
HP NonStop SQL/MP
Programming Manual
for C
Abstract

This manual documents the programming interface to HP NonStop™ SQL/MP for C
and is intended for application programmers who are embedding SQL statements and
directives in a C program.

Product Version

NonStop SQL/MP G06 and H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all subse-
quent H-series RVUs, G06.00 and all subsequent G-series RVUs, and D46.00 and all subse-
quent D-series RVUs, until otherwise indicated by its replacement publications.

Part Number Published

429847-008 August 2012

Document History
Part Number Product Version Published

429847-002 NonStop SQL/MP G06 December 2003

429847-003 NonStop SQL/MP G06 December 2004

429847-004 NonStop SQL/MP G06 April 2005

429847-005 NonStop SQL/MP G06 February 2006

429847-007 NonStop SQL/MP G06 and H01 August 2010

429847-008 NonStop SQL/MP G06 and H01 August 2012

Legal Notices
© Copyright 2012 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial

Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc. OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for incidental consequential damages in connection with the
furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF
software to which it relates are derived in part from materials supplied by the following:© 1987, 1988,
1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.

© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. ©
1987, 1988, 1989, 1990, 1991

Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business
Machines Corporation. © 1988, 1989 Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat
Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991, 1992 SecureWare, Inc. © 1990,
1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. ©
1989,1990, 1991 Transarc Corporation.OSF software and documentation are based in part on the
Fourth Berkeley Software Distribution under license from The Regents of the University of California.
OSF acknowledges the following individuals and institutions for their role in its development: Kenneth
C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert
Elz. © 1980, 1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

HP NonStop SQL/MP
Programming Manual for C
Index Examples Figures Tables
Legal Notices

What’s New in This Manual xi

Manual Information xi

New and Changed Information xi

About This Manual xv

Who Should Read This Guide xv

Related Manuals xv

Notation Conventions xx

HP Encourages Your Comments xxii

1. Introduction
Advantages of Using Embedded SQL Statements 1-1

Developing a C Program 1-1

Declaring and Using Host Variables 1-2

Embedding SQL/MP Statements and Directives 1-3

Calling SQL/MP System Procedures 1-4

Compiling and Executing a Host-Language Program 1-5

Processing Errors, Warnings, and Status Information 1-5

Dynamic SQL 1-6

SQL/MP Version Management 1-7

2. Host Variables
Specifying a Declare Section 2-1

Coding Host Variable Names 2-2

Using Corresponding SQL and C Data Types 2-3

Specifying Host Variables in SQL Statements 2-6

Declaring and Using Host Variables 2-7

Fixed-Length Character Data 2-7

Variable-Length Character Data 2-9

Structures 2-9

Decimal Data Types 2-11
 Hewlett-Packard Company—429847-008
i

Contents 2. Host Variables (continued)
2. Host Variables (continued)
Fixed-Point Data Types 2-11

Date-Time and INTERVAL Data Types 2-13

Using Indicator Variables for Null Values 2-17

Inserting a Null Value 2-17

Testing For a Null Value 2-17

Retrieving Rows With Null Values 2-18

Creating Host Variables Using the INVOKE Directive 2-18

Advantages of Using an INVOKE Directive 2-19

C Structures Generated by the INVOKE Directive 2-19

Using Indicator Variables With the INVOKE Directive 2-22

Using INVOKE With SQLCI 2-24

Associating a Character Set With a Host Variable 2-24

Treatment in C Statements 2-25

VARCHAR Data Type 2-25

3. SQL/MP Statements and Directives
Embedding SQL Statements 3-1

Coding Statements and Directives 3-1

Placing Statements and Directives 3-2

Finding Information 3-3

4. Data Retrieval and Modification
Opening and Closing Tables and Views 4-2

Causes of SQL Error 8204 (Lost Open Error) 4-2

Recovering From SQL Error 8204 4-3

Single-Row SELECT Statement 4-4

Using a Column Value to Select Data 4-5

Using a Primary Key Value to Select Data 4-6

Multirow SELECT Statement 4-6

Simple Example 4-7

A More Complex Example 4-7

The Most Complex Example 4-7

INSERT Statement 4-8

Inserting a Single Row 4-9

Inserting a Null Value 4-9

Inserting a Timestamp Value 4-10

UPDATE Statement 4-10

Updating a Single Row 4-11
HP NonStop SQL/MP Programming Manual for C—429847-008
ii

Contents 4. Data Retrieval and Modification (continued)
4. Data Retrieval and Modification (continued)
Updating Multiple Rows 4-12

Updating Columns With Null Values 4-12

DELETE Statement 4-12

Deleting a Single Row 4-13

Deleting Multiple Rows 4-13

Using SQL Cursors 4-14

Steps for Using a Cursor 4-15

Process Access ID (PAID) Requirements 4-16

Cursor Position 4-16

Cursor Stability 4-17

Virtual Sequential Block Buffering (VSBB) 4-17

DECLARE CURSOR Statement 4-18

OPEN Statement 4-19

FETCH Statement 4-20

Multirow SELECT Statement 4-21

UPDATE Statement 4-22

Multirow DELETE Statement 4-23

CLOSE Statement 4-24

Using Foreign Cursors 4-24

5. SQL/MP System Procedures
Guardian System Procedures 5-2

cextdecs Header File 5-2

SQL Message File 5-2

SQLCADISPLAY 5-3

SQLCAFSCODE 5-8

SQLCAGETINFOLIST 5-9

SQLCATOBUFFER 5-14

SQLGETCATALOGVERSION 5-18

SQLGETOBJECTVERSION 5-19

SQLGETSYSTEMVERSION 5-19

SQLSADISPLAY 5-20

6. Explicit Program Compilation
Explicit Program Compilation 6-1

Developing a C Program in the Guardian Environment 6-5

Using TACL DEFINEs in the Guardian Environment 6-6

Specifying the SQL Pragma in the Guardian Environment 6-7
HP NonStop SQL/MP Programming Manual for C—429847-008
iii

Contents 6. Explicit Program Compilation (continued)
6. Explicit Program Compilation (continued)
Running the TNS C Compiler in the Guardian Environment 6-9

Running the TNS/R NMC and TNS/E CCOMP Compiler in the Guardian
Environment 6-10

Binding SQL Program Files in the Guardian Environment 6-11

Running the SQL Compiler in the Guardian Environment 6-12

SQL Program File Format 6-24

SQL Compiler Listings 6-25

Developing a C Program in the OSS Environment 6-28

Using TACL DEFINEs in the OSS Environment 6-29

Using the c89 Utility in the OSS Environment 6-30

Developing a C Program in a PC Host Environment 6-33

Using CONTROL Directives 6-34

Static SQL Statements 6-34

Dynamic SQL Statements 6-36

Using Compatible Compilation Tools 6-36

C Compiler 6-36

SQL Compiler 6-36

SQL Program Files 6-37

7. Program Execution
Required Access Authority 7-1

Using TACL DEFINEs 7-2

Entering the TACL RUN Command 7-3

Running a Program in the OSS Environment 7-3

Running a Program at a Low PIN 7-4

Interactive Commands 7-5

Programmatic Commands 7-5

Pathway Environment 7-6

Determining Compatibility With the SQL Executor 7-7

8. Program Invalidation and Automatic SQL Recompilation
Program Invalidation 8-1

SQL Compiler Validation Functions 8-1

Causes of Program Invalidation 8-2

File-Label and Catalog Inconsistencies 8-4

Preventing Program Invalidation 8-4

Automatic SQL Recompilation 8-5

Causes of Automatic Recompilation 8-6
HP NonStop SQL/MP Programming Manual for C—429847-008
iv

Contents 8. Program Invalidation and Automatic SQL
Recompilation (continued)
8. Program Invalidation and Automatic SQL
Recompilation (continued)

Run-Time Recompilation Errors 8-9

Preventing Automatic Recompilations 8-9

9. Error and Status Reporting
Using the INCLUDE STRUCTURES Directive 9-1

Generating Structures With Different Versions 9-3

Checking the Version of the C Compiler 9-3

Sharing Structures 9-3

Returning Error and Warning Information 9-4

Checking the sqlcode Variable 9-4

Using the WHENEVER Directive 9-6

Returning Information From the SQLCA Structure 9-12

Returning Performance and Statistics Information 9-13

Declaring the SQLSA Structure 9-13

Using the SQLSA Structure 9-13

10. Dynamic SQL Operations
Uses for Dynamic SQL 10-1

Dynamic SQL Statements 10-2

Dynamic SQL Features 10-3

SQLDA Structure, Names Buffer, and Collation Buffer 10-3

Input Parameters and Output Variables 10-11

Null Values 10-16

Dynamic Allocation of Memory 10-18

Using Dynamic SQL Cursors 10-20

Developing a Dynamic SQL Program 10-23

Specify the SQL Pragma 10-23

Copy any External Declarations 10-23

Declare the sqlcode Variable and Host Variables 10-23

Specify Any WHENEVER Directives 10-23

Specify the INCLUDE STRUCTURES Directive 10-24

Declare the SQLDA Structure and Names Buffer 10-24

Declare an SQLSA Structure 10-24

Process the Input Parameters 10-24

Read and Compile the SQL Statement 10-25

Process the Output Variables 10-25

Perform the Database Request and Display the Values 10-27
HP NonStop SQL/MP Programming Manual for C—429847-008
v

Contents 10. Dynamic SQL Operations (continued)
10. Dynamic SQL Operations (continued)
Allocate Memory for the SQLDA Structures and Names Buffers 10-29

Allocate and Fill In Output Variables 10-33

Developing a Dynamic SQL Pathway Server 10-36

Dynamic SQL Sample Programs 10-37

Basic Dynamic SQL Program 10-37

Detailed Dynamic SQL Program 10-42

11. Character Processing Rules (CPRL) Procedures
cextdecs Header File 11-2

CPRL Return Codes 11-2

CPRL_ARE_ 11-3

CPRL_AREALPHAS_ 11-4

CPRL_ARENUMERICS_ 11-5

CPRL_COMPARE1ENCODED_ 11-6

CPRL_COMPARE_ 11-7

CPRL_COMPAREOBJECTS_ 11-8

CPRL_DECODE_ 11-9

CPRL_DOWNSHIFT_ 11-10

CPRL_ENCODE_ 11-11

CPRL_GETALPHATABLE_ 11-12

CPRL_GETCHARCLASSTABLE_ 11-13

CPRL_GETDOWNSHIFTTABLE_ 11-14

CPRL_GETFIRST_ 11-15

CPRL_GETLAST_ 11-16

CPRL_GETNEXTINSEQUENCE_ 11-17

CPRL_GETNUMTABLE_ 11-18

CPRL_GETSPECIALTABLE_ 11-19

CPRL_GETUPSHIFTTABLE_ 11-20

CPRL_INFO_ 11-20

CPRL_READOBJECT_ 11-22

CPRL_UPSHIFT_ 11-23

A. SQL/MP Sample Database

B. Memory Considerations
SQL/MP Internal Structures B-1

Using the SQLMEM Pragma B-2

Estimating Memory Requirements B-2

Avoiding Memory Stack Overflows B-4
HP NonStop SQL/MP Programming Manual for C—429847-008
vi

Contents C. Maximizing Local Autonomy
C. Maximizing Local Autonomy
Using a Local Partition C-1

Using TACL DEFINEs C-2

Using Current Statistics C-2

Skipping Unavailable Partitions C-3

D. Converting C Programs
Generating SQL Data Structures D-1

Generating SQLDA Structures D-2

Generating a Version 300 (or Later) SQLDA Structure D-3

Generating a Version 2 SQLDA Structure D-3

Generating a Version 1 SQLDA Structure D-6

Planning for Future PVUs D-8

SQL/MP Version Procedures D-8

RELEASE1 and RELEASE2 Options D-8

Index

Examples
Example 1-1. Static SQL Statements in a C Program 1-4

Example 1-2. Dynamic SQL Statements in a C Program 1-6

Example 2-1. Creating Valid DATETIME and INTERVAL Data Types 2-16

Example 2-2. CREATE TABLE Statements 2-20

Example 2-3. Structures Generated by the INVOKE Directive 2-21

Example 4-1. Using a Static SQL Cursor in a C Program 4-14

Example 5-1. Example of the SQLCAGETINFOLIST Procedure 5-13

Example 5-2. Example of the SQLSADISPLAY Display 5-22

Example 6-1. Sample SQL Compiler Listing 6-25

Example 9-1. Checking the sqlcode Variable 9-5

Example 9-2. Enabling and Disabling the WHENEVER Directive 9-9

Example 9-3. Using the WHENEVER Directive 9-10

Example 9-4. Version 300-325 SQLSA Structure 9-15

Example 9-5. Version 330 (or later) SQLSA Structure 9-16

Example 10-1. SQLDA Structure and Buffers 10-7

Example 10-2. Getting Parameter Values 10-15

Example 10-3. Using Statement and Cursor Host Variables 10-22

Example 10-4. Allocating the SQLDA Structure 10-30

Example 10-5. Allocating Memory for Parameters and Columns 10-32

Example 10-6. Displaying Output 10-34

Example 10-7. Basic Dynamic SQL Program 10-39
HP NonStop SQL/MP Programming Manual for C—429847-008
vii

Contents Examples (continued)
Examples (continued)
Example 10-8. Detailed Dynamic SQL Program 10-44

Example A-1. COPYLIB File for Sample Database A-3

Example D-1. Version 2 SQLDA Structure D-4

Example D-2. Version 1 SQLDA Structure D-6

Figures
Figure i. NonStop SQL/MP Library xvii

Figure ii. Program Development, System and OSS Manuals xviii

Figure 6-1. Explicit SQL Compilation of a C Program on TNS 6-3

Figure 6-2. Explicit SQL Compilation of a C Program on TNS/R 6-4

Figure 6-3. Explicit SQL Compilation of a C Program on TNS/E 6-5

Figure 6-4. SQL/MP Program File Format 6-24

Figure 7-1. Processes Running on a NonStop System 7-4

Figure 8-1. Timestamp Check 8-8

Figure 10-1. DESCRIBE INPUT’s Effect on Names Buffer 10-18

Figure A-1. SQL/MP Sample Database Relations A-2

Tables
Table i. NonStop SQL/MP Library xvi

Table ii. Program Development Manuals xix

Table iii. Guardian Manuals xx

Table iv. Open System Services (OSS) Manuals xx

Table 1-1. SQL/MP Statements and Directives 1-3

Table 2-1. Corresponding SQL and C Character Data Types 2-3

Table 2-2. Corresponding SQL and C Numeric, Date-Time, and INTERVAL Data
Types 2-4

Table 2-3. Date-Time and INTERVAL Data Types 2-13

Table 3-1. Summary of SQL/MP Statements and Directives 3-3

Table 3-2. C Compiler Pragmas for SQL/MP 3-7

Table 4-1. SQL/MP Statements for Data Retrieval and Modification 4-1

Table 4-2. Determining the Cursor Position 4-16

Table 5-1. SQL/MP System Procedures 5-1

Table 5-2. Guardian System Procedures That Return SQL Information 5-2

Table 5-3. SQLCAGETINFOLIST Procedure Error Codes 5-11

Table 5-4. SQLCAGETINFOLIST Procedure Item Codes 5-11

Table 5-5. SQLSADISPLAY Procedure Display Elements 5-22

Table 6-1. C Compilers 6-2

Table 6-2. Compilation Mode and Execution Environment 6-2
HP NonStop SQL/MP Programming Manual for C—429847-008
viii

Contents Tables (continued)
Tables (continued)
Table 9-1. C Compiler Pseudocode for Checking the sqlcode Variable 9-6

Table 9-2. C Identifiers Generated by the INCLUDE SQLCA Directive 9-12

Table 9-3. System Procedures for the SQLCA Structure 9-12

Table 9-4. C Identifiers Generated by the INCLUDE SQLSA Directive 9-14

Table 9-5. SQLSA Structure Fields 9-17

Table 10-1. Dynamic SQL Statements 10-2

Table 10-2. C Identifiers Generated by the INCLUDE SQLDA Directive 10-5

Table 10-3. SQLDA Structure Fields 10-5

Table 10-4. SQLDA Data Type Declarations 10-8

Table 10-5. SQLDA Date-Time and INTERVAL Declarations 10-10

Table 10-6. SQLDA Character-Set IDs 10-11

Table 11-1. Character Processing Rules (CPRL) Procedures 11-1

Table B-1. SQL/MP Data Structures B-1

Table B-2. Virtual Memory Requirements for SQL Statements B-3

Table D-1. Changes to SQL Data Structures D-2

Table D-2. Version 2 SQLDA Structure Fields D-4

Table D-3. Version 1 SQLDA Structure Fields D-6
HP NonStop SQL/MP Programming Manual for C—429847-008
ix

Contents
HP NonStop SQL/MP Programming Manual for C—429847-008
x

What’s New in This Manual

Manual Information
HP NonStop SQL/MP Programming Manual for C

Abstract

This manual documents the programming interface to HP NonStop™ SQL/MP for C
and is intended for application programmers who are embedding SQL statements and
directives in a C program.

Product Version

NonStop SQL/MP G06 and H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all subse-
quent H-series RVUs, G06.00 and all subsequent G-series RVUs, and D46.00 and all subse-
quent D-series RVUs, until otherwise indicated by its replacement publications.

Document History

New and Changed Information

Changes to the H06.25/J06.14 manual:

 Added -Wsqlconnect compiler option in -Wsqlconnect on page 6-33.

 Added -HP_NSK_CONNECT_MODE environment variable option in
HP_NSK_CONNECT_MODE on page 6-34.

Part Number Published

429847-008 August 2012

Part Number Product Version Published

429847-002 NonStop SQL/MP G06 December 2003

429847-003 NonStop SQL/MP G06 December 2004

429847-004 NonStop SQL/MP G06 April 2005

429847-005 NonStop SQL/MP G06 February 2006

429847-007 NonStop SQL/MP G06 and H01 August 2010

429847-008 NonStop SQL/MP G06 and H01 August 2012
HP NonStop SQL/MP Programming Manual for C—429847-008
xi

What’s New in This Manual Changes to the H06.21/J06.06 manual
Changes to the H06.21/J06.06 manual

 Updated footnote about compiler version support under Table 6-1, C Compilers, on
page 6-2.

Changes to the G06.28 Manual

 Added a Note on page 2-5 about the nonsupport for unsigned long long data type.

 Changed the format of short output_file_number under SQLCADISPLAY on
pages 5-4 and 5-20.

 Updated the information in Section 6, Explicit Program Compilation with the
information from the SQL Supplement for H-series RVUs.

 Corrected Example 9-5 on page 9-16.
HP NonStop SQL/MP Programming Manual for C—429847-008
xii

What’s New in This Manual Changes in the G06.26 Manual
 Corrected two field names in:

 Table 9-5 on page 9-17

 Table D-1 on page D-2

Changes in the G06.26 Manual

 Updated information related to process access:

 On page 2-19, for an INVOKE directive

 On page 4-4, for a SELECT statement

 On page 4-8, for an INSERT statement

 On page 4-10, for an UPDATE statement

 On page 4-13, for a DELETE statement

 On page 4-16, for an SQL cursor

 On page 4-19, for an OPEN CURSOR statement

 On page 4-20, for a FETCH statement

 On page 4-21, for a multirow SELECT statement

 On page 4-22, for an UPDATE statement with a cursor

 On page 4-23, for a DELETE statement with a cursor

 On page 6-21, for an UPDATE STATISTICS statement

 Added information about compiling NonStop C programs in the PC environment
under Developing a C Program in a PC Host Environment on page 6-33.

 Added information about process access privileges under Required
Access Authority on page 7-1.

 Corrected coding error on page 10-50 by shifting code from line 374 to 372.

 Changed the real memory from 2 KB to 16 KB pages under Estimating Memory
Requirements on page B-4.
HP NonStop SQL/MP Programming Manual for C—429847-008
xiii

What’s New in This Manual Changes in the G06.26 Manual
HP NonStop SQL/MP Programming Manual for C—429847-008
xiv

About This Manual
This manual describes the NonStop SQL/MP programmatic interface for the HP
implementation of the C language. Using this interface, a C program can access a
NonStop SQL/MP database using embedded SQL statements and directives.

Who Should Read This Guide
This manual is intended for application programmers who are embedding SQL
statements and directives in a C program. The reader should be familiar with:

 The C programming language

 NonStop SQL/MP terms and concepts as described in the Introduction to
NonStop SQL/MP

 The HP NonStop operating system, including either the Guardian or HP NonStop
Open System Services (OSS) environment

Related Manuals
The related manuals that an application programmer might find useful are:

 NonStop SQL/MP library

 Program development manuals

 Guardian system manuals

 OSS manuals
HP NonStop SQL/MP Programming Manual for C—429847-008
xv

About This Manual Related Manuals
Table i describes the manuals in the HP NonStop SQL/MP library.

Table i. NonStop SQL/MP Library

Manual Description

Introduction to NonStop SQL/MP Introduces the NonStop SQL/MP relational
database management system.

SQL/MP Reference Manual Describes the NonStop SQL/MP language
elements, including expressions, functions,
commands, statements, SQLCI utilities and
commands, and report writer commands.
This manual is the printed version of Online
Help.

SQL/MP Messages Manual Describes error and warning numbers and
messages returned by NonStop SQL, the SQL
file system, and FastSort.

SQL/MP Query Guide Describes how to retrieve and modify data in a
NonStop SQL/MP database and how to analyze
and improve query performance.

SQL/MP Version Management Guide Describes the rules governing version
management for the NonStop SQL/MP
software, catalogs, objects, messages,
programs, and data structures.

SQL/MP Installation and Management
Guide

Describes how to plan, install, create, and
manage a NonStop SQL/MP database and SQL
programs.

SQL/MP Report Writer Guide Describes how to use report writer commands
and SQLCI options to design and produce
reports.

SQL/MP Programming Manual for C

SQL/MP Programming Manual for
COBOL

Describes the NonStop SQL/MP programmatic
interface for C and COBOL applications.
HP NonStop SQL/MP Programming Manual for C—429847-008
xvi

About This Manual Related Manuals
Figure i shows the manuals in the NonStop SQL/MP library.

Figure i. NonStop SQL/MP Library

SQL/MP
Glossary

Introduction
to NonStop
SQL/MP

Guides

SQL/MP
Installation
and
Management
Guide

SQL/MP
Report Writer
Guide

SQL/MP
Version
Management
Guide

Reference Manuals

SQL/MP
Messages
Manual

Programming Manuals

VST001.vsd

SQL/MP
Reference
Manual

SQL/MP
Programming
Manual for
COBOL

SQL/MP
Programming
Manual for C

SQL/MP
Query Guide
HP NonStop SQL/MP Programming Manual for C—429847-008
xvii

About This Manual Related Manuals
In addition to the NonStop SQL/MP library, program development, Guardian, and OSS
manuals can be useful to a C programmer. They are shown in Figure ii and described
in Table ii, Table iii on page xx, and Table iv on page xx.

Figure ii. Program Development, System and OSS Manuals

Program Development Manuals

 Guardian Manuals

Guardian
Procedures
Calls
Reference
Manual

Guardian
Application
Conversion
Guide

Guardian
Programmer's
Guide

Guardian
Procedure
Errors and
Messages
Manual

 Open System Services (OSS) Manuals

OSS
Library Calls
Reference
Manual

OSS
Programmer's
Guide

OSS
System Calls
Reference
Manual

OSS
Shell and
Utilities
Reference
Manual

C/C++
Programmer's
Guide

Accelerator
Manual

Binder
Manual

nld and noft
Manual

Inspect
Manual

Guardian
TNS C
Library Calls
Reference
Manual

CROSSREF
Manual

Guardian
TNS/R
Native
C Library
Calls Ref
Manual

VST011.vsd

CRE
Programmer’s
Guide

Debug
Manual
HP NonStop SQL/MP Programming Manual for C—429847-008
xviii

About This Manual Related Manuals

Table ii. Program Development Manuals

Manual Description

C /C++Programmer’s Guide Describes HP extensions to the C and C++
languages, including how to write applications that
run in either the Guardian or OSS environments.

nld and noft Manual Describes how to use the native link editor (nld)
and the native object file tool (noft).

Binder Manual Describes the Binder program, an interactive linker
that enables you to examine, modify, and combine
object files and to generate load maps and cross-
reference listings.

Accelerator Manual Describes how to use the Accelerator to optimize
TNS object code for the TNS/R execution
environment.

CRE Programmer’s Guide Describes the Common Run-Time Environment
(CRE) and how to write and run mixed-language
programs.

CROSSREF Manual Describes the CROSSREF program, which
produces a cross-reference listing of selected
identifiers in an application.

Guardian TNS C Library Calls
Reference Manual

Describes the C run-time library available to TNS
and accelerated programs in the Guardian
environment.

Guardian TNS/R Native C Library
Calls Reference Manual

Describes the C run-time library available to TNS/R
programs in the Guardian environment.

Inspect Manual Describes the Inspect program, an interactive
source-level or machine-level debugger that
enables you to interrupt and resume program
execution and to display and modify variables.

Debug Manual Describes the Debug program, an interactive
machine-level debugger.
HP NonStop SQL/MP Programming Manual for C—429847-008
xix

About This Manual Notation Conventions

Notation Conventions

General Syntax Notation

This list summarizes the conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

EXEC SQL CONTROL EXECUTOR PARALLEL EXECUTION ON;

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

#pragma SQL [option]
 [(option [, option]...)]

Table iii. Guardian Manuals

Manual Description

Guardian Programmer’s Guide Describes how to use Guardian procedure calls
from an application to access operating system
services.

Guardian Procedure Calls Reference
Manual

Describes the syntax for Guardian procedure calls.

Guardian Procedure Errors and
Messages Manual

Describes error codes, error lists, system
messages, and trap numbers for Guardian system
procedures.

Guardian Application Conversion
Guide

Describes how to convert C, COBOL, Pascal, TAL,
and TACL applications to use the extended features
of the HP NonStop operating system.

Table iv. Open System Services (OSS) Manuals

Manual Description

Open System Services Library Calls
Reference Manual

Describes the syntax and semantics of the C run-
time library in the OSS environment.

Open System Services Programmer’s
Guide

Describes how to use the OSS application
programming interface to the operating system.

Open System Services Shell and
Utilities Reference Manual

Describes the syntax and semantics for using the
OSS shell and utilities.

Open System Services System Calls
Reference Manual

Describes the syntax and programming
considerations for using OSS system calls.
HP NonStop SQL/MP Programming Manual for C—429847-008
xx

About This Manual General Syntax Notation
Computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words; enter these items exactly as shown. For
example:

SYSTYPEþOSS

[] Brackets. Brackets enclose optional syntax items. For example:

OUT [list-file]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

[, PAGES num-pages]
[, SQLMAP]
[, WHENEVERLIST]
[, RELEASE1 | RELEASE2]

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

{ PAGE[S] }
{ BYTE[S] }
{ MEGABYTE[S} }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

[RECOMPILEONDEMAND | RECOMPILEALL]

… Ellipsis. An ellipsis immediately following a single syntax item indicates that you can
repeat that syntax item any number of times. An ellipsis immediately following a pair of
brackets or braces indicates that you can repeat the enclosed sequence of syntax
items any number of times. For example:

[, run-option]...

An ellipsis in a programming example indicates that one or more lines of source code
have been omitted.

#include <cextdecs(SQLCAFSCODE)>
...
short fserr;
EXEC SQL INCLUDE SQLCA;
...
fserr = SQLCAFSCODE ((short *) &sqlca);
...

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown.
HP NonStop SQL/MP Programming Manual for C—429847-008
xxi

About This Manual HP Encourages Your Comments
Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

SQLCOMP / IN object-file [, OUT [list-file]] /

If there is no space between two items, spaces are not permitted. In this example,
there are no spaces permitted between the period and any other items:

$process-name.#su-name

i and o. In the syntax diagrams for system procedure calls, i and o are used as follows:

/* i */ Input parameter–passes data to the procedure
/* o */ Output parameter–returns data to the calling program
/* i:o */ Input and output parameter–both passes and returns data

An example of the syntax for a procedure call is as follows:

#include <cextdecs(SQLCAFSCODE)>

short SQLCAFSCODE (short *sqlca, /* i */
 [short first_flg]); /* i */

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
HP NonStop SQL/MP Programming Manual for C—429847-008
xxii

1 Introduction

NonStop SQL/MP is the HP relational database management system (RDBMS) that
uses SQL to define and manipulate data in an SQL/MP database. You can run SQL
statements interactively by using the SQL/MP conversational interface (SQLCI) or
programmatically by embedding SQL statements and directives in a host-language
program written in COBOL, C, Pascal, or TAL. This manual describes the
programmatic interface to NonStop SQL/MP for C programs.

This section discusses:

 Advantages of Using Embedded SQL Statements

 Developing a C Program

 Dynamic SQL on page 1-6

 SQL/MP Version Management on page 1-7

Advantages of Using Embedded
SQL Statements

Using embedded SQL statements and directives in a C program to access an SQL/MP
database has these advantages:

 A high-level, efficient database language––You code a request to access the
database using SQL statements. The SQL/MP optimizer then generates an
efficient path to perform your request.

 Insulation against database changes––If a database administrator modifies an
SQL/MP database (for example, adds a column to a table), the change does not
affect the logic of your program.

 Use of C statements to process data––You can access the database using SQL
statements and then use C statements to process and manipulate the data.

 System support for data consistency––If you require audited tables and views, the
system maintains data consistency with the locking feature and the HP NonStop
Transaction Management Facility (TMF) subsystem.

Developing a C Program
You can embed static or dynamic SQL statements in a C source file. You embed a
static SQL statement as an actual SQL statement and run the SQL compiler to
explicitly compile the statement before you run the program. For a dynamic SQL
statement, you code a placeholder variable for the statement, and then construct,
SQL compile, and run the statement at run time.
HP NonStop SQL/MP Programming Manual for C—429847-008
1-1

Introduction Declaring and Using Host Variables
Declaring and Using Host Variables

A host variable is a C variable with a data type that corresponds to an SQL data type.
You use host variables to provide communication between C and SQL statements and
to receive data from a database or to insert data into a database.

You declare host variables in a Declare Section in the variable declarations part of your
program. A Declare Section begins with the BEGIN DECLARE SECTION directive and
ends with the END DECLARE SECTION directive. In this example, host_variable1,
host_variable2, number and name are host variables.

EXEC SQL BEGIN DECLARE SECTION;
int host_variable1; /* int host variable */
char host_variable2[19]; /* char host variable */
struct host_variable_names
 {
 long number; /* long host variable */
 char name[31]; /* char host variable */
 } hv_names;
...
EXEC SQL END DECLARE SECTION;

The C compiler accepts the CHARACTER SET clause in a host-variable declaration to
associate a single-byte or double-byte character set such as Kanji or KSC5601 with a
host variable.

When you specify a host variable in an SQL statement, precede the host variable
name with a colon (:). In C statements, you do not need the colon, as shown:

EXEC SQL SELECT column1 INTO :host_variable1 FROM =table
 WHERE column1 > :host_variable2;
strcpy(new_name, host_variable1);

For more information, see Section 2, Host Variables.
HP NonStop SQL/MP Programming Manual for C—429847-008
1-2

Introduction Embedding SQL/MP Statements and Directives
Embedding SQL/MP Statements and Directives

Table 1-1 lists the SQL/MP statements and directives you can embed in a C program.

Precede an embedded SQL statement or directive with the EXEC SQL keywords and
terminate it with a semicolon (;).

Table 1-1. SQL/MP Statements and Directives

Type Statement or Directive

Data Declaration BEGIN DECLARE SECTION and END DECLARE SECTION

INVOKE

INCLUDE STRUCTURES

INCLUDE SQLCA, INCLUDE SQLDA, and INCLUDE SQLSA

Data Definition
Language (DDL)

ALTER CATALOG, ALTER COLLATION, ALTER INDEX, ALTER
PROGRAM, ALTER TABLE, and ALTER VIEW

COMMENT

CREATE CATALOG, CREATE COLLATION, CREATE INDEX,
CREATE PROGRAM, CREATE TABLE, and CREATE VIEW

DROP

HELP TEXT

UPDATE STATISTICS

Data Manipulation
Language (DML)

DECLARE CURSOR

OPEN

FETCH

SELECT, INSERT, UPDATE, DELETE

CLOSE

Data Status
Language (DSL)

GET CATALOG OF SYSTEM

GET VERSION (for SQL/MP software, catalogs, and objects)

GET VERSION OF PROGRAM

Dynamic SQL
Operations

PREPARE

DESCRIBE and DESCRIBE INPUT

EXECUTE and EXECUTE IMMEDIATE

RELEASE

Error Processing WHENEVER

Transaction Control BEGIN WORK, COMMIT WORK, and ROLLBACK WORK
HP NonStop SQL/MP Programming Manual for C—429847-008
1-3

Introduction Calling SQL/MP System Procedures
Example 1-1 shows an example of static SQL statements embedded in a C program:

For more information, see Section 3, SQL/MP Statements and Directives and
Section 4, Data Retrieval and Modification.

Calling SQL/MP System Procedures

NonStop SQL/MP provides system procedures, written in TAL, that perform various
SQL operations and functions. For example, the SQLCADISPLAY procedure returns
error information from the SQLDA structure after an SQL statement runs.

You call SQL system procedures from a C program in the same manner you call other
system procedures (for example, FILE_OPEN_, FILE_CLOSE_, or WRITEREAD). The
cextdecs header file contains source declarations for these procedures that you can
include in a program. This example calls the SQLCADISPLAY procedure by using all
default parameters:

#include <cextdecs(SQLCADISPLAY)>
...
SQLCADISPLAY((short *) &sqlca);
... /* Process information from the SQLCA structure */

For more information, see Section 5, SQL/MP System Procedures and Section 11,
Character Processing Rules (CPRL) Procedures.

Example 1-1. Static SQL Statements in a C Program

/* C variable declarations */
...
EXEC SQL BEGIN DECLARE SECTION;

struct in_parts_struc /* host variables */
 {
 short in_partnum;
 long in_price;
 char in_partdesc[19];
 } in_parts;
EXEC SQL END DECLARE SECTION;

void insert_function(void)
{
 ...
 in_parts.in_partnum = 4120;
 in_parts.in_price = 6000000;
 strcpy (in_parts.in_partdesc, "V8 DISK OPTION ");
 EXEC SQL
 INSERT INTO $vol5.sales.parts (partnum, price, partdesc)
 VALUES (:in_parts.in_partnum,
 SETSCALE (:in_parts.in_price,2), /* scale is 2. */
 :in_parts.in_partdesc);
... }
HP NonStop SQL/MP Programming Manual for C—429847-008
1-4

Introduction Compiling and Executing a Host-Language Program
Compiling and Executing a Host-Language Program

The steps to compile and run a C program that contains embedded SQL statements
are similar to the steps you follow for a C program that does not contain embedded
SQL statements. You must perform only one extra step for a host-language program:
compiling the embedded SQL statements using the SQL compiler.

1. Compile the C source file (or files) that contain the embedded SQL statements
using the C compiler. The C compiler generates an object file that contains
C object code and SQL source statements.

2. If necessary, use the Binder program in the TNS environment or the native link
editor utility (nld) in the TNS/R environment to combine multiple object files into
one executable object file.

3. If you compiled the program in the TNS environment but plan to run it in the TNS/R
environment, consider running the Accelerator for the C object file as an optional
step to optimize the object code.

4. Run the SQL compiler (SQLCOMP) to compile the SQL source statements in the
C object file and to validate the output SQL program file for execution.

5. Run the SQL program file from a terminal using the TACL RUN (or RUND)
command or from a process using a system procedure such as NEWPROCESS or
PROCESS_CREATE_.

Version 315 (or later) SQL/MP software supports the development of C programs
containing embedded SQL statements in both the Guardian and OSS environments.
For more information, see Section 6, Explicit Program Compilation and Section 7,
Program Execution.

Processing Errors, Warnings, and Status Information

NonStop SQL/MP returns error and status information to a host-language program
after the execution of each embedded SQL statement or directive. NonStop SQL/MP
returns an SQL error or warning number to the SQLCODE variable and more extensive
information to these SQL data structures:

 SQL communications area (SQLCA)––run-time information, including errors and
warnings, generated by the most recently run SQL statement

 SQL statistics area (SQLSA)––statistics and performance information after the
execution of DML statements and some dynamic SQL statements

 SQL descriptor area (SQLDA)––information about input parameters and output
variables in dynamic SQL statements

For more information about the SQLCA and SQLSA structures, see Section 9, Error
and Status Reporting. For information about the SQLDA structure, see Section 10,
Dynamic SQL Operations.
HP NonStop SQL/MP Programming Manual for C—429847-008
1-5

Introduction Dynamic SQL
Dynamic SQL
With static SQL statements, you code the actual SQL statement in the C source file.
However, with dynamic SQL, a C program can construct, compile, and run an SQL
statement at run time. You code a host variable as a placeholder for the dynamic SQL
statement, which is usually unknown or incomplete until run time.

A dynamic SQL statement requires some input, often from a user at a terminal, to
construct the final statement. The statement is constructed at run time from the user’s
input, compiled by the SQL compiler, and then run by an EXECUTE or EXECUTE
IMMEDIATE statement.

Example 1-2 shows a simple example of a dynamic INSERT statement (which is
similar to the static SQL INSERT statement in Example 1-1 on page 1-4). This program
example dynamically builds an INSERT statement that inserts information into the
PARTS table from information entered by a user.

At run time, the program prompts a user for information to build the INSERT statement.
The user enters this information in the INTEXT variable:

INSERT INTO $vol5.sales.parts (partnum, price, partdesc)
 VALUES (4120, 60000.00, "V8 DISK OPTION")

The program moves the statement to the host variable OPERATION. The program has
declared OPERATION as a host variable so that it is available to both SQL and C
statements. The program then uses the EXECUTE IMMEDIATE statement to compile
and run the INSERT statement in OPERATION. (This program could also have used
the PREPARE and EXECUTE statements to compile and run the statement.)

For more information, see Section 10, Dynamic SQL Operations.

Example 1-2. Dynamic SQL Statements in a C Program

/* C source file */
...
char intext[201];
EXEC SQL BEGIN DECLARE SECTION;
 char operation[201];
EXEC SQL END DECLARE SECTION;

void dynamic_insert_function(void)
{
...
/* User enters INSERT statement in the intext variable. */
strncpy (operation, intext, 201);
EXEC SQL EXECUTE IMMEDIATE :operation;
}

HP NonStop SQL/MP Programming Manual for C—429847-008
1-6

Introduction SQL/MP Version Management
SQL/MP Version Management
Each product version update (PVU) of NonStop SQL/MP has an associated version
number. The first two PVUs were version 1 (C10 and C20) and version 2 (C30).
Version 300 SQL/MP began using a three-digit version number to allow for software
product revisions (SPRs).

A new version number is always greater than the previous number, but the new
number might not follow a constant increment. For example, consecutive version
numbers after version 340 might be 345, 350, and 360.

In addition, SQL objects (tables, indexes, views, collations, and constraints), programs,
and catalogs have associated version numbers. This version number indicates the
SQL features used by the SQL object or program and the SQL/MP software with which
the SQL object or program is compatible. For example, a version 2 table might use the
date-time data types or allow null values in a column. A version 2 table is compatible
with version 2 and version 315 SQL/MP software, but it is not compatible with version 1
software.

This manual includes this version information:

 Using compatible versions of the C compiler, SQL compiler, and SQL executor to
compile and run a program

 Using the data status language (DSL) statements: GET VERSION (for SQL
objects, catalogs, and SQL/MP software), GET VERSION OF PROGRAM, and
GET CATALOG OF SYSTEM

 Generating different versions of the SQLSA and SQLDA structures

 Using run-time SQLSA versioning, which allows a program to use an SQLSA
structure with the same version as the current SQL/MP software for the system
(available with version 340 or later SQL/MP software)

 Converting a C program written for version 1 or version 2 SQL/MP software to use
version 300 (or later) SQL features and data structures

For additional information about version issues, see the SQL/MP Version Management
Guide.
HP NonStop SQL/MP Programming Manual for C—429847-008
1-7

Introduction SQL/MP Version Management
HP NonStop SQL/MP Programming Manual for C—429847-008
1-8

2 Host Variables

A host variable is a data item you can use in both C statements and NonStop SQL/MP
statements to allow communication between the two types of statements. A host
variable appears as a C identifier and can be any C data item declared in a Declare
Section that has a corresponding SQL/MP data type as shown in Table 2-1 on
page 2-3 and Table 2-2 on page 2-4. However, a host variable cannot be the name or
identifier (the left part) of a #define directive.

For static SQL operations, a host variable can be an input or an output variable (or
both in some cases) in an SQL statement. An input host variable transfers data from
the program to the database, whereas an output host variable transfers data from the
database to the program.

(For dynamic SQL operations, input parameters and output variables fulfill the same
function as input and output host variables in static SQL statements.)

An indicator variable is a two-byte integer variable, also declared in a Declare Section,
that is associated with a host variable. An indicator variable indicates whether a
column contains, or can contain, a null value. A null value means that a value is either
unknown for the row or does not apply to the row. A program uses an indicator variable
to insert null values into a database or to test a column value for a null value after
retrieving the value from a database.

Topics include:

 Specifying a Declare Section

 Coding Host Variable Names on page 2-2

 Using Corresponding SQL and C Data Types on page 2-3

 Specifying Host Variables in SQL Statements on page 2-6

 Declaring and Using Host Variables on page 2-7

 Using Indicator Variables for Null Values on page 2-17

 Creating Host Variables Using the INVOKE Directive on page 2-18

 Associating a Character Set With a Host Variable on page 2-24

Specifying a Declare Section
You declare all host variables in a Declare Section. The BEGIN DECLARE SECTION
and END DECLARE SECTION directives designate a Declare Section. Follow these
guidelines when you specify a Declare Section:

 Use the BEGIN DECLARE SECTION and END DECLARE SECTION directives
only in pairs.
HP NonStop SQL/MP Programming Manual for C—429847-008
2-1

Host Variables Coding Host Variable Names
 Place a Declare Section with the C variable declarations. You can specify more
than one Declare Section in a program, if necessary, but you cannot nest Declare
Sections.

 Do not place a Declare Section within a C structure declaration.

 Specify the C #include directive in a Declare Section to copy declarations from
another file. However, do not use the SQL SOURCE directive.

 Use either C or SQL comment statements in a Declare Section.

Coding Host Variable Names
Use C naming conventions for your host variable and indicator variable names.
A name can contain from 1 to 31 alphanumeric characters, including the underscore
(_), and must begin with a letter or an underscore. To avoid conflicts with HP names,
do not begin your names with two underscores or end them with one underscore. This
example uses a Declare Section with host variable names:

EXEC SQL BEGIN DECLARE SECTION;

short order_number; /* simple variables */
char host_var_for_sql_statement;

struct employee /* structure */
{
 short empnum;
 char first_name[16];
 union {
 char last_name[21];
 char name_code_item[3];
 } union_last_name;
 short deptnum;
 short jobcode;
} employee_info;
int *ptr_to_table; /* pointer */

#include copyfile /* copy file */

EXEC SQL END DECLARE SECTION;
HP NonStop SQL/MP Programming Manual for C—429847-008
2-2

Host Variables Using Corresponding SQL and C Data Types
Using Corresponding SQL and C Data Types
Table 2-1 and Table 2-2 on page 2-4 list the corresponding SQL and C data types.

Table 2-1. Corresponding SQL and C Character Data Types

SQL/MP Data Type C Data Type

Fixed-Length Character Data Type **

hostvar CHAR(l)
hostvar PIC X(l)

char hostvar [l + 1]*

Fixed-Length Character Data Type With CHARACTER SET Clause

hostvar CHARACTER (l)
 CHARACTER SET charset

hostvar PIC X(l)
 CHARACTER SET charset

char CHARACTER SET charset hostvar [l
+ 1]*

Fixed-Length Character Data Type With NATIONAL CHARACTER Clause

hostvar NATIONAL CHARACTER
(l)

char CHARACTER SET
 charset hostvar [l + 1]*

Variable-Length Character Data Type **

hostvar VARCHAR(l) struct {
 short len;
 char val [l + 1];*

} hostvar ;

Variable-Length Character Data Type With CHARACTER SET Clause

hostvar VARCHAR (l)
 CHARACTER SET charset

struct {
 short len;
 char CHARACTER SET
 charset val [l + 1];*

} hostvar ;

Variable-Length Character Data Type With NATIONAL CHARACTER Clause

hostvar NATIONAL CHARACTER
 VARYING(l)

struct {
 short len;
 char CHARACTER SET
 defcharset val [l + 1];*

} hostvar ;

hostvar A host variable name; hostvar must follow the naming conventions for a C identifier.

l A positive integer that represents the length in characters of the host variable.

len, val The length and value of the host variable.

charset One of these character-set keywords: KANJI, KSC5601, ISO8859n,
where n is 1 – 9, or UNKNOWN (a single-byte unknown character set).

defcharset The system default multibyte character set; defcharset is KANJI, unless it is otherwise set
or changed during system generation.

