FastSort Manual

Abstract

This manual describes FastSort, the HP sort-merge utility for HP NonStop™ systems.
The FastSort Manual is intended for users who sort interactively, programmatically, and
from HP NonStop SQL/MP.

Product Version
FastSort D32
Supported Release Version Updates (RVUSs)

This publication supports G06.21 and all subsequent G-series RVUs until otherwise
indicated by its replacement publication. To use increased Enscribe limits, the
minimum RVUs are H06.28 and J06.17 with specific SPRs. For a list of the required
SPRs, see SPR Requirements for Increased Enscribe Limits for the H06.28/J06.17
Release.

Part Number Published
429834-003 April 2014

Document History

Part Number Product Version Published
060035 FastSort C30 July 1992
118812 FastSort D40 December 1995
124077 FastSort D32 February 1996
429834-001 FastSort D32 July 2001
429834-002 FastSort D32 September 2003
429834-003 FastSort D32 April 2014

— Legal Notices

© Copyright 1992, 2014 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Moatif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.

© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,

Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

— FastSort Manual

Legal Notices

What's New in This Manual vii
Manual Information vii
New and Changed Information vii

About This Manual ix
SPR Requirements for Increased Enscribe Limits for the H06.28/J06.17
Release ix
Audience X
Related Manuals x
Notation Conventions Xii

1. Introduction to FastSort

Sort and Merge Operations 1-1

FastSort Features 1-2

FastSort Components 1-3
Interactive FastSort 1-5
Programmatic FastSort 1-7
SORTPROG Process 1-8

Input Files 1-8
Scratch Files 1-9

Output Files 1-9
Using DEFINEs With FastSort 1-9
Class SPOOL DEFINE 1-9
Class SORT and SUBSORT DEFINEs 1-10

Products That Use FastSort 1-10

2. Sorting Interactively
Using a Command File 2-1
Entering Commands and Data in a Command File 2-2
Entering Comments in a Command File 2-2
Running With Input From a Command File 2-3
Specifying Input Records 2-4

Hewlett-Packard Company—429834-003
i

Contents

Specifying Input Files in the FROM Command 2-4
Specifying Input Records at the Input Prompt 2-5
Sorting on Key Fields 2-6
Running a Record Sort 2-7
Running a Key Sort 2-8
Running a Permutation Sort 2-9
Running a Key and Permutation Sort 2-10
Controlling Extended Memory 2-11
Understanding Statistics 2-13
Understanding Error Messages 2-14
Understanding Completion Codes 2-15

3. Using FastSort Commands

ASCENDING Command 3-2
CLEAR Command 3-5
COLLATE Command 3-6
COLLATEOUT Command 3-9
CPUS Command 3-10
DESCENDING Command 3-11
EXIT Command 3-13

FC Command 3-14

FROM Command 3-14
HELP Command 3-18
NOTCPUS Command 3-18
RUN Command 3-19

SAVE Command 3-23
SHOW Command 3-25
SUBSORT Command 3-26
TO Command 3-28

4. Sorting Programmatically

Using FastSort System Procedures 4-1
Starting a Sort or Merge Run 4-2
Ending a Sort or Merge Run 4-2

Specifying Record Blocking and Parallel Sorting 4-2

Allocating Scratch Space 4-3

Getting Information About a Sort or Merge Run 4-3
Specifying Input Records 4-3
Sending Input Records From a Process 4-4

Sending Records to Be Sorted 4-5

FastSort Manual—429834-003
i

3. Using FastSort Commands

Contents 5. Using FastSort System Procedures

Sending Records to Be Merged 4-5
Returning Output Records to a Process 4-6
Sending and Receiving Records 4-7
Estimating the Size of an Output File 4-8
Sorting From C Programs 4-9
Sorting From COBOLS85 Programs 4-13
Sorting From TAL Programs 4-15

5. Using FastSort System Procedures

SORTBUILDPARM Procedure 5-2
SORTERROR Procedure 5-9
SORTERRORDETAIL Procedure 5-9
SORTERRORSUM Procedure 5-10
SORTMERGEFINISH Procedure 5-12
SORTMERGERECEIVE Procedure 5-13
SORTMERGESEND Procedure 5-15
SORTMERGESTART Procedure 5-19
SORTMERGESTATISTICS Procedure 5-38

6. Sorting in Parallel

Using Commands for Parallel Sorting 6-2

Using Procedures for Parallel Sorting 6-3

Using the Automatic Configuration 6-4
Using FastSort Commands 6-5
Using FastSort Procedures 6-5
Improving Performance 6-6

Configuring Subsort Processes 6-6
Selecting Processors to Run Subsort Processes 6-7
How FastSort Selects Processors 6-8
Specifying the Size of the Extended Memory Segment 6-9
Specifying a Location for the Swap File 6-9
Using Multiple Copies of the SORTPROG Program 6-10
Specifying an Execution Priority 6-10

Configuring a Distributor-Collector Process 6-10
Specifying a Scratch Block Size 6-11
Controlling the Size of Extended Memory Segments 6-11
Specifying a Location for the Swap File 6-12
Using Multiple Copies of the SORTPROG Program 6-12
Specifying an Execution Priority 6-13

Tuning and Testing a Configuration for Parallel Sorting 6-13

FastSort Manual—429834-003
iii

Contents 7. Using SORT and SUBSORT DEFINEs

Understanding Statistics From Parallel Sorting 6-14
Identifying the Causes of Errors 6-14

Parallel Sorting From C Programs 6-15

Parallel Sorting From COBOLS85 Programs 6-19
Parallel Sorting From TAL Programs 6-22

7. Using SORT and SUBSORT DEFINEs

Determining the Precedence of DEFINEs 7-1
Setting DEFINE Attributes 7-2

Setting SORT DEFINE Attributes 7-2

Setting SUBSORT DEFINE Attributes 7-5
Creating and Using DEFINESs Interactively 7-7

Enabling DEFINEs 7-7

Creating a SORT DEFINE 7-7

Displaying a DEFINE 7-8

Creating a SUBSORT DEFINE 7-9

Modifying a DEFINE 7-9

Deleting a DEFINE 7-10

Using DEFINEs With Interactive FastSort 7-10
Creating and Using DEFINEs Programmatically 7-10

Creating and Modifying DEFINEs Programmatically 7-11

Using DEFINEs With Programmatic FastSort 7-12
Creating and Using the = SORT DEFAULTS DEFINE 7-13
Examples of SORT and SUBSORT DEFINEs 7-15

Serial Sort Run Example 7-15

Parallel Sort Run Example 7-17

8. Sorting From NonStop SOL/MP

How SOL/MP Implements a Sort 8-1

Configuring Your SQL/MP Sort Environment 8-2
Setting Up a = SORT DEFAULTS DEFINE 8-2

Ordering and Grouping Query Results 8-4
Optimizing SQL Clause Combinations 8-5
Using a Sort Merge Join 8-6

Loading Data 8-7
Configuring a CREATE INDEX Statement 8-8
Configuring a LOAD Statement 8-15

9. Optimizing Sort Performance
Managing Sort Workspace 9-1

FastSort Manual—429834-003
iv

Contents A. FastSort Syntax Summary

Using Scratch Files 9-1
Selecting a Scratch Volume for Parallel Sorts 9-7
Using a Partitioned Scratch File 9-8
Using Swap Files 9-10
Using VLM 9-10
Calculating Data Stack Space 9-12
Managing Sort Failures 9-13
Automating FastSort Tasks 9-15
Automating DEFINEs 9-16

A. FastSort Syntax Summary

Interactive Commands A-1
FastSort Procedures A-3

B. FastSort Error Messages

Alphabetic List of Programmatic Messages B-1
Numeric List of Programmatic Messages B-6
Alphabetic List of Interactive Messages B-35

C. Using Supported File Types

Unstructured Files C-2
Relative Files C-3
Entry-Sequenced Files C-3
Key-Sequenced Files C-3
EDIT Files C-4

Tape Files C-5
Partitioned Files C-5

Partitioned Output Files C-5
D. ASCII Character Set

E. FastSort Limits

Glossary
Index

Examples

Example 4-1. C Example of a Serial Sort Run 4-9
Example 4-2. COBOLS85 Example of a Serial Sort Run 4-14
Example 4-3. TAL Example of a Serial Sort Run 4-16

FastSort Manual—429834-003
v

Contents

Figures

Tables

Example 6-1. C Example of a Parallel Sort Run 6-15

Example 6-2. COBOL85 Example of a Parallel Sort Run 6-20
Example 6-3. TAL Example of a Parallel Sort Run 6-23

Figure i. Related Manuals x

Figure 1-1. FastSort Operations 1-2

Figure 1-2. FastSort Components 1-5

Figure 4-1. Sorting and Merging With Input and Output Files 4-4
Figure 4-2. Sending Input Records From an Application Process 4-6
Figure 4-3. Returning Sorted Records to an Application Process 4-7
Figure 4-4. Sending and Receiving Records From an Application Process
Figure 5-1. Sending and Receiving Unblocked Records 5-7

Figure 5-2. Sending and Receiving Blocked Records 5-8

Figure 6-1. Parallel Sorting 6-2

Figure 8-1. Parallel Loading Data Into a Partitioned Index Table 8-8
Figure 9-1. How FastSort Reads Scratch Volume DEFINEs 9-4
Figure 9-2. Partitioned Scratch Files in Parallel Sorting 9-9

Table 1-1. FastSort Interactive Commands 1-6

Table 1-2. FastSort System Procedures 1-7

Table 2-1. Extended Memory Used by FastSort 2-12

Table 4-1. FastSort System Procedures 4-1

Table 5-1. SORTBUILDPARM scr at chvol s Structure 5-5

Table 5-2. Expanded NEWPROCESS Structure 5-28

Table 5-3. Key-Field Definitions 5-31

Table 5-4. SORTMERGESTART f | ags Parameter Bits 5-32

Table 5-5. SORTMERGESTATISTICS st ati sti cs Structure 5-39
Table 9-1. How FastSort Chooses Scratch Volumes 9-6

Table C-1. Summary of Output File Types C-1

Table D-1. ASCII Character Set D-1

Table E-1. FastSort Limits E-1

FastSort Manual—429834-003
Vi

Figures

—— What's New in This Manual

Manual Information

Abstract

This manual describes FastSort, the HP sort-merge utility for HP NonStop™ systems.
The FastSort Manual is intended for users who sort interactively, programmatically, and
from HP NonStop SQL/MP.

Product Version
FastSort D32
Supported Release Version Updates (RVUSs)

This publication supports G06.21 and all subsequent G-series RVUs until otherwise
indicated by its replacement publication. To use increased Enscribe limits, the
minimum RVUs are H06.28 and J06.17 with specific SPRs. For a list of the required
SPRs, see SPR Requirements for Increased Enscribe Limits for the H06.28/J06.17
Release.

Published
April 2014

Part Number
429834-003

Document History

Part Number Product Version Published
060035 FastSort C30 July 1992
118812 FastSort D40 December 1995
124077 FastSort D32 February 1996
429834-001 FastSort D32 July 2001
429834-002 FastSort D32 September 2003
429834-003 FastSort D32 April 2014

New and Changed Information

Changes to the 429834-003 manual:

® Updated RECORD length on page 16.

® Updated Output File Types on page 30.

® Updated buf f er 2 input and buf f er - | engt h input on page 5-4.

FastSort Manual—429834-003

Vil

What's New in This Manual Changes to the 429834-003 manual:

Added a section Using 32 KB Buffers on page 5-5.

Updated block size in the section Improving Performance With Record Blocking
and Nowait I/O on page 5-6.

Updated Using Supported File Types on page C-1.

Updated Key-Sequenced Files on page C-3.

Previous publication was updated to reflect new product names:

Since product names are changing over time, this publication might contain both
HP and Compaq product names.

Product names in graphic representations are consistent with the current product
interface.

The technical content of this publication has not been updated and reflects the
state of the product at the G06.21 release version update (RVU).

FastSort Manual—429834-003
viii

— About This Manual

This manual is a combination user’s guide and reference manual that describes
FastSort, the sort-merge utility for NonStop systems.

SPR Requirements for Increased Enscribe
Limits for the H06.28/J06.17 Release

As of H06.28 and J06.17 RVUs, format 2 legacy key-sequenced 2 (LKS2) files with
increased limits, format 2 standard queue files with increased limits, and enhanced
key-sequenced (EKS) files with increased limits are introduced. EKS files with
increased limits support 17 to 128 partitions along with larger record, block, and key
sizes. LKS2 files with increased limits and format 2 standard queue files with increased
limits support larger record, block, and key sizes. When a distinction is not required
between these file types, key-sequenced files with increased limits are used as a
collective term. To achieve these increased limits with H06.18 and J06.17 RVUSs, the
following SPRs are required: (These SPR requirements could change or be eliminated

with subsequent RVUS.)

Products J-Series SPR H-Series SPR
Backup/Restore NSK T9074HO1MNAGJ T9074HO1MNAGJ
DP2 T9053J02"AZZ T9053H02"AZN
File System T9055J05"AJQ T9055 H14"AJP
FUP T6553H02"ADH T6553H02"ADH
NS TM/MP TMFDR T8695J01"MALP T8695H01MALO
SMF T8472H01"ADO T8472H01"ADO
T8471HO1"ADO T8471H01"ADO
T8470H01"ADO T8470H01"ADO
T8469H01"ADO T8469H01"ADO
T8466H01"ADO T8466H01"ADO
T8465H01"ADO T8465H01"ADO
T8468HO1"ABY T8468HO1"ABY
SQL/MP T9191J01NACY T9191HO1MACX
T9195J01"MAES T9195H01M"AER
T9197J01M"AEA T9197HO1"ADZ
TCP/IP FTP T9552H02"AET T9552HO2"AET
TNS/E COBOL Runtime TO357HO01"AAO TO357HO01"AAO
Library

FastSort Manual—429834-003

IX

About This Manual Audience

Audience

This manual is intended for all FastSort users, including:

® Users who issue FastSort interactive commands from a terminal or through a
command file

® Programmers who call FastSort system procedures from an application program
(including COBOLS85 programmers who use the SORT and MERGE statements)

® NonStop SQL/MP users, if SQL/MP is installed on your system and you initiate
queries that sort entries or load data

A reader of this manual should be familiar with the NonStop Kernel operating system,
File Utility Program (FUP), Enscribe database manager, and SQL/MP (if used).

Related Manuals

While using the FastSort Manual, you might need to refer to one or more of the
manuals shown in Figure i on page Xxi.

FastSort Manual—429834-003
X

About This Manual

Related Manuals

Figure i. Related Manuals

Utilities and Editor Manuals

f
. - TACL
File Utilit Measure
Programy Reference Reference
(FUP) Manual Manual
Reference
Manual
PS TEXT Edit _
EDIT User's Guide
Reference and
Manual Reference
Manual
—

Operating System Manuals

FastSort
Manual

Data Management and NonStop
SQL/MP Manuals

Ve N\

Guardian Guardian Storage

User's Guide Programmer's Management

Guide Foundation

User's Guide

Guardian Guardian

Procedure Procedure

Calls Errors and

Reference Messages

Manual Manual

Languages Reference Manuals

r ~N
Introduction SQL/MP
to NonStop Reference
SQL/MP Manual
SQL/MP SQL/MP
Installation Query
and Guide
Management
Guide

———————|
SQL/MP Enscribe
Messages Programmer’

s
Manual GLide
N\

Dataloader/

Reference
Manual

Reference

SQL/MP
Programming
Manual

for COBOL85

COBOLSS5 for
NonStop
Systems

Manual

CRE
Programmer’
Guide

VSTABO1l.vsd

FastSort Manual—429834-003

Xl

About This Manual Notation Conventions

Notation Conventions

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

fil e-name

computer type. Conmput er type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

nmyfile.c

italic computer type. Ital i c conputer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pat hnamne

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\ syst em nane. | $t er mi nal - nane
| NT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
[-num]
[text]

K[X| D] address

FastSort Manual—429834-003
Xii

About This Manual General Syntax Notation

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LI STOPENS PROCESS { $appl - ngr-name }
{ $process-nane }

ALLONSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

| NSPECT { OFF | ON | SAVEABEND }

. Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, newvalue]...
[- 1 {0]1]2]|3]4|5|6|7]8|9}...

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char ..."

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;
LI STOPENS SU $pr ocess- name. #su- namnme

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

“"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process- nane. #su- nane

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by

FastSort Manual—429834-003
Xiii

About This Manual Notation for Messages

a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ QUT file-spec /] LINE
[, attribute-spec]...

li and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESI ZESEGVENT (segnent-id i
, error) lo

li,0. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COWRESSEDI T (filenum) ; i, o

lizi. In procedure calls, the li:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FI LENAME_COMPARE_ (

enanel: | ength Pici

fil
filenane2:length) ; Pici

lo:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (

filenum i
, [filename:maxlen]) ; 1o
Notation for Messages

This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:
ENTER RUN CODE
?123
CODE RECEI VED: 123. 00
The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

FastSort Manual—429834-003
Xiv

About This Manual Notation for Messages

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-regi ster
process- nane

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event nunmber = nunber [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-nane trapped [in SQ L | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj -type obj-name state changed to state, caused by
{ Cbject | Operator | Service }

process-nanme State changed from ol d-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%905400

%48101111

%2 F

P=%p-regi ster E=%-register

FastSort Manual—429834-003
XV

About This Manual Change Bar Notation

Change Bar Notation

Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of
changed portions of text, figures, tables, examples, and so on. Change bars highlight
new or revised information. For example:

The message types specified in the REPORT clause are different in the COBOLS85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all
messages except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments

HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.

FastSort Manual—429834-003
XVi

—1 Introduction to FastSort

FastSort is the sort-merge tool for HP NonStop systems. FastSort can sort or merge
records in one of two modes:

® A serial operation uses one SORTPROG process in one processor with up to 32
individual scratch files or a single partitioned scratch file.

® A parallel operation distributes the sort or merge workload across multiple
SORTPROG processes, processors, and scratch files.

Sort and Merge Operations

A sort operation arranges and combines one or more sets of input records into a
single set of output records. During a sort operation, FastSort arranges the records in
either ascending or descending order, or in a combination of both based on a
sequence of key-field values.

A merge operation combines two or more sets of sorted input records into a single set
of output records. The records for merging are already sorted in an ascending or
descending sequence of key-field values.

FastSort accepts records to sort or merge from these sources:
® 1 to 32 disk files

® A terminal

® An application process

® Tape files

You use FastSort interactive commands or system procedures to define the sort or
merge operation. In each sort or merge run, FastSort performs one of the following
operations:

® Sorts one set of input records and produces one set of output records
® Merges two or more sets of sorted records into one set of output records

® Sorts two or more sets of input records and merges them into one set of output
records

® Sorts one or more sets of input records and merges them with one or more sets of
sorted input records into one set of output records

Figure 1-1 on page 1-2 shows these four FastSort operations.

After sorting and merging all the input records, FastSort returns the output records to
your application process or writes them to a file or a terminal. You can also have
FastSort return output records that are sequence numbers or key-field values, or both,
instead of entire records.

FastSort Manual—429834-003
1-1

Introduction to FastSort FastSort Features

Figure 1-1. FastSort Operations

Input From Files or Processes Qutput to a File or Process

Sort
Sorted
Unsorted Records

Sorted Records

M Sorted and
erge Merged
Records

Sorted Records

Unsorted Records

Sort and Merge Sorted and
Merged

Records

Unsorted Records

Sorted Records

Sorted Records
Sort and Merge Sorted and
Merged

Records

Unsorted Records

Unsorted Records

VST101.vsd

FastSort Features

FastSort has these major features:
® Key fields
© Accepts up to 63 alphanumeric or numeric key fields for sorting

© Recognizes contiguous, noncontiguous, and overlapping key fields

FastSort Manual—429834-003
1-2

Introduction to FastSort FastSort Components

® Seguence options

(o]

o

Can use an alternate collating sequence for alphanumeric characters

Can remove records with duplicate key values

® Input and output file options

(¢]

o

Accepts up to 32 input Guardian files (except blocked tape files, SQL objects,
or processes)

Can merge up to 32 input streams from an application process

Supports application process input and output, with optional extended
addressing for sending and receiving records

Supports partitioned input and output files, including distributed Enscribe
databases (but not NonStop SQL/MP objects)

Produces relative, entry-sequenced, key-sequenced, or unstructured output
files

Supports both Format 1 and Format 2 files

® Efficiency

(¢]

Uses an optimized key-comparison algorithm and optimized procedures for
reading and building structured files, and double buffering for reading from
input files

Uses extended memory to minimize the number of merge passes
Automatically selects extended memory size

Uses record blocking to minimize the number of interprocess messages
required for transferring records to or from an application process

Supports parallel sorting to minimize sort time for files larger than 1 megabyte

Sorts files smaller than 100 kilobytes in memory to eliminate the need for
scratch file input and output

Provides record blocking and faster sorting for COBOLS8S5, the File Utility
Program (FUP), and the CROSSREF program

Recognizes SORT and SUBSORT DEFINEs that allow you to control most
factors of a FastSort process from outside your sort program.

FastSort Components

FastSort has these major components:

® |[nteractive FastSort

® Programmatic FastSort

FastSort Manual—429834-003
1-3

Introduction to FastSort

FastSort Components

® SORTPROG process (the actual sort-merge process)

® Record generator (RECGEN) process, if SQL/MP is installed on your system

When you want to sort or merge records interactively or through a command file (IN
file), you use interactive FastSort. When you want to sort or merge records in an
application, you invoke programmatic FastSort through system procedure calls.
Interactive or programmatic FastSort can start a SORTPROG process, which performs

the sort or merge operation.

Component Program File

SORT $SYSTEM.SYSnn.SORT *
System $SYSTEM.SYSnn.OSIMAGE
Procedures

SORTPROG $SYSTEM.SYSnn.SORTPROG *

RECGEN $SYSTEM.SYSnn.RECGEN *

Description

Interactive FastSort — Conversational
interface for FastSort commands

Programmatic FastSort — Library file for
FastSort system procedures

A single serial sort-merge process, or
parallel sort-merge processes including:
A distributor-collector process

2 to 8 subsort processes

Record generator (RECGEN) process
for the parallel creation and loading of
partitioned indexes (if SQL/MP is
installed on your system)

In $SYSTEM.SYSnn notation, nn is a two-digit number assigned by HP.

* These program files could also exist in $SYSTEM.SYSTEM.

Figure 1-2 on page 1-5 shows how the first three FastSort components work together.

FastSort Manual—429834-003

1-4

Introduction to FastSort

Interactive FastSort

Figure 1-2. FastSort Components

FastSort Programmatic Interface

FastSort Procedure Calls

User
Process

FastSort Interactive Interface

$SYSTEM.
SYSnn.
SORT

User's
Terminal

[]
—

$SYSTEM.

SYSnn.
OSIMAGE

A

FastSort System
Library Procedures

SORTBUILDPARM
SORTMERGESTART
SORTMERGESEND
SORTMERGERECEIVE
SORTERROR
SORTERRORDETAIL
SORTERRORSUM
SORTMERGESTATISTICS
SORTMERGEFINISH

A

Y

SORT
Process

FastSort interactive commands (entered at
a TACL prompt or through a command file)

$SYSTEM.

sYSnn.
SORTPROG

SORTPROG
Process

VST102.vsd

Interactive FastSort

You can issue FastSort interactive commands from a terminal or through a command
file. These commands use FastSort system procedures to communicate with the
SORTPROG process. Table 1-1 on page 1-6 summarizes FastSort interactive

commands.

FastSort Manual—429834-003

1-5

Introduction to FastSort

Interactive FastSort

Table 1-1. FastSort Interactive Commands (page 1 of 2)

Command

Description

Record Sequence Specification

ASCENDING
COLLATE

COLLATEOUT
DESCENDING

File Specification
FROM

TO

Describes the location and attributes of one or more key fields that
determine an ascending sequence for output records.

Specifies a file that contains an alternate collating sequence for
comparing key fields.

Stores an alternate collating sequence table in an unstructured file.

Describes the location and attributes of one or more key fields that
determine a descending sequence for output records.

Specifies the name of an input file for a sort or merge run and the
exclusion mode to use to open the file, the maximum number of
records in the file, the maximum length of records in the file, and
whether the records in the file are already sorted.

Specifies an output file for a sort run and parameters for the file
including the percentage of data and index slack, whether FastSort
should purge and recreate an existing output file, and the type of
sort run (record, permutation, or key sort).

Command Specification

CLEAR

FC

HELP

SAVE

SHOW

Deletes current command parameters for all commands or for a specific
command.

Displays the last FastSort command for subsequent editing and re-
execution.

Displays the syntax of a specific command or a list of all FastSort
commands with a description of each command.

Saves FastSort command parameters from a sort or merge run for reuse
in subsequent runs.

Displays the command parameters currently in effect and whether they
are entered for the next sort or merge run or saved from a previous run.

Parallel Sort and Merge Operations

CPUS

NOTCPUS

SUBSORT

Specifies processors (or CPUSs) in which FastSort can run subsort
processes.

Specifies processors (or CPUSs) in FastSort cannot run subsort
processes.

Specifies parameters for a subsort process for a parallel sort or merge
run.

FastSort Manual—429834-003
1-6

Introduction to FastSort

Programmatic FastSort

Table 1-1. FastSort Interactive Commands (page 2 of 2)

Command Description

Process Control

EXIT Ends the interactive FastSort session (same as Citrl-Y).

RUN Starts a sort or merge run and optionally specifies the SORTPROG
process start parameters, the allocation of required disk space, and
whether duplicate records should be removed.

Programmatic FastSort

Programmatic FastSort consists of system procedures that are called by user-written
applications and the interactive SORT process. The FastSort procedures manage the
process creation, control, and communication for the SORTPROG process. You can
use procedure calls in an application program to specify the same parameters that you
can specify with FastSort interactive commands.

Table 1-2 summarizes the procedures in programmatic FastSort, in the order in which

you would normally call them.

Table 1-2. FastSort System Procedures

Procedure Name
SORTBUILDPARM
SORTMERGESTART

SORTMERGESEND

SORTMERGERECEIVE

SORTERROR

SORTERRORDETAIL

SORTERRORSUM

SORTMERGESTATISTICS

SORTMERGEFINISH

Description
Specifies parameters for parallel sorting and record blocking.

Begins the SORTPROG process and passes parameters for
a sort or merge run from the calling process to SORTPROG.

Sends input records from the calling process to the
SORTPROG process, one for each call.

Returns output records from the SORTPROG process to the
calling process, one for each call.

Provides the message text for the last FastSort error code
returned by a procedure.

Provides the FastSort error code for the most recent error
and if an input file caused the error, identifies the input file.

Provides information that SORTERROR and
SORTERRORDETAIL provide and identifies the cause of the
most recent error.

Reports information about a sort or merge run and ends the
run.

Ends the sort or merge run and stops the SORTPROG
process.

FastSort Manual—429834-003

1-7

Introduction to FastSort SORTPROG Process

SORTPROG Process

The SORTPROG process performs all sort or merge operations. It runs separately
from an application process or the interactive SORT process. To configure and start a
SORTPROG process, you either:

® [ssue FastSort interactive commands
® Call FastSort system procedures

The SORTPROG process does not run as a process pair. If a processor failure occurs
when the SORTPROG process is running, you must restart the sort or merge run from
the beginning. An application program running as a process pair must also restart an
interrupted SORTPROG process from the beginning.

FastSort uses or creates these files:

Input files Sets of records that you give FastSort to sort or merge through local or
remote input disk files, a terminal, or tape files.

Scratch file A temporary work file. FastSort uses scratch files to store runs of
records sorted by each SORTPROG process. For large sort runs that
require more than one pass, FastSort creates up to 32 total scratch
files.

Swap file The disk file that FastSort uses for swapping data. Data swapping is
the process of copying data between physical memory and disk
storage.

Output file The file FastSort creates after a sort or merge run to receive the sorted
or merged records.

List file The file FastSort creates after a sort or merge run that describes the
run.

Input Files

FastSort accepts input from EDIT, key-sequenced, relative, entry-sequenced, and
unstructured files. You can sort or merge up to 32 input files in a single run. Each file
can contain either fixed-length or variable-length records. For a complete description of
file types, see the Guardian Programmer’s Guide and the Enscribe Programmer’s
Guide.

If you have records from blocked tape files to sort or merge, you must deblock the
records before SORTPROG can process them. You can do this with the FUP COPY
command. For information about how to use FUP, see the File Utility Program (FUP)
Reference Manual.

FastSort Manual—429834-003
1-8

Introduction to FastSort Scratch Files

Scratch Files

FastSort sorts files smaller than 100 kilobytes in memory. For larger input files,
FastSort uses up to 32 scratch files to temporarily store groups of records called runs.

You can create a scratch file before you run FastSort, or you can have SORTPROG
create one for you. If you manually create a scratch file, SORTPROG leaves the file
intact after the sort or merge run. If SORTPROG creates the scratch file, it is a
temporary file and SORTPROG automatically purges it after the sort completes.

Once an initial scratch file exists, FastSort creates additional scratch files as needed. If
the initial scratch file becomes full, FastSort automatically creates overflow scratch files
until either the sort completes or there are 32 total scratch files. A sort operation
requires scratch space equal to all output records from the SORTPROG process plus
6 bytes per record for overhead. For more information about scratch files, see

Section 9, Optimizing Sort Performance.

Output Files

FastSort can send output to most types of disk files, except EDIT files or

NonStop SQL/MP objects. FastSort can send output to a tape file, but it cannot write
records to blocked tape files. After a sort or merge run, you can use FUP to load a
blocked tape file. For instructions about using FUP, see the File Utility Program (FUP)
Reference Manual. You can also load your output into an EDIT file using the EDIT GET
command. For instructions on how to use the GET command, see Appendix C, Using
Supported File Types.

You can have FastSort compute the size of the output file and then create it, or you
can specify an existing output file. For more information about output files, see
Appendix C, Using Supported File Types.

Using DEFINEs With FastSort

You can use DEFINEs to configure most aspects of a sort or merge operation.
FastSort recognizes class SPOOL and class SORT or SUBSORT DEFINEs. DEFINEs
are optional.

Class SPOOL DEFINE

FastSort allows a class SPOOL DEFINE for the list file (that is, the TACL RUN
command OUT parameter). For example, the following implicit TACL RUN command
specifies a SPOOL DEFINE named =out _fi | e for the FastSort list file. The TACL
ADD DEFINE command first creates the SPOOL DEFINE and sets the LOC attribute.

ADD DEFI NE =out file, CLASS SPOOL, LOC \ny. $s. #sort
SORT / OUT =out file /
For more information about class SPOOL DEFINESs, see Guardian User’s Guide.

FastSort Manual—429834-003
1-9

Introduction to FastSort Class SORT and SUBSORT DEFINEs

Class SORT and SUBSORT DEFINEs

You can use class SORT or SUBSORT DEFINES to configure a sort or subsort. You
specify the DEFINE(s) before running a SORTPROG process, and the information is
applied to the sort process when it is run. You can use class SORT or SUBSORT
DEFINEs to specify information such as the disk volume for the scratch file, the
processors to use, and so on.

For example, you can use class SORT or SUBSORT DEFINESs to specify a scratch
volume. In the following example, the SUBSORT DEFINE named =SUBSORTA
specifies the $DISK02 disk as the initial scratch volume and the $SPOOL disk for the
swap file:

SET DEFI NE CLASS SUBSORT

SET DEFI NE SCRATCH $di sk02

SET DEFI NE SWAP $spool

Ai:)i:) DEFI NE =subsorta

DEFINE information is valid until modified, deleted, or disabled. For more information

about using SORT and SUBSORT DEFINEs with FastSort, See Section 7, Using
SORT and SUBSORT DEFINEs.

Products That Use FastSort

These HP products use FastSort to perform sort or merge operations:

Product FastSort Function

COBOLS85 Executes a SORT or MERGE statement
CROSSREF Program Sorts a cross-reference listing

Enform Database Manager Sorts records for a report

File Utility Program (FUP) Loads data into a file

SQL/MP Sorts entries in a query and load data

into a table or an index table
Peripheral Utility Program (PUP) Sorts entries in the free-space table

HP NonStop Transaction Management Facility Manages audit trail information
(TMF)

If SQL/MP is installed on your system, SQL uses FastSort to sort table rows in certain
gueries. If you issue a SELECT statement with the DISTINCT, ORDER BY, or GROUP
BY clause, SQL starts a SORTPROG process to sort the rows.

FastSort Manual—429834-003
1-10

Introduction to FastSort Products That Use FastSort

When you use the SQLCI CREATE INDEX statement, SQL uses FastSort to load data
into the target table. When you use the SQLCI LOAD utility to load data into a key-
sequenced table and you do not specify the SORTED option, SQL uses FastSort to
sort the data.

When you specify PARALLEL EXECUTION ON for either of these statements, the
SQL/MP catalog manager (SQLCAT) process starts a RECGEN process for each
partition of the base table and a SORTPROG process for each partition of the index.
The RECGEN processes read the rows of the base table. SORTPROG processes sort
the generated rows and write them to the partitions of the index.

For more information about the CREATE INDEX or LOAD statements, see Section 8,
Sorting From NonStop SOL/MP.

FastSort Manual—429834-003
1-11

Introduction to FastSort Products That Use FastSort

FastSort Manual—429834-003
1-12

—2— Sorting Interactively

You can use SORT, the FastSort interactive process, to sort or merge records without
writing an application program. FastSort accepts interactive commands from:

® A TACL process

® A command (IN) file

® Running FastSort

To start an interactive SORT process, enter SORT at a TACL prompt:
10> SORT

This command executes an implicit TACL RUN command that starts the SORT
process. SORT displays the FastSort product banner and a “less than” symbol (<) at
your terminal:

Fast Sort - T9620D30 - (310CT94)

COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991 - 1994
<

The “less than” synbol (<) is the FastSort pronpt. You
communi cate with the SORT process by entering FastSort comands
at this pronpt.

To stop the SORT process, type EXIT at the SORT prompt:

<EXI'T
11>

You can also press Ctrl-Y at the SORT prompt to stop the SORT process.

Using a Command File

A command file is an EDIT file that interacts with the SORT process. When you
execute a command file, you do not need to manually enter commands from your
terminal. A FastSort command file must contain FastSort commands. It can also
contain input records to sort.

When you start a SORT process, you can specify a command file as the IN file and a
list file for the OUT file. A list file receives the output from the sort or merge run. The
syntax for specifying the command file, list file, and other options in the SORT
command is:

SORT [/ IN command-file [, QUT list-file]
[, run-option | Y

FastSort Manual—429834-003
2-1

Sorting Interactively Entering Commands and Data in a Command File

command-file

is an EDIT file (file code 101) that contains FastSort interactive commands. A
command file can also contain the input records for a sort or merge run.

list-file

is a disk file, I/O device, SPOOL DEFINE, or a process that receives the output
from the sort or merge run. The output file also includes statistics and any error or
warning messages. If | i st-fi | e already exists, SORT purges its contents and
writes the new output toit. If | i st -fi |l e does not exist, FastSort creates it as an
EDIT file.

run-option
is a TACL RUN command option, as described in the TACL Reference Manual.

For more information, see Automating FastSort Tasks on page 9-15 for an example on
how to use a command file to automate DEFINEs.

Entering Commands and Data in a Command File

When you create an EDIT file to use as a command file, enter only one FastSort
command on each line. The RUN command must follow all other FastSort commands
for a sort or merge run.

You can also enter input records after the RUN command, one on each line, if you do
not specify an input (FROM) file for the run. A command file that contains input records
can describe only one sort or merge run.

Entering Comments in a Command File

To include a comment in a FastSort command file, enter an exclamation point (!) at the
beginning of the comment line. FastSort recognizes all text to the right of an
exclamation point as a comment. A line end or second exclamation point ends the
comment. Each comment on a new line must begin with an exclamation point, and a
comment cannot continue from line to line.

! this is a comment
! this also is a comrent !

If your command file contains input records, do not mix comments with the input
records. Instead, place input records after the RUN command in a command file. When
FastSort reads input records, it does not recognize the exclamation point as a
comment symbol. Instead, FastSort sorts an exclamation point and any comment text
as an input record.

FastSort Manual—429834-003
2-2

Sorting Interactively Running With Input From a Command File

Running With Input From a Command File

In the following example, a command file named COMFILE contains FastSort
commands and input records. To execute COMFILE and send the output to the list file
named LISTFILE, you would enter:

10> SORT / I N COWFI LE, QUT LISTFILE, NOMAIT /

The SORT process reads the commands and data from COMFILE and initiates a
SORTPROG process to sort the data. The SORT process uses the FastSort system
procedures described in Section 5, Using FastSort System Procedures to
communicate with the SORTPROG process. The NOWAIT parameter is optional.

Listed below are the contents of sample command file COMFILE:

I Send sorted records to the file named TOFI LE.
I Sort in descending order fromcolum 1 to 10.
TO TOFI LE

DESC 1 FOR 10

RUN

appl e

or ange

| enon

grapefruit

banana

gr ape

wat er mel on

FastSort creates an output data file named TOFILE and a list file named LISTFILE.
Listed below are the contents of sample output file TOFILE, which contains the records
sorted in descending order.

wat er mel on
or ange

| enon
grapefruit

gr ape
banana

appl e
Shown below is a sample LISTFILE, which contains:

® The FastSort banner
® The contents of the command file including comments, commands, and data
® Statistics information for the sort run

® Any errors or warnings that occurred during the run

FastSort Manual—429834-003
2-3

Sorting Interactively Specifying Input Records

Fast Sort - T9620D30 - (310CT94)
COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991 - 1994

1 I Send sorted records to the file named TOFI LE.
2 I Sort in descending order fromcolum 1 to 10.
3 TO TOFI LE
4 DESC 1 FOR 10
5 RUN
appl e
or ange
| enon
grapefruit
banana
gr ape
wat er mel on
7 RECORDS 132 MAX RECORD SI ZE
00: 03 ELAPSED TI ME 166 BUFFER PAGES
00:00 I/OWAIT TIME 0O INTIAL RUNS
17 COVPARES 0 MERGE ORDER

0 SCRATCH DI SK
0 SCRATCH SEEKS
Errors detected: O
War ni ngs detected: O

Specifying Input Records
Interactive FastSort accepts input records for sorting or merging from:

® A command file

® One or more data files you specify using a FROM command before the RUN
command

® The terminal, one record on each line, after the RUN command

Specifying Input Files in the FROM Command

You can use the FROM command to specify input records from existing files. For
example, the files INPUT1 and INPUT2 contain records to sort and merge in ascending
order. The contents of these files are:

File Contents
INPUT1 lemon, apple, grapefruit
INPUT2 banana, grape, watermelon, orange

After you invoke interactive FastSort, you can specify these files in FROM commands:

13> SORT

<FROM | NPUT1
<FROM | NPUT2
<ASCENDI NG 1: 10
<RUN

FastSort Manual—429834-003
2-4

Sorting Interactively Specifying Input Records at the Input Prompt

FastSort sorts and merges the records in the input files, then displays the sorted and
merged records and the statistics for the sort run on your terminal, as shown below:

appl e
banana
gr ape
grapefruit
| enon
or ange
wat er mel on
7 RECORDS 132 MAX RECORD Sl ZE
00: 04 ELAPSED TI ME 166 BUFFER PAGES
00:00 I/OWAIT TIME 0O INTIAL RUNS
16 COVPARES 0 MERGE ORDER

0 SCRATCH DI SK
0 SCRATCH SEEKS
Errors detected: O
War ni ngs detected: O

Specifying Input Records at the Input Prompt

If you do not specify input records in a command file or input files with the FROM
command, FastSort prompts you to enter input records from your terminal. The input
prompt is a question mark:

?

When you specify records at the input prompt, enter only one record after each input
prompt. When you finish entering records, press Ctrl-Y, the logical end-of-file character:

16> SORT

Fast Sort - T9620D30 - (310CT94)

COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991 - 1994
<ASCENDI NG 1: 10

<RUN
?weeping fig
?daf f odi |
?red j uni per
?2C¢trl-Y EOF!
daf f odi |
red juniper
weeping fig
3 RECORDS 132 MAX RECORD SI ZE
00: 25 ELAPSED TI ME 166 BUFFER PAGES
00:00 I/OWAIT TIME 0 |INTIAL RUNS
4 COWPARES 0 MERGE ORDER

0 SCRATCH DI SK
0 SCRATCH SEEKS

FastSort Manual—429834-003
2-5

Sorting Interactively Sorting on Key Fields

Sorting on Key Fields

FastSort returns four types of output records:

Sort Operation Output Records

Record Sort The entire file of input records reordered according to the
values of one or more key fields

Key Sort The values of the concatenated key fields in sorted order

Permutation Sort The input record sequence numbers in the order the records
would be in if they were sorted according to the specified key
fields

Key and Permutation Sort A sequence number followed by the concatenated key-field
values for each record

The following examples show the contents of the input fles PLANTS1 and PLANTS2
with column numbers added above the records. Note where the key fields begin and
end. In both files, the file contents begin with the line labeled 01.

PLANTS1 sample input file:

1111111111222222222233333333334444444444555555555
1234567890123456789012345678901234567890123456789012345678

01 Al um num Pl LEA CADI EREI i ndoor 22
02 Weeping Fig FI CUS BENJAM NA tree 15
03 Busy Lizzy | MPATI ENS fl ower 30
04 Crocus CROCUS fl owner 53
05 Artillery Pl LEA M CROPHYLLA i ndoor 10
06 Touch- nme- not | MPATI ENS fl ower 45
07 Grape |vy Cl SSUS RHOMVBI FOLI A i ndoor 07
08 Rubber FI CUS ELASTI CA tree 04
09 Fi ddl el eaf Fi g FI CUS LYRATA tree 01
10 Parl or Pal m CHAMAEDOREA ELEGANS i ndoor 03
11 Pi ggy- back TOLM EA VENZI ESI | i ndoor 13
12 Daf f odi | NARCI SSUS fl owner 60
13 Boston Fern NEPHROLEPI S EXALTATA i ndoor 18

PLANTS2 sample input file:

1111111111222222222233333333334444444444555555555
1234567890123456789012345678901234567890123456789012345678

01 Chi nquapi n Cak QUERCUS MUEHLENBERG | tree 33
02 Al um num Pl LEA CADI EREI i ndoor 22
03 Slippery Elm ULMJS RUBRA tree 10
04 Ohi 0 Buckeye AESCULUS GLABRA tree 02
05 Mesqui te PROSOPI C JULI FLORA shrub 48
06 Red Juni per JUNI PERUS VI RA@ NI ANA tree 14
07 Anmerican Plum PRUNUS AVERI CANA shrub 37
08 California Gak QUERCUS AGRI FOLI A tree 65
09 Red Mul berry MORUS RUBRA shr ub 24
10 Apple MALUS PUM LA fruit 35

FastSort Manual—429834-003
2-6

Sorting Interactively Running a Record Sort

11 Hoptree PTELEA TRI FOLI ATA shr ub 27
12 Cat cl aw Acaci a ACACI A GREGA | shr ub 12

Running a Record Sort

A record sort reorders input records according to the values of one or more key fields.
The following commands tell FastSort to reorder the records from PLANTS1 and
PLANTS2 by using the values in three key fields and to write the records to the file
named SORTOUT:

17> SORT

Fast Sort - T9620D30 - (310CT94)

COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991 - 1994
<FROM PLANTS1

<FROM PLANTS2

<TO SORTQUT

<DESC 47: 52

<ASC 21: 31, 33:43

<RUN, REMOVEDUPS

26 RECORDS 132 MAX RECORD SI ZE
00: 04 ELAPSED TI ME 63 BUFFER PAGES
00:00 I/OWAIT TI ME 0O INTIAL RUNS

117 COWPARES 0 MERCGE ORDER

0 SCRATCH DI SK
0 SCRATCH SEEKS
2 DUPLI CATES

The REMOVEDUPS parameter tells FastSort to remove any record that has the same
values in all the key fields as a previous record. After the sort run, the SORTOUT file
contains all the input records in sorted order, except for two records that have duplicate
key-field values. FastSort preserves only the first occurrence of these records. The
following example shows the contents of the SORTOUT file.

04 Ohi 0 Buckeye AESCULUS GLABRA tree 02
02 Weeping Fig FI CUS BENJAM NA tree 15
08 Rubber FI CUS ELASTI CA tree 04
09 Fi ddl el eaf Fi g FI CUS LYRATA tree 01
06 Red Juni per JUNI PERUS VI RA@ NI ANA tree 14
08 California Cak QUERCUS AGRI FCLI A tree 65
01 Chi nquapi n Cak QUERCUS MUEHLENBERG | tree 33
03 Slippery Elm ULMJS RUBRA tree 10
12 Cat cl aw Acaci a ACACI A GREGA | shr ub 12
09 Red Mul berry MORUS RUBRA shr ub 24
05 Mesquite PROSOPI C JULI FLORA shr ub 48
07 Ameri can Plum PRUNUS AVERI CANA shr ub 37
11 Hoptr ee PTELEA TRI FOLI ATA shr ub 27
10 Par | or Pal m CHAMAEDOREA ELEGANS I ndoor 03
07 G ape vy Cl SSUS RHOVBI FOLI A i ndoor 07
13 Bost on Fern NEPHROLEPI S EXALTATA I ndoor 18
01 Al um num Pl LEA CADI EREI i ndoor 22
05 Artillery Pl LEA M CROPHYLLA i ndoor 10
11 Pi ggy- back TOLM EA VENZI ESI | I ndoor 13
10 Apple MALUS PUM LA fruit 35
04 Crocus CROCUS fl owner 53

FastSort Manual—429834-003
2-7

Sorting Interactively Running a Key Sort

03 Busy Lizzy | MPATI ENS fl ower
12 Daf f odi | NARCI SSUS f1 ower 60

Running a Key Sort

The output records from a key sort consist of the values of the concatenated key fields
in sorted order. The following commands tell FastSort to reorder the records in
PLANTS1 and PLANTS2 using the same key fields and to write only the key values to
SORTOUT:

18> SORT

Fast Sort - T9620D30 - (310CT94)

COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991 - 1994
<FROM PLANTS1

<FROM PLANTS2

<TO SORTQUT, KEYS

<DESC 47: 52

<ASC 21: 31, 33:43

<RUN, REMOVEDUPS

26 RECORDS 132 MAX RECORD SI ZE
00: 04 ELAPSED TI ME 63 BUFFER PAGES
00: 00 I/OWAIT TIME 0O INTIAL RUNS

131 COWPARES 0 MERCGE ORDER

0 SCRATCH DI SK
0 SCRATCH SEEKS
2 DUPLI CATES

The following example shows the contents of the SORTOUT file after the sort run.
SORTOUT contains only the key-field values for each input record, except for the
records that have duplicate values.

tree AESCULUS GLABRA

tree FICUS BENJAM NA
tree FICUS ELASTI CA
tree FICUS LYRATA

tree JUN PERUS VI RG NI ANA
tree QUERCUS AGRI FCLI A
tree QUERCUS MUEHL ENBERG

tree ULMJS RUBRA

shrub ACAC A GREGA |

shrub MORUS RUBRA

shrub PROSCPIC JULI FLORA

shrub PRUNUS AVERI CANA

shrub PTELEA TRI FOLI ATA

i ndoor CHAMAEDOREAEL EGANS
ndoor Cl SSUS RHOMVBI FOLI A
ndoor NEPHROLEPI SEXALTATA
ndoor Pl LEA CADI EREI
ndoor Pl LEA M CROPHYLLA
ndoor TOLM EA MENZI ESI |

i
i

i

i

i

i

fruit MALUS PUM LA
f 1 ower CROCUS

f1 ower | MPATI ENS

f 1 ower NARCI SSUS

FastSort Manual—429834-003
2-8

Sorting Interactively Running a Permutation Sort

Running a Permutation Sort

The output records from a permutation sort consist of the input record sequence
numbers, in the order the records would be in if they were sorted according to the
specified key fields. The following commands direct FastSort to reorder the records in
PLANTS1 and PLANTS2 using the same key fields and to write only the sequence
numbers to SORTOUT:

19> SORT

Fast Sort - T9620D30 - (310CT94)

COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991 - 1994
<FROM PLANTS1

<FROM PLANTS2

<TO SORTQUT, PERM

<DESC 47: 52

<ASC 21: 31, 33:43

<RUN, REMOVEDUPS

26 RECORDS 132 MAX RECORD SI ZE
00: 06 ELAPSED TI ME 63 BUFFER PAGES
00: 00 I/OWAIT TIME 0O INTIAL RUNS

131 COWPARES 0 MERCGE ORDER

0 SCRATCH DI SK
0 SCRATCH SEEKS
2 DUPLI CATES

The following example shows the contents of the SORTOUT file after the sort run using
the FUP COPY command. Note that FUP displays the record sequence numbers in
octal format.

20> FUP COPY SORTQUT, , OCTAL

$VOL. FS. SORTOUT RECORD 0 KEY O (9%®) LEN 4 2/ 19/ 92 13: 47
0: 000000 000021 Ce
$VOL. FS. SORTOUT RECORD 1 KEY 1 (%) LEN 4
0: 000000 000002

$VOL. FS. SORTOUT RECORD 2 KEY 2 (%) LEN 4
0: 000000 000010

$VOL. FS. SORTOUT RECORD 23 KEY 23 (%7) LEN 4
0: 000000 000014
24 RECORDS TRANSFERRED

FastSort Manual—429834-003
2-9

Sorting Interactively Running a Key and Permutation Sort

Running a Key and Permutation Sort

Each output record from a combined key and permutation sort consists of a sequence
number followed by the key-field values. The following commands direct FastSort to
reorder the records in PLANTS1 and PLANTS2 using the same key fields and to write
both the sequence numbers and the key-field values to SORTOUT:

21> SORT

Fast Sort - T9620D30 - (310CT94)

COPYRI GHT TANDEM COVPUTERS | NCORPORATED 1991 - 1994
<FROM PLANTS1

<FROM PLANTS2

<TO SORTQUT, PERM KEYS

<DESC 47:52

<ASC 21: 31, 33:43

<RUN, REMOVEDUPS

26 RECORDS 132 MAX RECORD SI ZE
00: 03 ELAPSED TI ME 63 BUFFER PAGES
00:00 I/OWAIT TIME 0O INTIAL RUNS

131 COWPARES 0 MERGE ORDER

0 SCRATCH DI SK
0 SCRATCH SEEKS
2 DUPLI CATES

The following example shows the contents of the SORTOUT file after the sort run using
the FUP COPY command.

$VOL. FS. SORTOUT RECORD 0 KEY O (%) LEN 32 4/ 07/ 92 14:16
0: 000000 000021 072162 062545 020040 040505 051503 052514

052523 020040 020107 046101tree AESCULUS CG.A

%4: 041122 040440 020040 020040 BRA

$VOL. FS. SORTOUT RECORD 1 KEY 1 (%) LEN 32

0: 000000 000002 072162 062545 020040 043111 041525 051440
020040 020040 020102 042516tree FICUS BEN
%4: 045101 046511 047101 020040 JAM NA

$VOL. FS. SORTOUT RECORD 2 KEY 2 (%) LEN 32

0: 000000 000010 072162 062545 020040 043111 041525 051440
020040 020040 020105 046101tree FICUS ELA
%4: 051524 044503 040440 020040 STI CA

$VOL. FS. SORTOUT RECORD 22 KEY 22 (9%6) LEN 32
0: 000000 000014 063154 067567 062562 047101 051103 044523
051525 051440 020040 020040fl ower NARCI SSUS
%d4: 020040 020040 020040 020040
23 RECORDS TRANSFERRED

FastSort Manual—429834-003
2-10

Sorting Interactively Controlling Extended Memory

Controlling Extended Memory

By default, FastSort tries to use enough extended memory to make at most one merge
pass, depending on the size of the output file. You can specify the maximum amount of
extended memory FastSort can use with the parameters of the RUN command or with
SORT DEFINEs:

Parameter Maximum Physical Memory FastSort Uses
MINSPACE 256 pages

AUTOMATIC 50 percent *

MINTIME 70 percent *

SEGMENT n n pages to a maximum of 32,767 pages

If VLM is on, the maximum SEGMENT size is 62,255 pages.
* Percentage of processor memory that is not locked down when SORTPROG begins.

The maximum extended segment size for sorting depends on whether the VLM option
is on or off. For more information about this option, see Using VLM on page 9-10. To
use VLM for interactive sort operations, you must set up a SORT DEFINE. For more
information about SORT DEFINES, see Section 7, Using SORT and SUBSORT
DEFINEs.

In addition to the parameters shown above, the amount of memory FastSort uses for
sorting input records depends on:

® File size (f) in bytes, which is the total input record count times the maximum
output record length (for a permutation sort, the record length is the key length)

® Scratch block size (b)
® The amount of physical memory (m) not locked down when SORTPROG begins

The formula for determining the approximate amount of memory FastSort needs to
make no intermediate merge passes or only one intermediate merge pass is:

b xf

M N(x 1.3, rr)

Table 2-1 on page 2-12 lists the specific formulas for RUN command parameters that
control extended memory. You can use the formulas to determine which parameter
makes the most efficient use of your resources to sort your input records.

FastSort Manual—429834-003
2-11

Sorting Interactively Controlling Extended Memory

Table 2-1. Extended Memory Used by FastSort
File Size, in Bytes

No One
Merge Merge
Parameter Passes Pass Extended Memory, in Bytes
MINSPACE < 100 KB 512 KB
AUTOMATIC < 100 KB 512 KB
b xf
> 100 KB M N x1.3,0.5VMB
MINTIME < 200 KB MAX(f x 1.3, 512KB)
b xf
> 200 KB M N > % 1.3,0.7VB
SEGMENT n
n = 256 < 100 KB 512 KB
n > 256 M N(n x 2048, 0.9MB)
M N = Minimum of two values in parentheses
MAX = Maximum of two values in parentheses
b = Scratch block size
f = File size in bytes (total input record count times maximum input record size)
n = Segment size in pages

If your input files have different maximum record lengths, you might want to specify a
smaller segment size. You can use the average record length rather than the maximum
to compute the file size and then specify the smaller size in the SEGMENT parameter.

In a parallel sort, FastSort distributes input records to multiple processors and scratch
disks. In this case, if you specify a mode of AUTOMATIC or MINTIME, you limit the
extended memory segment for the distributor-collector SORTPROG process to 90
percent of the physical memory not locked down by the operating system. Specifying
MINSPACE limits the extended memory segment to 256 pages. The extended
segment size limit for each subsort process is the same as for serial sorting.

You can use the VLM option to increase the amount of extended memory available for
sorting. The maximum extended memory segment when VLM is on is 62,255 pages.
For an interactive sort, you use a SORT DEFINE to turn on VLM. For more information,
see Using VLM on page 9-10. For more information about using a SORT DEFINE, see
Section 7, Using SORT and SUBSORT DEFINEs.

FastSort clears the command specifications after a run. Therefore, these specifications
are in effect for only one run unless you save them. Use the SAVE and CLEAR
commands to perform consecutive runs that involve similar data records and the same
key fields. You can retain repeated information, and you can remove extraneous
commands quickly after each run.

FastSort Manual—429834-003
2-12

Sorting Interactively Understanding Statistics

Understanding Statistics

After a sort or merge run, FastSort returns statistics to the list file. The list file is either

the OUT file specified in the implicit TACL RUN command for the SORT process or
your home terminal if you do not specify an OUT file. Following is an example of

FastSort statistics:

7 RECORDS 132 MAX RECORD SI ZE
00: 07 ELAPSED TI ME 166 BUFFER PAGES
00:00 I/OWAIT TIME 0O INTIAL RUNS
16 COWPARES 0 FIRST MERGE ORDER
0 SCRATCH DI SK 0 MERGE ORDER
0 SCRATCH SEEKS O | NTERVEDI ATE PASSES
0 NUMBER COF DUPLI CATES

Errors detected: O
War ni ngs detected: O

The following table lists FastSort statistics:

Statistic
RECORDS
ELAPSED TIME

I/O WAIT TIME

COMPARES
SCRATCH DISK
SCRATCH SEEKS

MAX RECORD SIZE
BUFFER PAGES

INITIAL RUNS

FIRST MERGE ORDER
MERGE ORDER
INTERMEDIATE PASSES

NUMBER OF DUPLICATES

Definition
The number of records sorted or merged

The time SORTPROG took to process the sort or merge
run

The time SORTPROG used for calls to READ, WRITE, and
AWAITIO

The number of times SORTPROG compared two records
The number of bytes in the scratch file

The number of blocked read and write operations on the
scratch file

The maximum record size in bytes

The number of 1,024-word pages of memory SORTPROG
used

The number of runs generated by the first pass
The number of runs merged in the first intermediate pass
The maximum number of runs that can be merged

The number of merge cycles between the initial run
formation and the final merge pass

The number of records with duplicate keys removed

FastSort Manual—429834-003

2-13

Sorting Interactively Understanding Error Messages

For a parallel sort run, FastSort returns some statistics that apply only to the
distributor-collector process. FastSort returns other statistics that are totals from the
distributor-collector process and all subsort processes as shown below:

FastSort Process Statistics

Distributor-Collector Process Only RECORDS, BUFFER PAGES, ELAPSED TIME,
INITIAL RUNS, I/0O WAIT TIME, FIRST MERGE
ORDER, SCRATCH DISK, MERGE ORDER,
MAX RECORD SIZE, INTERMEDIATE PASSES

Distributor-Collector and Subsort COMPARES, SCRATCH SEEKS,
Processes NUMBER OF DUPLICATES

Understanding Error Messages

When an error occurs during a sort or merge run, the list file shows the FastSort error
message and number of errors detected. By default, the list file is your home terminal.
If an error occurs in the SORTPROG process, the error stops the process. The list file
also shows the file-system error code and the name of the file that caused the error,
such as:

*** ERROR *** THE FROM FI LE COULD NOT BE OPENED.
OPERATI NG SYSTEM ERROR: 11
| NPUT FILE: input-file-name

For a parallel sort run, FastSort displays an additional line that identifies the subsort
process:

SORT PRCOCESS #2: nn, nn

where nn, nn indicates the CPU and process identification number (PIN) of the subsort
process.

FastSort also displays warning messages about incorrect syntax. Warnings do not
interrupt the SORTPROG process. An example of a FastSort warning is:

*** WARNI NG *** | gnoring unusable string of letters - string

FastSort also displays both the number of errors and warnings detected:

Errors detected: 2
War ni ngs detected: 7

Appendix B, FastSort Error Messages lists error codes and text and explains how to
recover from them.

