
FastSort Manual
Abstract

This manual describes FastSort, the HP sort-merge utility for HP NonStop™ systems. 
The FastSort Manual is intended for users who sort interactively, programmatically, and 
from HP NonStop SQL/MP.

Product Version

FastSort D32

Supported Release Version Updates (RVUs)

This publication supports G06.21 and all subsequent G-series RVUs until otherwise 
indicated by its replacement publication. To use increased Enscribe limits, the 
minimum RVUs are H06.28 and J06.17 with specific SPRs. For a list of the required 
SPRs, see SPR Requirements for Increased Enscribe Limits for the H06.28/J06.17 
Release.

Part Number Published

429834-003 April 2014



Document History 
Part Number Product Version Published

060035 FastSort C30 July 1992

118812 FastSort D40 December 1995

124077 FastSort D32 February 1996

429834-001 FastSort D32 July 2001

429834-002 FastSort D32 September 2003

429834-003 FastSort D32 April 2014



Legal Notices
 Copyright 1992, 2014 Hewlett-Packard Development Company, L.P. 

Confidential computer software. Valid license from HP required for possession, use or copying. 
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software 
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under 
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP 
products and services are set forth in the express warranty statements accompanying such products 
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be 
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S. 
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation. 

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its 
subsidiaries in the United States and other countries. 

Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The 
Open Group are trademarks of The Open Group in the U.S. and other countries. 

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the 
Open Software Foundation, Inc. 

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED 
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in 
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to 
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation. 
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. 
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of 
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986, 
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation. 

This software and documentation are based in part on the Fourth Berkeley Software Distribution 
under license from The Regents of the University of California. OSF acknowledges the following 
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold, 
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980, 
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US





FastSort Manual
Glossary Index Examples Figures Tables
Legal Notices

What’s New in This Manual vii

Manual Information vii

New and Changed Information vii

About This Manual ix

SPR Requirements for Increased Enscribe Limits for the H06.28/J06.17 
Release ix

Audience x

Related Manuals x

Notation Conventions xii

1. Introduction to FastSort
Sort and Merge Operations 1-1

FastSort Features 1-2

FastSort Components 1-3

Interactive FastSort 1-5

Programmatic FastSort 1-7

SORTPROG Process 1-8

Input Files 1-8

Scratch Files 1-9

Output Files 1-9

Using DEFINEs With FastSort 1-9

Class SPOOL DEFINE 1-9

Class SORT and SUBSORT DEFINEs 1-10

Products That Use FastSort 1-10

2. Sorting Interactively
Using a Command File 2-1

Entering Commands and Data in a Command File 2-2

Entering Comments in a Command File 2-2

Running With Input From a Command File 2-3

Specifying Input Records 2-4
 Hewlett-Packard Company—429834-003
i



Contents 3. Using FastSort Commands
Specifying Input Files in the FROM Command 2-4

Specifying Input Records at the Input Prompt 2-5

Sorting on Key Fields 2-6

Running a Record Sort 2-7

Running a Key Sort 2-8

Running a Permutation Sort 2-9

Running a Key and Permutation Sort 2-10

Controlling Extended Memory 2-11

Understanding Statistics 2-13

Understanding Error Messages 2-14

Understanding Completion Codes 2-15

3. Using FastSort Commands
ASCENDING Command 3-2

CLEAR Command 3-5

COLLATE Command 3-6

COLLATEOUT Command 3-9

CPUS Command 3-10

DESCENDING Command 3-11

EXIT Command 3-13

FC Command 3-14

FROM Command 3-14

HELP Command 3-18

NOTCPUS Command 3-18

RUN Command 3-19

SAVE Command 3-23

SHOW Command 3-25

SUBSORT Command 3-26

TO Command 3-28

4. Sorting Programmatically
Using FastSort System Procedures 4-1

Starting a Sort or Merge Run 4-2

Ending a Sort or Merge Run 4-2

Specifying Record Blocking and Parallel Sorting 4-2

Allocating Scratch Space 4-3

Getting Information About a Sort or Merge Run 4-3

Specifying Input Records 4-3

Sending Input Records From a Process 4-4

Sending Records to Be Sorted 4-5
FastSort Manual—429834-003
ii



Contents 5.  Using FastSort System Procedures
Sending Records to Be Merged 4-5

Returning Output Records to a Process 4-6

Sending and Receiving Records 4-7

Estimating the Size of an Output File 4-8

Sorting From C Programs 4-9

Sorting From COBOL85 Programs 4-13

Sorting From TAL Programs 4-15

5. Using FastSort System Procedures
SORTBUILDPARM Procedure 5-2

SORTERROR Procedure 5-9

SORTERRORDETAIL Procedure 5-9

SORTERRORSUM Procedure 5-10

SORTMERGEFINISH Procedure 5-12

SORTMERGERECEIVE Procedure 5-13

SORTMERGESEND Procedure 5-15

SORTMERGESTART Procedure 5-19

SORTMERGESTATISTICS Procedure 5-38

6. Sorting in Parallel
Using Commands for Parallel Sorting 6-2

Using Procedures for Parallel Sorting 6-3

Using the Automatic Configuration 6-4

Using FastSort Commands 6-5

Using FastSort Procedures 6-5

Improving Performance 6-6

Configuring Subsort Processes 6-6

Selecting Processors to Run Subsort Processes 6-7

How FastSort Selects Processors 6-8

Specifying the Size of the Extended Memory Segment 6-9

Specifying a Location for the Swap File 6-9

Using Multiple Copies of the SORTPROG Program 6-10

Specifying an Execution Priority 6-10

Configuring a Distributor-Collector Process 6-10

Specifying a Scratch Block Size 6-11

Controlling the Size of Extended Memory Segments 6-11

Specifying a Location for the Swap File 6-12

Using Multiple Copies of the SORTPROG Program 6-12

Specifying an Execution Priority 6-13

Tuning and Testing a Configuration for Parallel Sorting 6-13
FastSort Manual—429834-003
iii



Contents 7.  Using SORT and SUBSORT DEFINEs
Understanding Statistics From Parallel Sorting 6-14

Identifying the Causes of Errors 6-14

Parallel Sorting From C Programs 6-15

Parallel Sorting From COBOL85 Programs 6-19

Parallel Sorting From TAL Programs 6-22

7. Using SORT and SUBSORT DEFINEs
Determining the Precedence of DEFINEs 7-1

Setting DEFINE Attributes 7-2

Setting SORT DEFINE Attributes 7-2

Setting SUBSORT DEFINE Attributes 7-5

Creating and Using DEFINEs Interactively 7-7

Enabling DEFINEs 7-7

Creating a SORT DEFINE 7-7

Displaying a DEFINE 7-8

Creating a SUBSORT DEFINE 7-9

Modifying a DEFINE 7-9

Deleting a DEFINE 7-10

Using DEFINEs With Interactive FastSort 7-10

Creating and Using DEFINEs Programmatically 7-10

Creating and Modifying DEFINEs Programmatically 7-11

Using DEFINEs With Programmatic FastSort 7-12

Creating and Using the =_SORT_DEFAULTS DEFINE 7-13

Examples of SORT and SUBSORT DEFINEs 7-15

Serial Sort Run Example 7-15

Parallel Sort Run Example 7-17

8. Sorting From NonStop SQL/MP
How SQL/MP Implements a Sort 8-1

Configuring Your SQL/MP Sort Environment 8-2

Setting Up a =_SORT_DEFAULTS DEFINE 8-2

Ordering and Grouping Query Results 8-4

Optimizing SQL Clause Combinations 8-5

Using a Sort Merge Join 8-6

Loading Data 8-7

Configuring a CREATE INDEX Statement 8-8

Configuring a LOAD Statement 8-15

9. Optimizing Sort Performance
Managing Sort Workspace 9-1
FastSort Manual—429834-003
iv



Contents A. FastSort Syntax Summary
Using Scratch Files 9-1

Selecting a Scratch Volume for Parallel Sorts 9-7

Using a Partitioned Scratch File 9-8

Using Swap Files 9-10

Using VLM 9-10

Calculating Data Stack Space 9-12

Managing Sort Failures 9-13

Automating FastSort Tasks 9-15

Automating DEFINEs 9-16

A. FastSort Syntax Summary
Interactive Commands A-1

FastSort Procedures A-3

B. FastSort Error Messages
Alphabetic List of Programmatic Messages B-1

Numeric List of Programmatic Messages B-6

Alphabetic List of Interactive Messages B-35

C. Using Supported File Types
Unstructured Files C-2

Relative Files C-3

Entry-Sequenced Files C-3

Key-Sequenced Files C-3

EDIT Files C-4

Tape Files C-5

Partitioned Files C-5

Partitioned Output Files C-5

D. ASCII Character Set

E. FastSort Limits

Glossary

Index

Examples
Example 4-1. C Example of a Serial Sort Run 4-9

Example 4-2. COBOL85 Example of a Serial Sort Run 4-14

Example 4-3. TAL Example of a Serial Sort Run 4-16
FastSort Manual—429834-003
v



Contents Figures
Example 6-1. C Example of a Parallel Sort Run 6-15

Example 6-2. COBOL85 Example of a Parallel Sort Run 6-20

Example 6-3. TAL Example of a Parallel Sort Run 6-23

Figures
Figure i. Related Manuals x

Figure 1-1. FastSort Operations 1-2

Figure 1-2. FastSort Components 1-5

Figure 4-1. Sorting and Merging With Input and Output Files 4-4

Figure 4-2. Sending Input Records From an Application Process 4-6

Figure 4-3. Returning Sorted Records to an Application Process 4-7

Figure 4-4. Sending and Receiving Records From an Application Process 4-8

Figure 5-1. Sending and Receiving Unblocked Records 5-7

Figure 5-2. Sending and Receiving Blocked Records 5-8

Figure 6-1. Parallel Sorting 6-2

Figure 8-1. Parallel Loading Data Into a Partitioned Index Table 8-8

Figure 9-1. How FastSort Reads Scratch Volume DEFINEs 9-4

Figure 9-2. Partitioned Scratch Files in Parallel Sorting 9-9

Tables
Table 1-1. FastSort Interactive Commands 1-6

Table 1-2. FastSort System Procedures 1-7

Table 2-1. Extended Memory Used by FastSort 2-12

Table 4-1. FastSort System Procedures 4-1

Table 5-1. SORTBUILDPARM scratchvols Structure 5-5

Table 5-2. Expanded NEWPROCESS Structure 5-28

Table 5-3. Key-Field Definitions 5-31

Table 5-4. SORTMERGESTART flags Parameter Bits 5-32

Table 5-5. SORTMERGESTATISTICS statistics Structure 5-39

Table 9-1. How FastSort Chooses Scratch Volumes 9-6

Table C-1. Summary of Output File Types C-1

Table D-1. ASCII Character Set D-1

Table E-1. FastSort Limits E-1
FastSort Manual—429834-003
vi



What’s New in This Manual

Manual Information
FastSort Manual

Abstract

This manual describes FastSort, the HP sort-merge utility for HP NonStop™ systems. 
The FastSort Manual is intended for users who sort interactively, programmatically, and 
from HP NonStop SQL/MP.

Product Version

FastSort D32

Supported Release Version Updates (RVUs)

This publication supports G06.21 and all subsequent G-series RVUs until otherwise 
indicated by its replacement publication. To use increased Enscribe limits, the 
minimum RVUs are H06.28 and J06.17 with specific SPRs. For a list of the required 
SPRs, see SPR Requirements for Increased Enscribe Limits for the H06.28/J06.17 
Release.

Document History 

New and Changed Information

Changes to the 429834-003 manual:

 Updated RECORD length on page 16.

 Updated Output File Types on page 30.

 Updated buffer2 input and buffer-length input  on page 5-4.

Part Number Published

429834-003 April 2014

Part Number Product Version Published

060035 FastSort C30 July 1992

118812 FastSort D40 December 1995

124077 FastSort D32 February 1996

429834-001 FastSort D32 July 2001

429834-002 FastSort D32 September 2003

429834-003 FastSort D32 April 2014
FastSort Manual—429834-003
vii



What’s New in This Manual Changes to the 429834-003 manual:
 Added a section Using 32 KB Buffers on page 5-5.

 Updated block size in the section Improving Performance With Record Blocking 
and Nowait I/O on page 5-6.

 Updated Using Supported File Types on page C-1.

 Updated Key-Sequenced Files on page C-3.

Previous publication was updated to reflect new product names:

 Since product names are changing over time, this publication might contain both 
HP and Compaq product names.

 Product names in graphic representations are consistent with the current product 
interface.

 The technical content of this publication has not been updated and reflects the 
state of the product at the G06.21 release version update (RVU). 
FastSort Manual—429834-003
viii



About This Manual
This manual is a combination user’s guide and reference manual that describes 
FastSort, the sort-merge utility for NonStop systems. 

SPR Requirements for Increased Enscribe 
Limits for the H06.28/J06.17 Release

As of H06.28 and J06.17 RVUs, format 2 legacy key-sequenced 2 (LKS2) files with 
increased limits, format 2 standard queue files with increased limits, and enhanced 
key-sequenced (EKS) files with increased limits are introduced. EKS files with 
increased limits support 17 to 128 partitions along with larger record, block, and key 
sizes. LKS2 files with increased limits and format 2 standard queue files with increased 
limits support larger record, block, and key sizes. When a distinction is not required 
between these file types, key-sequenced files with increased limits are used as a 
collective term. To achieve these increased limits with H06.18 and J06.17 RVUs, the 
following SPRs are required: (These SPR requirements could change or be eliminated 
with subsequent RVUs.)

Products J-Series SPR H-Series SPR

Backup/Restore NSK T9074H01^AGJ T9074H01^AGJ

DP2 T9053J02^AZZ T9053H02^AZN

File System T9055J05^AJQ T9055 H14^AJP

FUP T6553H02^ADH T6553H02^ADH

NS TM/MP TMFDR T8695J01^ALP T8695H01^ALO

SMF T8472H01^ADO

T8471H01^ADO

T8470H01^ADO

T8469H01^ADO

T8466H01^ADO

T8465H01^ADO

T8468H01^ABY

T8472H01^ADO

T8471H01^ADO

T8470H01^ADO

T8469H01^ADO

T8466H01^ADO

T8465H01^ADO

T8468H01^ABY

SQL/MP T9191J01^ACY

T9195J01^AES

T9197J01^AEA

T9191H01^ACX

T9195H01^AER

T9197H01^ADZ

TCP/IP FTP T9552H02^AET T9552H02^AET

TNS/E COBOL Runtime 
Library

T0357H01^AAO T0357H01^AAO
FastSort Manual—429834-003
ix



About This Manual Audience
Audience 
This manual is intended for all FastSort users, including: 

 Users who issue FastSort interactive commands from a terminal or through a
command file

 Programmers who call FastSort system procedures from an application program
(including COBOL85 programmers who use the SORT and MERGE statements)

 NonStop SQL/MP users, if SQL/MP is installed on your system and you initiate
queries that sort entries or load data

A reader of this manual should be familiar with the NonStop Kernel operating system, 
File Utility Program (FUP), Enscribe database manager, and SQL/MP (if used). 

Related Manuals 
While using the FastSort Manual, you might need to refer to one or more of the 
manuals shown in Figure i on page xi. 
FastSort Manual—429834-003
x



About This Manual Related Manuals
Figure i. Related Manuals

FastSort
Manual

Languages Reference Manuals

C/C++
Programmer's
Guide

TAL
Reference
Manual

CRE
Programmer's
Guide

Dataloader/
MP
Reference
Manual

Utilities and Editor Manuals

File Utility
Program
(FUP)
Reference
Manual

Measure
Reference
Manual

PS TEXT
EDIT
Reference
Manual

Edit
User's Guide
and
Reference
Manual

TACL
Reference
Manual

VSTAB01.vsd

COBOL85 for
NonStop
Systems
Manual

SQL/MP
Programming
Manual
for COBOL85

Data Management and NonStop
SQL/MP Manuals

SQL/MP
Installation
and
Management
Guide

Enscribe
Programmer'
s
Guide

Introduction
to NonStop
SQL/MP

SQL/MP
Reference
Manual

SQL/MP
Query
Guide

SQL/MP
Messages
Manual

Operating System Manuals

Guardian
Programmer's
Guide

Guardian
User's Guide

Guardian
Procedure
Calls
Reference
Manual

Guardian
Procedure
Errors and
Messages
Manual

Storage
Management
Foundation
User's Guide
FastSort Manual—429834-003
xi



About This Manual Notation Conventions
Notation Conventions

Hypertext Links

Blue underline is used to indicate a hypertext link within text.  By clicking a passage of 
text with a blue underline, you are taken to the location described.  For example:

This requirement is described under Backup DAM Volumes and Physical Disk 
Drives on page 3-2.

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words.  Type 
these items exactly as shown.  Items not enclosed in brackets are required.  For 
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.  
Items not enclosed in brackets are required.  For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services 
(OSS) keywords and reserved words.  Type these items exactly as shown.  Items not 
enclosed in brackets are required.  For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open 
System Services (OSS) variable items that you supply.  Items not enclosed in brackets 
are required.  For example:

pathname

[  ]  Brackets. Brackets enclose optional syntax items.  For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or 
none.  The items in the list can be arranged either vertically, with aligned brackets on 
each side of the list, or horizontally, enclosed in a pair of brackets and separated by 
vertical lines.  For example:

FC [ num  ]
   [ -num ]
   [ text ]

K [ X | D ] address
FastSort Manual—429834-003
xii



About This Manual General Syntax Notation
{  }  Braces. A group of items enclosed in braces is a list from which you are required to 
choose one item.  The items in the list can be arranged either vertically, with aligned 
braces on each side of the list, or horizontally, enclosed in a pair of braces and 
separated by vertical lines.  For example:

LISTOPENS PROCESS { $appl-mgr-name }
                  { $process-name  }

ALLOWSU { ON | OFF }

|  Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in 
brackets or braces.  For example:

INSPECT { OFF | ON | SAVEABEND }

…  Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you 
can repeat the enclosed sequence of syntax items any number of times.  For example:

M address [ , new-value ]…

[ - ] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that 
syntax item any number of times.  For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously 
described must be typed as shown.  For example:

error := NEXTFILENAME ( file-name ) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a 
required character that you must type as shown.  For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a 
punctuation symbol such as a parenthesis or a comma.  For example:

CALL STEPMOM ( process-id ) ;

If there is no space between two items, spaces are not permitted.  In this example, no 
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each 
continuation line is indented three spaces and is separated from the preceding line by 
FastSort Manual—429834-003
xiii



About This Manual Notation for Messages
a blank line.  This spacing distinguishes items in a continuation line from items in a 
vertical list of selections.  For example:

ALTER [ / OUT file-spec / ] LINE

   [ , attribute-spec ]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data 
to the called procedure); the !o notation follows an output parameter (one that returns 
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (  segment-id                    !i
                         , error        ) ;              !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both 
passes data to the called procedure and returns data to the calling program). For 
example:

error := COMPRESSEDIT ( filenum ) ;                      !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a 
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (  filename1:length           !i:i
                            , filename2:length ) ;       !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a 
corresponding input parameter specifying the maximum length of the output buffer in 
bytes. For example:

error := FILE_GETINFO_ (  filenum                        !i
                        , [ filename:maxlen ] ) ;        !o:i

Notation for Messages

This list summarizes the notation conventions for the presentation of displayed 
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal.  For example:

ENTER RUN CODE

?123

CODE RECEIVED:      123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or 
returned exactly as shown. For example:

Backup Up.
FastSort Manual—429834-003
xiv



About This Manual Notation for Messages
lowercase italic letters. Lowercase italic letters indicate variable items whose values are 
displayed or returned.  For example:

p-register

process-name

[  ]  Brackets. Brackets enclose items that are sometimes, but not always, displayed.  For 
example:

Event number = number [ Subject = first-subject-value ]

A group of items enclosed in brackets is a list of all possible items that can be 
displayed, of which one or none might actually be displayed.  The items in the list can 
be arranged either vertically, with aligned brackets on each side of the list, or 
horizontally, enclosed in a pair of brackets and separated by vertical lines.  For 
example:

proc-name trapped [ in SQL | in SQL file system ]

{  }  Braces. A group of items enclosed in braces is a list of all possible items that can be 
displayed, of which one is actually displayed.  The items in the list can be arranged 
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in 
a pair of braces and separated by vertical lines.  For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown.          }

|  Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in 
brackets or braces.  For example:

Transfer status: { OK | Failed }

%  Percent Sign. A percent sign precedes a number that is not in decimal notation. The 
% notation precedes an octal number. The %B notation precedes a binary number. 
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F 

P=%p-register E=%e-register
FastSort Manual—429834-003
xv



About This Manual Change Bar Notation
Change Bar Notation

Change bars are used to indicate substantive differences between this manual and its 
preceding version.  Change bars are vertical rules placed in the right margin of 
changed portions of text, figures, tables, examples, and so on.  Change bars highlight 
new or revised information.  For example: 

The message types specified in the REPORT clause are different in the COBOL85 
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for 
old message types.  In the CRE, the message type SYSTEM includes all 
messages except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments

HP encourages your comments concerning this document. We are committed to 
providing documentation that meets your needs. Send any errors found, suggestions 
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion 
for improvement you have concerning this document.
FastSort Manual—429834-003
xvi



1 Introduction to FastSort

FastSort is the sort-merge tool for HP NonStop systems. FastSort can sort or merge 
records in one of two modes:

 A serial operation uses one SORTPROG process in one processor with up to 32 
individual scratch files or a single partitioned scratch file.

 A parallel operation distributes the sort or merge workload across multiple 
SORTPROG processes, processors, and scratch files.

Sort and Merge Operations
 A sort operation arranges and combines one or more sets of input records into a 
single set of output records. During a sort operation, FastSort arranges the records in 
either ascending or descending order, or in a combination of both based on a 
sequence of key-field values.

A merge operation combines two or more sets of sorted input records into a single set 
of output records. The records for merging are already sorted in an ascending or 
descending sequence of key-field values.

FastSort accepts records to sort or merge from these sources:

 1 to 32 disk files

 A terminal 

 An application process

 Tape files 

You use FastSort interactive commands or system procedures to define the sort or 
merge operation. In each sort or merge run, FastSort performs one of the following 
operations: 

 Sorts one set of input records and produces one set of output records

 Merges two or more sets of sorted records into one set of output records

 Sorts two or more sets of input records and merges them into one set of output 
records

 Sorts one or more sets of input records and merges them with one or more sets of 
sorted input records into one set of output records

Figure 1-1 on page 1-2 shows these four FastSort operations.

After sorting and merging all the input records, FastSort returns the output records to 
your application process or writes them to a file or a terminal. You can also have 
FastSort return output records that are sequence numbers or key-field values, or both, 
instead of entire records. 
FastSort Manual—429834-003
1-1



Introduction to FastSort FastSort Features
FastSort Features 
FastSort has these major features:

 Key fields

 Accepts up to 63 alphanumeric or numeric key fields for sorting

 Recognizes contiguous, noncontiguous, and overlapping key fields

Figure 1-1. FastSort Operations

Input From Files or Processes Output to a File or Process

2.

3.

4.

1.
Sort

Sort and Merge

Merge

•
•
•

•
•
•

•
•
•

•
•
•

Sort and Merge

Unsorted Records

Sorted Records

Sorted Records

Unsorted Records

Unsorted Records

Sorted
Records

Unsorted Records

Unsorted Records

Sorted Records Sorted and
Merged
Records

Sorted and
Merged
Records

Sorted and
Merged
Records

Sorted Records

VST101.vsd
FastSort Manual—429834-003
1-2



Introduction to FastSort FastSort Components
 Sequence options

 Can use an alternate collating sequence for alphanumeric characters

 Can remove records with duplicate key values

 Input and output file options

 Accepts up to 32 input Guardian files (except blocked tape files, SQL objects, 
or processes) 

 Can merge up to 32 input streams from an application process

 Supports application process input and output, with optional extended 
addressing for sending and receiving records

 Supports partitioned input and output files, including distributed Enscribe 
databases (but not NonStop SQL/MP objects) 

 Produces relative, entry-sequenced, key-sequenced, or unstructured output 
files

 Supports both Format 1 and Format 2 files

 Efficiency

 Uses an optimized key-comparison algorithm and optimized procedures for 
reading and building structured files, and double buffering for reading from 
input files

 Uses extended memory to minimize the number of merge passes

 Automatically selects extended memory size

 Uses record blocking to minimize the number of interprocess messages 
required for transferring records to or from an application process

 Supports parallel sorting to minimize sort time for files larger than 1 megabyte

 Sorts files smaller than 100 kilobytes in memory to eliminate the need for 
scratch file input and output

 Provides record blocking and faster sorting for COBOL85, the File Utility 
Program (FUP), and the CROSSREF program 

 Recognizes SORT and SUBSORT DEFINEs that allow you to control most 
factors of a FastSort process from outside your sort program. 

FastSort Components
FastSort has these major components:

 Interactive FastSort 

 Programmatic FastSort 
FastSort Manual—429834-003
1-3



Introduction to FastSort FastSort Components
 SORTPROG process (the actual sort-merge process)

 Record generator (RECGEN) process, if SQL/MP is installed on your system

When you want to sort or merge records interactively or through a command file (IN 
file), you use interactive FastSort. When you want to sort or merge records in an 
application, you invoke programmatic FastSort through system procedure calls. 
Interactive or programmatic FastSort can start a SORTPROG process, which performs 
the sort or merge operation. 

Figure 1-2 on page 1-5 shows how the first three FastSort components work together.

Component    Program File Description 

SORT $SYSTEM.SYSnn.SORT * Interactive FastSort – Conversational 
interface for FastSort commands 

System 
Procedures 

$SYSTEM.SYSnn.OSIMAGE Programmatic FastSort – Library file for 
FastSort system procedures 

SORTPROG $SYSTEM.SYSnn.SORTPROG * A single serial sort-merge process, or 
parallel sort-merge processes including:
A distributor-collector process 
2 to 8 subsort processes 

RECGEN $SYSTEM.SYSnn.RECGEN * Record generator (RECGEN) process 
for the parallel creation and loading of 
partitioned indexes (if SQL/MP is 
installed on your system) 

In $SYSTEM.SYSnn notation, nn is a two-digit number assigned by HP.
* These program files could also exist in $SYSTEM.SYSTEM. 
FastSort Manual—429834-003
1-4



Introduction to FastSort Interactive FastSort
Interactive FastSort

You can issue FastSort interactive commands from a terminal or through a command 
file. These commands use FastSort system procedures to communicate with the 
SORTPROG process. Table 1-1 on page 1-6 summarizes FastSort interactive 
commands. 

Figure 1-2. FastSort Components

User's
Terminal

FastSort Programmatic Interface

FastSort interactive commands (entered at
a TACL prompt or through a command file)

FastSort Interactive Interface

FastSort Procedure Calls

$SYSTEM.
SYSnn.

OSIMAGE

User
Process

$SYSTEM.
SYSnn.

SORTPROG

$SYSTEM.
SYSnn.
SORT

SORT
Process

FastSort System
Library Procedures

SORTBUILDPARM
SORTMERGESTART
SORTMERGESEND
SORTMERGERECEIVE
SORTERROR
SORTERRORDETAIL
SORTERRORSUM
SORTMERGESTATISTICS
SORTMERGEFINISH

SORTPROG
Process

VST102.vsd
FastSort Manual—429834-003
1-5



Introduction to FastSort Interactive FastSort
Table 1-1. FastSort Interactive Commands (page 1 of 2)

Command Description 

Record Sequence Specification

ASCENDING Describes the location and attributes of one or more key fields that 
determine an ascending sequence for output records.

COLLATE Specifies a file that contains an alternate collating sequence for 
comparing key fields.

COLLATEOUT Stores an alternate collating sequence table in an unstructured file.

DESCENDING Describes the location and attributes of one or more key fields that 
determine a descending sequence for output records.

File Specification

FROM Specifies the name of an input file for a sort or merge run and the 
exclusion mode to use to open the file, the maximum number of 
records in the file, the maximum length of records in the file, and 
whether the records in the file are already sorted. 

TO Specifies an output file for a sort run and parameters for the file 
including the percentage of data and index slack, whether FastSort 
should purge and recreate an existing output file, and the type of 
sort run (record, permutation, or key sort). 

Command Specification

CLEAR Deletes current command parameters for all commands or for a specific 
command. 

FC Displays the last FastSort command for subsequent editing and re-
execution. 

HELP Displays the syntax of a specific command or a list of all FastSort 
commands with a description of each command. 

SAVE Saves FastSort command parameters from a sort or merge run for reuse 
in subsequent runs. 

SHOW Displays the command parameters currently in effect and whether they 
are entered for the next sort or merge run or saved from a previous run. 

Parallel Sort and Merge Operations

CPUS Specifies processors (or CPUs) in which FastSort can run subsort 
processes.

NOTCPUS Specifies processors (or CPUs) in FastSort cannot run subsort 
processes.

SUBSORT Specifies parameters for a subsort process for a parallel sort or merge 
run. 
FastSort Manual—429834-003
1-6



Introduction to FastSort Programmatic FastSort
Programmatic FastSort

Programmatic FastSort consists of system procedures that are called by user-written 
applications and the interactive SORT process. The FastSort procedures manage the 
process creation, control, and communication for the SORTPROG process. You can 
use procedure calls in an application program to specify the same parameters that you 
can specify with FastSort interactive commands. 

Table 1-2 summarizes the procedures in programmatic FastSort, in the order in which 
you would normally call them.

Process Control

EXIT Ends the interactive FastSort session (same as Ctrl-Y). 

RUN Starts a sort or merge run and optionally specifies the SORTPROG 
process start parameters, the allocation of required disk space, and 
whether duplicate records should be removed. 

Table 1-2. FastSort System Procedures

Procedure Name Description 

SORTBUILDPARM Specifies parameters for parallel sorting and record blocking.

SORTMERGESTART Begins the SORTPROG process and passes parameters for 
a sort or merge run from the calling process to SORTPROG.

SORTMERGESEND Sends input records from the calling process to the 
SORTPROG process, one for each call. 

SORTMERGERECEIVE Returns output records from the SORTPROG process to the 
calling process, one for each call.

SORTERROR Provides the message text for the last FastSort error code 
returned by a procedure.

SORTERRORDETAIL Provides the FastSort error code for the most recent error 
and if an input file caused the error, identifies the input file.

SORTERRORSUM Provides information that SORTERROR and 
SORTERRORDETAIL provide and identifies the cause of the 
most recent error. 

SORTMERGESTATISTICS Reports information about a sort or merge run and ends the 
run.

SORTMERGEFINISH Ends the sort or merge run and stops the SORTPROG 
process. 

Table 1-1. FastSort Interactive Commands (page 2 of 2)

Command Description 
FastSort Manual—429834-003
1-7



Introduction to FastSort SORTPROG Process
SORTPROG Process

The SORTPROG process performs all sort or merge operations. It runs separately 
from an application process or the interactive SORT process. To configure and start a 
SORTPROG process, you either:   

 Issue FastSort interactive commands 

 Call FastSort system procedures 

The SORTPROG process does not run as a process pair. If a processor failure occurs 
when the SORTPROG process is running, you must restart the sort or merge run from 
the beginning. An application program running as a process pair must also restart an 
interrupted SORTPROG process from the beginning.

FastSort uses or creates these files:

Input Files

FastSort accepts input from EDIT, key-sequenced, relative, entry-sequenced, and 
unstructured files. You can sort or merge up to 32 input files in a single run. Each file 
can contain either fixed-length or variable-length records. For a complete description of 
file types, see the Guardian Programmer’s Guide and the Enscribe Programmer’s 
Guide.

If you have records from blocked tape files to sort or merge, you must deblock the 
records before SORTPROG can process them. You can do this with the FUP COPY 
command. For information about how to use FUP, see the File Utility Program (FUP) 
Reference Manual.

Input files Sets of records that you give FastSort to sort or merge through local or 
remote input disk files, a terminal, or tape files.

Scratch file A temporary work file. FastSort uses scratch files to store runs of 
records sorted by each SORTPROG process. For large sort runs that 
require more than one pass, FastSort creates up to 32 total scratch 
files.

Swap file The disk file that FastSort uses for swapping data. Data swapping is 
the process of copying data between physical memory and disk 
storage.

Output file The file FastSort creates after a sort or merge run to receive the sorted 
or merged records.

List file The file FastSort creates after a sort or merge run that describes the 
run.
FastSort Manual—429834-003
1-8



Introduction to FastSort Scratch Files
Scratch Files

FastSort sorts files smaller than 100 kilobytes in memory. For larger input files, 
FastSort uses up to 32 scratch files to temporarily store groups of records called runs.

You can create a scratch file before you run FastSort, or you can have SORTPROG 
create one for you. If you manually create a scratch file, SORTPROG leaves the file 
intact after the sort or merge run. If SORTPROG creates the scratch file, it is a 
temporary file and SORTPROG automatically purges it after the sort completes.

Once an initial scratch file exists, FastSort creates additional scratch files as needed. If 
the initial scratch file becomes full, FastSort automatically creates overflow scratch files 
until either the sort completes or there are 32 total scratch files. A sort operation 
requires scratch space equal to all output records from the SORTPROG process plus 
6 bytes per record for overhead. For more information about scratch files, see 
Section 9, Optimizing Sort Performance.

Output Files

FastSort can send output to most types of disk files, except EDIT files or 
NonStop SQL/MP objects. FastSort can send output to a tape file, but it cannot write 
records to blocked tape files. After a sort or merge run, you can use FUP to load a 
blocked tape file. For instructions about using FUP, see the File Utility Program (FUP) 
Reference Manual. You can also load your output into an EDIT file using the EDIT GET 
command. For instructions on how to use the GET command, see Appendix C, Using 
Supported File Types.

You can have FastSort compute the size of the output file and then create it, or you 
can specify an existing output file. For more information about output files, see 
Appendix C, Using Supported File Types.

Using DEFINEs With FastSort
You can use DEFINEs to configure most aspects of a sort or merge operation. 
FastSort recognizes class SPOOL and class SORT or SUBSORT DEFINEs. DEFINEs 
are optional.

Class SPOOL DEFINE 

FastSort allows a class SPOOL DEFINE for the list file (that is, the TACL RUN 
command OUT parameter). For example, the following implicit TACL RUN command 
specifies a SPOOL DEFINE named =out_file for the FastSort list file. The TACL 
ADD DEFINE command first creates the SPOOL DEFINE and sets the LOC attribute.

ADD DEFINE =out_file, CLASS SPOOL, LOC \ny.$s.#sort 
... 
SORT / OUT =out_file / 
... 

For more information about class SPOOL DEFINEs, see Guardian User’s Guide.
FastSort Manual—429834-003
1-9



Introduction to FastSort Class SORT and SUBSORT DEFINEs
Class SORT and SUBSORT DEFINEs 

You can use class SORT or SUBSORT DEFINEs to configure a sort or subsort. You 
specify the DEFINE(s) before running a SORTPROG process, and the information is 
applied to the sort process when it is run. You can use class SORT or SUBSORT 
DEFINEs to specify information such as the disk volume for the scratch file, the 
processors to use, and so on. 

For example, you can use class SORT or SUBSORT DEFINEs to specify a scratch 
volume. In the following example, the SUBSORT DEFINE named =SUBSORTA 
specifies the $DISK02 disk as the initial scratch volume and the $SPOOL disk for the 
swap file: 

SET DEFINE CLASS SUBSORT 
SET DEFINE SCRATCH $disk02 
SET DEFINE SWAP $spool  
... 
ADD DEFINE =subsorta 
... 

DEFINE information is valid until modified, deleted, or disabled. For more information 
about using SORT and SUBSORT DEFINEs with FastSort, See Section 7, Using 
SORT and SUBSORT DEFINEs.

Products That Use FastSort
These HP products use FastSort to perform sort or merge operations:

If SQL/MP is installed on your system, SQL uses FastSort to sort table rows in certain 
queries. If you issue a SELECT statement with the DISTINCT, ORDER BY, or GROUP 
BY clause, SQL starts a SORTPROG process to sort the rows.

Product FastSort Function 

COBOL85 Executes a SORT or MERGE statement 

CROSSREF Program Sorts a cross-reference listing 

Enform Database Manager Sorts records for a report 

File Utility Program (FUP) Loads data into a file 

SQL/MP Sorts entries in a query and load data 
into a table or an index table

Peripheral Utility Program (PUP) Sorts entries in the free-space table

HP NonStop Transaction Management Facility 
(TMF)

Manages audit trail information
FastSort Manual—429834-003
1-10



Introduction to FastSort Products That Use FastSort
When you use the SQLCI CREATE INDEX statement, SQL uses FastSort to load data 
into the target table. When you use the SQLCI LOAD utility to load data into a key-
sequenced table and you do not specify the SORTED option, SQL uses FastSort to 
sort the data.

When you specify PARALLEL EXECUTION ON for either of these statements, the 
SQL/MP catalog manager (SQLCAT) process starts a RECGEN process for each 
partition of the base table and a SORTPROG process for each partition of the index. 
The RECGEN processes read the rows of the base table. SORTPROG processes sort 
the generated rows and write them to the partitions of the index.

For more information about the CREATE INDEX or LOAD statements, see Section 8, 
Sorting From NonStop SQL/MP.
FastSort Manual—429834-003
1-11



Introduction to FastSort Products That Use FastSort
FastSort Manual—429834-003
1-12



2 Sorting Interactively

You can use SORT, the FastSort interactive process, to sort or merge records without 
writing an application program. FastSort accepts interactive commands from:

 A TACL process

 A command (IN) file

 Running FastSort

To start an interactive SORT process, enter SORT at a TACL prompt:

10> SORT

This command executes an implicit TACL RUN command that starts the SORT 
process. SORT displays the FastSort product banner and a “less than” symbol (<) at 
your terminal:

FastSort - T9620D30 - (31OCT94) 
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994  
< 
 ...

The “less than” symbol (<) is the FastSort prompt. You 
communicate with the SORT process by entering FastSort commands 
at this prompt.

To stop the SORT process, type EXIT at the SORT prompt:

<EXIT
11>

You can also press Ctrl-Y at the SORT prompt to stop the SORT process.

Using a Command File
A command file is an EDIT file that interacts with the SORT process. When you 
execute a command file, you do not need to manually enter commands from your 
terminal. A FastSort command file must contain FastSort commands. It can also 
contain input records to sort.

When you start a SORT process, you can specify a command file as the IN file and a 
list file for the OUT file. A list file receives the output from the sort or merge run. The 
syntax for specifying the command file, list file, and other options in the SORT 
command is: 

SORT [ / IN command-file  [ , OUT list-file ]
                          [ , run-option    ] ... / ]
FastSort Manual—429834-003
2-1



Sorting Interactively Entering Commands and Data in a Command File
command-file

is an EDIT file (file code 101) that contains FastSort interactive commands. A 
command file can also contain the input records for a sort or merge run.

list-file 

is a disk file, I/O device, SPOOL DEFINE, or a process that receives the output 
from the sort or merge run. The output file also includes statistics and any error or 
warning messages. If list-file already exists, SORT purges its contents and 
writes the new output to it. If list-file does not exist, FastSort creates it as an 
EDIT file.

run-option

is a TACL RUN command option, as described in the TACL Reference Manual. 

For more information, see Automating FastSort Tasks on page 9-15 for an example on 
how to use a command file to automate DEFINEs.

Entering Commands and Data in a Command File

When you create an EDIT file to use as a command file, enter only one FastSort 
command on each line. The RUN command must follow all other FastSort commands 
for a sort or merge run.

You can also enter input records after the RUN command, one on each line, if you do 
not specify an input (FROM) file for the run. A command file that contains input records 
can describe only one sort or merge run.

Entering Comments in a Command File

To include a comment in a FastSort command file, enter an exclamation point (!) at the 
beginning of the comment line. FastSort recognizes all text to the right of an 
exclamation point as a comment. A line end or second exclamation point ends the 
comment. Each comment on a new line must begin with an exclamation point, and a 
comment cannot continue from line to line. 

! this is a comment  
! this also is a comment !

If your command file contains input records, do not mix comments with the input 
records. Instead, place input records after the RUN command in a command file. When 
FastSort reads input records, it does not recognize the exclamation point as a 
comment symbol. Instead, FastSort sorts an exclamation point and any comment text 
as an input record. 
FastSort Manual—429834-003
2-2



Sorting Interactively Running With Input From a Command File
Running With Input From a Command File 

In the following example, a command file named COMFILE contains FastSort 
commands and input records. To execute COMFILE and send the output to the list file 
named LISTFILE, you would enter: 

10> SORT / IN COMFILE, OUT LISTFILE, NOWAIT /

The SORT process reads the commands and data from COMFILE and initiates a 
SORTPROG process to sort the data. The SORT process uses the FastSort system 
procedures described in Section 5, Using FastSort System Procedures to 
communicate with the SORTPROG process. The NOWAIT parameter is optional. 

Listed below are the contents of sample command file COMFILE:

! Send sorted records to the file named TOFILE.
! Sort in descending order from column 1 to 10.
TO TOFILE
DESC 1 FOR 10
RUN
apple
orange
lemon
grapefruit
banana
grape
watermelon

FastSort creates an output data file named TOFILE and a list file named LISTFILE. 
Listed below are the contents of sample output file TOFILE, which contains the records 
sorted in descending order. 

watermelon
orange
lemon
grapefruit
grape
banana
apple

Shown below is a sample LISTFILE, which contains:

 The FastSort banner 

 The contents of the command file including comments, commands, and data 

 Statistics information for the sort run 

 Any errors or warnings that occurred during the run 
FastSort Manual—429834-003
2-3



Sorting Interactively Specifying Input Records
FastSort - T9620D30 - (31OCT94)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994
    1       ! Send sorted records to the file named TOFILE.
    2       ! Sort in descending order from column 1 to 10.
    3       TO TOFILE
    4       DESC 1 FOR 10
    5       RUN
apple
orange
lemon
grapefruit
banana
grape
watermelon

          7  RECORDS               132  MAX RECORD SIZE
      00:03  ELAPSED TIME          166  BUFFER PAGES
      00:00  I/O WAIT TIME           0  INITIAL RUNS
         17  COMPARES                0  MERGE ORDER
          0  SCRATCH DISK
          0  SCRATCH SEEKS
Errors detected: 0
Warnings detected: 0

Specifying Input Records
Interactive FastSort accepts input records for sorting or merging from:

 A command file

 One or more data files you specify using a FROM command before the RUN 
command

 The terminal, one record on each line, after the RUN command

Specifying Input Files in the FROM Command

You can use the FROM command to specify input records from existing files. For 
example, the files INPUT1 and INPUT2 contain records to sort and merge in ascending 
order. The contents of these files are:  

After you invoke interactive FastSort, you can specify these files in FROM commands:

13> SORT
<FROM INPUT1
<FROM INPUT2
<ASCENDING 1:10
<RUN

File Contents 

INPUT1 lemon, apple, grapefruit 

INPUT2 banana, grape, watermelon, orange 
FastSort Manual—429834-003
2-4



Sorting Interactively Specifying Input Records at the Input Prompt
FastSort sorts and merges the records in the input files, then displays the sorted and 
merged records and the statistics for the sort run on your terminal, as shown below:

apple
banana
grape
grapefruit
lemon
orange
watermelon
          7  RECORDS               132  MAX RECORD SIZE
      00:04  ELAPSED TIME          166  BUFFER PAGES
      00:00  I/O WAIT TIME           0  INITIAL RUNS
         16  COMPARES                0  MERGE ORDER
          0  SCRATCH DISK
          0  SCRATCH SEEKS
Errors detected: 0
Warnings detected: 0

Specifying Input Records at the Input Prompt

If you do not specify input records in a command file or input files with the FROM 
command, FastSort prompts you to enter input records from your terminal. The input 
prompt is a question mark:

?

When you specify records at the input prompt, enter only one record after each input 
prompt. When you finish entering records, press Ctrl-Y, the logical end-of-file character:

16> SORT
FastSort - T9620D30 - (31OCT94)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994
<ASCENDING 1:10
<RUN
?weeping fig
?daffodil
?red juniper
?Ctrl-Y EOF!
daffodil
red juniper
weeping fig
          3  RECORDS               132  MAX RECORD SIZE
      00:25  ELAPSED TIME          166  BUFFER PAGES
      00:00  I/O WAIT TIME           0  INITIAL RUNS
          4  COMPARES                0  MERGE ORDER
          0  SCRATCH DISK
          0  SCRATCH SEEKS
FastSort Manual—429834-003
2-5



Sorting Interactively Sorting on Key Fields
Sorting on Key Fields
FastSort returns four types of output records: 

The following examples show the contents of the input files PLANTS1 and PLANTS2 
with column numbers added above the records. Note where the key fields begin and 
end. In both files, the file contents begin with the line labeled 01.

PLANTS1 sample input file:

         1111111111222222222233333333334444444444555555555
1234567890123456789012345678901234567890123456789012345678
01   Aluminum       PILEA       CADIEREI      indoor    22
02   Weeping Fig    FICUS       BENJAMINA     tree      15
03   Busy Lizzy     IMPATIENS                 flower    30
04   Crocus         CROCUS                    flower    53
05   Artillery      PILEA       MICROPHYLLA   indoor    10
06   Touch-me-not   IMPATIENS                 flower    45
07   Grape Ivy      CISSUS      RHOMBIFOLIA   indoor    07
08   Rubber         FICUS       ELASTICA      tree      04
09   Fiddleleaf Fig FICUS       LYRATA        tree      01
10   Parlor Palm    CHAMAEDOREA ELEGANS       indoor    03
11   Piggy-back     TOLMIEA     MENZIESII     indoor    13
12   Daffodil       NARCISSUS                 flower    60
13   Boston Fern    NEPHROLEPIS EXALTATA      indoor    18

PLANTS2 sample input file:

         1111111111222222222233333333334444444444555555555
1234567890123456789012345678901234567890123456789012345678
01   Chinquapin Oak QUERCUS     MUEHLENBERGII tree      33
02   Aluminum       PILEA       CADIEREI      indoor    22
03   Slippery Elm   ULMUS       RUBRA         tree      10
04   Ohio Buckeye   AESCULUS    GLABRA        tree      02
05   Mesquite       PROSOPIC    JULIFLORA     shrub     48
06   Red Juniper    JUNIPERUS   VIRGINIANA    tree      14
07   American Plum  PRUNUS      AMERICANA     shrub     37
08   California Oak QUERCUS     AGRIFOLIA     tree      65
09   Red Mulberry   MORUS       RUBRA         shrub     24
10   Apple          MALUS       PUMILA        fruit     35

Sort Operation Output Records 

Record Sort The entire file of input records reordered according to the 
values of one or more key fields 

Key Sort The values of the concatenated key fields in sorted order 

Permutation Sort The input record sequence numbers in the order the records 
would be in if they were sorted according to the specified key 
fields 

Key and Permutation Sort A sequence number followed by the concatenated key-field 
values for each record 
FastSort Manual—429834-003
2-6



Sorting Interactively Running a Record Sort
11   Hoptree        PTELEA      TRIFOLIATA    shrub     27
12   Catclaw Acacia ACACIA      GREGGII       shrub     12

Running a Record Sort 

A record sort reorders input records according to the values of one or more key fields. 
The following commands tell FastSort to reorder the records from PLANTS1 and 
PLANTS2 by using the values in three key fields and to write the records to the file 
named SORTOUT: 

17> SORT
FastSort - T9620D30 - (31OCT94)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994
<FROM PLANTS1
<FROM PLANTS2
<TO SORTOUT
<DESC 47:52
<ASC 21:31, 33:43
<RUN, REMOVEDUPS
         26  RECORDS               132  MAX RECORD SIZE
      00:04  ELAPSED TIME           63  BUFFER PAGES
      00:00  I/O WAIT TIME           0  INITIAL RUNS
        117  COMPARES                0  MERGE ORDER
          0  SCRATCH DISK
          0  SCRATCH SEEKS
          2  DUPLICATES

The REMOVEDUPS parameter tells FastSort to remove any record that has the same 
values in all the key fields as a previous record. After the sort run, the SORTOUT file 
contains all the input records in sorted order, except for two records that have duplicate 
key-field values. FastSort preserves only the first occurrence of these records. The 
following example shows the contents of the SORTOUT file. 

04   Ohio Buckeye   AESCULUS    GLABRA        tree      02
02   Weeping Fig    FICUS       BENJAMINA     tree      15
08   Rubber         FICUS       ELASTICA      tree      04
09   Fiddleleaf Fig FICUS       LYRATA        tree      01
06   Red Juniper    JUNIPERUS   VIRGINIANA    tree      14
08   California Oak QUERCUS     AGRIFOLIA     tree      65
01   Chinquapin Oak QUERCUS     MUEHLENBERGII tree      33
03   Slippery Elm   ULMUS       RUBRA         tree      10
12   Catclaw Acacia ACACIA      GREGGII       shrub     12
09   Red Mulberry   MORUS       RUBRA         shrub     24
05   Mesquite       PROSOPIC    JULIFLORA     shrub     48
07   American Plum  PRUNUS      AMERICANA     shrub     37
11   Hoptree        PTELEA      TRIFOLIATA    shrub     27
10   Parlor Palm    CHAMAEDOREA ELEGANS       indoor    03
07   Grape Ivy      CISSUS      RHOMBIFOLIA   indoor    07
13   Boston Fern    NEPHROLEPIS EXALTATA      indoor    18
01   Aluminum       PILEA       CADIEREI      indoor    22
05   Artillery      PILEA       MICROPHYLLA   indoor    10
11   Piggy-back     TOLMIEA     MENZIESII     indoor    13
10   Apple          MALUS       PUMILA        fruit     35
04   Crocus         CROCUS                    flower    53
FastSort Manual—429834-003
2-7



Sorting Interactively Running a Key Sort
03   Busy Lizzy     IMPATIENS                 flower    30
12   Daffodil       NARCISSUS                 flower    60

Running a Key Sort 

The output records from a key sort consist of the values of the concatenated key fields 
in sorted order. The following commands tell FastSort to reorder the records in 
PLANTS1 and PLANTS2 using the same key fields and to write only the key values to 
SORTOUT:

18> SORT
FastSort - T9620D30 - (31OCT94)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994
<FROM PLANTS1
<FROM PLANTS2
<TO SORTOUT, KEYS
<DESC 47:52
<ASC 21:31, 33:43
<RUN, REMOVEDUPS
         26  RECORDS               132  MAX RECORD SIZE
      00:04  ELAPSED TIME           63  BUFFER PAGES
      00:00  I/O WAIT TIME           0  INITIAL RUNS
        131  COMPARES                0  MERGE ORDER
          0  SCRATCH DISK
          0  SCRATCH SEEKS
          2  DUPLICATES  

The following example shows the contents of the SORTOUT file after the sort run. 
SORTOUT contains only the key-field values for each input record, except for the 
records that have duplicate values. 

tree  AESCULUS   GLABRA
tree  FICUS      BENJAMINA
tree  FICUS      ELASTICA
tree  FICUS      LYRATA
tree  JUNIPERUS  VIRGINIANA
tree  QUERCUS    AGRIFOLIA
tree  QUERCUS    MUEHLENBERG
tree  ULMUS      RUBRA
shrub ACACIA     GREGGII
shrub MORUS      RUBRA
shrub PROSOPIC   JULIFLORA
shrub PRUNUS     AMERICANA
shrub PTELEA     TRIFOLIATA
indoorCHAMAEDOREAELEGANS
indoorCISSUS     RHOMBIFOLIA
indoorNEPHROLEPISEXALTATA
indoorPILEA      CADIEREI
indoorPILEA      MICROPHYLLA
indoorTOLMIEA    MENZIESII
fruit MALUS      PUMILA
flowerCROCUS
flowerIMPATIENS
flowerNARCISSUS
FastSort Manual—429834-003
2-8



Sorting Interactively Running a Permutation Sort
Running a Permutation Sort 

The output records from a permutation sort consist of the input record sequence 
numbers, in the order the records would be in if they were sorted according to the 
specified key fields. The following commands direct FastSort to reorder the records in 
PLANTS1 and PLANTS2 using the same key fields and to write only the sequence 
numbers to SORTOUT:

19> SORT
FastSort - T9620D30 - (31OCT94)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994
<FROM PLANTS1
<FROM PLANTS2
<TO SORTOUT, PERM
<DESC 47:52
<ASC 21:31, 33:43
<RUN, REMOVEDUPS
         26  RECORDS               132  MAX RECORD SIZE
      00:06  ELAPSED TIME           63  BUFFER PAGES
      00:00  I/O WAIT TIME           0  INITIAL RUNS
        131  COMPARES                0  MERGE ORDER
          0  SCRATCH DISK
          0  SCRATCH SEEKS
          2  DUPLICATES  

The following example shows the contents of the SORTOUT file after the sort run using 
the FUP COPY command. Note that FUP displays the record sequence numbers in 
octal format. 

20> FUP COPY SORTOUT,,OCTAL

$VOL.FS.SORTOUT  RECORD 0  KEY 0 (%0)  LEN 4   2/19/92 13:47
   0: 000000 000021                                     ....
$VOL.FS.SORTOUT  RECORD 1  KEY 1 (%1)  LEN 4
   0: 000000 000002                                     ....

$VOL.FS.SORTOUT  RECORD 2  KEY 2 (%2)  LEN 4
   0: 000000 000010                                     ....

...

$VOL.FS.SORTOUT  RECORD 23  KEY 23 (%27)  LEN 4
   0: 000000 000014                                     ....
24 RECORDS TRANSFERRED
FastSort Manual—429834-003
2-9



Sorting Interactively Running a Key and Permutation Sort
Running a Key and Permutation Sort 

Each output record from a combined key and permutation sort consists of a sequence 
number followed by the key-field values. The following commands direct FastSort to 
reorder the records in PLANTS1 and PLANTS2 using the same key fields and to write 
both the sequence numbers and the key-field values to SORTOUT:

21> SORT
FastSort - T9620D30 - (31OCT94)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994
<FROM PLANTS1
<FROM PLANTS2
<TO SORTOUT, PERM, KEYS
<DESC 47:52
<ASC 21:31, 33:43
<RUN, REMOVEDUPS
         26  RECORDS               132  MAX RECORD SIZE
      00:03  ELAPSED TIME           63  BUFFER PAGES
      00:00  I/O WAIT TIME           0  INITIAL RUNS
        131  COMPARES                0  MERGE ORDER
          0  SCRATCH DISK
          0  SCRATCH SEEKS
          2  DUPLICATES

The following example shows the contents of the SORTOUT file after the sort run using 
the FUP COPY command. 

$VOL.FS.SORTOUT  RECORD 0  KEY 0 (%0)  LEN 32   4/07/92 14:16
   0: 000000 000021 072162 062545  020040 040505 051503 052514  
052523 020040 020107 046101  ....tree  AESCULUS   GLA
 %14: 041122 040440 020040 020040                         BRA

$VOL.FS.SORTOUT  RECORD 1  KEY 1 (%1)  LEN 32
   0: 000000 000002 072162 062545  020040 043111 041525 051440  
020040 020040 020102 042516  ....tree  FICUS      BEN
 %14: 045101 046511 047101 020040                      JAMINA

$VOL.FS.SORTOUT  RECORD 2  KEY 2 (%2)  LEN 32
   0: 000000 000010 072162 062545  020040 043111 041525 051440  
020040 020040 020105 046101  ....tree  FICUS      ELA
 %14: 051524 044503 040440 020040                       STICA

...

$VOL.FS.SORTOUT  RECORD 22  KEY 22 (%26)  LEN 32
   0: 000000 000014 063154 067567  062562 047101 051103 044523  
051525 051440 020040 020040  ....flowerNARCISSUS
 %14: 020040 020040 020040 020040
23 RECORDS TRANSFERRED
FastSort Manual—429834-003
2-10



Sorting Interactively Controlling Extended Memory
Controlling Extended Memory
By default, FastSort tries to use enough extended memory to make at most one merge 
pass, depending on the size of the output file. You can specify the maximum amount of 
extended memory FastSort can use with the parameters of the RUN command or with 
SORT DEFINEs: 

The maximum extended segment size for sorting depends on whether the VLM option 
is on or off. For more information about this option, see Using VLM on page 9-10. To 
use VLM for interactive sort operations, you must set up a SORT DEFINE. For more 
information about SORT DEFINEs, see Section 7, Using SORT and SUBSORT 
DEFINEs.

In addition to the parameters shown above, the amount of memory FastSort uses for 
sorting input records depends on:    

 File size (f) in bytes, which is the total input record count times the maximum 
output record length (for a permutation sort, the record length is the key length) 

 Scratch block size (b)   

 The amount of physical memory (m) not locked down when SORTPROG begins

The formula for determining the approximate amount of memory FastSort needs to 
make no intermediate merge passes or only one intermediate merge pass is: 

 

Table 2-1 on page 2-12 lists the specific formulas for RUN command parameters that 
control extended memory. You can use the formulas to determine which parameter 
makes the most efficient use of your resources to sort your input records. 

Parameter Maximum Physical Memory FastSort Uses

MINSPACE 256 pages 

AUTOMATIC 50 percent *

MINTIME 70 percent * 

SEGMENT n n pages to a maximum of 32,767 pages
If VLM is on, the maximum SEGMENT size is 62,255 pages.

* Percentage of processor memory that is not locked down when SORTPROG begins. 

MIN
b f

2
------------- 1.3 m 

 
FastSort Manual—429834-003
2-11



Sorting Interactively Controlling Extended Memory
If your input files have different maximum record lengths, you might want to specify a 
smaller segment size. You can use the average record length rather than the maximum 
to compute the file size and then specify the smaller size in the SEGMENT parameter.

In a parallel sort, FastSort distributes input records to multiple processors and scratch 
disks. In this case, if you specify a mode of AUTOMATIC or MINTIME, you limit the 
extended memory segment for the distributor-collector SORTPROG process to 90 
percent of the physical memory not locked down by the operating system. Specifying 
MINSPACE limits the extended memory segment to 256 pages. The extended 
segment size limit for each subsort process is the same as for serial sorting. 

You can use the VLM option to increase the amount of extended memory available for 
sorting. The maximum extended memory segment when VLM is on is 62,255 pages. 
For an interactive sort, you use a SORT DEFINE to turn on VLM. For more information, 
see Using VLM on page 9-10. For more information about using a SORT DEFINE, see 
Section 7, Using SORT and SUBSORT DEFINEs.

FastSort clears the command specifications after a run. Therefore, these specifications 
are in effect for only one run unless you save them. Use the SAVE and CLEAR 
commands to perform consecutive runs that involve similar data records and the same 
key fields. You can retain repeated information, and you can remove extraneous 
commands quickly after each run. 

Table 2-1. Extended Memory Used by FastSort

File Size, in Bytes 

Parameter 

No 
Merge 
Passes

One 
Merge 
Pass Extended Memory, in Bytes 

MINSPACE  100 KB 512 KB 

AUTOMATIC  100 KB 

> 100 KB 

512 KB 

MINTIME  200 KB 

> 200 KB 

SEGMENT n 

 n  = 256 
 n  > 256 

 100 KB 512 KB 
 

MIN = Minimum of two values in parentheses
MAX = Maximum of two values in parentheses
b   = Scratch block size
f   = File size in bytes (total input record count times maximum input record size)
n   = Segment size in pages 

MIN
b f

2
------------- 1.3 0.5MB 

 

MAX f 1.3 512KB 

MIN
b f

2
------------- 1.3 0.7MB 

 

MIN n 2048 0.9MB 
FastSort Manual—429834-003
2-12



Sorting Interactively Understanding Statistics
Understanding Statistics
After a sort or merge run, FastSort returns statistics to the list file. The list file is either 
the OUT file specified in the implicit TACL RUN command for the SORT process or 
your home terminal if you do not specify an OUT file. Following is an example of  
FastSort statistics: 

          7  RECORDS               132  MAX RECORD SIZE
      00:07  ELAPSED TIME          166  BUFFER PAGES
      00:00  I/O WAIT TIME           0  INITIAL RUNS
         16  COMPARES                0  FIRST MERGE ORDER
          0  SCRATCH DISK            0  MERGE ORDER
          0  SCRATCH SEEKS           0  INTERMEDIATE PASSES
                                     0  NUMBER OF DUPLICATES
Errors detected: 0
Warnings detected: 0

The following table lists FastSort statistics:

Statistic Definition 

RECORDS The number of records sorted or merged 

ELAPSED TIME The time SORTPROG took to process the sort or merge 
run 

I/O WAIT TIME The time SORTPROG used for calls to READ, WRITE, and 
AWAITIO 

COMPARES The number of times SORTPROG compared two records 

SCRATCH DISK The number of bytes in the scratch file 

SCRATCH SEEKS The number of blocked read and write operations on the 
scratch file 

MAX RECORD SIZE The maximum record size in bytes

BUFFER PAGES The number of 1,024-word pages of memory SORTPROG 
used 

INITIAL RUNS The number of runs generated by the first pass 

FIRST MERGE ORDER The number of runs merged in the first intermediate pass 

MERGE ORDER The maximum number of runs that can be merged 

INTERMEDIATE PASSES The number of merge cycles between the initial run 
formation and the final merge pass

NUMBER OF DUPLICATES The number of records with duplicate keys removed 
FastSort Manual—429834-003
2-13



Sorting Interactively Understanding Error Messages
For a parallel sort run, FastSort returns some statistics that apply only to the 
distributor-collector process. FastSort returns other statistics that are totals from the 
distributor-collector process and all subsort processes as shown below:  

Understanding Error Messages
When an error occurs during a sort or merge run, the list file shows the FastSort error 
message and number of errors detected. By default, the list file is your home terminal. 
If an error occurs in the SORTPROG process, the error stops the process. The list file 
also shows the file-system error code and the name of the file that caused the error, 
such as:   

 *** ERROR ***  THE FROM FILE COULD NOT BE OPENED.
OPERATING SYSTEM ERROR: 11
INPUT FILE: input-file-name

For a parallel sort run, FastSort displays an additional line that identifies the subsort 
process:

SORT PROCESS #2: nn,nn

where nn,nn indicates the CPU and process identification number (PIN) of the subsort 
process.