* An extra byte is generated as a place holder for a null terminator.
** If a character set is not specified, the character set is UNKNOWN.
HP NonStop SQL/MP Programming Manual for C—429847-008
2-3

Host Variables Using Corresponding SQL and C Data Types
Table 2-2. Corresponding SQL and C Numeric, Date-Time, and INTERVAL Data
Types

SQL/MP Data Type C Data Type

Numeric Data Types

NUMERIC (1 to 4,s) SIGNED short

NUMERIC (1 to 4,s) UNSIGNED unsigned short

NUMERIC (5 to 9,s) SIGNED long

NUMERIC (5 to 9,s) UNSIGNED unsigned long

NUMERIC (10 to 18,s) SIGNED long long

PIC 9(l-s)V9(s) COMP Same as NUMERIC

DECIMAL (l, s) decimal[l + 1]**

PIC 9(l-s)V9(s) decimal[l + 1]**

SMALLINT SIGNED short

SMALLINT UNSIGNED unsigned short

INTEGER SIGNED long

INTEGER UNSIGNED unsigned long

LARGEINT SIGNED long long

FLOAT (1 to 22 bits) float

REAL float

FLOAT (23 to 54 bits) double

DOUBLE PRECISION double

Date-Time and INTERVAL Data Types

DATETIME, TIMESTAMP, DATE, TIME char[l + 1]*

INTERVAL char[l + 1]***

l A positive integer that represents the length. For DECIMAL, l must range from 1 – 18.

s A positive integer that represents the scale of the number.
* An extra byte is generated as a place holder for a null terminator.
** The decimal data type is normally used to declare an array that can hold all the digit characters, the

sign, and, optionally, a null terminator. The size of the array should be no more than 20 (19 plus an
extra byte for the null terminator), or 21 (20 plus an extra byte for the null terminator) if a separate
sign is used.

*** An INTERVAL data type has an extra byte for a sign.
HP NonStop SQL/MP Programming Manual for C—429847-008
2-4

Host Variables Using Corresponding SQL and C Data Types
Data Conversion

NonStop SQL/MP performs the conversion between SQL and C data types:

 When a host variable serves as an input variable (supplies a value to the
database), NonStop SQL/MP first converts the value that the variable contains to a
compatible SQL data type and then uses the value in the SQL operation.

 When a host variable serves as an output variable (receives a value from a
database), NonStop SQL/MP converts the value to the data type of the host
variable.

NonStop SQL/MP supports conversion within character types and numeric types, but
not between character and numeric types.

For conversion between character strings of different lengths, NonStop SQL/MP pads
the receiving string on the right with blanks as necessary. If the receiving string is too
short, NonStop SQL/MP truncates the right part of the longer string and returns a
warning code in the SQLCODE variable.

If an input value is too large for an SQL column, NonStop SQL/MP returns error 8300
(file system error encountered). If you are using the SQLCADISPLAY procedure to
obtain an error message, SQLCADISPLAY also returns file-system error number 1031.

For numeric types, NonStop SQL/MP converts data between signed and unsigned
types and between types with different precisions. Use the SETSCALE function to
communicate a number’s scale to and from a database.

CAST Function

The CAST function allows you to convert a parameter from one data type to another
data type (character and numeric data types only) in dynamic SQL statements. For
information about the CAST function, see the SQL/MP Reference Manual.

Note. C programs that contain an embedded SQL/MP code do not support the use of
unsigned long long C variables even if that data type is not used for the SQL query.

C programs containing unsigned long long C variables outside the EXEC SQL statements
cannot be compiled in the Guardian and OSS environments. A workaround is to use the PC
cross compiler. C programs with unsigned long long variables within the EXEC SQL
statements cannot be compiled because NonStop SQL/MP does not support the unsigned long
long data type.

Note. For optimal performance, declare host variables with corresponding data types and the
same lengths as their respective columns in SQL statements (with consideration for the extra
byte required for the null terminator). This programming practice minimizes the data conversion
performed by NonStop SQL/MP and therefore can improve the performance of your program.
HP NonStop SQL/MP Programming Manual for C—429847-008
2-5

Host Variables Specifying Host Variables in SQL Statements
Specifying Host Variables in SQL Statements
Use this syntax to specify a host variable in an SQL statement. You must precede the
host variable name with a colon (:). The colon causes the C compiler to handle the
name as a host variable. To use a pointer as a host variable in SQL statements, place
the colon before the asterisk.

hostvar

is the host variable name; hostvar can be any valid C identifier with a C data
type that corresponds to an SQL data type, but it cannot be on the left-hand side of
a #define directive. Precede hostvar with a colon (:) in an SQL statement.

INDICATOR

is a keyword that must precede indicator_hostvar.

indicator_hostvar

is an indicator variable of type short. Precede indicator_hostvar with a colon
(:) in an SQL statement.

For values returned to a host variable, indicator_hostvar is –1 if the value is
null or 0 if the value is not null. To insert null values into the database, set
indicator_hostvar to a value less than zero.

:hostvar [[INDICATOR]:indicator_hostvar]

 [TYPE AS { DATETIME [start-date-time TO] end-date-time }
]
 [{ }
]
 [{ DATE }
]
 [{ }
]
 [{ TIME }
]
 [{ }
]
 [{ TIMESTAMP }
]
 [{ }
]
 [{ INTERVAL start-date-time }
]
 [{ [(start-field-precision)] }
]
 [{ [TO end-date-time] }
]

HP NonStop SQL/MP Programming Manual for C—429847-008
2-6

Host Variables Declaring and Using Host Variables
TYPE AS

specifies that the host variable will have the specified date-time (DATETIME,
DATE, TIME, or TIMESTAMP) or INTERVAL data type. If a host variable must
contain date-time or INTERVAL values, define it as a character data type. To cause
NonStop SQL/MP to handle the host variable as a scaled value, either use the
SETSCALE function or define the variable as C data type fixed.

Declaring and Using Host Variables
You can declare and use these data types as host variables:

 Fixed and variable length character data types (CHAR and VARCHAR)

 Structures

 Decimal data types

 Fixed-point data types

 Date-time and INTERVAL data types

Fixed-Length Character Data

The C language uses a character array plus a null terminator (\0) to store a string
literal. Most C string-handling routines (for example, strlen and printf) require the
null terminator. Follow these guidelines when you use character arrays as host
variables for string literals.

Declaring a Character Array

When you declare a character array as a host variable, the C compiler reserves the
last byte of the array as a place holder for a null terminator. Therefore, declare a
character array one byte longer than the actual number of characters. (The INVOKE
directive automatically appends an extra byte to a character array, provided you do not
specify the CHAR_AS_ARRAY option in the SQL pragma.) This declaration is for an SQL
column up to 20 bytes long:

EXEC SQL BEGIN DECLARE SECTION;
 char last_name[21]; /* 20-byte last name */
EXEC SQL END DECLARE SECTION;
...

Selecting Character Data

When selecting character data from a database to return to a host variable array,
NonStop SQL/MP does not append a null terminator to the data. Therefore, before
using the array in a C string-handling routine that requires a null terminator, you must
append a null terminator to the array. This example selects character data from the
HP NonStop SQL/MP Programming Manual for C—429847-008
2-7

Host Variables Fixed-Length Character Data
SHIPMENTS table and appends a null terminator to the prod_desc array before
printing the data:

EXEC SQL BEGIN DECLARE SECTION;
 short prod_num;
 char prod_desc[11];
EXEC SQL END DECLARE SECTION;
...

EXEC SQL
 SELECT prod_num, prod_desc INTO :prod_num, :prod_desc
 FROM =shipments WHERE prod_num > min_num;
...
/* append null terminator before displaying string */
prod_desc[11] = "\0";
printf("%d %s\n", prod_num, prod_desc);

Inserting Character Data

In an SQL/MP database, fixed-length character columns are always padded with
blanks. Therefore, if the number of characters in an array is less than the size of the
character column, pad the array with blanks before inserting it into the database.
Otherwise, the INSERT statement stores the null terminator in the database, and
comparison operations fail. This example inserts data into the PRODUCTS table. The
prod_desc array is six bytes long (five byes for the column value and one byte for the
null terminator).

void function(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char prod_desc[6]; /* Use for a 5-character column */
 EXEC SQL END DECLARE SECTION;
 memcpy(prod_desc, "abc ", 5); /* copy 5 characters */
 /* (abc plus 2 blanks) */
 ...
 EXEC SQL INSERT INTO =products VALUES (:prod_desc);
}

This example pads the prod_desc array with blanks before it inserts the array into the
database:

/* Routine to pad an array of characters */
/* with blanks on the right. */
void blank_pad(char *buf, size_t size)
{
 size_t i;
 i = strlen(buf);
 if (i < size)
 memset(&buf[i], ' ', size - i);
}

void function(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
HP NonStop SQL/MP Programming Manual for C—429847-008
2-8

Host Variables Variable-Length Character Data
 char prod_desc[6]; /* use for 5-character column */
 EXEC SQL END DECLARE SECTION;

 strcpy(prod_desc, "abc"); /* Copy 3 characters and */
 /* null terminator */
 ...
 /* Do not include space for null byte in the size */
 blank_pad(prod_desc, sizeof prod_desc - 1);
 EXEC SQL INSERT INTO =products VALUES (:prod_desc);
}

Variable-Length Character Data

The VARCHAR data type represents one data element; however, the C compiler
converts the type to a structure with two data items. The C compiler derives the group
item name from the VARCHAR column name and the names of the subordinate data
items, where:

 len is a numeric data item that represents the length.

 val is a fixed-length character data item for the string, plus an extra byte for the
null terminator, if the SQL pragma specifies the CHAR_AS_STRING option.

For example, if a column CUSTNAME is defined as VARCHAR(26), and the SQL
pragma specifies the CHAR_AS_STRING option, INVOKE generates this structure:

struct
{
 short len;
 char val[27];
} custname;

You can refer to the individual data items or the structure name as host variables.

If you explicitly declare a structure as a host variable for a VARCHAR column (rather
than using INVOKE), declare the length as a short data type (and not an int).

Structures

You can refer to a structure name as a host variable only if the structure corresponds
to a VARCHAR data type. For structures that do not correspond to a VARCHAR data
type, the fields within the structure are the host variables. However, when you refer to
an individual field name in the structure, you must include the structure name with the
field name. For example, the structure employee_info contains the empid and
empname fields:

EXEC SQL BEGIN DECLARE SECTION;
struct employee
{
 long empid;
 char empname[21];
} employee_info;
EXEC SQL END DECLARE SECTION;
HP NonStop SQL/MP Programming Manual for C—429847-008
2-9

Host Variables Structures
To use a field as a host variable in an SQL statement, refer to the field by using the
structure name:

EXEC SQL SELECT empid, empname
 INTO :employee_info.empid, :employee_info.empname
 ... ;
HP NonStop SQL/MP Programming Manual for C—429847-008
2-10

Host Variables Decimal Data Types
Decimal Data Types

Use the DECIMAL data type for ASCII numeric data. Because a decimal string is
actually a fixed-length character string that contains only ASCII digits, considerations
for fixed-length character strings also apply to decimal strings. Follow these guidelines
when you use character arrays as host variables for DECIMAL data:

 Declare a decimal array one byte larger than the number of digits you expect to
store in the array.

 Append a null terminator to an SQL/MP decimal string before you process it as a
C decimal string.

 Right justify a C decimal string and pad the string on the left with ASCII zeros up to
the length of the corresponding SQL column before you insert the value into the
database.

HP C does not support direct manipulation of decimal strings. To perform C arithmetic
operations on SQL columns of DECIMAL data type, first convert the column to an
integral type using the dec_to_longlong routine.

HP C also provides the longlong_to_dec routine to convert type long long to type
decimal. Although the longlong_to_dec routine supports a variety of formats for
signed decimal strings, NonStop SQL/MP supports only the embedded leading signed
format. Therefore, always specify the embedded leading signed format when you
intend to pass the converted decimal string to NonStop SQL/MP.

For more information about C routines, see the C/C++ Programmer’s Guide.

Fixed-Point Data Types

HP C does not have a data type that maps directly to a fixed-point number (that is, an
SQL numeric data type with scale). If you transfer fixed-point values to integral or
floating-point host variables, consider these guidelines:

 When you transfer a fixed-point value to a host variable of floating-point data type,
NonStop SQL/MP converts the fixed-point value to a floating-point value and
generates a warning to indicate a loss of precision.

 When you transfer a fixed-point value into an integer host variable, NonStop
SQL/MP stores the integral part of the value and generates a warning to indicate a
loss of data (the fractional part). To retain the fractional part, use the SETSCALE
function to scale the fixed-point value before transferring it to the host variable.

SETSCALE Function

The SETSCALE function directs NonStop SQL/MP to use a host variable in SQL
statements as if the host variable were declared with a specific scale. Use the
SETSCALE function for these operations:

 To insert scaled values (for example, prices) into a database
HP NonStop SQL/MP Programming Manual for C—429847-008
2-11

Host Variables Fixed-Point Data Types
 To select database values into host variables

 To refer to values stored in the database for comparisons

The SETSCALE function has this syntax:

host-variable

is an integer host variable.

indicator-variable

is an indicator variable associated with the host variable.

scale

specifies the scale of host-variable. The values for scale depend on the size
of host-variable:

Follow these guidelines when you use the SETSCALE function:

 If you are transferring a value from a host variable to a database using an INSERT
or UPDATE statement, you must assign a value to the host variable that allows for
the scale. For example, to insert a price of $123.45, assign 12345 to hostvar and
specify a scale of 2.

 If you are retrieving a value from a database using a SELECT statement, NonStop
SQL/MP returns a value that allows for the scale in the host variable. For
example, if your program specifies a scale of 2 in the SELECT statement and
123.45 is stored in the database, SQL/MP returns 12345 to the host variable.

 The scale is valid only for SQL statements. If you use the SETSCALE function in
SQL statements and the host variables in calculations using C statements, the
C statements must handle the scale.

 To use SETSCALE in an expression, apply the SETSCALE function to each
operand individually rather than to the result of the expression. For example, this
expression adds two prices with a scale of 2 decimal places:

SETSCALE (:price1, 2) + SETSCALE (:price2, 2)

SETSCALE (:host-variable
 [[INDICATOR] :indicator-variable] , scale)

Size Values

2-byte integers 0 – 5 decimal digits

4-byte integers 0 – 10 decimal digits

8-byte integers 0 – 18 decimal digits
HP NonStop SQL/MP Programming Manual for C—429847-008
2-12

Host Variables Date-Time and INTERVAL Data Types
 When you use the INVOKE directive for a column with a scaled data type, the
C compiler generates a comment that shows the scale of the column. For example,
for price with data type NUMERIC (8,2), INVOKE generates the following:

long price; /* scale is 2 */

These examples use the =parts DEFINE to represent the PARTS table. The first
example inserts a new row with the value 98.34 in the PARTS.PRICE column after
storing the value in the host variable host_var1. The value is multiplied by 100 for
storing as a whole number.

host_var1 = 9835;
EXEC SQL INSERT INTO =parts (price)
 VALUES (SETSCALE (:host_var1, 2)) ;

The next example updates the PARTS.PRICE column for a disk controller to 158.34.
The value is multiplied by 100 and stored in the host variable host_var2.

host_var2 = 15834;
EXEC SQL UPDATE =parts
 SET price = SETSCALE (:host_var2, 2)
 WHERE parts.partdesc = "disk controller" ;

The next example retrieves the value in the PARTS.PRICE column for a disk controller
and stores the value in the host variable host_var3. The value has a scale of 2.

EXEC SQL SELECT parts.price INTO SETSCALE (:host_var3, 2)
 FROM =parts
 WHERE parts.partdesc = "disk controller" ;

The next example retrieves the part description for the part with a price of 999.50. The
PARTS.PRICE value is stored in the host variable host_var4 and passed to NonStop
SQL/MP in the search condition. The retrieved value is stored in the host variable
host_varstore.

host_var4 = 99950;
EXEC SQL SELECT parts.partdesc INTO :host_varstore
 FROM =parts
 WHERE parts.price = SETSCALE (:host_var4,2);

Date-Time and INTERVAL Data Types

Table 2-3 describes the SQL/MP date-time and INTERVAL data types you can use for
host variables.

Table 2-3. Date-Time and INTERVAL Data Types (page 1 of 2)

Data Type Description

DATETIME Represents a date and time from year to microsecond (logical subsets,
such as MONTH TO DAY, are allowed)

DATE Represents a date and is a synonym for DATETIME YEAR TO DAY
HP NonStop SQL/MP Programming Manual for C—429847-008
2-13

Host Variables Date-Time and INTERVAL Data Types
To communicate date-time or INTERVAL values between C and SQL statements,
declare a character array as a host variable and then use the TYPE AS clause to
cause NonStop SQL/MP to interpret the value as a date-time or INTERVAL value. For
the syntax of the TYPE AS clause, see Specifying Host Variables in SQL Statements
on page 2-6.

You can insert or retrieve date-time values in any of three formats, independently of the
SQL column definition. For example, you can specify formats such as 08/15/1996,
1996-08-15, or 15.08.1996. You control the display format by inserting the value in the
format you want and retrieving the value using the DATEFORMAT function. You must
declare the host variable size to be consistent with the format you plan to use.

This example inserts date-time values into the BILLINGS table:

EXEC SQL BEGIN DECLARE SECTION;
 struct billing_rec
 {
 char custnum[4];
 char start_date[11];
 char billing_date[11];
 char time_before_pmt[5];
 };
 struct billing_rec billings = { ' ',' ',' ',' ' };
...
EXEC SQL END DECLARE SECTION;
...
strcpy(billings.billing_date, "1996-08-20");
strcpy(billings.time_before_pmt, " 90");
...
EXEC SQL
 INSERT INTO billings VALUES
 ("923", DATE "1985-10-15",
 :billing_date TYPE AS DATE,
 :time_before_pmt TYPE AS INTERVAL DAY);
...

When you invoke a column with a date-time (DATETIME, DATE, TIME, or
TIMESTAMP) or INTERVAL data type, the data is represented as a character field. The
size of the field is determined by the range of the date-time or INTERVAL column. You
control the display format by inserting the value in the format you want and retrieving
the value using the DATEFORMAT function. If you use INVOKE to generate host
variables from an SQL table definition, you can specify the DATEFORMAT clause to
determine the size.

TIME Represents a time and is a synonym for DATETIME HOUR TO SECOND

TIMESTAMP Represents a date and time and is a synonym for DATETIME YEAR TO
FRACTION(6)

INTERVAL Represents a duration of time as a year-month or day-time interval

Table 2-3. Date-Time and INTERVAL Data Types (page 2 of 2)
HP NonStop SQL/MP Programming Manual for C—429847-008
2-14

Host Variables Date-Time and INTERVAL Data Types
INTERVAL values are represented as character strings with a separator between the
values of the fields (year-month or day-time). An extra byte is generated at the
beginning of the INTERVAL string for a sign. The default representations for DATE and
INTERVAL values are shown in these examples.

DATE Representation

The column definition and representation in the table for December 22, 1988 is:

birth_date DATE

If the DATEFORMAT clause on the INVOKE directive specifies DEFAULT, a column
with the range of fields YEAR TO DAY is represented as an 11-character string
(10 characters plus a byte for a null character). The C compiler creates this structure:

struct employee_rec {
 char name[18];
 char birth_date[11];
};

INTERVAL Representation

The column definition and representation in the table for 36 years, 7 months is:

AGE INTERVAL YEAR(2) TO MONTH

The C compiler creates this structure:

 struct employee_rec {
 char name[21];
 char age[7];
 };

012

1 9 8 8 1 2 2 2

Year Separator Month Separator Day Null

013

+ 3 6 0 7

Sign Year Separator Month Null
HP NonStop SQL/MP Programming Manual for C—429847-008
2-15

Host Variables Date-Time and INTERVAL Data Types
Example—Creating DATETIME and INTERVAL Data Types

Example 2-1. Creating Valid DATETIME and INTERVAL Data Types

#include <stdio.h>
#include <string.h>
#include <sql.h>

#define STMT_LEN 256

EXEC SQL BEGIN DECLARE SECTION;
short sqlcode;
char hv_projdesc[30];
char hv_start_date[11];
char in_start_date[11];
char curspec[STMT_LEN];
EXEC SQL END DECLARE SECTION;

int main()
{
 int len;
 strcpy(curspec,
 "SELECT projdesc, CAST(start_date AS CHAR(10)) FROM test1 "
 "WHERE start_date <= CAST(CAST(? AS CHAR(10)) "
 "AS DATE) BROWSE ACCESS");
 len = strlen(curspec);
 memset(&curspec[len], ' ', STMT_LEN - len);

 EXEC SQL PREPARE cursor_spec from :curspec;

 /* Declare the dynamic cursor from the prepared statement. */
 EXEC SQL DECLARE get_proj CURSOR FOR cursor_spec;

 /* Initialize the parameter in the WHERE clause. */
 printf("Enter the most recent start date in the form yyyy-mm-dd: ");
 scanf("%s", in_start_date);

 /* Open the cursor using the value of the dynamic parameter. */
 EXEC SQL OPEN get_proj USING :in_start_date;

 /* Fetch the first row of the result table. */
 EXEC SQL FETCH get_proj INTO :hv_projdesc,:hv_start_date;

 while (sqlcode == 0)
 {
 hv_start_date[10]='\0';
 printf("\n Start Date: %s", hv_start_date);

 /* Fetch the next row of the result table. */
 EXEC SQL FETCH get_proj INTO :hv_projdesc,:hv_start_date;
 }
 /* Close the cursor. */
 EXEC SQL CLOSE get_proj;

 return 0;
}

HP NonStop SQL/MP Programming Manual for C—429847-008
2-16

Host Variables Using Indicator Variables for Null Values
Using Indicator Variables for Null Values
A null value in an SQL column indicates that the value is either unknown for the row or
is not applicable to the row. A program inserts a null value or tests for a null value
using an indicator variable. An indicator variable is a 2-byte integer variable associated
with the host variable that sets or receives the actual column value.

The INVOKE directive automatically declares indicator variables for columns defined to
allow null values. For information, see Using Indicator Variables With the INVOKE
Directive on page 2-22.

A program can use an indicator variable associated with a host variable:

 To insert values into a database with an INSERT or UPDATE statement

 To test for a null value after retrieving a value from a database with a
SELECT statement

Inserting a Null Value

To insert values into a database with an INSERT or UPDATE statement, a program
sets the indicator variable to less than zero (0) for a null value or zero (0) for a nonnull
value before executing the statement. This statement inserts values into the ODETAIL
table. The columns UNIT_PRICE and QTY_ORDERED allow null values.

EXEC SQL INSERT INTO =odetail
 (ordernum, partnum, unit_price, qty_ordered)
 VALUES (:odetail.ordernum,
 :odetail.partnum,
 :odetail.unit_price :odetail.unit_price_i,
 :odetail.qty_ordered :odetail.qty_ordered_i);

Testing For a Null Value

To test for a null value, a program tests the indicator variable associated with a host
variable. This example selects values from the ODETAIL table and returns the values
to host variables. After the SELECT statement runs, the example tests the indicator
variable for a null value. If the value of the indicator variable is less than 0, the
associated column contains a null value.

EXEC SQL SELECT ordernum, partnum, unit_price, qty_ordered
 INTO :odetail.ordernum,
 :odetail.partnum,
 :odetail.unit_price INDICATOR :odetail.unit_price_i,
 :odetail.qty_ordered INDICATOR
 :odetail.qty_ordered_i,
 FROM sales.odetail
 WHERE ordernum = 300380 AND partnum = 2402 ;
...
if ((odetail.unit_price_i < 0) ||
 (odetail.qty_ordered_i < 0))
 handle_null_value();
HP NonStop SQL/MP Programming Manual for C—429847-008
2-17

Host Variables Retrieving Rows With Null Values
else display_result();
...

Retrieving Rows With Null Values

You can use an indicator variable to insert null values into a database or to test for a
null value after you retrieve a row. However, you cannot use an indicator variable set to
–1 in a WHERE clause to retrieve a row that contains a null value. In this case,
NonStop SQL/MP does not find the row and returns an sqlcode of 100, even if a
column actually contains a null value.

To retrieve a row that contains a null value, use the NULL predicate in the WHERE
clause. For example, to retrieve rows that have null values from the EMPLOYEE table
using a cursor, specify the NULL predicate in the WHERE clause in the associated
SELECT statement when you declare the cursor:

/* Declare a cursor to find rows with null salaries. */
EXEC SQL DECLARE get_null_salary CURSOR FOR
 SELECT empnum, first_name, last_name,
 deptnum, jobcode, salary
 FROM =employee
 WHERE salary IS NULL;
...
EXEC SQL OPEN get_null_salary ;
...

EXEC SQL FETCH get_null_salary INTO
 :employee_record.empnum,
 :employee_record.first_name,
 :employee_record.last_name,
 :employee_record.deptnum,
 :employee_record.jobcode,
 :employee_record.salary ;

/* Test SQLCODE. */
/* Process the row that contains the null salary. */
/* Branch back to FETCH the next row. */
...
EXEC SQL CLOSE get_null_salary ;

Creating Host Variables Using the INVOKE
Directive

The INVOKE directive creates host variables that correspond to columns in an SQL
table or view. INVOKE converts the column names to C identifiers and generates a
C declaration for each column. When a column allows null values, INVOKE also
creates an indicator variable for the column. For views only, INVOKE includes the
system-defined primary keys in the definition. You can use a class MAP DEFINE name
for a table or view name in an INVOKE directive, but not for a record name.
HP NonStop SQL/MP Programming Manual for C—429847-008
2-18

Host Variables Advantages of Using an INVOKE Directive
To run an INVOKE directive, a process started by the program must have read access
to the invoked tables or views during C compilation. For details, see Required
Access Authority on page 7-1.

The CHAR_AS_STRING and CHAR_AS_ARRAY options of the SQL pragma affect the
INVOKE directive as follows:

 The CHAR_AS_STRING option (the default) causes INVOKE to generate character
data types with an extra byte for a null terminator.

 The CHAR_AS_ARRAY option causes INVOKE to generate character data types
without the extra byte for a null terminator.

Advantages of Using an INVOKE Directive

You can declare a host variable as a C structure corresponding to an SQL table or
view without using an INVOKE directive. However, using an INVOKE directive to
generate host variables has these advantages:

 Program independence––If you modify a table or view, the INVOKE directive
re-creates the host variables to correspond to the new table or view when you
recompile the program. (You must, however, modify a program that refers to a
deleted column or must access a new column.)

 TACL DEFINEs––The INVOKE directive accepts a class MAP DEFINE name for a
table or view name (but not for a structure tag).

 Program performance––The INVOKE directive maps SQL data types to the
corresponding C data types. No data conversion is required at run time.

 Program readability and maintenance––The INVOKE directive creates host
variables using the same names as column names in the table or view and
generates comments that show the table or view name and the time and date of
the definition.

C Structures Generated by the INVOKE Directive

These examples show the correspondence between tables TYPESC1 and TYPESC2
that contain columns of various SQL data types and the C structures generated by the
INVOKE directive. Example 2-2 on page 2-20 shows the CREATE TABLE statements
that generate the tables, and Example 2-3 on page 2-21 shows the structures
generated by the INVOKE directives.
HP NonStop SQL/MP Programming Manual for C—429847-008
2-19

Host Variables C Structures Generated by the INVOKE Directive
Example 2-2. CREATE TABLE Statements

CREATE TABLE \NEWYORK.$DISK1.SQL.TYPESC1 (
type_char CHAR (10) NOT NULL,
type_char_null CHAR (10)
,
type_varchar VARCHAR (10) NOT NULL,
type_varchar_null VARCHAR (10)
,
type_num4_s NUMERIC (4) SIGNED NOT NULL,
type_num4_u NUMERIC (4) UNSIGNED NOT NULL,
type_num9_s NUMERIC (9,2) SIGNED NOT NULL,
type_num9_u NUMERIC (9,2) UNSIGNED NOT NULL,
type_num18_s NUMERIC (18,2) SIGNED NOT NULL,
type_small_s SMALLINT SIGNED NOT NULL,
type_small_u SMALLINT UNSIGNED NOT NULL,
type_int_s INTEGER SIGNED NOT NULL,
type_int_u INTEGER UNSIGNED NOT NULL,
type_large_s LARGEINT SIGNED NOT NULL,
type_decs DECIMAL (18,2) SIGNED NOT NULL,
type_dec_u DECIMAL (9,2) UNSIGNED NOT NULL,
type_pic_s PIC 9(9) COMP NOT NULL,
type_picx PIC X(10) NOT NULL,
type_picx_long PIC XXXXXXXXXXXXXXXXXXXX NOT NULL,
type_float_15 FLOAT (15) NOT NULL,
type_float_30 FLOAT (30) NOT NULL,
type_real REAL NOT NULL,
type_dbl_prec DOUBLE PRECISION NOT NULL,
type_datetime DATETIME YEAR TO DAY NOT NULL,
type_date DATE NOT NULL,
type_time TIME NOT NULL,
type_timestamp TIMESTAMP NOT NULL,
type_interval INTERVAL YEAR TO MONTH NOT NULL,
type_char_null_ok CHAR(10) DEFAULT NULL,
type_num_null_ok SMALLINT DEFAULT NULL
) CATALOG $SQL.SQLCAT ;
CREATE TABLE \NEWYORK.$DISK1.SQL.TYPESC2 (
type_char1 CHARACTER (10) CHARACTER SET ISO88591 NOT
NULL,
type_char1_null CHARACTER (10) CHARACTER SET ISO88591
,
type_char2 CHARACTER (10) CHARACTER SET KANJI NOT NULL,
type_char2_null CHARACTER (10) CHARACTER SET KANJI
,
type_nchar NCHAR (10) NOT NULL,
type_nchar_v NCHAR VARYING (10) NOT NULL
type_varchar1 VARCHAR (10) CHARACTER SET ISO88591 NOT
NULL,
type_varchar2 VARCHAR (10) CHARACTER SET KANJI NOT NULL,
type_picx1 PIC X(10) CHARACTER SET ISO88591 NOT NULL,
type_picx2 PIC X(10) CHARACTER SET KANJI NOT NULL
) CATALOG $SQL.SQLCAT ;
HP NonStop SQL/MP Programming Manual for C—429847-008
2-20

Host Variables C Structures Generated by the INVOKE Directive
These INVOKE directives are coded in a C source file:

EXEC SQL BEGIN DECLARE SECTION;
EXEC SQL INVOKE \newyork.$disk1.sql.typesc1 AS typesc1_struc;
EXEC SQL INVOKE \newyork.$disk2.sql.typesc1 AS typesc2_struc;
EXEC SQL END DECLARE SECTION;

Example 2-3. Structures Generated by the INVOKE Directive (page 1 of 2)

/* Record Definition for table \NEWYORK.$DISK1.SQL.TYPESC1
*/
/* Definition current at 13:52:15 - 8/27/96 */
 struct typesc1_type {
 char type_char[11];
 short type_char_null_i;
 char type_char_null[11];
 struct {
 short len;
 char val[11];
 } type_varchar;
 short type_varchar_null_i;
 struct {
 short len
 char val[11];
 } type_varchar_null;
 short type_num4_s;
 unsigned short type_num4_u;
 long type_num9_s; /* scale is 2 */
 unsigned long type_num9_u; /* scale is 2 */
 long long type_num18_s; /* scale is 2 */
 short type_small_s;
 unsigned short type_small_u;
 long type_int_s;
 unsigned long type_int_u;
 long long type_large_s;
 decimal type_decs[19]; /* scale is 2 */
 decimal type_dec_u[10]; /* scale is 2 */
 unsigned long type_pic_s;
 char type_picx[11];
 char type_picx_long[21];
 float type_float_15;
 double type_float_30;
 float type_real;
 double type_dbl_prec;
 char type_datetime[11];
 char type_date[11];
HP NonStop SQL/MP Programming Manual for C—429847-008
2-21

Host Variables Using Indicator Variables With the INVOKE Directive
Using Indicator Variables With the INVOKE Directive

The INVOKE directive automatically generates a two-byte indicator variable with data
type short for each host variable corresponding to a column that allows a null value.
The name of the indicator variable is the same as the name of the corresponding
column plus a prefix, if you specify one, and a suffix. When you do not specify a prefix
or suffix, INVOKE appends the default suffix _I to the indicator variable name.

If a column name is 30 or 31 characters and the default indicator suffix _I is used, the
_I is truncated, and the indicator variable name is then identical to the corresponding
host variable name. To prevent this problem, use the PREFIX or NULL STRUCTURE
clause for column names that are 30 or 31 characters.

The format of the indicator variable name depends on the PREFIX, SUFFIX, and NULL
STRUCTURE clauses.

 char type_time[9];
 char type_timestamp[27];
 char type_interval[7];
 short type_char_null_ok_i;
 char type_char_null_ok[11];
 short type_num_null_ok_i;
 short type_num_null_ok; };
/* Record Definition for table \NEWYORK.$DISK1.SQL.TYPESC2
*/
/* Definition current at 13:52:19 - 8/27/96 */
 struct typesc2_type {
 char CHARACTER SET ISO88591 type_char1[11];
 short type_char1_null_i;
 char CHARACTER SET ISO88591
type_char1_null[11];
 char CHARACTER SET KANJI type_char2[11];
 short type_char2_null_i;
 char CHARACTER SET KANJI type_char2_null[11];
 char CHARACTER SET KANJI type_nchar[11];
 struct {
 short len;
 char CHARACTER SET KANJI val[11];
 } type_nchar_v;
 struct {
 short len;
 char CHARACTER SET ISO88591 val[11];
 } type_varchar1;
 struct {
 short len;
 char CHARACTER SET KANJI val[11];
 } type_varchar2;
 char CHARACTER SET ISO88591 type_picx1[11];
 char CHARACTER SET KANJI type_picx2[11];
 };

Example 2-3. Structures Generated by the INVOKE Directive (page 2 of 2)
HP NonStop SQL/MP Programming Manual for C—429847-008
2-22

Host Variables Using Indicator Variables With the INVOKE Directive
PREFIX and SUFFIX Clauses

The PREFIX and SUFFIX clauses cause INVOKE to generate an indicator variable
name derived from the column name and the prefix or suffix. This example shows an
INVOKE directive with the PREFIX and SUFFIX clauses as it appears in a C source
program:

EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE ctable PREFIX beg_ SUFFIX _end;
EXEC SQL END DECLARE SECTION;

The C compiler generates this structure:

/* Record Definition for table \SYS.$DSK.PERSNL.CTABLE */
/* Definition current at 15:32:39 - 09/22/95 */
 struct ctable_type {
 short beg_znum_end;
 long znum;
 short beg_zchar_end;
 char zchar[16];
 };

NULL STRUCTURE Clause

The NULL STRUCTURE clause causes INVOKE to generate a structure for a column
that contains an indicator variable. The NULL STRUCTURE clause assigns the name
indicator to all indicator variables in the structure.

This example shows an INVOKE directive with the NULL STRUCTURE clause as it
appears in a C source program:

EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE emptbl AS emptbl_rec NULL STRUCTURE;
...
EXEC SQL END DECLARE SECTION;
...

The C compiler generates this structure:

/* Record Definition for table \SYS.$VOL.SUBVOL.EMPTBL */
/* Definition current at 16:07:00 - 05/17/94 */

 struct emptbl_rec {
 unsigned short empnum;
 struct {
 short indicator;
 char valu[16];
 } first_name;
 char last_name[21];
 struct {
 short indicator;
 char valu[11];
 } retire_date;
 };
HP NonStop SQL/MP Programming Manual for C—429847-008
2-23

Host Variables Using INVOKE With SQLCI
Using INVOKE With SQLCI

You can also run the INVOKE directive interactively through SQLCI to create host
variable declarations in a copy file. For example, this INVOKE directive generates a C
copy file from the DEPT table:

>> INVOKE =dept FORMAT C TO copylib (deptrec);
 ...

Using INVOKE with SQLCI provides less program independence than embedding
INVOKE in your program, because you must re-create the host variable declarations if
the referenced table changes. However, when necessary, you can edit the host
variables before copying them into your program’s compilation unit.

Use the #include directive, not the SQL SOURCE directive to copy the host variable
declarations in your program’s compilation unit.

Associating a Character Set With a Host
Variable

By default, NonStop SQL/MP associates a single-byte character set with a host
variable. To associate a specific character set such as Kanji or KSC5601 with a host
variable, include the CHARACTER SET clause in the host variable declaration using
this syntax:

CHARACTER SET [IS]

are keywords that must precede the character set name. You must specify the
CHARACTER SET clause in uppercase letters. If you omit the clause, the
character set defaults to UNKNOWN.

charset

is the character set name, which must be one of these keywords (in uppercase
letters): ISO8859n (n ranges from 1 through 9), KANJI, KSC5601, or UNKNOWN.
The UNKNOWN keyword indicates an unknown single-byte character set and is
equivalent to omitting the CHARACTER SET clause.

hostvar

is the name of the host variable, which must follow the naming conventions for a
C identifier.

length

is the length in characters (not bytes) of the host variable. length must also
include an extra byte for the null terminator, if the SQL pragma specifies the
CHAR_AS_STRING option (the default).

char [CHARACTER SET [IS] charset] hostvar [length]

Note. NonStop SQL/MP does not support the C wchar_t data type.
HP NonStop SQL/MP Programming Manual for C—429847-008
2-24

Host Variables Treatment in C Statements
Treatment in C Statements

A C statement treats a host variable declared with the CHARACTER SET clause as if
the host variable had been declared without the clause. A C statement also treats the
host variable length as the specified length multiplied by the number of bytes per
character plus the null terminator if the SQL pragma specifies the CHAR_AS_STRING
option (the default). These examples show this treatment for single-byte and double-
byte character set declarations:

VARCHAR Data Type

If you specify the CHARACTER SET clause with a host variable declared as a
VARCHAR data type, you must set the length data item (len in the next example) of
the VARCHAR group item to the host variable length in bytes and not characters.

For example, this host variable declaration specifies the double-byte KANJI character
set for emp_name. The C assignment statement sets the length (emp_name.len) of
the host variable name to 16 characters because the name (emp_name.val) contains
8 double-byte characters (which are represented as “c1c2c3c4c5c6c7c8”).

EXEC SQL BEGIN DECLARE SECTION;
struct {
 short len;
 char CHARACTER SET KANJI val[10];
} emp_name;
EXEC SQL END DECLARE SECTION;
...
/* Insert data into the data base. */

strcpy (emp_name.val, "c1c2c3c4c5c6c7c8");
emp_name.len = strlen(emp_name.val);
EXEC SQL
 INSERT INTO =employee VALUES (:emp_name);
...

/* Select data from the data base. */

EXEC SQL
 SELECT employee_name INTO :emp_name FROM =employee;
emp_name.val[emp_name.len] = '\0';
...

The last C assignment statement sets the null terminator after the SELECT statement
returns the employee name from the EMPLOYEE table.

Host Variable Declaration Treatment in C Statements

char CHARACTER SET ISO88591 hostv1[5] char hostv1[5]

char CHARACTER SET KANJI hostv2[10] char hostv2[20]
HP NonStop SQL/MP Programming Manual for C—429847-008
2-25

Host Variables VARCHAR Data Type
HP NonStop SQL/MP Programming Manual for C—429847-008
2-26

3
SQL/MP Statements and Directives

For a detailed description, including the syntax, of all SQL/MP statements and
directives, see the SQL/MP Reference Manual.

This section includes:

 Embedding SQL Statements

 Finding Information on page 3-3

Embedding SQL Statements
Use this syntax to embed a NonStop SQL/MP statement or directive in a C source file.

sql-statement-or-directive

is any SQL statement or directive shown in Table 3-1 on page 3-3. The statement
or directive must begin with the keywords EXEC SQL and end with a semicolon (;).

Coding Statements and Directives

In general, handle embedded SQL statements and directives as if they were
C statements. Follow the same formatting and line continuation conventions that you
use for C statements. Here are a few specific guidelines to follow when you code
embedded SQL statements and directives in a C program:

 Do not nest SQL statements or directives.

 Use only SQL comments in SQL statements and directives. SQL comments begin
with a double hyphen (--) and end with the end of the line. You cannot use
C comments in SQL statements or directives.

 Use only the C string delimiter, a double quote ("), for quoted strings.

 Code an SQL statement or directive on a single source code line or over several
lines:

EXEC SQL WHENEVER SQLERROR :handle_error;

EXEC SQL DROP TABLE \ny.$disk1.invent.supplier;

EXEC SQL
 SELECT customer.custname
 INTO :customer.custname

EXEC SQL sql-statement-or-directive ;
HP NonStop SQL/MP Programming Manual for C—429847-008
3-1

SQL/MP Statements and Directives Placing Statements and Directives
 FROM =customer
 WHERE custnum = :find_this_customer

;

Placing Statements and Directives

Place SQL statements and directives and C compiler pragmas in a C source file.

SQL Pragma

To use embedded SQL statements and directives in a C program, you must specify the
SQL pragma before any SQL or C statements (except comment statements). You can
specify the SQL pragma either in your source file or as a compiler option in the implicit
TACL RUN command that starts the C compiler. This example uses the SQL pragma in
a source code file:

#pragma SQL

This example uses the SQL pragma as a compiler option:

C / IN csrc, OUT $s.#clst, NOWAIT / cobj; SQL

After the SQL pragma, place other SQL statements and directives in a C source file as
described in these paragraphs.

C Variable Declarations

You can use these statements and directives with C variable declarations:

 BEGIN DECLARE SECTION and END DECLARE SECTION directives

 DECLARE CURSOR statements for static SQL operations

 INVOKE directive

 INCLUDE STRUCTURES directive

 INCLUDE SQLCA, INCLUDE SQLSA, and INCLUDE SQLDA directives

C Executable Statements

You can use these statements with C executable statements:

 Data manipulation language (DML) statements

 Data control language (DCL) statements

 Data definition language (DDL) statements

 Data status language (DSL) statements

 Transaction control statements

 Dynamic SQL statements (including DECLARE CURSOR)
HP NonStop SQL/MP Programming Manual for C—429847-008
3-2

SQL/MP Statements and Directives Finding Information
Anywhere in the Program

You can use these directives anywhere in a C program:

 WHENEVER directives

 SQL SOURCE directive

 CONTROL directives

Finding Information
Table 3-1 lists SQL/MP statements and directives you can embed in a C program and
indicates where each statement or directive is documented.

Table 3-1. Summary of SQL/MP Statements and Directives (page 1 of 4)

Statement or Directive Manual * Description

Data Declaration Directives

BEGIN DECLARE SECTION SQLRM
SQLPM/C

Designates the beginning of host variable
declarations.

END DECLARE SECTION SQLRM
SQLPM/C

Designates the end of host variable
declarations.

INCLUDE STRUCTURES SQLRM
SQLPM/C

Specifies the version of SQL structures
generated.

INCLUDE SQLCA SQLRM
SQLPM/C

Generates the SQLCA structure for run-
time status and error information.

INCLUDE SQLDA SQLRM
SQLPM/C

Generates the SQLDA structure to receive
information about input and output
variables for dynamic SQL statements.

INCLUDE SQLSA SQLRM
SQLPM/C

Generates the SQLSA structure to receive
execution statistics about DML or
PREPARE statements.

INVOKE SQLRM
SQLPM/C

Generates a structure description of a table
or view.

*This statement is documented in one or more of these manuals:
SQLRM SQL/MP Reference Manual
SQLPM/C SQL/MP Programming Manual for C
HP NonStop SQL/MP Programming Manual for C—429847-008
3-3

SQL/MP Statements and Directives Finding Information
Data Definition Language (DDL) Statements

ALTER CATALOG SQLRM Alters the security attributes of a catalog.

ALTER COLLATION SQLRM Alters the security attributes of a collation;
renames a collation.

ALTER INDEX SQLRM Alters security attributes of indexes; alters
physical file attributes of indexes and
partitions of indexes; adds and drops
partitions; renames indexes and partitions.

ALTER PROGRAM SQLRM Alters security attributes for a program;
renames a program.

ALTER TABLE SQLRM Alters security attributes of tables; alters
physical file attributes of tables and
partitions of tables; alters the HEADING
attribute for columns of tables and views;
adds and drops table partitions; renames
tables and partitions of tables; adds new
columns to tables.

ALTER VIEW SQLRM Alters security attributes for a view or
renames a view.

COMMENT SQLRM Adds a comment to an object definition.

CREATE SQLRM Creates a collation, constraint, catalog,
index, table, or view.

DROP SQLRM Drops a collation, constraint, catalog, index,
program, table, or view.

HELP TEXT SQLRM Specifies help text for a column of a table
or view.

UPDATE STATISTICS SQLRM Updates information about the contents of a
table and its indexes.

Error Checking Directives

WHENEVER SQLRM
SQLPM/C

Generates code that checks SQL statement
execution for errors, warnings, and the not
found condition for rows.

Table 3-1. Summary of SQL/MP Statements and Directives (page 2 of 4)

Statement or Directive Manual * Description

*This statement is documented in one or more of these manuals:
SQLRM SQL/MP Reference Manual
SQLPM/C SQL/MP Programming Manual for C
HP NonStop SQL/MP Programming Manual for C—429847-008
3-4

SQL/MP Statements and Directives Finding Information
Data Manipulation Language (DML) Statements

CLOSE SQLRM
SQLPM/C

Terminates a cursor.