FastSort Manual—429834-003
2-14

Sorting Interactively Understanding Completion Codes

Understanding Completion Codes

In addition to error messages, FastSort might return a completion code after a sort or
merge run. Completion codes are summarized following:

Code Explanation

1

Syntax errors occurred but are treated as warnings only. FastSort continues to
accept input and returns this message:

Synt ax errors/warni ng detected

FastSort execution errors occurred. These errors include no input file. FastSort
returns the associated error code and this message:

SORT execution errors detected.
FastSort could not execute the sort or merge run and returns this message:

Premature process ternmnation with fatal errors
or diagnosti cs.

For completion code 3, any of the following errors can occur:

You specified an input file with a logical name instead of the actual name. FastSort
returns this message:

Wong nane of the INfile.
Term nation info: 1

You specified a logical file name, but you did not set DEFMODE ON. FastSort
returns this message:

DEFI NE processing is not enabl ed.
Term nation info: 2

You specified a list file with a DEFINE name, but you did not use a corresponding
DEFINE. FastSort returns this message:

DEFI NE specification for the QUT file is mssing. Term nation
info: 3

FastSort encountered an unexpected error code while processing one or more
DEFINESs. If this error occurs, report it to your service provider. FastSort returns
this message:

DEFI NE error occurred when processing DEFI NEs. Term nation
info: 4

You specified a list file with a DEFINE name, but the corresponding DEFINE was
not a class SPOOL DEFINE. FastSort returns this message:

QUT file specification has illegal DEFINE class. Term nation
info: 5

For more information about using DEFINES, see Section 7, Using SORT and
SUBSORT DEFINESs.

FastSort Manual—429834-003
2-15

Sorting Interactively Understanding Completion Codes

FastSort Manual—429834-003
2-16

—3— Using FastSort Commands

FastSort interactive commands are summarized below. This section describes these
commands in alphabetic order.

Command

ASCENDING

CLEAR

COLLATE

COLLATEOUT
CPUS

DESCENDING

EXIT
FC
FROM

HELP

NOTCPUS

RUN

SAVE

SHOW

SUBSORT

TO

Description

Describes the location and attributes of one or more key fields that
determine an ascending sequence for output records.

Deletes current command parameters for all commands or a specific
command.

Specifies a file that contains an alternate collating sequence for comparing
key fields.

Stores an alternate collating sequence table in an unstructured file.

Specifies processors (CPUSs) in which FastSort can run subsort
processes.

Describes the location and attributes of one or more key fields that
determine a descending sequence for output records.

Ends an interactive FastSort session (same as Ctrl-Y).
Displays the last FastSort command for editing and re-execution.

Specifies the name of an input file for a sort or merge run and the
exclusion mode to use to open the file, the maximum number of records in
the file, the maximum length of records in the file, and whether the records
in the file are already sorted.

Displays the syntax of a specific command or a list of all FastSort
commands with a description of each command.

Specifies a group of processors (CPUs) that FastSort cannot use to run
subsort processes for parallel sorting.

Starts a sort or merge run and optionally specifies the SORTPROG
process start parameters, the allocation of required disk space, and
whether duplicate records should be removed.

Saves FastSort command parameters from a sort or merge run to reuse in
subsequent runs.

Displays the command parameters currently in effect and whether they
are entered for the next sort or merge run or saved from a previous run.

Specifies the parameters for a SORTPROG subsort process for a parallel
sort or merge run.

Specifies an output file for a sort or merge run and parameters for the file
including the percentage of data slack and index slack, whether FastSort
should purge and recreate an existing output file, and the type of sort run
(record, permutation, or key sort).

FastSort Manual—429834-003
3-1

Using FastSort Commands ASCENDING Command

For more information about using these commands, see Section 2, Sorting
Interactively. Appendix A, FastSort Syntax Summary contains a quick reference to the
command syntax.

ASCENDING Command

Use the ASCENDING command to sort or merge records so that the values of each
key field specified in the command are in smallest-to-largest order. ASCENDING and
DESCENDING commands can apply to the same sort run. If you apply both
commands to the same run, FastSort returns the values of the DESCENDING key
fields in largest-to-smallest order.

The ASCENDING command provides this information for a sort or merge run:
® Location of one or more key fields for ordering the records

® Length and order of the key fields

® Type of data in each key field

You must specify at least one ASCENDING or DESCENDING command for each sort
or merge run. The DESCENDING Command on page 3-11 has the same parameters
as the ASCENDING command.

ASCIENDING field [type] [, field [type]]...

field
designates the location of a key field in the record. You can specify f i el d in either
of two ways:
startcol : endcol

startcol FOR count

startcol

is an integer giving the beginning column number of a key field. The numbering
of record columns, or bytes, begins with 1.

endcol
is an integer giving the last column number of a key field.

count
is an integer giving the length, in bytes, of a key field.

type
describes the type of data in the key field. The default type is STRING. You can
specify t ype as:

FastSort Manual—429834-003
3-2

Using FastSort Commands ASCENDING Command

STRING

UPPER

INTEGER

REAL

UNSIGNED

SIGNED LEADING EMBEDDED or SLE
SIGNED LEADING SEPARATE or SLS
SIGNED TRAILING EMBEDDED or STE
SIGNED TRAILING SEPARATE or STS

STRI NG
specifies that the key field contains unsigned alphanumeric data. STRING is
the default data type.

UPPER
specifies that the key field contains unsigned alphanumeric data. FastSort
treats all lowercase ASCII characters as uppercase characters.

| NTEGER

means the key field contains two’s complement signed binary data.

REAL

specifies that the key field contains data stored in Tandem floating-point
number representation. The length of the key field must be either 4 or 8 bytes,
and the key field must be word aligned.

UNSI GNED
specifies that the key field contains unsigned binary data.

S| GNED LEADI NG EMBEDDED | SLE

specifies that the key field contains signed ASCII numeric data with the sign
character (+ or —) stored in the high-order bit of the first byte in the field. The
key length cannot be greater than 32 bytes.

S| GNED LEADI NG SEPARATE | SLS

specifies that the key field contains signed ASCII numeric data with the sign
character (+ or —) stored in the first byte of the field. The key length cannot be
greater than 32 bytes.

S| GNED TRAI LI NG EMBEDDED | STE

specifies that the key field contains signed ASCII numeric data with the sign
character (+ or —) stored in the high-order bit of the last byte of the field. The
key length cannot be greater than 32 bytes.

FastSort Manual—429834-003
3-3

Using FastSort Commands ASCENDING Command

SI GNED TRAI LI NG SEPARATE | STS

specifies that the key field contains signed ASCII numeric data with the sign
character (+ or —) stored in the last byte of the field. The key length cannot be
greater than 32 bytes.

Key Fields

The order in which you enter ASCENDING and DESCENDING commands affects sort
output. The first command entered has the highest priority. SORTPROG starts sorting
the records according to key fields specified in the first ASCENDING or DESCENDING
command, then uses key fields specified in the second ASCENDING or DESCENDING
command, and so on.

If two or more records have equal values in the first key field specified in an
ASCENDING or DESCENDING command, the values of the second key field, if
specified, determine the sorted order of the records. If the records have equal values in
the second or any successive key field, the values of the next key field, if specified,
determine sorted order. If all key-field values of two or more records are equal,
SORTPROG writes or returns those records in the same order it received them.

If you specify the KEYS parameter of the TO command, the output records consist of
only key-field values. SORTPROG concatenates the values. SORTPROG considers all
records as fixed length if you specify the KEYS parameter. If a key field extends
beyond the end of a variable-length record in a structured output file, SORTPROG
pads the key values with blanks.

SORTPROG can compare a key field at the end of a short record if the record contains
the first byte of the key value. This is true unless the field type is REAL, SIGNED
TRAILING EMBEDDED, or SIGNED TRAILING SEPARATE. For comparison of these
types of data, key fields must contain complete values.

You can specify up to 63 key fields for a single sort or merge run. Fields can be
contiguous, noncontiguous, and overlapping. The minimum field length is one column
except for the REAL data type, which is either 4 or 8 bytes. The maximum field length
is the length of the record unless you otherwise define the length.

Examples

ASCENDI NG 72: 80 STRING 1 FOR 3 | NTEGER

ASC 20 FOR 8 UPPER

ASC 1:10,5:20 I Overl appi ng key fields, both STRI NG
ASC 1:10 UNSIGNED ! Keys of a key-sequenced file

FastSort Manual—429834-003
3-4

Using FastSort Commands CLEAR Command

CLEAR Command

Use the CLEAR command to delete command parameters entered for the current sort
or merge run or saved from a previous run. You can use CLEAR to delete parameters
for all commands or for individual commands.

CLEAR { ALL

ASC[ENDI NG
COLLATE

CPUS

DESC[ENDI NG

FROM [fil enane]
KEYS

NOTCPUS

SUBSORT

TO

[t Tt Vot Yot Yot Vad Vo Voo Voo Yoo
e M o e e o e e o e

ALL

deletes all current command parameters.

ASC[ENDI NG|
deletes all current key-field specifications defined by ASCENDING commands.

COLLATE

deletes the alternate collating sequence table.

CPUS

deletes the CPUS command currently in effect.

DESC[ENDI NG
deletes all current key-field specifications defined by DESCENDING commands.

FROM [fil enane]

deletes current parameters for the input file f i | enane. If you omitfi | enane,
CLEAR deletes current parameters for all files named in FROM commands.

KEYS

deletes all current key-field specifications for both ASCENDING and
DESCENDING commands.

NOTCPUS
deletes the NOTCPUS command currently in effect.

FastSort Manual—429834-003
3-5

Using FastSort Commands COLLATE Command

SUBSORT
deletes current parameters of all SUBSORT commands.

TO
deletes all parameters for the current output file.

Examples

CLEAR DESC
CLEAR FROM FI LETEN
CLEAR TO

COLLATE Command

Use the COLLATE command to specify an alternate collating sequence during a sort or
merge run. This enables you to define the comparison of alphanumeric key fields or
string-type data.

If you do not specify an alternate collating sequence, FastSort uses the sequence of
the ASCII character set to order your results. For more information, see Appendix D,
ASCII Character Set.

COLLATE fil enane

fil enane

is the name of an EDIT file containing a list of characters assigned to the 256 byte
positions.

The sequence in which FastSort reads the file determines the character or
characters assigned to each byte position. For a description of the alternate
collating sequence file, see the text that follows.

The COLLATE command directs FastSort to read the EDIT file indicated by fi | e and
to translate the character list into an alternate collating sequence table. You can use
the COLLATEOUT command to store this alternate collating sequence table in an
unstructured file that the SORTMERGESTART procedure can use.

FastSort orders characters in the assignment list in the order it reads the characters
from the alternate collating sequence file. The first character or character range in the
list ranks before the second character or character range, and so on.

Specifying an Alternate Collating Sequence

You can specify an alternate collating sequence in an EDIT file by assigning one or
more characters to each of the 256 byte positions. The EDIT file can contain only
ranges of character assignments for the collating sequence, commas to separate

FastSort Manual—429834-003
3-6

Using FastSort Commands COLLATE Command

ranges, and comments preceded by exclamation points. The following rules apply to
specifying ranges in the file:

® All the ranges together must include character assignments for exactly 256 byte
positions. You can assign more than one character to the same position. You can
also assign the same character to more than one position.

® The number of lines in the file is irrelevant, but you cannot put a range of
characters on more than one line.

e |[f the file has more than one range, commas must separate the ranges.

Assignment of Characters to Byte Positions

In a range that assigns characters to byte positions, you can use any of the following.
® Alphanumeric characters, enclosed in quotation marks

® Decimal or octal numeric literals

® The THRU keyword to abbreviate the specification of a range

® The ALSO keyword to assign more than one character to a position, which makes
the characters equivalent in comparisons

A range cannot include both alphanumeric characters and numeric literals.

Alphanumeric Character Assignments

You must enclose alphanumeric character assignments in quotation marks. To include
a quotation mark in a character range, use two consecutive quotation marks:

" ABCDEFGHI J KLMNOPQRSTUVWKYZ" " +* %4,

Numeric Literal Character Assignments

The octal numeric literals include %0 to %377, and the decimal numeric literals include
0 through 255. You can combine both in a range:

%40 THRU 55,

Abbreviated and Equivalent Character Assignments

THRU abbreviates the specification of a range of characters. You must use commas to
separate a range that includes THRU from other ranges:

"A" THRU "Z", 65 THRU 90,

ALSO assigns more than one character to the same character position in the collating
sequence. You must use commas to separate a range that includes ALSO from other
ranges:

"A', ALSO "a", "B", ALSO "Db",

FastSort Manual—429834-003
3-7

Using FastSort Commands COLLATE Command

To have SORTPROG treat several characters as equal in comparisons, you can assign
them all to the same character position, like this:

“;", ALSO ":", ALSO 128, ALSO 129,

If ALSO assigns a range of characters, the number of characters in that range must
equal the number of characters in the preceding range:

"A" THRU "Z", ALSO "a" THRU "z",

Ranges beginning with ALSO do not assign characters to additional byte positions.
The two ranges in the preceding example assign 52 characters to 26 byte positions. A
file that contains these two ranges needs assignments for 230 additional byte
positions.

Only a range that begins with ALSO can assign characters to the same byte positions
as characters in another range. Unless the second range begins with ALSO, two
ranges that include the same character assign the character to two different byte
positions. A range that overlaps another range assigns each of the overlapping
characters to a different byte position.

Invalid Alternate Collating Sequence Files

SORTPROG cannot use the alternate collating sequence from a file that has any of the
following:

® An incorrect character assignment
® Not enough character assignments
® Too many character assignments

When an alternate collating sequence file is invalid for any of these reasons, FastSort
returns an error message. Then, FastSort uses the ASCII sequence to collate the sort
or merge run.

A mixture of string and numeric data types is an incorrect assignment:

"a" THRU %472 I This is an incorrect assignnent.

Examples of Alternate Collating Sequence Files

This subsection contains two sample EDIT files that specify the same alternate
collating sequence and an example of how the alternate sequence affects sorting.

Both files deviate from the ASCII collating sequence because lowercase alphabetic
characters are equivalent to uppercase characters. One file contains these lines:

0 THRU 32, "!""#$9%& ()*+,-./",

n Oll THRU n 9II , n : n THRU n @ ,

"A" THRU "Z", ALSO "a" THRU "z",
"[V]A {]}~", 127 THRU 255

FastSort Manual—429834-003
3-8

Using FastSort Commands COLLATEOUT Command

The other file, named ALTSEQ, contains these lines:

0 THRU 64,
"A" THRU "Z", ALSO "a" THRU "z",
91 THRU 96, 123 THRU 255

A terminal session shows the results of sorting five records in two situations:
® \Without the COLLATE command, using the ASCII collating sequence
® With the COLLATE command, using the collating sequence in ALTSEQ

<ASC 1:10 I Key
<RUN
?first record I Input records

?FI RST record again

?first RECORD again

?second RECORD

?SECOND record again

?ECF!

FI RST record again I Qutput records
SECOND RECORD agai n

first RECORD again

first record

second RECORD

<ASC 1: 10 | Key

<COLLATE ALTSEQ I Alternate coll ating sequence
<RUN

?first record I Input records

?FI RST record again

?first RECORD again

?second RECORD

?SECOND record again

?ECF!

first record I Qut put records
FI RST record again

first RECORD again

second RECORD

SECOND record again

COLLATEOUT Command

Use the COLLATEOUT command to store the alternate collating sequence table in a
256-byte unstructured file. The COLLATE command creates this table from an EDIT
file. An application process can read the unstructured file to supply the

col | at e- sequence-t abl e parameter for the SORTMERGESTART procedure.

COLLATEQUT fil enane

FastSort Manual—429834-003
3-9

Using FastSort Commands CPUS Command

fil enane

is the name of the unstructured file to which COLLATEOUT writes the 256-byte
alternate collating sequence table. If f i | enane already exists, FastSort purges it
and creates a new file with that name.

Example
COLLATEOUT ALTSEQ

CPUS Command

Use the CPUS command to specify a group of processors (CPUSs) that FastSort can
use to run subsort processes for parallel sorting.

CPUS [ALL]
[cpu-list]

ALL
specifies that FastSort can use any processor. ALL is the default.

cpu-list
is a list of processor numbers, separated by commas.

If a SUBSORT statement does not specify a processor for the subsort process,
FastSort follows these steps to select the processor:

1. FastSort uses the processor that runs the primary disk process for the scratch file’s
volume, unless the NOTCPUS command specifies that processor.

2. Otherwise, FastSort uses any processor from the processor group, including all
processors you specified in the CPUS command and did not specify in the
NOTCPUS command. If you did not issue a CPUS or NOTCPUS command, the
group includes all processors on your system. When FastSort selects processors
for subsorts, it attempts to put each process in a different processor.

3. If FastSort cannot start the subsort process in a processor it chose, FastSort
selects another processor from the group and tries to start the process in the new
processor. However, FastSort does not attempt to use another processor for a
subsort process if the SUBSORT statement specifies a processor that is not
available.

Example
CPUS 1,4,5

FastSort Manual—429834-003
3-10

Using FastSort Commands DESCENDING Command

DESCENDING Command

Use the DESCENDING command to sort or merge records so that the values of each
key field specified in the command are in largest-to-smallest order. ASCENDING and
DESCENDING commands can apply to the same sort run, which causes the values of
some key fields to be in smallest-to-largest order.

The DESCENDING command provides this information before a sort or merge run:
® | ocation of one or more key fields for ordering records

® Length and order of key fields

® Type of data in each key field

You must specify at least one DESCENDING or ASCENDING command for each sort
or merge run. The ASCENDING Command on page 3-2 has the same parameters as
the DESCENDING command.

DESCIENDING field [type] [, field [type]]...

field
designates the location of a key field in the record. You can specify f i el d in either
of two ways:
startcol : endcol

startcol FOR count

startcol

is an integer giving the beginning column number of a key field. The numbering
of record columns, or bytes, begins with 1.

endcol
is an integer giving the last column number of a key field.

count
is an integer giving the length, in bytes, of a key field.

type

describes the type of data in the key field. The default type is STRING. You can
specify t ype as:

STRING
UPPER
INTEGER
REAL
UNSIGNED

FastSort Manual—429834-003
3-11

Using FastSort Commands DESCENDING Command

SIGNED LEADING EMBEDDED or SLE
SIGNED LEADING SEPARATE or SLS
SIGNED TRAILING EMBEDDED or STE
SIGNED TRAILING SEPARATE or STS

STRI NG
specifies that the key field contains unsigned alphanumeric data. STRING is
the default data type.

UPPER
specifies that the key field contains unsigned alphanumeric data. FastSort
treats all lowercase ASCII characters as uppercase characters.

| NTEGER
means the key field contains two’s complement signed binary data.

REAL

specifies that the key field contains data stored in Tandem floating-point
number representation. The length of the key field must be either 4 or 8 bytes,
and the key field must be word aligned.

UNSI GNED

specifies that the key field contains unsigned binary data.

S| GNED LEADI NG EMBEDDED | SLE

specifies that the key field contains signed ASCII numeric data with the sign
character (+ or —) stored in the high-order bit of the first byte in the field. The
key length cannot be greater than 32 bytes.

S| GNED LEADI NG SEPARATE | SLS

specifies that the key field contains signed ASCII numeric data with the sign
character (+ or —) stored in the first byte of the field. The key length cannot be
greater than 32 bytes.

S| GNED TRAI LI NG EMBEDDED | STE

specifies that the key field contains signed ASCII numeric data with the sign
character (+ or —) stored in the high-order bit of the last byte of the field. The
key length cannot be greater than 32 bytes.

S| GNED TRAI LI NG SEPARATE | STS

specifies that the key field contains signed ASCII numeric data with the sign
character (+ or —) stored in the last byte of the field. The key length cannot be
greater than 32 bytes.

FastSort Manual—429834-003
3-12

Using FastSort Commands EXIT Command

Key Fields

The order in which you enter DESCENDING and ASCENDING commands determines
their relative significance. The first command has the highest priority. SORTPROG
starts sorting the records according to the key fields specified in the first
DESCENDING or ASCENDING command, then uses the key fields specified in the
second DESCENDING or ASCENDING command, and so on.

If two or more records have equal values in the first key field specified in a
DESCENDING or ASCENDING command, the values of the second key field, if
specified, determine the sorted order of the records. If the records have equal values in
the second or any successive key field, the values of the next key field, if specified,
determine the sorted order. If all key-field values of two or more records are equal,
SORTPROG writes or returns those records in the same order it received them.

When you specify the KEYS parameter of the TO command, the output records consist
of only key-field values. SORTPROG concatenates the values. SORTPROG considers
all records as fixed length if you specify the KEYS parameter. If a key field extends
beyond the end of a variable-length record in a structured output file, SORTPROG
pads the key values with blanks.

SORTPROG can compare a key field at the end of a short record if the record contains
the first byte of the key value, unless the field type is REAL, SIGNED TRAILING
EMBEDDED, or SIGNED TRAILING SEPARATE. For comparison of these types of
data, key fields must contain complete values.

You can specify up to 63 key fields for a single sort or merge run. The fields can be
contiguous, noncontiguous, and overlapping. The minimum field length is one column
except for the REAL data type, which is either 4 or 8 bytes. The maximum field length
is the length of the record unless you define the length otherwise.

Examples

DESCENDI NG 72: 80 STRING 1 FOR 3 | NTEGER
DESC 20 FOR 8 UPPER

DESC 1:10, 5: 20 I Overl appi ng key fields, both STRI NG
DESCENDI NG 28: 34 SLS
DESC 1:10 UNSIGNED ! Keys of a key-sequenced file

EXIT Command

Use the EXIT command to end an interactive FastSort session. Ctrl-Y also ends a
FastSort session.

EXIT

FastSort Manual—429834-003
3-13

Using FastSort Commands FC Command

FC Command

Use the FC (Fix) command to display the last FastSort command and then to repeat or
edit the command.

FC

When you enter the FC command, FastSort displays the last command you typed
followed by the FC prompt, a period (.), on the next line. At the FC prompt you can
enter the following editing characters (in either uppercase or lowercase):

R

replaces characters in the FastSort command beginning with the character above
the R with the text following the R

inserts the text following the | into the FastSort command

deletes the character in the FastSort command above the D

Il

ends a text string and allows you to make more than one change to a command

For more information about the FC command, see the Guardian User’s Guide.

FROM Command

Use the FROM command to specify an input file name for a sort or merge run and to
provide FastSort with the following information:

® The exclusion mode that FastSort uses to open the file
® The maximum number of records in the file

® Whether the records in the file are already sorted

)

The maximum length of records in the file

FROM[in-file] [, EXCL[USION] node]...
[, FILE count]
[, MERGE]
[, RECORD | ength]

in-file

names an input file containing records to be sorted or merged. You can enter
multiple FROM commands, one for each input file for sorting or merging.

FastSort Manual—429834-003
3-14

Using FastSort Commands FROM Command

If you omit the i n-fi | e parameter, you can enter only one FROM command for a
sort run, which means the input file is the command stream. If you use a command
file (IN file) for input, put the input records after the RUN command, one record on

each line. If you enter records at the terminal, type the input records after you enter
the RUN command, one record at each ? prompt.

EXCL[USI ON] node

specifies the exclusion mode with which FastSort opens a file. For node you can
specify SHARED, EXCLUSIVE, or PROTECTED.

SHARED

specifies that another process can write to the file while FastSort is reading it.
FastSort reads the file sequentially, so that records inserted at positions
already read are not included in the output file.

If another process is writing to the file while FastSort is reading it, the file
system sometimes returns error 59 (FILE IS BAD). In this case, the input file is
not necessarily corrupted, and you can retry the sort or merge run.

EXCLUSI VE

specifies that only FastSort can access the file.

PROTECTED

specifies that other processes can have only read access to the file. If you
specify PROTECTED, the FROM i n-f i | e name cannot be the same as the
TO out - fi | e file name; otherwise, FastSort returns error 49 (INVALID
EXCLUSION MODE SPECIFIED).

These are the default exclusion modes for different devices:

Device Exclusion Mode
Permanent disk files PROTECTED
Temporary disk files and terminals SHARED
Other files (not disk files) EXCLUSIVE

FI LE count

specifies the maximum number of records in an input file. When input is from a
source other than disk, FastSort uses count to estimate the space required for the
initial scratch file.

If you omit the FILE parameter, SORTPROG determines the maximum number of
records as follows:

® [or a structured disk file, SORTPROG estimates the number of records in the
file by looking at the end-of-file location and determining the structured
overhead.

FastSort Manual—429834-003
3-15

Using FastSort Commands FROM Command

® For an unstructured disk file, SORTPROG calculates an approximate number
of records in the file. The approximate number of records for an EDIT file is the
end-of-file length multiplied by 2 and divided by the record length. The
approximate number of records for other unstructured files is the end-of-file
location divided by the record length. The default record length for all
unstructured disk files is 132 bytes.

® For files other than disk files, the default is 50,000 records.

VERCGE

indicates that the records ini n-f i | e do not need sorting before FastSort merges
them with other input records. If you specify MERGE and the records are not
sorted, FastSort returns sort error 15 (FILES TO BE MERGED MUST BE
SORTED).

RECORD | engt h
specifies the maximum input record length in number of bytes.

Ifi n-fileisa structured disk file, you can omit the RECORD parameter because
the length is in the file label. If i n-f i | e is an odd unstructured file, you must
specify the correct length for | engt h.

Records are limited to 4080 bytes each. Data records in a command file are limited
to 2000 bytes each. The default length for unstructured file records is 132 bytes.

Records belonging to key-sequenced files with increased limits are not supported
using FastSort commands. Buffered interface of FastSort might be used to sort
records belonging to key-sequenced files with increased limits. For more
information about key-sequenced files with increased limits, see Enscribe
Programmer’s Guide.

Guidelines

Follow these guidelines when you use the FROM command.

Record Count

The value of count in the FILE parameter need not be the exact number of records in
the input file. However, you should overestimate the number of records rather than
underestimate the number.

If you underestimate the number of input records, FastSort might underestimate the
size of an output file or the size of the extended segment, which can cause FastSort
error 29. For more information about this error, see Appendix B, FastSort Error

Messages.

FastSort Manual—429834-003
3-16

Using FastSort Commands FROM Command

Exclusion Mode and File Access

To enable another process to read the file at the same time as FastSort, specify
PROTECTED in the FROM command and have the other process open the file in
SHARED mode.

Record Entry

When you omit the FROM command or use a FROM command withoutanin-fil e
parameter, you can supply the records from a terminal or from the command file (IN
file) that starts the FastSort process.

/A Caution. If you specify the same file as both an input file and output file for a sort run, you can
lose all the data from the input file if an error or processor failure ends the SORTPROG
process.

Run Command

If you type the RUN command from a terminal, FastSort prompts you with a question
mark (?) for each record. When you finish entering records, type the end-of-file
character, Ctrl-Y.

In a command file (IN file), put the records after the RUN command, one record on
each line. The actual end of the file indicates that there are no more records.

Examples

FROM $TAPE, RECORD 60, FI LE 10000000

FROM MYFI LE

FROM MYI NPUT, FI LE 1000, RECORD 80, EXCL PROTECTED, MERGE
FROM | NMYFI LE, FI LE 2500, RECORD 80, MERGE

FastSort Manual—429834-003
3-17

Using FastSort Commands HELP Command

HELP Command

Use the HELP command to get help for FastSort commands. When you request
information about a specific command, HELP displays the syntax of that command.
If you do not specify a command, HELP displays a list of FastSort commands and a
description of each command.

HELP [ASC[ENDI NG
[CLEAR

COLLATE

COLLATEQUT

CPUS

DESC] ENDI NG|

EXI T

FROM

HELP

NOTCPUS

RUN

SAVE

SHOW

SUBSORT

TO

Examples
HELP

HELP FROM
HELP HELP

NOTCPUS Command

Use the NOTCPUS command to specify a group of processors that FastSort cannot
use to run subsort processes.

NOTCPUS cpu-1i st

cpu-1li st
is a list of processor numbers, separated by commas.

Examples

You do not need to use a CPUS command before a NOTCPUS command because the
default for the CPUS command is ALL. The following NOTCPUS command specifies a
processor group including all processors except 2 and 3:

NOTCPUS 2, 3

FastSort Manual—429834-003
3-18

Using FastSort Commands RUN Command

The NOTCPUS command is also useful to exclude processors you already specified in
a CPUS command. This example excludes processors from a list specified in a
previous run:

<CPUS 0,1,4,5,7,8,10,12 !Use any CPUs in this list.

<SAVE ALL I Save all command paraneters.
<RUN

<NOTCPUS 7,8 I'Use any CPUs in the |list except these.
<SAVE NOTCPUS

<RUN

RUN Command

Use the RUN command to start a sort or merge run. In RUN command options you can
specify SORTPROG process start parameters, allocate necessary disk space, and
indicate whether to remove records that have duplicate key values. RUN is the last
command you can enter before a sort or merge run.

RUN [scratch-file | scratch-vol]
[, AUTOVATI C]
, BLOCK size

, CPU processor
, MEM nenory

, M NSPACE

, M NTI ME

, PRI priority
: REMOVEDUPS | REMD }
, DEFI NE defi ne- nanme

, SEGQVENT si ze

, PROGRAM file

SWAP file]
NOSCRATCHON (scratch-vol [, scratch-vol]...)]
SCRATCHON (scratch-vol [, scratch-vol]...)]

scratch-file

is the name of an initial scratch file. If you omit the scratch-fil e and scrat ch-
vol parameters, FastSort creates a scratch file on a suitable volume. If you specify
an existing file, it must be unstructured. FastSort purges all data in an existing

scratch file before using it. For more information about scratch, see Managing Sort

Workspace on page 9-1.

scrat ch-vol

is the name of a volume for an initial scratch file. If you omit the scr at ch- vol
and scratch-fil e parameters or if there is insufficient space for a scratch file
on the volume you specify, FastSort tries to create a scratch file on a suitable

FastSort Manual—429834-003
3-19

Using FastSort Commands RUN Command

volume. For more information about scratch files and scratch volumes, see
Managing Sort Workspace on page 9-1.

AUTOVATI C

directs FastSort to limit elapsed time by using at most 50 percent (90 percent in
parallel sorting) of the physical memory not locked down by the operating system.
For files equal to or smaller than 100 KB, FastSort uses 256 pages for an extended
memory segment and makes no merge pass. For larger files, FastSort attempts to
use enough memory to make only one merge pass. If you do not specify the
SEGMENT, MINSPACE, or MINTIME parameter, AUTOMATIC is the default.

The file size is the maximum number of records in all input files times the
maximum record length for the output file. For more information, see the
description of the FROM Command on page 3-14. For details about the amount of
memory required to make only one merge pass for different file sizes, see
Controlling Extended Memory on page 2-11.

If you specify AUTOMATIC, do not specify MINSPACE, MINTIME, or SEGMENT. If
you specify one of these parameters with AUTOMATIC, FastSort ignores the
parameter and returns a warning message.

If you specify AUTOMATIC for a distributor-collector process for parallel sorting, all
of the subsort processes use AUTOMATIC, unless you override it with the
SEGMENT parameter of the SUBSORT command or a SUBSORT DEFINE.

BLOCK si ze

specifies the size, in bytes, of input and output blocks for scratch files. The scratch
file block size must be large enough to accept the largest input record, rounded up
to the nearest even byte, plus 14 bytes of overhead.

The block size can be any multiple of 2048 up to 56 KB. The default is 56 KB.

CPU processor

specifies the processor (CPU) number in which the SORTPROG process should
run. Because SORTPROG is a separate process, you can run it in a different
processor from the one in which the SORT process is running. The default is the
same processor.

MEM menory

exists only for compatibility with earlier sort-merge code. MEM specifies the
number of memory pages allocated for the SORTPROG process. The size is
always 64 pages. If you specify a value between 1 and 64 for MEM, FastSort
ignores the value. If you specify an invalid value, FastSort returns an error
message and does not start the sort or merge run.

FastSort Manual—429834-003
3-20

Using FastSort Commands RUN Command

M NSPACE

limits the size of the extended memory segment to 256 pages (512 KB). FastSort
makes no merge pass or only one merge pass if the file size is equal to or less
than 100 KB.

The file size is the maximum number of records in all input files times the
maximum record length for the output file (see the FROM Command on

page 3-14). For more information, see Controlling Extended Memory on page 2-11
for details about how file size affects the number of merge passes.

If you specify AUTOMATIC, do not specify MINTIME, MINSPACE, or SEGMENT in
the same RUN command. If you specify one of these parameters with
AUTOMATIC, FastSort ignores the parameter and returns a warning message.

If you specify MINSPACE for a distributor-collector process for parallel sorting, all
of the subsort processes use MINSPACE, unless you override it with the
SEGMENT parameter of the SUBSORT command or a SUBSORT DEFINE.

M NTI ME

directs FastSort to minimize elapsed time by using at most 70 percent of the
processor’s physical memory not locked down by the operating system. For files
equal to or smaller than 200 KB, FastSort uses 256 pages for an extended
memory segment or attempts to use enough memory to avoid an intermediate
merge pass. For larger files, FastSort tries to use enough memory to make no
more than one intermediate merge pass.

The file size is the maximum number of records in all input files times the
maximum record length for the output file. (For more information, see FROM
Command on page 3-14.) For more information for details about the amount of
memory required to make only one merge pass for different file sizes, see
Controlling Extended Memory on page 2-11.

If you specify AUTOMATIC, do not specify MINTIME, MINSPACE, or SEGMENT in
the same RUN command. If you specify one of these parameters with
AUTOMATIC, FastSort ignores the parameter and returns a warning message.

If you specify MINTIME for a distributor-collector process for parallel sorting, all of
the subsort processes use MINTIME, unless you override it with the SEGMENT
parameter of the SUBSORT command or a SORT DEFINE.

PRI priority

specifies a priority between 1 and 199 to assign to the SORTPROG process. The
default is the operating system default priority for a process.

{ REMOVEDUPS | REMD }

Removes any records having key-field values that are duplicates of those in a
previous output record. The statistics message at the end of the run reports the
number of duplicates removed. If you specify an alternate collating sequence,

FastSort Manual—429834-003
3-21

Using FastSort Commands RUN Command

FastSort determines which records have duplicate keys according to that collating
sequence.

DEFI NE defi ne- name

is an optional 12-word array that specifies the name of a SORT DEFINE to use for
the sort or merge run. For more information, see Section 7, Using SORT and
SUBSORT DEFINEs.

SEGVENT si ze

specifies the size in pages of an extended memory segment for FastSort to use.
The number of pages must be at least 256 and cannot exceed 90 percent of the
processor’s physical memory not locked down by the operating system. If VLM is
on, 62,255 pages (127.5 MB) is the maximum segment size. If VLM is off, the
maximum is 32,767 pages. For more information, see Using VLM on page 9-10
about the VLM option.

The default for segment size is AUTOMATIC, which is in effect if you do not specify
the SEGMENT, MINSPACE, or MINTIME parameter.

If you specify AUTOMATIC, do not specify MINTIME, MINSPACE, or SEGMENT in
the same RUN command. If you specify one of these parameters with
AUTOMATIC, FastSort ignores the parameter and returns a warning message.

If you specify MINSPACE for a distributor-collector process for parallel sorting, all
of the subsort processes use MINSPACE, unless you override it with the
SEGMENT parameter of the SUBSORT command or a SORT DEFINE.

PROGRAM fil e

names a program file to run instead of the default. If you specify the PROGRAM
parameter more than once in a RUN command, FastSort uses the last value for
fil e that you specify.

SWAP file

specifies the volume, subvolume, and name of the swap file for the extended
memory segment. The swap file must be on the local node.

If the file already exists, it must be unstructured. If you omit this parameter,
FastSort creates a swap file on the scratch volume if the scratch file is local. For
remote scratch files, the default swap file location is the volume where the program
file is running.

NOSCRATCHON (scratch-vol [, scratch-vol]...)

specifies volumes that FastSort should not use for overflow scratch files. If the
initial scratch volume becomes full, FastSort uses a volume not specified in the
NOSCRATCHON attribute, protected by the Safeguard product, $SYSTEM, or a
TMF audit trail disk for overflow scratch files. You can specify up to 32
NOSCRATCHON volumes. Note that this attribute requires up to 276 additional

FastSort Manual—429834-003
3-22

Using FastSort Commands SAVE Command

bytes of stack space. If you specify SCRATCHON, you cannot specify
NOSCRATCHON.

Enclose NOSCRATCHON volume names in parentheses and separate the names
with commas. FastSort recognizes the wild-card characters * and ? for
NOSCRATCHON volume names. See the description of SCRATCHON under
Setting DEFINE Attributes on page 7-2 for examples of how to use these
characters.

SCRATCHON (scratch-vol [, scratch-vol]...)

specifies the volumes that FastSort should use for overflow scratch files. If the
initial scratch volume becomes full, FastSort tries to create overflow scratch files
on a SCRATCHON volume. You can specify up to 31 SCRATCHON volumes. Note
that this attribute requires up to 276 additional bytes of stack space. If you specify
NOSCRATCHON, you cannot specify SCRATCHON.

Enclose SCRATCHON volume names in parentheses and separate the names
with commas. FastSort recognizes the wild-card characters * and ? for
SCRATCHON volume names. See the description of SCRATCHON under Setting
DEFINE Attributes on page 7-2 for examples of how to use these characters.

Examples

RUN TEMP, CPU 1, PRI 140

RUN , CPU 2, BLOCK 28672, REMOVEDUPS

RUN , PROGRAM SCRTFAST, SEGVENT 256, BLOCK 28762, CPU 3
RUN $DATA. TEMP. SCRATCH, M NTI Mg, CPU 4

RUN NOSCRATCHON ($DATA2, $DATA3)

SAVE Command

Use the SAVE command to retain FastSort command parameters from a sort or merge
run for future use. To retain the command parameters after a run, you must issue the
SAVE command before you issue the RUN command. If you do not issue SAVE and
RUN in this order, the command parameters are no longer in effect after the run
finishes or if a warning occurs for a RUN command.

SAVE { ALL

{ ASC] ENDI NG
{ COLLATE

{ CPUS

{ DESC[ENDI NG
{ FROM[filenane]
{ KEYS
{ NOTCPUS
{ SUBSORT
{

TO

[VT N] W] | W] W] Gy |])

FastSort Manual—429834-003
3-23

Using FastSort Commands SAVE Command

ALL

saves all current command parameters.

ASC] ENDI NG|

saves all current key-field specifications defined by ASCENDING commands.

COLLATE

saves the alternate collating sequence table.

CPUS

saves the CPUS command currently in effect.

DESC] ENDI NG

saves all current key-field specifications defined by DESCENDING commands.

FROM [fil enane]

saves the current parameters for the input file named f i | enane. If you omit
fil enane, the SAVE command saves the current parameters for all files named in
FROM commands.

KEYS

saves all current key-field specifications for both ASCENDING and DESCENDING
commands.

NOTCPUS

saves the NOTCPUS command currently in effect.

SUBSORT

saves current parameters of all SUBSORT commands.

TO

saves all parameters for the current output file.

To delete information retained by the SAVE command, use the CLEAR command.

Examples

SAVE FROM FI LEI'N
SAVE KEYS

FastSort Manual—429834-003
3-24

Using FastSort Commands SHOW Command

SHOW Command

Use the SHOW command to display command parameters currently in effect, whether
you entered them for the next sort or merge run or saved them from a previous run.
SHOW does not display information for the COLLATE or COLLATEOUT command.

:

ALL

ASC[ENDI NG

CPUS

DESC[ENDI NG

FROM [filenane]
KEYS

NOTCPUS

SUBSORT

TO

[t Tt Vot Yot Youd Voa Yoo Yoo Y
e e e e e e e e e)

ALL

displays all current command parameters.

ASC[ENDI NG|
displays all current key-field specifications defined by ASCENDING commands.

CPUS

displays the CPUS command currently in effect.

DESC[ENDI NG
displays all current key-field specifications defined by DESCENDING commands.

FROM [fil enane]

displays the current parameters for the input file named f i | enan®e. If you omit
fil enane, the SHOW command displays the current parameters for all files
named in FROM commands.

KEYS

displays all current key-field specifications for both ASCENDING and
DESCENDING commands.

NOTCPUS
displays the NOTCPUS command currently in effect.

SUBSORT
displays current parameters of all SUBSORT commands.

FastSort Manual—429834-003
3-25

Using FastSort Commands SUBSORT Command

TO
displays all parameters for the current output file.

Examples

SHOW KEYS
SHOW FROM

SUBSORT Command

Use the SUBSORT command to set up the parameters for a SORTPROG subsort
process for a parallel sort or merge run.

A subsort process runs under a SORTPROG distributor-collector process set up by a
RUN command.

Note. Although you can specify up to 16 subsort processes, HP recommends that you specify
no more than 8. Running more than 8 subsort processes can cause performance degradation
for your system or the run to fail with FastSort error 22 (THE MEMORY SPACE FOR
SORTING IS INSUFFICIENT).

The distributor-collector process reads the input file and distributes the input records to
each subsort process named in the SUBSORT command. After the subsort processes
finish sorting, the distributor-collector process merges the records from the subsort
processes and then writes them to the output file.

SUBSORT scratch-file | BLOCK si ze

[CPU processor
MEM menory
PRI priority
SEGVENT si ze
PROGRAM fil e
SWAP file

scratch-file

is the name of an initial scratch file for the subsort process. If you specify an
existing file, it must be unstructured. FastSort purges all data in an existing scratch
file before using it.

BLOCK si ze

specifies the size in bytes of the input and output blocks for scratch files. The
scratch file block size must be large enough to accept the largest input record,
rounded up to the nearest even byte, plus 14 bytes of overhead.

The block size can be any multiple of 2048 bytes up to 56 KB. The default is
56 KB.

FastSort Manual—429834-003
3-26

Using FastSort Commands SUBSORT Command

CPU processor

specifies the processor number for the subsort process. Because each subsort
process is a separate SORTPROG process, you can run each process in a
different processor. The default is the same processor in which the primary disk
process for the scratch volume runs.

MVEM nmenory

exists only for compatibility with earlier sort-merge code. MEM specifies the
number of memory pages allocated for the SORTPROG process. The size is
always 64 pages. If you specify a value between 1 and 64 for MEM, FastSort
ignores the value. If you specify an invalid value, FastSort returns an error
message and does not start the sort or merge run.

PRI priority

specifies the priority assigned to the SORTPROG process. The default is the same
priority as the SORT process.

SEGVENT si ze

specifies the size in pages of an extended memory segment for the subsort
process to use. The number of pages must be at least 256 but cannot exceed 90
percent of the processor’s physical memory not locked down by the operating
system. This value overrides the AUTOMATIC, SEGMENT, MINSPACE, and
MINTIME parameters of the RUN command.

PROGRAM fil e

specifies a program file to run for the subsort process instead of
$SYSTEM.SYSnn.SORTPROG.

SWAP file

specifies the name, including volume and subvolume, of the swap file for the
extended memory segment. This swap file must be on the local node. If you omit
the SWAP parameter, FastSort allocates a temporary swap file depending on
whether the scratch file is local or remote:

Scratch File Location of Swap File
Local Same disk as initial scratch file
Remote Disk where the SORTPROG program file is running

Examples

FROM | NFI LE

TO QUTFI LE

ASC 1:10

SUBSORT $MOLD. SORT. SCRATCH, CPU 3, SEGVENT 128
SUBSORT $DP2. SORT. SCRATCH, CPU 4, SEGMVENT 128

FastSort Manual—429834-003
3-27

Using FastSort Commands TO Command

SUBSORT $RAT. SORT. SCRATCH, CPU 5, SEGMVENT 128
RUN, CPU 0, AUTQVATIC

TO Command

Use the TO command to specify an output file for the sort or merge run and the
following options for the run:

The exclusion mode for the output file

The type of the output file

The percentage of data slack and index slack for the file

Whether or not FastSort should purge and re-create an existing output file

The type of sort or merge run: record, permutation, key, or a combination key and
permutation

TO[out-file]

EXCL[USI ON] node

KEYS

PERMUTATI ON
TYPE file-type
NOPURGE

SLACK percentage |
DSLACK percent age |
| SLACK percent age]

out-file

is the name of the file to which FastSort writes the output records. If you omit the
out - fi | e parameter, the output goes to the file named inthe l i st-fil e
parameter of the command to start the FastSort process. If you do not specify
out-fileorlist-file,the outputgoes tothe home terminal for the FastSort
process.

FastSort can send output to key-sequenced files, but not to an EDIT (file code 101)
file. For more information about supported file types, see Appendix C, Using
Supported File Types.

EXCL[USI ON] node

specifies the exclusion mode that FastSort uses to open the output file. The
exclusion mode can be SHARED, PROTECTED, or EXCLUSIVE.

SHARED

specifies that FastSort does not lock the output file. Other processes can write
to the output file at the same time FastSort is writing its output. Thus, the final
output file might not be in sorted order.

FastSort Manual—429834-003
3-28

Using FastSort Commands TO Command

PROTECTED

specifies that only FastSort has read and write access to the output file.

EXCLUSI VE

specifies that only FastSort has write access to the output file. Other processes
can have read access to the file.

These are the default exclusion modes for different devices:

Device Exclusion Mode

Permanent disk files PROTECTED

Temporary disk files and terminals SHARED

Other files (not disk files) EXCLUSIVE
KEYS

specifies that each output record be the value of all the key fields concatenated in
the order of their significance. You determine this order by the sequence in which
you enter ASCENDING and DESCENDING commands and specify the key fields
in the commands.

If a key field extends beyond the end of a variable-length record in a structured
output file, SORTPROG pads the key values with blanks. SORTPROG can
compare a key field at the end of a short record if the record contains the first byte
of the key value, unless the field type is REAL, SIGNED TRAILING EMBEDDED,
or SIGNED TRAILING SEPARATE. For comparison of these types of data, key
fields must contain complete values.

PERM UTATI ON]
specifies that the output be 32-bit (4-byte) integers representing record sequence
numbers. For example, if the sixty-third input record is the first record after sorting,
the first number in the output is 63.

TYPE file-type

specifies the type of file created for the output records; fi | e-t ype can be:

U Unstructured

R Relative

E Entry-sequenced
K Key-sequenced

To use an odd unstructured file for the output file, create the file using the FUP
CREATE command or the CREATE system procedure before the sort or merge run
and thendo notsetfil e-type.

FastSort Manual—429834-003
3-29

Using FastSort Commands TO Command

NOPURGE

directs FastSort not to purge the output file if the file seems too small to contain all
the output records. This parameter ensures that FastSort preserves the original
partitioning and extents of the file. FastSort still purges the data from an existing
output file, even though it does not purge the file.

When you specify NOPURGE, FastSort changes the record length to the default
value of 132 bytes.

If an existing output file has a different file type than the TO command specifies or
than SORTPROG uses by default, FastSort purges the existing file whether you
specify NOPURGE or not. For more information, see Existing Output Files on
page 3-31.

The SLACK, DSLACK, and ISLACK parameters apply only to key-sequenced

output files. For other types of output files, FastSort ignores these parameters.
SLACK per cent age

specifies the minimum percentage of slack space in both index and data blocks.

You specify per cent age as a value in the range {0:99}. The default is 0 slack.
DSLACK per cent age

specifies the minimum percentage of slack space in data blocks. You specify
per cent age as a value in the range {0:99}. The default is the value of the SLACK
parameter.

| SLACK per cent age

specifies the minimum percentage of slack space in index blocks. You specify
per cent age as a value in the range {0:99}. The default is the value of the SLACK
parameter.

Guidelines

Follow these guidelines when you use the TO command.

Output File Types

If out - f i | e specifies a nonexistent disk file or if you do not specify NOPURGE,
SORTPROG creates a new output file according to these rules in order:

1. SORTPROG uses the file type you specified in the TO command, if any.

2. SORTPROG uses the existing output file’s type if it is a valid output file type and
does not write output records to EDIT files.

3. SORTPROG uses the first input file’s type if it is a valid disk file type for output and
does not write output records to EDIT files.

FastSort Manual—429834-003
3-30

Using FastSort Commands TO Command

4. If none of the above conditions exists, SORTPROG creates an entry-sequenced
file.

You can use a process as an output file.

If out - fil| e is a blocked tape file, SORTPROG writes only one record for each block.
You can use the File Utility Program (FUP) to block the records and load the tape file.
For information about FUP, see the FUP Reference Manual.

SORTPROG does not write output records to EDIT files.

Key-sequenced files with increased limits cannot be used as an output file. For more
information about key-sequenced files with increased limits, see Enscribe
Programmer’s Guide.

The output file type can be key-sequenced. For key-sequenced files, the following
rules apply:

® You can use only one sort key field, and the data type for the field must be
UNSIGNED.

® The sort key field must be the same as the file’s primary key field.

® You must specify the field in an ASCENDING command.

You can specify the data slack and index slack for a new or existing key-sequenced
output file.

Existing Output Files

If out - fil e exists on a disk prior to the sort or merge run, FastSort purges all the
data in the file before reusing the file. For FastSort to reuse an existing disk file as an
output file, all of the following must be true:

® The existing file type must be the same as the output file type in effect for the run.

® The existing file size must be equal to or greater than the sum of all the input file
sizes, except when you specify the NOPURGE parameter.

® The maximum record length for the existing file must be equal to or greater than
the maximum output record length for the run.

If any of these required conditions does not exist, FastSort purges the existing output
file and creates a new file. If you do not want FastSort to purge and recreate the file,
specify the NOPURGE parameter in the TO command.

/A Caution. If you specify the same file as both an input file and output file for a sort run, you can
lose all the data from the input file if an error or processor failure ends the SORTPROG
process.

FastSort Manual—429834-003
3-31

Using FastSort Commands TO Command

Output Options

If you use both PERMUTATION and KEYS, the output for each record is a 32-bit (4-
byte) record number followed by the concatenated key-field values as shown in below:

Byte 012345 ...

seq no | key 1 ...| key 2 ...

The first 11 characters are sequence numbers, and the remaining characters are the
defined keys.

These options increase efficiency when you need only part of the data in the records.
They show the permutation of the sorted records and the values of the records’ key
fields. If you do not specify PERMUTATION or KEYS, the output is entire records.

When printing the outputto | i st-fi | e, FastSort does not convert nonprintable bytes
in a record. Therefore, a sorted binary integer field might not display useful information.

If you specify the PERM parameter and omit out - f i | e, FastSort always converts the
sequence numbers to the 11-digit ASCII display equivalent (10 digits and one trailing
blank). The ASCII equivalent of the numeric data is packed into as few lines as
possible, allowing for the line width of the output device.

Examples

TO SORTED, TYPE R, EXCL PROTECTED
TO , PERMUTATI ON

TO PARTNGCS, KEYS, PERM

TO $TAPE, EXCL EXCLUSI VE

FastSort Manual—429834-003
3-32

4 Sorting Programmatically

The FastSort programmatic interface consists of the FastSort system procedures. You
can use the FastSort system procedures to sort and merge records from an application
program. You can call FastSort system procedures from an application written in any
language that can call TAL procedures.

An application calls FastSort system procedures to start, control, and end a
SORTPROG process. The application sets up the sort or merge run in procedure calls
and supplies the input records directly or from one or more files. The SORTPROG
process performs all sorting and merging operations and either writes the output
records to a file or returns them to the application.

This section explains how to use a SORTPROG process from an application program.
It also provides COBOLS85 and TAL examples of serial sorting. For general information
about sorting such as sorting on key fields, controlling extended memory size,
understanding statistics, and understanding error messages, see Section 2, Sorting

Interactively.

Using FastSort System Procedures

Table 4-1 lists FastSort procedures in the order in which your application might call
them. For a sort or merge run, you must call SORTMERGESTART and either
SORTMERGESTATISTICS or SORTMERGEFINISH. Other procedures communicate
information to the SORTPROG process and return error information. For information
about each procedure, including syntax, see Section 5, Using FastSort System
Procedures.

Table 4-1. FastSort System Procedures (page 1 of 2)

Procedure Name Description

SORTBUILDPARM Specifies parameters for parallel sorting, record blocking, and
overflow scratch volumes.

SORTMERGESTART Begins the SORTPROG process and passes sort or merge
parameters from the calling process to SORTPROG.

SORTMERGESEND Sends input records from the calling process to the
SORTPROG process, one for each call.

SORTMERGERECEIVE Returns output records from the SORTPROG process to the
calling process, one for each call.

SORTERROR Provides the message text for the last FastSort error code
returned by a procedure.

SORTERRORDETAIL Provides the FastSort error code for the most recent error

and if an input file caused the error, identifies the input file.

FastSort Manual—429834-003
4-1

Sorting Programmatically Starting a Sort or Merge Run

Table 4-1. FastSort System Procedures (page 2 of 2)

Procedure Name Description

SORTERRORSUM Provides SORTERROR and SORTERRORDETAIL
information and identifies the cause of the most recent error.

SORTMERGESTATISTICS Reports information about a sort or merge run and ends the
run.

SORTMERGEFINISH Ends the sort or merge run and stops the SORTPROG
process.

Starting a Sort or Merge Run

Use the SORTMERGESTART procedure to start a SORTPROG process and specify
parameters for a sort or merge run. SORTMERGESTART contains most of the
necessary parameters for the sort or merge run, including:

® One or more input files

An output file for sorting or merging, or both

One or more key fields

Removal of records that have duplicate key values

The name of an initial scratch file and a block size for scratch file 1/0

Subsort processes for parallel sorting

Parameters for running the SORTPROG process
You can use the SORTMERGESTART restart option to limit new process creation for
each sort or merge run, and to reuse a scratch file in successive runs.

Ending a Sort or Merge Run

To end a sort or merge run, use either the SORTMERGESTATISTICS or
SORTMERGEFINISH procedure. SORTMERGEFINISH also stops the SORTPROG
process, but SORTMERGESTATISTICS does not.

Specifying Record Blocking and Parallel Sorting

Use the SORTBUILDPARM procedure to specify record blocking, parallel sorting, and
overflow scratch volumes. The SORTBUILDPARM procedure specifies the following:

® A buffer for record blocking to reduce interprocess messages when you use
SORTMERGESEND or SORTMERGERECEIVE (not valid for a merge run)

® Processors (CPUSs) or the restart option for subsort processes in parallel sorting

® \/olumes to either include or exclude from overflow scratch files

FastSort Manual—429834-003
4-2

Sorting Programmatically Allocating Scratch Space

SORTBUILDPARM puts the parameters you specify in a sort control block, which is a
global array used for storing the information. SORTMERGESTART uses the sort
control block to pass the parameters to the SORTPROG process.

Allocating Scratch Space

You can have SORTPROG create initial and overflow scratch files for you. To do this,
specify either no scratch file in SORTMERGESTART or a disk file that does not exist.

If you want SORTPROG to use only a single, permanent scratch file, use the formula
described under Manually Creating a Scratch File on page 9-2 to calculate scratch file
size. Use FUP to create the file and then specify the file to FastSort in
SORTMERGESTART.

For example, if your input files have different maximum input record lengths, you might
want to manually estimate initial scratch file size. Rather than the maximum output
record length, multiply the number of input records by the average output record
length. Then tell SORTPROG to use your estimate by setting SORTMERGESTART
flags.<9>to 1.

Use the scrat chvol s structure in SORTBUILDPARM to specify volumes to include
or exclude from overflow scratch files. For more information about scratch files, see
Section 9, Optimizing Sort Performance. For more information about FUP, see the File
Utility Program (FUP) Reference Manual.

Getting Information About a Sort or Merge Run

To return information about the sort or merge run to your application, use these
procedures:

® SORTMERGESTATISTICS
® SORTERRORSUM

SORTMERGESTATISTICS provides details about the records and resource use after a
successful run. SORTERRORSUM returns all the information provided by
SORTERROR and SORTERRORDETAIL and identifies the cause of the most recent
error if not an input error. For more detailed information about statistics and error
messages, see Understanding Statistics on page 2-13 and Understanding

Error Messages on page 2-14.

Specifying Input Records

The SORTPROG process reads records directly from one or more input files and
writes the records to an output file. Each input file can contain either sorted records for
merging or unsorted records for sorting and merging. When reading more than one
input file, SORTPROG uses the same key-field specifications for all input records.

Figure 4-1 on page 4-4 shows sorting and merging with input and output files.

FastSort Manual—429834-003
4-3

Sorting Programmatically Sending Input Records From a Process

Figure 4-1. Sorting and Merging With Input and Output Files

Application SORTPROG
Process ‘ Process

FastSort

Parameters)
° File 1 File 2
SORTMERGESTART Input Input
* Unsorted Sorted
Records Records
Completion
Statistics
SORTMERGESTATISTICS 4—
. : SORTPROG |
SORTMERGEFINISH ————————*——p»|
A
Output
Sorted and
Merged
Records
VST401.vsd

Sending Input Records From a Process

FastSort can accept records up to 27,648 bytes in buffers of 32 KB from an application
process. For input records of size greater than 4072 bytes, only buffered interface must
be used.To send input records from your process to a SORTPROG process, use the
SORTMERGESEND procedure as follows:

1. If you want to use record blocking, call SORTBUILDPARM.
2. Call SORTMERGESTART to start SORTPROG.

3. Call SORTMERGESEND to send each record. Specify certain parameters for a
sort run or a merge run, as the following subsections explain.

4. Call SORTMERGESEND with a | engt h parameter of —1 to tell SORTPROG that
the last record has been sent.

FastSort Manual—429834-003
4-4

Sorting Programmatically Sending Records to Be Sorted

Sending Records to Be Sorted

To use SORTMERGESEND for a sort run, you must specify the following values in the
call to SORTMERGESTART:

® 1 forthe num sort-fil es parameter

® Blanks for the i nput -fi | e- name parameter

Sending Records to Be Merged

To use SORTMERGESEND for a merge run, you must specify the following in the call
to SORTMERGESTART:

® A number from 2 to 32 for the num ner ge-fi | es parameter
® From 2 to 32 names of all blanks for the i nput - fi | e- name parameter

SORTPROG can merge multiple sets of records sent from a calling process. In this
operation, the term input stream refers to a source of sorted records for merging. The
number of input streams for merging is the number of merge files you specify in the call
to SORTMERGESTART. SORTPROG merges the sorted records from all input
streams into a single set of output records.

You can send records from the input streams to SORTPROG through
SORTMERGESEND. The first call to SORTMERGESEND transmits a record from
stream 0. Then SORTPROG returns a number in the st r eam i d parameter of
SORTMERGESEND to indicate the input stream from which the next record should
come. After SORTMERGESEND transmits all records from the input streams,
SORTPROG merges the records and returns them to the calling process or produces
the output file.

Record blocking is valid only for sort runs. If you try to use record blocking with merge
runs, SORTPROG returns error 81 (BLOCKED INTERFACE NOT ALLOWED WITH
MERGE).