FastSort also displays warning messages about incorrect syntax. Warnings do not 
interrupt the SORTPROG process. An example of a FastSort warning is: 

*** WARNING *** Ignoring unusable string of letters - string

FastSort also displays both the number of errors and warnings detected: 

Errors detected: 2
Warnings detected: 7

Appendix B, FastSort Error Messages lists error codes and text and explains how to 
recover from them.

FastSort Process Statistics 

Distributor-Collector Process Only RECORDS, BUFFER PAGES, ELAPSED TIME, 
INITIAL RUNS, I/O WAIT TIME, FIRST MERGE 
ORDER, SCRATCH DISK, MERGE ORDER, 
MAX RECORD SIZE, INTERMEDIATE PASSES 

Distributor-Collector and Subsort 
Processes

COMPARES, SCRATCH SEEKS, 
NUMBER OF DUPLICATES
FastSort Manual—429834-003
2-14



Sorting Interactively Understanding Completion Codes
Understanding Completion Codes
In addition to error messages, FastSort might return a completion code after a sort or 
merge run. Completion codes are summarized following:

For completion code 3, any of the following errors can occur: 

 You specified an input file with a logical name instead of the actual name. FastSort 
returns this message: 

Wrong name of the IN file.
Termination info: 1 

 You specified a logical file name, but you did not set DEFMODE ON. FastSort 
returns this message: 

DEFINE processing is not enabled.
Termination info: 2  

 You specified a list file with a DEFINE name, but you did not use a corresponding 
DEFINE. FastSort returns this message: 

DEFINE specification for the OUT file is missing. Termination 
info: 3 

 FastSort encountered an unexpected error code while processing one or more 
DEFINEs. If this error occurs, report it to your service provider. FastSort returns 
this message: 

DEFINE error occurred when processing DEFINEs. Termination 
info: 4 

 You specified a list file with a DEFINE name, but the corresponding DEFINE was 
not a class SPOOL DEFINE. FastSort returns this message: 

OUT file specification has illegal DEFINE class. Termination 
info: 5 

For more information about using DEFINEs, see Section 7, Using SORT and 
SUBSORT DEFINEs. 

Code Explanation 

1 Syntax errors occurred but are treated as warnings only. FastSort continues to 
accept input and returns this message: 

Syntax errors/warning detected

2 FastSort execution errors occurred. These errors include no input file. FastSort 
returns the associated error code and this message: 

SORT execution errors detected.

3 FastSort could not execute the sort or merge run and returns this message: 

Premature process termination with fatal errors
or diagnostics.
FastSort Manual—429834-003
2-15



Sorting Interactively Understanding Completion Codes
FastSort Manual—429834-003
2-16



3 Using FastSort Commands

FastSort interactive commands are summarized below. This section describes these 
commands in alphabetic order.

Command Description 

ASCENDING Describes the location and attributes of one or more key fields that 
determine an ascending sequence for output records.

CLEAR Deletes current command parameters for all commands or a specific 
command. 

COLLATE Specifies a file that contains an alternate collating sequence for comparing 
key fields. 

COLLATEOUT Stores an alternate collating sequence table in an unstructured file. 

CPUS Specifies processors (CPUs) in which FastSort can run subsort 
processes.

DESCENDING Describes the location and attributes of one or more key fields that 
determine a descending sequence for output records.

EXIT Ends an interactive FastSort session (same as Ctrl-Y). 

FC Displays the last FastSort command for editing and re-execution. 

FROM Specifies the name of an input file for a sort or merge run and the 
exclusion mode to use to open the file, the maximum number of records in 
the file, the maximum length of records in the file, and whether the records 
in the file are already sorted. 

HELP Displays the syntax of a specific command or a list of all FastSort 
commands with a description of each command. 

NOTCPUS Specifies a group of processors (CPUs) that FastSort cannot use to run 
subsort processes for parallel sorting. 

RUN Starts a sort or merge run and optionally specifies the SORTPROG 
process start parameters, the allocation of required disk space, and 
whether duplicate records should be removed. 

SAVE Saves FastSort command parameters from a sort or merge run to reuse in 
subsequent runs. 

SHOW Displays the command parameters currently in effect and whether they 
are entered for the next sort or merge run or saved from a previous run. 

SUBSORT Specifies the parameters for a SORTPROG subsort process for a parallel 
sort or merge run. 

TO Specifies an output file for a sort or merge run and parameters for the file 
including the percentage of data slack and index slack, whether FastSort 
should purge and recreate an existing output file, and the type of sort run 
(record, permutation, or key sort). 
FastSort Manual—429834-003
3-1



Using FastSort Commands ASCENDING Command
For more information about using these commands, see Section 2, Sorting 
Interactively. Appendix A, FastSort Syntax Summary contains a quick reference to the 
command syntax. 

ASCENDING Command
Use the ASCENDING command to sort or merge records so that the values of each 
key field specified in the command are in smallest-to-largest order. ASCENDING and 
DESCENDING commands can apply to the same sort run. If you apply both 
commands to the same run, FastSort returns the values of the DESCENDING key 
fields in largest-to-smallest order.

The ASCENDING command provides this information for a sort or merge run:

 Location of one or more key fields for ordering the records

 Length and order of the key fields

 Type of data in each key field 

You must specify at least one ASCENDING or DESCENDING command for each sort 
or merge run. The DESCENDING Command on page 3-11 has the same parameters 
as the ASCENDING command. 

field

designates the location of a key field in the record. You can specify field in either 
of two ways:

startcol : endcol

startcol FOR count

startcol

is an integer giving the beginning column number of a key field. The numbering 
of record columns, or bytes, begins with 1.

endcol

is an integer giving the last column number of a key field.

count

is an integer giving the length, in bytes, of a key field.

type

describes the type of data in the key field. The default type is STRING. You can 
specify type as: 

ASC[ENDING] field [ type ] [ , field [ type ] ]...
FastSort Manual—429834-003
3-2



Using FastSort Commands ASCENDING Command
STRING
UPPER
INTEGER
REAL
UNSIGNED
SIGNED LEADING EMBEDDED or SLE
SIGNED LEADING SEPARATE or SLS
SIGNED TRAILING EMBEDDED or STE
SIGNED TRAILING SEPARATE or STS

STRING

specifies that the key field contains unsigned alphanumeric data. STRING is 
the default data type. 

UPPER

specifies that the key field contains unsigned alphanumeric data. FastSort 
treats all lowercase ASCII characters as uppercase characters.

INTEGER

means the key field contains two’s complement signed binary data.

REAL

specifies that the key field contains data stored in Tandem floating-point 
number representation. The length of the key field must be either 4 or 8 bytes, 
and the key field must be word aligned.

UNSIGNED

specifies that the key field contains unsigned binary data.

SIGNED LEADING EMBEDDED | SLE

specifies that the key field contains signed ASCII numeric data with the sign 
character (+ or –) stored in the high-order bit of the first byte in the field. The 
key length cannot be greater than 32 bytes.

SIGNED LEADING SEPARATE | SLS

specifies that the key field contains signed ASCII numeric data with the sign 
character (+ or –) stored in the first byte of the field. The key length cannot be 
greater than 32 bytes.

SIGNED TRAILING EMBEDDED | STE

specifies that the key field contains signed ASCII numeric data with the sign 
character (+ or –) stored in the high-order bit of the last byte of the field. The 
key length cannot be greater than 32 bytes.
FastSort Manual—429834-003
3-3



Using FastSort Commands ASCENDING Command
SIGNED TRAILING SEPARATE | STS

specifies that the key field contains signed ASCII numeric data with the sign 
character (+ or –) stored in the last byte of the field. The key length cannot be 
greater than 32 bytes. 

Key Fields

The order in which you enter ASCENDING and DESCENDING commands affects sort 
output. The first command entered has the highest priority. SORTPROG starts sorting 
the records according to key fields specified in the first ASCENDING or DESCENDING 
command, then uses key fields specified in the second ASCENDING or DESCENDING 
command, and so on.

If two or more records have equal values in the first key field specified in an 
ASCENDING or DESCENDING command, the values of the second key field, if 
specified, determine the sorted order of the records. If the records have equal values in 
the second or any successive key field, the values of the next key field, if specified, 
determine sorted order. If all key-field values of two or more records are equal, 
SORTPROG writes or returns those records in the same order it received them.

If you specify the KEYS parameter of the TO command, the output records consist of 
only key-field values. SORTPROG concatenates the values. SORTPROG considers all 
records as fixed length if you specify the KEYS parameter. If a key field extends 
beyond the end of a variable-length record in a structured output file, SORTPROG 
pads the key values with blanks.

SORTPROG can compare a key field at the end of a short record if the record contains 
the first byte of the key value. This is true unless the field type is REAL, SIGNED 
TRAILING EMBEDDED, or SIGNED TRAILING SEPARATE. For comparison of these 
types of data, key fields must contain complete values.

You can specify up to 63 key fields for a single sort or merge run. Fields can be 
contiguous, noncontiguous, and overlapping. The minimum field length is one column 
except for the REAL data type, which is either 4 or 8 bytes. The maximum field length 
is the length of the record unless you otherwise define the length. 

Examples

ASCENDING 72:80 STRING, 1 FOR 3 INTEGER
ASC 20 FOR 8 UPPER
ASC 1:10,5:20    ! Overlapping key fields, both STRING
ASC 1:10 UNSIGNED   ! Keys of a key-sequenced file
FastSort Manual—429834-003
3-4



Using FastSort Commands CLEAR Command
CLEAR Command
Use the CLEAR command to delete command parameters entered for the current sort 
or merge run or saved from a previous run. You can use CLEAR to delete parameters 
for all commands or for individual commands. 

ALL

deletes all current command parameters.

ASC[ENDING]

deletes all current key-field specifications defined by ASCENDING commands.

COLLATE

deletes the alternate collating sequence table.

CPUS

deletes the CPUS command currently in effect.

DESC[ENDING]

deletes all current key-field specifications defined by DESCENDING commands.

FROM [ filename ]

deletes current parameters for the input file filename. If you omit filename, 
CLEAR deletes current parameters for all files named in FROM commands.

KEYS

deletes all current key-field specifications for both ASCENDING and 
DESCENDING commands.

NOTCPUS

deletes the NOTCPUS command currently in effect.

CLEAR { ALL                }
      { ASC[ENDING]        }
      { COLLATE            }
      { CPUS               }
      { DESC[ENDING]       }
      { FROM [ filename ]  }
      { KEYS               }
      { NOTCPUS            }
      { SUBSORT            }
      { TO                 }
FastSort Manual—429834-003
3-5



Using FastSort Commands COLLATE Command
SUBSORT

deletes current parameters of all SUBSORT commands.

TO

deletes all parameters for the current output file. 

Examples

CLEAR DESC
CLEAR FROM FILETEN
CLEAR TO

COLLATE Command
Use the COLLATE command to specify an alternate collating sequence during a sort or 
merge run. This enables you to define the comparison of alphanumeric key fields or 
string-type data.

If you do not specify an alternate collating sequence, FastSort uses the sequence of 
the ASCII character set to order your results. For more information, see Appendix D, 
ASCII Character Set. 

filename

is the name of an EDIT file containing a list of characters assigned to the 256 byte 
positions.

The sequence in which FastSort reads the file determines the character or 
characters assigned to each byte position. For a description of the alternate 
collating sequence file, see the text that follows. 

The COLLATE command directs FastSort to read the EDIT file indicated by file and 
to translate the character list into an alternate collating sequence table. You can use 
the COLLATEOUT command to store this alternate collating sequence table in an 
unstructured file that the SORTMERGESTART procedure can use.

FastSort orders characters in the assignment list in the order it reads the characters 
from the alternate collating sequence file. The first character or character range in the 
list ranks before the second character or character range, and so on.

Specifying an Alternate Collating Sequence

You can specify an alternate collating sequence in an EDIT file by assigning one or 
more characters to each of the 256 byte positions. The EDIT file can contain only 
ranges of character assignments for the collating sequence, commas to separate 

COLLATE filename
FastSort Manual—429834-003
3-6



Using FastSort Commands COLLATE Command
ranges, and comments preceded by exclamation points. The following rules apply to 
specifying ranges in the file:

 All the ranges together must include character assignments for exactly 256 byte 
positions. You can assign more than one character to the same position. You can 
also assign the same character to more than one position.

 The number of lines in the file is irrelevant, but you cannot put a range of 
characters on more than one line.

 If the file has more than one range, commas must separate the ranges.

Assignment of Characters to Byte Positions

 In a range that assigns characters to byte positions, you can use any of the following.

 Alphanumeric characters, enclosed in quotation marks

 Decimal or octal numeric literals

 The THRU keyword to abbreviate the specification of a range

 The ALSO keyword to assign more than one character to a position, which makes 
the characters equivalent in comparisons

A range cannot include both alphanumeric characters and numeric literals.

Alphanumeric Character Assignments

You must enclose alphanumeric character assignments in quotation marks. To include 
a quotation mark in a character range, use two consecutive quotation marks:

"ABCDEFGHIJKLMNOPQRSTUVWXYZ""+*%",

Numeric Literal Character Assignments

The octal numeric literals include %0 to %377, and the decimal numeric literals include 
0 through 255. You can combine both in a range:

%10 THRU 55,

Abbreviated and Equivalent Character Assignments

THRU abbreviates the specification of a range of characters. You must use commas to 
separate a range that includes THRU from other ranges:

"A" THRU "Z", 65 THRU 90,

ALSO assigns more than one character to the same character position in the collating 
sequence. You must use commas to separate a range that includes ALSO from other 
ranges:

"A", ALSO "a", "B", ALSO "b",
FastSort Manual—429834-003
3-7



Using FastSort Commands COLLATE Command
To have SORTPROG treat several characters as equal in comparisons, you can assign 
them all to the same character position, like this:

";", ALSO ":", ALSO 128, ALSO 129,

If ALSO assigns a range of characters, the number of characters in that range must 
equal the number of characters in the preceding range:

"A" THRU "Z", ALSO "a" THRU "z",

Ranges beginning with ALSO do not assign characters to additional byte positions. 
The two ranges in the preceding example assign 52 characters to 26 byte positions. A 
file that contains these two ranges needs assignments for 230 additional byte 
positions.

Only a range that begins with ALSO can assign characters to the same byte positions 
as characters in another range. Unless the second range begins with ALSO, two 
ranges that include the same character assign the character to two different byte 
positions. A range that overlaps another range assigns each of the overlapping 
characters to a different byte position.

Invalid Alternate Collating Sequence Files

SORTPROG cannot use the alternate collating sequence from a file that has any of the 
following:

 An incorrect character assignment

 Not enough character assignments

 Too many character assignments

When an alternate collating sequence file is invalid for any of these reasons, FastSort 
returns an error message. Then, FastSort uses the ASCII sequence to collate the sort 
or merge run.

A mixture of string and numeric data types is an incorrect assignment: 

"a" THRU %172     ! This is an incorrect assignment.

Examples of Alternate Collating Sequence Files

This subsection contains two sample EDIT files that specify the same alternate 
collating sequence and an example of how the alternate sequence affects sorting.

Both files deviate from the ASCII collating sequence because lowercase alphabetic 
characters are equivalent to uppercase characters. One file contains these lines:

0 THRU 32, "!""#$%&'()*+,-./",
"0" THRU "9", ":" THRU "@",
"A" THRU "Z", ALSO "a" THRU "z",
"[\]^_ {|}~", 127 THRU 255
FastSort Manual—429834-003
3-8



Using FastSort Commands COLLATEOUT Command
The other file, named ALTSEQ, contains these lines:

0 THRU 64,
"A" THRU "Z", ALSO "a" THRU "z",
91 THRU 96, 123 THRU 255

A terminal session shows the results of sorting five records in two situations:

 Without the COLLATE command, using the ASCII collating sequence

 With the COLLATE command, using the collating sequence in ALTSEQ

<ASC 1:10                   ! Key
<RUN
?first record               ! Input records
?FIRST record again
?first RECORD again
?second RECORD
?SECOND record again
?EOF!
FIRST record again          ! Output records
SECOND RECORD again
first RECORD again
first record
second RECORD
... 
<ASC 1:10                   ! Key
<COLLATE ALTSEQ             ! Alternate collating sequence
<RUN
?first record               ! Input records
?FIRST record again
?first RECORD again
?second RECORD
?SECOND record again
?EOF!
first record                ! Output records
FIRST record again
first RECORD again
second RECORD
SECOND record again

COLLATEOUT Command
Use the COLLATEOUT command to store the alternate collating sequence table in a 
256-byte unstructured file. The COLLATE command creates this table from an EDIT 
file. An application process can read the unstructured file to supply the 
collate-sequence-table parameter for the SORTMERGESTART procedure. 

COLLATEOUT filename
FastSort Manual—429834-003
3-9



Using FastSort Commands CPUS Command
filename

is the name of the unstructured file to which COLLATEOUT writes the 256-byte 
alternate collating sequence table. If filename already exists, FastSort purges it 
and creates a new file with that name. 

Example

COLLATEOUT ALTSEQ

CPUS Command
Use the CPUS command to specify a group of processors (CPUs) that FastSort can 
use to run subsort processes for parallel sorting. 

ALL

specifies that FastSort can use any processor. ALL is the default.

cpu-list

is a list of processor numbers, separated by commas. 

If a SUBSORT statement does not specify a processor for the subsort process, 
FastSort follows these steps to select the processor:

1. FastSort uses the processor that runs the primary disk process for the scratch file’s 
volume, unless the NOTCPUS command specifies that processor.

2. Otherwise, FastSort uses any processor from the processor group, including all 
processors you specified in the CPUS command and did not specify in the 
NOTCPUS command. If you did not issue a CPUS or NOTCPUS command, the 
group includes all processors on your system. When FastSort selects processors 
for subsorts, it attempts to put each process in a different processor.

3. If FastSort cannot start the subsort process in a processor it chose, FastSort 
selects another processor from the group and tries to start the process in the new 
processor. However, FastSort does not attempt to use another processor for a 
subsort process if the SUBSORT statement specifies a processor that is not 
available.

Example

CPUS 1,4,5

CPUS [ ALL      ]
     [ cpu-list ]
FastSort Manual—429834-003
3-10



Using FastSort Commands DESCENDING Command
DESCENDING Command
Use the DESCENDING command to sort or merge records so that the values of each 
key field specified in the command are in largest-to-smallest order. ASCENDING and 
DESCENDING commands can apply to the same sort run, which causes the values of 
some key fields to be in smallest-to-largest order.

The DESCENDING command provides this information before a sort or merge run:

 Location of one or more key fields for ordering records

 Length and order of key fields

 Type of data in each key field

You must specify at least one DESCENDING or ASCENDING command for each sort 
or merge run. The ASCENDING Command on page 3-2 has the same parameters as 
the DESCENDING command. 

field

designates the location of a key field in the record. You can specify field in either 
of two ways:

startcol : endcol

startcol FOR count

startcol

is an integer giving the beginning column number of a key field. The numbering 
of record columns, or bytes, begins with 1.

endcol

is an integer giving the last column number of a key field.

count

is an integer giving the length, in bytes, of a key field.

type

describes the type of data in the key field. The default type is STRING. You can 
specify type as:

STRING
UPPER
INTEGER
REAL
UNSIGNED

DESC[ENDING] field [ type ] [ , field [ type ] ]...
FastSort Manual—429834-003
3-11



Using FastSort Commands DESCENDING Command
SIGNED LEADING EMBEDDED or SLE
SIGNED LEADING SEPARATE or SLS
SIGNED TRAILING EMBEDDED or STE
SIGNED TRAILING SEPARATE or STS

STRING

specifies that the key field contains unsigned alphanumeric data. STRING is 
the default data type. 

UPPER

specifies that the key field contains unsigned alphanumeric data. FastSort 
treats all lowercase ASCII characters as uppercase characters.

INTEGER

means the key field contains two’s complement signed binary data.

REAL

specifies that the key field contains data stored in Tandem floating-point 
number representation. The length of the key field must be either 4 or 8 bytes, 
and the key field must be word aligned.

UNSIGNED

specifies that the key field contains unsigned binary data.

SIGNED LEADING EMBEDDED | SLE

specifies that the key field contains signed ASCII numeric data with the sign 
character (+ or –) stored in the high-order bit of the first byte in the field. The 
key length cannot be greater than 32 bytes.

SIGNED LEADING SEPARATE | SLS

specifies that the key field contains signed ASCII numeric data with the sign 
character (+ or –) stored in the first byte of the field. The key length cannot be 
greater than 32 bytes.

SIGNED TRAILING EMBEDDED | STE

specifies that the key field contains signed ASCII numeric data with the sign 
character (+ or –) stored in the high-order bit of the last byte of the field. The 
key length cannot be greater than 32 bytes.

SIGNED TRAILING SEPARATE | STS

specifies that the key field contains signed ASCII numeric data with the sign 
character (+ or –) stored in the last byte of the field. The key length cannot be 
greater than 32 bytes. 
FastSort Manual—429834-003
3-12



Using FastSort Commands EXIT Command
Key Fields

The order in which you enter DESCENDING and ASCENDING commands determines 
their relative significance. The first command has the highest priority. SORTPROG 
starts sorting the records according to the key fields specified in the first 
DESCENDING or ASCENDING command, then uses the key fields specified in the 
second DESCENDING or ASCENDING command, and so on.

If two or more records have equal values in the first key field specified in a 
DESCENDING or ASCENDING command, the values of the second key field, if 
specified, determine the sorted order of the records. If the records have equal values in 
the second or any successive key field, the values of the next key field, if specified, 
determine the sorted order. If all key-field values of two or more records are equal, 
SORTPROG writes or returns those records in the same order it received them.

When you specify the KEYS parameter of the TO command, the output records consist 
of only key-field values. SORTPROG concatenates the values. SORTPROG considers 
all records as fixed length if you specify the KEYS parameter. If a key field extends 
beyond the end of a variable-length record in a structured output file, SORTPROG 
pads the key values with blanks.

SORTPROG can compare a key field at the end of a short record if the record contains 
the first byte of the key value, unless the field type is REAL, SIGNED TRAILING 
EMBEDDED, or SIGNED TRAILING SEPARATE. For comparison of these types of 
data, key fields must contain complete values.

You can specify up to 63 key fields for a single sort or merge run. The fields can be 
contiguous, noncontiguous, and overlapping. The minimum field length is one column 
except for the REAL data type, which is either 4 or 8 bytes. The maximum field length 
is the length of the record unless you define the length otherwise. 

Examples

DESCENDING 72:80 STRING, 1 FOR 3 INTEGER
DESC 20 FOR 8 UPPER
DESC 1:10,5:20       ! Overlapping key fields, both STRING
DESCENDING 28:34 SLS
DESC 1:10 UNSIGNED   ! Keys of a key-sequenced file

EXIT Command
Use the EXIT command to end an interactive FastSort session. Ctrl-Y also ends a 
FastSort session. 

EXIT
FastSort Manual—429834-003
3-13



Using FastSort Commands FC Command
FC Command
Use the FC (Fix) command to display the last FastSort command and then to repeat or 
edit the command. 

When you enter the FC command, FastSort displays the last command you typed 
followed by the FC prompt, a period (.), on the next line. At the FC prompt you can 
enter the following editing characters (in either uppercase or lowercase): 

R 

replaces characters in the FastSort command beginning with the character above 
the R with the text following the R 

I 

inserts the text following the I into the FastSort command 

D 

deletes the character in the FastSort command above the D 

// 

ends a text string and allows you to make more than one change to a command 

For more information about the FC command, see the Guardian User’s Guide. 

FROM Command
Use the FROM command to specify an input file name for a sort or merge run and to 
provide FastSort with the following information:   

 The exclusion mode that FastSort uses to open the file 

 The maximum number of records in the file

 Whether the records in the file are already sorted 

 The maximum length of records in the file   

in-file

names an input file containing records to be sorted or merged. You can enter 
multiple FROM commands, one for each input file for sorting or merging.

FC 

FROM [ in-file ] [ , EXCL[USION] mode ]...
                 [ , FILE count       ]
                 [ , MERGE            ]
                 [ , RECORD length    ]
FastSort Manual—429834-003
3-14



Using FastSort Commands FROM Command
If you omit the in-file parameter, you can enter only one FROM command for a 
sort run, which means the input file is the command stream. If you use a command 
file (IN file) for input, put the input records after the RUN command, one record on 
each line. If you enter records at the terminal, type the input records after you enter 
the RUN command, one record at each ? prompt.

EXCL[USION] mode

specifies the exclusion mode with which FastSort opens a file. For mode you can 
specify SHARED, EXCLUSIVE, or PROTECTED.

SHARED

specifies that another process can write to the file while FastSort is reading it. 
FastSort reads the file sequentially, so that records inserted at positions 
already read are not included in the output file. 

If another process is writing to the file while FastSort is reading it, the file 
system sometimes returns error 59 (FILE IS BAD). In this case, the input file is 
not necessarily corrupted, and you can retry the sort or merge run. 

EXCLUSIVE

specifies that only FastSort can access the file. 

PROTECTED

specifies that other processes can have only read access to the file. If you 
specify PROTECTED, the FROM in-file name cannot be the same as the 
TO out-file file name; otherwise, FastSort returns error 49 (INVALID 
EXCLUSION MODE SPECIFIED). 

These are the default exclusion modes for different devices:  

FILE count

specifies the maximum number of records in an input file. When input is from a 
source other than disk, FastSort uses count to estimate the space required for the 
initial scratch file.

If you omit the FILE parameter, SORTPROG determines the maximum number of 
records as follows:

 For a structured disk file, SORTPROG estimates the number of records in the 
file by looking at the end-of-file location and determining the structured 
overhead.

Device Exclusion Mode 

Permanent disk files PROTECTED

Temporary disk files and terminals SHARED

Other files (not disk files) EXCLUSIVE
FastSort Manual—429834-003
3-15



Using FastSort Commands FROM Command
 For an unstructured disk file, SORTPROG calculates an approximate number 
of records in the file. The approximate number of records for an EDIT file is the 
end-of-file length multiplied by 2 and divided by the record length. The 
approximate number of records for other unstructured files is the end-of-file 
location divided by the record length. The default record length for all 
unstructured disk files is 132 bytes.

 For files other than disk files, the default is 50,000 records.

MERGE

indicates that the records in in-file do not need sorting before FastSort merges 
them with other input records. If you specify MERGE and the records are not 
sorted, FastSort returns sort error 15 (FILES TO BE MERGED MUST BE 
SORTED). 

RECORD length

specifies the maximum input record length in number of bytes.

If in-file is a structured disk file, you can omit the RECORD parameter because 
the length is in the file label. If in-file is an odd unstructured file, you must 
specify the correct length for length. 

Records are limited to 4080 bytes each. Data records in a command file are limited 
to 2000 bytes each. The default length for unstructured file records is 132 bytes.

Records belonging to key-sequenced files with increased limits are not supported 
using FastSort commands. Buffered interface of FastSort might be used to sort 
records belonging to key-sequenced files with increased limits. For more 
information about key-sequenced files with increased limits, see Enscribe 
Programmer’s Guide.

Guidelines   

Follow these guidelines when you use the FROM command. 

Record Count

The value of count in the FILE parameter need not be the exact number of records in 
the input file. However, you should overestimate the number of records rather than 
underestimate the number.

If you underestimate the number of input records, FastSort might underestimate the 
size of an output file or the size of the extended segment, which can cause FastSort 
error 29. For more information about this error, see Appendix B, FastSort Error 
Messages.
FastSort Manual—429834-003
3-16



Using FastSort Commands FROM Command
Exclusion Mode and File Access

To enable another process to read the file at the same time as FastSort, specify 
PROTECTED in the FROM command and have the other process open the file in 
SHARED mode.

Record Entry

When you omit the FROM command or use a FROM command without an in-file 
parameter, you can supply the records from a terminal or from the command file (IN 
file) that starts the FastSort process. 

Run Command

If you type the RUN command from a terminal, FastSort prompts you with a question 
mark (?) for each record. When you finish entering records, type the end-of-file 
character, Ctrl-Y.

In a command file (IN file), put the records after the RUN command, one record on 
each line. The actual end of the file indicates that there are no more records.

Examples

FROM $TAPE,RECORD 60,FILE 10000000
FROM MYFILE
FROM MYINPUT,FILE 1000,RECORD 80,EXCL PROTECTED,MERGE
FROM INMYFILE,FILE 2500,RECORD 80,MERGE

Caution. If you specify the same file as both an input file and output file for a sort run, you can 
lose all the data from the input file if an error or processor failure ends the SORTPROG 
process.
FastSort Manual—429834-003
3-17



Using FastSort Commands HELP Command
HELP Command
Use the HELP command to get help for FastSort commands. When you request 
information about a specific command, HELP displays the syntax of that command. 
If you do not specify a command, HELP displays a list of FastSort commands and a 
description of each command. 

Examples

HELP
HELP FROM
HELP HELP

NOTCPUS Command
Use the NOTCPUS command to specify a group of processors that FastSort cannot 
use to run subsort processes. 

cpu-list

is a list of processor numbers, separated by commas. 

Examples   

You do not need to use a CPUS command before a NOTCPUS command because the 
default for the CPUS command is ALL. The following NOTCPUS command specifies a 
processor group including all processors except 2 and 3:

NOTCPUS 2,3

HELP [ ASC[ENDING]  ]
     [ CLEAR        ]
     [ COLLATE      ]
     [ COLLATEOUT   ]
     [ CPUS         ]
     [ DESC[ENDING] ]
     [ EXIT         ]
     [ FROM         ]
     [ HELP         ]
     [ NOTCPUS      ]
     [ RUN          ]
     [ SAVE         ]
     [ SHOW         ]
     [ SUBSORT      ]
     [ TO           ]

NOTCPUS cpu-list    
FastSort Manual—429834-003
3-18



Using FastSort Commands RUN Command
The NOTCPUS command is also useful to exclude processors you already specified in 
a CPUS command. This example excludes processors from a list specified in a 
previous run:

<CPUS 0,1,4,5,7,8,10,12  !Use any CPUs in this list.
 ... 
<SAVE ALL                !Save all command parameters.
<RUN
 ... 
<NOTCPUS 7,8        !Use any CPUs in the list except these.
<SAVE NOTCPUS
<RUN
 ... 

RUN Command
Use the RUN command to start a sort or merge run. In RUN command options you can 
specify SORTPROG process start parameters, allocate necessary disk space, and 
indicate whether to remove records that have duplicate key values. RUN is the last 
command you can enter before a sort or merge run. 

scratch-file

is the name of an initial scratch file. If you omit the scratch-file and scratch-
vol parameters, FastSort creates a scratch file on a suitable volume. If you specify 
an existing file, it must be unstructured. FastSort purges all data in an existing 
scratch file before using it. For more information about scratch, see Managing Sort 
Workspace on page 9-1.

scratch-vol

is the name of a volume for an initial scratch file. If you omit the scratch-vol 
and scratch-file parameters or if there is insufficient space for a scratch file 
on the volume you specify, FastSort tries to create a scratch file on a suitable 

RUN [ scratch-file | scratch-vol]
    [ , AUTOMATIC               ]
    [ , BLOCK size              ]
    [ , CPU processor           ]
    [ , MEM memory              ]
    [ , MINSPACE                ]
    [ , MINTIME                 ]
    [ , PRI priority            ]
    [ , { REMOVEDUPS | REMD }   ]
    [ , DEFINE define-name      ]
    [ , SEGMENT size            ]
    [ , PROGRAM file            ]
    [ , SWAP file               ]
    [ , NOSCRATCHON (scratch-vol [, scratch-vol]...)]
    [ , SCRATCHON (scratch-vol [, scratch-vol]...)]
FastSort Manual—429834-003
3-19



Using FastSort Commands RUN Command
volume. For more information about scratch files and scratch volumes, see 
Managing Sort Workspace on page 9-1.

AUTOMATIC

directs FastSort to limit elapsed time by using at most 50 percent (90 percent in 
parallel sorting) of the physical memory not locked down by the operating system. 
For files equal to or smaller than 100 KB, FastSort uses 256 pages for an extended 
memory segment and makes no merge pass. For larger files, FastSort attempts to 
use enough memory to make only one merge pass. If you do not specify the 
SEGMENT, MINSPACE, or MINTIME parameter, AUTOMATIC is the default. 

The file size is the maximum number of records in all input files times the 
maximum record length for the output file. For more information, see the 
description of the FROM Command on page 3-14. For details about the amount of 
memory required to make only one merge pass for different file sizes, see 
Controlling Extended Memory on page 2-11. 

If you specify AUTOMATIC, do not specify MINSPACE, MINTIME, or SEGMENT. If 
you specify one of these parameters with AUTOMATIC, FastSort ignores the 
parameter and returns a warning message. 

If you specify AUTOMATIC for a distributor-collector process for parallel sorting, all 
of the subsort processes use AUTOMATIC, unless you override it with the 
SEGMENT parameter of the SUBSORT command or a SUBSORT DEFINE.

BLOCK size

specifies the size, in bytes, of input and output blocks for scratch files. The scratch 
file block size must be large enough to accept the largest input record, rounded up 
to the nearest even byte, plus 14 bytes of overhead.

The block size can be any multiple of 2048 up to 56 KB. The default is 56 KB.

CPU processor

specifies the processor (CPU) number in which the SORTPROG process should 
run. Because SORTPROG is a separate process, you can run it in a different 
processor from the one in which the SORT process is running. The default is the 
same processor.

MEM memory

exists only for compatibility with earlier sort-merge code. MEM specifies the 
number of memory pages allocated for the SORTPROG process. The size is 
always 64 pages. If you specify a value between 1 and 64 for MEM, FastSort 
ignores the value. If you specify an invalid value, FastSort returns an error 
message and does not start the sort or merge run. 
FastSort Manual—429834-003
3-20



Using FastSort Commands RUN Command
MINSPACE

limits the size of the extended memory segment to 256 pages (512 KB). FastSort 
makes no merge pass or only one merge pass if the file size is equal to or less 
than 100 KB.

The file size is the maximum number of records in all input files times the 
maximum record length for the output file (see the FROM Command on 
page 3-14). For more information, see Controlling Extended Memory on page 2-11 
for details about how file size affects the number of merge passes.

If you specify AUTOMATIC, do not specify MINTIME, MINSPACE, or SEGMENT in 
the same RUN command. If you specify one of these parameters with 
AUTOMATIC, FastSort ignores the parameter and returns a warning message. 

If you specify MINSPACE for a distributor-collector process for parallel sorting, all 
of the subsort processes use MINSPACE, unless you override it with the 
SEGMENT parameter of the SUBSORT command or a SUBSORT DEFINE.

MINTIME

directs FastSort to minimize elapsed time by using at most 70 percent of the 
processor’s physical memory not locked down by the operating system. For files 
equal to or smaller than 200 KB, FastSort uses 256 pages for an extended 
memory segment or attempts to use enough memory to avoid an intermediate 
merge pass. For larger files, FastSort tries to use enough memory to make no 
more than one intermediate merge pass.

The file size is the maximum number of records in all input files times the 
maximum record length for the output file. (For more information, see FROM 
Command on page 3-14.) For more information for details about the amount of 
memory required to make only one merge pass for different file sizes, see 
Controlling Extended Memory on page 2-11.

If you specify AUTOMATIC, do not specify MINTIME, MINSPACE, or SEGMENT in 
the same RUN command. If you specify one of these parameters with 
AUTOMATIC, FastSort ignores the parameter and returns a warning message.

If you specify MINTIME for a distributor-collector process for parallel sorting, all of 
the subsort processes use MINTIME, unless you override it with the SEGMENT 
parameter of the SUBSORT command or a SORT DEFINE.

PRI priority

specifies a priority between 1 and 199 to assign to the SORTPROG process. The 
default is the operating system default priority for a process.

{ REMOVEDUPS | REMD }

Removes any records having key-field values that are duplicates of those in a 
previous output record. The statistics message at the end of the run reports the 
number of duplicates removed. If you specify an alternate collating sequence, 
FastSort Manual—429834-003
3-21



Using FastSort Commands RUN Command
FastSort determines which records have duplicate keys according to that collating 
sequence.

DEFINE define-name

is an optional 12-word array that specifies the name of a SORT DEFINE to use for 
the sort or merge run. For more information, see Section 7, Using SORT and 
SUBSORT DEFINEs.

SEGMENT size

specifies the size in pages of an extended memory segment for FastSort to use. 
The number of pages must be at least 256 and cannot exceed 90 percent of the 
processor’s physical memory not locked down by the operating system. If VLM is 
on, 62,255 pages (127.5 MB) is the maximum segment size. If VLM is off, the 
maximum is 32,767 pages. For more information, see Using VLM on page 9-10 
about the VLM option.

The default for segment size is AUTOMATIC, which is in effect if you do not specify 
the SEGMENT, MINSPACE, or MINTIME parameter. 

If you specify AUTOMATIC, do not specify MINTIME, MINSPACE, or SEGMENT in 
the same RUN command. If you specify one of these parameters with 
AUTOMATIC, FastSort ignores the parameter and returns a warning message. 

If you specify MINSPACE for a distributor-collector process for parallel sorting, all 
of the subsort processes use MINSPACE, unless you override it with the 
SEGMENT parameter of the SUBSORT command or a SORT DEFINE.

PROGRAM file

names a program file to run instead of the default. If you specify the PROGRAM 
parameter more than once in a RUN command, FastSort uses the last value for 
file that you specify. 

SWAP file

specifies the volume, subvolume, and name of the swap file for the extended 
memory segment. The swap file must be on the local node.

If the file already exists, it must be unstructured. If you omit this parameter, 
FastSort creates a swap file on the scratch volume if the scratch file is local. For 
remote scratch files, the default swap file location is the volume where the program 
file is running.

NOSCRATCHON (scratch-vol [, scratch-vol]...)

specifies volumes that FastSort should not use for overflow scratch files. If the 
initial scratch volume becomes full, FastSort uses a volume not specified in the 
NOSCRATCHON attribute, protected by the Safeguard product, $SYSTEM, or a 
TMF audit trail disk for overflow scratch files. You can specify up to 32 
NOSCRATCHON volumes. Note that this attribute requires up to 276 additional 
FastSort Manual—429834-003
3-22



Using FastSort Commands SAVE Command
bytes of stack space. If you specify SCRATCHON, you cannot specify 
NOSCRATCHON. 

Enclose NOSCRATCHON volume names in parentheses and separate the names 
with commas. FastSort recognizes the wild-card characters * and ? for 
NOSCRATCHON volume names. See the description of SCRATCHON under 
Setting DEFINE Attributes on page 7-2 for examples of how to use these 
characters.

SCRATCHON (scratch-vol [, scratch-vol]...)

specifies the volumes that FastSort should use for overflow scratch files. If the 
initial scratch volume becomes full, FastSort tries to create overflow scratch files 
on a SCRATCHON volume. You can specify up to 31 SCRATCHON volumes. Note 
that this attribute requires up to 276 additional bytes of stack space. If you specify 
NOSCRATCHON, you cannot specify SCRATCHON. 

Enclose SCRATCHON volume names in parentheses and separate the names 
with commas. FastSort recognizes the wild-card characters * and ? for 
SCRATCHON volume names. See the description of SCRATCHON under Setting 
DEFINE Attributes on page 7-2 for examples of how to use these characters.

Examples

RUN TEMP,CPU 1,PRI 140
RUN ,CPU 2,BLOCK 28672,REMOVEDUPS 
RUN ,PROGRAM SORTFAST,SEGMENT 256,BLOCK 28762, CPU 3
RUN $DATA.TEMP.SCRATCH,MINTIME,CPU 4
RUN NOSCRATCHON ($DATA2, $DATA3)

SAVE Command
Use the SAVE command to retain FastSort command parameters from a sort or merge 
run for future use. To retain the command parameters after a run, you must issue the 
SAVE command before you issue the RUN command. If you do not issue SAVE and 
RUN in this order, the command parameters are no longer in effect after the run 
finishes or if a warning occurs for a RUN command. 

SAVE { ALL               }
     { ASC[ENDING]       }
     { COLLATE           }
     { CPUS              }
     { DESC[ENDING]      }
     { FROM [ filename ] }
     { KEYS              }
     { NOTCPUS           }
     { SUBSORT           }
     { TO                }
FastSort Manual—429834-003
3-23



Using FastSort Commands SAVE Command
ALL

saves all current command parameters.

ASC[ENDING]

saves all current key-field specifications defined by ASCENDING commands.

COLLATE

saves the alternate collating sequence table. 

CPUS

saves the CPUS command currently in effect.

DESC[ENDING]

saves all current key-field specifications defined by DESCENDING commands.

FROM [ filename ]

saves the current parameters for the input file named filename. If you omit 
filename, the SAVE command saves the current parameters for all files named in 
FROM commands. 

KEYS

saves all current key-field specifications for both ASCENDING and DESCENDING 
commands.

NOTCPUS

saves the NOTCPUS command currently in effect.

SUBSORT

saves current parameters of all SUBSORT commands.

TO

saves all parameters for the current output file.

To delete information retained by the SAVE command, use the CLEAR command. 

Examples

SAVE FROM FILEIN
SAVE KEYS
FastSort Manual—429834-003
3-24



Using FastSort Commands SHOW Command
SHOW Command
Use the SHOW command to display command parameters currently in effect, whether 
you entered them for the next sort or merge run or saved them from a previous run. 
SHOW does not display information for the COLLATE or COLLATEOUT command. 

ALL

displays all current command parameters.

ASC[ENDING]

displays all current key-field specifications defined by ASCENDING commands.

CPUS

displays the CPUS command currently in effect.

DESC[ENDING]

displays all current key-field specifications defined by DESCENDING commands.

FROM [ filename ]

displays the current parameters for the input file named filename. If you omit 
filename, the SHOW command displays the current parameters for all files 
named in FROM commands.

KEYS

displays all current key-field specifications for both ASCENDING and 
DESCENDING commands.

NOTCPUS

displays the NOTCPUS command currently in effect.

SUBSORT

displays current parameters of all SUBSORT commands.

SHOW { ALL               }
     { ASC[ENDING]       }
     { CPUS              }
     { DESC[ENDING]      }
     { FROM [ filename ] }
     { KEYS              }
     { NOTCPUS           }
     { SUBSORT           }
     { TO                } 
FastSort Manual—429834-003
3-25



Using FastSort Commands SUBSORT Command
TO

displays all parameters for the current output file. 

Examples

SHOW KEYS
SHOW FROM

SUBSORT Command
Use the SUBSORT command to set up the parameters for a SORTPROG subsort 
process for a parallel sort or merge run. 

A subsort process runs under a SORTPROG distributor-collector process set up by a 
RUN command. 

The distributor-collector process reads the input file and distributes the input records to 
each subsort process named in the SUBSORT command. After the subsort processes 
finish sorting, the distributor-collector process merges the records from the subsort 
processes and then writes them to the output file. 

scratch-file

is the name of an initial scratch file for the subsort process. If you specify an 
existing file, it must be unstructured. FastSort purges all data in an existing scratch 
file before using it.

BLOCK size

specifies the size in bytes of the input and output blocks for scratch files. The 
scratch file block size must be large enough to accept the largest input record, 
rounded up to the nearest even byte, plus 14 bytes of overhead.

The block size can be any multiple of 2048 bytes up to 56 KB. The default is 
56 KB.

Note. Although you can specify up to 16 subsort processes, HP recommends that you specify 
no more than 8. Running more than 8 subsort processes can cause performance degradation 
for your system or the run to fail with FastSort error 22 (THE MEMORY SPACE FOR 
SORTING IS INSUFFICIENT).

SUBSORT scratch-file [ , BLOCK size    ]...
                     [ , CPU processor ]
                     [ , MEM memory    ]
                     [ , PRI priority  ]
                     [ , SEGMENT size  ]
                     [ , PROGRAM file  ]
                     [ , SWAP file     ]
FastSort Manual—429834-003
3-26



Using FastSort Commands SUBSORT Command
CPU processor

specifies the processor number for the subsort process. Because each subsort 
process is a separate SORTPROG process, you can run each process in a 
different processor. The default is the same processor in which the primary disk 
process for the scratch volume runs. 

MEM memory

exists only for compatibility with earlier sort-merge code. MEM specifies the 
number of memory pages allocated for the SORTPROG process. The size is 
always 64 pages. If you specify a value between 1 and 64 for MEM, FastSort 
ignores the value. If you specify an invalid value, FastSort returns an error 
message and does not start the sort or merge run. 

PRI priority

specifies the priority assigned to the SORTPROG process. The default is the same 
priority as the SORT process. 

SEGMENT size

specifies the size in pages of an extended memory segment for the subsort 
process to use. The number of pages must be at least 256 but cannot exceed 90 
percent of the processor’s physical memory not locked down by the operating 
system. This value overrides the AUTOMATIC, SEGMENT, MINSPACE, and 
MINTIME parameters of the RUN command.

PROGRAM file

specifies a program file to run for the subsort process instead of 
$SYSTEM.SYSnn.SORTPROG. 

SWAP file

specifies the name, including volume and subvolume, of the swap file for the 
extended memory segment. This swap file must be on the local node. If you omit 
the SWAP parameter, FastSort allocates a temporary swap file depending on 
whether the scratch file is local or remote:  

Examples
FROM INFILE
TO OUTFILE
ASC 1:10
SUBSORT $MOLD.SORT.SCRATCH, CPU 3, SEGMENT 128
SUBSORT $DP2.SORT.SCRATCH, CPU 4, SEGMENT 128

Scratch File Location of Swap File 

Local Same disk as initial scratch file 

Remote Disk where the SORTPROG program file is running
FastSort Manual—429834-003
3-27



Using FastSort Commands TO Command
SUBSORT $RAT.SORT.SCRATCH, CPU 5, SEGMENT 128
RUN, CPU 0, AUTOMATIC

TO Command
Use the TO command to specify an output file for the sort or merge run and the 
following options for the run: 

 The exclusion mode for the output file 

 The type of the output file 

 The percentage of data slack and index slack for the file 

 Whether or not FastSort should purge and re-create an existing output file 

 The type of sort or merge run: record, permutation, key, or a combination key and 
permutation 

out-file

is the name of the file to which FastSort writes the output records. If you omit the 
out-file parameter, the output goes to the file named in the list-file 
parameter of the command to start the FastSort process. If you do not specify 
out-file or list-file, the output goes to the home terminal for the FastSort 
process.

FastSort can send output to key-sequenced files, but not to an EDIT (file code 101) 
file. For more information about supported file types, see Appendix C, Using 
Supported File Types.

EXCL[USION] mode

specifies the exclusion mode that FastSort uses to open the output file. The 
exclusion mode can be SHARED, PROTECTED, or EXCLUSIVE. 

SHARED 

specifies that FastSort does not lock the output file. Other processes can write 
to the output file at the same time FastSort is writing its output. Thus, the final 
output file might not be in sorted order. 

TO [ out-file ] [ , EXCL[USION] mode  ]
                [ , KEYS              ]
                [ , PERMUTATION       ]
                [ , TYPE file-type    ]
                [ , NOPURGE           ]
                [ , SLACK percentage  ]
                [ , DSLACK percentage ]
                [ , ISLACK percentage ]
FastSort Manual—429834-003
3-28



Using FastSort Commands TO Command
PROTECTED 

specifies that only FastSort has read and write access to the output file. 

EXCLUSIVE 

specifies that only FastSort has write access to the output file. Other processes 
can have read access to the file. 

These are the default exclusion modes for different devices:  

KEYS

specifies that each output record be the value of all the key fields concatenated in 
the order of their significance. You determine this order by the sequence in which 
you enter ASCENDING and DESCENDING commands and specify the key fields 
in the commands.

If a key field extends beyond the end of a variable-length record in a structured 
output file, SORTPROG pads the key values with blanks. SORTPROG can 
compare a key field at the end of a short record if the record contains the first byte 
of the key value, unless the field type is REAL, SIGNED TRAILING EMBEDDED, 
or SIGNED TRAILING SEPARATE. For comparison of these types of data, key 
fields must contain complete values.

PERM[UTATION]

specifies that the output be 32-bit (4-byte) integers representing record sequence 
numbers. For example, if the sixty-third input record is the first record after sorting, 
the first number in the output is 63.

TYPE file-type

specifies the type of file created for the output records; file-type can be: 

To use an odd unstructured file for the output file, create the file using the FUP 
CREATE command or the CREATE system procedure before the sort or merge run 
and then do not set file-type. 

Device Exclusion Mode 

Permanent disk files PROTECTED

Temporary disk files and terminals SHARED

Other files (not disk files) EXCLUSIVE

U Unstructured

R Relative

E Entry-sequenced

K Key-sequenced
FastSort Manual—429834-003
3-29



Using FastSort Commands TO Command
NOPURGE

directs FastSort not to purge the output file if the file seems too small to contain all 
the output records. This parameter ensures that FastSort preserves the original 
partitioning and extents of the file. FastSort still purges the data from an existing 
output file, even though it does not purge the file.

When you specify NOPURGE, FastSort changes the record length to the default 
value of 132 bytes.

If an existing output file has a different file type than the TO command specifies or 
than SORTPROG uses by default, FastSort purges the existing file whether you 
specify NOPURGE or not. For more information, see Existing Output Files on 
page 3-31.

The SLACK, DSLACK, and ISLACK parameters apply only to key-sequenced 
output files. For other types of output files, FastSort ignores these parameters.

SLACK percentage

specifies the minimum percentage of slack space in both index and data blocks. 
You specify percentage as a value in the range {0:99}. The default is 0 slack.

DSLACK percentage

specifies the minimum percentage of slack space in data blocks. You specify 
percentage as a value in the range {0:99}. The default is the value of the SLACK 
parameter.

ISLACK percentage

specifies the minimum percentage of slack space in index blocks. You specify 
percentage as a value in the range {0:99}. The default is the value of the SLACK 
parameter.

Guidelines 

Follow these guidelines when you use the TO command. 

Output File Types

If out-file specifies a nonexistent disk file or if you do not specify NOPURGE, 
SORTPROG creates a new output file according to these rules in order:

1. SORTPROG uses the file type you specified in the TO command, if any.

2. SORTPROG uses the existing output file’s type if it is a valid output file type and 
does not write output records to EDIT files.

3. SORTPROG uses the first input file’s type if it is a valid disk file type for output and 
does not write output records to EDIT files.
FastSort Manual—429834-003
3-30



Using FastSort Commands TO Command
4. If none of the above conditions exists, SORTPROG creates an entry-sequenced 
file.

You can use a process as an output file.

If out-file is a blocked tape file, SORTPROG writes only one record for each block. 
You can use the File Utility Program (FUP) to block the records and load the tape file. 
For information about FUP, see the FUP Reference Manual.

SORTPROG does not write output records to EDIT files.

Key-sequenced files with increased limits cannot be used as an output file. For more 
information about key-sequenced files with increased limits, see Enscribe 
Programmer’s Guide.

The output file type can be key-sequenced. For key-sequenced files, the following 
rules apply:

 You can use only one sort key field, and the data type for the field must be 
UNSIGNED.

 The sort key field must be the same as the file’s primary key field.

 You must specify the field in an ASCENDING command.

You can specify the data slack and index slack for a new or existing key-sequenced 
output file.

Existing Output Files

 If out-file exists on a disk prior to the sort or merge run, FastSort purges all the 
data in the file before reusing the file. For FastSort to reuse an existing disk file as an 
output file, all of the following must be true:

 The existing file type must be the same as the output file type in effect for the run.

 The existing file size must be equal to or greater than the sum of all the input file 
sizes, except when you specify the NOPURGE parameter.

 The maximum record length for the existing file must be equal to or greater than 
the maximum output record length for the run.

If any of these required conditions does not exist, FastSort purges the existing output 
file and creates a new file. If you do not want FastSort to purge and recreate the file, 
specify the NOPURGE parameter in the TO command. 

Caution. If you specify the same file as both an input file and output file for a sort run, you can 
lose all the data from the input file if an error or processor failure ends the SORTPROG 
process.
FastSort Manual—429834-003
3-31



Using FastSort Commands TO Command
Output Options

If you use both PERMUTATION and KEYS, the output for each record is a 32-bit (4-
byte) record number followed by the concatenated key-field values as shown in below:    

The first 11 characters are sequence numbers, and the remaining characters are the 
defined keys.

These options increase efficiency when you need only part of the data in the records. 
They show the permutation of the sorted records and the values of the records’ key 
fields. If you do not specify PERMUTATION or KEYS, the output is entire records.

When printing the output to list-file, FastSort does not convert nonprintable bytes 
in a record. Therefore, a sorted binary integer field might not display useful information.

If you specify the PERM parameter and omit out-file, FastSort always converts the 
sequence numbers to the 11-digit ASCII display equivalent (10 digits and one trailing 
blank). The ASCII equivalent of the numeric data is packed into as few lines as 
possible, allowing for the line width of the output device.

Examples

TO SORTED,TYPE R, EXCL PROTECTED
TO ,PERMUTATION
TO PARTNOS,KEYS,PERM
TO $TAPE,EXCL EXCLUSIVE

 Byte  0 1 2 3 4 5 ... 

       seq no | key 1 ...| key 2 ...
FastSort Manual—429834-003
3-32



4 Sorting Programmatically

The FastSort programmatic interface consists of the FastSort system procedures. You 
can use the FastSort system procedures to sort and merge records from an application 
program. You can call FastSort system procedures from an application written in any 
language that can call TAL procedures. 

An application calls FastSort system procedures to start, control, and end a 
SORTPROG process. The application sets up the sort or merge run in procedure calls 
and supplies the input records directly or from one or more files. The SORTPROG 
process performs all sorting and merging operations and either writes the output 
records to a file or returns them to the application. 

This section explains how to use a SORTPROG process from an application program. 
It also provides COBOL85 and TAL examples of serial sorting. For general information 
about sorting such as sorting on key fields, controlling extended memory size, 
understanding statistics, and understanding error messages, see Section 2, Sorting 
Interactively. 

Using FastSort System Procedures 
Table 4-1 lists FastSort procedures in the order in which your application might call 
them. For a sort or merge run, you must call SORTMERGESTART and either 
SORTMERGESTATISTICS or SORTMERGEFINISH. Other procedures communicate 
information to the SORTPROG process and return error information. For information 
about each procedure, including syntax, see Section 5, Using FastSort System 
Procedures.

Table 4-1. FastSort System Procedures (page 1 of 2)

Procedure Name Description 

SORTBUILDPARM Specifies parameters for parallel sorting, record blocking, and 
overflow scratch volumes.

SORTMERGESTART Begins the SORTPROG process and passes sort or merge 
parameters from the calling process to SORTPROG.

SORTMERGESEND Sends input records from the calling process to the 
SORTPROG process, one for each call. 

SORTMERGERECEIVE Returns output records from the SORTPROG process to the 
calling process, one for each call.

SORTERROR Provides the message text for the last FastSort error code 
returned by a procedure.

SORTERRORDETAIL Provides the FastSort error code for the most recent error 
and if an input file caused the error, identifies the input file.
FastSort Manual—429834-003
4-1



Sorting Programmatically Starting a Sort or Merge Run
Starting a Sort or Merge Run

Use the SORTMERGESTART procedure to start a SORTPROG process and specify 
parameters for a sort or merge run. SORTMERGESTART contains most of the 
necessary parameters for the sort or merge run, including: 

 One or more input files 

 An output file for sorting or merging, or both

 One or more key fields

 Removal of records that have duplicate key values

 The name of an initial scratch file and a block size for scratch file I/O

 Subsort processes for parallel sorting

 Parameters for running the SORTPROG process

You can use the SORTMERGESTART restart option to limit new process creation for 
each sort or merge run, and to reuse a scratch file in successive runs. 

Ending a Sort or Merge Run

To end a sort or merge run, use either the SORTMERGESTATISTICS or 
SORTMERGEFINISH procedure. SORTMERGEFINISH also stops the SORTPROG 
process, but SORTMERGESTATISTICS does not.

Specifying Record Blocking and Parallel Sorting

Use the SORTBUILDPARM procedure to specify record blocking, parallel sorting, and 
overflow scratch volumes. The SORTBUILDPARM procedure specifies the following:

 A buffer for record blocking to reduce interprocess messages when you use 
SORTMERGESEND or SORTMERGERECEIVE (not valid for a merge run)   

 Processors (CPUs) or the restart option for subsort processes in parallel sorting

 Volumes to either include or exclude from overflow scratch files

SORTERRORSUM Provides SORTERROR and SORTERRORDETAIL 
information and identifies the cause of the most recent error. 

SORTMERGESTATISTICS Reports information about a sort or merge run and ends the 
run.

SORTMERGEFINISH Ends the sort or merge run and stops the SORTPROG 
process. 

Table 4-1. FastSort System Procedures (page 2 of 2)

Procedure Name Description 
FastSort Manual—429834-003
4-2



Sorting Programmatically Allocating Scratch Space
SORTBUILDPARM puts the parameters you specify in a sort control block, which is a 
global array used for storing the information. SORTMERGESTART uses the sort 
control block to pass the parameters to the SORTPROG process. 

Allocating Scratch Space

You can have SORTPROG create initial and overflow scratch files for you. To do this, 
specify either no scratch file in SORTMERGESTART or a disk file that does not exist. 

If you want SORTPROG to use only a single, permanent scratch file, use the formula 
described under Manually Creating a Scratch File on page 9-2 to calculate scratch file 
size. Use FUP to create the file and then specify the file to FastSort in 
SORTMERGESTART.

For example, if your input files have different maximum input record lengths, you might 
want to manually estimate initial scratch file size. Rather than the maximum output 
record length, multiply the number of input records by the average output record 
length. Then tell SORTPROG to use your estimate by setting SORTMERGESTART 
flags.<9> to 1.

Use the scratchvols structure in SORTBUILDPARM to specify volumes to include 
or exclude from overflow scratch files. For more information about scratch files, see 
Section 9, Optimizing Sort Performance. For more information about FUP, see the File 
Utility Program (FUP) Reference Manual.

Getting Information About a Sort or Merge Run

To return information about the sort or merge run to your application, use these 
procedures:

 SORTMERGESTATISTICS

 SORTERRORSUM

SORTMERGESTATISTICS provides details about the records and resource use after a 
successful run. SORTERRORSUM returns all the information provided by 
SORTERROR and SORTERRORDETAIL and identifies the cause of the most recent 
error if not an input error. For more detailed information about statistics and error 
messages, see Understanding Statistics on page 2-13 and Understanding 
Error Messages on page 2-14.

Specifying Input Records
The SORTPROG process reads records directly from one or more input files and 
writes the records to an output file. Each input file can contain either sorted records for 
merging or unsorted records for sorting and merging. When reading more than one 
input file, SORTPROG uses the same key-field specifications for all input records.

Figure 4-1 on page 4-4 shows sorting and merging with input and output files.
FastSort Manual—429834-003
4-3



Sorting Programmatically Sending Input Records From a Process
Sending Input Records From a Process
FastSort can accept records up to 27,648 bytes in buffers of 32 KB from an application 
process. For input records of size greater than 4072 bytes, only buffered interface must 
be used.To send input records from your process to a SORTPROG process, use the 
SORTMERGESEND procedure as follows:

1. If you want to use record blocking, call SORTBUILDPARM. 

2. Call SORTMERGESTART to start SORTPROG.

3. Call SORTMERGESEND to send each record. Specify certain parameters for a 
sort run or a merge run, as the following subsections explain.

4. Call SORTMERGESEND with a length parameter of –1 to tell SORTPROG that 
the last record has been sent.

Figure 4-1. Sorting and Merging With Input and Output Files

•
•
•
•
•

SORTMERGESTART
•
•
•
•
•
•
•
•
•
•

SORTMERGESTATISTICS
•

SORTMERGEFINISH

•
•
•
•

FastSort
Parameters

•
•
•
•
•

Application
Process

SORTPROG
Process

File 1

Input
Unsorted
Records

Input
Sorted

Records

File 2

Completion
Statistics

SORTPROG

Output

Sorted and
Merged
Records

VST401.vsd
FastSort Manual—429834-003
4-4



Sorting Programmatically Sending Records to Be Sorted
Sending Records to Be Sorted

To use SORTMERGESEND for a sort run, you must specify the following values in the 
call to SORTMERGESTART:

 1 for the num-sort-files parameter

 Blanks for the input-file-name parameter

Sending Records to Be Merged

To use SORTMERGESEND for a merge run, you must specify the following in the call 
to SORTMERGESTART:

 A number from 2 to 32 for the num-merge-files parameter

 From 2 to 32 names of all blanks for the input-file-name parameter

SORTPROG can merge multiple sets of records sent from a calling process. In this 
operation, the term input stream refers to a source of sorted records for merging. The 
number of input streams for merging is the number of merge files you specify in the call 
to SORTMERGESTART. SORTPROG merges the sorted records from all input 
streams into a single set of output records.

