class A set of duplicate copies of a single server process, all of which execute the same object program.

Server classes are configured through the PATHMON process or the PXMCFG utility.
SERVERCLASS_SEND The procedure call used to send a request to a TS/MP server class, defined as part of the TS/MP

Pathsend facility.
Service Artifacts The files generated by the SoapAdminCL tool while deploying a service.
Service Context The Service Context holds all the operation contexts that are created, invoking the operations

within that service.
Service skeleton
files

These files are template files, generated using the WSDL2PWY tool, to design the Pathway server
class.

service-first
development

An application developmentt approach, where the development of the service starts from a code.
The service code is written without the WSDL and the business logic is written later. This approach
is also commonly known as the Code-First approach.

session A logical grouping of a requests used for to permit transaction control and to support access to
context-sensitive classes.

session context Information a SOAP server maintains to represent a session.
session ID A handle used by the SOAP client and server to relate requests and responses to a session context.
Simple Object
Access Protocol
(SOAP)

SOAP is a simple XML-based protocol that enables applications to exchange information over
HTTP.

SOAP See Simple Object Access Protocol (SOAP)
SOAP server A process that converts a SOAP or XML request into the format required by an external service,

and converts the reply from the external service into SOAP or XML.
soft link This is a type of file that contains a reference to another file or directory in the form of an absolute

or relative path and affects pathname resolution.
subsession A series of interactions between a client and a SOAP server, corresponding to dialog between

a SOAP server and a context-sensitive TS/MP server class or NonStop process. A session can
include a series of subsessions, each with a different target server class.

403

T

TMF See Transaction Management Facility subsystem.
TMF transaction See Transaction Management Facility subsystem and transaction.
transaction An operation or a series of operations that retrieves and updates information to reflect an exchange

of goods or services. In the process of retrieving and updating information, a transaction transforms
a database from one consistent state to another. The TMF subsystem treats a transaction as a
single unit; either all of the changes made by a transaction are made permanent (the transaction
is committed) or none of the changes are made permanent (the transaction is aborted).

transaction
management

To coordinate transaction control functions, such as beginning and ending transactions, committing
or aborting transactions, and recovering transactions.

Transaction
Management
Facility (TMF)
subsystem

The major component of the NonStop™ TM/MP product, which protects databases in online
transaction processing environments. To furnish this service, the TMF subsystem manages database
transactions, keeps track of database activity through audit trails, and provides database recovery
methods.

TS/MP TS/MP software manages server pools by establishing links between clients and servers, balancing
the workload across servers, automatically creating and deleting servers in response to changes
in request traffic, and restarting servers after processor or process failures.

U

Url_pattern This is a unique string that specifies the Web address of the NonStop SOAP 4 deployment
location.

user-exits These are functions used to customize NonStop SOAP 3 server.

V

volume A disk drive, or a pair of disk drives that forms a mirrored disk, in the Guardian environment.
The name of a volume is the second of the four parts of a file name.

W

Web server Web servers are programs that execute on a variety of server platforms. Web server functions
can be divided into two parts. A file server part performs normal file server functions, such as file
transfer and buffering. A message switching facility allows messages from Web clients to be
forwarded to application programs.

WS-Security WS-Security provides a platform to secure your services beyond transport level protocols, such
as HTTPS. HTTPS performs a secure message transfer from one end point to another. However,
in the real world, the message is transferred over multiple domains and you must preserve the
identity, integrity, and security of the message across multiple trusted domains or points.
WS-Security provides an end-to-end solution for Web service security.

WSDL Web Services Description Language (WSDL) is an XML-based language that captures the
mechanical information a client needs to access a Web service: definitions of message formats,
SOAP details, and a destination URL. WSDL provides a simple way for service providers to
describe the basic format of requests to their systems regardless of the underlying protocol (such
as Simple Object Access Protocol or XML).

X

XML Extensible Markup Language, a standard for tagging data in an HTML document, which describes
as to provide semantic information about content elements.

XML schemas XML schemas express shared vocabularies and allow machines to carry out rules made by people.
They provide a means for defining the structure, content, and semantics of XML documents.