Figure 4-2 on page 4-6 shows how SORTPROG accepts input records from an
application process.

FastSort Manual—429834-003
4-5

Sorting Programmatically Returning Output Records to a Process

Figure 4-2. Sending Input Records From an Application Process

Application SORTPROG
Process | Process

L] 1 .
* FastSort .
. Parameters .
.)
SORTMERGESTART E
) | Input Record | l
SORTMERGESEND ; >
‘ | Input Record |
SORTMERGESEND ; - SORTPROG
° | Last Input Record |
SORTMERGESEND . >
: | Record Length = -1 | ? A
SORTMERGESEND
* Completion
Statistics

SORTMERGESTATISTICS =

SORTMERGEFINISH ; Output

Sorted
Records

VST402.vsd

Returning Output Records to a Process

To have SORTPROG return records to your application, use the
SORTMERGERECEIVE procedure as follows:

1. Call SORTMERGESTART.

2. Call SORTMERGERECEIVE to return each record until SORTPROG returns —1 in
the | engt h parameter of SORTMERGERECEIVE. A length of —1 means that
SORTPROG has returned all the output records.

Figure 4-3 on page 4-7 shows how an application process accepts sorted records from
SORTPROG.

FastSort Manual—429834-003
4-6

Sorting Programmatically Sending and Receiving Records

Figure 4-3. Returning Sorted Records to an Application Process

SORTPROG
Process

Application
Process

* FastSort .

. Parameters . File 1 File 2
SORTMERGESTART : Input Input

’ Unsorted Sorted

* Records Records

* .

o ' SORTPROG ¢————
SORTMERGERECEIVE ’>
SORTMERGERECEIVE ‘

* | Sorted

‘ Records

SORTMERGERECEIVE

SORTMERGERECEIVE

SORTMERGERECEIVE

SORTMERGESTATISTICS -

SORTMERGEFINISH

Last Record L

.~ Record Length = -1 ‘

1

VST403.vsd

Sending and Receiving Records

Figure 4-4 on page 4-8 shows how an application process uses both
SORTMERGESEND and SORTMERGERECEIVE for the same sort or merge run.

FastSort Manual—429834-003
4-7

Sorting Programmatically Estimating the Size of an Output File

Figure 4-4. Sending and Receiving Records From an Application Process

SORTPROG
Process

Application
Process

FastSort

. Parameters .
SORTMERGESTART

. Input Record
SORTMERGESEND

° Input Record

L] I v
SORTMERGESEND 1 -

: Last Input Record < _
SORTMERGESEND } - SORTPROG

° Record Length = -1
SORTMERGESEND -

SORTMERGERECEIVE %

SORTMERGERECEIVE :

. ' | Sorted

* : Records
SORTMERGERECEIVE . Last Record
SORTMERGERECEIVE <& : Record Length = -1

) Completion

. Statistics
SORTMERGESTATISTICS 5

SORTMERGEFINISH
VST404.vsd

Estimating the Size of an Output File

To estimate the size of an output file, multiply output record length by the number of
input records. For structured files, allow approximately 3 percent for overhead.

If you name a new output file, FastSort estimates the size for you. If you name an
existing output file, you can tell FastSort to purge the file and create a new one by
specifying the f | ags parameter of SORTMERGESTART with f | ags.<14> set to 1.

FastSort Manual—429834-003
4-8

Sorting Programmatically

Sorting From C Programs

You can also set f | ags.<5> to 1 to direct FastSort to not purge an existing output file

that seems too small.

Sorting From C Programs

Example 4-1 shows a C program that calls FastSort procedures to perform a serial sort

run.

Example 4-1. C Example of a Serial Sort Run (page 1 of 5)

#pragma sql wheneverli st
#pragma synbol s

#pragma i nspect

#pragma runnabl e
#pragma noli st

Thi s program sends i nput

decl ares two buffers for

* % X X X X X X X X

~ e e e e e e

Ext ernal decl arations

% o e e e e e e e e eeiiieeea-

#i ncl ude <stdi oh>
#i ncl ude <stdlibh>
#i ncl ude <stringh>
#i ncl ude <sql h>

#i ncl ude <tal h>

#i ncl ude <cext decs>
#pragma |i st

#defi ne BLOCKLEN 4096
#defi ne MAXCOUNT 20
#def i ne BUFSI ZE 35

char hone_t erm nane[48] ;
short hone_termfil enum
short hone_terml en;

short hone_term maxl en = 48;

short error_detail; output from process_getinfo_
| o e meaaa
/* FastSort control and flags information.

[o e meaaao o
_lowmrem short ctl bl k[200]; /* control block for sort interface
short snflags = O; /* SORTMERCESTART f I ags

short snflags2 = 1; /* SORTMERGESTART flags2 for nowait 1/0
short sflagl = 1; /* use SORTMERGESTATI STI CS 22-word array

_lowrem short key_array[4];

Il ong bl ock_buffer[BLOCKLEN

Fast Sort Serial Sort Run

records to a SORTPROG process

usi ng SORTMERGESEND and then receives the sorted out put
records using SORTMERGERECEI VE. To reduce interprocess
nmessages, this programuses a bl ocked interface and

nowait I/Ofor wites to SORTPROG

Error handling and di splaying of statistics are stubbed out.

* maxi mum record count
* size of input buff array

term nal nane
file nunber

/*

/*

/* actual |en of honeterm nane
/* max | en of honeterm nane
/*

/* SORTMERGESTART key field defns

- 1],

Il ong bl ock_buffer2[BLOCKLEN - 1];

/* FastSort record informati

| ong dcount = 20;
| ong *pdcount = &dcount;
short i nbuf[BUFSI ZE] ;

on and buffer.
/* actual record count

/* record buffer

_l owrem char out buf [MAXCOUNT] ; /* output buffer

*/
*/

*/
*/
*/
*/

FastSort Manual—429834-003
4-9

Sorting Programmatically Sorting From C Programs

Example 4-1. C Example of a Serial Sort Run (page 2 of 5)

/* ___ */
/* FastSort error and statistics variables. */
/* ___ */
short error; [* error return paraneter */
_l owrem short error_buf[20], [* error message buffer */

error_source[20];/* error related info */
_lowremlong error_code[40]; /* Fastsort & systemerror codes*/

struct sortstats_tenplate {
short naxrecordsi ze;
short bufferpages;
I ong records;
| ong el apsedti nme;
| ong conpares;
| ong scratchseeks;
long iowaittine;
I ong scratchfil eeof;
long initialruns;
short firstmergeorder;
short nergeorder;
short internedi at epasses;
I ong nunberof dupl i cat es;
} _lowrem sortstats;

void error_handl er (void);
short DisplaySortStatistics (struct sortstats_tenplate *);
*

___ */
#pragma page " Main logic "
/* ___ */
int main (void)
{
short length = 2;
short errlen = 0;
short i ndex;
_lowmrem short actuallen;/* for size of statistics in words */
/* ___ */
/* Performstandard initialization. */
/* ___ */
error = PROCESS _GETINFO (,,,,,, &one_term nane,
hone_t er m mexl en,
&honme_term | en,
vaiaaaaaaas, &rror_detail)
if (error)
DEBUG,
i f (FILE_OPEN_(honme_t erm nane,
hone_term| en,
&one_termfilenum) != CCE)
DEBUG,
I NI TI ALI ZER; /* read the startup nessage */
/* ___ */
/* Initialize SORT key definitions array. */
K o e e o e .- */

key_array[0] 1; /* nunber of keys */

key_array[1] = 2; [* definition = binary, unsigned, ascending*/
key array[2] = 2; /* key length = 2 bytes */
key_array[3] = 0; /* key offset = 0 bytes */

FastSort Manual—429834-003
4-10

Sorting Programmatically Sorting From C Programs

Example 4-1. C Example of a Serial Sort Run (page 3 of 5)

B e */
/* Call SORTBU LDPARMto initialialize SORTPROG control block. */
/* Request bl ocked, double-buffered interface. */
/* ___ */

error = SORTBUI LDPARM (&ctl bl k[O],,,
&bl ock_buffer[0], &block_buffer2[0],
BLOCKLEN) ;
if (error) /* check for SORTBU LDPARM error */
{

errlen = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0]);
error_handl er;
return EXI T_FAlI LURE;

/*---% ___ *
/* Call SORTMERGESTART to start the SORTPROG process. */
/* ___ */

error = SORTMERGESTART (&ctl bl k[0],
&key_array[O0],,1,,,
pdcount,,,,,,
smflags,, v sshss
snflags2,,);
if (error) /* check for SORTMERGESTART error */
{

errl en = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0]);
error_handl er;
return EXI T_FAI LURE;

/*---% ___ */
/*Cal | SORTMERGESEND to send records to SORTPROG Send successive*/
/* positive values to be returned in the sanme ascending order. */
/* Call SORTMERGERECEI VE to get sorted records from SORTPROG */
/* ___ */

length = 2; /* set length of buffer/input rec in bytes*/

/* size dependent on size of key */
for (index = 1; index <= MAXCOUNT; i ndex++)

{
i nbuf [0] = index; /* set value to send to SORTPROG */
error = SORTMERGESEND (&ct | bl k[O], ,
length,,,,
(long) & nbuf[0]);
if (error) /* check for SORTMERGESEND error */

errl en = SORTERRORSUM (&ct | bl k[0] ,
&error_buf[0],
&error_code[0],
&error_source[0]);

error_handl er ;

return EXI T_FAI LURE;

}
}
length = -1; /* signal end of records to be sorted */
error = SORTMERGESEND (&ct | bl k[0],
, length

(long) & nbuf[0]);

FastSort Manual—429834-003
4-11

Sorting Programmatically Sorting From C Programs

Example 4-1. C Example of a Serial Sort Run (page 4 of 5)
if (error) /* check for SORTMERGESEND error */

errl en = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0]);

error_handl er ;

return EXI T_FAI LURE;

I % __ * [

/* Call SORTMERGERECEI VE to receive records from SORTPROG */

/* __ */
do

{
error = SORTMERGERECEI VE (&ctl bl k[0],
&l engt h

"(long) & nbuf[0]);
if (error) /* check for SORTMERGERECEI VE err or */

errlen = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0]);

error _handl er;

return EXI T_FAI LURE;

}

/* ___ */
/* CQutput the values one at a tinme to the term nal */
/* ___ */

NUMOUT (&out buf [0], i nbuf[0], 10, 2);
WRI TE (honme_termfilenum (short *) &outbuf[O0],Iength);

}
while (length I'= -1);
/* ___ */
/* Return SORTPROG conpletion errlen and statistics. Set */
/* length in words, to return all statistics information. */
/* ___ */

actual l en = sizeof (sortstats)/2;

error = SORTMERGESTATI STICS (&ctl bl k[0], &actuallen, &sortstats,
sfl agl);

if (error) /* check for SORTMERGESTATI STICS error */

errl en = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0]);

error_handl er;

return EXI T_FAI LURE;

}
K o o o o o o e e e o e e e e e e e e e e e e e e e e o e o2 */
/* Call function to display the statistics */
/* ___ */
error = DisplaySort Statistics (&sortstats);
if (error)

return EXI T_FAI LURE;

FastSort Manual—429834-003
4-12

Sorting Programmatically Sorting From COBOL85 Programs

Example 4-1. C Example of a Serial Sort Run (page 5 of 5)

%]

[1*

/* Call SORTMERGEFINI SH to stop SORTPROG after the process */
/* successfully conpletes the current sort and nerge run(s). */
* *

~
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
~

error = SORTMERGEFI NI SH (&ct | bl k[0]);
if (error) /* check for SORTMERGEFI NI SH error */

{

errlen = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0]);

error_handl er;

return EXI T_FAI LURE;

}
FILE_ CLOSE_ (hone_termfilenum;
/* End of Main logic */
voi d error_handl er (void)

/* error handling stubbed out */
return;

}

short DisplaySortStatistics (struct sortstats_tenplate *instats)

/[* Printing of statistics stubbed out */
return EX T_SUCCESS;

Sorting From COBOLS85 Programs

When you use a SORT or MERGE statement in a COBOLS85 program, COBOLS5 calls
FastSort procedures. COBOL85 uses SORTMERGESEND and
SORTMERGERECEIVE record blocking for:

® Input procedures and output procedures specified in SORT statements
® Tape files specified in the USING phrase of SORT and MERGE statements

® Tape files or multiple output files specified in the GIVING phrase of SORT and
MERGE statements

COBOLS85 does not use record blocking for a program that runs as a process pair.

For tape input files, COBOLS85 deblocks the records and uses the SORTMERGESEND
procedure to send them to SORTPROG. For tape output files, COBOLBS85 blocks the
records from SORTMERGERECEIVE. Instead of transferring a single record in each
interprocess message between the COBOLS85 program process and SORTPROG,
FastSort transfers a block of input or output records in each message.

To run FastSort from a COBOLS85 program, you use the COBOLS85 utility library. This
library resides in the $SYSTEM.SYSTEM.COBOLLIB program file. For more
information about COBOLLIB, see the COBOL85 Reference Manual.

Example 4-2 on page 4-14 shows a COBOLS85 example of a serial sort run. For a
COBOLB85 example of a parallel sort run, see Section 6, Sorting in Parallel.

FastSort Manual—429834-003
4-13

Sorting Programmatically Sorting From COBOL85 Programs

Example 4-2. COBOLS85 Example of a Serial Sort Run (page 1 of 2)

Fast Sort Serial Sort Run Program
This program sorts an input file specified by the TACL
DEFI NE =I NFI LE and wites the sorted records to an out put
file specified by the TACL DEFI NE =QUTFI LE. The program
uses a tenporary scratch file on the user's default vol une.
?SYMBOLS, | NSPECT
?L1 BRARY $SYSTEM SYSTEM COBOLLI B
| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. FASTSORT- SERI AL- SORT.
ENVI RONMENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
I NPUT- QUTPUT SECTI ON.
FI LE- CONTROL.
SELECT | NPUT- FI LE
ASSI GN TO " =I NFI LE"
ORGANI ZATI ON | S SEQUENTI AL
ACCESS MCDE |'S SEQUENTI AL.
SELECT OUTPUT- FI LE
ASSI GN TO "=CUTFI LE"
ORGANI ZATI ON | S SEQUENTI AL
ACCESS MCDE |'S SEQUENTI AL.
SELECT SCRATCH FI LE
ASSI GN TO "#TEMP".
DATA DI VI SI ON.
FI LE SECTI ON.
FD | NPUT- FI LE
LABEL RECORDS ARE OM TTED
RECORD CONTAI NS 25 CHARACTERS.
01 | N-RECORD.
05 EMPLOYEE- NAMVE PI C X(20).
05 EMPLOYEE- NUVBER PIC 9(5).
FD OUTPUT- FI LE
LABEL RECORDS ARE OM TTED
RECORD CONTAI NS 25 CHARACTERS.
01 QUT- RECORD.
05 EMPLOYEE- NAMVE PI C X(20).
05 EMPLOYEE- NUVBER PI C 9(5).
SD SCRATCH FI LE
RECORD CONTAI NS 25 CHARACTERS.
01 SORT- RECORD.
05 EMPLOYEE- NAVE PI C X(20).
05 EMPLOYEE- NUMBER PIC 9(5).

* 0% kX X X X X

PROCEDURE DI VI SI ON.
OPEN- FI LES.
DI SPLAY "Starting FastSort serial sort run...".
OPEN | NPUT | NPUT- FI LE.
OPEN OQUTPUT OUTPUT- FI LE.
SORT SCRATCH- FI LE
ON ASCENDI NG KEY EMPLOYEE- NAME OF SORT- RECORD,
I NPUT PROCEDURE | S SORTI N- PROCEDURE
OUTPUT PROCEDURE | S SORTOUT- PROCEDURE.
DI SPLAY "FastSort serial sort run conpleted.".
STOP RUN.

FastSort Manual—429834-003
4-14

Sorting Programmatically Sorting From TAL Programs

Example 4-2. COBOLS85 Example of a Serial Sort Run (page 2 of 2)

* |Input: Read input records and rel ease to SORTPROG
*
SORTI N- PROCEDURE SECTI ON.
DI SPLAY "Readi ng i nput records...".
READ- | NPUT.
READ | NPUT- FI LE NEXT RECORD
AT END GO TO SORTI N- EXI T.
RELEASE SORT- RECORD FROM | N- RECORD.
GO TO READ- | NPUT.
SORTI N-EXI T.
EXI T.

SORTOUT- PROCEDURE SECTI ON.

DI SPLAY "Witing sorted records...".
RETURN- OUTPUT.
RETURN SCRATCH- FI LE
AT END GO TO SORTQUT- EXI T.

MOVE CORRESPONDI NG SORT- RECORD TO QOUT- RECORD.
WRI TE OUT- RECORD.
GO TO RETURN- QUTPUT.

SORTOQUT- EXI T.
EXIT.

Sorting From TAL Programs

You can call a FastSort procedure directly from a TAL program. The program must
include a declaration for the sort control block and for any variables, constants, and
text identifiers you use in the procedure calls. For information about TAL declarations
and the structure of TAL programs, see TAL Reference Manual.

Example 4-3 on page 4-16 shows a TAL program that calls FastSort procedures to
perform a serial sort run.

FastSort Manual—429834-003
4-15

Sorting Programmatically

Sorting From TAL Programs

Example 4-3. TAL Example of a Serial Sort Run (page 1 of 3)

?SYMBOLS, NOCODE, | NSPECT, NAP, LMAP

! Fast Sort Serial Sort Run

Thi s program sends i nput

records to a SORTPROG process

usi ng SORTMERGESEND and then receives the sorted out put
records using SORTMERGERECEI VE. To reduce interprocess
messages, this programuses a bl ocked interface and de-

(Note: This program shows only FastSort procedure calls
and does not contain error recovery routines or other

|
|
|
!
I clares two buffers for nowait |/Ofor wites to SORTPROG
|
|
|
|

features that might be inplemented in an actual program)

I d obal declarations.

I NT . home’t er nmtname[0: 11]
INT home’terntfil enum

.ctl bl k[0:199];

555

flags2 := 1;
NT . key*array[O0: 3];

LI TERAL bl ock”l ength = 4096;
STRI NG . bl ock”™buffer [O: bl ock™l ength - 1];
STRI NG . bl ock”buf fer2[0: bl ock®l ength - 1];

c= 12*[" "], ! Term nal nane

I File nunber

I Control block for sort interface
flags := 0; I SORTMERGESTART f I ags

I

I

I FastSort record information and buffer.

LI TERAL nmax“count = 300;
I NT(32) dcount := 300D,
I NT .inbuf[0:35];

I NT .error”buf[0:31],
error”source,
error;

I NT(32) error”~code;

I NT .statistics[0:20];

I Maxi mum count
I Record count
! Record buffer

Error message

Error related info

Error return paraneter

Fast Sort and system error codes
Statistics buffer

?SOURCE $SYSTEM SYSTEM EXTDECSO (DEBUG,

?

NI NN) N))

)

2LI ST

I NI TI ALI ZER,
MYTERM

OPEN,

SORTMERGESTART,
SORTERRORSUM
SORTMERGESTATI STI CS,
SORTBUI LDPARM
SORTMERGESEND,
SORTMERGERECE! VE)

SORTMERGESTART fl ags2 for nowait 1/0O
SORTMERGESTART key field definitions

FastSort Manual—429834-003
4-16

Sorting Programmatically Sorting From TAL Programs

Example 4-3. TAL Example of a Serial Sort Run (page 2 of 3)

BEG N
I NT | engt h;
I NT i ndex;
I NT(32) buf”addr := $XADR(bl ock”buffer);
I NT(32) buf”addr2 : = $XADR(bl ock™buffer2);
INT(32) rec”addr := $XADR(i nbuf);

CALL MYTERM (hone”t er nt*nane) ;
CALL OPEN (hone”termname, home”terntfil enuny;
| F <> THEN CALL DEBUG
CALL I NI TI ALI ZER; ! Read the startup nmessage.

keyfarray[0] := 1; ! Nunber of keys

keyrarray[1l] :=9; | Definition = binary, signed, ascending
keyMarray[2] :=2; | Key length = 2 bytes

keyrarray[3] := 0; ! Key offset = O bytes

1

| Call SORTBU LDPARM to Initialize SORTPROG control block. !
I Request bl ocked, doubl e-buffered interface. !

error := SORTBU LDPARM (ctl bl k, ,,
buf ~addr, buf*addr 2,
bl ock”l engt h) ;

error := SORTMERGESTART (ctlblk,
key~array,,1,,,

dcount,,,,,,
flags,,,,, s+,
flags2);
IF error THEN I Check for SORTMERGESTART error.
BEG N
| ength : = SORTERRORSUM (ctl bl k,
errorbuf,

error”code,

error”source);
I Process the SORTMERGESTART error.
END;

Call SORTMERGESEND to send records to SORTPROG

(Note: This program sends successive negative values in
descendi ng order to SORTPROG SORTPROG then returns the
val ues sorted in ascending order. An actual program
woul d get input values from another source.)

FastSort Manual—429834-003
4-17

Sorting Programmatically Sorting From TAL Programs

Example 4-3. TAL Example of a Serial Sort Run (page 3 of 3)

length := 70; ! Set length of buffer.
FOR index := 1 TO nmax”“count DO
BEG N
inbuf := - index; ! Set value to send to SORTPROG
error := SORTMERGESEND (ctl bl k, ,
I ength,,,,
recMaddr);
IF error THEN ! Check for SORTMERGESEND error.
BEG N
| ength : = SORTERRORSUM (ctl bl k,
errorbuf,

error”code,
error”source);
! Process the SORTMERGESEND error.

END;
END;
length := -1; ! Indicate all records have been sent.
error := SORTMERGESEND (ctl bl k, ,
I ength,,,,
rec”addr);
IF error THEN ! Check for SORTMERGESEND error.
BEG N
I ength : = SORTERRORSUM (ct | bl k,
errorbuf,

error”~code,

error”~source);
I Process the SORTMERGESEND error.
END;

BEG N
error := SORTMERGERECEI VE (ctl bl k, i nbuf, | engt h);
IF error THEN ! Check for SORTMERGERECEI VE error.
BEG N
I ength : = SORTERRORSUM (ctl bl k,
error”~buf, error”code,
error”~source);
! Process the SORTMERGERECEI VE error.
END;
END

| Note: At this poi nt, an actual program woul d process the !
! sorted output records returned from SORTPROG !

| Return SORTPROG conpl etion status and statistics. Set !
! length to return all 21 words of statistics information. !

i ength := 21;
error := SORTMERCGESTATI STICS (ctlblk, length, statistics);
IF error THEN ! Check for SORTMERGESTATI STICS error.
BEG N
| ength : = SORTERRORSUM (ctl bl k,
errorbuf,
error”code,
error”source);
I Process the SORTMERGESTATI STICS error.
END;
END; I End of MAIN Procedure !

FastSort Manual—429834-003
4-18

Using FastSort System Procedures

This section describes the FastSort system library procedures. FastSort procedures
communicate between a user-written application process and a SORTPROG process.
The SORTPROG process runs independently of an application process and by default
resides in the $SYSTEM.SYSnn.SORTPROG program file.

For information about calling these procedures for serial sorting, see Section 4, Sorting

Programmatically. For information about calling these procedures for parallel sorting,
see Section 6, Sorting in Parallel. Both sections contain TAL and COBOL85 examples.

The table below describes the FastSort system library procedures in the order in which
you call them in an application.

Procedure Name Description

SORTBUILDPARM Specifies parameters for parallel sorting, record
blocking, and scratch volume structure.

SORTMERGESTART Begins the SORTPROG process and passes

parameters for a sort or merge run from the calling
process to SORTPROG.

SORTMERGESEND Sends input records from the calling process to the
SORTPROG process, one for each call.

SORTMERGERECEIVE Returns output records from the SORTPROG process to
the calling process, one for each call.

SORTERROR Provides the message text for the last FastSort error
code returned by a procedure.

SORTERRORDETAIL Provides the FastSort error code for the most recent
error and, if an input file caused the error, identifies the
input file.

SORTERRORSUM Provides all information that SORTERROR and

SORTERRORDETAIL provide and identifies the cause
of the most recent error if not an input file.

SORTMERGESTATISTIC Reports information about a sort or merge run and ends

S the run.
SORTMERGEFINISH Ends the sort or merge run and stops the SORTPROG
process.

In addition to the 350 words required by system procedure calls, the FastSort system
procedures require additional data stack space that is not automatically allocated by
the BINSERYV process during compilation. Use the table below to determine the
amount of additional space you need to allocate for an application that calls FastSort
procedures:

FastSort Manual—429834-003
5-1

Using FastSort System Procedures SORTBUILDPARM Procedure

Operation Description Additional Space
Simple Less than 5 keys, no subsorts, 1 input file 2 pages
Medium Greater than 5 keys, either subsorts or multiple input files 3 pages
Complex Greater than 5 keys, subsorts, multiple input files 4 pages

To allocate this additional space in an application, use one of the following methods:

® For a TAL application, use the DATAPAGES compiler directive during compilation.
Specify DATAPAGES 64 to allocate the maximum amount.

® For all applications, use the Binder SET EXTENDSTACK command after
compilation. Specify 64 PAGES to allocate the maximum amount.

® \When you run the program, specify 64 for the MEM option of the RUN command. If
you run the program from another application, specify 64 for the
PROCESS_CREATE_ or NEWPROCESS[NOWAIT] nenor y- pages parameter.

® Move user data from the user data segment to an extended data segment to free
up more data stack space for the call to SORTMERGESTART.

For information about TAL compiler directives, see the TAL Reference Manual. For
information about the Binder SET command, see the Binder Manual.

In addition to the requirements listed in the table above, if you specify either the
SCRATCHON or NOSCRATCHON attributes in a SORT DEFINE, FastSort requires up
to 138 additional words of stack space. To learn how FastSort uses this space to build
a pool of scratch volumes, see Table 5-1 on page 5-5.

If your application process starts a new process, FastSort also requires 30 to 35
additional words of stack space to support the PROCESS_CREATE_ procedure.

SORTBUILDPARM Procedure

Use SORTBUILDPARM to specify the following:
® A group of processors (CPUSs) for a parallel sort run
® A buffer for record blocking

® A list of volumes to be used or not used for scratch files

FastSort Manual—429834-003
5-2

Using FastSort System Procedures SORTBUILDPARM Procedure

The call to SORTBUILDPARM must precede the call to SORTMERGESTART.
SORTBUILDPARM stores your parameters in the sort control block, and
SORTMERGESTART passes the parameters to the SORTPROG process.

{ status :=} SORTBU LDPARM (ctl bl ock !
{ CALL } , [cpu-mask] !
, [not-cpu-nmask] !
,[buffer] !
,[buffer2] !
,[buffer-length] !
,[build-flags] !
, [define-nanme] !
: reservedl !
: reserved2 !
,[scratchvol s])!

reserved
reserved
i

st at us returned val ue
INT

returns a FastSort error code if an error occurred; if not, st at us returns 0.

ctl bl ock i nput
INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You
should not rely on the information in ct | bl ock, because this information can
change without warning.

cpu- mask i nput
INT:value

specifies processors (CPUSs) in which FastSort can run subsort processes.
FastSort can use a processor number (0 — 15) if the respective bit of the mask is
set to on. If you omit cpu- mask or the call to SORTBUILDPARM, all bits of the
mask are on. The not - cpu- mask parameter can override bit settings of cpu-
mask.

not - cpu- mask I nput
INT:value

specifies the processors (CPUSs) in which subsort processes cannot run. FastSort
cannot use a processor number (0 — 15) if the respective bit of the mask is set to
on.

buf fer i nput
INT(32):value

FastSort Manual—429834-003
5-3

Using FastSort System Procedures SORTBUILDPARM Procedure

is the address of a buffer that SORTPROG can use to block input records from
SORTMERGESEND or deblock output records for SORTMERGERECEIVE. This
buffer can be in the user data space segment (for buffer length up to 8 KB) orinan |
extended data segment. If the buffer is in an extended data segment, the segment
must be in use at the time of the call. You should not rely on the information in

buf f er, because this information can change without warning.

For double buffering, you can also specify the buf f er 2 parameter.

If you specify buf f er, you must specify the length of buf f er in the
buf f er - | engt h parameter.

buffer2 I nput
INT(32):value

Is the address of a second buffer that SORTPROG can use to block input records
from SORTMERGESEND and output records for SORTMERGERECEIVE. Like

buf f er, buf f er 2 can be in the user data space segment (for buffer length up to 8
KB) or in an extended data segment. If the buffer is in an extended data segment,
the segment must be in use at the time of the call. Also, if you specify both buffers

in an extended data segment, they must be in the same segment. You should not
rely on the information in buf f er 2, because this information can change without
warning. |

If you specify buf f er 2, you must specify the buf f er and buffer-1 ength
parameters. Both buffers have the length buf f er - | engt h.

Record blocking is valid only for sort runs. If you try to use record blocking with
merge runs, SORTPROG returns error 81 (BLOCKED INTERFACE NOT
ALLOWED WITH MERGE).

buffer-1|ength i nput
INT:value
is the length, in bytes, of buf f er and of buf f er 2 (if specified). The length can
range from 4 KB to 32 KB. I
bui |l d-fl ags i nput
INT:value

is limited to the bui | d- f | ags.<15> bit, which specifies the same restart option as
the SORTMERGESTART restart flag (f | ags.<15>). For more information on
description of f | ags.<15> bit, see Table 5-4 on page 5-32.

Other bui | d- f | ags bits are not used and should be set to 0.

To preserve SORTBUILDPARM parameters in the sort control block when you use
the restart option, call SORTBUILDPARM with bui | d- f | ags.<15> set to 1 before
you call SORTMERGESTART with f | ags.<15> set to 1. Before your process can

FastSort Manual—429834-003 |
5-4

Using FastSort System Procedures SORTBUILDPARM Procedure

use the restart flags, it must call SORTMERGESTATISTICS or an error must end
the SORTPROG process.

def i ne- nane I nput
INT:ref:12

Is an optional 12-word array that specifies the SORT DEFINE name to be used.
For more information, see Section 7, Using SORT and SUBSORT DEFINEs.

reservedl and reserved2
are reserved for future parameters. If you specify a value for r eser ved1l or
reser ved2, FastSort returns an error.

scratchvol s i nput
INT:ref:*

is a pointer to an array of the form shown in Table 5-1.

Table 5-1. SORTBUILDPARM scr at chvol s Structure
Word Description

0:7 Eight words reserved for use by FastSort library procedures.

8 Set to zero if SORTPROG should use specified volumes for scratch files.
Set to one if SORTPROG should not use specified volumes for scratch files.

9 The number of volumes specified in the following list. The range is 1 to 32.

10:13* The first entry on the list of volume names. The volume name must be of the
form $data, $data*, $sp?0*, and so on. The volume name must be eight
bytes long, blank padded on the right. There are no list separators.

137 If there are 32 volumes on the list, the final word of the array is word 137.
* Words 14 through 137 are optional.

Using 32 KB Buffers
FastSort supports buffers up to 32 KB.

Example

bui | d*status : = SORTBU LDPARM (sort bl ock, ,
bl ockbuf,
dbl buf f,
32768) ;

FastSort supports only buffered interface for records greater than 4072 bytes.

FastSort Manual—429834-003
5-5

Using FastSort System Procedures SORTBUILDPARM Procedure

Guidelines
Follow these guidelines when you call the SORTBUILDPARM procedure.

Specifying a Group of Processors for Subsort Processes

When you configure a parallel sort run, you can have the distributor-collector
SORTPROG process select processors for subsort processes. SORTPROG considers
processors you specify in the cpu- mask parameter. You can use the not - cpu- mask
parameter, which overrides cpu- mask, to exclude one or more processors.

FastSort selects a processor from the group if you do not specify a processor for a
subsort process in the process- st art parameter of SORTMERGESTART. If you do
not specify any processors, FastSort puts each subsort process in the processor that
runs the disk process for the subsort initial scratch file.

Improving Performance With Record Blocking and Nowait 1/0

If your program calls SORTMERGESEND or SORTMERGERECEIVE, you can reduce
the number of interprocess messages by using a single or double buffer for record
blocking. SORTMERGESTART provides the buffer to transfer a block of records to or
from SORTPROG, instead of a single record, in each interprocess message.

Record blocking is valid only for sort runs. If you try to use record blocking with merge
runs, SORTPROG returns error 81 (BLOCKED INTERFACE NOT ALLOWED WITH
MERGE).

Each call to SORTMERGESEND puts a record into the buffer, and each call to
SORTMERGERECEIVE returns a record from the buffer. FastSort transfers blocks of
unsorted records out of the buffer and blocks of sorted records into the buffer. You
specify block size, from 4 KB to 32 KB, in the buf f er - | engt h parameter.

Your process can use the second buffer to send or receive a single record while
FastSort transfers a block of records. This feature reduces the time your process waits
for SORTMERGESEND or SORTMERGERECEIVE to complete its operation.

Use buf f er 2 only if you want nowait I/O. You also need to use the f | ags2 parameter
in the call to SORTMERGESTART, with the f | ags2.<15> bit set to 1. Then the
FastSort routines call AWAITIO and switch the buffers when necessary.

/A Caution. YIf you use nowait I/0, your process should not call AWAITIO to wait on any file
(filenum=-1). If your application program calls AWAITIOX - 1 while a sort in invoked, the sort
will fail with error 5 (COMMUNICATIONS WITH THE SORT PROCESS HAVE FAILED).

For more information about AWAITIO, see the Guardian Procedure Calls Reference
Manual. For more information about nowait I/O, see the Guardian Programmer's
Guide.

Figure 5-1 on page 5-7 shows how FastSort transfers unblocked records between your
process and SORTPROG.

FastSort Manual—429834-003
5-6

Using FastSort System Procedures SORTBUILDPARM Procedure

Figure 5-1. Sending and Receiving Unblocked Records

User Application Process

SORTMERGESTART

Message Containing
One Unsorted Record

CORTMERGESEND

CORTM ERGERECEIVE

SORTMERGEFINISH

Message
Containing One v
Sorted Record

SORTPROG
Process

VST501.vsd

Figure 5-2 on page 5-8 shows how FastSort transfers blocked records between your
process and SORTPROG if you use nowait /0.

FastSort Manual—429834-003
5-7

Using FastSort System Procedures

SORTBUILDPARM Procedure

Figure 5-2. Sending and Receiving Blocked Records

SORTBUILDPARM

C;RTM ERGESEND

QORTM ERGERECE

SORTMERGESTART

SORTMERGEFINISH

User Application process

Define buffer

>

Double

One record at a time Buffer

>

One record at a time

IVE -

Message
containing a
block of
unsorted
records

-
Message
containing a
block of
sorted records

SORTPROG
process

VST502.vsd

Using Buffers in Extend

ed Addresses

If buf f er or buf f er 2 is an extended address, the address must be relative. It cannot
be an absolute extended address. The extended segment must be allocated and in
use when the FastSort library procedures are called. Do not deallocate or decrease the
size of the extended data segment after calling SORTBUILDPARM. An invalid

extended address causes a

Example

bui | d*st at us

n illegal address trap.

: = SORTBUI LDPARM (sort bl ock, , ,

bl ockbuf,
dbl buf f ,
8192);

FastSort Manual—429834-003
5-8

Using FastSort System Procedures SORTERROR Procedure

SORTERROR Procedure

Use SORTERROR to provide the message text for the last FastSort error code
returned by a FastSort procedure.

{ length : =} SORTERROR (ctl bl ock !

o —

{ CALL } , buffer) !
| ength returned val ue
INT

returns the number of characters in the error message.

ctl bl ock i nput
INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You
should not rely on the information in ct | bl ock, because this information can
change without warning.

buffer out put
INT:ref:32

is a 32-word integer array that receives the FastSort error code message text.
SORTPROG does not pad the text with blanks if the buffer is shorter than 32
words. Any bytes to the right of the text remain unchanged.

Example

textl en : = SORTERROR (sort bl ock,
out buf);

SORTERRORDETAIL Procedure

Use SORTERRORDETAIL to obtain the file-system or NEWPROCESS error code and
the FastSort error code for the most recent error. If an input file caused the error,
SORTERRORDETAIL also uses an index to identify the file in the array of file names
created by the i n-fi | e- nanme parameter of the SORTMERGESTART procedure.

{ status :=} SORTERRORDETAIL (ctl bl ock) P
{ CALL }

st at us returned val ue
INT(32)

FastSort Manual—429834-003
5-9

Using FastSort System Procedures SORTERRORSUM Procedure

returns error codes and the index of an input file in a double-word integer. The
high-order word contains the file-system or NEWPROCESS error code. The low-
order word contains the FastSort error code in the low-order byte and an index
identifying the input file that caused the error in the high-order byte. The index is
one of those in the array of file names created by the i n- f i | e- nane parameter of
SORTMERGESTART.

If no input file caused the error or if no error is outstanding, the low-order bits
0 through 7 are 0.

This is the format for the double-word integer:

Parameter Bits
Word 0123456780910 11 1213 14
15
High-order File system or NEWPROCESS(NOWAIT) error code
Low-order FastSort input file index FastSort error code
ctl bl ock i nput
INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You
should not rely on the information in ct | bl ock, because this information can
change without warning.

Example
detai | *status : = SORTERRORDETAI L (sortbl ock);

SORTERRORSUM Procedure

Use SORTERRORSUM to obtain the information that SORTERROR and
SORTERRORDETAIL provide and to identify the cause of the last error. In parallel
sorting, SORTERRORSUM specifies the process and processor (CPU) in which the
last error occurred.

{ length : =} SORTERRORSUM (ctl bl ock P
{ CALL } ,[buffer] I o
,[error-code] I o
,[error-source] I o
,[subsort-index] ! o
,[subsort-id]) I o
| ength returned val ue
INT

returns the number of characters in the error message.

FastSort Manual—429834-003
5-10

Using FastSort System Procedures SORTERRORSUM Procedure

ctl bl ock i nput
INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You
should not rely on the information in ct | bl ock, because this information can
change without warning.

buf f er out put
INT:ref:*

is a 16-word integer array that receives the error message text. SORTPROG does
not pad the text with blanks if the buffer is shorter than 16 words. Any bytes to the
right of the text remain unchanged.

error-code out put
INT(32)

receives error codes and the index of an input file in a double-word integer. The
high-order word contains the file-system or NEWPROCESS error code. The low-
order word contains the FastSort error code in the low-order byte and an index
identifying the input file that caused the error in the high-order byte. The index is
one of those in the array of file names created by the i n-f i | e- nane parameter of
the SORTMERGESTART procedure.

If no input file caused the error or if no error is outstanding, the low-order bits
0 through 7 are 0.

This is the format for the double-word integer:

Bits
0O 1 2 3 4 5 6|7 8 9 10 11 12 13 14 15

Parameter Word

High-Order File-System or NEWPROCESS[NOWAIT] Error Code
Low-Order FastSort Input File Index FastSort Error Code
VST503.vsd
error-source out put
INT:ref:1

is a buffer that specifies the cause of the last FastSort error; er r or - sour ce can
be one of the following values:

Value Cause of Error

-1 The information is not available.
Input file
Output file

FastSort Manual—429834-003
5-11

Using FastSort System Procedures SORTMERGEFINISH Procedure

Value Cause of Error
3 Scratch file
4 The free-list file (an additional scratch file that SORTPROG allocates for
internal memory management when sorting large amounts of data)
5 Process communication
subsort-i ndex out put
INT:ref:1

receives the relative number of a subsort process that caused the last error. If the
distributor-collector caused the last error or if you did not specify any subsort
processes, SORTPROG sets subsort -i ndex to —1.

subsort-id out put
INT:ref:1

receives the CPU and process identification numbers (PINs) of the subsort process
that caused the last error. If you did not specify a subsort processes or if the
distributor-collector process caused the error, SORTPROG sets subsort-idto—

1.
Example
error”™l ength : = SORTERRORSUM (sort bl ock,
buf f er,
error”~code,
sour ce,

subsort i ndex,
subsort”id);

SORTMERGEFINISH Procedure

Use SORTMERGEFINISH to end the SORTPROG process after the process
completes the sort or merge run. A sorting or merging error stops the SORTPROG
process when the error occurs. If SORTPROG stops due to an error, the next call to a
FastSort procedure returns an error.

{ status :=} SORTMERGEFI NI SH (ctl bl ock P
{ CALL } ,[abort] P
,[sparel] I reserved
, | spare2]) I reserved
st at us returned val ue
INT

returns a FastSort error code if an error occurred:; if not, returns 0. For more
information about error messages, see Appendix B, FastSort Error Messages.

FastSort Manual—429834-003
5-12

Using FastSort System Procedures SORTMERGERECEIVE Procedure

ctl bl ock i nput
INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You
should not rely on the information in ct | bl ock, because this information can
change without warning.

abort i nput
INT:value

specifies when the SORTPROG process should stop:

0 Specifies that the SORTPROG process stop after completion of the current
sort or merge run. This is the default value.

1 Specifies that the SORTPROG process stop immediately. The calling
process receives system message -5 in its SRECEIVE file:

-5 PROCESS NORMAL DELETI ON (STOP)

sparel and spare2 reserved
are reserved for future parameters. If you specify a value for spar el or spar e2,

FastSort returns an error.
Example
error := SORTMERGEFI NI SH (sort bl ock);

SORTMERGERECEIVE Procedure

Use SORTMERGERECEIVE to return the output records from the SORTPROG
process directly to the calling process. Use SORTMERGERECEIVE if you omit the
out -fi | e- nanme parameter from the call to SORTMERGESTART or if

out -fi | e- name equals all blanks.

{ status :=} SORTMERGERECEI VE (ctl bl ock P
{ CALL } ,[record-loc] I o
, ength ' o
,[sparel] !
reserved
, [spare2] !
reserved
,[record-loc-ext] ! o

st at us returned val ue
INT

returns a FastSort error code if an error occurred; if not, returns O.

FastSort Manual—429834-003
5-13

Using FastSort System Procedures SORTMERGERECEIVE Procedure

ctl bl ock i nput
INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You
should not rely on the information in ct | bl ock, because this information can
change without warning.

record-1| oc out put
INT:ref:*

is @ memory location for receiving a record. The maximum record size from
SORTMERGESTART determines the maximum length of this buffer. You must
specify record- 1 oc orrecor d-1 oc- ext, but you cannot specify both. For
buffer size of 32 KB, the r ecor d- | oc cannot be used, instead r ecor d- | oc- ext
must be used.

| ength out put
INT:ref:1
receives the length, in bytes, of the record retrieved. A value of —1 indicates there
are no more records to return.

sparel and spare2 reserved

are reserved for future parameters. Specifying a value for spar el or spar e2
causes an error. However, if you specify r ecor d- | oc- ext , you must put the
commas in the call to reserve places for these parameters.

record-| oc- ext out put
INT(32):ref:*

is an extended memory location for receiving a record. You must specify r ecor d-
| oc- ext orrecord-| oc, but you cannot specify both parameters. For buffer size
of 32 KB, only the r ecor d- | oc- ext must be used.

Guidelines
Follow these guidelines when you call the SORTMERGERECEIVE procedure.

Omitting the Name of the Output File

If you omit the out - fi | e- nane parameter from the call to SORTMERGESTART or if
out - f il e- nane equals all blanks, you must call SORTMERGERECEIVE to return
the output records, one for each call, to the calling process. You specify the format for
the output records in the f or mat parameter of SORTMERGESTART. SORTPROG
produces output records in any of these formats:

® The entire record

FastSort Manual—429834-003
5-14

Using FastSort System Procedures SORTMERGESEND Procedure

® The sequence number as a 32-bit (4-byte) integer (permutation sort)
® The key-field values strung together (key sort)

® The sequence number followed by the key-field values strung together
(permutation and key sort)

Receiving Output Records in Extended Memory

You can receive output records from SORTPROG in an extended data segment (which
must be in use at the time of the call). If you want SORTMERGERECEIVE to return a
record to a location in extended memory (which must be mapped), use the

record-| oc- ext parameter instead of r ecor d- | oc to specify the address.

Deblocking Records to Reduce Interprocess Messages

You can specify a single or double buffer for record blocking and deblocking in a call to
SORTBUILDPARM. SORTMERGESTART provides the buffer for FastSort to transfer a
block of records (instead of a single record) in each interprocess message to or from
SORTPROG. Each call to SORTMERGERECEIVE returns a record from this buffer.

Record blocking is valid only for sort runs. If you try to use record blocking with merge
runs, SORTPROG returns error 81 (BLOCKED INTERFACE NOT ALLOWED WITH
MERGE).

Example

This example specifies RECLOC to receive the output record and LENGTH to receive
the number of bytes in the record returned:

recei vestatus : = SORTMERGERECEI VE (sort bl ock,
recl oc,
| engt h) ;

SORTMERGESEND Procedure

Use SORTMERGESEND to provide input records from the calling process directly to
the SORTPROG process. Use SORTMERGESEND if you omitthe i n-fi |l e- nanme
parameter from the call to SORTMERGESTART orifi n-fi | e- nane equals all
blanks.

{ status :=} SORTMERGESEND (ctl bl ock

P
{ CALL } ,[record-loc] P
, I ength P
,[streamid] I o
[sparel] I reserved
I reserved
L

{ spare2])

record-1| oc-ext | i

FastSort Manual—429834-003
5-15

Using FastSort System Procedures SORTMERGESEND Procedure

st at us returned val ue
INT

returns a FastSort error code if an error occurred; if not, returns O.

ctl bl ock I nput
INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You
should not rely on the information in ct | bl ock, because this information can
change without warning.

record-| oc I nput
INT:ref:*

is the memory location of an input record. You must specify r ecor d- | oc or
record-| oc- ext, but you cannot specify both. r ecor d- | oc- ext must be used
instead of r ecor d- | oc for records of size greater than 4072 bytes.

| ength i nput
INT:value

is the length, in bytes, of the input record. The length can vary for input records for
a sort or merge run. The length can be no smaller than the offset from the start of a
record to the first character of the rightmost key and no larger than the longest
input record length you specify inthe i n-fi | e-recor d-| engt h parameter of the
SORTMERGESTART procedure.

After sending the last record for a sort run, call SORTMERGESEND with | engt h
set to —1, which indicates to SORTPROG that your process has sent all the
records for the run.

After sending the last record from an input stream for a merge run, call
SORTMERGESEND with | engt h set to —1 for the stream, which indicates to
SORTPROG that your process has sent all the records from the input stream.

streamid out put
INT:ref:1

receives the number of the input stream from which SORTMERGESEND should
get the next record for merging. When all input streams have no more records,
SORTMERGESEND sets st r eam i d to —1 to indicate that all input was sent.

You must specify this parameter if you specify more than one merge file in the call
to SORTMERGESTART and ifi n-fi | e- nanme equals all blanks.

FastSort Manual—429834-003
5-16

Using FastSort System Procedures SORTMERGESEND Procedure

spare-1 and spare-2 reserved

are reserved for future parameters. If you specify a value for spar el or spar e2,
FastSort returns an error. However, if you specify r ecor d- | oc- ext , you must put
the commas in the call to reserve places for these parameters.

FastSort Manual—429834-003
5-17

Using FastSort System Procedures SORTMERGESEND Procedure

record-| oc- ext I nput
INT(32)

Is the extended memory location of an input record. You must specify
record-1| oc-ext orrecord-| oc, but you cannot specify both parameters.
record-| oc- ext must be used instead of r ecor d- | oc, for records of size
greater than 4072 bytes.

Guidelines
Follow these guidelines when you call the SORTMERGESEND procedure.

Omitting the Input File Name or Names

If you omit the i n-fi | e- nanme parameter from the call to SORTMERGESTART or if
i n-fil e-name equals all blanks, you must call SORTMERGESEND to provide
records for sorting or merging. Each call to SORTMERGESEND gives SORTPROG
one input record.

Supplying Records From SORTMERGESEND for a Single Run

You cannot supply records from both SORTMERGESEND and disk files for the same
sort or merge run.

SORTMERGESEND can send input records for sorting or for merging but cannot send
records for both operations in the same run.

Sending Input Records From Extended Memory

You can send each input record from an extended data segment (which must be in use
at the time of the call). If you want SORTMERGESEND to send a record from a
location in an extended segment, specify r ecor d- | oc- ext instead of recor d- | oc
for the address of the record.

Blocking Records to Reduce Interprocess Messages

You can specify a single or double buffer for record blocking and deblocking in a call to
SORTBUILDPARM. SORTMERGESTART provides the buffer to transfer a block of
records instead of a single record in each interprocess message to or from
SORTPROG. Each call to SORTMERGESEND puts a record into this buffer.

For more information, see SORTBUILDPARM Procedure on page 5-2.

Record blocking is valid only for sort runs. If you try to use record blocking with merge
runs, SORTPROG returns sort error 81 (BLOCKED INTERFACE NOT ALLOWED
WITH MERGE).

FastSort Manual—429834-003
5-18

Using FastSort System Procedures SORTMERGESTART Procedure

Merging Records From Input Streams

An input stream is a source of sorted records for merging. You can specify up to 32
input streams in the call to SORTMERGESTART, with the num nmer ge-fi |l es and

i n-fil e-name parameters. The i n-fi | e- nane parameter must specify all blanks
as the name for each input stream.

The first call to SORTMERGESEND sends the first input record from stream 0. After
each call, SORTMERGESEND puts the number of the next input stream that
SORTPROG wants a record from in st r eanmt i d. Stream numbers are consecutive
integers.

When an input stream has no more records, you set the | engt h parameter of
SORTMERGESEND to —1. When all input streams have no more records,
SORTMERGESEND sets st ream i d to —1; then SORTPROG finishes merging the
records and produces the output file or returns the records through
SORTMERGERECEIVE.

Examples

In this example, INBUF contains one input record, and INLEN is the number of bytes in
the record:

send”status : = SORTMERGESEND (sort bl ock,
I nbuf,
I nl en);

In the next example, INBUF*EXT is the extended memory location of an input record.
Commas reserve places for the record-1 oc, streanti d, sparel, and spar e2

parameters:

send”status : = SORTMERGESEND (sort bl ock, ,
inlen,,,,
i nbuf "ext);

SORTMERGESTART Procedure

Use SORTMERGESTART to start the SORTPROG process and pass parameters to
SORTPROG for a sort or merge run. This procedure begins every run when you use

FastSort Manual—429834-003
5-19

Using FastSort System Procedures SORTMERGESTART Procedure

FastSort through a program. A COBOLS85 program can call SORTMERGESTART
through the SORT or MERGE statement.

{ status : =} SORTMERGESTART (ctl bl ock
{ CALL } , key- bl ock

[num nerge-files]
numsort-files |
in-file-name]
| e- excl usi on- node]
e-count]

fi
fi
file-record-length]

i n-
in-fil
in-file-
format]

out-file-nane |

out-fil e-exclusion-node]
out-file-type]

flags |

errnum]

errproc |

scratch-fil e-nane |

scrat ch- bl ock]
process-start]
max-record-| ength]

col | at e-sequence-tabl e |

et T et

dsl ack]

i slack]

flags2]
subsort-count |
spare5])

reserved
st at us returned val ue
INT

returns a FastSort error code if an error occurred:; if not, returns O.

ctl bl ock i nput
INT:ref:200

is a 200-word integer array that FastSort procedures use as an internal control
block to store information. After the calling process declares ct | bl ock, it must not
alter any values in the control block between the call to SORTMERGESTART and
the call to SORTMERGEFINISH; otherwise, the SORTPROG process returns a
FastSort error code and stops. Also, do not rely on the information in ct | bl ock,
because this information can change without warning.

FastSort Manual—429834-003
5-20

Using FastSort System Procedures SORTMERGESTART Procedure

key- bl ock I nput
INT:ref:*

IS an integer array defining the key fields. Its size is one word plus three words for
each key. The first word contains the total number of keys. The rest of the array
contains three-word descriptions of the keys. The maximum number of keys is 63.

For more information, see Key-Field Definitions in the Key-Block Array on
page 5-30.”

num nerge-files i nput
INT:value

is the number of input files for merging. The amount of space available for the
scratch file determines the maximum number of records SORTPROG accepts. The
total number of files for both sorting and merging must be greater than 0 and
cannot exceed 32. If you omit the num sort - f i | es parameter (or specify a value
of 0), you must specify a value for num nerge-fil es.

If the merge files are input streams, the i n-f i | e- name parameter must specify all
blanks as the name of each stream, and SORTMERGESEND must send each
record to SORTPROG. For more information, see Merging Records From Input
Streams on page 5-19.

numsort-files I nput

INT:value

is the number of input files for sorting. The amount of space available for the
scratch file determines the maximum number of records SORTPROG accepts. The
total number of files for both sorting and merging cannot exceed 32. If you omit the
I n-fil e-name parameter, the number of sort files must be 1. If you omit the
num ner ge-fi | es parameter (or specify a value of 0), you must specify a value
fornum sort-files.

in-file-nane i nput
INT:ref:*

is an array including one 12-word entry for each input file. SORTPROG accepts a
set of input files in the order presented, with the merged files first. If you specify
more than one input file, you must specify a name for each file. The name can be
all blanks for a single sort file. Each name must be all blanks if the input files are
streams for merging.

When working with more than one input file, SORTPROG uses the same key-field
specifications for all input records.

You can specify files containing sorted records and files containing unsorted
records for the same sort run.

FastSort Manual—429834-003
5-21

Using FastSort System Procedures SORTMERGESTART Procedure

If you omiti n-fil e- name or if it equals all blanks, your process must call
SORTMERGESEND to send each input record to SORTPROG.
SORTMERGESEND cannot send both sorted and unsorted records for the same
sort run. For more information, see SORTMERGESEND Procedure on page 5-15.

You can specify the same file in both i n-fi | e-nanme and out -fi | e- nane for a
sort run but not for a merge run.

/A Caution. If you specify the same file as both an input file and the output file for a sort run, you
can lose all the data from the input file if an error or processor failure terminates the
SORTPROG process.

i n-file-exclusion-node i nput
INT:ref:*

is an array including a one-word entry for each input file. Each entry contains the
exclusion mode SORTPROG uses when it opens the corresponding input file. If
you specify an exclusion mode for one input file, you must specify a mode for each
input file for a sort or merge run. Use one of the following values to specify the
exclusion mode:

Value Exclusion Mode

-1 Use the default mode
SHARED
EXCLUSIVE
PROTECTED

For SHARED access, if another process is writing to the input file while FastSort is
reading it, the operating system might return file-system error 59 (FILE 1S BAD).
However, the file is not necessarily corrupted. Retry the sort or merge run.

If you specify PROTECTED for thei n-fil e- excl usi on- node parameter, the
i n-fil e-name parameter cannot specify the same file name as the

out - fi | e- nanme parameter; otherwise, SORTPROG returns sort error 49
(INVALID EXCLUSION MODE SPECIFIED).

If you specify —1 or omit this parameter, these default exclusion modes apply:

Device Exclusion Mode
Permanent disk file PROTECTED
Temporary disk file SHARED
Terminal SHARED

Other EXCLUSIVE

If you want your process to read the input file at the same time as SORTPROG,
specify PROTECTED exclusion mode for SORTPROG and use SHARED
exclusion mode when your process opens the file.

FastSort Manual—429834-003
5-22

Using FastSort System Procedures SORTMERGESTART Procedure

in-file-count I nput
INT(32):ref:*

Is an array including one 32-bit entry for each input file. Each entry contains the
maximum number of records in the corresponding input file. When input is from a
source other than disk, SORTPROG usesi n-fil e- count to estimate the space
required for the scratch file.

If you omiti n-fil e-count or specify -1, SORTPROG determines the maximum
number of records as follows:

® [or a structured disk file, SORTPROG estimates the number of records in the
file by looking at the end-of-file location and determining the structured
overhead.

® For an unstructured disk file, SORTPROG calculates an approximate number
of records in the file. The approximate number of records for an EDIT file is the
end-of-file location multiplied by 2 and divided by the record length. The
approximate number of records for other unstructured files is the end-of-file
location divided by the record length. The default record length for unstructured
files is 132 bytes.

® For files other than disk files and records supplied by SORTMERGESEND, the
default number of records is 50,000.

in-file-record-1ength i nput
INT:ref:*

is an array including one 16-bit entry for each input file. Each entry contains the
maximum record length in the corresponding input file. The largest record length
allowed is 4080 bytes. If you omiti n-fi |l e-| engt h or specify -1, SORTPROG
uses the default record length.

You can omit this parameter when the input file is a structured disk file, because
the length is in the file label.

To use an odd unstructured file for an input file, you must specify the correct length
inin-file-record-Iength. Forunstructured disk files, files other than disk
files, and records supplied by SORTMERGESEND, the default maximum record
length is 132 bytes.

f or mat I nput
INT:value

specifies the output record format with one of these values:

FastSort Manual—429834-003
5-23

Using FastSort System Procedures SORTMERGESTART Procedure

The output records are in the same format as the input records. This is a
record sort, the default SORTPROG uses when you omit f or mat .

The output records are 32-bit integers describing the order of the sorted
records. This is a permutation sort. For example, if the 20th input record
is first in order after sorting, 20 is the value of the first output record.

Each output record consists of the key-field values concatenated in the
order you defined the fields. This is a key sort. If a key field extends
beyond the end of a variable-length record, SORTPROG pads the key
values with blanks for a structured file.

Each output record begins with the 32-bit (4-byte) record number
followed by the concatenated values of the key fields. This is a combined
permutation and key sort.

out-file-nane I nput
INT:ref:12

is a 12-word array that names the file for the output records. If you omit
out - fi |l e- nane or it equals all blanks, SORTMERGERECEIVE must return the
records, one for each call, to the calling process.

If out - f i | e- nane specifies an existing file that has a different type than
out-file-type orthe default forout -fil e-type, SORTPROG purges the file
and creates a new one with the same name.

/A Caution. If you specify the same file as both an input file and the output file for a sort run, you
can lose all the data from the input file if an error or processor failure terminates the
SORTPROG process.

out-file-excl usion-node i nput

INT:value

is the exclusion mode with which SORTPROG opens the output file. Use one of
the following values to specify the exclusion mode:

Value
-1

Exclusion Mode
Use the default mode
SHARED
EXCLUSIVE
PROTECTED

FastSort Manual—429834-003
5-24

Using FastSort System Procedures SORTMERGESTART Procedure

If you specify —1 or omit this parameter, FastSort uses one of the following default
exclusion modes:

Device Exclusion Mode
Disk or magnetic tape file EXCLUSIVE
Temporary disk file SHARED
Terminal SHARED

out-file-type I nput
INT:value

specifies the type of file SORTPROG creates for the output records. Use one of
the following codes to specify a file type:

Code File Type

-1 Default (same effect as omitting parameter)
0 Unstructured file

1 Relative file

2 Entry-sequenced file

3 Key-sequenced file

You can omit this parameter if you omit out -fi | e-nanme orifout-fil e- name
equals all blanks. In this case, SORTMERGERECEIVE returns the output records
to the calling process. For more information, see SORTMERGERECEIVE
Procedure on page 5-13.