You can send records from the input streams to SORTPROG through 
SORTMERGESEND. The first call to SORTMERGESEND transmits a record from 
stream 0.  Then SORTPROG returns a number in the stream-id parameter of 
SORTMERGESEND to indicate the input stream from which the next record should 
come. After SORTMERGESEND transmits all records from the input streams, 
SORTPROG merges the records and returns them to the calling process or produces 
the output file.

Record blocking is valid only for sort runs. If you try to use record blocking with merge 
runs, SORTPROG returns error 81 (BLOCKED INTERFACE NOT ALLOWED WITH 
MERGE). 

Figure 4-2 on page 4-6 shows how SORTPROG accepts input records from an 
application process.
FastSort Manual—429834-003
4-5



Sorting Programmatically Returning Output Records to a Process
Returning Output Records to a Process
To have SORTPROG return records to your application, use the 
SORTMERGERECEIVE procedure as follows:

1. Call SORTMERGESTART.

2. Call SORTMERGERECEIVE to return each record until SORTPROG returns –1 in 
the length parameter of SORTMERGERECEIVE. A length of –1 means that 
SORTPROG has returned all the output records.

Figure 4-3 on page 4-7 shows how an application process accepts sorted records from 
SORTPROG.

Figure 4-2. Sending Input Records From an Application Process

•
•
•
•

SORTMERGESTART

•
•
•
•

•

•
 SORTMERGESEND

•
•

 SORTMERGESEND
•
•

 SORTMERGESEND
•
•

 SORTMERGESEND
•
•
•

SORTMERGESTATISTICS
•

SORTMERGEFINISH
•
•
•

SORTPROG

•
•
•
•

Input Record

Input Record

Last Input Record

Completion
Statistics

Application
Process

SORTPROG
Process

FastSort
Parameters

Record Length = -1

Output

Sorted
Records

VST402.vsd
FastSort Manual—429834-003
4-6



Sorting Programmatically Sending and Receiving Records
Sending and Receiving Records
Figure 4-4 on page 4-8 shows how an application process uses both 
SORTMERGESEND and SORTMERGERECEIVE for the same sort or merge run.

Figure 4-3. Returning Sorted Records to an Application Process

•
•
•
•

SORTMERGESTART
•
•
•
•
•
•
•
•
•

 SORTMERGERECEIVE
•
•

 SORTMERGERECEIVE
•
•

 SORTMERGERECEIVE
•
•
•
•

 SORTMERGERECEIVE
•

 SORTMERGERECEIVE
•

SORTMERGESTATISTICS
•

SORTMERGEFINISH

File 1 File 2

SORTPROG

Sorted
Records

•
•
•
•

Application
Process

SORTPROG
Process

FastSort
Parameters

Record Length = -1

Last Record

Input

Unsorted
Records

Input

Sorted
Records

VST403.vsd
FastSort Manual—429834-003
4-7



Sorting Programmatically Estimating the Size of an Output File
Estimating the Size of an Output File
To estimate the size of an output file, multiply output record length by the number of 
input records. For structured files, allow approximately 3 percent for overhead.

If you name a new output file, FastSort estimates the size for you. If you name an 
existing output file, you can tell FastSort to purge the file and create a new one by 
specifying the flags parameter of SORTMERGESTART with flags.<14> set to 1. 

Figure 4-4. Sending and Receiving Records From an Application Process

•
•
•
•
•

SORTMERGESTART
•
•
•

 SORTMERGESEND
•
•

 SORTMERGESEND

•
 SORTMERGESEND

•

 SORTMERGESEND
•
•
•

SORTMERGERECEIVE
•

SORTMERGERECEIVE
•
•
•
•

SORTMERGERECEIVE
•

SORTMERGERECEIVE

•
•

SORTMERGESTATISTICS
•

SORTMERGEFINISH

Sorted
Records

•
•
•
•
•

FastSort
Parameters

Application
Process

SORTPROG
Process

Input Record

Input Record

Last Input Record

Record Length = -1

Last Record

Record Length = -1

Completion
Statistics

SORTPROG

•

•

•

•

VST404.vsd
FastSort Manual—429834-003
4-8



Sorting Programmatically Sorting From C Programs
You can also set flags.<5> to 1 to direct FastSort to not purge an existing output file 
that seems too small.

Sorting From C Programs
Example 4-1 shows a C program that calls FastSort procedures to perform a serial sort 
run.

Example 4-1. C Example of a Serial Sort Run (page 1 of 5)

#pragma  sql wheneverlist
#pragma  symbols
#pragma  inspect
#pragma  runnable
#pragma  nolist
/*-------------------------------------------------------------*/
/*        FastSort Serial Sort Run                             */
/*-------------------------------------------------------------*/
/* This program sends input records to a SORTPROG process      */
/* using SORTMERGESEND and then receives the sorted output     */
/* records using SORTMERGERECEIVE. To reduce interprocess      */
/* messages, this program uses a blocked interface and         */
/* declares two buffers for nowait I/O for writes to SORTPROG. */
/* Error handling and displaying of statistics are stubbed out.*/
/*-------------------------------------------------------------*/
/* External declarations                                       */
/*-------------------------------------------------------------*/
#include <stdioh>
#include <stdlibh>
#include <stringh>
#include <sqlh>
#include <talh>
#include <cextdecs>
#pragma list

#define BLOCKLEN   4096
#define MAXCOUNT   20           /* maximum record count        */
#define BUFSIZE    35           /* size of input buff array    */

char  home_term_name[48];       /* terminal name               */
short home_term_filenum;        /* file number                 */
short home_term_len;            /* actual len of hometerm name */
short home_term_maxlen = 48;    /* max len of hometerm name    */
short error_detail;             /* output from process_getinfo_*/
/*-------------------------------------------------------------*/
/* FastSort control and flags information.                     */
/*-------------------------------------------------------------*/
_lowmem short ctlblk[200]; /* control block for sort interface */
short smflags = 0;    /* SORTMERGESTART flags                  */
short smflags2 = 1;   /* SORTMERGESTART flags2 for nowait I/0  */
short sflag1 = 1;     /* use SORTMERGESTATISTICS 22-word array */
_lowmem short key_array[4]; /* SORTMERGESTART key field defns  */
/*-------------------------------------------------------------*/
/* FastSort block buffers                                      */
/*-------------------------------------------------------------*/
long  block_buffer[BLOCKLEN - 1];
long  block_buffer2[BLOCKLEN - 1];
/*-------------------------------------------------------------*/
/* FastSort record information and buffer.                     */
/*-------------------------------------------------------------*/
long dcount = 20;              /* actual record count          */
long *pdcount = &dcount;
short inbuf[BUFSIZE];          /* record buffer                */
_lowmem char outbuf[MAXCOUNT]; /* output buffer                */
FastSort Manual—429834-003
4-9



Sorting Programmatically Sorting From C Programs
/*-------------------------------------------------------------*/
/* FastSort error and statistics variables.                    */
/*-------------------------------------------------------------*/
short  error;                  /* error return parameter       */
_lowmem short error_buf[20],   /* error message buffer         */
              error_source[20];/* error related info           */
_lowmem long  error_code[40];  /* Fastsort & system error codes*/
struct sortstats_template {
   short maxrecordsize;
   short bufferpages;
   long  records;
   long  elapsedtime;
   long  compares;
   long  scratchseeks;
   long  iowaittime;
   long  scratchfileeof;
   long  initialruns;
   short firstmergeorder;
   short mergeorder;
   short intermediatepasses;
   long  numberofduplicates;
   } _lowmem sortstats;

void error_handler (void);
short DisplaySortStatistics (struct sortstats_template *);
*-------------------------------------------------------------*/
#pragma page  " Main logic "
/*-------------------------------------------------------------*/

int main (void)
{
    short length = 2;
    short errlen = 0;
    short index;
    _lowmem short actuallen;/* for size of statistics in words */
/*-------------------------------------------------------------*/
/* Perform standard initialization.                            */
/*-------------------------------------------------------------*/
   error = PROCESS_GETINFO_(,,,,,,&home_term_name,
                            home_term_maxlen,
                            &home_term_len,
                            ,,,,,,,,,,,&error_detail);
   if (error)
     DEBUG;
   if (FILE_OPEN_(home_term_name,
                  home_term_len,
                 &home_term_filenum) != CCE )
     DEBUG;
   INITIALIZER;          /* read the startup message           */
/*-------------------------------------------------------------*/
/* Initialize SORT key definitions array.                      */
/*-------------------------------------------------------------*/
  key_array[0] = 1;   /* number of keys                        */
  key_array[1] = 2; /* definition = binary, unsigned, ascending*/
  key_array[2] = 2;   /* key length = 2 bytes                  */
  key_array[3] = 0;   /* key offset = 0 bytes                  */

Example 4-1. C Example of a Serial Sort Run (page 2 of 5)
FastSort Manual—429834-003
4-10



Sorting Programmatically Sorting From C Programs
//*-------------------------------------------------------------*/
/* Call SORTBUILDPARM to initialialize SORTPROG control block. */
/* Request blocked, double-buffered interface.                 */
/*-------------------------------------------------------------*/
  error = SORTBUILDPARM (&ctlblk[0],,,
                         &block_buffer[0], &block_buffer2[0],
                         BLOCKLEN);
  if (error)                  /* check for SORTBUILDPARM error */
     {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
     error_handler;
     return EXIT_FAILURE;
     }
/*-------------------------------------------------------------*/
/* Call SORTMERGESTART to start the SORTPROG process.          */
/*-------------------------------------------------------------*/
  error = SORTMERGESTART (&ctlblk[0],
                          &key_array[0],,1,,,
                          pdcount,,,,,,
                          smflags,,,,,,,,,,
                          smflags2,,);
  if (error)                 /* check for SORTMERGESTART error */
     {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
     error_handler;
     return EXIT_FAILURE;
     }
/*-------------------------------------------------------------*/
/*Call SORTMERGESEND to send records to SORTPROG.Send successive*/
/* positive values to be returned in the same ascending order. */
/* Call SORTMERGERECEIVE to get sorted records from SORTPROG.  */
/*-------------------------------------------------------------*/
  length = 2;        /* set length of buffer/input rec in bytes*/
                              /* size dependent on size of key */
  for (index = 1; index <= MAXCOUNT; index++)
    {
    inbuf[0] = index;      /*  set value to send to SORTPROG   */
    error = SORTMERGESEND (&ctlblk[0],,
                           length,,,,
                           (long) &inbuf[0]);
    if (error)             /* check for SORTMERGESEND error    */
       {
       errlen = SORTERRORSUM (&ctlblk[0] ,
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
       error_handler ;
       return EXIT_FAILURE;
       }
    }
length = -1;           /* signal end of records to be sorted  */
 error = SORTMERGESEND (&ctlblk[0],
                        ,length
                        ,
                        ,
                        ,
                        ,(long) &inbuf[0] );

Example 4-1. C Example of a Serial Sort Run (page 3 of 5)
FastSort Manual—429834-003
4-11



Sorting Programmatically Sorting From C Programs
 if (error)                  /* check  for SORTMERGESEND error */
       {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
       error_handler ;
       return EXIT_FAILURE;
       }
/*------------------------------------------------------------*/
/* Call SORTMERGERECEIVE to receive records from SORTPROG.    */
/*------------------------------------------------------------*/
   do
     {
     error = SORTMERGERECEIVE (&ctlblk[0],
                               ,
                               &length
                               ,
                               ,
                               ,(long) &inbuf[0] );

     if (error)      /* check for SORTMERGERECEIVE error       */
       {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
       error_handler;
       return EXIT_FAILURE;
       }
/*-------------------------------------------------------------*/
/* Output the values one at a time to the terminal             */
/*-------------------------------------------------------------*/
     NUMOUT (&outbuf[0],inbuf[0],10,2);
     WRITE (home_term_filenum, (short *) &outbuf[0],length);
     }
   while (length != -1);
/*-------------------------------------------------------------*/
/* Return SORTPROG completion errlen and statistics. Set       */
/* length in words, to return all statistics information.      */
/*-------------------------------------------------------------*/
  actuallen = sizeof(sortstats)/2;
  error = SORTMERGESTATISTICS (&ctlblk[0], &actuallen, &sortstats,
                               sflag1);
  if (error)          /* check for SORTMERGESTATISTICS error   */
       {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
       error_handler;
       return EXIT_FAILURE;
       }

*-------------------------------------------------------------*/
/* Call function to display the statistics                     */
/*-------------------------------------------------------------*/
  error = DisplaySortStatistics (&sortstats);
  if (error)
       return EXIT_FAILURE;

Example 4-1. C Example of a Serial Sort Run (page 4 of 5)
FastSort Manual—429834-003
4-12



Sorting Programmatically Sorting From COBOL85 Programs
Sorting From COBOL85 Programs
When you use a SORT or MERGE statement in a COBOL85 program, COBOL85 calls 
FastSort procedures. COBOL85 uses SORTMERGESEND and 
SORTMERGERECEIVE record blocking for: 

 Input procedures and output procedures specified in SORT statements 

 Tape files specified in the USING phrase of SORT and MERGE statements

 Tape files or multiple output files specified in the GIVING phrase of SORT and 
MERGE statements

COBOL85 does not use record blocking for a program that runs as a process pair. 

For tape input files, COBOL85 deblocks the records and uses the SORTMERGESEND 
procedure to send them to SORTPROG. For tape output files, COBOL85 blocks the 
records from SORTMERGERECEIVE. Instead of transferring a single record in each 
interprocess message between the COBOL85 program process and SORTPROG, 
FastSort transfers a block of input or output records in each message. 

To run FastSort from a COBOL85 program, you use the COBOL85 utility library. This 
library resides in the $SYSTEM.SYSTEM.COBOLLIB program file. For more 
information about COBOLLIB, see the COBOL85 Reference Manual. 

Example 4-2 on page 4-14 shows a COBOL85 example of a serial sort run. For a 
COBOL85 example of a parallel sort run, see Section 6, Sorting in Parallel.

//*-------------------------------------------------------------*/
/* Call SORTMERGEFINISH to stop SORTPROG after the process     */
/* successfully completes the current sort and merge run(s).   */
/*-------------------------------------------------------------*/
  error = SORTMERGEFINISH (&ctlblk[0]);
  if (error)                /* check for SORTMERGEFINISH error */
       {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
       error_handler;
       return EXIT_FAILURE;
       }
    FILE_CLOSE_ (home_term_filenum);
}                                      /* End of Main logic    */
void error_handler (void)
{
 /* error handling stubbed out */
  return;
}

short DisplaySortStatistics (struct sortstats_template *instats)
{
 /* Printing of statistics stubbed out */
  return EXIT_SUCCESS;
}
/*------------------------E-N-D--------------------------------*/

Example 4-1. C Example of a Serial Sort Run (page 5 of 5)
FastSort Manual—429834-003
4-13



Sorting Programmatically Sorting From COBOL85 Programs
Example 4-2. COBOL85 Example of a Serial Sort Run (page 1 of 2)

*---------------------------------------------------------
*            FastSort Serial Sort Run Program
*---------------------------------------------------------
* This program sorts an input file specified by the TACL
* DEFINE =INFILE and writes the sorted records to an output
* file specified by the TACL DEFINE =OUTFILE.  The program
* uses a temporary scratch file on the user's default volume.
*---------------------------------------------------------
?SYMBOLS, INSPECT
?LIBRARY $SYSTEM.SYSTEM.COBOLLIB
 IDENTIFICATION DIVISION.
   PROGRAM-ID.               FASTSORT-SERIAL-SORT.
 ENVIRONMENT DIVISION.
  CONFIGURATION SECTION.
  INPUT-OUTPUT SECTION.
    FILE-CONTROL.
    SELECT INPUT-FILE
           ASSIGN TO "=INFILE"
           ORGANIZATION IS SEQUENTIAL
           ACCESS MODE IS SEQUENTIAL.
    SELECT OUTPUT-FILE
           ASSIGN TO "=OUTFILE"
           ORGANIZATION IS SEQUENTIAL
           ACCESS MODE IS SEQUENTIAL.
    SELECT SCRATCH-FILE
           ASSIGN TO "#TEMP".
DATA DIVISION.
   FILE SECTION.
   FD INPUT-FILE
       LABEL RECORDS ARE OMITTED
       RECORD CONTAINS 25 CHARACTERS.
   01  IN-RECORD.
       05 EMPLOYEE-NAME          PIC X(20).
       05 EMPLOYEE-NUMBER        PIC 9(5).
   FD OUTPUT-FILE
       LABEL RECORDS ARE OMITTED
       RECORD CONTAINS 25 CHARACTERS.
   01  OUT-RECORD.
       05 EMPLOYEE-NAME         PIC X(20).
       05 EMPLOYEE-NUMBER       PIC 9(5).
   SD SCRATCH-FILE
       RECORD CONTAINS 25 CHARACTERS.
   01  SORT-RECORD.
       05 EMPLOYEE-NAME        PIC X(20).
       05 EMPLOYEE-NUMBER      PIC 9(5).

*---------------------------------------------------------
* Main program:  Open files and initiate SORTPROG.
*---------------------------------------------------------
 PROCEDURE DIVISION.
 OPEN-FILES.
   DISPLAY "Starting FastSort serial sort run...".
   OPEN INPUT INPUT-FILE.
   OPEN OUTPUT OUTPUT-FILE.
   SORT SCRATCH-FILE
        ON ASCENDING KEY EMPLOYEE-NAME OF SORT-RECORD,
           INPUT  PROCEDURE IS SORTIN-PROCEDURE
           OUTPUT PROCEDURE IS SORTOUT-PROCEDURE.
 DISPLAY "FastSort serial sort run completed.".
 STOP RUN.
FastSort Manual—429834-003
4-14



Sorting Programmatically Sorting From TAL Programs
Sorting From TAL Programs
You can call a FastSort procedure directly from a TAL program. The program must 
include a declaration for the sort control block and for any variables, constants, and 
text identifiers you use in the procedure calls. For information about TAL declarations 
and the structure of TAL programs, see TAL Reference Manual.

Example 4-3 on page 4-16 shows a TAL program that calls FastSort procedures to 
perform a serial sort run. 

*---------------------------------------------------------
* Input:  Read input records and release to SORTPROG.
*---------------------------------------------------------
 SORTIN-PROCEDURE SECTION.
   DISPLAY "Reading input records...".
 READ-INPUT.
   READ INPUT-FILE NEXT RECORD
        AT END GO TO SORTIN-EXIT.
   RELEASE SORT-RECORD FROM IN-RECORD.
   GO TO READ-INPUT.
 SORTIN-EXIT.
   EXIT.
*---------------------------------------------------------
* Output:  Return sorted records and write to output file.
*---------------------------------------------------------
 SORTOUT-PROCEDURE SECTION.
   DISPLAY "Writing sorted records...".
RETURN-OUTPUT.
   RETURN SCRATCH-FILE
      AT END GO TO SORTOUT-EXIT.
   MOVE CORRESPONDING SORT-RECORD TO OUT-RECORD.
   WRITE OUT-RECORD.
   GO TO RETURN-OUTPUT.
 SORTOUT-EXIT.
   EXIT.

Example 4-2. COBOL85 Example of a Serial Sort Run (page 2 of 2)
FastSort Manual—429834-003
4-15



Sorting Programmatically Sorting From TAL Programs
Example 4-3. TAL Example of a Serial Sort Run (page 1 of 3)

?SYMBOLS, NOCODE, INSPECT, MAP, LMAP
!-----------------------------------------------------------!
!                  FastSort Serial Sort Run                 !
!-----------------------------------------------------------!
! This program sends input records to a SORTPROG process    !
! using SORTMERGESEND and then receives the sorted output   !
! records using SORTMERGERECEIVE.  To reduce interprocess   !
! messages, this program uses a blocked interface and de-   !
! clares two buffers for nowait I/O for writes to SORTPROG. !
!                                                           !
! (Note:  This program shows only FastSort procedure calls  !
! and does not contain error recovery routines or other     !
! features that might be implemented in an actual program.) !
!-----------------------------------------------------------!
! Global declarations.                                      !
!-----------------------------------------------------------!
INT .home^term^name[0:11] := 12*["  "]; ! Terminal name
INT  home^term^filenum;                 ! File number
!-----------------------------------------------------------!
! FastSort control and flags information.                   !
!-----------------------------------------------------------!
INT .ctlblk[0:199];   ! Control block for sort interface
INT  flags := 0;      ! SORTMERGESTART flags
INT  flags2 := 1;     ! SORTMERGESTART flags2 for nowait I/O
INT .key^array[0:3];  ! SORTMERGESTART key field definitions
!-----------------------------------------------------------!
! FastSort block buffers.                                   !
!-----------------------------------------------------------!
LITERAL block^length = 4096;
STRING .block^buffer [0:block^length - 1];
STRING .block^buffer2[0:block^length - 1];
!-----------------------------------------------------------!
! FastSort record information and buffer.                   !
!-----------------------------------------------------------!
LITERAL  max^count = 300;          ! Maximum count
INT(32)  dcount := 300D;           ! Record count
INT     .inbuf[0:35];              ! Record buffer
!-----------------------------------------------------------!
! FastSort error and statistics variables.                  !
!-----------------------------------------------------------!
INT     .error^buf[0:31],  ! Error message
         error^source,     ! Error related info
         error;            ! Error return parameter
INT(32)  error^code;       ! FastSort and system error codes
INT     .statistics[0:20]; ! Statistics buffer
-----------------------------------------------------------!
?PAGE "External Declarations From EXTDECS0"
!-----------------------------------------------------------!
?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (DEBUG,
?                                INITIALIZER,
?                                MYTERM,
?                                OPEN,
?                                SORTMERGESTART,
?                                SORTERRORSUM,
?                                SORTMERGESTATISTICS,
?                                SORTBUILDPARM,
?                                SORTMERGESEND,
?                                SORTMERGERECEIVE)
?LIST
FastSort Manual—429834-003
4-16



Sorting Programmatically Sorting From TAL Programs
!!-----------------------------------------------------------!
?PAGE "Start of MAIN Procedure"
!-----------------------------------------------------------!
PROC main^proc MAIN;
BEGIN
    INT length;
    INT index;
    INT(32) buf^addr  := $XADR(block^buffer);
    INT(32) buf^addr2 := $XADR(block^buffer2);
    INT(32) rec^addr  := $XADR(inbuf);
!-----------------------------------------------------------!
! Perform standard initialization.                          !
!-----------------------------------------------------------!
 CALL MYTERM (home^term^name);
 CALL OPEN (home^term^name, home^term^filenum);
   IF <> THEN CALL DEBUG;
 CALL INITIALIZER;          ! Read the startup message.
!-----------------------------------------------------------!
! Initialize SORT key definitions array.                    !
!-----------------------------------------------------------!
key^array[0] := 1;  ! Number of keys
key^array[1] := 9;  ! Definition = binary, signed, ascending
key^array[2] := 2;  ! Key length = 2 bytes
key^array[3] := 0;  ! Key offset = 0 bytes
!-----------------------------------------------------------!
! Call SORTBUILDPARM to Initialize SORTPROG control block.  !
! Request blocked, double-buffered interface.               !
!-----------------------------------------------------------!
error := SORTBUILDPARM (ctlblk,,,
                        buf^addr, buf^addr2,
                        block^length);
!-----------------------------------------------------------!
! Call SORTMERGESTART to start the SORTPROG process.        !
!-----------------------------------------------------------!
error := SORTMERGESTART (ctlblk,
                         key^array,,1,,,
                         dcount,,,,,,
                         flags,,,,,,,,,,
                         flags2);
IF error THEN   ! Check for SORTMERGESTART error.
   BEGIN
   length := SORTERRORSUM (ctlblk,
                           error^buf,
                           error^code,
                           error^source);
   ! Process the SORTMERGESTART error.
   END;
!-----------------------------------------------------------!
! Call SORTMERGESEND to send records to SORTPROG.           !
! (Note:  This program sends successive negative values in  !
! descending order to SORTPROG.  SORTPROG then returns the  !
! values sorted in ascending order.  An actual program      !
! would get input values from another source.)              !
!-----------------------------------------------------------!

Example 4-3. TAL Example of a Serial Sort Run (page 2 of 3)
FastSort Manual—429834-003
4-17



Sorting Programmatically Sorting From TAL Programs
length := 70;  ! Set length of buffer.
FOR index := 1 TO max^count DO
  BEGIN
  inbuf := - index;  ! Set value to send to SORTPROG.
  error := SORTMERGESEND (ctlblk,,
                          length,,,,
                          rec^addr);
  IF error THEN  ! Check for SORTMERGESEND error.
     BEGIN
     length := SORTERRORSUM (ctlblk,
                             error^buf,
                             error^code,
                             error^source);
     ! Process the SORTMERGESEND error.
     END;
  END;
 length := -1;  ! Indicate all records have been sent.
 error := SORTMERGESEND (ctlblk,,
                         length,,,,
                         rec^addr);
 IF error THEN  ! Check for SORTMERGESEND error.
    BEGIN
    length := SORTERRORSUM (ctlblk,
                            error^buf,
                            error^code,
                            error^source);
    ! Process the SORTMERGESEND error.
    END;
!-----------------------------------------------------------!
! Call SORTMERGERECEIVE to receive records from SORTPROG.   !
!-----------------------------------------------------------!
 DO
   BEGIN
   error := SORTMERGERECEIVE (ctlblk,inbuf,length);
   IF error THEN  ! Check for SORTMERGERECEIVE error.
      BEGIN
      length := SORTERRORSUM (ctlblk,
                              error^buf, error^code,
                              error^source);
      ! Process the SORTMERGERECEIVE error.
      END;
   END
!-----------------------------------------------------------!
! Note:  At this point, an actual program would process the !
! sorted output records returned from SORTPROG.             !
!-----------------------------------------------------------!
 UNTIL length = -1 ;
!-----------------------------------------------------------!
! Return SORTPROG completion status and statistics. Set     !
! length to return all 21 words of statistics information.  !
!-----------------------------------------------------------!
length := 21;
error := SORTMERGESTATISTICS (ctlblk, length, statistics);
  IF error THEN  ! Check for SORTMERGESTATISTICS error.
     BEGIN
     length := SORTERRORSUM (ctlblk,
                             error^buf,
                             error^code,
                             error^source);
    ! Process the SORTMERGESTATISTICS error.
    END;
END;                 ! End of MAIN Procedure !
!-----------------------------------------------------------!

Example 4-3. TAL Example of a Serial Sort Run (page 3 of 3)
FastSort Manual—429834-003
4-18



5
Using FastSort System Procedures

This section describes the FastSort system library procedures. FastSort procedures 
communicate between a user-written application process and a SORTPROG process. 
The SORTPROG process runs independently of an application process and by default 
resides in the $SYSTEM.SYSnn.SORTPROG program file.

For information about calling these procedures for serial sorting, see Section 4, Sorting 
Programmatically. For information about calling these procedures for parallel sorting, 
see Section 6, Sorting in Parallel. Both sections contain TAL and COBOL85 examples. 

The table below describes the FastSort system library procedures in the order in which 
you call them in an application.

In addition to the 350 words required by system procedure calls, the FastSort system 
procedures require additional data stack space that is not automatically allocated by 
the BINSERV process during compilation. Use the table below to determine the 
amount of additional space you need to allocate for an application that calls FastSort 
procedures: 

Procedure Name Description 

SORTBUILDPARM Specifies parameters for parallel sorting, record 
blocking, and scratch volume structure.

SORTMERGESTART Begins the SORTPROG process and passes 
parameters for a sort or merge run from the calling 
process to SORTPROG.

SORTMERGESEND Sends input records from the calling process to the 
SORTPROG process, one for each call. 

SORTMERGERECEIVE Returns output records from the SORTPROG process to 
the calling process, one for each call.

SORTERROR Provides the message text for the last FastSort error 
code returned by a procedure.

SORTERRORDETAIL Provides the FastSort error code for the most recent 
error and, if an input file caused the error, identifies the 
input file.

SORTERRORSUM Provides all information that SORTERROR and 
SORTERRORDETAIL provide and identifies the cause 
of the most recent error if not an input file.

SORTMERGESTATISTIC
S

Reports information about a sort or merge run and ends 
the run.

SORTMERGEFINISH Ends the sort or merge run and stops the SORTPROG 
process. 
FastSort Manual—429834-003
5-1



Using FastSort System Procedures SORTBUILDPARM Procedure
To allocate this additional space in an application, use one of the following methods: 

 For a TAL application, use the DATAPAGES compiler directive during compilation. 
Specify DATAPAGES 64 to allocate the maximum amount. 

 For all applications, use the Binder SET EXTENDSTACK command after 
compilation. Specify 64 PAGES to allocate the maximum amount. 

 When you run the program, specify 64 for the MEM option of the RUN command. If 
you run the program from another application, specify 64 for the 
PROCESS_CREATE_ or NEWPROCESS[NOWAIT] memory-pages parameter.

 Move user data from the user data segment to an extended data segment to free 
up more data stack space for the call to SORTMERGESTART. 

For information about TAL compiler directives, see the TAL Reference Manual. For 
information about the Binder SET command, see the Binder Manual. 

In addition to the requirements listed in the table above, if you specify either the 
SCRATCHON or NOSCRATCHON attributes in a SORT DEFINE, FastSort requires up 
to 138 additional words of stack space. To learn how FastSort uses this space to build 
a pool of scratch volumes, see Table 5-1 on page 5-5.

If your application process starts a new process, FastSort also requires 30 to 35 
additional words of stack space to support the PROCESS_CREATE_ procedure. 

SORTBUILDPARM Procedure
Use SORTBUILDPARM to specify the following: 

 A group of processors (CPUs) for a parallel sort run 

 A buffer for record blocking 

 A list of volumes to be used or not used for scratch files

Operation Description Additional Space 

Simple Less than 5 keys, no subsorts, 1 input file 2 pages 

Medium Greater than 5 keys, either subsorts or multiple input files 3 pages 

Complex Greater than 5 keys, subsorts, multiple input files 4 pages 
FastSort Manual—429834-003
5-2



Using FastSort System Procedures SORTBUILDPARM Procedure
The call to SORTBUILDPARM must precede the call to SORTMERGESTART. 
SORTBUILDPARM stores your parameters in the sort control block, and 
SORTMERGESTART passes the parameters to the SORTPROG process. 

status                   returned value

INT

returns a FastSort error code if an error occurred; if not, status returns 0.

ctlblock                 input

INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You 
should not rely on the information in ctlblock, because this information can 
change without warning.    

cpu-mask                 input

INT:value

specifies processors (CPUs) in which FastSort can run subsort processes. 
FastSort can use a processor number (0 – 15) if the respective bit of the mask is 
set to on. If you omit cpu-mask or the call to SORTBUILDPARM, all bits of the 
mask are on. The not-cpu-mask parameter can override bit settings of cpu-
mask.

not-cpu-mask             input

INT:value

specifies the processors (CPUs) in which subsort processes cannot run. FastSort 
cannot use a processor number (0 – 15) if the respective bit of the mask is set to 
on.

buffer                   input

INT(32):value

{ status := } SORTBUILDPARM ( ctlblock             ! i
{ CALL      }                ,[ cpu-mask ]         ! i
                             ,[ not-cpu-mask ]     ! i
                             ,[ buffer ]           ! i
                             ,[ buffer2 ]          ! i
                             ,[ buffer-length ]    ! i
                             ,[ build-flags ]      ! i
                             ,[ define-name ]      ! i
                             ,   reserved1         ! reserved
                             ,   reserved2         ! reserved
                             ,[ scratchvols ]     )! i
FastSort Manual—429834-003
5-3



Using FastSort System Procedures SORTBUILDPARM Procedure
is the address of a buffer that SORTPROG can use to block input records from 
SORTMERGESEND or deblock output records for SORTMERGERECEIVE. This 
buffer can be in the user data space segment (for buffer length up to 8 KB) or in an 
extended data segment. If the buffer is in an extended data segment, the segment 
must be in use at the time of the call. You should not rely on the information in 
buffer, because this information can change without warning.    

For double buffering, you can also specify the buffer2 parameter.

If you specify buffer, you must specify the length of buffer in the 
buffer-length parameter.

buffer2                  input

INT(32):value

is the address of a second buffer that SORTPROG can use to block input records 
from SORTMERGESEND and output records for SORTMERGERECEIVE. Like 
buffer, buffer2 can be in the user data space segment (for buffer length up to 8 
KB) or in an extended data segment. If the buffer is in an extended data segment, 
the segment must be in use at the time of the call. Also, if you specify both buffers 
in an extended data segment, they must be in the same segment. You should not 
rely on the information in buffer2, because this information can change without 
warning.

If you specify buffer2, you must specify the buffer and buffer-length 
parameters. Both buffers have the length buffer-length. 

Record blocking is valid only for sort runs. If you try to use record blocking with 
merge runs, SORTPROG returns error 81 (BLOCKED INTERFACE NOT 
ALLOWED WITH MERGE).   

buffer-length            input

INT:value

is the length, in bytes, of buffer and of buffer2 (if specified). The length can 
range from 4 KB to 32 KB.

build-flags               input

INT:value

is limited to the build-flags.<15> bit, which specifies the same restart option as 
the SORTMERGESTART restart flag (flags.<15>). For more information on 
description of flags.<15> bit, see Table 5-4 on page 5-32.

Other build-flags bits are not used and should be set to 0.

To preserve SORTBUILDPARM parameters in the sort control block when you use 
the restart option, call SORTBUILDPARM with build-flags.<15> set to 1 before 
you call SORTMERGESTART with flags.<15> set to 1. Before your process can 
FastSort Manual—429834-003
5-4



Using FastSort System Procedures SORTBUILDPARM Procedure
use the restart flags, it must call SORTMERGESTATISTICS or an error must end 
the SORTPROG process. 

define-name               input

INT:ref:12

is an optional 12-word array that specifies the SORT DEFINE name to be used. 
For more information, see Section 7, Using SORT and SUBSORT DEFINEs. 

reserved1 and reserved2

are reserved for future parameters. If you specify a value for reserved1 or 
reserved2, FastSort returns an error.

scratchvols               input

INT:ref:*

is a pointer to an array of the form shown in Table 5-1.

Using 32 KB Buffers

FastSort supports buffers up to 32 KB.

Example

build^status := SORTBUILDPARM (sortblock,,,  
                               blockbuf, 
                               dblbuff,  
                               32768);

FastSort supports only buffered interface for records greater than 4072 bytes.

Table 5-1. SORTBUILDPARM scratchvols Structure

Word Description

0:7 Eight words reserved for use by FastSort library procedures.

8 Set to zero if SORTPROG should use specified volumes for scratch files. 
Set to one if SORTPROG should not use specified volumes for scratch files.

9 The number of volumes specified in the following list. The range is 1 to 32.

10:13* The first entry on the list of volume names. The volume name must be of the 
form $data, $data*, $sp?o*, and so on. The volume name must be eight 
bytes long, blank padded on the right. There are no list separators.

:

:

:

137

:

:

:

If there are 32 volumes on the list, the final word of the array is word 137.

* Words 14 through 137 are optional.
FastSort Manual—429834-003
5-5



Using FastSort System Procedures SORTBUILDPARM Procedure
Guidelines

Follow these guidelines when you call the SORTBUILDPARM procedure.

Specifying a Group of Processors for Subsort Processes

When you configure a parallel sort run, you can have the distributor-collector 
SORTPROG process select processors for subsort processes. SORTPROG considers 
processors you specify in the cpu-mask parameter. You can use the not-cpu-mask 
parameter, which overrides cpu-mask, to exclude one or more processors. 

FastSort selects a processor from the group if you do not specify a processor for a 
subsort process in the process-start parameter of SORTMERGESTART. If you do 
not specify any processors, FastSort puts each subsort process in the processor that 
runs the disk process for the subsort initial scratch file.

Improving Performance With Record Blocking and Nowait I/O

If your program calls SORTMERGESEND or SORTMERGERECEIVE, you can reduce 
the number of interprocess messages by using a single or double buffer for record 
blocking. SORTMERGESTART provides the buffer to transfer a block of records to or 
from SORTPROG, instead of a single record, in each interprocess message. 

Record blocking is valid only for sort runs. If you try to use record blocking with merge 
runs, SORTPROG returns error 81 (BLOCKED INTERFACE NOT ALLOWED WITH 
MERGE).   

Each call to SORTMERGESEND puts a record into the buffer, and each call to 
SORTMERGERECEIVE returns a record from the buffer. FastSort transfers blocks of 
unsorted records out of the buffer and blocks of sorted records into the buffer. You 
specify block size, from 4 KB to 32 KB, in the buffer-length parameter.

Your process can use the second buffer to send or receive a single record while 
FastSort transfers a block of records. This feature reduces the time your process waits 
for SORTMERGESEND or SORTMERGERECEIVE to complete its operation.

Use buffer2 only if you want nowait I/O. You also need to use the flags2 parameter 
in the call to SORTMERGESTART, with the flags2.<15> bit set to 1. Then the 
FastSort routines call AWAITIO and switch the buffers when necessary.   

For more information about AWAITIO, see the Guardian Procedure Calls Reference 
Manual. For more information about nowait I/O, see the Guardian Programmer's 
Guide.

Figure 5-1 on page 5-7 shows how FastSort transfers unblocked records between your 
process and SORTPROG.

Caution. YIf you use nowait I/O, your process should not call AWAITIO to wait on any file 
(filenum=-1). If your application program calls AWAITIOX - 1 while a sort in invoked, the sort 
will fail with error 5 (COMMUNICATIONS WITH THE SORT PROCESS HAVE FAILED).
FastSort Manual—429834-003
5-6



Using FastSort System Procedures SORTBUILDPARM Procedure
Figure 5-2 on page 5-8 shows how FastSort transfers blocked records between your 
process and SORTPROG if you use nowait I/O.

Figure 5-1. Sending and Receiving Unblocked Records

SORTMERGESTART

•
•
•

SORTMERGESEND

•
•
•

SORTMERGERECEIVE

•
•
•

SORTMERGEFINISH

User Application Process

Message Containing
One Unsorted Record

Message
Containing One
Sorted Record

SORTPROG
Process

VST501.vsd
FastSort Manual—429834-003
5-7



Using FastSort System Procedures SORTBUILDPARM Procedure
Using Buffers in Extended Addresses

If buffer or buffer2 is an extended address, the address must be relative. It cannot 
be an absolute extended address. The extended segment must be allocated and in 
use when the FastSort library procedures are called. Do not deallocate or decrease the 
size of the extended data segment after calling SORTBUILDPARM. An invalid 
extended address causes an illegal address trap. 

Example

build^status := SORTBUILDPARM (sortblock,,,  
                               blockbuf, 
                               dblbuff,  
                               8192);

Figure 5-2. Sending and Receiving Blocked Records

User Application process

Message
containing a
block of
unsorted
records

SORTPROG
process

SORTBUILDPARM
SORTMERGESTART
        •
        •
        •
SORTMERGESEND
        •
        •
        •
SORTMERGERECEIVE
        •
        •
        •
SORTMERGEFINISH

Define buffer

One record at a time
Double
Buffer

Message
containing a
block of
sorted records

One record at a time

VST502.vsd
FastSort Manual—429834-003
5-8



Using FastSort System Procedures SORTERROR Procedure
SORTERROR Procedure
Use SORTERROR to provide the message text for the last FastSort error code 
returned by a FastSort procedure. 

length                   returned value

INT

returns the number of characters in the error message.

ctlblock                 input

INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You 
should not rely on the information in ctlblock, because this information can 
change without warning.

buffer                   output

INT:ref:32

is a 32-word integer array that receives the FastSort error code message text. 
SORTPROG does not pad the text with blanks if the buffer is shorter than 32 
words. Any bytes to the right of the text remain unchanged. 

Example

textlen := SORTERROR (sortblock, 
                      outbuf);

SORTERRORDETAIL Procedure
Use SORTERRORDETAIL to obtain the file-system or NEWPROCESS error code and 
the FastSort error code for the most recent error. If an input file caused the error, 
SORTERRORDETAIL also uses an index to identify the file in the array of file names 
created by the in-file-name parameter of the SORTMERGESTART procedure. 

status                   returned value

INT(32)

{ length := } SORTERROR ( ctlblock             ! i 
{ CALL      }            , buffer  )           ! o 

{ status := } SORTERRORDETAIL ( ctlblock )       ! i
{ CALL      }
FastSort Manual—429834-003
5-9



Using FastSort System Procedures SORTERRORSUM Procedure
returns error codes and the index of an input file in a double-word integer. The 
high-order word contains the file-system or NEWPROCESS error code. The low-
order word contains the FastSort error code in the low-order byte and an index 
identifying the input file that caused the error in the high-order byte. The index is 
one of those in the array of file names created by the in-file-name parameter of 
SORTMERGESTART.

If no input file caused the error or if no error is outstanding, the low-order bits 
0 through 7 are 0.

This is the format for the double-word integer: 

ctlblock                 input

INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You 
should not rely on the information in ctlblock, because this information can 
change without warning.

Example

detail^status := SORTERRORDETAIL (sortblock);

SORTERRORSUM Procedure
Use SORTERRORSUM to obtain the information that SORTERROR and 
SORTERRORDETAIL provide and to identify the cause of the last error. In parallel 
sorting, SORTERRORSUM specifies the process and processor (CPU) in which the 
last error occurred. 

length                   returned value

INT

returns the number of characters in the error message.

Parameter 
Word

                                            Bits

   0   1   2   3   4   5   6   7   8   9   10   11   12  13   14   
15

High-order File system or NEWPROCESS(NOWAIT) error code

Low-order   FastSort input file index        FastSort error code

{ length := } SORTERRORSUM ( ctlblock           ! i
{ CALL      }               ,[ buffer ]         ! o
                            ,[ error-code ]     ! o
                            ,[ error-source ]   ! o
                            ,[ subsort-index ]  ! o
                            ,[ subsort-id ] )   ! o
FastSort Manual—429834-003
5-10



Using FastSort System Procedures SORTERRORSUM Procedure
ctlblock                 input

INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You 
should not rely on the information in ctlblock, because this information can 
change without warning.

buffer                   output

INT:ref:* 

is a 16-word integer array that receives the error message text. SORTPROG does 
not pad the text with blanks if the buffer is shorter than 16 words. Any bytes to the 
right of the text remain unchanged.

error-code               output

INT(32)

receives error codes and the index of an input file in a double-word integer. The 
high-order word contains the file-system or NEWPROCESS error code. The low-
order word contains the FastSort error code in the low-order byte and an index 
identifying the input file that caused the error in the high-order byte. The index is 
one of those in the array of file names created by the in-file-name parameter of 
the SORTMERGESTART procedure.

If no input file caused the error or if no error is outstanding, the low-order bits 
0 through 7 are 0.

This is the format for the double-word integer: 

error-source             output

INT:ref:1

is a buffer that specifies the cause of the last FastSort error; error-source can 
be one of the following values:  

Value Cause of Error 

–1 The information is not available. 

 1 Input file

 2 Output file 

    0     1     2     3     4     5     6     7     8     9     10     11     12     13    14     15
Parameter Word

High-Order

Low-Order

Bits

File-System or NEWPROCESS[NOWAIT] Error Code

FastSort Input File Index FastSort Error Code

VST503.vsd
FastSort Manual—429834-003
5-11



Using FastSort System Procedures SORTMERGEFINISH Procedure
subsort-index            output

INT:ref:1

receives the relative number of a subsort process that caused the last error. If the 
distributor-collector caused the last error or if you did not specify any subsort 
processes, SORTPROG sets subsort-index to –1.

subsort-id               output

INT:ref:1

receives the CPU and process identification numbers (PINs) of the subsort process 
that caused the last error. If you did not specify a subsort processes or if the 
distributor-collector process caused the error, SORTPROG sets subsort-id to –
1. 

Example

error^length := SORTERRORSUM (sortblock, 
                              buffer, 
                              error^code, 
                              source, 
                              subsort^index, 
                              subsort^id);

SORTMERGEFINISH Procedure
Use SORTMERGEFINISH to end the SORTPROG process after the process 
completes the sort or merge run. A sorting or merging error stops the SORTPROG 
process when the error occurs. If SORTPROG stops due to an error, the next call to a 
FastSort procedure returns an error. 

status                   returned value

INT

returns a FastSort error code if an error occurred; if not, returns 0. For more 
information about error messages, see Appendix B, FastSort Error Messages.

 3 Scratch file

 4 The free-list file (an additional scratch file that SORTPROG allocates for 
internal memory management when sorting large amounts of data)

 5 Process communication 

{ status := } SORTMERGEFINISH ( ctlblock       ! i
{ CALL      }                  ,[ abort ]      ! i
                               ,[ spare1 ]     ! reserved
                               ,[ spare2 ] )   ! reserved

Value Cause of Error 
FastSort Manual—429834-003
5-12



Using FastSort System Procedures SORTMERGERECEIVE Procedure
ctlblock                 input

INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You 
should not rely on the information in ctlblock, because this information can 
change without warning.

abort                    input

INT:value

specifies when the SORTPROG process should stop: 

spare1 and spare2      reserved

are reserved for future parameters. If you specify a value for spare1 or spare2, 
FastSort returns an error. 

Example

error := SORTMERGEFINISH (sortblock);

SORTMERGERECEIVE Procedure
Use SORTMERGERECEIVE to return the output records from the SORTPROG 
process directly to the calling process. Use SORTMERGERECEIVE if you omit the 
out-file-name parameter from the call to SORTMERGESTART or if 
out-file-name equals all blanks. 

status                   returned value

INT

returns a FastSort error code if an error occurred; if not, returns 0.

0 Specifies that the SORTPROG process stop after completion of the current 
sort or merge run. This is the default value.

1 Specifies that the SORTPROG process stop immediately. The calling 
process receives system message -5 in its $RECEIVE file:

-5 PROCESS NORMAL DELETION (STOP)

{ status := } SORTMERGERECEIVE ( ctlblock           ! i
{ CALL      }                   ,[ record-loc ]     ! o
                                ,length             ! o
                                ,[ spare1 ]         ! 
reserved
                                ,[ spare2 ]         ! 
reserved
                                ,[ record-loc-ext ] ! o
FastSort Manual—429834-003
5-13



Using FastSort System Procedures SORTMERGERECEIVE Procedure
ctlblock                 input

INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You 
should not rely on the information in ctlblock, because this information can 
change without warning.

record-loc               output

INT:ref:*

is a memory location for receiving a record. The maximum record size from 
SORTMERGESTART determines the maximum length of this buffer. You must 
specify record-loc or record-loc-ext, but you cannot specify both. For 
buffer size of 32 KB, the record-loc cannot be used, instead record-loc-ext 
must be used.

length                   output

INT:ref:1

receives the length, in bytes, of the record retrieved. A value of –1 indicates there 
are no more records to return.

spare1 and spare2      reserved

are reserved for future parameters. Specifying a value for spare1 or spare2 
causes an error. However, if you specify record-loc-ext, you must put the 
commas in the call to reserve places for these parameters.

record-loc-ext           output

INT(32):ref:* 

is an extended memory location for receiving a record. You must specify record-
loc-ext or record-loc, but you cannot specify both parameters. For buffer size 
of 32 KB, only the record-loc-ext must be used.

Guidelines

Follow these guidelines when you call the SORTMERGERECEIVE procedure.

Omitting the Name of the Output File

If you omit the out-file-name parameter from the call to SORTMERGESTART or if 
out-file-name equals all blanks, you must call SORTMERGERECEIVE to return 
the output records, one for each call, to the calling process. You specify the format for 
the output records in the format parameter of SORTMERGESTART. SORTPROG 
produces output records in any of these formats:

 The entire record
FastSort Manual—429834-003
5-14



Using FastSort System Procedures SORTMERGESEND Procedure
 The sequence number as a 32-bit (4-byte) integer (permutation sort)

 The key-field values strung together (key sort)

 The sequence number followed by the key-field values strung together 
(permutation and key sort)

Receiving Output Records in Extended Memory

You can receive output records from SORTPROG in an extended data segment (which 
must be in use at the time of the call). If you want SORTMERGERECEIVE to return a 
record to a location in extended memory (which must be mapped), use the 
record-loc-ext parameter instead of record-loc to specify the address.

Deblocking Records to Reduce Interprocess Messages

You can specify a single or double buffer for record blocking and deblocking in a call to 
SORTBUILDPARM. SORTMERGESTART provides the buffer for FastSort to transfer a 
block of records (instead of a single record) in each interprocess message to or from 
SORTPROG. Each call to SORTMERGERECEIVE returns a record from this buffer. 

Record blocking is valid only for sort runs. If you try to use record blocking with merge 
runs, SORTPROG returns error 81 (BLOCKED INTERFACE NOT ALLOWED WITH 
MERGE).

Example

This example specifies RECLOC to receive the output record and LENGTH to receive 
the number of bytes in the record returned:

receive^status := SORTMERGERECEIVE (sortblock, 
                                    recloc, 
                                    length);

SORTMERGESEND Procedure
Use SORTMERGESEND to provide input records from the calling process directly to 
the SORTPROG process. Use SORTMERGESEND if you omit the in-file-name 
parameter from the call to SORTMERGESTART or if in-file-name equals all 
blanks. 

{ status := } SORTMERGESEND ( ctlblock           ! i
{ CALL      }                ,[ record-loc ]     ! i
                             ,length             ! i
                             ,[ stream-id ]      ! o
                             ,[ spare1 ]         ! reserved
                             ,[ spare2 ] )       ! reserved
                             ,[ record-loc-ext ] ! i  
FastSort Manual—429834-003
5-15



Using FastSort System Procedures SORTMERGESEND Procedure
status                   returned value

INT

returns a FastSort error code if an error occurred; if not, returns 0.

ctlblock                 input

INT:ref:200

is the same global storage array you name in the call to SORTMERGESTART. You 
should not rely on the information in ctlblock, because this information can 
change without warning.

record-loc               input

INT:ref:*

is the memory location of an input record. You must specify record-loc or 
record-loc-ext, but you cannot specify both. record-loc-ext must be used 
instead of record-loc for records of size greater than 4072 bytes.

length                   input

INT:value

is the length, in bytes, of the input record. The length can vary for input records for 
a sort or merge run. The length can be no smaller than the offset from the start of a 
record to the first character of the rightmost key and no larger than the longest 
input record length you specify in the in-file-record-length parameter of the 
SORTMERGESTART procedure.

After sending the last record for a sort run, call SORTMERGESEND with length 
set to –1, which indicates to SORTPROG that your process has sent all the 
records for the run.

After sending the last record from an input stream for a merge run, call 
SORTMERGESEND with length set to –1 for the stream, which indicates to 
SORTPROG that your process has sent all the records from the input stream.

stream-id                output

INT:ref:1

receives the number of the input stream from which SORTMERGESEND should 
get the next record for merging. When all input streams have no more records, 
SORTMERGESEND sets stream-id to –1 to indicate that all input was sent.

You must specify this parameter if you specify more than one merge file in the call 
to SORTMERGESTART and if in-file-name equals all blanks.
FastSort Manual—429834-003
5-16



Using FastSort System Procedures SORTMERGESEND Procedure
spare-1 and spare-2    reserved

are reserved for future parameters. If you specify a value for spare1 or spare2, 
FastSort returns an error. However, if you specify record-loc-ext, you must put 
the commas in the call to reserve places for these parameters.
FastSort Manual—429834-003
5-17



Using FastSort System Procedures SORTMERGESEND Procedure
record-loc-ext           input

INT(32)

is the extended memory location of an input record. You must specify 
record-loc-ext or record-loc, but you cannot specify both parameters. 
record-loc-ext must be used instead of record-loc, for records of size 
greater than 4072 bytes.

Guidelines

Follow these guidelines when you call the SORTMERGESEND procedure.

Omitting the Input File Name or Names

If you omit the in-file-name parameter from the call to SORTMERGESTART or if 
in-file-name equals all blanks, you must call SORTMERGESEND to provide 
records for sorting or merging. Each call to SORTMERGESEND gives SORTPROG 
one input record.

Supplying Records From SORTMERGESEND for a Single Run

You cannot supply records from both SORTMERGESEND and disk files for the same 
sort or merge run. 

SORTMERGESEND can send input records for sorting or for merging but cannot send 
records for both operations in the same run.

Sending Input Records From Extended Memory

You can send each input record from an extended data segment (which must be in use 
at the time of the call). If you want SORTMERGESEND to send a record from a 
location in an extended segment, specify record-loc-ext instead of record-loc 
for the address of the record.

Blocking Records to Reduce Interprocess Messages

You can specify a single or double buffer for record blocking and deblocking in a call to 
SORTBUILDPARM. SORTMERGESTART provides the buffer to transfer a block of 
records instead of a single record in each interprocess message to or from 
SORTPROG. Each call to SORTMERGESEND puts a record into this buffer.

For more information, see SORTBUILDPARM Procedure on page 5-2.

Record blocking is valid only for sort runs. If you try to use record blocking with merge 
runs, SORTPROG returns sort error 81 (BLOCKED INTERFACE NOT ALLOWED 
WITH MERGE).
FastSort Manual—429834-003
5-18



Using FastSort System Procedures SORTMERGESTART Procedure
Merging Records From Input Streams

An input stream is a source of sorted records for merging. You can specify up to 32 
input streams in the call to SORTMERGESTART, with the num-merge-files and 
in-file-name parameters. The in-file-name parameter must specify all blanks 
as the name for each input stream.

The first call to SORTMERGESEND sends the first input record from stream 0.  After 
each call, SORTMERGESEND puts the number of the next input stream that 
SORTPROG wants a record from in stream-id. Stream numbers are consecutive 
integers.

When an input stream has no more records, you set the length parameter of 
SORTMERGESEND to –1. When all input streams have no more records, 
SORTMERGESEND sets stream-id to –1; then SORTPROG finishes merging the 
records and produces the output file or returns the records through 
SORTMERGERECEIVE.

Examples

In this example, INBUF contains one input record, and INLEN is the number of bytes in 
the record:

send^status := SORTMERGESEND (sortblock, 
                              inbuf, 
                              inlen);

In the next example, INBUF^EXT is the extended memory location of an input record. 
Commas reserve places for the record-loc, stream-id, spare1, and spare2 
parameters:

send^status := SORTMERGESEND (sortblock,,
                              inlen,,,,
                              inbuf^ext);

SORTMERGESTART Procedure
Use SORTMERGESTART to start the SORTPROG process and pass parameters to 
SORTPROG for a sort or merge run. This procedure begins every run when you use 
FastSort Manual—429834-003
5-19



Using FastSort System Procedures SORTMERGESTART Procedure
FastSort through a program. A COBOL85 program can call SORTMERGESTART 
through the SORT or MERGE statement.  

status                   returned value

INT

returns a FastSort error code if an error occurred; if not, returns 0.

ctlblock                 input

INT:ref:200

is a 200-word integer array that FastSort procedures use as an internal control 
block to store information. After the calling process declares ctlblock, it must not 
alter any values in the control block between the call to SORTMERGESTART and 
the call to SORTMERGEFINISH; otherwise, the SORTPROG process returns a 
FastSort error code and stops. Also, do not rely on the information in ctlblock, 
because this information can change without warning.

{ status := } SORTMERGESTART ( ctlblock             ! i
{ CALL      }          ,key-block                   ! i
                       ,[ num-merge-files ]         ! i
                       ,[ num-sort-files ]          ! i
                       ,[ in-file-name ]            ! i
                       ,[ in-file-exclusion-mode ]  ! i
                       ,[ in-file-count ]           ! i
                       ,[ in-file-record-length ]   ! i
                       ,[ format ]                  ! i
                       ,[ out-file-name ]           ! i
                       ,[ out-file-exclusion-mode ] ! i
                       ,[ out-file-type ]           ! i
                       ,[ flags ]                   ! i
                       ,[ errnum ]                  ! o
                       ,[ errproc ]                 ! i
                       ,[ scratch-file-name ]       ! i
                       ,[ scratch-block ]           ! i
                       ,[ process-start ]           ! i
                       ,[ max-record-length ]       ! o
                       ,[ collate-sequence-table ]  ! i
                       ,[ dslack ]                  ! i
                       ,[ islack ]                  ! i
                       ,[ flags2 ]                  ! i
                       ,[ subsort-count ]           ! i
                       ,[ spare5 ]  )               ! 
reserved 
FastSort Manual—429834-003
5-20



Using FastSort System Procedures SORTMERGESTART Procedure
key-block                input

INT:ref:*

is an integer array defining the key fields. Its size is one word plus three words for 
each key. The first word contains the total number of keys. The rest of the array 
contains three-word descriptions of the keys. The maximum number of keys is 63. 

For more information, see Key-Field Definitions in the Key-Block Array on 
page 5-30.”

num-merge-files          input

INT:value

is the number of input files for merging. The amount of space available for the 
scratch file determines the maximum number of records SORTPROG accepts. The 
total number of files for both sorting and merging must be greater than 0 and 
cannot exceed 32. If you omit the num-sort-files parameter (or specify a value 
of 0), you must specify a value for num-merge-files.

If the merge files are input streams, the in-file-name parameter must specify all 
blanks as the name of each stream, and SORTMERGESEND must send each 
record to SORTPROG. For more information, see Merging Records From Input 
Streams on page 5-19.

num-sort-files           input

INT:value

is the number of input files for sorting. The amount of space available for the 
scratch file determines the maximum number of records SORTPROG accepts. The 
total number of files for both sorting and merging cannot exceed 32. If you omit the 
in-file-name parameter, the number of sort files must be 1.  If you omit the 
num-merge-files parameter (or specify a value of 0), you must specify a value 
for num-sort-files.

in-file-name             input

INT:ref:*

is an array including one 12-word entry for each input file. SORTPROG accepts a 
set of input files in the order presented, with the merged files first. If you specify 
more than one input file, you must specify a name for each file. The name can be 
all blanks for a single sort file. Each name must be all blanks if the input files are 
streams for merging.

When working with more than one input file, SORTPROG uses the same key-field 
specifications for all input records.

You can specify files containing sorted records and files containing unsorted 
records for the same sort run.
FastSort Manual—429834-003
5-21



Using FastSort System Procedures SORTMERGESTART Procedure
If you omit in-file-name or if it equals all blanks, your process must call 
SORTMERGESEND to send each input record to SORTPROG. 
SORTMERGESEND cannot send both sorted and unsorted records for the same 
sort run. For more information, see SORTMERGESEND Procedure on page 5-15.

You can specify the same file in both in-file-name and out-file-name for a 
sort run but not for a merge run. 

in-file-exclusion-mode   input

INT:ref:*

is an array including a one-word entry for each input file. Each entry contains the 
exclusion mode SORTPROG uses when it opens the corresponding input file. If 
you specify an exclusion mode for one input file, you must specify a mode for each 
input file for a sort or merge run. Use one of the following values to specify the 
exclusion mode:  

For SHARED access, if another process is writing to the input file while FastSort is 
reading it, the operating system might return file-system error 59 (FILE IS BAD). 
However, the file is not necessarily corrupted. Retry the sort or merge run. 

If you specify PROTECTED for the in-file-exclusion-mode parameter, the 
in-file-name parameter cannot specify the same file name as the 
out-file-name parameter; otherwise, SORTPROG returns sort error 49 
(INVALID EXCLUSION MODE SPECIFIED). 

If you specify –1 or omit this parameter, these default exclusion modes apply:  

If you want your process to read the input file at the same time as SORTPROG, 
specify PROTECTED exclusion mode for SORTPROG and use SHARED 
exclusion mode when your process opens the file.

Caution. If you specify the same file as both an input file and the output file for a sort run, you 
can lose all the data from the input file if an error or processor failure terminates the 
SORTPROG process. 

Value Exclusion Mode 

–1 Use the default mode

 0 SHARED 

 1 EXCLUSIVE 

 2 PROTECTED 

Device Exclusion Mode

Permanent disk file PROTECTED

Temporary disk file SHARED

Terminal SHARED

Other EXCLUSIVE
FastSort Manual—429834-003
5-22



Using FastSort System Procedures SORTMERGESTART Procedure
in-file-count            input

INT(32):ref:*

is an array including one 32-bit entry for each input file. Each entry contains the 
maximum number of records in the corresponding input file. When input is from a 
source other than disk, SORTPROG uses in-file-count to estimate the space 
required for the scratch file.

If you omit in-file-count or specify –1, SORTPROG determines the maximum 
number of records as follows:

 For a structured disk file, SORTPROG estimates the number of records in the 
file by looking at the end-of-file location and determining the structured 
overhead.