404 Glossary

Index

A
Abort
AbortTransactionOnFault attribute, 162
configuring transactions to Abort on fault, 248
Session, 255
timeout, 246
Transaction, 244

Attaching
module at global level, 181
MRUF at global level, 181

C
Client APIs
Basic client APIs, 105
to generate Request Node and consume Response
Node, 106

to implement the Client Interface, 105
Communicating with Non-Pathway process, 231
configuring
Abort on fault, 248
level of transaction support, 245
service as a DLL, 183
service as a Pathway application, 183
service as a process, 183
transaction timeout, 247

Contract-first Approach, 260
Customizing Message Processing
Overview, 124
using Handlers, 126
using MRUFs, 137

D
DDL comments, 217
Deploying
adminserver, 50
NonStop SOAP 4 Pathway web service, 269
sample web service, 44
Web Service developed as a NonStop Process, 83
Web Service developed as a Pathway Application, 77

E
Error and Warning Messages, 285

F
For Contract-first Approach, 260

H
Hot-Deployment, 229

I
Internationalization and Encoding, 230

L
Logging
Client APIs

creating log file structure, 115
logging levels, 115
releasing log structure, 116

defining log levels, 178
log levels, 178
Service APIs, 95
creating log file structure, 95

M
MEP
setting operation-specific MEP, 189
setting up, 180

message processing
customizing, 124
specifying order of Phase invocation, 182

Message Receiver User Functions, 125
Migrating NonStop SOAP 3 services, 52
prerequisites, 52
services, 52
transactions, 58
user-exits, 61

MRUFs, 125
Multiple Deployment
Setting up, 43

N
NonStop SOAP
Architecture, 29
Features, 28
Introduction, 27
Prerequisites, 36
tools, 194

NonStop SOAP 4
configuration files, 177
configuring, 177
Getting Started, 77
Installing, 36
Supported Standards, 27
Transaction Management, 236

NonStop SOAP 4 Tools
Administration Utility, 215
SOAPAdminCL, 194
WSDL2C, 211
WSDL2PWY, 203

P
Phases
user-defined, 131

Prerequisites, 36

R
Rampart Specific Assertions, 275

S
SDL
attributes, 153

405

Creating SDL for service, 98
elements, 153
service types, 154

Service APIs
Basic service APIs, 85
developing services, 95
logging, 95
to extract input parameters and return response, 89
to implement the Service Interface, 85
to implement the Service Skeleton Structure interface,
87

Session
Abort Transaction in Session, 255
Begin, 250
Begin Transaction in Session, 251
Commit Transaction in Session, 254
Continue Transaction in Session, 253
End, 256
subsessions, 259
timeout, 258

Session Management, 249

T
Timeout
configuring Transaction timeout, 247
Session, 258
Transaction, 246

TMF transaction
controlling, 188

Tools
WSDL2C
NonStop SOAP 4 Non-Pathway web service, 270

WSDL2PWY
Develop a NonStop SOAP 4 Pathway web service,
262

Transaction
Abort, 244
transactions to Abort on fault, 248

Begin, 239
Commit, 242
Continue, 241
timeouts, 246
configuring transaction timeout, 247

Transaction Management
client, 238

Transaction Managment
server, 238
Transaction Module Configuration, 237

W
web service
develop using Service APIs, 95

WS-Security
Scenarios, 281
using, 273

WSDL
considerations, 260
pre-defined, 260

406 Index

	NonStop SOAP 4.1 User's Manual
	Contents
	About This Document
	Supported Release Version Updates (RVUs)
	Intended Audience
	New and Changed Information
	New and Changed Information in 532118–006 Edition
	New and Changed Information in 532118–005 Edition
	New and Changed Information in 532118–004 Edition
	New and Changed Information in 532118–003 Edition
	New and Changed Information in 532118–002 Edition

	Document Organization
	Notation Conventions
	General Syntax Notation
	Notation for Messages
	Notation for Management Programming Interfaces
	General Syntax Notation

	Publishing History
	HP Encourages Your Comments

	1 Introduction to NonStop SOAP
	Supported Standards
	Features of NonStop SOAP
	Architecture of NonStop SOAP
	NonStop SOAP Server
	CGI Interface
	NonStop SOAP 4 Engine
	TS/MP Message Receiver
	XML Message Receiver
	WS-Security Module
	Transaction Module

	NonStop SOAP Tools
	SoapAdminCL Tool
	WSDL2C Tool
	WSDL2PWY Tool
	NonStop SOAP Administration Utility

	SOAP Clients

	Request Processing in NonStop SOAP
	Compatibility
	Migration

	2 Installing NonStop SOAP
	Prerequisites
	Setting Up NonStop SOAP on a NonStop System
	Installing NonStop SOAP
	Default location installation
	Non-standard location installation
	Using PINSTALL Utility in Guardian Environment
	Using PAX Command in OSS Environment