The default for out - f i | e-t ype is the file type of the existing output file, if any, or
of the first input file. SORTPROG can send output to key-sequenced files but not to
EDIT files.

To use an odd unstructured file for out - f i | e- nane, create the file using the FUP
CREATE command or the CREATE system procedure before the sort or merge
run. Then setout -fil e-type to-1.

fl ags I nput
INT:value

directs SORTPROG to perform a specific set of operations as shown in Table 5-4
on page 5-32. If you set f | ags.<15> to 1 (the restart option) and change the
current process- st art parameters, an existing SORTPROG process ignores
the changes, except for the priority word. Set the unused f | ags bits to 0.

To use nowait I/O, specify the f | ags2 parameter.

errnum out put
INT(32):ref:1

FastSort Manual—429834-003
5-25

Using FastSort System Procedures SORTMERGESTART Procedure

receives a completion code of O if no error occurred or receives error codes if an
error occurred. The high-order word has the file-system or NEWPROCESS error
code. The low-order byte of the low-order word has the FastSort error code:

Bits
o 1 2 3 4 5 6 |7 8 9 10 11 12 13 14 15

Parameter Word

High-Order File-System or NEWPROCESS[NOWAIT] Error Code

Low-Order FastSort Input File Index FastSort Error Code

VST503.vsd

You can use SORTERRORSUM to supply the text of the FastSort error message
and to get the index of the input file in the i n-fi | e- nane array.
SORTERRORSUM also identifies the output file, scratch file, or SORTPROG
process that caused an error.

Note. FastSort saves the address of er r numin its control block. If an error occurs for calls to
SORTMERGESEND, SORTMERGERECEIVE, SORTMERGEFINISH,
SORTMERGESTATISTICS, or SORTMERGESTART, FastSort returns an error to this address.
A user procedure that calls these procedures can access er r num However, HP recommends
that you call SORTERRORDETAIL rather than use the er r numparameter to get error
information.

errproc i nput

is a procedure that FastSort can call when an error occurs. For more information,
see Writing a User Error Procedure on page 5-37.

scratch-fil e-nane I nput

INT:ref:12
INT:ref:*

is a 12-word name for an initial scratch file or an array with a file name for each
subsort scratch file. You can name only a scratch volume in the first 8 bytes and
leave the remaining bytes blank. If you specify an existing file, it must be
unstructured.

If you specify subsort - count, the size of the scrat ch-fi | e- nane array is the
value of subsort -count + 1. The first file name is a scratch file for the distributor-
collector process, and each additional file name is an initial scratch file for a
subsort process, as in this example:

I NT DI STASCRATCH 0: 11] = [" NE
| NT SUB1MSCRATCH 0: 11] : = ["$DATAL NE
| NT SUB2"SCRATCH 0: 11] : = ["$DATA2 "1

FastSort Manual—429834-003
5-26

Using FastSort System Procedures SORTMERGESTART Procedure

If you do not specify subsort - count, then scrat ch-fi |l e- nane is the initial
scratch file for a serial sort or merge run. If you omit scrat ch-fi | e- nanme or it
equals all blanks, SORTPROG creates a scratch file on a suitable volume. You
cannot omit or use blanks for a subsort scr at ch-fi | e- name. For more
information about scracth files, see Table 5-4 on page 5-32.

scrat ch- bl ock I nput
INT:value

is the size, in bytes, of input and output blocks for SORTPROG scratch files. The
scrat ch- bl ock value can be any multiple of 2048 up to 56 KB. The value must
be large enough to accept the largest input record, rounded up to the nearest even
byte, plus 14 bytes of overhead.

If you omit scr at ch- bl ock or specify —1, the default value for scr at ch- bl ock,
SORTPROG uses the default scratch block size of 56 KB.

For parallel sorting, specify scr at ch- bl ock only for the distributor-collector
process. The subsort processes use the same block size as the distributor-
collector.

process-start I nput
INT:ref:*

specifies the parameters for starting each SORTPROG process.

For serial sorting, pr ocess- st art uses only the first four words of the
NEWPROCESS structure.

For parallel sorting, pr ocess- st art must use the 29-word expanded
NEWPROCESS structure and include an entry for each process, starting with the
distributor-collector. You must set f | ags.<6> to 1 to use the 29-word expanded
NEWPROCESS structure. Table 5-2 on page 5-28 describes the layout of this
structure.

FastSort Manual—429834-003
5-27

Using FastSort System Procedures SORTMERGESTART Procedure

Table 5-2. Expanded NEWPROCESS Structure
Word Entity Description

0* Priority Assigns the priority of the SORTPROG process. If priority equals —1,
the default value, the SORTPROG process has the same priority as
the calling process.

1* Memory Specifies the maximum number of data pages the SORTPROG
process can use. SORTPROG always uses 64 for this value.
2* CPU Specifies the number of the processor (CPU) in which SORTPROG

runs. If CPU equals —1, the default value, SORTPROG runs in the
same processor as the calling process or, in parallel sorting, in a
processor that FastSort selects. You can specify a group of
processors for FastSort to select from by using the cpu-mask or
not-cpu-mask parameters or both in a call to SORTBUILDPARM.

3* System Specifies the number of the system in which SORTPROG runs. If
system equals —1, the default value, SORTPROG runs on the same
node as the calling process. See the LOCATESYSTEM procedure in
the Guardian Procedure Calls Reference Manual. FastSort does not
use this parameter for parallel sort runs.

4 Segment Specifies the size of the extended memory segment from 256 to
62,255 pages. If segment equals —1, the default value, segment size
is controlled by the MINTIME and MINSPACE flags of the f | ags
parameter. The size cannot be more than 90 percent of the
processor’s physical memory not locked down by the operating
system. To use this parameter, you must set flags.<6>to 1. The
segment size you specify overrides the MINSPACE or MINTIME flag.
To specify a segment size of greater than 32,767 you must set
fl ags2.<4>to 1.

5:16 Swap-file Specifies the name of the swap file for the extended memory segment.
[0:11] The swap file must be on the local node. If swap-file equals all blanks,
the default value, FastSort creates a temporary file on the same
volume as the scratch file if the scratch file is local. If not, FastSort
creates a temporary file on the volume where SORTPROG is running.
To use this parameter, you must set flags.<6> to 1.

17:28 Sort- Specifies the name of a file that contains the SORTPROG program. If
program sort-program equals all blanks, the default value, FastSort runs the
[0:11] program in $SYSTEM.SYSnn.SORTPROG. To use this parameter,

you must set flags.<6>to 1.

* The process- st art structure consists of words 0-3 of this NEWPROCESS structure.

If you use process- st art, you must specify a value for each parameter in every
29-word entry. You can specify the default value for any parameter. The default
value for swap-file and sort-program is all blanks. The default value for the other
parameters is —1.

FastSort Manual—429834-003
5-28

Using FastSort System Procedures SORTMERGESTART Procedure

max-record-| engt h out put
INT:ref:*

You should specify max- r ecor d- | engt h as a reference to a single 16-bit word
used for OUTPUT. In max- r ecor d- | engt h, SORTMERGESTART returns the
size of the largest output record that FastSort writes to the output file or returns
through SORTMERGERECEIVE.

col | at e- sequence-tabl e I nput
STRING:ref:256

Is a 256-byte array defining an alternate collating sequence for SORTPROG to use
in the sort or merge run. This parameter applies to alphanumeric string items only.
SORTPROG uses each alphanumeric character as an index into the collating table
to obtain the value to use for comparisons.

To cause SORTPROG to use the alternate collating sequence table, you also need
to set f | ags.<10> to 1. If this bit is 0, SORTPROG ignores
col | at e- sequence-tabl e.

dsl ack I nput
INT:value

specifies the percentage of data slack for a key-sequenced output file. The range is
0 - 99 and the default is 0.

i sl ack I nput
INT:value
specifies the percentage of index slack for a key-sequenced output file. The default
is O slack.
flags2 I nput
INT:value

directs FastSort to use nowait I1/0O if f | ags2.<15> is set to 1. To use nowait 1/O,
you must also specify the buf f er 2 parameter in the SORTBUILDPARAM
procedure call; otherwise FastSort returns sort error 74 (INVALID BLOCK
ADDRESS SPECIFIED).

If you specify nowait 1/0O, the FastSort routines call AWAITIO when necessary. Your
process should not call AWAITIO to wait on any file (fi | enum=-1). For more
information about AWAITIO, see the Guardian Procedure Calls Reference Manual.
For information about nowait I/O, see the Guardian Programmer's Guide.

Also directs FastSort to use up to 127.5 MB of extended memory if available and
fl ags2. <4>is set to 1. Note that if you set f | ags2. <4> to 0, FastSort does not
turn VLM off. For more information about VLM, see Using VLM on page 9-10.

FastSort Manual—429834-003
5-29

Using FastSort System Procedures SORTMERGESTART Procedure

Other f | ags2 bits are not used and should be set to 0.

subsort - count I nput
INT:value

specifies the number of subsort processes from 2 to 8. Higher numbers can cause
run-time errors, depending on your system configuration and the system load. If
subsort-count equals n,scratch-fil e-name and process-start become
integer arrays of dimensionn + 1.

spar eb reserved
INT:value

is reserved for a future parameter. If you specify a value for spar e5, FastSort
returns an error.

Guidelines

Follow the guidelines on the next pages when you call the SORTMERGESTART
procedure.

Data Stack Space

In addition to the 350 words required by system procedure calls, the
SORTMERGESTART procedure requires additional data stack space that is not
automatically allocated by the BINSERYV process during compilation. Refer to the table
at the beginning of this section as a guideline to determine the amount of additional
space you need to allocate for an application that calls SORTMERGESTART.

Key-Field Definitions in the Key-Block Array

The first word of the key-block array is the number of keys. After the first word, each
three words describe a key as follows:

Word Description

0 Number of Keys
1:3 Description of First Key
4:6 Description of Second Key

Description of Last Key

Table 5-3 on page 5-31 lists the values for each three-word key description.

FastSort Manual—429834-003
5-30

Using FastSort System Procedures

SORTMERGESTART Procedure

Table 5-3. Key-Field Definitions

Bit
Word Positions
0 <0>
<1>
<2:7>
<8:15>
1 <0:15>
2 <0:15>

Values and Description

O

Type

Length

Offset

0 = Ascending order

1 = Descending order

0 = Do not upshift

1 = Upshift (alphanumeric string only)

Reserved; must be 0

1 = ALPHANUMERIC STRING

2 = UNSIGNED NUMERIC STRING

3 = NUMERIC STRING SIGN, TRAILING EMBEDDED
4 = NUMERIC STRING SIGN, TRAILING SEPARATE
5 = NUMERIC STRING SIGN, LEADING EMBEDDED
6 = NUMERIC STRING SIGN, LEADING SEPARATE
9 = BINARY SIGNED

10 = BINARY UNSIGNED

11 = FLOAT

Key length in bytes. For key type 11, length must be 4 or 8
bytes. For key types 3 through 6, length must be 32 or
fewer bytes.

Offset from beginning of record to key in bytes (record
begins at 0). For key type 11, offset must be an even
number.

If a key field extends beyond the end of a variable-length record, SORTPROG pads
the concatenated key values with blanks in a structured output file. SORTPROG can
compare an alphanumeric key field at the end of a short record if the record contains

the first byte of the key value.

Fields of the flags Parameter

Table 5-4 on page 5-32 lists the f | ags parameter bits for the SORTMERGESTART

procedure.

FastSort Manual—429834-003

5-31

Using FastSort System Procedures

SORTMERGESTART Procedure

Table 5-4. SORTMERGESTART f | ags Parameter Bits (page 1 of 2)

Flag Meaning
No purge of
existing output
file

Structure for
NEWPROCESS
parameters

MINSPACE
mode

MINTIME mode

Scratch file size
check

Alternate
collating
sequence table

flags
Bit

<5>

<6>

<7>

<8>

<9>

<10>

Value
0

Description

SORTPROG purges an existing output file that seems
too small. This value is the default.

SORTPROG does not purge an existing output file that
seems too small, unless the file has the wrong file type
or maximum record length.

SORTPROG uses the process-start four-word
structure described in Table 5-2 on page 5-28. This
value is the default.

SORTPROG uses the expanded process-start
structure (an array of one or more 29-word entries)
shown in Table 5-2 on page 5-28. This value is
required for parallel sort or merge runs.

SORTPROG does not use MINSPACE mode. If the
MINTIME flag is set to 0 and process-start does not
specify a segment size, SORTPROG uses the
AUTOMATIC mode, in which the extended memory
segment size is limited to 50% (90% for the distributor-
collector in parallel sorting) of the available physical
memory. This value is the default.

SORTPROG uses MINSPACE mode, in which the
extended memory segment size is 256 pages.

SORTPROG does not use MINTIME mode. If the
MINSPACE flag is set to 0 and pr ocess- st art does
not specify a segment size, SORTPROG uses the
AUTOMATIC mode, in which the extended memory
segment size is limited to 50% (90% for the distributor-
collector in parallel sorting) of the available physical
memory, up to 127.5 MB. The default is 56 MB.

SORTPROG uses MINTIME mode, in which the
extended memory segment size is limited to 70
percent of the available physical memory.

Exists only for compatibility with earlier versions of
FastSort.

Exists only for compatibility with earlier versions of
FastSort.

SORTPROG ignores the collate-sequence-table
parameter. This value is the default.

SORTPROG uses the alternate collating sequence
table. If you did not provide the table,
SORTMERGESTART returns error 67.

FastSort Manual—429834-003

5-32

Using FastSort System Procedures

SORTMERGESTART Procedure

Table 5-4. SORTMERGESTART f | ags Parameter Bits (page 2 of 2)

Flag Meaning

Removal of
records that
have duplicate
keys

Saving
scratch files

Creating a new
scratch file

Creating a new
output file

Restart option

flags
Bit
<11>

<12>

<13>

<14>

<15>

Value
0

Description

SORTPROG keeps all records that have duplicate
keys. This value is the default.

SORTPROG removes every record whose keys are all
duplicates of a previous record's keys.

SORTPROG purges scratch files after the sort run.
This value is the default.

SORTPROG saves a permanent scratch file if you
named it.

If a scratch file exists, SORTPROG purges all data
from the file and uses it. This value is the default.

If a scratch file exists, SORTPROG purges it and
creates a new one, unless the existing file is a
temporary file created by your process.

If the output file exists, is large enough to hold the
output, and has the specified file type and maximum
record length, SORTPROG purges all data from the
file and uses the file. This value is the default.

If the output file exists, SORTPROG purges it and
creates a new one, unless the existing file is a
temporary file created by your process.

SORTMERGESTART starts a new SORTPROG
process. This value is the default.

SORTMERGESTART uses the existing SORTPROG
process and does not start a new one. If SORTPROG
stops, it uses the current parameters upon restarting. If
SORTPROG exists and the current process-start
parameters are different from when it started,
SORTPROG ignores all changes except a changed
priority value.

FastSort Manual—429834-003

5-33

Using FastSort System Procedures SORTMERGESTART Procedure

Input Files
Follow these guidelines for input files:

® SORTPROG accepts all types of input files except blocked tape files and
processes.

® SORTPROG accepts up to 32 input files. The files can contain fixed-length or
variable-length records.

® The sum of nunber - nerge-fil es and nunber-sort-fil es mustbe atleast1
file. Although both parameters are optional, you must specify one of them.

® SORTPROG cannot accept input records from blocked tape files. Before
presenting these files to SORTPROG, use the File Utility Program (FUP) to
deblock the records. For information about FUP, see the File Utility Program (FUP)
Reference Manual.

® SORTPROG cannot accept records greater than 4072 bytes directly from input
files, SORTMERGESEND or SORTMERGERECEIVE must be used to send or
receive these records.

Output File Types

If out - f i | e- name specifies a nonexistent disk file or if an existing output file has the
wrong maximum record length, file type, or size, SORTPROG creates a new output
file. You can use the NOPURGE option (that is, set f | ags.<5>to 1) to tell
SORTPROG not to purge an output file that seems too small. SORTPROG creates a
new output file according to the following rules, in order:

1. SORTPROG uses the file type specified in the out - f i | e-t ype parameter.

2. SORTPROG uses the existing out - f i | e- nane file type if it is a valid output file
type.

3. SORTPROG uses the firsti n-fi | e- nane file type if it is a valid disk file type for
output.

4. If none of the above conditions exist, SORTPROG creates an entry-sequenced file.
5. SORTPROG does not send output to EDIT files.

6. SORTPROG cannot write records with length greater than 4072 bytes directly to
the output file.

You can use a process as an output file.

If out - fi | e- nane is a blocked tape file, SORTPROG writes one record for each
block. You can use FUP to block the records and load the tape file. For information
about FUP, see the File Utility Program (FUP) Reference Manual.

The output file type can be key-sequenced. For key-sequenced files, these rules apply:

FastSort Manual—429834-003
5-34

Using FastSort System Procedures SORTMERGESTART Procedure

® You can use only one sort key field, and the data type for the field must be BINARY
UNSIGNED.

® The sort key field must be the same as the file's primary key field.

® You must specify ascending in the key- bl ock array.

You can specify the dsl ack and i sl ack parameters for an existing key-sequenced
output file.

Existing Output Files

If out - fi | e- nanme exists on a disk prior to the sort or merge run, SORTPROG purges
all the data in the file before reusing it. For SORTPROG to reuse an existing disk file
as an output file, all of the following cases must be true:

® The existing file type must be the same as the output file type in effect for the run.

® The existing file size must be equal to or greater than the sum of the all the input
file sizes, except when you specify the NOPURGE option (f | ags.<5> set to 1).

® The maximum record length for the existing file must be equal to or greater than
the maximum output record length for the run.

If any of these is not true, SORTPROG purges the existing output file and creates a
new file. If you do not want FastSort to purge and recreate the file, set f | ags.<5>to 1.

/A Caution. If you specify the same file as both an input file and output file for a sort run, you can
lose all the data from the input file if an error or processor failure terminates the SORTPROG
process.

Record Count

The value of i n-fi | e- count need not be the exact number of records in the input
file. However, you should round up and not down if you round off the number of
records.

If you underestimate the number of input records, SORTPROG might underestimate
the size needed for the scratch or output file, which can cause FastSort error 29 or 30.
For more information on error messages, see Appendix B, FastSort Error Messages.

Extended Memory Size

For more information, see Controlling Extended Memory on page 2-11.

Restart Option

This option enables the same SORTPROG process to be used for successive sort or
merge runs. The requirements for using the restart option are:

® Set the restart flag (f | ags.<15>) to O for the first call to SORTMERGESTART and
to 1 for successive calls.

FastSort Manual—429834-003
5-35

Using FastSort System Procedures SORTMERGESTART Procedure

® Before your process can call SORTMERGESTART with the restart flag set to 1,
your process must call SORTMERGESTATISTICS or an error must end the
SORTPROG process.

® Each call to SORTMERGESTART must specify the same sort control block.

® If you call the SORTBUILDPARM procedure, its restart flag (bui | d- f | ags.<15>)
must be set to O for the first call and to 1 for successive calls.

® Each call to SORTBUILDPARM must specify the same sort control block as the
call to SORTMERGESTART.

A call to SORTMERGESTART returns immediately after SORTPROG reads the input
parameters. When your process calls SORTMERGESTART again, SORTPROG
accepts parameters for restart as follows:

® |f SORTPROG ends abnormally and the restart flag is set to 1, SORTPROG uses
the most recently specified pr ocess- st art parameters when it restarts.

® |f SORTPROG exists and the current pr ocess- st art parameters are different
than when it started, SORTPROG ignores all changes except for a changed priority
value.

The COBOLS85 SORT and MERGE statements do not support the restart option.

Alternate Collating Sequence Table

The calling process can read an alternate collating sequence table from a file that the
COLLATEOUT command produced.

Example
The following example shows the SORTMERGESTART procedure with the restart
option:
error := SORTMERGESTART (sort bl ock,
keybl ock, ,
sortfiles,,,,
len,,,,,
restart); ! restart.<15>is 0

Cal | SORTMERGESEND for each record
I Call SORTMERGESEND with length = -1
Cal |l SORTMERGERECEI VE for each record, until length = -1

errnum : = SORTMERCGESTATI STI CS (sort bl ock,
statl en,
stats);
I statlen = 21, and stats is an integer array of 21 words.

error := SORTMERGESTART (sort bl ock,
keybl ock, ,

FastSort Manual—429834-003
5-36

Using FastSort System Procedures SORTMERGESTART Procedure

sortfiles,,,,
len,,,,,
restart); ! restart.<15>is 1

| Go to the first statement that calls SORTMERGESEND.
error := CALL SORTMERGEFI NI SH (sort bl ock);
ENi:)il | End of the routine

Writing a User Error Procedure

You can use the er r pr oc parameter of SORTMERGESTART to specify a TAL
procedure to call if an error ends the SORTPROG process.

PROC errproc (code)

errproc

is the name of the user error procedure that you specify in the er r pr oc parameter
of SORTMERGESTART.

code

| NT(32): val ue

returns error codes to er r num which you specify in the call to
SORTMERGESTART. Both code and er r numhave the same structure.

Shown below is the TAL syntax for the declaration of a user error procedure. The body
of the user error procedure contains TAL declarations and statements. For information
about TAL, see the TAL Reference Manual.

PRCC sorterrproc (errcode);
| NT(32) errcode;
BEG N
I TAL statenents
END;

error := SORTMERGESTART (sortblock , keys
I numnerge-files

nunsort

infile
I in-file-exclusion-node
I in-file-count
I in-file-record-length
I format

outfile

out-fil e-excl usi on-nbde
out-file-type

flags

errnum

FastSort Manual—429834-003
5-37

Using FastSort System Procedures SORTMERGESTATISTICS Procedure

,sorterrproc);

SORTMERGESTATISTICS Procedure

Use SORTMERGESTATISTICS to obtain information about a successful sort or merge
run after SORTPROG completes the run.

{ status :=} SORTMERGESTATI STI CS (ctl bl ock P
{ CALL } , l ength i, o
,Statistics I o
,[flagl] P
, [sparel] I'reserved
st at us returned val ue

returns a FastSort error code if an error occurred; if not, st at us returns O.

ctl bl ock i nput
INT:ref:200

is the global storage array named in the call to SORTMERGESTART. You should
not rely on the information in ct | bl ock, because this information can change
without warning.

| ength i nput, out put
INT:ref:*

indicates the length, in words, of the SORTPROG statistics that
SORTMERGESTATISTICS returns after run completion. You can set | engt h to
the number of words you want returned, from 1 to 22. When
SORTMERGESTATISTICS returns statistics, it sets | engt h to the number of
words actually returned. The default value for | engt h is 0, which causes
SORTMERGESTATISTICS to not return any statistics.

Values less than 0 or greater than 21 when f | agl = 0 or greater than 22 when
fl agl =1 will yield error 149 (INVALID STATISTICS LENGTH SPECIFIED).

statistics out put

INT:ref:21 (f I agl = O or does not exist)
INT:ref:22 (fl agl =1)

Is a 21-word or 22-word array into which SORTPROG returns the statistics. The
array is 21 words long if VLM is off and 22 words long if VLM is on. For a
description of this array, see Table 5-5 on page 5-39. For more information about
the VLM option, see Using VLM on page 9-10.

FastSort Manual—429834-003
5-38

Using FastSort System Procedures SORTMERGESTATISTICS Procedure

flagl I nput
INT:value

tells FastSort to use the 22-word array to return statistics if this parameter is
present and setto 1. If f | agl is present but setto 0 or if f | agl is not present,
FastSort uses the 21-word statistics array and converts BUFFER PAGES from an
INT(32) to an INT value before it reaches the array. For BUFFER PAGES, FastSort
returns the value -1 for values greater than 32,767.

Values other than O or 1 for f | agl yield error 69 (INVALID STATISTICS FLAG
SPECIFIED).

sparel reserved

is reserved for future parameters. If you specify a value for spar el, FastSort
returns an error.

The SORTMERGESTATISTICS st ati sti cs Structure

SORTMERGESTATISTICS st ati sti cs is a 21-word array when the VLM option is
off and a 22-word array when VLM is on. For more information about this option, see

Using VLM on page 9-10.

Table 5-5 on page 5-39 describes the SORTMERGESTATISTICS st ati stics
structure. The uppercase terms show the equivalent statistics that FastSort returns
after an interactive run.

Table 5-5. SORTMERGESTATISTICS st ati sti cs Structure

Word Type Description

0 INT MAX RECORD SIZE: maximum record size in bytes

1 INT or BUFFER PAGES: number of 1,024-word pages of extended memory

INT(32)* SORTPROG used as a sort area.

2:3 INT(32) RECORDS: number of records

4:5 INT(32) ELAPSED TIME: total time SORTPROG took to process the sort or
merge request to the nearest hundredth of a second

6:7 INT(32) COMPARES: number of times SORTPROG compared two records

8:9 INT(32) SCRATCH SEEKS: number of blocked read and write operations on

the scratch file

10:11 INT(32) I/O WAIT TIME: the time SORTPROG spent on calls to READ,
WRITE, and AWAITIO, to the nearest hundredth of a second

12:13 INT(32) SCRATCH DISK: number of bytes in the scratch file
14:15 INT(32) INITIAL RUNS: number of runs generated by the first pass

16 INT FIRST MERGE ORDER: number of runs merged in the first
intermediate pass

* If VLM is on, BUFFER PAGES is an INT(32) value and all subsequent words in this array move up one word.

FastSort Manual—429834-003
5-39

Using FastSort System Procedures SORTMERGESTATISTICS Procedure

Table 5-5. SORTMERGESTATISTICS st ati sti cs Structure

Word Type Description

17 INT MERGE ORDER: maximum number of runs that can be merged at
one time

18 INT INTERMEDIATE PASSES: number of merge cycles between initial

run formation and final merge

19:20 INT(32) NUMBER OF DUPLICATES: number of duplicate records
SORTPROG removed

* If VLM is on, BUFFER PAGES is an INT(32) value and all subsequent words in this array move up one word.

Example

stat”error := SORTMERGESTATI STI CS (sort bl ock,
| engt h,
statistics);

FastSort Manual—429834-003
5-40

—6— sorting in Parallel

If the total input file size is larger than one megabyte, a parallel sort run can provide
better performance in elapsed execution time than a serial sort run. A parallel sort
operation improves performance because it:

® Distributes the workload to multiple processors
® Uses scratch files on multiple disks

For a parallel sort run, you set up a distributor-collector process and from 2 to 8
subsort processes.

Note. Although you can specify a maximum of 16 subsort processes, HP recommends you
specify no more than 8 processes. More than 8 subsort processes can cause a parallel sort
run to fail with FastSort error 22 (THE MEMORY SPACE FOR SORTING IS INSUFFICIENT).

The distributor-collector and subsort processes are SORTPROG processes. You can
use either FastSort commands or system procedures to set up the distributor-collector
and subsort processes. You run each subsort process in a different processor and
assign each processor a different disk for scratch files.

The distributor-collector process reads input files and distributes the records among
the subsort processes. Each subsort process sorts its portion of the records. The
distributor-collector process then collects the sorted records, merges them, and
produces the output file.

Figure 6-1 on page 6-2 shows how multiple SORTPROG processes work together in a
parallel sort run.

FastSort Manual—429834-003
6-1

Sorting in Parallel Using Commands for Parallel Sorting

Figure 6-1. Parallel Sorting

Processor 1

Subsort
Process 1

rocessor 0
\p\‘ / Processor 2
Distributor
5 Collector Subsort
Process Process 2

$WORK1
Scratch file

Input File
$DATAL

Input File

$DATA2 S

Scratch file

$WORK3
Scratch file

Input File
$DATA3

Subsort
Process 3

VST601.vsd

This section gives guidelines for using FastSort commands, procedures, and
parameters for parallel sorting. For more information about commands, see Section 3,
Using FastSort Commands and for more information about procedures, see Section 5,
Using FastSort System Procedures. For information about using partitioned input and
output files, see Partitioned Files on page C-5.

Using Commands for Parallel Sorting

To use FastSort commands to set up a parallel sort run, follow these steps:
1. Name and describe any input and output files in FROM and TO commands.

2. Define your key fields for sorting in one or more ASCENDING or DESCENDING
commands or a combination of both.

3. If you want to use an alternate collating sequence, name a file containing the
sequence in the COLLATE command.

4. Set up individual subsort processes with SUBSORT commands, one command for
each process. For more information, see Using the Automatic Configuration on
page 6-4 and Configuring Subsort Processes on page 6-6.

FastSort Manual—429834-003
6-2

Sorting in Parallel Using Procedures for Parallel Sorting

5. If you want to specify a group of processors for running subsort processes, list the
processors SORTPROG can use in a CPUS command. Specify any processors
SORTPROG cannot use in a NOTCPUS command. For more information, see
Selecting Processors to Run Subsort Processes on page 6-7.

6. Set up the distributor-collector process in the RUN command that starts the parallel
sort operation. For more information, see Using the Automatic Configuration on
page 6-4 and Configuring a Distributor-Collector Process on page 6-10.

The following commands start a distributor-collector process in the same processor
(CPU) in which the SORT process is running and a subsort process in each of the
three processors that control the disk volumes $VENUS, $MARS, and $SATURN. The
volume names in the SUBSORT commands specify volumes for the temporary scratch
files on $VENUS, $MARS, and $SATURN.

FROM LASTNAME

TO ZI PCCDE

ASC 76: 80, 1:15 UPPER
SUBSORT $VENUS
SUBSORT $MARS

SUBSORT $SATURN

RUN

FastSort tries to put each subsort process in the same processor as the primary disk
process for the scratch volume. For the interactive interface, the default processor for
the distributor-collector process is the same processor in which the SORT process is
running.

Using Procedures for Parallel Sorting

To set up a parallel sort run by using FastSort procedures, call the procedures from
your program in this order:

1. SORTBUILDPARM stores parameters for parallel sorting in the sort control block,
including the numbers of the processors in which to run subsort processes. For
more information, see Configuring Subsort Processes on page 6-6.

2. SORTMERGESTART begins the distributor-collector process and passes
parameters to it for the sort run, including key fields for sorting, names of input and
output files, and information about the subsort processes. For more information,
see Configuring Subsort Processes on page 6-6 and Configuring a Distributor-
Collector Process on page 6-10.

3. SORTERRORSUM returns detailed information about an error to your process,
which should call this procedure only if an error occurs.

4. SORTMERGESTATISTICS ends the sort run and returns information to your
process about the data sorted, the sorting and merging operations, and resource
usage.

FastSort Manual—429834-003
6-3

Sorting in Parallel Using the Automatic Configuration

5. SORTMERGEFINISH stops the distributor-collector process.

Instead of specifying input files, you can use calls to SORTMERGESEND after the call
to SORTMERGESTART. Instead of specifying an output file, you can use calls to
SORTMERGERECEIVE after the last call to SORTMERGESEND, if any, or after the
call to SORTMERGESTART. The TAL example in Example 6-3 on page 6-23 shows
how to use procedure calls for a parallel sort run.

You can use SORT and SUBSORT DEFINEs to set up a parallel sort run. For more
information, see Section 7, Using SORT and SUBSORT DEFINEs.

Using the Automatic Configuration

The simplest way to set up a parallel sort run is to let FastSort automatically configure
the subsort processes for you as follows:

1. Specify the number of subsort processes.
2. Specify the name of an initial scratch file for each subsort process.
3. Start the run.

For scratch files, specify only the disk volume names. For optimum performance, use
scratch-file volumes whose primary disk processes (DP2) run in different processors.

FastSort creates temporary initial scratch files on the disk volumes you specify and
tries to put each subsort process in the same processor as the primary disk process for
the initial scratch file.

If you do not specify a processor for the distributor-collector process, FastSort tries to
put this process in a processor as follows:

® For the interactive interface, in the same processor in which the SORT process is
running

® For the programmatic interface, in the same processor in which the calling process
IS running

The FastSort automatic configuration also includes:
® A block size of 56 KB for each subsort scratch file

® A memory size of 64 KB for the distributor-collector process and for each subsort
process

® An extended memory segment for the distributor-collector process of at most
90 percent of the processor’s physical memory not locked down by the operating
system

FastSort Manual—429834-003
6-4

Sorting in Parallel Using FastSort Commands

® An extended memory segment for each subsort process of at most 50 percent of
the processor’s physical memory not locked down by the operating system

® A scratch file size for each subsort process equal to the output file size divided by
the number of subsort processes plus 6 bytes per record for overhead

FastSort computes the sizes of the extended memory segments and scratch files for
you.

Using FastSort Commands

To set up the automatic configuration with FastSort commands, use a SUBSORT
command for each subsort process before you issue the RUN command:

SUBSORT $VENUS
SUBSCORT $NMARS
SUBSORT $SATURN

For the best performance, each scratch file should be on a separate disk volume, and
the primary disk processes for the volumes should be running in different processors.

Using FastSort Procedures

To set up the automatic configuration using FastSort procedures, call the
SORTMERGESTART procedure and specify these items:

® The number of subsort processes in the subsort - count parameter

® An initial scratch file for each process in the scrat ch-fi | e- nane array
® The fl ags parameter with bit 6 setto 1

® Aprocess-start array

For example, this call to SORTMERGESTART in a TAL procedure sets up a parallel
sort run with three subsort processes:

ERROR : = SORTMERCGESTART (sort bl ock
keys, ,
1a
I ndat a,
out dat a, , ,
fl ags,,
scratchfiles,,
start parans,,,,,
3);

FastSort Manual—429834-003
6-5

Sorting in Parallel Improving Performance

The SCRATCHFILES array contains an entry for a distributor-collector process scratch
file and three entries for subsort initial scratch files. You must specify at least a volume
name for each subsort initial scratch file:

I NT di str~scratch[0:11] :=[" "1;
| NT subpl”tscratch[0:11] := ["$VENUS "1;
| NT subp2”scratch[0:11] := ["$MARS "1;
| NT subp3”~scratch[0:11] := ["$SATURN “1;

Because distributor-collector processes rarely use scratch files, you can omit the
distributor-collector scratch file name.

Improving Performance

If the automatic configuration does not sort your records fast enough, try running the
sort in the MINTIME mode. When you specify the MINTIME parameter in the RUN
command or in the SORTMERGESTART procedure, the size of the extended memory
segment for each subsort process can be up to 70 percent of the processor’s physical
memory not locked down by the operating system.

The following subsections explain how to set parameters to configure the subsort and
distributor-collector processes and to tune the configuration.

Configuring Subsort Processes

You can configure subsort processes through the SUBSORT command, through the
procedures SORTMERGESTART and SORTBUILDPARM, or through SUBSORT
DEFINEs. To get the best performance from subsort processes on your system, you
might need to specify one or more of the following:

® A processor for each subsort process, preferably the processor that runs the
primary disk process for the scratch volume

A scratch file block size
The size of the extended memory segment
A location for the extended memory swap file

A copy of the SORTPROG program on a disk volume other than $SYSTEM

An execution priority

FastSort Manual—429834-003
6-6

Sorting in Parallel Selecting Processors to Run Subsort Processes

If you use commands to configure the parallel sort run, you can specify the parameters
for each subsort process in a SUBSORT command. Some parameters of the RUN
command also affect the configuration of subsort processes, as explained under
Configuring a Distributor-Collector Process on page 6-10.

If you use procedure calls to configure the parallel sort run, you can specify processors
in a call to the SORTBUILDPARM procedure and the other parameters for subsort
processes in a call to the SORTMERGESTART procedure. Other parameters of
SORTMERGESTART also affect the configuration of subsort processes, as explained
under Configuring a Distributor-Collector Process on page 6-10.

Selecting Processors to Run Subsort Processes

When you name a scratch file for a subsort process, FastSort runs the process in the
same processor that runs the primary disk process for the scratch file. If you see a
bottleneck in a processor that is running a subsort process, however, you can specify a
different processor for that process.

If a subsort process cannot run in the default processor, FastSort selects another one
from a group of processors. You can specify which processors are in the group and
which ones are not. When you specify a particular processor to run a subsort process
and that processor is not available, FastSort does not select another processor but
returns an error message.

You can specify a particular processor for a subsort process using one of the following
methods, depending on whether you use commands or procedures:

® The CPU parameter of the SUBSORT command
® The process-start parameter of the SORTMERGESTART procedure
® The CPU attribute of a SUBSORT DEFINE

You can specify a group of processors for FastSort to select from by using any of the
following:

® The CPUS and NOTCPUS commands (you can specify either or both commands)

® The cpu- nmask and not - cpu- mask parameters of the SORTBUILDPARM
procedure (you can specify either or both parameters)

® The CPUS and NOTCPUS attributes of a SORT DEFINE (you can specify either or
both attributes)

FastSort Manual—429834-003
6-7

Sorting in Parallel How FastSort Selects Processors

For example, you have a system with eight processors, and you want to run four
subsort processes to sort the records from a large file. To allow for peak capacity, do
not load any of the processors over 60 percent. Processors number 2 and 5 are
generally 50 to 60 percent busy. Processor O runs the distributor-collector process
because it has the lightest load. FastSort can use the remaining processors, so you
specify them in a CPUS command:

CPUS 1,3,4,6,7

Or you can combine the CPUS and NOTCPUS commands to specify the same group
of processors:

CPUS ALL
NOTCPUS 0, 2, 5

ALL is the default value for CPUS, so you can use only the NOTCPUS command to
specify the same group.

The cpu- mask and not - cpu- mask parameters of the SORTBUILDPARM procedure
and the CPUS and NOTCPUS attributes of a SORT DEFINE have the same effects as
the CPUS and NOTCPUS commands.

How FastSort Selects Processors

FastSort follows these steps to select a processor for a subsort process:

1. FastSort uses the processor you specified, if any. If that processor is not available,
FastSort returns error code 76 (START OF SUBSORT PROCESS HAS FAILED).

2. If you did not specify a processor, FastSort uses the processor that runs the
primary disk process for the initial scratch volume, unless the NOTCPUS
command or the not - cpu- mask parameter of SORTBUILDPARM excludes that
processor.

3. If the processor that controls the initial scratch volume is not available, FastSort
uses any processor from the processor group. If you did not specify any
processors to use or not to use, FastSort selects from a group of all processors.
When FastSort selects processors for subsorts, it attempts to put each process in a
different processor.

4. If FastSort cannot start the subsort process in a processor it selects, for example
because the processor is down, it selects another processor from the group and
tries to start the process in the new processor.

FastSort Manual—429834-003
6-8

Sorting in Parallel Specifying the Size of the Extended Memory
Segment

Specifying the Size of the Extended Memory Segment

If you do not specify an extended segment size for a subsort process, FastSort tries to
use enough memory for the subsort to make only one merge pass. In the automatic
configuration, the segment size is at most 50 percent of the processor’s physical
memory not locked down by the operating system.

FastSort computes the actual size of the segment as follows, using the segment size
for a serial sort run (s) and the number of subsort processes (n):

This is the default extended segment size for a subsort process. To specify a different
extended segment size, use one of these parameters:

® The SEGMENT parameter of the SUBSORT command
® The process-start parameter of the SORTMERGESTART procedure
® The SEGMENT attribute of a SUBSORT DEFINE

If you do not explicitly specify the segment size for a subsort process, the subsort
process uses the same segment size as the distributor-collector process.

To specify the maximum segment size for all subsort processes, you can use:
® The MINTIME or MINSPACE parameter of the RUN command

® The process-start parameter of the SORTMERGESTART procedure
® The MODE attribute of a SORT DEFINE

Specifying a Location for the Swap File

The default location for the swap file in an extended memory segment is the same disk
volume where the scratch file is located if the scratch file is local. For remote scratch
files, the default is the volume where the program file is running. You can specify a
volume for the swap file by using one of these parameters:

® The SWAP parameter of the SUBSORT command
® The process-start parameter of the SORTMERGESTART procedure
® The SWAP attribute of a SUBSORT DEFINE

Swapping, or paging, occurs only when the extended memory segment is larger than
the available physical memory or when there is competition from other processes. To
avoid swapping, specify less extended memory for the subsort process or move the
process to a processor with more physical memory available or a lighter load

FastSort Manual—429834-003
6-9

Sorting in Parallel Using Multiple Copies of the SORTPROG Program

Using Multiple Copies of the SORTPROG Program

By default, each subsort process uses the SORTPROG program in the
$SYSTEM.SYSnn.SORTPROG file. To run a subsort process from another local disk
volume, follow these steps:

1. Duplicate the SORTPROG program to a file on the target local disk volume and
use the FUP LICENSE command to license it.

2. Use one of these parameters to specify the location of the file:
® The PROGRAM parameter of the SUBSORT command
® The process-start parameter of the SORTMERGESTART procedure
® The PROGRAM attribute of a SUBSORT DEFINE

Specifying an Execution Priority

The default execution priority for a subsort process is the operating system’s default
priority for a process. You can specify a different priority by using one of the following
parameters:

® The PRI parameter of the SUBSORT command
® The process-start parameter of the SORTMERGESTART procedure
® The PRI attribute of a SUBSORT DEFINE

Configuring a Distributor-Collector Process

You can configure a distributor-collector process in a RUN command or in a call to the
SORTMERGESTART procedure. For the best performance, follow as many of the
guidelines in this subsection as possible when you configure the distributor-collector
process:

® In a different processor from any of the subsort processes

® In the same processor as the primary disk process for the volume containing the
output file or an input file

® In the processor that has the lightest load

You do not have to specify a scratch file or any other parameter for the distributor-
collector process. The default processor is the processor of the program calling
FastSort. If the default processor is heavily loaded or does not run the disk process for
an input or output file’s volume, you can specify another processor in the RUN
command.

FastSort Manual—429834-003
6-10

Sorting in Parallel Specifying a Scratch Block Size

To improve performance for a parallel sort run on your system, you can specify one or
more of the following options in the RUN command or in the SORTMERGESTART
procedure:

® The size of the I/O blocks for all scratch files

® The size of the extended memory segment for the distributor-collector process and
for each subsort process

® A location for the swap file for the distributor-collector process’s extended memory
segment

® A copy of the licensed SORTPROG program in a location other than the
SYSTEM.SYSnn.SORTPROG file from which to run the distributor-collector
process

® An execution priority for the distributor-collector process

Specifying a Scratch Block Size

The default scratch block size for each subsort process is 56 KB. The block size can
be any multiple of 2048 bytes up to 56 KB. You can specify a scratch block size by
using one of the following parameters:

® The BLOCK parameter of the RUN command

® The BLOCK parameter of the SUBSORT command

® The scr at ch- bl ock parameter of the SORTMERGESTART procedure
® The BLOCK attribute of a SORT DEFINE

Any block size you specify applies to each subsort process. If there is a conflict
between block sizes specified in the SUBSORT and RUN commands, SORTPROG
uses the RUN command BLOCK parameter value.

Controlling the Size of Extended Memory Segments

Each SORTPROG process attempts to use enough memory to make only one merge
pass. For the distributor-collector process, the default maximum size of the extended
memory segment is 90 percent of the processor’s physical memory not locked down
by the operating system. For each subsort process, the default maximum size of the
extended memory segment is 50 percent of the processor’s physical memory not
locked down by the operating system. The minimum size for each process is 256 KB.

You can use the MINTIME, MINSPACE, or SEGMENT parameter to specify a different
extended segment size for the SORTPROG processes. If you specify the MINTIME
parameter, FastSort uses at most 70 percent of the physical memory not locked down
by the operating system. If you specify MINSPACE, the extended segment is only 256
KB. If you specify the SEGMENT parameter or the segment word, FastSort uses at
most only the number of pages you specify.

FastSort Manual—429834-003
6-11

Sorting in Parallel Specifying a Location for the Swap File

The SEGMENT parameter or the segment word of the pr ocess- st art parameter
overrides AUTOMATIC, MINSPACE, or MINTIME. However, if you specify more than
90 percent of the processor’s physical memory not locked down by the operating
system, FastSort returns an error. For each subsort process, you can specify a
different extended segment size than for the distributor-collector process by using one
of the following parameters:

® The SEGMENT parameter of the SUBSORT command
® The process-start parameter of SORTMERGESTART
® The SEGMENT attribute of a SUBSORT DEFINE

Specifying a Location for the Swap File

The default location for the swap file in an extended memory segment is the initial
scratch volume if the scratch file is local. If the scratch file is not local, the default
location is the disk where the program file is running. You can specify another disk for
the swap file with one of the following parameters:

® The SWAP parameter of the RUN command
® The process-start parameter of the SORTMERGESTART procedure
® The SWAP attribute of a SORT DEFINE

Swapping, or paging, occurs only when the extended memory segment is larger than
the available physical memory, or when there is competition from other processes. To
avoid swapping, specify less extended memory for the distributor-collector process or
move it to a processor with more physical memory available or a lighter load.

Using Multiple Copies of the SORTPROG Program

By default, a distributor-collector process uses the SORTPROG program in the
$SYSTEM.SYSnn.SORTPROG file. To run a distributor-collector process from another
disk volume, follow these steps:

1. Duplicate the SORTPROG program to a file on the target volume and use the FUP
LICENSE command to license it.

2. Use one of these parameters to specify file location:
® The PROGRAM parameter of the RUN command
® The process-start parameter of the SORTMERGESTART procedure
® The PROGRAM attribute of a SORT DEFINE

FastSort Manual—429834-003
6-12

Sorting in Parallel Specifying an Execution Priority

Specifying an Execution Priority

The default execution priority for the distributor-collector process is the operating
system’s default priority for a process. You can use one of the following parameters to
specify a different priority:

The PRI parameter of the RUN command
The process- st art parameter of the SORTMERGESTART procedure
The PRI attribute of a SORT DEFINE

Tuning and Testing a Configuration for Parallel
Sorting

For a large sort run, you can tune and test a configuration for the optimum
performance. To tune a configuration for a parallel sort run, follow these guidelines:

Place scratch files on different disk volumes and on separate volumes from input
and output files.

Select nonmirrored disks for subsort scratch files, if possible. A sort run is faster
with nonmirrored disks than with mirrored disks.

Unless you know the workload of all processors, let FastSort select them. FastSort
tries to put a subsort process in the same processor that is running the primary
disk process for the subsort scratch file volume.

Run the distributor-collector and each subsort process in different processors.

The most effective number and placement of subsort processes on your system
depends on the number and type of processors, the processor workloads, the number
and length of input records, and the type of output. To determine how many subsort
processes to use and where to run them, follow these steps:

1.
2.

Start with three subsort processes and use the automatic configuration.

Measure the performance using the Measure program. For more information, see
the Measure Reference Manual.

If the distributor-collector process is not at least 90 percent busy, add one or more
subsort processes. If the distributor-collector process is 100 percent busy, you
might need only two subsort processes.

Try to balance the subsort processes so that processors and disks have similar
rates of use. If a scratch disk is much busier than other disks, consider moving the
scratch file to another disk. If a subsort's processor is being used more than other
processors, consider moving the subsort process to another processor.

FastSort Manual—429834-003
6-13

Sorting in Parallel Understanding Statistics From Parallel Sorting

5. Avoid intermediate merge passes for subsort processes. Use enough extended
memory for each subsort process to make only one merge pass. For information
about how much extended memory you need for each subsort process with
different sizes of files, see Controlling Extended Memory on page 2-11.

If you do not have enough memory available in each processor, add enough subsort
processes to limit the number of merge passes to one.

Understanding Statistics From Parallel Sorting

For a parallel sort run, FastSort returns some statistics that apply only to the
distributor-collector process and other statistics that are totals for the distributor-
collector process and all subsort processes as shown in the following table:

FastSort Process Statistics

Distributor-Collector Process Only RECORDS, BUFFER PAGES, ELAPSED TIME,
INITIAL RUNS, I/O WAIT TIME, FIRST MERGE
ORDER, SCRATCH DISK, MERGE ORDER,
MAX RECORD SIZE, INTERMEDIATE PASSES

Distributor-Collector and Subsort COMPARES, SCRATCH SEEKS,
Processes NUMBER OF DUPLICATES

Identifying the Causes of Errors

When an error occurs during a parallel sort run, FastSort can identify the SORTPROG
process in which the error occurred. FastSort can also tell you the name of the file that
caused an error.

If you use interactive commands to set up the parallel sort run, FastSort sends error
messages to the list file (which is usually your home terminal). If you use procedures to
set up the parallel sort run, you can retrieve error information with the
SORTERRORSUM procedure.

For example, if you specify a fully-qualified initial scratch file name for a parallel sort,
SORTPROG returns the following error messages:

*** ERROR *** A SCRATCH FI LE CANNOT BE OPENED
OPERATI NG SYSTEM ERROR : 12

SCRATCH FI LE: $DATA. SORT. SCRATCH

SORT PROCESS #2: (1, 36)

Each line of the example is explained here:

® The first line contains the FastSort error text.

® The second line contains the file-system or NEWPROCESS error code.

® The third line specifies the type and name of the file that caused the error.
°

The fourth line identifies the subsort process in which the error occurred and gives
the CPU number and process identification number (PIN) for the process.

FastSort Manual—429834-003
6-14

Sorting in Parallel Parallel Sorting From C Programs

Parallel Sorting From C Programs

Example 6-1 shows a C program that calls FastSort system procedures to perform a
parallel sort run.

Example 6-1. C Example of a Parallel Sort Run (page 1 of 5)

#pragma sql wheneverli st
#pragma synbol s

#pragma i nspect

#pragma runnabl e
#pragma nol i st

/* ___ */
/* FastSort Parallel Sort Run */
/* ___ */
/* This program uses subsorts to sort an input file. Overflow */
/* scratch volunes are specified in SORTBU LDPARM Error */
/* handl i ng and di spl aying of statistics are stubbed out. */
/* ___ */
/* External declarations */
/* ___ */

#i ncl ude <stdi oh>
#i ncl ude <stdlibh>
#i ncl ude <stringh>
#i ncl ude <sql h>

#i ncl ude <tal h>

#i ncl ude <cext decs>
#pragma |i st

#defi ne MAXSUBSORTS 3 /* max nunber of subsorts */
#defi ne MAXSCRATCHVOLS 4 /* max nunber of scratch vol unmes */
char home_t erm nanme[48] ; /* term nal nane */
short honme_termfil enum /* file nunber */
short hone_termlen; /* actual |en of honeterm nane */
short home_term maxlen = 48;/* max | en of hometerm name */
short error_detail; /* output from process_getinfo_ */
/* ___ */
/* FastSort control and flags information. */
/* ___ */

_lowrem short ctlblk[200]; /* control block for sort interface*/
_lowrem short key_array[4]; /* SORTMERGESTART key field defns */

short sflagl = 1; /* use 22-word SORTMERGESTATI STICS array */
short flags = 512; /* use expanded process_start structure */
/* same as setting flags.<6> in TAL */

/* ___ */
/* FastSort error and statistics variables. */
/* ___ */
short error; [* error return paraneter */
_l owrem short error_buf[20], [* error nessage buffer */
error_source[20], [* error related info */

sub_i ndex, /* subsort that caused error*/

sub_cpu_pi n; /* CPU, PIN of this subsort */

_lowremlong error_code[40]; /* Fastsort & systemerror codes */
struct sortstats_tenplate {
short maxrecordsi ze;
short bufferpages;
| ong records;
| ong el apsedti nme;
| ong conpares;
| ong scratchseeks;
long iowaittine;
I ong scratchfil eeof;
long initialruns;
short firstmergeorder;
short nergeorder;
short internmedi at epasses;
| ong nunberof dupl i cates;
} _lowrem sortstats;

FastSort Manual—429834-003
6-15

Sorting in Parallel Parallel Sorting From C Programs

Example 6-1. C Example of a Parallel Sort Run (page 2 of 5)

struct newprocess_parns_tenplate { /* 29-word structure */
short priority;
short nenory;
short cpu;
short system
short segment _si ze;
char swap_file[24];
char programfile[24];
} _lI owrem newpr ocess_par ns[MAXSUBSORTS + 1];

/* ___ */
/* Input and output files */
/* ___ */

"$DATA2 FSORT2561 NFI LE";
"$DATA2 FSORT2560UTFI L";

_lowmrem char infile
_lowem char outfil

[]
el]

struct scratch_files_tenplate {
char fil enane[24];
} _lowrem scratch_fil es[MAXSUBSORTS + 1];

struct scratch_pool _tenplate {

short reserved_wordl,;

short reserved word2;

short reserved_word3;

short reserved word4;

short reserved_word5;

short reserved word6;

short reserved_word7;

short reserved word8; short use_scratch;

short numscratch_vol s;

short scrat chvol names[MAXSCRATCHVOLS] ;
} _l owrem scratch_pool ;

voi d error_handl er (void);
short DisplaySortStatistics (struct sortstats_tenplate *);

___ *
int main (void)

short errlen = 0;

short i,j;
/* Initialize tenp scratch volume name and 1/ O filenanme arrays.*/
/* Leave blank for distributor-collector sort. */

char tnmp_dist_scr =

char tnmp_scrl[] = "$DATAl
char tnp_scr2[] " $DATA2
char tnp_scr3[] " $DATA4

char tnp_swap[]

char tnp_prog[]
char tmp_infile[] = "$DATA2 FSORT2561 NFILE ";

char trp_outfile[] = "$DATA2 FSORT2560UTFI L
/*initialize scratch pool array;wll be passed to all subsorts */
char tnmp_scr_pool [] = "$DATA1 $DATA2 $DATA3 $DATA4 *;

_l owmrem short actuall en; /* size of statistics in words */

/* ___ */

/* Performstandard initialization. */

K o e e o e .- */
error = PROCESS CGETINFO (,,,,,,(char *)&home_term namne,

home_t er m_maxl| en,
&home_term | en,
s aaaaaaaa ., &error_detail);
if (error)
DEBUG,
if (FILE_OPEN_(hone_term nane,
horme_term.| en,
&home_termfilenunm != CCE)
DEBUG,
I NI TI ALI ZER; /* read the startup nessage */

FastSort Manual—429834-003
6-16

Sorting in Parallel Parallel Sorting From C Programs

Example 6-1. C Example of a Parallel Sort Run (page 3 of 5)

/* ___ */
/* Initialize SORT key definitions array. */
/* ___ */
key_array[0] = 1; [* nunber of keys */
key_array[1l] = 9; [/* definition = binary, unsigned, ascending */
key_array[2] = 2; [* key length = 2 bytes */
key _array[3] = 0; [/* key offset = 0 bytes */
/* ___ */
/* Initialize structures to start SORTPROG with parall el optlon /
*

newprocess_parns[i].priority
newpr ocess_parns[i]. menory
newprocess_parns[i].system

newpr ocess_parns[i].segment _si ze

3 —oo_mn—\o

mencpy(&ewpr ocess_parns[i]. swap_fi [0], & np_swap[0], 24);
mencpy(&newpr ocess_parns[i].programfile[0], & np_pr og[0], 24);
}
/* ___ */
/* Set CPU nunbers and scratch file names */
/* ___ */
newpr ocess_parns[0] . cpu = 0;
newpr ocess_parns[1] . cpu = 1;
newpr ocess_parns[2] . cpu = 2;
newpr ocess_par ns[3] . cpu = 3
mencpy(&scratch_files[0].filenanme[0], & np_di st_scr[0], 24);
mencpy(&scratch_files[1].filenane[0], & np_scri[0], 24);
mercpy(&scratch_files[2].filenane[0], & np_scr2[0], 24);
menmcpy(&scratch_files[3].filenane[0], & np_scr3[0], 24);
mercpy(& nfile[0], & mp_infile[0], 24);
mencpy(&out fil e[O] & np_outfile[0], 24);
/* ___ */
/* Set SCRATCH and SCRATCHON vol une nanes. Tell SORTPROG to */
/* use specified volumes for scratch. */
/* ___ */

scrat chpool . use_scratch = 0;

scrat ch_pool . num scratch_vols = 4;

mencpy(&scrat ch_pool . scratch_vol _nanes[0],
&t np_scr_pool [0], 32);

/* ___ */
/* Call SORTBU LDPARMto initialialize SORTPROG control block. */
/* ___ */

error = SORTBU LDPARM (&ct | bl k[0]

: (short *) &scratch_pool
)
if (error) /* check for SORTBU LDPARM error */
{
errl en = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0]);
error _handl er;
return EXI T_FAl LURE;
}

FastSort Manual—429834-003
6-17

Sorting in Parallel Parallel Sorting From C Programs

Example 6-1. C Example of a Parallel Sort Run (page 4 of 5)

/* ___ */
/* Call SORTMERGESTART to start the SORTPROG processes. */
/* ___ */
error = SORTMERGESTART
(&t bl k[O],

(short *) & nfi
(short *) &outf
flags,,,
(short *) &scratch_files[O0].filenanme[0],,
(short *) &newprocess_parns[O].priority,,,,,,
MAXSUBSORTS) ;

if (error) /* check for SORTMERGESTART error */

{

O],,,,,

&key_array[0], I:L
i L[O],,,

e
I

errl en = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0],
&sub_i ndex, &ub_cpu_pi n);
error_handl er;
return EXI T_FAlI LURE;

/* ___ */
/* Return SORTPROG conpletion errlen and statistics. Set */
/* length in words, to return all statistics information. */
/* ___ */

actual l en = sizeof (sortstats)/2;
error = SORTMERGESTATI STICS (&ctl bl k[0], &actuall en,
(short *) &sortstats,sflagl);
if (error) /* check for SORTMERGESTATI STICS error */

errlen = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0]);

error _handl er;

return EXI T_FAI LURE;

}

/* ___ */
/* Call function to display the statistics */
/* ___ */
error = DisplaySortStatistics (&sortstats);
if (error)
return EXI T_FAI LURE;
/* ___ */
/* CALL SORTMERGEFINI SH to stop SORTPROG after the process */
/* successfully conpletes the current sort and nerge run(s). */
/* ___ */
error = SORTMERGEFI NI SH (&ct | bl k[0]);
if (error) /* check for SORTMERGEFI NI SH error */

{

errlen = SORTERRORSUM (&ct | bl k[0],
&error_buf[0],
&error_code[0],
&error_source[0]);

error _handl er;

return EXI T_FAI LURE;

}
FILE_ CLOSE_ (hone_termfilenum;
} /* End of Main logic */

FastSort Manual—429834-003
6-18

Sorting in Parallel Parallel Sorting From COBOLS85 Programs

Example 6-1. C Example of a Parallel Sort Run (page 5 of 5)

voi d error_handl er (void)
/* error handling stubbed out */
return;
short DisplaySortStatistics (struct sortstats_tenplate *instats)

/* Printing of statistics stubbed out */
return EXI T_SUCCESS;

Parallel Sorting From COBOLS85 Programs

Example 6-2 on page 6-20 shows a COBOLS85 program that calls COBOLS85 interface
routines to perform a parallel sort run.