 For an unstructured disk file, SORTPROG calculates an approximate number 
of records in the file. The approximate number of records for an EDIT file is the 
end-of-file location multiplied by 2 and divided by the record length. The 
approximate number of records for other unstructured files is the end-of-file 
location divided by the record length. The default record length for unstructured 
files is 132 bytes.

 For files other than disk files and records supplied by SORTMERGESEND, the 
default number of records is 50,000.

in-file-record-length    input

INT:ref:*

is an array including one 16-bit entry for each input file. Each entry contains the 
maximum record length in the corresponding input file. The largest record length 
allowed is 4080 bytes. If you omit in-file-length or specify –1, SORTPROG 
uses the default record length.

You can omit this parameter when the input file is a structured disk file, because 
the length is in the file label.

To use an odd unstructured file for an input file, you must specify the correct length 
in in-file-record-length. For unstructured disk files, files other than disk 
files, and records supplied by SORTMERGESEND, the default maximum record 
length is 132 bytes. 

format                   input

INT:value

specifies the output record format with one of these values:
FastSort Manual—429834-003
5-23



Using FastSort System Procedures SORTMERGESTART Procedure
out-file-name               input

INT:ref:12

is a 12-word array that names the file for the output records. If you omit 
out-file-name or it equals all blanks, SORTMERGERECEIVE must return the 
records, one for each call, to the calling process.

If out-file-name specifies an existing file that has a different type than 
out-file-type or the default for out-file-type, SORTPROG purges the file 
and creates a new one with the same name. 

out-file-exclusion-mode     input

INT:value

is the exclusion mode with which SORTPROG opens the output file. Use one of 
the following values to specify the exclusion mode:  

0 The output records are in the same format as the input records. This is a 
record sort, the default SORTPROG uses when you omit format.

1 The output records are 32-bit integers describing the order of the sorted 
records. This is a permutation sort. For example, if the 20th input record 
is first in order after sorting, 20 is the value of the first output record.

2 Each output record consists of the key-field values concatenated in the 
order you defined the fields. This is a key sort. If a key field extends 
beyond the end of a variable-length record, SORTPROG pads the key 
values with blanks for a structured file.

3 Each output record begins with the 32-bit (4-byte) record number 
followed by the concatenated values of the key fields. This is a combined 
permutation and key sort. 

Caution. If you specify the same file as both an input file and the output file for a sort run, you 
can lose all the data from the input file if an error or processor failure terminates the 
SORTPROG process. 

Value Exclusion Mode 

–1 Use the default mode

 0 SHARED 

 1 EXCLUSIVE 

 2 PROTECTED 
FastSort Manual—429834-003
5-24



Using FastSort System Procedures SORTMERGESTART Procedure
If you specify –1 or omit this parameter, FastSort uses one of the following default 
exclusion modes:  

out-file-type            input

INT:value

specifies the type of file SORTPROG creates for the output records. Use one of 
the following codes to specify a file type:     

You can omit this parameter if you omit out-file-name or if out-file-name 
equals all blanks. In this case, SORTMERGERECEIVE returns the output records 
to the calling process. For more information, see SORTMERGERECEIVE 
Procedure on page 5-13.

The default for out-file-type is the file type of the existing output file, if any, or 
of the first input file. SORTPROG can send output to key-sequenced files but not to 
EDIT files. 

To use an odd unstructured file for out-file-name, create the file using the FUP 
CREATE command or the CREATE system procedure before the sort or merge 
run. Then set out-file-type to –1. 

flags                    input

INT:value

directs SORTPROG to perform a specific set of operations as shown in Table 5-4 
on page 5-32. If you set flags.<15> to 1 (the restart option) and change the 
current process-start parameters, an existing SORTPROG process ignores 
the changes, except for the priority word. Set the unused flags bits to 0. 

To use nowait I/O, specify the flags2 parameter. 

errnum                   output

INT(32):ref:1

Device Exclusion Mode

Disk or magnetic tape file EXCLUSIVE

Temporary disk file SHARED

Terminal SHARED

Code File Type 

–1 Default (same effect as omitting parameter)

 0 Unstructured file

 1 Relative file

 2 Entry-sequenced file

 3 Key-sequenced file
FastSort Manual—429834-003
5-25



Using FastSort System Procedures SORTMERGESTART Procedure
receives a completion code of 0 if no error occurred or receives error codes if an 
error occurred. The high-order word has the file-system or NEWPROCESS error 
code. The low-order byte of the low-order word has the FastSort error code:

You can use SORTERRORSUM to supply the text of the FastSort error message 
and to get the index of the input file in the in-file-name array. 
SORTERRORSUM also identifies the output file, scratch file, or SORTPROG 
process that caused an error. 

errproc                  input

is a procedure that FastSort can call when an error occurs. For more information, 
see Writing a User Error Procedure on page 5-37.

scratch-file-name        input

INT:ref:12
INT:ref:*

is a 12-word name for an initial scratch file or an array with a file name for each 
subsort scratch file. You can name only a scratch volume in the first 8 bytes and 
leave the remaining bytes blank. If you specify an existing file, it must be 
unstructured.

If you specify subsort-count, the size of the scratch-file-name array is the 
value of subsort-count + 1. The first file name is a scratch file for the distributor-
collector process, and each additional file name is an initial scratch file for a 
subsort process, as in this example:

INT DIST^SCRATCH[0:11] := ["                        "];
INT SUB1^SCRATCH[0:11] := ["$DATA1                  "];
INT SUB2^SCRATCH[0:11] := ["$DATA2                  "];

Note. FastSort saves the address of errnum in its control block. If an error occurs for calls to 
SORTMERGESEND, SORTMERGERECEIVE, SORTMERGEFINISH, 
SORTMERGESTATISTICS, or SORTMERGESTART, FastSort returns an error to this address. 
A user procedure that calls these procedures can access errnum. However, HP recommends 
that you call SORTERRORDETAIL rather than use the errnum parameter to get error 
information. 

    0     1     2     3     4     5     6     7     8     9     10     11     12     13    14     15
Parameter Word

High-Order

Low-Order

Bits

File-System or NEWPROCESS[NOWAIT] Error Code

FastSort Input File Index FastSort Error Code

VST503.vsd
FastSort Manual—429834-003
5-26



Using FastSort System Procedures SORTMERGESTART Procedure
If you do not specify subsort-count, then scratch-file-name is the initial 
scratch file for a serial sort or merge run. If you omit scratch-file-name or it 
equals all blanks, SORTPROG creates a scratch file on a suitable volume. You 
cannot omit or use blanks for a subsort scratch-file-name. For more 
information about scracth files, see Table 5-4 on page 5-32.

scratch-block            input

INT:value

is the size, in bytes, of input and output blocks for SORTPROG scratch files. The 
scratch-block value can be any multiple of 2048 up to 56 KB. The value must 
be large enough to accept the largest input record, rounded up to the nearest even 
byte, plus 14 bytes of overhead.

If you omit scratch-block or specify –1, the default value for scratch-block, 
SORTPROG uses the default scratch block size of 56 KB.

For parallel sorting, specify scratch-block only for the distributor-collector 
process. The subsort processes use the same block size as the distributor-
collector.

process-start            input

INT:ref:*

specifies the parameters for starting each SORTPROG process. 

For serial sorting, process-start uses only the first four words of the 
NEWPROCESS structure. 

For parallel sorting, process-start must use the 29-word expanded 
NEWPROCESS structure and include an entry for each process, starting with the 
distributor-collector. You must set flags.<6> to 1 to use the 29-word expanded 
NEWPROCESS structure. Table 5-2 on page 5-28 describes the layout of this 
structure. 
FastSort Manual—429834-003
5-27



Using FastSort System Procedures SORTMERGESTART Procedure
If you use process-start, you must specify a value for each parameter in every 
29-word entry. You can specify the default value for any parameter. The default 
value for swap-file and sort-program is all blanks. The default value for the other 
parameters is –1.

Table 5-2. Expanded NEWPROCESS Structure

Word Entity Description 

 0* Priority Assigns the priority of the SORTPROG process. If priority equals –1, 
the default value, the SORTPROG process has the same priority as 
the calling process.

 1* Memory Specifies the maximum number of data pages the SORTPROG 
process can use. SORTPROG always uses 64 for this value.   

 2* CPU Specifies the number of the processor (CPU) in which SORTPROG 
runs. If CPU equals –1, the default value, SORTPROG runs in the 
same processor as the calling process or, in parallel sorting, in a 
processor that FastSort selects. You can specify a group of 
processors for FastSort to select from by using the cpu-mask or 
not-cpu-mask parameters or both in a call to SORTBUILDPARM.   

 3* System Specifies the number of the system in which SORTPROG runs. If 
system equals –1, the default value, SORTPROG runs on the same 
node as the calling process. See the LOCATESYSTEM procedure in 
the Guardian Procedure Calls Reference Manual. FastSort does not 
use this parameter for parallel sort runs.

 4 Segment Specifies the size of the extended memory segment from 256 to 
62,255 pages. If segment equals –1, the default value, segment size 
is controlled by the MINTIME and MINSPACE flags of the flags 
parameter. The size cannot be more than 90 percent of the 
processor’s physical memory not locked down by the operating 
system. To use this parameter, you must set flags.<6> to 1. The 
segment size you specify overrides the MINSPACE or MINTIME flag. 
To specify a segment size of greater than 32,767 you must set 
flags2.<4> to 1.

5:16 Swap-file 
[0:11] 

Specifies the name of the swap file for the extended memory segment. 
The swap file must be on the local node. If swap-file equals all blanks, 
the default value, FastSort creates a temporary file on the same 
volume as the scratch file if the scratch file is local. If not, FastSort 
creates a temporary file on the volume where SORTPROG is running. 
To use this parameter, you must set flags.<6> to 1. 

 17:28 Sort-
program 
[0:11] 

Specifies the name of a file that contains the SORTPROG program. If 
sort-program equals all blanks, the default value, FastSort runs the 
program in $SYSTEM.SYSnn.SORTPROG. To use this parameter, 
you must set flags.<6>to 1.

* The process-start structure consists of words 0-3 of this NEWPROCESS structure. 
FastSort Manual—429834-003
5-28



Using FastSort System Procedures SORTMERGESTART Procedure
max-record-length        output

INT:ref:*

You should specify max-record-length as a reference to a single 16-bit word 
used for OUTPUT. In max-record-length, SORTMERGESTART returns the 
size of the largest output record that FastSort writes to the output file or returns 
through SORTMERGERECEIVE.

collate-sequence-table   input

STRING:ref:256

is a 256-byte array defining an alternate collating sequence for SORTPROG to use 
in the sort or merge run. This parameter applies to alphanumeric string items only. 
SORTPROG uses each alphanumeric character as an index into the collating table 
to obtain the value to use for comparisons.

To cause SORTPROG to use the alternate collating sequence table, you also need 
to set flags.<10> to 1. If this bit is 0, SORTPROG ignores 
collate-sequence-table. 

dslack                   input

INT:value

specifies the percentage of data slack for a key-sequenced output file. The range is 
0 - 99 and the default is 0.

islack                   input

INT:value

specifies the percentage of index slack for a key-sequenced output file. The default 
is 0 slack.

flags2                   input

INT:value

directs FastSort to use nowait I/O if flags2.<15> is set to 1.  To use nowait I/O, 
you must also specify the buffer2 parameter in the SORTBUILDPARAM 
procedure call; otherwise FastSort returns sort error 74 (INVALID BLOCK 
ADDRESS SPECIFIED). 

If you specify nowait I/O, the FastSort routines call AWAITIO when necessary. Your 
process should not call AWAITIO to wait on any file (filenum = –1). For more 
information about AWAITIO, see the Guardian Procedure Calls Reference Manual. 
For information about nowait I/O, see the Guardian Programmer's Guide. 

Also directs FastSort to use up to 127.5 MB of extended memory if available and 
flags2.<4> is set to 1. Note that if you set flags2.<4> to 0, FastSort does not 
turn VLM off. For more information about VLM, see Using VLM on page 9-10.
FastSort Manual—429834-003
5-29



Using FastSort System Procedures SORTMERGESTART Procedure
Other flags2 bits are not used and should be set to 0. 

subsort-count            input

INT:value

specifies the number of subsort processes from 2 to 8. Higher numbers can cause 
run-time errors, depending on your system configuration and the system load. If 
subsort-count equals n, scratch-file-name and process-start become 
integer arrays of dimension n + 1. 

spare5                   reserved

INT:value

is reserved for a future parameter. If you specify a value for spare5, FastSort 
returns an error. 

Guidelines 

Follow the guidelines on the next pages when you call the SORTMERGESTART 
procedure. 

Data Stack Space

In addition to the 350 words required by system procedure calls, the 
SORTMERGESTART procedure requires additional data stack space that is not 
automatically allocated by the BINSERV process during compilation. Refer to the table 
at the beginning of this section as a guideline to determine the amount of additional 
space you need to allocate for an application that calls SORTMERGESTART. 

Key-Field Definitions in the Key-Block Array

The first word of the key-block array is the number of keys. After the first word, each 
three words describe a key as follows:       

Table 5-3 on page 5-31 lists the values for each three-word key description. 

Word Description 

0 Number of Keys

1:3 Description of First Key 

4:6 Description of Second Key 

. . . 

Description of Last Key 
FastSort Manual—429834-003
5-30



Using FastSort System Procedures SORTMERGESTART Procedure
If a key field extends beyond the end of a variable-length record, SORTPROG pads 
the concatenated key values with blanks in a structured output file. SORTPROG can 
compare an alphanumeric key field at the end of a short record if the record contains 
the first byte of the key value.

Fields of the flags Parameter

Table 5-4 on page 5-32 lists the flags parameter bits for the SORTMERGESTART 
procedure.

Table 5-3. Key-Field Definitions

Word
Bit 
Positions Values and Description 

0 <0> O 0 = Ascending order 

1 = Descending order 

<1> U 0 = Do not upshift 

1 = Upshift (alphanumeric string only) 

<2:7> R Reserved; must be 0 

<8:15> Type 1 = ALPHANUMERIC STRING 

2 = UNSIGNED NUMERIC STRING 

3 = NUMERIC STRING SIGN, TRAILING EMBEDDED 

4 = NUMERIC STRING SIGN, TRAILING SEPARATE

5 = NUMERIC STRING SIGN, LEADING EMBEDDED 

6 = NUMERIC STRING SIGN, LEADING SEPARATE 

9 = BINARY SIGNED 

10 = BINARY UNSIGNED 

11 = FLOAT 

1 <0:15> Length Key length in bytes. For key type 11, length must be 4 or 8 
bytes. For key types 3 through 6, length must be 32 or 
fewer bytes. 

2 <0:15> Offset Offset from beginning of record to key in bytes (record 
begins at 0). For key type 11, offset must be an even 
number. 
FastSort Manual—429834-003
5-31



Using FastSort System Procedures SORTMERGESTART Procedure
Table 5-4. SORTMERGESTART flags Parameter Bits (page 1 of 2)

Flag Meaning 
flags 
Bit Value Description 

No purge of 
existing output 
file

<5> 0 SORTPROG purges an existing output file that seems 
too small. This value is the default.   

1 SORTPROG does not purge an existing output file that 
seems too small, unless the file has the wrong file type 
or maximum record length. 

Structure for 
NEWPROCESS 
parameters 

<6> 0 SORTPROG uses the process-start four-word 
structure described in Table 5-2 on page 5-28. This 
value is the default. 

1 SORTPROG uses the expanded process-start 
structure (an array of one or more 29-word entries) 
shown in Table 5-2 on page 5-28. This value is 
required for parallel sort or merge runs. 

MINSPACE 
mode 

<7> 0 SORTPROG does not use MINSPACE mode. If the 
MINTIME flag is set to 0 and process-start does not 
specify a segment size, SORTPROG uses the 
AUTOMATIC mode, in which the extended memory 
segment size is limited to 50% (90% for the distributor-
collector in parallel sorting) of the available physical 
memory. This value is the default. 

1 SORTPROG uses MINSPACE mode, in which the 
extended memory segment size is 256 pages.

MINTIME mode <8> 0 SORTPROG does not use MINTIME mode. If the 
MINSPACE flag is set to 0 and process-start does 
not specify a segment size, SORTPROG uses the 
AUTOMATIC mode, in which the extended memory 
segment size is limited to 50% (90% for the distributor-
collector in parallel sorting) of the available physical 
memory, up to 127.5 MB. The default is 56 MB.   

1 SORTPROG uses MINTIME mode, in which the 
extended memory segment size is limited to 70 
percent of the available physical memory.

Scratch file size 
check 

<9> 0 Exists only for compatibility with earlier versions of 
FastSort. 

1 Exists only for compatibility with earlier versions of 
FastSort.

Alternate 
collating 
sequence table 

<10> 0 SORTPROG ignores the collate-sequence-table 
parameter. This value is the default. 

1 SORTPROG uses the alternate collating sequence 
table. If you did not provide the table, 
SORTMERGESTART returns error 67. 
FastSort Manual—429834-003
5-32



Using FastSort System Procedures SORTMERGESTART Procedure
Removal of 
records that 
have duplicate 
keys 

<11> 0 SORTPROG keeps all records that have duplicate 
keys. This value is the default.   

1 SORTPROG removes every record whose keys are all 
duplicates of a previous record's keys.   

Saving 
scratch files 

<12> 0 SORTPROG purges scratch files after the sort run. 
This value is the default.   

1 SORTPROG saves a permanent scratch file if you 
named it. 

Creating a new 
scratch file 

<13> 0 If a scratch file exists, SORTPROG purges all data 
from the file and uses it. This value is the default. 

1 If a scratch file exists, SORTPROG purges it and 
creates a new one, unless the existing file is a 
temporary file created by your process. 

Creating a new 
output file 

<14> 0 If the output file exists, is large enough to hold the 
output, and has the specified file type and maximum 
record length, SORTPROG purges all data from the 
file and uses the file. This value is the default. 

1 If the output file exists, SORTPROG purges it and 
creates a new one, unless the existing file is a 
temporary file created by your process.

Restart option <15> 0 SORTMERGESTART starts a new SORTPROG 
process. This value is the default. 

1 SORTMERGESTART uses the existing SORTPROG 
process and does not start a new one. If SORTPROG 
stops, it uses the current parameters upon restarting. If 
SORTPROG exists and the current process-start 
parameters are different from when it started, 
SORTPROG ignores all changes except a changed 
priority value.

Table 5-4. SORTMERGESTART flags Parameter Bits (page 2 of 2)

Flag Meaning 
flags 
Bit Value Description 
FastSort Manual—429834-003
5-33



Using FastSort System Procedures SORTMERGESTART Procedure
Input Files

Follow these guidelines for input files:   

 SORTPROG accepts all types of input files except blocked tape files and 
processes.

 SORTPROG accepts up to 32 input files. The files can contain fixed-length or 
variable-length records.

 The sum of number-merge-files and number-sort-files must be at least 1 
file.  Although both parameters are optional, you must specify one of them.

 SORTPROG cannot accept input records from blocked tape files. Before 
presenting these files to SORTPROG, use the File Utility Program (FUP) to 
deblock the records. For information about FUP, see the File Utility Program (FUP) 
Reference Manual.

 SORTPROG cannot accept records greater than 4072 bytes directly from input 
files, SORTMERGESEND or SORTMERGERECEIVE must be used to send or 
receive these records.

Output File Types

If out-file-name specifies a nonexistent disk file or if an existing output file has the 
wrong maximum record length, file type, or size, SORTPROG creates a new output 
file. You can use the NOPURGE option (that is, set flags.<5> to 1) to tell 
SORTPROG not to purge an output file that seems too small. SORTPROG creates a 
new output file according to the following rules, in order:

1. SORTPROG uses the file type specified in the out-file-type parameter.

2. SORTPROG uses the existing out-file-name file type if it is a valid output file 
type.

3. SORTPROG uses the first in-file-name file type if it is a valid disk file type for 
output.

4. If none of the above conditions exist, SORTPROG creates an entry-sequenced file.

5. SORTPROG does not send output to EDIT files.

6. SORTPROG cannot write records with length greater than 4072 bytes directly to 
the output file.

You can use a process as an output file.

If out-file-name is a blocked tape file, SORTPROG writes one record for each 
block. You can use FUP to block the records and load the tape file. For information 
about FUP, see the File Utility Program (FUP) Reference Manual.

The output file type can be key-sequenced. For key-sequenced files, these rules apply:
FastSort Manual—429834-003
5-34



Using FastSort System Procedures SORTMERGESTART Procedure
 You can use only one sort key field, and the data type for the field must be BINARY 
UNSIGNED.

 The sort key field must be the same as the file's primary key field.

 You must specify ascending in the key-block array.

You can specify the dslack and islack parameters for an existing key-sequenced 
output file.

Existing Output Files

If out-file-name exists on a disk prior to the sort or merge run, SORTPROG purges 
all the data in the file before reusing it. For SORTPROG to reuse an existing disk file 
as an output file, all of the following cases must be true:

 The existing file type must be the same as the output file type in effect for the run.

 The existing file size must be equal to or greater than the sum of the all the input 
file sizes, except when you specify the NOPURGE option (flags.<5> set to 1).

 The maximum record length for the existing file must be equal to or greater than 
the maximum output record length for the run.

If any of these is not true, SORTPROG purges the existing output file and creates a 
new file. If you do not want FastSort to purge and recreate the file, set flags.<5> to 1. 

Record Count

The value of in-file-count need not be the exact number of records in the input 
file. However, you should round up and not down if you round off the number of 
records. 

If you underestimate the number of input records, SORTPROG might underestimate 
the size needed for the scratch or output file, which can cause FastSort error 29 or 30. 
For more information on error messages, see Appendix B, FastSort Error Messages.

Extended Memory Size

For more information, see Controlling Extended Memory on page 2-11.

Restart Option

This option enables the same SORTPROG process to be used for successive sort or 
merge runs. The requirements for using the restart option are:   

 Set the restart flag (flags.<15>) to 0 for the first call to SORTMERGESTART and 
to 1 for successive calls.

Caution. If you specify the same file as both an input file and output file for a sort run, you can 
lose all the data from the input file if an error or processor failure terminates the SORTPROG 
process.
FastSort Manual—429834-003
5-35



Using FastSort System Procedures SORTMERGESTART Procedure
 Before your process can call SORTMERGESTART with the restart flag set to 1, 
your process must call SORTMERGESTATISTICS or an error must end the 
SORTPROG process.

 Each call to SORTMERGESTART must specify the same sort control block.

 If you call the SORTBUILDPARM procedure, its restart flag (build-flags.<15>) 
must be set to 0 for the first call and to 1 for successive calls.

 Each call to SORTBUILDPARM must specify the same sort control block as the 
call to SORTMERGESTART.

A call to SORTMERGESTART returns immediately after SORTPROG reads the input 
parameters. When your process calls SORTMERGESTART again, SORTPROG 
accepts parameters for restart as follows:

 If SORTPROG ends abnormally and the restart flag is set to 1, SORTPROG uses 
the most recently specified process-start parameters when it restarts.

 If SORTPROG exists and the current process-start parameters are different 
than when it started, SORTPROG ignores all changes except for a changed priority 
value.

The COBOL85 SORT and MERGE statements do not support the restart option.

Alternate Collating Sequence Table

The calling process can read an alternate collating sequence table from a file that the 
COLLATEOUT command produced.

Example

The following example shows the SORTMERGESTART procedure with the restart 
option:

error := SORTMERGESTART (sortblock, 
                         keyblock,, 
                         sortfiles,,,, 
                         len,,,,,   
                         restart); ! restart.<15> is 0 

  ... 

! Call SORTMERGESEND for each record
! Call SORTMERGESEND with length = -1
! Call SORTMERGERECEIVE for each record, until length = -1

errnum := SORTMERGESTATISTICS (sortblock, 
                               statlen, 
                               stats);
! statlen = 21, and stats is an integer array of 21 words.
  ... 
error := SORTMERGESTART (sortblock,
                         keyblock,,
FastSort Manual—429834-003
5-36



Using FastSort System Procedures SORTMERGESTART Procedure
                         sortfiles,,,,  
                         len,,,,,   
                         restart);  ! restart.<15> is 1

! Go to the first statement that calls SORTMERGESEND.
  ... 
error := CALL SORTMERGEFINISH (sortblock);
  ... 
END;            ! End of the routine

Writing a User Error Procedure 

You can use the errproc parameter of SORTMERGESTART to specify a TAL 
procedure to call if an error ends the SORTPROG process. 

errproc

is the name of the user error procedure that you specify in the errproc parameter 
of SORTMERGESTART.

code

INT(32):value

returns error codes to errnum, which you specify in the call to 
SORTMERGESTART. Both code and errnum have the same structure. 

Shown below is the TAL syntax for the declaration of a user error procedure. The body 
of the user error procedure contains TAL declarations and statements. For information 
about TAL, see the TAL Reference Manual. 

PROC sorterrproc (errcode);
  INT(32) errcode;
  BEGIN
 ...     .      ! TAL statements
  END;
 ... 
  error := SORTMERGESTART ( sortblock , keys
                      ,            ! num-merge-files
                      ,numsort
                      ,infile
                      ,            ! in-file-exclusion-mode
                      ,            ! in-file-count
                      ,            ! in-file-record-length
                      ,            ! format
                      ,outfile
                      ,            ! out-file-exclusion-mode
                      ,            ! out-file-type
                      ,            ! flags
                      ,            ! errnum

PROC errproc ( code )
FastSort Manual—429834-003
5-37



Using FastSort System Procedures SORTMERGESTATISTICS Procedure
                      ,sorterrproc );
... 

SORTMERGESTATISTICS Procedure
Use SORTMERGESTATISTICS to obtain information about a successful sort or merge 
run after SORTPROG completes the run. 

status                   returned value

returns a FastSort error code if an error occurred; if not, status returns 0.

ctlblock                 input

INT:ref:200

is the global storage array named in the call to SORTMERGESTART. You should 
not rely on the information in ctlblock, because this information can change 
without warning.

length                   input, output

INT:ref:*

indicates the length, in words, of the SORTPROG statistics that 
SORTMERGESTATISTICS returns after run completion. You can set length to 
the number of words you want returned, from 1 to 22. When 
SORTMERGESTATISTICS returns statistics, it sets length to the number of 
words actually returned. The default value for length is 0, which causes 
SORTMERGESTATISTICS to not return any statistics.

Values less than 0 or greater than 21 when flag1 = 0 or greater than 22 when 
flag1 = 1 will yield error 149 (INVALID STATISTICS LENGTH SPECIFIED).

statistics               output

INT:ref:21   (flag1 = 0 or does not exist)
INT:ref:22     (flag1 = 1)

is a 21-word or 22-word array into which SORTPROG returns the statistics. The 
array is 21 words long if VLM is off and 22 words long if VLM is on. For a 
description of this array, see Table 5-5 on page 5-39. For more information about 
the VLM option, see Using VLM on page 9-10.

{ status := } SORTMERGESTATISTICS ( ctlblock     ! i
{ CALL      }                      ,length       ! i, o
                                   ,statistics   ! o
                                   ,[flag1 ]     ! i
                                   ,[spare1 ]    !reserved
FastSort Manual—429834-003
5-38



Using FastSort System Procedures SORTMERGESTATISTICS Procedure
flag1                    input

INT:value

tells FastSort to use the 22-word array to return statistics if this parameter is 
present and set to 1. If flag1 is present but set to 0 or if flag1 is not present, 
FastSort uses the 21-word statistics array and converts BUFFER PAGES from an 
INT(32) to an INT value before it reaches the array. For BUFFER PAGES, FastSort 
returns the value -1 for values greater than 32,767.

Values other than 0 or 1 for flag1 yield error 69 (INVALID STATISTICS FLAG 
SPECIFIED).

spare1                   reserved

is reserved for future parameters. If you specify a value for spare1, FastSort 
returns an error. 

The SORTMERGESTATISTICS statistics Structure

SORTMERGESTATISTICS statistics is a 21-word array when the VLM option is 
off and a 22-word array when VLM is on. For more information about this option, see 
Using VLM on page 9-10.

Table 5-5 on page 5-39 describes the SORTMERGESTATISTICS statistics 
structure. The uppercase terms show the equivalent statistics that FastSort returns 
after an interactive run. 

Table 5-5. SORTMERGESTATISTICS statistics Structure

Word Type Description 

0 INT MAX RECORD SIZE: maximum record size in bytes 

1 INT or 
INT(32)*

BUFFER PAGES: number of 1,024-word pages of extended memory 
SORTPROG used as a sort area. 

2:3 INT(32) RECORDS: number of records

4:5 INT(32) ELAPSED TIME: total time SORTPROG took to process the sort or 
merge request to the nearest hundredth of a second

6:7 INT(32) COMPARES: number of times SORTPROG compared two records

8:9 INT(32) SCRATCH SEEKS: number of blocked read and write operations on 
the scratch file

10:11 INT(32) I/O WAIT TIME: the time SORTPROG spent on calls to READ, 
WRITE, and AWAITIO, to the nearest hundredth of a second 

12:13 INT(32) SCRATCH DISK: number of bytes in the scratch file 

14:15 INT(32) INITIAL RUNS: number of runs generated by the first pass

16 INT FIRST MERGE ORDER: number of runs merged in the first 
intermediate pass

* If VLM is on, BUFFER PAGES is an INT(32) value and all subsequent words in this array move up one word.
FastSort Manual—429834-003
5-39



Using FastSort System Procedures SORTMERGESTATISTICS Procedure
Example

stat^error := SORTMERGESTATISTICS (sortblock,
                                   length,
                                   statistics);

17 INT MERGE ORDER: maximum number of runs that can be merged at 
one time 

18 INT INTERMEDIATE PASSES: number of merge cycles between initial 
run formation and final merge 

19:20 INT(32) NUMBER OF DUPLICATES: number of duplicate records 
SORTPROG removed

Table 5-5. SORTMERGESTATISTICS statistics Structure

Word Type Description 

* If VLM is on, BUFFER PAGES is an INT(32) value and all subsequent words in this array move up one word.
FastSort Manual—429834-003
5-40



6 Sorting in Parallel

If the total input file size is larger than one megabyte, a parallel sort run can provide 
better performance in elapsed execution time than a serial sort run. A parallel sort 
operation improves performance because it:

 Distributes the workload to multiple processors 

 Uses scratch files on multiple disks 

For a parallel sort run, you set up a distributor-collector process and from 2 to 8 
subsort processes. 

The distributor-collector and subsort processes are SORTPROG processes. You can 
use either FastSort commands or system procedures to set up the distributor-collector 
and subsort processes. You run each subsort process in a different processor and 
assign each processor a different disk for scratch files.

The distributor-collector process reads input files and distributes the records among 
the subsort processes. Each subsort process sorts its portion of the records. The 
distributor-collector process then collects the sorted records, merges them, and 
produces the output file.

Figure 6-1 on page 6-2 shows how multiple SORTPROG processes work together in a 
parallel sort run.

Note. Although you can specify a maximum of 16 subsort processes, HP recommends you 
specify no more than 8 processes. More than 8 subsort processes can cause a parallel sort 
run to fail with FastSort error 22 (THE MEMORY SPACE FOR SORTING IS INSUFFICIENT).
FastSort Manual—429834-003
6-1



Sorting in Parallel Using Commands for Parallel Sorting
This section gives guidelines for using FastSort commands, procedures, and 
parameters for parallel sorting. For more information about commands, see Section 3, 
Using FastSort Commands and for more information about procedures, see Section 5, 
Using FastSort System Procedures. For information about using partitioned input and 
output files, see Partitioned Files on page C-5. 

Using Commands for Parallel Sorting
To use FastSort commands to set up a parallel sort run, follow these steps:

1. Name and describe any input and output files in FROM and TO commands.

2. Define your key fields for sorting in one or more ASCENDING or DESCENDING 
commands or a combination of both.

3. If you want to use an alternate collating sequence, name a file containing the 
sequence in the COLLATE command.

4. Set up individual subsort processes with SUBSORT commands, one command for 
each process. For more information, see Using the Automatic Configuration on 
page 6-4 and Configuring Subsort Processes on page 6-6.

Figure 6-1. Parallel Sorting

Input File
$DATA2

Input File
$DATA3

$WORK1
Scratch file

$WORK2
Scratch file

Input File
$DATA1

$WORK3
Scratch file

VST601.vsd

Subsort
Process 2

Subsort
Process 1

Subsort
Process 3
Subsort

Process 3

Processor 1

Processor 2

Processor 3

Distributor
Collector
Process

Processor 0
FastSort Manual—429834-003
6-2



Sorting in Parallel Using Procedures for Parallel Sorting
5. If you want to specify a group of processors for running subsort processes, list the 
processors SORTPROG can use in a CPUS command. Specify any processors 
SORTPROG cannot use in a NOTCPUS command. For more information, see 
Selecting Processors to Run Subsort Processes on page 6-7.

6. Set up the distributor-collector process in the RUN command that starts the parallel 
sort operation. For more information, see Using the Automatic Configuration on 
page 6-4 and Configuring a Distributor-Collector Process on page 6-10.

The following commands start a distributor-collector process in the same processor 
(CPU) in which the SORT process is running and a subsort process in each of the 
three processors that control the disk volumes $VENUS, $MARS, and $SATURN. The 
volume names in the SUBSORT commands specify volumes for the temporary scratch 
files on $VENUS, $MARS, and $SATURN. 

FROM LASTNAME
TO ZIPCODE
ASC 76:80, 1:15 UPPER
SUBSORT $VENUS
SUBSORT $MARS
SUBSORT $SATURN
RUN

FastSort tries to put each subsort process in the same processor as the primary disk 
process for the scratch volume. For the interactive interface, the default processor for 
the distributor-collector process is the same processor in which the SORT process is 
running. 

Using Procedures for Parallel Sorting
To set up a parallel sort run by using FastSort procedures, call the procedures from 
your program in this order:

1. SORTBUILDPARM stores parameters for parallel sorting in the sort control block, 
including the numbers of the processors in which to run subsort processes. For 
more information, see Configuring Subsort Processes on page 6-6.

2. SORTMERGESTART begins the distributor-collector process and passes 
parameters to it for the sort run, including key fields for sorting, names of input and 
output files, and information about the subsort processes. For more information, 
see Configuring Subsort Processes on page 6-6 and Configuring a Distributor-
Collector Process on page 6-10.

3. SORTERRORSUM returns detailed information about an error to your process, 
which should call this procedure only if an error occurs.

4. SORTMERGESTATISTICS ends the sort run and returns information to your 
process about the data sorted, the sorting and merging operations, and resource 
usage.
FastSort Manual—429834-003
6-3



Sorting in Parallel Using the Automatic Configuration
5. SORTMERGEFINISH stops the distributor-collector process.

Instead of specifying input files, you can use calls to SORTMERGESEND after the call 
to SORTMERGESTART. Instead of specifying an output file, you can use calls to 
SORTMERGERECEIVE after the last call to SORTMERGESEND, if any, or after the 
call to SORTMERGESTART. The TAL example in Example 6-3 on page 6-23 shows 
how to use procedure calls for a parallel sort run. 

You can use SORT and SUBSORT DEFINEs to set up a parallel sort run. For more 
information, see Section 7, Using SORT and SUBSORT DEFINEs.    

Using the Automatic Configuration
The simplest way to set up a parallel sort run is to let FastSort automatically configure 
the subsort processes for you as follows: 

1. Specify the number of subsort processes. 

2. Specify the name of an initial scratch file for each subsort process. 

3. Start the run. 

For scratch files, specify only the disk volume names. For optimum performance, use 
scratch-file volumes whose primary disk processes (DP2) run in different processors. 

FastSort creates temporary initial scratch files on the disk volumes you specify and 
tries to put each subsort process in the same processor as the primary disk process for 
the initial scratch file. 

If you do not specify a processor for the distributor-collector process, FastSort tries to 
put this process in a processor as follows: 

 For the interactive interface, in the same processor in which the SORT process is 
running 

 For the programmatic interface, in the same processor in which the calling process 
is running 

The FastSort automatic configuration also includes:

 A block size of 56 KB for each subsort scratch file

 A memory size of 64 KB for the distributor-collector process and for each subsort 
process

 An extended memory segment for the distributor-collector process of at most 
90 percent of the processor’s physical memory not locked down by the operating 
system
FastSort Manual—429834-003
6-4



Sorting in Parallel Using FastSort Commands
 An extended memory segment for each subsort process of at most 50 percent of 
the processor’s physical memory not locked down by the operating system

 A scratch file size for each subsort process equal to the output file size divided by 
the number of subsort processes plus 6 bytes per record for overhead

FastSort computes the sizes of the extended memory segments and scratch files for 
you.

Using FastSort Commands 

To set up the automatic configuration with FastSort commands, use a SUBSORT 
command for each subsort process before you issue the RUN command: 

SUBSORT $VENUS
SUBSORT $MARS
SUBSORT $SATURN

For the best performance, each scratch file should be on a separate disk volume, and 
the primary disk processes for the volumes should be running in different processors.

Using FastSort Procedures 

To set up the automatic configuration using FastSort procedures, call the 
SORTMERGESTART procedure and specify these items:

 The number of subsort processes in the subsort-count parameter

 An initial scratch file for each process in the scratch-file-name array

 The flags parameter with bit 6 set to 1

 A process-start array

For example, this call to SORTMERGESTART in a TAL procedure sets up a parallel 
sort run with three subsort processes:

ERROR := SORTMERGESTART (sortblock, 
                         keys,,
                         1,  
                         indata, 
                         ,,,, 
                         outdata,,, 
                         flags,,
                         scratchfiles,,
                         startparams,,,,,
                         3);
FastSort Manual—429834-003
6-5



Sorting in Parallel Improving Performance
The SCRATCHFILES array contains an entry for a distributor-collector process scratch 
file and three entries for subsort initial scratch files. You must specify at least a volume 
name for each subsort initial scratch file:

INT distr^scratch[0:11] := ["                        "];
INT subp1^scratch[0:11] := ["$VENUS                  "];
INT subp2^scratch[0:11] := ["$MARS                   "];
INT subp3^scratch[0:11] := ["$SATURN                 "];

Because distributor-collector processes rarely use scratch files, you can omit the 
distributor-collector scratch file name. 

Improving Performance

If the automatic configuration does not sort your records fast enough, try running the 
sort in the MINTIME mode. When you specify the MINTIME parameter in the RUN 
command or in the SORTMERGESTART procedure, the size of the extended memory 
segment for each subsort process can be up to 70 percent of the processor’s physical 
memory not locked down by the operating system.

The following subsections explain how to set parameters to configure the subsort and 
distributor-collector processes and to tune the configuration. 

Configuring Subsort Processes
You can configure subsort processes through the SUBSORT command, through the 
procedures SORTMERGESTART and SORTBUILDPARM, or through SUBSORT 
DEFINEs. To get the best performance from subsort processes on your system, you 
might need to specify one or more of the following:

 A processor for each subsort process, preferably the processor that runs the 
primary disk process for the scratch volume

 A scratch file block size

 The size of the extended memory segment

 A location for the extended memory swap file

 A copy of the SORTPROG program on a disk volume other than $SYSTEM

 An execution priority
FastSort Manual—429834-003
6-6



Sorting in Parallel Selecting Processors to Run Subsort Processes
If you use commands to configure the parallel sort run, you can specify the parameters 
for each subsort process in a SUBSORT command. Some parameters of the RUN 
command also affect the configuration of subsort processes, as explained under 
Configuring a Distributor-Collector Process on page 6-10.

If you use procedure calls to configure the parallel sort run, you can specify processors 
in a call to the SORTBUILDPARM procedure and the other parameters for subsort 
processes in a call to the SORTMERGESTART procedure. Other parameters of 
SORTMERGESTART also affect the configuration of subsort processes, as explained 
under Configuring a Distributor-Collector Process on page 6-10.

Selecting Processors to Run Subsort Processes

When you name a scratch file for a subsort process, FastSort runs the process in the 
same processor that runs the primary disk process for the scratch file. If you see a 
bottleneck in a processor that is running a subsort process, however, you can specify a 
different processor for that process.

If a subsort process cannot run in the default processor, FastSort selects another one 
from a group of processors. You can specify which processors are in the group and 
which ones are not. When you specify a particular processor to run a subsort process 
and that processor is not available, FastSort does not select another processor but 
returns an error message.

You can specify a particular processor for a subsort process using one of the following 
methods, depending on whether you use commands or procedures:

 The CPU parameter of the SUBSORT command

 The process-start parameter of the SORTMERGESTART procedure

 The CPU attribute of a SUBSORT DEFINE 

You can specify a group of processors for FastSort to select from by using any of the 
following:   

 The CPUS and NOTCPUS commands (you can specify either or both commands) 

 The cpu-mask and not-cpu-mask parameters of the SORTBUILDPARM 
procedure (you can specify either or both parameters) 

 The CPUS and NOTCPUS attributes of a SORT DEFINE (you can specify either or 
both attributes) 
FastSort Manual—429834-003
6-7



Sorting in Parallel How FastSort Selects Processors
For example, you have a system with eight processors, and you want to run four 
subsort processes to sort the records from a large file. To allow for peak capacity, do 
not load any of the processors over 60 percent. Processors number 2 and 5 are 
generally 50 to 60 percent busy. Processor 0 runs the distributor-collector process 
because it has the lightest load. FastSort can use the remaining processors, so you 
specify them in a CPUS command:

CPUS 1,3,4,6,7

Or you can combine the CPUS and NOTCPUS commands to specify the same group 
of processors:

CPUS ALL
NOTCPUS 0,2,5

ALL is the default value for CPUS, so you can use only the NOTCPUS command to 
specify the same group.

The cpu-mask and not-cpu-mask parameters of the SORTBUILDPARM procedure 
and the CPUS and NOTCPUS attributes of a SORT DEFINE have the same effects as 
the CPUS and NOTCPUS commands. 

How FastSort Selects Processors

FastSort follows these steps to select a processor for a subsort process: 

1. FastSort uses the processor you specified, if any. If that processor is not available, 
FastSort returns error code 76 (START OF SUBSORT PROCESS HAS FAILED).

2. If you did not specify a processor, FastSort uses the processor that runs the 
primary disk process for the initial scratch volume, unless the NOTCPUS 
command or the not-cpu-mask parameter of SORTBUILDPARM excludes that 
processor.

3. If the processor that controls the initial scratch volume is not available, FastSort 
uses any processor from the processor group. If you did not specify any 
processors to use or not to use, FastSort selects from a group of all processors. 
When FastSort selects processors for subsorts, it attempts to put each process in a 
different processor.

4. If FastSort cannot start the subsort process in a processor it selects, for example 
because the processor is down, it selects another processor from the group and 
tries to start the process in the new processor.
FastSort Manual—429834-003
6-8



Sorting in Parallel Specifying the Size of the Extended Memory
Segment
Specifying the Size of the Extended Memory Segment

If you do not specify an extended segment size for a subsort process, FastSort tries to 
use enough memory for the subsort to make only one merge pass. In the automatic 
configuration, the segment size is at most 50 percent of the processor’s physical 
memory not locked down by the operating system.

FastSort computes the actual size of the segment as follows, using the segment size 
for a serial sort run (s) and the number of subsort processes (n): 

This is the default extended segment size for a subsort process. To specify a different 
extended segment size, use one of these parameters:

 The SEGMENT parameter of the SUBSORT command

 The process-start parameter of the SORTMERGESTART procedure

 The SEGMENT attribute of a SUBSORT DEFINE 

If you do not explicitly specify the segment size for a subsort process, the subsort 
process uses the same segment size as the distributor-collector process. 

To specify the maximum segment size for all subsort processes, you can use:

 The MINTIME or MINSPACE parameter of the RUN command

 The process-start parameter of the SORTMERGESTART procedure

 The MODE attribute of a SORT DEFINE 

Specifying a Location for the Swap File

The default location for the swap file in an extended memory segment is the same disk 
volume where the scratch file is located if the scratch file is local. For remote scratch 
files, the default is the volume where the program file is running. You can specify a 
volume for the swap file by using one of these parameters:

 The SWAP parameter of the SUBSORT command 

 The process-start parameter of the SORTMERGESTART procedure 

 The SWAP attribute of a SUBSORT DEFINE 

Swapping, or paging, occurs only when the extended memory segment is larger than 
the available physical memory or when there is competition from other processes. To 
avoid swapping, specify less extended memory for the subsort process or move the 
process to a processor with more physical memory available or a lighter load

s
1
n
---
FastSort Manual—429834-003
6-9



Sorting in Parallel Using Multiple Copies of the SORTPROG Program
Using Multiple Copies of the SORTPROG Program

By default, each subsort process uses the SORTPROG program in the 
$SYSTEM.SYSnn.SORTPROG file. To run a subsort process from another local disk 
volume, follow these steps:

1. Duplicate the SORTPROG program to a file on the target local disk volume and 
use the FUP LICENSE command to license it. 

2. Use one of these parameters to specify the location of the file: 

 The PROGRAM parameter of the SUBSORT command 

 The process-start parameter of the SORTMERGESTART procedure 

 The PROGRAM attribute of a SUBSORT DEFINE 

Specifying an Execution Priority

The default execution priority for a subsort process is the operating system’s default 
priority for a process. You can specify a different priority by using one of the following 
parameters:

 The PRI parameter of the SUBSORT command

 The process-start parameter of the SORTMERGESTART procedure

 The PRI attribute of a SUBSORT DEFINE 

Configuring a Distributor-Collector Process
You can configure a distributor-collector process in a RUN command or in a call to the 
SORTMERGESTART procedure. For the best performance, follow as many of the 
guidelines in this subsection as possible when you configure the distributor-collector 
process: 

 In a different processor from any of the subsort processes 

 In the same processor as the primary disk process for the volume containing the 
output file or an input file

 In the processor that has the lightest load

You do not have to specify a scratch file or any other parameter for the distributor-
collector process. The default processor is the processor of the program calling 
FastSort. If the default processor is heavily loaded or does not run the disk process for 
an input or output file’s volume, you can specify another processor in the RUN 
command.
FastSort Manual—429834-003
6-10



Sorting in Parallel Specifying a Scratch Block Size
To improve performance for a parallel sort run on your system, you can specify one or 
more of the following options in the RUN command or in the SORTMERGESTART 
procedure:

 The size of the I/O blocks for all scratch files

 The size of the extended memory segment for the distributor-collector process and 
for each subsort process

 A location for the swap file for the distributor-collector process’s extended memory 
segment

 A copy of the licensed SORTPROG program in a location other than the 
SYSTEM.SYSnn.SORTPROG file from which to run the distributor-collector 
process 

 An execution priority for the distributor-collector process

Specifying a Scratch Block Size

The default scratch block size for each subsort process is 56 KB. The block size can 
be any multiple of 2048 bytes up to 56 KB. You can specify a scratch block size by 
using one of the following parameters:

 The BLOCK parameter of the RUN command

 The BLOCK parameter of the SUBSORT command

 The scratch-block parameter of the SORTMERGESTART procedure

 The BLOCK attribute of a SORT DEFINE 

Any block size you specify applies to each subsort process. If there is a conflict 
between block sizes specified in the SUBSORT and RUN commands, SORTPROG 
uses the RUN command BLOCK parameter value.

Controlling the Size of Extended Memory Segments

Each SORTPROG process attempts to use enough memory to make only one merge 
pass. For the distributor-collector process, the default maximum size of the extended 
memory segment is 90 percent of the processor’s physical memory not locked down 
by the operating system. For each subsort process, the default maximum size of the 
extended memory segment is 50 percent of the processor’s physical memory not 
locked down by the operating system. The minimum size for each process is 256 KB.

You can use the MINTIME, MINSPACE, or SEGMENT parameter to specify a different 
extended segment size for the SORTPROG processes. If you specify the MINTIME 
parameter, FastSort uses at most 70 percent of the physical memory not locked down 
by the operating system. If you specify MINSPACE, the extended segment is only 256 
KB. If you specify the SEGMENT parameter or the segment word, FastSort uses at 
most only the number of pages you specify.
FastSort Manual—429834-003
6-11



Sorting in Parallel Specifying a Location for the Swap File
The SEGMENT parameter or the segment word of the process-start parameter 
overrides AUTOMATIC, MINSPACE, or MINTIME. However, if you specify more than 
90 percent of the processor’s physical memory not locked down by the operating 
system, FastSort returns an error. For each subsort process, you can specify a 
different extended segment size than for the distributor-collector process by using one 
of the following parameters:

 The SEGMENT parameter of the SUBSORT command

 The process-start parameter of SORTMERGESTART

 The SEGMENT attribute of a SUBSORT DEFINE 

Specifying a Location for the Swap File

The default location for the swap file in an extended memory segment is the initial 
scratch volume if the scratch file is local. If the scratch file is not local, the default 
location is the disk where the program file is running. You can specify another disk for 
the swap file with one of the following parameters:

 The SWAP parameter of the RUN command

 The process-start parameter of the SORTMERGESTART procedure

 The SWAP attribute of a SORT DEFINE 

Swapping, or paging, occurs only when the extended memory segment is larger than 
the available physical memory, or when there is competition from other processes. To 
avoid swapping, specify less extended memory for the distributor-collector process or 
move it to a processor with more physical memory available or a lighter load.

Using Multiple Copies of the SORTPROG Program

By default, a distributor-collector process uses the SORTPROG program in the 
$SYSTEM.SYSnn.SORTPROG file. To run a distributor-collector process from another 
disk volume, follow these steps:

1. Duplicate the SORTPROG program to a file on the target volume and use the FUP 
LICENSE command to license it.

2. Use one of these parameters to specify file location:

 The PROGRAM parameter of the RUN command

 The process-start parameter of the SORTMERGESTART procedure

 The PROGRAM attribute of a SORT DEFINE 
FastSort Manual—429834-003
6-12



Sorting in Parallel Specifying an Execution Priority
Specifying an Execution Priority

The default execution priority for the distributor-collector process is the operating 
system’s default priority for a process. You can use one of the following parameters to 
specify a different priority:

 The PRI parameter of the RUN command

 The process-start parameter of the SORTMERGESTART procedure

 The PRI attribute of a SORT DEFINE 

Tuning and Testing a Configuration for Parallel 
Sorting 

For a large sort run, you can tune and test a configuration for the optimum 
performance. To tune a configuration for a parallel sort run, follow these guidelines:

 Place scratch files on different disk volumes and on separate volumes from input 
and output files.

 Select nonmirrored disks for subsort scratch files, if possible. A sort run is faster 
with nonmirrored disks than with mirrored disks.

 Unless you know the workload of all processors, let FastSort select them. FastSort 
tries to put a subsort process in the same processor that is running the primary 
disk process for the subsort scratch file volume. 

 Run the distributor-collector and each subsort process in different processors.

The most effective number and placement of subsort processes on your system 
depends on the number and type of processors, the processor workloads, the number 
and length of input records, and the type of output. To determine how many subsort 
processes to use and where to run them, follow these steps:

1. Start with three subsort processes and use the automatic configuration.

2. Measure the performance using the Measure program. For more information, see 
the Measure Reference Manual.

3. If the distributor-collector process is not at least 90 percent busy, add one or more 
subsort processes. If the distributor-collector process is 100 percent busy, you 
might need only two subsort processes.

4. Try to balance the subsort processes so that processors and disks have similar 
rates of use. If a scratch disk is much busier than other disks, consider moving the 
scratch file to another disk. If a subsort’s processor is being used more than other 
processors, consider moving the subsort process to another processor. 
FastSort Manual—429834-003
6-13



Sorting in Parallel Understanding Statistics From Parallel Sorting
5. Avoid intermediate merge passes for subsort processes. Use enough extended 
memory for each subsort process to make only one merge pass. For information 
about how much extended memory you need for each subsort process with 
different sizes of files, see Controlling Extended Memory on page 2-11.

If you do not have enough memory available in each processor, add enough subsort 
processes to limit the number of merge passes to one.

Understanding Statistics From Parallel Sorting
For a parallel sort run, FastSort returns some statistics that apply only to the 
distributor-collector process and other statistics that are totals for the distributor-
collector process and all subsort processes as shown in the following table: 

Identifying the Causes of Errors
When an error occurs during a parallel sort run, FastSort can identify the SORTPROG 
process in which the error occurred. FastSort can also tell you the name of the file that 
caused an error.

If you use interactive commands to set up the parallel sort run, FastSort sends error 
messages to the list file (which is usually your home terminal). If you use procedures to 
set up the parallel sort run, you can retrieve error information with the 
SORTERRORSUM procedure. 

For example, if you specify a fully-qualified initial scratch file name for a parallel sort, 
SORTPROG returns the following error messages:

*** ERROR ***  A SCRATCH FILE CANNOT BE OPENED
OPERATING SYSTEM ERROR :  12
SCRATCH FILE: $DATA.SORT.SCRATCH
SORT PROCESS #2: (1,36)

Each line of the example is explained here:

 The first line contains the FastSort error text.

 The second line contains the file-system or NEWPROCESS error code.

 The third line specifies the type and name of the file that caused the error. 

 The fourth line identifies the subsort process in which the error occurred and gives 
the CPU number and process identification number (PIN) for the process.

FastSort Process Statistics 

Distributor-Collector Process Only RECORDS, BUFFER PAGES, ELAPSED TIME, 
INITIAL RUNS, I/O WAIT TIME, FIRST MERGE 
ORDER, SCRATCH DISK, MERGE ORDER, 
MAX RECORD SIZE, INTERMEDIATE PASSES 

Distributor-Collector and Subsort 
Processes

COMPARES, SCRATCH SEEKS, 
NUMBER OF DUPLICATES
FastSort Manual—429834-003
6-14



Sorting in Parallel Parallel Sorting From C Programs
Parallel Sorting From C Programs
Example 6-1 shows a C program that calls FastSort system procedures to perform a 
parallel sort run.