DECLARE CURSOR SQLRM
SQLPM/C

Defines a cursor.

DELETE SQLRM
SQLPM/C

Deletes rows from a table or view.

FETCH SQLRM
SQLPM/C

Retrieves a row from a cursor.

INSERT SQLRM
SQLPM/C

Inserts rows into a table or view.

OPEN SQLRM
SQLPM/C

Opens a cursor.

SELECT SQLRM
SQLPM/C

Retrieves data from tables and views.

UPDATE SQLRM
SQLPM/C

Updates values in columns of a table or
view.

Data Control Language (DCL) Statements

CONTROL EXECUTOR SQLRM
SQLPM/C

Specifies whether to process data using a
single executor or multiple executors
working in parallel.

CONTROL QUERY SQLRM
SQLPM/C

Specifies whether to optimize query time for
the first few rows or for all rows, whether to
consider a hash join algorithm for executing
queries, or whether to use execution-time
name resolution.

CONTROL TABLE SQLRM
SQLPM/C

Specifies parameters that control locks,
opens, buffers, access paths, join methods,
and join sequences on tables and views.

FREE RESOURCES SQLRM Closes cursors and releases locks held by
the program.

LOCK TABLE SQLRM Locks a table or underlying tables of a view
and associated indexes.

UNLOCK TABLE SQLRM Releases locks held on nonaudited tables
and views.

Table 3-1. Summary of SQL/MP Statements and Directives (page 3 of 4)

Statement or Directive Manual * Description

*This statement is documented in one or more of these manuals:
SQLRM SQL/MP Reference Manual
SQLPM/C SQL/MP Programming Manual for C
HP NonStop SQL/MP Programming Manual for C—429847-008
3-5

SQL/MP Statements and Directives Finding Information
Data Status Language (DSL) Statements

GET CATALOG OF SYSTEM SQLRM Returns the name of a local or remote
system catalog.

GET VERSION SQLRM
SQLPM/C

Returns the version of a catalog, collation,
index, table, or view; also returns the
version of the SQL/MP system software.

GET VERSION OF
PROGRAM

SQLRM
SQLPM/C

Returns the program catalog version
(PCV), program format version (PFV), or
host object SQL version (HOSV) of an SQL
program file.

Transaction Control Statements

BEGIN WORK SQLRM Starts a TMF transaction.

COMMIT WORK SQLRM Commits all database changes made
during the current TMF transaction and
frees resources.

ROLLBACK WORK SQLRM Backs out the current TMF transaction and
frees resources.

Dynamic SQL Statements

DESCRIBE SQLRM
SQLPM/C

Returns information about output variables
for a prepared statement.

DESCRIBE INPUT SQLRM
SQLPM/C

Returns information about input variables
for a prepared statement.

EXECUTE SQLRM
SQLPM/C

Runs a prepared SQL statement.

EXECUTE IMMEDIATE SQLRM
SQLPM/C

Runs an SQL statement contained in a host
variable.

PREPARE SQLRM
SQLPM/C

Compiles a DDL, DML, DCL, or DSL
statement.

RELEASE SQLRM Deallocates memory for a dynamic SQL
statement referred to through a host
variable.

Table 3-1. Summary of SQL/MP Statements and Directives (page 4 of 4)

Statement or Directive Manual * Description

*This statement is documented in one or more of these manuals:
SQLRM SQL/MP Reference Manual
SQLPM/C SQL/MP Programming Manual for C
HP NonStop SQL/MP Programming Manual for C—429847-008
3-6

SQL/MP Statements and Directives Finding Information
Table 3-2 summarizes the C compiler pragmas that apply to a C program containing
embedded SQL statements and directives. For a description of all C compiler pragmas,
see the C/C++ Programmer’s Guide.

Table 3-2. C Compiler Pragmas for SQL/MP

Pragma Manual* Description

SQL SQLPM/C
CPG

Indicates to the C compiler that a program contains
embedded SQL statements and directives.

Also specifies options for processing the SQL statements
or directives:

 SQLMAP generates an SQL map in the listing.

 WHENEVERLIST writes active WHENEVER options to
the listing file after each SQL statement is processed.

 RELEASE1 or RELEASE2 specifies the version of the
SQL/MP features in the program (including the SQL
data structures) and the version of SQL/MP software
on which the program file can run.

SQLMEM SQLPM/C
CPG

Controls the placement of SQL internal structures in either
the user data segment or extended data segment.

SQLMEM applies only to the C compiler on TNS systems.
The native mode C (NMC) compiler on TNS/R systems
ignores this pragma.

* This statement is documented in one or more of these manuals:
CPG C/C++ Programmer’s Guide
SQLPM/C SQL/MP Programming Manual for C
HP NonStop SQL/MP Programming Manual for C—429847-008
3-7

SQL/MP Statements and Directives Finding Information
HP NonStop SQL/MP Programming Manual for C—429847-008
3-8

4 Data Retrieval and Modification

You can access data in an SQL/MP database using this Data Manipulation Language
(DML) statements in a C program:

 Simple data manipulations––SELECT (single-row), INSERT, UPDATE, and
DELETE statements

 Cursor operations––DECLARE CURSOR, OPEN, FETCH, and CLOSE statements
where the cursor contains a SELECT, UPDATE, or DELETE statement

Topics include:

 Opening and Closing Tables and Views on page 4-2

 Single-Row SELECT Statement on page 4-4

 Multirow SELECT Statement on page 4-6

 INSERT Statement on page 4-8

 UPDATE Statement on page 4-10

 DELETE Statement on page 4-12

 Using SQL Cursors on page 4-14

Table 4-1 provides some guidelines for using these statements.

Table 4-1. SQL/MP Statements for Data Retrieval and Modification (page 1 of 2)

SQL/MP Statement Description

Single-Row SELECT statement Retrieves a single row of data from a table or
protection view and places the specified column
values in host variables. Use when you need to
retrieve only a single row.

SELECT statement with a cursor Retrieves a set of rows from a table or view, one row
at a time, and places the specified column values in
host variables. Use when you need to retrieve more
than one row.

INSERT statement Inserts one or more rows into a table or protection
view. Use for all INSERT operations.

UPDATE statement without a cursor Updates the values in one or more columns in a
single row or a set of rows of a table or protection
view. Use when you do not need to test a column
value in a row before you update the row.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-1

Data Retrieval and Modification Opening and Closing Tables and Views
Opening and Closing Tables and Views
NonStop SQL/MP automatically opens and closes tables and views during the
execution of DDL statements, DML statements, and SQL utility operations such as a
LOAD or COPY. NonStop SQL/MP opens a table or view when a host-language
program runs the first SQL statement that refers to the table or view and then closes
the table or view when the program that opened it stops. A program cannot explicitly
open an SQL table or view; however, a program can force NonStop SQL/MP to close a
table using the CLOSE TABLES option of the FREE RESOURCES statement.

By default, NonStop SQL/MP opens partitions of base tables and indexes only if they
are needed by a program. To cause NonStop SQL/MP to open all indexes and
partitions the first time a partition is accessed, use the OPEN ALL option of the
CONTROL TABLE directive.

Causes of SQL Error 8204 (Lost Open Error)

SQL error 8204 is sometimes referred to as the “lost open” error. This scenario
explains how this error can occur:

UPDATE statement with a cursor Updates the values in one or more columns in a set
of rows, one row at a time. Use when you need to
test a column value in a row before you update the
row.

DELETE statement without a cursor Deletes a single row or a set of rows from a table or
protection view. Use when you do not need to test a
column value in a row before you delete the row.

DELETE statement with a cursor Deletes a set of rows, one row at a time, from a table
or protection view. Use when you need to test a
column value in a row before you delete the row.

Note. Using a cursor can sometimes degrade a program’s performance. A cursor operation
requires the OPEN, FETCH, and CLOSE statements, which increases the number of
messages between the file system and disk process. Therefore, consider not using a cursor if
a single-row SELECT statement is sufficient.

Note. Using the CONTROL TABLE statement with the OPEN ALL option could increase the
amount of work done by an SQL statement. For efficient performance, use the OPEN ALL
option with the CONTROL TABLE statement only if all these are true:

 When all open activity must occur when the program first starts (add a "dummy" call to the
cursor during initialization).

 When the object containing the cursor will eventually access all partitions.

 When the plan for the cursor is not a parallel plan.

Table 4-1. SQL/MP Statements for Data Retrieval and Modification (page 2 of 2)

SQL/MP Statement Description
HP NonStop SQL/MP Programming Manual for C—429847-008
4-2

Data Retrieval and Modification Recovering From SQL Error 8204
1. A program accesses a table or view using one or more static DML statements
(SELECT, INSERT, UPDATE, or DELETE) or a static cursor. The SQL executor
opens the table or view for the program.

2. Any locks associated with the statements in Step 1 are released (for example,
because the transaction ended). Another user then runs one of these DDL
statements or utility operations for the table or view, which causes the system to
terminate the program’s open:

 ALTER TABLE with ADD COLUMN, ADD PARTITION, DROP PARTITION, or
RENAME

 ALTER TABLE with AUDIT, BUFFERED, LOCKLENGTH, MAXEXTENTS,
SERIALWRITES, TABLECODE, or VERIFIEDWRITES

 ALTER INDEX with ADD PARTITION, DROP PARTITION, or RENAME

 ALTER INDEX with BUFFERED, MAXEXTENTS, TABLECODE,
SERIALWRITES, or VERIFIEDWRITES

 ALTER VIEW with RENAME

 CREATE CONSTRAINT and CREATE INDEX

 DROP CONSTRAINT, DROP INDEX, DROP TABLE,
or DROP VIEW (protection view only)

 UPDATE STATISTICS

 COPY, LOAD, PURGEDATA, or RESTORE utility operation

(A disk or network line that goes down and then comes up again can also cause
the system to terminate a program’s open.)

3. The program tries to run another SQL statement for the table or view.

4. The SQL executor tries to recover, as described next. However, if it cannot recover
from the error, the executor returns error -8204 to the program, and the program
loses its open for the table or view.

Recovering From SQL Error 8204

If a program runs a static DML statement and the open for a table or view it is using
has been lost because of a DDL statement or utility operation, the SQL executor tries
to recover as described next.

Simple DML Statements

For static DML statements (SELECT, INSERT, UPDATE, and DELETE), the SQL
executor reopens the changed table or view and then retries the DML statement once
using the new definition of the table or view. If the retry is successful, the SQL executor
returns a warning (8204) to the program. However, if the retry fails, the SQL executor
returns an error (-8204).
HP NonStop SQL/MP Programming Manual for C—429847-008
4-3

Data Retrieval and Modification Single-Row SELECT Statement
To recover from SQL error -8204 for a simple DML statement, a program might need to
abnormally terminate the transaction and restart the operation from its beginning.

Because some DDL changes can invalidate a DML statement, the SQL executor might
first need to recompile the DML statement to use the new definition of the changed
table or view. In some cases, the similarity check can prevent recompilation. For more
information, see Section 8, Program Invalidation and Automatic SQL Recompilation.

If the program does not allow automatic recompilation (the NORECOMPILE option is
set), the SQL executor returns error -8027. In this case, you must explicitly recompile
the program using the new definition of the table or view.

Static Cursor Operations

For a static cursor operation, the SQL executor tries to reestablish the open in these
situations:

 The program has not yet opened the cursor.

 The program has opened the cursor, but the OPEN CURSOR statement did not
require any input host variables, and the first FETCH statement has not yet been
run.

However, if the problem occurs on a FETCH statement, the SQL executor closes the
cursor and returns error -8204. The program must then close and reopen the cursor
before executing a subsequent FETCH statement. The program might need to
abnormally terminate the transaction and restart the cursor operation from its
beginning.

Single-Row SELECT Statement
A single-row SELECT statement retrieves a single row of data from one or more tables
or views and places the column values into corresponding host variables.

To select a set of rows, one row at a time using a cursor, see Using SQL Cursors on
page 4-14.

To run a SELECT statement, a process started by the program must have read access
to all tables, protection views, and the underlying tables of any shorthand views used in
the statement. For details, see Required Access Authority on page 7-1.

Do not use an asterisk (*) in a SELECT statement in a C program. A SELECT
statement with an asterisk always assigns columns in the result table from the current
definition of the referenced tables or views. If columns have been added to a table, the
retrieved data values might not be in the expected order.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-4

Data Retrieval and Modification Using a Column Value to Select Data
NonStop SQL/MP returns these values to sqlcode after a SELECT statement:

For more information about sqlcode, see Section 9, Error and Status Reporting.

Using a Column Value to Select Data

This SELECT statement returns a row containing a customer’s name and address
based on the unique value of a column (a nonkey value). Each customer is identified
by a unique number so that only one customer satisfies the query. This example uses
a WHERE clause to specify that the CUSTOMER.CUSTNAME column contains a
unique value equal to the host variable find_this_customer. (This example sets
find_this_customer to customer number 5635 using an assignment statement,
but in a typical application, a user would enter the number.)

EXEC SQL BEGIN DECLARE SECTION;
struct customer_type /* host variables */
{
 short custnum;
 char custname[19];
 char street[23];
 char city[15];
 char state[13];
 char postcode[11];
} customer;

int find_this_customer;
EXEC SQL END DECLARE SECTION;
...

...
void not_found_function(void) /* For NOT FOUND condition */
{
...
}
void find_record(void)
{
find_this_customer = 5635;
EXEC SQL SELECT customer.custname,
 customer.street,
 customer.city,
 customer.state,
 customer.postcode
 INTO :customer.custname,
 :customer.street,
 :customer.city,
 :customer.state,

sqlcode Value Description

 0 The SELECT statement was successful.

100 No rows qualified for the SELECT statement specification.

 <0 An error occurred; sqlcode contains the error number.

 >0 (¦100) A warning occurred; sqlcode contains the warning number.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-5

Data Retrieval and Modification Using a Primary Key Value to Select Data
 :customer.postcode
 FROM sales.customer
 WHERE customer.custnum = :find_this_customer
 BROWSE ACCESS;

/* Process data returned by the SELECT statement */
...
}
int main(void)
{
EXEC SQL WHENEVER NOT FOUND CALL :not_found_function;

find_record();
...
}

Using a Primary Key Value to Select Data

This SELECT statement returns an employee’s first name, last name, and department
number from the EMPLOYEE table using a primary key value (EMPNUM column). The
WHERE clause specifies that the selected row contains a primary key with a value
equal to the host variable find_this_employee. The SELECT statement retrieves
only one row because the primary key value is unique.

find_this_employee = input_empnum /* set host variable */

EXEC SQL SELECT employee.first_name,
 employee.last_name,
 employee.deptnum
 INTO :employee.first_name,
 :employee.last_name,
 :employee.deptnum
 FROM persnl.employee
 WHERE employee.empnum = :find_this_employee;

Multirow SELECT Statement
Applications frequently request a group of rows for display on a screen, then request
the next sequential group of rows.

If the operation is performed in a Pathway environment, a context-free server must
receive the starting position for requesting the next set of records from the requester. It
cannot save the starting position from a previous operation.

Assume that the initial request from the requester passes a blank or zeros, and that
each subsequent request passes the search column values of the last record returned.
The server uses the values sent from the requester to establish the starting position in
the table. The server fetches the next set of rows from that position.

These examples illustrate several ways to define cursors that reposition on a key
value. The illustrations start with a simple solution and proceed to increasingly complex
solutions.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-6

Data Retrieval and Modification Simple Example
Simple Example

In this example, the search is performed on one column, which is the primary key of
the table. For example, a cursor SELECT to retrieve all the columns in the EMPLOYEE
table by primary key.

The WHERE clause in this example selects on a primary key value. This means that
the SQL compiler can choose the primary index as the access path so that each
FETCH statement returns the next row in primary key sequence. This code is simple
and efficient:

SELECT EMPNUM, FIRST_NAME, LAST_NAME, DEPTNUM, SALARY
 FROM =EMPLOYEE
 WHERE EMPNUM > :LASTEMPNUM
 ORDER BY EMPNUM

A More Complex Example

In a slightly more complex example, suppose that the search uses a column that is not
the primary key (for example, the column LAST_NAME). In this case, the query should
be faster if there is an index on LAST_NAME. Suppose that there is an index on
LAST_NAME in this example:

SELECT EMPNUM, FIRST_NAME, LAST_NAME, DEPTNUM, SALARY
 FROM =EMPLOYEE
 WHERE LAST_NAME> :LAST-LNAME
 ORDER BY LAST_NAME

When an index on a nonkey column is efficient and available, the SQL compiler
probably chooses that index.

The Most Complex Example

A more complex problem occurs when the key is composed of multiple columns. In this
case, you should generally use a multivalue predicate for the comparison. This type of
predicate compares multiple columns with multiple values.

Suppose that you want to retrieve the next row in sequence by last name and first
name, and an index exists on the two columns containing the last name and the first
name. Code this type of request by using a multivalue predicate. A multivalue
predicate allows you to concatenate two or more columns and compare them with two
or more concatenated values. This type of predicate retrieves the next name in
sequence. For example:

SELECT EMPNUM, FIRST_NAME, LAST_NAME, DEPTNUM, SALARY
 FROM =EMPLOYEE
 WHERE (LAST_NAME, FIRST_NAME) > :LAST_NAME, :FIRST_NAME
 ORDER BY LAST_NAME, FIRST_NAME

If there is an index on the two columns LAST_NAME and FIRST_NAME in that order,
this query is probably as efficient as it can be.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-7

Data Retrieval and Modification INSERT Statement
Do not code this request with this WHERE clause:

WHERE LAST_NAME > :LAST-LNAME
 AND FIRST_NAME > :LAST-FNAME

This clause does not retrieve names with the same last name as :LAST-LNAME and a
first name greater than :LAST-FNAME.

Also, do not code this request with this WHERE clause:

WHERE ((LAST_NAME = :LAST-LNAME
 AND FIRST_NAME > :LAST-FNAME)
 OR LAST_NAME > :LAST-LNAME)

This clause would produce the correct results, but very slowly. Whenever possible,
avoid the OR disjunctive in a WHERE clause.

INSERT Statement
The INSERT statement inserts one or more rows into a table or protection view. To
insert data, a program moves the new data to a series of host variables and then runs
an INSERT statement to transfer these host variable values to the table.

To run an INSERT statement, a process started by the program must have read and
write access to the table or view receiving the data and read access to tables or views
that you include in a SELECT statement. For details, see Required Access Authority
on page 7-1.

NonStop SQL/MP returns these values to sqlcode after an INSERT statement.

If an INSERT statement runs successfully, the SQLCA structure contains the number
of rows inserted. (If the INSERT statement fails, do not rely on the SQLCA structure for
an accurate count of the number of rows inserted.) To return the contents of the
SQLCA, use the SQLCADISPLAY or SQLCATOBUFFER procedure.

For more information, see Section 5, SQL/MP System Procedures and Section 9, Error
and Status Reporting.

sqlcode Value Description

 0 The INSERT statement was successful.

100 No rows qualified for an insert using a SELECT statement
specification.

 <0 An error occurred; sqlcode contains the error number.

 >0 (¦100) A warning occurred; sqlcode contains the first warning number.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-8

Data Retrieval and Modification Inserting a Single Row
Inserting a Single Row

This INSERT statement inserts a row (JOBCODE and JOBDESC columns) into the
JOB table:

EXEC SQL BEGIN DECLARE SECTION;
short hv_jobcode; /* host variables */
char hv_jobdesc[18];
...
EXEC SQL END DECLARE SECTION;
...
void insert_job(void)
{
/* Set the values of hv_jobcode and hv_jobdesc */
...

EXEC SQL INSERT INTO persnl.job
 (jobcode, jobdesc)
 VALUES (:hv_jobcode, :hv_jobdesc) ;
...
}

If the INSERT operation fails, check for SQL error 8227, which indicates you attempted
to insert a row with an existing key (primary or unique alternate).

Inserting a Null Value

This example inserts a row into the EMPLOYEE table and sets the SALARY column to
a null value using an indicator variable:

/* Variable declarations: */
EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE persnl.employee AS emp_tbl;
 struct emp_tbl emp;
 ...
 short ind_1;
EXEC SQL END DECLARE SECTION;
...
/* Executable statements: */
ind_1 = -1;
EXEC SQL INSERT INTO persnl.employee
 VALUES (:emp.empnum, :emp.first_name,
 :emp.last_name, :emp.deptnum, :emp.jobcode,
 :emp.salary INDICATOR :ind_1);

This example uses the NULL keyword instead of an indicator variable:

EXEC SQL INSERT INTO persnl.employee
 VALUES (:emp.empnum, :emp.first_name,
 :emp.last_name, :emp.deptnum, :emp.jobcode,
 NULL);
HP NonStop SQL/MP Programming Manual for C—429847-008
4-9

Data Retrieval and Modification Inserting a Timestamp Value
Inserting a Timestamp Value

This example inserts a timestamp value into tablet.columna. The columna
definition specifies the data type TIMESTAMP DEFAULT CURRENT. The example
uses the JULIANTIMESTAMP system procedures and the SQL
CONVERTTIMESTAMP function. To call system procedures, a program must include
declarations from the cextdecs header file.

#include <cextdecs(JULIANTIMESTAMP)>
...
EXEC SQL BEGIN DECLARE SECTION;
 long long dtvar;
EXEC SQL END DECLARE SECTION;
short sqlcode;

int main(void)
{
...
/* Get Julian timestamp in GMT: */
dtvar = JULIANTIMESTAMP();
EXEC SQL BEGIN WORK;
/* Insert value into tablet: */
EXEC SQL INSERT INTO tablet (columna)
 VALUES (CONVERTTIMESTAMP (:dtvar));
EXEC SQL COMMIT WORK;
...
}

UPDATE Statement
The UPDATE statement updates the values in one or more columns in a single row or
in a set of rows of a table or protection view.

To update a set of rows, one row at a time using a cursor, see Using SQL Cursors on
page 4-14.

To run an UPDATE statement, a process started by the program must have read and
write access to the table or view being updated and read access to tables or views
specified in subqueries of the search condition. For details, see Required
Access Authority on page 7-1.

For audited tables and views, NonStop SQL/MP holds a lock on an updated row until
the TMF transaction is committed or rolled back. For a nonaudited table, NonStop
SQL/MP holds the lock until the program releases it.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-10

Data Retrieval and Modification Updating a Single Row
NonStop SQL/MP returns these values to sqlcode after an UPDATE statement.

The UPDATE statement updates rows in sequence. If an error occurs, NonStop
SQL/MP returns an error code to sqlcode and terminates the UPDATE operation.
The SQLCA structure contains the number of rows that have been updated. (If the
UPDATE statement fails, do not rely on the SQLCA structure for an accurate count of
the number of updated rows.) To return the contents of the SQLCA structure, use the
SQLCADISPLAY or SQLCATOBUFFER procedure.

For more information, see Section 5, SQL/MP System Procedures and Section 9, Error
and Status Reporting.

Updating a Single Row

This example updates a single row of the ORDERS table that contains information
about the order number specified by update_ordernum. In a typical application, a
user enters the values for update_date and update_ordernum.

EXEC SQL BEGIN DECLARE SECTION;
struct orders_type
{
 long ordernum;
 long order_date;
 long deliv_date;
 short salesrep;
 short custnum;
} orders;

long newdate;
EXEC SQL END DECLARE SECTION;
...

...
void update_orders(void)
{ ...

newdate = update_date;
orders.ordernum = update_ordernum;

EXEC SQL UPDATE sales.orders SET deliv_date = :newdate
 WHERE ordernum = :orders.ordernum
 STABLE ACCESS;
...
}

sqlcode Value Description

 0 The UPDATE statement was successful.

100 No rows were found on a search condition.

 <0 An error occurred; sqlcode contains the error number.

 >0 (¦100) A warning occurred; sqlcode contains the first warning number.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-11

Data Retrieval and Modification Updating Multiple Rows
If the UPDATE operation fails, check for SQL error 8227, which indicates you
attempted to update a row with an existing key (primary or unique alternate).

Updating Multiple Rows

If you do not need to check a value in a row before you update the row, use a single
UPDATE statement to update multiple rows in a table.

This example updates the SALARY column of all rows in the EMPLOYEE table where
the SALARY value is less than hostvar_min_salary. A user enters the values for
hostvar_inc and hostvar_min_salary.

EXEC SQL
 UPDATE persnl.employee
 SET salary = salary * :hostvar_inc
 WHERE salary < :hostvar_min_salary;

This example updates all rows in the EMPLOYEE.DEPTNUM column that contain the
value in hostvar_old_deptnum. After the update, all employees who were in the
department specified by hostvar_old_deptnum moved to the department specified
by hostvar_new_deptnum. A user enters the values for hostvar_old_deptnum
and hostvar_new_deptnum.

EXEC SQL UPDATE persnl.employee
 SET deptnum = :hostvar_new_deptnum
 WHERE deptnum = :hostvar_old_deptnum;

Updating Columns With Null Values

This example updates the specified SALARY column to a null value using an indicator
variable. The set_to_nulls host variable specifies the row to update.

/* indicator-var is set to -1 */
EXEC SQL UPDATE persnl.employee
 SET SALARY = :emp_tbl.salary
 INDICATOR :indicator_var
 WHERE :emp_tbl.jobcode = set_to_nulls;

This example uses the NULL keyword instead of an indicator variable:

EXEC SQL UPDATE persnl.employee SET SALARY = NULL
 WHERE :emp_tbl.jobcode = set_to_nulls;

DELETE Statement
The DELETE statement deletes one or more rows from a table or protection view. If
you delete all rows from a table, the table still exists until it is deleted from the catalog
by a DROP TABLE statement. (To delete a set of rows, one row at a time using a
cursor, see Using SQL Cursors on page 4-14.)
HP NonStop SQL/MP Programming Manual for C—429847-008
4-12

Data Retrieval and Modification Deleting a Single Row
To run a DELETE statement, a process started by the program must have read and
write access to the table or view and to tables or views specified in subqueries of the
search condition. For details, see Required Access Authority on page 7-1.

NonStop SQL/MP returns these values to sqlcode after a DELETE statement.

After a successful DELETE operation, the SQLCA structure contains the number of
rows deleted. If an error occurs, the SQLCA contains the approximate number of rows
deleted. To return the contents of the SQLCA, use SQLCA_DISPLAY2_ or
SQLCA_TOBUFFER2_ procedure. For more information, see Section 5, SQL/MP
System Procedures and Section 9, Error and Status Reporting.

Deleting a Single Row

To delete a single row, move a key value to a host variable and then specify the host
variable in the WHERE clause. This example deletes only one row of the EMPLOYEE
table because each value in empnum (the primary key) is unique. A user enters the
value for the host variable hostvar_empnum.

EXEC SQL DELETE FROM persnl.employee
 WHERE empnum = :hostvar_empnum;

Deleting Multiple Rows

If you do not need to check a column value before you delete a row, use a single
DELETE statement to delete multiple rows in a table. This example deletes all rows (or
employees) from the EMPLOYEE table specified by delete_deptnum (which is
entered by a user).

EXEC SQL DELETE FROM persnl.employee
 WHERE deptnum = :delete_deptnum ;

This example deletes all suppliers from the PARTSUPP table who charge more than
terminal_max_cost for a terminal. Terminal part numbers range from
term_first_num to term_last_num.

EXEC SQL DELETE FROM invent.partsupp
 WHERE partnum BETWEEN :term_first_num AND :term_last_num
 AND partcost > :terminal_max_cost ;

sqlcode Value Description

 0 The DELETE statement was successful.

100 No rows were found on a search condition.

 <0 An error occurred; sqlcode contains the error number.

 >0 (¦100) A warning occurred; sqlcode contains the first warning number.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-13

Data Retrieval and Modification Using SQL Cursors
Using SQL Cursors
An SQL cursor is a named pointer that a host-language program (C, COBOL, Pascal,
or TAL) can use to access a set of rows in a table or view, one row at time. Using a
cursor, a program can process rows in the same way it might process records in a
sequential file. The program can test the data in each row at the current cursor position
and then if the data meets certain criteria, the program can display, update, delete, or
ignore the row.

Example 4-1 shows the steps that you follow to declare and use a static SQL cursor in
a C program. A cursor operation must run each statement in this specified order. All
steps are required, even if you run the FETCH statement only once to retrieve a single
row.

Example 4-1. Using a Static SQL Cursor in a C Program

/* C source file */

EXEC SQL BEGIN DECLARE SECTION ;
 • • • /* Declare host variable(s). */
 EXEC SQL END DECLARE SECTION ;
 • • •
 EXEC SQL DECLARE cursor1 CURSOR FOR
 SELECT column1, column2, column n
 FROM =table
 WHERE column1 = :hostvar_find_row ;
 • • •
 void find_row(void)
{
 • • •
 hostvar_find_row = initial_value ; /* Initialize the host variable(s). */
 • • •
 EXEC SQL OPEN cursor1 ; /* Open the cursor. */

/* Fetch data from a row into the host variable(s). */
 EXEC SQL FETCH cursor1
 INTO :hostvar_1, :hostvar_2, :hostvar n ;

 • • • /* Process the row values in the host variable(s). */

 • • • /* Branch back to fetch another row. */

EXEC SQL CLOSE cursor1 ; /* Close the cursor. */
}

009CDT .CDD

1

2

3

4

5

6

7

8

HP NonStop SQL/MP Programming Manual for C—429847-008
4-14

Data Retrieval and Modification Steps for Using a Cursor
The SQL statements used in Example 4-1 are described in detail later in this section:

 DECLARE CURSOR Statement on page 4-18

 OPEN Statement on page 4-19

 FETCH Statement on page 4-20

 Multirow SELECT Statement on page 4-21

 UPDATE Statement on page 4-22

 Multirow DELETE Statement on page 4-23

 CLOSE Statement on page 4-24

For information about declaring host variables, see Section 2, Host Variables.

Steps for Using a Cursor

1. Declare any host variables you plan to use with the cursor.

2. Name and define the cursor using a DECLARE CURSOR statement. Follow the
conventions for an SQL identifier for the cursor name. The DECLARE CURSOR
statement also associates the cursor with a SELECT statement that specifies the
rows to retrieve.

3. Initialize any host variables you specified in the WHERE clause of the SELECT
statement in the DECLARE CURSOR statement.

4. Open the cursor using an OPEN statement. The OPEN statement determines the
result table and sorts the table if the SELECT statement includes the ORDER BY
clause. For audited tables or views, the OPEN statement also associates the
cursor with a TMF transaction.

5. Retrieve the column values from a row using the FETCH statement. The FETCH
statement positions the cursor at the next row of the result table and transfers the
column values defined in the associated SELECT statement to the corresponding
host variables. The FETCH statement also locks each row according to the access
specified by the SELECT statement.

For audited tables or views, the FETCH statement must run within the same TMF
transaction as the OPEN statement.

6. Process the column values returned from the current row to host variables. For
example, you might test a value and then delete or update the row.

7. After you process the current row, branch back to the FETCH statement and
retrieve the next row. Continue executing this loop until you have processed all
rows specified by the associated SELECT statement (and sqlcode equals 100).

8. Close the cursor using the CLOSE statement. The CLOSE statement releases the
result table established by the OPEN statement. (The FREE RESOURCES
statement also releases the result table.)
HP NonStop SQL/MP Programming Manual for C—429847-008
4-15

Data Retrieval and Modification Process Access ID (PAID) Requirements
Process Access ID (PAID) Requirements

To use an SQL cursor, a process started by the program must have the access
authority shown in this table. NonStop SQL/MP checks this authority when the program
opens the cursor. For details, see Required Access Authority on page 7-1.

A program can use a cursor whose declaration does not specify FOR UPDATE to
locate rows in a table to delete. NonStop SQL/MP tests the table only for read access
when the OPEN statement runs. However, because a DELETE operation requires
write access, NonStop SQL/MP checks for write access when you run the DELETE
statement.

A program contending for data access with other users can specify the IN EXCLUSIVE
MODE clause in the associated SELECT statement. NonStop SQL/MP then does not
have to convert the lock for a subsequent UPDATE or DELETE operation. However, if
a program is reading records accessed concurrently by a cursor defined with an IN
EXCLUSIVE MODE clause in another program, the first program must wait to access
the data.

Cursor Position

Table 4-2 describes the SQL statements that affect the cursor position in a program.
The cursor position is similar to the record position in a sequential file.

Access SQL Objects

Read Tables or protection views referred to in the SELECT statement associated with
the cursor (that is, specified in the DECLARE CURSOR statement)

Read Tables or protection views underlying the shorthand view, if the cursor refers to a
shorthand view

Write Tables referenced, if the cursor declaration includes the FOR UPDATE clause

Table 4-2. Determining the Cursor Position

SQL Statement Cursor Position or Action

OPEN Positions the cursor before the first row.

FETCH Positions the cursor at the retrieved row (or the current
position).

DELETE Positions the cursor between rows. For example, if the
current row is deleted, the cursor is positioned either
between rows or before the next row and after the
preceding row.

SELECT Determines the order in which the rows are returned. To
specify an order, include an ORDER BY clause.
Otherwise, the order is undefined.

CLOSE Causes no position; release the result table established
by the cursor.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-16

Data Retrieval and Modification Cursor Stability
Cursor Stability

Cursor stability guarantees that a row at the current cursor position cannot be modified
by another program. For NonStop SQL/MP to guarantee cursor stability, you must
declare the cursor with the FOR UPDATE clause or specify the STABLE ACCESS
option.

In some cases, a program might be accessing a copy of a row instead of the actual
row. For example, a program might be accessing a copy of the row if the associated
SELECT statement defining the cursor requires that the system perform any of these
operations:

 Ordering the rows by a column

 Removing duplicate rows

 Performing other operations that require the selected table to be copied into a
result table before it is used by a program

If your program is accessing a copy of a row instead of the actual row, the cursor
points to a copy of the data, and the data is concurrently available to other programs.
Accessing a copy of the data, however, never occurs if the cursor is declared with the
FOR UPDATE clause. In this case, your cursor points to the actual data and has cursor
stability.

Virtual Sequential Block Buffering (VSBB)

The SQL/MP optimizer often uses Virtual Sequential Block Buffering (VSBB) as an
access path strategy. Conflicting UPDATE, DELETE, or INSERT statements can
invalidate a cursor’s buffering for a table. Each invalidation forces the next FETCH
statement to send a message to the disk process to retrieve a new buffer, which can
substantially degrade a program’s performance. These statements invalidate the buffer
for cursor operations:

 An INSERT statement on the same table by the current process

 A stand-alone UPDATE or DELETE statement on the same table (directly or
through a view) by the same process

 An UPDATE...WHERE CURRENT or DELETE...WHERE CURRENT statement
using a different cursor to access the same table (directly or through a view) by the
same process

For example, a loop containing both a FETCH statement and a stand-alone UPDATE
or DELETE statement on the same table invalidates the cursor’s buffer on every loop
iteration. You can minimize or eliminate this problem by following these guidelines:

 Do not use INSERT statements within a cursor operation.

 Use the UPDATE...WHERE CURRENT or DELETE...WHERE CURRENT
statement for a cursor rather than a stand-alone UPDATE or DELETE statement.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-17

Data Retrieval and Modification DECLARE CURSOR Statement
 Do not open multiple cursors on a table if any of the cursors are used to update
that table.

DECLARE CURSOR Statement

The DECLARE CURSOR statement names and defines a cursor and associates the
cursor with a SELECT statement that specifies the rows to retrieve.

A C program requires no special authorization to run a DECLARE CURSOR
statement.

Follow these guidelines when you use a DECLARE CURSOR statement:

 The cursor name specified in the DECLARE CURSOR statement is an SQL
identifier and is not case-sensitive. For example, NonStop SQL/MP considers Cur,
cur, CUR, and CuR as equivalent names.

 Declare all host variables you use in the associated SELECT statement before the
DECLARE CURSOR statement. Host variables must also be within the same
scope as all the SQL statements that refer to them.

 Place the DECLARE CURSOR statement in listing order before other SQL
statements, including the OPEN, FETCH, INSERT, DELETE, UPDATE, and
CLOSE statements, that refer to the cursor. The DECLARE CURSOR statement
must also be within the scope of statements that reference the cursor.

 The DECLARE CURSOR statement does not affect the values in the SQLCA and
SQLSA data structures.

This example declares a cursor list_by_partnum:

EXEC SQL BEGIN DECLARE SECTION;
struct parts_type /* host variables */
{
 short partnum;
 char partdesc[19];
 long price;
 short qty_available
} parts_rec;
EXEC SQL END DECLARE SECTION;
...

EXEC SQL DECLARE list_by_partnum CURSOR FOR
 SELECT partnum,
 partdesc,
 price,
 qty_available
 FROM =parts
 WHERE partnum >= :parts_rec.partnum
 ORDER BY partnum
 BROWSE ACCESS;
...
HP NonStop SQL/MP Programming Manual for C—429847-008
4-18

Data Retrieval and Modification OPEN Statement
OPEN Statement

The OPEN statement opens an SQL cursor. The OPEN operation orders and defines
the set of rows in the result table and then positions the cursor before the first row.

The OPEN statement does not acquire any locks unless a sort is necessary to order
the selected rows. (The FETCH statement acquires any locks associated with a
cursor.)

To run an OPEN statement for a cursor, a process started by the program must have
the access authority described in Process Access ID (PAID) Requirements on
page 4-16. For details, see Required Access Authority on page 7-1.

If the associated SELECT statement contains host variables in the WHERE clause,
you must initialize these host variables before you run the OPEN statement. When the
OPEN statement runs, NonStop SQL/MP defines the set of rows in the result table and
places the input host variables in its buffers. If you do not initialize the host variables
before you run the OPEN statement, these problems can occur:

 If a host variable contains values with unexpected data types, overflow or
truncation errors can occur.

 If a host variable contains old values from the previous execution of the program, a
subsequent FETCH statement uses these old values as the starting point to
retrieve data. Therefore, the FETCH does not begin at the expected location in the
result table.

The host variables must also be declared within the scope of the OPEN statement.
Some additional considerations for the OPEN statement are:

 You must code an OPEN statement within the scope of all other SQL statements
(including the DECLARE CURSOR, FETCH, INSERT, DELETE, UPDATE, and
CLOSE statements) that use the cursor.

 The OPEN statement must run before any FETCH statements for the cursor.

 For audited tables and views, the OPEN statement must run within a TMF
transaction.

 If data is materialized by the OPEN operation, NonStop SQL/MP returns statistics
to the SQLSA structure. For information about returning statistics to a program,
see Section 9, Error and Status Reporting.

 If the DECLARE CURSOR statement for the cursor specifies a sort operation (for
example, with an ORDER BY clause), do not issue an AWAITIO or AWAITIOX
statement with the filenum parameter set to -1 after you open the cursor;
otherwise, the sort operation fails with SQL error -8301.

This OPEN statement opens the list_by_partnum cursor:

...
 EXEC SQL OPEN list_by_partnum;
...
HP NonStop SQL/MP Programming Manual for C—429847-008
4-19

Data Retrieval and Modification FETCH Statement
FETCH Statement

The FETCH statement positions the cursor at the next row of the result table and
transfers a value from each column in the row specified by the associated SELECT
statement to the corresponding host variable.

To run a FETCH statement, a process started by the program must have read access
to tables or views associated with the cursor. For information about process access,
see Required Access Authority on page 7-1.

NonStop SQL/MP returns these values to sqlcode after a FETCH statement.

The cursor must be open when the FETCH statement runs. The FETCH statement
must also run within the scope of all other SQL statements, including the DECLARE
CURSOR, OPEN, INSERT, DELETE, UPDATE, and CLOSE statements, that refer to
the cursor.

NonStop SQL/MP resets values in an SQLSA structure immediately before a FETCH
statement runs. If you use an SQLSA value elsewhere in your program, save the value
in a variable immediately after the FETCH statement runs. To monitor statistics for a
cursor, declare accumulator variables for the required values and add the SQLSA
values to the accumulator variables after each FETCH statement runs.

For audited tables and views, the FETCH statement must run within the same TMF
transaction as the OPEN statement for the cursor.

This FETCH statement retrieves information from the PARTS table:

EXEC SQL BEGIN DECLARE SECTION;

struct parts_type /* host variables */
{
 short partnum;
 char partdesc[19];
 long price;
 short qty_available
} parts_rec;
...
EXEC SQL END DECLARE SECTION;
...

...
EXEC SQL DECLARE list_by_partnum CURSOR FOR
 SELECT partnum,partdesc,price,qty_available
 FROM =parts

sqlcode Value Description

 0 The FETCH statement was successful.

100 The end of a table was encountered.

 <0 An error occurred; sqlcode contains the error number.

 >0 (¦100) A warning occurred; sqlcode contains the first warning number.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-20

Data Retrieval and Modification Multirow SELECT Statement
 WHERE partnum >= :parts_rec.partnum
 ORDER BY partnum
 BROWSE ACCESS;
...

void list_func(void)
{
EXEC SQL OPEN list_by_partnum;
EXEC SQL FETCH list_by_partnum
 INTO :parts_rec.partnum,
 :parts_rec.partdesc,
 :parts_rec.price,
 :parts_rec.qty_available;
...
}

Multirow SELECT Statement

When used with a cursor, a SELECT statement can return multiple rows from a table or
protection view, one row at a time. A cursor uses a FETCH statement to retrieve each
row and store the selected column values in host variables. The program can then
process the values (for example, list or save them in an array).

To run a SELECT statement, a process started by the program must have read access
to all tables, protection views, and the underlying tables of shorthand views used in the
statement. For information about process access, see Required Access Authority on
page 7-1.

All statements that refer to the cursor, including the DECLARE CURSOR, OPEN,
FETCH, and CLOSE statements, must be within the same scope.

This example uses the get_name_address cursor to return the name and address of
all customers within a certain range from the CUSTOMER table. For data consistency,
the SELECT statement includes the REPEATABLE ACCESS clause to lock the rows.
The BETWEEN clause specifies the range of zip codes, and the ORDER BY clause
sorts the rows by zip code (POSTCODE).

EXEC SQL BEGIN DECLARE SECTION;
char begin_code[11], end_code[11];
EXEC SQL INVOKE =customer AS customer_struct;
struct customer_struct customer_row;
...
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE get_name_address CURSOR FOR
 SELECT custname, street, city, state, postcode
 FROM =customer
 WHERE postcode BETWEEN :begin_code AND :end_code
 ORDER BY postcode
 REPEATABLE ACCESS;
...
void list_customers(void)
{

HP NonStop SQL/MP Programming Manual for C—429847-008
4-21

Data Retrieval and Modification UPDATE Statement
 ...
EXEC SQL OPEN get_name_address;

... /* Set values for begin_code and end_code. */

EXEC SQL FETCH get_name_address
 INTO :customer_row.custname,
 :customer_row.street,
 :customer_row.city,
 :customer_row.state
 :customer_row.postcode;

... /* Process the row values. */

EXEC SQL CLOSE get_name_address;
}

UPDATE Statement

When used with a cursor, an UPDATE statement updates rows, one row at a time, in a
table or protection view. To identify the set of rows to update (or test), specify the FOR
UPDATE OF clause in the associated SELECT statement. Before you update each
row, you can test one or more column values. If you decide to update the row, specify
the WHERE CURRENT OF clause in the UPDATE statement.

To run an UPDATE statement, a process started by the program must have read and
write access to the table or view being updated. This process must also have read
access to tables or views specified in subqueries of the search condition. For
information about process access, see Required Access Authority on page 7-1.

Do not use a stand-alone UPDATE statement to update a row that has been retrieved
using a FETCH statement. A stand-alone UPDATE statement invalidates the cursor's
buffering for the table and can substantially degrade performance.

An UPDATE statement must be within the scope of all other SQL statements, including
the DECLARE CURSOR, OPEN, FETCH, INSERT, and CLOSE statements, that refer
to the cursor. For audited tables and views, the UPDATE statement must run within the
same TMF transaction as the OPEN and FETCH statements for the cursor.

This example uses the cursor get_by_partnum and host variables
new_partdesc, new_price, and new_qty to update the PARTS table:

EXEC SQL DECLARE get_by_partnum CURSOR FOR
 SELECT parts.partnum,
 parts.partdesc,
 parts.price,
 parts.qty_available
 FROM sales.parts
 WHERE (parts.partnum >= :parts.partnum)
 STABLE ACCESS
 FOR UPDATE OF parts.partdesc,
 parts.price,
 parts.qty_available;
HP NonStop SQL/MP Programming Manual for C—429847-008
4-22

Data Retrieval and Modification Multirow DELETE Statement
...
EXEC SQL OPEN get_by_partnum;
... /* Set values of the host variables. */

EXEC SQL FETCH get_by_partnum INTO ... ;

... /* Test the value(s) in the current row. */

/* Update the current row */
EXEC SQL UPDATE sales.parts
 SET parts.partdesc = :new_partdesc,
 parts.price = :new_price,
 parts.qty_available = :new_qty
 WHERE CURRENT OF get_by_partnum;

... /* Branch back to FETCH to get the next row. */
EXEC SQL CLOSE get_by_partnum;

Multirow DELETE Statement

When used with a cursor, a DELETE statement deletes multiple rows one row at a time
from a table or protection view. You identify the set of rows to delete (or test) in the
associated SELECT statement. Before you delete a row, you can test one or more
column values, and then if you decide to delete the row, specify the WHERE
CURRENT OF clause in the DELETE statement.