	Setting up the Deployment Environment
	Running the Deployment Script
	Modifying the local.config file

	Tuning NonStop SOAP
	Running NonStop SOAP
	Accessing the echo service

	Setting up Multiple NonStop SOAP Deployment Instances in a Single iTP WebServer

	Deploying a Sample Web Service
	Deploying the empdb Service
	Setting up the empdb environment
	Accessing the empdb service

	Deploying the adminserver Service
	Setting up the adminserver Environment
	Accessing the adminserver Service

	3 Migrating NonStop SOAP 3 Services to NonStop SOAP 4 or Higher Versions
	Prerequisites
	Migrating the NonStop SOAP 3 Services
	Generating SOAP 4 Service Artifacts and Client Files from NonStop SOAP 3
	Generating the SDL File from the NonStop SOAP 3 SDR File
	Modifying the SDL File
	Generating the HTML Client, WSDL, XML Schema, and services.xml Files to Deploy the Service
	Migration Considerations

	Accessing the Migrated Application

	Migrating NonStop SOAP 3 Transactions
	Migrating NonStop SOAP 3 User-exits
	Migrating the NonStop SOAP 3 User-exit Samples
	Migrating the pre_process() and post_process() user-exits using mod_empdb
	Implementation of the pre_process() user-exit in NonStop SOAP 3
	Implementation of the post_process()user-exit in NonStop SOAP 3
	Migration of the pre_process() and post_process() user-exits in NonStop SOAP 4
	Running the SoapAdminCL tool to create the module stub and configuration files
	Migrating the pre_process() user-exit business logic
	Migrating the post_process() user-exit business logic
	Compiling the mod_empdb module
	Deploying the mod_empdb module
	Running the NonStop SOAP empdb sample with the mod_empdb module

	Migrating the pre_service() and pre_marshal() user-exits in NonStop SOAP 3 to Message Receiver User Functions in NonStop SOAP 4.1
	Implementation of the pre_service() and pre_marshal() user-exit in NonStop SOAP 3
	Migration of pre_service() and pre_marshal() user-exits in NonStop SOAP 4.1
	Running the SoapAdminCL tool to generate the empdb_MRUF stub files
	Migrating the business logic for the pre_service() user-exit
	Compiling the Message Receiver user Functions
	Deploying the Message Receiver user Functions
	Running the NonStop SOAP 4 empdb sample with empdb_MRUF

	4 Getting Started with NonStop SOAP 4
	Deploying a Pathway Application and a NonStop Process as a Web Service
	Getting the sample application files from sample_services
	Creating DDL dictionary files
	Creating SDL files
	Creating Web Service files using SOAPAdminCL tool
	Compiling reflector.c
	Configuring and starting the reflector application
	Accessing the Web Service deployment

	Deploying a NonStop process as a Web Service

	5 NonStop SOAP 4 Service APIs
	Basic NonStop SOAP 4 Service APIs
	APIs to Implement the Service Interface with NonStop SOAP 4
	The axis2_get_instance()Function
	Creating the service skeleton structure
	Setting the service skeleton operations structure
	Returning the service skeleton structure to the service

	The axis2_remove_instance()Function

	APIs to Implement the Service Skeleton Structure Interface
	The init Function
	The invoke Function
	The fault Function
	The free Function

	APIs to Extract the Input Parameters and Return the Response
	Reading an AXIOM node using NonStop SOAP 4 APIs
	The axiom_element_get_qname()Function
	The axiom_node_get_data_element()Function
	The axiom_attribute_get_qname()Function
	The axiom_element_get_attribute()Function

	Creating an AXIOM node using NonStop SOAP 4 APIs
	Creating an AXIOM node using AXIOM Node Create APIs
	The axiom_node_create()Function
	The axiom_node_add_child()Function
	The axiom_element_create()Function
	The axiom_element_add_attribute()Function
	The axiom_attribute_create()Function

	Creating an AXIOM node from an XML using AXIOM Document APIs
	The axiom_document_create()Function
	The axiom_document_build_all()Function
	The axiom_document_free()Function

	APIs for Logging
	Creating the log file structure

	Developing NonStop SOAP 4 Services using Service APIs
	Defining the XML Request and Response Payload
	Creating the SDL File for the Service
	Generating the WSDL File and the services.xml File
	Generating the Service Skeleton Files
	Implementing the Business Logic in the Service Skeleton Files
	Compiling the Service Code and Deploying the Service
	Testing the Service