FastSort Manual—429834-003
6-19

Sorting in Parallel Parallel Sorting From COBOLS85 Programs

Example 6-2. COBOLS85 Example of a Parallel Sort Run (page 1 of 3)

*
* Fast Sort Parallel Sort Run
* This programcalls the COBOL85 interface routines
* COBOL85”" SET" SORT"PARAM'VALUE and
* COBOL85"SET"SORTM"PARAM'TEXT to start a parallel sort run.
*
?SYMBOLS, | NSPECT
?L1 BRARY $SYSTEM SYSTEM COBOLLI B
?L1 BRARY $SYSTEM SYSTEM CBL85UTL
| DENTI FI CATI ON DI VI SI ON.
PROGRAM: | D. PARALLEL- SORT- EXAMPLE.
ENVI RONMENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
I NPUT- QUTPUT SECTI ON.
FI LE- CONTROL.
SELECT QUTPUT- FI LE
ASSI GN TO "=QUTFI LE"
ORGANI ZATI ON | S SEQUENTI AL
ACCESS MODE | S SEQUENTI AL.
SELECT SORT- FI LE
ASSI GN TO " SORTFI LE".
DATA DI VI SI ON.
FI LE SECTI ON.
FD QUTPUT- FI LE
LABEL RECORDS ARE OM TTED
RECORD CONTAI NS 19 CHARACTERS.
01 QOUT- RECORD.
05 SORT- RECORD- NO PIC 9(4).
05 FILLER PI C X(5).
05 SORT- CODE PI C X(10).
SD SORT-FI LE
RECORD CONTAI NS 19 CHARACTERS.
01 SORT- RECORD.
05 SORT- RECORD- NO PIC 9(4).
05 FILLER PI C X(5).
05 SORT- CODE PI C X(10).
WORKI NG STORAGE SECTI ON.
01 FLAGS.
05 MORE- QUTPUT- FLAG PI C X(3) VALUE "YES".
88 MORE- QUTPUT VALUE " YES".
88 NO- MORE- OUTPUT VALUE "NO'.
01 RETURN CODE PI C 99 COWP.
01 QOUTPUT- COUNTER PI C 9999 COwW VALUE 0.
01 | NPUT- RECORDS PI C 9999 VALUE 1000.
01 NUMBER- OF- SUBSORTS PIC 99 VALUE 2.
01 VALUE- PARAM PI C X(20).
01 SCRATCH FILE-1 PI C X(8) VALUE " SCRATCH1".
01 SCRATCH FI LE-2 PI C X(8) VALUE " SCRATCH2".
01 WS- ORDR- CODE.
05 WS- RECORD- NO PI C 9(4) VALUE 0.
05 FILLER PI C X(5) VALUE SPACES.
05 WS- CODE.
06 W5- CODE- NBR PI C 9999 VALUE 1000.
06 W5- CODE-FI L PI C X(6).

PROCEDURE DI VI SI ON.
MAI N SECTI ON.

OPEN QUTPUT QUTPUT- FI LE.

DI SPLAY "Starting FastSort parallel
PERFORM SORT- RECORDS.
DI SPLAY "Fast Sort parall el

STOP RUN.
SORT- RECORDS SECTI ON.

sort

sort run...

run conpl eted. "

FastSort Manual—429834-003

6-20

Sorting in Parallel Parallel Sorting From COBOLS85 Programs

Example 6-2. COBOLS85 Example of a Parallel Sort Run (page 2 of 3)

MOVE " SUBSORT- COUNT" TO VALUE- PARAM
ENTER " COBOL85" SET” SORT" PARAM* VAL UE"

USI NG SORT- FI LE,

VALUE- PARAM NUMBER- OF- SUBSORTS

G VI NG RETURN- CCDE.

| F RETURN- CODE NOT = 0
PERFORM ERROR- RETURN

END- | F.

* Specify the nunber of input records to sort.
*
MOVE "I N- FI LE- COUNT" TO VALUE- PARAM
ENTER " COBOL85” SET" SORT" PARAM* VAL UE"
USI NG SORT- FI LE,
VALUE- PARAM | NPUT- RECORDS
G VI NG RETURN- CODE.
I F RETURN- CODE NOT = 0
PERFORM ERROR- RETURN

MOVE " SCRATCH- FI LE" TO VALUE- PARAM
ENTER " COBOL85" SET” SORT" PARAM* TEXT"

USI NG SORT- FI LE,

VALUE- PARAM SCRATCH-FI LE-1, 1

G VI NG RETURN- CCDE.

I F RETURN- CODE NOT = 0
PERFORM ERROR- RETURN

END- | F.

ENTER " COBOL85" SET” SORT" PARAM* TEXT"
USI NG SORT- FI LE,
VALUE- PARAM SCRATCH- FI LE-2, 2
G VI NG RETURN- CCDE.
I F RETURN- CODE NOT = 0
PERFORM ERROR- RETURN
END- | F.

* Execute the sort run.

SORT SORT-FI LE ON ASCENDI NG KEY SORT- CODE COF SORT- RECORD
I NPUT PROCEDURE | NPUT- SECTI ON
OUTPUT PROCEDURE QUTPUT- SECTI ON.

ERROR- RETURN SECTI ON.

ERR- RTN.

DI SPLAY "Error-Return Code is: " RETURN CODE.

STOP RUN.
K o o o o o o e e o o e e e e e o e e e o e
* Generate the input file. (Note: An actual program would
* get input records froman existing file or a process.)
*

| NPUT- SECTI ON SECTI ON.
I NPUT- ROUTI NE.
DI SPLAY "I nput sort procedure entered...".
PERFORM | NPUT- RECORDS Tl MES
ADD 1 TO W5- RECORD- NO
SUBTRACT 1 FROM W5- CODE- NBR
RELEASE SORT- RECORD FROM W5- ORDR- CODE
END- PERFORM
DI SPLAY "I nput sort records created: " | NPUT- RECORDS.

FastSort Manual—429834-003
6-21

Sorting in Parallel Parallel Sorting From TAL Programs

Example 6-2. COBOLS85 Example of a Parallel Sort Run (page 3 of 3)

CQUTPUT- SECTI ON SECTI ON.

QUTPUT- ROUTI NE.
DI SPLAY "CQut put sort procedure entered...".
SET MORE- QUTPUT TO TRUE.
PERFORM UNTI L NO- MORE- QUTPUT

RETURN SORT- FI LE
AT END SET NO- MORE- QUTPUT TO TRUE

NOT AT END
MOVE CORRESPONDI NG SCRT- RECORD TO OUT- RECORD

VWRI TE OUT- RECORD
ADD 1 TO OUTPUT- COUNTER
END- RETURN

END- PERFORM
DI SPLAY "Qutput sort records returned: " OUTPUT- COUNTER

Parallel Sorting From TAL Programs

Example 6-3 on page 6-23 shows a TAL example that sets up a parallel sort run with
three subsort processes.

FastSort Manual—429834-003
6-22

Sorting in Parallel Parallel Sorting From TAL Programs

Example 6-3. TAL Example of a Parallel Sort Run (page 1 of 3)
?SYMBOLS, NOCODE, | NSPECT, MAP, LMAP, DATAPAGES 64

! FastSort Parallel Sort Run !
I This programuses 3 subsorts to sort an input file. !
1

i d obal Decl arations. !

I NT . hone”t er mtname[0: 11] := 12*[" "]; ! Nane
INT hone*termfil enum I File nunber
I NT . bl ank®nane[0: 11] := 12*[" "]; ! Blank file nane

i Subsort infornmation. '
|

i_I TERAL max”subsort = 3; ! Maxi mum nunber of subsorts
INT . ctlblk[O0:199]; I Control block for sort interface
I NT . keytarray[0:3]; ! Sort key array definitions

! Input and output files. !
1

INT .inAfi
I NT . out M

[0:11]
e[0: 11]

["$DI SKO1 FASTSORTI NFILE "];
["$DI SKO1 FASTSORTQUTFI LE "];

- ®

STRUCT . newpr ocess”par ns[0: max*subsort];

BEGA N

INT priority; Priority
nmenory; Menory (ignored by FastSort)
cpu; CPU nunber

swap~file[0: 11]; Swap file nanme

!
!
!
system I System
!
!
program‘file[0:11]; ! Programfile name

NT
NT
NT
NT segnent”si ze; Ext ended nenory
NT
NT
N

I NT flégs ;= 9%B0000001000000000; ! Sort for flags newprocess
| o o e e e e e e e e e e e e e e m e !

| Scratch files. !

STRUCT . scratch~fil es[0: max"subsort];
BEG N
INT fil enane[0: 11]; I Scratch file nane
END;

| NT .error”~buf[0:31], Error message
error”source, Error-related information
sub”i ndex, Subsort that caused an error

1
1
!
sub”cpu”pi n, ! CPU, PIN of this subsort
error, I Return error code

.stat[0: 20]; ! Buffer for statistics

I NT(32) error”~code; ! FastSort and system error codes
1

2NOLI ST

2SOURCE $SYSTEM SYSTEM EXTDECSO (DEBUG,

? I'NI TI ALl ZER,
MYTERM

OPEN,

READ,
SORTMERGESTART,
SORTERRORSUM
SORTMERGESTATI STI CS,
SORTMERGEFI NI SH,
STOP)

N)))))))

FastSort Manual—429834-003
6-23

Sorting in Parallel Parallel Sorting From TAL Programs

Example 6-3. TAL Example of a Parallel Sort Run (page 2 of 3)

PRGZ mai n“proc MAI N,
BEG N
I NT | engt h;

! Open the home terminal and call the !
' INITIALI ZER to read the startup message. !

CALL MYTERM (honme”t er nf*nane) ;

CALL OPEN (hone”termtnanme, home”ternmfil enun);

| F <> THEN CALL DEBUG

CALL I NI TI ALI ZER;
T |

! Initialize the sort key array definitions. !

key"ar ray[0]
key~array[1]
key”array[2]

I Nunmber of keys

;! Key descriptor: binary signed, ascending
I Key length: 2 bytes

;! Key offset: 0 bytes

| Start SORTPROG process with the parallel option. !

FOR i := 0 TO max”subsort DO
BEG N I' Fill default val ues
newpr ocess”parns[i].priority
newpr ocess”parns[i]. menory
newpr ocess”parns[i].system
newpr ocess”parns[i].segnment *si ze :
newpr ocess”parns[i].swap”file
newpr ocess”parns[i].progranmtfile
END;

| ank~name FOR 12;
| ank®nanme FOR 12;

oT"

newpr ocess”parns[0] . cpu : = 1;
newpr ocess”parns[1].cpu : = 3;
newpr ocess”parns[2] . cpu : = 4;
newpr ocess”parns[3].cpu : = 6;
scratch~files[O].filenane ':=" " "
scratch™Miles[1].filename ':=" "$Dl SKO1 "
scratch™files[2].fil enane =" "$Dl SKO1 "
scratch~iles[3].filenane ':=" "$D SKO1 "

| Call SORTMERGESTART procedure. !

error := SORTMERCGESTART (ctl bl k,
key”array,, 1,
in~file,,,,,
outfile,,,
flags,,,
scratch~files[0].fil enane,,
newpr ocess”parns[0].priority,,,,,,
max”*subsort);

IF error THEN ! Check for SORTMERGESTART error.
BEG N
| ength : = SORTERRORSUM (ctl bl k,
error”~buf, error”code,
error”source,
sub”i ndex, sub”cpu”pin);
I Process the SORTMERGESTART error.
END;

FastSort Manual—429834-003
6-24

Sorting in Parallel Parallel Sorting From TAL Programs

Example 6-3. TAL Example of a Parallel Sort Run (page 3 of 3)

érror : = SORTMERGESTATI STICS (ctlblk,length,stat);
IF error THEN ! Check for SORTMERGESTATI STICS error.
BEG N
| ength := SORTERRORSUM (ctl bl k,
error”~buf, error”code,
error”~source,
sub”i ndex, sub”cpu”pin);
I Process the SORTMERGESTATI STICS error.
END;
END; I of the MAIN procedure !

FastSort Manual—429834-003
6-25

Sorting in Parallel Parallel Sorting From TAL Programs

FastSort Manual—429834-003
6-26

==
Using SORT and SUBSORT DEFINEs

Before you start a sort or merge run, you can set or change operating system
parameters that affect FastSort. While the FastSort default settings are often sufficient
for small sort or merge runs, modifying the default settings can improve the
performance of a large run.

You modify default settings for a sort operation with CLASS SORT and SUBSORT
DEFINEs. You can set or change a DEFINE either interactively or programmatically.
Tasks you can perform with SORT and SUBSORT DEFINESs include:

® Select a less busy processor for SORTPROG processes
® Select a disk with more free space than the default for your initial scratch file

® Manually specify certain parameters that are difficult to set from an application
program

® Specify parameters for sorting from SQL/MP and other products that do not allow
you to specify FastSort parameters at run time

This section describes the following FastSort DEFINES:

SORT DEFI NE

is the FastSort DEFINE you use to control the SORTPROG process in a serial sort
run or the distributor-collector SORTPROG process in a parallel sort run.

SUBSCRT DEFI NE

is the FastSort DEFINE you use to control a subsort process in a parallel sort run.
You can specify 2 to 8 SUBSORT DEFINEs to set parameters for each subsort
process that is linked to a specific SORT DEFINE.

= SORT_DEFAULTS DEFI NE

is the FastSort default DEFINE. You use this DEFINE to specify FastSort
parameters for SQL/MP and applications that otherwise cannot set the parameters.
Section 8, Sorting From NonStop SOL/MP contains additional information about
configuring sorts from SQL/MP.

Determining the Precedence of DEFINES

There are four possible ways to specify FastSort parameter values. If a conflict occurs
between two or more values, FastSort chooses a value as follows:

FastSort Manual—429834-003
7-1

Using SORT and SUBSORT DEFINEs Setting DEFINE Attributes

Priority Value Type Specified By

1 User-specified A SORT or SUBSORT DEFINE

2 User parameter A FastSort interactive parameter or system procedure call
3 Default The =_SORT_DEFAULTS DEFINE

Use a single method to specify values for a subsort process. For subsort processes,
FastSort treats all parameter values as a single entity. After FastSort determines the
source of information for a subsort process, it ignores values from other sources.

Setting DEFINE Attributes

The table below lists the attributes for CLASS SORT and SUBSORT DEFINEs. These
attributes are described in this section and in Section 3, Using FastSort Commands.

Class Attributes

SORT BLOCK, CPU, CPUS, MODE, NOSCRATCHON, NOTCPUS, PRI, PROGRAM,
SCRATCH, SCRATCHON, SEGMENT, SUBSORTS, SWAP, VLM

SUBSORT BLOCK, CPU, PRI, PROGRAM, SCRATCH, SEGMENT, SWAP

Setting SORT DEFINE Attributes

The following SORT DEFINE attributes correspond to parameters for the FastSort
interactive commands in Section 3, Using FastSort Commands. Only the SCRATCH
attribute is required; all other SORT DEFINE attributes are optional. To set parameters
for SQL/MP, see Creating and Using the = SORT DEFAULTS DEFINE on page 7-13.

BLOCK si ze

specifies the block size, in bytes, for scratch files. Specify any multiple of 2048
bytes up to 56 KB, such as:

SET DEFI NE BLOCK 28672

The number you specify must at least equal the size of the largest input record,
rounded up to the nearest even byte, plus 14 bytes overhead. For optimal
performance, specify 56 KB for local scratch files and 28 KB for remote scratch
files. The default is 56 KB.

CPU processor

specifies the processor (CPU) number for the SORTPROG process. The range is
0 through 15, such as:

SET DEFI NE CPU 2
The default is the CPU where the process that starts SORTPROG is running.

FastSort Manual—429834-003
7-2

Using SORT and SUBSORT DEFINEs Setting SORT DEFINE Attributes

CPUS { processor [, processor]... | ALL }

specifies the processor (CPU) numbers that are available for subsort processes,
The range is 0 through 15. A value of ALL means that all processors are available
for subsorts. To specify a list of processors, enclose the numbers in parentheses
and separate them with commas, as follows:

SET DEFI NE CPUS ALL
SET DEFI NE CPUS 5
SET DEFI NE CPUS (1, 3, 4)

You can specify the CPUS and NOTCPUS attributes in the same DEFINE.

MODE { M NTIME | M NSPACE | AUTOMATIC }

For a description of MINSPACE, MINTIME, and AUTOMATIC, see RUN Command
on page 3-19. An example of MODE attribute syntax is:

SET DEFI NE MODE M NSPACE

NOSCRATCHON (vol une-nane [, volume-nane]...)

specifies volumes that FastSort should not use for overflow scratch files. If the
scratch file specified in the SCRATCH attribute becomes full and no SCRATCHON
values exist, FastSort tries to create an overflow scratch file on a volume not
specified in the NOSCRATCHON attribute, protected by the Safeguard product,
$SYSTEM, or a TMF audit trail disk. Enclose NOSCRATCHON volume names in
parentheses and separate with commas, as follows:

SET DEFI NE NOSCRATCHON ($data2 , $data3)

FastSort recognizes the wild-card characters * and ? for the NOSCRATCHON
attribute. See the description of SCRATCHON following for examples of how to
use these characters.

You can specify up to 32 NOSCRATCHON volumes. If you specify
NOSCRATCHON, you cannot specify SCRATCHON. Note that this attribute
requires up to 276 additional bytes of stack space.

NOTCPUS { processor [, processor]... }

specifies the processor (CPU) numbers that are not available for subsort
processes. The range is 0 through 15. To specify a list of processors, enclose the
numbers in parentheses and separate them with commas, as follows:

SET DEFI NE NOTCPUS (2,5, 6)
PRI priority

specifies the priority to assign to the SORTPROG process. The range is 1 through
199, such as:

SET DEFI NE PRI 120

The default is the operating system priority for the parent process.

FastSort Manual—429834-003
7-3

Using SORT and SUBSORT DEFINEs Setting SORT DEFINE Attributes

PROGRAM fi | e- nane

specifies a local or remote program file name to run in place of the default program
file, such as:

SET DEFI NE PROGRAM $dat a. f ast sort. sort prog

SCRATCH fi |l e- nane

specifies a disk file name or disk volume name for an initial scratch file. This
attribute is required. For example:

SET DEFI NE SCRATCH $dat a. fastsort.scratch

If the file already exists, it must be unstructured. If the initial scratch file becomes
full, then either the SCRATCHON or NOSCRATCHON attribute determines the
volume for an overflow scratch file.

SCRATCHON (vol ume-nane [, volune-nane]...)

specifies volumes that FastSort should use for overflow scratch files. If the volume
specified in the SCRATCH attribute becomes full, FastSort tries to create additional
overflow scratch files on a SCRATCHON volume. To specify a list of volume

names, enclose the names in parentheses and separate with commas, as follows:

SET DEFI NE SCRATCHON ($data4 , $data5)

FastSort recognizes the wild-card characters * and ? for the SCRATCHON
attribute. For example:

SET DEFI NE SCRATCHON $dat a*

specifies as available for overflow scratch files all volumes whose names begin
with the string $dat a.

SET DEFI NE SCRATCHON $dat a?

specifies as available for overflow scratch files those volumes whose names begin
with the string $dat a and contain a single trailing character.

You can specify up to 31 SCRATCHON volumes. If you specify SCRATCHON, you
cannot specify NOSCRATCHON. Note that this attribute requires up to 276
additional bytes of stack space.

SEGQVENT si ze
specifies the size in pages of the extended data segment for FastSort, such as:
SET DEFI NE SEGVENT 256

The value must be at least 256 pages but must not represent more than 90 percent
of available memory. If you specify SEGMENT, you must omit MODE. The default
is the same as MODE AUTOMATIC.

FastSort Manual—429834-003
7-4

Using SORT and SUBSORT DEFINEs Setting SUBSORT DEFINE Attributes

SUBSORTS (DEFI NE-nane [, DEFINE-name]...)

specifies a list of DEFINE names for subsort processes. Separate the DEFINE
names with commas and enclose them in parentheses, such as:

SET DEFI NE SUBSORTS (=subsorta, =subsortb, =subsortc)
FastSort checks DEFINE names for validity at run time.

SWAP fil e-nane

specifies the name of a swap file to use in an extended memory data segment.
The swap file you specify must be a disk file or volume on the local node, such as:

SET DEFI NE SWAP $dat a. fastsort.swapfile

If the file already exists, it must be unstructured. The default location for the swap
file depends on the location of the scratch file. If the scratch file is local, the swap
file is on the scratch volume. For remote scratch files, the default is the volume
where the program file is running.

VLM { ON | OFF }

specifies whether to use additional extended memory during a sort run. For
example:

SET DEFI NE VLM ON

makes extra memory available. FastSort uses the additional extended memory to
either complete the sort in a single pass or store partial information until the sort is
complete. When VLM is ON, FastSort uses up to 127.5 MB of extended memory, if
available. The default value is OFF.

Setting SUBSORT DEFINE Attributes

The SUBSORT DEFINE attributes set values for a subsort process that you name in
the SUBSORT attribute of a SORT DEFINE. SUBSORT DEFINE attributes correspond
to the parameters of the SUBSORT command, which are described in Section 3, Using
FastSort Commands. To set parameters for parallel SQL/MP load operations, see

Loading Data on page 8-7.

CPU processor

specifies the number of the processor (CPU) in which to run the subsort process,
such as:

SET DEFI NE CPU 3

The range is 0 through 15. The default is the processor in which the primary disk
process for the initial scratch volume is running.

FastSort Manual—429834-003
7-5

Using SORT and SUBSORT DEFINEs Setting SUBSORT DEFINE Attributes

PRI priority

specifies the priority for the subsort process. The range is 1 through 199. The
default is the operating system priority for the parent process.

SET DEFI NE PRI 180

PROGRAM fi | e- nane

specifies a local or remote program file name to run for the subsort process in
place of the default program file, such as:

SET DEFI NE PROGRAM $dat a. anot her. sort prog

SCRATCH fil e- nane

specifies a disk file name or disk volume name for an initial scratch file for the
subsort process. Specify a unique scratch file for each subsort process. For
example:

SET DEFI NE SCRATCH $dat a. tenpl

If the file already exists, it must be unstructured. If the subsort scratch volume
becomes full, then either NOSCRATCHON or the SCRATCHON attribute of the
distributor-collector process determines the volume for another subsort scratch file.
If no values are specified for the SCRATCHON and NOSCRATCHON attributes,
then FastSort uses volume characteristics to select an overflow scratch volume.
For more information about scratch, see Managing Sort Workspace on page 9-1.

SEGVENT si ze

specifies the extended data segment size in pages for the subsort process. For
example:

SET DEFI NE SEGVENT 256
The value must be at least 256 pages but must not represent more than 90 percent
of available memory. The default value is 256 pages.

SWAP fil e-nane

is the name of a swap file for the subsort process. The value you specify must be a
local disk file or disk volume, such as:

SET DEFI NE SWAP $dat a. t enp4

If the file already exists, it must be unstructured. The default location for the swap
file depends on the location of the scratch file. If the scratch file is local, the swap
file is on the scratch volume. For remote scratch files, the default is the volume
where the program file is running.

FastSort Manual—429834-003
7-6

Using SORT and SUBSORT DEFINEs Creating and Using DEFINESs Interactively

Creating and Using DEFINEs Interactively

Use the TACL DEFINE commands listed below to interactively create and modify
SORT and SUBSORT DEFINEs. The operating system places the DEFINESs in the
process file segment (PFS) of your TACL process.

Command Description

ADD DEFINE Creates a DEFINE in the PFS of the current TACL process.
ALTER DEFINE Changes the attribute settings of an existing DEFINE in the PFS.
DELETE DEFINE Deletes one or more existing DEFINEs from the PFS.

INFO DEFINE Displays the attributes and their settings for one or more existing
DEFINEs.

RESET DEFINE Resets the attributes of one or more existing DEFINE to their initial
values.

SET DEFINE Sets the values of one or more existing DEFINE attributes in the
working set.

SHOW DEFINE Displays a value of a specific DEFINE attribute, the values of all
attributes, or the values of all attributes in the working set.

For additional information, including the syntax, for these commands, see the
TACL Reference Manual.

Enabling DEFINEs

You must set the TACL DEFMODE variable to ON before you can use a DEFINE. If the
DEFMODE variable is OFF, DEFINEs do not affect FastSort or any other processes.
To determine the current value of the DEFMODE variable, use the SHOW DEFMODE
command. To enable DEFINESs, use the SET DEFMODE ON command.

Creating a SORT DEFINE

The following example creates a SORT DEFINE named
=DISTRIBUTOR_COLLECTOR and three SUBSORT DEFINEs named =SUBSORTA,
=SUBSORTB, and =SUBSORTC. The SET DEFINE CLASS SORT establishes the
initial working attribute set and their default values. TACL automatically assigns these
default values to the working attribute set in the next SORT DEFINE you create. You
can issue additional SET DEFINE commands to set other attributes in the working
attribute set. Then use ADD DEFINE to create and name the
=DISTRIBUTOR_COLLECTOR based on the working attribute set, as follows:

SET DEFI NE CLASS SORT

SET DEFI NE SWAP $di sk. fastsort.swapfile

SET DEFI NE MODE M NSPACE

SET DEFI NE SUBSCORTS (=subsorta, =subsortb, =subsortc)
ADD DEFI NE =di stri butor_col |l ector

FastSort Manual—429834-003
7-7

Using SORT and SUBSORT DEFINEs Displaying a DEFINE

You can also create the same SORT DEFINE using a single command as shown in the
next example. The ampersand (&) is the continuation character for a TACL command
that continues on the next physical line.

ADD DEFI NE =di stributor_collector, CLASS SORT,
SCRATCH $di sk. fastsort. scratch,
SWAP $di sk. fastsort.swapfile,
MODE M NSPACE,
SUBSORTS (=subsorta, =subsorthb, =subsortc)

Displaying a DEFINE

Use the INFO DEFINE command with the DETAIL option to display the attributes and
values of one or more DEFINEs. Use the SHOW DEFINE command to display the
values of specific attributes. For example, to display the attributes and values for the
=DISTRIBUTOR_COLLECTOR DEFINE, enter:

| NFO DEFI NE =di stributor_collector, DETAIL
TACL displays:

Ro Ro Ro Ro

Defi ne Name =Dl STRI BUTOCR_COLLECTOR

CLASS SORT

SWAP $DI SK. FASTSORT. SWAPFI LE

MODE M NSPACE

SUBSORTS (=SUBSORTA, =SUBSORTB, =SUBSORTC)

The SHOW DEFINE command displays current attributes and attribute values. For
example, to display the working attribute set with current values, enter:

SHOW DEFI NE *
TACL displays:

CLASS SORT

SCRATCH

SWAP $DI SK. FASTSORT. SWAPFI LE
MCODE M NSPACE

CPU

BLOCK

PRI

SEGVENT

PROGRAM

CPUS

NOTCPUS

SUBSCORTS (=SUBSORTA, =SUBSORTB, =SUBSORTC)
VLM

NOSCRATCHON

SCRATCHON

For more information about the SHOW DEFINE command, see the example under
Examples of SORT and SUBSORT DEFINESs on page 7-15, and the TACL Reference
Manual.

FastSort Manual—429834-003
7-8

Using SORT and SUBSORT DEFINEs Creating a SUBSORT DEFINE

Creating a SUBSORT DEFINE

A SUBSORT DEFINE controls a subsort process in a parallel sort run. Specify
between 2 and 8 SUBSORT DEFINEs for a SORT DEFINE.

Note. FastSort supports up to 16 SUBSORT DEFINESs; however, to prevent run-time errors
and performance problems, HP recommends that you specify no more than 8 SUBSORT
DEFINEs.

You create a SUBSORT DEFINE in the same manner as a SORT DEFINE. To use a
SUBSORT DEFINE, you must also name the SUBSORT DEFINE in the SORT
DEFINE SUBSORTS attribute. At run time, each SUBSORTS attribute of a SORT
DEFINE must correspond to an existing SUBSORT DEFINE.

The following example creates a SUBSORT DEFINE named =SUBSORTA, which is
associated with the =DISTRIBUTOR_COLLECTOR SORT DEFINE:

SET DEFI NE CLASS SUBSORT

SET DEFI NE SCRATCH $di sk.tenpl
SET DEFI NE SWAP $di sk. t enp2
ADD DEFI NE =subsorta

An INFO DEFINE command for =SUBSORTA displays:

Defi ne Nane =SUBSORTA
CLASS SUBSORT
SCRATCH $DI SK. TEMP1
SWAP $DI SK. TEMP2

Modifying a DEFINE

You can also use TACL commands to add, modify, or delete the attributes of a SORT
or SUBSORT DEFINE (or the entire DEFINE). The following examples show several
ALTER DEFINE and RESET DEFINE commands with the results displayed with the
INFO DEFINE command.

To add one or more SUBSORT DEFINE names to an existing SORT DEFINE, use the
ALTER DEFINE command:

ALTER DEFI NE =di stri butor _col |l ector, &
SUBSCRTS (=subsorta, =subsorthb, =subsortc, =subsort d)

| NFO DEFI NE =di stributor _collector, DETAIL

Defi ne Name =Dl STRI BUTOR_COLLECTOR DEFI NE

CLASS SORT

SWAP $DI SK. FASTSORT. SWAPFI LE

MODE M NSPACE

SUBSORTS (=SUBSORTA, =SUBSORTB, =SUBSORTC, =SUBSORTD)

You can also use the ALTER DEFINE command to modify a SUBSORT DEFINE name
of an existing SORT DEFINE. The following command removes =SUBSORTA:

ALTER DEFI NE =di stri butor _coll ector, &
SUBSCORTS (=subsortb, =subsortc, =subsortd)

FastSort Manual—429834-003
7-9

Using SORT and SUBSORT DEFINEs Deleting a DEFINE

| NFO DEFI NE =di stributor_collector, DETAIL

Defi ne Nanme =Dl STRI BUTOR_COLLECTOR DEFI NE
CLASS SORT

SWAP $DI SK. FASTSORT. SWAPFI LE

MODE M NSPACE

SUBSORTS (=SUBSORTB, =SUBSORTC, =SUBSORTD)

To delete an attribute from the working attribute set before you create a new DEFINE,
use the RESET DEFINE command. The following example deletes all previously
specified SUBSORT DEFINE names for the =DISTRIBUTOR_COLLECTOR DEFINE.

RESET DEFI NE SUBSORTS

Deleting a DEFINE

Use the DELETE DEFINE command to delete a DEFINE. In the following example, the
first command deletes =SUBSORTB, while the second command deletes all DEFINEs
(including DEFINESs other class SORT DEFINES). A double asterisk (**) or an equal
sign and asterisk (=*) in the DELETE DEFINE command specifies all DEFINES.

DELETE DEFI NE =SUBSORTB
DELETE DEFI NE **

Using DEFINEs With Interactive FastSort

After you create a SORT DEFINE, you can use it with interactive FastSort by
specifying the DEFINE name in the FastSort RUN command. FastSort reads the
attributes from the SORT DEFINE and then uses them as parameters for the sort or
merge run. If you specify a DEFINE other than class SORT in the RUN command,
FastSort returns an error message.

The following FastSort command file includes a RUN command that uses the
=DISTRIBUTOR_COLLECTOR SORT DEFINE:

FROM infile

TO outfile

ASC 1:10

RUN, DEFI NE =di stri butor_col |l ector

The Guardian User’s Guide also provides information and examples for creating and
using TACL DEFINEs interactively.

Creating and Using DEFINEs Programmatically

You create and use a SORT or SUBSORT DEFINE (and other TACL DEFINESs as well)
programmatically using the system procedures shown in the table below. The
operating system places the DEFINEs in the process file segment (PFS) of your
application.

FastSort Manual—429834-003
7-10

Using SORT and SUBSORT DEFINEs

Procedure
DEFINEADD

DEFINEDELETE
DEFINEDELETEALL
DEFINEINFO
DEFINEMODE

DEFINENEXTNAME

DEFINEPOOL

DEFINERADATTR
DEFINERESTORE

DEFINERESTOREWORK2
DEFINESAVE
DEFINESAVEWORK]2]

DEFINESETATTR
DEFINESETLIKE

DEFINEVALIDATEWORK
CHECKDEFINE

Creating and Modifying DEFINEs Programmatically

Description

Creates a DEFINE for the user from the working attribute
set.

Deletes a specific DEFINE for the user.
Deletes all DEFINESs for the user.
Returns information about a DEFINE.

Sets the DEFINE mode (DEFMODE variable) for the user
process.

Returns the name of the DEFINE that follows the specified
DEFINE.

Designates part of the user stack or extended data segment
as a pool.

Returns the current value of a specified DEFINE attribute.

Restores a saved DEFINE from a user-specified buffer for
active use.

Restores the working set from a background set.
Copies an active DEFINE to a user-specified buffer.

Saves a first or second DEFINE working set in the
background set.

Modifies an attribute in the working set.

Initializes the working set with values from an existing
DEFINE.

Checks the working set for consistency.

Checkpoints a DEFINE to a backup process.

For a detailed description, including the syntax, of these procedures, see the
Guardian Procedure Calls Reference Manual.

To use TACL DEFINEs programmatically, you must first set the DEFMODE variable to

Creating and Modifying DEFINEs Programmatically

ON for your application by using one of the following methods:

® Before you run your application, issue the SET DEFMODE ON command from

your TACL process.

® From your application, call the DEFINEMODE procedure with the new*val ue

parameter set to 1.

After you enable DEFINES, you use the DEFINESETATTR procedure to set the values
of attributes, including the CLASS attribute, in the working attribute set. (You can also
issue the SET DEFINE CLASS SORT command from your TACL process before your

FastSort Manual—429834-003
7-11

Using SORT and SUBSORT DEFINEs Using DEFINEs With Programmatic FastSort

run your application.) After you have set the necessary attributes, you use the
DEFINEADD procedure to name the DEFINE and add it to your application’s PFS.

The following TAL example shows the programmatic use of a SORT DEFINE named
=SORT”DEFINE. The CONVERTAINTATONSTRING and ERRORMRECOVERY
procedures not shown in this example are user-written procedures.
CONVERT/AINTATONSTRING converts an integer value to a character string for use in
the DEFINESETATTR procedure call. ERRORMRECOVERY processes any errors that
occur in the system procedure calls.

STRI NG . sort ~defi ne*nane[0: 23],
.attribut ernane[0: 15],
.attribut erval ue[0: 15] ;

| NT attribute”l ength,
sort prog”cpununber,
error;

| Enter the SORT DEFINE attri bute values froma term nal.

sortrdefi ne®name ':='" "=sort”define X
attri but e®name '. =" "CLASS "

attri butervalue ':='" "SORT "
attribute® ength := 4,

error := DEFI NESETATTR (attri but e*nane,
attri but erval ue,

attri but e”l engt h);

|F error <> 0 THEN CALL error”recovery,

attributername ':=" "CPU "

error := convert”int~to”string (sortprog”cpu®nunber,
attri but erval ue,
attri but e”l ength);

| F error <> 0 THEN CALL error”recovery,

error := DEFI NESETATTR (attri but e®nane,
attri but erval ue,
attri but e®l engt h);
| F error <> 0 THEN CALL error”recovery,

I Set any other SORT DEFINE attri butes.

error := DEFI NEADD (sort”define®nane);
| F error <> 0 THEN CALL error”recovery,

Using DEFINEs With Programmatic FastSort

To use a SORT DEFINE other than =_SORT_DEFAULTS in a program, specify the
DEFINE name in the SORTBUILDPARM procedure described in Section 5, Using
FastSort System Procedures. If you omit the DEFINE name parameter in
SORTBUILDPARM, or if you specify a name of all blanks, FastSort does not check for
a SORT DEFINE.

FastSort Manual—429834-003
7-12

Using SORT and SUBSORT DEFINEs Creating and Using the =_SORT_DEFAULTS
DEFINE

The following TAL example uses a SORT DEFINE named =SORT”DEFINE in the
SORTBUILDPARM procedure. The operating system does not check the existence or
validity of the SORT DEFINE until the sort operation begins.

PROC sort"procedure;

BEG N
I NT .sort~define®nanme[0:11] :=1[12 * [" "]];
sort~define®nane ':=" ["=sort”define "1;

I Set the other SORTBU LDPARM par anet ers.

status : = SORTBUI LDPARM (sort bl ock, I Control block
cpu- mask,
not - cpu- mask
buf f er,
buf fer2,
buf f er *l engt h,
fl ags,
sort~defi ne®nane); ! DEFI NE nane

For more information about using DEFINEs programmatically, see Guardian
Programmer’s Guide.

Creating and Using the = SORT_DEFAULTS
DEFINE

Ina=_SORT_DEFAULTS DEFINE you can specify FastSort parameters for
applications that otherwise cannot set the parameters. For example, if a SQL/MP query
uses FastSort to sort rows from a table, FastSort uses attributes from the

= SORT_DEFAULTS DEFINE if it exists and DEFMODE is set to ON. The

= SORT_DEFAULTS DEFINE is the only DEFINE you can use to configure a sort from
SQL/MP. Other SORT and SUBSORT DEFINEs do not affect SQL/MP sorts.

HP recommends that you use the =_SORT_DEFAULTS DEFINE only for serial sort
operations. If you use the =_SORT_DEFAULTS DEFINE to configure a parallel sort
operation, follow the guidelines in Selecting a Scratch Volume for Parallel Sorts on
page 9-7 and Specifying a Swap File for Parallel Sorts on page 9-10 to avoid sort
failure.

Although the =_SORT_DEFAULTS DEFINE name is reserved for use as the default
FastSort DEFINE, you create it just as you create other DEFINEs. The following
example creates a = SORT_DEFAULTS DEFINE and displays its attributes. The
current attribute set is adopted from the working attribute set.

ADD DEFI NE =_SORT_DEFAULTS, CLASS SORT
| NFO DEFI NE =_SORT_DEFAULTS, DETAIL

FastSort Manual—429834-003
7-13

Using SORT and SUBSORT DEFINEs Creating and Using the =_SORT_DEFAULTS
DEFINE

Defi ne Nane = SORT_DEFAULTS
CLASS SORT

The following ADD DEFINE command creates the =_SORT_DEFAULTS DEFINE and
sets the SCRATCH, SWAP, and CPU attributes:

ADD DEFI NE = SORT_DEFAULTS, CLASS SORT,
SCRATCH $di sk.scratch.file
SWAP $di sk. swap.file
CPU 8

You can change the settings of the current attributes of the = SORT_DEFAULTS
DEFINE using the ALTER DEFINE command. You can then use the INFO DEFINE
command to display the new attribute values.

ALTER DEFI NE =_SORT_DEFAULTS, SCRATCH $di sk
ALTER DEFI NE =_SORT_DEFAULTS, PRI 150
| NFO DEFI NE = SORT_DEFAULTS, DETAIL

Ro Ro Ro

Defi ne Nane = SORT_DEFAULTS
CLASS SORT

SCRATCH $DI SK

PRI 150

To use the =_SORT_DEFAULTS DEFINE with interactive FastSort, you do not need to
specify it the RUN command, as shown in the following example.

> SORT

Fast Sort - T9620D30 - (310CT94)

COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991 - 1994

<FROM fruit

<ASC 1:10

<RUN

appl e

banana

gr ape

grapefruit

| enon

or ange

pear

wat er mel on
8 RECORDS 132 MAX RECORD Sl ZE

00: 02 ELAPSED TI ME 63 BUFFER PAGES
00:00 I/OWAIT TIME 0O INTIAL RUNS

19 COVWPARES 0 MERGE ORDER
0 SCRATCH DI SK
0 SCRATCH SEEKS

Errors detected: O

War ni ngs detected: O

In the next example, an invalid disk volume name for the = SORT_DEFAULTS
DEFINE SCRATCH attribute causes the FastSort error message (A SCRATCH FILE
CANNOT BE OPENED) and file-system error 14 (DEVICE DOES NOT EXIST).

SORT
Fast Sort - T9620D30 - (310CT94)
COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991 - 1994

FastSort Manual—429834-003
7-14

Using SORT and SUBSORT DEFINEs Examples of SORT and SUBSORT DEFINEs

<FROM fruit
<ASC 1: 10
<RUN
*** ERROR *** A SCRATCH FI LE CANNOT BE OPENED.
OPERATI NG SYSTEM ERROR: 14
SCRATCH FI LE: \ SYS. $VOLUVE

To correct the error, use the ALTER DEFINE command to set the SCRATCH attribute
to a valid name and then run FastSort again.

ALTER DEFI NE =_SORT_DEFAULTS, SCRATCH $dat a
SORT

Examples of SORT and SUBSORT DEFINEs

This subsection contains the following examples:
® A serial sort run using a SORT DEFINE

® A parallel sort run with a SORT DEFINE for a distributor-collector process and
two SUBSORT DEFINEs for the subsort processes

Serial Sort Run Example

The first example creates a SORT DEFINE named =SORT_RUN for a serial sort
operation. The SET commands set the DEFINE mode (DEFMODE) to ON and the
DEFINE CLASS to SORT. The SHOW DEFINE command then displays the available
attributes in the working attribute set:

SET DEFMODE ON
SET DEFI NE CLASS SORT
SHOW DEFI NE *
CLASS SORT
SCRATCH
SCRATCHON
NOSCRATCHON
SWAP
MODE
CPU
BLOCK
PRI
SEGVENT
PROGRAM
CPUS
NOTCPUS
SUBSORTS
VLM

Set selected attributes in the working attribute set:
SET DEFI NE SCRATCH $di sk
SET DEFI NE SWAP $dat a

FastSort Manual—429834-003
7-15

Using SORT and SUBSORT DEFINEs

SET DEFI NE CPU 5

Serial Sort Run Example

SET DEFI NE MODE AUTOVATI C

SET DEFINE PRI 170

Display the current attribute set:

SHOW DEFI NE *
CLASS
SCRATCH
SCRATCHON
NOSCRATCHON
SWAP
MODE
CPU
BLOCK
PRI
SEGVENT
PROGRAM
CPUS
NOTCPUS
SUBSORTS
VLM

SORT
$DI SK

$DATA
AUTOVATI C
5

170

Create the SORT DEFINE and display the current attribute set for all current DEFINES.
The current attribute set for the =SORT_RUN DEFINE is adopted from the working

attribute set.

ADD DEFI NE =sort
| NFO DEFI NE **,
Def i ne Name
CLASS
SCRATCH
SWAP
MODE
CPU
PRI

_run
DETAI L

Def i ne Name
CLASS
VOLUME

SWAP

Run FastSort and specify the =

> SORT
Fast Sort - T9620D30 -
<FROM fruit

<TO sort out

<ASC 1:10

<RUN, DEFI NE =sort _run

=SORT_RUN
SORT

$DI SK
$DATA
AUTOMATI C
5

170

= DEFAULTS
DEFAULTS

$DI SK. SUBVOL
$DATA

SORT_RUN DEFINE in the RUN command:

(310CT94)
COPYR! GHT TANDEM COVPUTERS | NCORPORATED 1991 -

1994

FastSort Manual—429834-003

7-16

Using SORT and SUBSORT DEFINEs Parallel Sort Run Example

Parallel Sort Run Example

The following example shows a parallel sort run using a SORT DEFINE named
=PARALLEL_SORT and SUBSORT DEFINEs named =SUBSORTA and
=SUBSORTB. (The input file FRUIT contains only 8 records; however, an actual input
file would be much larger to require a parallel sort operation.)

SET DEFMODE ON

ADD DEFI NE =paral | el _sort, CLASS SORT, &
SCRATCH $di sk. fastsort. scratch, &
CPU 5, &
PRI 145, &
SUBSCORTS (=subsorta, =subsorthb)

| NFO DEFI NE =paral l el _sort, DETAIL
Def i ne Nane =paral l el _sort
CLASS SORT
SCRATCH $DI SK. FASTSORT. SCRATCH
CPU 5
PRI 145
SUBSORTS (=SUBSORTA, =SUBSORTB)

To create SUBSORT DEFINEs, first set the DEFINE CLASS to SUBSORT. Then use
the SHOW DEFINE command to display the available attributes in the working attribute
set. The two question marks (??) indicate a required attribute that you must supply.

SET DEFI NE CLASS SUBSORT
SHOW DEFI NE *
CLASS SUBSORT
SCRATCH ?7?
SWAP
CPU
PRI
SEGVENT
PROGRAM
Current attribute set is inconplete
SET DEFI NE SCRATCH $di sk

Create SUBSORT DEFINEs using the names specified in the ADD DEFINE command
for the =PARALLEL_SORT DEFINE, and then display all your current DEFINEs
(including the =_DEFAULTS DEFINE):

ADD DEFI NE =subsorta, CPU 3
ADD DEFI NE =subsortb, CPU 6
| NFO DEFI NE **, DETAI L

Defi ne Nane PARALLEL_SORT

CLASS SORT

SCRATCH $DI SK. FASTSORT. SCRATCH
CPU 5

PRI 145

SUBSCORTS (=SUBSORTA, =SUBSORTB)
Defi ne Nane =SUBSORTA

CLASS SUBSCORT

SCRATCH $DI SK

FastSort Manual—429834-003
7-17

Using SORT and SUBSORT DEFINEs Parallel Sort Run Example

CPU 3
Defi ne Nane =SUBSORTB
CLASS SUBSORT
SCRATCH $DI SK
CPU 6
Defi ne Nane = DEFAULTS
CLASS DEFAULTS
VCOLUME $DI SK. SUBVOL
SVWAP $DATA
Run the =PARALLEL_SORT DEFINE with interactive FastSort:
SORT

Fast Sort - T9620D30 - (310CT94)
COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991 - 1994

<FROM fruit
<ASC 1: 10
<RUN, DEFI NE =parallel _sort
appl e
banana
gr ape
grapefruit
| enon
or ange
pear
wat er mel on
8 RECORDS 132 MAX RECORD Sl ZE
00: 07 ELAPSED TI ME 63 BUFFER PAGES
00:03 I/OWAIT TI ME 0O INTIAL RUNS
27 COVPARES 15 MERGE ORDER
0 SCRATCH DI SK 0 FIRST MERGE

0 SCRATCH SEEKS
Errors detected: O
War ni ngs detected: O

FastSort Manual—429834-003
7-18

—8— Sorting From NonStop SQL/MP

Under certain circumstances, SQL/MP invokes FastSort in a manner that is
transparent to the user. SQL/MP invokes FastSort when you do any of the following:

® Specify ordering or grouping options in an SQL query statement
® Execute a query that results in a sort merge join operation
® Use a CREATE INDEX or LOAD statement to load data in parallel

Because SQL/MP automatically invokes FastSort, this section describes how a sort
operation is implemented. This section also contains guidelines on how to minimize
SQL sorts and configure your FastSort environment.

How SQL/MP Implements a Sort

The SQL optimizer analyzes each SQL statement and determines if a sort is needed. If
needed, SQL/MP implements the sort in one of two ways.

In-memory Sorts

An in-memory sort is the fastest type of sort operation because it requires no
SORTPROG process or scratch files. FastSort can sort records within the executor’s
extended memory segment if all of the following conditions apply:

® The data to sort is less than 4 MB
® The number of rows to sort is less than 32,768
® The number of columns to sort is less than 63

For the serial portion of a parallel plan, the optimizer can also choose an in-memory
sort if all of the following conditions apply:

® The master executor server process (ESP) uses an in-memory sort to execute an
ORDER BY clause.

® A GROUP BY clause precedes the ORDER BY clause.
® SQL/MP uses hash grouping to execute the GROUP BY clause.

Note. The optimizer does not choose an in-memory sort if the table to sort is the inner table of
a sort merge join operation.

External Physical Sorts

SQL/MP uses an external physical sort if the memory segment is too small to hold all
of the rows. An external physical sort is one of the following:

FastSort Manual—429834-003
8-1

Sorting From NonStop SQL/MP Configuring Your SQL/MP Sort Environment

® An external FastSort process (SORTPROG), if the SQL optimizer estimates that
the data to sort might exceed 4 MB, or there are fewer than 32,768 rows or fewer
than 63 columns

® A sort performed by a series of inserts into a temporary key-sequenced table, if
both of the following conditions apply:

© The table contains more than 500 rows and more than 63 columns

© The total key length is less than 255 bytes

Note. If the total key length is greater than 255 bytes SORTPROG returns an error.

Configuring Your SQL/MP Sort Environment

Depending on the SQL operation you perform, you can configure your FastSort
environment for SQL/MP in three ways:

® Using the = SORT_DEFAULTS DEFINE
® Using a configuration file for a parallel index load

® Using LOAD command options

Setting Up a = SORT_DEFAULTS DEFINE

The = SORT_DEFAULTS DEFINE is the DEFINE you use to configure sorts from
SQL/MP. While configuration file and LOAD options only affect loading data, the

= SORT_DEFAULTS DEFINE affects all SQL operations that invoke FastSort. If you
do not specify a configuration file or LOAD command options, SQL/MP uses values in
your =_SORT_DEFAULTS DEFINE for the load operation.

Note. Before you can use a =SORT_DEFAULTS DEFINE, you must enable DEFINES for your
TACL session. To enable DEFINEs, execute the SET DEFMODE ON command from either
your TACL or SQLCI prompt. For more information about this command, see Section 7, Using
SORT and SUBSORT DEFINEs.

FastSort Manual—429834-003
8-2

Sorting From NonStop SQL/MP Setting Up a =_SORT_DEFAULTS DEFINE

You can create or modify a = SORT_DEFAULTS DEFINE directly from your SQLCI
prompt. The syntax for creating a = SORT_DEFAULTS DEFINE is:

ADD DEFI NE =_SORT_DEFAULTS, CLASS SORT
, BLOCK bl ock-si ze

, CPU cpu- nunber

, CPUS subsort-cpu-Iist

, MODE node-type

, NOSCRATCHON (volume-list)

, NOTCPUS cpu-1list-not-subsort
[, PRI process-priority

[, PROGRAM file

[, SCRATCH file

, SCRATCHON (volune-list)

, SEGVENT ext ended- segnent - si ze
, SUBSORTS define-1i st

, SWAP fil e-nane

, VLM{ ON| OFF }

All TACL DEFINE commands, such as SET DEFINE and ALTER DEFINE, are valid
for the =_SORT_DEFAULTS DEFINE. You can also name and set any SORT or
SUBSORT DEFINE attribute ina = ~ SORT_DEFAULTS DEFINE.

You must specify CLASS SORT for the =_SORT_DEFAULTS DEFINE. You can
specify CLASS SORT either in the ADD DEFINE command or through the working
attribute set. To learn how to use DEFINE commands and SORT and SUBSORT
DEFINE attributes, see Section 7, Using SORT and SUBSORT DEFINEs.

The example below creates a = SORT_DEFAULTS DEFINE and specifies values for
the SCRATCH, SWAP, CPU, AND PRI attributes:

ADD DEFI NE =_SORT_DEFAULTS, CLASS SORT,
SCRATCH $DATA, SWAP $DATA2, CPU 3, PRI 100

At run time, if the scratch and swap files you specify in a =_SORT_DEFAULTS
DEFINE do not exist, FastSort automatically creates these files and sets
MAXEXTENTS to 160. If you manually create scratch and swap files, size them
according to the number of records to sort and extended memory segment size,
respectively. For more information about scratch and swap files, see Section 9,
Optimizing Sort Performance.

FastSort Manual—429834-003
8-3

Sorting From NonStop SQL/MP Ordering and Grouping Query Results

Guidelines for =_SORT_DEFAULTS DEFINE Attributes

To optimize sort performance for SQL/MP, HP recommends you follow these guidelines
for SORT and SUBSORT attributes in your =_SORT_DEFAULTS DEFINE:

Attribute Recommended value

VLM OFF
ON for nonparallel LOAD operations

PRI 180 for high priority users and queries
160 for most users and queries
80 for routine load operations and queries

PROGRAM A local file
CPU A processor that is less than 50 to 60 percent busy
SCRATCH On a local volume other than $SYSTEM. Avoid the volume

where the SORTPROG is running. Avoid using volumes on
mirrored disks. An empty volume is best.

SWAP On a local volume other than $SYSTEM and other than the
scratch volume

/A Caution. For any parallel query, parallel CREATE INDEX operation, or parallel load operation,
specify only volume names for the SCRATCH and SWAP attributes in a =_SORT_DEFAULTS
DEFINE. Do not specify fully qualified file names for these attributes. If you specify fully
gualified scratch and swap file names for a parallel sort operation, processor and disk space
contention problems can result.

These attributes are fully described in Section 7, Using SORT and SUBSORT
DEFINEs. Check with your system manager to learn how resources are allocated on
your node. For more information on how to allocate sort workspace, see Section 9,
Optimizing Sort Performance.

Ordering and Grouping Query Results

This subsection describes situations in which your query causes SQL/MP to invoke
FastSort, and how to structure a query to use logic built into the SQL optimizer. For
more information about the SQL clauses mentioned in this subsection, see the
NonStop SQL/MP Query Guide.

In general, SQL/MP uses FastSort to order and group query results. SQL/MP
automatically invokes FastSort in certain cases when you specify an ORDER BY
clause in a query statement and SQL/MP retrieves data from the base table. SQL/MP
also uses FastSort when you specify one of the following in a query statement:

® GROUP BY
® DISTINCT

FastSort Manual—429834-003
8-4

Sorting From NonStop SQL/MP Optimizing SQL Clause Combinations

® UNION (without the ALL option)

and the specified columns do not match a prefix of the index columns.

Note. NonStop SQL/MP does not invoke FastSort if the optimizer chooses a query plan that
reads the base table by primary key value.

If you specify more than one SQL ordering or grouping clause in a query, you can often
structure the query to avoid duplicate sorts. For queries in which the optimizer does not
choose a parallel execution plan, you should also use a=_SORT_DEFAULTS DEFINE
to optimize performance. For more information about setting up a

= SORT_DEFAULTS DEFINE, see Configuring Your SQL/MP Sort Environment on
page 8-2.

Optimizing SQL Clause Combinations

The SQL/MP optimizer attempts to minimize sort operations. However, certain
combinations of SQL clauses can still cause unnecessary or duplicate sorts. The
following examples show how to structure SQL statements to minimize unnecessary
sorts.

Specifying ORDER BY With GROUP BY

You can order and group query results in a single sort when the following occurs:
® The ORDER BY list is a subset of the GROUP BY list
For example, only one sort is necessary for the following query:

SELECT ATLANTA, BOSTQON, CHI CAGO, DALLAS FROM SALES
GROUP BY ATLANTA, BOSTON, CHI CAGO, DALLAS
ORDER BY BOSTQN, CH CAGO DESC ;

A single sort groups and orders the results of this query. In this case, SQL/MP
sorts on (BOSTON, CHICAGO, ATLANTA, DALLAS).

® The GROUP BY list contains n items, which are also the first n items of the
ORDER BY list, as in the following query:

SELECT ATLANTA, BOSTON, CHI CAGO, COUNT(*), SUM ATLANTA)
FROM SALES

GROUP BY ATLANTA, BOSTON, CH CAGO

ORDER BY 1, 2 DESC, 3, 5, 4 ,;

A single sort also groups and orders the results of this query. In this case, SQL/MP
sorts on (ATLANTA, BOSTON, CHICAGO).

Specifying GROUP BY With DISTINCT

You can group results and eliminate duplicate rows in a single sort when:

FastSort Manual—429834-003
8-5

Sorting From NonStop SQL/MP Using a Sort Merge Join

® The GROUP BY list is a subset of the SELECT DISTINCT list, as in the following
query:
SELECT DI STI NCT COUNT(*), BOSTON, BOSTON- DALLAS, DALLAS

FROM SALES
GROUP BY BOSTON, DALLAS ;

A single sort on (BOSTON, DALLAS) groups the query results. Because each
(BOSTON, DALLAS) value is unique after grouping, each (BOSTON, DALLAS,
BOSTON-DALLAS, COUNT(*)) value is also unique.

® The SELECT DISTINCT list is a subset of the GROUP BY list, there are no
expressions in the SELECT list, and no aggregates in a HAVING clause, as in the
following query:

SELECT DI STI NCT ATLANTA, CH CAGO FROM SALES
GROUP BY ATLANTA, BOSTQON, CHI CAGO ;

In this case, only a single sort is required because the GROUP BY clause is
unnecessary. Because BOSTON is not in the SELECT list and no aggregates or
HAVING clauses rely on the full grouping, there is no need to group by BOSTON.

To build this logic into your query and avoid the unnecessary sort, add the
DISTINCT column to the GROUP BY list.

Specifying ORDER BY With DISTINCT

You can order query results and eliminate duplicate rows in a single sort if the ORDER
BY list is a subset of the DISTINCT list, as in the following query:

SELECT DI STI NCT ATLANTA, BGOSTQON, CH CAGO, DALLAS FROM SALES
GROUP BY ATLANTA, BOSTON DESC ;

In this case, a single sort on (ATLANTA, BOSTON DESC, CHICAGO, DALLAS) orders
results and eliminates duplicate rows. The position and sorting order, ascending or
descending, of ATLANTA and BOSTON must match the index used for the sort.
However, CHICAGO and DALLAS can occur in any order after ATLANTA and
BOSTON, and in either ascending or descending order.

Using a Sort Merge Join

A join operation combines data from two tables or views. The sort merge join is one of
four join methods available to the SQL/MP optimizer. The optimizer evaluates query
cost and decides which type of join to perform.

For the optimizer to choose a sort merge join, these conditions must exist:

® The joining columns of outer and inner tables must be in ascending or descending
order

® The query must be an equijoin query

During a sort merge join, FastSort always sorts the data from the inner table and stores
it in a temporary entry-sequenced table. If the outer table is not already sorted on the

FastSort Manual—429834-003
8-6

Sorting From NonStop SQL/MP Loading Data

joining column, FastSort also sorts the outer table data and stores it in a second
temporary entry-sequenced table. The two temporary tables are then merged to form
the sort merge join result.

By default, FastSort creates these temporary tables on the default swap volume. To
avoid disk space contention, move the swap file to a volume other than the default. For
information on how to specify swap file location, see Section 9, Optimizing Sort
Performance

For more information about sort merge joins and equijoin queries, see SQL/MP Query
Guide.