If you delete all rows from a table, the table still exists until it is deleted from the catalog
by a DROP TABLE statement.

To run a DELETE statement, a process started by the program must have read and
write access to the table or view and to tables or views specified in subqueries of the
search condition. For more information about process access, see Required
Access Authority on page 7-1.

A DELETE statement must run within the scope of all other SQL statements, including
the DECLARE CURSOR, OPEN, FETCH, INSERT, and CLOSE statements, that refer
to the cursor. For audited tables and views, the DELETE statement must run within the
same TMF transaction as the OPEN and FETCH statements for the cursor.

This example declares a cursor get_by_partnum, fetches data from the PARTS
table, tests the data, and then deletes specific rows:

EXEC SQL DECLARE get_by_partnum CURSOR FOR
 SELECT partnum,
 partdesc,
 price,
 qty_available

Note. Do not use a stand-alone DELETE statement to delete a row that has been retrieved
using a FETCH statement. A stand-alone DELETE statement can invalidate the cursor’s
buffering for the table and degrade performance.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-23

Data Retrieval and Modification CLOSE Statement
 FROM sales.parts
 WHERE (partnum >= :parts.partnum);

...

EXEC SQL OPEN get_by_partnum;

EXEC SQL FETCH get_by_partnum ... ;

... /* Test the value(s) in the current row. */

/* Delete the current row */
EXEC SQL DELETE FROM sales.parts
 WHERE CURRENT OF get_by_partnum ;
... /* Branch back to FETCH the next row. */
EXEC SQL CLOSE get_by_partnum;

CLOSE Statement

The CLOSE statement closes an open SQL cursor. After the CLOSE statement runs,
the result table established by the OPEN statement no longer exists. To use the cursor
again, you must reopen it using an OPEN statement.

A program does not require special authorization to run a CLOSE statement.

A CLOSE statement must be within the scope of all other SQL statements, including
the DECLARE CURSOR, OPEN, FETCH, INSERT, DELETE, and UPDATE
statements, that refer to the cursor.

This CLOSE statement closes the list_by_partnum cursor:

...

void list_func(void)
{
...
EXEC SQL CLOSE list_by_partnum;
}

Only an explicit CLOSE statement (or a FREE RESOURCES statement) closes an
open SQL cursor. The CLOSE operation releases the resources used by the cursor
and frees any locks the cursor holds. If you are planning to reuse a cursor later in your
program, you can usually leave it open to save the overhead of opening it. However, if
your program is a Pathway server, always close an open cursor before returning
control to the requester, especially if the requester initiated a TMF transaction.

Using Foreign Cursors

Foreign cursors are cursors that are not declared in the program or procedure in which
they are referenced. Only dynamic cursors can be foreign cursors. Static cursors
cannot be foreign cursors.
HP NonStop SQL/MP Programming Manual for C—429847-008
4-24

Data Retrieval and Modification Using Foreign Cursors
A reference to a foreign cursor contains two parts, a procedure name and a cursor
name. This example references a foreign cursor, list_by_partnum, which is
declared in the procedure update_inv:

update_inv.list_by_partnum

A foreign cursor reference can appear in an OPEN, FETCH, or CLOSE cursor
statement. It references a cursor that is declared in another procedure, which is not
necessarily in the same compile source file. References to a dynamic foreign cursor
are resolved at run time by the SQL Executor.

The cursor declaration and the PREPARE statement must be in the same procedure
so that the resolution between the PREPARE and the cursor declaration can occur to
detect whether a statement name has been prepared and to maintain proper
association between a procedure and a particular statement name.

This example declares a cursor list_by_partnum:

update_inv(void)

{

EXEC SQL BEGIN DECLARE SECTION;
struct parts_type
{
/* define host variables here */
} parts_rec;
EXEC SQL END DECLARE SECTION;
...

EXEC SQL DECLARE list_by_partnum CURSOR FOR
 SELECT partnum, /* defined above */
 partdesc,
 price,
 qty_available
 FROM =parts
 WHERE partnum >= :parts_rec.partnum
 ORDER BY partnum
 BROWSE ACCESS;
EXEC SQL PREPARE dynamic_statement FROM :hv_text;
}

These statements open, fetch, and close a foreign cursor list_by_partnum that are
declared in the procedure update_inv:

/* Loop while not EOF: */
void update_inv_total(void)
{
/* describe input and output here */
exec sql open update_inv.list_by_partnum using descriptor input-
sqlda;
}
{
/* describe input and output here */
exec sql fetch update_inv.list_by_partnum using descriptor
output-sqlda;
HP NonStop SQL/MP Programming Manual for C—429847-008
4-25

Data Retrieval and Modification Using Foreign Cursors
}
{
/* describe input and output here */
exec sql close update_inv.list_by_partnum;
}

HP NonStop SQL/MP Programming Manual for C—429847-008
4-26

5 SQL/MP System Procedures

Table 5-1 describes the NonStop SQL/MP system procedures, which are written in
TAL, that a C program can call to return various SQL information. These procedures
are listed alphabetically.

Table 5-1. SQL/MP System Procedures

Procedure Description

To Return Error and Warning Information

SQLCADISPLAY Writes to a file or terminal the error and warning
messages that NonStop SQL/MP returns to the
SQLCA structure.

SQLCAFSCODE Returns information about file-system, disk-process, or
operating system errors from the SQLCA structure.

SQLCAGETINFOLIST Returns to an area in the program a specified subset of
the error or warning information in the SQLCA
structure.

SQLCATOBUFFER Returns to a record area in the program the error or
warning messages that NonStop SQL/MP returns to
the SQLCA structure.

To Return Version Information

SQLGETCATALOGVERSION Returns the version of an SQL catalog.

SQLGETOBJECTVERSION Returns the version of an SQL object (table, index, or
view).

SQLGETSYSTEMVERSION Returns the version of the SQL file-system and
disk-process components for a specified system.

To Return Execution Statistics

SQLSADISPLAY Writes to a file or terminal the execution statistics that
NonStop SQL/MP returns to the SQLSA structure.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-1

SQL/MP System Procedures Guardian System Procedures
Guardian System Procedures
In addition to the procedures in Table 5-1 on page 5-1, a C program can also call the
Guardian procedures described in Table 5-2 to return information about SQL objects
and programs. For a detailed description of these procedures, see the Guardian
Procedure Calls Reference Manual.

cextdecs Header File
The cextdecs header file contains source declarations for the SQL/MP and Guardian
system procedures. Use the #include directive as shown in this example to copy the
declarations from the cextdecs header file for the procedures you want to call in your
program:

...
#include <cextdecs (FILE_OPEN_, \
 READ, \
 WRITEREAD, \
 FILE_GETINFO_, \
 FILE_CLOSE_, \
 SQLCADISPLAY, \
 SQLCAFSCODE)> nolist
...

SQL Message File
The SQLMSG file contains error messages, informational messages, and help text
used by SQLCI, the SQL compiler, and host-language programs. The default SQL
message file is $SYSTEM.SYSTEM.SQLMSG. A C program opens and reads the SQL
message file when it calls an SQL system procedure that returns error or status
information (for example, SQLCADISPLAY or SQLCATOBUFFER).

The SQLMSG file contains text in English. You can specify a different SQL message
file (for example, a file translated into French) with the =_SQL_MSG_node DEFINE.

Table 5-2. Guardian System Procedures That Return SQL Information

Procedure Description

FILE_GETINFO_ Returns limited information, including the last error and
type, about a file using the file number.

FILE_GETINFOBYNAME_ Returns limited information about a file using the file
name.

FILE_GETINFOLIST__ Returns detailed information about a file using the file
number. Item codes 40, 82, 83, 84, and 85 apply to
NonStop SQL/MP.

FILE_GETINFOLISTBYNAME_ Returns detailed information about a file using the file
name. Item codes 40, 82, 83, 84, and 85 apply to
NonStop SQL/MP.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-2

SQL/MP System Procedures SQLCADISPLAY
For the alternate SQL message files available on your node, ask your database
administrator or service provider.

You can add (or modify) the =_SQL_MSG_node DEFINE either interactively from
TACL or SQLCI, or programmatically from a C program:

 From TACL or SQLCI, enter an ADD DEFINE (or ALTER DEFINE) command. Do
not include a backslash (\) or a space before the node name. For example, this
command adds a new DEFINE for the $SQL.MSG.FRENCH message file on the
\PARIS node:

ADD DEFINE =_SQL_MSG_PARIS,CLASS MAP,FILE $SQL.MSG.FRENCH

For the _SQL_MSG_node DEFINE to be in effect for an SQLCI session, you must
add or change the DEFINE before you start the SQLCI session. If you add or
change the DEFINE after you start the session, NonStop SQL/MP returns warning
message 10201, which indicates that the DEFINE has been changed but the old
message file is still in effect.

 From a C program, call the DEFINEADD (or DEFINESETATTR) system procedure.
Your program must add or alter the DEFINE before it calls a system procedure that
opens and reads the SQL message file. Otherwise, your program uses the default
message file. For more information about system procedures, see the Guardian
Procedure Calls Reference Manual.

SQLCADISPLAY
The SQLCADISPLAY procedure displays error or warning information that NonStop
SQL/MP returns to the SQLCA data structure. SQLCADISPLAY writes this information
to a file or terminal.

The information returned to the SQLCA structure can originate from these subsystems
or system components:

 NonStop SQL/MP

 NonStop operating system

 File system

 Disk process (DP2)

 FastSort program (SORTPROG process)

 Sequential I/O (SIO) procedures

NonStop SQL/MP communicates errors, warnings, and statistics to a program through
the SQLCA structure. However, because the SQLCA contains information in a format
that is not appropriate for display, call the SQLCADISPLAY procedure to convert this
information to an appropriate format.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-3

SQL/MP System Procedures SQLCADISPLAY

sqlca

is a pointer to the SQLCA structure. The C compiler automatically declares the
SQLCA structure when you specify the INCLUDE SQLCA directive.

output_file_number

is the output file number. If you omit this value or set it to a negative value,
SQLCADISPLAY displays information at your home terminal. In this case,
SQLCADISPLAY opens your home terminal, displays the message, and then
closes your terminal. This parameter is ignored if detail_params specifies
sequential I/O (SIO).

output_record_length

is the length in bytes of records to be written to the output file. The length must be
an integer value from 60 through 600. The default length is 79 bytes.

sql_msg_file_number

is the file number of the SQL message file (SQLMSG is the default file). If you
specify -1 as the input value, the system opens the message file and returns the
resulting file number. If you specify a value other than -1, the system uses that
value as the file number of the message file.

To improve the performance of multiple calls to the SQLCADISPLAY (or the
SQLCATOBUFFER procedure), specify -1 on the first call and then use the
returned file number for subsequent calls. By using the file number, the system
opens the file only once and uses the file number for subsequent calls. Otherwise,
the system opens the file for each call.

#include <cextdecs(SQLCADISPLAY)>

void SQLCADISPLAY (
 short *sqlca, /* i */
 [short output_file_number,] /* i */
 [short output_record_length,] /* i */
 [short *sql_msg_file_number,] /* i:o */
 [short errors,] /* i */
 [short warnings,] /* i */
 [short statistics,] /* i */
 [short caller_error_loc,] /* i */
 [short internal_error_loc,] /* i */
 [char *prefix,] /* i */
 [short prefix_length,] /* i */
 [char *suffix,] /* i */
 [short suffix_length,] /* i */
 [short *detail_params] /* i */
);
HP NonStop SQL/MP Programming Manual for C—429847-008
5-4

SQL/MP System Procedures SQLCADISPLAY
The SQLMSG file contains text in English. You can specify a different SQL
message file with the =_SQL_MSG_node DEFINE. For more information, see
SQL Message File on page 5-2.

errors

controls the display of error messages:

The default is Y.

warnings

controls the display of warning messages:

The default is Y.

statistics

controls the display of statistics:

The default is Y.

caller_error_loc

controls the display of the program name and line number of the SQL statement
that received the error:

The default is Y.

Y Display all errors.

N Display only the first error.

B Display all errors but suppress this prefix:

ERROR from subsystem [nn]

Y Display all warning messages.

N Display all warning messages.

B Display all warnings but suppress this prefix:

WARNING from subsystem [nn]

Y Display row and cost statistics if the value returned to the SQLCA in the
ROW or COST field is greater than or equal to 0.

N Do not display statistics.

R Display row statistics only.

C Display cost statistics only.

Y Display the program name and line number.

N Suppress the display.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-5

SQL/MP System Procedures SQLCADISPLAY
internal_error_loc

controls the display of the system-code location where the first error in the SQLCA
occurred:

The default is Y.

prefix

is a string that the program uses to precede each output line. The default is three
asterisks and a space (***).

prefix_length

is the length of the prefix string for each output line. The length must be an
integer from 1 to 15. If you include prefix, prefix_length is required.

suffix

is a string to be appended to each output line. The default is a null string.

suffix_length

is the length of the suffix string for each output line. The length must be an
integer value from 1 to 15. If you include suffix, suffix_length is required.

detail_params

determines whether the program uses sequential I/O (SIO) or Enscribe I/O to write
to the output file. The parameter detail_params points to a structure with this
layout:

struct detail_params_type
 {
 char sio;
 short *out_fcb_1;
 short *out_fcb_2;
 } detail_params;

sio

specifies whether sequential I/O is used:

out_fcb_1

specifies the first output file control block if SIO is enabled.

Y Display the location.

N Suppress the display.

Y Use SIO; ignore output_file_number.

N Do not use SIO; write to output_file_number.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-6

SQL/MP System Procedures SQLCADISPLAY
out_fcb_2

specifies the second output file control block if SIO is enabled. To use
out_fcb_2, assign it a value greater than 0.

The default is Enscribe I/O.

Additional considerations for the SQLCADISPLAY procedure are:

 NonStop SQL/MP returns errors as negative numbers and warnings as positive
numbers. Therefore, you might accordingly need to modify your program.

 If there is no text for an error number, NonStop SQL/MP displays this message:

No error text found.

If you receive this message, the version of the SQL message file might be invalid.
To determine the version of the SQL message file, use the SQLCI ENV command
and check the version specified by MESSAGEFILEVSRN.

 If the error text exceeds output_record_length, the output is wrapped at word
boundaries producing subsequent lines indented 5 spaces.

 The SQLCA can contain a maximum of 7 errors and 180 bytes of text of the actual
parameters returned to the program. Any information that exceeds these limits is
lost. SQLCADISPLAY displays a warning message that indicates when information
is lost.

This example calls the SQLCADISPLAY procedure using default parameters:

#include <cextdecs (SQLCADISPLAY)>
...
/* Variable declarations: */
...
EXEC SQL INCLUDE STRUCTURES SQLCA VERSION 300;
EXEC SQL INCLUDE SQLCA;
...

/* Error handling function: */
...
void handle_errors(void)
{
SQLCADISPLAY((short *) &sqlca);
...
}

This example shows diagnostic messages the SQLCADISPLAY procedure might
generate:

*** WARNING from SQL [100]: Record not found or end of file
*** encountered on table \SYS1.$VOL1.SALES.ODETAIL.

*** SQLCA display of SQL statement at: SCAN.#201.1 process
\SYS1.$B
*** Error detected within SQL executor at: EXE_EXEC.#450
*** ERROR from SQL [-8408]: Division by zero occurred.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-7

SQL/MP System Procedures SQLCAFSCODE
*** Statistics: Rows accessed/affected: 10
*** Estimated cost: 100

SQLCAFSCODE
The SQLCAFSCODE procedure returns either the first or the last error in the SQLCA
structure that was set by the file system, disk process, or the operating system. If there
was no such error, SQLCAFSCODE returns 0. If the SQLCA is full when an error
occurs, the error is lost.

sqlca

is a pointer to the SQLCA structure. The C compiler declares the SQLCA structure
if you specify the INCLUDE SQLCA directive.

first_flg

specifies whether the first or the last error is set in the SQLCA:

The default is the first error.

This example calls the SQLCAFSCODE procedure:

#include <cextdecs(SQLCAFSCODE)>
...
short fserr;

EXEC SQL INCLUDE SQLCA;

...
fserr = SQLCAFSCODE ((short *) &sqlca);
...

#include <cextdecs(SQLCAFSCODE)>

short SQLCAFSCODE (
 short *sqlca, /* i */
 [short first_flg] /* i */
);

Nonzero value (or omitted) First error

0 (zero) Last error
HP NonStop SQL/MP Programming Manual for C—429847-008
5-8

SQL/MP System Procedures SQLCAGETINFOLIST
SQLCAGETINFOLIST
The SQLCAGETINFOLIST procedure returns error or warning information that
NonStop SQL/MP sets in the SQLCA structure. You specify a list of numbers, called
item codes (shown in Table 5-4 on page 5-11), to specify the error or warning
information, and SQLCAGETINFOLIST returns the information to a structure in your
program.

The information in the SQLCA structure can originate from these subsystems or
system components:

 NonStop SQL/MP

 NonStop operating system

 File system

 Disk process (DP2)

 FastSort program (SORTPROG process)

 Sequential I/O (SIO) procedures

SQLCAGETINFOLIST returns zero after a successful operation or one of the error
codes shown in Table 5-3 on page 5-11 if an error occurs.

sqlca

is a pointer to the SQLCA structure. The C compiler automatically declares the
SQLCA structure if you specify the INCLUDE SQLCA directive.

Note. The SQLCAGETINFOLIST procedure returns error numbers as positive values and
warning numbers as negative values. A program might need to switch the sign before
processing the error or warning.

#include <cextdecs(SQLCAGETINFOLIST)>

short SQLCAGETINFOLIST (
 short *sqlca, /* i */
 short *item_list, /* i */
 short number_items, /* i */
 short *result, /* o */
 short result_max, /* i */
 [short error_index,] /* i */
 [short names_max,] /* i */
 [short params_max,] /* i */
 [short *result_len,] /* o */
 [short *error_item] /* o */
);
HP NonStop SQL/MP Programming Manual for C—429847-008
5-9

SQL/MP System Procedures SQLCAGETINFOLIST
item_list

is an array of item codes that describes the information you want returned in the
result structure. For a list of these item codes, see Table 5-4 on page 5-11.

number_items

is the number of items you specified in the item_list array.

result

is a structure you define to receive the requested information. The items are
returned in the order you specified in item_list. Each item is aligned on a word
boundary.

result_max

is the maximum size, in bytes, of the result structure.

error_index

is the index of the SQLCA error or warning entry.

The SQLCA structure has a fixed set of fields (item codes 1 through 21) for errors
and warnings. In addition, SQLCA has a table of records (item codes 22 through
29), with each record describing one error or warning. NonStop SQL/MP uses
error_index to access this table to determine the error or warning.

If error_index is omitted, NonStop SQL/MP returns the first error record.

names_max

is the maximum length your program allows for procedure names or file names
(item codes 9, 13, and 19). Longer names are truncated (but no error results from
the truncation).

params_max

is the maximum length your program allows for parameter information (item codes
16 and 29). Parameter information that exceeds this length is truncated (but no
error results from the truncation).

result_len

is the total number of bytes used in the result structure.

error_item

is the index of the item being processed when the error occurred. The index starts
at 0 (zero).
HP NonStop SQL/MP Programming Manual for C—429847-008
5-10

SQL/MP System Procedures SQLCAGETINFOLIST
Table 5-3 lists the SQLCAGETINFOLIST error codes.

Table 5-4 lists the codes you can specify in the item_list array.

Table 5-3. SQLCAGETINFOLIST Procedure Error Codes

Error Code Description

8510 A required parameter is missing.

8511 The program specified an invalid item code.

8512 The program specified an invalid SQLCA structure.

8513 The program specified an SQLCA structure with a version more recent than
the version of the SQLCAGETINFOLIST procedure.

8514 Insufficient buffer space is available.

8515 The program specified an error entry index less than zero or greater than the
number of errors.

8516 The program specified a names_max parameter less than or equal to zero.

8517 The program specified a params_max parameter less than or equal to zero.

Table 5-4. SQLCAGETINFOLIST Procedure Item Codes (page 1 of 2)

Item Code Size (Bytes) Description

1 2 Version of the SQLCA structure.

2 2 Maximum number of errors or warnings the SQLCA can
represent.

3 2 Actual number of errors or warnings.

4 2 Whether there were more errors or warnings than the
SQLCA had space to store:

0 = There were no more errors or warnings.
nonzero = There were more errors or warnings.

5 2 Whether there were more parameters than the SQLCA
had space to store:

0 = There were no more parameters.
nonzero = There were more parameters.

6 2 Maximum length, in bytes, of the name of the paragraph
in which the SQL statement appears.

7 2 Actual length, in bytes, of the name of the paragraph in
which the SQL statement appears.

8 (in item code 7) Program ID of the program in which the SQL statement
appears.

9 4 Source code line number of the SQL statement that
caused an error.

10 2 Syntax error location. If there was no syntax error, SQL
returns -1.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-11

SQL/MP System Procedures SQLCAGETINFOLIST
11 2 Maximum length, in bytes, of the system procedure that
sets the first error or warning.

12 2 Actual length, in bytes, of the system procedure that sets
the first error or warning.

13 (in item code 12) Location of the system procedure that sets the first error
or warning.

14 2 Maximum length, in bytes, of the parameter buffer.

15 2 Used bytes in the parameter buffer.

16 (in item code 15) Parameter buffer.

17 2 Maximum length, in bytes, of the source name buffer.

18 2 Used bytes in the source name buffer.

19 (in item code 18) Source name buffer.

20 4 Number of processed rows.

21 8 Estimated query cost.

22 2 SQL error or warning number. Error numbers are
positive, warning numbers are negative.

23 2 Subsystem ID: First byte is 0. The second byte can be
one of these letters:

S = SQL/MP component:
SQL compiler
SQL catalog manager
SQL executor
SQLUTIL process
SQLCI or SQLCI2 process

F = SQL file system
D = DP2 disk process
G = NonStop OS
R = FastSort program (SORTPROG process)
L = Load routines
I = Sequential I/O (SIO) procedures

24 2 Suppress printing this error (0 = False, nonzero = True)

25 2 Offset into the parameters buffer for parameters
associated with the call.

NonStop SQL/MP returns -1 if there are no parameters.

26 2 Number of parameters for this error.

27 2 Sequence in which the error or warning was set.

28 2 Size of the buffer that contains parameters. Each string
is delimited by a zero.

29 (in item code 28) Buffer that contains parameters, delimited by a zero.
Each parameter begins on an even word boundary and
is preceded by 2 bytes.

Table 5-4. SQLCAGETINFOLIST Procedure Item Codes (page 2 of 2)

Item Code Size (Bytes) Description
HP NonStop SQL/MP Programming Manual for C—429847-008
5-12

SQL/MP System Procedures SQLCAGETINFOLIST
In Example 5-1, the SQLCAGETINFOLIST procedure returns the name of the function
containing the SQL statement that produced one or more errors or warnings, the name
length of the function, and the number of errors or warnings. To avoid coding the
maximum length for the function name (err_warn.name_len in the example), call
SQLCAGETINFOLIST with item code 7 (the actual length of the function name) and
then call SQLCAGETINFOLIST again with a buffer of that size.

Example 5-1. Example of the SQLCAGETINFOLIST Procedure

#include <cextdecs(SQLCAGETINFOLIST)>
...
#define MAX_NAME_LEN 30
#define ITEM_LIST_SIZE 3
struct /* structure to hold error information */
 {
 short name_len;
 short num_errs;
 char name[MAX_NAME_LEN];
 } err_warn;
...
EXEC SQL INCLUDE SQLCA; /* include SQLCA structure */
short error_code; /* variable to hold return code */
/* Declare and initialize the item-list array */
short item_list[ITEM_LIST_SIZE]
 = { 7, /* code for name length */
 3, /* code for no of errors/warnings */
 8 }; /* code for procedure ID */
...
error_code = SQLCAGETINFOLIST
 ((short *) &sqlca, /* SQLCA structure */
 item_list, /* list of item codes */
 item_list_size, /* number of items */
 (short*) &err_warn, /* result area */
 sizeof err_warn, /* size of result area */
 , /* no error index needed */
 max_name_len); /* Truncate names > 30 */
...
HP NonStop SQL/MP Programming Manual for C—429847-008
5-13

SQL/MP System Procedures SQLCATOBUFFER
SQLCATOBUFFER
The SQLCATOBUFFER procedure writes to a buffer the error or warning messages
that NonStop SQL/MP returns to the program. This buffer is a structure declared in
variable declarations in the program.

The information returned to the buffer can originate from these subsystems or system
components:

 NonStop SQL/MP

 NonStop operating system

 File system

 Disk process (DP2)

 FastSort program (SORTPROG process)

 Sequential I/O (SIO) procedures

This procedure is similar to the SQLCADISPLAY procedure that writes error
information to a file or terminal.

sqlca

is a pointer to the SQLCA structure. The C compiler automatically declares the
SQLCA structure when you specify the INCLUDE SQLCA directive.

output_buffer

is the name of the buffer where SQLCATOBUFFER writes the error information.

#include <cextdecs(SQLCATOBUFFER)>

void SQLCATOBUFFER (
 short *sqlca /* i */
 char *output_buffer /* i:o */
 short output_buffer_length /* i */
 [short first_record_number] /* i */
 [short *output_records] /* o */
 [short *more] /* o */
 [short output_record_length] /* i */
 [short *sql_msg_file_number] /* i:o */
 [short errors] /* i */
 [short warnings] /* i */
 [short statistics] /* i */
 [short caller_error_loc] /* i */
 [short internal_error_loc] /* i */
 [char *prefix] /* i */
 [short prefix_length] /* i */
 [char *suffix] /* i */
 [short suffix_length] /* i */
);
HP NonStop SQL/MP Programming Manual for C—429847-008
5-14

SQL/MP System Procedures SQLCATOBUFFER
output_buffer_length

is the length of output_buffer in bytes. This length must be:

 An integer value from output_record_length through 600

 A multiple of output_record_length

The minimum length recommended is 300 bytes.

first_record_number

is the ordinal number of the first error record (line) to be written to the output buffer.
The procedure discards any error records with a lower number.
The default is 1.

The count of lines begins with 1. To obtain more than one error record, increment
the value in first_record_number.

output_records

is the number of records (lines) written to output_buffer.

more

is a flag that indicates whether all desired lines fit into the output_buffer:

output_record_length

defines the length of records to be written to the output_buffer. The length
must be an integer value from 60 through 600. The default is 79 bytes.

The procedure pads each line with spaces and adds suffix and prefix strings if the
call specifies them.

sql_msg_file_number

is the file number of the SQL message file (SQLMSG is the default file). If you
specify -1 as an input value, the system opens the message file and returns the
resulting file number. If you specify a value other than -1, the system uses that
value as the file number of the message file.

To improve the performance of a program that makes multiple calls to the
SQLCATOBUFFER (or the SQLCADISPLAY procedure), specify -1 on the first call
and then use the returned file number for subsequent calls. By using the file
number, the system opens the file only once and uses the file number for
subsequent calls. Otherwise, the system opens the file for each call.

The SQLMSG file contains text in English. You can specify a different SQL
message file with the =_SQL_MSG_node DEFINE. For more information, see
SQL Message File on page 5-2.

Y There were additional records; the buffer overflowed.

N There were no additional records.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-15

SQL/MP System Procedures SQLCATOBUFFER
errors

controls the writing of error messages to the buffer:

The default is Y.

warnings

controls the writing of warning messages to the buffer:

The default is Y.

statistics

controls the writing of statistics to the buffer:

The default is Y.

caller_error_loc

controls the writing of the program name and line number of the SQL statement
that received the error:

The default is Y.

Y Write all errors.

N Write only the first error.

B Write all errors but suppress this prefix:

ERROR from subsystem [nn]

Y Write all warning messages.

N Write all warning messages.

B Write all warnings but suppress this prefix:

WARNING from subsystem [nn]

Y Write row and cost statistics if the value returned to the SQLCA in the
ROW or COST field is greater than or equal to 0.

N Do not write statistics.

R Write row statistics only.

C Write cost statistics only.

Y Write the program name and line number.

N Suppress the information.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-16

SQL/MP System Procedures SQLCATOBUFFER
internal_error_loc

controls the writing of the system-code location where the first error in the SQLCA
occurred:

The default is Y.

prefix

is a string to precede each output line. The default is three asterisks and a
space (***).

prefix_length

is the length of the prefix string for each output line. The length must be an
integer from 1 to 15. If you include prefix, prefix_length is required.

suffix

is a string to be appended to each output line. The default is a null string.

suffix_length

is the length of the suffix string for each output line. The length must be an
integer value from 1 to 15. If you include suffix, prefix_length is required.

Additional considerations for the SQLCATOBUFFER procedure are:

 NonStop SQL/MP returns errors as negative numbers and warnings as positive
numbers. Therefore, you might need to modify your program accordingly.

 If there is no text for an error number, NonStop SQL/MP displays this message:

No error text found

If you receive this message, the version of the SQL message file might be invalid.
To determine the version of the SQL message file, use the SQLCI ENV command
and check the version specified by MESSAGEFILEVSRN.

 The SQLCATOBUFFER procedure starts with the first_record_number
indicated to move output lines to the record area until all error messages are
moved or until the text fills the record area. SQLCATOBUFFER returns to
output_records a count of the lines moved to the buffer. If an overflow occurs,
the procedure sets the more flag to Y.

 On an overflow condition, your program can retrieve the remainder of the error
message text by calling SQLCATOBUFFER again and setting
first_record_number to output_records + 1.

Y Write the location.

N Suppress the information.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-17

SQL/MP System Procedures SQLGETCATALOGVERSION
In this example, the SQLCAFSCODE procedure writes the error or warning messages
to sql_msg_buffer, a buffer declared as 600 bytes:

#include <cextdecs(SQLCATOBUFFER)>
...
EXEC SQL INCLUDE SQLCA;
...
{
 char sql_msg_buffer[600];
 ...
 SQLCATOBUFFER ((short *) &sqlca, sql_msg_buffer, 600);
}
...

SQLGETCATALOGVERSION
The SQLGETCATALOGVERSION procedure returns the version of a catalog.

SQLGETCATALOGVERSION returns zero after a successful operation or a nonzero
value to indicate an error or warning condition. For a description of SQL errors, see the
SQL/MP Messages Manual.

catalog_name

is the fully qualified name of the catalog for which you are requesting information.
The name must be

 Left justified and padded with spaces on the right

 A maximum of 26 characters

If you omit catalog_name, SQLGETCATALOGVERSION uses the default
catalog.

sql_version

is the version of the catalog. For information about versions of NonStop SQL/MP,
see the SQL/MP Version Management Guide.

#include <cextdecs(SQLGETCATALOGVERSION)>

short SQLGETCATALOGVERSION (
 [char *catalog_name] , /* i */
 short *sql_version /* o */
);

Note. Although version 340 SQL/MP software supports the SQLGETCATALOGVERSION
procedure, HP might not support this procedure in a future RVU. If you are running version 300
(or later) SQL/MP software, use the GET VERSION OF CATALOG statement to return the
version of a catalog. For information about this statement, see the SQL/MP Reference Manual.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-18

SQL/MP System Procedures SQLGETOBJECTVERSION
SQLGETOBJECTVERSION
The SQLGETOBJECTVERSION procedure returns the version of an SQL object.

SQLGETOBJECTVERSION returns zero after a successful operation or a nonzero
value to indicate an error or warning condition. For a description of SQL errors, see the
SQL/MP Messages Manual.

object_name

is the fully qualified file name of the SQL object for which you are requesting the
version. The name must be

 Left justified and padded with spaces on the right

 A maximum of 34 characters

sql_version

is the version of the SQL object. For information about versions of NonStop
SQL/MP, see the SQL/MP Version Management Guide.

SQLGETSYSTEMVERSION
The SQLGETSYSTEMVERSION procedure returns the version of SQL/MP file system
and disk process components running on a system. For a specific node, assume that
all SQL/MP components are of the same PVU.

SQLGETSYSTEMVERSION returns zero after a successful operation or a nonzero
value to indicate an error or warning condition. For a description of SQL errors, see the
SQL/MP Messages Manual.

If you request the version number for a remote node, SQLGETSYSTEMVERSION
returns information about the remote disk process. A successful call does not
guarantee that NonStop SQL/MP is installed on the remote node.

#include <cextdecs(SQLGETOBJECTVERSION)>

short SQLGETOBJECTVERSION (
 char *object_name , /* i */
 short *sql_version /* o */
);

Note. Although version 340 SQL/MP software supports the SQLGETOBJECTVERSION
procedure, HP might not support this procedure in a future RVU. If you are running version 300
(or later) SQL/MP software, use the GET VERSION statement to return the version of an SQL
object. For information about this statement, see the SQL/MP Reference Manual.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-19

SQL/MP System Procedures SQLSADISPLAY

node_number

is the node number of the system for which you are requesting information. The
default is the local system.

sql_version

is the SQL/MP software version for the specified system. For information about
versions of NonStop SQL/MP, see the SQL/MP Version Management Guide.

SQLSADISPLAY
The SQLSADISPLAY procedure displays the execution statistics of SQL statements in
tabular form.

Because the PREPARE statement continually redefines the fields of the SQLSA
structure during the execution of dynamic SQL statements, SQLSADISPLAY does not
display an SQLSA structure returned by a PREPARE statement.

sqlsa

is a pointer to the SQLSA structure. The C compiler automatically declares the
SQLSA structure when you specify the INCLUDE SQLSA directive.

sqlca

is a pointer to the SQLCA structure. The SQLCA structure contains the procedure
name and line number of the SQL statement that sets the SQLSA structure. The

#include <cextdecs(SQLGETSYSTEMVERSION)>

short SQLGETSYSTEMVERSION (
 [short node_number] , /* i */
 short *sql_version /* o */
);

Note. Although version 340 SQL/MP software supports the SQLGETSYSTEMVERSION
procedure, HP might not support this procedure in a future RVU. If you are running version 300
(or later) SQL/MP software, use the GET VERSION OF SYSTEM statement to return the
version of a system. For information about this statement, see the SQL/MP Reference Manual.

#include <cextdecs(SQLSADISPLAY)>

void SQLSADISPLAY (
 short *sqlsa, /* i */
 [short *sqlca,] /* i */
 [short output_file_number ,] /* i */
 [short *detail_params] /* i */
);
HP NonStop SQL/MP Programming Manual for C—429847-008
5-20

SQL/MP System Procedures SQLSADISPLAY
C compiler automatically declares the SQLCA structure if you specify the
INCLUDE SQLCA directive. If you omit the SQLCA name, the display does not
contain the procedure name and process name of the caller.

output_file_number

is the output file number. If you omit this value or set it to a negative value,
SQLSADISPLAY displays information at your home terminal. NonStop SQL/MP
ignores this parameter if detail_params specifies sequential I/O (SIO).

detail_params

determines whether the program uses sequential I/O (SIO) or Enscribe I/O to write
to the output file. The parameter detail_params points to a structure with this
layout:

struct detail_params_type
 {
 char sio;
 short *out_fcb_1;
 short *out_fcb_2;
 } detail_params;

sio

specifies whether sequential I/O (SIO) is used:

outfcb1

specifies the first output file control block if SIO is enabled.

outfcb2

specifies the second output file control block if SIO is enabled. To use
outfcb2, assign it a value greater than 0.

If you omit detail_params, Enscribe I/O is the default.

Example of the SQLSADISPLAY Display

SQLSADISPLAY displays statistics in this format:

SQL statistics @ \system.$vol.subvol.file.#line process cpu,pin

 Records Records Disc Message Message Lock
Table Name Accessed Used Reads Count Bytes WE

Y Use SIO; ignore output_file_number.

N Do not use SIO; write to output_file_number.
HP NonStop SQL/MP Programming Manual for C—429847-008
5-21

SQL/MP System Procedures SQLSADISPLAY
Table 5-5 describes the elements of the SQLSADISPLAY display.

Example 5-2 displays the type of information found in SQLSADISPLAY. To generate
this display, a program follows these steps:

1. Generates the SQLSA and SQLCA structures.

2. Runs an SQL DML statement.

3. Calls the SQLSADISPLAY procedure.

Table 5-5. SQLSADISPLAY Procedure Display Elements

Element Description

\system.$vol.subvol.file The fully qualified file name of the calling program

#line The line number of the calling program

process cpu,pin The CPU and PIN of the calling program

Table Name The name of each table

Records Accessed The number of records accessed in each table (includes
records examined by the disk process, file system, and
SQL/MP executor)

Records Used The number of records actually used by the statement

Disc Reads The number of disk reads caused by accessing this table

Message Count The number of messages sent to execute operations on
this table

Message Bytes The number of message bytes sent to access this table

Lock WE A flag indicating either that lock waits occurred (W) or
that lock escalations occurred (E) for the table

Example 5-2. Example of the SQLSADISPLAY Display

SQL statistics @ \sanfran.$system.accts.prog10.#333.2 process 12,250

 Records Records Disc Message Message Lock
Table Name Accessed Used Reads Count Bytes WE

\sanfran.$sqlvol.accts.tab10

 123 22 3 10 3245

\sanfran.$vol001.fy96.employee

 9987231 1 99999 1 100 e

\sanfran.$sqlvol.accts.tab20

 1 1 0 1 100 w
HP NonStop SQL/MP Programming Manual for C—429847-008
5-22

6 Explicit Program Compilation

This section describes the explicit compilation of a NonStop C program containing
embedded SQL statements and directives in the Guardian, HP NonStop Open System
Services (OSS), and PC host environments using TNS, TNS/R and TNS/E compilation
tools.

This section includes:

Developing a C Program in the Guardian Environment on page 6-5
Developing a C Program in the OSS Environment on page 6-28
Developing a C Program in a PC Host Environment on page 6-33
Using CONTROL Directives on page 6-34
Using Compatible Compilation Tools on page 6-36

Explicit Program Compilation
Table 6-1 and Table 6-2 list the C compilers, their compilation mode, and where you
can run them.

Note. This section contains information about some of the following G-series development
tools, which are not available on H-series systems:

 TNS/R Native C compiler
 TNS/R C++ compiler
 TNS/R C++ runtime library version 2
 NonStop SQL/MP for TNS/R C
 SQL/MP Compilation Agent
 NMCOBOL compiler
 ld
 nld
 noft
 TNS/R pTAL

Continue to use the Enterprise Toolkit or G-series servers for your G-series development tasks.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-1

Explicit Program Compilation Explicit Program Compilation
Table 6-1. C Compilers

Table 6-2. Compilation Mode and Execution Environment

Figure 6-1, Figure 6-2 and Figure 6-3 show the general steps that you follow to compile
a program on the TNS, TNS/R, and TNS/E platforms.

Compiler Compilation Mode
Compiler Operating
Environment

NonStop
System

C TNS Guardian D-series
G-series
H-series

c89 TNS OSS D-series
G-series

NMC TNS/R native Guardian D-series
G-series

c89 TNS/R native OSS D-series
G-series

Native C cross
compiler for TNS/R

TNS/R native PC D-series host*
G-series host

CCOMP TNS/E native Guardian H-series

**c89 TNS/E native OSS H-series

Native C cross
compiler for TNS/E

TNS/E native PC H-series host

* The HP Enterprise Toolkit—NonStop Edition (ETK) and PC command line are not supported on D-series
systems. Instead, use the native C cross compiler of the Tandem Development Suite (TDS). For more
information, see the C/C++ Programmer’s Guide for NonStop Systems.
** NonStop SQL/MP is only compatible with c89 and not c99.

Compilation Mode
NonStop System Where You Can Execute the Embedded SQL
Program

TNS D-series or G-series (TNS/R)
H-series (TNS/E)

TNS/R native D-series or G-series (TNS/R)

TNS/E native H-series (TNS/E)

Note. The hardware architecture of TNS is based on complex instruction-set computing
(CISC), TNS/R is based on reduced instruction-set computing (RISC) and TNS/E is based on
Intel Itanium. These different architectures affect the compilation and running of SQL/MP
application programs and influence where and how application development is done. For
example, in a multinode environment that involves different hardware platforms (for example,
TNS, TNS/R, and TNS/E), one development strategy might be to use the TNS/E platform for
application development and then deploy the applications to the other platforms.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-2

Explicit Program Compilation Explicit Program Compilation
Figure 6-1. Explicit SQL Compilation of a C Program on TNS

VST003.vsd

Source File
C Source File With
Embedded SQL Statements Add required DEFINEs.1

In an OSS environment on a TNS/R system, Steps 2 through 5
can be invoked with the c89 utility.

Binder Process

SQL Compiler
Accelerated
Object File

SQL Program File

Accelerator
or OCA

C Compiler

Run the compiler.2

 Run the SQL compiler.5

Valid SQL Program File Ready for Execution on
TNS, TNS/R, or TNS/E Systems

Run the Binder program
(if necessary).

3

Optionally run the
Accelerator (TNS/R) or the
OCA (TNS/E).

4

C Object File With
SQL Source Statements

(File code 100)
HP NonStop SQL/MP Programming Manual for C—429847-008
6-3

Explicit Program Compilation Explicit Program Compilation
Figure 6-2. Explicit SQL Compilation of a C Program on TNS/R

VST003R.vsd

Add required DEFINEs.1

In an OSS environment, Steps 2 through 4 can be invoked with the c89 utility.

nld or ld
Process

SQL Compiler

SQL Program File

NMC Compiler

Run the compiler.2

 Run the SQL compiler.4

Valid SQL Program File Ready for
Execution on TNS/R Systems Only

Run the linker
(if necessary).

3

C Object File
with SQL

Source Statements

(File Code 700)

C Source File
with Embedded
SQL Statements
HP NonStop SQL/MP Programming Manual for C—429847-008
6-4

Explicit Program Compilation Developing a C Program in the Guardian
Environment
Figure 6-3. Explicit SQL Compilation of a C Program on TNS/E

For information about executing an SQL program file, see Section 7, Program
Execution. For information about automatic SQL recompilation, see Section 8,
Program Invalidation and Automatic SQL Recompilation.

Developing a C Program in the Guardian
Environment

In the Guardian environment, you can develop a C program to run in either the
Guardian or OSS environment.

VST003E.vsd

Add required DEFINEs.1

In an OSS environment on a TNS/E system, Steps 2 through 4 can be invoked
with the c89 utility.

SQL Compiler

SQL Program File

CCOMP Compiler

Run the compiler.2

 Run the SQL compiler.4

Valid SQL Program File Ready for
Execution on TNS/E Systems Only

Run the linker
(if necessary).

3

C Object File
with SQL

Source Statements

(File Code 800)

eld Process

C Source File
with Embedded
SQL Statements
HP NonStop SQL/MP Programming Manual for C—429847-008
6-5

Explicit Program Compilation Using TACL DEFINEs in the Guardian Environment
Using TACL DEFINEs in the Guardian Environment

You can use TACL DEFINEs during the compilation of a C program containing
embedded SQL statements and directives:

 To use DEFINEs, the TACL process DEFMODE attribute must be ON. To
determine the DEFMODE setting, enter the SHOW DEFMODE command at the
TACL prompt:

10> SHOW DEFMODE
 Defmode OFF

 If DEFMODE is OFF, enter a SET DEFMODE ON command:

11> SET DEFMODE ON

 Before you run the C compiler, add the DEFINEs that you use for the names of
tables or views in INVOKE directives:

12> ADD DEFINE =employee, CLASS MAP, FILE persnl.employee
13> ADD DEFINE =emplist, CLASS MAP, FILE persnl.emplist

 Before you run the SQL compiler (SQLCOMP), add the DEFINEs that you use for
the names of tables, views, indexes, or collations in SQL statements:

20> ADD DEFINE =dept, CLASS MAP, FILE persnl.dept
21> ADD DEFINE =xempname, CLASS MAP, FILE persnl.xempname
22> ADD DEFINE =collate1, CLASS MAP, FILE collate1

If you specify a DEFINE name in an SQL statement that is not in your current set
of DEFINEs, the SQL compiler issues a warning and leaves the statement
uncompiled in the program file. When you run the program, the SQL executor
automatically tries to recompile the SQL statement. If the DEFINE is still not
available at run time, the SQL compiler issues an error message.

 When you run the SQL compiler, you can specify a class SPOOL DEFINE for the
OUT file and a class CATALOG DEFINE for the catalog option. If you use these
DEFINEs, add them before you enter the SQLCOMP command:

30> ADD DEFINE =persnl, CLASS CATALOG, SUBVOL persnl
31> ADD DEFINE =sqlist, CLASS SPOOL, LOC $S.#sqlist
32> SQLCOMP /IN sqlc,OUT =sqlist,NOWAIT/ CATALOG =persnl

 To use the DEFINEs stored in the program file when you explicitly recompile a
program, specify the STOREDDEFINES option of the SQLCOMP command. See
Running the SQL Compiler in the Guardian Environment on page 6-12 for a
description of the STOREDDEFINES option.

For information about using DEFINEs in the OSS environment, see Developing a
C Program in the OSS Environment on page 6-28.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-6

Explicit Program Compilation Specifying the SQL Pragma in the Guardian
Environment
Specifying the SQL Pragma in the Guardian Environment

The SQL pragma indicates to the TNS C , the TNS/R NMC, or the TNS/E CCOMP
compilers that a program contains embedded SQL statements or directives and
specifies various options for processing the SQL statements or directives.