	6 NonStop SOAP 4 Client APIs
	NonStop SOAP 4 Client APIs
	APIs to Implement the Client Interface with NonStop SOAP 4
	The axis2_svc_client_create()Function
	The axis2_svc_client_free()Function

	APIs to Generate the Request Node and Consume the Response Node
	Generating the Request AXIOM node using NonStop SOAP 4 APIs
	Creating an AXIOM node using AXIOM Node Create APIs
	The axiom_node_create()Function
	The axiom_node_add_child()Function
	The axiom_element_create()Function
	The axiom_element_add_attribute()Function
	The axiom_attribute_create()Function
	The axiom_document_build_all()Function

	Creating an AXIOM node from an XML using AXIOM Document APIs
	The axiom_document_create()Function
	The axiom_document_build_all()Function
	The axiom_document_free()Function

	Consuming the Response AXIOM node using NonStop SOAP 4 APIs
	The axiom_element_get_qname()Function
	The axiom_node_get_data_element()Function
	The axiom_attribute_get_qname()Function
	The axiom_element_get_attribute()Function

	APIs to Invoke the Web Service
	The axis2_svc_client_send_receive() Function
	The axis2_svc_client_send_receive_non_blocking() Function
	The axis2_svc_client_send_robust() Function
	The axis2_svc_client_fire_and_forget() Function

	APIs for Logging
	Creating the log file structure
	Logging messages at different log levels
	The axutil_log_impl_log_warning()Function
	The axutil_log_impl_log_info() Function
	The axutil_log_impl_log_user()Function
	The axutil_log_impl_log_debug()Function
	The axutil_log_impl_log_trace()Function

	Releasing the log structure

	ADB APIs for creating requests
	The adb_<messagename>_create()Function
	The adb_<messagename>_free()Function
	The adb_<complextype>_create_with_values() Function
	The adb_<messagename>_set_<complextype>() Function
	The adb_<messagename>_get_<complextype>() Function

	Developing NonStop SOAP 4 Clients Using Client APIs
	Generating NonStop SOAP 4 Client Stubs using the WSDL2C tool
	Implementing Business Logic in Client Stubs
	Compiling the Client Code and Deploying the Client
	Compiling the Client Code using the Makefile
	Compiling the Client Code manually

	Testing the Client

	7 Customizing NonStop SOAP 4 Message Processing
	Overview
	Modules and Handlers
	Message Receiver User Functions
	NonStop SOAP 4 Message Processing Customization

	Customizing the NonStop SOAP 4 Message Process Using Handlers
	Request Processing in NonStop SOAP 4
	Flows
	Phases
	Pre-defined phases in inflow
	Transport
	PreDispatch
	Dispatch
	PostDispatch

	User-defined phases in inflow
	Pre-defined phases in outflow
	MessageOut
	Transport

	User-defined phases in outflow

	Handlers
	Modules

	Creating a User-Defined Phase
	Deploying and Attaching a Module
	Developing a Sample Module for NonStop SOAP 4
	Running the SoapAdminCL Tool to Generate the Module Handler Stub Files
	Implementing the Business Logic in the Module Handler Stub Files
	Implementing the invoke() Method for loggingInHandler
	Implementing the invoke() Method for loggingOutHandler

	Engaging the Module Handler at the Service Level
	Verifying the Module Handler Output

	Customizing the NonStop SOAP 4 Message Process Using Message Receiver User Functions
	Configuring NonStop SOAP 4 Message Receiver User Functions
	Configuring NonStop SOAP 4 Message Receiver User Functions at the service level
	Configuring NonStop SOAP 4 Message Receiver User Functions at the global level

	Modifying the Data Buffer Passed to the Service using NonStop SOAP 4 Message Receiver User Functions
	Setting the pre_service and pre_marshal Message Receiver User Functions
	Creating an instance of the Message Receiver User Function structure
	Setting pre_service and pre_marshal function names
	Setting the name of the pre_service callback function in the Message Receiver User Functions structure
	Setting the name of the pre_marshal callback function in the Message Receiver User Functions