Loading Data

When you execute CREATE INDEX or LOAD and the source table contains data,
SQL/MP uses FastSort to help process the data under these circumstances:

® CREATE INDEX with PARALLEL EXECUTION ON
® | OAD with PARALLEL EXECUTION ON
® LOAD without the SORTED option if the target table is key-sequenced

If the target table is partitioned, you can specify PARALLEL EXECUTION ON to load
partitions in parallel. SQL/MP starts a record generator (RECGEN) process for each
partition of the table and a sort process (SORTPROG) for each partition of the index.
Record generator processes read the base table rows. Sort processes sort the
generated rows and write them to the index.

Figure 8-1 on page 8-8 shows the interaction between the SQL/MP catalog manager
and RECGEN and SORTPROG processes when you load data in parallel. If neither
base table nor index is partitioned, SQL/MP uses only one RECGEN process and one
SORTPROG process.

FastSort Manual—429834-003
8-7

Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement

Figure 8-1. Parallel Loading Data Into a Partitioned Index Table

Base Table Partitions

7

v

® RECGEN

Disk Process Block Mode Interface

RECGEN

RECGEN

SQL Catalog
Manager

’,,
SORTPROG SORTPROG SORTPROG

SQLLOAD Routines i

Index Table Partitions
VST801.vsd

Because parallel processing uses more concurrent CPU cycles and disk processes
than serial processing, loading data in parallel could temporarily monopolize system
resources. Try to schedule other system tasks accordingly.

The default location of a RECGEN process is $SYSTEM.SYSnn.RECGEN, where nn
is a two-digit number assigned by HP. To specify a different location, use the

= SQL_RECGEN_node DEFINE. You must have super ID authority on the specified
node to move a RECGEN process. For more information about this DEFINE, see
SQL/MP Reference Manual.

Configuring a CREATE INDEX Statement

When you create an index on a base table and do not specify PARALLEL EXECUTION
ON, you can use either the default configuration described in this subsection or a

= SORT_DEFAULTS DEFINE. For more information on how to set up a

= SORT_DEFAULTS DEFINE, see Configuring Your SQL/MP Sort Environment on
page 8-2. For detailed information about SORT DEFINEs and DEFINE attributes, see
Section 7, Using SORT and SUBSORT DEFINEs.

FastSort Manual—429834-003
8-8

Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement

When you create a partitioned index on a base table and specify PARALLEL
EXECUTION ON, you can use either the default configuration or a custom
configuration file. A configuration file defines attributes of record generator and sort
processes. You can specify the name of a configuration file in the PARALLEL
EXECUTION clause of a CREATE INDEX statement. If you specify no configuration
file, FastSort uses the default configuration.

Using the Default Configuration

If you specify PARALLEL EXECUTION ON and do not specify a configuration file,
SQL/MP uses the following defaults:

Default Scratch File Size Formula

Under the default configuration, SQL/MP uses the following formula to estimate scratch
file size:

y Nunmber of BaseTabl eRecor ds
Nunber of | ndexTabl ePartiti ons

3

NonStop SQL/MP estimates the number of records in the base table by dividing file
size by record length.

Default DEFINE Attribute Values
The default configuration for CREATE INDEX includes the following attribute values:

Attribute Default value

PRI For both RECGEN and SORTPROG, the priority of the process that
creates the index.

CPU For local partitions, the CPU that runs the primary disk process for that
partition. If a partition is remote or a CPU is unavailable, FastSort
arbitrarily selects the first CPU, then selects subsequent CPUs in a
sequential fashion. Note that multiple RECGENs or SORTPROGSs can
run in a single CPU.

SCRATCH FastSort selects a volume for the initial SORTPROG scratch file.
RECGEN processes do not use scratch files.

SWAP For SORTPROGsS, the scratch volume if that volume is local and if not,
the volume where the SORTPROG is running. For RECGENS, the
volume of the partition being read if that partition is local and if not, the
swap volume specified in the =_SORT_DEFAULTS DEFINE.

The default configuration is not recommended for base tables with many remote
partitions. Note that in this configuration, all record generator processes that read
remote partitions swap to the same volume. When multiple processes swap to the

FastSort Manual—429834-003
8-9

Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement

same volume, processor and disk space contention problems can result. Use a
configuration file to specify a unique swap volume for each remote partition.

Using a Custom Configuration File

When you create an index and specify PARALLEL EXECUTION ON, you can use the
CONFIG option to specify a custom configuration file. The configuration file must be an
EDIT file. It can describe either a default configuration or an explicit configuration for
both record generator and sort processes. Default and explicit configurations are
discussed in Assigning Default and Explicit Values on page 8-14.

The values you specify in a configuration file override any values in a
= SORT_DEFAULTS DEFINE. This subsection describes configuration file syntax and
contains a sample file.

/A Caution. HP recommends that you use only a custom configuration file to configure a parallel
CREATE INDEX operation. If you omit the SCRATCH and SWAP attributes in your
configuration file and a = SORT_DEFAULTS DEFINE contains fully qualified file names for
these attributes, processor and disk space contention problems can result.

Configuration File Syntax

The two types of statements in a configuration file are COMMENT and CREATE
INDEX. Keywords in the configuration file can be in uppercase, lowercase, or mixed-
case letters. The maximum length for a configuration file statement is 132 characters.
However, due to parser requirements, a line in a configuration file can be at most 80
characters long. Split statements longer than 80 characters into two lines of up to 80
characters each. In this case, insert an ampersand character (&) at the end of the first
line to specify that the lines make up a single statement.

Use the COMMENT statement to include descriptive notes in the file. SQL/MP ignores
lines that begin with the keyword COMMENT or the characters ==. The syntax for
COMMENT is as follows:

{ COWMENT comment -text }
{ == comment -t ext }

FastSort Manual—429834-003
8-10

Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement

The CREATE INDEX statement precedes all configuration information for the parallel
load operation. SQL/MP reads only CREATE INDEX statements in the configuration
file. The syntax for CREATE INDEX is as follows:

{ LOCALONLY}
CREATEI NDEX{ BASETABLE} { DEFAULT [node- nane] default-attr
{1 NDEX }partition attr [,attr]...

[

where default-attr is:

CPU (num [, num] ...)]
NOSCRATCHON (scratchvol [, scratchvol]...)]
NUVRECS (nunber)]
PRI (priority)

PROGRAM (fil enane)

SCRATCH (scratchvol [, scratchvol]...)
SCRATCHON (scratchvol [, scratchvol]...)
SWAP (swapvol)

and where attr is:

CPU (num)]
NOSCRATCHON (scratchvol [, scratchvol]...)]
NUVRECS (nunber)]
PRI (priority)

PROGRAM (fil enane)

SCRATCH scrat chvol

SCRATCHON (scratchvol [, scratchvol]...)

SWAP (swapvol)

LOCALONLY

directs SQL/MP to run the SORTPROG and RECGEN processes only on the local
node. For performance reasons, the default location is remote. If there is no
remote node, then SORTPROG and RECGEN run locally. Use this option only on
systems with remote nodes to preserve software behavior available in previous
RVUs. If you specify LOCALONLY, it must be the first CREATE INDEX statement
in the configuration file.

BASETABLE

applies the attributes you specify to the record generator processes that read the
base table.

| NDEX

applies the attributes you specify to the sort processes that write to index
partitions.

FastSort Manual—429834-003
8-11

Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement

DEFAULT [node-nane] default-attr

specifies an attribute-value pair for partitions on a node for which no value has
been explicitly specified. If you omit node- nane, SQL/MP applies the DEFAULT
statement to the node where the parallel index load is initiated. For more
information on how to use this option, see Assigning Default and Explicit Values on
page 8-14.

partition

specifies the name of the volume that contains the partition to which the specified
attributes apply. You can include a node name, such as:

$nmyvol
\ nwr eg. $sal esl
The default is the local node.

CPU(num[, num] ...)

is valid only if you specify INDEX or BASETABLE. CPU specifies one or more local
CPUs for record generator or sort processes. You can specify multiple CPUs only
as DEFAULT CPUs.

NOSCRATCHON (scratchvol [, scratchvol] ...)

is valid only if you specify INDEX. NOSCRATCHON specifies one or more volumes
to be excluded as overflow scratch volumes for the sort process. You can use the
NOSCRATCHON option either as a DEFAULT specification or for a certain
partition. You cannot specify both SCRATCHON and NOSCRATCHON.

When selecting scratch volumes, FastSort consults this list if you do not use the
SCRATCHON option to specify a set of overflow scratch volumes. FastSort does
not use $SYSTEM or TMF audit trail volumes for overflow scratch files. Volumes
with less than 1 MB of disk space and volumes protected by the Safeguard product
are also exempt. You can use the NOSCRATCHON option either as a DEFAULT
specification or for a certain partition.

When you specify NOSCRATCHON volumes in a configuration file, the values you
specify override any values in a =_SORT_DEFAULTS DEFINE.

You can use the wild-card characters * and ? when you specify scr at chvol . See
the description of SCRATCHON in Section 7, Using SORT and SUBSORT
DEFINEs for examples of how to use these characters.

/A Caution. HP recommends that you use only a custom configuration file to configure a parallel
CREATE INDEX operation. If you omit the SCRATCH and SWAP attributes in your
configuration file and a = SORT_DEFAULTS DEFINE contains fully qualified file names for
these attributes, processor and disk space contention problems can result.

FastSort Manual—429834-003
8-12

Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement

NUVRECS (nunber)

is valid only if you specify INDEX. NUMRECS specifies the approximate number of
records to load into the index partition. Use NUMRECS if the index is unevenly
partitioned across volumes. FastSort uses this number to calculate initial scratch
file size.

PRI (priority)

is valid only if you specify INDEX or BASETABLE. PRI specifies the priority at
which to run the record generator or sort process.

PROGRAM (fi | enane)

specifies the name of a local or remote SORTPROG object file if you also specify
BASETABLE. If you specify INDEX, PROGRAM specifies the name of a local or
remote RECGEN object file. The associated swap volume must reside on the
same node as the object file.

SCRATCH (scratchvol [, scratchvol]...)

is valid only if you specify INDEX. SCRATCH specifies the name of an initial
scratch volume or volumes FastSort can use to sort index records. When you
specify scratch volumes in a configuration file, the values you specify override any
values in a =_SORT_DEFAULTS DEFINE.

You can specify a list of SCRATCH volumes only in DEFAULT syntax. When you
use SCRATCH to list default scratch volumes, FastSort assigns one volume to
each sort process in a sequential fashion. If there are more index partitions than
volumes available, FastSort reuses volumes on the list until each partition has an
initial scratch volume. You can use the SCRATCH option either as a DEFAULT
specification or for a certain partition.

The SCRATCH option specifies initial scratch volumes. Use the SCRATCHON
option to specify a set of overflow volumes. To direct FastSort to set up an overflow
scratch volume pool by excluding certain volumes, use the NOSCRATCHON
option.

SCRATCHON (scratchvol [, scratchvol]...)

is valid only if you specify INDEX. SCRATCHON specifies one or more volumes
FastSort can use for overflow scratch files. FastSort uses overflow scratch
volumes only if one or more initial volumes becomes full, or if you do not use the
SCRATCH option to specify an initial scratch volume. You can use the
SCRATCHON option either as a DEFAULT specification or for a certain partition.

You can specify up to 32 scratch volumes, within the maximum line length of 132
characters. You can also use the wild-card characters * and ? when you specify
scrat chvol . See the description of SCRATCHON in Section 7, Using SORT and
SUBSORT DEFINESs for examples of how to use these characters.

FastSort Manual—429834-003
8-13

Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement

When you specify overflow scratch volumes in a configuration file, the values you
specify override any values in a =_SORT_DEFAULTS DEFINE.

You cannot specify both NOSCRATCHON and SCRATCHON. If you do not specify
either SCRATCHON or NOSCRATCHON, FastSort considers using any volume,
except $SYSTEM and TMF audit trail volumes, for overflow scratch files. Volumes
with less than 1 MB of disk space and volumes protected by the Safeguard product
are also exempt.

SWAP (swapvol [, swapvol]...)

is valid only if you specify INDEX or BASETABLE. SWAP specifies the name of the
volume on which to place the extended segment swap file. You can include a node
name in swapvol , as in this example:

$myvol
\ nw eg. $sal esl

You can specify multiple swap volumes only as DEFAULT swap volumes.

Assigning Default and Explicit Values

You can specify any attribute in a configuration file as either a default or explicit value
for record generator or sort processes. Use the DEFAULT option to specify a default
value. Use the partition option to specify an explicit value.

Use default values when you want FastSort to choose from a set of multiple values.
For example, you might specify scratch volume names or CPU numbers as default
values. You can also use default values to apply a single value, such as number of
records to sort or execution priority, to all processes.

Use explicit values when you want FastSort to use particular values for size limitation
or performance reasons. For example, if one index partition is much larger than others,
you might want to explicitly specify values for that partition.

Default and explicit values are not mutually exclusive. For example, you can explicitly
specify scratch volumes and specify a default pool of CPUs for the sort processes, or
you might specify a default pool of scratch volumes but assign a particular scratch
volume to one partition.

Sample Configuration File

Following is a sample configuration file for loading data from the base table
CUSTOMER into partitions on the index AGEINDEX. It includes both default and
explicit values.

== Sanple configuration file for |oading index partitions

== in parallel. Creates index AGEI NDEX on table CUST, which
== s partitioned as foll ows:

== $DATAL. SALES. CUST

== $DATA2. SALES. CUST

== $DATA3. SALES. CUST

== \ NEWYORK. $DATAL. SALES. CUST

== ACEINDEX is partitioned as follows:

FastSort Manual—429834-003
8-14

Sorting From NonStop SQL/MP Configuring a LOAD Statement

== $DATA4. SALES. AGEI NDEX

== $DATAS. SALES. AGElI NDEX

== \ NEWYORK. $DATA2. SALES. AGEl NDEX
\ NEWYORK. $DATA3. SALES. AGEl NDEX

== Set up a default priority for the RECGEN processes:

CREATEI NDEX BASETABLE DEFAULT PRI (140)
CREATEI NDEX BASETABLE DEFAULT \ NEWWORK PRI (140)

== Set up a default pool of scratch files for the sort
== processes.

CREATEI NDEX | NDEX DEFAULT SCRATCH ($TEMP1, $TEMP2, $TEMP3)
CREATEI NDEX | NDEX DEFAULT \ NEWYORK SCRATCH ($TEMP4)

== Request that overflow scratch files avoid certain disks--
== those specified plus $SYSTEM and TMF audit trail disks.

CREATEI NDEX DEFAULT NOSCRATCHON ($SYS*, $WORK*)

== Request that overflow scratch files use specific disks
== on the renpote node

CREATEI NDEX | NDEX DEFAULT \ NEWYORK SCRATCHON ($TEMP*)

== Request that the $data3 sort process use $TEMP7 for
== scratch files.

CREATEI NDEX \ NEWYORK. $DATA3 SCRATCH ($TEMP7)

== End of configuration file.

Loading Multiple Indexes

PARALLEL EXECUTION ON applies to only one partitioned index at a time. If the base
table has more than one partitioned index, the partitions of the first index are loaded
first. After the first index is loaded, the partitions of the second index are loaded in
parallel, and so on.

You can use the FOR i ndex- name clause of the CONFIG option to specify a
separate configuration file for each index. If you omit this clause, the configuration file
applies to all indexes on the base table. If you specify at least one index in the FOR
clause, SQL/MP parallel loads the partitions of any index not specified with the default
configuration values. For more information about CONFIG option syntax, see LOAD
entry in the SQL/MP Reference Manual.

Configuring a LOAD Statement

LOAD is a SQLCI utility you use to load data. LOAD can transfer data from an SQL/MP
table or a disk file into either an SQL/MP table and its indexes or an Enscribe
structured disk file. LOAD overwrites existing data in the target table or file.

/A Caution. To use LOAD you must turn off auditing for the table being loaded. This action
invalidates TMF online dumps of the table and its indexes. To ensure TMF rollforward
protection for the table and its indexes, make new online dumps of all table and index
partitions. If you load only partitions rather than an entire table, turn off auditing and make new
online dumps for only the partitions being loaded.

FastSort Manual—429834-003
8-15

Sorting From NonStop SQL/MP Configuring a LOAD Statement

When you execute a LOAD statement from SQLCI, you invoke FastSort if data is
unsorted and the target table is key-sequenced, or if PARALLEL EXECUTION is set to
ON. This subsection discusses only the LOAD options that affect sort operations. For a
full description of LOAD statement syntax, see the SQL/MP Reference Manual.

The LOAD options that affect sort operations are:

® SORTED
® MAX
® SCRATCH

These options are only valid for loading key-sequenced files and tables.

SORTED

specifies that input records are already sorted in the key-field order of the output
file and are not to be resorted. If you omit the SORTED option and the target file is
key-sequenced, FastSort sorts the records before LOAD writes data to the output
file.

MAX numrecords

specifies the number of input records. The range is between 0 and 2,147,483,647.
LOAD uses num r ecor ds to determine file and extent size for the initial scratch
file. If you specify the SORTED option, you can omit the MAX option.

When you specify num r ecor ds, try to overestimate. If you underestimate the
number of records, the sort can be significantly slower. If you overestimate, the
cost is small.

The default value for MAX is 50,000 records unless a =_SORT_DEFAULTS
DEFINE with VLM ON is in effect. When VLM is on, the default is 1,000,000
records. For more information about that option, see Using VLM on page 9-10.

MAX is not valid for loading indexes. When you load an index, LOAD uses the size
of the base table to estimate the number of input records and ignores any value
you specify for MAX.

SCRATCH scratch-file

identifies an initial scratch file or volume. For nonparallel load operations, specify
the name of either a disk file or volume for scr at ch-fi | e. For parallel load
operations, specify only a volume name.

If you omit the SCRATCH option, FastSort creates an initial scratch file on a
suitable volume unless a = SORT_DEFAULTS DEFINE that specifies a different
initial scratch file or volume is in effect.

When loading a large table, you can use a partitioned scratch file to manage
scratch space. Use the FUP CREATE command to create the partitioned file. Then
specify the file to FastSort in the SCRATCH option or your = SORT_DEFAULTS

FastSort Manual—429834-003
8-16

Sorting From NonStop SQL/MP Configuring a LOAD Statement

DEFINE. For more information about partitioned scratch files, see Using a
Partitioned Scratch File on page 9-8.

If you specify the SORTED option, you can omit the SCRATCH option.

Loading Large Tables

Use the following sort workspace guidelines to load data into a large table.

Setting MAX Number of Records

LOAD uses the MAX parameter to estimate file and extent size for an initial scratch file.
By default, FastSort creates an initial scratch file large enough for only 50,000 records.
If VLM is on, the default MAX value is 1,000,000 records.

To ensure efficient use of sort workspace, specify an accurate value for MAX in the
LOAD command. To estimate the number of records in the base table, divide file size
by record length.

Using VLM With LOAD

VLM shortens the elapsed time of most nonparallel load operations. To use VLM with
the SQLCI LOAD command, set VLM ON in a =_SORT_DEFAULTS DEFINE. For
more information about VLM, see Using VLM on page 9-10. To learn how to set up a
= SORT_DEFAULTS DEFINE, see Configuring Your SQL/MP Sort Environment on
page 8-2.

Do not use VLM for parallel load operations.

Resizing Primary Extent

Large extents can cause problems with sort workspace when you load data from a
table into an index.

For large tables, space on the destination disk might be too fragmented to hold the
table or index extents. In this case, SORTPROG returns error 29 (A WRITE HAS
FAILED TO THE TO FILE) and the load operation fails. Before you load data into a
large table, ensure that table extent sizes fit on the destination disk. If extents are too
large for the disk, re-create the index and specify a smaller extent size.

Specifying a Partitioned Scratch File

If you load data into a large table, FastSort might require an initial scratch file that is
too large to fit on one disk. To estimate initial scratch file size for an SQL/MP load
operation, use the formula in Using the Default Configuration on page 8-9.

If not enough continuous disk space exists on your node for an initial scratch file, you
can create and use a partitioned scratch file. While the maximum size of a
nonpartitioned scratch file is 1 TB if it is created by the user and up to 2 GB otherwise,
a partitioned scratch file can be greater than 1 TB. For more information, see Using a
Partitioned Scratch File on page 9-8.

FastSort Manual—429834-003
8-17

Sorting From NonStop SQL/MP Configuring a LOAD Statement

FastSort Manual—429834-003
8-18

O Optimizing Sort Performance

Factors that affect FastSort performance include environmental options, sort
workspace, and system resources. The total elapsed time for a sort operation also
depends on whether you automate routine tasks, such as setting up DEFINESs. This
section helps you understand FastSort software behavior and requirements. It contains
a discussion of scratch and swap files, VLM, and other factors that affect sort
performance.

This section mentions utilities and features that help analyze or increase performance.
These utilities and features are part of the NonStop Kernel.

Managing Sort Workspace

Most sort failures are caused by insufficient workspace. FastSort requires scratch files,
swap files, and memory to sort records. This subsection describes how FastSort
allocates space for sort operations. It also suggests ways to control and modify
FastSort workspace decisions.

Using Scratch Files

A scratch file is a temporary work file for FastSort. For input files that are too large to
sort in memory, FastSort uses one or more scratch files to temporarily store groups of
records called runs. You can specify a scratch file in:

® The RUN command

® The SORTMERGESTART procedure

® A SORT DEFINE

© SCRATCH attribute

© SCRATCHON attribute

© NOSCRATCHON attribute

The SCRATCH attribute of a SUBSORT DEFINE
The = SORT_DEFAULTS DEFINE

A configuration file for parallel index loading

The LOAD command

The scratch file you specify can already exist. If the file does not exist, FastSort
automatically creates it. If the initial scratch file becomes full, FastSort automatically
selects a suitable volume and creates overflow scratch files. FastSort can use up to 32
scratch files on up to 32 disk volumes to store intermediate runs. The SORTPROG
process sorts each run and then merges the records into the output file.

FastSort Manual—429834-003
9-1

Optimizing Sort Performance Using Scratch Files

Manually Creating a Scratch File

You can use the FUP CREATE command to manually create an unstructured scratch
file. You can also programmatically create a scratch file with the CREATE system
procedure. When you manually create a scratch file, you can:

® Allocate scratch space before the sort operation begins
® Closely control the amount and location of disk space SORTPROG uses

At run time, if an initial scratch file already exists and is unstructured, FastSort uses the
existing file. If you manually create your own scratch file, use the following formula to
calculate scratch file size:

(out put —record-1engt h+6bytes)xi nput —record-count

This formula is approximate, and includes 6 bytes per record for overhead. It does not
include scratch block overhead for header information or variations in block size. For a
partitioned scratch file, calculate i nput - r ecor d- count for each partition. For a
permutation or key sort, out put - r ecor d- | engt h is the total length of all keys. For a
record sort, out put - r ecor d- | engt h matches the input record length. If you are
sorting or merging in parallel, divide file size by the number of subsort processes.

If FastSort creates the scratch file, it sets MAXEXTENTS to 978 extents. If a scratch
file reaches MAXEXTENTS, FastSort automatically enlarges the file, if possible. The
maximum size of each scratch file extent is 4 KB, or 2048 pages.

If FastSort cannot enlarge the file, SORTPROG tries to create an overflow scratch file
on the current volume. If there is insufficient overflow space on the current volume,
SORTPROG tries to create an overflow scratch file on a suitable volume. If there is
insufficient overflow scratch space on your node, SORTPROG returns FastSort

error 30 (A WRITE HAS FAILED TO A SCRATCH FILE) and stops.

Having FastSort Create a Scratch File

If no scratch file exists when the sort or merge run starts, SORTPROG creates an
initial scratch file for you. SORTPROG uses a formula like the one described in
Manually Creating a Scratch File on page 9-2 to calculate file size. If the initial scratch
file becomes full, SORTPROG creates overflow scratch files until the sort or merge run
is complete.

For most sort and merge runs, use one of these options to have SORTPROG size and
create initial scratch files for you:

® Do not specify a scratch file name. SORTPROG creates an initial scratch file on a
volume selected by DEFINES or volume characteristics.

FastSort Manual—429834-003
9-2

Optimizing Sort Performance Using Scratch Files

® Specify a scratch file that does not exist. SORTPROG creates an initial scratch file
on a volume selected by DEFINESs or volume characteristics.

® Specify only a volume name. SORTPROG creates an initial scratch file on the
specified volume.

Even when SORTPROG creates a scratch file, the file is sometimes too small to hold
all of the records. For example, an initial scratch file can be too small if the input record
count is smaller than the actual number of input records. In this case, SORTPROG
tries to write to a full scratch file and receives file-system error 45 (FILE IS FULL).
SORTPROG tries to increase the size of the scratch file by increasing the maximum
number of extents until the sort or merge run completes, unless:

® SORTPROG runs out of space on the scratch file disk before the scratch file
reaches its maximum limit. SORTPROG then searches for a suitable disk on which
to create an overflow scratch file. For more information, see How Volume
Characteristics Affect Selection on page 9-5.

If there is insufficient overflow scratch space, SORTPROG returns FastSort
error 30 (A WRITE HAS FAILED TO A SCRATCH FILE) along with file-system
error 43 (UNABLE TO OBTAIN DISK SPACE FOR FILE EXTENT) and stops.

® A file-system error other than 21 occurs when SORTPROG is trying to increase the
number of extents.

Note. FastSort always purges scratch files after a sort or merge runs completes, unless you
sort programmatically and call SORTMERGESTART with f | ags parameter bit <12> set to 1.

Initial and Overflow Scratch Volumes

An initial scratch volume is the volume FastSort uses first for scratch files. For
example, a volume you specify in the SCRATCH attribute is an initial scratch volume. If
you explicitly specify an initial scratch volume, FastSort uses up to 100 percent of
available disk space on that volume. If FastSort selects an initial scratch volume, it
uses up to 80 percent of available disk space on that volume.

Overflow scratch volumes are volumes FastSort uses as alternate locations for scratch
files, if needed. For example, volumes you specify in the SCRATCHON attribute are
overflow scratch volumes. If you explicitly specify an overflow scratch volume, FastSort
uses up to 100 percent of available disk space on that volume. If FastSort selects an
overflow scratch volume, it uses up to 80 percent of available disk space on that
volume.

Selecting a Scratch Volume for Serial Sorts

This subsection describes how FastSort selects a scratch volume for serial sorts. For
information about subsort scratch files, see Selecting a Scratch Volume for Parallel
Sorts on page 9-7.

When a sort operation requires a scratch file, FastSort reads SORT DEFINESs for
acceptable scratch volumes. If no scratch file or scratch volume is specified in a

FastSort Manual—429834-003
9-3

Optimizing Sort Performance Using Scratch Files

DEFINE, FastSort automatically selects a scratch volume based on volume
characteristics. For more information about selection criteria, see How Volume
Characteristics Affect Selection on page 9-5.

How DEFINEs Affect Selection

You can specify volumes for FastSort to use or not use for scratch files with the
following attributes in a SORT DEFINE:

® SCRATCH
® SCRATCHON
® NOSCRATCHON

FastSort uses these attributes, if they exist, to build a pool of scratch volumes by
inclusion and by exclusion. For more information on how to specify values for these
attributes, see Section 7, Using SORT and SUBSORT DEFINEs .

Figure 9-1 shows how FastSort uses DEFINES to build a scratch volume pool.

Figure 9-1. How FastSort Reads Scratch Volume DEFINEs

SCRATCH - ————- » SCRATCHON --—---p NOSCRATCHON

=

L.@) @ @

Y

Inclusion Exclusion
VST901.vsd

FastSort first reads the SCRATCH attribute for the name of an initial scratch file or
scratch volume. If no SCRATCH file or volume is specified or if the file or volume
becomes full, FastSort reads the SCRATCHON attribute for acceptable overflow

FastSort Manual—429834-003
9-4

Optimizing Sort Performance Using Scratch Files

scratch volumes. FastSort supports up to 32 total scratch volumes: one initial volume
in the SCRATCH attribute and up to 31 SCRATCHON overflow volumes.

Note. FastSort uses up to 100 percent of the disk space on volumes you specify in the
SCRATCH and SCRATCHON attributes. Therefore, if you explicitly specify scratch volumes,
ensure that other processes do not currently require disk space on those volumes.

If the scratch file or volume specified in SCRATCH becomes full and no SCRATCHON
volumes are specified, FastSort reads the NOSCRATCHON attribute for volumes that
should not be used for overflow scratch files. You can specify up to 32
NOSCRATCHON volumes.

The SCRATCHON and NOSCRATCHON attributes are mutually exclusive. If you
specify SCRATCHON, you cannot exclude volumes from the pool with
NOSCRATCHON. Likewise, if you specify NOSCRATCHON, you cannot specify
volumes for the pool with SCRATCHON.

How Volume Characteristics Affect Selection

After checking DEFINESs for scratch volume information, FastSort creates scratch files
on volumes on your system with the following features:

® The primary disk process running in the CPU where SORTPROG is running
® The fewest number of currently open scratch files

® The greatest amount of free disk space

FastSort automatically excludes $SYSTEM and volumes that:

® Contain less than 1 MB of free disk space

® Contain TMF audit trail files

® Are protected by the Safeguard product

After FastSort chooses a scratch volume, it continues to create additional scratch files
on that volume until the volume is 80 percent full. When the scratch volume becomes
80 percent full, FastSort creates the next scratch file on a new volume from the pool.

FastSort Manual—429834-003
9-5

Optimizing Sort Performance

Using Scratch Files

Table 9-1. How FastSort Chooses Scratch Volumes

What You Specify:

Nothing: no scratch file, no DEFINESs
with scratch attributes, no scratch
volumes, no restrictions on scratch
volumes

A scratch file

A scratch volume

A list of scratch volumes

A scratch file or scratch volumes and
restrictions on scratch volumes with
NOSCRATCHON

Only restrictions on scratch volumes with
NOSCRATCHON

A scratch file or volume, or a scratch file
and scratch volumes, restrictions on
scratch volumes, a CREATE INDEX
configuration file, and DEFINEs

How FastSort Responds:

Uses volume characteristics to select a scratch
volume. FastSort creates scratch files on this
volume until it is 80 percent full, selects another
scratch volume if necessary, and so on.

Uses the file until it becomes full. If the user
manually creates the scratch file and it
becomes full, FastSort tries to increase
MAXEXTENTS and continue using the file. If
overflow scratch files are needed, FastSort
creates them on the current volume until it is 80
percent full. Then FastSort uses volume
characteristics to choose another scratch
volume. FastSort creates scratch files on the
new volume until it is 80 percent full, and so on.

Creates scratch files on the volume until it is
100 percent full. Then FastSort uses volume
characteristics to choose another scratch
volume and creates scratch files on the second
volume until it is 80 percent full, and so on.

Resolves any wild-card characters in the
scratch volumes list and assigns scratch files to
the volumes in a sequential fashion. If
necessary, FastSort creates scratch files on
these volumes until they are 100 percent full.
Then FastSort uses volume characteristics to
choose additional scratch volumes, if needed.

Uses the scratch file or scratch volumes
specified and does not use the volumes
specified with NOSCRATCHON. If you specify
scratch volumes, FastSort fills them up to 100
percent full.

Ignores the volumes specified in
NOSCRATCHON and uses characteristics to
select a scratch volume. FastSort creates
scratch files on the volume until it is 80 percent
full. Then FastSort uses volume characteristics
to choose another scratch volume, creates
scratch files on the second volume until it is 80
percent full, and so on.

Uses values in the configuration file. The values
and options specified in the configuration file
override those specified in DEFINEs. FastSort
fills the specified scratch volumes up to 100
percent full.

FastSort Manual—429834-003

9-6

Optimizing Sort Performance Selecting a Scratch Volume for Parallel Sorts

Each scratch file extent can be up to 2048 pages, or 4 KB. For scratch files that
FastSort creates, the default extent size is 4 KB and MAXEXTENTS is 978 extents.
Depending on extent sizes, a nonpartitioned scratch file can be up to 1 TB in size.

Selecting a Scratch Volume for Parallel Sorts

For parallel sorts, each subsort process uses its own initial and overflow scratch files.
A distributor-collector process does not usually require scratch files.

Use the SCRATCH attribute of a SUBSORT DEFINE to specify an initial scratch file for
each subsort process. If you specify a fully qualified file name for this attribute, you
must specify a unique scratch file for each subsort process. You cannot specify a
single scratch file, or different partitions of a single scratch file, for more than one
subsort.

If you want FastSort to automatically manage scratch space for a parallel sort
operation, specify only a volume name in the SCRATCH attribute of the distributor-
collector process SORT DEFINE.

Using the =_SORT_DEFAULTS DEFINE for Parallel Sorts

Follow these guidelines if you use only a = SORT_DEFAULTS DEFINE to configure a
parallel sort operation.

Each subsort in a parallel sort operation must use a distinct scratch file. If more than
one subsort process uses a single scratch file, disk space and contention problems
can result. Therefore, if you use the =_SORT_DEFAULTS_DEFINE to configure a
parallel sort operation, specify only a volume name for the SORT SCRATCH attribute.
Do not specify a fully qualified file name for this attribute.

Specifying Overflow Scratch Volumes for Subsorts

For large parallel sorts or when data is distributed unevenly across partitions, you can
specify overflow scratch volumes for subsorts. In the SORT DEFINE that configures
the distributor-collector process, specify a SCRATCHON list of overflow scratch
volumes. When you specify SCRATCHON volumes for the distributor-collector
process, the pool of scratch volumes is automatically available for subsorts.

When you load the partitions of an index in parallel, you should specify scratch files
and volumes in a configuration file. If you do not specify a scratch file in the CREATE
INDEX configuration file, FastSort uses the scratch volumes specified in the
=SORT_DEFAULTS DEFINE, if any.

When you use the LOAD utility to load data into a file or table, you should specify a
scratch file or volume in the SCRATCH option. If you do not specify a scratch file in the
LOAD SCRATCH option, FastSort uses scratch volumes specified in the
=SORT_DEFAULTS DEFINE, if any.

FastSort Manual—429834-003
9-7

Optimizing Sort Performance Using a Partitioned Scratch File

Using a Partitioned Scratch File

A partitioned scratch file is a single scratch file partitioned across multiple disk
volumes. The multiple volumes can exist on separate nodes. A partitioned scratch file
functions in essentially the same manner during a sort operation as multiple scratch
files. While the maximum size of a nonpartitioned scratch file is 1 TB if it is created by
the user and up to 2 GB otherwise, a partitioned scratch file can be greater than 1 TB.

Partitioned scratch files are especially useful when:

® You want to allocate all scratch space before the sort operation begins

® There is not enough space on any single disk for a scratch file

® The existing disk space is too fragmented to hold a default scratch file extent

® The sort operation requires an initial scratch file that does not fit on one volume

To use a partitioned scratch file, you first use the FUP CREATE command to manually
partition and create the file. The syntax for creating a partitioned scratch file at a TACL
prompt is:

FUP CREATE fil enane, PART (partition-num,

[\ node.] $vol une
[,pri-extent-size [, [sec-extent-size]]

\'n
1)....

filenane

is the name of the file to create. If you specify a partial file name, the TACL
command interpreter uses the current node, volume, and subvolume.

PART

sets options for each partition. Enclose options for each partition with parentheses
and separate them with commas.

partition-num [\node.]$vol une

identifies the partition and specifies a location. Specify an integer from 1 to 15 for
partition-num Specify a vol une for the partition location. You can also specify
a node. However, for optimal performance, locate scratch files on the node where
SORTPROG is running.

pri-extent-size, sec-extent-size

specifies the primary and secondary extent sizes for a partition. The default
primary extent size is one page, or 2048 bytes. If you specify no secondary extent
size or zero extents, sec- ext ent si ze defaults to the size of the primary
extent. The value you specify can be in pages, bytes, or megabytes (MB). The
default extent unit is pages. The maximum value is 65,535 pages, or 134 MB.

FastSort Manual—429834-003
9-8

Optimizing Sort Performance Using a Partitioned Scratch File

The following syntax creates the file SCRATCH with two secondary partitions:

FUP CREATE SCRATCH, PART (1, $data3, 64, 8),
PART (2, $datad, 64, 8)

In this example, a primary file partition, SCRATCH, is created on the current node,
volume, and subvolume. Two secondary partitions, also named SCRATCH, are
created on $data3.<curr ent - subvol - nane> and $datad.<curr ent - subvol -
name> on the current node.

You size a partitioned scratch file in the same manner as a non-partitioned scratch file.
To calculate the size of each scratch file partition, use the formula in Manually Creating
a Scratch File on page 9-2. Note that the file must be unstructured. For more
information about the CREATE command, see File Utility Program (FUP) Reference
Manual.

After you partition and create the scratch file, use one of the methods listed at the
beginning of this section to specify the file to FastSort. You can use partitioned scratch
files for both serial and parallel sort operations. Figure 9-2 shows a parallel sort run
with a 1 GB input file, three subsort processes, three partitioned scratch files and a
partitioned output file.

Figure 9-2. Partitioned Scratch Files in Parallel Sorting

Partitioned Input File Partitioned Output File
N]
>]
/—\ /‘\
() N~———— N~ ()
/\ A

Distributor-
Collector
Process

Ne— N
R
N—

Partitioned Scratch File Partitioned Scratch File Partitioned Scratch File

VST902.vsd

FastSort Manual—429834-003
9-9

Optimizing Sort Performance Using Swap Files

Using Swap Files

A swap file is the disk file used for data swapping during a sort or merge run. Data
swapping is the process of copying data between physical memory and storage.

Swapping, or paging, occurs when the extended memory segment is larger than the
available physical memory. Swapping also occurs when processes contend for
available memory. To minimize swapping, specify less extended memory in one of the
following:

® The MINSPACE, MINTIME, or SEGMENT parameter of the RUN command

® Thefl ags parameter of the SORTMERGESTART procedure

® The SEGMENT attribute of a SORT or SUBSORT DEFINE

You can also move the sort process to a processor with a lighter load or more physical
memory available.

Locating the Swap File

The swap file for FastSort is always on the local node. The default swap file location is
the current scratch volume, if the scratch file is local. For remote scratch files, the
default swap volume is the volume where the program file is running.

However, for optimal performance it is best to locate the swap file on a less busy
volume. You can specify another location for a swap file in:

® The SWAP parameter of the RUN command

® The process-start parameter of the SORTMERGESTART procedure
® The SEGMENT attribute of a SORT or SUBSORT DEFINE

® The SWAP option in a parallel CREATE INDEX configuration file

Specifying a Swap File for Parallel Sorts

Each subsort in a parallel sort operation must use a distinct swap file. If more than one
subsort process uses a single swap file, disk space and contention problems can
result.

For example, if you specify a fully-qualified file name for the SUBSORT SWAP attribute
of a SORT DEFINE, you must specify a unique swap file for each subsort.

If you use the = SORT_DEFAULTS_DEFINE to configure a parallel sort operation,
specify only a volume name for the SORT SWAP attribute. Do not specify a fully
gualified file name for this attribute.

Using VLM

The Very Large Memory (VLM) option increases the amount of extended memory
FastSort can use to sort records. If VLM is on, FastSort can use up to 127.5 MB of

FastSort Manual—429834-003
9-10

Optimizing Sort Performance Using VLM

extended memory, if available. FastSort uses the additional extended memory either to
complete the sort in a single pass or to store partial information until the sort is
complete.

Without VLM, the maximum number of records that FastSort can sort in memory is
32,767. This limit applies regardless of the amount of memory available. With VLM,
available memory and extended segment size determine the number of records that
can be sorted in memory.

Turning On VLM

Depending on your system configuration, memory usage, and the interface to FastSort
you use, the VLM option can help improve sort performance. VLM is off by default
because it can use more physical memory and does not always improve performance.
You can turn on VLM from:

® A SORT DEFINE, including the =_SORT_DEFAULTS DEFINE
® The SORTMERGESTART procedure

For information on which method takes precedence, see Determining the Precedence
of DEFINES on page 7-1.

When VLM is on, the maximum amount of extended memory for sorting is 127.5 MB,
or 62,255 pages. This memory limit overrides any value you otherwise specify for
segment size. When VLM is off, the maximum extended memory FastSort can use is
67 MB, or 32,767 pages.

Do not use VLM for parallel sort or load operations.

How VLM Affects Swap Files

A larger extended memory segment requires a larger swap file. Using VLM can cause
an increase in data swapping if SORTPROG competes with other processes for
memory. If increased swapping impacts performance, use one of these strategies:

® Use the SEGMENT attribute or parameter to specify a smaller extended segment
® Use the CPU attribute to specify a less-busy CPU
® Use the SWAP attribute to move the swap file to a different disk volume

® Turn VLM off to use the default extended memory and disk space utilization

For more information about FastSort swap files, see Using Swap Files on page 9-10.

How VLM Affects Scratch Files

VLM can help reduce the disk space FastSort uses for scratch files. With a larger
extended memory segment, FastSort can perform some sort operations entirely in
memory. Sorts performed in memory do not require scratch files.

FastSort Manual—429834-003
9-11

Optimizing Sort Performance Calculating Data Stack Space

VLM can also increase performance for sorts that do require scratch files. For sorts
that require an intermediate merge pass, FastSort uses the additional memory to store
partial information. The additional storage space reduces reads and writes to scratch
files.

How VLM Affects Statistics
When VLM is on, the FastSort statistics format changes slightly.

For interactive FastSort, BUFFER PAGES changes from an INT to an INT(32) value
when VLM is on. In this case, BUFFER PAGES can have a value greater than 32,767,
the maximum extended memory segment you can manually specify. BUFFER PAGES
can also be -1 as a result of VLM.

For programmatic FastSort, a parameter in the SORTMERGESTATISTICS array tells
FastSort to return the larger statistics format when VLM is on. If the parameter f | agl
is present and set to 1, FastSort converts BUFFER PAGES to an INT(32) value before
placing it in the statistics array. If you specify a value other than O or 1 for f | ag1l,
FastSort returns error 150 (INVALID STATISTICS FLAG VALUE SPECIFIED). For
applications that use VLM, set f | agl to 1 to get accurate statistics when BUFFER
PAGES is greater than 32,767.

For more information about SORTMERGESTATISTICS, see Section 5, Using FastSort
System Procedures.

Calculating Data Stack Space

If you invoke FastSort from an application program, sort complexity determines the
amount of data stack space FastSort requires. Follow the guidelines in the following
table to calculate data stack space requirements.

Operation Description Additional Space
Simple Less than 5 keys, no subsorts, 1 input file 2 pages
Medium Greater than 5 keys, either subsorts or multiple input files 3 pages
Complex Greater than 5 keys, subsorts, multiple input files 4 pages

To allocate this additional space in an application, use one of the following methods:

® For a TAL application, use the DATAPAGES compiler directive during compilation.
Specify DATAPAGES 64 to allocate the maximum amount.

® For all applications, use the Binder SET EXTENDSTACK command after
compilation. Specify 64 PAGES to allocate the maximum amount.

® \When you run the program, specify 64 pages for the MEM option of the RUN
command. If you run the program from another application, specify 64 for the
PROCESS_CREATE_ or NEWPROCESS[NOWAIT] nenor y- pages parameter.

® Move user data from the user data segment to an extended data segment to free
up more data stack space for the call to SORTMERGESTART.

FastSort Manual—429834-003
9-12

Optimizing Sort Performance Managing Sort Failures

For information about TAL compiler directives, see the TAL Reference Manual. For
information about the Binder SET command, see the Binder Manual.

Other Data Stack Space Considerations

In addition to the requirements listed above, if you specify either the SCRATCHON or
NOSCRATCHON attributes in a SORT DEFINE, FastSort requires up to 138 additional
words (276 bytes) of stack space. To learn how FastSort uses this space to build a
pool of scratch volumes, see Table 5-1 on page 5-5.

If your application process starts a new process, FastSort also requires 30 to 35
additional words of stack space to support the PROCESS CREATE_ procedure.

Managing Sort Failures

If a sort operation fails, the cause of the failure is usually stated in the error message
FastSort returns. Most sort failures are caused by insufficient workspace. For more
information on how to set up scratch and swap files, see Managing Sort Workspace on
page 9-1. This subsection recommends strategies for managing failures that are not
caused by insufficient sort workspace.

Verifying Version Compatibility

A sort operation might fail if you run versions of FastSort and other NonStop software
that are incompatible. Incompatible versions are likely cause of failure, for example, if
SORTPROG runs on one node, and a software component that affects FastSort runs
on a second node.

For SQL/MP sort operations, you might receive error 121 (INCOMPATIBLE SQL
VERSION) when the sort fails due to incompatible versions. In other cases, the error
message you receive might not directly refer to a version problem.

If you suspect a version problem, check versions of the operating system,
SORTPROG, SORT, SQL/MP, and other NonStop software products for compatibility.
Run the VPROC uitility to determine software versions. The syntax for the VPROC
utility is:

VPROC object-file

In VPROC syntax, obj ect - fi | e is the volume, subvolume, and file name of the
program object file. For example, to determine the version of SORTPROG on your
local node, type:

VPROC $SYSTEM SYSnn. SORTPROG

at a TACL prompt. The operating system returns version information in the following
format:

VPROC- T9617D30- (31 OCT 94) SYSTEM\TSI| Date 17 JUL 1995,
14: 54: 38
COPYRI GHT TANDEM COMPUTERS | NCORPORATED 1991, 1987, 1989

FastSort Manual—429834-003
9-13

Optimizing Sort Performance Managing Sort Failures

$SYSTEM SYSO1. SORTPROG
Bi nder ti nestanp: 10NOV94 10:12: 17
Ver si on procedure: T9620D307"310CT94" AAUN310CT94
Target CPU: TNS, TNS/ R

Compare the information VPROC returns with version information in the softdocs
shipped with your NonStop software. These documents contain product and RVU
numbers for the specific product they describe. Softdocs also contain software

compatibility information. If you do not have access to these documents, contact your
system manager.

To determine your operating system version, check the $SYSTEM.SYSnn. CONFLIST
file. This file is generated by SYSGEN when you install a version of the NonStop
Kernel. The first page of the file contains operating system RVU and compatibility
information. If you do not have read access to this file, contact your system manager.

To determine the version of SQL/MP on your node, execute the following command
from within SQLCI:

GET VERSI ON CF SYSTEM

For more information about the GET VERSION statement, see SQL/MP Reference
Manual.

Saving Failure Information

If a sort fails and you cannot quickly identify the cause, you should save information
about the sort process. This information will help diagnose the reason for failure if you
have to contact your service provider.

You can automatically capture information about any failed process in a disk file. If a
sort process terminates abnormally, this file contains valuable information about
conditions at the point of termination. To automatically create a save file, you use the
Binder utility to turn SAVEABEND ON.

To start the Binder utility, type
Bl ND

at a TACL prompt. The syntax for creating a SAVEABEND file for a SORTPROG or
RECGEN process at the Binder prompt is:

CHANGE SAVEABEND ON I N [SORTPROG | RECGEN]

To turn on SAVEABEND, you must have permission to write to the object file. For
FastSort, the object file is SORTPROG or RECGEN. If you do not have write
permission to these files, contact your system manager.

You must direct the operating system to create a save file before a failure occurs. If
SAVEABEND is not already set to ON on your local node when a sort fails, you must

FastSort Manual—429834-003
9-14

Optimizing Sort Performance Automating FastSort Tasks

first turn on SAVEABEND and then duplicate the failure in order to save information in
a save file.

Note. Turning SAVEABEND ON also sets the Binder INSPECT option to ON. For more
information about the Binder CHANGE command, see Binder Manual.

To exit the Binder utility, type
EXIT

The save file contains information about the process environment at the time of
termination, including:

® Names of all open files
® A copy of the data space at the time the process terminated
® Name of the process and a timestamp for the time of termination

The default save file location is the location of the specified object file. The save file
name is always of the format ZZSAnnnn.

You can also use the Inspect SAVE and PR commands to save the environment of a
failed process. Like the Binder utility, you must direct Inspect to save failure information
before a failure occurs. For more information about these commands, see Inspect
Manual.

Automating FastSort Tasks

One way to automate FastSort tasks is to use a command file. A command file, also
sometimes called an OBEY file, is an EDIT file that contains a series of commands.

When you execute the file, commands in the file are automatically executed. Use a

command file to automate tasks that:

® Are repetitive

® Require many commands and few decisions

® Can cause serious problems if not properly executed

For example, you might regularly perform these tasks:

® Load data from one SQL/MP table into another

® [Execute a query that causes a sort-merge join of a large SQL/MP table

The load and query operations each require an SQL statement and a

= SORT_DEFAULTS DEFINE. To reduce execution time, you can specify the
commands required for each task in an EDIT file. Then execute the file when you need
to perform the task. To automate configuration, you could set up a separate

= SORT_DEFAULTS DEFINE for each task. Then either enable the appropriate
DEFINE in the command file or specify DEFINE commands directly in the file.

FastSort Manual—429834-003
9-15

Optimizing Sort Performance Automating DEFINEs

Automating DEFINEs

The following examples show how you can use command files to set up FastSort
DEFINEs.

Using a Command File to Set DEFINEs from TACL

The following is an example of a TACL command file that sets SORT DEFINES for an
interactive sort operation:

DELETE DEFI NE =SORT_ONE

SET DEFMODE ON

SET DEFI NE CLASS SORT

SET DEFI NE SCRATCH $dat a. fastsort. scratch
SET DEFI NE BLOCK 28762

SET DEFI NE SCRATCHON ($dat a??)

SET DEFI NE SEGQVENT 256

SET DEFI NE SWAP $dat a. fastsort.swapfile
SET DEFI NE PRI 80

ADD DEFI NE =SORT_ONE

Note that the first line of the command file deletes the =SORT_ONE DEFINE, if it
already exists. This step is optional and ensures that only the values you specify for
=SORT_ONE in the command file affect this sort operation. The SET DEFMODE ON
command enables DEFINESs for the current TACL session.

To execute this command file, type OBEY fi | enane at a TACL prompt.

Using a Command File to Set DEFINEs from SQLCI

You can use the OBEY command to execute a command file for SQL/MP sorts from
your SQLCI prompt. The following is an example of a command file that sets up a
= SORT_DEFAULTS DEFINE from within SQLCI:

DELETE DEFI NE = SORT_DEFAULTS;

SET DEFMODE ON,

SET DEFI NE CLASS SORT;

OBEY SCRATCHI,

SET DEFI NE BLOCK 57524,

SET DEFI NE CPU 8;

SET DEFI NE MODE M NTI VE;

SET DEFI NE SCRATCHON ($dat a2, $dat a4);
SET DEFI NE SWAP $spar e€;

ADD DEFI NE =_SORT_DEFAULTS;

Nesting Command Files in SQLCI

A command file that you execute from within SQLCI can execute another command
file. You can nest up to four command files in this manner to simplify configuration
changes. For example, the command file SCRATCH1 named in the previous file

FastSort Manual—429834-003
9-16

Optimizing Sort Performance Automating DEFINEs

configures the =_SORT_DEFAULTS DEFINE for a parallel sort operation. SCRATCH1
specifies only volume names for scratch and swap files, as follows:

SET DEFI NE SCRATCH $DATA2
SET DEFI NE SWAP $SPARE2

You could use the SCRATCH1 configuration if the SQL optimizer chooses a parallel
plan for a query that invokes FastSort.

A second command file, SCRATCH2, configures scratch and swap space for loading
data from a large SQL/MP table. It directs FastSort to use a 3 GB partitioned scratch
file for the load operation, as follows:

SET DEFI NE SCRATCH $SPARE2. SCRATCH. PART
SET DEFI NE SWAP $SPARE1

To shift from the first configuration to the second, change the nested file name in the
top-level command file.

Using the SAVE Command

To preserve the DEFINE attributes of your current SQLCI session, use the SAVE
command before you exit SQLCI. This command automatically preserves SQLCI
session attributes as commands in a file. For more information about the SAVE
command including syntax, see SQL/MP Reference Manual.

FastSort Manual—429834-003
9-17

Optimizing Sort Performance Automating DEFINEs

FastSort Manual—429834-003
9-18

—A- FastSort Syntax Summary

This appendix contains a syntax summary of the FastSort interactive commands and
system procedures.

Interactive Commands

The FastSort interactive commands are:

ASCIENDING field [type] [, field [type]]..

CLEAR

{

Lot Vet Vo Vot Vo Vot Ve Y st Lot ¥

ALL
ASC[ENDI NG
COLLATE
CPUS

DESC] ENDI NG

FROM [fil enanme]

KEYS
NOTCPUS
SUBSORT
TO

COLLATE fil enanme

COLLATEQUT fil enane
CPUS [ALL]
[cpu-list]

DESCI ENDI NG field [

EXI T
FC
FROM [

HELP |

in-file]

[
[
[
[

ASC] ENDI NG
CLEAR
COLLATE
COLLATEQUT

[CPUS

DESC] ENDI NG
FROM

HELP
NOTCPUS

RUN

SAVE

[ST] N T W] W] i | W] Wy W S}

type] [, field [type]]...

EXCL[USI ON] node ...
FI LE count]
VERGE]
RECORD | engt h]

FastSort Manual—429834-003
A-1

FastSort Syntax Summary Interactive Commands

NOTCPUS cpu- i st

RUN scratch-file | scratch-vol
, AUTOVATI C

, BLOCK size

, CPU processor

, MEM nenory

, M NSPACE

, M NTI ME

, PRI priority

, { REMOVEDUPS | REMD }
, DEFI NE defi ne-name

, SEGQVENT si ze

, PROGRAM fil e

, SWAP file

, NOSCRATCHON(scr at ch-vol , scrat ch-

vol,...)]

vol]...)]

SAVE { ALL
ASC[ENDI NG
COLLATE
CPUS
DESC] ENDI NG
FROM [fil enane]
KEYS
NOTCPUS
SUBSORT
TO

{
{
{
{
{
{
{
{
{
SHOW { ALL
{
{
{
{
{
{
{

[, SCRATCHON(scratch-vol [, scratch-

ASC] ENDI NG
CPUS
DESC ENDI NG
FROM [fil enane]
KEYS
NOTCPUS
SUBSORT
{ TO

SUBSORT scratch-file , BLOCK size]...
, CPU processor |
, MEM nenory

, PRI priority

[ST W T W] VT W] W T W] W] W V| V| V| V| V| W] W] | Wi | W)

SEGQVENT si ze
PROGRAM fi l e
SWAP file

EXCL[USI ON] node
KEYS

PERMUTATI ON

TYPE file-type
NOPURGE

SLACK percent age
DSLACK per cent age
| SLACK percent age

TO [out-file]

FastSort Manual—429834-003
A-2

FastSort Syntax Summary FastSort Procedures

FastSort Procedures

The FastSort system procedures are:

{ status :=} SORTBU LDPARM (ctl bl ock

P
{ CALL } , [cpu- mask] P
, [not - cpu- mask] P
, [buffer] P
, [buf f er 2] P
, [buffer-1ength] P
, [buil d-fl ags] P
, [defi ne- nane] P
I'reservedl!
I'reserved2!
,[scratchvols]) Lo
{ length : =} SORTERROR (ctlblock P
{ CALL } ,buffer) I o
{ status : =} SORTERRORDETAIL(ctl bl ock) P
{ CALL }
{ length :=} SORTERRORSUM (ctl bl ock P
{ CALL } ,[buffer] I o
,| error-code] I o
,| error-source | o
,[subsort-index] o
,[subsort-id]) I o
{ status :=} SORTMERGEFI NI SH (ctl bl ock Lo
{ CALL } ,[abort] P
,| sparel] !
reserved
,[spare2]) !
reserved
{ status :=} SORTMERGERECEI VE (ctl bl ock P
{ CALL } ,[record-loc] o
, length o
,[sparel] !
reserved
,[spare2] !
reserved
,[record-1oc-ext] o
{ status :=} SORTMERGESEND (ctl bl ock P
{ CALL } ,[record-loc] P
, length P
,[streamid] o]
,| sparel] !
reserved
,[spare2]) !
reserved
,[record-Iloc-ext] P

FastSort Manual—429834-003
A-3

FastSort Syntax Summary FastSort Procedures

{ status :=} SORTMERGESTART (ctl bl ock

{ CALL } key- bl ock

num nerge-files]
numsort-files]
in-file-nanme |
in-file-exclusion-node]
in-file-count]
in-file-record-1length]
fo
out - f
out - f
out-file-type]
flags |

, |
, |
, r nat
, i
, i
.| errnum]

]
| e-name |
| e- excl usi on- node]

errproc]
scratch-fil e-nane |
scrat ch- bl ock]
process-start |
max-record-|length]
col | at e-sequence-tabl e]
dsl ack]

I sl ack]

flags2]
subsort-count]
spare5])

———— e g i g

reserved

{ status :=} SORTMERGESTATI STICS (ctl bl ock P
{ CALL } , I ength P
,Statistics ' o
,[flagl] P
, [sparel] !
reserved

FastSort Manual—429834-003
A-4

E FastSort Error Messages

This appendix lists the FastSort error messages in three lists:
® An alphabetic list of programmatic messages starting on B-1
® A numeric list of programmatic messages starting on B-6

® An alphabetic list of interactive messages (interactive messages are not
numbered) starting on B-35

The numeric list of programmatic error messages and the alphabetic list of interactive
error messages include the text for the error code, a possible cause, and recovery
strategies. This appendix also includes effect information for error messages that can
occur when users invoke FastSort transparently from SQL/MP.

To determine appropriate recovery action for some of these errors, see Guardian
Procedure Errors and Messages Manual, which has information about the file-system
and NEWPROCESS error codes that accompany FastSort error codes.

Whenever an error occurs, the SORTPROG process stops. After you take recovery
action, you need to start the process again.

You can specify a TAL procedure for FastSort to call when an error occurs. For more
information about creating and specifying a procedure for error recovery, see Writing a
User Error Procedure on page 5-37.

Alphabetic List of Programmatic Messages

Listed below are the programmatic FastSort error messages in alphabetic order
including the corresponding FastSort error code for each message. These messages
are listed numerically by FastSort error code later in this appendix.

Error Code Message Text (page 1 of 6)

33 A CONTROL OPERATION HAS FAILED.

26 A KEY FIELD LOCATION EXCEEDS THE RECORD SIZE.
36 A POSITION HAS FAILED IN A SCRATCH FILE.

32 A READ HAS FAILED FROM A SCRATCH FILE.

31 A READ HAS FAILED FROM THE FROM FILE.

28 A SCRATCH FILE CANNOT BE OPENED.

48 A SIGNED ASCII NUMERIC KEY IS LARGER THAN 32 BYTES.
24 A TEMPORARY TO FILE IS TOO SMALL.

53 A TO FILE MAY NOT BE A FILE TO BE MERGED.

30 A WRITE HAS FAILED TO A SCRATCH FILE.

29 A WRITE HAS FAILED TO THE TO FILE.

34 AN EDITREAD HAS FAILED FROM THE FROM FILE.

FastSort Manual—429834-003
B-1

FastSort Error Messages

Error Code
4

39
59
81
133
57
20
21
78
5
35
37
123
99
105
50
122
124
112
108
173
104
107
115
64
171
15
121
113
130
119
74
75
156
44

Alphabetic List of Programmatic Messages

Message Text (page 2 of 6)

AN ERROR HAS PREVENTED CREATION OF THE SORT
PROCESS.