You can specify the SQL pragma either in your primary C source file or as a compiler
option in the implicit TACL RUN command for the TNS C compiler. When you run the
NMC or CCOMP compiler, you must specify the SQL pragma as a compiler option in
the NMC or CCOMP command.

This example shows the SQL pragma as a TNS C compiler option:

C / IN csrc, OUT $S.#clist / cobj; SQL

To specify the SQL pragma in your C source file, use:

WHENEVERLIST | NOWHENEVERLIST

controls the writing of active WHENEVER options to the listing file after each SQL
statement is processed.

WHENEVERLIST causes the options to be written.

NOWHENEVERLIST (the default) causes the options not to be written.

CHAR_AS_ARRAY | CHAR_AS_STRING

specifies whether the INVOKE directive generates character types that contain an
extra byte for the null terminator.

CHAR_AS_ARRAY directs INVOKE to generate character types without the extra
byte.

CHAR_AS_STRING (the default) directs INVOKE to generate character types with
the extra byte for the null terminator.

SQLMAP | NOSQLMAP

specifies whether the compiler listing includes an SQL map. This map enables you
to determine SQL statements using output from the Measure program.

#pragma SQL [option]
 [(option [, option]...)]
option is:

 [WHENEVERLIST | NOWHENEVERLIST]
 [CHAR_AS_ARRAY | CHAR_AS_STRING]
 [SQLMAP | NOSQLMAP]
 [RELEASE1 | RELEASE2]
 [CPPSOURCE "filename"]
HP NonStop SQL/MP Programming Manual for C—429847-008
6-7

Explicit Program Compilation Specifying the SQL Pragma in the Guardian
Environment
SQLMAP directs the C compiler to include an SQL map in the listing. An SQL map
contains:

 Each run-time data unit (RTDU), which is a region of the object file that
contains both SQL source statements and object code.

 Section location table (SLT) index number.

 Source file name and number.

 Source file line number.

The table is sorted first by RTDU name and then by the SLT index number. Use
this table to correlate Measure output with the SQL statement. The global RTDU
contains the cursors and CONTROL directives declared in the global declarations.
The SQLMAP option also directs the C compiler to include the HOSV in the
compiler listing as:

Host Object SQL Version = 310

NOSQLMAP (the default) causes the SQL map not to be added.

RELEASE1 | RELEASE2

specifies the version of the SQL/MP features in the program (including the SQL
data structures) and the version of SQL/MP software on which the program file can
run.

RELEASE1 specifies version 1 features. A program that uses the RELEASE1
option is compatible with SQL/MP version 1, 2, or 300 (or later) software.
RELEASE2 (the default) specifies version 2 features. A program that uses the
RELEASE2 option is compatible with SQL/MP version 2 or version 300 (or later)
software but not with version 1 software.

CPPSOURCE "filename"

directs the C compiler to generate a preprocessed C source file with the name
filename, which must be a valid Guardian file name. The generated file is empty,
except for SQL source RTDUs. The CPPSOURCE option is not valid with the
RELEASE1 option or a macro expansion that contains any part of an SQL
statement. This option is intended primarily for use with the Distributed Workbench
Facility (DWF).

Note. Although the C compiler allows the use of RELEASE1 and RELEASE2 options,
these options might not be supported in a future RVU. If you are using a version 300 (or
later) C compiler to generate data structures, use the INCLUDE STRUCTURES directive
with the VERSION 1 or VERSION 2 option.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-8

Explicit Program Compilation Running the TNS C Compiler in the Guardian
Environment
Running the TNS C Compiler in the Guardian Environment

To run the TNS C compiler in the Guardian environment, use the TACL RUN
command:

source

is the primary source file of the compilation unit. source can be a text disk file
(code 101), a C-format disk file (code 180), a terminal, a magnetic tape unit, or a
process. The default is your home terminal if your TACL process is running in
interactive mode.

Do not use the same name for different functions in separate source modules if the
modules contain SQL statements. Using the same name can cause SQL internal
data structures to be interpreted as duplicates. Consequently, the SQL statements
in one of the functions are not included in the object file.

list-file

is the file that receives the compiler listing. The default is the default output file
(usually, your home terminal); list-file can also be a class SPOOL DEFINE
name.

run-option

is one or more TACL RUN command options (separated by commas) as described
in the TACL Reference Manual.

object

specifies the object file to which the TNS C compiler writes the compilation unit.

If you omit object, the compiler creates a file named OBJECT in your default
volume and subvolume. If the compiler cannot create OBJECT (usually, because a
file with this name already exists and cannot be purged), the compiler creates a
file, ZZBInnnn, in your default volume and subvolume (where nnnn is a 4-digit
number determined by the system).

compiler-option

is a TNS C compiler pragma or preprocessor symbol.

For single-module programs that run in the Guardian environment, specify the
RUNNABLE pragma to generate an executable program object file.

To direct the TNS C compiler to generate an object file that runs in the OSS
environment, specify the SYSTYPE OSS pragma.

[RUN] C / IN source [, OUT list-file] [, run-option]...
/
 [object] [; compiler-option [, compiler-option]...
]

HP NonStop SQL/MP Programming Manual for C—429847-008
6-9

Explicit Program Compilation Running the TNS/R NMC and TNS/E CCOMP
Compiler in the Guardian Environment
For more information about TNS C compiler pragmas or preprocessor symbols,
see the C/C++ Programmer’s Guide for NonStop Systems.

Running the TNS/R NMC and TNS/E CCOMP Compiler in the
Guardian Environment

To run the TNS/R NMC compiler in the Guardian environment, use the NMC
command. To run the TNS/E CCOMP compiler (available only on H-Series RVUs) in
the Guardian environment, use the CCOMP command:

IN source

specifies the primary source file of the module. This file must be a valid Guardian
disk file of type 101 (edit) or type 180 (C-format). Interactive input from a terminal
or a process is not accepted.

OUT list-file

specifies the file to which the native C compiler writes the compiler listing. When
specified, listing is usually a spooler location. If you omit the OUT option, the
compiler writes the listing to your current default output file. If the file already
exists, the compiler tries to delete the file and then continue.

run-option

is one or more TACL RUN command options (separated by commas), as described
in the TACL Reference Manual.

object

specifies the file to which the native C compiler writes the object code for the
source text. If you do not specify an object file, the compiler writes the object code
to the file OBJECT in your current default volume and subvolume. If the file
OBJECT cannot be created, the compiler writes the object code to the file
ZZBInnnn (where nnnn is a unique four-digit number) in your current default
volume and subvolume.

compiler-option

modifies the compiler operation by specifying a compiler pragma or defining a
preprocessor symbol as follows:

[RUN] {NMC|CCOMP} / IN source [, OUT list-file] [, run-
option] [object] [; compiler-option [, compiler-option
]...]
compiler-option: one of
 pragma
 define identifier [constant]
 undefine identifier
HP NonStop SQL/MP Programming Manual for C—429847-008
6-10

Explicit Program Compilation Binding SQL Program Files in the Guardian
Environment
pragma

is any valid compiler pragma.

NonStop SQL/MP supports Tandem floating-point format but not IEEE floating-
point format. The floating-point format for TNS/R native compilation is Tandem
by default. However, for TNS/E native compilation, the floating-point format is
IEEE by default. Follow these guidelines when compiling C programs that
contain embedded SQL/MP statements:

 For TNS/R native compilation, do not specify the IEEE_FLOAT compiler
pragma. The floating-point format must be the default TANDEM_FLOAT.

 For TNS/E native compilation, specify the TANDEM_FLOAT compiler
pragma to override the default IEEE_FLOAT.

For more information, see “Compiling and Linking Floating-Point Programs” in
the C/C++ Programmer’s Guide.

define identifier [constant]

defines identifier as a preprocessor symbol. If identifier is followed by
a constant, it is defined as an object-like macro that expands to the given
value. The define option is equivalent to using the #define preprocessor
directive in source text.

undefine identifier

deletes identifier as a preprocessor symbol. The undefine option is
equivalent to using the #undef preprocessor directive in source text.

Binding SQL Program Files in the Guardian Environment

The Binder program is a tool you can use to read, link, modify, and build executable
object files in the TNS environment. You can bind C, COBOL, Pascal, and TAL object
files, including SQL program files.

To bind object files in the TNS/R environment, use the native link utilities (nld and ld),
which are described in the nld Manual and the ld Manual. To bind object files in the
TNS/E environment, use the native link utilities (eld and eNOFT) which are described
in the eld Manual and eNOFT Manual.

Follow these guidelines when you bind or link SQL program files:

 Handle SQL program files like other object files.

 Bind object files after they are compiled by the TNS C compiler. (You can bind
object files after running the SQL compiler. However, the binding operation
invalidates the resulting target file, and you must then explicitly recompile the
program file to validate it.)

 SQL compile only the final bound object. In other words, do not separately SQL
compile each object of a multiple-module program.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-11

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
 Do not bind object files with functions that have the same name and contain
embedded SQL statements. The SQL compiler uses the function name as the
run-time data unit (RTDU) name. Therefore, when the SQL statement runs,
functions with the same name generate ambiguous references that can cause
run-time SQL errors.

How you use the Binder program differs, depending on whether you are binding a
single-module program or a multiple-module program.

For a single-module program, the C compilers automatically invoke the Binder program
and generate an executable object file if you specify the RUNNABLE pragma. You
specify the RUNNABLE pragma in the source code file or as a compiler option in the
TACL RUN command line when you compile your program:

C / IN csrc, OUT $s.#clist, NOWAIT / cobj; RUNNABLE

If you do not specify the RUNNABLE pragma when you compile a program, you must
explicitly use the Binder program or linker to set this attribute in the object file.

For a multiple-module program, use the Binder program or linker to combine the object
code from each module into a single executable object file.

To run the Binder program, enter the BIND command at the TACL prompt. The Binder
program displays its banner and prompt, an at sign (@).

In the next example, the Binder commands combine the cobj1 and cobj2 files into
an executable object file named progfile and set the RUNNABLE attribute for
progfile. The SELECT LIST * OFF command improves performance by turning all
listings off.

@ADD * FROM cobj1
@ADD * FROM cobj2
@SELECT RUNNABLE OBJECT ON
@SELECT LIST * OFF
@BUILD progfile

For more information about the Binder program, see the Binder Manual.

Running the SQL Compiler in the Guardian Environment

The SQL compiler (SQLCOMP) compiles SQL source statements in a program file,
generates SQL object code for each statement, determines an optimized execution
plan for each SQL statement against the database, and stores the code and plan in the
SQL object program. Optionally, you can invoke the EXPLAIN utility during SQL

Caution. The Binder STRIP command without the SYMBOLS or AXCEL option removes the
Binder table from an SQL program file. Without the Binder table, the SQL compiler cannot
compile the program file, and the SQL executor cannot run it.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-12

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
compilation to generate a report on the execution plans for DML statements and
DEFINEs used by the program.

Required Access Authority

To run the SQL compiler, you must have this access authority:

 Read and purge access to the SQL program file

 Read and write access to the PROGRAMS, USAGES, and TRANSIDS tables of
the catalog in which the SQL program file is to be registered

 Read and write access to the USAGES and TRANSIDS tables of any catalog in
which a table, view, or index that the SQL program file uses is registered

SQL Compiler Functions

 Resolves and expands SQL object names, including DEFINEs, using the current
defaults and the current catalog, and then stores the DEFINE names in the SQL
program file.

 Performs type checking for C and SQL data types.

 Expands views.

 Checks references in catalogs for SQL object names to verify their existence and
to read their descriptions, then evaluates the object type and characteristics for
each reference.

 Determines an optimized execution plan by analyzing the DML statements to
determine the best access paths and join, sort, and blocking strategies. Estimates
the execution costs for DML statements based on the statistics in the catalogs.

 Generates executable code for the execution plans.

 Registers the program in the specified PROGRAMS table and stores
dependencies for tables, views, and indexes in the USAGES table for each table,
view, or index that is accessed.

 Generates a listing of the SQL statements in the program file, including any
warning or error messages that occurred.

 Sets the SQL SENSITIVE and SQL VALID flags in the program file label if the
compilation is successful.

Note. The Accelerator and the Object Code Accelerator (OCA) invalidate an SQL program file.
If you plan to run the Accelerator or OCA on a program file, run it before you explicitly SQL
compile the program.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-13

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
Entering the SQLCOMP Command

To run the SQL compiler in the Guardian environment, enter the SQLCOMP command
at the TACL prompt or from an OBEY command file by using this syntax. (For
information about running the SQL compiler using the c89 utility in the OSS
environment, see Developing a C Program in the OSS Environment on page 6-28.)

object-file

is a Guardian disk file name. This file cannot be part of a user library or a system
library. The object file can be generated by the C compiler, Binder program,
Accelerator, OCA, or SQL compiler.

You must run the SQL compiler on the same system where object-file exists.
If you do not specify a system or volume name, the SQL compiler uses your
current default values.

list-file

identifies the destination where the SQL compiler directs the listing. list-file
can be a disk file name, process name (including a spooler collector), or a device
name (including a terminal, magnetic tape unit, or line printer) as follows:

SQLCOMP / IN object-file [, OUT [list-file]]
 [, run-option] [, run-option]... /
 [compiler-option [, compiler-option]...]

compiler-option is:

 [CATALOG catalog-name]
 [CURRENTDEFINES | STOREDDEFINES]

 [EXPLAIN]
 [[PLAN]]
 [[DEFINES [file-name] [, OBEYFORM]]]
 [NOEXPLAIN]

 [FORCE | NOFORCE]
 [OBJECT | NOOBJECT]
 [RECOMPILE | NORECOMPILE]
 [RECOMPILEONDEMAND | RECOMPILEALL]
 [REGISTERONLY { ON | OFF }]
 [NOREGISTER { ON | OFF }]

 [CHECK { INVALID PROGRAM }
 { INVALID PLANS }
 { INOPERABLE PLANS }]

 [COMPILE { PROGRAM [STORE SIMILARITY INFO] }
 { INVALID PLANS }
 { INOPERABLE PLANS }]
HP NonStop SQL/MP Programming Manual for C—429847-008
6-14

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
[\system.]external-file

\system is an optional system name. external-file is one of these
Guardian names:

[$volume-name.][subvolume-name.]disk-file-name
$device-name
$device-number
$process-name
$spooler-collector-name[.#spooler-location-name]

list-file can also be a class SPOOL DEFINE name.

If list-file does not exist, the SQL compiler creates it. If list-file already
exists, the SQL compiler appends the new output to it. If you specify OUT but omit
list-file, the SQL compiler does not produce a listing. If you omit OUT, the
SQL compiler directs the listing to the OUT file of the invoking process (usually,
your home terminal).

run-option

is a TACL RUN command option, as described in the TACL Reference Manual.

CATALOG catalog-name

specifies the name of the catalog where the program is to be registered.
catalog-name is a subvolume name. If you partially qualify the catalog name, the
system expands the name by using your current default values.

You can also specify a class CATALOG DEFINE for catalog-name.

The catalog, object file, and SQL compiler must reside on the same system.

If the program was previously SQL compiled and recorded in a different catalog,
catalog-name overrides the catalog name stored in the program file. The
program is dropped from the previous catalog and recorded in catalog-name.

If you omit the CATALOG clause, the SQL compiler uses the current default
catalog. If you have not defined a default catalog, the SQL compiler uses your
current default subvolume.

CURRENTDEFINES | STOREDDEFINES

specifies the set of TACL DEFINEs used to interpret DEFINE names in the SQL
statements in the program file.

CURRENTDEFINES (the default) selects the current set of TACL DEFINEs for
compiling the program.

STOREDDEFINES selects the set of TACL DEFINEs used for SQL tables and
views that were stored in the program file the last time it was SQL compiled.
(SQLCOMP does not store the settings for the =_DEFAULTS DEFINE in the
program file.) STOREDDEFINES applies only to programs that have been SQL
compiled.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-15

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
[EXPLAIN]
[[PLAN]]
[[DEFINES [file-name] [, OBEYFORM]]]
[]
[NOEXPLAIN]

controls whether the SQL compiler invokes the EXPLAIN utility.

EXPLAIN PLAN

invokes the EXPLAIN utility to generate an EXPLAIN listing of the optimized
execution plans determined by the SQL compiler for the DML statements in the
program. EXPLAIN PLAN is the default EXPLAIN option.

EXPLAIN DEFINES [file-name] [, OBEYFORM]

invokes the EXPLAIN utility to generate a listing of the TACL DEFINEs that the
SQL compiler uses to compile the SQL statements. (The SQL compiler uses
these DEFINEs to recompile the program if you specify the STOREDDEFINES
option.)

file-name is an optional file where the SQL compiler writes the DEFINE
listing. file-name is an external-file as described for the OUT
list-file parameter.

OBEYFORM directs the SQL compiler to write the DEFINE listing in an OBEY
command file format so that you can use an OBEY command to later set the
DEFINEs. If you omit OBEYFORM, the SQL compiler uses the format
displayed by the TACL INFO DEFINE command. If you omit DEFINES, the
SQL compiler does not generate a DEFINE listing.

NOEXPLAIN (the default) suppresses the EXPLAIN utility.

FORCE | NOFORCE

controls how syntax errors affect SQL compilation.

FORCE directs the SQL compiler to produce a valid, executable object file
regardless of syntax errors. The SQL compiler writes the SQL source statements
to the program file so that the statements can automatically be recompiled if run at
run time. Use the FORCE option to debug a program if you do not need to run the
SQL statements that generate errors.

NOFORCE (the default) directs the SQL compiler to produce the SQL object code
only if there are no syntax errors.

OBJECT | NOOBJECT

controls whether the SQL compiler produces an SQL program file.

OBJECT (the default) directs the compiler to generate an SQL object code,
depending on whether errors occur and whether the FORCE or NOFORCE option
is in effect.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-16

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
NOOBJECT directs the compiler to perform checking functions and to generate an
EXPLAIN listing if you have also specified the EXPLAIN option but to not produce
SQL object code.

RECOMPILE | NORECOMPILE

specifies whether the program should be automatically recompiled, if necessary,
during program execution.

RECOMPILE (the default) directs the SQL executor to automatically recompile a
program whenever any of these conditions occur:

 The program file is SQL invalid at SQL load time.

 The DEFINEs at SQL load time are different from the DEFINEs used during
explicit SQL compilation.

 The timestamp check fails for an SQL object in an SQL statement.

 An access path (index) is unavailable.

If the program uses the similarity check, automatic recompilation might not occur.
For more information, see Section 8, Program Invalidation and Automatic SQL
Recompilation.

NORECOMPILE directs the SQL compiler not to automatically recompile the
program. If any of the conditions described under the RECOMPILE option occur
during execution, an error is generated and the program is subject to explicit SQL
recompilation for validation.

RECOMPILEONDEMAND | RECOMPILEALL

specifies whether the SQL executor should recompile an entire invalid program or
only those SQL statements that require recompilation and are actually run. If you
specify NORECOMPILE, this option is ignored.

RECOMPILEONDEMAND directs the SQL executor to recompile only those
statements in the invalid program that actually run. Automatic recompilation occurs
the first time an individual SQL statement is run.

RECOMPILEALL (the default) directs the SQL executor to automatically recompile
the entire program if it is invalid. Automatic recompilation occurs at SQL load time.

REGISTERONLY { ON | OFF }

directs the SQL compiler to register a previously SQL compiled program in a
specific catalog without recompiling the program. To use the REGISTERONLY
option, you must have SQL/MP software version 310 (or later).

REGISTERONLY ON directs the SQL compiler to register a program in the
specified catalog without compiling the SQL statements in the program or creating
a new program file. The SQL compiler marks the program’s file label as SQL
HP NonStop SQL/MP Programming Manual for C—429847-008
6-17

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
sensitive and SQL valid. The program retains its existing execution plans. If the
program was not previously SQL compiled, the operation fails with SQL error 2115.

The CATALOG option is the only other SQLCOMP option you can specify with the
REGISTERONLY ON option. If you specify an option other than CATALOG, the
operation fails with SQL error 2111. If the program was previously compiled with
the NOREGISTER ON option, the operation fails with SQL error 2108. If the
program was modified by the Binder program after it was SQL compiled, the
operation fails with SQL error 2103.

REGISTERONLY OFF (the default) directs the SQL compiler to explicitly compile
the program and perform all SQL compiler functions.

NOREGISTER { ON | OFF }

directs the SQL compiler to compile a program without registering the program in a
catalog. To use the NOREGISTER option, you must have an SQL/MP software
version of 310 (or later).

NOREGISTER ON directs the SQL compiler to explicitly compile the program but
not to register it in a catalog. The SQL compiler does not mark the program as
SQL sensitive and SQL valid in its file label. Therefore, the program file can be
executed without being registered in an SQL catalog. If you specify the CATALOG
option with the NOREGISTER ON option, the compilation fails with SQL error
2116. If the program is already registered in a catalog, the compilation fails with
SQL error 2110. If the program was modified by the Binder program after it was
SQL compiled, the operation fails with SQL error 2103.

NOREGISTER OFF (the default) directs the SQL compiler to explicitly compile the
program and perform all specified compiler functions, including registering the
program in the catalog.

CHECK { INVALID PROGRAM | INVALID PLANS | INOPERABLE PLANS }

determines the behavior of the SQL executor when it runs an invalid SQL
statement or a statement that references a DEFINE that has changed since the
last explicit SQL compilation.

To use a CHECK option, you must have an SQL/MP software version of 310 (or
later). A version 310 SQL compiler sets the program’s file version (PFV) to 310.
If you specify the CHECK INVALID PLANS or CHECK INOPERABLE PLANS
option (which stores similarity information in the program file), the SQL compiler
also sets the program’s catalog version (PCV) to 310 (or later). To support the
CHECK INVALID PLANS or CHECK INOPERABLE PLANS option, an SQL catalog
must have a catalog version of 310 (or later).

If you restore a program using the SQLCOMPILE option, the RESTORE program
invokes the recompilation of the program by using the SQLCOMP CHECK option
specified during the last explicit SQL compilation.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-18

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
CHECK INVALID PROGRAM

(the default) specifies that the SQL executor should automatically recompile all
SQL statements in an invalid program or a program that references changed
DEFINEs (if NORECOMPILE is not specified). The SQL executor does not
attempt to execute any plans in the program without recompiling them.

CHECK INVALID PLANS

specifies that the SQL executor should automatically recompile an SQL
statement if either of these conditions occur (and NORECOMPILE is not
specified):

 The statement is invalid. Invalid statements have plans that fail the
redefinition timestamp check.

 The statement references a DEFINE at SQL load time that has changed
since the last explicit SQL compilation.

The SQL executor uses the execution plans from the program file for other
SQL statements that are valid.

During explicit SQL compilation, the CHECK INVALID PLANS option directs
the SQL compiler to store similarity information in the program file (even if the
similarity check is not enabled for the table or protection view).

CHECK INOPERABLE PLANS

specifies that the SQL executor should perform the similarity check on each
SQL object in an SQL statement if the similarity check is enabled for
referenced tables and protection views and either of these conditions occur:

 The statement is invalid. Invalid statements have plans that fail the
redefinition timestamp check.

 The statement references a DEFINE at SQL load time that has changed
since the last explicit SQL compilation.

If the similarity check passes, the SQL executor considers the plan to be
operable (although it might not be optimal) and runs the statement without
automatically recompiling it.

If the similarity check fails, the SQL executor considers the plan to be
inoperable. The SQL executor then recompiles (in memory only) the SQL
statement that generated the inoperable plan (if NORECOMPILE is not
specified) and runs the recompiled statement.

During explicit SQL compilation, the CHECK INOPERABLE PLANS option
directs the SQL compiler to store similarity information in the program file (even
if the similarity check is not enabled for the table or protection view).
HP NonStop SQL/MP Programming Manual for C—429847-008
6-19

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
COMPILE { PROGRAM [STORE SIMILARITY INFO] }
 { INVALID PLANS }
 { INOPERABLE PLANS }

determines which SQL statements are compiled during an explicit SQL
compilation. You can direct the SQL compiler to use the similarity check to
determine if a statement’s execution plan from a previous compilation is operable.
The SQL compiler then recompiles only the statements that fail the similarity
check. Other SQL statements retain their existing plans.

To use a COMPILE option, you must have an SQL/MP software version of 310 (or
later). A version 310 SQL compiler sets the PFV to 310. To support the COMPILE
PROGRAM STORE SIMILARITY INFO, COMPILE INVALID PLANS, or COMPILE
INOPERABLE PLANS option, an SQL catalog must have a catalog version of 310
(or later).

If you specify the COMPILE PROGRAM STORE SIMILARITY INFO, COMPILE
INVALID PLANS, or COMPILE INOPERABLE PLANS option (which stores
similarity information in the program file), the SQL compiler sets the PCV to 310. If
you omit the COMPILE option or specify the COMPILE PROGRAM option (the
default), the SQL compiler sets the PCV to 1 (unless the program includes other
version 310 features).

COMPILE PROGRAM

directs the SQL compiler to explicitly compile all SQL statements in the
program. If you include the STORE SIMILARITY INFO clause, the SQL
compiler also stores similarity information for each SQL statement in the
program file. COMPILE PROGRAM is the default.

COMPILE INVALID PLANS

directs the SQL compiler to explicitly compile these SQL statements:

 Statements that reference changed DEFINEs.

 Statements with plans that fail the redefinition timestamp check.

 Statements with altered execution plans, which are invalid but operable
plans that the SQL compiler has updated without recompiling.

 Uncompiled SQL statements with empty sections. The SQL compiler
generates an empty section if an SQL statement references a nonexistent
DEFINE or SQL object. (The SQL compiler also generates empty sections
for CONTROL directives and DDL statements.)

Other SQL statements retain their existing execution plans.

The COMPILE INVALID PLANS option stores similarity information in the
program file and updates the program’s USAGES tables.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-20

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
If the program has not been previously compiled or if the program does not
contain similarity information, the COMPILE INVALID PLANS option directs the
SQL compiler to compile all SQL statements in the program.

COMPILE INOPERABLE PLANS

directs the SQL compiler to explicitly compile these SQL statements:

 Statements with inoperable plans (invalid plans that fail the similarity
check).

 Uncompiled statements with empty sections. The SQL compiler generates
an empty section if an SQL statement references a nonexistent DEFINE or
SQL object. (The SQL compiler also generates empty sections for
CONTROL directives and DDL statements.)

Other SQL statements retain their existing execution plans.

The COMPILE INOPERABLE PLANS option stores similarity information in the
program file and updates the program’s name map and usages in the
USAGES tables. If the program has not been previously compiled or if the
program does not contain similarity information, the COMPILE INOPERABLE
PLANS option directs the SQL compiler to compile all SQL statements in the
program.

Using Current Statistics

For the SQL compiler to generate the best execution plan, it must have the current
statistics for referenced tables. NonStop SQL/MP does not automatically update these
statistics. A program must run the UPDATE STATISTICS statement to generate current
statistics in a catalog.

To run the UPDATE STATISTICS statement, a program's PAID must meet this criteria:

 Have read access to the table and write access to the catalogs that contain the
table descriptions

 Be the local owner of the table or a remote owner with purge access to the table
(or be the local super ID user)

In this example, the first statement updates the statistics for all columns in the
ORDERS table. The second statement updates the statistics columns in the primary
key or clustering key or in any indexes for the ODETAIL table.

EXEC SQL UPDATE ALL STATISTICS FOR TABLE =orders;
EXEC SQL UPDATE STATISTICS FOR TABLE =odetail;

Note. Safeguard protection for a program object file might be lost after SQL compilation in
certain cases. For example, if the PROGID bit is set for the file or if the original program cannot
be modified because it is held open, you must explicitly restore Safeguard protection after SQL
compilation.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-21

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
For more information, see the UPDATE STATISTICS statement in the SQL/MP
Reference Manual.

Using a PARAM Command

You can use a TACL PARAM command to specify the BINSERV program and the
swap-file subvolume the SQL compiler uses for explicit SQL compilations. Use the
following syntax to enter a PARAM command before you run the SQL compiler. To
see the parameters currently defined, enter a PARAM command without any
parameter name and value pairs. A PARAM command does not apply to automatic
SQL recompilation or dynamic SQL compilation.

param-name param-value

are parameter name and value pairs. These pairs apply to the SQL compiler:

BINSERV guardian-name
SWAPVOL subvol

BINSERV guardian-name

specifies the BINSERV program file the SQL compiler uses during compilation.
These criteria apply to guardian-name:

 If guardian-name designates a system other than the system on which
the SQL compiler is running, the SQL compiler ignores the BINSERV
parameter.

 If guardian-name does not include a volume or subvolume name, the
SQL compiler uses current default values.

The default value for guardian-name is the BINSERV program file on the
same subvolume as the SQL compiler.

SWAPVOL subvol

is a subvolume for temporary (swap) files. If you do not specify a SWAPVOL
subvolume, the SQL compiler uses the default subvolume for temporary files.

This PARAM command specifies the $sql.utils.binserv program file and the
$sql.scratch subvolume for the subsequent SQLCOMP process:

PARAM BINSERV $sql.utils.binserv, SWAPVOL $sql.scratch
...
SQLCOMP /IN cobj,OUT $s.#clst,NOWAIT/ CATALOG $sql.sqlcat

For more information about the PARAM command, see the TACL Reference Manual.

PARAM [param-name param-value [, param-name param-value
]...]
HP NonStop SQL/MP Programming Manual for C—429847-008
6-22

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
SQL Compiler Messages

The SQL compiler issues messages for error and warning conditions. An error can
prevent successful compilation of a program file, but a warning does not. For a
description of all SQL compiler messages, see the SQL/MP Messages Manual.

Error Conditions

An error condition results from an invalid reference to an SQL object in an SQL
statement. Examples of invalid references are an incorrect column name or an
incompatible data type. If an error occurs, the SQL compiler generates a listing, but it
does not record the program file in the catalog and does not validate it for execution.

You can force an SQL compilation regardless of errors by specifying the SQLCOMP
FORCE option. The FORCE option directs the compiler to record the SQL program file
in the catalog and to validate it for execution even if errors occur. The SQL compiler
also writes the SQL statements with errors to the program file so that the statements
can be automatically recompiled at run time. You can use the FORCE option to debug
a program when you are not concerned about executing the SQL statements that
produce errors.

Dynamic SQL statements are not compiled during explicit SQL compilation. Errors in
these statements are returned at run time after dynamic compilation by a PREPARE or
EXECUTE IMMEDIATE statement.

Warning Conditions

A warning condition usually occurs when the SQL compiler has insufficient information
available. If a warning occurs, the SQL compiler still records the program file in the
catalog, validates the file for execution, and then returns a warning message.

In these two situations, the SQL compiler issues a warning message but still compiles
the statement:

 Compiler assumption. The SQL compiler made an assumption necessary to
complete the compilation. For example, if the number of columns in the SELECT
statement does not match the number of host variables, the compiler returns a
warning message and assumes that you do not want to use either the extra
columns or the extra host variables.

 Unavailable statistics. The SQL compiler does not have the necessary statistics for
a table or view to optimize an execution plan. The compiler then uses statistics in
the catalog to determine an optimized execution plan.

In other situations, the SQL compiler marks the statement as having insufficient
information to compile and does not record dependencies in the USAGES catalog
tables for the affected statement. The SQL executor then tries to resolve the problem
at run time by automatically recompiling the statement.

At run time, the uncompiled statement causes an error in these situations:
HP NonStop SQL/MP Programming Manual for C—429847-008
6-23

Explicit Program Compilation SQL Program File Format
 Insufficient information. The SQL compiler does not have enough information to
determine the validity of a statement. For example, an unavailable table might not
exist, or it might reside on an unavailable remote node. (This situation always
occurs for a program that both creates and refers to a table. The table, of course,
does not exist when the program is explicitly SQL compiled.)

 Unresolved DEFINEs. An SQL statement references a nonexistent DEFINE.

SQL Program File Format

The input program file to the SQL compiler can be a C object file, a file generated by
the Binder program, a file generated by the Accelerator, the OCA, or a file previously
compiled by the SQL compiler. Figure 6-4 shows the format of an SQL program file.

Figure 6-4. SQL/MP Program File Format

Accelerated Object Code
TNS/R (AXCEL) or TNS/E

(OCA)

File Label
Information
Generated by the
SQL Compiler

C Object Code

Execution Plans
Generated by the
SQL Compiler
Including
Stored DEFINEs

SQL Source Statement n

SQL Source
Statements
Stored by the
C Compiler

SQL Program File

SQL Valid Flag

SQL Object Code

•
•
•

Compilation Timestamp
SQL Sensitive Flag

VST004.vsd

Accelerated Object Code
for TNS/R (AXCEL)

or TNS/E (OCA)

Accelerated
Object Code

Object Code
Generated by
the C Compiler

SQL Source Statement 1

SQL Source Statement 2
HP NonStop SQL/MP Programming Manual for C—429847-008
6-24

Explicit Program Compilation SQL Compiler Listings
SQL Compiler Listings

The SQL compiler writes all SQL statements in the program file to the listing (or OUT)
file. If an error or warning occurs, the compiler includes a message after the statement
that caused the problem. For DML statements, the compiler also includes the
estimated cost of processing the statement, which is a positive integer indicating the
relative cost. The larger the integer, the more CPU time and disk access time required.

Example 6-1 shows a sample SQL compiler listing.

Example 6-1. Sample SQL Compiler Listing (page 1 of 2)

SQL Compiler - T9095D42 - (03JUN96)
COPYRIGHT TANDEM COMPUTERS INCORPORATED 1987-1996
DATE - TIME : 10/04/96 - 16:38:23
Options : NOFORCE, OBJECT, CURRENTDEFINES, RECOMPILE, RECOMPILEALL,
REGISTERON
 NOEXPLAIN, COMPILE PROGRAM

 SQL - PROGRAM FILE = \NEWYORK.$DISK1.SQLPROG.SQLC
 SQL - PROGRAM CATALOG = \NEWYORK.$DATA1.INVENT
 SQL - DEFAULT CATALOG = \NEWYORK.$DATA1.INVENT

 SQL - Source File = \NEWYORK.$DISK1.SQLPROG.SQLC

 SQL - SLT Index = 0, Run-Unit = __SQLRTDU_00752097902906430808

49 DECLARE GET_SUPPLIER_CURSOR CURSOR FOR
50 SELECT SUPPNUM,
51 SUPPNAME,
52 STREET,
53 CITY,
54 STATE,
55 POSTCODE
56 FROM =SUPPLIER
57 WHERE SUPPNUM = :supplier_of_parts
58 REPEATABLE ACCESS
*** Statistics: Estimated cost: 1

 SQL - SLT Index = 0, Run-Unit = abort_transaction

184 ROLLBACK WORK

 SQL - SLT Index = 0, Run-Unit = begin

99 BEGIN WORK

 SQL - SLT Index = 0, Run-Unit = commit_transaction

163 COMMIT WORK

 SQL - SLT Index = 0, Run-Unit = do_add_to_partloc
HP NonStop SQL/MP Programming Manual for C—429847-008
6-25

Explicit Program Compilation SQL Compiler Listings
Using the EXPLAIN Utility

The EXPLAIN utility generates reports about execution plans for each SQL statement.
Use EXPLAIN reports to determine the tables and indexes used by a program and
whether creating other indexes or modifying a query would improve the performance of
the program. The EXPLAIN utility has these report options:

 EXPLAIN PLAN Report on page 6-27

 EXPLAIN DEFINES Report on page 6-27

133 INSERT INTO =PARTLOC
134 VALUES (:partloc_rec.loc_code,
135 :partloc_rec.partnum,
136 :partloc_rec.qty_on_hand)
*** Statistics: Estimated cost: 1

 SQL - SLT Index = 0, Run-Unit = do_add_to_parts

149 INSERT INTO =PARTS
150 VALUES (:parts_rec.partnum,
151 :parts_rec.partdesc,
152 SETSCALE
(:parts_rec.price,2)
153 :parts_rec.qty_available)
*** Statistics: Estimated cost: 2
BINDER - OBJECT FILE BINDER - T9621D30 - (17JUL95) SYSTEM \NEWYORK
Copyright Tandem Computers Incorporated 1982-1995

Object file \NEWYORK.$DISK1.SQLPROG.SQLC
TIMESTAMP 1996-10-04 16:34:56

 PAGE 1 10/04/96 - 16:38:23

 0 Binder Warnings
 0 Binder Errors

 PAGE 2 10/04/96 - 16:38:23

 SQL **
 SQL - Summary of SQL Compiling
 SQL - Number of SQL Statements = 6
 SQL - Number of SQL Errors = 0
 SQL - Number of SQL Warnings = 0
 SQL - Number of other Errors = 0
 SQL - Compile Time = 00:00:00.264
 SQL - Elapsed Time = 00:00:18.096
 SQL - Program file is \NEWYORK.$DISK1.SQLPROG.SQLC
 SQL - >>> SQL COMPILATION STORED IN PROGRAM FILE <<<
 SQL **

Example 6-1. Sample SQL Compiler Listing (page 2 of 2)
HP NonStop SQL/MP Programming Manual for C—429847-008
6-26

Explicit Program Compilation SQL Compiler Listings
EXPLAIN PLAN Report

The EXPLAIN PLAN report, which applies only to DML statements, indicates the
strategy for executing a DML statement and includes optimized access paths, joins,
and sorts. The EXPLAIN PLAN report generates a plan for a statement containing
subqueries in separate query plans, including one for the statement itself and one for
each subquery. This report numbers the query plans in each statement in the order
they appear. Each plan can contain these steps:

 Scan a table

 Join two or more tables

 Insert into a table

 Perform a sort operation

In this example, the SQL compiler compiles a program file, sqlprog, using the
EXPLAIN PLAN option. The SQLCOMP command specifies a catalog other than the
current default catalog. The SQL compiler uses the current set of DEFINEs and writes
the output to the spooler location $s.#explain :

SQLCOMP /IN sqlprog, OUT $s.#sqlist / CATALOG $disk2.sales,
 EXPLAIN PLAN

EXPLAIN DEFINES Report

The EXPLAIN DEFINES report indicates the mapping of DEFINE names used in SQL
statements with this information:

 Each DEFINE name and its associated Guardian name used for SQL tables and
views

 The default volume and default catalog used by the SQLCOMP process (which it
gets from the current =_DEFAULTS DEFINE)

The EXPLAIN utility can generate EXPLAIN DEFINES reports in these formats:

OBEY command file format EXPLAIN generates the ADD DEFINE commands that
add DEFINEs. You can then use a TACL OBEY
command to run these commands.

INFO DEFINE format EXPLAIN generates a report in the format used by the
TACL INFO DEFINE command.

This example shows an OBEY command file report. In an actual report, each subvol-
name, guardian-name, and define-name would be replaced by the actual name.

ALTER DEFINE =_DEFAULTS, VOLUME subvol-name
ALTER DEFINE =_DEFAULTS, CATALOG subvol-name

ADD DEFINE define-name, FILE guardian-name
ADD DEFINE define-name, FILE guardian-name
...
HP NonStop SQL/MP Programming Manual for C—429847-008
6-27

Explicit Program Compilation Developing a C Program in the OSS Environment
When you issue an OBEY command to run the file shown in the next example, ensure
that the DEFINE mode (DEFMODE) is ON, and the DEFINE class is MAP.

The INFO DEFINE format uses the same format as the INFO DEFINE command. This
example shows an INFO DEFINE format report. In an actual report, each guardian-
name and define-name would be replaced by the actual name.

DEFINE NAME =_DEFAULTS
CLASS DEFAULTS
VOLUME guardian-name
CATALOG guardian-name

DEFINE NAME define-name
CLASS MAP
FILE guardian-name

DEFINE NAME define-name
CLASS MAP
FILE guardian-name

... ...

In the next example, the SQL compiler writes an execution plan and DEFINEs to the
spooler location $s.#explain. The compiler also writes the DEFINEs in OBEY
command file format to the file setdefs for subsequent execution. The catalog name
is not included in the SQLCOMP command because it is stored in the program file. The
NOOBJECT option suppresses the generation of a program file, so the SQL compiler
does not register the program file in a catalog.

SQLCOMP / IN sqlprog,OUT $s.#explain / NOOBJECT
 EXPLAIN PLAN DEFINES setdefs, OBEYFORM

For more information about the EXPLAIN utility, including detailed examples, see the
SQL/MP Query Guide.

Developing a C Program in the
OSS Environment

Version 315 (or later) SQL/MP software supports the development of C programs in
the OSS environment. You can code a C program that contains embedded SQL
statements with a text editor such as vi or ed and then use the c89 utility to invoke
the C and SQL compilation tools. (C++ does not support embedded SQL statements.)

 TNS/R native C programs require version 2 (or later) SQL/MP software

 TNS/E native C programs require version 350 SQL/MP software

You can also develop a C program in the Guardian environment that runs in the OSS
environment by specifying the SYSTYPE OSS pragma when you compile the program.
For more information, see Developing a C Program in the Guardian Environment on
page 6-5.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-28

Explicit Program Compilation Using TACL DEFINEs in the OSS Environment
For information on how to compile and link programs in the OSS environment, see the
c89 (1) reference pages online or in the Open Systems Services Shell and Utilities
Reference Manual. If you are migrating a program from the TNS environment to the
TNS/R or the TNS/E environment, see the TNS/R Native Application Migration Guide
and the H-Series Application Migration Guide.

Using TACL DEFINEs in the OSS Environment

In the OSS environment, a C program can contain class MAP and class CATALOG
DEFINEs. Use these OSS utilities to create and manipulate these DEFINEs:

Although you run these utilities in the OSS environment, each utility uses Guardian
conventions for its DEFINE attributes and the associated values. For a detailed
description, including the syntax of these utilities, see the Open System Services Shell
and Utilities Reference Manual or the appropriate reference pages.

Considerations for using TACL DEFINEs in the OSS environment:

 The add_define utility implicitly sets the DEFMODE attribute to ON before it
creates the new DEFINE.

 Before you run the C compiler using the c89 utility, add these DEFINEs:

 Class MAP DEFINEs specified in INVOKE directives

 Class MAP or class CATALOG DEFINEs specified in SQL statements

 If you specify a class CATALOG DEFINE for the SQLCOMP CATALOG option
when you run the SQL compiler using the c89 utility, add the DEFINE before you
issue the c89 command.

 You must precede a backslash (\) in a system name or a dollar sign ($) in a catalog
or subvolume name with the OSS shell escape character (\). For example, these
add_define commands create a class MAP DEFINE and a class CATALOG
DEFINE:

add_define =emptab class=map file=\\ny.\$dsk2.fy94.empfile
add_define =sqlcat class=catalog subvol=\$sql.sqlcat

 System names or the names of volumes where OSS objects reside must be seven
characters or fewer.

OSS Utility Description

add_define Creates a new class MAP, CATALOG, SPOOL, SORT, SUBSORT,
SEARCH, or TAPE DEFINE

del_define Deletes one or more DEFINEs

info_define Displays the attributes and values of existing DEFINEs

set_define Sets the values for one or more DEFINE attributes in the current
working attribute set

show_define Displays the values for one or more DEFINE attributes in the
current working attribute set
HP NonStop SQL/MP Programming Manual for C—429847-008
6-29

Explicit Program Compilation Using the c89 Utility in the OSS Environment
 To alter an existing DEFINE, use the add_define utility and specify all DEFINE
attributes and their new values. In this situation, the add_define utility essentially
adds a new DEFINE with the same name in place of the old DEFINE.

Using the c89 Utility in the OSS Environment

The c89 utility is the OSS driver for the C and C++ compilation systems. You use the
c89 utility to run the C and C++ compiler or ld), the TNS/E native linker (eld),
Accelerator, OCA, and SQL compiler.

With D40 and later product versions, c89 utilities are available in these ways:

 The native c89 utility resides in the /usr/bin directory. For information about the
native c89 utility, see the Open System Services Shell and Utilities Reference
Manual or the c89(1) reference pages.

 The TNS c89 utility has been moved from the /bin directory to the
/nonnative/bin directory. The documentation for the TNS c89 utility is
available only as reference pages. To view the TNS c89 reference pages, enter:

man -M /nonnative/usr/share/man c89

Running the OSS C Compiler

Run the OSS C compiler using the c89 utility to compile the source file (or files) that
contain the embedded SQL statements. The C compiler generates an object file that
contains C object code and SQL source statements. This c89 command invokes the
C compiler to compile the pgm1 source file into the pgm1o object file:

c89 -c pgm1

NonStop SQL/MP supports Tandem floating-point format but not IEEE floating-point
format. The floating-point format for TNS/R native compilation is Tandem by default.
However, for TNS/E native compilation, the floating-point format is IEEE by default.
Follow these guidelines when compiling C programs that contain embedded SQL/MP
statements:

 For TNS/R native compilation, do not specify the -WIEEE_float flag. The
floating-point format must be the default TANDEM_FLOAT.

 For TNS/E native compilation, specify the -WTandem_float flag to override the
default IEEE_FLOAT:

c89 -WTandem_float pgm1

For more information, see “Compiling and Linking Floating-Point Programs” in the
C/C++ Programmer’s Guide for NonStop Systems.