	Implementing the pre_service and pre_marshal Message Receiver User Functions

	Modifying the Pathway or Process Attributes using NonStop SOAP 4 Message Receiver User Functions
	The axis2_msg_recv_get_pathmonName()Function
	The axis2_msg_recv_get_serverclassName()Function
	The axis2_msg_recv_get_serviceName()Function
	The axis2_msg_recv_get_operationName()Function
	The axis2_msg_recv_get_processName()Function
	The axis2_msg_recv_set_pathmonName()Function
	The axis2_msg_recv_set_serverclassName()Function
	The axis2_msg_recv_set_serviceName()Function
	The axis2_msg_recv_set_operationName()Function
	The axis2_msg_recv_set_processName()Function

	Modifying the Message Flow in the Pathway Message Receiver using NonStop SOAP 4 Message Receiver User Functions
	The axis2_msg_recv_get_skipService()Function
	The axis2_msg_recv_get_skipMarshal()Function
	The axis2_msg_recv_set_skipService()Function
	The axis2_msg_recv_set_skipMarshal()Function

	Developing Sample Message Receiver User Functions for NonStop SOAP 4
	Running the SoapAdminCL Tool to Generate the Message Receiver User Functions Stub Files
	Implementing the Business Logic in the Message Receiver User Functions Stub Files
	Implementing the pre_service Message Receiver User Function
	Implementing the pre_marshal Message Receiver User Function

	Engaging the Message Receiver User Functions at the Service Level
	Verifying the Message Receiver User Functions Output

	8 NonStop SOAP 4 Service Description Language
	SDL File Elements and Attributes
	SDL Service Types
	The Pathway Element
	The PathwayEnvironment Element
	The Service Element
	The Operation Element
	The OperationDescription Element
	The RequestInfo Element
	The ResponseInfo Element
	The DDLDefinitionName Element
	The ResponseSelection Element

	The Process Element
	The ProcessEnvironment Element
	The ProcessDetails Element

	The ServerAPI Element

	9 NonStop SOAP 4 Configuration Files
	The itp_axis2.config File
	Linking iTP WebServer to the NonStop SOAP 4 Deployment
	Specifying iTP WebServer Filemap for NonStop SOAP 4
	Defining the Log Levels of the NonStop SOAP 4 Server
	Defining the Log File Size
	Defining Separate Log and Trace Files for NonStop SOAP 4 Servers

	The axis2.xml File
	Setting the Message Receiver and the Message Exchange Pattern
	Attaching a Module at the Global Level
	Attaching Message Receiver User Functions at the Global Level
	Specifying the Order of Phase Invocation in NonStop SOAP 4 Message Processing

	The services.xml File
	Updating the Service Parameters
	Configuring a service as a Pathway application
	Configuring a service as a process
	Configuring a service as a DLL
	Other Service Parameters

	Defining Multiple SOAP Response Selection Criteria
	Controlling TMF Transaction Support
	Engaging a Module at the Service Level
	Setting the Operation-Specific MEP
	Setting the Operation-Specific Message Receiver

	The module.xml File
	Specifying the Module Name and Module Class File Name
	Defining a New Handler and Specifying its Invocation Order
	Defining the Module-Specific Parameters

	10 NonStop SOAP Tools
	The SoapAdminCL Tool
	Generating NonStop SOAP 4 Files using the SDL File
	Generating Module and Handler Stubs
	Generating Message Receiver User Functions Stubs
	Generating the NonStop SOAP 4 SDL File from the NonStop SOAP 3 SDR File
	Additional Options

	The WSDL2PWY Tool
	Generating NonStop SOAP 4 Client Stubs
	Generating Service Stubs
	XML Schema and C Data Types Mapping
	Migrating to Contract-First Services
	WSDL2PWY Limitations

	The WSDL2C Tool
	Generating NonStop SOAP 4 Client Stubs
	Generating NonStop SOAP 4 Service Skeleton Files

	The NonStop SOAP 4 Administration Utility
	Installing NonStop SOAP 4 Administration Utility

	11 NonStop SOAP 4 Features
	DDL Comments
	Specifying DDL Fields as Optional
	Exposing DDL Fields as XML Attributes
	Setting the SoapDDLAttribute in the SDL File
	Flagging a DDL Field with SOAP DDL Comment Tags

	Specifying Base64 Encoding
	Using the SOAP_OCCURS_DEP_ON DDL Comment Tag

	Hot-Deployment of the NonStop SOAP 4 Server
	Hot-Update for the Deployed Services
	Internationalization and Encoding
	Configuring the request encoding
	Configuring the response encoding
	Configuring the server encoding