Example 6-1. C Example of a Parallel Sort Run (page 1 of 5)

#pragma  sql wheneverlist
#pragma  symbols
#pragma  inspect
#pragma  runnable
#pragma  nolist
/*-------------------------------------------------------------*/
/*        FastSort Parallel Sort Run                           */
/*-------------------------------------------------------------*/
/* This program uses subsorts to sort an input file. Overflow  */
/* scratch volumes are specified in SORTBUILDPARM. Error       */
/* handling and displaying of statistics are stubbed out.     */
/*-------------------------------------------------------------*/
/* External declarations                                       */
/*-------------------------------------------------------------*/
#include <stdioh>
#include <stdlibh>
#include <stringh>
#include <sqlh>
#include <talh>
#include <cextdecs>
#pragma list
#define MAXSUBSORTS  3      /* max number of subsorts          */
#define MAXSCRATCHVOLS 4    /* max number of scratch volumes   */
char  home_term_name[48];   /* terminal name                   */
short home_term_filenum;    /* file number                     */
short home_term_len;        /* actual len of hometerm name     */
short home_term_maxlen = 48;/* max len of hometerm name        */
short error_detail;         /* output from process_getinfo_    */
/*-------------------------------------------------------------*/
/* FastSort control and flags information.                     */
/*-------------------------------------------------------------*/
_lowmem short ctlblk[200];  /* control block for sort interface*/
_lowmem short key_array[4]; /* SORTMERGESTART key field defns  */
short sflag1 = 1;     /* use 22-word SORTMERGESTATISTICS array */
short flags = 512;    /* use expanded process_start structure  */
                      /* same as setting flags.<6> in TAL      */
/*-------------------------------------------------------------*/
/* FastSort error and statistics variables.                    */
/*-------------------------------------------------------------*/
short  error;                      /* error return parameter   */
_lowmem short error_buf[20],       /* error message buffer     */
              error_source[20],    /* error related info       */
              sub_index,           /* subsort that caused error*/
              sub_cpu_pin;         /* CPU,PIN of this subsort  */
_lowmem long  error_code[40]; /* Fastsort & system error codes */
struct sortstats_template {   
   short maxrecordsize;
   short bufferpages; 
   long  records;
   long  elapsedtime;
   long  compares;
   long  scratchseeks;
   long  iowaittime;
   long  scratchfileeof;
   long  initialruns;
   short firstmergeorder;
   short mergeorder;
   short intermediatepasses;
   long  numberofduplicates;
   } _lowmem sortstats;
FastSort Manual—429834-003
6-15



Sorting in Parallel Parallel Sorting From C Programs
struct newprocess_parms_template {  /* 29-word structure       */
   short priority;
   short memory;
   short cpu;
   short system;
   short segment_size;
   char  swap_file[24];
   char  program_file[24];
   } _lowmem newprocess_parms[MAXSUBSORTS + 1];
/*-------------------------------------------------------------*/
/* Input and output files                                      */
/*-------------------------------------------------------------*/
_lowmem char  infile[]  = "$DATA2 FSORT256INFILE";
_lowmem char  outfile[] = "$DATA2 FSORT256OUTFIL";

struct scratch_files_template {
  char filename[24];
} _lowmem scratch_files[MAXSUBSORTS + 1];

  struct scratch_pool_template {
  short reserved_word1;
  short reserved_word2;
  short reserved_word3;
  short reserved_word4;
  short reserved_word5;
  short reserved_word6;
  short reserved_word7;
  short reserved_word8;short use_scratch;
  short num_scratch_vols;
  short scratchvolnames[MAXSCRATCHVOLS];
} _lowmem scratch_pool;

void error_handler (void);
short DisplaySortStatistics (struct sortstats_template *);
/*-------------------------------------------------------------*/
#pragma page  " Main logic "
/*-------------------------------------------------------------*/

int main (void)
{
    short errlen = 0;
    short i,j;
/* Initialize temp scratch volume name and I/O filename arrays.*/
/* Leave blank for distributor-collector sort.                 */
    char tmp_dist_scr = "                         ";
    char tmp_scr1[] = "$DATA1                     ";
    char tmp_scr2[] = "$DATA2                     ";
    char tmp_scr3[] = "$DATA4                     ";
    char tmp_swap[] = "                           ";
    char tmp_prog[] = "                           ";
    char tmp_infile[] =  "$DATA2 FSORT256INFILE   ";
    char tmp_outfile[] = "$DATA2 FSORT256OUTFIL   ";
/*initialize scratch pool array;will be passed to all subsorts */
    char tmp_scr_pool[] = "$DATA1  $DATA2  $DATA3  $DATA4  ";
    _lowmem short actuallen;    /* size of statistics in words */
/*-------------------------------------------------------------*/
/* Perform standard initialization.                            */
/*-------------------------------------------------------------*/

   error = PROCESS_GETINFO_(,,,,,,(char *)&home_term_name,
                            home_term_maxlen,
                            &home_term_len,
                            ,,,,,,,,,,,&error_detail);
   if (error)
     DEBUG;
  if (FILE_OPEN_(home_term_name,
                 home_term_len,
                 &home_term_filenum) != CCE )
     DEBUG;
   INITIALIZER;                    /* read the startup message */

Example 6-1. C Example of a Parallel Sort Run (page 2 of 5)
FastSort Manual—429834-003
6-16



Sorting in Parallel Parallel Sorting From C Programs
/*-------------------------------------------------------------*/
/* Initialize SORT key definitions array.                      */
/*-------------------------------------------------------------*/
  key_array[0] = 1;  /* number of keys                         */
  key_array[1] = 9;  /* definition = binary,unsigned,ascending */
  key_array[2] = 2;  /* key length = 2 bytes                   */
  key_array[3] = 0;  /* key offset = 0 bytes                   */
/*-------------------------------------------------------------*/
/* Initialize structures to start SORTPROG with parallel option*/
/*-------------------------------------------------------------*/
  for (i = 0; i <= MAXSUBSORTS; i++)
    {
     newprocess_parms[i].priority     = 0;
     newprocess_parms[i].memory       = 1;
     newprocess_parms[i].system       = 2;
     newprocess_parms[i].segment_size = 3;
     memcpy(&newprocess_parms[i].swap_file[0],&tmp_swap[0],24);
     memcpy(&newprocess_parms[i].program_file[0],&tmp_prog[0],24);
    }
/*-------------------------------------------------------------*/
/* Set CPU numbers and scratch file names                      */
/*-------------------------------------------------------------*/
     newprocess_parms[0].cpu          = 0;
     newprocess_parms[1].cpu          = 1;
     newprocess_parms[2].cpu          = 2;
     newprocess_parms[3].cpu          = 3;
     memcpy(&scratch_files[0].filename[0],&tmp_dist_scr[0],24);
     memcpy(&scratch_files[1].filename[0],&tmp_scr1[0],24);
     memcpy(&scratch_files[2].filename[0],&tmp_scr2[0],24);
     memcpy(&scratch_files[3].filename[0],&tmp_scr3[0],24);
     memcpy(&infile[0],&tmp_infile[0],24);
     memcpy(&outfile[0],&tmp_outfile[0],24);
/*-------------------------------------------------------------*/
/* Set SCRATCH and SCRATCHON volume names. Tell SORTPROG to    */
/* use specified volumes for scratch.                          */
/*-------------------------------------------------------------*/
     scratchpool.use_scratch = 0;
     scratch_pool.num_scratch_vols = 4;
     memcpy(&scratch_pool.scratch_vol_names[0],
            &tmp_scr_pool[0],32);
/*-------------------------------------------------------------*/
/* Call SORTBUILDPARM to initialialize SORTPROG control block. */
/*-------------------------------------------------------------*/
  error = SORTBUILDPARM (&ctlblk[0]
                        ,
                        ,
                        ,
                        ,
                        ,
                        ,
                        ,
                        ,
                        ,
                        ,
                        ,(short *) &scratch_pool
                        );
  if (error)                 /* check for SORTBUILDPARM error  */
     {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
     error_handler;
     return EXIT_FAILURE;
     }

Example 6-1. C Example of a Parallel Sort Run (page 3 of 5)
FastSort Manual—429834-003
6-17



Sorting in Parallel Parallel Sorting From C Programs
/*-------------------------------------------------------------*/
/* Call SORTMERGESTART to start the SORTPROG processes.        */
/*-------------------------------------------------------------*/
  error = SORTMERGESTART 
                   (&ctlblk[0],
                    &key_array[0],,1,
                    (short *) &infile[0],,,,,
                    (short *) &outfile[0],,,
                    flags,,,
                    (short *) &scratch_files[0].filename[0],,
                    (short *) &newprocess_parms[0].priority,,,,,,
                    MAXSUBSORTS);
  if (error)                 /* check for SORTMERGESTART error */
     {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0],
                              &sub_index,&sub_cpu_pin);
     error_handler;
     return EXIT_FAILURE;
     }
/*-------------------------------------------------------------*/
/* Return SORTPROG completion errlen and statistics. Set       */
/* length in words, to return all statistics information.      */
/*-------------------------------------------------------------*/
  actuallen = sizeof(sortstats)/2;
  error = SORTMERGESTATISTICS (&ctlblk[0], &actuallen,
                               (short *) &sortstats,sflag1);
  if (error)           /* check for SORTMERGESTATISTICS error  */
       {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
       error_handler;
       return EXIT_FAILURE;
       }
/*-------------------------------------------------------------*/
/* Call function to display the statistics                     */
/*-------------------------------------------------------------*/
  error = DisplaySortStatistics (&sortstats);
  if (error)
       return EXIT_FAILURE;
/*-------------------------------------------------------------*/
/* CALL SORTMERGEFINISH to stop SORTPROG after the process     */
/* successfully completes the current sort and merge run(s).   */
/*-------------------------------------------------------------*/
    error = SORTMERGEFINISH (&ctlblk[0]);
    if (error)           /* check for SORTMERGEFINISH error    */
       {
       errlen = SORTERRORSUM (&ctlblk[0],
                              &error_buf[0],
                              &error_code[0],
                              &error_source[0]);
       error_handler;
       return EXIT_FAILURE;
       }
    FILE_CLOSE_ (home_term_filenum);
}                                    /* End of Main logic      */

Example 6-1. C Example of a Parallel Sort Run (page 4 of 5)
FastSort Manual—429834-003
6-18



Sorting in Parallel Parallel Sorting From COBOL85 Programs
Parallel Sorting From COBOL85 Programs
Example 6-2 on page 6-20 shows a COBOL85 program that calls COBOL85 interface 
routines to perform a parallel sort run.

void error_handler (void)
{
 /* error handling stubbed out */
  return;
}

short DisplaySortStatistics (struct sortstats_template *instats)
{
 /* Printing of statistics stubbed out */
  return EXIT_SUCCESS;
}
/*------------------------E-N-D--------------------------------*/

Example 6-1. C Example of a Parallel Sort Run (page 5 of 5)
FastSort Manual—429834-003
6-19



Sorting in Parallel Parallel Sorting From COBOL85 Programs
Example 6-2. COBOL85 Example of a Parallel Sort Run (page 1 of 3)

*------------------------------------------------------------
*           FastSort Parallel Sort Run 
* This program calls the COBOL85 interface routines
* COBOL85^SET^SORT^PARAM^VALUE and
* COBOL85^SET^SORT^PARAM^TEXT to start a parallel sort run.
*------------------------------------------------------------
?SYMBOLS, INSPECT
?LIBRARY $SYSTEM.SYSTEM.COBOLLIB
?LIBRARY $SYSTEM.SYSTEM.CBL85UTL
 IDENTIFICATION DIVISION.
 PROGRAM-ID.    PARALLEL-SORT-EXAMPLE.
 ENVIRONMENT DIVISION.
   CONFIGURATION SECTION.
   INPUT-OUTPUT SECTION.
   FILE-CONTROL.
   SELECT OUTPUT-FILE
          ASSIGN TO "=OUTFILE"
          ORGANIZATION IS SEQUENTIAL
          ACCESS MODE IS SEQUENTIAL.
   SELECT SORT-FILE
     ASSIGN TO "SORTFILE".
 DATA DIVISION.
 FILE SECTION.
 FD OUTPUT-FILE
     LABEL RECORDS ARE OMITTED
     RECORD CONTAINS 19 CHARACTERS.
 01  OUT-RECORD.
     05 SORT-RECORD-NO    PIC 9(4).
     05 FILLER            PIC X(5).
     05 SORT-CODE         PIC X(10).
SD  SORT-FILE
     RECORD CONTAINS 19 CHARACTERS.
 01  SORT-RECORD.
     05 SORT-RECORD-NO    PIC 9(4).
     05 FILLER            PIC X(5).
     05 SORT-CODE         PIC X(10).
WORKING-STORAGE SECTION.
 01 FLAGS.
    05 MORE-OUTPUT-FLAG       PIC X(3) VALUE "YES".
       88 MORE-OUTPUT                  VALUE "YES".
       88 NO-MORE-OUTPUT               VALUE "NO".
 01  RETURN-CODE              PIC 99 COMP.
 01  OUTPUT-COUNTER           PIC 9999 COMP VALUE 0.
 01  INPUT-RECORDS            PIC 9999      VALUE 1000.
 01  NUMBER-OF-SUBSORTS       PIC 99        VALUE 2.
 01  VALUE-PARAM              PIC X(20).
 01  SCRATCH-FILE-1           PIC X(8) VALUE "SCRATCH1".
 01  SCRATCH-FILE-2           PIC X(8) VALUE "SCRATCH2".
 01  WS-ORDR-CODE.
     05 WS-RECORD-NO          PIC 9(4) VALUE 0.
     05 FILLER                PIC X(5) VALUE SPACES.
     05 WS-CODE.
        06  WS-CODE-NBR       PIC 9999 VALUE 1000.
        06  WS-CODE-FIL       PIC X(6).
*------------------------------------------------------------
 PROCEDURE DIVISION.
 MAIN SECTION.
     OPEN OUTPUT OUTPUT-FILE.
     DISPLAY "Starting FastSort parallel sort run..."
     PERFORM SORT-RECORDS.
     DISPLAY "FastSort parallel sort run completed."
     STOP RUN.
 SORT-RECORDS SECTION.
FastSort Manual—429834-003
6-20



Sorting in Parallel Parallel Sorting From COBOL85 Programs
*------------------------------------------------------------
* Specify the number of subsort processes.
*------------------------------------------------------------
     MOVE "SUBSORT-COUNT" TO VALUE-PARAM.
     ENTER "COBOL85^SET^SORT^PARAM^VALUE"
           USING  SORT-FILE,
                  VALUE-PARAM, NUMBER-OF-SUBSORTS
           GIVING RETURN-CODE.
     IF RETURN-CODE NOT = 0
         PERFORM ERROR-RETURN
     END-IF.
*------------------------------------------------------------
* Specify the number of input records to sort.
*------------------------------------------------------------
 MOVE "IN-FILE-COUNT" TO VALUE-PARAM.
 ENTER "COBOL85^SET^SORT^PARAM^VALUE"
       USING  SORT-FILE,
              VALUE-PARAM, INPUT-RECORDS
       GIVING RETURN-CODE.
 IF RETURN-CODE NOT = 0
     PERFORM ERROR-RETURN
 END-IF.
*------------------------------------------------------------
* Specify a scratch file for each subsort process.
*------------------------------------------------------------
 MOVE "SCRATCH-FILE" TO VALUE-PARAM.
 ENTER "COBOL85^SET^SORT^PARAM^TEXT"
       USING  SORT-FILE,
              VALUE-PARAM, SCRATCH-FILE-1, 1
       GIVING RETURN-CODE.
 IF RETURN-CODE NOT = 0
     PERFORM ERROR-RETURN
 END-IF.

 ENTER "COBOL85^SET^SORT^PARAM^TEXT"
           USING  SORT-FILE,
                  VALUE-PARAM, SCRATCH-FILE-2, 2
           GIVING RETURN-CODE.
     IF RETURN-CODE NOT = 0
         PERFORM ERROR-RETURN
     END-IF.
*------------------------------------------------------------
*  Execute the sort run.
*------------------------------------------------------------
 SORT SORT-FILE ON ASCENDING KEY SORT-CODE OF SORT-RECORD
      INPUT PROCEDURE  INPUT-SECTION
      OUTPUT PROCEDURE OUTPUT-SECTION.
*------------------------------------------------------------
* Display any FastSort error codes.
*------------------------------------------------------------
 ERROR-RETURN SECTION.
 ERR-RTN.
     DISPLAY "Error-Return Code is: " RETURN-CODE.
     STOP RUN.
*------------------------------------------------------------
* Generate the input file.  (Note:  An actual program would
* get input records from an existing file or a process.)
*------------------------------------------------------------
 INPUT-SECTION SECTION.
 INPUT-ROUTINE.
     DISPLAY "Input sort procedure entered...".
     PERFORM INPUT-RECORDS TIMES
        ADD 1 TO WS-RECORD-NO
        SUBTRACT 1 FROM WS-CODE-NBR
        RELEASE SORT-RECORD FROM WS-ORDR-CODE
     END-PERFORM.
     DISPLAY "Input sort records created: " INPUT-RECORDS.

Example 6-2. COBOL85 Example of a Parallel Sort Run (page 2 of 3)
FastSort Manual—429834-003
6-21



Sorting in Parallel Parallel Sorting From TAL Programs
Parallel Sorting From TAL Programs
Example 6-3 on page 6-23 shows a TAL example that sets up a parallel sort run with 
three subsort processes.

*------------------------------------------------------------
* Return the sorted records.
*------------------------------------------------------------
 OUTPUT-SECTION SECTION.
 OUTPUT-ROUTINE.
     DISPLAY "Output sort procedure entered...".
     SET MORE-OUTPUT TO TRUE.
     PERFORM UNTIL NO-MORE-OUTPUT
         RETURN SORT-FILE
           AT END SET NO-MORE-OUTPUT TO TRUE
             NOT AT END
               MOVE CORRESPONDING SORT-RECORD TO OUT-RECORD
               WRITE OUT-RECORD
               ADD 1 TO OUTPUT-COUNTER
         END-RETURN
     END-PERFORM.
     DISPLAY "Output sort records returned: " OUTPUT-COUNTER.

Example 6-2. COBOL85 Example of a Parallel Sort Run (page 3 of 3)
FastSort Manual—429834-003
6-22



Sorting in Parallel Parallel Sorting From TAL Programs
Example 6-3. TAL Example of a Parallel Sort Run (page 1 of 3)

?SYMBOLS, NOCODE, INSPECT, MAP, LMAP, DATAPAGES 64
!-----------------------------------------------------------!
!                 FastSort Parallel Sort Run                !
! This program uses 3 subsorts to sort an input file.       !
!-----------------------------------------------------------!
! Global Declarations.                                      !
!-----------------------------------------------------------!
INT .home^term^name[0:11] := 12*["  "];  ! Name
INT  home^term^filenum;                  ! File number
INT .blank^name[0:11] := 12*["  "];  ! Blank file name
!-----------------------------------------------------------!
! Subsort information.                                      !
!-----------------------------------------------------------!
LITERAL max^subsort = 3;  ! Maximum number of subsorts
INT .ctlblk[0:199];       ! Control block for sort interface
INT .key^array[0:3]; ! Sort key array definitions
!-----------------------------------------------------------!
! Input and output files.                                   !
!-----------------------------------------------------------!
INT .in^file[0:11]  := ["$DISK01 FASTSORTINFILE  "];
INT .out^file[0:11] := ["$DISK01 FASTSORTOUTFILE "];
!-----------------------------------------------------------!
! SORTPROG new process information.                         !
!-----------------------------------------------------------!
STRUCT .newprocess^parms[0:max^subsort];
   BEGIN
   INT priority;           ! Priority
   INT memory;             ! Memory (ignored by FastSort)
   INT cpu;                ! CPU number
   INT system;             ! System
   INT segment^size;       ! Extended memory
   INT swap^file[0:11];    ! Swap file name
   INT program^file[0:11]; ! Program file name
   END;
INT flags := %B0000001000000000; ! Sort for flags newprocess
!-----------------------------------------------------------!
! Scratch files.                                            !
!-----------------------------------------------------------!
STRUCT .scratch^files[0:max^subsort];
   BEGIN
   INT filename[0:11];   ! Scratch file name
   END;
!-----------------------------------------------------------!
! Sort error and statistics variables.                      !
!-----------------------------------------------------------!
INT     .error^buf[0:31],     ! Error message
         error^source,        ! Error-related information
         sub^index,           ! Subsort that caused an error
         sub^cpu^pin,         ! CPU,PIN of this subsort
         error,               ! Return error code
        .stat[0:20];          ! Buffer for statistics
INT(32)  error^code;          ! FastSort and system error codes
!-----------------------------------------------------------!
?PAGE "External Declarations from EXTDECS0"
!-----------------------------------------------------------!
?NOLIST
?SOURCE $SYSTEM.SYSTEM.EXTDECS0 (DEBUG,
?                                INITIALIZER,
?                                MYTERM,
?                                OPEN,
?                                READ,
?                                SORTMERGESTART,
?                                SORTERRORSUM,
?                                SORTMERGESTATISTICS,
?                                SORTMERGEFINISH,
?                                STOP)
FastSort Manual—429834-003
6-23



Sorting in Parallel Parallel Sorting From TAL Programs
!-----------------------------------------------------------!
?PAGE "MAIN Procedure"
!-----------------------------------------------------------!
PROC main^proc MAIN;
BEGIN
  INT length;
!-----------------------------------------------------------!
! Open the home terminal and call the                       !
! INITIALIZER to read the startup message.                  !
!-----------------------------------------------------------!
CALL MYTERM (home^term^name);
CALL OPEN (home^term^name, home^term^filenum);
IF <> THEN CALL DEBUG;
CALL INITIALIZER;
!-----------------------------------------------------------!
! Initialize the sort key array definitions.                !
!-----------------------------------------------------------!
key^array[0] := 1; ! Number of keys
key^array[1] := 9; ! Key descriptor: binary signed, ascending
key^array[2] := 2; ! Key length: 2 bytes
key^array[3] := 0; ! Key offset: 0 bytes 
!-----------------------------------------------------------!
! Start SORTPROG process with the parallel option.          !
!-----------------------------------------------------------!
USE i;
FOR i := 0 TO max^subsort DO
  BEGIN     ! Fill default values
  newprocess^parms[i].priority     := -1;
  newprocess^parms[i].memory       := -1;
  newprocess^parms[i].system       := -1;
  newprocess^parms[i].segment^size := -1;
  newprocess^parms[i].swap^file    ’:=' blank^name FOR 12;
  newprocess^parms[i].program^file ':=' blank^name FOR 12;
  END;
!-----------------------------------------------------------!
! Set CPU numbers and scratch file names.                   !
!-----------------------------------------------------------!
newprocess^parms[0].cpu := 1;
newprocess^parms[1].cpu := 3;
newprocess^parms[2].cpu := 4;
newprocess^parms[3].cpu := 6;
scratch^files[0].filename ':=' "                        ";
scratch^files[1].filename ':=' "$DISK01                 ";
scratch^files[2].filename ':=' "$DISK01                 ";
scratch^files[3].filename ':=' "$DISK01                 ";
!-----------------------------------------------------------!
! Call SORTMERGESTART procedure.                            !
!-----------------------------------------------------------!
error := SORTMERGESTART (ctlblk,
                         key^array,,1,
                         in^file,,,,,
                         out^file,,,
                         flags,,,
                         scratch^files[0].filename,,
                         newprocess^parms[0].priority,,,,,,
                         max^subsort);

IF error THEN ! Check for SORTMERGESTART error.
   BEGIN
   length := SORTERRORSUM (ctlblk,
                           error^buf, error^code,
                           error^source,
                           sub^index, sub^cpu^pin);
   ! Process the SORTMERGESTART error.
   END;

Example 6-3. TAL Example of a Parallel Sort Run (page 2 of 3)
FastSort Manual—429834-003
6-24



Sorting in Parallel Parallel Sorting From TAL Programs
!-----------------------------------------------------------!
! Return statistics and check the sort completion.          !
!-----------------------------------------------------------!
error := SORTMERGESTATISTICS (ctlblk,length,stat);
IF error THEN ! Check for SORTMERGESTATISTICS error.
   BEGIN
   length := SORTERRORSUM (ctlblk,
                           error^buf, error^code,
                           error^source,
                           sub^index, sub^cpu^pin);
   ! Process the SORTMERGESTATISTICS error.
   END;
END;                 ! of the MAIN procedure !
!-----------------------------------------------------------!

Example 6-3. TAL Example of a Parallel Sort Run (page 3 of 3)
FastSort Manual—429834-003
6-25



Sorting in Parallel Parallel Sorting From TAL Programs
FastSort Manual—429834-003
6-26



7
Using SORT and SUBSORT DEFINEs

Before you start a sort or merge run, you can set or change operating system 
parameters that affect FastSort. While the FastSort default settings are often sufficient 
for small sort or merge runs, modifying the default settings can improve the 
performance of a large run. 

You modify default settings for a sort operation with CLASS SORT and SUBSORT 
DEFINEs. You can set or change a DEFINE either interactively or programmatically. 
Tasks you can perform with SORT and SUBSORT DEFINEs include:

 Select a less busy processor for SORTPROG processes

 Select a disk with more free space than the default for your initial scratch file

 Manually specify certain parameters that are difficult to set from an application 
program

 Specify parameters for sorting from SQL/MP and other products that do not allow 
you to specify FastSort parameters at run time

This section describes the following FastSort DEFINEs: 

SORT DEFINE 

is the FastSort DEFINE you use to control the SORTPROG process in a serial sort 
run or the distributor-collector SORTPROG process in a parallel sort run. 

SUBSORT DEFINE 

is the FastSort DEFINE you use to control a subsort process in a parallel sort run. 
You can specify 2 to 8 SUBSORT DEFINEs to set parameters for each subsort 
process that is linked to a specific SORT DEFINE. 

=_SORT_DEFAULTS DEFINE

is the FastSort default DEFINE. You use this DEFINE to specify FastSort 
parameters for SQL/MP and applications that otherwise cannot set the parameters. 
Section 8, Sorting From NonStop SQL/MP contains additional information about 
configuring sorts from SQL/MP.

Determining the Precedence of DEFINEs 
There are four possible ways to specify FastSort parameter values. If a conflict occurs 
between two or more values, FastSort chooses a value as follows:
FastSort Manual—429834-003
7-1



Using SORT and SUBSORT DEFINEs Setting DEFINE Attributes
Use a single method to specify values for a subsort process. For subsort processes, 
FastSort treats all parameter values as a single entity. After FastSort determines the 
source of information for a subsort process, it ignores values from other sources. 

Setting DEFINE Attributes 
The table below lists the attributes for CLASS SORT and SUBSORT DEFINEs. These 
attributes are described in this section and in Section 3, Using FastSort Commands. 

Setting SORT DEFINE Attributes

The following SORT DEFINE attributes correspond to parameters for the FastSort 
interactive commands in Section 3, Using FastSort Commands. Only the SCRATCH 
attribute is required; all other SORT DEFINE attributes are optional. To set parameters 
for SQL/MP, see Creating and Using the =_SORT_DEFAULTS DEFINE on page 7-13.

BLOCK size

specifies the block size, in bytes, for scratch files. Specify any multiple of 2048 
bytes up to 56 KB, such as: 

SET DEFINE BLOCK 28672

The number you specify must at least equal the size of the largest input record, 
rounded up to the nearest even byte, plus 14 bytes overhead. For optimal 
performance, specify 56 KB for local scratch files and 28 KB for remote scratch 
files. The default is 56 KB. 

CPU processor

specifies the processor (CPU) number for the SORTPROG process. The range is 
0 through 15, such as:

SET DEFINE CPU 2 

The default is the CPU where the process that starts SORTPROG is running. 

Priority Value Type Specified By

1 User-specified A SORT or SUBSORT DEFINE

2 User parameter A FastSort interactive parameter or system procedure call

3 Default The =_SORT_DEFAULTS DEFINE

Class Attributes 

SORT BLOCK, CPU, CPUS, MODE, NOSCRATCHON, NOTCPUS, PRI, PROGRAM, 
SCRATCH, SCRATCHON, SEGMENT, SUBSORTS, SWAP, VLM 

SUBSORT BLOCK, CPU, PRI, PROGRAM, SCRATCH, SEGMENT, SWAP 
FastSort Manual—429834-003
7-2



Using SORT and SUBSORT DEFINEs Setting SORT DEFINE Attributes
CPUS { processor [, processor ]... | ALL } 

specifies the processor (CPU) numbers that are available for subsort processes, 
The range is 0 through 15. A value of ALL means that all processors are available 
for subsorts. To specify a list of processors, enclose the numbers in parentheses 
and separate them with commas, as follows: 

SET DEFINE CPUS ALL
SET DEFINE CPUS 5
SET DEFINE CPUS (1,3,4)

You can specify the CPUS and NOTCPUS attributes in the same DEFINE.

MODE { MINTIME | MINSPACE | AUTOMATIC } 

For a description of MINSPACE, MINTIME, and AUTOMATIC, see RUN Command 
on page 3-19. An example of MODE attribute syntax is: 

SET DEFINE MODE MINSPACE

NOSCRATCHON (volume-name [, volume-name ]...)

specifies volumes that FastSort should not use for overflow scratch files. If the 
scratch file specified in the SCRATCH attribute becomes full and no SCRATCHON 
values exist, FastSort tries to create an overflow scratch file on a volume not 
specified in the NOSCRATCHON attribute, protected by the Safeguard product, 
$SYSTEM, or a TMF audit trail disk. Enclose NOSCRATCHON volume names in 
parentheses and separate with commas, as follows:

SET DEFINE NOSCRATCHON ( $data2 , $data3 )

FastSort recognizes the wild-card characters * and ? for the NOSCRATCHON 
attribute. See the description of SCRATCHON following for examples of how to 
use these characters. 

You can specify up to 32 NOSCRATCHON volumes. If you specify 
NOSCRATCHON, you cannot specify SCRATCHON. Note that this attribute 
requires up to 276 additional bytes of stack space.

NOTCPUS { processor [, processor ]... } 

specifies the processor (CPU) numbers that are not available for subsort 
processes. The range is 0 through 15. To specify a list of processors, enclose the 
numbers in parentheses and separate them with commas, as follows: 

SET DEFINE NOTCPUS (2,5,6)

PRI priority 

specifies the priority to assign to the SORTPROG process. The range is 1 through 
199, such as: 

SET DEFINE PRI 120

The default is the operating system priority for the parent process. 
FastSort Manual—429834-003
7-3



Using SORT and SUBSORT DEFINEs Setting SORT DEFINE Attributes
PROGRAM file-name

specifies a local or remote program file name to run in place of the default program 
file, such as: 

SET DEFINE PROGRAM $data.fastsort.sortprog

SCRATCH file-name

specifies a disk file name or disk volume name for an initial scratch file. This 
attribute is required. For example: 

SET DEFINE SCRATCH $data.fastsort.scratch

If the file already exists, it must be unstructured. If the initial scratch file becomes 
full, then either the SCRATCHON or NOSCRATCHON attribute determines the 
volume for an overflow scratch file.

SCRATCHON (volume-name [, volume-name ]...)

specifies volumes that FastSort should use for overflow scratch files. If the volume 
specified in the SCRATCH attribute becomes full, FastSort tries to create additional 
overflow scratch files on a SCRATCHON volume. To specify a list of volume 
names, enclose the names in parentheses and separate with commas, as follows:

SET DEFINE SCRATCHON ( $data4 , $data5 )

FastSort recognizes the wild-card characters * and ? for the SCRATCHON 
attribute. For example:

SET DEFINE SCRATCHON $data*

specifies as available for overflow scratch files all volumes whose names begin 
with the string $data.

SET DEFINE SCRATCHON $data?

specifies as available for overflow scratch files those volumes whose names begin 
with the string $data and contain a single trailing character.

You can specify up to 31 SCRATCHON volumes. If you specify SCRATCHON, you 
cannot specify NOSCRATCHON. Note that this attribute requires up to 276 
additional bytes of stack space.

SEGMENT size

specifies the size in pages of the extended data segment for FastSort, such as: 

SET DEFINE SEGMENT 256

The value must be at least 256 pages but must not represent more than 90 percent 
of available memory. If you specify SEGMENT, you must omit MODE. The default 
is the same as MODE AUTOMATIC.
FastSort Manual—429834-003
7-4



Using SORT and SUBSORT DEFINEs Setting SUBSORT DEFINE Attributes
SUBSORTS ( DEFINE-name [, DEFINE-name ]... )

specifies a list of DEFINE names for subsort processes. Separate the DEFINE 
names with commas and enclose them in parentheses, such as: 

SET DEFINE SUBSORTS (=subsorta, =subsortb, =subsortc)

FastSort checks DEFINE names for validity at run time. 

SWAP file-name

specifies the name of a swap file to use in an extended memory data segment. 
The swap file you specify must be a disk file or volume on the local node, such as: 

SET DEFINE SWAP $data.fastsort.swapfile

If the file already exists, it must be unstructured. The default location for the swap 
file depends on the location of the scratch file. If the scratch file is local, the swap 
file is on the scratch volume. For remote scratch files, the default is the volume 
where the program file is running. 

VLM { ON | OFF }

specifies whether to use additional extended memory during a sort run. For 
example:

SET DEFINE VLM ON

makes extra memory available. FastSort uses the additional extended memory to 
either complete the sort in a single pass or store partial information until the sort is 
complete. When VLM is ON, FastSort uses up to 127.5 MB of extended memory, if 
available. The default value is OFF.

Setting SUBSORT DEFINE Attributes

The SUBSORT DEFINE attributes set values for a subsort process that you name in 
the SUBSORT attribute of a SORT DEFINE. SUBSORT DEFINE attributes correspond 
to the parameters of the SUBSORT command, which are described in Section 3, Using 
FastSort Commands. To set parameters for parallel SQL/MP load operations, see 
Loading Data on page 8-7.

CPU processor

specifies the number of the processor (CPU) in which to run the subsort process, 
such as:

SET DEFINE CPU 3

The range is 0 through 15. The default is the processor in which the primary disk 
process for the initial scratch volume is running. 
FastSort Manual—429834-003
7-5



Using SORT and SUBSORT DEFINEs Setting SUBSORT DEFINE Attributes
PRI priority 

specifies the priority for the subsort process. The range is 1 through 199. The 
default is the operating system priority for the parent process. 

SET DEFINE PRI 180

PROGRAM file-name

specifies a local or remote program file name to run for the subsort process in 
place of the default program file, such as: 

SET DEFINE PROGRAM $data.another.sortprog

SCRATCH file-name

specifies a disk file name or disk volume name for an initial scratch file for the 
subsort process. Specify a unique scratch file for each subsort process. For 
example:

SET DEFINE SCRATCH $data.temp1

If the file already exists, it must be unstructured. If the subsort scratch volume 
becomes full, then either NOSCRATCHON or the SCRATCHON attribute of the 
distributor-collector process determines the volume for another subsort scratch file. 
If no values are specified for the SCRATCHON and NOSCRATCHON attributes, 
then FastSort uses volume characteristics to select an overflow scratch volume. 
For more information about scratch, see Managing Sort Workspace on page 9-1.

SEGMENT size

specifies the extended data segment size in pages for the subsort process. For 
example: 

SET DEFINE SEGMENT 256

The value must be at least 256 pages but must not represent more than 90 percent 
of available memory. The default value is 256 pages.

SWAP file-name

is the name of a swap file for the subsort process. The value you specify must be a 
local disk file or disk volume, such as:

SET DEFINE SWAP $data.temp4

If the file already exists, it must be unstructured. The default location for the swap 
file depends on the location of the scratch file. If the scratch file is local, the swap 
file is on the scratch volume. For remote scratch files, the default is the volume 
where the program file is running.
FastSort Manual—429834-003
7-6



Using SORT and SUBSORT DEFINEs Creating and Using DEFINEs Interactively
Creating and Using DEFINEs Interactively
Use the TACL DEFINE commands listed below to interactively create and modify 
SORT and SUBSORT DEFINEs. The operating system places the DEFINEs in the 
process file segment (PFS) of your TACL process. 

For additional information, including the syntax, for these commands, see the 
TACL Reference Manual. 

Enabling DEFINEs

You must set the TACL DEFMODE variable to ON before you can use a DEFINE. If the 
DEFMODE variable is OFF, DEFINEs do not affect FastSort or any other processes. 
To determine the current value of the DEFMODE variable, use the SHOW DEFMODE 
command. To enable DEFINEs, use the SET DEFMODE ON command. 

Creating a SORT DEFINE

The following example creates a SORT DEFINE named 
=DISTRIBUTOR_COLLECTOR and three SUBSORT DEFINEs named =SUBSORTA, 
=SUBSORTB, and =SUBSORTC. The SET DEFINE CLASS SORT establishes the 
initial working attribute set and their default values. TACL automatically assigns these 
default values to the working attribute set in the next SORT DEFINE you create. You 
can issue additional SET DEFINE commands to set other attributes in the working 
attribute set. Then use ADD DEFINE to create and name the 
=DISTRIBUTOR_COLLECTOR based on the working attribute set, as follows: 

SET DEFINE CLASS SORT
SET DEFINE SWAP  $disk.fastsort.swapfile
SET DEFINE MODE MINSPACE
SET DEFINE SUBSORTS (=subsorta,=subsortb,=subsortc)
ADD DEFINE =distributor_collector

Command Description 

ADD DEFINE Creates a DEFINE in the PFS of the current TACL process. 

ALTER DEFINE Changes the attribute settings of an existing DEFINE in the PFS. 

DELETE DEFINE Deletes one or more existing DEFINEs from the PFS. 

INFO DEFINE Displays the attributes and their settings for one or more existing 
DEFINEs. 

RESET DEFINE Resets the attributes of one or more existing DEFINE to their initial 
values. 

SET DEFINE Sets the values of one or more existing DEFINE attributes in the 
working set. 

SHOW DEFINE Displays a value of a specific DEFINE attribute, the values of all 
attributes, or the values of all attributes in the working set. 
FastSort Manual—429834-003
7-7



Using SORT and SUBSORT DEFINEs Displaying a DEFINE
You can also create the same SORT DEFINE using a single command as shown in the 
next example. The ampersand (&) is the continuation character for a TACL command 
that continues on the next physical line. 

ADD DEFINE =distributor_collector, CLASS SORT,   &
    SCRATCH $disk.fastsort.scratch,              &
    SWAP $disk.fastsort.swapfile,                &
    MODE MINSPACE,                               &
    SUBSORTS (=subsorta,=subsortb,=subsortc)

Displaying a DEFINE 

Use the INFO DEFINE command with the DETAIL option to display the attributes and 
values of one or more DEFINEs. Use the SHOW DEFINE command to display the 
values of specific attributes. For example, to display the attributes and values for the 
=DISTRIBUTOR_COLLECTOR DEFINE, enter: 

INFO DEFINE =distributor_collector, DETAIL

TACL displays: 

    Define Name        =DISTRIBUTOR_COLLECTOR
    CLASS              SORT
    SWAP               $DISK.FASTSORT.SWAPFILE
    MODE               MINSPACE
    SUBSORTS           (=SUBSORTA,=SUBSORTB,=SUBSORTC)

The SHOW DEFINE command displays current attributes and attribute values. For 
example, to display the working attribute set with current values, enter:

SHOW DEFINE *

TACL displays:

    CLASS              SORT
    SCRATCH
    SWAP               $DISK.FASTSORT.SWAPFILE
    MODE               MINSPACE
    CPU
    BLOCK
    PRI
    SEGMENT
    PROGRAM
    CPUS
    NOTCPUS
    SUBSORTS           (=SUBSORTA,=SUBSORTB,=SUBSORTC)
    VLM
    NOSCRATCHON
    SCRATCHON

For more information about the SHOW DEFINE command, see the example under 
Examples of SORT and SUBSORT DEFINEs on page 7-15, and the TACL Reference 
Manual.
FastSort Manual—429834-003
7-8



Using SORT and SUBSORT DEFINEs Creating a SUBSORT DEFINE
Creating a SUBSORT DEFINE

A SUBSORT DEFINE controls a subsort process in a parallel sort run. Specify 
between 2 and 8 SUBSORT DEFINEs for a SORT DEFINE.

You create a SUBSORT DEFINE in the same manner as a SORT DEFINE. To use a 
SUBSORT DEFINE, you must also name the SUBSORT DEFINE in the SORT 
DEFINE SUBSORTS attribute. At run time, each SUBSORTS attribute of a SORT 
DEFINE must correspond to an existing SUBSORT DEFINE. 

The following example creates a SUBSORT DEFINE named =SUBSORTA, which is 
associated with the =DISTRIBUTOR_COLLECTOR SORT DEFINE: 

SET DEFINE CLASS SUBSORT
SET DEFINE SCRATCH  $disk.temp1
SET DEFINE SWAP     $disk.temp2
ADD DEFINE =subsorta  

An INFO DEFINE command for =SUBSORTA displays:

    Define Name        =SUBSORTA
    CLASS              SUBSORT
    SCRATCH            $DISK.TEMP1
    SWAP               $DISK.TEMP2 

Modifying a DEFINE

You can also use TACL commands to add, modify, or delete the attributes of a SORT 
or SUBSORT DEFINE (or the entire DEFINE). The following examples show several 
ALTER DEFINE and RESET DEFINE commands with the results displayed with the 
INFO DEFINE command. 

To add one or more SUBSORT DEFINE names to an existing SORT DEFINE, use the 
ALTER DEFINE command: 

ALTER DEFINE =distributor_collector,          &
      SUBSORTS (=subsorta,=subsortb,=subsortc,=subsortd)

INFO DEFINE =distributor_collector, DETAIL
    Define Name     =DISTRIBUTOR_COLLECTOR DEFINE
    CLASS           SORT
    SWAP            $DISK.FASTSORT.SWAPFILE
    MODE            MINSPACE
    SUBSORTS        (=SUBSORTA,=SUBSORTB,=SUBSORTC,=SUBSORTD)

You can also use the ALTER DEFINE command to modify a SUBSORT DEFINE name 
of an existing SORT DEFINE. The following command removes =SUBSORTA: 

ALTER DEFINE =distributor_collector,          &
      SUBSORTS (=subsortb, =subsortc, =subsortd)

Note. FastSort supports up to 16 SUBSORT DEFINEs; however, to prevent run-time errors 
and performance problems, HP recommends that you specify no more than 8 SUBSORT 
DEFINEs.
FastSort Manual—429834-003
7-9



Using SORT and SUBSORT DEFINEs Deleting a DEFINE
INFO DEFINE =distributor_collector, DETAIL
    Define Name     =DISTRIBUTOR_COLLECTOR DEFINE
    CLASS           SORT
    SWAP            $DISK.FASTSORT.SWAPFILE
    MODE            MINSPACE
    SUBSORTS        (=SUBSORTB,=SUBSORTC,=SUBSORTD)

To delete an attribute from the working attribute set before you create a new DEFINE, 
use the RESET DEFINE command. The following example deletes all previously 
specified SUBSORT DEFINE names for the =DISTRIBUTOR_COLLECTOR DEFINE. 

RESET DEFINE SUBSORTS  

Deleting a DEFINE

Use the DELETE DEFINE command to delete a DEFINE. In the following example, the 
first command deletes =SUBSORTB, while the second command deletes all DEFINEs 
(including DEFINEs other class SORT DEFINEs). A double asterisk (**) or an equal 
sign and asterisk (=*) in the DELETE DEFINE command specifies all DEFINEs. 

DELETE DEFINE =SUBSORTB  
DELETE DEFINE ** 

Using DEFINEs With Interactive FastSort

After you create a SORT DEFINE, you can use it with interactive FastSort by 
specifying the DEFINE name in the FastSort RUN command. FastSort reads the 
attributes from the SORT DEFINE and then uses them as parameters for the sort or 
merge run. If you specify a DEFINE other than class SORT in the RUN command, 
FastSort returns an error message. 

The following FastSort command file includes a RUN command that uses the 
=DISTRIBUTOR_COLLECTOR SORT DEFINE: 

FROM infile 
TO outfile 
ASC 1:10 
RUN, DEFINE =distributor_collector
...

The Guardian User’s Guide also provides information and examples for creating and 
using TACL DEFINEs interactively. 

Creating and Using DEFINEs Programmatically 
You create and use a SORT or SUBSORT DEFINE (and other TACL DEFINEs as well) 
programmatically using the system procedures shown in the table below. The 
operating system places the DEFINEs in the process file segment (PFS) of your 
application. 
FastSort Manual—429834-003
7-10



Using SORT and SUBSORT DEFINEs Creating and Modifying DEFINEs Programmatically
For a detailed description, including the syntax, of these procedures, see the 
Guardian Procedure Calls Reference Manual. 

Creating and Modifying DEFINEs Programmatically 

To use TACL DEFINEs programmatically, you must first set the DEFMODE variable to 
ON for your application by using one of the following methods: 

 Before you run your application, issue the SET DEFMODE ON command from 
your TACL process. 

 From your application, call the DEFINEMODE procedure with the new^value 
parameter set to 1. 

After you enable DEFINEs, you use the DEFINESETATTR procedure to set the values 
of attributes, including the CLASS attribute, in the working attribute set. (You can also 
issue the SET DEFINE CLASS SORT command from your TACL process before your 

Procedure Description 

DEFINEADD Creates a DEFINE for the user from the working attribute 
set.

DEFINEDELETE Deletes a specific DEFINE for the user. 

DEFINEDELETEALL Deletes all DEFINEs for the user. 

DEFINEINFO Returns information about a DEFINE. 

DEFINEMODE Sets the DEFINE mode (DEFMODE variable) for the user 
process. 

DEFINENEXTNAME Returns the name of the DEFINE that follows the specified 
DEFINE.

DEFINEPOOL Designates part of the user stack or extended data segment 
as a pool. 

DEFINERADATTR Returns the current value of a specified DEFINE attribute.

DEFINERESTORE Restores a saved DEFINE from a user-specified buffer for 
active use.

DEFINERESTOREWORK2 Restores the working set from a background set. 

DEFINESAVE Copies an active DEFINE to a user-specified buffer.

DEFINESAVEWORK[2] Saves a first or second DEFINE working set in the 
background set.

DEFINESETATTR Modifies an attribute in the working set.

DEFINESETLIKE Initializes the working set with values from an existing 
DEFINE. 

DEFINEVALIDATEWORK Checks the working set for consistency. 

CHECKDEFINE Checkpoints a DEFINE to a backup process. 
FastSort Manual—429834-003
7-11



Using SORT and SUBSORT DEFINEs Using DEFINEs With Programmatic FastSort
run your application.) After you have set the necessary attributes, you use the 
DEFINEADD procedure to name the DEFINE and add it to your application’s PFS. 

The following TAL example shows the programmatic use of a SORT DEFINE named 
=SORT^DEFINE. The CONVERT^INT^TO^STRING and ERROR^RECOVERY 
procedures not shown in this example are user-written procedures. 
CONVERT^INT^TO^STRING converts an integer value to a character string for use in 
the DEFINESETATTR procedure call. ERROR^RECOVERY processes any errors that 
occur in the system procedure calls. 

STRING .sort^define^name[0:23],
       .attribute^name[0:15],
       .attribute^value[0:15];

INT attribute^length,
    sortprog^cpu^number,
    error;

... ! Enter the SORT DEFINE attribute values from a terminal.

sort^define^name ':=' "=sort^define            ";
attribute^name   ':=' "CLASS           ";
attribute^value  ':=' "SORT            ";
attribute^length  := 4;
error := DEFINESETATTR (attribute^name,
                        attribute^value,
                        attribute^length);
IF error <> 0 THEN CALL error^recovery;

attribute^name ':=' "CPU             ";
error := convert^int^to^string (sortprog^cpu^number,
                                attribute^value,
                                attribute^length);
IF error <> 0 THEN CALL error^recovery;

error := DEFINESETATTR (attribute^name,
                        attribute^value,
                        attribute^length);
IF error <> 0 THEN CALL error^recovery;

... ! Set any other SORT DEFINE attributes.

error := DEFINEADD (sort^define^name);
IF error <> 0 THEN CALL error^recovery;
... 

Using DEFINEs With Programmatic FastSort

To use a SORT DEFINE other than =_SORT_DEFAULTS in a program, specify the 
DEFINE name in the SORTBUILDPARM procedure described in Section 5, Using 
FastSort System Procedures. If you omit the DEFINE name parameter in 
SORTBUILDPARM, or if you specify a name of all blanks, FastSort does not check for 
a SORT DEFINE. 
FastSort Manual—429834-003
7-12



Using SORT and SUBSORT DEFINEs Creating and Using the =_SORT_DEFAULTS
DEFINE
The following TAL example uses a SORT DEFINE named =SORT^DEFINE in the 
SORTBUILDPARM procedure. The operating system does not check the existence or 
validity of the SORT DEFINE until the sort operation begins. 

PROC sort^procedure;
BEGIN
  INT .sort^define^name[0:11] := [ 12 * ["  "]];

...

sort^define^name ':=' ["=sort^define            "];

... ! Set the other SORTBUILDPARM parameters.

status := SORTBUILDPARM (sortblock,         ! Control block
                         cpu-mask, 
                         not-cpu-mask,
                         buffer,
                         buffer2,
                         buffer^length,
                         flags,
                         sort^define^name); ! DEFINE name
...

For more information about using DEFINEs programmatically, see Guardian 
Programmer’s Guide. 

Creating and Using the =_SORT_DEFAULTS 
DEFINE 

In a =_SORT_DEFAULTS DEFINE you can specify FastSort parameters for 
applications that otherwise cannot set the parameters. For example, if a SQL/MP query 
uses FastSort to sort rows from a table, FastSort uses attributes from the 
=_SORT_DEFAULTS DEFINE if it exists and DEFMODE is set to ON. The 
=_SORT_DEFAULTS DEFINE is the only DEFINE you can use to configure a sort from 
SQL/MP. Other SORT and SUBSORT DEFINEs do not affect SQL/MP sorts.

HP recommends that you use the =_SORT_DEFAULTS DEFINE only for serial sort 
operations. If you use the =_SORT_DEFAULTS DEFINE to configure a parallel sort 
operation, follow the guidelines in Selecting a Scratch Volume for Parallel Sorts on 
page 9-7 and Specifying a Swap File for Parallel Sorts on page 9-10 to avoid sort 
failure.

Although the =_SORT_DEFAULTS DEFINE name is reserved for use as the default 
FastSort DEFINE, you create it just as you create other DEFINEs. The following 
example creates a =_SORT_DEFAULTS DEFINE and displays its attributes. The 
current attribute set is adopted from the working attribute set. 

ADD DEFINE =_SORT_DEFAULTS, CLASS SORT
INFO DEFINE =_SORT_DEFAULTS, DETAIL
FastSort Manual—429834-003
7-13



Using SORT and SUBSORT DEFINEs Creating and Using the =_SORT_DEFAULTS
DEFINE
    Define Name        =_SORT_DEFAULTS
    CLASS              SORT

The following ADD DEFINE command creates the =_SORT_DEFAULTS DEFINE and 
sets the SCRATCH, SWAP, and CPU attributes: 

ADD DEFINE =_SORT_DEFAULTS, CLASS SORT,         &
    SCRATCH  $disk.scratch.file                 &
    SWAP  $disk.swap.file                       &
    CPU 8 

You can change the settings of the current attributes of the =_SORT_DEFAULTS 
DEFINE using the ALTER DEFINE command. You can then use the INFO DEFINE 
command to display the new attribute values. 

ALTER DEFINE =_SORT_DEFAULTS, SCRATCH $disk
ALTER DEFINE =_SORT_DEFAULTS, PRI 150
INFO DEFINE =_SORT_DEFAULTS, DETAIL
    Define Name        =_SORT_DEFAULTS
    CLASS              SORT
    SCRATCH            $DISK
    PRI                150

To use the =_SORT_DEFAULTS DEFINE with interactive FastSort, you do not need to 
specify it the RUN command, as shown in the following example. 

> SORT
FastSort - T9620D30 - (31OCT94)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994
<FROM fruit
<ASC 1:10
<RUN
apple
banana
grape
grapefruit
lemon
orange
pear
watermelon
          8  RECORDS               132  MAX RECORD SIZE
      00:02  ELAPSED TIME           63  BUFFER PAGES
      00:00  I/O WAIT TIME           0  INITIAL RUNS
         19  COMPARES                0  MERGE ORDER
          0  SCRATCH DISK
          0  SCRATCH SEEKS
Errors detected: 0
Warnings detected: 0 

In the next example, an invalid disk volume name for the =_SORT_DEFAULTS 
DEFINE SCRATCH attribute causes the FastSort error message (A SCRATCH FILE 
CANNOT BE OPENED) and file-system error 14 (DEVICE DOES NOT EXIST). 

SORT
FastSort - T9620D30 - (31OCT94)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994
FastSort Manual—429834-003
7-14



Using SORT and SUBSORT DEFINEs Examples of SORT and SUBSORT DEFINEs
<FROM fruit
<ASC 1:10
<RUN
 *** ERROR ***  A SCRATCH FILE CANNOT BE OPENED.
OPERATING SYSTEM ERROR: 14
SCRATCH FILE: \SYS.$VOLUME

To correct the error, use the ALTER DEFINE command to set the SCRATCH attribute 
to a valid name and then run FastSort again. 

ALTER DEFINE =_SORT_DEFAULTS, SCRATCH $data

SORT
... 

Examples of SORT and SUBSORT DEFINEs 
This subsection contains the following examples:

 A serial sort run using a SORT DEFINE 

 A parallel sort run with a SORT DEFINE for a distributor-collector process and 
two SUBSORT DEFINEs for the subsort processes 

Serial Sort Run Example 

The first example creates a SORT DEFINE named =SORT_RUN for a serial sort 
operation. The SET commands set the DEFINE mode (DEFMODE) to ON and the 
DEFINE CLASS to SORT. The SHOW DEFINE command then displays the available 
attributes in the working attribute set: 

SET DEFMODE ON
SET DEFINE CLASS SORT
SHOW DEFINE *
    CLASS              SORT
    SCRATCH
    SCRATCHON
    NOSCRATCHON
    SWAP
    MODE
    CPU
    BLOCK
    PRI
    SEGMENT
    PROGRAM
    CPUS
    NOTCPUS
    SUBSORTS
    VLM

Set selected attributes in the working attribute set:

SET DEFINE SCRATCH $disk
SET DEFINE SWAP $data
FastSort Manual—429834-003
7-15



Using SORT and SUBSORT DEFINEs Serial Sort Run Example
SET DEFINE CPU 5
SET DEFINE MODE AUTOMATIC
SET DEFINE PRI 170

Display the current attribute set:

SHOW DEFINE *
    CLASS              SORT
    SCRATCH            $DISK
    SCRATCHON
    NOSCRATCHON
    SWAP               $DATA
    MODE               AUTOMATIC
    CPU                5
    BLOCK
    PRI                170
    SEGMENT
    PROGRAM
    CPUS
    NOTCPUS
    SUBSORTS
    VLM

Create the SORT DEFINE and display the current attribute set for all current DEFINEs. 
The current attribute set for the =SORT_RUN DEFINE is adopted from the working 
attribute set. 

ADD DEFINE =sort_run
INFO DEFINE **, DETAIL
    Define Name        =SORT_RUN
    CLASS              SORT
    SCRATCH            $DISK
    SWAP               $DATA
    MODE               AUTOMATIC
    CPU                5
    PRI                170

    Define Name        =_DEFAULTS
    CLASS              DEFAULTS
    VOLUME             $DISK.SUBVOL
    SWAP               $DATA

Run FastSort and specify the =SORT_RUN DEFINE in the RUN command: 

> SORT
FastSort - T9620D30 - (31OCT94) 
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994  
<FROM fruit
<TO sortout
<ASC 1:10
<RUN, DEFINE =sort_run
... 
FastSort Manual—429834-003
7-16



Using SORT and SUBSORT DEFINEs Parallel Sort Run Example
Parallel Sort Run Example 

The following example shows a parallel sort run using a SORT DEFINE named 
=PARALLEL_SORT and SUBSORT DEFINEs named =SUBSORTA and 
=SUBSORTB. (The input file FRUIT contains only 8 records; however, an actual input 
file would be much larger to require a parallel sort operation.) 

SET DEFMODE ON
ADD DEFINE =parallel_sort, CLASS SORT,      &
    SCRATCH $disk.fastsort.scratch,         &
    CPU 5,                                  &
    PRI 145,                                &
    SUBSORTS (=subsorta, =subsortb)

INFO DEFINE =parallel_sort, DETAIL
    Define Name        =parallel_sort
    CLASS              SORT
    SCRATCH            $DISK.FASTSORT.SCRATCH
    CPU                5
    PRI                145
    SUBSORTS           (=SUBSORTA,=SUBSORTB) 

To create SUBSORT DEFINEs, first set the DEFINE CLASS to SUBSORT. Then use 
the SHOW DEFINE command to display the available attributes in the working attribute 
set. The two question marks (??) indicate a required attribute that you must supply.

SET DEFINE CLASS SUBSORT
SHOW DEFINE *
    CLASS              SUBSORT
    SCRATCH            ??
    SWAP
    CPU
    PRI
    SEGMENT
    PROGRAM
Current attribute set is incomplete
SET DEFINE SCRATCH $disk 

Create SUBSORT DEFINEs using the names specified in the ADD DEFINE command 
for the =PARALLEL_SORT DEFINE, and then display all your current DEFINEs 
(including the =_DEFAULTS DEFINE):

ADD DEFINE =subsorta, CPU 3
ADD DEFINE =subsortb, CPU 6
INFO DEFINE **, DETAIL
    Define Name        PARALLEL_SORT
    CLASS              SORT
    SCRATCH            $DISK.FASTSORT.SCRATCH
    CPU                5
    PRI                145
    SUBSORTS           (=SUBSORTA,=SUBSORTB)

    Define Name        =SUBSORTA
    CLASS              SUBSORT
    SCRATCH            $DISK
FastSort Manual—429834-003
7-17



Using SORT and SUBSORT DEFINEs Parallel Sort Run Example
    CPU                3

    Define Name        =SUBSORTB
    CLASS              SUBSORT
    SCRATCH            $DISK
    CPU                6

    Define Name        =_DEFAULTS
    CLASS              DEFAULTS
    VOLUME             $DISK.SUBVOL
    SWAP               $DATA

Run the =PARALLEL_SORT DEFINE with interactive FastSort:

SORT
FastSort - T9620D30 - (31OCT94) 
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991 - 1994
<FROM fruit
<ASC 1:10
<RUN, DEFINE =parallel_sort
apple
banana
grape
grapefruit
lemon
orange
pear
watermelon
          8  RECORDS               132  MAX RECORD SIZE
      00:07  ELAPSED TIME           63  BUFFER PAGES
      00:03  I/O WAIT TIME           0  INITIAL RUNS
         27  COMPARES               15  MERGE ORDER
          0  SCRATCH DISK            0  FIRST MERGE
          0  SCRATCH SEEKS
Errors detected: 0
Warnings detected: 0
FastSort Manual—429834-003
7-18



8 Sorting From NonStop SQL/MP

Under certain circumstances, SQL/MP invokes FastSort in a manner that is 
transparent to the user. SQL/MP invokes FastSort when you do any of the following:

 Specify ordering or grouping options in an SQL query statement

 Execute a query that results in a sort merge join operation

 Use a CREATE INDEX or LOAD statement to load data in parallel

Because SQL/MP automatically invokes FastSort, this section describes how a sort 
operation is implemented. This section also contains guidelines on how to minimize 
SQL sorts and configure your FastSort environment.

How SQL/MP Implements a Sort
The SQL optimizer analyzes each SQL statement and determines if a sort is needed. If 
needed, SQL/MP implements the sort in one of two ways.

In-memory Sorts

An in-memory sort is the fastest type of sort operation because it requires no 
SORTPROG process or scratch files. FastSort can sort records within the executor’s 
extended memory segment if all of the following conditions apply:

 The data to sort is less than 4 MB

 The number of rows to sort is less than 32,768

 The number of columns to sort is less than 63

For the serial portion of a parallel plan, the optimizer can also choose an in-memory 
sort if all of the following conditions apply:

 The master executor server process (ESP) uses an in-memory sort to execute an 
ORDER BY clause.

 A GROUP BY clause precedes the ORDER BY clause.

 SQL/MP uses hash grouping to execute the GROUP BY clause. 

External Physical Sorts

SQL/MP uses an external physical sort if the memory segment is too small to hold all 
of the rows. An external physical sort is one of the following:

Note. The optimizer does not choose an in-memory sort if the table to sort is the inner table of 
a sort merge join operation. 
FastSort Manual—429834-003
8-1



Sorting From NonStop SQL/MP Configuring Your SQL/MP Sort Environment
 An external FastSort process (SORTPROG), if the SQL optimizer estimates that 
the data to sort might exceed 4 MB, or there are fewer than 32,768 rows or fewer 
than 63 columns 

 A sort performed by a series of inserts into a temporary key-sequenced table, if 
both of the following conditions apply:

 The table contains more than 500 rows and more than 63 columns 

 The total key length is less than 255 bytes

Configuring Your SQL/MP Sort Environment
Depending on the SQL operation you perform, you can configure your FastSort 
environment for SQL/MP in three ways:

 Using the =_SORT_DEFAULTS DEFINE

 Using a configuration file for a parallel index load

 Using LOAD command options 

Setting Up a =_SORT_DEFAULTS DEFINE 

The =_SORT_DEFAULTS DEFINE is the DEFINE you use to configure sorts from 
SQL/MP. While configuration file and LOAD options only affect loading data, the 
=_SORT_DEFAULTS DEFINE affects all SQL operations that invoke FastSort. If you 
do not specify a configuration file or LOAD command options, SQL/MP uses values in 
your =_SORT_DEFAULTS DEFINE for the load operation.

Note. If the total key length is greater than 255 bytes SORTPROG returns an error.

Note. Before you can use a =SORT_DEFAULTS DEFINE, you must enable DEFINEs for your 
TACL session. To enable DEFINEs, execute the SET DEFMODE ON command from either 
your TACL or SQLCI prompt. For more information about this command, see Section 7, Using 
SORT and SUBSORT DEFINEs.
FastSort Manual—429834-003
8-2



Sorting From NonStop SQL/MP Setting Up a =_SORT_DEFAULTS DEFINE
You can create or modify a =_SORT_DEFAULTS DEFINE directly from your SQLCI 
prompt. The syntax for creating a =_SORT_DEFAULTS DEFINE is:

All TACL DEFINE commands, such as SET DEFINE and ALTER DEFINE, are valid 
for the =_SORT_DEFAULTS DEFINE. You can also name and set any SORT or 
SUBSORT DEFINE attribute in a =_SORT_DEFAULTS DEFINE.

You must specify CLASS SORT for the =_SORT_DEFAULTS DEFINE. You can 
specify CLASS SORT either in the ADD DEFINE command or through the working 
attribute set. To learn how to use DEFINE commands and SORT and SUBSORT 
DEFINE attributes, see Section 7, Using SORT and SUBSORT DEFINEs.

The example below creates a =_SORT_DEFAULTS DEFINE and specifies values for 
the SCRATCH, SWAP, CPU, AND PRI attributes:

ADD DEFINE =_SORT_DEFAULTS, CLASS SORT,
         SCRATCH $DATA, SWAP $DATA2, CPU 3, PRI 100

At run time, if the scratch and swap files you specify in a =_SORT_DEFAULTS 
DEFINE do not exist, FastSort automatically creates these files and sets 
MAXEXTENTS to 160. If you manually create scratch and swap files, size them 
according to the number of records to sort and extended memory segment size, 
respectively. For more information about scratch and swap files, see Section 9, 
Optimizing Sort Performance. 

  ADD DEFINE =_SORT_DEFAULTS, CLASS SORT 
      [, BLOCK block-size               ]
      [, CPU cpu-number                 ]
      [, CPUS subsort-cpu-list          ]
      [, MODE mode-type                 ]
      [, NOSCRATCHON  ( volume-list )   ]
      [, NOTCPUS cpu-list-not-subsort   ]
      [, PRI process-priority           ]
      [, PROGRAM file                   ]
      [, SCRATCH file                   ]
      [, SCRATCHON ( volume-list )      ]
      [, SEGMENT extended-segment-size  ]
      [, SUBSORTS define-list           ]
      [, SWAP file-name                 ]
      [, VLM { ON | OFF }               ]
FastSort Manual—429834-003
8-3



Sorting From NonStop SQL/MP Ordering and Grouping Query Results
Guidelines for =_SORT_DEFAULTS DEFINE Attributes

To optimize sort performance for SQL/MP, HP recommends you follow these guidelines 
for SORT and SUBSORT attributes in your =_SORT_DEFAULTS DEFINE: 

These attributes are fully described in Section 7, Using SORT and SUBSORT 
DEFINEs. Check with your system manager to learn how resources are allocated on 
your node. For more information on how to allocate sort workspace, see Section 9, 
Optimizing Sort Performance. 

Ordering and Grouping Query Results
This subsection describes situations in which your query causes SQL/MP to invoke 
FastSort, and how to structure a query to use logic built into the SQL optimizer. For 
more information about the SQL clauses mentioned in this subsection, see the 
NonStop SQL/MP Query Guide.

In general, SQL/MP uses FastSort to order and group query results. SQL/MP 
automatically invokes FastSort in certain cases when you specify an ORDER BY 
clause in a query statement and SQL/MP retrieves data from the base table. SQL/MP 
also uses FastSort when you specify one of the following in a query statement:

 GROUP BY

 DISTINCT

Attribute Recommended value

VLM OFF
ON for nonparallel LOAD operations

PRI 180 for high priority users and queries
160 for most users and queries
80 for routine load operations and queries

PROGRAM A local file

CPU A processor that is less than 50 to 60 percent busy

SCRATCH On a local volume other than $SYSTEM. Avoid the volume 
where the SORTPROG is running. Avoid using volumes on 
mirrored disks. An empty volume is best. 

SWAP On a local volume other than $SYSTEM and other than the 
scratch volume 

Caution. For any parallel query, parallel CREATE INDEX operation, or parallel load operation, 
specify only volume names for the SCRATCH and SWAP attributes in a =_SORT_DEFAULTS 
DEFINE. Do not specify fully qualified file names for these attributes. If you specify fully 
qualified scratch and swap file names for a parallel sort operation, processor and disk space 
contention problems can result. 
FastSort Manual—429834-003
8-4



Sorting From NonStop SQL/MP Optimizing SQL Clause Combinations
 UNION (without the ALL option)

 and the specified columns do not match a prefix of the index columns. 

If you specify more than one SQL ordering or grouping clause in a query, you can often 
structure the query to avoid duplicate sorts. For queries in which the optimizer does not 
choose a parallel execution plan, you should also use a =_SORT_DEFAULTS DEFINE 
to optimize performance. For more information about setting up a 
=_SORT_DEFAULTS DEFINE, see Configuring Your SQL/MP Sort Environment on 
page 8-2.

Optimizing SQL Clause Combinations

The SQL/MP optimizer attempts to minimize sort operations. However, certain 
combinations of SQL clauses can still cause unnecessary or duplicate sorts. The 
following examples show how to structure SQL statements to minimize unnecessary 
sorts.

Specifying ORDER BY With GROUP BY

You can order and group query results in a single sort when the following occurs:

 The ORDER BY list is a subset of the GROUP BY list

For example, only one sort is necessary for the following query:

SELECT ATLANTA, BOSTON, CHICAGO, DALLAS FROM SALES
   GROUP BY ATLANTA, BOSTON, CHICAGO, DALLAS
   ORDER BY BOSTON, CHICAGO DESC ;

A single sort groups and orders the results of this query. In this case, SQL/MP 
sorts on (BOSTON, CHICAGO, ATLANTA, DALLAS).

 The GROUP BY list contains n items, which are also the first n items of the 
ORDER BY list, as in the following query:

SELECT ATLANTA, BOSTON, CHICAGO, COUNT(*), SUM(ATLANTA)
FROM SALES
   GROUP BY ATLANTA, BOSTON, CHICAGO
   ORDER BY 1, 2 DESC, 3, 5, 4 ;

A single sort also groups and orders the results of this query. In this case, SQL/MP 
sorts on (ATLANTA, BOSTON, CHICAGO).