The native c89 utility resides in the /bin/compilers directory. The TNS C compiler
has been moved from the /bin/compilers directory to the
/nonnative/bin/compilers directory, and the TNS C run-time library has been
moved from /usr/lib/libc.a to /nonnative/usr/libc.a.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-30

Explicit Program Compilation Using the c89 Utility in the OSS Environment
For more information about the C compiler, see the C/C++ Programmer’s Guide for
NonStop Systems.

Running the Binder Program, nld, ld, or eld Utility

In the TNS environment, use the TNS c89 utility to run the Binder (BIND) program to
combine multiple object files into one target object file. This c89 command invokes the
Binder program to bind the pgm1o and pgm2o object files into the sqlprog file and to
set the HIGHPIN attribute to ON:

c89 -o sqlprog -Wbind="set highpin on" pgm1o pgm2o

In the TNS/R environment, use the native c89 utility to run the native link utility (nld
or ld) to link multiple object files and produce an executable object file. For
information about the nld or ld utility, see the nld Manual or ld Manual.

In the TNS/E environment, use the native c89 utility to run the TNS/E native linker
utility (eld) to link multiple object files and produce an executable object file. Use
eNOFT to read, display linkfiles, loadfiles, and import libraries created by the TNS/E C
compiler. For information about the eld utility and eNOFT, see the eld Manual and the
eNOFT Manual.

Do not bind object files with functions that have the same name and contain embedded
SQL statements. The SQL compiler uses the function name as the RTDU name.
Therefore, when the SQL statement runs, functions with the same name generate
ambiguous references, which can generate SQL run-time errors.

Running the Accelerator for Cross-Platforms

TNS object files can be accelerated to take advantage of features on the RISC
architecture for TNS/R or on the Intel Itanium architecture for TNS/E. In most cases,
accelerated TNS objects have significant performance benefits when optimized for
target TNS/R and TNS/E platforms.

For a program compiled in the TNS environment, you can run the Accelerator (AXCEL)
to improve the program’s performance when it runs in the TNS/R environment. You run
the OCA to accelerate TNS object files on the TNS/E platform for execution on the
TNS/E platform.

This TNS c89 command invokes the Accelerator to accelerate the sqlprog file
without initiating the binding process:

c89 -Wnobind -Waxcel sqlprog

Because the Accelerator and the OCA invalidate SQL program files, run the
accelerators before you explicitly SQL compile a program to avoid having to recompile.

You can also accelerate a program file by specifying the -O flag when you run the
C compiler. For more information about the TNS/R accelerator, see the Accelerator
Manual. For more information about the TNS/E accelerator, see the Object Code
Accelerator (OCA) Manual.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-31

Explicit Program Compilation Using the c89 Utility in the OSS Environment
Running the SQL Compiler

Use the c89 utility to run the SQL compiler (sqlcomp) to explicitly compile embedded
SQL statements in the C object file. The SQL compiler validates the program file for
execution and registers the program in the PROGRAMS and USAGES catalog tables
using its Guardian ZYQ name.

With the D40 and later D-series product versions, the native c89 and TNS c89 utilities
use different flags to run the SQL compiler, as described next.

Using the Native c89 Utility

To compile a C program with embedded SQL statements using the native c89 utility,
include the -Wsql flag to specify the SQL pragma and the -Wsqlcomp flag to run the
SQL compiler:

c89 -Wsql=sqlmap,release2
 -Wsqlcomp="catalog \$sql.sqlcat,recompileondemand" sqlprog.c

For more information about the native c89 utility, see the Open System Services Shell
and Utilities Reference Manual or the c89(1) reference pages.

Using the TNS c89 Utility

With the D40 and later D-series product versions, the TNS c89 utility also uses
different flags from earlier versions of the c89 utility. For example, to compile an SQL
program file without invoking the Binder program, specify the -Wsqlcomp flag to run
the SQL compiler by using the catalog $sql.sqlcat:

c89 -Wnobind -Wsql="catalog \$sql.sqlcat" sqlprog.c

For more information about the TNS c89 utility, see the reference pages by entering
this command:

man -M /nonnative/usr/share/man/ c89.1

Considerations for Running the SQL Compiler

Other considerations for using the c89 utility to invoke the SQL compiler:

 You must precede a dollar sign ($) in a catalog name with the OSS shell escape
character (\). For example:

c89 -Wsqlcomp="catalog \$sql00.sqlcat" sqlprog.c

 Although the SQL compiler accepts an OSS path name for an input object file, you
must use Guardian names or DEFINEs to refer to SQL objects and catalogs in
embedded SQL statements within the program.

 The input object file to the SQL compiler can be either an OSS file (code 180) or a
Guardian file (code 101). However, if you specify a Guardian file as input, you must
use its OSS path name format:

/G/volume/subvolume/file-id
HP NonStop SQL/MP Programming Manual for C—429847-008
6-32

Explicit Program Compilation Using the c89 Utility in the OSS Environment
 The input object file also determines the environment where the resulting SQL
program file resides after explicit SQL compilation. If the program file resides in the
Guardian environment, the SQL compiler uses the OSS path name format. The
OSSFILE column in the PROGRAMS table indicates the environment where the
file resides (Y=OSS, N=Guardian).

 To specify a program’s target execution environment (that is, the environment
where the program runs), set the c89 -Wsystype flag as follows:

 The SQL compiler directs all error information and listings to the c89 process and
does not directly use the home terminal.

 To SQL compile a C program using the c89 utility, use SQL compiler version 315
(or later). After SQL compilation, an OSS program file has a PFV and a PCV of
315 (or later).

 To use the EXPLAIN utility, you must also specify the -Wverbose flag:

c89 -Wsql -Wverbose -Wsqlcomp="explain plan" -Wnolink
sqlprog.c

 To compile embedded SQL/MP for TNS/E, the value specified for sqlhost must
be an H-series TNS/E system.

 The c89 utility on UNIX workstations does not support the compilation of programs
that contain embedded SQL statements.

For more information about the c89 utility, see the C/C++ Programmer’s Guide for
NonStop Systems.

-Wsqlconnect

This option instructs the compiler about which security mode must be used while
communicating with the NSK host. This option works with compilers supported on
windows operating system. For example: c89, and c99.

The syntax is:

 -Wsqlconnect = mode

oss OSS environment (the default)

guardian Guardian environment
HP NonStop SQL/MP Programming Manual for C—429847-008
6-33

Explicit Program Compilation Using the c89 Utility in the OSS Environment
Where mode is:

Usage Considerations

The usage considerations for Wsqlconnect are:

 This option requires both the -Wsqlhost and -Wsqluser options to be
specified. If an invalid value is specified, an error is returned.

 If the value of -Wtarget is tns/r or mips, a secure connection is not
available.

 If the -Wsqlconnect= secure_err is specified, an error is returned.

 If the -Wsqlconnect= secure_warn is specified, a warning is returned.

 Using the secure connection mode can increase the compilation time of
modules with embedded SQL/MP, by up to a factor of two. This is due to the
cost of performing encryption and decryption by using Secure Shell(SSH) or
Secure Sockets Layer(SSL), or both. (SQL/MP compilations use both SSL and
SSH.)

For more information about NSK security, see the Security Management Guide.

HP_NSK_CONNECT_MODE

This environment variable is introduced in H06.25/J06.07 RVU and can be set to
any of the following values:

 legacy

 secure_quiet

 secure_warn

legacy Directs the compiler to connect using the legacy
(unencrypted) mode.

secure_quiet Directs the compiler to connect using the secure
(encrypted) mode. If a secure connection cannot
be established, the compiler uses the legacy
mode. This option does not generate any
diagnostics.

secure_warn Directs the compiler to connect using the secure
(encrypted) mode. If a secure connection cannot
be established, the compiler uses the legacy
mode. A warning message is generated when this
option is used. This is the default option.

secure_err Directs the compiler to connect using the secure
(encrypted) mode. If a secure connection cannot
be established, an error occurs, and the
compilation terminates.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-34

Explicit Program Compilation Developing a C Program in a PC Host Environment
 secure_err

If the environment variable is set to any of the previous values, these values are used
by the compiler to set the connection mode. If the environment variable is set to any
other value, the compiler returns an error.

If both the -Wsqlconnect option is specified and the environment variable is set, the
value specified in the option overrides the value set in the environment variable.

Developing a C Program in a PC Host
Environment

You can compile SQL/MP applications on the PC by using either the HP Enterprise
Toolkit—NonStop Edition (ETK) or the command-line cross compiler (c89) directly from
the command line in Windows. You must connect to an HP NonStop operating system
host (TNS/R or TNS/E) for SQL compile time operations and to run an application. The
resulting object files can be executed on NonStop TNS/R and TNS/E native systems.

ETK is a GUI-based extension package to the Visual Studio.NET product. You can use
ETK to edit, compile, build, and deploy applications written in C and COBOL with
embedded SQL/MP. You do not have to install Visual Studio.NET or ETK to use the
command-line interface. For more information, see the online help in ETK or the file
“Using Command-Line Cross Compilers” installed with the ETK compiler package. For
command-line help, enter: c89 -Whelp.

Using CONTROL Directives
You can use CONTROL directives with either static or dynamic DML statements.
However, CONTROL directives do not affect DDL statements. The CONTROL
directives and their functions are:

CONTROL EXECUTOR

allows or prohibits parallel evaluation of a query by multiple SQL executors.
Parallel execution can decrease the elapsed time for processing a query.

CONTROL QUERY

controls query execution plans as follows:

 Optimization of query response time for returning only the first few rows found
or for returning all rows found

 Use of hash join algorithms in execution plans
HP NonStop SQL/MP Programming Manual for C—429847-008
6-35

Explicit Program Compilation Static SQL Statements
 Use of execution-time name resolution to resolve names in execution plans
when the SQL statement executes rather than during explicit SQL compilation
or at SQL load time

CONTROL TABLE

controls these performance-related options for accessing tables and views:

 Selection of access paths, join methods, join sequences, and lock types
 Selection of block buffering and block splitting algorithms
 Action to take for locked data or unavailable partitions
 Opening of indexes and partitions at the initial access to a table
 Checkpointing of unaudited write operations

For the syntax of each CONTROL directive, see the SQL/MP Reference Manual.

Static SQL Statements

Follow these guidelines when you use a static CONTROL directive with static SQL
statements in a C program:

 The scope of a static CONTROL directive is the program’s current RTDU. An SQL
map shows each RTDU. To generate an SQL map in the C compiler listing, specify
the SQLMAP option in the SQL directive.

A static CONTROL directive affects all subsequent static SQL statements that
follow in listing order (regardless of execution order) as follows:

 Global Scope––In the global scope of a C program (that is, outside of any
functions), a static CONTROL directive affects only SQL statements that follow
in listing order and are not within a function. It does not affect SQL statements
within a function.

 Functions––Within a C function (which is a unique RTDU), a CONTROL
directive affects subsequent static SQL statements in the function in listing
order until the end of the function or until another CONTROL directive resets
the directive. A static CONTROL directive outside of a function does not affect
SQL statements in the function.

 A CONTROL directive coded within flow-control statements (for example, IF and
ELSE) applies to static SQL statements in the listing order regardless of the
execution order.

 To affect a cursor, you must code the CONTROL directive before the DECLARE
CURSOR statement (and in the same RTDU as the DECLARE CURSOR
statement).

 A dynamic CONTROL directive does not affect static SQL statements in the
program except as described under Dynamic SQL Statements on page 6-36.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-36

Explicit Program Compilation Dynamic SQL Statements
In this example, the CONTROL EXECUTOR directive specifies parallel evaluation
when the program runs the first FETCH statement for the cursor.

EXEC SQL CONTROL EXECUTOR PARALLEL EXECUTION ON;
EXEC SQL DECLARE list_customers_with_orders CURSOR FOR
 SELECT CUSTOMER.CUSTNUM, CUSTOMER.CUSTNAME
 FROM =CUSTOMER, =ORDERS
 WHERE CUSTOMER.CUSTNUM = ORDERS.CUSTNUM
 STABLE ACCESS;

This example varies the wait time for cursors that access the PARTS table. The default
wait time (60 seconds) applies only to the first cursor (cursor1).

...
/* Default wait... */
EXEC SQL
 DECLARE CURSOR cursor1
 FOR SELECT partnum,partdesc,price
 FROM sales.parts
 WHERE (partnum > :min_partnum AND partnum < :max_partnum)
 ORDER BY partnum;

/* Short wait... .*/
EXEC SQL CONTROL TABLE sales.parts TIMEOUT .1 SECOND;

EXEC SQL
 DECLARE CURSOR cursor2
 FOR SELECT partnum,partdesc,price
 FROM sales.parts
 WHERE (partnum > :min_partnum AND partnum < :max_partnum)
 ORDER BY partnum;

/* Infinite wait....*/
EXEC SQL CONTROL TABLE sales.parts TIMEOUT -1 SECOND;

EXEC SQL
 DECLARE CURSOR cursor3
 FOR SELECT partnum,partdesc,price
 FROM sales.parts
 WHERE (partnum > :min_partnum AND partnum < :max_partnum)
 ORDER BY partnum;
...

Dynamic SQL Statements

A static CONTROL TABLE directive does not affect dynamic SQL statements. To use a
CONTROL TABLE directive with dynamic SQL statements, specify a dynamic
CONTROL TABLE directive by using the PREPARE and EXECUTE (or EXECUTE
IMMEDIATE) statements.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-37

Explicit Program Compilation Using Compatible Compilation Tools
A dynamic CONTROL directive affects only dynamic SQL statements prepared after
the CONTROL directive in execution order, except as noted.

Using Compatible Compilation Tools

C Compiler

The host SQL version (HSV) identifies the SQL version of the C compiler. A C program
that uses version 300 (or later) SQL features must be compiled with a C compiler that
has an HSV of 300 (or later). To determine the HSV of the C compiler, use one of these
methods:

 Run the VPROC program for the C compiler object file. VPROC displays a line for
each object file bound into the target object file. For the C compiler, check the
version in the VPROC line that contains S7094, which is the SQL compiler
interface (SCI) product number.

 When you run the C compiler, specify the SQLMAP option in the SQL compiler
directive. The SQLMAP option directs the C compiler to include the HOSV in the
map at the end of the source-file listing. For example, a version 310 C compiler
listing includes this line:

Host Object SQL Version = 310

SQL Compiler

The SQL compiler (SQLCOMP) must have the same version as (or later than) the
HOSV of the SQL program file. To determine the version of the SQL compiler, use the
GET VERSION OF SYSTEM statement. All SQL/MP components on the NonStop
operating system, including the SQL compiler, must have the same version.

SQL Program Files

An SQL program file has these versions:

Note. A dynamic CONTROL TABLE directive with the TIMEOUT option affects all static and
dynamic SQL statements that follow in execution order (as opposed to listing order) until
another dynamic CONTROL TABLE directive resets the TIMEOUT option or until the program
encounters the end of the RTDU that contains the CONTROL TABLE directive.

HOSV The version of the C compiler used to compile the program. Generated by the
C compiler and therefore the same as the host SQL version (HSV) of the
C compiler.

PFV The version of the SQL compiler used to compile the program. Indicates the
oldest version of the SQL executor that can run the program. Generated by the
SQL compiler.

PCV The oldest version of the SQL catalog in which the program can be registered.
Generated by the SQL compiler.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-38

Explicit Program Compilation SQL Program Files
The HOSV and its relationship to the C compiler and SQL compiler are described next.
For more information about the PFV and PCV, see the SQL/MP Version Management
Guide.

The C compiler generates the HOSV and stores the value in the object file. If multiple
object files are bound together into a single target object file, the HOSV of the target
object file is the newest (maximum) HOSV of the individual object files. For example, if
an object file with an HOSV of 2 and another object file with an HOSV of 310 are
bound into a new target object file, the HOSV of the target object file is 310.

To return the HOSV of an SQL program file, use the GET VERSION OF PROGRAM
statement with the HOST OBJECT option. You can run this statement from SQLCI or in
a C program. This GET VERSION OF PROGRAM statement is run from SQLCI:

GET HOST OBJECT VERSION OF PROGRAM sqlprog;

VERSION: 310
--- SQL operation complete.

To embed a static GET VERSION OF PROGRAM statement in a C program, you must
include the INTO clause with a host variable. This statement returns the HOSV of
SQLPROG to the host variable HV_HOSV:

EXEC SQL
 GET HOST OBJECT VERSION OF PROGRAM sqlprog INTO :hv_hosv;

You can also run a dynamic GET VERSION OF PROGRAM statement using the
PREPARE and EXECUTE statements as shown:

strcpy (hv_text,
 "GET HOST OBJECT VERSION OF PROGRAM SQLPROG");
EXEC SQL PREPARE dynamic_statement FROM :hv_text;
EXEC SQL EXECUTE dynamic_statement RETURNING :hv_hosv;
...

You cannot, however, use the GET VERSION OF PROGRAM statement with the
EXECUTE IMMEDIATE statement.

For the syntax of the GET VERSION statement, see the SQL/MP Reference Manual.
HP NonStop SQL/MP Programming Manual for C—429847-008
6-39

Explicit Program Compilation SQL Program Files
HP NonStop SQL/MP Programming Manual for C—429847-008
6-40

7 Program Execution

This section describes the execution of a NonStop C program containing embedded
SQL statements and directives in the OSS environment. The section provides details
about the required access permissions, the TACL DEFINES used, and the steps to run
the TACL RUN command. It further explains how to run a program at low PIN and how
to determine compatibility with the SQL executor.

Topics include:

 Required Access Authority

 Using TACL DEFINEs on page 7-2

 Entering the TACL RUN Command on page 7-3

 Running a Program in the OSS Environment on page 7-3

 Running a Program at a Low PIN on page 7-4

 Determining Compatibility With the SQL Executor on page 7-7

Required Access Authority
To run a NonStop SQL program file, you (or the creator process, if you use a
process-creation procedure such as PROCESS_CREATE_ or NEWPROCESS) must
have the following access authority:

 Read and execute authority to the SQL program file

 Read authority to the catalog in which the program is registered

 Read authority to any catalogs in which tables or views used by the program are
registered for SQL statements that require automatic SQL recompilation

For an embedded SQL statement (static or dynamic), to access and operate on a
database object, such as a table or view, the process started by the program must
have specific privileges associated with it. The privileges for both the process access
ID (PAID) and the group list are evaluated to determine if a process can be granted
access to a database object. The group list is always associated with the creator
access ID (CAID), which represents the user who starts the process. The PAID
depends on the PROGID setting.

If the program owner does not enable the PROGID attribute for the program file, the
PAID will be the same as the user ID of the process creator (that is, the CAID). When a
user executes the program, the process uses the privileges of the process creator and
accesses only resources to which the process creator has access.

If the program owner enables the PROGID attribute for the program file, the PAID will
be the same as the user ID of the program owner. When a user executes this program,
the process uses the privileges of the program owner and accesses only the resources
to which the program owner has access. PROGID programs enable one user to
HP NonStop SQL/MP Programming Manual for C—429847-008
7-1

Program Execution Using TACL DEFINEs
temporarily gain a controlled subset of another user’s privileges. For more information
about PROGID programs, see the Security Management Guide.

Using TACL DEFINEs
Before running an SQL program file, you can specify TACL DEFINE, PARAM, or
ASSIGN commands. For information about PARAM and ASSIGN commands, see the
TACL Reference Manual.

You can use TACL DEFINE names in an SQL program to specify the names of SQL
catalogs and objects (tables, views, indexes, and partitions). Use a class CATALOG
DEFINE for a catalog and a class MAP DEFINE for an object.

You enable and disable DEFINEs using the DEFMODE attribute. If DEFMODE is ON
when a program begins execution, the system propagates the current set of DEFINEs
from the process file segment (PFS) of your TACL process to the new process. If
DEFMODE is OFF, the system propagates only the =_DEFAULTS DEFINE to the new
process. To display the current DEFMODE setting, use the SHOW DEFMODE
command.

You can create, modify, delete, and display DEFINEs with TACL (or SQLCI) commands
and Guardian system procedures. You can also specify the =_SORT_DEFAULTS
DEFINE to control sort operations.

To determine the DEFINE set used when an SQL program was compiled, use the
EXPLAIN DEFINES option of the SQLCOMP command.
HP NonStop SQL/MP Programming Manual for C—429847-008
7-2

Program Execution Entering the TACL RUN Command
Entering the TACL RUN Command
To run an SQL program file from a TACL process, use the TACL RUN (or RUND to
invoke the INSPECT program) command. You can enter a RUN command either
explicitly or implicitly using this syntax.

RUN

runs the program file without invoking the Inspect debugger.

RUND

runs the program file under the control of the Inspect symbolic debugger.

program-file

is the name of the SQL program file. For an explicit RUN command, TACL qualifies
a partially qualified file name using the =_DEFAULTS DEFINE. For an implicit RUN
command, TACL searches for program-file in the TACL #PMSEARCHLIST
variable.

run-option

is a RUN command run option as described in the TACL Reference Manual.

argument

is an argument as described in the C/C++ Programmer’s Guide. Separate
arguments in a list using spaces, not commas.

For example, this RUN command runs the program file named sqlprog and specifies
the NAME, OUT, and NOWAIT run options:

RUN sqlprog / NAME $sqlrun, OUT $s.#sqlist, NOWAIT /

This RUND command runs the program file named $disk.sql.sqlprog under the
control of the Inspect debugger:

RUND $disk.sql.sqlprog

For more information about the RUN command, see the TACL Reference Manual.

Running a Program in the OSS Environment
To run an SQL program file in the OSS environment, enter the program file name at the
OSS shell prompt. You can also use the OSS run command to run a program file
using HP attributes (for example, a CPU or priority for the process). For information
about the run command, see the Open System Services Shell and Utilities Reference
Manual or the run (1) reference pages.

[RUN[D]] program-file [/ [,run-option].../ [argument
]...
HP NonStop SQL/MP Programming Manual for C—429847-008
7-3

Program Execution Running a Program at a Low PIN
Running a Program at a Low PIN
The operating system identifies a process (a running program) by a unique process
identification number (PIN). In displays and printouts, a PIN usually appears after the
number of the processor where the process is running. For example, the operating
system identifies a process in processor 4 with PIN 195 as 4,195.

The operating system supports an architectural limit of 65,535 concurrent processes
per processor. The actual number of concurrent processes depends on the available
system resources (for example, virtual memory) and the values specified during
system generation.

A PIN has these divisions:

 A low PIN ranges from 0 through 254.

 A high PIN ranges from 256 through 65,535 (or the maximum number).

 PIN 255 is reserved.

Figure 7-1 shows various processes running in a processor on an HP NonStop system.

Figure 7-1. Processes Running on a NonStop System

NonStop
Subsystems

Operating
System

Operating
System

NonStop
Subsystems

Low-PIN Processes: PINs 0 – 254

High-PIN Processes: PINs - 256

PIN 255 is reserved.

Processor (CPU)

User
Applications

User
Applications

VST010.vsd
HP NonStop SQL/MP Programming Manual for C—429847-008
7-4

Program Execution Interactive Commands
If an SQL program was written (or converted) to run at a high PIN, you usually want the
program to run at a high PIN because more high PINs are available, and it frees the
low PINs for processes that cannot run at a high PIN. In some cases, however, you
might need to run a program at a low PIN. For example, in a mixed network of C-series
and D-series nodes, a program must run at a low PIN on a D-series node to:

 Communicate with a process on a C-series node

 Access a file or an SQL object on a C-series node

If you run an SQL program remotely on a D-series node from a C-series node, the SQL
program automatically runs at a low PIN. If you run an SQL program locally on a
D-series node, you can force the program to run at a low PIN interactively from a TACL
process or programmatically from an application process. In a Pathway environment,
you can also force a server process to run at a low PIN.

Interactive Commands

To interactively force an SQL program to run at a low PIN, use either of these methods:

 Before you run the SQL program, set the HIGHPIN object-file attribute to OFF in
the SQL program file using the Binder CHANGE command:

@CHANGE HIGHPIN OFF IN sqlprog

To change an object-file attribute in a program file, you must have read and write
access to the program file. For a description of the Binder CHANGE command,
see the Binder Manual.

 If you have not set the HIGHPIN object-file attribute to OFF (or cannot set it
because of the file security), specify the HIGHPIN OFF run option in the
TACL RUN command:

RUN sqlprog / HIGHPIN OFF, ... /

Programmatic Commands

If you are starting the program programmatically, call the PROCESS_CREATE_
procedure with bit 15 of the create-options parameter set to 1:

#include <cextdecs(PROCESS_CREATE_, ...)>
...
error := PROCESS_CREATE_(program_file:length,
 ...
 create_options); /* Bit 15=1 */

(You can also use the NEWPROCESS or NEWPROCESSNOWAIT procedure, which
always forces a new process to run at a low PIN.)
HP NonStop SQL/MP Programming Manual for C—429847-008
7-5

Program Execution Pathway Environment
If a C program must run an SQL program programmatically at a low PIN, consider
these situations:

 The C creator program was not written (or converted) to run at a high PIN.

The SQL program runs at a low PIN by default, even if it was written (or converted)
to run at a high PIN.

 The C creator program was written (or converted) to run at a high PIN and to
create a high PIN process. The SQL program was also written (or converted) to
run at a high PIN.

For this program to start the SQL program at a low PIN, set the HIGHPIN
object-file attribute to OFF in the SQL program file using the Binder CHANGE
command as described under Interactive Commands on page 7-5.

Pathway Environment

In a Pathway environment, an SQL program running as a server process can run at an
available high PIN if these conditions are met:

 The SQL program was written (or converted) to run at a high PIN.

 The HIGHPIN server attribute for the SQL program in the Pathway
configuration file is ON.

 The HIGHPIN object-file attribute in the SQL program file is ON.

 A high PIN is available when the server runs.

To force an SQL program to run at a low PIN, use either of these methods:

 In the SQL program file, set the HIGHPIN object-file attribute to OFF using the
Binder CHANGE command as described under Interactive Commands on
page 7-5.

 In the Pathway configuration file, set the HIGHPIN server attribute to OFF using
the SET SERVER or ALTER SERVER command. (The default for the HIGHPIN
server attribute is OFF.)

For more information, see the Guardian Programmer’s Guide. For information about
converting a C-series program to use D-series features, see the Guardian Application
Conversion Guide.
HP NonStop SQL/MP Programming Manual for C—429847-008
7-6

Program Execution Determining Compatibility With the SQL Executor
Determining Compatibility With the
SQL Executor

The PFV of an SQL program indicates the oldest version of the SQL executor that can
run the program. During SQL compilation, the SQL compiler writes the PFV in the
program’s file label. Then, at run time, the SQL executor checks the PFV, and if the
executor version is the same as or later than the PFV, it runs the program. Otherwise,
the executor returns an error.

To determine the version of the SQL executor, use the GET VERSION OF SYSTEM
statement. All SQL/MP components on a system, including the executor, have the
same version. You can run the GET VERSION OF SYSTEM statement from SQLCI or
a C program.

For a static GET VERSION OF SYSTEM statement in a C program, include the INTO
clause with a host variable:

EXEC SQL GET VERSION OF SYSTEM \newyork INTO :hv_sys_version;

In this example, the GET VERSION OF SYSTEM statement returns the version of
NonStop SQL/MP installed on the \NEWYORK system to the host variable named
hv_sys_version. If you do not specify a system name, the statement returns the
version of the local system.

To determine the PFV of an SQL program, use a FUP INFO or SQLCI FILEINFO
command with the DETAIL option. For programs registered in version 300 or later
catalogs, you can also query the PROGRAMS.PROGRAMFORMATVERSION column.

However, for version 300 or later SQL/MP software, HP recommends that you use the
GET VERSION OF PROGRAM statement with the FORMAT option. You can enter this
statement from SQLCI or in a C program. To embed a static
GET VERSION OF PROGRAM statement in a C program, include the INTO clause
with a host variable. This statement returns the PFV of SQLPROG to the host variable
hv_pfv:

EXEC SQL GET FORMAT VERSION OF PROGRAM sqlprog INTO :hv_pfv;

You can also run a dynamic GET VERSION OF PROGRAM statement using the
PREPARE and EXECUTE statements as shown in this example:

strcpy (hv_text,"GET FORMAT VERSION OF PROGRAM SQLPROG");
EXEC SQL PREPARE dynamic_statement FROM :hv_text;
EXEC SQL EXECUTE dynamic_statement RETURNING :hv_pfv;

You cannot, however, use a GET VERSION OF PROGRAM statement with the
EXECUTE IMMEDIATE statement.

For the syntax of the GET VERSION statements, see the SQL/MP Reference Manual.
HP NonStop SQL/MP Programming Manual for C—429847-008
7-7

Program Execution Determining Compatibility With the SQL Executor
HP NonStop SQL/MP Programming Manual for C—429847-008
7-8

8
Program Invalidation and Automatic
SQL Recompilation

Program Invalidation
A NonStop SQL program file can be valid or invalid. A valid program can run without
SQL recompilation using its current execution plans. An invalid program is subject to
SQL recompilation (depending on options such as the similarity check) because of
changes either to the program file itself or to an SQL object it references. An SQL
program file has these classifications of SQL validity:

 The SENSITIVE flag in the program’s file label indicates whether the file is an SQL
program that has been successfully SQL compiled (although the program might be
invalid). The SENSITIVE flag also protects the program file from access by
Enscribe utilities.

 The VALID flag in the program’s file label and in the PROGRAMS catalog table
indicates whether the program file can run without SQL recompilation.

SQL Compiler Validation Functions

The SQL compiler validates an SQL program file after a successful explicit SQL
compilation or after errors occurred during a compilation with the FORCE option
specified. During explicit compilation, the SQL compiler performs these functions
related to program validation:

 Sets the VALID and SENSITIVE flags in the program’s file label

 Records the timestamp of the SQL compilation in the program’s file label

 Registers the program and sets the VALID flag in the PROGRAMS table

 Creates entries in the USAGES table for any SQL objects (tables, views, indexes,
or collations) required by the program’s execution plans

For a list of all SQL compiler functions, see Section 6, Explicit Program Compilation.

To determine if an SQL program is valid, use the SQLCI VERIFY utility or the SQLCI
(or FUP) FILEINFO command with the DETAIL option. From a program, call the
FILE_GETINFOLIST_ or FILE_GETINFOLISTBYNAME_ system procedure and
specify item codes 82 and 83. Item code 82 indicates whether the file is an SQL
program (1=SQL program, 0=other), and item code 83 indicates whether the program
file is valid (1=valid, 0=invalid).
HP NonStop SQL/MP Programming Manual for C—429847-008
8-1

Program Invalidation and Automatic SQL
Recompilation

Causes of Program Invalidation
Causes of Program Invalidation

Program invalidation is caused by certain operations performed on the program file
and by DDL operations that alter an SQL object that the program references. During
program invalidation, the SQL catalog manager performs these operations:

 Sets the VALID flag to N in the PROGRAMS catalog table and in the program’s file
label if the program file is accessible

 Deletes the program’s usages entries in the USAGES table

An invalid SQL program must be recompiled either explicitly or automatically to
generate valid execution plans before it can run.

Operations Performed on an SQL Program File

These operations performed on an SQL program file cause the program file to be
invalidated:

 Copying a program file. If you copy a program file using the FUP or SQLCI DUP
command, the original file is unaffected, but the new file is invalid.

 Binding a program file. If you explicitly bind a program file using the Binder
program, the original file is unaffected, but the resulting target file is invalid.

 Restoring a program file. If you restore a program file using the RESTORE
program without specifying the SQLCOMPILE ON option, the restored program
becomes invalid.

 Running the Accelerator on a program file. If you run the Accelerator to optimize
the object code (for TNS/R systems only), the program file becomes invalid.

Changes to Referenced SQL Objects

These changes to an SQL object cause a program file that references the object to be
invalidated, except as described in Preventing Automatic Recompilations on page 8-9:

 Adding an index to a table, including an underlying table of a protection or
shorthand view, using the CREATE INDEX statement without the NO INVALIDATE
option

 Adding a constraint, column, or partition on a table, including an underlying table of
a protection or shorthand view

 Dropping a table or view

 Dropping a partition on a table or index

 Dropping an index or constraint on a table

 Moving a partition on a table

 Enabling or disabling the similarity check for a table or protection view
HP NonStop SQL/MP Programming Manual for C—429847-008
8-2

Program Invalidation and Automatic SQL
Recompilation

Causes of Program Invalidation
 Changing a collation, which includes dropping and then re-creating the collation,
renaming a collation, or changing a DEFINE that points to a collation

 Executing an UPDATE STATISTICS statement with the RECOMPILE option
for a table (RECOMPILE is the default option)

 Restoring a table, including an underlying table of a protection or shorthand view,
using the RESTORE program with the SQLCOMPILE OFF option specified

Changes to the AUDIT Attribute

Changing the AUDIT attribute of a table referenced by an SQL statement does not
invalidate the program file. However, changing the AUDIT attribute can cause
automatic SQL recompilation, if it is allowed in these cases:

 If a statement performs a DELETE or UPDATE set operation on a nonaudited table
with a SYNCDEPTH of 1, the SQL executor returns SQL error 8203 and forces the
automatic recompilation of the statement.

 If a statement is run in parallel on a table whose AUDIT attribute has changed
since the last explicit SQL compilation, the SQL executor returns SQL error 8207
and forces the automatic recompilation of the statement.

Operations That Do Not Invalidate a Program File

These operations performed on an SQL program file or to an SQL object referenced by
an SQL program file do not invalidate the program file:

 Renaming a program file

 Altering the security or owner of a program file or an SQL object

 Restoring a program file using the RESTORE program with the SQLCOMPILE ON
option specified

 Creating a view on a table

 Altering the file attributes of a table, except for changes to the AUDIT attribute as
described in Changes to the AUDIT Attribute

 Adding an index to a table using the CREATE INDEX statement with the
NO INVALIDATE option

 Adding or dropping comments on an SQL object

 Executing an UPDATE STATISTICS statement with the NO RECOMPILE option
specified for a table
HP NonStop SQL/MP Programming Manual for C—429847-008
8-3

Program Invalidation and Automatic SQL
Recompilation

File-Label and Catalog Inconsistencies
File-Label and Catalog Inconsistencies

Because NonStop SQL/MP records SQL validity in both the program’s file label and in
the PROGRAMS catalog table, inconsistencies can occur. An invalid program file is
sometimes recorded as valid in the catalog, or a valid program file is recorded as
invalid in the catalog. Consider these situations:

 A program file is not accessible to the SQL catalog manager.

A DDL operation alters an SQL object referenced by a program file. The SQL
catalog manager marks the program as invalid in the PROGRAMS table, but then
finds that the file is not accessible. The invalid program file remains marked as
valid in its file label. At run time, however, the SQL executor performs the
timestamp check for the referenced SQL object. When the timestamp check fails,
the SQL executor invokes the automatic recompilation of the program.

 An SQL compiler (SQLCOMP) process abends.

An event such as a CPU failure causes an SQLCOMP process to abend after it
has generated a program file, marked the program file label as valid, and
registered the program in the PROGRAMS table. TMF backs out the changes to
the PROGRAMS table but not to the program’s file label, because the file label is
not audited. Therefore, a seemingly valid SQL program exists on disk, but an entry
for the program does not exist in the catalog.

You can sometimes recover from this condition by running SQLCOMP again to
reenter the information in the catalog. However, you might first need to use the
CLEANUP or GOAWAY utility to remove the invalid program file.

 The SQL catalog manager (SQLCAT) process abends.

A DDL operation (described in Changes to Referenced SQL Objects on page 8-2)
causes a program file to be marked as invalid both in the PROGRAMS table and in
the program’s file label. Then an event such as a CPU failure causes the SQLCAT
process to abend. TMF backs out the changes to the PROGRAMS table but not to
the program’s file label, because the file label is not audited. The valid SQL
program file remains marked as invalid. To recover, you must reexecute the
original DDL operation.

Preventing Program Invalidation

Compiling a program with the CHECK INOPERABLE PLANS option can prevent
certain DDL operations from invalidating the program file. These DDL operations do
not invalidate a program compiled with the CHECK INOPERABLE PLANS option if the
similarity check is also enabled for each referenced object:

 ALTER TABLE...ADD PARTITION statement

 ALTER TABLE...ADD COLUMN statement (for more information, including
restrictions, see ALTER TABLE ... ADD COLUMN Statement and the Similarity
Check on page 8-13)
HP NonStop SQL/MP Programming Manual for C—429847-008
8-4

Program Invalidation and Automatic SQL
Recompilation

Automatic SQL Recompilation
 ALTER TABLE statement to move or split partitions (including a simple move,
one-way split, or two-way split)

 ALTER TABLE...DROP PARTITION statement

 ALTER INDEX...DROP PARTITION statement (if the similarity check is enabled for
the base table)

 ALTER INDEX statement to move or split index partitions

 CREATE INDEX statement

 UPDATE STATISTICS...RECOMPILE statement

The program also retains its entries in the USAGES table. These operations, however,
do update the redefinition timestamp of each referenced object in the DDL statement.

The ALTER TABLE...RENAME, ALTER INDEX...RENAME, and ALTER INDEX...ADD
PARTITION statements do not invalidate a program regardless of whether it was
compiled with the CHECK INOPERABLE PLANS option.

Automatic SQL Recompilation
Automatic SQL recompilation is the run-time SQL compilation, invoked by the SQL
executor, of either an entire SQL program or a single static SQL statement in the
program, depending on whether the RECOMPILE or RECOMPILEONDEMAND option
was specified during explicit SQL compilation.

Automatic SQL recompilation validates only the copy of the SQL program or statement
in memory; it does not validate the SQL program file on disk. Only explicit SQL
compilation validates an SQL program file on disk.

Automatic SQL recompilation uses the default volume and catalog settings used for the
explicit SQL compilation and the set of DEFINEs in effect at SQL load time (that is,
when the SQL executor runs the first SQL statement in the program).

Note. These DDL operations always invalidate a program, even if the program was compiled
with the CHECK INOPERABLE PLANS option:

 ADD CONSTRAINT statement

 DROP CONSTRAINT statement

 DROP TABLE statement

 DROP VIEW statement

 ALTER TABLE or ALTER VIEW statement with the SIMILARITY CHECK clause (For more
information, see Enabling the Similarity Check for Tables and Protection Views on
page 8-10.)

 DROP INDEX statement, if the program contains a plan that references the dropped index
HP NonStop SQL/MP Programming Manual for C—429847-008
8-5

Program Invalidation and Automatic SQL
Recompilation

Causes of Automatic Recompilation
Automatic SQL recompilation performs these functions:

 Uses the current description of the database to determine the most efficient access
path for each referenced database object

 Maximizes database availability and node autonomy by generating a new
execution plan at run time

 Allows a program to reference database objects that did not exist during explicit
SQL compilation

 Allows a program to use a new set of DEFINEs to specify a different database (for
example, a development database rather than a production database)

You can enable or disable automatic SQL recompilation when you explicitly SQL
compile a program. The RECOMPILE option (the default) enables automatic SQL
recompilation, whereas the NORECOMPILE option disables it.

Causes of Automatic Recompilation

If automatic SQL recompilation is enabled (the NORECOMPILE option is not
specified), the SQL executor invokes the SQL compiler to recompile a program or
statement (depending on the RECOMPILEALL or RECOMPILEONDEMAND option) in
these situations:

 The program file is marked invalid at SQL load time.

 The DEFINE values at SQL load time are different from the DEFINE values used
to explicitly SQL compile the program.

 The timestamp check fails for an SQL object referenced in an SQL statement.

 An unavailable access path (index) exists.

 The program file contains an uncompiled SQL statement.

In some cases, you can prevent automatic recompilation using the similarity check. For
more information, see Preventing Automatic Recompilations on page 8-9.

Invalid SQL Program File

SQL load time occurs when the SQL executor runs the first SQL statement in a
program. If the SQL program on disk is invalid for any of the reasons listed in Causes
of Program Invalidation on page 8-2, the SQL executor forces the recompilation of the
program or statement. To control the automatic recompilation, specify the
RECOMPILEALL option (the default) to cause the recompilation of the entire program
or the RECOMPILEONDEMAND option to limit the recompilation to statements
actually run.
HP NonStop SQL/MP Programming Manual for C—429847-008
8-6

Program Invalidation and Automatic SQL
Recompilation

Causes of Automatic Recompilation
Changed DEFINEs

If the values of the DEFINEs used in the program at SQL load time differ from the
values of the DEFINEs used for explicit SQL compilation, the SQL executor forces the
automatic recompilation of the program or statement using the new DEFINE values.
(For a dynamic SQL statement, the SQL compiler uses the current set of DEFINEs
when the PREPARE or EXECUTE IMMEDIATE statement runs.)

Failed Timestamp Check

The SQL executor performs the timestamp check for each SQL object referenced in an
SQL statement at table open time (the first time the table is opened). The timestamp
check ensures that a statement’s current execution plan uses a valid definition of each
SQL object (table or view, or a dependent object such as an index or collation), even if
the program file was not accessible when the invalidating operation was performed on
the SQL object. (For operations that invalidate an SQL program, see Changes to
Referenced SQL Objects on page 8-2.)

Each SQL object contains a redefinition timestamp in its file label. An SQL program file
also contains the redefinition timestamps of all referenced SQL objects in each SQL
statement’s execution plan. When the SQL executor runs a statement, it compares the
timestamp in the object’s file label to the timestamp for the same object in the
statement’s execution plan. If the timestamps differ, the SQL executor forces a
recompilation with the new definition of the object.

After opening a table, the SQL executor usually leaves a table open until the program
stops running. However, a subsequent DDL or utility operation performed on the table
(or a dependent object such as an index or collation) causes the table to be closed and
its redefinition timestamp to be updated. If the SQL statement that refers to the table
runs again, the SQL executor reopens the table and then performs the timestamp
check to force a recompilation.

These steps describe the run-time timestamp check as shown in Figure 8-1 on
page 8-8.

1. A valid SQL program named PROG refers to an SQL table named TAB in a
SELECT statement. During explicit SQL compilation, NonStop SQL/MP generates
an execution plan, which includes the TAB redefinition timestamp, for the SELECT
statement and stores the plan in the PROG program file.

2. After PROG is running, a database administrator adds a new column to TAB using
the ALTER TABLE statement. This operation updates the redefinition timestamp in
the TAB file label.

3. When the SELECT statement runs, the SQL executor opens TAB and compares
the timestamp in TAB file label with the TAB timestamp in the PROG execution
plan. The TAB file label timestamp is more recent than the PROG execution plan
timestamp. Therefore, the execution plan for the SELECT statement that was
generated from the old definition of TAB during explicit SQL compilation is no
longer valid.
HP NonStop SQL/MP Programming Manual for C—429847-008
8-7

Program Invalidation and Automatic SQL
Recompilation

Causes of Automatic Recompilation
4. The SQL executor invokes the SQL compiler to recompile the SELECT statement
using the current TAB definition. This recompilation does not modify the PROG
program file on disk, it changes only the copy of PROG in memory.

Unavailable Access Path (Index)

If the SQL executor encounters an unavailable access path (index) in the execution
plan of an SQL statement, the SQL executor invokes the SQL compiler to recompile
the statement. The SQL compiler then determines the best alternate access path, if
such a path exists, to run the statement. The SQL compiler recompiles only the
affected SQL statement when an access path is unavailable.

Uncompiled SQL Statement

If the SQL executor encounters an uncompiled SQL statement, it invokes the SQL
compiler to compile the statement. An SQL program file can contain an uncompiled
SQL statement in these cases:

 The SQL statement referenced an SQL object that did not exist or was unavailable
during explicit SQL compilation.

 The SQL statement referenced a DEFINE that did not exist during explicit
SQL compilation.

 The program was explicitly compiled with the SQLCOMP FORCE option, and the
SQL statement generated an error.

Figure 8-1. Timestamp Check

Processor (CPU) Memory

SQL Executor Object Code
. . .

PROG Execution Plans
 . . .
SELECT ... FROM TAB ...

SQL Executor compares
TAB timestamps in
PROG execution plan
and in TAB file label.

SQL recompilation rewrites copy of PROG
execution plan in memory only.

PROG
(Object
Code)

NonStop
SQL/MP
Database

 PROG Execution Plans
 . . .
SELECT ... FROM TAB ...
 TAB Redefinition Timestamp
 . . .

TAB Data

 TAB File Label
Redefinition Timestamp
. . .

Timestamp Check

VST005.vsd
HP NonStop SQL/MP Programming Manual for C—429847-008
8-8

Program Invalidation and Automatic SQL
Recompilation

Run-Time Recompilation Errors
Run-Time Recompilation Errors

If automatic SQL recompilation is successful, the SQL statement runs. However, if
recompilation fails, the SQL executor returns compilation errors or warnings as follows:

 Recompilation of a single statement. The SQL executor returns error information to
the SQLCODE variable and the SQLCA structure (if declared).

 Recompilation of an entire program. If an entire program is recompiled, an SQL
statement that causes an error or warning remains uncompiled, and the SQL
executor suppresses the error or warning message. If the SQL executor
subsequently runs the uncompiled statement, the SQL executor tries again to
recompile the statement. If the statement still causes a compilation error or
warning, the SQL executor returns error information to the SQLCODE variable and
the SQLCA structure (if declared).