	Communicating with a Non-Pathway Process
	Creating an SDL File to Communicate with a Non-Pathway Process
	Creating a DDL File with the Request/Response Structures
	Generating NonStop SOAP 4 Files using the SoapAdminCL Tool

	Validation Module
	SOAP_WSDL_NAME DDL Comment
	Support for Multiple DDL Definitions
	Check on SOAP Service Deployment
	Unbounded data elements support

	12 Transaction Management
	Transaction Module Configuration
	SOAP Server Transaction Management
	SOAP Client Transaction Management
	Begin a New Transaction
	Continue a Transaction
	Commit a Transaction
	Abort a Transaction

	Configuring the Level of Transaction Support
	Transaction Timeouts
	Configuring Transaction Timeout
	Configuring Transactions to Abort on Fault

	Session Management and Transactions
	Begin a New Session
	Begin Transaction within a Session
	Continue a Transaction within a Session
	Commit a Transaction within a Session
	Abort a Transaction within a Session
	End the Session
	The Cookie File
	Session Timeout
	Subsessions
	The SOAP_COOKIE_DELETION_INTERVAL Parameter

	13 Using the Contract-First Approach in NonStop SOAP 4
	NonStop SOAP 4 Tools for Developing Web Services Using the Contract-First Approach
	WSDL Considerations
	Using a Pre-defined WSDL File

	Developing a NonStop SOAP 4 Pathway Web Service Using the WSDL2PWY Tool
	Deploying a NonStop SOAP 4 Pathway Web Service
	Accessing a NonStop SOAP 4 Pathway Web Service

	Developing a NonStop SOAP 4 Non-Pathway Web Service Using the WSDL2C Tool

	14 WS–Security in NonStop SOAP 4
	Overview of Encryption and Signing
	Supported WS–Security Features
	Securing a NonStop SOAP 4 Service
	Rampart Specific Assertions
	Publishing the Security Requirements
	Configuring the Client to Invoke a Secured Web Service
	Configuring the Axis2c Client
	Configuring Non–Axis2c Clients

	Extensible Modules
	Sample Programs
	Functionality of the Sample Client and Server Program
	Running the Web Services Security Sample Programs
	WS-Security Scenarios
	Scenario 1: Timestamp
	Scenario 2: UsernameToken
	Scenario 3: Encryption
	Scenario 4: Signature
	Scenario 5: Combining TimeStamp, UsernameToken, Encryption, and Signature with Protection order Sign->Encrypt
	Scenario 6: Combining TimeStamp, UsernameToken, Encryption, and Signature with Protection Order Encrypt->Sign
	Scenario 7: Symmetric Binding. Encryption using Derived Keys
	Scenario 8: Symmetric Binding, Signature
	Scenario 9: Symmetric Binding. Both Encryption and Signature with Protection Order Encrypt->Sign
	Scenario 10: Symmetric Binding. Both Encryption and Signature with Protection Order Sign->Encrypt
	Scenario 11: Symmetric Binding. Both Encryption and Signature with Protection Order Encrypt->Signature Encryption
	Scenario 12: Symmetric Binding. Both Encryption and Signature with Protection Order Sign->Encrypt. Signature Encryption

	Recommendations

	A NonStop SOAP 4 Error and Warning Messages
	NonStop SOAP 4 Error Messages
	Client API Errors
	NonStop SOAP 4 Engine Errors
	NonStop SOAP 4 Utility Errors
	Pathway Message Receiver Errors
	CGI Errors
	Transaction Management Errors
	SoapAdminCL Errors
	Pathway Service Definition Errors
	Memory Allocation Errors
	SoapAdminCL Error Messages
	WSDL2PWY and WSDL2C Error Messages

	NonStop SOAP 4 Warning Messages

	B Install Files and Folders
	Verifying the Extracted Product Files
	Verifying the Deployed Files

	C SoapAdminCL DDL datatype to XML datatype conversion
	D NonStop SOAP 4 APIs
	AXIOM APIs
	Attributes
	The axiom_attribute_create()Function
	The axiom_attribute_free() Function
	The axiom_attribute_get_qname() Function
	The axiom_attribute_serialize() Function
	The axiom_attribute_get_localname() Function
	The axiom_attribute_get_value()Function
	The axiom_attribute_get_namespace() Function
	The axiom_attribute_set_localname() Function
	The axiom_attribute_set_value() Function
	The axiom_attribute_set_namespace() Function

	Comment
	The axiom_comment_create() Function
	The axiom_comment_free() Function
	The axiom_comment_get_value() Function
	The axiom_comment_set_value() Function