Specifying GROUP BY With DISTINCT

You can group results and eliminate duplicate rows in a single sort when:

Note. NonStop SQL/MP does not invoke FastSort if the optimizer chooses a query plan that 
reads the base table by primary key value.
FastSort Manual—429834-003
8-5



Sorting From NonStop SQL/MP Using a Sort Merge Join
 The GROUP BY list is a subset of the SELECT DISTINCT list, as in the following 
query:

SELECT DISTINCT COUNT(*), BOSTON, BOSTON-DALLAS, DALLAS
FROM SALES
   GROUP BY BOSTON, DALLAS ;

A single sort on (BOSTON, DALLAS) groups the query results. Because each 
(BOSTON, DALLAS) value is unique after grouping, each (BOSTON, DALLAS, 
BOSTON-DALLAS, COUNT(*)) value is also unique.

 The SELECT DISTINCT list is a subset of the GROUP BY list, there are no 
expressions in the SELECT list, and no aggregates in a HAVING clause, as in the 
following query:

SELECT DISTINCT ATLANTA, CHICAGO FROM SALES
    GROUP BY ATLANTA, BOSTON, CHICAGO ;

In this case, only a single sort is required because the GROUP BY clause is 
unnecessary. Because BOSTON is not in the SELECT list and no aggregates or 
HAVING clauses rely on the full grouping, there is no need to group by BOSTON.

To build this logic into your query and avoid the unnecessary sort, add the 
DISTINCT column to the GROUP BY list.

Specifying ORDER BY With DISTINCT

You can order query results and eliminate duplicate rows in a single sort if the ORDER 
BY list is a subset of the DISTINCT list, as in the following query:

SELECT DISTINCT ATLANTA, BOSTON, CHICAGO, DALLAS FROM SALES
   GROUP BY ATLANTA, BOSTON DESC ;

In this case, a single sort on (ATLANTA, BOSTON DESC, CHICAGO, DALLAS) orders 
results and eliminates duplicate rows. The position and sorting order, ascending or 
descending, of ATLANTA and BOSTON must match the index used for the sort. 
However, CHICAGO and DALLAS can occur in any order after ATLANTA and 
BOSTON, and in either ascending or descending order.

Using a Sort Merge Join

A join operation combines data from two tables or views. The sort merge join is one of 
four join methods available to the SQL/MP optimizer. The optimizer evaluates query 
cost and decides which type of join to perform.

For the optimizer to choose a sort merge join, these conditions must exist:

 The joining columns of outer and inner tables must be in ascending or descending 
order

 The query must be an equijoin query

During a sort merge join, FastSort always sorts the data from the inner table and stores 
it in a temporary entry-sequenced table. If the outer table is not already sorted on the 
FastSort Manual—429834-003
8-6



Sorting From NonStop SQL/MP Loading Data
joining column, FastSort also sorts the outer table data and stores it in a second 
temporary entry-sequenced table. The two temporary tables are then merged to form 
the sort merge join result.

By default, FastSort creates these temporary tables on the default swap volume. To 
avoid disk space contention, move the swap file to a volume other than the default. For 
information on how to specify swap file location, see Section 9, Optimizing Sort 
Performance 

For more information about sort merge joins and equijoin queries, see SQL/MP Query 
Guide. 

Loading Data
When you execute CREATE INDEX or LOAD and the source table contains data, 
SQL/MP uses FastSort to help process the data under these circumstances:

 CREATE INDEX with PARALLEL EXECUTION ON

 LOAD with PARALLEL EXECUTION ON

 LOAD without the SORTED option if the target table is key-sequenced

If the target table is partitioned, you can specify PARALLEL EXECUTION ON to load 
partitions in parallel. SQL/MP starts a record generator (RECGEN) process for each 
partition of the table and a sort process (SORTPROG) for each partition of the index. 
Record generator processes read the base table rows. Sort processes sort the 
generated rows and write them to the index. 

Figure 8-1 on page 8-8 shows the interaction between the SQL/MP catalog manager 
and RECGEN and SORTPROG processes when you load data in parallel. If neither 
base table nor index is partitioned, SQL/MP uses only one RECGEN process and one 
SORTPROG process. 
FastSort Manual—429834-003
8-7



Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement
Because parallel processing uses more concurrent CPU cycles and disk processes 
than serial processing, loading data in parallel could temporarily monopolize system 
resources. Try to schedule other system tasks accordingly. 

The default location of a RECGEN process is $SYSTEM.SYSnn.RECGEN, where nn 
is a two-digit number assigned by HP. To specify a different location, use the 
=_SQL_RECGEN_node DEFINE. You must have super ID authority on the specified 
node to move a RECGEN process. For more information about this DEFINE, see 
SQL/MP Reference Manual.

Configuring a CREATE INDEX Statement

When you create an index on a base table and do not specify PARALLEL EXECUTION 
ON, you can use either the default configuration described in this subsection or a 
=_SORT_DEFAULTS DEFINE. For more information on how to set up a 
=_SORT_DEFAULTS DEFINE, see Configuring Your SQL/MP Sort Environment on 
page 8-2. For detailed information about SORT DEFINEs and DEFINE attributes, see 
Section 7, Using SORT and SUBSORT DEFINEs.

Figure 8-1. Parallel Loading Data Into a Partitioned Index Table

Base Table Partitions

Index Table Partitions

Disk Process Block Mode Interface

SQLLOAD Routines

SQL Catalog
Manager

RECGEN RECGENRECGEN

SORTPROG SORTPROG SORTPROG

VST801.vsd
FastSort Manual—429834-003
8-8



Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement
When you create a partitioned index on a base table and specify PARALLEL 
EXECUTION ON, you can use either the default configuration or a custom 
configuration file. A configuration file defines attributes of record generator and sort 
processes. You can specify the name of a configuration file in the PARALLEL 
EXECUTION clause of a CREATE INDEX statement. If you specify no configuration 
file, FastSort uses the default configuration. 

Using the Default Configuration

If you specify PARALLEL EXECUTION ON and do not specify a configuration file, 
SQL/MP uses the following defaults: 

Default Scratch File Size Formula

Under the default configuration, SQL/MP uses the following formula to estimate scratch 
file size:

NonStop SQL/MP estimates the number of records in the base table by dividing file 
size by record length. 

Default DEFINE Attribute Values

The default configuration for CREATE INDEX includes the following attribute values:

The default configuration is not recommended for base tables with many remote 
partitions. Note that in this configuration, all record generator processes that read 
remote partitions swap to the same volume. When multiple processes swap to the 

Attribute Default value

PRI For both RECGEN and SORTPROG, the priority of the process that 
creates the index.

CPU For local partitions, the CPU that runs the primary disk process for that 
partition. If a partition is remote or a CPU is unavailable, FastSort 
arbitrarily selects the first CPU, then selects subsequent CPUs in a 
sequential fashion. Note that multiple RECGENs or SORTPROGs can 
run in a single CPU.

SCRATCH FastSort selects a volume for the initial SORTPROG scratch file. 
RECGEN processes do not use scratch files.

SWAP For SORTPROGs, the scratch volume if that volume is local and if not, 
the volume where the SORTPROG is running. For RECGENs, the 
volume of the partition being read if that partition is local and if not, the 
swap volume specified in the =_SORT_DEFAULTS DEFINE. 

3
NumberofBaseTableRecords

NumberofIndexTablePartitions
--------------------------------------------------------------------------------------------------------------
FastSort Manual—429834-003
8-9



Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement
same volume, processor and disk space contention problems can result. Use a 
configuration file to specify a unique swap volume for each remote partition. 

Using a Custom Configuration File

When you create an index and specify PARALLEL EXECUTION ON, you can use the 
CONFIG option to specify a custom configuration file. The configuration file must be an 
EDIT file. It can describe either a default configuration or an explicit configuration for 
both record generator and sort processes. Default and explicit configurations are 
discussed in Assigning Default and Explicit Values on page 8-14.

The values you specify in a configuration file override any values in a 
=_SORT_DEFAULTS DEFINE. This subsection describes configuration file syntax and 
contains a sample file.

Configuration File Syntax

The two types of statements in a configuration file are COMMENT and CREATE 
INDEX. Keywords in the configuration file can be in uppercase, lowercase, or mixed-
case letters. The maximum length for a configuration file statement is 132 characters. 
However, due to parser requirements, a line in a configuration file can be at most 80 
characters long. Split statements longer than 80 characters into two lines of up to 80 
characters each. In this case, insert an ampersand character (&) at the end of the first 
line to specify that the lines make up a single statement. 

Use the COMMENT statement to include descriptive notes in the file. SQL/MP ignores 
lines that begin with the keyword COMMENT or the characters ==. The syntax for 
COMMENT is as follows:

Caution. HP recommends that you use only a custom configuration file to configure a parallel 
CREATE INDEX operation. If you omit the SCRATCH and SWAP attributes in your 
configuration file and a =_SORT_DEFAULTS DEFINE contains fully qualified file names for 
these attributes, processor and disk space contention problems can result. 

  
  { COMMENT comment-text }
  { == comment-text      }
FastSort Manual—429834-003
8-10



Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement
The CREATE INDEX statement precedes all configuration information for the parallel 
load operation. SQL/MP reads only CREATE INDEX statements in the configuration 
file. The syntax for CREATE INDEX is as follows:

LOCALONLY

directs SQL/MP to run the SORTPROG and RECGEN processes only on the local 
node. For performance reasons, the default location is remote. If there is no 
remote node, then SORTPROG and RECGEN run locally. Use this option only on 
systems with remote nodes to preserve software behavior available in previous 
RVUs. If you specify LOCALONLY, it must be the first CREATE INDEX statement 
in the configuration file.

BASETABLE

applies the attributes you specify to the record generator processes that read the 
base table.

INDEX

applies the attributes you specify to the sort processes that write to index 
partitions.

             {LOCALONLY}
  CREATEINDEX{BASETABLE}{DEFAULT [node-name] default-attr   }
             {INDEX    }{partition attr [,attr ]...         }

  where default-attr is:

     [ CPU ( num  [, num ] ... )                            ]
     [ NOSCRATCHON (scratchvol [, scratchvol ]...)          ]
     [ NUMRECS ( number )                                   ]
     [ PRI ( priority )                                     ]
     [ PROGRAM (filename )                                  ]
     [ SCRATCH  (scratchvol [, scratchvol ]...)             ]
     [ SCRATCHON (scratchvol [, scratchvol ]...)            ]
     [ SWAP ( swapvol )                                     ]

  and where attr is:

     [ CPU (num )                                           ]
     [ NOSCRATCHON  (scratchvol [, scratchvol ]...)         ]
     [ NUMRECS  ( number )                                  ]
     [ PRI  ( priority )                                    ]
     [ PROGRAM (filename )                                  ]
     [ SCRATCH    scratchvol                                ]
     [ SCRATCHON  (scratchvol [, scratchvol ]...)           ]
     [ SWAP  ( swapvol )                                    ]
FastSort Manual—429834-003
8-11



Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement
DEFAULT [node-name] default-attr

specifies an attribute-value pair for partitions on a node for which no value has 
been explicitly specified. If you omit node-name, SQL/MP applies the DEFAULT 
statement to the node where the parallel index load is initiated. For more 
information on how to use this option, see Assigning Default and Explicit Values on 
page 8-14.

partition

specifies the name of the volume that contains the partition to which the specified 
attributes apply. You can include a node name, such as:

$myvol

\nwreg.$sales1

The default is the local node.

CPU ( num [, num ] ... )

is valid only if you specify INDEX or BASETABLE. CPU specifies one or more local 
CPUs for record generator or sort processes. You can specify multiple CPUs only 
as DEFAULT CPUs.

NOSCRATCHON ( scratchvol [, scratchvol ] ...)

is valid only if you specify INDEX. NOSCRATCHON specifies one or more volumes 
to be excluded as overflow scratch volumes for the sort process. You can use the 
NOSCRATCHON option either as a DEFAULT specification or for a certain 
partition. You cannot specify both SCRATCHON and NOSCRATCHON. 

When selecting scratch volumes, FastSort consults this list if you do not use the 
SCRATCHON option to specify a set of overflow scratch volumes. FastSort does 
not use $SYSTEM or TMF audit trail volumes for overflow scratch files. Volumes 
with less than 1 MB of disk space and volumes protected by the Safeguard product 
are also exempt. You can use the NOSCRATCHON option either as a DEFAULT 
specification or for a certain partition.

When you specify NOSCRATCHON volumes in a configuration file, the values you 
specify override any values in a =_SORT_DEFAULTS DEFINE.

You can use the wild-card characters * and ? when you specify scratchvol. See 
the description of SCRATCHON in Section 7, Using SORT and SUBSORT 
DEFINEs for examples of how to use these characters.

Caution. HP recommends that you use only a custom configuration file to configure a parallel 
CREATE INDEX operation. If you omit the SCRATCH and SWAP attributes in your 
configuration file and a =_SORT_DEFAULTS DEFINE contains fully qualified file names for 
these attributes, processor and disk space contention problems can result. 
FastSort Manual—429834-003
8-12



Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement
NUMRECS ( number )

is valid only if you specify INDEX. NUMRECS specifies the approximate number of 
records to load into the index partition. Use NUMRECS if the index is unevenly 
partitioned across volumes. FastSort uses this number to calculate initial scratch 
file size. 

PRI ( priority )

is valid only if you specify INDEX or BASETABLE. PRI specifies the priority at 
which to run the record generator or sort process.

PROGRAM (filename )

specifies the name of a local or remote SORTPROG object file if you also specify 
BASETABLE. If you specify INDEX, PROGRAM specifies the name of a local or 
remote RECGEN object file. The associated swap volume must reside on the 
same node as the object file.

SCRATCH ( scratchvol [, scratchvol ]...)

is valid only if you specify INDEX. SCRATCH specifies the name of an initial 
scratch volume or volumes FastSort can use to sort index records. When you 
specify scratch volumes in a configuration file, the values you specify override any 
values in a =_SORT_DEFAULTS DEFINE.

You can specify a list of SCRATCH volumes only in DEFAULT syntax. When you 
use SCRATCH to list default scratch volumes, FastSort assigns one volume to 
each sort process in a sequential fashion. If there are more index partitions than 
volumes available, FastSort reuses volumes on the list until each partition has an 
initial scratch volume. You can use the SCRATCH option either as a DEFAULT 
specification or for a certain partition.

The SCRATCH option specifies initial scratch volumes. Use the SCRATCHON 
option to specify a set of overflow volumes. To direct FastSort to set up an overflow 
scratch volume pool by excluding certain volumes, use the NOSCRATCHON 
option.

SCRATCHON ( scratchvol [, scratchvol ]...)

is valid only if you specify INDEX. SCRATCHON specifies one or more volumes 
FastSort can use for overflow scratch files. FastSort uses overflow scratch 
volumes only if one or more initial volumes becomes full, or if you do not use the 
SCRATCH option to specify an initial scratch volume. You can use the 
SCRATCHON option either as a DEFAULT specification or for a certain partition.

You can specify up to 32 scratch volumes, within the maximum line length of 132 
characters. You can also use the wild-card characters * and ? when you specify 
scratchvol. See the description of SCRATCHON in Section 7, Using SORT and 
SUBSORT DEFINEs for examples of how to use these characters.
FastSort Manual—429834-003
8-13



Sorting From NonStop SQL/MP Configuring a CREATE INDEX Statement
When you specify overflow scratch volumes in a configuration file, the values you 
specify override any values in a =_SORT_DEFAULTS DEFINE.

You cannot specify both NOSCRATCHON and SCRATCHON. If you do not specify 
either SCRATCHON or NOSCRATCHON, FastSort considers using any volume, 
except $SYSTEM and TMF audit trail volumes, for overflow scratch files. Volumes 
with less than 1 MB of disk space and volumes protected by the Safeguard product 
are also exempt.

SWAP ( swapvol [, swapvol ]...)

is valid only if you specify INDEX or BASETABLE. SWAP specifies the name of the 
volume on which to place the extended segment swap file. You can include a node 
name in swapvol, as in this example:

$myvol
\nwreg.$sales1

You can specify multiple swap volumes only as DEFAULT swap volumes.

Assigning Default and Explicit Values

You can specify any attribute in a configuration file as either a default or explicit value 
for record generator or sort processes. Use the DEFAULT option to specify a default 
value. Use the partition option to specify an explicit value.

Use default values when you want FastSort to choose from a set of multiple values. 
For example, you might specify scratch volume names or CPU numbers as default 
values. You can also use default values to apply a single value, such as number of 
records to sort or execution priority, to all processes.

Use explicit values when you want FastSort to use particular values for size limitation 
or performance reasons. For example, if one index partition is much larger than others, 
you might want to explicitly specify values for that partition. 

Default and explicit values are not mutually exclusive. For example, you can explicitly 
specify scratch volumes and specify a default pool of CPUs for the sort processes, or 
you might specify a default pool of scratch volumes but assign a particular scratch 
volume to one partition.

Sample Configuration File

Following is a sample configuration file for loading data from the base table 
CUSTOMER into partitions on the index AGEINDEX. It includes both default and 
explicit values.

  ==  Sample configuration file for loading index partitions 
  ==  in parallel.  Creates index AGEINDEX on table CUST, which
  ==  is partitioned as follows:
  ==      $DATA1.SALES.CUST
  ==      $DATA2.SALES.CUST
  ==      $DATA3.SALES.CUST
  ==      \NEWYORK.$DATA1.SALES.CUST

  ==  AGEINDEX is partitioned as follows:
FastSort Manual—429834-003
8-14



Sorting From NonStop SQL/MP Configuring a LOAD Statement
  ==      $DATA4.SALES.AGEINDEX
  ==      $DATA5.SALES.AGEINDEX
  ==      \NEWYORK.$DATA2.SALES.AGEINDEX
          \NEWYORK.$DATA3.SALES.AGEINDEX

  ==  Set up a default priority for the RECGEN processes:

  CREATEINDEX BASETABLE DEFAULT PRI ( 140 )
  CREATEINDEX BASETABLE DEFAULT \NEWYORK PRI ( 140 )

  ==  Set up a default pool of scratch files for the sort
  ==  processes.

  CREATEINDEX INDEX DEFAULT SCRATCH ($TEMP1, $TEMP2, $TEMP3)
  CREATEINDEX INDEX DEFAULT \NEWYORK SCRATCH ($TEMP4)

  ==  Request that overflow scratch files avoid certain disks--
  ==  those specified plus $SYSTEM and TMF audit trail disks.

  CREATEINDEX DEFAULT NOSCRATCHON ($SYS*,$WORK*)

  ==  Request that overflow scratch files use specific disks
  ==  on the remote node

  CREATEINDEX INDEX DEFAULT \NEWYORK SCRATCHON ($TEMP*)

  ==  Request that the $data3 sort process use $TEMP7 for 
  ==  scratch files.

  CREATEINDEX \NEWYORK.$DATA3 SCRATCH ($TEMP7)

  ==  End of configuration file.

Loading Multiple Indexes

PARALLEL EXECUTION ON applies to only one partitioned index at a time. If the base 
table has more than one partitioned index, the partitions of the first index are loaded 
first. After the first index is loaded, the partitions of the second index are loaded in 
parallel, and so on. 

You can use the FOR index-name clause of the CONFIG option to specify a 
separate configuration file for each index. If you omit this clause, the configuration file 
applies to all indexes on the base table. If you specify at least one index in the FOR 
clause, SQL/MP parallel loads the partitions of any index not specified with the default 
configuration values. For more information about CONFIG option syntax, see LOAD 
entry in the SQL/MP Reference Manual.

Configuring a LOAD Statement

LOAD is a SQLCI utility you use to load data. LOAD can transfer data from an SQL/MP 
table or a disk file into either an SQL/MP table and its indexes or an Enscribe 
structured disk file. LOAD overwrites existing data in the target table or file. 

Caution. To use LOAD you must turn off auditing for the table being loaded. This action 
invalidates TMF online dumps of the table and its indexes. To ensure TMF rollforward 
protection for the table and its indexes, make new online dumps of all table and index 
partitions. If you load only partitions rather than an entire table, turn off auditing and make new 
online dumps for only the partitions being loaded.
FastSort Manual—429834-003
8-15



Sorting From NonStop SQL/MP Configuring a LOAD Statement
When you execute a LOAD statement from SQLCI, you invoke FastSort if data is 
unsorted and the target table is key-sequenced, or if PARALLEL EXECUTION is set to 
ON. This subsection discusses only the LOAD options that affect sort operations. For a 
full description of LOAD statement syntax, see the SQL/MP Reference Manual.

The LOAD options that affect sort operations are:

 SORTED

 MAX

 SCRATCH

These options are only valid for loading key-sequenced files and tables. 

SORTED

specifies that input records are already sorted in the key-field order of the output 
file and are not to be resorted. If you omit the SORTED option and the target file is 
key-sequenced, FastSort sorts the records before LOAD writes data to the output 
file.

MAX num-records

specifies the number of input records. The range is between 0 and 2,147,483,647. 
LOAD uses num-records to determine file and extent size for the initial scratch 
file. If you specify the SORTED option, you can omit the MAX option. 

When you specify num-records, try to overestimate. If you underestimate the 
number of records, the sort can be significantly slower. If you overestimate, the 
cost is small.

The default value for MAX is 50,000 records unless a =_SORT_DEFAULTS 
DEFINE with VLM ON is in effect. When VLM is on, the default is 1,000,000 
records. For more information about that option, see Using VLM on page 9-10.

MAX is not valid for loading indexes. When you load an index, LOAD uses the size 
of the base table to estimate the number of input records and ignores any value 
you specify for MAX.

SCRATCH scratch-file

identifies an initial scratch file or volume. For nonparallel load operations, specify 
the name of either a disk file or volume for scratch-file. For parallel load 
operations, specify only a volume name.

If you omit the SCRATCH option, FastSort creates an initial scratch file on a 
suitable volume unless a =_SORT_DEFAULTS DEFINE that specifies a different 
initial scratch file or volume is in effect.

When loading a large table, you can use a partitioned scratch file to manage 
scratch space. Use the FUP CREATE command to create the partitioned file. Then 
specify the file to FastSort in the SCRATCH option or your =_SORT_DEFAULTS 
FastSort Manual—429834-003
8-16



Sorting From NonStop SQL/MP Configuring a LOAD Statement
DEFINE. For more information about partitioned scratch files, see Using a 
Partitioned Scratch File on page 9-8.

If you specify the SORTED option, you can omit the SCRATCH option.

Loading Large Tables

Use the following sort workspace guidelines to load data into a large table. 

Setting MAX Number of Records

LOAD uses the MAX parameter to estimate file and extent size for an initial scratch file. 
By default, FastSort creates an initial scratch file large enough for only 50,000 records. 
If VLM is on, the default MAX value is 1,000,000 records. 

To ensure efficient use of sort workspace, specify an accurate value for MAX in the 
LOAD command. To estimate the number of records in the base table, divide file size 
by record length.

Using VLM With LOAD

VLM shortens the elapsed time of most nonparallel load operations. To use VLM with 
the SQLCI LOAD command, set VLM ON in a =_SORT_DEFAULTS DEFINE. For 
more information about VLM, see Using VLM on page 9-10. To learn how to set up a 
=_SORT_DEFAULTS DEFINE, see Configuring Your SQL/MP Sort Environment on 
page 8-2.

Do not use VLM for parallel load operations.

Resizing Primary Extent

Large extents can cause problems with sort workspace when you load data from a 
table into an index. 

For large tables, space on the destination disk might be too fragmented to hold the 
table or index extents. In this case, SORTPROG returns error 29 (A WRITE HAS 
FAILED TO THE TO FILE) and the load operation fails. Before you load data into a 
large table, ensure that table extent sizes fit on the destination disk. If extents are too 
large for the disk, re-create the index and specify a smaller extent size. 

Specifying a Partitioned Scratch File

If you load data into a large table, FastSort might require an initial scratch file that is 
too large to fit on one disk. To estimate initial scratch file size for an SQL/MP load 
operation, use the formula in Using the Default Configuration on page 8-9. 

If not enough continuous disk space exists on your node for an initial scratch file, you 
can create and use a partitioned scratch file. While the maximum size of a 
nonpartitioned scratch file is 1 TB if it is created by the user and up to 2 GB otherwise, 
a partitioned scratch file can be greater than 1 TB. For more information, see Using a 
Partitioned Scratch File on page 9-8.
FastSort Manual—429834-003
8-17



Sorting From NonStop SQL/MP Configuring a LOAD Statement
FastSort Manual—429834-003
8-18



9 Optimizing Sort Performance

Factors that affect FastSort performance include environmental options, sort 
workspace, and system resources. The total elapsed time for a sort operation also 
depends on whether you automate routine tasks, such as setting up DEFINEs. This 
section helps you understand FastSort software behavior and requirements. It contains 
a discussion of scratch and swap files, VLM, and other factors that affect sort 
performance.

This section mentions utilities and features that help analyze or increase performance. 
These utilities and features are part of the NonStop Kernel.

Managing Sort Workspace
Most sort failures are caused by insufficient workspace. FastSort requires scratch files, 
swap files, and memory to sort records. This subsection describes how FastSort 
allocates space for sort operations. It also suggests ways to control and modify 
FastSort workspace decisions.

Using Scratch Files

A scratch file is a temporary work file for FastSort. For input files that are too large to 
sort in memory, FastSort uses one or more scratch files to temporarily store groups of 
records called runs. You can specify a scratch file in:

 The RUN command

 The SORTMERGESTART procedure

 A SORT DEFINE

 SCRATCH attribute

 SCRATCHON attribute

 NOSCRATCHON attribute

 The SCRATCH attribute of a SUBSORT DEFINE

 The =_SORT_DEFAULTS DEFINE

 A configuration file for parallel index loading

 The LOAD command 

The scratch file you specify can already exist. If the file does not exist, FastSort 
automatically creates it. If the initial scratch file becomes full, FastSort automatically 
selects a suitable volume and creates overflow scratch files. FastSort can use up to 32 
scratch files on up to 32 disk volumes to store intermediate runs. The SORTPROG 
process sorts each run and then merges the records into the output file. 
FastSort Manual—429834-003
9-1



Optimizing Sort Performance Using Scratch Files
Manually Creating a Scratch File

You can use the FUP CREATE command to manually create an unstructured scratch 
file. You can also programmatically create a scratch file with the CREATE system 
procedure. When you manually create a scratch file, you can:

 Allocate scratch space before the sort operation begins 

 Closely control the amount and location of disk space SORTPROG uses

At run time, if an initial scratch file already exists and is unstructured, FastSort uses the 
existing file. If you manually create your own scratch file, use the following formula to 
calculate scratch file size: 

This formula is approximate, and includes 6 bytes per record for overhead. It does not 
include scratch block overhead for header information or variations in block size. For a 
partitioned scratch file, calculate input-record-count for each partition. For a 
permutation or key sort, output-record-length is the total length of all keys. For a 
record sort, output-record-length matches the input record length. If you are 
sorting or merging in parallel, divide file size by the number of subsort processes.

If FastSort creates the scratch file, it sets MAXEXTENTS to 978 extents. If a scratch 
file reaches MAXEXTENTS, FastSort automatically enlarges the file, if possible. The 
maximum size of each scratch file extent is 4 KB, or 2048 pages. 

If FastSort cannot enlarge the file, SORTPROG tries to create an overflow scratch file 
on the current volume. If there is insufficient overflow space on the current volume, 
SORTPROG tries to create an overflow scratch file on a suitable volume. If there is 
insufficient overflow scratch space on your node, SORTPROG returns FastSort 
error 30 (A WRITE HAS FAILED TO A SCRATCH FILE) and stops. 

Having FastSort Create a Scratch File 

If no scratch file exists when the sort or merge run starts, SORTPROG creates an 
initial scratch file for you. SORTPROG uses a formula like the one described in 
Manually Creating a Scratch File on page 9-2 to calculate file size. If the initial scratch 
file becomes full, SORTPROG creates overflow scratch files until the sort or merge run 
is complete.

For most sort and merge runs, use one of these options to have SORTPROG size and 
create initial scratch files for you: 

 Do not specify a scratch file name. SORTPROG creates an initial scratch file on a 
volume selected by DEFINEs or volume characteristics. 

output record– length– 6bytes+  input record– count–
FastSort Manual—429834-003
9-2



Optimizing Sort Performance Using Scratch Files
 Specify a scratch file that does not exist. SORTPROG creates an initial scratch file 
on a volume selected by DEFINEs or volume characteristics. 

 Specify only a volume name. SORTPROG creates an initial scratch file on the 
specified volume. 

Even when SORTPROG creates a scratch file, the file is sometimes too small to hold 
all of the records. For example, an initial scratch file can be too small if the input record 
count is smaller than the actual number of input records. In this case, SORTPROG 
tries to write to a full scratch file and receives file-system error 45 (FILE IS FULL). 
SORTPROG tries to increase the size of the scratch file by increasing the maximum 
number of extents until the sort or merge run completes, unless: 

 SORTPROG runs out of space on the scratch file disk before the scratch file 
reaches its maximum limit. SORTPROG then searches for a suitable disk on which 
to create an overflow scratch file. For more information, see How Volume 
Characteristics Affect Selection on page 9-5.

If there is insufficient overflow scratch space, SORTPROG returns FastSort 
error 30 (A WRITE HAS FAILED TO A SCRATCH FILE) along with file-system 
error 43 (UNABLE TO OBTAIN DISK SPACE FOR FILE EXTENT) and stops. 

 A file-system error other than 21 occurs when SORTPROG is trying to increase the 
number of extents. 

Initial and Overflow Scratch Volumes

An initial scratch volume is the volume FastSort uses first for scratch files. For 
example, a volume you specify in the SCRATCH attribute is an initial scratch volume. If 
you explicitly specify an initial scratch volume, FastSort uses up to 100 percent of 
available disk space on that volume. If FastSort selects an initial scratch volume, it 
uses up to 80 percent of available disk space on that volume.

Overflow scratch volumes are volumes FastSort uses as alternate locations for scratch 
files, if needed. For example, volumes you specify in the SCRATCHON attribute are 
overflow scratch volumes. If you explicitly specify an overflow scratch volume, FastSort 
uses up to 100 percent of available disk space on that volume. If FastSort selects an 
overflow scratch volume, it uses up to 80 percent of available disk space on that 
volume.

Selecting a Scratch Volume for Serial Sorts

This subsection describes how FastSort selects a scratch volume for serial sorts. For 
information about subsort scratch files, see Selecting a Scratch Volume for Parallel 
Sorts on page 9-7.

When a sort operation requires a scratch file, FastSort reads SORT DEFINEs for 
acceptable scratch volumes. If no scratch file or scratch volume is specified in a 

Note. FastSort always purges scratch files after a sort or merge runs completes, unless you 
sort programmatically and call SORTMERGESTART with flags parameter bit <12> set to 1.
FastSort Manual—429834-003
9-3



Optimizing Sort Performance Using Scratch Files
DEFINE, FastSort automatically selects a scratch volume based on volume 
characteristics. For more information about selection criteria, see How Volume 
Characteristics Affect Selection on page 9-5.

How DEFINEs Affect Selection

You can specify volumes for FastSort to use or not use for scratch files with the 
following attributes in a SORT DEFINE: 

 SCRATCH 

 SCRATCHON 

 NOSCRATCHON 

FastSort uses these attributes, if they exist, to build a pool of scratch volumes by 
inclusion and by exclusion. For more information on how to specify values for these 
attributes, see Section 7, Using SORT and SUBSORT DEFINEs .

Figure 9-1 shows how FastSort uses DEFINEs to build a scratch volume pool. 

FastSort first reads the SCRATCH attribute for the name of an initial scratch file or 
scratch volume. If no SCRATCH file or volume is specified or if the file or volume 
becomes full, FastSort reads the SCRATCHON attribute for acceptable overflow 

Figure 9-1. How FastSort Reads Scratch Volume DEFINEs

SCRATCH NOSCRATCHONSCRATCHON

Inclusion Exclusion
VST901.vsd
FastSort Manual—429834-003
9-4



Optimizing Sort Performance Using Scratch Files
scratch volumes. FastSort supports up to 32 total scratch volumes: one initial volume 
in the SCRATCH attribute and up to 31 SCRATCHON overflow volumes.

If the scratch file or volume specified in SCRATCH becomes full and no SCRATCHON 
volumes are specified, FastSort reads the NOSCRATCHON attribute for volumes that 
should not be used for overflow scratch files. You can specify up to 32 
NOSCRATCHON volumes.

The SCRATCHON and NOSCRATCHON attributes are mutually exclusive. If you 
specify SCRATCHON, you cannot exclude volumes from the pool with 
NOSCRATCHON. Likewise, if you specify NOSCRATCHON, you cannot specify 
volumes for the pool with SCRATCHON.

How Volume Characteristics Affect Selection

After checking DEFINEs for scratch volume information, FastSort creates scratch files 
on volumes on your system with the following features: 

 The primary disk process running in the CPU where SORTPROG is running

 The fewest number of currently open scratch files

 The greatest amount of free disk space

FastSort automatically excludes $SYSTEM and volumes that:

 Contain less than 1 MB of free disk space

 Contain TMF audit trail files

 Are protected by the Safeguard product

After FastSort chooses a scratch volume, it continues to create additional scratch files 
on that volume until the volume is 80 percent full. When the scratch volume becomes 
80 percent full, FastSort creates the next scratch file on a new volume from the pool.

Note. FastSort uses up to 100 percent of the disk space on volumes you specify in the 
SCRATCH and SCRATCHON attributes. Therefore, if you explicitly specify scratch volumes, 
ensure that other processes do not currently require disk space on those volumes.
FastSort Manual—429834-003
9-5



Optimizing Sort Performance Using Scratch Files
Table 9-1. How FastSort Chooses Scratch Volumes

What You Specify: How FastSort Responds:

Nothing: no scratch file, no DEFINEs 
with scratch attributes, no scratch 
volumes, no restrictions on scratch 
volumes

Uses volume characteristics to select a scratch 
volume. FastSort creates scratch files on this 
volume until it is 80 percent full, selects another 
scratch volume if necessary, and so on.

A scratch file Uses the file until it becomes full. If the user 
manually creates the scratch file and it 
becomes full, FastSort tries to increase 
MAXEXTENTS and continue using the file. If 
overflow scratch files are needed, FastSort 
creates them on the current volume until it is 80 
percent full. Then FastSort uses volume 
characteristics to choose another scratch 
volume. FastSort creates scratch files on the 
new volume until it is 80 percent full, and so on.

A scratch volume Creates scratch files on the volume until it is 
100 percent full. Then FastSort uses volume 
characteristics to choose another scratch 
volume and creates scratch files on the second 
volume until it is 80 percent full, and so on.

A list of scratch volumes Resolves any wild-card characters in the 
scratch volumes list and assigns scratch files to 
the volumes in a sequential fashion. If 
necessary, FastSort creates scratch files on 
these volumes until they are 100 percent full. 
Then FastSort uses volume characteristics to 
choose additional scratch volumes, if needed. 

A scratch file or scratch volumes and 
restrictions on scratch volumes with 
NOSCRATCHON

Uses the scratch file or scratch volumes 
specified and does not use the volumes 
specified with NOSCRATCHON. If you specify 
scratch volumes, FastSort fills them up to 100 
percent full.

Only restrictions on scratch volumes with 
NOSCRATCHON

Ignores the volumes specified in 
NOSCRATCHON and uses characteristics to 
select a scratch volume. FastSort creates 
scratch files on the volume until it is 80 percent 
full. Then FastSort uses volume characteristics 
to choose another scratch volume, creates 
scratch files on the second volume until it is 80 
percent full, and so on.

A scratch file or volume, or a scratch file 
and scratch volumes, restrictions on 
scratch volumes, a CREATE INDEX 
configuration file, and DEFINEs 

Uses values in the configuration file. The values 
and options specified in the configuration file 
override those specified in DEFINEs. FastSort 
fills the specified scratch volumes up to 100 
percent full. 
FastSort Manual—429834-003
9-6



Optimizing Sort Performance Selecting a Scratch Volume for Parallel Sorts
Each scratch file extent can be up to 2048 pages, or 4 KB. For scratch files that 
FastSort creates, the default extent size is 4 KB and MAXEXTENTS is 978 extents. 
Depending on extent sizes, a nonpartitioned scratch file can be up to 1 TB in size.

Selecting a Scratch Volume for Parallel Sorts

For parallel sorts, each subsort process uses its own initial and overflow scratch files. 
A distributor-collector process does not usually require scratch files. 

Use the SCRATCH attribute of a SUBSORT DEFINE to specify an initial scratch file for 
each subsort process. If you specify a fully qualified file name for this attribute, you 
must specify a unique scratch file for each subsort process. You cannot specify a 
single scratch file, or different partitions of a single scratch file, for more than one 
subsort.

If you want FastSort to automatically manage scratch space for a parallel sort 
operation, specify only a volume name in the SCRATCH attribute of the distributor-
collector process SORT DEFINE. 

Using the =_SORT_DEFAULTS DEFINE for Parallel Sorts

Follow these guidelines if you use only a =_SORT_DEFAULTS DEFINE to configure a 
parallel sort operation. 

Each subsort in a parallel sort operation must use a distinct scratch file. If more than 
one subsort process uses a single scratch file, disk space and contention problems 
can result. Therefore, if you use the =_SORT_DEFAULTS_DEFINE to configure a 
parallel sort operation, specify only a volume name for the SORT SCRATCH attribute. 
Do not specify a fully qualified file name for this attribute. 

Specifying Overflow Scratch Volumes for Subsorts

For large parallel sorts or when data is distributed unevenly across partitions, you can 
specify overflow scratch volumes for subsorts. In the SORT DEFINE that configures 
the distributor-collector process, specify a SCRATCHON list of overflow scratch 
volumes. When you specify SCRATCHON volumes for the distributor-collector 
process, the pool of scratch volumes is automatically available for subsorts.

When you load the partitions of an index in parallel, you should specify scratch files 
and volumes in a configuration file. If you do not specify a scratch file in the CREATE 
INDEX configuration file, FastSort uses the scratch volumes specified in the 
=SORT_DEFAULTS DEFINE, if any.

When you use the LOAD utility to load data into a file or table, you should specify a 
scratch file or volume in the SCRATCH option. If you do not specify a scratch file in the 
LOAD SCRATCH option, FastSort uses scratch volumes specified in the 
=SORT_DEFAULTS DEFINE, if any.
FastSort Manual—429834-003
9-7



Optimizing Sort Performance Using a Partitioned Scratch File
Using a Partitioned Scratch File

A partitioned scratch file is a single scratch file partitioned across multiple disk 
volumes. The multiple volumes can exist on separate nodes. A partitioned scratch file 
functions in essentially the same manner during a sort operation as multiple scratch 
files. While the maximum size of a nonpartitioned scratch file is 1 TB if it is created by 
the user and up to 2 GB otherwise, a partitioned scratch file can be greater than 1 TB.

Partitioned scratch files are especially useful when: 

 You want to allocate all scratch space before the sort operation begins

 There is not enough space on any single disk for a scratch file

 The existing disk space is too fragmented to hold a default scratch file extent   

 The sort operation requires an initial scratch file that does not fit on one volume 

To use a partitioned scratch file, you first use the FUP CREATE command to manually 
partition and create the file. The syntax for creating a partitioned scratch file at a TACL 
prompt is:

filename

is the name of the file to create. If you specify a partial file name, the TACL 
command interpreter uses the current node, volume, and subvolume.

PART

sets options for each partition. Enclose options for each partition with parentheses 
and separate them with commas.

partition-num, [\node.]$volume

identifies the partition and specifies a location. Specify an integer from 1 to 15 for 
partition-num. Specify a volume for the partition location. You can also specify 
a node. However, for optimal performance, locate scratch files on the node where 
SORTPROG is running.

pri-extent-size, sec-extent-size

specifies the primary and secondary extent sizes for a partition. The default 
primary extent size is one page, or 2048 bytes. If you specify no secondary extent 
size or zero extents, sec-extent size defaults to the size of the primary 
extent. The value you specify can be in pages, bytes, or megabytes (MB). The 
default extent unit is pages. The maximum value is 65,535 pages, or 134 MB.

FUP CREATE filename, PART (partition-num , [\node.]$volume 
    [,pri-extent-size [, [sec-extent-size ]]]),...
FastSort Manual—429834-003
9-8



Optimizing Sort Performance Using a Partitioned Scratch File
The following syntax creates the file SCRATCH with two secondary partitions:

FUP CREATE SCRATCH, PART (1, $data3, 64, 8), 
                    PART (2, $data4, 64, 8)                    

In this example, a primary file partition, SCRATCH, is created on the current node, 
volume, and subvolume. Two secondary partitions, also named SCRATCH, are 
created on $data3.<current-subvol-name> and $data4.<current-subvol-
name> on the current node.

You size a partitioned scratch file in the same manner as a non-partitioned scratch file. 
To calculate the size of each scratch file partition, use the formula in Manually Creating 
a Scratch File on page 9-2. Note that the file must be unstructured. For more 
information about the CREATE command, see File Utility Program (FUP) Reference 
Manual. 

After you partition and create the scratch file, use one of the methods listed at the 
beginning of this section to specify the file to FastSort. You can use partitioned scratch 
files for both serial and parallel sort operations. Figure 9-2 shows a parallel sort run 
with a 1 GB input file, three subsort processes, three partitioned scratch files and a 
partitioned output file.

Figure 9-2. Partitioned Scratch Files in Parallel Sorting

Partitioned Input File Partitioned Output File

Partitioned Scratch File Partitioned Scratch FilePartitioned Scratch File

Subsort
Process

Distributor-
Collector
Process

Subsort
Process

Subsort
Process

VST902.vsd
FastSort Manual—429834-003
9-9



Optimizing Sort Performance Using Swap Files
Using Swap Files

A swap file is the disk file used for data swapping during a sort or merge run. Data 
swapping is the process of copying data between physical memory and storage.

Swapping, or paging, occurs when the extended memory segment is larger than the 
available physical memory. Swapping also occurs when processes contend for 
available memory. To minimize swapping, specify less extended memory in one of the 
following:

 The MINSPACE, MINTIME, or SEGMENT parameter of the RUN command

 The flags parameter of the SORTMERGESTART procedure

 The SEGMENT attribute of a SORT or SUBSORT DEFINE

You can also move the sort process to a processor with a lighter load or more physical 
memory available.

Locating the Swap File

The swap file for FastSort is always on the local node. The default swap file location is 
the current scratch volume, if the scratch file is local. For remote scratch files, the 
default swap volume is the volume where the program file is running. 

However, for optimal performance it is best to locate the swap file on a less busy 
volume. You can specify another location for a swap file in:

 The SWAP parameter of the RUN command

 The process-start parameter of the SORTMERGESTART procedure

 The SEGMENT attribute of a SORT or SUBSORT DEFINE

 The SWAP option in a parallel CREATE INDEX configuration file

Specifying a Swap File for Parallel Sorts

Each subsort in a parallel sort operation must use a distinct swap file. If more than one 
subsort process uses a single swap file, disk space and contention problems can 
result. 

For example, if you specify a fully-qualified file name for the SUBSORT SWAP attribute 
of a SORT DEFINE, you must specify a unique swap file for each subsort. 

If you use the =_SORT_DEFAULTS_DEFINE to configure a parallel sort operation, 
specify only a volume name for the SORT SWAP attribute. Do not specify a fully 
qualified file name for this attribute.

Using VLM

The Very Large Memory (VLM) option increases the amount of extended memory 
FastSort can use to sort records. If VLM is on, FastSort can use up to 127.5 MB of 
FastSort Manual—429834-003
9-10



Optimizing Sort Performance Using VLM
extended memory, if available. FastSort uses the additional extended memory either to 
complete the sort in a single pass or to store partial information until the sort is 
complete.

Without VLM, the maximum number of records that FastSort can sort in memory is 
32,767. This limit applies regardless of the amount of memory available. With VLM, 
available memory and extended segment size determine the number of records that 
can be sorted in memory. 

Turning On VLM

Depending on your system configuration, memory usage, and the interface to FastSort 
you use, the VLM option can help improve sort performance. VLM is off by default 
because it can use more physical memory and does not always improve performance. 
You can turn on VLM from:

  A SORT DEFINE, including the =_SORT_DEFAULTS DEFINE

 The SORTMERGESTART procedure 

For information on which method takes precedence, see Determining the Precedence 
of DEFINEs on page 7-1. 

When VLM is on, the maximum amount of extended memory for sorting is 127.5 MB, 
or 62,255 pages. This memory limit overrides any value you otherwise specify for 
segment size. When VLM is off, the maximum extended memory FastSort can use is 
67 MB, or 32,767 pages. 

Do not use VLM for parallel sort or load operations. 

How VLM Affects Swap Files

A larger extended memory segment requires a larger swap file. Using VLM can cause 
an increase in data swapping if SORTPROG competes with other processes for 
memory. If increased swapping impacts performance, use one of these strategies:

 Use the SEGMENT attribute or parameter to specify a smaller extended segment 

 Use the CPU attribute to specify a less-busy CPU

 Use the SWAP attribute to move the swap file to a different disk volume

 Turn VLM off to use the default extended memory and disk space utilization

For more information about FastSort swap files, see Using Swap Files on page 9-10. 

How VLM Affects Scratch Files

VLM can help reduce the disk space FastSort uses for scratch files. With a larger 
extended memory segment, FastSort can perform some sort operations entirely in 
memory. Sorts performed in memory do not require scratch files. 
FastSort Manual—429834-003
9-11



Optimizing Sort Performance Calculating Data Stack Space
VLM can also increase performance for sorts that do require scratch files. For sorts 
that require an intermediate merge pass, FastSort uses the additional memory to store 
partial information. The additional storage space reduces reads and writes to scratch 
files. 

How VLM Affects Statistics

When VLM is on, the FastSort statistics format changes slightly.

For interactive FastSort, BUFFER PAGES changes from an INT to an INT(32) value 
when VLM is on. In this case, BUFFER PAGES can have a value greater than 32,767, 
the maximum extended memory segment you can manually specify. BUFFER PAGES 
can also be -1 as a result of VLM.

For programmatic FastSort, a parameter in the SORTMERGESTATISTICS array tells 
FastSort to return the larger statistics format when VLM is on. If the parameter flag1 
is present and set to 1, FastSort converts BUFFER PAGES to an INT(32) value before 
placing it in the statistics array. If you specify a value other than 0 or 1 for flag1, 
FastSort returns error 150 (INVALID STATISTICS FLAG VALUE SPECIFIED). For 
applications that use VLM, set flag1 to 1 to get accurate statistics when BUFFER 
PAGES is greater than 32,767. 

For more information about SORTMERGESTATISTICS, see Section 5, Using FastSort 
System Procedures.

Calculating Data Stack Space

If you invoke FastSort from an application program, sort complexity determines the 
amount of data stack space FastSort requires. Follow the guidelines in the following 
table to calculate data stack space requirements.

To allocate this additional space in an application, use one of the following methods: 

 For a TAL application, use the DATAPAGES compiler directive during compilation. 
Specify DATAPAGES 64 to allocate the maximum amount. 

 For all applications, use the Binder SET EXTENDSTACK command after 
compilation. Specify 64 PAGES to allocate the maximum amount. 

 When you run the program, specify 64 pages for the MEM option of the RUN 
command. If you run the program from another application, specify 64 for the 
PROCESS_CREATE_ or NEWPROCESS[NOWAIT] memory-pages parameter.

 Move user data from the user data segment to an extended data segment to free 
up more data stack space for the call to SORTMERGESTART. 

Operation Description Additional Space 

Simple Less than 5 keys, no subsorts, 1 input file 2 pages 

Medium Greater than 5 keys, either subsorts or multiple input files 3 pages 

Complex Greater than 5 keys, subsorts, multiple input files 4 pages 
FastSort Manual—429834-003
9-12



Optimizing Sort Performance Managing Sort Failures
For information about TAL compiler directives, see the TAL Reference Manual. For 
information about the Binder SET command, see the Binder Manual. 

Other Data Stack Space Considerations

In addition to the requirements listed above, if you specify either the SCRATCHON or 
NOSCRATCHON attributes in a SORT DEFINE, FastSort requires up to 138 additional 
words (276 bytes) of stack space. To learn how FastSort uses this space to build a 
pool of scratch volumes, see Table 5-1 on page 5-5.

If your application process starts a new process, FastSort also requires 30 to 35 
additional words of stack space to support the PROCESS_CREATE_ procedure. 

Managing Sort Failures
If a sort operation fails, the cause of the failure is usually stated in the error message 
FastSort returns. Most sort failures are caused by insufficient workspace. For more 
information on how to set up scratch and swap files, see Managing Sort Workspace on 
page 9-1. This subsection recommends strategies for managing failures that are not 
caused by insufficient sort workspace. 

Verifying Version Compatibility

A sort operation might fail if you run versions of FastSort and other NonStop software 
that are incompatible. Incompatible versions are likely cause of failure, for example, if 
SORTPROG runs on one node, and a software component that affects FastSort runs 
on a second node.

For SQL/MP sort operations, you might receive error 121 (INCOMPATIBLE SQL 
VERSION) when the sort fails due to incompatible versions. In other cases, the error 
message you receive might not directly refer to a version problem. 

If you suspect a version problem, check versions of the operating system, 
SORTPROG, SORT, SQL/MP, and other NonStop software products for compatibility. 
Run the VPROC utility to determine software versions. The syntax for the VPROC 
utility is:

VPROC object-file

In VPROC syntax, object-file is the volume, subvolume, and file name of the 
program object file. For example, to determine the version of SORTPROG on your 
local node, type:

VPROC $SYSTEM.SYSnn.SORTPROG

at a TACL prompt. The operating system returns version information in the following 
format:

VPROC-T9617D30-(31 OCT 94) SYSTEM \TSII Date 17 JUL 1995, 
14:54:38
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1991, 1987, 1989
FastSort Manual—429834-003
9-13



Optimizing Sort Performance Managing Sort Failures
$SYSTEM.SYS01.SORTPROG
     Binder timestamp:   10NOV94 10:12:17
    Version procedure:   T9620D30^31OCT94^AAU^31OCT94
           Target CPU:   TNS, TNS/R

Compare the information VPROC returns with version information in the softdocs 
shipped with your NonStop software. These documents contain product and RVU 
numbers for the specific product they describe. Softdocs also contain software 
compatibility information. If you do not have access to these documents, contact your 
system manager.

To determine your operating system version, check the $SYSTEM.SYSnn. CONFLIST 
file. This file is generated by SYSGEN when you install a version of the NonStop 
Kernel. The first page of the file contains operating system RVU and compatibility 
information. If you do not have read access to this file, contact your system manager.

To determine the version of SQL/MP on your node, execute the following command 
from within SQLCI:

GET VERSION OF SYSTEM;

 For more information about the GET VERSION statement, see SQL/MP Reference 
Manual.

Saving Failure Information

If a sort fails and you cannot quickly identify the cause, you should save information 
about the sort process. This information will help diagnose the reason for failure if you 
have to contact your service provider.

You can automatically capture information about any failed process in a disk file. If a 
sort process terminates abnormally, this file contains valuable information about 
conditions at the point of termination. To automatically create a save file, you use the 
Binder utility to turn SAVEABEND ON. 

To start the Binder utility, type

BIND

at a TACL prompt. The syntax for creating a SAVEABEND file for a SORTPROG or 
RECGEN process at the Binder prompt is: 

CHANGE SAVEABEND ON IN [ SORTPROG | RECGEN ]

To turn on SAVEABEND, you must have permission to write to the object file. For 
FastSort, the object file is SORTPROG or RECGEN. If you do not have write 
permission to these files, contact your system manager. 

You must direct the operating system to create a save file before a failure occurs. If 
SAVEABEND is not already set to ON on your local node when a sort fails, you must 
FastSort Manual—429834-003
9-14



Optimizing Sort Performance Automating FastSort Tasks
first turn on SAVEABEND and then duplicate the failure in order to save information in 
a save file. 

To exit the Binder utility, type

EXIT

The save file contains information about the process environment at the time of 
termination, including:

 Names of all open files

 A copy of the data space at the time the process terminated

 Name of the process and a timestamp for the time of termination

The default save file location is the location of the specified object file. The save file 
name is always of the format ZZSAnnnn. 

You can also use the Inspect SAVE and PR commands to save the environment of a 
failed process. Like the Binder utility, you must direct Inspect to save failure information 
before a failure occurs. For more information about these commands, see Inspect 
Manual. 

Automating FastSort Tasks
One way to automate FastSort tasks is to use a command file. A command file, also 
sometimes called an OBEY file, is an EDIT file that contains a series of commands. 
When you execute the file, commands in the file are automatically executed. Use a 
command file to automate tasks that:

 Are repetitive

 Require many commands and few decisions 

 Can cause serious problems if not properly executed

For example, you might regularly perform these tasks:

 Load data from one SQL/MP table into another

 Execute a query that causes a sort-merge join of a large SQL/MP table 

The load and query operations each require an SQL statement and a 
=_SORT_DEFAULTS DEFINE. To reduce execution time, you can specify the 
commands required for each task in an EDIT file. Then execute the file when you need 
to perform the task. To automate configuration, you could set up a separate 
=_SORT_DEFAULTS DEFINE for each task. Then either enable the appropriate 
DEFINE in the command file or specify DEFINE commands directly in the file.

Note. Turning SAVEABEND ON also sets the Binder INSPECT option to ON. For more 
information about the Binder CHANGE command, see Binder Manual. 
FastSort Manual—429834-003
9-15



Optimizing Sort Performance Automating DEFINEs
Automating DEFINEs

The following examples show how you can use command files to set up FastSort 
DEFINEs.

Using a Command File to Set DEFINEs from TACL

The following is an example of a TACL command file that sets SORT DEFINEs for an 
interactive sort operation:

DELETE DEFINE =SORT_ONE
SET DEFMODE ON
SET DEFINE CLASS SORT
SET DEFINE SCRATCH $data.fastsort.scratch
SET DEFINE BLOCK 28762
SET DEFINE SCRATCHON ($data??)
SET DEFINE SEGMENT 256
SET DEFINE SWAP $data.fastsort.swapfile
SET DEFINE PRI 80
ADD DEFINE =SORT_ONE

Note that the first line of the command file deletes the =SORT_ONE DEFINE, if it 
already exists. This step is optional and ensures that only the values you specify for 
=SORT_ONE in the command file affect this sort operation. The SET DEFMODE ON 
command enables DEFINEs for the current TACL session. 

To execute this command file, type OBEY filename at a TACL prompt.

Using a Command File to Set DEFINEs from SQLCI

You can use the OBEY command to execute a command file for SQL/MP sorts from 
your SQLCI prompt. The following is an example of a command file that sets up a 
=_SORT_DEFAULTS DEFINE from within SQLCI:

DELETE DEFINE =_SORT_DEFAULTS;
SET DEFMODE ON;
SET DEFINE CLASS SORT;
OBEY SCRATCH1;
SET DEFINE BLOCK 57524;
SET DEFINE CPU 8;
SET DEFINE MODE MINTIME;
SET DEFINE SCRATCHON ($data2, $data4);
SET DEFINE SWAP $spare;
ADD DEFINE =_SORT_DEFAULTS;

Nesting Command Files in SQLCI

A command file that you execute from within SQLCI can execute another command 
file. You can nest up to four command files in this manner to simplify configuration 
changes. For example, the command file SCRATCH1 named in the previous file 
FastSort Manual—429834-003
9-16



Optimizing Sort Performance Automating DEFINEs
configures the =_SORT_DEFAULTS DEFINE for a parallel sort operation. SCRATCH1 
specifies only volume names for scratch and swap files, as follows:

SET DEFINE SCRATCH $DATA2
SET DEFINE SWAP $SPARE2

You could use the SCRATCH1 configuration if the SQL optimizer chooses a parallel 
plan for a query that invokes FastSort.

A second command file, SCRATCH2, configures scratch and swap space for loading 
data from a large SQL/MP table. It directs FastSort to use a 3 GB partitioned scratch 
file for the load operation, as follows:

SET DEFINE SCRATCH $SPARE2.SCRATCH.PART
SET DEFINE SWAP $SPARE1

To shift from the first configuration to the second, change the nested file name in the 
top-level command file.

Using the SAVE Command 

To preserve the DEFINE attributes of your current SQLCI session, use the SAVE 
command before you exit SQLCI. This command automatically preserves SQLCI 
session attributes as commands in a file. For more information about the SAVE 
command including syntax, see SQL/MP Reference Manual.
FastSort Manual—429834-003
9-17



Optimizing Sort Performance Automating DEFINEs
FastSort Manual—429834-003
9-18



A FastSort Syntax Summary

This appendix contains a syntax summary of the FastSort interactive commands and 
system procedures.  

Interactive Commands 
The FastSort interactive commands are:   

ASC[ENDING] field [ type ] [ , field [ type ] ]...

CLEAR { ALL               }
      { ASC[ENDING]       }
      { COLLATE           }
      { CPUS              }
      { DESC[ENDING]      }
      { FROM [ filename ] }
      { KEYS              }
      { NOTCPUS           }
      { SUBSORT           }
      { TO                }

COLLATE filename

COLLATEOUT filename
CPUS [ ALL      ]
     [ cpu-list ]

DESC[ENDING] field [ type ] [ , field [ type ] ]...

EXIT 

FC 

FROM [ in-file ] [ , EXCL[USION] mode ]...
                 [ , FILE count       ]
                 [ , MERGE            ]
                 [ , RECORD length    ]

HELP [ ASC[ENDING]  ]
     [ CLEAR        ]
     [ COLLATE      ]
     [ COLLATEOUT   ]
     [ CPUS         ]
     [ DESC[ENDING] ]
     [ FROM         ]
     [ HELP         ]
     [ NOTCPUS      ]
     [ RUN          ]
     [ SAVE         ]
     [ SHOW         ]
     [ SUBSORT      ]
     [ TO           ]
FastSort Manual—429834-003
A-1



FastSort Syntax Summary Interactive Commands
NOTCPUS cpu-list

RUN                  [scratch-file |scratch-vol] 
                     [ , AUTOMATIC             ]
                     [ , BLOCK size            ]
                     [ , CPU processor         ]
                     [ , MEM memory            ]
                     [ , MINSPACE              ]
                     [ , MINTIME               ]
                     [ , PRI priority          ]
                     [ , { REMOVEDUPS | REMD } ]
                     [ , DEFINE define-name    ]
                     [ , SEGMENT size          ]
                     [ , PROGRAM file          ]
                     [ , SWAP file             ]
                     [ , NOSCRATCHON(scratch-vol,scratch-
vol,...)]
                     [ , SCRATCHON(scratch-vol [,scratch-
vol]...)]

SAVE { ALL               }
     { ASC[ENDING]       }
     { COLLATE           }
     { CPUS              }
     { DESC[ENDING]      }
     { FROM [ filename ] }
     { KEYS              }
     { NOTCPUS           }
     { SUBSORT           }
     { TO                }

SHOW { ALL               }
     { ASC[ENDING]       }
     { CPUS              }
     { DESC[ENDING]      }
     { FROM [ filename ] }
     { KEYS              }
     { NOTCPUS           }
     { SUBSORT           }
     { TO                }

SUBSORT scratch-file [ , BLOCK size    ]...
                     [ , CPU processor ]
                     [ , MEM memory    ]
                     [ , PRI priority  ]
                     [ , SEGMENT size  ]
                     [ , PROGRAM file  ]
                     [ , SWAP file     ]

TO [ out-file ] [ , EXCL[USION] mode  ]...
                [ , KEYS              ]
                [ , PERMUTATION       ]
                [ , TYPE file-type    ]
                [ , NOPURGE           ]
                [ , SLACK percentage  ]
                [ , DSLACK percentage ]
                [ , ISLACK percentage ]
FastSort Manual—429834-003
A-2



FastSort Syntax Summary FastSort Procedures
FastSort Procedures 
The FastSort system procedures are:   

{ status := } SORTBUILDPARM ( ctlblock                 ! i
{ CALL      }                ,[cpu-mask]               ! i
                             ,[not-cpu-mask]           ! i
                             ,[buffer]                 ! i
                             ,[buffer2]                ! i
                             ,[buffer-length]          ! i
                             ,[build-flags]            ! i
                             ,[define-name]            ! i
                               !reserved1!
                               !reserved2!
                             ,[scratchvols ] )         ! i

{ length := } SORTERROR     ( ctlblock                 ! i
{ CALL      }                ,buffer  )                ! o

{ status := } SORTERRORDETAIL( ctlblock )              ! i
{ CALL      }

{ length := } SORTERRORSUM  ( ctlblock                 ! i
{ CALL      }               ,[ buffer ]                ! o
                            ,[ error-code ]            ! o
                            ,[ error-source ]          ! o
                            ,[ subsort-index ]         ! o
                            ,[ subsort-id ] )          ! o

{ status := } SORTMERGEFINISH ( ctlblock               ! i
{ CALL      }                 ,[ abort ]               ! i
                              ,[ spare1 ]              ! 
reserved
                              ,[ spare2 ] )            ! 
reserved

{ status := } SORTMERGERECEIVE ( ctlblock              ! i
{ CALL      }                 ,[ record-loc ]          ! o
                              ,  length                ! o
                              ,[ spare1 ]              ! 
reserved
                              ,[ spare2 ]              ! 
reserved
                              ,[ record-loc-ext ]      ! o

{ status := } SORTMERGESEND  ( ctlblock                ! i
{ CALL      }                 ,[ record-loc ]          ! i
                              ,  length                ! i
                              ,[ stream-id ]           ! o
                              ,[ spare1 ]              ! 
reserved
                              ,[ spare2 ] )            ! 
reserved
                              ,[ record-loc-ext ]      ! i
FastSort Manual—429834-003
A-3



FastSort Syntax Summary FastSort Procedures
{ status := } SORTMERGESTART ( ctlblock                 ! i
{ CALL      }              ,  key-block                 ! i
                           ,[ num-merge-files ]         ! i
                           ,[ num-sort-files ]          ! i
                           ,[ in-file-name ]            ! i
                           ,[ in-file-exclusion-mode ]  ! i
                           ,[ in-file-count ]           ! i
                           ,[ in-file-record-length ]   ! i
                           ,[ format ]                  ! i
                           ,[ out-file-name ]           ! i
                           ,[ out-file-exclusion-mode ] ! i
                           ,[ out-file-type ]           ! i
                           ,[ flags ]                   ! i
                           ,[ errnum ]                  ! o
                           ,[ errproc ]                 ! i
                           ,[ scratch-file-name ]       ! i
                           ,[ scratch-block ]           ! i
                           ,[ process-start ]           ! i
                           ,[ max-record-length ]       ! o
                           ,[ collate-sequence-table ]  ! i
                           ,[ dslack ]                  ! i
                           ,[ islack ]                  ! i
                           ,[ flags2 ]                  ! i
                           ,[ subsort-count ]           ! i
                           ,[ spare5 ]  )               ! 
reserved

{ status := } SORTMERGESTATISTICS ( ctlblock            ! i
{ CALL      }                      ,length              ! i, o
                                   ,statistics          ! o
                                   ,[flag1 ]            ! i
                                   ,[spare1 ]           ! 
reserved
FastSort Manual—429834-003
A-4



B FastSort Error Messages

This appendix lists the FastSort error messages in three lists: 

 An alphabetic list of programmatic messages starting on B-1

 A numeric list of programmatic messages starting on B-6

 An alphabetic list of interactive messages (interactive messages are not 
numbered) starting on B-35 

The numeric list of programmatic error messages and the alphabetic list of interactive 
error messages include the text for the error code, a possible cause, and recovery 
strategies. This appendix also includes effect information for error messages that can 
occur when users invoke FastSort transparently from SQL/MP. 