Preventing Automatic Recompilations

The SQL executor can perform the similarity check for SQL objects to determine if an
invalid execution plan is operable or inoperable. An operable plan is semantically
correct and can execute correctly without SQL recompilation (although the plan might
not be optimal), whereas an inoperable plan must be recompiled to execute correctly.

By performing the similarity check, the SQL executor recompiles only SQL statements
that have inoperable execution plans. It runs other SQL statements using their existing
plans. Executing the similarity check for an SQL statement eliminates unnecessary
recompilations and is much faster than recompiling the statement.

The COMPILE option directs the SQL compiler to perform similarity checks during
explicit SQL compilation to explicitly recompile only statements with inoperable plans.
For more information about the CHECK and COMPILE options, including their syntax,
see Section 6, Explicit Program Compilation.

To direct the SQL executor to perform similarity checks for a program at run time,
follow these steps:

1. Explicitly compile the program using the CHECK INOPERABLE PLANS option.

2. Enable the similarity check using DDL statements for each table or protection view
referenced in the program. (NonStop SQL/MP implicitly enables the similarity
check for other SQL objects.)

Note. You cannot use the similarity check for a query that uses parallel execution plans. At run
time, a query that uses parallel execution plans fails the similarity check, and the SQL
statement containing the query must be automatically recompiled before it can run (if
NORECOMPILE is not specified). To use the similarity check in this query, you must disable
parallel execution using a CONTROL QUERY PARALLEL EXECUTION OFF directive.
HP NonStop SQL/MP Programming Manual for C—429847-008
8-9

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
Specifying the CHECK INOPERABLE PLANS Option

To direct the SQL executor to use the similarity check for a program, specify the
CHECK INOPERABLE PLANS option when you explicitly compile the program as
shown in the next example:

SQLCOMP /IN sqlprog,OUT $s.#sqlist/ CHECK INOPERABLE PLANS

For the complete syntax of the CHECK option, see Section 6, Explicit Program
Compilation.

The CHECK INOPERABLE PLANS option directs the SQL compiler to store similarity
information in the program file. The SIMILARITYINFO column in the PROGRAMS table
indicates whether a program file contains similarity information:

To use the CHECK INOPERABLE PLANS option, you must have an SQL/MP software
version of 310 or later. If you specify a CHECK option, the SQL compiler sets the
program’s PFV to 310 (or later). The SQL compiler also sets the program’s PCV to 310
(or later). Therefore, the SQL catalog in which the program is registered must have a
catalog version of 310 (or later).

For more information, see the SQL/MP Version Management Guide.

Enabling the Similarity Check for Tables and Protection
Views

To use the CHECK INOPERABLE PLANS option, the similarity check must be enabled
for any referenced tables or protection views at run time. You must explicitly enable the
similarity check for a table or protection view, including any underlying tables for the
view, as shown in these DDL statements. (NonStop SQL/MP implicitly enables the
similarity check for other SQL objects.)

Y The execution plans in the program file contain similarity information.

N The program file does not contain similarity information.

CREATE TABLE table-name ...
 [SIMILARITY CHECK { ENABLE | DISABLE }]

CREATE VIEW view-name ...
 FOR PROTECTION
 ...
 [SIMILARITY CHECK { ENABLE | DISABLE }]

ALTER TABLE table-name ...
 [SIMILARITY CHECK { ENABLE | DISABLE }]

ALTER VIEW view-name ...
 [SIMILARITY CHECK { ENABLE | DISABLE }]
HP NonStop SQL/MP Programming Manual for C—429847-008
8-10

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
table-name or view-name

is the Guardian name or DEFINE name of the table or protection view. The name
cannot be a shorthand view. For the ALTER TABLE statement with the
SIMILARITY CHECK clause, table-name cannot be an SQL catalog table.

SIMILARITY CHECK ENABLE | DISABLE

enables or disables the similarity check for the specified table or protection view.
DISABLE is the default.

For the complete syntax of these statements, see the SQL/MP Reference Manual.

If you use the ALTER TABLE or ALTER VIEW statement to change the similarity check
attribute, the SQL catalog manager invalidates any programs, as identified in the
USAGES table, that reference the table or protection view. If the ALTER TABLE or
ALTER VIEW statement sets the similarity check attribute to its current value,
programs are not invalidated.

If you enable the similarity check for a protection view, the operation does not enable
the check for any underlying tables. You must explicitly enable the similarity check for
the underlying table. If you enable the similarity check for an underlying table, the
operation does not enable the check for a protection view defined on the table.

The SIMILARITYCHECK column in the TABLES table indicates whether a table or
protection view has the similarity check enabled:

A table or protection view that has the similarity check enabled is version 310 (or later).
All SQL/MP components, including the executor, catalog manager, and compiler, must
be version 310 (or later) to access the table or protection view. An SQL catalog that
supports the similarity check must have a catalog version of 310 (or later). For more
information, see the SQL/MP Version Management Guide.

Similarity Rules for Tables

For two tables to be similar, the characteristics and attributes of the tables must be the
same, except for the following listed differences. These tables are used to describe
these differences:

 COMPILE-TIME-TABLE is the table SQLCOMP uses to generate the execution
plan during explicit SQL compilation. COMPILE-TIME-TABLE must have the
similarity check enabled for the COMPILE INOPERABLE PLANS option. (If the
similarity check is not enabled for COMPILE-TIME-TABLE, the CHECK
INOPERABLE PLANS option returns SQL warning 4315.)

 RUN-TIME-TABLE is the table the program accesses at run time.
RUN-TIME-TABLE must have the similarity check enabled for the CHECK

ENABLED The similarity check is enabled.

DISABLED The similarity check is disabled.
HP NonStop SQL/MP Programming Manual for C—429847-008
8-11

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
INOPERABLE PLANS option. Otherwise, the similarity check fails, and automatic
recompilation occurs.

RUN-TIME-TABLE can be the same table as COMPILE-TIME-TABLE, a modified
version of COMPILE-TIME-TABLE, or a different table altogether.

For RUN-TIME-TABLE to be similar to COMPILE-TIME-TABLE, all characteristics and
attributes must be the same, except for these allowable differences:

 Names of the tables

 Contents of the tables (that is, the data in the table)

 Partitioning attributes (number of partitions and partitioning key ranges)

 Number of indexes–RUN-TIME-TABLE must have all indexes used by
COMPILE-TIME-TABLE in the execution plan. RUN-TIME-TABLE can also have
additional indexes that COMPILE-TIME-TABLE does not have.
COMPILE-TIME-TABLE can have indexes that RUN-TIME-TABLE does not have
but only if the execution plan does not use the additional indexes.

 Key tags (or values) for indexes

 Creation timestamp and redefinition timestamp

 AUDIT attribute–However, if a statement performs a DELETE or UPDATE set
operation on a nonaudited table that has a SYNCDEPTH of 1, the SQL executor
returns an error and forces the automatic recompilation of the statement (if
NORECOMPILE is not specified).

 Any of these file attributes:

 Statistics on the tables

 Column headings

 Comments on columns, constraints, indexes, or tables

 Catalog where the table is registered

 Help text

 Number of columns–RUN-TIME-TABLE can have more columns than
COMPILE-TIME-TABLE, but the common columns of both tables must have

Note. The similarity check does not support parallel execution plans. Tables are not
considered similar if they are specified in a query that uses a parallel execution plan.

ALLOCATE LOCKLENGTH SECURE

AUDITCOMPRESS MAXEXTENTS SERIALWRITES

BUFFERED NOPURGEUNTIL TABLECODE

CLEARONPURGE OWNER VERIFIEDWRITES

EXTENT (primary and secondary)
HP NonStop SQL/MP Programming Manual for C—429847-008
8-12

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
identical attributes. However, if a statement uses a SELECT list containing an
asterisk (*), RUN-TIME-TABLE must have the same number of columns as
COMPILE-TIME-TABLE.

Similarity Rules for Protection Views

The similarity check does not support shorthand views. The similarity rules for
protection views are:

 A protection view is never similar to a table or other SQL object.

 To pass the similarity check, two protection views must follow these criteria:

 Have similar underlying base tables

 Project the same columns from the base tables

 Have the same column names

 Have the same selection expression, which is determined by a binary
comparison of generated objects for the two selection expressions

ALTER TABLE ... ADD COLUMN Statement and the Similarity
Check

Two tables are not required to have the same number of columns to pass the similarity
check, but tables with different number of columns must observe these restrictions (in
addition to the other similarity check rules) to pass the check:

 The number of columns in COMPILE-TIME-TABLE must be less than or equal to
the number of columns in RUN-TIME-TABLE.

 The common columns of the tables must have identical attributes. For example,
if COMPILE-TIME-TABLE has five columns, RUN-TIME-TABLE can have more
than five columns, but the first five columns of each table must be identical.

Thus, you can use the ALTER TABLE... ADD COLUMN statement for a table without
forcing the recompilation of a program that accesses the table. However, these cases
show several problems that can occur when you use the ALTER TABLE... ADD
COLUMN statement and the similarity check.

An SQL statement uses an asterisk (*) in a select list with the similarity check for tables
with different number of columns as shown in these statements:

Statement Similarity Check Results

SELECT * FROM table1 TABLE1 = Fail

SELECT DISTINCT * FROM table1 TABLE1 = Fail

SELECT COUNT (*) FROM table1 TABLE1 = Pass

SELECT columna FROM table1
 WHERE columnb relation-operator
 (SELECT COUNT(*) FROM table2)

TABLE1 = Pass,
TABLE2 = Pass
HP NonStop SQL/MP Programming Manual for C—429847-008
8-13

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
An SQL statement uses unqualified column names and the additional columns make
one of the column names used in the statement ambiguous. When the statement is
compiled, the column names are resolved unambiguously. However, if the execution
plan for the statement is executed against a RUN-TIME-TABLE with more columns
than the COMPILE-TIME-TABLE, the column names might not be resolved
unambiguously.

For example, consider these SQLCI commands:

CREATE TABLE table1 (a INTEGER, b INTEGER);
INSERT INTO table1 VALUES (11,22);

CREATE TABLE table2 (c INTEGER, d INTEGER);
INSERT INTO table2 VALUES (33,44);

PREPARE statement1 FROM SELECT a,b,c,d FROM table1, table2;
EXECUTE statement1; -- Returns 11,22,33,44

ALTER TABLE table1 ADD COLUMN c INTEGER DEFAULT NULL;
PREPARE statement1; -- Returns an error because the compiler
 -- cannot resolve column c unambiguously

A similar situation occurs when you specify the CHECK INOPERABLE PLANS option
and execution-time name resolution. When the SQL executor tries to use the plan with
a new set of tables, it retains the association of unqualified column names with tables
established when the statement was explicitly compiled. However, if the similarity
check fails and automatic recompilation is attempted, the recompilation also fails
because of the ambiguity.

If an INSERT statement does not specify the column-name list, the statement must
specify values for all columns in the table, as follows:

INSERT INTO table1 VALUES (1,2,3,4);
INSERT INTO table1 (SELECT a,b,c,d FROM table2);

For these statements to compile successfully, table1 must have four columns at both
compile time and run time. A program cannot use the CHECK INOPERABLE PLANS
option to run the statement against table1 after a column has been added to the run-
time version of table1. In this case, the similarity check fails and the statement is
automatically recompiled.

SELECT columna FROM table1
 WHERE EXISTS
 (SELECT [DISTINCT] * FROM table2)

TABLE1 = Pass
TABLE2 = Fail

INSERT INTO table1
 (SELECT [DISTINCT] * FROM table2)

TABLE1 = Fail
TABLE2 = Fail

SELECT table1.*,table2.x
 FROM table1,table2

TABLE1 = Fail,
TABLE2 = Pass

Statement Similarity Check Results
HP NonStop SQL/MP Programming Manual for C—429847-008
8-14

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
Collations

You do not have to explicitly enable the similarity check for a collation, because
collations always have the similarity check implicitly enabled. Two collations are similar
only if they are equal. NonStop SQL/MP uses the CPRL_COMPAREOBJECTS_
procedure to compare the two collations. Consequently, two tables that contain
character columns associated with collations are similar only if the collations are equal.
HP NonStop SQL/MP Programming Manual for C—429847-008
8-15

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
HP NonStop SQL/MP Programming Manual for C—429847-008
8-16

9 Error and Status Reporting

This section describes error and status reporting after the execution of a NonStop SQL
statement or directive in a C program. For information about the SQL descriptor area
(SQLDA), see Section 10, Dynamic SQL Operations.

Topics include:

 Using the INCLUDE STRUCTURES Directive

 Returning Error and Warning Information on page 9-4

 Returning Performance and Statistics Information on page 9-13

Using the INCLUDE STRUCTURES Directive
The INCLUDE STRUCTURES directive specifies the version of the SQL structures that
the C compiler generates. You must specify the INCLUDE STRUCTURES directive to
generate version 300 or later SQL data structures. If you omit this directive, the
C compiler generates version 2 structures by default and includes this informational
message in the compilation summary:

INCLUDE STRUCTURES directive for SQL is missing. SQL
VERSION 2 is assumed. This might produce incorrect SQL
results in programs which use features introduced
in SQL versions greater than VERSION 2.

Code the INCLUDE STRUCTURES directive in the declarations area of the procedure
before you code an INCLUDE SQLCA, INCLUDE SQLSA, or INCLUDE SQLDA
directive. If the procedure is part of a compilation unit that consists of more than one
procedure, place the INCLUDE STRUCTURES directive in the global declarations area
or in the declarations area of the first procedure. The directive then applies to all
procedures in the compilation unit.
HP NonStop SQL/MP Programming Manual for C—429847-008
9-1

Error and Status Reporting Using the INCLUDE STRUCTURES Directive
Use this syntax for the INCLUDE STRUCTURES directive:

ALL VERSION

specifies the same version for all three SQL structures (SQLCA, SQLSA, and
SQLDA).

{ SQLCA | SQLSA | SQLDA } VERSION

specify the SQLCA, SQLSA, or SQLDA structure, respectively.

version

specifies the version number of the generated data structures; version can be 1,
2, 300, or 340 (or later). Version 330 applies only to the SQLSA structure.

SQLSA VERSION CURRENT

specifies that a subsequent INCLUDE SQLSA directive should generate both a
version 300 and version 330 SQLSA structure. This option supports run-time
SQLSA versioning, which allows a program to use an SQLSA structure that has
the same version as the current SQL/MP software for the system.

The SQLSA VERSION CURRENT option has these requirements:

 It applies only to the SQLSA structure and not to the SQLCA or SQLDA
structure.

 The SQL/MP software version must be 340 or later.

 You must compile your program using the NMC compiler on TNS/R systems or
the C compiler with the CPPSOURCE option of the SQL pragma on TNS
systems. For more information, see the C/C++ Programmer’s Guide.

 You must include the SQLGETSYSTEMVERSION procedure declaration from
the cextdecs header file in your program, because the option generates a
call to this procedure. For example:

#include <cextdecs (SQLGETSYSTEMVERSION, ...)>

INCLUDE STRUCTURES { structure-spec }

 structure-spec is:

 { [ALL] VERSION version }

 { { SQLCA | SQLSA | SQLDA } VERSION version }...

 { SQLSA VERSION CURRENT }

 { { SQLCA | SQLSA } [EXTERNAL] }
HP NonStop SQL/MP Programming Manual for C—429847-008
9-2

Error and Status Reporting Generating Structures With Different Versions
{ SQLCA | SQLSA } [EXTERNAL]

specifies that the structures are declared as external, making it possible to share
them among modules of an object file. No space is allocated for an external
SQLCA or SQLSA declaration. You must specify one occurrence of the formal
declaration of SQLCA and SQLSA somewhere in the program using the INCLUDE
SQLCA and INCLUDE SQLSA directive without the EXTERNAL option.

Generating Structures With Different Versions

You can generate SQL structures that are all of the same version or structures of
different versions. For example, to generate all version 300 structures in a program,
specify:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 300;

Or, this directive generates different versions for each structure:

EXEC SQL INCLUDE STRUCTURES SQLCA VERSION 315
 SQLDA VERSION 2
 SQLSA VERSION CURRENT;

Checking the Version of the C Compiler

If you try to compile a C program that uses the INCLUDE STRUCTURES directive to
specify a later version of a structure than the C compiler can generate, the compiler
returns SQL error 11203. To determine the version of the C compiler before you
compile a program, run the VPROC program for the C compiler object file. Then, check
the version in the VPROC line that contains S7094, which is the SQL compiler
interface (SCI) product number.

When you compile the program, you can specify the SQLMAP option in the SQL
compiler directive. The SQLMAP option directs the C compiler to include the HOSV of
the C compiler in the map at the end of the source-file listing. For example, a
version 310 C compiler listing includes this line:

Host Object SQL Version = 310

For more information about versions of NonStop SQL/MP, see the SQL/MP Version
Management Guide.

Sharing Structures

Sharing a single SQLCA and SQLSA structure among modules of an object file saves
a large amount of memory space. The SQLCA structure is 430 bytes. The pre-R330
SQLSA structure is 838 bytes and the R330 SQLSA structure is 1790 bytes. An object
file with many modules that contain embedded SQL can consume an enormous
amount of memory space for multiple structures alone.
HP NonStop SQL/MP Programming Manual for C—429847-008
9-3

Error and Status Reporting Returning Error and Warning Information
The C external declaration generated by the INCLUDE SQLCA EXTERNAL directive
is:

extern struct SQLCA_TYPE sqlca;

The C external declaration generated by the INCLUDE SQLSA EXTERNAL directive
is:

extern struct SQLSA_TYPE sqlsa;

Returning Error and Warning Information
NonStop SQL/MP provides these methods that you can use to process errors and
warnings in a program:

 Checking the sqlcode variable

 Using the WHENEVER directive

 Checking information from the SQLCA structure

Checking the sqlcode Variable

NonStop SQL/MP returns an error or warning code to sqlcode after the execution of
each embedded SQL statement or directive as follows:

Each SQL/MP error or warning message has an assigned code. For these codes and
their meanings, see the SQL/MP Messages Manual.

Declaring the sqlcode Variable

Declare sqlcode as a type short variable within the scope of each embedded SQL
statement. One method is to declare sqlcode as a global variable at the start of each
C source module that contains embedded SQL statements.

#pragma SQL
/* Other pragmas, directives, and comments */
...

short sqlcode;

...

Use C conditional statements to check the sqlcode variable. Example 9-1 on
page 9-5 inserts two column values into the PARTS table and then checks sqlcode
for any errors and warnings.

Value Status

< 0 Error

> 0 Warning

 0 Successful
HP NonStop SQL/MP Programming Manual for C—429847-008
9-4

Error and Status Reporting Checking the sqlcode Variable
Example 9-1. Checking the sqlcode Variable

EXEC SQL INCLUDE STRUCTURES ALL VERSION 315;
/* Variable declarations: */

EXEC SQL BEGIN DECLARE SECTION;
 struct
 { short in_partnum;
 long in_price;
 char in_partdesc[19];
 }in_parts_rec;
EXEC SQL END DECLARE SECTION;

/* Include the SQLCA for detailed error information */
EXEC SQL INCLUDE SQLCA;

/* Include sqlcode for simple error checking */
short sqlcode;

...

void do_sql_insert(void)
{
/* Do an SQL INSERT into the parts table: */

 in_parts_rec.in_partnum = 4120;
 in_parts_rec.in_price = 6000000;

/* IN_PRICE value is multiplied by 100 to reflect scale */

 strcpy (in_parts_rec.in_partdesc,"V8 DISK OPTION ");
 EXEC SQL INSERT INTO sales.parts (partnum, price, partdesc)
 VALUES (:in_parts_rec.in_partnum,
 SETSCALE (:in_parts_rec.in_price, 2),
 :in_parts_rec.in_partdesc);
/* The SETSCALE function represents the scale to SQL */

/* Check any for errors and warnings: */

 if (sqlcode < 0) handle_errors();

 if (sqlcode > 0 && sqlcode != 100) handle_warnings();

...
} /* End of do_sql_insert */
HP NonStop SQL/MP Programming Manual for C—429847-008
9-5

Error and Status Reporting Using the WHENEVER Directive
Using the WHENEVER Directive

The WHENEVER directive specifies an action that a program takes depending on the
results of subsequent DML, DCL, and DDL statements. WHENEVER provides tests for
these conditions:

 An error occurred.

 A warning occurred.

 No rows were found.

When you specify a WHENEVER directive, the C compiler inserts statements that
perform run-time checking after an SQL statement using the sqlcode variable.

Table 9-1 lists the C compiler pseudocode generated to check sqlcode and the order
in which the checks are made.

action-specification is one of:

CALL :host-identifier ;
GOTO :host-identifier ;
GO TO :host-identifier;
CONTINUE ;

When more than one WHENEVER condition applies to an SQL statement, NonStop
SQL/MP processes the conditions in order of precedence. For example, an SQL error
and an SQL warning can occur for the same statement, but the error condition has a
higher precedence and is processed first.

These WHENEVER directives check for the error, warning, and not-found conditions:

EXEC SQL WHENEVER NOT FOUND CALL :row_not_found;
EXEC SQL WHENEVER SQLERROR CALL :sql_error;
EXEC SQL WHENEVER SQLWARNING CALL :sql_warning;
...

Table 9-1. C Compiler Pseudocode for Checking the sqlcode Variable

Order Condition Compiler Pseudocode

1 NOT FOUND if (sqlcode == 100) action-specification;

2 SQLERROR if (sqlcode < 0) action-specification;

3 SQLWARNING if (sqlcode > 0) && (sqlcode != 100)
 action-specification;

Note. NonStop SQL/MP sometimes returns values other than 100 for a not-found condition.
For example, SQL error 8230 indicates that a subquery did not return any rows, and SQL error
8423 indicates that an indicator variable was not specified for a null output value.
HP NonStop SQL/MP Programming Manual for C—429847-008
9-6

Error and Status Reporting Using the WHENEVER Directive
Determining the Scope of a WHENEVER Directive

The order in which WHENEVER directives appear in the listing determines their scope.
Some considerations follow:

 A WHENEVER directive remains in effect until another WHENEVER directive for
the same condition appears. To execute a different routine when an error occurs,
specify a new WHENEVER directive with a different CALL routine.

For example, to insert a new row only when a row is not found, specify a new
WHENEVER directive as follows:

EXEC SQL WHENEVER NOT FOUND CALL :insert_row;

The new WHENEVER directive remains in effect until it is disabled or changed.

 If a WHENEVER directive is coded in a function, the directive remains in effect
outside of the function even if the scope of the function is no longer valid.
Therefore, if you do not want the directive to remain in effect, disable it at the end
of the function as described following.

 A program’s order includes any files copied into the program using an include
directive. If a copied file contains a WHENEVER directive, that directive remains in
effect following the include directive.

 A WHENEVER directive does not affect SQL statements if they appear in the
program before the WHENEVER directive.

 If you are debugging a program and you use a WHENEVER directive to call an
error handling procedure, you might need to save the sqlcode value in a local
variable within the error handling procedure. Each subsequent SQL statement
resets sqlcode, and you might lose a value you need to debug the program.

Enabling and Disabling the WHENEVER Directive

You can enable and disable the WHENEVER directive for different parts of a program.
For example, you might want to handle SQL errors by checking the sqlcode variable
after an SQL statement instead of using WHENEVER SQLERROR.

This example shows how to enable and disable the WHENEVER directive:

EXEC SQL
 WHENEVER SQLERROR CALL :err_func; /* enables checking */

...
EXEC SQL
 WHENEVER SQLERROR; /* disables checking */
HP NonStop SQL/MP Programming Manual for C—429847-008
9-7

Error and Status Reporting Using the WHENEVER Directive
Avoiding Infinite Loops

To avoid an infinite loop if the error handling code generates errors or warning, you can
disable the WHENEVER directive within the error handling procedure. An infinite loop
can occur in these situations:

 The SQLERROR condition runs a statement that generates an error.

 The SQLWARNING condition runs a statement that generates a warning.

 The NOT FOUND condition runs a statement that generates a
NOT FOUND condition.

To avoid these situations, disable the appropriate WHENEVER directive for the part of
the program that handles the condition. Example 9-2 on page 9-9 enables and disables
the WHENEVER directive.

Using the CALL Format

To use the CALL format to execute an error handling function, specify the WHENEVER
directive globally and follow it with a forward declaration of the error handling functions.
Also, ensure that each error handling function is accessible from all SQL statements
affected by the WHENEVER directive.

Using the GOTO Format

To use the GOTO (or GO TO) format, specify the WHENEVER directive at the
beginning of the function containing the GOTO format and disable it at the end of the
function. This example enables and disables the WHENEVER directive:

void func(void)
{
 EXEC SQL WHENEVER SQLERROR GOTO :error_handler;

/* error_handler function */
...

 EXEC SQL WHENEVER SQLERROR; /* disable WHENEVER */
}

HP NonStop SQL/MP Programming Manual for C—429847-008
9-8

Error and Status Reporting Using the WHENEVER Directive
Using an Aggregate Function

All aggregate functions except COUNT return a null value when operating on an empty
set. If a host variable receives the null value as the result of an aggregate function,
specify a corresponding indicator variable and test the result of the indicator variable.
Otherwise, NonStop SQL/MP returns an error specifying that no indicator variable was
provided rather than the “not-found” condition. A WHENEVER NOT FOUND directive
does not detect this condition.

Example 9-2. Enabling and Disabling the WHENEVER Directive

EXEC SQL WHENEVER SQLERROR CALL :error_handler;

void fred(short i, short j, short k)
{
 EXEC SQL SELECT ...;
 EXEC SQL SELECT ...;
 EXEC SQL SELECT ...;
}
void ginger(short i, short j, short k)
{
 EXEC SQL SELECT ...;
 EXEC SQL SELECT ...;
 EXEC SQL SELECT ...;
}
/* reset SQLERROR checking while in error handler */
EXEC SQL WHENEVER SQLERROR;
void error_handler(void)
{
 EXEC SQL SELECT...;
 EXEC SQL SELECT...;
 EXEC SQL SELECT...;
}
/* enable SQLERROR checking */
EXEC SQL WHENEVER SQLERROR CALL :error_handler;

int main(void)
{
 fred();
 ginger();
 EXEC SQL INSERT...;
}

HP NonStop SQL/MP Programming Manual for C—429847-008
9-9

Error and Status Reporting Using the WHENEVER Directive
Example of Using WHENEVER Directives

The code in Example 9-3 inserts two column values into the PARTS table and checks
for errors and warnings using WHENEVER directives. Within the INSERT statement,
the WHENEVER SQLERROR directive is processed first. This directive has a higher
precedence, although the WHENEVER SQLWARNING directive is specified first in the
source code.

Example 9-3. Using the WHENEVER Directive (page 1 of 2)

EXEC SQL INCLUDE STRUCTURES ALL VERSION 315;

#define MAX_PARTDESC 19
EXEC SQL BEGIN DECLARE SECTION;
 struct
 { short in_partnum;
 long in_price;
 char in_partdesc[MAX_PARTDESC];
 }in_parts_rec;
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA; /* For use with SQLCADISPLAY */

short sqlcode;

short ix; /* Loop counter for blank padding in_partdesc */

/* Specify WHENEVERs globally for errors and warnings: */

 EXEC SQL WHENEVER SQLWARNING CALL :handle_warnings;
 EXEC SQL WHENEVER SQLERROR CALL :handle_errors;

/* Forward declare error handling code: */

void handle_warnings(void);
void handle_errors(void);
HP NonStop SQL/MP Programming Manual for C—429847-008
9-10

Error and Status Reporting Using the WHENEVER Directive
int main(void)
{
/* Begin TMF transaction: */
 EXEC SQL BEGIN WORK;
 in_parts_rec.in_partnum = 4120;
 in_parts_rec.in_price = 6000000;
 strcpy (in_parts_rec.in_partdesc,"V8 DISK OPTION");

/* Blank pad in_partdesc. "V8 DISK OPTION" occupies */
/* positions 0 through 13; start blank padding at */
/* position 14: */

 for (ix = 14; ix <

; ix++)
 in_parts_rec.in_partdesc[ix] = ' ';
...

/* Do an SQL INSERT into the parts table: */

 EXEC SQL
 INSERT INTO =parts (partnum, price, partdesc)
 VALUES (:in_parts_rec.in_partnum,
 SETSCALE (:in_parts_rec.in_price, 2),
 :in_parts_rec.in_partdesc);

/* End TMF transaction: */
 EXEC SQL COMMIT WORK;
}

void handle_errors(void)
{
 SQLCADISPLAY((short *) &sqlca);
 exit(EXIT_FAILURE);
}

void handle_warnings(void)
{
 warning_sum++;
 SQLCADISPLAY((short *)&sqlca,,,,'N','Y');
}

Example 9-3. Using the WHENEVER Directive (page 2 of 2)
HP NonStop SQL/MP Programming Manual for C—429847-008
9-11

Error and Status Reporting Returning Information From the SQLCA Structure
Returning Information From the SQLCA Structure

NonStop SQL/MP returns run-time information, including errors and warnings, for the
most recently run SQL statement to the SQL communications area (SQLCA). The
SQLCA structure can contain up to seven error or warning codes (in any combination)
that might be returned by a single SQL statement or directive.

Declaring the SQLCA Structure

To declare an SQLCA structure, specify the INCLUDE SQLCA directive using this
syntax (if you do not first specify the INCLUDE STRUCTURES directive, NonStop
SQL/MP generates version 2 structures by default):

For a description of the information returned to the SQLCA structure, see the
SQLCAGETINFOLIST procedure item codes in Section 5, SQL/MP System
Procedures.

Using System Procedures With the SQLCA Structure

Table 9-3 describes the SQL system procedures you can use to retrieve and display
information from the SQLCA structure. To call these procedures, a program must
include declarations from the cextdecs header file.

For more information about these SQL/MP system procedures, see Section 5, SQL/MP
System Procedures.

EXEC SQL INCLUDE SQLCA;

Table 9-2. C Identifiers Generated by the INCLUDE SQLCA Directive

Name Value Description

SQLCA_EYE_CATCHER CA Eye-catcher value

SQLCA_LEN 430 Length in bytes of the SQLCA structure

Table 9-3. System Procedures for the SQLCA Structure

System Procedure Description

SQLCADISPLAY Writes SQL error and warning messages from the SQLCA
structure to a file or terminal

SQLCAGETINFOLIST Writes a specified subset of the SQL error or warning
information from the SQLCA structure to a record area in the
program

SQLCATOBUFFER Writes SQL error or warning messages from the SQLCA
structure to a record area in the program

SQLCAFSCODE Returns information about file-system, disk-process, or
operating system errors returned to the program
HP NonStop SQL/MP Programming Manual for C—429847-008
9-12

Error and Status Reporting Returning Performance and Statistics Information
Returning Performance and Statistics
Information

NonStop SQL/MP returns performance and statistics information to the SQL statistics
area (SQLSA) after the execution of these DML statements:

 An INSERT, UPDATE, or DELETE statement

 A SELECT statement with the INTO clause for a host variable

 An OPEN, CLOSE, or FETCH statement for a cursor operation that has a SELECT
statement specified in the DECLARE CURSOR statement

For dynamic SQL operations, NonStop SQL/MP returns information in the SQLSA
structure for these statements:

 Each PREPARE statement, including information about input parameters, output
columns, and the length of the input and output names buffer

 Each DESCRIBE statement, including information about input parameters, output
columns, the names buffer, and the collation buffer

 Each DESCRIBE INPUT statement, including information about input parameters,
output columns, and the names buffer

The SQLSA structure is undefined after the execution of a DSL, DDL, DCL, or
transaction control statement.

An SQL statement resets the SQLSA values. If you use an SQLSA value elsewhere in
a program, save the value in a variable immediately after the statement runs. To
monitor statistics for a cursor, declare accumulator variables for the required values
and add the SQLSA values to the accumulator variables after each FETCH statement
runs. (In some cases, you can also declare more than one SQLSA structure.)

Declaring the SQLSA Structure

To declare an SQLSA structure, specify the INCLUDE SQLSA directive using this
syntax:

Using the SQLSA Structure

Follow these guidelines when you use the information in an SQLSA structure:

 To generate a version 300 or later SQLSA structure, first specify an INCLUDE
STRUCTURES directive with the version of the SQLSA structure you require.
Otherwise, NonStop SQL/MP generates version 2 SQL structures by default.

EXEC SQL INCLUDE SQLSA;
HP NonStop SQL/MP Programming Manual for C—429847-008
9-13

Error and Status Reporting Using the SQLSA Structure
 Use the SQLSADISPLAY system procedure to write information from the SQLSA
structure to a file or terminal. For information about SQL system procedures, see
Section 5, SQL/MP System Procedures.

 A new statement resets the SQLSA structure fields. If you are using a value
elsewhere in your program, you might need to save the value immediately after the
statement runs (or declare more than one SQLSA structure).

 Each FETCH statement resets the SQLSA structure. To calculate statistics for a
cursor, declare accumulator variables for the required statistics. Then add values
from the SQLSA fields to the accumulator variables after each FETCH operation.

Table 9-4 describes the C identifiers generated by the INCLUDE SQLSA directive.
Always use the symbolic names for these identifiers rather than the actual values,
because the values can change in a new RVU.

The native mode C compiler also generates this compiler pragma for version 330 or
later SQLSA structures:

#pragma fieldalign cshared2 SQLSA_TYPE_R330 DML_TYPE_R330
STATS_TYPE_R330 PREPARE_TYPE_R330

Example 9-4 on page 9-15 shows the layout of a version 300 through 325 SQLSA
structure (length is 838 bytes), whereas Example 9-5 on page 9-16 shows the layout of
a version 330 (or later) SQLSA structure (length is 1790 bytes).

(For the version 1 and version 2 SQLSA structures, see Appendix D, Converting C
Programs.)

Table 9-4. C Identifiers Generated by the INCLUDE SQLSA Directive

Name Value Description

SQLSA_EYE_CATCHER SA Eye-catcher value. Use SQLSA_EYE_CATCHER to
initialize the eye_catcher field in the SQLSA
structure.

SQLSA_LEN 838
or
1790

Length in bytes of the SQLSA structure. A version
330 or later SQLSA structure is 1790 bytes; older
SQLSA structures are 838 bytes. Use SQLSA_LEN
to allocate extra copies of an SQLSA structure.
HP NonStop SQL/MP Programming Manual for C—429847-008
9-14

Error and Status Reporting Using the SQLSA Structure
\

Example 9-4. Version 300-325 SQLSA Structure

struct SQLSA_TYPE
{
 char eye_catcher[2];
 short version;
 union
 {
 struct DML_TYPE
 {
 short num_tables;
 struct STATS_TYPE
 {
 char table_name[24];
 long records_accessed;
 long records_used;
 long disc_reads;
 long messages;
 long message_bytes;
 short waits;
 short escalations;
 char sqlsa_reserved[4];
 } stats[16];
 } dml;
 struct PREPARE_TYPE
 {
 short input_num;
 short input_names_len;
 short output_num;
 short output_names_len;
 short name_map_len;
 short sql_statement_type;
 long output_collations_len;
 } prepare;
 } u;
} sqlsa;
HP NonStop SQL/MP Programming Manual for C—429847-008
9-15

Error and Status Reporting Using the SQLSA Structure
Example 9-5. Version 330 (or later) SQLSA Structure

 struct SQLSA_TYPE_R330
{
 char eye_catcher[2];
 short version;
 union
 {
 struct DML_TYPE_R330
 {
 short num_tables;
 long long master_executor_elapsed_time;
 long long total_esp_cpu_time;
 long long total_sortprog_cpu_time;
 char filler[32];
 struct STATS_TYPE_R330
 {
 char table_name[24];
 long long records_accessed;
 long long records_used;
 long long disc_reads;
 long long messages;
 long long message_bytes;
 long waits;
 long escalations;
 short vsbb_write;
 short vsbb_flushed;
 char filler[32];
 } stats[16];
 } dml;
 struct PREPARE_TYPE_R330
 {
 short input_num;
 short input_names_len;
 short output_num;
 short output_names_len;
 short name_map_len;
 short sql_statement_type;
 long output_collations_len;
 } prepare;
 } u;
} sqlsa_r330;
HP NonStop SQL/MP Programming Manual for C—429847-008
9-16

Error and Status Reporting Using the SQLSA Structure

Table 9-5. SQLSA Structure Fields (page 1 of 2)

Field Name Description

eye_catcher Identification field. Set eye_catcher to
SQLSA_EYE_CATCHER.

version Current product version of SQLSA. (Subsequent
NonStop SQL/MP PVUs can change this value.)

dml Structure for the return of statistics after the execution
of a DML statement.

num_tables Number of tables accessed by a DML statement;
maximum is 16.

master_executor_elapsed_
time

CPU time in microseconds used by the master
Executor process. Applies only to a version 330 or
later SQLSA structure.

total_esp_cpu_time Total CPU time in microseconds used by all Executor
Server Processes (ESPs). Applies only to a version
330 or later SQLSA structure.

total_sortprog_cpu_time Total CPU time in microseconds used by all
SORTPROG processes. Applies only to a version 330
or later SQLSA structure.

stats Array containing num_tables valid entries, one for
each table accessed.

table_name Guardian internal file name of the table accessed.

records_accessed Number of records accessed in the corresponding
table.

records_used Number of records altered or returned.

disc_reads Number of disk reads and writes.

messages Number of messages sent to the disk process.

message_bytes Number of bytes sent in all the messages sent to the
disk process.

waits Number of lock waits or time outs.

escalations Number of times record locks are escalated to file
locks.

sqlsa_reserved Reserved.

vsbb_write True (-1) if a VSBB write was used. Otherwise, false
(0).

vsbb_flushed True (-1) if the VSBB buffer was flushed. Otherwise,
false (0).

prepare Structure for the return of statistics for a PREPARE
statement. Applies only to dynamic SQL statements.
A program can use this information to allocate the
buffers required to describe the prepared statement.
HP NonStop SQL/MP Programming Manual for C—429847-008
9-17

Error and Status Reporting Using the SQLSA Structure
input_num Number of input parameters in the prepared
statement.

input_names_len Length of the buffer required to contain names of
input parameters.

output_num Number of output variables (host variables or
SELECT columns) in the prepared statement.

output_names_len Length of buffer required to contain names of output
variables.

name_map_len Reserved.

sql_statement_type Statement being prepared (name, value, and type):

_SQL_STATEMENT_SELECT 1 Cursor SELECT

_SQL_STATEMENT_INSERT 2 INSERT

_SQL_STATEMENT_UPDATE 3 UPDATE

_SQL_STATEMENT_DELETE 4 DELETE

_SQL_STATEMENT_DDL 5 DDL statement

_SQL_STATEMENT_CONTROL 6 Run-time
CONTROL
TABLE

_SQL_STATEMENT_DCL 7 LOCK,
UNLOCK, FREE
RESOURCES

_SQL_STATEMENT_GET 8 GET
VERSION...

To use these declarations, copy the sqlh header file
using an #include directive.

output_collations_len Length of the output collation buffer.

Table 9-5. SQLSA Structure Fields (page 2 of 2)

Field Name Description
HP NonStop SQL/MP Programming Manual for C—429847-008
9-18

10 Dynamic SQL Operations

Dynamic SQL allows a host-language program to construct, compile, and run all or part
of an SQL statement at run time. A dynamic SQL program uses a character host
variable as a placeholder for the SQL statement, which is usually unknown or
incomplete until run time. To construct the dynamic SQL statement in the host variable,
the program usually requires some input from a user at a terminal or workstation.

Uses for Dynamic SQL
Dynamic SQL programs can be useful in these situations:

 New user interface––You need to develop an interactive design for a specific user.
For example, you might want to provide a graphical user interface (GUI) or restrict
the SQL commands a user can run.

A dynamic SQL program can be similar to SQLCI, requiring the user to know SQL
syntax to formulate a complete SQL statement. A dynamic SQL program can also
prompt the user for input, so that the user does not have to know any SQL syntax.
If the statement requires input parameters, the program can also prompt the user
for these values. The program can then construct the SQL statement by
concatenating these values to SQL syntax elements. For example, a program
might construct an entire SQL statement or only part of a statement, such as a
WHERE clause.

 Restricted access to data––You want to restrict the access to specific columns in a
table. For example, your program might include a dynamic SELECT statement that
accesses specific columns in a table but not other columns (such as the columns
for an employee’s salary or home phone number).

 Client-server support––You need to develop a server that receives requests from
client applications. For example, an application on a personal computer wants to
access an SQL/MP database. The PC application formulates an SQL statement
and sends it to your program over a communications protocol. Your program
constructs, compiles, and runs the dynamic SQL statement, and then sends the
results back to the PC application. (An example of a server that uses dynamic SQL
is the HP NonStop ODBC Server.)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-1

Dynamic SQL Operations Dynamic SQL Statements
Dynamic SQL Statements
You can perform most of the same operations using dynamic SQL statements that you
can perform with static SQL statements, including DDL, DML, and DCL statements and
SQL cursors. Table 10-1 summarizes the dynamic SQL statements that you can use in
a C program.

These statements are described following. For the syntax of each statement, see the
SQL/MP Reference Manual.

Table 10-1. Dynamic SQL Statements

Statement Description

DESCRIBE INPUT Returns information about input parameters associated with a
prepared SQL statement.

DESCRIBE Returns information about output variables (usually SELECT
columns) associated with a prepared SQL statement.

PREPARE Dynamically compiles an SQL statement stored in a host
variable and associates the prepared statement with a
statement name (an SQL identifier) or a host-variable name.

EXECUTE Runs a prepared SQL statement.

EXECUTE IMMEDIATE Compiles and runs an SQL statement stored in a host
variable.

DECLARE CURSOR Defines an SQL cursor and associates the cursor with a
SELECT statement.

OPEN Opens an SQL cursor: Runs the associated SELECT
statement and positions the cursor before the first row
specified by the SELECT statement so that subsequent
FETCH statements can retrieve data. Optional USING clause
provides values for dynamic parameters.

FETCH Positions an SQL cursor at the next row of the result table
defined by the associated SELECT statement and then
retrieves data into host variables.

RELEASE Deallocates space in the host-language program for a
dynamic SQL statement prepared from a host variable.

CLOSE Closes an SQL cursor and frees the result table defined by
the associated SELECT statement.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-2

Dynamic SQL Operations Dynamic SQL Features
Dynamic SQL Features

SQLDA Structure, Names Buffer, and Collation Buffer

NonStop SQL/MP uses the SQLDA structure to return information about input
parameters and output variables in dynamic SQL statements. The SQLDA structure
also provides a pointer to these buffers:

 Names buffer––Receives the names of input parameters or output variables

 Collation buffer––Receives copies of any collations used by columns in the query

You can use the SQLDA structure in these statements:

 A DESCRIBE INPUT statement to get information about input parameters

 A DESCRIBE statement to return information about output columns or copies of
any collations used by the columns

 The USING DESCRIPTOR clause of a FETCH statement to fill a cursor with rows
from an SQL table

 The USING DESCRIPTOR clause of an EXECUTE statement to run a dynamic
SQL statement

Declaring the SQLDA Structure

To declare an SQLDA structure, use the INCLUDE SQLDA directive as follows:

sqlda-name

is the SQLDA structure name; it must follow the conventions for a C identifier.

sqlvar-count

is the number of input parameters (plus indicator parameters) for which you expect
to specify values, or the number of columns for which you expect to receive output
values. The C compiler creates a separate SQLVAR structure within the SQLDA
structure for each parameter or column.

The default for sqlvar-count is 1.

INCLUDE SQLDA (sqlda-name [, sqlvar-count]

 [, names-buffer, max-name-length]

 [, release-option]

 [, CPRULES collation-buffer, max-collation-size]) ;
HP NonStop SQL/MP Programming Manual for C—429847-008
10-3

Dynamic SQL Operations SQLDA Structure, Names Buffer, and Collation
Buffer
names-buffer

is the SQLDA names buffer; it must follow the conventions for a C identifier.

max-name-length

is the maximum number of bytes you expect in a parameter name or column name
to be returned in a DESCRIBE or DESCRIBE INPUT statement. A qualified column
name can be from 1 to 30 bytes long and is in this format:

table-name.column-name

A parameter name is an SQL identifier with a maximum of 30 bytes.

release-option

specifies the version of the SQLDA structure generated by the C compiler.
RELEASE1 specifies SQL/MP version 1, and RELEASE2 specifies SQL/MP
version 2. If release-option specifies a version other than the default for the
system, the C compiler appends _R1 or _R2 to the SQLDA names and identifiers.

CPRULES

is a required keyword if you specify a collation buffer.

collation-buffer

is a host variable specifying the name of the collation buffer. The
COLLATIONS INTO clause of the DESCRIBE statement allows you to return
collations to collation-buffer.

max-collation-size

is the maximum number of bytes you expect for any one collation.

Note. Although version 300 (and later) C compilers allow the RELEASE1 and RELEASE2
options, HP might not support these options in a future RVU. If you are using a
version 300 (or later) C compiler to generate version 1 or version 2 data structures,
replace the RELEASE1 or RELEASE2 option with the VERSION 1 or VERSION 2 option
of the INCLUDE STRUCTURES directive.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-4

Dynamic SQL Operations SQLDA Structure, Names Buffer, and Collation
Buffer
Table 10-2 describes the C identifiers generated by an INCLUDE SQLDA directive.
Always use the symbolic names rather than the actual values because the values can
change in a new RVU.