	Document
	axiom_document_create
	axiom_document_free
	axiom_document_get_root_element
	axiom_document_set_root_element
	axiom_document_build_all

	Element
	axiom_element_create
	axiom_element_create_with_qname
	axiom_element_add_attribute
	axiom_element_get_attribute
	axiom_element_get_attribute_value
	axiom_element_free
	axiom_element_get_localname
	axiom_element_set_localname
	axiom_element_get_namespace
	axiom_element_set_namespace
	axiom_element_get_all_attributes
	axiom_element_get_children
	axiom_element_get_children_with_qname
	axiom_element_remove_attribute
	axiom_element_set_text
	axiom_element_get_text
	axiom_element_to_string
	axiom_element_get_child_elements
	axiom_element_extract_attributes
	axiom_element_get_attribute_value_by_name
	axiom_element_get_localname_str
	axiom_element_set_localname_str

	Namespace
	axiom_namespace_create
	axiom_namespace_free
	axiom_namespace_equals
	axiom_namespace_serialize
	axiom_namespace_get_uri
	axiom_namespace_get_prefix
	axiom_namespace_to_string
	axiom_namespace_create_str
	axiom_namespace_set_uri_str
	axiom_namespace_get_uri_str
	axiom_namespace_get_prefix_str

	Node
	axiom_node_create
	axiom_node_free_tree
	axiom_node_insert_sibling_after
	axiom_node_insert_sibling_before
	axiom_node_serialize
	axiom_node_get_parent
	axiom_node_get_first_child
	axiom_node_get_first_element
	axiom_node_get_last_child
	axiom_node_get_previous_sibling
	axiom_node_get_next_sibling
	axiom_node_get_node_type
	axiom_node_get_data_element
	axiom_node_to_string

	Text
	axiom_text_create
	axiom_text_free
	axiom_text_serialize
	axiom_text_set_value
	axiom_text_get_value
	axiom_text_get_text

	Client API Module
	client service
	axis2_svc_client_get_svc
	axis2_svc_client_set_options
	axis2_svc_client_get_options
	axis2_svc_client_engage_module
	axis2_svc_client_disengage_module
	axis2_svc_client_add_header
	axis2_svc_client_remove_all_headers
	axis2_svc_client_fire_and_forget_with_op_qname
	axis2_svc_client_fire_and_forget
	axis2_svc_client_send_receive
	axis2_svc_client_send_receive_with_op_qname
	axis2_svc_client_send_receive_non_blocking_with_op_qname
	axis2_svc_client_get_svc_ctx
	axis2_svc_client_free
	axis2_svc_client_create

	Options
	axis2_options_get_action
	axis2_options_get_fault_to
	axis2_options_get_from
	axis2_options_get_transport_receiver
	axis2_options_get_transport_in
	axis2_options_get_transport_in_protocol
	axis2_options_get_message_id
	axis2_options_get_properties
	axis2_options_get_property
	axis2_options_get_property
	axis2_options_get_reply_t
	axis2_options_get_transport_out
	axis2_options_get_sender_transport_protocol
	xis2_options_get_soap_version_uri
	axis2_options_get_timeout_in_milli_seconds
	axis2_options_get_parent
	axis2_options_set_parent
	axis2_options_set_action
	axis2_options_set_fault_to
	axis2_options_set_from
	axis2_options_set_to
	axis2_options_set_transport_receiver
	axis2_options_set_transport_in
	axis2_options_set_transport_in_protocol
	axis2_options_set_message_id
	axis2_options_set_properties
	axis2_options_set_property
	axis2_options_set_reply_to
	axis2_options_set_transport_out
	axis2_options_set_sender_transport
	axis2_options_set_soap_version_uri
	axis2_options_set_timeout_in_milli_seconds
	axis2_options_set_transport_info
	axis2_options_get_manage_session
	axis2_options_set_manage_session
	axis2_options_set_msg_info_headers
	axis2_options_get_msg_info_headers
	axis2_options_get_soap_version
	axis2_options_set_soap_version
	axis2_options_get_soap_action
	axis2_options_set_soap_action
	axis2_options_free
	axis2_options_set_http_headers
	axis2_options_create