AN INPUT RECORD EXCEEDED THE RECORD SIZE.

AN INPUT RECORD IS TOO SMALL.

BLOCKED INTERFACE NOT ALLOWED WITH MERGE.
CANNOT INCREASE THE SCRATCH FILE SIZE.

COLLATING SEQUENCE TABLE MUST BE PRESENT.
COMMUNICATIONS WITH SORTPROG HAVE BROKEN DOWN.
COMMUNICATIONS WITH SORTPROG WERE GARBLED.
COMMUNICATIONS WITH SUBSORT PROCESS HAVE FAILED.
COMMUNICATIONS WITH THE SORT PROCESS HAVE FAILED.
CREATION OF A SCRATCH FILE HAS FAILED.

CREATION OF THE TO FILE HAS FAILED.

DATETIME CONVERSION FIELD NOT FOUND.

DEFAULT DEFINE IS NOT OF CLASS SORT.

DEFINE HAS BEEN SPECIFIED BUT DEFMODE IS OFF.

EDIT FILES MAY NOT BE TO FILES.

ERROR DETERMINING SQL VERSION.

ERROR FROM DATETIME CONVERSION FIELDS.

ERROR FROM SQL FILESYSTEM VALIDATION ROUTINES.
ERROR IN DM BLOCK FORMAT.

ERROR IN MOVEX.

ERROR OCCURRED WHILE ACCESSING A SORT DEFINE.
ERROR OCCURRED WHILE ACCESSING A SUBSORT DEFINE.
ERROR WHILE RETRIEVING FILE LABEL SMSQL.

EXTENDED SEGMENT CAN NOT BE ALLOCATED.

EXTENDED SEGMENT CANNOT BE DEALLOCATED.

FILES TO BE MERGED MUST BE SORTED.

INCOMPATIBLE SQL VERSION.

INPUT FILE FOR SORTMERGESQL NOT TYPE SQL.
INTERNAL ERROR OCCURRED.

INTERNAL SQL NULL ERROR.

INVALID BLOCK ADDRESS SPECIFIED.

INVALID BLOCK LENGTH SPECIFIED.

INVALID COLLATION ARRAY LENGTH.

INVALID CONTROL BLOCK, PROCEDURE CALL REJECTED.

FastSort Manual—429834-003
B-2

FastSort Error Messages

Error Code
66
49
72
51
12
73
89
139
67
65
175
77
68
56
69
87
88
86
102
135
134
45
54
71
169
168
138
62
101
131
174
82
114
140
141
60

Alphabetic List of Programmatic Messages

Message Text (page 3 of 6)

INVALID DATA SLACK SPECIFIED.

INVALID EXCLUSION MODE SPECIFIED.

INVALID EXTENDED SEGMENT SIZE.

INVALID FILE TYPE SPECIFIED FOR TO FILE.
INVALID FLAG OR COMBINATION OF FLAGS.

INVALID FORMAT OF THE PROCESS STRUCTURE.
INVALID FROM FILE RECORD SIZE.

INVALID FROM-FILE SPECIFIED TO RECGEN.
INVALID INDEX SLACK SPECIFIED.

INVALID KEY FOR KEY-SEQUENCED FILE.

INVALID MONITOR MESSAGE LENGTH.

INVALID NAME OF THE SUBSORT SCRATCH FILE.
INVALID NEW FLAG SPECIFIED.

INVALID NUMBER OF FILES TO BE SORTED OR MERGED.
INVALID NUMBER OF SUBSORT PROCESSES.
INVALID OBJECT SPECIFIED AS FROM FILE.

INVALID OBJECT SPECIFIED AS SWAP FILE.

INVALID OBJECT SPECIFIED AS TO FILE.

INVALID OR NON-EXISTENT USER-SPECIFIED DEFINE NAME.
INVALID RECGEN MESSAGE VERSION.

INVALID RECGEN STARTUP MESSAGE.

INVALID SCRATCH FILE BLOCK SIZE.

INVALID SCRATCH FILE NAME.

INVALID SORT EXECUTION MODE.

INVALID STATISTICS FLAG VALUE SPECIFIED.
INVALID STATISTICS LENGTH SPECIFIED.

INVALID TO-FILE SPECIFIED TO RECGEN.

KEY LENGTH MUST BE GREATER THAN ZERO.
LOGICAL NAMES NOT ALLOWED.

MISSING REQUIRED PARAMETERS TO PROCEDURE.
MONITOR VERSION AND MESSAGE LENGTH CONFLICT.
MORE THAN ONE SUBSORT SHOULD BE SPECIFIED.
NO FILES INPUT FOR SORTMERGESQL.
NON-EXISTENT RECGEN FROM-FILE SPECIFIED.
NON-EXISTENT RECGEN TO-FILE SPECIFIED.

NOT ENOUGH STACK FOR SORTMERGESTART.

FastSort Manual—429834-003
B-3

FastSort Error Messages

Error Code
117
118
125
25
52
116
79
126
164
163
161
167
160
166
162
165
46
149
143
145
146
144
150

148
136
147
142

63
13
170
127
152

Alphabetic List of Programmatic Messages

Message Text (page 4 of 6)

NULL KEY SPECIFIED FOR NON-SQL FILE.

NULLVAR KEY SPECIFIED FOR NON-SQL FILE.

NUMBER OF SORTPROG OPENERS EXCEEDED SPECIFIED LIMIT.
ONE OF THE KEY FIELDS IS OF AN UNDEFINED TYPE.

ONLY ONE FILE MAY BE SORTED VIA SORTMERGESEND.
ONLY ONE FILE CAN BE SORTED BY SORTMERGESQL.
PARAMETERS ARE MUTUALLY EXCLUSIVE.

PROCESS ALREADY OPEN AND SORTPROC_OPEN_ CALLED.
PROCESS CREATE DATA SEGMENT ERROR.

PROCESS CREATE EXTENDED SWAP FILE ERROR.
PROCESS CREATE LIBRARY FILE ERROR.

PROCESS CREATE LIBRARY FILE FORMAT ERROR.
PROCESS CREATE PROGRAM FILE ERROR.

PROCESS CREATE PROGRAM FILE FORMAT ERROR.
PROCESS CREATE SWAP FILE ERROR.

PROCESS CREATE SYSTEM MONITOR ERROR.

REAL NUMBER KEYS MUST BE WORD ALIGNED.

RECGEN CALCULATES A BAD MULTIPLE MESSAGE ADDRESS.
RECGEN ERROR READING BASE TABLE.

RECGEN ERROR WHILE PACKING RECORD.

RECGEN ERROR WHILE RETRIEVING PRIMARY KEY.
RECGEN FILE LABEL RETRIEVAL ERROR.

RECGEN GETS A BAD SEQUENCE NUMBER IN THE MULTIPLE
START UP MESSAGE.

RECGEN SORTPROC_CLOSE ERROR.
RECGEN SORTPROC_OPEN_ ERROR.
RECGEN SORTPROC_SEND_ ERROR.
RECGEN UNABLE TO OPEN BASE TABLE.

RECORD LENGTH TO SORTMERGESEND IS TOO SMALL OR
LARGE.

RESERVED FLAGS MAY NOT BE SET.

SCRATCH FILE MUST BE UNSTRUCTURED.

SEGMENTS ABOVE 32767 NOT ALLOWED WITH VLM OFF.
SEND MESSAGE ID MISMATCH.

SORTBUILDPARM_INT_ UPS PARAMETER IS INVALID OR
MISSING.

FastSort Manual—429834-003
B-4

FastSort Error Messages

Error Code
132
10
8

7
111
58
47
128
129
83
100
84
176

172

61
120
76
106

11
23
42
22

43
80

27
38
55
110
85

Alphabetic List of Programmatic Messages

Message Text (page 5 of 6)

SORTMERGESUPREC CALLED UNEXPECTEDLY.
SORTMERGEFINISH HAS BEEN CALLED UNEXPECTEDLY.
SORTMERGERECEIVE HAS BEEN CALLED UNEXPECTEDLY.
SORTMERGESEND HAS BEEN CALLED UNEXPECTEDLY.
SORTMERGESQL CALLED UNEXPECTEDLY.
SORTMERGESTART CALLED UNEXPECTEDLY.
SORTMERGESTATISTICS HAS BEEN CALLED UNEXPECTEDLY.
SORTPROC_SEND_ CALLED UNEXPECTEDLY.
SORTPROC_CLOSE CALLED UNEXPECTEDLY.

SORTPROG AND SORT LIBRARY DO NOT AGREE.
SORTPROG MUST BE SQL LICENSED.

SORTPROG VERSION AND OS VERSION DO NOT AGREE.

SORTPROG VERSION TOO OLD; CANNOT SUPPORT OPTIONAL
OPEN-ON-DEMAND FEATURE.

SORTPROG VERSION TOO OLD; CANNOT SUPPORT REQUIRED
NEW FEATURE.

SPARE PARAMETERS MAY NOT BE PRESENT.
SQL BULKIO NOT VALID FOR INPUT FILE.
START OF SUBSORT PROCESS HAS FAILED.
SUBSORT DEFINE IS NOT OF CLASS SUBSORT.

THE 'CTLBLOCK' PARAMETER TO SORTMERGESTART IS
REQUIRED.

THE 'KEYS' PARAMETER TO SORTMERGESTART IS REQUIRED.
THE FREE LIST FILE CANNOT BE OPENED.

THE FROM FILE COULD NOT BE OPENED.

THE MEM SIZE MUST BE IN THE RANGE 1 TO 64.

THE MEMORY SPACE FOR SORTING IS INSUFFICIENT.

THE NUMBER OF KEY FIELDS MUST BE 1 TO 63 INCLUSIVE.
THE PRIORITY MUST BE IN THE RANGE 1 TO 199.

THE PRODUCT IS NOT INSTALLED.

THE SORT PROCESS HAS STOPPED UNEXPECTEDLY.

THE TO FILE ALREADY EXISTS AND CANNOT BE PURGED.
THE TO FILE COULD NOT BE OPENED.

TOO MANY FROM FILES SPECIFIED.

UNEXPECTED RETURN FROM DM*GET PROCEDURE.
UNEXPECTED RESPONSE FROM SORTPROG.

FastSort Manual—429834-003
B-5

FastSort Error Messages Numeric List of Programmatic Messages

Error Code Message Text (page 6 of 6)

93 UNEXPECTED RETURN FROM LOADALTFILE PROCEDURE.
92 UNEXPECTED RETURN FROM LOADCLOSE PROCEDURE.
90 UNEXPECTED RETURN FROM LOADOPEN PROCEDURE.
91 UNEXPECTED RETURN FROM LOADWRITE PROCEDURE.
153 UPS NOT SUPPORTED IN THIS ENVIRONMENT.

154 UPS WORKSPACE BAD.

103 USER-SPECIFIED DEFINE IS NOT OF CLASS SORT.

Numeric List of Programmatic Messages

The numeric list of the FastSort programmatic error messages includes the text for the
FastSort error code, the probable cause for the error, and the suggested recovery. To
determine the recovery action for some errors, see Guardian Procedure Errors and
Messages Manual, which has information about the file-system and NEWPROCESS
error codes that accompany some FastSort error codes.

1 THE ' CTLBLOCK' PARAMETER TO SORTMERGESTART | S REQUI RED.

Cause. The call to SORTMERGESTART did not specify a control block.

Recovery. Specify the ct | bl ock parameter.

2 THE ' KEYS' PARAMETER TO SORTMERGESTART | S REQUI RED.

Cause. The call to SORTMERGESTART did not define any key fields.

Recovery. Specify the key- bl ock parameter.

3 THE NUMBER OF KEY FI ELDS MUST BE 1 TO 63 | NCLUSI VE.

Cause. The number of key fields was incorrect in the call to SORTMERGESTART.

Recovery. Change the key- bl ock parameter to define from 1 to 63 key fields.

4 AN ERROR HAS PREVENTED CREATI ON OF THE SORT PROCESS.

Cause. The SORTPROG program name was incorrect, or some condition in the
system caused the error.

Recovery. If the SORTPROG program name is incorrect, change the SORT DEFINE
PROGRAM attribute to specify the correct program name.

If there is a system error, follow the recovery recommendations in the Guardian
Procedure Errors and Messages Manual for the operating system error code returned
with this FastSort error code.

FastSort Manual—429834-003
B-6

FastSort Error Messages Numeric List of Programmatic Messages

If you are using the programmatic interface, call the SORTERRORDETAILDETAIL or
SORTERRORSUM procedure to display the error in a specialized 32-bit format. Read
the format as follows:

Parameter Bits

Word 01 2 3 4 5 67 8 9 1011 12 13 14 15
High-Order File System Error or PROCESS_CREATE_ Error Subcode
Low-Order FastSort Input File Index FastSort Error Code

Cause. The calling process and SORTPROG could not exchange messages.

5 COVMUNI CATI ONS W TH THE SORT PRCCESS HAVE FAI LED.

Recovery. Ensure that your process does not call SORTMERGESTART with nowait
I/0 and you call AWAITIOX -1 to wait on other files. If your process does not combine
nowait I/O and AWAITIOX -1, follow recovery recommendations in the Guardian
Procedure Errors and Messages Manual for the operating system error code returned
with this FastSort error code. For SQL programs, follow recovery recommendations in
the SQL/MP Message Manual for the SQLCI error code returned with this FastSort
error code.

6 THE SORT PROCESS HAS STOPPED UNEXPECTEDLY.

Cause. Someone stopped the SORTPROG process, the SORTPROG process
abended, or the processor (CPU) went down.

Recovery. Restart the operation, possibly in another processor.

7 SORTMERGESEND HAS BEEN CALLED UNEXPECTEDLY.

Cause. The calling process called SORTMERGESEND at the wrong time.

Recovery. Correct your program logic. For more information on the normal order of
FastSort procedures, see the FastSort system library procedures table in Section 5,
Using FastSort System Procedures.

8 SORTMERGERECEI VE HAS BEEN CALLED UNEXPECTEDLY.

Cause. The calling process called SORTMERGERECEIVE at the wrong time.

Recovery. Correct your program logic. For more information on the normal order of
FastSort procedures, see the FastSort system library procedures table in Section 5,
Using FastSort System Procedures.

9 RECORD LENGITH TO SORTMERGESEND |'S TOO SMALL OR LARGE.

Cause. The calling process sent a record of the wrong length.

FastSort Manual—429834-003
B-7

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Change the | engt h parameter in the call to SORTMERGESEND. For
more information on the description of | engt h, see SORTMERGESEND Procedure
on page 5-15.

10 SORTMERGEFI NI SH HAS BEEN CALLED UNEXPECTEDLY.

Cause. The calling process called SORTMERGEFINISH at the wrong time.

Recovery. Correct your program logic. For more information on the normal order of
FastSort procedures, see the FastSort system library procedures table in Section 5,
Using FastSort System Procedures.

11 THE FREE LI ST FI LE CANNOT BE OPENED.

Cause. SORTPROG could not open or create its free-list file, a second scratch file
that FastSort sometimes creates for internal memory management.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

12 | NVALI D FLAG OR COVBI NATI ON OF FLAGS.

Cause. Some values the f | ags parameter used in the call to SORTMERGESTART
are mutually exclusive.

Recovery. Change one or more values for the f | ags parameter. For more
information about the f | ags bits, see Table 5-4 on page 5-32.

13 SCRATCH FI LE MUST BE UNSTRUCTURED.

Cause. A scratch file named in the call to SORTMERGESTART is a structured file.

Recovery. Specify an unstructured scratch file.

15 FI LES TO BE MERGED MJUST BE SORTED.

Cause. The data in one or more files specified for merging was not in sorted order.

Recovery. Check your files to see which ones are not sorted, and specify sorting
before merging for those files.

20 COVMUNI CATI ONS W TH SORTPROG HAVE BRCOKEN DOWN.

Cause. Some condition in the system halted communications.

FastSort Manual—429834-003
B-8

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

21 COMVUNI CATI ONS W TH SORTPROG WERE GARBLED.

Cause. Some condition in the system interfered with communications.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

22 THE MEMORY SPACE FOR SORTI NG |I'S | NSUFFI Cl ENT.

Cause. Not enough storage was available for SORTPROG to sort the data.
Recovery. Specify a larger memory size, if possible, or:
® Reduce the input for a single sort run.

® Use more than one sort run to sort the data, and then merge the sorted data in
another run.

® Reduce the number of subsorts for a parallel sort operation.

23 THE FROM FI LE COULD NOT BE OPENED.

Cause. SORTPROG could not open one of the input files.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

24 A TEMPORARY TO FILE IS TOO SMVALL.

Cause. A temporary scratch file was not large enough for SORTPROG to perform the
sort or merge operation.

Recovery. Specify a larger scratch file in the call to SORTMERGESTART.

25 ONE OF THE KEY FI ELDS IS OF AN UNDEFI NED TYPE.

Cause. FastSort did not recognize a key-field type specified in the call to
SORTMERGESTART.

Recovery. Change the key-field type in the key- bl ock parameter. For more
information on key- bl ock description, see SORTMERGESTART Procedure on
page 5-19.

FastSort Manual—429834-003
B-9

FastSort Error Messages Numeric List of Programmatic Messages

26 A KEY FI ELD LOCATI ON EXCEEDS THE RECORD Sl ZE.

Cause. A key field does not lie entirely within the record.

Recovery. Correct either the key-field offset or the record length.

27 THE TO FI LE ALREADY EXI STS AND CANNOT BE PURGED.

Cause. The specified output file exists but is too small or has a wrong type.
SORTPROG cannot purge the file and create a new one because of the file's security,
current usage, or some other condition in the system.

Recovery. Use the NOPURGE option of the TO command or f | ags<14>.1in
SORTMERGESTART. If this strategy fails to resolve the problem, follow recovery
recommendations in the Guardian Procedure Errors and Messages Manual for the
operating system error code returned with this FastSort error code. If the problem is
security or current usage, you can change the security for the file or prevent concurrent
access to it.

28 A SCRATCH FI LE CANNOT BE OPENED.

Cause. SORTPROG could not open a scratch file.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the file-system error number returned with this FastSort error
code.

29 A WRI TE HAS FAI LED TO THE TO FI LE.

Cause. SORTPROG could not write to the output file, probably because you or
FastSort underestimated the number of input records.

Recovery. If FastSort underestimated the number of input records, you can specify
the number of records or name an existing file large enough to hold the output records.
Follow recovery recommendations in the Guardian Procedure Errors and Messages
Manual for the operating system error code returned with this FastSort error code.

30 A VWRI TE HAS FAI LED TO A SCRATCH FI LE.

Cause. SORTPROG could not write to a scratch file, either because you
underestimated the number of input records or because of a disk process or data flow
problem.

Recovery. Ensure that sufficient scratch space exists for the sort. SORTPROG might
require more overflow scratch space. For more informatio about scratch files, see
Managing Sort Workspace on page 9-1.

FastSort Manual—429834-003
B-10

FastSort Error Messages Numeric List of Programmatic Messages

Also check the recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the file-system error number returned with this FastSort error
code.

31 A READ HAS FAlI LED FROM THE FROM FI LE.

Cause. SORTPROG could not read an input file.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

32 A READ HAS FAI LED FROM A SCRATCH FI LE.

Cause. SORTPROG could not read a scratch file.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.A control operation on the output file or on a scratch file failed.

33 A CONTRCOL OPERATI ON HAS FAI LED.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

34 AN EDI TREAD HAS FAI LED FROM THE FROM FI LE.

Cause. FastSort could not read an EDIT input file.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

35 CREATI ON OF A SCRATCH FI LE HAS FAI LED.

Cause. FastSort could not create a scratch file for a sort or subsort process.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

36 A PCSI TI ON HAS FAILED I N A SCRATCH FI LE.

Cause. FastSort could not position in a scratch file.

Recovery. Use the SORT or SUBSORT DEFINE SEGMENT attribute to allocate more
memory for sorting. If this strategy does not resolve the problem, follow recovery

FastSort Manual—429834-003
B-11

FastSort Error Messages Numeric List of Programmatic Messages

recommendations in the Guardian Procedure Errors and Messages Manual for the
operating system error code returned with this FastSort error code.

37 CREATI ON OF THE TO FI LE HAS FAI LED.

Cause. FastSort could not create the output file.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

38 THE TO FI LE COULD NOT BE OPENED.

Cause. FastSort could not open the output file.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

39 AN | NPUT RECORD EXCEEDED THE RECORD Sl ZE.

Cause. An input record was larger than the maximum input record length.

Recovery. Change the size of the record or specify a larger maximum record length in
the call to SORTMERGESTART.

42 THE MEM SI ZE MUST BE IN THE RANGE 1 TO 64.

Cause. The value of the memory parameter was incorrect in the call to
SORTMERGESTART.

Recovery. Change the memory value in the pr ocess- st art parameter to specify
from 1 to 64 pages. For the description of pr ocess- st art, see SORTMERGESTART
Procedure on page 5-19.

43 THE PRIORITY MJUST BE IN THE RANGE 1 TO 199.

Cause. The value of the priority parameter was incorrect in the call to
SORTMERGESTART.

Recovery. Correct the priority value in the pr ocess- st art parameter. For the
description of pr ocess- st art, see SORTMERGESTART Procedure on page 5-19.

FastSort Manual—429834-003
B-12

FastSort Error Messages Numeric List of Programmatic Messages

44 I NVALI D CONTROL BLOCK, PROCEDURE CALL REJECTED.

Cause. The calling process corrupted the FastSort control block.

Recovery. Correct your program so that it does not overwrite the control block.

45 I NVALI D SCRATCH FI LE BLOCK SI ZE.

Cause. The scratch file block size was incorrect in the call to SORTMERGESTART.

Recovery. Correct the value in the scr at ch- bl ock parameter. For description of
scr at ch- bl ock, see SORTMERGESTART Procedure on page 5-19.

46 REAL NUMBER KEYS MJUST BE WORD ALI GNED.

Cause. The offset of a real numeric key-field inside the record is not on a word
boundary.

Recovery. Correct either the offset or the record layout.

47 SORTMERGESTATI STI CS HAS BEEN CALLED UNEXPECTEDLY.

Cause. The calling process called SORTMERGESTATISTICS at the wrong time.

Recovery. Correct your program logic. For more information on the normal order of
FastSort procedures, see the FastSort system library procedures table in Section 5,
Using FastSort System Procedures. If this strategy fails to resolve the problem, check
error log files for originating FastSort error.

48 A SIGNED ASCII NUMERI C KEY |'S LARCER THAN 32 BYTES.

Cause. A key field of a signed numeric type is too big.

Recovery. Change the key-field type in the syntax, or change the key-field format.

49 I NVALI D EXCLUSI ON MODE SPECI FI ED.

Cause. An exclusion mode specified in the call to SORTMERGESTART was invalid.

Recovery. Change the value of the i n-fi | e- excl usi on- node or
out-fil e-exclusion-nbde parameter. For the descriptions of these parameters,
see SORTMERGESTART Procedure on page 5-19.

50 EDI T FI LES MAY NOT BE TO FI LES.

Cause. The specified output file is an EDIT file.

FastSort Manual—429834-003
B-13

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Change the format of the output file or specify another file that is not an
EDIT file.

51 I NVALI D FI LE TYPE SPECI FI ED FOR TO FI LE.

Cause. The output file type specified in the call to SORTMERGESTART was invalid.

Recovery. Change the value of the out -fi | e-t ype parameter. For the description
ofout-file-type, see SORTMERGESTART Procedure on page 5-19.

52 ONLY ONE FI LE MAY BE SORTED VI A SORTMERGESEND.

Cause. The call to SORTMERGESTART specified multiple sort files with blank names.

Recovery. Specify only one sort file or name the files. You might also need to correct
the program logic.

53 A TO FI LE MAY NOT BE A FILE TO BE MERGED.

Cause. The name of the output file is the same as the name of a merge file.

Recovery. Change the output file name or the merge file name..

54 | NVALI D SCRATCH FI LE NAME.

Cause. The scratch volume did not exist, a scratch file name was specified incorrectly,
or the node was not accessible.

Recovery. Specify an existing volume, correct the file name, or specify an accessible
node.

55 TOO MANY FROM FI LES SPECI FI ED.

Cause. The number of input files exceeded the limit.

Recovery. Reduce the number of input files.

56 I NVALI D NUMBER OF FI LES TO BE SORTED OR MERGED.

Cause. The call to SORTMERGESTART specified a negative number of files to be
sorted or merged.

Recovery. Change the value of the num sort-files ornum nerge-files
parameter to a positive number.

57 COLLATI NG SEQUENCE TABLE MUST BE PRESENT.

Cause. The call to SORTMERGESTART specified translation, but the alternate
collating sequence table was missing.

FastSort Manual—429834-003
B-14

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Setfl ags.<10:10> to O or provide an alternate collating sequence table.
For the description of the f | ags parameter, see SORTMERGESTART Procedure on
page 5-19.

58 SORTMERGESTART CALLED UNEXPECTEDLY.

Cause. The calling process called SORTMERGESTART at the wrong time.

Recovery. Correct your program logic. For more information on the normal order of
FastSort procedures, see the FastSort system library procedures table in Section 5,
Using FastSort System Procedures.

59 AN | NPUT RECORD IS TOO SMALL.

Cause. A record from SORTMERGESEND was too small. Or, an input file might
contain variable-length records.

Recovery. Correct your program logic to enlarge the record size, or change the input
file to contain only fixed-length records.

60 NOT ENOUGH STACK FOR SORTMERGESTART.

Cause. Not enough stack was available to call SORTMERGESTART.
Recovery. To allocate more data stack space, use one of the following methods:

® For a TAL application, use the DATAPAGES compiler directive during compilation.
Specify DATAPAGES 64 to allocate the maximum amount. For all applications, use
the Binder SET EXTENDSTACK command after compilation.

® When you run the program, specify 64 for the MEM option of the RUN command. If
you run the program from another application, specify 64 for the
PROCESS_CREATE_ or NEWPROCESS[NOWAIT] nenor y- pages parameter.

® Move user data from the user data segment to an extended data segment to free
up more data stack space for the call to SORTMERGESTART.

61 SPARE PARAMETERS MAY NOT BE PRESENT.

Cause. The call to SORTMERGESTART, SORTMERGESEND, or
SORTMERGERECEIVE included one of the spare parameters.

Recovery. Remove the spare parameter.

62 KEY LENGTH MUST BE GREATER THAN ZERO

Cause. The length of a key field specified in the call to SORTMERGESTART was not
positive.

FastSort Manual—429834-003
B-15

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Specify a positive length for the key field in the key- bl ock parameter. For
the description of key- bl ock, see SORTMERGESTART Procedure on page 5-19.

63 RESERVED FLAGS MAY NOT BE SET.

Cause. The call to SORTMERGESTART or SORTBUILDPARM specified a flag value
that you cannot set.

Recovery. Set all unused flag bits to 0. For SORTMERGESTART, Table 5-6 shows
f | ags bits you can use. The only f | ags2 bits you can use are <.4> and <.15>. For
SORTBUILDPARM, the only bui | d-f | ags bit you can use is <.15>.

64 EXTENDED SEGVENT CAN NOT BE ALLOCATED.

Cause. FastSort could not allocate an extended memory segment for a sort or subsort
process.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

65 | NVALI D KEY FOR KEY- SEQUENCED FI LE.

Cause. The sort key field specified for a key-sequenced file is not the same as the
file's primary key field. Another possible cause is that the data type of the sort key field
is not UNSIGNED.

Recovery. Make sure the sort key field and the primary key field are the same. When
the type of the output file is key-sequenced, make sure the type of the sort key field is
UNSIGNED.

66 I NVALI D DATA SLACK SPECI FI ED.

Cause. The data slack value in the call to SORTMERGESTART was outside the limits
for the value.

Recovery. Change the dsl ack parameter. For the description of dsl ack, see
SORTMERGESTART Procedure on page 5-19.

67 I NVALI D | NDEX SLACK SPECI FI ED.

Cause. The data slack value in the call to SORTMERGESTART was outside the limits
for the value.

Recovery. Change the dsl ack parameter. For the description of dsl ack, see
SORTMERGESTART Procedure on page 5-19.

68 | NVALI D NEW FLAG SPECI FI ED.

FastSort Manual—429834-003
B-16

FastSort Error Messages Numeric List of Programmatic Messages

Cause. The f | ags2 value in the call to SORTMERGESTART was not valid.

Recovery. Correct the value of the f | ags2 parameter. For the description of f | ags2,
seeunder the SORTMERGESTART Procedure on page 5-19.

69 | NVALI D NUMBER OF SUBSORT PROCESSES.

Cause. The number of subsort processes specified in the call to SORTMERGESTART
was outside the limits.

Recovery. Change the value of the subsort - count parameter to specify from 2 to
16 subsort processes. Because more than 8 subsort processes can cause run-time
errors, HP recommends that you specify a maximum of 8 subsorts.

71 I NVALI D SORT EXECUTI ON MODE.

Cause. The f | ags parameter in the call to SORTMERGESTART specified both
MINSPACE and MINTIME.

Recovery. Set either the MINSPACE flag or the MINTIME flag to O before you specify
the f | ags parameter. For descriptions of these flags, see Table 5-4 on page 5-32.

72 | NVALI D EXTENDED SEGVENT Sl ZE.

Cause. The extended segment size specified in the call to SORTMERGESTART was
out of limits.

Recovery. Correct the segment value in the pr ocess- st art parameter. For the
description of pr ocess- st art, see SORTMERGESTART Procedure on page 5-19.

73 | NVALI D FORVAT OF THE PROCESS STRUCTURE.

Cause. The call to SORTMERGESTART specified that the NEWPROCESS structure
be expanded but did not specify the structure; or the calling process requested parallel
sorting but did not specify that the NEWPROCESS structure be expanded.

Recovery. Correct the values of the pr ocess- st art parameter. For the description
of process-start, see SORTMERGESTART Procedure on page 5-19.

74 | NVALI D BLOCK ADDRESS SPECI FI ED.

Cause. A block buffer address in the call to SORTBUILDPARM was outside stack
limits; or the call to SORTMERGESTART specified nowait I/O, but the call to
SORTBUILDPARM specified only one of the two buffers.

Recovery. Correct the value of the buf f er or buf f er 2 parameter or both values; or
omit the nowait parameter, f | ags2, from the call to SORTMERGESTART. For more

FastSort Manual—429834-003
B-17

FastSort Error Messages Numeric List of Programmatic Messages

information about buffers and nowait I/O, see the description of the SORTBUILDPARM
Procedure on page 5-2.

75 I NVALI D BLOCK LENGTH SPECI FI ED.

Cause. The block buffer length specified in the call to SORTBUILDPARM was outside
the limits.

Recovery. Correct the value of the buf f er - | engt h parameter. For the description of
buf f er -1 engt h, see SORTBUILDPARM Procedure on page 5-2.

76 START OF SUBSORT PROCESS HAS FAI LED.

Cause. The distributor-collector process could not start a subsort process in the
processor (CPU) you specified or in any processor in the pool.

Recovery. If you specified a processor, try specifying a different one or letting
FastSort select the processor. Follow recovery recommendations in the Guardian
Procedure Errors and Messages Manual for the operating system error code returned
with this FastSort error code.

77 I NVALI D NAME OF THE SUBSORT SCRATCH FI LE.

Cause. The call to SORTMERGESTART did not specify a valid name for the scratch
file of a subsort process.

Recovery. Specify a valid name in the scr at ch-fi | e- nane parameter. For the
description of scrat ch-fi |l e- nanme, see SORTMERGESTART Procedure on
page 5-19.

78 COVMUNI CATI ONS W TH SUBSORT PROCESS HAVE FAI LED.

Cause. The distributor-collector process could not communicate with a subsort
process.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the operating system error code returned with this FastSort error
code.

79 PARAMETERS ARE MUTUALLY EXCLUSI VE.

Cause. The call to SORTMERGESEND or to SORTMERGERECEIVE specified both
a buffer and an extended buffer.

Recovery. Omit either the buf f er parameter or the buf f er - ext parameter. For the
descriptions of these parameters, see SORTMERGESEND Procedure on page 5-15 or
SORTMERGERECEIVE Procedure on page 5-13.

80 THE PRODUCT |'S NOT | NSTALLED.

FastSort Manual—429834-003
B-18

FastSort Error Messages Numeric List of Programmatic Messages

Cause. The license PROMS were not purchased for your system.

Recovery. Because of changes in the way unlicensed software is detected in C00 and
later RVUs, you should not see this message. Contact your service provider.

81 BLOCKED | NTERFACE NOT ALLONED W TH MERCE.

Cause. The call to SORTBUILDPARM specified a buffer for record blocking and the
call to SORTMERGESTART specified input streams for merging through
SORTMERGESEND.

Recovery. Omit the buf f er and buf f er 2 parameters from the call to
SORTBUILDPARM.

82 MORE THAN ONE SUBSORT SHOULD BE SPECI FI ED.

Cause. Only one subsort process was specified for a parallel sort run.

Recovery. Specify at least two subsort processes.

83 SORTPROG AND SORT LI BRARY DO NOT AGREE.

Cause. Your system has components of both SORT and FastSort installed.

Recovery. Contact your system manager; or install FastSort again. Make sure the sort
library procedures correspond to the product.

84 SORTPROG VERSI ON AND OS VERSI ON DO NOT AGREE.

Cause. Your system has incompatible versions of FastSort and the operating system
installed.

Recovery. Contact your system manager or service provider to have the correct
version of FastSort or the operating system installed on your system.

85 UNEXPECTED RESPONSE FROM SORTPROG

Cause. The wrong program was used as a sort process.

Recovery. Correct the sort-program field of the pr ocess- st art structure for the
SORTMERGESTART procedure, or correct the SORT DEFINE used by the program.

86 I NVALI D OBJECT SPECI FI ED AS TO FI LE.

Cause. The output file is an SQL object.

Recovery. The TO file cannot be an SQL object. Specify a file other then an SQL
object for the TO file.

87 I NVALI D OBJECT SPECI FI ED AS FROM FI LE.

FastSort Manual—429834-003
B-19

FastSort Error Messages Numeric List of Programmatic Messages

Cause. A FROM file is an SQL object.

Recovery. The FROM file cannot be an SQL object. Specify a file other then an SQL
object for the FROM file.

88 I NVALI D OBJECT SPECI FI ED AS SWAP FI LE.

Cause. A swap file is an SQL object.

Recovery. Specify an Enscribe file as the swap file or use the default.

89 I NVALI D FROM FI LE RECORD SI ZE.

Cause. The record size specified for an input file is greater than 4080.

Recovery. This PVU of FastSort does not support record sizes greater than 4080.
There is no recovery.

90 UNEXPECTED RETURN FROM LOADOPEN PROCEDURE.

Cause. A programming error occurred on a call to an internal procedure.

Recovery. Report the internal error number returned with this FastSort error code to
your service provider. The high-order word of the er r or - code parameter returned by
SORTERRORSUM and SORTERRORDETAIL contains the internal error number.

91 UNEXPECTED RETURN FROM LOADVWRI TE PROCEDURE.

Cause. A programming error occurred on a call to an internal procedure.

Recovery. Report the internal error number returned with this FastSort error code to
your service provider. The high-order word of the er r or - code parameter returned by
SORTERRORSUM and SORTERRORDETAIL contains the internal error number.

92 UNEXPECTED RETURN FROM LOADCLOSE PROCEDURE.

Cause. A programming error occurred on a call to an internal procedure.

Recovery. Report the internal error number returned with this FastSort error code to
your service provider. The high-order word of the er r or - code parameter returned by
SORTERRORSUM and SORTERRORDETAIL contains the internal error number.

93 UNEXPECTED RETURN FROM LOADALTFI LE PROCEDURE.

Cause. A programming error occurred on a call to an internal procedure.

FastSort Manual—429834-003
B-20

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Report the internal error number returned with this FastSort error code to
your service provider. The high-order word of the er r or - code parameter returned by
SORTERRORSUM and SORTERRORDETAIL contains the internal error number.

99 DEFAULT DEFINE IS NOT OF CLASS SORT.

Cause. A DEFINE with the reserved name *_SORT_DEFAULTS” was created, but is
not of class SORT.

Recovery. Delete the DEFINE and optionally recreate it as a SORT DEFINE.

100 SORTPROG MUST BE SQL LI CENSED.

Cause. SORTPROG has not been SQL licensed.

Recovery. FUP LICENSE SORTPROG. You must have the super ID (user ID
255,255) to license a program. For more information on the FUP LICENSE command,
see File Utility Program (FUP) Reference Manual.

101 LOG CAL NAMES NOT ALLOWED.

Cause. You used a logical DEFINE name for an input file, output file, or the scratch
file.

Recovery. Use the actual file names for an input, output, or scratch file. Do not use a
DEFINE name.

102 | NVALI D OR NON EXI STENT USER- SPECI FI ED DEFI NE NANE.

Cause. The DEFINE name you specified was not valid.

Recovery. Specify a valid DEFINE name.

103 USER- SPECI FI ED DEFI NE IS NOT OF CLASS SORT.

Cause. The DEFINE CLASS must be SORT.
Recovery. Specify CLASS SORT in your SORT DEFINEs.

104 ERROR OCCURRED WHI LE ACCESSI NG A SORT DEFI NE.

Cause. Unacceptable DEFINE name encountered, attribute missing, or error from
procedure call.

Recovery. Check that a valid DEFINE name was specified.

105 DEFI NE HAS BEEN SPECI FI ED BUT DEFMODE |S OFF.

Cause. DEFMODE must be on to activate DEFINES.

FastSort Manual—429834-003
B-21

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Set DEFMODE to ON or determine why DEFMODE is not ON.

106 SUBSORT DEFINE |'S NOT OF CLASS SUBSORT.

Cause. The DEFINE class must be SUBSORT.
Recovery. Specify CLASS SUBSORT in your SUBSORT DEFINEs.

107 ERROR OCCURRED WHI LE ACCESSI NG A SUBSORT DEFI NE.

Cause. Unacceptable DEFINE name encountered, attribute missing, or error from
procedure call.

Recovery. Check that a valid DEFINE name was specified.

108 | NVALI D DM BLOCK FORMAT FOR SORTMERGESQL.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

109 UNEXPECTED RETURN FROM SQL DM'START PROCEDURE.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

110 UNEXPECTED RETURN FROM SQ. DM'*GET PROCEDURE.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact
your service provider.

111 SORTMERGESQL CALLED UNEXPECTEDLY.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

FastSort Manual—429834-003
B-22

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

112 ERROR FROM SQL FI LESYSTEM VALI DATI ON ROUTI NES.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

113 | NPUT FI LE FOR SORTMERGESQL. NOT TYPE SQL.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

114 NO FI LES | NPUT TO SORTMERGESQL.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

115 ERROR RETRI EVI NG SQL FI LE LABEL.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

116 ONLY ONE FI LE CAN BE SORTED VI A SORTMERGESQL.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

117 NULL KEY SPECI FI ED FOR NON- SQL FI LE.

Cause. Stated in the error message.

FastSort Manual—429834-003
B-23

FastSort Error Messages Numeric List of Programmatic Messages

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

118 NULLVAR KEY SPECI FI ED FOR NON- SQL FI LE.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

119 | NTERNAL SQ. NULL ERROR

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

120 SQL BULKI O NOT VALI D FOR SPECI FI ED | NPUT FI LE.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

121 I NCOVPATI BLE SQL VERSI ON.

Cause. A remote SORTPROG process does not support features required for the
requested sort.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Specify a local SORTPROG process. If this strategy does not resolve the
problem, generate and save a copy of your SAVEABEND file. Then contact your
service provider.

122 ERROR DETERM NI NG SQ. VERSI ON.

Cause. A file-system error occurred on a system procedure call to determine the SQL
version of a remote SORTPROG process.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Correct the file-system error condition, or specify a local SORTPROG
process. To correct the file-system error condition, follow the recovery

FastSort Manual—429834-003
B-24

FastSort Error Messages Numeric List of Programmatic Messages

recommendations in the Guardian Procedure Errors and Messages Manual for the file-
system error code returned with this FastSort error code. If this strategy fails to resolve
the problem, generate and save a copy of your SAVEABEND file. Then contact your
service provider.

123 DATETI ME CONVERSI ON FI ELD NOT FOUND.

Cause. A date-time field was specified as needing date-time conversion, but no date-
time field was found.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. If you have written your own application, change the sort key values to
valid field types. If this error is returned by SQLCI, contact your service provider.

124 ERROR FROM DATETI ME CONVERSI ON FI ELDS.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Report the internal error number returned with this FastSort error code to
your service provider. The high-word order of the er r or - code parameter returned by
SORTERRORSUM and SORTERRORDETAIL contains the internal error number.

125 NUMBER OF SORTPROG OPENERS EXCEEDED SPECI FI ED LI M T.

Cause. The number of openers exceeded the specified limit. This error can be caused
when too many RECGEN processes attempt to open the same SORTPROG process.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Attempt to reduce the openers or contact your service provider.

126 PROCESS ALREADY OPEN AND SORTPROC_OPEN CALLED.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

127 SEND MESSACE | D M SMVATCH.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation terminates abnormally.

FastSort Manual—429834-003
B-25

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

128 SORTPROC_SEND _ CALLED UNEXPECTEDLY.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

129 SORTPROC_CLOSE CALLED UNEXPECTEDLY.

Cause. Stated in the error message.
Effect. None.

Recovery. No recovery is necessary.

130 | NTERNAL SORT ERROR.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

131 M SSI NG OR CONFLI CTI NG PARAMETERS | N SORTLI B CALL.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Check the parameters of the sort library call that resulted in this error.

132 SORTMERGEDUPREC CALLED UNEXPECTEDLY.

Cause. A programming error occurred on a call to an internal procedure.
Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

133 CANNOT | NCREASE THE SCRATCH FI LE Sl ZE.

Cause. The SORTPROG process failed to increase the maximum number of extents
for the scratch file because one of the following errors occurred:

FastSort Manual—429834-003
B-26

FastSort Error Messages Numeric List of Programmatic Messages

® An increase of the maximum number of extents for the scratch file would cause the
file to exceed its maximum limit. FastSort also returns file system error 21
(ILLEGAL count SPECIFIED).

® A file-system error (other than number 21) occurred when SORTPROG tried to
increase the number of extents for the scratch file.

Recovery. For the first error, create a partitioned scratch file large enough to hold all
of the records. For the second error, follow the recovery recommendations in the
Guardian Procedure Errors and Messages Manual for the file-system error number
returned with the FastSort error code.

134 | NVALI D RECGEN STARTUP MESSAGE.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check that the versions of RECGEN and SQLUTIL are compatible. If the
base table was in use when FastSort returned this error, ensure that the base table is
not in use and try to re-create the index. If this strategy fails to solve the problem,
generate and save a copy of your SAVEABEND file. Then contact your service
provider.

135 I NVALI D RECGEN MESSAGE VERSI ON.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. If the base table was in use when FastSort returned this error, ensure that
the base table is not in use and try again to create the index. If this strategy fails to
solve the problem, generate and save a copy of your SAVEABEND file. Then contact
your service provider.

136 RECGEN SORTPROC_OPEN_ ERROR.

Cause. The RECGEN process encountered an error while opening the SORTPROG
process. The file-system error number is included in this message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Attempt to correct the file-system error condition and try again to create the
index. If this strategy fails to solve the problem, generate and save a copy of your
SAVEABEND file. Then contact your service provider.

137 RECGEN | NTERNAL ERROR: KEYS OUT OF ORDER

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

FastSort Manual—429834-003
B-27

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

138 I NVALI D TO-FI LE SPECI FI ED TO RECGEN.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

139 | NVALI D FROM FI LE SPECI FI ED TO RECGEN.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

140 NON- EXI STENT RECGEN FROM FI LE SPECI FI ED.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

141 NON- EXI STENT RECGEN TO- FI LE SPECI FI ED.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

142 RECGEN UNABLE TO OPEN BASE TABLE.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Attempt to correct the condition described by the file-system error number.
If the base table was in use when FastSort returned this error, ensure that the base
table is not in use and attempt the load operation again. If this strategy fails to solve

FastSort Manual—429834-003
B-28

FastSort Error Messages Numeric List of Programmatic Messages

the problem, generate and save a copy of your SAVEABEND file. Then contact your
service provider.

143 RECCGEN ERROR READI NG BASE TABLE.

Cause. The disk process or file system found an error in a base table record.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Attempt to correct the condition described by the file-system error number.
Then ensure that blocks and individual records in the base table contain no errors. If a
record contains an error, correct the error and attempt the load operation again. If this

strategy fails to solve the problem, generate and save a copy of your SAVEABEND file.
Then contact your service provider.

144 RECCGEN FI LE LABEL RETRI EVAL ERROR.

Cause. The RECGEN process could not retrieve a file label from the disk process.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Attempt to correct the condition described by the file-system error number.
Check for disk hardware errors. If this strategy fails to solve the problem, generate and
save a copy of your SAVEABEND file. Then contact your service provider.

145 RECGEN ERROR WHI LE PACKI NG RECCRD.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

146 RECGEN ERROR WHI LE RETRI EVI NG PRI MARY KEY.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

147 RECGEN SORTPROC_SEND_ ERROR.

Cause. The SORTPROG process terminated during a table load operation.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

FastSort Manual—429834-003
B-29

FastSort Error Messages Numeric List of Programmatic Messages

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

148 RECGEN SORTPROC_CLOSE ERRCR

Cause. Internal error
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your
service provider.

149 RECGEN CALCULATES A BAD MULTI PLE MESSAGE ADDRESS.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check that the versions of RECGEN and SQLUTIL are compatible. If the
base table was in use when FastSort returned this error, ensure that the base table is
not in use and try to re-create the index. If this strategy fails to solve the problem,
generate and save a copy of your SAVEABEND file. Then contact your service
provider.

150 RECGEN GETS A BAD SEQUENCE NUMBER I N THE MULTI PLE START
UP MESSAGE.

Cause. Stated in the error message.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check that the versions of RECGEN and SQLUTIL are compatible. If the
base table was in use when FastSort returned this error, ensure that the base table is
not in use and try to re-create the index. If this strategy fails to solve the problem,
generate and save a copy of your SAVEABEND file. Then contact your service
provider.

152 SORTBUI LDPARAM | NT_ UPS PARAMETER | S | NVALI D OR
M SSI NG

Cause. A UPS parameter to SORTBUILDPARM is either invalid or missing.
Effect. The SQL DLL or DML operation in progress terminates abnormally.

Recovery. Check the UPS parameters to SORTBUILDPARM.

153 UPS NOT SUPPCRTED I N THI' S ENVI RONVENT.

Cause. UPS cannot be used if subsorts are used, if the number of records to be
sorted is greater than 32,768, or if the multiple openers feature is being used.

FastSort Manual—429834-003
B-30

FastSort Error Messages Numeric List of Programmatic Messages

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check to see if any of the above conditions is true. If so, correct the
condition.

154 UPS WORKSPACE BAD.

Cause. The eye-catcher field in the UPS workspace is corrupted.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check that the UPS workspace is valid and not affected by the user
program.

156 | NVALI D COLLATI ON ARRAY LENGTH.

Cause. The collation sequence table length you specified was not valid.
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Specify a valid length for the collation sequence table.

160 PROCESS CREATE PROGRAM FI LE ERROR.

Cause. A PROCESS_CREATE_ error occurred on the program file parameter.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or
SORTERRORSUM procedure to determine the error code. For the interactive
interface, the er r or parameter in the accompanying message identifies the error
code.

Follow the recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the error code.

161 PROCESS CREATE LI BRARY FI LE ERROR.

Cause. A PROCESS_CREATE_ error occurred on the library file parameter.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or
SORTERRORSUM procedure to determine the error code. For the interactive
interface, the er r or parameter in the accompanying message identifies the error
code.

Follow the recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the error code.

162 PROCESS CREATE SWAP ERROR

Cause. A PROCESS_CREATE_ error occurred on the swap file parameter.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or
SORTERRORSUM procedure to determine the error code. For the interactive

FastSort Manual—429834-003
B-31

FastSort Error Messages Numeric List of Programmatic Messages

interface, the er r or parameter in the accompanying message identifies the error
code.

Follow the recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the error code.

163 PROCESS CREATE EXTENDED SWAP FI LE ERROR.

Cause. A PROCESS_CREATE_ error occurred on the extended swap file parameter.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or
SORTERRORSUM procedure to determine the error code. For the interactive
interface, the er r or parameter in the accompanying message identifies the error
code.

Follow the recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the error code.

164 PROCESS CREATE DATA SEGVENT ERROR.

Cause. A PROCESS_CREATE_ error occurred for the process file segment (PFS).

Recovery. For the programmatic interface, call the SORTERRORDETAIL or
SORTERRORSUM procedure to determine the error code. For the interactive
interface, the er r or parameter in the accompanying message identifies the error
code.

Follow the recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the error code.

165 PROCESS CREATE SYSTEM MONI TOR ERROR.

Cause. A PROCESS_CREATE_ error occurred because the process could not
communicate with the system monitor process.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or
SORTERRORSUM procedure to determine the error code. For the interactive
interface, the er r or parameter in the accompanying message identifies the error
code.

Follow the recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the error code.

166 PROCESS CREATE PROGRAM FI LE FORMAT ERROR

Cause. A PROCESS_CREATE_ error occurred because the program file has an
invalid format.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or
SORTERRORSUM procedure to determine the error code. For the interactive

FastSort Manual—429834-003
B-32

FastSort Error Messages Numeric List of Programmatic Messages

interface, the er r or parameter in the accompanying message identifies the error
code.

Follow the recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the error code.

167 PROCESS CREATE LI BRARY FI LE FORVAT ERROR

Cause. A PROCESS_CREATE_ error occurred because the program file has an
invalid format.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or
SORTERRORSUM procedure to determine the error code. For the interactive
interface, the er r or parameter in the accompanying message identifies the error
code.

Follow the recovery recommendations in the Guardian Procedure Errors and
Messages Manual for the error code.

168 I NVALI D STATI STI CS LENGTH SPECI FI ED.

Cause. The length parameter specified in the call to SORTMERGESTATISTICS was
invalid.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Correct the value of the parameter, then reissue the request.

169 I NVALI D STATI STI CS FLAG VALUE SPECI FI ED.

Cause. The value specified in the f | ags parameter to SORTMERGESTATISTICS
was invalid.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Specify a value of 0 or 1 for the parameter, then reissue the request.

170 SEGVENTS ABOVE 32767 NOT ALLONED W TH VLM OFF.

Cause. You specified a SEGMENT value greater than 32,767 and have not requested
the VLM option.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Either specify the VLM option or specify a SEGMENT value less than or
equal to 32,767.

171 EXTENDED SEGVENT CANNOT BE DEALLCOCATED.

Cause. The SORTPROG process encountered an error while trying to deallocate its
extended segment.

FastSort Manual—429834-003
B-33

FastSort Error Messages Numeric List of Programmatic Messages

Effect. None; the problem occurs at process termination time.

Recovery. No recovery is necessary. However, you should report this error to your
service provider.

172 SORTPROG VERSI ON TOO OLD; CANNOT SUPPORT REQUI RED NEW
FEATURE.

Cause. Your system’s version of SORTPROG is older than the FastSort system library
procedures.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Contact your system manager or service provider to have the correct
version of FastSort or the operating system installed on your system.

173 ERROR | N MOVEX.

Cause. A programming error occurred on a call to an internal procedure.

Recovery. Report the internal error number returned with this FastSort error code to
your service provider. The high-order word of the er r or - code parameter returned by
SORTERRORSUM and SORTERRORDETAIL contains the internal error number.

174 MONI TOR VERSI ON AND MESSAGE LENGTH CONFLI CT.

Cause. Your system’s version of SORTPROG is older than the FastSort system library
procedures.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Contact your system manager or service provider to have the correct
version of FastSort or the operating system installed on your system.

175 1 NVALI D MONI TOR MESSACE LENGTH.

Cause. Your system’s version of SORTPROG is older than the FastSort system library
procedures.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Contact your system manager or service provider to have the correct
version of FastSort or the operating system installed on your system.

176 SORTPROG VERSI ON TOO OLD; CANNOT SUPPORT OPTI ONAL OPEN-
ON- DEVMAND FEATURE.

Cause. Your system’s version of SORTPROG is older than the FastSort system library
procedures.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

FastSort Manual—429834-003
B-34

FastSort Error Messages Alphabetic List of Interactive Messages

Recovery. Contact your system manager or service provider to have the correct
version of FastSort or the operating system installed on your system.

Alphabetic List of Interactive Messages

This subsection describes the interactive FastSort messages in alphabetic order. This
description includes the error message text, the probable cause of the error, and the
recommended recovery.

To determine appropriate recovery action for some errors, refer to the Guardian
Procedure Errors and Messages Manual, which has information about the file-system
and NEWPROCESS error codes that accompany FastSort error codes.

A THRU | S I NCORRECT | N THE COLLATI NG SEQUENCE SPECI FI CATI ON

Cause. The collating sequence you specified was invalid. For example, you specified
Z THRU A instead of A THRU Z.

Recovery. Correct the collating sequence so that it follows the rules under the
COLLATE Command on page 3-6.

AN ALSO MODI FI ES A SPECI FI ER W TH A DI FFERENT LENGTH.

Cause. You specified an incorrect collating sequence. The ALSO option indicates that
two values are equal. For example, “A” ALSO “a” is a valid statement; however,
“A” THRU “B” ALSO “a” is invalid because there is nothing to compare for B.

Recovery. Correct the command so that it follows the rules under the COLLATE
Command on page 3-6.

ASCENDI NG n FOR n.

Cause. Information only.

CANNOT DO THE COLLATEQUT STATEMENT.

Cause. FastSort was unable to open or write the collate sequence to the output file
specified.

Recovery. Use the accompanying error messages to determine what is wrong and
correct the problem.

CANNOT | NCREASE THE SCRATCH FI LE SI ZE

Cause. The SORTPROG process was unable to increase the maximum number of
extents for a scratch file because one of the following errors occurred:

® There are no more overflow scratch volumes available to SORTPROG.

FastSort Manual—429834-003
B-35

FastSort Error Messages Alphabetic List of Interactive Messages

® This sort operation requires more than 32 scratch files, and an increase of the
maximum number of extents for the last scratch file would cause the file to exceed
2 GB or 978 extents. FastSort also returns file system error 21 (ILLEGAL count
SPECIFIED).

® A file-system error other than 21 occurred when SORTPROG tried to increase the
number of extents for a scratch file.

Recovery. For the first error, use the SCRATCHON or NOSCRATCHON SORT
DEFINE attribute to specify additional scratch volumes. For the second error, follow the
recovery recommendations in the Guardian Procedure Errors and Messages Manual
for the file-system error code returned with the FastSort error code.

CPUS cpu-1list.

Cause. Information only.

CPUS ALL

Cause. Information only.

DEFAULT DEFINE IS NOT OF CLASS SORT.

Cause. The DEFINE = _SORT_DEFAULTS is not of class SORT.
Recovery. Specify CLASS SORT in your SORT DEFINEs.

DEFI NE HAS BEEN SPECI FI ED BUT DEFMODE | S OFF.

Cause. DEFMODE must be on to activate DEFINESs.
Recovery. Set DEFMODE to ON or determine why DEFMODE is not ON.

DESCENDI NG n FOR n.

Cause. Information only.

ERROR OCCURRED WHI LE ACCESSI NG A SORT DEFI NE.

Cause. Unacceptable DEFINE name encountered, attribute missing, or error from
procedure call.

Recovery. Check that a valid DEFINE name was specified.

ERROR OCCURRED WHI LE ACCESSI NG A SUBSCRT DEFI NE.

Cause. Unacceptable DEFINE name encountered, attribute missing, or error from
procedure call.

FastSort Manual—429834-003
B-36

FastSort Error Messages Alphabetic List of Interactive Messages

Recovery. Check that a valid DEFINE name was specified.

FEATURE NOT SUPPCRTED YET text.

Cause. Information only.

FI LE NAME NOT SPECI FI ED.

Cause. You omitted the file name.

Recovery. Specify the file name.

FROM fi |l enane

Cause. Information only.

| GNORI NG UNUSABLE STRI NG OF LETTERS text.

Cause. You mistyped the command or included text in the command that is not
needed.

Recovery. Check the last command for errors and retype the command correctly.

I NPUT FI LE DOESN T CONTAI N AN ENTI RE COLLATI NG SEQUENCE
TABLE.

Cause. You did not assign all characters a specific sequence. For example, you have
specified “a- b - ¢ - e - f” in order, but did not specify where “d” fits in.

Recovery. Correct the file so that all characters are assigned a sequence.

| NTEGER CONVERSI ON ERROR.

Cause. You entered a number too big for FastSort to handle (for example, RUN,
BLOCK 900000). This could also be an internal sort error message.

Recovery. Enter a valid value less than 32,767. If this is an internal sort error
message, contact your service provider.

I NVALI D CHARACTER.

Cause. You used an incorrect character.

Recovery. Retype the command without the incorrect character.

I NVALI D FI LE NAME.

Cause. The file name you specified was invalid.

FastSort Manual—429834-003
B-37

FastSort Error Messages Alphabetic List of Interactive Messages

Recovery. Check the file name to make sure it was correctly typed. See the
Guardian Programmer's Guide for rules about specifying files.

I NVALI D OR NON- EXI STENT USER- SPECI FI ED DEFI NE NANME.

Cause. The DEFINE name you specified was not valid.

Recovery. Specify a valid DEFINE name.

| NVALI D SYNTAX text.

Cause. You used incorrect syntax.

Recovery. Check the syntax and correct the error.

MORE THAN ONE SUBSORT SHOULD BE SPECI FI ED.

Cause. You specified only one subsort for a parallel sort.

Recovery. Specify at least two subsorts.

NO ALLOWED CPUS.

Cause. Information only.

NO ASCENDI NG OR DESCENDI NG STATEMENTS HAVE BEEN | SSUED.

Cause. You did not issue a valid ASCENDING or DESCENDING command for the
sort or merge run.

Recovery. Specify the sort key order in at least one ASCENDING or DESCENDING
command.

NO COLLATE STATEMENT HAS BEEN | SSUED.

Cause. Information only.

NO FORBI DDEN CPUS.

Cause. Information only.

NO FROM STATEMENTS HAVE BEEN | SSUED.

Cause. The command file did not include any FROM commands or input records.