To determine appropriate recovery action for some of these errors, see Guardian 
Procedure Errors and Messages Manual, which has information about the file-system 
and NEWPROCESS error codes that accompany FastSort error codes. 

Whenever an error occurs, the SORTPROG process stops. After you take recovery 
action, you need to start the process again.

You can specify a TAL procedure for FastSort to call when an error occurs. For more 
information about creating and specifying a procedure for error recovery, see Writing a 
User Error Procedure on page 5-37. 

Alphabetic List of Programmatic Messages
Listed below are the programmatic FastSort error messages in alphabetic order 
including the corresponding FastSort error code for each message. These messages 
are listed numerically by FastSort error code later in this appendix. 

Error Code Message Text (page 1 of 6)

33 A CONTROL OPERATION HAS FAILED.

26 A KEY FIELD LOCATION EXCEEDS THE RECORD SIZE.

36 A POSITION HAS FAILED IN A SCRATCH FILE.

32 A READ HAS FAILED FROM A SCRATCH FILE.

31 A READ HAS FAILED FROM THE FROM FILE.

28 A SCRATCH FILE CANNOT BE OPENED.

48 A SIGNED ASCII NUMERIC KEY IS LARGER THAN 32 BYTES.

24 A TEMPORARY TO FILE IS TOO SMALL.

53 A TO FILE MAY NOT BE A FILE TO BE MERGED.

30 A WRITE HAS FAILED TO A SCRATCH FILE.

29 A WRITE HAS FAILED TO THE TO FILE.

34 AN EDITREAD HAS FAILED FROM THE FROM FILE.
FastSort Manual—429834-003
B-1



FastSort Error Messages Alphabetic List of Programmatic Messages
4 AN ERROR HAS PREVENTED CREATION OF THE SORT 
PROCESS.

39 AN INPUT RECORD EXCEEDED THE RECORD SIZE.

59 AN INPUT RECORD IS TOO SMALL.

81 BLOCKED INTERFACE NOT ALLOWED WITH MERGE.

133 CANNOT INCREASE THE SCRATCH FILE SIZE.

57 COLLATING SEQUENCE TABLE MUST BE PRESENT.

20 COMMUNICATIONS WITH SORTPROG HAVE BROKEN DOWN.

21 COMMUNICATIONS WITH SORTPROG WERE GARBLED.

78 COMMUNICATIONS WITH SUBSORT PROCESS HAVE FAILED.

5 COMMUNICATIONS WITH THE SORT PROCESS HAVE FAILED.

35 CREATION OF A SCRATCH FILE HAS FAILED.

37 CREATION OF THE TO FILE HAS FAILED.

123 DATETIME CONVERSION FIELD NOT FOUND.

99 DEFAULT DEFINE IS NOT OF CLASS SORT.

105 DEFINE HAS BEEN SPECIFIED BUT DEFMODE IS OFF.

50 EDIT FILES MAY NOT BE TO FILES.

122 ERROR DETERMINING SQL VERSION.

124 ERROR FROM DATETIME CONVERSION FIELDS.

112 ERROR FROM SQL FILESYSTEM VALIDATION ROUTINES.

108 ERROR IN DM BLOCK FORMAT.

173 ERROR IN MOVEX.

104 ERROR OCCURRED WHILE ACCESSING A SORT DEFINE.

107 ERROR OCCURRED WHILE ACCESSING A SUBSORT DEFINE.

115 ERROR WHILE RETRIEVING FILE LABEL SMSQL.

64 EXTENDED SEGMENT CAN NOT BE ALLOCATED.

171 EXTENDED SEGMENT CANNOT BE DEALLOCATED.

15 FILES TO BE MERGED MUST BE SORTED.

121 INCOMPATIBLE SQL VERSION.

113 INPUT FILE FOR SORTMERGESQL NOT TYPE SQL.

130 INTERNAL ERROR OCCURRED.

119 INTERNAL SQL NULL ERROR.

74 INVALID BLOCK ADDRESS SPECIFIED.

75 INVALID BLOCK LENGTH SPECIFIED.

156 INVALID COLLATION ARRAY LENGTH.

44 INVALID CONTROL BLOCK, PROCEDURE CALL REJECTED.

Error Code Message Text (page 2 of 6)
FastSort Manual—429834-003
B-2



FastSort Error Messages Alphabetic List of Programmatic Messages
66 INVALID DATA SLACK SPECIFIED.

49 INVALID EXCLUSION MODE SPECIFIED.

72 INVALID EXTENDED SEGMENT SIZE.

51 INVALID FILE TYPE SPECIFIED FOR TO FILE.

12 INVALID FLAG OR COMBINATION OF FLAGS.

73 INVALID FORMAT OF THE PROCESS STRUCTURE.

89 INVALID FROM FILE RECORD SIZE.

139 INVALID FROM-FILE SPECIFIED TO RECGEN.

67 INVALID INDEX SLACK SPECIFIED.

65 INVALID KEY FOR KEY-SEQUENCED FILE.

175 INVALID MONITOR MESSAGE LENGTH.

77 INVALID NAME OF THE SUBSORT SCRATCH FILE.

68 INVALID NEW FLAG SPECIFIED.

56 INVALID NUMBER OF FILES TO BE SORTED OR MERGED.

69 INVALID NUMBER OF SUBSORT PROCESSES.

87 INVALID OBJECT SPECIFIED AS FROM FILE.

88 INVALID OBJECT SPECIFIED AS SWAP FILE.

86 INVALID OBJECT SPECIFIED AS TO FILE.

102 INVALID OR NON-EXISTENT USER-SPECIFIED DEFINE NAME.

135 INVALID RECGEN MESSAGE VERSION.

134 INVALID RECGEN STARTUP MESSAGE.

45 INVALID SCRATCH FILE BLOCK SIZE.

54 INVALID SCRATCH FILE NAME.

71 INVALID SORT EXECUTION MODE.

169 INVALID STATISTICS FLAG VALUE SPECIFIED.

168 INVALID STATISTICS LENGTH SPECIFIED.

138 INVALID TO-FILE SPECIFIED TO RECGEN.

62 KEY LENGTH MUST BE GREATER THAN ZERO.

101 LOGICAL NAMES NOT ALLOWED.

131 MISSING REQUIRED PARAMETERS TO PROCEDURE.

174 MONITOR VERSION AND MESSAGE LENGTH CONFLICT.

82 MORE THAN ONE SUBSORT SHOULD BE SPECIFIED.

114 NO FILES INPUT FOR SORTMERGESQL.

140 NON-EXISTENT RECGEN FROM-FILE SPECIFIED.

141 NON-EXISTENT RECGEN TO-FILE SPECIFIED.

60 NOT ENOUGH STACK FOR SORTMERGESTART.

Error Code Message Text (page 3 of 6)
FastSort Manual—429834-003
B-3



FastSort Error Messages Alphabetic List of Programmatic Messages
117 NULL KEY SPECIFIED FOR NON-SQL FILE.

118 NULLVAR KEY SPECIFIED FOR NON-SQL FILE.

125 NUMBER OF SORTPROG OPENERS EXCEEDED SPECIFIED LIMIT.

25 ONE OF THE KEY FIELDS IS OF AN UNDEFINED TYPE.

52 ONLY ONE FILE MAY BE SORTED VIA SORTMERGESEND.

116 ONLY ONE FILE CAN BE SORTED BY SORTMERGESQL.

79 PARAMETERS ARE MUTUALLY EXCLUSIVE.

126 PROCESS ALREADY OPEN AND SORTPROC_OPEN_ CALLED.

164 PROCESS CREATE DATA SEGMENT ERROR.

163 PROCESS CREATE EXTENDED SWAP FILE ERROR.

161 PROCESS CREATE LIBRARY FILE ERROR.

167 PROCESS CREATE LIBRARY FILE FORMAT ERROR.

160 PROCESS CREATE PROGRAM FILE ERROR.

166 PROCESS CREATE PROGRAM FILE FORMAT ERROR.

162 PROCESS CREATE SWAP FILE ERROR.

165 PROCESS CREATE SYSTEM MONITOR ERROR.

46 REAL NUMBER KEYS MUST BE WORD ALIGNED.

149 RECGEN CALCULATES A BAD MULTIPLE MESSAGE ADDRESS.

143 RECGEN ERROR READING BASE TABLE.

145 RECGEN ERROR WHILE PACKING RECORD.

146 RECGEN ERROR WHILE RETRIEVING PRIMARY KEY.

144 RECGEN FILE LABEL RETRIEVAL ERROR.

150 RECGEN GETS A BAD SEQUENCE NUMBER IN THE MULTIPLE 
START UP MESSAGE.

148 RECGEN SORTPROC_CLOSE ERROR.

136 RECGEN SORTPROC_OPEN_ ERROR.

147 RECGEN SORTPROC_SEND_ ERROR.

142 RECGEN UNABLE TO OPEN BASE TABLE.

9 RECORD LENGTH TO SORTMERGESEND IS TOO SMALL OR 
LARGE.

63 RESERVED FLAGS MAY NOT BE SET.

13 SCRATCH FILE MUST BE UNSTRUCTURED.

170 SEGMENTS ABOVE 32767 NOT ALLOWED WITH VLM OFF.

127 SEND MESSAGE ID MISMATCH.

152 SORTBUILDPARM_INT_ UPS PARAMETER IS INVALID OR 
MISSING.

Error Code Message Text (page 4 of 6)
FastSort Manual—429834-003
B-4



FastSort Error Messages Alphabetic List of Programmatic Messages
132 SORTMERGESUPREC CALLED UNEXPECTEDLY.

10 SORTMERGEFINISH HAS BEEN CALLED UNEXPECTEDLY.

8 SORTMERGERECEIVE HAS BEEN CALLED UNEXPECTEDLY.

7 SORTMERGESEND HAS BEEN CALLED UNEXPECTEDLY.

111 SORTMERGESQL CALLED UNEXPECTEDLY.

58 SORTMERGESTART CALLED UNEXPECTEDLY.

47 SORTMERGESTATISTICS HAS BEEN CALLED UNEXPECTEDLY.

128 SORTPROC_SEND_ CALLED UNEXPECTEDLY.

129 SORTPROC_CLOSE CALLED UNEXPECTEDLY.

83 SORTPROG AND SORT LIBRARY DO NOT AGREE.

100 SORTPROG MUST BE SQL LICENSED.

84 SORTPROG VERSION AND OS VERSION DO NOT AGREE.

176 SORTPROG VERSION TOO OLD; CANNOT SUPPORT OPTIONAL 
OPEN-ON-DEMAND FEATURE.

172 SORTPROG VERSION TOO OLD; CANNOT SUPPORT REQUIRED 
NEW FEATURE.

61 SPARE PARAMETERS MAY NOT BE PRESENT.

120 SQL BULKIO NOT VALID FOR INPUT FILE.

76 START OF SUBSORT PROCESS HAS FAILED.

106 SUBSORT DEFINE IS NOT OF CLASS SUBSORT.

1 THE 'CTLBLOCK' PARAMETER TO SORTMERGESTART IS 
REQUIRED.

2 THE 'KEYS' PARAMETER TO SORTMERGESTART IS REQUIRED.

11 THE FREE LIST FILE CANNOT BE OPENED.

23 THE FROM FILE COULD NOT BE OPENED.

42 THE MEM SIZE MUST BE IN THE RANGE 1 TO 64.

22 THE MEMORY SPACE FOR SORTING IS INSUFFICIENT.

3 THE NUMBER OF KEY FIELDS MUST BE 1 TO 63 INCLUSIVE.

43 THE PRIORITY MUST BE IN THE RANGE 1 TO 199.

80 THE PRODUCT IS NOT INSTALLED.

6 THE SORT PROCESS HAS STOPPED UNEXPECTEDLY.

27 THE TO FILE ALREADY EXISTS AND CANNOT BE PURGED.

38 THE TO FILE COULD NOT BE OPENED.

55 TOO MANY FROM FILES SPECIFIED.

110 UNEXPECTED RETURN FROM DM^GET PROCEDURE.

85 UNEXPECTED RESPONSE FROM SORTPROG.

Error Code Message Text (page 5 of 6)
FastSort Manual—429834-003
B-5



FastSort Error Messages Numeric List of Programmatic Messages
Numeric List of Programmatic Messages
The numeric list of the FastSort programmatic error messages includes the text for the 
FastSort error code, the probable cause for the error, and the suggested recovery. To 
determine the recovery action for some errors, see Guardian Procedure Errors and 
Messages Manual, which has information about the file-system and NEWPROCESS 
error codes that accompany some FastSort error codes. 

Cause. The call to SORTMERGESTART did not specify a control block. 

Recovery. Specify the ctlblock parameter. 

Cause. The call to SORTMERGESTART did not define any key fields. 

Recovery. Specify the key-block parameter. 

Cause. The number of key fields was incorrect in the call to SORTMERGESTART. 

Recovery. Change the key-block parameter to define from 1 to 63 key fields. 

Cause. The SORTPROG program name was incorrect, or some condition in the 
system caused the error. 

Recovery. If the SORTPROG program name is incorrect, change the SORT DEFINE 
PROGRAM attribute to specify the correct program name. 

If there is a system error, follow the recovery recommendations in the Guardian 
Procedure Errors and Messages Manual for the operating system error code returned 
with this FastSort error code.

93 UNEXPECTED RETURN FROM LOADALTFILE PROCEDURE.

92 UNEXPECTED RETURN FROM LOADCLOSE PROCEDURE.

90 UNEXPECTED RETURN FROM LOADOPEN PROCEDURE.

91 UNEXPECTED RETURN FROM LOADWRITE PROCEDURE.

153 UPS NOT SUPPORTED IN THIS ENVIRONMENT.

154 UPS WORKSPACE BAD.

103 USER-SPECIFIED DEFINE IS NOT OF CLASS SORT.

1    THE 'CTLBLOCK' PARAMETER TO SORTMERGESTART IS REQUIRED.

2    THE 'KEYS' PARAMETER TO SORTMERGESTART IS REQUIRED.

3    THE NUMBER OF KEY FIELDS MUST BE 1 TO 63 INCLUSIVE.

4    AN ERROR HAS PREVENTED CREATION OF THE SORT PROCESS.

Error Code Message Text (page 6 of 6)
FastSort Manual—429834-003
B-6



FastSort Error Messages Numeric List of Programmatic Messages
If you are using the programmatic interface, call the SORTERRORDETAILDETAIL or 
SORTERRORSUM procedure to display the error in a specialized 32-bit format. Read 
the format as follows: 

Cause. The calling process and SORTPROG could not exchange messages. 

Recovery. Ensure that your process does not call SORTMERGESTART with nowait 
I/O and you call AWAITIOX -1 to wait on other files. If your process does not combine 
nowait I/O and AWAITIOX -1, follow recovery recommendations in the Guardian 
Procedure Errors and Messages Manual for the operating system error code returned 
with this FastSort error code. For SQL programs, follow recovery recommendations in 
the SQL/MP Message Manual for the SQLCI error code returned with this FastSort 
error code. 

Cause. Someone stopped the SORTPROG process, the SORTPROG process 
abended, or the processor (CPU) went down. 

Recovery. Restart the operation, possibly in another processor. 

Cause. The calling process called SORTMERGESEND at the wrong time. 

Recovery. Correct your program logic. For more information on the normal order of 
FastSort procedures, see the FastSort system library procedures table in Section 5, 
Using FastSort System Procedures. 

Cause. The calling process called SORTMERGERECEIVE at the wrong time. 

Recovery. Correct your program logic. For more information on the normal order of 
FastSort procedures, see the FastSort system library procedures table in Section 5, 
Using FastSort System Procedures.

Cause. The calling process sent a record of the wrong length. 

Parameter

 Word

Bits

0   1    2     3     4     5     6   7 8    9   10  11  12   13   14  15

High-Order  File System Error or PROCESS_CREATE_ Error Subcode

Low-Order FastSort Input File Index FastSort Error Code

5    COMMUNICATIONS WITH THE SORT PROCESS HAVE FAILED.

6    THE SORT PROCESS HAS STOPPED UNEXPECTEDLY.

7    SORTMERGESEND HAS BEEN CALLED UNEXPECTEDLY.

8    SORTMERGERECEIVE HAS BEEN CALLED UNEXPECTEDLY.

9    RECORD LENGTH TO SORTMERGESEND IS TOO SMALL OR LARGE.
FastSort Manual—429834-003
B-7



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Change the length parameter in the call to SORTMERGESEND. For 
more information on the description of length, see SORTMERGESEND Procedure 
on page 5-15. 

Cause. The calling process called SORTMERGEFINISH at the wrong time. 

Recovery. Correct your program logic. For more information on the normal order of 
FastSort procedures, see the FastSort system library procedures table in Section 5, 
Using FastSort System Procedures. 

Cause. SORTPROG could not open or create its free-list file, a second scratch file 
that FastSort sometimes creates for internal memory management. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. Some values the flags parameter used in the call to SORTMERGESTART 
are mutually exclusive. 

Recovery. Change one or more values for the flags parameter. For more 
information about the flags bits, see Table 5-4 on page 5-32. 

Cause. A scratch file named in the call to SORTMERGESTART is a structured file. 

Recovery. Specify an unstructured scratch file. 

Cause. The data in one or more files specified for merging was not in sorted order. 

Recovery. Check your files to see which ones are not sorted, and specify sorting 
before merging for those files. 

Cause. Some condition in the system halted communications. 

10    SORTMERGEFINISH HAS BEEN CALLED UNEXPECTEDLY.

11    THE FREE LIST FILE CANNOT BE OPENED.

12    INVALID FLAG OR COMBINATION OF FLAGS.

13    SCRATCH FILE MUST BE UNSTRUCTURED.

15    FILES TO BE MERGED MUST BE SORTED.

20    COMMUNICATIONS WITH SORTPROG HAVE BROKEN DOWN.
FastSort Manual—429834-003
B-8



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. Some condition in the system interfered with communications. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. Not enough storage was available for SORTPROG to sort the data. 

Recovery. Specify a larger memory size, if possible, or: 

 Reduce the input for a single sort run. 

 Use more than one sort run to sort the data, and then merge the sorted data in 
another run. 

 Reduce the number of subsorts for a parallel sort operation. 

Cause. SORTPROG could not open one of the input files. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. A temporary scratch file was not large enough for SORTPROG to perform the 
sort or merge operation. 

Recovery. Specify a larger scratch file in the call to SORTMERGESTART. 

Cause. FastSort did not recognize a key-field type specified in the call to 
SORTMERGESTART. 

Recovery. Change the key-field type in the key-block parameter. For more 
information on key-block description, see SORTMERGESTART Procedure on 
page 5-19.

21    COMMUNICATIONS WITH SORTPROG WERE GARBLED.

22    THE MEMORY SPACE FOR SORTING IS INSUFFICIENT.

23    THE FROM FILE COULD NOT BE OPENED.

24    A TEMPORARY TO FILE IS TOO SMALL.

25    ONE OF THE KEY FIELDS IS OF AN UNDEFINED TYPE.
FastSort Manual—429834-003
B-9



FastSort Error Messages Numeric List of Programmatic Messages
 

Cause. A key field does not lie entirely within the record. 

Recovery. Correct either the key-field offset or the record length. 

Cause. The specified output file exists but is too small or has a wrong type. 
SORTPROG cannot purge the file and create a new one because of the file's security, 
current usage, or some other condition in the system. 

Recovery. Use the NOPURGE option of the TO command or flags<14>.1 in 
SORTMERGESTART. If this strategy fails to resolve the problem, follow recovery 
recommendations in the Guardian Procedure Errors and Messages Manual for the 
operating system error code returned with this FastSort error code. If the problem is 
security or current usage, you can change the security for the file or prevent concurrent 
access to it. 

Cause. SORTPROG could not open a scratch file. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the file-system error number returned with this FastSort error 
code. 

Cause. SORTPROG could not write to the output file, probably because you or 
FastSort underestimated the number of input records. 

Recovery. If FastSort underestimated the number of input records, you can specify 
the number of records or name an existing file large enough to hold the output records. 
Follow recovery recommendations in the Guardian Procedure Errors and Messages 
Manual for the operating system error code returned with this FastSort error code.

Cause. SORTPROG could not write to a scratch file, either because you 
underestimated the number of input records or because of a disk process or data flow 
problem. 

Recovery. Ensure that sufficient scratch space exists for the sort. SORTPROG might 
require more overflow scratch space. For more informatio about scratch files, see 
Managing Sort Workspace on page 9-1. 

26    A KEY FIELD LOCATION EXCEEDS THE RECORD SIZE.

27    THE TO FILE ALREADY EXISTS AND CANNOT BE PURGED.

28    A SCRATCH FILE CANNOT BE OPENED.

29    A WRITE HAS FAILED TO THE TO FILE.

30    A WRITE HAS FAILED TO A SCRATCH FILE.
FastSort Manual—429834-003
B-10



FastSort Error Messages Numeric List of Programmatic Messages
Also check the recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the file-system error number returned with this FastSort error 
code. 

Cause. SORTPROG could not read an input file. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. SORTPROG could not read a scratch file. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code.A control operation on the output file or on a scratch file failed.

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code.

Cause. FastSort could not read an EDIT input file. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. FastSort could not create a scratch file for a sort or subsort process. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. FastSort could not position in a scratch file. 

Recovery. Use the SORT or SUBSORT DEFINE SEGMENT attribute to allocate more 
memory for sorting. If this strategy does not resolve the problem, follow recovery 

31    A READ HAS FAILED FROM THE FROM FILE.

32    A READ HAS FAILED FROM A SCRATCH FILE.

33    A CONTROL OPERATION HAS FAILED.

34    AN EDITREAD HAS FAILED FROM THE FROM FILE.

35    CREATION OF A SCRATCH FILE HAS FAILED.

36    A POSITION HAS FAILED IN A SCRATCH FILE.
FastSort Manual—429834-003
B-11



FastSort Error Messages Numeric List of Programmatic Messages
recommendations in the Guardian Procedure Errors and Messages Manual for the 
operating system error code returned with this FastSort error code. 

Cause. FastSort could not create the output file. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. FastSort could not open the output file. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. An input record was larger than the maximum input record length. 

Recovery. Change the size of the record or specify a larger maximum record length in 
the call to SORTMERGESTART. 

Cause. The value of the memory parameter was incorrect in the call to 
SORTMERGESTART. 

Recovery. Change the memory value in the process-start parameter to specify 
from 1 to 64 pages. For the description of process-start, see SORTMERGESTART 
Procedure on page 5-19. 

Cause. The value of the priority parameter was incorrect in the call to 
SORTMERGESTART. 

Recovery. Correct the priority value in the process-start parameter. For the 
description of process-start, see SORTMERGESTART Procedure on page 5-19.

37    CREATION OF THE TO FILE HAS FAILED.

38    THE TO FILE COULD NOT BE OPENED.

39    AN INPUT RECORD EXCEEDED THE RECORD SIZE.

42    THE MEM SIZE MUST BE IN THE RANGE 1 TO 64.

43    THE PRIORITY MUST BE IN THE RANGE 1 TO 199.
FastSort Manual—429834-003
B-12



FastSort Error Messages Numeric List of Programmatic Messages
 

Cause. The calling process corrupted the FastSort control block. 

Recovery. Correct your program so that it does not overwrite the control block. 

Cause. The scratch file block size was incorrect in the call to SORTMERGESTART. 

Recovery. Correct the value in the scratch-block parameter. For description of 
scratch-block, see SORTMERGESTART Procedure on page 5-19. 

Cause. The offset of a real numeric key-field inside the record is not on a word 
boundary. 

Recovery. Correct either the offset or the record layout.

Cause. The calling process called SORTMERGESTATISTICS at the wrong time. 

Recovery. Correct your program logic. For more information on the normal order of 
FastSort procedures, see the FastSort system library procedures table in Section 5, 
Using FastSort System Procedures. If this strategy fails to resolve the problem, check 
error log files for originating FastSort error. 

Cause. A key field of a signed numeric type is too big. 

Recovery. Change the key-field type in the syntax, or change the key-field format. 

Cause. An exclusion mode specified in the call to SORTMERGESTART was invalid. 

Recovery. Change the value of the in-file-exclusion-mode or 
out-file-exclusion-mode parameter. For the descriptions of these parameters, 
see SORTMERGESTART Procedure on page 5-19. 

Cause. The specified output file is an EDIT file. 

44    INVALID CONTROL BLOCK, PROCEDURE CALL REJECTED.

45    INVALID SCRATCH FILE BLOCK SIZE.

46    REAL NUMBER KEYS MUST BE WORD ALIGNED.

47    SORTMERGESTATISTICS HAS BEEN CALLED UNEXPECTEDLY.

48    A SIGNED ASCII NUMERIC KEY IS LARGER THAN 32 BYTES.

49    INVALID EXCLUSION MODE SPECIFIED.

50    EDIT FILES MAY NOT BE TO FILES.
FastSort Manual—429834-003
B-13



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Change the format of the output file or specify another file that is not an 
EDIT file. 

Cause. The output file type specified in the call to SORTMERGESTART was invalid. 

Recovery. Change the value of the out-file-type parameter. For the description 
of out-file-type, see SORTMERGESTART Procedure on page 5-19. 

Cause. The call to SORTMERGESTART specified multiple sort files with blank names. 

Recovery. Specify only one sort file or name the files. You might also need to correct 
the program logic. 

Cause. The name of the output file is the same as the name of a merge file. 

Recovery. Change the output file name or the merge file name..

Cause. The scratch volume did not exist, a scratch file name was specified incorrectly, 
or the node was not accessible. 

Recovery. Specify an existing volume, correct the file name, or specify an accessible 
node. 

Cause. The number of input files exceeded the limit. 

Recovery. Reduce the number of input files. 

Cause. The call to SORTMERGESTART specified a negative number of files to be 
sorted or merged. 

Recovery. Change the value of the num-sort-files or num-merge-files 
parameter to a positive number. 

Cause. The call to SORTMERGESTART specified translation, but the alternate 
collating sequence table was missing. 

51    INVALID FILE TYPE SPECIFIED FOR TO FILE.

52    ONLY ONE FILE MAY BE SORTED VIA SORTMERGESEND.

53    A TO FILE MAY NOT BE A FILE TO BE MERGED.

54    INVALID SCRATCH FILE NAME.

55    TOO MANY FROM FILES SPECIFIED.

56    INVALID NUMBER OF FILES TO BE SORTED OR MERGED.

57    COLLATING SEQUENCE TABLE MUST BE PRESENT.
FastSort Manual—429834-003
B-14



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Set flags.<10:10> to 0 or provide an alternate collating sequence table. 
For the description of the flags parameter, see SORTMERGESTART Procedure on 
page 5-19. 

Cause. The calling process called SORTMERGESTART at the wrong time. 

Recovery. Correct your program logic. For more information on the normal order of 
FastSort procedures, see the FastSort system library procedures table in Section 5, 
Using FastSort System Procedures. 

Cause. A record from SORTMERGESEND was too small. Or, an input file might 
contain variable-length records. 

Recovery. Correct your program logic to enlarge the record size, or change the input 
file to contain only fixed-length records.

Cause.  Not enough stack was available to call SORTMERGESTART. 

Recovery. To allocate more data stack space, use one of the following methods:

 For a TAL application, use the DATAPAGES compiler directive during compilation. 
Specify DATAPAGES 64 to allocate the maximum amount. For all applications, use 
the Binder SET EXTENDSTACK command after compilation. 

 When you run the program, specify 64 for the MEM option of the RUN command. If 
you run the program from another application, specify 64 for the 
PROCESS_CREATE_ or NEWPROCESS[NOWAIT] memory-pages parameter.

 Move user data from the user data segment to an extended data segment to free 
up more data stack space for the call to SORTMERGESTART. 

Cause. The call to SORTMERGESTART, SORTMERGESEND, or 
SORTMERGERECEIVE included one of the spare parameters. 

Recovery. Remove the spare parameter. 

Cause. The length of a key field specified in the call to SORTMERGESTART was not 
positive. 

58    SORTMERGESTART CALLED UNEXPECTEDLY.

59    AN INPUT RECORD IS TOO SMALL.

60    NOT ENOUGH STACK FOR SORTMERGESTART.

61    SPARE PARAMETERS MAY NOT BE PRESENT.

62    KEY LENGTH MUST BE GREATER THAN ZERO.
FastSort Manual—429834-003
B-15



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Specify a positive length for the key field in the key-block parameter. For 
the description of key-block, see SORTMERGESTART Procedure on page 5-19. 

Cause. The call to SORTMERGESTART or SORTBUILDPARM specified a flag value 
that you cannot set. 

Recovery. Set all unused flag bits to 0. For SORTMERGESTART, Table 5-6 shows 
flags bits you can use. The only flags2 bits you can use are <.4> and <.15>. For 
SORTBUILDPARM, the only build-flags bit you can use is <.15>. 

Cause. FastSort could not allocate an extended memory segment for a sort or subsort 
process. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code.

Cause.  The sort key field specified for a key-sequenced file is not the same as the 
file's primary key field. Another possible cause is that the data type of the sort key field 
is not UNSIGNED. 

Recovery. Make sure the sort key field and the primary key field are the same. When 
the type of the output file is key-sequenced, make sure the type of the sort key field is 
UNSIGNED. 

Cause. The data slack value in the call to SORTMERGESTART was outside the limits 
for the value. 

Recovery. Change the dslack parameter. For the description of dslack, see 
SORTMERGESTART Procedure on page 5-19. 

Cause. The data slack value in the call to SORTMERGESTART was outside the limits 
for the value. 

Recovery. Change the dslack parameter. For the description of dslack, see 
SORTMERGESTART Procedure on page 5-19. 

63    RESERVED FLAGS MAY NOT BE SET.

64    EXTENDED SEGMENT CAN NOT BE ALLOCATED.

65    INVALID KEY FOR KEY-SEQUENCED FILE.

66    INVALID DATA SLACK SPECIFIED.

67    INVALID INDEX SLACK SPECIFIED.

68    INVALID NEW FLAG SPECIFIED.
FastSort Manual—429834-003
B-16



FastSort Error Messages Numeric List of Programmatic Messages
Cause. The flags2 value in the call to SORTMERGESTART was not valid. 

Recovery. Correct the value of the flags2 parameter. For the description of flags2, 
seeunder the SORTMERGESTART Procedure on page 5-19. 

Cause. The number of subsort processes specified in the call to SORTMERGESTART 
was outside the limits. 

Recovery. Change the value of the subsort-count parameter to specify from 2 to 
16 subsort processes. Because more than 8 subsort processes can cause run-time 
errors, HP recommends that you specify a maximum of 8 subsorts. 

Cause. The flags parameter in the call to SORTMERGESTART specified both 
MINSPACE and MINTIME. 

Recovery. Set either the MINSPACE flag or the MINTIME flag to 0 before you specify 
the flags parameter. For descriptions of these flags, see Table 5-4 on page 5-32. 

Cause. The extended segment size specified in the call to SORTMERGESTART was 
out of limits. 

Recovery. Correct the segment value in the process-start parameter. For the 
description of process-start, see SORTMERGESTART Procedure on page 5-19. 

Cause. The call to SORTMERGESTART specified that the NEWPROCESS structure 
be expanded but did not specify the structure; or the calling process requested parallel 
sorting but did not specify that the NEWPROCESS structure be expanded. 

Recovery. Correct the values of the process-start parameter. For the description 
of process-start, see SORTMERGESTART Procedure on page 5-19. 

Cause. A block buffer address in the call to SORTBUILDPARM was outside stack 
limits; or the call to SORTMERGESTART specified nowait I/O, but the call to 
SORTBUILDPARM specified only one of the two buffers. 

Recovery. Correct the value of the buffer or buffer2 parameter or both values; or 
omit the nowait parameter, flags2, from the call to SORTMERGESTART. For more 

69    INVALID NUMBER OF SUBSORT PROCESSES.

71    INVALID SORT EXECUTION MODE.

72    INVALID EXTENDED SEGMENT SIZE.

73    INVALID FORMAT OF THE PROCESS STRUCTURE.

74    INVALID BLOCK ADDRESS SPECIFIED.
FastSort Manual—429834-003
B-17



FastSort Error Messages Numeric List of Programmatic Messages
information about buffers and nowait I/O, see the description of the SORTBUILDPARM 
Procedure on page 5-2. 

Cause. The block buffer length specified in the call to SORTBUILDPARM was outside 
the limits. 

Recovery. Correct the value of the buffer-length parameter. For the description of 
buffer-length, see SORTBUILDPARM Procedure on page 5-2. 

Cause. The distributor-collector process could not start a subsort process in the 
processor (CPU) you specified or in any processor in the pool. 

Recovery. If you specified a processor, try specifying a different one or letting 
FastSort select the processor. Follow recovery recommendations in the Guardian 
Procedure Errors and Messages Manual for the operating system error code returned 
with this FastSort error code. 

Cause. The call to SORTMERGESTART did not specify a valid name for the scratch 
file of a subsort process. 

Recovery. Specify a valid name in the scratch-file-name parameter. For the 
description of scratch-file-name, see SORTMERGESTART Procedure on 
page 5-19. 

Cause. The distributor-collector process could not communicate with a subsort 
process. 

Recovery. Follow recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the operating system error code returned with this FastSort error 
code. 

Cause. The call to SORTMERGESEND or to SORTMERGERECEIVE specified both 
a buffer and an extended buffer. 

Recovery. Omit either the buffer parameter or the buffer-ext parameter. For the 
descriptions of these parameters, see SORTMERGESEND Procedure on page 5-15 or 
SORTMERGERECEIVE Procedure on page 5-13. 

75    INVALID BLOCK LENGTH SPECIFIED.

76    START OF SUBSORT PROCESS HAS FAILED.

77    INVALID NAME OF THE SUBSORT SCRATCH FILE.

78    COMMUNICATIONS WITH SUBSORT PROCESS HAVE FAILED.

79    PARAMETERS ARE MUTUALLY EXCLUSIVE.

80    THE PRODUCT IS NOT INSTALLED.
FastSort Manual—429834-003
B-18



FastSort Error Messages Numeric List of Programmatic Messages
Cause. The license PROMS were not purchased for your system. 

Recovery. Because of changes in the way unlicensed software is detected in C00 and 
later RVUs, you should not see this message. Contact your service provider. 

Cause. The call to SORTBUILDPARM specified a buffer for record blocking and the 
call to SORTMERGESTART specified input streams for merging through 
SORTMERGESEND. 

Recovery. Omit the buffer and buffer2 parameters from the call to 
SORTBUILDPARM. 

Cause. Only one subsort process was specified for a parallel sort run. 

Recovery. Specify at least two subsort processes. 

Cause. Your system has components of both SORT and FastSort installed. 

Recovery. Contact your system manager; or install FastSort again. Make sure the sort 
library procedures correspond to the product. 

Cause. Your system has incompatible versions of FastSort and the operating system 
installed. 

Recovery. Contact your system manager or service provider to have the correct 
version of FastSort or the operating system installed on your system. 

Cause. The wrong program was used as a sort process. 

Recovery. Correct the sort-program field of the process-start structure for the 
SORTMERGESTART procedure, or correct the SORT DEFINE used by the program. 

Cause. The output file is an SQL object. 

Recovery. The TO file cannot be an SQL object. Specify a file other then an SQL 
object for the TO file. 

81    BLOCKED INTERFACE NOT ALLOWED WITH MERGE.

82    MORE THAN ONE SUBSORT SHOULD BE SPECIFIED.

83    SORTPROG AND SORT LIBRARY DO NOT AGREE.

84    SORTPROG VERSION AND OS VERSION DO NOT AGREE.

85    UNEXPECTED RESPONSE FROM SORTPROG.

86    INVALID OBJECT SPECIFIED AS TO FILE.

87    INVALID OBJECT SPECIFIED AS FROM FILE.
FastSort Manual—429834-003
B-19



FastSort Error Messages Numeric List of Programmatic Messages
Cause. A FROM file is an SQL object. 

Recovery. The FROM file cannot be an SQL object. Specify a file other then an SQL 
object for the FROM file. 

Cause. A swap file is an SQL object. 

Recovery. Specify an Enscribe file as the swap file or use the default. 

Cause. The record size specified for an input file is greater than 4080. 

Recovery. This PVU of FastSort does not support record sizes greater than 4080. 
There is no recovery. 

Cause. A programming error occurred on a call to an internal procedure. 

Recovery. Report the internal error number returned with this FastSort error code to 
your service provider. The high-order word of the error-code parameter returned by 
SORTERRORSUM and SORTERRORDETAIL contains the internal error number. 

Cause. A programming error occurred on a call to an internal procedure. 

Recovery. Report the internal error number returned with this FastSort error code to 
your service provider. The high-order word of the error-code parameter returned by 
SORTERRORSUM and SORTERRORDETAIL contains the internal error number. 

Cause. A programming error occurred on a call to an internal procedure. 

Recovery. Report the internal error number returned with this FastSort error code to 
your service provider. The high-order word of the error-code parameter returned by 
SORTERRORSUM and SORTERRORDETAIL contains the internal error number. 

Cause. A programming error occurred on a call to an internal procedure. 

88    INVALID OBJECT SPECIFIED AS SWAP FILE.

89    INVALID FROM FILE RECORD SIZE.

90    UNEXPECTED RETURN FROM LOADOPEN PROCEDURE.

91    UNEXPECTED RETURN FROM LOADWRITE PROCEDURE.

92    UNEXPECTED RETURN FROM LOADCLOSE PROCEDURE.

93    UNEXPECTED RETURN FROM LOADALTFILE PROCEDURE.
FastSort Manual—429834-003
B-20



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Report the internal error number returned with this FastSort error code to 
your service provider. The high-order word of the error-code parameter returned by 
SORTERRORSUM and SORTERRORDETAIL contains the internal error number. 

Cause. A DEFINE with the reserved name “_SORT_DEFAULTS” was created, but is 
not of class SORT. 

Recovery. Delete the DEFINE and optionally recreate it as a SORT DEFINE. 

Cause. SORTPROG has not been SQL licensed. 

Recovery. FUP LICENSE SORTPROG. You must have the super ID (user ID 
255,255) to license a program. For more information on the FUP LICENSE command, 
see File Utility Program (FUP) Reference Manual. 

Cause. You used a logical DEFINE name for an input file, output file, or the scratch 
file. 

Recovery. Use the actual file names for an input, output, or scratch file. Do not use a 
DEFINE name. 

Cause. The DEFINE name you specified was not valid. 

Recovery. Specify a valid DEFINE name. 

Cause. The DEFINE CLASS must be SORT. 

Recovery. Specify CLASS SORT in your SORT DEFINEs. 

Cause. Unacceptable DEFINE name encountered, attribute missing, or error from 
procedure call. 

Recovery. Check that a valid DEFINE name was specified. 

Cause. DEFMODE must be on to activate DEFINEs. 

99    DEFAULT DEFINE IS NOT OF CLASS SORT.

100    SORTPROG MUST BE SQL LICENSED.

101    LOGICAL NAMES NOT ALLOWED.

102  INVALID OR NON-EXISTENT USER-SPECIFIED DEFINE NAME.

103    USER-SPECIFIED DEFINE IS NOT OF CLASS SORT.

104    ERROR OCCURRED WHILE ACCESSING A SORT DEFINE.

105    DEFINE HAS BEEN SPECIFIED BUT DEFMODE IS OFF.
FastSort Manual—429834-003
B-21



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Set DEFMODE to ON or determine why DEFMODE is not ON. 

Cause. The DEFINE class must be SUBSORT. 

Recovery. Specify CLASS SUBSORT in your SUBSORT DEFINEs. 

Cause. Unacceptable DEFINE name encountered, attribute missing, or error from 
procedure call. 

Recovery. Check that a valid DEFINE name was specified.

Cause.  A programming error occurred on a call to an internal procedure.

Effect.  The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause.  A programming error occurred on a call to an internal procedure.

Effect.  The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause.  A programming error occurred on a call to an internal procedure.

Effect.  The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact 
your service provider.

Cause.  A programming error occurred on a call to an internal procedure.

Effect.  The SQL DDL or DML operation in progress terminates abnormally.

106    SUBSORT DEFINE IS NOT OF CLASS SUBSORT.

107    ERROR OCCURRED WHILE ACCESSING A SUBSORT DEFINE.

108   INVALID DM BLOCK FORMAT FOR SORTMERGESQL.

109    UNEXPECTED RETURN FROM SQL DM^START PROCEDURE.

110    UNEXPECTED RETURN FROM SQL DM^GET PROCEDURE.

111    SORTMERGESQL CALLED UNEXPECTEDLY.
FastSort Manual—429834-003
B-22



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause.  A programming error occurred on a call to an internal procedure.

Effect.  The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause.  A programming error occurred on a call to an internal procedure.

Effect.  The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause.  A programming error occurred on a call to an internal procedure.

Effect.  The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause.  A programming error occurred on a call to an internal procedure.

Effect.  The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

112    ERROR FROM SQL FILESYSTEM VALIDATION ROUTINES.

113    INPUT FILE FOR SORTMERGESQL NOT TYPE SQL.

114    NO FILES INPUT TO SORTMERGESQL.

115    ERROR RETRIEVING SQL FILE LABEL.

116    ONLY ONE FILE CAN BE SORTED VIA SORTMERGESQL.

117    NULL KEY SPECIFIED FOR NON-SQL FILE.
FastSort Manual—429834-003
B-23



FastSort Error Messages Numeric List of Programmatic Messages
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. A remote SORTPROG process does not support features required for the 
requested sort.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Specify a local SORTPROG process. If this strategy does not resolve the 
problem, generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. A file-system error occurred on a system procedure call to determine the SQL 
version of a remote SORTPROG process.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Correct the file-system error condition, or specify a local SORTPROG 
process. To correct the file-system error condition, follow the recovery 

118    NULLVAR KEY SPECIFIED FOR NON-SQL FILE.

119    INTERNAL SQL NULL ERROR.

120    SQL BULKIO NOT VALID FOR SPECIFIED INPUT FILE.

121    INCOMPATIBLE SQL VERSION.

122    ERROR DETERMINING SQL VERSION.
FastSort Manual—429834-003
B-24



FastSort Error Messages Numeric List of Programmatic Messages
recommendations in the Guardian Procedure Errors and Messages Manual for the file-
system error code returned with this FastSort error code. If this strategy fails to resolve 
the problem, generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. A date-time field was specified as needing date-time conversion, but no date-
time field was found.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. If you have written your own application, change the sort key values to 
valid field types. If this error is returned by SQLCI, contact your service provider.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Report the internal error number returned with this FastSort error code to 
your service provider. The high-word order of the error-code parameter returned by 
SORTERRORSUM and SORTERRORDETAIL contains the internal error number.

Cause. The number of openers exceeded the specified limit. This error can be caused 
when too many RECGEN processes attempt to open the same SORTPROG process.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Attempt to reduce the openers or contact your service provider.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation terminates abnormally.

123    DATETIME CONVERSION FIELD NOT FOUND.

124    ERROR FROM DATETIME CONVERSION FIELDS.

125    NUMBER OF SORTPROG OPENERS EXCEEDED SPECIFIED LIMIT.

126    PROCESS ALREADY OPEN AND SORTPROC_OPEN CALLED.

127    SEND MESSAGE ID MISMATCH.
FastSort Manual—429834-003
B-25



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

Effect. None.

Recovery. No recovery is necessary.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Check the parameters of the sort library call that resulted in this error.

Cause. A programming error occurred on a call to an internal procedure.

Effect. The SQL DDL or DML operation terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. The SORTPROG process failed to increase the maximum number of extents 
for the scratch file because one of the following errors occurred: 

128    SORTPROC_SEND_ CALLED UNEXPECTEDLY.

129    SORTPROC_CLOSE CALLED UNEXPECTEDLY.

130    INTERNAL SORT ERROR.

131    MISSING OR CONFLICTING PARAMETERS IN SORTLIB CALL.

132    SORTMERGEDUPREC CALLED UNEXPECTEDLY.

133    CANNOT INCREASE THE SCRATCH FILE SIZE.
FastSort Manual—429834-003
B-26



FastSort Error Messages Numeric List of Programmatic Messages
 An increase of the maximum number of extents for the scratch file would cause the 
file to exceed its maximum limit. FastSort also returns file system error 21 
(ILLEGAL count SPECIFIED). 

 A file-system error (other than number 21) occurred when SORTPROG tried to 
increase the number of extents for the scratch file. 

Recovery. For the first error, create a partitioned scratch file large enough to hold all 
of the records. For the second error, follow the recovery recommendations in the 
Guardian Procedure Errors and Messages Manual for the file-system error number 
returned with the FastSort error code. 

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check that the versions of RECGEN and SQLUTIL are compatible. If the 
base table was in use when FastSort returned this error, ensure that the base table is 
not in use and try to re-create the index. If this strategy fails to solve the problem, 
generate and save a copy of your SAVEABEND file. Then contact your service 
provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. If the base table was in use when FastSort returned this error, ensure that 
the base table is not in use and try again to create the index. If this strategy fails to 
solve the problem, generate and save a copy of your SAVEABEND file. Then contact 
your service provider.

Cause. The RECGEN process encountered an error while opening the SORTPROG 
process. The file-system error number is included in this message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Attempt to correct the file-system error condition and try again to create the 
index. If this strategy fails to solve the problem, generate and save a copy of your 
SAVEABEND file. Then contact your service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

134    INVALID RECGEN STARTUP MESSAGE.

135    INVALID RECGEN MESSAGE VERSION.

136    RECGEN SORTPROC_OPEN_ ERROR.

137    RECGEN INTERNAL ERROR: KEYS OUT OF ORDER.
FastSort Manual—429834-003
B-27



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Attempt to correct the condition described by the file-system error number. 
If the base table was in use when FastSort returned this error, ensure that the base 
table is not in use and attempt the load operation again. If this strategy fails to solve 

138    INVALID TO-FILE SPECIFIED TO RECGEN.

139    INVALID FROM-FILE SPECIFIED TO RECGEN.

140    NON-EXISTENT RECGEN FROM-FILE SPECIFIED.

141    NON-EXISTENT RECGEN TO-FILE SPECIFIED.

142    RECGEN UNABLE TO OPEN BASE TABLE.
FastSort Manual—429834-003
B-28



FastSort Error Messages Numeric List of Programmatic Messages
the problem, generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. The disk process or file system found an error in a base table record.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Attempt to correct the condition described by the file-system error number. 
Then ensure that blocks and individual records in the base table contain no errors. If a 
record contains an error, correct the error and attempt the load operation again. If this 
strategy fails to solve the problem, generate and save a copy of your SAVEABEND file. 
Then contact your service provider.

Cause. The RECGEN process could not retrieve a file label from the disk process.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Attempt to correct the condition described by the file-system error number. 
Check for disk hardware errors. If this strategy fails to solve the problem, generate and 
save a copy of your SAVEABEND file. Then contact your service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. The SORTPROG process terminated during a table load operation.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

143    RECGEN ERROR READING BASE TABLE.

144    RECGEN FILE LABEL RETRIEVAL ERROR.

145    RECGEN ERROR WHILE PACKING RECORD.

146    RECGEN ERROR WHILE RETRIEVING PRIMARY KEY.

147    RECGEN SORTPROC_SEND_ ERROR.
FastSort Manual—429834-003
B-29



FastSort Error Messages Numeric List of Programmatic Messages
Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Internal error

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Generate and save a copy of your SAVEABEND file. Then contact your 
service provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check that the versions of RECGEN and SQLUTIL are compatible. If the 
base table was in use when FastSort returned this error, ensure that the base table is 
not in use and try to re-create the index. If this strategy fails to solve the problem, 
generate and save a copy of your SAVEABEND file. Then contact your service 
provider.

Cause. Stated in the error message.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check that the versions of RECGEN and SQLUTIL are compatible. If the 
base table was in use when FastSort returned this error, ensure that the base table is 
not in use and try to re-create the index. If this strategy fails to solve the problem, 
generate and save a copy of your SAVEABEND file. Then contact your service 
provider.

Cause. A UPS parameter to SORTBUILDPARM is either invalid or missing.

Effect. The SQL DLL or DML operation in progress terminates abnormally.

Recovery. Check the UPS parameters to SORTBUILDPARM.

Cause. UPS cannot be used if subsorts are used, if the number of records to be 
sorted is greater than 32,768, or if the multiple openers feature is being used.

148    RECGEN SORTPROC_CLOSE ERROR.

149 RECGEN CALCULATES A BAD MULTIPLE MESSAGE ADDRESS.

150 RECGEN GETS A BAD SEQUENCE NUMBER IN THE MULTIPLE START 
UP MESSAGE.

152    SORTBUILDPARAM_INT_ UPS PARAMETER IS INVALID OR 
MISSING.

153   UPS NOT SUPPORTED IN THIS ENVIRONMENT.
FastSort Manual—429834-003
B-30



FastSort Error Messages Numeric List of Programmatic Messages
Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check to see if any of the above conditions is true. If so, correct the 
condition.

Cause. The eye-catcher field in the UPS workspace is corrupted.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Check that the UPS workspace is valid and not affected by the user 
program.

Cause. The collation sequence table length you specified was not valid.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Specify a valid length for the collation sequence table.

Cause. A PROCESS_CREATE_ error occurred on the program file parameter.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or 
SORTERRORSUM procedure to determine the error code. For the interactive 
interface, the error parameter in the accompanying message identifies the error 
code.

Follow the recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the error code.

Cause. A PROCESS_CREATE_ error occurred on the library file parameter.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or 
SORTERRORSUM procedure to determine the error code. For the interactive 
interface, the error parameter in the accompanying message identifies the error 
code.

Follow the recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the error code.

Cause. A PROCESS_CREATE_ error occurred on the swap file parameter.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or 
SORTERRORSUM procedure to determine the error code. For the interactive 

154    UPS WORKSPACE BAD.

156    INVALID COLLATION ARRAY LENGTH.

160    PROCESS CREATE PROGRAM FILE ERROR.

161    PROCESS CREATE LIBRARY FILE ERROR.

162    PROCESS CREATE SWAP ERROR.
FastSort Manual—429834-003
B-31



FastSort Error Messages Numeric List of Programmatic Messages
interface, the error parameter in the accompanying message identifies the error 
code.

Follow the recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the error code.

Cause. A PROCESS_CREATE_ error occurred on the extended swap file parameter.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or 
SORTERRORSUM procedure to determine the error code. For the interactive 
interface, the error parameter in the accompanying message identifies the error 
code.

Follow the recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the error code.

Cause. A PROCESS_CREATE_ error occurred for the process file segment (PFS).

Recovery. For the programmatic interface, call the SORTERRORDETAIL or 
SORTERRORSUM procedure to determine the error code. For the interactive 
interface, the error parameter in the accompanying message identifies the error 
code.

Follow the recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the error code.

Cause. A PROCESS_CREATE_ error occurred because the process could not 
communicate with the system monitor process.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or 
SORTERRORSUM procedure to determine the error code. For the interactive 
interface, the error parameter in the accompanying message identifies the error 
code.

Follow the recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the error code.

Cause. A PROCESS_CREATE_ error occurred because the program file has an 
invalid format.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or 
SORTERRORSUM procedure to determine the error code. For the interactive 

163    PROCESS CREATE EXTENDED SWAP FILE ERROR.

164    PROCESS CREATE DATA SEGMENT ERROR.

165    PROCESS CREATE SYSTEM MONITOR ERROR.

166    PROCESS CREATE PROGRAM FILE FORMAT ERROR.
FastSort Manual—429834-003
B-32



FastSort Error Messages Numeric List of Programmatic Messages
interface, the error parameter in the accompanying message identifies the error 
code.

Follow the recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the error code. 

Cause. A PROCESS_CREATE_ error occurred because the program file has an 
invalid format.

Recovery. For the programmatic interface, call the SORTERRORDETAIL or 
SORTERRORSUM procedure to determine the error code. For the interactive 
interface, the error parameter in the accompanying message identifies the error 
code.

Follow the recovery recommendations in the Guardian Procedure Errors and 
Messages Manual for the error code.

Cause. The length parameter specified in the call to SORTMERGESTATISTICS was 
invalid.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Correct the value of the parameter, then reissue the request.

Cause. The value specified in the flags parameter to SORTMERGESTATISTICS 
was invalid.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Specify a value of 0 or 1 for the parameter, then reissue the request.

Cause. You specified a SEGMENT value greater than 32,767 and have not requested 
the VLM option.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Either specify the VLM option or specify a SEGMENT value less than or 
equal to 32,767.

Cause. The SORTPROG process encountered an error while trying to deallocate its 
extended segment.

167    PROCESS CREATE LIBRARY FILE FORMAT ERROR.

168    INVALID STATISTICS LENGTH SPECIFIED.

169    INVALID STATISTICS FLAG VALUE SPECIFIED.

170    SEGMENTS ABOVE 32767 NOT ALLOWED WITH VLM OFF.

171    EXTENDED SEGMENT CANNOT BE DEALLOCATED.
FastSort Manual—429834-003
B-33



FastSort Error Messages Numeric List of Programmatic Messages
Effect. None; the problem occurs at process termination time.

Recovery. No recovery is necessary. However, you should report this error to your 
service provider.

Cause. Your system’s version of SORTPROG is older than the FastSort system library 
procedures.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Contact your system manager or service provider to have the correct 
version of FastSort or the operating system installed on your system.

Cause. A programming error occurred on a call to an internal procedure. 

Recovery. Report the internal error number returned with this FastSort error code to 
your service provider. The high-order word of the error-code parameter returned by 
SORTERRORSUM and SORTERRORDETAIL contains the internal error number.

Cause. Your system’s version of SORTPROG is older than the FastSort system library 
procedures.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Contact your system manager or service provider to have the correct 
version of FastSort or the operating system installed on your system.

Cause. Your system’s version of SORTPROG is older than the FastSort system library 
procedures.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

Recovery. Contact your system manager or service provider to have the correct 
version of FastSort or the operating system installed on your system.

Cause. Your system’s version of SORTPROG is older than the FastSort system library 
procedures.

Effect. The SQL DDL or DML operation in progress terminates abnormally.

172 SORTPROG VERSION TOO OLD; CANNOT SUPPORT REQUIRED NEW 
FEATURE.

173 ERROR IN MOVEX.

174 MONITOR VERSION AND MESSAGE LENGTH CONFLICT.

175 INVALID MONITOR MESSAGE LENGTH.

176 SORTPROG VERSION TOO OLD; CANNOT SUPPORT OPTIONAL OPEN-
ON-DEMAND FEATURE.
FastSort Manual—429834-003
B-34



FastSort Error Messages Alphabetic List of Interactive Messages
Recovery. Contact your system manager or service provider to have the correct 
version of FastSort or the operating system installed on your system.

Alphabetic List of Interactive Messages
This subsection describes the interactive FastSort messages in alphabetic order. This 
description includes the error message text, the probable cause of the error, and the 
recommended recovery.

To determine appropriate recovery action for some errors, refer to the Guardian 
Procedure Errors and Messages Manual, which has information about the file-system 
and NEWPROCESS error codes that accompany FastSort error codes. 

Cause. The collating sequence you specified was invalid. For example, you specified 
Z THRU A instead of A THRU Z. 

Recovery. Correct the collating sequence so that it follows the rules under the 
COLLATE Command on page 3-6.

Cause. You specified an incorrect collating sequence. The ALSO option indicates that 
two values are equal. For example, “A” ALSO “a” is a valid statement; however, 
“A” THRU “B” ALSO “a” is invalid because there is nothing to compare for B. 

Recovery. Correct the command so that it follows the rules under the COLLATE 
Command on page 3-6. 

Cause. Information only. 

Cause. FastSort was unable to open or write the collate sequence to the output file 
specified. 

Recovery. Use the accompanying error messages to determine what is wrong and 
correct the problem. 

Cause. The SORTPROG process was unable to increase the maximum number of 
extents for a scratch file because one of the following errors occurred: 

 There are no more overflow scratch volumes available to SORTPROG.

A THRU IS INCORRECT IN THE COLLATING SEQUENCE SPECIFICATION

AN ALSO MODIFIES A SPECIFIER WITH A DIFFERENT LENGTH.

ASCENDING n FOR n.

CANNOT DO THE COLLATEOUT STATEMENT.

CANNOT INCREASE THE SCRATCH FILE SIZE
FastSort Manual—429834-003
B-35



FastSort Error Messages Alphabetic List of Interactive Messages
 This sort operation requires more than 32 scratch files, and an increase of the 
maximum number of extents for the last scratch file would cause the file to exceed 
2 GB or 978 extents. FastSort also returns file system error 21 (ILLEGAL count 
SPECIFIED).

 A file-system error other than 21 occurred when SORTPROG tried to increase the 
number of extents for a scratch file. 

Recovery. For the first error, use the SCRATCHON or NOSCRATCHON SORT 
DEFINE attribute to specify additional scratch volumes. For the second error, follow the 
recovery recommendations in the Guardian Procedure Errors and Messages Manual 
for the file-system error code returned with the FastSort error code. 

Cause. Information only. 

Cause. Information only.

Cause. The DEFINE =_SORT_DEFAULTS is not of class SORT. 

Recovery. Specify CLASS SORT in your SORT DEFINEs. 

Cause. DEFMODE must be on to activate DEFINEs. 

Recovery. Set DEFMODE to ON or determine why DEFMODE is not ON. 

Cause. Information only. 

Cause. Unacceptable DEFINE name encountered, attribute missing, or error from 
procedure call. 

Recovery. Check that a valid DEFINE name was specified. 

Cause. Unacceptable DEFINE name encountered, attribute missing, or error from 
procedure call. 

CPUS cpu-list.

CPUS ALL

DEFAULT DEFINE IS NOT OF CLASS SORT.

DEFINE HAS BEEN SPECIFIED BUT DEFMODE IS OFF.

DESCENDING n FOR n.

ERROR OCCURRED WHILE ACCESSING A SORT DEFINE.

ERROR OCCURRED WHILE ACCESSING A SUBSORT DEFINE.
FastSort Manual—429834-003
B-36



FastSort Error Messages Alphabetic List of Interactive Messages
Recovery. Check that a valid DEFINE name was specified. 

Cause. Information only. 

Cause. You omitted the file name. 

Recovery. Specify the file name. 

Cause. Information only.

Cause. You mistyped the command or included text in the command that is not 
needed. 

Recovery. Check the last command for errors and retype the command correctly. 

Cause. You did not assign all characters a specific sequence. For example, you have 
specified “a - b - c - e - f” in order, but did not specify where “d” fits in. 

Recovery. Correct the file so that all characters are assigned a sequence. 

Cause. You entered a number too big for FastSort to handle (for example, RUN, 
BLOCK 900000). This could also be an internal sort error message. 

Recovery. Enter a valid value less than 32,767. If this is an internal sort error 
message, contact your service provider. 