	Context Hierarchy
	message context
	The axis2_msg_ctx_get_base()Function
	The axis2_msg_ctx_get_parent()Function
	The axis2_msg_ctx_set_parent()Function
	The axis2_msg_ctx_free()Function
	The axis2_msg_ctx_get_soap_envelope()Function
	The axis2_msg_ctx_get_response_soap_envelope()Function
	The axis2_msg_ctx_get_fault_soap_envelope()Function
	The axis2_msg_ctx_set_msg_id()Function
	The axis2_msg_ctx_get_msg_id()Function
	The axis2_msg_ctx_get_server_side()Function
	The axis2_msg_ctx_set_soap_envelope()Function
	The axis2_msg_ctx_set_response_soap_envelope()Function
	The axis2_msg_ctx_set_fault_soap_envelope()Function
	The axis2_msg_ctx_set_message_id()Function
	The axis2_msg_ctx_set_server_side()Function
	The axis2_msg_ctx_get_msg_info_headers()Function
	The axis2_msg_ctx_is_keep_alive()Function
	The axis2_msg_ctx_set_keep_alive()Function
	The axis2_msg_ctx_get_op_ctx()Function
	The axis2_msg_ctx_get_svc_ctx_id()Function
	The axis2_msg_ctx_set_svc_ctx_id()Function
	The axis2_msg_ctx_get_conf_ctx()Function
	The axis2_msg_ctx_get_svc_ctx() Function

	Service Skeleton API
	AXIS2_SVC_SKELETON_INIT
	AXIS2_SVC_SKELETON_INIT_WITH_CONF
	AXIS2_SVC_SKELETON_FREE
	AXIS2_SVC_SKELETON_INVOKE
	AXIS2_SVC_SKELETON_ON_FAULT

	Utilities
	Utilities For Logging
	The axutil_log_impl_log_critical()Function
	The axutil_log_impl_log_error()Function
	The axutil_log_impl_log_warning() Function
	The axutil_log_impl_log_info() Function
	The axutil_log_impl_log_user()Function
	The axutil_log_impl_log_debug()Function
	The axutil_log_impl_log_trace()Function
	The axutil_log_free()Function
	The axutil_log_create()Function
	The axutil_log_create_default()Function

	Utilities For Error Reporting
	The axutil_error_free() Function
	The axutil_error_get_message() Function
	The axutil_error_set_error_message() Function
	The axutil_error_set_error_number() Function
	The axutil_error_set_status_code() Function
	The axutil_error_get_status_code() Function

	Utilities For String Operations
	The axutil_strdup()Function
	The axutil_strndup()Function
	The axutil_strmemdup()Function
	The axutil_strcmp()Function
	The axutil_strncmp()Function
	The axutil_strlen()Function
	The axutil_strcasecmp() Function
	The axutil_strncasecmp() Function
	The axutil_stracat() Function
	The axutil_strcat() Function
	The axutil_strstr() Function
	The axutil_strcasestr() Function
	The axutil_strchr() Function
	The axutil_replace()Function
	The axutil_strltrim()Function
	The axutil_strrtrim() Function
	The axutil_strtrim() Function
	The axutil_string_replace()Function
	The axutil_string_substring_starting_at()Function
	The axutil_string_substring_ending_at()Function
	The axutil_string_tolower() Function
	The axutil_string_toupper() Function

	Utilities For Array List
	The axutil_array_list_create() Function
	The axutil_array_list_size()Function
	The axutil_array_list_is_empty() Function
	The axutil_array_list_contains() Function
	The axutil_array_list_add() Function
	The axutil_array_list_add_at()Function
	The axutil_array_list_remove() Function
	The axutil_array_list_free() Function

	Utilities For Hash Tables
	The axutil_hash_first()Function
	The axutil_hash_next()Function
	The axutil_hash_count()Function
	The axutil_hash_free()Function
	The axutil_hash_contains_key()Function
	The axutil_hash_make()Function
	The axutil_hash_get()Function
	The axutil_hash_set()Function

	qname
	The axutil_qname_create()Function
	The axutil_qname_create_from_string()Function
	The axutil_qname_free()Function
	The axutil_qname_equals()Function
	The axutil_qname_clone()Function
	The axutil_qname_get_uri()Function
	The axutil_qname_get_prefix()Function
	The axutil_qname_get_localpart()Function
	The axutil_qname_to_string()Function

	parameter
	The axutil_param_create()Function
	The axutil_param_set_locked() Function
	The axutil_param_free()Function
	The axutil_param_set_attributes()Function
	The axutil_param_set_value_free()Function

	E Transaction Management Model in NonStop SOAP 3 and NonStop SOAP 4
	Glossary
	Index