Recovery. Put a FROM command or input records in the command file.

NO SUBSORT STATEMENTS HAVE BEEN | SSUED.

FastSort Manual—429834-003
B-38

FastSort Error Messages Alphabetic List of Interactive Messages

Cause. Information only.

NO TO STATEMENT HAS BEEN | SSUED.

Cause. Information only.

NOTCPUS cpu-1i st.

Cause. Information only.

ONLY ONE FROM STATEMENT MAY SPECI FY | NPUT FROM THE COMVAND
FI LE.

Cause. You issued too many FROM commands.

Recovery. Issue the command FROM i n-fi | e command only once. Note that if you
want to sort records from both the terminal and from an input file, you can issue the
FROM command once and the FROM i n-fi | e command once.

OUTPUT RECORD WOULD EXCEED BUFFER SPACE.

Cause. You specified an invalid record length.

Recovery. Correct the record length to a valid size.

SCRATCH FI LE MUST BE UNSTRUCTURED.

Cause. A scratch file named in the call to SORTMERGESTART is a structured file.

Recovery. Specify an unstructured scratch file.

SUBSORT , BLOCK bl ock size.

Cause. Information only.

SUBSCRT , CPU cpu.

Cause. Information only.

SUBSCORT DEFINE |'S NOT OF CLASS SUBSORT.

Cause. The DEFINE class must be SUBSORT.
Recovery. Specify CLASS SUBSORT in your SUBSORT DEFINEs.

SUBSCORT , PRI priority.

FastSort Manual—429834-003
B-39

FastSort Error Messages

Cause. Information only.

Alphabetic List of Interactive Messages

SUBSORT , PROGRAM program nane.

Cause. Information only.

SUBSCORT , SEGVENT segnent.

Cause. Information only.

SUBSORT , SWAP swap-fil e-nane.

Cause. Information only.

SUBSORT scratch-fil e-nane,

Cause. Information only.

THE ALTERNATE COLLATI NG SEQUENCE SPECI FI CATI ON | S | NCORRECT.

Cause. You specified the alternate collating sequence incorrectly.

Recovery. Correct the command so that it follows the rules under the COLLATE
Command on page 3-6.

THE COLLATE FI LE MJST BE UNSTRUCTURED.

Cause. The file specified in the COLLATE command is not unstructured.

Recovery. Specify an EDIT file (file code 101) or a file created in a previous
COLLATEOUT command.

THE COLLATEQUT FI LE MUST BE AN ENSCRI BE FI LE.

Cause. The file specified in the COLLATEOUT command is an SQL object.
Recovery. Specify an unstructured Enscribe file in the COLLATEOUT command.

THE COLLATI NG SEQUENCE CANNOT BE DI SPLAYED.

Cause. You entered SHOW COLLATE, which is not a valid command.

Recovery. If you have executed the COLLATEOUT command to store the collating
sequence table in an unstructured file, you can view the file using the TACL VIEW
command.

THE CPU NUMBER MUST NOT EXCEED 16.

Cause. You specified a processor (CPU) number larger than 16.

FastSort Manual—429834-003
B-40

FastSort Error Messages Alphabetic List of Interactive Messages

Recovery. Correct the command so that the number is less than 16.

THE MEMORY SIZE IS NOT I N RANGE 1-64.

Cause. You specified memory size not in the range from 1 to 64.

Recovery. Omit the MEM parameter of the RUN command.

THE PRIORITY IS NOT | N RANCGE 1-199

Cause. You specified a priority not in the valid range.

Recovery. Correct the PRI parameter of the RUN command so that the priority is
within the range from 1 to 199.

THE SCRATCH FI LE BLOCK SI ZE MAY NOT EXCEED 55296.

Cause. You used an invalid scratch file block size.

Recovery. Use a valid scratch file block size. The block size must be a multiple of
2048 up to 55296.

THE STARTI NG COLUW MJST BE BEFORE THE END COLUMWN.

Cause. You specified a sort key field whose starting column number is greater than
the ending column number.

Recovery. Correct the ASCENDING or DESCENDING command so that the starting
column number is less than the ending column number.

THE SYSTEM NAME | S UNRECOGNI ZABLE.

Cause. You entered an invalid system name.

Recovery. Correct the SYSTEM parameter of the RUN command so that the node
name is valid. A node name begins with a backslash (\) and is followed by a letter and
up to 6 alphanumeric characters.

THE VALI D KEY COLUMNS ARE 1 THROUGH 4080.

Cause. You specified a key outside the record.

Recovery. Correct the ASCENDING or DESCENDING command so that you specify
a valid key field.

THERE | S ALREADY A DESTI NATI ON FI LE.

Cause. You specified more than one destination file.

FastSort Manual—429834-003
B-41

FastSort Error Messages Alphabetic List of Interactive Messages

Recovery. Clear the existing TO command or do not specify another one.

TH S PROGRAM CAN ONLY HANDLE 63 KEYS.

Cause. You specified too many keys in an ASCENDING or DESCENDING command.

Recovery. Retype the command and specify 63 or fewer keys.

TRUNCATI NG OQUTPUT RECORD LENGTH TO DEVI CE W DTH.

Cause. The output file record size is too small to hold an output record.

Recovery. Create the output file with a larger record size and then rerun the sort.

USER- SPECI FI ED DEFI NE IS NOT' OF CLASS SORT.

Cause. The DEFINE CLASS must be SORT.
Recovery. Specify CLASS SORT in your SORT DEFINEs.

VRONG NUMBER OF ELEMENTS | N SPECI FI ER SEQUENCE, MJST BE 256.

Cause. You specified an invalid collating sequence.

Recovery. Correct the collating sequence to include 256 elements. Follow the rules
under the COLLATE Command on page 3-6.

VRONG NUMBER OF SUBSORTS, MJUST BE BETWEEN 2 AND 16.

Cause. You specified more than 16 subsorts.

Recovery. Clear the SUBSORT command and specify from 2 to 16 subsorts. Because
using more than 8 subsorts can cause run-time errors, HP recommends that you
specify a maximum of 8 subsorts. The number of actual subsorts you can use depends
on your system configuration and load.

VWRONG SEGMVENT SI ZE NUMBER, MJST BE LARGER THAN 64.

Cause. You specified an invalid segment size.

Recovery. Specify a segment size greater than 64 pages.

YOU MUST HAVE A LI ST DEVI CE WHEN REQUESTI NG OQUTPUT THERE.

Cause. You specified a list device that does not exist.

Recovery. Check that the list device does exist and retype the command.

FastSort Manual—429834-003
B-42

—C- Using Supported File Types

For input files, FastSort accepts records from unstructured, relative, entry-sequenced,
key-sequenced, EDIT, and partitioned files.

FastSort does not accept input records from the following:
® Blocked tape files
® Key-sequenced files with increased limits

You might use buffered interface to send records from key-sequenced files with
increased limits to FastSort. You do not specify the type for input files.

For output files, FastSort can create any type of output file except an EDIT file, and you
can use an existing output file of any type that FastSort can create. If the output file
exists, FastSort purges all data from the file before using it. If the output file is too
small, FastSort purges it and re-creates the file. FastSort does not write records onto
key-sequenced files with increased limits. For more information about key-sequenced
files with increased limits, see Enscribe Programmer’s Guide.

If you do not specify a file type for the output file, SORTPROG sets the type as follows:
® |If the output file already exists, SORTPROG uses the type of the output file.

® |f the output file does not already exist, SORTPROG uses the file type of the first
input file.

® |If the input records are from the SORTMERGESEND procedure, the output file
type is entry-sequenced.

If you wish, however, you can specify the output file type as follows:
® For the interactive interface, set the TYPE parameter of the TO command.

® For the programmatic interface, set the SORTMERGESTART procedure
out-file-type parameter.

Table C-1 summarizes the output file types.

Table C-1. Summary of Output File Types

TO Command TYPE SORTMERGESTART Procedure
Output File Type Parameter out put-fil e Parameter
Unstructured U 0
Relative R 1
Entry-sequenced E 2

FastSort Manual—429834-003
Cc-1

Using Supported File Types Unstructured Files

Table C-1. Summary of Output File Types

TO Command TYPE SORTMERGESTART Procedure
Output File Type Parameter out put-fil e Parameter
Key-sequenced K 3
EDIT Use EDIT to create the file —

and copy data from
another file type.

Tape Use FUP to load the file. -

For information about the different types of files, see the Guardian Programmer’s
Guide and the Enscribe Programmer’s Guide.

Unstructured Files

You can use unstructured files for input and output files; however, you cannot use an
EDIT file, which is a special kind of unstructured file, as an output file. You can copy
output records from an unstructured file to an EDIT file, as described under EDIT Files
on page C-4.

For an unstructured output file, specify either of the following:
® U inthe TYPE parameter of the TO command
® 0 (zero)intheout-fil e-type parameter of the SORTMERGESTART procedure

If the type of your first input file is unstructured, the default output file type is
unstructured.

To use an odd unstructured file for an input file, you must specify the correct record
length as follows:

® For the interactive interface, set the RECORD | engt h parameter in the
FROM command.

® For the programmatic interface, set the SORTMERGESTART
in-file-record-I| ength parameter.

To use an odd unstructured file for an output file, create the file using the FUP
CREATE command or the CREATE system procedure before the sort or merge run.
Then perform one of these steps:

® For the interactive interface, do not set the TYPE fi | e-t ype parameter in the
TO command.

® For the programmatic interface, set the SORTMERGESTART out -fi |l e-type
parameter to —1.

FastSort Manual—429834-003
Cc-2

Using Supported File Types Relative Files

Relative Files

You can use relative files as input or output files. For a relative output file, specify
either of the following:

® R inthe TYPE parameter of the TO command
® 1lintheout-fil e-type parameter of the SORTMERGESTART procedure

If the type of your first input file is relative, the default output file type is relative.

Entry-Sequenced Files

You can use entry-sequenced files as input and output files. For an entry-sequenced
output file you do not need to specify the type because entry-sequenced is the default
type (unless the first input file is not an entry-sequenced file). However, you can specify
either of the following:

® E inthe TYPE parameter of the TO command
® 2intheout-fil e-type parameter of the SORTMERGESTART procedure

If the type of your first input file is entry-sequenced, the default output file type is entry-
sequenced.

Key-Sequenced Files

You can use key-sequenced files as input files and output files. No special
requirements apply to using key-sequenced input files.

If you use a key-sequenced output file, you can specify only one key field for sorting.
That field must be the same as the primary key field for the file. When using
commands, you must name the field in an ASCENDING command and specify
UNSIGNED as the data type. When using the SORTMERGESTART procedure, you
must specify ascending and BINARY UNSIGNED for the field in the key- bl ock
parameter array.

To cause FastSort to create a key-sequenced output file or use an existing one, you
must specify the type. You can also specify the percentage of slack space for
accommodating future insertions of records in a new or existing key-sequenced file.

To specify the output file type, use either of the following:

® Kinthe TYPE parameter of the TO command

® 3intheout-fil e-type parameter of the SORTMERGESTART procedure
To specify the data and index slack, use any of the following:

® The SLACK parameter of the RUN command, if you want the same percentage of
slack space in the data blocks and the index blocks

FastSort Manual—429834-003
C-3

Using Supported File Types EDIT Files

® The DSLACK and ISLACK parameters of the RUN command, if you want the data
blocks to have a different percentage of slack space than the index blocks

® Thedsl ack andi sl ack parameters of the SORTMERGESTART procedure

The default for SLACK, dsl ack, and i sl ack is O percent. The default for DSLACK
and ISLACK is the value of SLACK.

FastSort currently does not load alternate-key files directly. You can use FUP to load
alternate-key files. For information about loading alternate-key files, see the
Guardian User’s Guide.

If the type of your first input file is key-sequenced, the default output file type is entry-
sequenced.

FastSort currently supports key-sequenced files with increased limits only through
buffered interface. For more information about key-sequenced files with increased
limits, see Enscribe Programmer’s Guide.

EDIT Files

FastSort accepts EDIT (file code 101) files as input files but not as an output file. If the
type of your first input file is EDIT, the default output file type is entry-sequenced. If you
want output records from a sort or merge run in an EDIT file, you must copy the output
records into an existing or new EDIT file.

First, use FastSort to sort the records to a structured output file. Then, use EDIT to
copy the output records from the structured output file to a new or existing EDIT file.
For example, the following sequence of commands, entered at a TACL prompt, copies
the sorted records from the SORTOUT file to an EDIT file named NEWFILE:

EDIT NEWFI LE !I'; CGET SORTQUT TO LAST; EXIT

The exclamation point (!) causes EDIT to create NEWFILE without prompting you for
confirmation if the file does not exist. The LAST parameter causes EDIT to write the
records from SORTOUT after the last line in NEWFILE. You can also specify a line
number rather than LAST to have EDIT insert the records after that line. For example,
the following sequence of commands inserts the sorted records after line 1 in
NEWFILE.

EDIT NEWFI LE !'; GET SORTQUT TO 1; EXIT

Any existing data in NEWFILE remains in the file after the sorted records. If you need
to first purge data from an existing EDIT file, use the FUP PURGEDATA command.

For more information about using EDIT commands, see the EDIT User’s Guide and
Reference Manual.

FastSort Manual—429834-003
C-4

Using Supported File Types Tape Files

Tape Files

If you want to use input records from a blocked tape file, use FUP to deblock the
records by loading them into a disk file. Then specify the disk file as an input file for the
sort or merge run.

If you want to store output records in a blocked tape file, use FUP to block the records
by loading them to the tape file from a disk file. Then specify the disk file as the output
file for the sort or merge run.

For information about using the FUP LOAD command, see the FUP Reference
Manual.

The COBOLS85 SORT and MERGE statements use FastSort to deblock and block tape
files for you. For a description of the SORT and MERGE statements, see the
COBOLS85 Reference Manual.

Partitioned Files

FastSort accepts partitioned input files and can write records to a partitioned output
file. FastSort can also use a partitioned scratch file. A partitioned file, however, must
exist before you use it as an input, output, or scratch file. To create a partitioned file,
use FUP. For more information on how to create a partitioned scratch file, see
Section 9, Optimizing Sort Performance.

Partitioned Output Files

Use a partitioned output file for a distributed database or for a set of output records that
will not fit on one disk volume. To estimate the size of the output file, multiply the total
number of input records by the maximum output record length.

If one or more input files is partitioned, you do not need to use a partitioned output file,
unless the output records will not fit on one disk volume. Output records from
permutation sorts are shorter than output records from record sorts, and output records
from key sorts can be even shorter. Also, if you have FastSort remove records with
duplicate key values, the output records from a record sort usually take up less space
than the input records.

If FastSort determines that an output file is too small, it purges and re-creates the file.
For a partitioned output file, however, you can prevent FastSort from purging and re-

creating the file in order to preserve the original partitioning and extents of the file. To
prevent FastSort from purging the file, specify the NOPURGE parameter of the

TO command or set the SORTMERGESTART procedure f | ags.<5> bit to 1.

FastSort Manual—429834-003
C-5

Using Supported File Types Partitioned Output Files

FastSort Manual—429834-003
C-6

D~ Ascli character Set

Table D-1. ASCII Character Set (page 1 of 4)

Character Octal Left Octal Right Hex Dec Meaning

NUL 000000 000000 00 0 Null

SOH 000400 000001 01 1 Start of heading
STX 001000 000002 02 2 Start of text

ETX 001400 000003 03 3 End of text

EOT 002000 000004 04 4 End of transmission
ENQ 002400 000005 05 5 Enquiry

ACK 003000 000006 06 6 Acknowledge

BEL 003400 000007 07 7 Bell

BS 004000 000010 08 8 Backspace

HT 004400 000011 09 9 Horizontal tabulation
LF 005000 000012 A 10 Line feed

VT 005400 000013 B 11 Vertical tabulation
FF 006000 000014 C 12 Form feed

CR 006400 000015 D 13 Carriage return

SO 007000 000016 E 14 Shift out

Sl 007400 000017 F 15 Shift in

DLE 010000 000020 10 16 Data link escape
DC1 010400 000021 11 17 Device control 1
DC2 011000 000022 12 18 Device control 2
DC3 011400 000023 13 19 Device control 3
DC4 012000 000024 14 20 Device control 4
NAK 012400 000025 15 21 Negative acknowledge
SYN 013000 000026 16 22 Synchronous idle
ETB 013400 000027 17 23 End of transmission block
CAN 014000 000030 18 24 Cancel

EM 014400 000031 19 25 End of medium
SUB 015000 000032 1A 26 Substitute

ESC 015400 000033 1B 27 Escape

FS 016000 000034 1C 28 File separator

GS 016400 000035 1D 29 Group separator
RS 017000 000036 1E 30 Record separator
us 017400 000037 1F 31 Unit separator

FastSort Manual—429834-003
D-1

ASCI| Character Set

Table D-1. ASCII Character Set (page 2 of 4)

Character Octal Left Octal Right Hex Dec Meaning
SP 020000 000040 20 32 Space
! 020400 000041 21 33 Exclamation point
" 021000 000042 22 34 Quotation mark
021400 000043 23 35 Number sign
$ 022000 000044 24 36 Dollar sign
% 022400 000045 25 37 Percent sign
& 023000 000046 26 38 Ampersand
‘ 023400 000047 27 39 Apostrophe
(024000 000050 28 40 Opening parenthesis
) 024400 000051 29 41 Closing parenthesis
* 025000 000052 2A 42 Asterisk
+ 025400 000053 2B 43 Plus
, 026000 000054 2C 44 Comma
- 026400 000055 2D 45 Hyphen (minus)
027000 000056 2E 46 Period (decimal point)
/ 027400 000057 2F 47 Slash
0 030000 000060 30 48 Zero
1 030400 000061 31 49 One
2 031000 000062 32 50 Two
3 031400 000063 33 51 Three
4 032000 000064 34 52 Four
5 032400 000065 35 53 Five
6 033000 000066 36 54 Six
7 033400 000067 37 55 Seven
8 034000 000070 38 56 Eight
9 034400 000071 39 57 Nine
035000 000072 3A 58 Colon
: 035400 000073 3B 59 Semicolon
< 036000 000074 3C 60 Less than
= 036400 000075 3D 61 Equals
> 037000 000076 3E 62 Greater than
? 037400 000077 3F 63 Question mark
@ 040000 000100 40 64 Commercial at sign
A 040400 000101 41 65 Uppercase A

FastSort Manual—429834-003
D-2

ASCI| Character Set

Table D-1. ASCII Character Set (page 3 of 4)

Character Octal Left Octal Right Hex Dec Meaning

B 041000 000102 42 66 Uppercase B
C 041400 000103 43 67 Uppercase C
D 042000 000104 44 68 Uppercase D
E 042400 000105 45 69 Uppercase E
F 043000 000106 46 70 Uppercase F
G 043400 000107 47 71 Uppercase G
H 044000 000110 48 72 Uppercase H
| 044400 000111 49 73 Uppercase |
J 045000 000112 4A 74 Uppercase

K 045400 000113 4B 75 Uppercase K
L 046000 000114 4C 76 Uppercase L
M 046400 000115 4D 77 Uppercase M
N 047000 000116 4E 78 Uppercase N
@) 047400 000117 4F 79 Uppercase O
P 050000 000120 50 80 Uppercase P
Q 050400 000121 51 81 Uppercase Q
R 051000 000122 52 82 Uppercase R
S 051400 000123 53 83 Uppercase S
T 052000 000124 54 84 Uppercase T
U 052400 000125 55 85 Uppercase U
\% 053000 000126 56 86 Uppercase V
W 053400 000127 57 87 Uppercase W
X 054000 000130 58 88 Uppercase X
Y 054400 000131 59 89 Uppercase Y
Z 055000 000132 5A 90 Uppercase Z
[055400 000133 5B 91 Opening bracket
\ 056000 000134 5C 92 Backslash

] 056400 000135 5D 93 Closing bracket
n 057000 000136 5E 94 Circumflex

_ 057400 000137 5F 95 Underscore

) 060000 000140 60 96 Grave accent
a 060400 000141 61 97 Lowercase a
b 061000 000142 62 98 Lowercase b
c 061400 000143 63 99 Lowercase c

FastSort Manual—429834-003
D-3

ASCI| Character Set

Table D-1. ASCII Character Set (page 4 of 4)

Character Octal Left Octal Right Hex Dec Meaning

d 062000 000144 64 100 Lowercase d
e 062400 000145 65 101 Lowercase e
f 063000 000146 66 102 Lowercase f
g 063400 000147 67 103 Lowercase g
h 064000 000150 68 104 Lowercase h
[064400 000151 69 105 Lowercase i

j 065000 000152 6A 106 Lowercase j
k 065400 000153 6B 107 Lowercase k
I 066000 000154 6C 108 Lowercase |
m 066400 000155 6D 109 Lowercase m
n 067000 000156 6E 110 Lowercase n
o] 067400 000157 6F 111 Lowercase o
p 070000 000160 70 112 Lowercase p
q 070400 000161 71 113 Lowercase q
r 071000 000162 72 114 Lowercase r
S 071400 000163 73 115 Lowercase s
t 072000 000164 74 116 Lowercase t
u 072400 000165 75 117 Lowercase u
v 073000 000166 76 118 Lowercase
w 073400 000167 77 119 Lowercase w
X 074000 000170 78 120 Lowercase x
y 074400 000171 79 121 Lowercase y
z 075000 000172 7A 122 Lowercase z
{ 075400 000173 7B 123 Opening brace
| 076000 000174 7C 124 Vertical line

} 076400 000175 7D 125 Closing brace
~ 077000 000176 7E 126 Tilde

DEL 077400 000177 7F 127 Delete

FastSort Manual—429834-003
D-4

E FastSort Limits

This appendix summarizes parameter values that FastSort accepts in commands and
procedure calls.

Table E-1. FastSort Limits

ltem Limit

CPUs 0to 15

Input Files/Streams 32

Key Columns (Non-SQL) 1to 4080

Key Fields 1to 63

Memory 1 to 64 pages

Priority 1to 199

Segment (Extended Memory) 256 to 62,255 pages (with VLM on)
Subsort Processes 2 to 16 (No more than 8 recommended)
Scratch File Block Size Any multiple of 2048 up to 56 kilobytes

FastSort Manual—429834-003
E-1

FastSort Limits

FastSort Manual—429834-003
E-2

— Glossary

alternate collating sequence. An EDIT file instructs FastSort to collate sort results by
specific alphanumeric key fields or string type data. The default FastSort collating
sequence is the ASCII character set.

application . One or more processes that achieve a specific objective. Processes in an
application often communicate with each other using the message system and file
system. See also program and process.

command file. An EDIT file containing a sequence of commands to execute. When you
execute the file, commands in the file are automatically executed. You can use a
command file with FastSort to execute commands or set DEFINES.

data stack space. A storage area for object files. Data stack space is automatically
allocated and can be manually specified for a program either at compile or bind time.

file system. A set of operating procedures and data structures that allows communication
between a process and a file, which can be a disk file, I/O device, or another process.

initial scratch file. The scratch file FastSort uses first to store partial information during a
sort-merge operation. See also scratch file and overflow scratch file.

input file. A set of records from local or remote disk files, tape files, or a terminal that you
specify to FastSort to sort or merge. Supported types of output files for FastSort are
unstructured, relative, entry-sequenced, key-sequenced, and EDIT.

list file. The file FastSort creates after a sort or merge run that describes the run. For
example, a list file can contain FastSort statistics and any errors or warnings that
occurred during the run. By default, the list file is the home terminal for the FastSort
process; it can also be a disk file, 1/0 device, SPOOL DEFINE, or a process that
receives sort-merge output. See also SPOOL DEFINE.

output file. The file to which FastSort writes output records. By default, the output file is the
home terminal for the FastSort process. Supported output file types for FastSort are
unstructured, relative, entry-sequenced, and key-sequenced.

overflow scratch file. | f the initial scratch file becomes full during a sort-merge operation,
the file FastSort creates to store overflow information. If there is sufficient overflow
space, FastSort creates overflow scratch files on the same volume as the initial scratch
file. See also scratch file and initial scratch file.

parallel sort-merge operation. A FastSort operation that improves performance by using
one distributor-collector SORTPROG process and 2 to 8 subsort processes to
distribute the sort workload to multiple processors.

process. An executing or running program that has been submitted to the operating system
for execution.

FastSort Manual—429834-003
Glossary-1

Glossary program

program. A static set of instruction codes and initialized data, such as compiler output or
the Binder program, that is not currently executing. A program usually resides in a
program file on disk.

scratch file. A temporary work file for FastSort. When a sort-merge operation cannot be
performed in memory, SORTPROG temporarily stores partial information in one or
more scratch files.

serial sort-merge operation. A FastSort operation that uses one SORTPROG process to
sort or merge records.

SORT DEFINE. An operating system parameter that affects sort operations. A DEFINE has
a name and a set of attribute-value pairs. The = SORT_DEFAULTS DEFINE is also a
SORT DEFINE.

SORT process. The FastSort command interpreter process. SORT accepts interactive
commands from a terminal or through a command file and then uses FastSort system
procedures to send commands to a SORTPROG process. See also SORTPROG

process.

SORTPROG process . The FastSort sort-merge process. SORTPROG can run as a single
process for a serial sort-merge process or as a distributor-collector process with 2 to 8
subsort processes for a parallel sort-merge operation.

SPOOL DEFINE. An operating system parameter that affects output. You can specify a
SPOOL DEFINE to receive sort-merge output. See also list file.

SUBSORT DEFINE. An operating system parameter that affects subsort processes in a
parallel sort operation. A DEFINE has a name and a set of attribute-value pairs.

swap file. The disk file FastSort uses for data swapping during a sort or merge run. Data
swapping involves copying data between physical memory and storage.

system message. A block of information, usually in the form of a structure, that a system
process sends to another process. The receiving process, often a user process, reads
system messages from the $RECEIVE system file. For example, an application that
calls the FastSort SORTMERGEFINISH procedure with the abor t parameter setto 1
(which means stop the SORTPROG process immediately) receives a process-deletion
message in its SRECEIVE file. See also $RECEIVE.

$RECEIVE. A special system file through which a process receives and can reply to
messages from other processes.

= SORT_DEFAULTS DEFINE. The default SORT DEFINE. You can use the
=SORT_DEFAULTS_DEFINE to specify FastSort parameters for applications that
otherwise cannot set the parameters. For example, the =SORT_DEFAULTS DEFINE
affects all sort operations invoked by NonStop SQL/MP. See also SORT DEFINE.

FastSort Manual—429834-003
Glossary-2

— Index

A Automatic configuration, parallel sorting
procedures to specify 6-5
subsort processes 6-4

AUTOMATIC parameter, RUN
command 3-20

AWAITIO
SORTBUILDPARM procedure 5-6

Abbreviated and equivalent character
assignments 3-7

ALSO keyword, alternate collating
sequence 3-7

ALTER DEFINE TACL command 7-9
Alternate collating sequence

assigning characters to 3-7
COLLATE command 3-6
COLLATEOUT command 3-9
defining in SORTMERGESTART 5-28
equating characters 3-7
examples 3-8

invalid files 3-8

reading from EDIT file 3-6
reading from unstructured file 3-9
SORTMERGESTART 3-10
storing in table 3-9

Application process

communicating with SORTPROG
process 4-1

FastSort procedures 4-1

providing input records 5-15

receiving output records with
SORTMERGERECEIVE 5-13
returning output records to 4-6

sending and receiving records 4-4/4-13

sending input records with
SORTMERGESEND 5-15

ASCENDING command

examples 3-4
syntax 3-2

Assigning numeric literal characters 3-7
Asterisks (**) in DEFINE template 7-10
Attributes, DEFINE

Class SORT 7-2
Class SUBSORT 7-5

SORTMERGESTART procedure 5-28

B

Binder utility
creating a save file 9-14
SET EXTENDSTACK command 5-2
BINSERYV process 5-2
BLOCK attribute, SORT DEFINE 7-2
BLOCK parameter
RUN command 3-20
SUBSORT command 3-26
Blocked records
sending and receiving 5-7
specifying buffers in
SORTBUILDPARM 5-5
Buffers
double 5-4
extended address 5-8
record blocking 5-6
specifying in SORTBUILDPARM 5-3

C

C
parallel sort example 6-15
serial sort example 4-9
Calling FastSort
Enform 1-10

File Utility Program (FUP) 1-10
process pair application 1-8
Character assignments, numeric literal 3-7

FastSort Manual—429834-003
Index-1

Index

Characters, alternate collating
sequence 3-7
CLEAR command
examples 3-6
syntax 3-5
COBOLS85
parallel sort example 6-20
SORT or MERGE statement 5-19
sorting records 4-13
COLLATE command
assigning characters 3-7
examples 3-7
syntax 3-6
COLLATEOUT command 3-10
Collating sequence, alternate
See Alternate collating sequence
Command file
comments 2-2
DEFINEs 9-16
interactive sort 2-1
interactive sort example 2-3
nested levels in SQLCI 9-16
specifying SORT DEFINE 7-10
Command parameters
deleting 3-5
displaying 3-25
Commands, interactive
ASCENDING 3-2
CLEAR 3-5
COLLATE 3-6
COLLATEOUT 3-9
CPUS 3-10
DESCENDING 3-11
description 3-1
entering from terminal 2-1
EXIT 3-13
FC 3-14
FROM 3-14
HELP 3-18
NOTCPUS 3-18

Commands, interactive (continued)
RUN 3-19
SAVE 3-23
SHOW 3-25
SUBSORT 3-26
syntax summary A-1
TO 3-28
COMMENT keyword, SQL/MP 8-10
Comments
command file 2-2
CREATE INDEX configuration file 8-10
Configuration
default and explicit values 8-14
distributor-collector process 6-10

improving performance for subsort

processes 6-6
sample SQL/MP file 8-10, 8-14

subsort processes 6-4, 6-5, 6-6
testing in parallel sorting 6-13
tuning for subsort processes 6-13
Configuring subsort processes 6-4/6-10
Control block 5-33
CONTROL/Y keys 2-1
CPU attribute
SORT DEFINE 7-2
SUBSORT DEFINE 7-5
CPU parameter
RUN command 3-20
SUBSORT command 3-27
CPUs
CPUS command 3-10
default for subsort processes 6-8
NOTCPUS command 3-18
RUN command 3-20
selecting for subsort processes 6-7
CPUS attribute, SORT DEFINE 7-3
CPUS command
example 3-10
parallel sorting 6-8
syntax 3-10

FastSort Manual—429834-003

Index-2

Index

CREATE command (FUP) 1-9
CREATE INDEX statement, SQL/MP
and FastSort 1-10
CONFIG option 8-15
configuration file 8-10
configuring 8-8
default configuration 8-9/8-10
description 1-10
loading multiple indexes in
parallel 8-15
CROSSREF program, and FastSort 1-10
Ctrl-Y keys 2-1

D

Data blocks 3-30
Data slack, SORTMERGESTART 5-28
Data types
ASCENDING command 3-2
DESCENDING command 3-11
DATAPAGES compiler directive 5-2

Deblocking records to reduce interprocess
messages 5-15

Default values for SORT DEFINE 7-13
DEFAULTS DEFINE

See = SORT_DEFAULTS DEFINE
DEFINE parameter, RUN command 3-22

DEFINE template, equal sign and
asterisk 7-10

DEFINEs, TACL
ALTER DEFINE command 7-9
class SORT 1-10, 7-7, 7-13
class SPOOL 1-9
class SUBSORT 1-10, 7-9
DELETE DEFINE command 7-10
effect on scratch volumes 9-4
INFO DEFINE command 7-8
RESET DEFINE command 7-10
SET DEFINE command 7-8
SORT DEFINE attributes 7-2
with FastSort 1-9, 7-1

DELETE DEFINE TACL command 7-10
Deleting command parameters 3-5
DESCENDING command

examples 3-13

syntax 3-11
Disks, mirrored versus unmirrored 6-13
Displaying error messages 2-14, B-1
Displaying parameters 3-25
Displaying statistics 2-13
Displaying warning messages B-1
DISTINCT clause, SQL/MP 1-10, 8-4
Distributor-collector process

configuring 6-10

controlling the size of extended memory

segments 6-11

copying the SORTPROG program 6-12

DEFINEs 7-1

execution priority 6-13

parallel sorting 6-1

scratch block size 6-11

statistics 2-14, 6-14
Double buffering 5-4

Duplicate records, removing in RUN
command 3-21

E

EDIT files
description C-4
specifying an alternate collating
sequence 3-6
Elapsed time
limiting in RUN command 3-20
minimizing 3-21
Enform, calling FastSort from 1-10
Entering commands from a terminal 2-1
Entry-sequenced files C-2
Equal sign and asterisk (=*) in DEFINE
template 7-10
Equal sign (=) in =_SORT_DEFAULTS
DEFINE 7-13

FastSort Manual—429834-003

Index-3

Index

Error codes and messages
displaying B-1
format 2-14
interactive B-35
parallel sorting 6-14
programmatic, alphabetic list B-1
programmatic, numeric list B-6
SORTERROR 4-3, 5-9
SORTERRORDETAIL 4-3, 5-9

SORTERRORSUM 5-10

Error procedure, use with
SORTMERGESTART 5-36

EXCLUSION parameter, TO
command 3-28

Execution priority
distributor-collector process 6-13
subsort processes 6-10
Existing output files 3-31
EXIT command 3-13
Exiting an interactive process 2-1
Extended memory segment
buffer addresses 5-8
controlling size 2-11

controlling size for subsort
processes 6-11

distributor-collector process 6-11
increasing with VLM 9-11
receiving output records 5-15
RUN command 3-21, 3-22
sending input records 5-17
subsort processes 6-9, 6-11
swap file 3-22, 6-9, 6-12

F

Failure information, saving 9-14
FastSort

COBOLS85 1-10

components 1-3

Enform 1-10

File Utility Program (FUP) 1-10

FastSort (continued)
interactive 1-5, 2-1/2-15
programmatic use 1-7
SORTPROG process 1-8
SQL/MP 1-10, 8-1/8-17
FC command 3-14
File size
estimating output file size 4-8
estimating permanent scratch file
size 9-2
File types, specifying output file type 3-29
File Utility Program (FUP)
calling FastSort from 1-10
CREATE command 1-9
creating a partitioned scratch file 9-8
Files (disk)
access 3-16
EDIT C-4
entry-sequenced C-2
key-sequenced C-3
locking 3-15
number of records allowed 3-15
partitioned C-5
relative C-2
unstructured C-2
Files (other than disk)
default number of records 3-16
tape C-4
File-system errors
creating a scratch file 9-2
returning in SORTERRORSUM 5-10
SORTERRORDETAIL 5-9
Fix (FC) command 3-14

flags parameter, SORTMERGESTART
procedure 5-31

FROM command
examples 3-17
file access 3-16
syntax 3-14

FastSort Manual—429834-003

Index-4

Index

G

GROUP BY clause, SQL/MP 8-4

H

HELP command 3-18

Identifying errors in parallel sorting 6-14

Index blocks, specifying for key-sequenced
output files 3-30

Index slack, SORTMERGESTART 5-28
Index, SQL/MP 1-10, 8-8
INFO DEFINE TACL command 7-8
Initial scratch file
See Scratch file, initial
Input files
EDIT C-4
entry-sequenced C-2
example 2-4, 2-6
FastSort features 1-3
file access 5-21
file types 1-8
FROM command 3-14
key-sequenced C-3
number allowed 1-8
number of records allowed 3-15
partitioned C-5
relative C-2
tape C-4
unstructured C-2
using FUP to deblock records from
tape 1-8
Input records
procedures to specify 4-3
providing from calling process 5-15
sending from a process 4-4
sending from extended memory 5-17
specifying in a command file 2-4
specifying length 3-16

Input streams
merging records 5-17
specifying with
SORTMERGESEND 4-5
INTEGER data type
ASCENDING command 3-3
DESCENDING command 3-12
Interactive commands
ASCENDING 3-2
CLEAR 3-5
COLLATE 3-6
COLLATEOUT 3-9
CPUS 3-10
DESCENDING 3-11
description 3-1
EXIT 3-13
FC 3-14
FROM 3-14
HELP 3-18
NOTCPUS 3-18
RUN 3-19
SAVE 3-23
SHOW 3-25
SUBSORT 3-26
syntax summary A-1
TO 3-28
Interactive error messages B-35
Interactive FastSort 1-5, 2-1

Interprocess messages, reducing by
deblocking records 5-15

Invalid alternate collating sequence
files 3-8

K

Key and permutation sort 2-11
Key fields

defining in SORTMERGESTART
procedure 5-20

definitions in key-block 5-29
FastSort feature 1-2

FastSort Manual—429834-003

Index-5

Index

Key fields (continued)
specifying in ASCENDING
command 3-2, 3-4
Key sort 2-9
KEYS parameter, TO command 3-29
Key-block, key-field definitions 5-29
Key-sequenced files
data slack C-3
description of C-3
index slack C-3
specifying output file slack space 3-30

L

Limits, sorting E-1
List file
specifying in TACL RUN command 2-1
SPOOL DEFINE 1-9
LOAD command, SQL/MP
configuring 8-15
description 8-7
loading large tables 8-17
MAX option 8-16
protecting table auditing 8-15
SCRATCH option 8-16
SORTED option 8-16
VLM 8-17
Loading multiple indexes in parallel 8-15
Locking files 3-15
Logical DEFINE
See DEFINEs, TACL

M

Managing sort workspace 9-1/9-13
Measure program 6-13
MEM parameter
RUN command 3-21
SUBSORT command 3-27
Memory
See Extended memory segment

Merge operations

merging records from input
streams 5-17

procedures to specify input files 4-4
MERGE statement, COBOL85 5-19
Messages, interprocess 5-15

See also Error codes and messages

Minimizing elapsed time, RUN
command 3-21

MINSPACE parameter, RUN
command 3-21

MINTIME mode
improving performance 6-6
RUN command 3-21
Mirrored disks
parallel sorting 6-13
scratch volumes 8-4
MODE attribute, SORT DEFINE 7-3

N

NEWPROCESS errors
returning in SORTERRORDETAIL 5-9
returning in SORTERRORSUM 5-10
NonStop SQL/MP
See SQL/MP
NOPURGE parameter, TO command 3-30

NOSCRATCHON attribute, SORT
DEFINE 7-3

NOTCPUS attribute, SORT DEFINE 7-3
NOTCPUS command
description of 3-18
examples 3-19
parallel sorting 6-8
Nowait 1/0
SORTBUILDPARM procedure 5-6
SORTMERGESTART procedure 5-28
Numeric literal character assignments 3-7

FastSort Manual—429834-003
Index-6

Index

O

Online help, HELP command
ORDER BY clause, SQL/MP 1
OSIMAGE file 1-4
Output files
EDIT C-4
entry-sequenced C-2
estimating size 4-8

3-18
10, 8-4

EXCLUSION mode, TO command 3-28

existing 3-31

file types, SORTMERGESTART 1-9,
5-24

key-sequenced 3-30, C-3

options summary 1-3

partitioned C-5

relative C-2

requirements for existing 3-31

slack space for key-sequenced 3-30

specifying file access with
SORTMERGESTART 5-23

summary of types C-1
tape C-4
TO command 3-28, 3-29
unstructured C-2
using FUP to load a blocked tape
file 1-9
valid types 3-30

Output records
format, SORTMERGESTART 5-22
receiving in extended memory 5-15
returning to a process 4-6

returning with
SORTMERGERECEIVE 5-13

P

Paging (swapping) files 6-10
PARALLEL EXECUTION ON option,
SQL/MP

configuring CREATE INDEX
statement 8-9

PARALLEL EXECUTION ON option,
SQL/MP (continued)

default configuration 8-9/8-10
description 1-11, 8-7
sample CREATE INDEX configuration
file 8-10
scratch and swap files for CREATE
INDEX 8-10
scratch files 8-16

Parallel sorting
See also PARALLEL EXECUTION ON
option, SQL/MP
configuring a distributor-collector 6-10

configuring subsorts in SUBSORT
command 3-26

description of 6-1

errors 6-14

improving performance 6-11
mirrored disks 6-13

returning error information 5-10
scratch block size for subsorts 6-11
setting up 6-3

specifying in procedures 4-3
testing configuration 6-13

Parameters, displaying with SHOW
command 3-25

Partitioned files
creating a partitioned scratch file 9-8
FastSort input C-5
FastSort output C-5
Partitioned index, SQL/MP
description 1-10
loading data 8-7
loading multiple indexes in
parallel 8-15
Performance
improving with parallel sorting 6-11
Measure program 6-13

tuning configuration of subsort
processes 6-13

Permutation and key sort, example 2-11

FastSort Manual—429834-003

Index-7

Index

PERMUTATION parameter, TO
command 3-29

Permutation sort, example 2-10
PRI attribute
SORT DEFINE 7-3
SUBSORT DEFINE 7-6
PRI parameter
RUN command 3-21
SUBSORT command 3-27
Priority
RUN command 3-21
SUBSORT command 3-27
SUBSORT DEFINE 7-6
Procedures
description 5-1
parallel sorting 6-3
SORTBUILDPARM 5-2
SORTERROR 5-9
SORTERRORSUM 5-10
SORTMERGEFINISH 5-12
SORTMERGERECEIVE 5-13
SORTMERGESEND 5-15
SORTMERGESTART 5-19
SORTMERGESTATISTICS 5-37
syntax summary A-1
user-written error procedure 5-36
Procedure, user-written error 5-25
Process pair application, calling FastSort
from 1-8
Processors
CPUS command 3-10
defaults for subsort processes 6-8
selecting for subsort processes 6-7
PROGRAM attribute
SORT DEFINE 7-4
SUBSORT DEFINE 7-6
PROGRAM parameter
RUN command 3-22
SUBSORT command 3-27
Programmatic error messages

Programmatic error messages (continued)
alphabetic B-1
numeric B-6

Programmatic FastSort 1-7

Q

Query, SQL/MP, ordering and grouping
results 8-4

Question mark (?), input prompt

symbol 2-5

Quotation marks (), in alternate collating
sequence 3-7

R

REAL data type

ASCENDING command 3-3

DESCENDING command 3-12
RECGEN process, SQL/MP

configuring 8-10

default location 8-8

description 1-4

in parallel execution 1-10

role in loading data 8-7
Records

See also Records, input and output

buffer for blocking 5-6

deblocking to reduce interprocess
messages 5-15

estimating number 3-16

removing duplicates in RUN
command 3-21

specifying length 3-16
Records, input and output
blocking 4-3

sending and receiving from a
process 4-7

SORTBUILDPARM parameters for
blocking 4-3

specifying 4-3
Relative files C-2

FastSort Manual—429834-003

Index-8

Index

REMOVEDUPS parameter, RUN
command 3-21

Removing duplicate records
RUN command 3-21
SORTMERGESTART 5-31
RESET DEFINE TACL command 7-10
Restart option
SORTBUILDPARM 4-3
SORTMERGESTART 5-4, 5-24, 5-33,
5-34
Returning errors
SORTERRORDETAIL 5-9
SORTERRORSUM 5-10
RUN command
AUTOMATIC parameter 3-20
BLOCK parameter 3-20, 6-11
CPU parameter 3-20
DEFINE parameter 3-22
description of 3-19
examples 3-23

improving performance in parallel
sorting 6-11

limiting elapsed time 3-20
MEM parameter 3-21
MINSPACE parameter 3-21
MINTIME parameter 3-21
PRI parameter 3-21, 6-13
PROGRAM parameter 3-22, 6-12
REMOVEDUPS parameter 3-21
SEGMENT parameter 3-22
SORT DEFINE example 7-10
SWAP parameter 3-22, 6-12
RUN command, TACL 2-1
Run options for SORT process 2-2

S

SAVE command
examples 3-24
syntax 3-23
Save file, automatically creating 9-14

SAVEABEND, turning on 9-14
Saving commands 3-23
SCRATCH attribute
SORT DEFINE 7-4
SUBSORT DEFINE 7-6
Scratch files
automatic configuration 6-4
creating manually 9-2

creating with CREATE system
procedure 9-2

creating with FUP CREATE
command 9-2

default size 9-2
having SORTPROG create 9-2
initial vs. overflow 9-3
manually creating 9-2
optimizing performance 9-1
partitioned files as 9-8
RUN command 3-19
size 1-9
specifying block size for subsort
processes 6-11
SUBSORT command 3-26

Scratch file, initial
estimating size of permanent 9-2
RUN command 3-19
SORTMERGESTART 5-25
specifying size in RUN command 3-20
SUBSORT command 3-26

Scratch volumes
how characteristics affect selection 9-5
how DEFINEs affect selection 9-4
initial, specifying in RUN
command 3-19
overflow, specifying for subsorts 5-5,
9-7

SCRATCHON attribute, SORT DEFINE 7-4

scratchvols structure,
SORTBUILDPARM 5-5

FastSort Manual—429834-003

Index-9

Index

SEGMENT attribute

SORT DEFINE 7-4

SUBSORT DEFINE 7-6
SEGMENT parameter

RUN command 3-22

SUBSORT command 3-27
Segment, extended memory

See Extended Memory Segment
SELECT statement, SQL/MP 1-10
Selecting processors 6-8
Serial sort operation

COBOLS85 example 4-14

TAL example 4-15
SET DEFINE TACL command 7-8
SET DEFMODE TACL command 7-7

SET EXTENDSTACK, BINDER
command 5-2

Setting up subsort processes 3-26
SHOW command
examples 3-26
syntax 3-25
SLACK parameter, TO command 3-30
SORT DEFINE
MODE attribute 7-3
NOSCRATCHON attribute 7-3
NOTCPUS attribute 7-3
SORT DEFINE, TACL
attributes 7-2
creating interactively 7-7
creating programmatically 7-13
default values 7-13
example 7-15
interactive sort 7-10
programmatic 7-13
Sort merge joins 8-6
Sort operations
input file types 2-6
input files 4-4
parallel sort example, C 6-15

parallel sort example, COBOL85 6-20

Sort operations (continued)
parallel sort example, TAL 6-23
Sort or merge 4-2
SORT process 1-4
SORT statement, COBOL85 5-19
Sort workspace, managing 9-1/9-13
SORTBUILDPARM procedure
configuring subsort processes 6-6
DEFINE name 7-13
description 4-3
example 5-8
not-cpu-mask parameter 6-8
parallel sorting 6-3
syntax 5-2
SORTERROR procedure 5-9
SORTERRORDETAIL procedure 5-10
SORTERRORSUM procedure
description 4-3
example 5-12
parallel sorting 6-3
syntax 5-10
Sorting interactively 2-1
Sorting limits E-1
Sorting on key fields 2-6
SORTMERGEFINISH procedure
example 5-13
parallel sorting 6-4
syntax 5-12
SORTMERGERECEIVE procedure
example 5-15

returning records to an application
process 4-6

syntax 5-13
SORTMERGESEND procedure

example 5-18

sending records from application

process 4-5

syntax 5-15

FastSort Manual—429834-003

Index-10

Index

SORTMERGESTART procedure

automatic configuration 6-5
configuring subsort processes 6-6
data slack 5-28

defining key fields 5-20

example 5-35

flags parameter 4-9, 5-31

index slack 5-28

SORTPROG process (continued)

copying for subsort processes 6-10

copying for the distributor-
collector 6-12

description 1-8

parallel load operations 8-7
starting with procedures 4-2, 5-19
stopping 4-2

initial scratch file 5-25 stopping with
input file access 5-21 SORTMERGEFINISH 5-12

output file access 5-23 used by SQL/MP 1-10, 8-1
output file type 5-24 SORT_DEFAULTS DEFINE

See =_SORT_DEFAULTS DEFINE
output record format 5-22

parallel sorting 6-3, 6-11 SQL/MP
. . COMMENT keyword 8-10
priority word in process-start

parameter 6-10, 6-13 configuration file for parallel index

loading 8-10
process-start parameter 6-9 o
. . configuring a CREATE INDEX
returning records to an application statement 8-8
process 4-6 —

criteria for in-memory sorts 8-1
scratch-block parameter 6-11 y —

: DEFINEs 7-1
segment word in process-start —
parameter 6-12 DISTINCT clause 8-4

sending records from application GROUP BY clause 8-4
process 4-5 index 1-10, 8-8
sort-program word in process-start LOAD command 8-15
parameter 6-10, 6-12 nesting command files from

swap-file word in process-start SQLCI 9-16
parameter 6-9, 6-12 operations that invoke FastSort

syntax 5-19 optimizing clause combinations 8-

user error procedure 5-36 sample file 8-10, 8-14
SORTMERGESTATISTICS procedure sort merge joins 8-6

description of 4-3 UNION clause 8-5

example 5-39 = SORT_DEFAULTS DEFINE 8-2

parallel sorting 6-3 Stack space, required by system
statistics structure 5-38 procedures 5-2, 5-29
syntax 5-37 Starting a sort or merge

SORTPROG process procedures 4-2
as a distributor-collector process 6-1 RUN command 3-19
as a subsort process 6-1
communicating with 5-1

®
|_\

ol

FastSort Manual—429834-003
Index-11

Index

Statistics
displaying 2-13
parallel sort 2-14, 6-14
procedures to obtain 4-3

SORTMERGESTATISTICS
procedure 5-37

SORTMERGESTATISTICS statistics
structure 5-38

VLM 9-12
Stopping a sort or merge 4-2
SUBSORT attribute, SORT DEFINE 7-5
SUBSORT command
BLOCK parameter 3-26
CPU parameter 3-27
initial scratch file 3-26
MEM parameter 3-27
parallel sorting 6-5
PRI parameter 3-27, 6-10
PROGRAM parameter 3-27, 6-10
SEGMENT parameter 3-27, 6-9, 6-12
SWAP parameter 3-27, 6-9
syntax, examples 3-26, 3-27
SUBSORT DEFINE, TACL
attributes 7-2, 7-5
creating 7-9
Subsort processes
automatic configuration 6-4
configuring 6-4, 6-5, 6-6
configuring in SUBSORT
command 3-26

controlling the size of extended memory
segments 6-11

copying the SORTPROG program 6-10
default processors 6-8

DEFINEs 7-1,7-5

execution priority 6-10

extended memory segment 6-9
extended segment swap file 6-9
overflow scratch volumes 9-7

parallel sorting 6-1

Subsort processes (continued)
scratch file block size 6-11
scratch files 6-4
selecting processors 6-7
statistics 2-14, 6-14
swap files 9-10
tuning configuration 6-13
= SORT_DEFAULTS DEFINE 9-7,
9-10
SWAP attribute
SORT DEFINE 7-5
SUBSORT DEFINE 7-6
Swap file
extended memory segment 3-22, 6-12
extended segment for subsorts 6-9
location 9-10
moving for sort merge joins 8-6
subsorts 9-10
SWAP parameter
RUN command 3-22
SUBSORT command 3-27
Syntax
HELP command 3-18
summary of commands A-1
summary of procedures A-3

T

TACL
ALTER DEFINE command 7-9
class SORT DEFINEs 7-7, 7-13
class SUBSORT DEFINEs 7-9
DELETE DEFINE command 7-10
INFO DEFINE command 7-8
RESET DEFINE command 7-10
RUN command 2-1
run options for SORT process 2-2
SET DEFINE command 7-8
SET DEFMODE command 7-7

FastSort Manual—429834-003
Index-12

Index

TACL DEFINEs
See DEFINEs, TACL
TAL
parallel sort example 6-23
serial sort example 4-15
Tape files C-4
THRU keyword, alternate collating
sequence 3-7
To 6-5
TO command
examples 3-32
EXCLUSION parameter 3-28
KEYS parameter 3-29
NOPURGE parameter 3-30
PERMUTATION parameter 3-29
SLACK parameter 3-30
syntax 3-28
TYPE parameter 3-29

U

Unblocked records, sending and
receiving 5-7
UNION clause, SQL/MP 8-5

Unmirrored disks, in parallel sorting 6-13

Unstructured file
description C-2

storing alternate collating sequence

table 3-9

UPPER data type
ASCENDING command 3-3
DESCENDING command 3-12

User-written error procedure, with
SORTMERGESTART 5-36

V

Versions, verifying compatibility 9-13
VLM (Very Large Memory)
effect on swap files 9-11
extended memory 9-10
LOAD command 8-17

VLM (Very Large Memory) (continued)
scratch files 9-11
statistics 9-12
turning off for parallel operations 9-11
turning on 9-11

VPROC utility, verifying versions 9-13

W

Warning messages
displaying B-1
format 2-14

Special Characters

I exclamation point 2-2
" quotation marks 3-7
$SYSTEM.SYSnn.OSIMAGE 1-4

$SYSTEM.SYSnn.RECGEN 1-4
$SYSTEM.SYSnn.SORT 1-4
$SYSTEM.SYSnn.SORTPROG 1-4

** double asterisks, DEFINE template 7-10
< less than symbol, FastSort prompt 2-1

= equal sign, =_SORT_DEFAULTS
DEFINE 7-13

=* equal sign and asterisk, DEFINE
template 7-10

= SORT_DEFAULTS DEFINE
description 7-13
guidelines for SQL sorts 8-4
parallel sorts 9-7, 9-10
? question mark, input prompt symbol 2-5

FastSort Manual—429834-003

Index-13

Index Special Characters

FastSort Manual—429834-003
Index-14

	FastSort Manual
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to the 429834-003 manual:

	About This Manual
	SPR Requirements for Increased Enscribe Limits for the H06.28/J06.17 Release
	Audience
	Related Manuals
	Notation Conventions
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Change Bar Notation
	HP Encourages Your Comments

	1 Introduction to FastSort
	Sort and Merge Operations
	FastSort Features
	FastSort Components
	Interactive FastSort
	Programmatic FastSort
	SORTPROG Process
	Input Files
	Scratch Files
	Output Files

	Using DEFINEs With FastSort
	Class SPOOL DEFINE
	Class SORT and SUBSORT DEFINEs

	Products That Use FastSort

	2 Sorting Interactively
	Using a Command File
	Entering Commands and Data in a Command File
	Entering Comments in a Command File
	Running With Input From a Command File

	Specifying Input Records
	Specifying Input Files in the FROM Command
	Specifying Input Records at the Input Prompt

	Sorting on Key Fields
	Running a Record Sort
	Running a Key Sort
	Running a Permutation Sort
	Running a Key and Permutation Sort

	Controlling Extended Memory
	Understanding Statistics
	Understanding Error Messages
	Understanding Completion Codes

	3 Using FastSort Commands
	ASCENDING Command
	CLEAR Command
	COLLATE Command
	COLLATEOUT Command
	CPUS Command
	DESCENDING Command
	EXIT Command
	FC Command
	FROM Command
	HELP Command
	NOTCPUS Command
	RUN Command
	SAVE Command
	SHOW Command
	SUBSORT Command
	TO Command

	4 Sorting Programmatically
	Using FastSort System Procedures
	Starting a Sort or Merge Run
	Ending a Sort or Merge Run
	Specifying Record Blocking and Parallel Sorting
	Allocating Scratch Space
	Getting Information About a Sort or Merge Run

	Specifying Input Records
	Sending Input Records From a Process
	Sending Records to Be Sorted
	Sending Records to Be Merged

	Returning Output Records to a Process
	Sending and Receiving Records
	Estimating the Size of an Output File
	Sorting From C Programs
	Sorting From COBOL85 Programs
	Sorting From TAL Programs

	5 Using FastSort System Procedures
	SORTBUILDPARM Procedure
	SORTERROR Procedure
	SORTERRORDETAIL Procedure
	SORTERRORSUM Procedure
	SORTMERGEFINISH Procedure
	SORTMERGERECEIVE Procedure
	SORTMERGESEND Procedure
	SORTMERGESTART Procedure
	SORTMERGESTATISTICS Procedure

	6 Sorting in Parallel
	Using Commands for Parallel Sorting
	Using Procedures for Parallel Sorting
	Using the Automatic Configuration
	Using FastSort Commands
	Using FastSort Procedures
	Improving Performance

	Configuring Subsort Processes
	Selecting Processors to Run Subsort Processes
	How FastSort Selects Processors
	Specifying the Size of the Extended Memory Segment
	Specifying a Location for the Swap File
	Using Multiple Copies of the SORTPROG Program
	Specifying an Execution Priority

	Configuring a Distributor-Collector Process
	Specifying a Scratch Block Size
	Controlling the Size of Extended Memory Segments
	Specifying a Location for the Swap File
	Using Multiple Copies of the SORTPROG Program
	Specifying an Execution Priority

	Tuning and Testing a Configuration for Parallel Sorting
	Understanding Statistics From Parallel Sorting
	Identifying the Causes of Errors
	Parallel Sorting From C Programs
	Parallel Sorting From COBOL85 Programs
	Parallel Sorting From TAL Programs

	7 Using SORT and SUBSORT DEFINEs
	Determining the Precedence of DEFINEs
	Setting DEFINE Attributes
	Setting SORT DEFINE Attributes
	Setting SUBSORT DEFINE Attributes

	Creating and Using DEFINEs Interactively
	Enabling DEFINEs
	Creating a SORT DEFINE
	Displaying a DEFINE
	Creating a SUBSORT DEFINE
	Modifying a DEFINE
	Deleting a DEFINE
	Using DEFINEs With Interactive FastSort

	Creating and Using DEFINEs Programmatically
	Creating and Modifying DEFINEs Programmatically
	Using DEFINEs With Programmatic FastSort

	Creating and Using the =_SORT_DEFAULTS DEFINE
	Examples of SORT and SUBSORT DEFINEs
	Serial Sort Run Example
	Parallel Sort Run Example

	8 Sorting From NonStop SQL/MP
	How SQL/MP Implements a Sort
	Configuring Your SQL/MP Sort Environment
	Setting Up a =_SORT_DEFAULTS DEFINE

	Ordering and Grouping Query Results
	Optimizing SQL Clause Combinations
	Using a Sort Merge Join

	Loading Data
	Configuring a CREATE INDEX Statement
	Configuring a LOAD Statement

	9 Optimizing Sort Performance
	Managing Sort Workspace
	Using Scratch Files
	Selecting a Scratch Volume for Parallel Sorts
	Using a Partitioned Scratch File
	Using Swap Files
	Using VLM
	Calculating Data Stack Space

	Managing Sort Failures
	Automating FastSort Tasks
	Automating DEFINEs

	A FastSort Syntax Summary
	Interactive Commands
	FastSort Procedures

	B FastSort Error Messages
	Alphabetic List of Programmatic Messages
	Numeric List of Programmatic Messages
	Alphabetic List of Interactive Messages

	C Using Supported File Types
	Unstructured Files
	Relative Files
	Entry-Sequenced Files
	Key-Sequenced Files
	EDIT Files
	Tape Files
	Partitioned Files
	Partitioned Output Files

	D ASCII Character Set
	E FastSort Limits
	Glossary
	Index