Cause. You used an incorrect character. 

Recovery. Retype the command without the incorrect character. 

Cause. The file name you specified was invalid. 

FEATURE NOT SUPPORTED YET text.

FILE NAME NOT SPECIFIED.

FROM filename

IGNORING UNUSABLE STRING OF LETTERS text.

INPUT FILE DOESN'T CONTAIN AN ENTIRE COLLATING SEQUENCE 
TABLE.

INTEGER CONVERSION ERROR.

INVALID CHARACTER.

INVALID FILE NAME.
FastSort Manual—429834-003
B-37



FastSort Error Messages Alphabetic List of Interactive Messages
Recovery. Check the file name to make sure it was correctly typed. See the 
Guardian Programmer's Guide for rules about specifying files. 

Cause. The DEFINE name you specified was not valid. 

Recovery. Specify a valid DEFINE name. 

Cause. You used incorrect syntax. 

Recovery. Check the syntax and correct the error.

Cause. You specified only one subsort for a parallel sort. 

Recovery. Specify at least two subsorts. 

Cause. Information only. 

Cause. You did not issue a valid ASCENDING or DESCENDING command for the 
sort or merge run. 

Recovery. Specify the sort key order in at least one ASCENDING or DESCENDING 
command. 

Cause. Information only. 

Cause. Information only. 

Cause. The command file did not include any FROM commands or input records. 

Recovery. Put a FROM command or input records in the command file. 

INVALID OR NON-EXISTENT USER-SPECIFIED DEFINE NAME.

INVALID SYNTAX text.

MORE THAN ONE SUBSORT SHOULD BE SPECIFIED.

NO ALLOWED CPUS.

NO ASCENDING OR DESCENDING STATEMENTS HAVE BEEN ISSUED.

NO COLLATE STATEMENT HAS BEEN ISSUED.

NO FORBIDDEN CPUS.

NO FROM STATEMENTS HAVE BEEN ISSUED.

NO SUBSORT STATEMENTS HAVE BEEN ISSUED.
FastSort Manual—429834-003
B-38



FastSort Error Messages Alphabetic List of Interactive Messages
Cause. Information only. 

Cause. Information only. 

Cause. Information only.

Cause. You issued too many FROM commands. 

Recovery. Issue the command FROM in-file command only once. Note that if you 
want to sort records from both the terminal and from an input file, you can issue the 
FROM command once and the FROM in-file command once. 

Cause. You specified an invalid record length. 

Recovery. Correct the record length to a valid size. 

Cause. A scratch file named in the call to SORTMERGESTART is a structured file. 

Recovery. Specify an unstructured scratch file. 

Cause. Information only. 

Cause. Information only. 

Cause. The DEFINE class must be SUBSORT. 

Recovery. Specify CLASS SUBSORT in your SUBSORT DEFINEs. 

NO TO STATEMENT HAS BEEN ISSUED.

NOTCPUS cpu-list.

ONLY ONE FROM STATEMENT MAY SPECIFY INPUT FROM THE COMMAND 
FILE.

OUTPUT RECORD WOULD EXCEED BUFFER SPACE.

SCRATCH FILE MUST BE UNSTRUCTURED.

SUBSORT  , BLOCK block size.

SUBSORT  , CPU cpu.

SUBSORT DEFINE IS NOT OF CLASS SUBSORT.

SUBSORT  , PRI priority.
FastSort Manual—429834-003
B-39



FastSort Error Messages Alphabetic List of Interactive Messages
Cause. Information only. 

Cause. Information only. 

Cause. Information only. 

Cause. Information only. 

Cause. Information only. 

Cause. You specified the alternate collating sequence incorrectly. 

Recovery. Correct the command so that it follows the rules under the COLLATE 
Command on page 3-6. 

Cause. The file specified in the COLLATE command is not unstructured. 

Recovery. Specify an EDIT file (file code 101) or a file created in a previous 
COLLATEOUT command. 

Cause. The file specified in the COLLATEOUT command is an SQL object. 

Recovery. Specify an unstructured Enscribe file in the COLLATEOUT command. 

Cause. You entered SHOW COLLATE, which is not a valid command. 

Recovery. If you have executed the COLLATEOUT command to store the collating 
sequence table in an unstructured file, you can view the file using the TACL VIEW 
command. 

Cause. You specified a processor (CPU) number larger than 16. 

SUBSORT  , PROGRAM program name.

SUBSORT  , SEGMENT segment.

SUBSORT  , SWAP swap-file-name.

SUBSORT scratch-file-name,

THE ALTERNATE COLLATING SEQUENCE SPECIFICATION IS INCORRECT.

THE COLLATE FILE MUST BE UNSTRUCTURED.

THE COLLATEOUT FILE MUST BE AN ENSCRIBE FILE.

THE COLLATING SEQUENCE CANNOT BE DISPLAYED.

THE CPU NUMBER MUST NOT EXCEED 16.
FastSort Manual—429834-003
B-40



FastSort Error Messages Alphabetic List of Interactive Messages
Recovery. Correct the command so that the number is less than 16. 

Cause. You specified memory size not in the range from 1 to 64. 

Recovery. Omit the MEM parameter of the RUN command.

Cause.  You specified a priority not in the valid range. 

Recovery. Correct the PRI parameter of the RUN command so that the priority is 
within the range from 1 to 199. 

Cause. You used an invalid scratch file block size. 

Recovery. Use a valid scratch file block size. The block size must be a multiple of 
2048 up to 55296. 

Cause. You specified a sort key field whose starting column number is greater than 
the ending column number. 

Recovery. Correct the ASCENDING or DESCENDING command so that the starting 
column number is less than the ending column number. 

Cause. You entered an invalid system name. 

Recovery. Correct the SYSTEM parameter of the RUN command so that the node 
name is valid. A node name begins with a backslash (\) and is followed by a letter and 
up to 6 alphanumeric characters. 

Cause. You specified a key outside the record. 

Recovery. Correct the ASCENDING or DESCENDING command so that you specify 
a valid key field. 

Cause. You specified more than one destination file. 

THE MEMORY SIZE IS NOT IN RANGE 1-64.

THE PRIORITY IS NOT IN RANGE 1-199

THE SCRATCH FILE BLOCK SIZE MAY NOT EXCEED 55296.

THE STARTING COLUMN MUST BE BEFORE THE END COLUMN.

THE SYSTEM NAME IS UNRECOGNIZABLE.

THE VALID KEY COLUMNS ARE 1 THROUGH 4080.

THERE IS ALREADY A DESTINATION FILE.
FastSort Manual—429834-003
B-41



FastSort Error Messages Alphabetic List of Interactive Messages
Recovery. Clear the existing TO command or do not specify another one. 

Cause. You specified too many keys in an ASCENDING or DESCENDING command. 

Recovery. Retype the command and specify 63 or fewer keys.

Cause.  The output file record size is too small to hold an output record. 

Recovery. Create the output file with a larger record size and then rerun the sort. 

Cause. The DEFINE CLASS must be SORT. 

Recovery. Specify CLASS SORT in your SORT DEFINEs. 

Cause. You specified an invalid collating sequence. 

Recovery. Correct the collating sequence to include 256 elements. Follow the rules 
under the COLLATE Command on page 3-6. 

Cause. You specified more than 16 subsorts. 

Recovery. Clear the SUBSORT command and specify from 2 to 16 subsorts. Because 
using more than 8 subsorts can cause run-time errors, HP recommends that you 
specify a maximum of 8 subsorts. The number of actual subsorts you can use depends 
on your system configuration and load. 

Cause. You specified an invalid segment size. 

Recovery. Specify a segment size greater than 64 pages. 

Cause. You specified a list device that does not exist. 

Recovery. Check that the list device does exist and retype the command. 

THIS PROGRAM CAN ONLY HANDLE 63 KEYS.

TRUNCATING OUTPUT RECORD LENGTH TO DEVICE WIDTH.

USER-SPECIFIED DEFINE IS NOT OF CLASS SORT.

WRONG NUMBER OF ELEMENTS IN SPECIFIER SEQUENCE, MUST BE 256.

WRONG NUMBER OF SUBSORTS, MUST BE BETWEEN 2 AND 16.

WRONG SEGMENT SIZE NUMBER, MUST BE LARGER THAN 64.

YOU MUST HAVE A LIST DEVICE WHEN REQUESTING OUTPUT THERE.
FastSort Manual—429834-003
B-42



C Using Supported File Types

For input files, FastSort accepts records from unstructured, relative, entry-sequenced, 
key-sequenced, EDIT, and partitioned files. 

FastSort does not accept input records from the following:

 Blocked tape files

 Key-sequenced files with increased limits

You might use buffered interface to send records from key-sequenced files with 
increased limits to FastSort. You do not specify the type for input files.

For output files, FastSort can create any type of output file except an EDIT file, and you 
can use an existing output file of any type that FastSort can create. If the output file 
exists, FastSort purges all data from the file before using it. If the output file is too 
small, FastSort purges it and re-creates the file. FastSort does not write records onto 
key-sequenced files with increased limits. For more information about key-sequenced 
files with increased limits, see Enscribe Programmer’s Guide.

If you do not specify a file type for the output file, SORTPROG sets the type as follows: 

 If the output file already exists, SORTPROG uses the type of the output file.

 If the output file does not already exist, SORTPROG uses the file type of the first 
input file. 

 If the input records are from the SORTMERGESEND procedure, the output file 
type is entry-sequenced. 

If you wish, however, you can specify the output file type as follows: 

 For the interactive interface, set the TYPE parameter of the TO command. 

 For the programmatic interface, set the SORTMERGESTART procedure 
out-file-type parameter. 

Table C-1 summarizes the output file types. 

Table C-1. Summary of Output File Types

Output File Type
TO Command TYPE 
Parameter

SORTMERGESTART Procedure 
output-file Parameter

Unstructured U 0 

Relative R 1 

Entry-sequenced E 2 
FastSort Manual—429834-003
C-1



Using Supported File Types Unstructured Files
For information about the different types of files, see the Guardian Programmer’s 
Guide and the Enscribe Programmer’s Guide.

Unstructured Files
You can use unstructured files for input and output files; however, you cannot use an 
EDIT file, which is a special kind of unstructured file, as an output file. You can copy 
output records from an unstructured file to an EDIT file, as described under EDIT Files 
on page C-4.

For an unstructured output file, specify either of the following:

 U in the TYPE parameter of the TO command

 0 (zero) in the out-file-type parameter of the SORTMERGESTART procedure

If the type of your first input file is unstructured, the default output file type is 
unstructured. 

To use an odd unstructured file for an input file, you must specify the correct record 
length as follows: 

 For the interactive interface, set the RECORD length parameter in the 
FROM command. 

 For the programmatic interface, set the SORTMERGESTART 
in-file-record-length parameter. 

To use an odd unstructured file for an output file, create the file using the FUP 
CREATE command or the CREATE system procedure before the sort or merge run. 
Then perform one of these steps: 

 For the interactive interface, do not set the TYPE file-type parameter in the 
TO command. 

 For the programmatic interface, set the SORTMERGESTART out-file-type 
parameter to –1.

Key-sequenced K 3 

EDIT Use EDIT to create the file 
and copy data from 
another file type. 

– 

Tape Use FUP to load the file. – 

Table C-1. Summary of Output File Types

Output File Type
TO Command TYPE 
Parameter

SORTMERGESTART Procedure 
output-file Parameter
FastSort Manual—429834-003
C-2



Using Supported File Types Relative Files
Relative Files
You can use relative files as input or output files. For a relative output file, specify 
either of the following:

 R in the TYPE parameter of the TO command

 1 in the out-file-type parameter of the SORTMERGESTART procedure

If the type of your first input file is relative, the default output file type is relative.

Entry-Sequenced Files
You can use entry-sequenced files as input and output files. For an entry-sequenced 
output file you do not need to specify the type because entry-sequenced is the default 
type (unless the first input file is not an entry-sequenced file). However, you can specify 
either of the following:

 E in the TYPE parameter of the TO command

 2 in the out-file-type parameter of the SORTMERGESTART procedure

If the type of your first input file is entry-sequenced, the default output file type is entry-
sequenced.

Key-Sequenced Files
You can use key-sequenced files as input files and output files. No special 
requirements apply to using key-sequenced input files. 

If you use a key-sequenced output file, you can specify only one key field for sorting. 
That field must be the same as the primary key field for the file. When using 
commands, you must name the field in an ASCENDING command and specify 
UNSIGNED as the data type. When using the SORTMERGESTART procedure, you 
must specify ascending and BINARY UNSIGNED for the field in the key-block 
parameter array.

To cause FastSort to create a key-sequenced output file or use an existing one, you 
must specify the type. You can also specify the percentage of slack space for 
accommodating future insertions of records in a new or existing key-sequenced file.

To specify the output file type, use either of the following:

 K in the TYPE parameter of the TO command

 3 in the out-file-type parameter of the SORTMERGESTART procedure

To specify the data and index slack, use any of the following:

 The SLACK parameter of the RUN command, if you want the same percentage of 
slack space in the data blocks and the index blocks
FastSort Manual—429834-003
C-3



Using Supported File Types EDIT Files
 The DSLACK and ISLACK parameters of the RUN command, if you want the data 
blocks to have a different percentage of slack space than the index blocks

 The dslack and islack parameters of the SORTMERGESTART procedure

The default for SLACK, dslack, and islack is 0 percent. The default for DSLACK 
and ISLACK is the value of SLACK.

FastSort currently does not load alternate-key files directly. You can use FUP to load 
alternate-key files. For information about loading alternate-key files, see the 
Guardian User’s Guide.

If the type of your first input file is key-sequenced, the default output file type is entry-
sequenced.

FastSort currently supports key-sequenced files with increased limits only through 
buffered interface. For more information about key-sequenced files with increased 
limits, see Enscribe Programmer’s Guide.

EDIT Files
FastSort accepts EDIT (file code 101) files as input files but not as an output file. If the 
type of your first input file is EDIT, the default output file type is entry-sequenced. If you 
want output records from a sort or merge run in an EDIT file, you must copy the output 
records into an existing or new EDIT file. 

First, use FastSort to sort the records to a structured output file. Then, use EDIT to 
copy the output records from the structured output file to a new or existing EDIT file. 
For example, the following sequence of commands, entered at a TACL prompt, copies 
the sorted records from the SORTOUT file to an EDIT file named NEWFILE: 

EDIT NEWFILE !; GET SORTOUT TO LAST; EXIT 

The exclamation point (!) causes EDIT to create NEWFILE without prompting you for 
confirmation if the file does not exist. The LAST parameter causes EDIT to write the 
records from SORTOUT after the last line in NEWFILE. You can also specify a line 
number rather than LAST to have EDIT insert the records after that line. For example, 
the following sequence of commands inserts the sorted records after line 1 in 
NEWFILE. 

EDIT NEWFILE !; GET SORTOUT TO 1; EXIT 

Any existing data in NEWFILE remains in the file after the sorted records. If you need 
to first purge data from an existing EDIT file, use the FUP PURGEDATA command. 

For more information about using EDIT commands, see the EDIT User’s Guide and 
Reference Manual.
FastSort Manual—429834-003
C-4



Using Supported File Types Tape Files
Tape Files
If you want to use input records from a blocked tape file, use FUP to deblock the 
records by loading them into a disk file. Then specify the disk file as an input file for the 
sort or merge run.

If you want to store output records in a blocked tape file, use FUP to block the records 
by loading them to the tape file from a disk file. Then specify the disk file as the output 
file for the sort or merge run. 

For information about using the FUP LOAD command, see the FUP Reference 
Manual.

The COBOL85 SORT and MERGE statements use FastSort to deblock and block tape 
files for you. For a description of the SORT and MERGE statements, see the 
COBOL85 Reference Manual. 

Partitioned Files 
FastSort accepts partitioned input files and can write records to a partitioned output 
file. FastSort can also use a partitioned scratch file. A partitioned file, however, must 
exist before you use it as an input, output, or scratch file. To create a partitioned file, 
use FUP. For more information on how to create a partitioned scratch file, see 
Section 9, Optimizing Sort Performance.

Partitioned Output Files

Use a partitioned output file for a distributed database or for a set of output records that 
will not fit on one disk volume. To estimate the size of the output file, multiply the total 
number of input records by the maximum output record length. 

If one or more input files is partitioned, you do not need to use a partitioned output file, 
unless the output records will not fit on one disk volume. Output records from 
permutation sorts are shorter than output records from record sorts, and output records 
from key sorts can be even shorter. Also, if you have FastSort remove records with 
duplicate key values, the output records from a record sort usually take up less space 
than the input records. 

If FastSort determines that an output file is too small, it purges and re-creates the file. 
For a partitioned output file, however, you can prevent FastSort from purging and re-
creating the file in order to preserve the original partitioning and extents of the file. To 
prevent FastSort from purging the file, specify the NOPURGE parameter of the 
TO command or set the SORTMERGESTART procedure flags.<5> bit to 1. 
FastSort Manual—429834-003
C-5



Using Supported File Types Partitioned Output Files
FastSort Manual—429834-003
C-6



D ASCII Character Set

Table D-1. ASCII Character Set (page 1 of 4)

Character Octal Left Octal Right Hex Dec Meaning 

NUL 000000 000000 00 0 Null

SOH 000400 000001 01 1 Start of heading

STX 001000 000002 02 2 Start of text

ETX 001400 000003 03 3 End of text

EOT 002000 000004 04 4 End of transmission

ENQ 002400 000005 05 5 Enquiry

ACK 003000 000006 06 6 Acknowledge

BEL 003400 000007 07 7 Bell

BS 004000 000010 08 8 Backspace

HT 004400 000011 09 9 Horizontal tabulation

LF 005000 000012 A 10 Line feed

VT 005400 000013 B 11 Vertical tabulation

FF 006000 000014 C 12 Form feed

CR 006400 000015 D 13 Carriage return

SO 007000 000016 E 14 Shift out

SI 007400 000017 F 15 Shift in

DLE 010000 000020 10 16 Data link escape

DC1 010400 000021 11 17 Device control 1

DC2 011000 000022 12 18 Device control 2

DC3 011400 000023 13 19 Device control 3

DC4 012000 000024 14 20 Device control 4

NAK 012400 000025 15 21 Negative acknowledge

SYN 013000 000026 16 22 Synchronous idle

ETB 013400 000027 17 23 End of transmission block

CAN 014000 000030 18 24 Cancel

EM 014400 000031 19 25 End of medium

SUB 015000 000032 1A 26 Substitute

ESC 015400 000033 1B 27 Escape

FS 016000 000034 1C 28 File separator

GS 016400 000035 1D 29 Group separator

RS 017000 000036 1E 30 Record separator

US 017400 000037 1F 31 Unit separator
FastSort Manual—429834-003
D-1



ASCII Character Set
SP 020000 000040 20 32 Space

! 020400 000041 21 33 Exclamation point

" 021000 000042 22 34 Quotation mark

# 021400 000043 23 35 Number sign

$ 022000 000044 24 36 Dollar sign

% 022400 000045 25 37 Percent sign

& 023000 000046 26 38 Ampersand

' 023400 000047 27 39 Apostrophe

( 024000 000050 28 40 Opening parenthesis

) 024400 000051 29 41 Closing parenthesis

* 025000 000052 2A 42 Asterisk

+ 025400 000053 2B 43 Plus

, 026000 000054 2C 44 Comma

- 026400 000055 2D 45 Hyphen (minus)

. 027000 000056 2E 46 Period (decimal point)

/ 027400 000057 2F 47 Slash

0 030000 000060 30 48 Zero

1 030400 000061 31 49 One

2 031000 000062 32 50 Two

3 031400 000063 33 51 Three

4 032000 000064 34 52 Four

5 032400 000065 35 53 Five

6 033000 000066 36 54 Six

7 033400 000067 37 55 Seven

8 034000 000070 38 56 Eight

9 034400 000071 39 57 Nine

: 035000 000072 3A 58 Colon

; 035400 000073 3B 59 Semicolon

< 036000 000074 3C 60 Less than

= 036400 000075 3D 61 Equals

> 037000 000076 3E 62 Greater than

? 037400 000077 3F 63 Question mark

@ 040000 000100 40 64 Commercial at sign

A 040400 000101 41 65 Uppercase A

Table D-1. ASCII Character Set (page 2 of 4)

Character Octal Left Octal Right Hex Dec Meaning 
FastSort Manual—429834-003
D-2



ASCII Character Set
B 041000 000102 42 66 Uppercase B

C 041400 000103 43 67 Uppercase C

D 042000 000104 44 68 Uppercase D

E 042400 000105 45 69 Uppercase E

F 043000 000106 46 70 Uppercase F

G 043400 000107 47 71 Uppercase G

H 044000 000110 48 72 Uppercase H

I 044400 000111 49 73 Uppercase I

J 045000 000112 4A 74 Uppercase 

K 045400 000113 4B 75 Uppercase K

L 046000 000114 4C 76 Uppercase L

M 046400 000115 4D 77 Uppercase M

N 047000 000116 4E 78 Uppercase N

O 047400 000117 4F 79 Uppercase O

P 050000 000120 50 80 Uppercase P

Q 050400 000121 51 81 Uppercase Q

R 051000 000122 52 82 Uppercase R

S 051400 000123 53 83 Uppercase S

T 052000 000124 54 84 Uppercase T

U 052400 000125 55 85 Uppercase U

V 053000 000126 56 86 Uppercase V

W 053400 000127 57 87 Uppercase W

X 054000 000130 58 88 Uppercase X

Y 054400 000131 59 89 Uppercase Y

Z 055000 000132 5A 90 Uppercase Z

[ 055400 000133 5B 91 Opening bracket

\ 056000 000134 5C 92 Backslash

] 056400 000135 5D 93 Closing bracket

^ 057000 000136 5E 94 Circumflex

_ 057400 000137 5F 95 Underscore

` 060000 000140 60 96 Grave accent

a 060400 000141 61 97 Lowercase a

b 061000 000142 62 98 Lowercase b

c 061400 000143 63 99 Lowercase c

Table D-1. ASCII Character Set (page 3 of 4)

Character Octal Left Octal Right Hex Dec Meaning 
FastSort Manual—429834-003
D-3



ASCII Character Set
d 062000 000144 64 100 Lowercase d

e 062400 000145 65 101 Lowercase e

f 063000 000146 66 102 Lowercase f

g 063400 000147 67 103 Lowercase g

h 064000 000150 68 104 Lowercase h

i 064400 000151 69 105 Lowercase i

j 065000 000152 6A 106 Lowercase j

k 065400 000153 6B 107 Lowercase k

l 066000 000154 6C 108 Lowercase l

m 066400 000155 6D 109 Lowercase m

n 067000 000156 6E 110 Lowercase n

o 067400 000157 6F 111 Lowercase o

p 070000 000160 70 112 Lowercase p

q 070400 000161 71 113 Lowercase q

r 071000 000162 72 114 Lowercase r

s 071400 000163 73 115 Lowercase s

t 072000 000164 74 116 Lowercase t

u 072400 000165 75 117 Lowercase u

v 073000 000166 76 118 Lowercase 

w 073400 000167 77 119 Lowercase w

x 074000 000170 78 120 Lowercase x

y 074400 000171 79 121 Lowercase y

z 075000 000172 7A 122 Lowercase z

{ 075400 000173 7B 123 Opening brace

| 076000 000174 7C 124 Vertical line

} 076400 000175 7D 125 Closing brace

~ 077000 000176 7E 126 Tilde

DEL 077400 000177 7F 127 Delete

Table D-1. ASCII Character Set (page 4 of 4)

Character Octal Left Octal Right Hex Dec Meaning 
FastSort Manual—429834-003
D-4



E FastSort Limits

This appendix summarizes parameter values that FastSort accepts in commands and 
procedure calls.

Table E-1. FastSort Limits

Item Limit 

CPUs 0 to 15

Input Files/Streams 32

Key Columns (Non-SQL) 1 to 4080

Key Fields 1 to 63

Memory 1 to 64 pages

Priority 1 to 199

Segment (Extended Memory) 256 to 62,255 pages (with VLM on)

Subsort Processes 2 to 16 (No more than 8 recommended) 

Scratch File Block Size Any multiple of 2048 up to 56 kilobytes
FastSort Manual—429834-003
E-1



FastSort Limits
FastSort Manual—429834-003
E-2



Glossary
alternate collating sequence. An EDIT file instructs FastSort to collate sort results by 

specific alphanumeric key fields or string type data. The default FastSort collating 
sequence is the ASCII character set.

application . One or more processes that achieve a specific objective. Processes in an 
application often communicate with each other using the message system and file 
system. See also program and process.

command file. An EDIT file containing a sequence of commands to execute. When you 
execute the file, commands in the file are automatically executed. You can use a 
command file with FastSort to execute commands or set DEFINEs.

data stack space. A storage area for object files. Data stack space is automatically 
allocated and can be manually specified for a program either at compile or bind time.

file system. A set of operating procedures and data structures that allows communication 
between a process and a file, which can be a disk file, I/O device, or another process.

initial scratch file. The scratch file FastSort uses first to store partial information during a 
sort-merge operation. See also scratch file and overflow scratch file.

input file. A set of records from local or remote disk files, tape files, or a terminal that you 
specify to FastSort to sort or merge. Supported types of output files for FastSort are 
unstructured, relative, entry-sequenced, key-sequenced, and EDIT.

list file. The file FastSort creates after a sort or merge run that describes the run. For 
example, a list file can contain FastSort statistics and any errors or warnings that 
occurred during the run. By default, the list file is the home terminal for the FastSort 
process; it can also be a disk file, I/O device, SPOOL DEFINE, or a process that 
receives sort-merge output. See also SPOOL DEFINE.

output file. The file to which FastSort writes output records. By default, the output file is the 
home terminal for the FastSort process. Supported output file types for FastSort are 
unstructured, relative, entry-sequenced, and key-sequenced.

overflow scratch file. I f the initial scratch file becomes full during a sort-merge operation,  
the file FastSort creates to store overflow information. If there is sufficient overflow 
space, FastSort creates overflow scratch files on the same volume as the initial scratch 
file. See also scratch file and initial scratch file.

parallel sort-merge operation. A FastSort operation that improves performance by using 
one distributor-collector SORTPROG process and 2 to 8 subsort processes to 
distribute the sort workload to multiple processors.

process. An executing or running program that has been submitted to the operating system 
for execution.
FastSort Manual—429834-003
Glossary-1



Glossary program
program. A static set of instruction codes and initialized data, such as compiler output or 
the Binder program, that is not currently executing. A program usually resides in a 
program file on disk.

scratch file. A temporary work file for FastSort. When a sort-merge operation cannot be 
performed in memory, SORTPROG temporarily stores partial information in one or 
more scratch files.

serial sort-merge operation. A FastSort operation that uses one SORTPROG process to 
sort or merge records.

SORT DEFINE. An operating system parameter that affects sort operations. A DEFINE has 
a name and a set of attribute-value pairs. The =_SORT_DEFAULTS DEFINE is also a 
SORT DEFINE.

SORT process. The FastSort command interpreter process. SORT accepts interactive 
commands from a terminal or through a command file and then uses FastSort system 
procedures to send commands to a SORTPROG process. See also SORTPROG 
process.

SORTPROG process . The FastSort sort-merge process. SORTPROG can run as a single 
process for a serial sort-merge process or as a distributor-collector process with 2 to 8 
subsort processes for a parallel sort-merge operation.

SPOOL DEFINE. An operating system parameter that affects output. You can specify a 
SPOOL DEFINE to receive sort-merge output. See also list file.

SUBSORT DEFINE. An operating system parameter that affects subsort processes in a 
parallel sort operation. A DEFINE has a name and a set of attribute-value pairs.

swap file. The disk file FastSort uses for data swapping during a sort or merge run. Data 
swapping involves copying data between physical memory and storage.

system message. A block of information, usually in the form of a structure, that a system 
process sends to another process. The receiving process, often a user process, reads 
system messages from the $RECEIVE system file. For example, an application that 
calls the FastSort SORTMERGEFINISH procedure with the abort parameter set to 1 
(which means stop the SORTPROG process immediately) receives a process-deletion 
message in its $RECEIVE file. See also $RECEIVE.

$RECEIVE. A special system file through which a process receives and can reply to 
messages from other processes.

=_SORT_DEFAULTS DEFINE. The default SORT DEFINE. You can use the  
=SORT_DEFAULTS_DEFINE to specify FastSort parameters for applications that 
otherwise cannot set the parameters. For example, the =SORT_DEFAULTS_DEFINE 
affects all sort operations invoked by NonStop SQL/MP. See also SORT DEFINE.
FastSort Manual—429834-003
Glossary-2



Index

A
Abbreviated and equivalent character 
assignments 3-7
ALSO keyword, alternate collating 
sequence 3-7
ALTER DEFINE TACL command 7-9
Alternate collating sequence

assigning characters to 3-7

COLLATE command 3-6

COLLATEOUT command 3-9

defining in SORTMERGESTART 5-28

equating characters 3-7

examples 3-8

invalid files 3-8

reading from EDIT file 3-6

reading from unstructured file 3-9

SORTMERGESTART 3-10

storing in table 3-9

Application process
communicating with SORTPROG 
process 4-1

FastSort procedures 4-1

providing input records 5-15

receiving output records with 
SORTMERGERECEIVE 5-13

returning output records to 4-6

sending and receiving records 4-4/4-13

sending input records with 
SORTMERGESEND 5-15

ASCENDING command
examples 3-4

syntax 3-2

Assigning numeric literal characters 3-7
Asterisks (**) in DEFINE template 7-10
Attributes, DEFINE

Class SORT 7-2

Class SUBSORT 7-5

Automatic configuration, parallel sorting
procedures to specify 6-5

subsort processes 6-4

AUTOMATIC parameter, RUN 
command 3-20
AWAITIO

SORTBUILDPARM procedure 5-6

SORTMERGESTART procedure 5-28

B
Binder utility

creating a save file 9-14

SET EXTENDSTACK command 5-2

BINSERV process 5-2
BLOCK attribute, SORT DEFINE 7-2
BLOCK parameter

RUN command 3-20

SUBSORT command 3-26

Blocked records
sending and receiving 5-7

specifying buffers in 
SORTBUILDPARM 5-5

Buffers
double 5-4

extended address 5-8

record blocking 5-6

specifying in SORTBUILDPARM 5-3

C
C

parallel sort example 6-15

serial sort example 4-9

Calling FastSort
Enform 1-10

File Utility Program (FUP) 1-10

process pair application 1-8

Character assignments, numeric literal 3-7
FastSort Manual—429834-003
Index-1



Index C
Characters, alternate collating 
sequence 3-7
CLEAR command

examples 3-6

syntax 3-5

COBOL85
parallel sort example 6-20

SORT or MERGE statement 5-19

sorting records 4-13

COLLATE command
assigning characters 3-7

examples 3-7

syntax 3-6

COLLATEOUT command 3-10
Collating sequence, alternate

See Alternate collating sequence

Command file
comments 2-2

DEFINEs 9-16

interactive sort 2-1

interactive sort example 2-3

nested levels in SQLCI 9-16

specifying SORT DEFINE 7-10

Command parameters
deleting 3-5

displaying 3-25

Commands, interactive
ASCENDING 3-2

CLEAR 3-5

COLLATE 3-6

COLLATEOUT 3-9

CPUS 3-10

DESCENDING 3-11

description 3-1

entering from terminal 2-1

EXIT 3-13

FC 3-14

FROM 3-14

HELP 3-18

NOTCPUS 3-18

Commands, interactive (continued)
RUN 3-19

SAVE 3-23

SHOW 3-25

SUBSORT 3-26

syntax summary A-1

TO 3-28

COMMENT keyword, SQL/MP 8-10
Comments

command file 2-2

CREATE INDEX configuration file 8-10

Configuration
default and explicit values 8-14

distributor-collector process 6-10

improving performance for subsort 
processes 6-6

sample SQL/MP file 8-10, 8-14

subsort processes 6-4, 6-5, 6-6

testing in parallel sorting 6-13

tuning for subsort processes 6-13

Configuring subsort processes 6-4/6-10
Control block 5-33
CONTROL/Y keys 2-1
CPU attribute

SORT DEFINE 7-2

SUBSORT DEFINE 7-5

CPU parameter
RUN command 3-20

SUBSORT command 3-27

CPUs
CPUS command 3-10

default for subsort processes 6-8

NOTCPUS command 3-18

RUN command 3-20

selecting for subsort processes 6-7

CPUS attribute, SORT DEFINE 7-3
CPUS command

example 3-10

parallel sorting 6-8

syntax 3-10
FastSort Manual—429834-003
Index-2



Index D
CREATE command (FUP) 1-9
CREATE INDEX statement, SQL/MP

and FastSort 1-10

CONFIG option 8-15

configuration file 8-10

configuring 8-8

default configuration 8-9/8-10

description 1-10

loading multiple indexes in 
parallel 8-15

CROSSREF program, and FastSort 1-10
Ctrl-Y keys 2-1

D
Data blocks 3-30
Data slack, SORTMERGESTART 5-28
Data types

ASCENDING command 3-2

DESCENDING command 3-11

DATAPAGES compiler directive 5-2
Deblocking records to reduce interprocess 
messages 5-15
Default values for SORT DEFINE 7-13
DEFAULTS DEFINE

See =_SORT_DEFAULTS DEFINE

DEFINE parameter, RUN command 3-22
DEFINE template, equal sign and 
asterisk 7-10
DEFINEs, TACL

ALTER DEFINE command 7-9

class SORT 1-10, 7-7, 7-13

class SPOOL 1-9

class SUBSORT 1-10, 7-9

DELETE DEFINE command 7-10

effect on scratch volumes 9-4

INFO DEFINE command 7-8

RESET DEFINE command 7-10

SET DEFINE command 7-8

SORT DEFINE attributes 7-2

with FastSort 1-9, 7-1

DELETE DEFINE TACL command 7-10
Deleting command parameters 3-5
DESCENDING command

examples 3-13

syntax 3-11

Disks, mirrored versus unmirrored 6-13
Displaying error messages 2-14, B-1
Displaying parameters 3-25
Displaying statistics 2-13
Displaying warning messages B-1
DISTINCT clause, SQL/MP 1-10, 8-4
Distributor-collector process

configuring 6-10

controlling the size of extended memory 
segments 6-11

copying the SORTPROG program 6-12

DEFINEs 7-1

execution priority 6-13

parallel sorting 6-1

scratch block size 6-11

statistics 2-14, 6-14

Double buffering 5-4
Duplicate records, removing in RUN 
command 3-21

E
EDIT files

description C-4

specifying an alternate collating 
sequence 3-6

Elapsed time
limiting in RUN command 3-20

minimizing 3-21

Enform, calling FastSort from 1-10
Entering commands from a terminal 2-1
Entry-sequenced files C-2
Equal sign and asterisk (=*) in DEFINE 
template 7-10
Equal sign (=) in =_SORT_DEFAULTS 
DEFINE 7-13
FastSort Manual—429834-003
Index-3



Index F
Error codes and messages
displaying B-1

format 2-14

interactive B-35

parallel sorting 6-14

programmatic, alphabetic list B-1

programmatic, numeric list B-6

SORTERROR 4-3, 5-9

SORTERRORDETAIL 4-3, 5-9

SORTERRORSUM 5-10

Error procedure, use with 
SORTMERGESTART 5-36
EXCLUSION parameter, TO 
command 3-28
Execution priority

distributor-collector process 6-13

subsort processes 6-10

Existing output files 3-31
EXIT command 3-13
Exiting an interactive process 2-1
Extended memory segment

buffer addresses 5-8

controlling size 2-11

controlling size for subsort 
processes 6-11

distributor-collector process 6-11

increasing with VLM 9-11

receiving output records 5-15

RUN command 3-21, 3-22

sending input records 5-17

subsort processes 6-9, 6-11

swap file 3-22, 6-9, 6-12

F
Failure information, saving 9-14
FastSort

COBOL85 1-10

components 1-3

Enform 1-10

File Utility Program (FUP) 1-10

FastSort (continued)
interactive 1-5, 2-1/2-15

programmatic use 1-7

SORTPROG process 1-8

SQL/MP 1-10, 8-1/8-17

FC command 3-14
File size

estimating output file size 4-8

estimating permanent scratch file 
size 9-2

File types, specifying output file type 3-29
File Utility Program (FUP)

calling FastSort from 1-10

CREATE command 1-9

creating a partitioned scratch file 9-8

Files (disk)
access 3-16

EDIT C-4

entry-sequenced C-2

key-sequenced C-3

locking 3-15

number of records allowed 3-15

partitioned C-5

relative C-2

unstructured C-2

Files (other than disk)
default number of records 3-16

tape C-4

File-system errors
creating a scratch file 9-2

returning in SORTERRORSUM 5-10

SORTERRORDETAIL 5-9

Fix (FC) command 3-14
flags parameter, SORTMERGESTART 
procedure 5-31
FROM command

examples 3-17

file access 3-16

syntax 3-14
FastSort Manual—429834-003
Index-4



Index G
G
GROUP BY clause, SQL/MP 8-4

H
HELP command 3-18

I
Identifying errors in parallel sorting 6-14
Index blocks, specifying for key-sequenced 
output files 3-30
Index slack, SORTMERGESTART 5-28
Index, SQL/MP 1-10, 8-8
INFO DEFINE TACL command 7-8
Initial scratch file

See Scratch file, initial

Input files
EDIT C-4

entry-sequenced C-2

example 2-4, 2-6

FastSort features 1-3

file access 5-21

file types 1-8

FROM command 3-14

key-sequenced C-3

number allowed 1-8

number of records allowed 3-15

partitioned C-5

relative C-2

tape C-4

unstructured C-2

using FUP to deblock records from 
tape 1-8

Input records
procedures to specify 4-3

providing from calling process 5-15

sending from a process 4-4

sending from extended memory 5-17

specifying in a command file 2-4

specifying length 3-16

Input streams
merging records 5-17

specifying with 
SORTMERGESEND 4-5

INTEGER data type
ASCENDING command 3-3

DESCENDING command 3-12

Interactive commands
ASCENDING 3-2

CLEAR 3-5

COLLATE 3-6

COLLATEOUT 3-9

CPUS 3-10

DESCENDING 3-11

description 3-1

EXIT 3-13

FC 3-14

FROM 3-14

HELP 3-18

NOTCPUS 3-18

RUN 3-19

SAVE 3-23

SHOW 3-25

SUBSORT 3-26

syntax summary A-1

TO 3-28

Interactive error messages B-35
Interactive FastSort 1-5, 2-1
Interprocess messages, reducing by 
deblocking records 5-15
Invalid alternate collating sequence 
files 3-8

K
Key and permutation sort 2-11
Key fields

defining in SORTMERGESTART 
procedure 5-20

definitions in key-block 5-29

FastSort feature 1-2
FastSort Manual—429834-003
Index-5



Index L
Key fields (continued)
specifying in ASCENDING 
command 3-2, 3-4

Key sort 2-9
KEYS parameter, TO command 3-29
Key-block, key-field definitions 5-29
Key-sequenced files

data slack C-3

description of C-3

index slack C-3

specifying output file slack space 3-30

L
Limits, sorting E-1
List file

specifying in TACL RUN command 2-1

SPOOL DEFINE 1-9

LOAD command, SQL/MP
configuring 8-15

description 8-7

loading large tables 8-17

MAX option 8-16

protecting table auditing 8-15

SCRATCH option 8-16

SORTED option 8-16

VLM 8-17

Loading multiple indexes in parallel 8-15
Locking files 3-15
Logical DEFINE

See DEFINEs, TACL

M
Managing sort workspace 9-1/9-13
Measure program 6-13
MEM parameter

RUN command 3-21

SUBSORT command 3-27

Memory
See Extended memory segment

Merge operations
merging records from input 
streams 5-17

procedures to specify input files 4-4

MERGE statement, COBOL85 5-19
Messages, interprocess 5-15

See also Error codes and messages

Minimizing elapsed time, RUN 
command 3-21
MINSPACE parameter, RUN 
command 3-21
MINTIME mode

improving performance 6-6

RUN command 3-21

Mirrored disks
parallel sorting 6-13

scratch volumes 8-4

MODE attribute, SORT DEFINE 7-3

N
NEWPROCESS errors

returning in SORTERRORDETAIL 5-9

returning in SORTERRORSUM 5-10

NonStop SQL/MP
See SQL/MP

NOPURGE parameter, TO command 3-30
NOSCRATCHON attribute, SORT 
DEFINE 7-3
NOTCPUS attribute, SORT DEFINE 7-3
NOTCPUS command

description of 3-18

examples 3-19

parallel sorting 6-8

Nowait I/O
SORTBUILDPARM procedure 5-6

SORTMERGESTART procedure 5-28

Numeric literal character assignments 3-7
FastSort Manual—429834-003
Index-6



Index O
O
Online help, HELP command 3-18
ORDER BY clause, SQL/MP 1-10, 8-4
OSIMAGE file 1-4
Output files

EDIT C-4

entry-sequenced C-2

estimating size 4-8

EXCLUSION mode, TO command 3-28

existing 3-31

file types, SORTMERGESTART 1-9, 
5-24

key-sequenced 3-30, C-3

options summary 1-3

partitioned C-5

relative C-2

requirements for existing 3-31

slack space for key-sequenced 3-30

specifying file access with 
SORTMERGESTART 5-23

summary of types C-1

tape C-4

TO command 3-28, 3-29

unstructured C-2

using FUP to load a blocked tape 
file 1-9

valid types 3-30

Output records
format, SORTMERGESTART 5-22

receiving in extended memory 5-15

returning to a process 4-6

returning with 
SORTMERGERECEIVE 5-13

P
Paging (swapping) files 6-10
PARALLEL EXECUTION ON option, 
SQL/MP

configuring CREATE INDEX 
statement 8-9

PARALLEL EXECUTION ON option, 
SQL/MP (continued)

default configuration 8-9/8-10

description 1-11, 8-7

sample CREATE INDEX configuration 
file 8-10

scratch and swap files for CREATE 
INDEX 8-10

scratch files 8-16

Parallel sorting
See also PARALLEL EXECUTION ON 
option, SQL/MP

configuring a distributor-collector 6-10

configuring subsorts in SUBSORT 
command 3-26

description of 6-1

errors 6-14

improving performance 6-11

mirrored disks 6-13

returning error information 5-10

scratch block size for subsorts 6-11

setting up 6-3

specifying in procedures 4-3

testing configuration 6-13

Parameters, displaying with SHOW 
command 3-25
Partitioned files

creating a partitioned scratch file 9-8

FastSort input C-5

FastSort output C-5

Partitioned index, SQL/MP
description 1-10

loading data 8-7

loading multiple indexes in 
parallel 8-15

Performance
improving with parallel sorting 6-11

Measure program 6-13

tuning configuration of subsort 
processes 6-13

Permutation and key sort, example 2-11
FastSort Manual—429834-003
Index-7



Index Q
PERMUTATION parameter, TO 
command 3-29
Permutation sort, example 2-10
PRI attribute

SORT DEFINE 7-3

SUBSORT DEFINE 7-6

PRI parameter
RUN command 3-21

SUBSORT command 3-27

Priority
RUN command 3-21

SUBSORT command 3-27

SUBSORT DEFINE 7-6

Procedures
description 5-1

parallel sorting 6-3

SORTBUILDPARM 5-2

SORTERROR 5-9

SORTERRORSUM 5-10

SORTMERGEFINISH 5-12

SORTMERGERECEIVE 5-13

SORTMERGESEND 5-15

SORTMERGESTART 5-19

SORTMERGESTATISTICS 5-37

syntax summary A-1

user-written error procedure 5-36

Procedure, user-written error 5-25
Process pair application, calling FastSort 
from 1-8
Processors

CPUS command 3-10

defaults for subsort processes 6-8

selecting for subsort processes 6-7

PROGRAM attribute
SORT DEFINE 7-4

SUBSORT DEFINE 7-6

PROGRAM parameter
RUN command 3-22

SUBSORT command 3-27

Programmatic error messages

Programmatic error messages (continued)
alphabetic B-1

numeric B-6

Programmatic FastSort 1-7

Q
Query, SQL/MP, ordering and grouping 
results 8-4
Question mark (?), input prompt 
symbol 2-5
Quotation marks ("), in alternate collating 
sequence 3-7

R
REAL data type

ASCENDING command 3-3

DESCENDING command 3-12

RECGEN process, SQL/MP
configuring 8-10

default location 8-8

description 1-4

in parallel execution 1-10

role in loading data 8-7

Records
See also Records, input and output

buffer for blocking 5-6

deblocking to reduce interprocess 
messages 5-15

estimating number 3-16

removing duplicates in RUN 
command 3-21

specifying length 3-16

Records, input and output
blocking 4-3

sending and receiving from a 
process 4-7

SORTBUILDPARM parameters for 
blocking 4-3

specifying 4-3

Relative files C-2
FastSort Manual—429834-003
Index-8



Index S
REMOVEDUPS parameter, RUN 
command 3-21
Removing duplicate records

RUN command 3-21

SORTMERGESTART 5-31

RESET DEFINE TACL command 7-10
Restart option

SORTBUILDPARM 4-3

SORTMERGESTART 5-4, 5-24, 5-33, 
5-34

Returning errors
SORTERRORDETAIL 5-9

SORTERRORSUM 5-10

RUN command
AUTOMATIC parameter 3-20

BLOCK parameter 3-20, 6-11

CPU parameter 3-20

DEFINE parameter 3-22

description of 3-19

examples 3-23

improving performance in parallel 
sorting 6-11

limiting elapsed time 3-20

MEM parameter 3-21

MINSPACE parameter 3-21

MINTIME parameter 3-21

PRI parameter 3-21, 6-13

PROGRAM parameter 3-22, 6-12

REMOVEDUPS parameter 3-21

SEGMENT parameter 3-22

SORT DEFINE example 7-10

SWAP parameter 3-22, 6-12

RUN command, TACL 2-1
Run options for SORT process 2-2

S
SAVE command

examples 3-24

syntax 3-23

Save file, automatically creating 9-14

SAVEABEND, turning on 9-14
Saving commands 3-23
SCRATCH attribute

SORT DEFINE 7-4

SUBSORT DEFINE 7-6

Scratch files
automatic configuration 6-4

creating manually 9-2

creating with CREATE system 
procedure 9-2

creating with FUP CREATE 
command 9-2

default size 9-2

having SORTPROG create 9-2

initial vs. overflow 9-3

manually creating 9-2

optimizing performance 9-1

partitioned files as 9-8

RUN command 3-19

size 1-9

specifying block size for subsort 
processes 6-11

SUBSORT command 3-26

Scratch file, initial
estimating size of permanent 9-2

RUN command 3-19

SORTMERGESTART 5-25

specifying size in RUN command 3-20

SUBSORT command 3-26

Scratch volumes
how characteristics affect selection 9-5

how DEFINEs affect selection 9-4

initial, specifying in RUN 
command 3-19

overflow, specifying for subsorts 5-5, 
9-7

SCRATCHON attribute, SORT DEFINE 7-4
scratchvols structure, 
SORTBUILDPARM 5-5
FastSort Manual—429834-003
Index-9



Index S
SEGMENT attribute
SORT DEFINE 7-4

SUBSORT DEFINE 7-6

SEGMENT parameter
RUN command 3-22

SUBSORT command 3-27

Segment, extended memory
See Extended Memory Segment

SELECT statement, SQL/MP 1-10
Selecting processors 6-8
Serial sort operation

COBOL85 example 4-14

TAL example 4-15

SET DEFINE TACL command 7-8
SET DEFMODE TACL command 7-7
SET EXTENDSTACK, BINDER 
command 5-2
Setting up subsort processes 3-26
SHOW command

examples 3-26

syntax 3-25

SLACK parameter, TO command 3-30
SORT DEFINE

MODE attribute 7-3

NOSCRATCHON attribute 7-3

NOTCPUS attribute 7-3

SORT DEFINE, TACL
attributes 7-2

creating interactively 7-7

creating programmatically 7-13

default values 7-13

example 7-15

interactive sort 7-10

programmatic 7-13

Sort merge joins 8-6
Sort operations

input file types 2-6

input files 4-4

parallel sort example, C 6-15

parallel sort example, COBOL85 6-20

Sort operations (continued)
parallel sort example, TAL 6-23

Sort or merge 4-2
SORT process 1-4
SORT statement, COBOL85 5-19
Sort workspace, managing 9-1/9-13
SORTBUILDPARM procedure

configuring subsort processes 6-6

DEFINE name 7-13

description 4-3

example 5-8

not-cpu-mask parameter 6-8

parallel sorting 6-3

syntax 5-2

SORTERROR procedure 5-9
SORTERRORDETAIL procedure 5-10
SORTERRORSUM procedure

description 4-3

example 5-12

parallel sorting 6-3

syntax 5-10

Sorting interactively 2-1
Sorting limits E-1
Sorting on key fields 2-6
SORTMERGEFINISH procedure

example 5-13

parallel sorting 6-4

syntax 5-12

SORTMERGERECEIVE procedure
example 5-15

returning records to an application 
process 4-6

syntax 5-13

SORTMERGESEND procedure
example 5-18

sending records from application 
process 4-5

syntax 5-15
FastSort Manual—429834-003
Index-10



Index S
SORTMERGESTART procedure
automatic configuration 6-5

configuring subsort processes 6-6

data slack 5-28

defining key fields 5-20

example 5-35

flags parameter 4-9, 5-31

index slack 5-28

initial scratch file 5-25

input file access 5-21

output file access 5-23

output file type 5-24

output record format 5-22

parallel sorting 6-3, 6-11

priority word in process-start 
parameter 6-10, 6-13

process-start parameter 6-9

returning records to an application 
process 4-6

scratch-block parameter 6-11

segment word in process-start 
parameter 6-12

sending records from application 
process 4-5

sort-program word in process-start 
parameter 6-10, 6-12

swap-file word in process-start 
parameter 6-9, 6-12

syntax 5-19

user error procedure 5-36

SORTMERGESTATISTICS procedure
description of 4-3

example 5-39

parallel sorting 6-3

statistics structure 5-38

syntax 5-37

SORTPROG process
as a distributor-collector process 6-1

as a subsort process 6-1

communicating with 5-1

SORTPROG process (continued)
copying for subsort processes 6-10

copying for the distributor-
collector 6-12

description 1-8

parallel load operations 8-7

starting with procedures 4-2, 5-19

stopping 4-2

stopping with 
SORTMERGEFINISH 5-12

used by SQL/MP 1-10, 8-1

SORT_DEFAULTS DEFINE
See =_SORT_DEFAULTS DEFINE

SQL/MP
COMMENT keyword 8-10

configuration file for parallel index 
loading 8-10

configuring a CREATE INDEX 
statement 8-8

criteria for in-memory sorts 8-1

DEFINEs 7-1

DISTINCT clause 8-4

GROUP BY clause 8-4

index 1-10, 8-8

LOAD command 8-15

nesting command files from 
SQLCI 9-16

operations that invoke FastSort 8-1

optimizing clause combinations 8-5

sample file 8-10, 8-14

sort merge joins 8-6

UNION clause 8-5

=_SORT_DEFAULTS DEFINE 8-2

Stack space, required by system 
procedures 5-2, 5-29
Starting a sort or merge

procedures 4-2

RUN command 3-19
FastSort Manual—429834-003
Index-11



Index T
Statistics
displaying 2-13

parallel sort 2-14, 6-14

procedures to obtain 4-3

SORTMERGESTATISTICS 
procedure 5-37

SORTMERGESTATISTICS statistics 
structure 5-38

VLM 9-12

Stopping a sort or merge 4-2
SUBSORT attribute, SORT DEFINE 7-5
SUBSORT command

BLOCK parameter 3-26

CPU parameter 3-27

initial scratch file 3-26

MEM parameter 3-27

parallel sorting 6-5

PRI parameter 3-27, 6-10

PROGRAM parameter 3-27, 6-10

SEGMENT parameter 3-27, 6-9, 6-12

SWAP parameter 3-27, 6-9

syntax, examples 3-26, 3-27

SUBSORT DEFINE, TACL
attributes 7-2, 7-5

creating 7-9

Subsort processes
automatic configuration 6-4

configuring 6-4, 6-5, 6-6

configuring in SUBSORT 
command 3-26

controlling the size of extended memory 
segments 6-11

copying the SORTPROG program 6-10

default processors 6-8

DEFINEs 7-1, 7-5

execution priority 6-10

extended memory segment 6-9

extended segment swap file 6-9

overflow scratch volumes 9-7

parallel sorting 6-1

Subsort processes (continued)
scratch file block size 6-11

scratch files 6-4

selecting processors 6-7

statistics 2-14, 6-14

swap files 9-10

tuning configuration 6-13

=_SORT_DEFAULTS DEFINE 9-7, 
9-10

SWAP attribute
SORT DEFINE 7-5

SUBSORT DEFINE 7-6

Swap file
extended memory segment 3-22, 6-12

extended segment for subsorts 6-9

location 9-10

moving for sort merge joins 8-6

subsorts 9-10

SWAP parameter
RUN command 3-22

SUBSORT command 3-27

Syntax
HELP command 3-18

summary of commands A-1

summary of procedures A-3

T
TACL

ALTER DEFINE command 7-9

class SORT DEFINEs 7-7, 7-13

class SUBSORT DEFINEs 7-9

DELETE DEFINE command 7-10

INFO DEFINE command 7-8

RESET DEFINE command 7-10

RUN command 2-1

run options for SORT process 2-2

SET DEFINE command 7-8

SET DEFMODE command 7-7
FastSort Manual—429834-003
Index-12



Index U
TACL DEFINEs
See DEFINEs, TACL

TAL
parallel sort example 6-23

serial sort example 4-15

Tape files C-4
THRU keyword, alternate collating 
sequence 3-7
To 6-5
TO command

examples 3-32

EXCLUSION parameter 3-28

KEYS parameter 3-29

NOPURGE parameter 3-30

PERMUTATION parameter 3-29

SLACK parameter 3-30

syntax 3-28

TYPE parameter 3-29

U
Unblocked records, sending and 
receiving 5-7
UNION clause, SQL/MP 8-5
Unmirrored disks, in parallel sorting 6-13
Unstructured file

description C-2

storing alternate collating sequence 
table 3-9

UPPER data type
ASCENDING command 3-3

DESCENDING command 3-12

User-written error procedure, with 
SORTMERGESTART 5-36

V
Versions, verifying compatibility 9-13
VLM (Very Large Memory)

effect on swap files 9-11

extended memory 9-10

LOAD command 8-17

VLM (Very Large Memory) (continued)
scratch files 9-11

statistics 9-12

turning off for parallel operations 9-11

turning on 9-11

VPROC utility, verifying versions 9-13

W
Warning messages

displaying B-1

format 2-14

Special Characters
! exclamation point 2-2
" quotation marks 3-7
$SYSTEM.SYSnn.OSIMAGE 1-4
$SYSTEM.SYSnn.RECGEN 1-4
$SYSTEM.SYSnn.SORT 1-4
$SYSTEM.SYSnn.SORTPROG 1-4
** double asterisks, DEFINE template 7-10
< less than symbol, FastSort prompt 2-1
= equal sign, =_SORT_DEFAULTS 
DEFINE 7-13
=* equal sign and asterisk, DEFINE 
template 7-10
=_SORT_DEFAULTS DEFINE

description 7-13

guidelines for SQL sorts 8-4

parallel sorts 9-7, 9-10

? question mark, input prompt symbol 2-5
FastSort Manual—429834-003
Index-13



Index Special Characters
FastSort Manual—429834-003
Index-14


	FastSort Manual
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to the 429834-003 manual:


	About This Manual
	SPR Requirements for Increased Enscribe Limits for the H06.28/J06.17 Release
	Audience
	Related Manuals
	Notation Conventions
	Hypertext Links
	General Syntax Notation
	Notation for Messages
	Change Bar Notation
	HP Encourages Your Comments

	1 Introduction to FastSort
	Sort and Merge Operations
	FastSort Features
	FastSort Components
	Interactive FastSort
	Programmatic FastSort
	SORTPROG Process
	Input Files
	Scratch Files
	Output Files

	Using DEFINEs With FastSort
	Class SPOOL DEFINE
	Class SORT and SUBSORT DEFINEs

	Products That Use FastSort

	2 Sorting Interactively
	Using a Command File
	Entering Commands and Data in a Command File
	Entering Comments in a Command File
	Running With Input From a Command File

	Specifying Input Records
	Specifying Input Files in the FROM Command
	Specifying Input Records at the Input Prompt

	Sorting on Key Fields
	Running a Record Sort
	Running a Key Sort
	Running a Permutation Sort
	Running a Key and Permutation Sort

	Controlling Extended Memory
	Understanding Statistics
	Understanding Error Messages
	Understanding Completion Codes

	3 Using FastSort Commands
	ASCENDING Command
	CLEAR Command
	COLLATE Command
	COLLATEOUT Command
	CPUS Command
	DESCENDING Command
	EXIT Command
	FC Command
	FROM Command
	HELP Command
	NOTCPUS Command
	RUN Command
	SAVE Command
	SHOW Command
	SUBSORT Command
	TO Command

	4 Sorting Programmatically
	Using FastSort System Procedures
	Starting a Sort or Merge Run
	Ending a Sort or Merge Run
	Specifying Record Blocking and Parallel Sorting
	Allocating Scratch Space
	Getting Information About a Sort or Merge Run

	Specifying Input Records
	Sending Input Records From a Process
	Sending Records to Be Sorted
	Sending Records to Be Merged

	Returning Output Records to a Process
	Sending and Receiving Records
	Estimating the Size of an Output File
	Sorting From C Programs
	Sorting From COBOL85 Programs
	Sorting From TAL Programs

	5 Using FastSort System Procedures
	SORTBUILDPARM Procedure
	SORTERROR Procedure
	SORTERRORDETAIL Procedure
	SORTERRORSUM Procedure
	SORTMERGEFINISH Procedure
	SORTMERGERECEIVE Procedure
	SORTMERGESEND Procedure
	SORTMERGESTART Procedure
	SORTMERGESTATISTICS Procedure

	6 Sorting in Parallel
	Using Commands for Parallel Sorting
	Using Procedures for Parallel Sorting
	Using the Automatic Configuration
	Using FastSort Commands
	Using FastSort Procedures
	Improving Performance

	Configuring Subsort Processes
	Selecting Processors to Run Subsort Processes
	How FastSort Selects Processors
	Specifying the Size of the Extended Memory Segment
	Specifying a Location for the Swap File
	Using Multiple Copies of the SORTPROG Program
	Specifying an Execution Priority

	Configuring a Distributor-Collector Process
	Specifying a Scratch Block Size
	Controlling the Size of Extended Memory Segments
	Specifying a Location for the Swap File
	Using Multiple Copies of the SORTPROG Program
	Specifying an Execution Priority

	Tuning and Testing a Configuration for Parallel Sorting
	Understanding Statistics From Parallel Sorting
	Identifying the Causes of Errors
	Parallel Sorting From C Programs
	Parallel Sorting From COBOL85 Programs
	Parallel Sorting From TAL Programs

	7 Using SORT and SUBSORT DEFINEs
	Determining the Precedence of DEFINEs
	Setting DEFINE Attributes
	Setting SORT DEFINE Attributes
	Setting SUBSORT DEFINE Attributes

	Creating and Using DEFINEs Interactively
	Enabling DEFINEs
	Creating a SORT DEFINE
	Displaying a DEFINE
	Creating a SUBSORT DEFINE
	Modifying a DEFINE
	Deleting a DEFINE
	Using DEFINEs With Interactive FastSort

	Creating and Using DEFINEs Programmatically
	Creating and Modifying DEFINEs Programmatically
	Using DEFINEs With Programmatic FastSort

	Creating and Using the =_SORT_DEFAULTS DEFINE
	Examples of SORT and SUBSORT DEFINEs
	Serial Sort Run Example
	Parallel Sort Run Example


	8 Sorting From NonStop SQL/MP
	How SQL/MP Implements a Sort
	Configuring Your SQL/MP Sort Environment
	Setting Up a =_SORT_DEFAULTS DEFINE

	Ordering and Grouping Query Results
	Optimizing SQL Clause Combinations
	Using a Sort Merge Join

	Loading Data
	Configuring a CREATE INDEX Statement
	Configuring a LOAD Statement


	9 Optimizing Sort Performance
	Managing Sort Workspace
	Using Scratch Files
	Selecting a Scratch Volume for Parallel Sorts
	Using a Partitioned Scratch File
	Using Swap Files
	Using VLM
	Calculating Data Stack Space

	Managing Sort Failures
	Automating FastSort Tasks
	Automating DEFINEs


	A FastSort Syntax Summary
	Interactive Commands
	FastSort Procedures

	B FastSort Error Messages
	Alphabetic List of Programmatic Messages
	Numeric List of Programmatic Messages
	Alphabetic List of Interactive Messages

	C Using Supported File Types
	Unstructured Files
	Relative Files
	Entry-Sequenced Files
	Key-Sequenced Files
	EDIT Files
	Tape Files
	Partitioned Files
	Partitioned Output Files


	D ASCII Character Set
	E FastSort Limits
	Glossary
	Index