Table 10-3 describes each field in a version 315 (or later) SQLDA structure.

Table 10-2. C Identifiers Generated by the INCLUDE SQLDA Directive

Name Value Description

SQLDA_EYE_CATCHER D1 Eye-catcher value. Use this identifier to
initialize the eye_catcher field in the
SQLDA structure:

strncpy(sqlda.eye_catcher,
 SQLDA_EYE_CATCHER,2);

where sqlda is the name of the SQLDA
structure.

SQLDA_HEADER_LEN 4 The length in bytes of the SQLDA
structure header fields eye_catcher and
num_entries.

SQLDA_SQLVAR_LEN 24 The length in bytes of one SQLVAR entry.

SQLDA_NAMESBUF_OVHD_LEN 11 The overhead length in bytes added to the
names buffer. This overhead is the length
field (2 bytes), table name (8 bytes), and
period separator (1 byte).

Table 10-3. SQLDA Structure Fields (page 1 of 2)

Field Name Description

eye_catcher An identifying field that a program must initialize. NonStop SQL/MP does
not return a value to eye_catcher.

num_entries Number of input or output parameters the SQLDA structure can contain.

sqlvar Group item that describes input parameters or database columns. The
DESCRIBE INPUT and DESCRIBE statements return one sqlvar entry
for each input parameter or each output variable.

data_type Data type of the parameter. For the data_type values, see Table 10-4
on page 10-8.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-5

Dynamic SQL Operations SQLDA Structure, Names Buffer, and Collation
Buffer
data_len The value depends on the data type:
Fixed-length character Number of bytes in the string.
Variable-length character Maximum number of bytes in the string.
Decimal numeric Bits 0:7 specify the decimal scale.
Bits 8:15 specify the byte length of the item.
Binary numeric Bits 0:7 specify the decimal scale.

Bits 8:15 specify the byte length of the item (2,
4, or 8).
Date-time or INTERVAL Bits 0:7 specify the range of the field. For
these values, see Table 10-5 on page 10-10.

Bits 8:15 specify the storage size of the item.

precision The precision value depends on the data type:
Binary numeric Numeric precision.
Date-time or INTERVAL Bits 0:7 specify the leading field precision.

Bits 8:15 specify the fraction precision.
If the FRACTION field is not included, bits 8:15 are 0.
Character and VARCHAR Character set ID. For the precision values,
see Table 10-5 on page 10-10.

null_info For input parameters, null_info is a negative integer if the column
permits null values.
For output columns, null_info is a negative integer if the row returned
is null.

var_ptr Extended address of the actual data (value of input parameter or
database column). NonStop SQL/MP does not return a value to
var_ptr. A program must initialize var_ptr to point to the input and
output data buffers.

ind_ptr Address of a flag that indicates whether a parameter or column is null.
For input parameters, a program sets the ind_ptr location to –1 if the
user entered a null value.
For output columns, NonStop SQL/MP sets the ind_ptr location to –1 if
the column value is null.
A program that does not process null values should set ind_ptr to an
invalid address.

cprl_ptr For input columns, cprl_ptr is not set.
For output columns, cprl_ptr contains the address of the collation
used by the column if a collation was used.
If a collation was not used for the output column, cprl_ptr contains a
negative integer.

Table 10-3. SQLDA Structure Fields (page 2 of 2)

Field Name Description
HP NonStop SQL/MP Programming Manual for C—429847-008
10-6

Dynamic SQL Operations SQLDA Structure, Names Buffer, and Collation
Buffer
Example 10-1 shows a version 315 SQLDA structure, names buffer, and collation
buffer. For version 1 and 2 SQLDA structures, see Appendix D, Converting C
Programs.

Calculating the Lengths of the Names and Collation Buffers

NonStop SQL/MP returns a name to the names buffer as a VARCHAR item. The
C compiler determines length in bytes of the names buffer using this formula:

length = (name-string-size + 11) * sqlvar-count

The 11 bytes added to name-string-size is derived from the length (2 bytes), table
name (8 bytes), and period separator (1 byte).

Use the SQLDA_NAMESBUF_OVHD_LEN identifier for this value.

NonStop SQL/MP returns a collation name to the collation buffer as a VARCHAR item.
The C compiler determines the length in bytes of the collation buffer as follows:

collation-buffer-length =
 (max-collation-size + 4) * sqlvar-count

The 4 bytes added to max-collation-size is the length (len) field in the
VARCHAR item. Use the SQLDA_COLLBUF_OVHD_LEN identifier for this value.

Example 10-1. SQLDA Structure and Buffers

struct SQLDA_TYPE
{
 char eye_catcher[2];
 short num_entries;
 struct SQLVAR_TYPE
 {
 short data_type;
 short data_len;
 short precision;
 short null_info;
 long var_ptr;
 long ind_ptr;
 long cprl_ptr;
 long reserved;
 } sqlvar[sqlvar-count];
} sqlda-name;

char names_buffer [name-string-size];

char collation_buffer [collation-buffer-length];
HP NonStop SQL/MP Programming Manual for C—429847-008
10-7

Dynamic SQL Operations SQLDA Structure, Names Buffer, and Collation
Buffer
Using Declarations for the SQLDA Structure

HP provides declarations in the sqlh file that you can use for the SQLDA data_type
and precision fields. Use the #include directive to copy these declarations into a
C program. Table 10-4 describes the declarations and values for the SQLDA
data_type field.

Table 10-4. SQLDA Data Type Declarations (page 1 of 2)

Value Declaration Description

Character Data Types (0 – 127)

0 _SQLDT_ASCII_F Fixed-length single-byte character

1 _SQLDT_ASCII_F_UP Fixed-length single-byte character,
upshifted

2 _SQLDT_DOUBLE_F Fixed-length double-byte character

64 _SQLDT_ASCII_V Variable-length single-byte character

65 _SQLDT_ASCII_V_UP Variable-length single-byte character,
upshifted

66 _SQLDT_DOUBLE_V Variable-length double-byte character

Numeric Data Types (128 – 134)

130 _SQLDT_16BIT_S 16-bit signed (signed SMALLINT)

131 _SQLDT_16BIT_U 16-bit unsigned (unsigned SMALLINT)

132 _SQLDT_32BIT_S 32-bit signed (signed INT)

133 _SQLDT_32BIT_U 32-bit unsigned (unsigned INT)

134 _SQLDT_64BIT_S 64-bit signed (signed LARGEINT)

140 _SQLDT_REAL 32-bit floating point (REAL)

141 _SQLDT_DOUBLE 64-bit floating point (DOUBLE
PRECISION)

Decimal Data Types (150 – 154)

150 _SQLDT_DEC_U Unsigned DECIMAL

151 _SQLDT_DEC_LSS DECIMAL, leading sign separate (not SQL
type)

152 _SQLDT_DEC_LSE ASCII DECIMAL, leading sign embedded

153 _SQLDT_DEC_TSS DECIMAL, trailing sign separate (not SQL
type)

154 _SQLDT_DEC_TSE DECIMAL, trailing sign embedded (not
SQL type)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-8

Dynamic SQL Operations SQLDA Structure, Names Buffer, and Collation
Buffer
Date-Time and INTERVAL Data Types (192 – 212)

192 _SQLDT_DATETIME General Date-Time

195 _SQL_DTINT_Y_Y Year to Year

196 _SQL_DTINT_MO_MO Month to Month

197 _SQL_DTINT_Y_MO Year to Month

198 _SQL_DTINT_D_D Day to Day

199 _SQL_DTINT_H_H Hour to Hour

200 _SQL_DTINT_D_H Day to Hour

201 _SQL_DTINT_MI_MI Minute to Minute

202 _SQL_DTINT_H_MI Hour to Minute

203 _SQL_DTINT_D_MI Day to Minute

204 _SQL_DTINT_S_S Second to Second

205 _SQL_DTINT_MI_S Minute to Second

206 _SQL_DTINT_H_S Hour to Second

207 _SQL_DTINT_D_S Day to Second

208 _SQL_DTINT_F_F Fraction to Fraction

209 _SQL_DTINT_S_F Second to Fraction

210 _SQL_DTINT_MI_F Minute to Fraction

211 _SQL_DTINT_H_F Hour to Fraction

212 _SQL_DTINT_D_F Day to Fraction

Table 10-4. SQLDA Data Type Declarations (page 2 of 2)

Value Declaration Description
HP NonStop SQL/MP Programming Manual for C—429847-008
10-9

Dynamic SQL Operations SQLDA Structure, Names Buffer, and Collation
Buffer
Table 10-5 describes the declarations and values for the ranges of date-time and
INTERVAL data types for the SQLDA data_len field.

Table 10-5. SQLDA Date-Time and INTERVAL Declarations

Value Declaration Description

1 _SQL_DTINT_QUAL_Y_Y Year to Year

2 _SQL_DTINT_QUAL_MO_MO Month to Month

3 _SQL_DTINT_QUAL_D_D Day to Day

4 _SQL_DTINT_QUAL_H_H Hour to Hour

5 _SQL_DTINT_QUAL_MI_MI Minute to Minute

6 _SQL_DTINT_QUAL_S_S Second to Second

7 _SQL_DTINT_QUAL_F_F Fraction to Fraction

8 _SQL_DTINT_QUAL_Y_MO Year to Month

9 _SQL_DTINT_QUAL_Y_D Year to Day

10 _SQL_DTINT_QUAL_Y_H Year to Hour

11 _SQL_DTINT_QUAL_Y_MI Year to Minute

12 _SQL_DTINT_QUAL_Y_S Year to Second

13 _SQL_DTINT_QUAL_Y_F Year to Fraction

14 _SQL_DTINT_QUAL_MO_D Month to Day

15 _SQL_DTINT_QUAL_MO_H Month to Hour

16 _SQL_DTINT_QUAL_MO_MI Month to Minute

17 _SQL_DTINT_QUAL_MO_S Month to Second

18 _SQL_DTINT_QUAL_MO_F Month to Fraction

19 _SQL_DTINT_QUAL_D_H Day to Hour

20 _SQL_DTINT_QUAL_D_MI Day to Minute

21 _SQL_DTINT_QUAL_D_S Day to Second

22 _SQL_DTINT_QUAL_D_F Day to Fraction

23 _SQL_DTINT_QUAL_H_MI Hour to Minute

24 _SQL_DTINT_QUAL_H_S Hour to Second

25 _SQL_DTINT_QUAL_H_F Hour to Fraction

26 _SQL_DTINT_QUAL_S_S Second to Second

27 _SQL_DTINT_QUAL_S_F Second to Fraction

28 _SQL_DTINT_QUAL_F_F Fraction to Fraction
HP NonStop SQL/MP Programming Manual for C—429847-008
10-10

Dynamic SQL Operations Input Parameters and Output Variables
Determining Character Set IDs From the precision Field

Table 10-6 describes the character-set values that NonStop SQL/MP returns to the
SQLDA precision field for CHAR and VARCHAR data types and the character-set
declarations in the sqlh file that you can use in a C program:

For CHAR and VARCHAR parameters and variables, the precision field contains
the character set ID. When a dynamic SQL statement runs, NonStop SQL/MP checks
the precision field to ensure that the character-set ID matches the expected
character set of the parameter or column, which is determined by the value in
COLUMNS.CHARACTERSET.

If the character sets do not match, NonStop SQL/MP returns an error. However, if the
program expects an unknown character set and the CHARACTERSET value for the
parameter or column indicates a single-byte character set, NonStop SQL/MP does not
return an error.

Input Parameters and Output Variables

A parameter is a name in a dynamic SQL statement that serves as a place holder for a
value substituted when the statement runs. Using a parameter, an SQL statement can
be compiled without the input values. The input values are then substituted when the
statement runs. The syntax for a parameter is shown in the SQL/MP Reference
Manual.

Input parameters are specified in the statement as either a question mark (?) or a
question mark plus a name (?val). An input parameter can appear in an SQL
expression wherever a constant can appear. The program uses the DESCRIBE INPUT

Table 10-6. SQLDA Character-Set IDs

Value Declaration Description

0 _SQL_CHARSETID_UNKNOWN A single-byte unknown character set.

1 _SQL_CHARSETID_KANJI Japanese (same as the Shift-JIS)

12 _SQL_CHARSETID_KSC5601 Korean

101 _SQL_CHARSETID_88591 ISO 8859/1

102 _SQL_CHARSETID_88592 ISO 8859/2

103 _SQL_CHARSETID_88593 ISO 8859/3

104 _SQL_CHARSETID_88594 ISO 8859/4

105 _SQL_CHARSETID_88595 ISO 8859/5

106 _SQL_CHARSETID_88596 ISO 8859/6

107 _SQL_CHARSETID_88597 ISO 8859/7

108 _SQL_CHARSETID_88598 ISO 8859/8

109 _SQL_CHARSETID_88599 ISO 8859/9
HP NonStop SQL/MP Programming Manual for C—429847-008
10-11

Dynamic SQL Operations Input Parameters and Output Variables
statement with an input SQLDA structure to get information about the input parameters
and obtain pointers to the input values.

NonStop SQL/MP returns data to a program through output variables. Output variables
are user-specified areas in the program. Output variables can be host variables or
individual data buffers to which the program (through the SQLDA structure) contains
pointers. Output variables usually contain columns returned from a SELECT operation.
A program uses the DESCRIBE statement to get information about the output
variables.

This sequence shows a typical context for input parameters and output variables in
dynamic SQL. If you know in advance which columns are likely to be selected, you can
use this sequence:

strcpy (hostvar, "SELECT empnum, salary FROM =employee \
WHERE salary > ?sal"); /* input parameter sal */

/* Blank pad the statement buffer, dynamically compile */
/* the statement, describe its variables, prompt the */
/* user and read in the value for sal, declare and */
/* open a cursor for the statement. */
...

EXEC SQL
 FETCH cursor INTO :enum, :sal; /* output variables */
 /* :enum and :sal */

If you do not know in advance which columns to select, you can send the output values
to data buffers the program allocated earlier and to which the program set up pointers.
The pointers are in the SQLDA structure. In this case, the FETCH statement would
look like this:

EXEC SQL
 FETCH cursor
 USING DESCRIPTOR :sqlda; /* SQLDA contains pointers */
 /* to output data buffers. */

Internally, SQL execution is the same for both scenarios.

Using a Parameter List

To ensure a one-to-one correspondence between a parameter list and the host
variables you use to supply values for the parameters, use unnamed parameters. If
duplicate parameter names appear in a statement, the names require a value for only
the first occurrence, and the duplicate occurrences receive the same value.

For example, suppose this UPDATE statement is stored in the host variable named
update_statement:

UPDATE table SET col1 = ?a, col2= ?a, col3 = ?b
HP NonStop SQL/MP Programming Manual for C—429847-008
10-12

Dynamic SQL Operations Input Parameters and Output Variables
A PREPARE statement prepares the statement in exec_statement from the host
variable update_statement:

PREPARE exec_statement FROM :update_statement; ...

To supply values for the UPDATE statement at run time, the program uses the two host
variables host_var1 and host_var2:

EXECUTE exec_statement USING :host_var1, :host_var2;

The value stored in host_var1 is used for both instances of the parameter named ?a.
The value stored in host_var2 is used for the parameter named ?b. If you use three
host variables, NonStop SQL/MP uses the value in the first host variable for both
occurrences of parameter ?a. The value in the second host variable is used for
parameter ?b, and the value in the third host variable remains unused.

For example, in this statement, NonStop SQL/MP uses the value in host_var1 for
both occurrences of parameter ?a and the value in host_var2 for parameter ?b. The
value in host_var3 is ignored.

EXECUTE exec_statement
 USING :host_var1,:host_var2,:host_var3;

Using Parameters in Loops

Parameters are often used when a dynamic SQL statement is run repeatedly with
different input values. In this example, a dynamic SQL statement uses a parameter.
Because the user of this program can enter any SQL statement, the program does not
have information about the statement during compilation. The TACL DEFINE named
=parts represents the PARTS table.

1. A user enters this SQL statement:

UPDATE =parts SET price = ?p

2. The program copies the statement into the host variable named intext.

3. The program uses the PREPARE and DESCRIBE INPUT statements to return a
description of the parameter in the input SQLDA structure (in_sqlda) and to get
the name of the parameter in the input names buffer (i_namesbuf). The prepared
statement is named exec_stmt.

EXEC SQL PREPARE exec_stmt FROM :intext;
EXEC SQL DESCRIBE INPUT exec_stmt INTO :in_sqlda
 NAMES INTO :i_namesbuf;

Caution. If you use the same parameter name more than once in a statement, NonStop
SQL/MP gives each duplicate occurrence of the parameter the same data type, length, and
other attributes as the first occurrence. As a result, data can be lost in some cases.

For example, during the execution of an INSERT statement, a parameter gets the same data
type and attributes as the column into which the parameter’s value is first inserted. If the
parameter value is truncated to fit into the column, the values of any duplicate occurrences of
the parameter are also truncated, even if a column is large enough to hold the complete value.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-13

Dynamic SQL Operations Input Parameters and Output Variables
4. The program enters a loop to prompt the user to supply values for successive
execution of the statement:

/* Beginning of loop */

/* Prompt the user for a value using the parameter */
/* name from the names buffer */
...

/* Store the value in a buffer pointed to by in_sqlda */

/* Run the statement using each successive value */

EXEC SQL EXECUTE exec_stmt USING DESCRIPTOR :in_sqlda;

/* end of loop */

Using the Names Buffer for Parameter Values

When you use the names buffer to prompt the user for parameter values, the names
buffer contains the names of parameters. When you use the names buffer to display
column values, the names buffer contains the names of columns.

If you specify NAMES INTO in the DESCRIBE INPUT statement, the names buffer
contains the names of parameters that you can use to prompt the user for parameter
values. The data returned to the names buffer is in this form:

length_1 name_1 length_2 name_2 ... length_n name_n

where name_1 is the first name, name_2 the second name, and name_n the last
name.

The name length information is a 2-byte integer (SQL data type PIC S9(4) COMP,
C data type int). All names with a length of an odd number of characters are padded
with a blank to make the length an even number. When you display the names, you
might want to check for this blank padding. Expressions appear as a null string with a
length of 0.

For the program to determine the names in the names buffer, you can write a routine to
return the names structure when given the address of the column information desired.
After the DESCRIBE INPUT or DESCRIBE statement runs, the information for each
parameter or column is in the SQLVAR array; the var_ptr field contains the address
of the length field for each parameter or column name in the names buffer.

You can use var_ptr to read the names from the names buffer only if you access the
names buffer immediately following DESCRIBE INPUT or DESCRIBE. After you have
set var_ptr to point to the data, you can no longer use var_ptr to access the
names buffer and must loop through the names buffer to get the names.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-14

Dynamic SQL Operations Input Parameters and Output Variables
Some examples of entries in the names buffer are:

To prompt the user with the parameter names in the input names buffer, you must read
the length of the name and then position a pointer past the length field and onto the
name.

Example 10-2 uses the names buffer, prompts for input, and then reads parameter
values entered by the user.

Complete
Entry

Individual Entry
Part Description

|04|ABCD| |0000000000000100|
|ABCD|

2-byte length 4-character string with value = 4
4-character string

|06|ABCDE | |0000000000000110|
|ABCDE |

2-byte length 4-character string with value = 6
5-character string padded with 1 trailing blank

|00| | |0000000000000000|
| |

2-byte length with value = 0
Null string

Note. If your program accepts null values for input parameters, the indicator parameter names
are included in the names buffer. For more information, see Handling Null Values in Input
Parameters on page 10-17.

Example 10-2. Getting Parameter Values (page 1 of 2)

int request_invars(sqldaptr input_sqlda_ptr,
 char *input_namesbuf_ptr)
{
 #define data_array_size 21
 /* size for numeric parameter value; maximum is 19 */
 /* digits plus sign byte plus null byte terminator */

 int *len_ptr; /* ptr to access length portion */
 /* of names buffer information */
 int name_len; /* number of bytes in a */
 /* parameter name */
 int num_entries; /* number of input parameters */
 int i; /* loop counter */
 char name_array[31]; /* for null-terminated name of */
 /* the input parameter */
 char data_array[data_array_size]; /* for a numeric value */
 int data_len; /* number of bytes needed in */
 /* input value */
 int data_read; /* number of bytes of input */
 /* value actually read */
 char *lastchar; /* last character read */
 /* for advancing pointer */
 ...
 num_entries = input_sqlda_ptr->num_entries;
 printf("\nPlease provide values for the input
 parameters:/n);
 ...

HP NonStop SQL/MP Programming Manual for C—429847-008
10-15

Dynamic SQL Operations Null Values
Null Values

The input and output SQLDA structures have the null_info and ind_ptr fields,
which are used for handling null values. Your program accesses these fields in the
SQLVAR array in the same way in which you access var_ptr.

for (i=0; i < num_entries; i++)
 {
 /* Set pointer to the length prefix in names buffer: */
 len_ptr = (int *)input_namesbuf_ptr;
 name_len = *len_ptr;

 /* Move pointer past the length prefix and onto a name: */
 input_namesbuf_ptr += 2; /* Store null-terminated parameter
name in name_array: */
 if (name_len == 0)
 name_array[0] = '\0'; /* Parameter had no name */
 else
 {
 lastchar = input_namesbuf_ptr + (name_len - 1);
 if (*lastchar == ' ') /* last character is blank */
 /* SQL inserts blanks to make */
 /* the length fall on an even */
 /* byte boundary if the name */
 /* had an odd number of */
 /* characters. */
 {
 strncpy (name_array, input_namesbuf_ptr, name_len - 1);
 name_array[name_len] = '\0';
 }
 else
 {
 strncpy (name_array, input_namesbuf_ptr, name_len);
 name_array[name_len] = '\0';
 }
 } /* end else; read and store named parameter */
 */
 /* Use a switch statement to check the data type, prompt*/
 /* the user for input, (using the parameter name in */
 /* name_array), call a function to read the value */
 /* input by the user (see sample program for code) . */

 output_namesbuf_ptr = lastchar + 1;
 } /* end of for loop */
}

null_info indicates whether the input parameter or output variable can contain a
null value.

ind_ptr points to a flag that indicates whether the input parameter or output
variable is null. If the parameter or output variable is not null, the
var_ptr field specifies the value.

Example 10-2. Getting Parameter Values (page 2 of 2)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-16

Dynamic SQL Operations Null Values
If you want all your parameters and output variables to handle null values, your
program should access ind_ptr every time it accesses var_ptr.

Handling Null Values in Input Parameters

A program uses an indicator parameter to indicate that a null value was entered for a
parameter. The indicator parameter follows the parameter in the SQL statement; for
example:

INSERT INTO =employee VALUES (1000, ?p INDICATOR ?i);

If a user enters a null value for ?p, the program should set ?i to a value less than zero.
If a user enters a non-null value for ?p, the program should set ?i to 0. Both ?p and ?i
are in the names buffer, so the program can prompt the user for a null value.

Each parameter in the statement entered by the user or constructed by your program
must have a corresponding indicator parameter to handle possible null values, or a
run-time error occurs when a null value is encountered.

After DESCRIBE INPUT runs and for each input parameter described in an sqlvar
array in the input SQLDA structure, NonStop SQL/MP sets null_info to -1 if the
input parameter in the prepared statement allows a null value (that is, if the prepared
statement included a null indicator).

Your program then checks null_info. If null_info contains a -1 and you are
allocating memory dynamically, you can now allocate two bytes of memory for a null
indicator value, and then set ind_ptr to point to the memory. Allocate this memory at
the same time you allocate memory for a possible nonnull parameter value.

If the user specifies a null value for the parameter, assign a -1 to the location pointed to
by ind_ptr. NonStop SQL/MP checks this value and then transmits a null value for
the parameter.

However, if the user does not enter a null value for the input parameter, you can assign
a 0 to the location indicated by ind_ptr. NonStop SQL/MP checks ind_ptr, sees
that ind_ptr indicates a nonnull value, and gets the parameter value from the
location indicated by var_ptr.

Handling Null Values in Output Variables

DESCRIBE sets null_info to -1 if the output variable can be null (that is, if the
prepared statement includes a null indicator). If the value returned is null, NonStop
SQL/MP checks null_info and moves a -1 into the location pointed to by ind_ptr.
(Errors are returned if the value is null but null_info is zero (0) or if ind_ptr is an
invalid address.)

Your program must check null_info to determine whether the value returned can be
null. If null_info contains a -1, then your program checks the location pointed to by
ind_ptr. If that location contains a -1, then a null value was returned. If the location
contains 0, then a nonnull value was returned and your program should get the value
from the location pointed to by var_ptr.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-17

Dynamic SQL Operations Dynamic Allocation of Memory
Null Values and the Names Buffer

If your program processes indicator parameters, the names of the indicator parameters
are included in the names buffer after DESCRIBE INPUT runs. The ind_ptr field
points to the length field for the first indicator parameter name in the names buffer. This
behavior is parallel to that of var_ptr after DESCRIBE INPUT or DESCRIBE.

Figure 10-1 is a diagram of the names buffer immediately after the DESCRIBE INPUT
statement runs when indicator parameters are present for two parameters, where len
is a two-byte length, name is a parameter name, ind_len is the length of an indicator
parameter name, and ind_name is an indicator parameter name. Each instance of
ind_ptr points to the length field for the corresponding indicator parameter name.

Like input parameter and output variable names, indicator variable names are blank
padded to even lengths.

When you are reading through the names buffer to prompt the user for parameter
names, you might need to be aware of the indicator fields and perform tasks like the
following:

1. Check the null_info field.

2. If null_info is -1, read the length field for the indicator.

3. Add this length field to the pointer or index to skip to the next name in the names
buffer.

Dynamic Allocation of Memory

A C program can dynamically allocate memory for input parameters and output
variables at run time by following these steps:

1. Make sure that your program uses the large memory module (which is the default).
The XMEM pragma causes the C compiler to use the large-memory model.

2. Declare a template for the SQLDA structure and names buffer using the INCLUDE
SQLDA directive. Use a value of 1 for the SQLDA and names buffer sizes and

Figure 10-1. DESCRIBE INPUT’s Effect on Names Buffer

VAR-PTR of
SQLVAR(1)

IND-PTR of
SQLVAR(1)

VAR-PTR of
SQLVAR(2)

IND-PTR of
SQLVAR(2)

len1 name1 ind-len-1 ind-name-1 len2 name2 ind-len-2 ind-name-2

VST008.vsd
HP NonStop SQL/MP Programming Manual for C—429847-008
10-18

Dynamic SQL Operations Dynamic Allocation of Memory
provide names for the SQLDA and names buffer as shown:

EXEC SQL INCLUDE SQLDA (dummy_da, 1, dummy_namesbuf, 1);

The INCLUDE directive generates the structure templates sqlda_type and
sqlvar_type, which you can later use to allocate the memory. You might set up
the pointers that will eventually point to that memory. For example:

typedef struct SQLDA_TYPE *sqldaptr;
sqldaptr input_sqlda_ptr, output_sqlda_ptr;

When the memory is allocated, input_sqlda_ptr points to the memory for the
input SQLDA, and output_sqlda_ptr points to the memory for the output
SQLDA. To access the SQLDA and names buffer, declare pointers and then pass
the pointers to a function that allocates the memory as follows:

EXEC SQL BEGIN DECLARE SECTION;
 typedef struct SQLDA_TYPE *sqldaptr;
 sqldaptr input_sqlda_ptr, output_sqlda_ptr;
 typedef char (*arrayptr) [1000];
 arrayptr input_namesbuf_ptr, output_namesbuf_ptr;
EXEC SQL END DECLARE SECTION;

To give the DESCRIBE INPUT and DESCRIBE statements a size to use before the
memory is actually allocated, you must declare the names buffer to be an
arbitrarily large size (this example uses 1000). Estimate a number that is greater
than any possible size your names buffer could be. Otherwise, DESCRIBE INPUT
and DESCRIBE might stop describing parameters or variables too soon.

3. Declare an SQLSA structure using the INCLUDE SQLSA directive:

EXEC SQL INCLUDE SQLSA;

4. Dynamically compile the SQL statement (stmt1) entered by the user using the
PREPARE statement as shown in this example:

#define MAX_QUERY_SIZE 512
EXEC SQL BEGIN DECLARE SECTION;
 char statement_buffer[MAX_QUERY_SIZE + 1];
...
EXEC SQL END DECLARE SECTION;
...
printf("\nEnter a new SQL statement:\n");
/* Pass statement_buffer to a function that reads */
/* and parses the input (code is in sample program) */
 ...
EXEC SQL PREPARE stmt1 FROM :statement_buffer;

5. Use the information in the SQLSA structure to determine the number of input
parameters and output variables in the statement.

6. Allocate space for the required number of SQLDA data structures to describe the
parameters and output variables using the malloc function.

7. Allocate space for the values input to the program or output from the database,
again using the malloc function.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-19

Dynamic SQL Operations Using Dynamic SQL Cursors
Using Dynamic SQL Cursors

Dynamic SQL statements use cursors to process SELECT statements in the same way
static SQL statements use cursors. The program reads rows from a table, one by one,
and sends the column values to output data buffers specified in the program. These
paragraphs provide some points to consider when you use cursors.

The order for executing statements to use a cursor with dynamic SQL is shown in this
table:

Follow these guidelines when you declare and use a cursor:

 If you are using the COBOL85 or SQL compiler interface, you can use a host
variable wherever you can use the cursor-name and statement-name
parameters. For each new statement and cursor, store the name in the host
variable before executing the statements.

 The DECLARE CURSOR, PREPARE, OPEN, FETCH, CLOSE, DELETE WHERE
CURRENT, UPDATE WHERE CURRENT, DESCRIBE INPUT, and DESCRIBE
statements for a particular cursor and its associated statement must all appear in
the same procedure, unless you are using a foreign cursor. See Using Foreign
Cursors on page 4-24.

 The PREPARE statement does not have to precede the other statements in the
program listing order; however, the PREPARE statement must precede the
DECLARE CURSOR statement and any DESCRIBE, DESCRIBE INPUT, OPEN,
FETCH, and CLOSE statements (for extended dynamic SQL statements, where
the cursor and statement names are stored in host variables). Foreign cursors do
not have this restriction.

Operation Description

PREPARE statement-name
 FROM :host-variable

Dynamically compiles the SELECT
statement defining the cursor

Run DESCRIBE INPUT and DESCRIBE
statements.

Retrieve information about the input and
output parameters of the prepared SQL
statement.

DECLARE cursor-name CURSOR
FOR statement-name

Declares the dynamic cursor

OPEN cursor-name
 USING DESCRIPTOR input-sqlda

Opens the cursor and gets parameter values
from the input data buffer in the program

FETCH cursor-name
 USING DESCRIPTOR output-sqlda

Retrieves data and outputs column values to
output data buffer in the program

Loop until “not-found” condition occurs. Fetch data for all selected rows

CLOSE cursor-name Closes the cursor
HP NonStop SQL/MP Programming Manual for C—429847-008
10-20

Dynamic SQL Operations Using Dynamic SQL Cursors
Using cursors with a USING DESCRIPTOR Clause

If the program is handling parameters entered at run time, use the USING
DESCRIPTOR clause with the OPEN statement to provide the parameter values to
SQL from an input location in the program’s variable declarations. The input SQLDA
describes the input location for each parameter. The DESCRIBE INPUT statement fills
in the SQLDA SQLVAR entries, and your program sets the var_ptr fields and
prompts the user for values for the parameters.

Use the USING DESCRIPTOR clause with the FETCH statement to write column
values to an output location specified in the program’s variable declarations. The
output SQLDA describes a list of memory locations into which FETCH copies the data.

Using cursors with an UPDATE WHERE CURRENT Clause

To use UPDATE WHERE CURRENT with a static cursor, specify a FOR UPDATE OF
clause with a column list in the DECLARE CURSOR statement. In contrast, to use
UPDATE WHERE CURRENT with a dynamic SQL cursor, you must specify a FOR
UPDATE OF clause in the SELECT statement that defines the cursor.

This example uses an UPDATE WHERE CURRENT operation with a dynamic SQL
cursor. In the example, the host variable hostvar contains the SELECT statement to
define the cursor. The host variable salvar receives the selected values.

strncpy (hostvar,
 "SELECT salary FROM =employee FOR UPDATE OF salary", 49);

EXEC SQL
 PREPARE stmt1 FROM :hostvar;

EXEC SQL
 DECLARE c1 CURSOR FOR stmt1;

EXEC SQL
 OPEN c1;

EXEC SQL
 FETCH c1 INTO :salvar;

EXEC SQL
 UPDATE =employee SET salary = salary * 1.20
 WHERE CURRENT OF c1;

Using Statement and Cursor Host Variables

The DESCRIBE statement returns descriptions of output variables from previously
prepared dynamic SQL statements. You can use statement and cursor host variables
with the DECLARE CURSOR, PREPARE, OPEN, FETCH, and CLOSE statements.
For each new statement and cursor name, store the name in the host variable before
executing the statement. Thus, you code the statements only once.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-21

Dynamic SQL Operations Using Dynamic SQL Cursors
Example 10-3 shows the use of statement and cursor host variables. The program in
this example is a server that does repetitive processing using a restricted set of
operations. For example, the program might handle a SELECT statement for which the
user can enter any of three different WHERE clauses. When the server is started, you
might run the PREPARE, DESCRIBE INPUT, DESCRIBE, and DECLARE CURSOR
statements once for each possible version of the statement.

Example 10-3. Using Statement and Cursor Host Variables

#define MAX_STRGS 3
#define STRING_LEN 81
...

EXEC SQL BEGIN DECLARE SECTION;
 char s_hostvar[STRING_LEN]; /* statement host variable*/
 char c_hostvar[STRING_LEN]; /* cursor host variable */
 char t[MAX_STRGS] [STRING_LEN]; /* statements table */
 char c[MAX_STRGS] [STRING_LEN]; /* cursors table */
...
/* Store the statements in table t and the cursors in table c */
...
for (i = 1; i <= MAX_STRGS; i++)
 {
 EXEC SQL PREPARE :s_hostvar FROM :t[i];
 EXEC SQL DESCRIBE INPUT :s_hostvar INTO :input_sqlda;
 /* Call a function to handle the input parameters */
 ...
 EXEC SQL DESCRIBE :s_hostvar INTO :output_sqlda;
 /* Call a function to handle the output variables */
 ...

 EXEC SQL DECLARE CURSOR :c[i] CURSOR FOR :s_hostvar;
 }

You now have three cursor variables, one for each of your three possible
statements. You set up the cursors only once, but your program can now use
them repeatedly, as follows:

EXEC SQL BEGIN DECLARE SECTION;
 char cur [string_len]; /* Cursor local variable */
EXEC SQL END DECLARE SECTION;

/* Loop while not EOF: */

 /* Read $RECEIVE */
 ...
 /* Examine a flag in request message to determine which */
 /* cursor to use, and assign appropriate value to cur:*/
 /* c[0], c[1], or c[2] */
 ...

EXEC SQL OPEN :cur;
EXEC SQL FETCH :cur INTO column host variables;
EXEC SQL CLOSE :cur;

 /* Call a function to display results */

/* End of loop WHILE not EOF */
HP NonStop SQL/MP Programming Manual for C—429847-008
10-22

Dynamic SQL Operations Developing a Dynamic SQL Program
Developing a Dynamic SQL Program

Specify the SQL Pragma

Specify the SQL pragma to indicate to the SQL compiler that your program contains
embedded SQL statements. For information about the SQL pragma, see Section 6,
Explicit Program Compilation.

Copy any External Declarations

Copy any required external declarations, including SQL system procedures and
C header files:

#include <cextdecs(SQLCADISPLAY)> ;
#include <stdioh>;
#include <sqlh>; /* data-type literals */
#include <stdlibh>; /* malloc and free */
#include <stringh>; /* strcpy, strncpy */

Declare the sqlcode Variable and Host Variables

Declare the sqlcode variable and any required host variables:

short sqlcode;

EXEC SQL BEGIN DECLARE SECTION;

char statement_buffer[MAX_STATEMENT_LENGTH+1];

EXEC SQL INVOKE =employee AS employee_struct;
struct employee_struct employee_row;

input_sqlda_ptr... /* pointer to input SQLDA */
output_sqlda_ptr ... /* pointer to output SQLDA */
input_namesbuf_ptr... /* pointer to input names buffer */
output_namesbuf_ptr.../* pointer to output names buffer */

...

EXEC SQL END DECLARE SECTION;

Specify Any WHENEVER Directives

If you use WHENEVER directives for error handling, code them anywhere in your
program. However, you must declare the error handling functions before you declare
the directives.

EXEC SQL WHENEVER SQLERROR CALL :handle_error;
EXEC SQL WHENEVER SQLWARNING CONTINUE;

For more information about the WHENEVER directive, see Section 9, Error and Status
Reporting.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-23

Dynamic SQL Operations Specify the INCLUDE STRUCTURES Directive
Specify the INCLUDE STRUCTURES Directive

Specify the INCLUDE STRUCTURES directive to indicate the version of SQL
structures you plan to use:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 315;

For more information about the INCLUDE STRUCTURES directive, see Section 9,
Error and Status Reporting.

Declare the SQLDA Structure and Names Buffer

Declare the SQLDA structure to generate a template to use later in the program:

EXEC SQL INCLUDE SQLDA (dummy_sqlda, 1, dummy_namesbuf,1);

For more information about the INCLUDE SQLDA directive, see SQLDA Structure,
Names Buffer, and Collation Buffer on page 10-3.

Declare an SQLSA Structure

Declare an SQLSA structure using the INCLUDE SQLSA directive:

EXEC SQL INCLUDE SQLSA;

For more information about the INCLUDE SQLSA directive, see Section 9, Error and
Status Reporting.

Process the Input Parameters

If the input_num field in the SQLSA structure is greater than 0 (zero), process the
input parameters. Otherwise, skip these steps and go to Read and Compile the SQL
Statement on page 10-25.

1. Get the length of the names buffer (for parameter names) from the
input_names_len field in the SQLSA structure.

2. Allocate memory for the input SQLDA (and names buffer, if needed). Example 10-4
on page 10-30 uses the function named allocate_sqlda to perform this step.

3. Initialize the SQLDA header fields (SQLDA_EYE_CATCHER is defined by the
C compiler):

*input_sqlda_ptr.eye_catcher = SQLDA_EYE_CATCHER;
*input_sqlda_ptr.num_entries = sqlsa.u.prepare.input_num;

4. Specify a DESCRIBE INPUT statement to access input parameters:

EXEC SQL DESCRIBE INPUT :statement_name
 INTO :*input_sqlda_ptr
 NAMES INTO :*input_namesbuf_ptr;

5. Loop through the sqlvar in the input SQLDA structure. Loop n times, where n is
the number of parameters from the input_num field. On each iteration of the loop:
HP NonStop SQL/MP Programming Manual for C—429847-008
10-24

Dynamic SQL Operations Read and Compile the SQL Statement
a. Check the data_type field and, if necessary, adjust the data type so that the
C program can handle and reset data_len accordingly.

b. Allocate an amount of memory equal to the data_len field for the parameter.

c. Set the var_ptr field to point to the memory.

If you are not allocating memory dynamically, declare a variable for each input
parameter value, and put the address of the variable in var_ptr.

If you know the number and data type of your input parameter values, you set
only data_type, data_len, and var_ptr.

Some programs might check data_type and data_len when the actual
values are obtained.

d. If you are handling null values, check the null_info field and continue
according to its value:

If necessary, set ind_ptr to point to the memory allocated in Step c. (If you
are not allocating memory dynamically, define a variable for the indicator and
put its address in ind_ptr.)

6. Loop through the names buffer to read the corresponding name for each
parameter and prompt the user for each value. Read each value into the
corresponding occurrence in the input data buffer, according to the data type of the
value. If the parameter can be null (null_info is -1) and the value entered was
null, set ind_ptr to -1.

Read and Compile the SQL Statement

1. Read the SQL statement you want to run. Normally, a user enters this statement
from a terminal or workstation. After you construct the statement, pad the
remainder of the buffer, including the null terminator position, with blanks.

2. Assign a statement name to the host variable (if necessary).

char statement_name[11];
strncpy (statement_name, "stmt1", 2);

3. Compile the SQL statement using the PREPARE statement:

EXEC SQL PREPARE :statement_name FROM :statement_buffer;

Process the Output Variables

If the output_num field in the SQLSA structure is greater than zero (0) after the
PREPARE statement runs, perform these steps:

 0 Do not allocate any memory.

-1 Allocate 2 bytes of memory for the indicator value.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-25

Dynamic SQL Operations Process the Output Variables
1. Get the length of the output names buffer from
sqlsa.u.prepare.output_names_len.

2. Call the allocate_sqlda function to allocate memory for the output SQLDA and
the output names buffer, if needed.

3. Initialize the SQLDA header fields (SQLDA_EYE_CATCHER is defined by the
C compiler):

*output_sqlda_ptr.eye_catcher = SQLDA_EYE_CATCHER;
*output_sqlda_ptr.num_entries = sqlsa.output_num;

4. Run a DESCRIBE statement to access the output variables:

EXEC SQL DESCRIBE :STATEMENT_NAME
 INTO :*output_sqlda_ptr
 NAMES INTO :*output_namesbuf_ptr;

5. Loop through the sqlvar array in the output SQLDA. Loop n times, where n is the
number of columns from sqlsa.u.prepare.output_num. On each iteration of
the loop:

a. Check the data_type field. If necessary, adjust the data type so the C
program can handle and reset data_len accordingly.

b. Allocate memory equal to data_len for the output column.

c. Set var_ptr to point to the memory.

d. If you are not allocating memory dynamically, you would have declared a
variable for each possible column value and put the address of the variable in
var_ptr.

e. If you know the number and data type of the output column values, you set
only data_type, data_len, and var_ptr.

f. Some programs might check data_type and data_len when the actual
values are obtained.

g. If you are handling null values, check the null_info field and continue
according to its value:

h. If necessary, set ind_ptr to point to the memory allocated in the previous
step. (If you are not allocating memory dynamically, define a variable for the
indicator and put its address in ind_ptr.)

6. To show column headings (similar to SQLCI), loop through the names buffer to
read the corresponding name for each column and display the column names.

 0 Do not allocate any memory.

-1 Allocate two bytes of memory for the indicator variable.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-26

Dynamic SQL Operations Perform the Database Request and Display the
Values
Perform the Database Request and Display the Values

Assign a name to the cursor host variable:

char cursor_name[11];
strncpy (cursor_name, "c1", 2);

If the statement is a SELECT statement, follow these steps:

1. Declare a cursor for the statement:

EXEC SQL DECLARE :cursor_name CURSOR FOR :statement_name;

2. Begin a TMF transaction:

EXEC SQL BEGIN WORK;

3. Open the cursor:

EXEC SQL OPEN :cursor_name
 USING DESCRIPTOR :*input_sqlda_ptr;

4. Execute a loop to fetch the values and display them:

EXEC SQL FETCH :cursor_name
 USING DESCRIPTOR :*output_sqlda_ptr;

Display the values in a format according to data type. (For a repetitive display of
column names, use the output names buffer at this point and omit Step 6 of
Process the Output Variables on page 10-25.)

Handle null values as follows:

 If null_info is -1, check the value indicated by ind_ptr.

 If ind_ptr is also -1, display a character representing a null value (for
example, a blank or zero). Otherwise, display the value indicated by ind_ptr.

If you are ignoring null values, display the value indicated by var_ptr.

5. Close the cursor:

EXEC SQL CLOSE :cursor_name;

If the statement is not a SELECT statement, follow these steps:

1. Begin a TMF transaction:

EXEC SQL BEGIN WORK;

2. Run the statement:

/* If there were input parameters: */
EXEC SQL EXECUTE :statement_name
 USING DESCRIPTOR :*input_sqlda_ptr;

/* If there were no input parameters: */
EXEC SQL EXECUTE :statement_name;
HP NonStop SQL/MP Programming Manual for C—429847-008
10-27

Dynamic SQL Operations Perform the Database Request and Display the
Values
3. End the TMF transaction:

EXEC SQL COMMIT WORK;

4. Call the free function to deallocate the memory for the SQLDA structures and
names buffers and for the values.

After the input statement is dynamically compiled with the PREPARE statement, the
SQLSA structure contains this information:

 The input_num field is the number of input parameters in the statement. Use this
information to determine how many parameter values to request from the user.

 The input_names_len field is the length of the buffer required to contain the
names of the input parameters.

 The output_num field is the number of output variables in the statement. Use this
information to determine how many column values to report.

 The output_names_len field is the length of the buffer required to contain the
names of the output variables.

 The sql_statement_type field is the type of statement that was prepared,
which can have these values:

A program can use these values to allocate memory for the number of input
parameters and output variables, and for the input and output names buffer length.

_SQL_STATEMENT_SELECT 1

_SQL_STATEMENT_INSERT 2

_SQL_STATEMENT_UPDATE 3

_SQL_STATEMENT_DELETE 4

_SQL_STATEMENT_DDL 5

_SQL_STATEMENT_CONTROL 6

_SQL_STATEMENT_DCL 7

_SQL_STATEMENT_GET 8
HP NonStop SQL/MP Programming Manual for C—429847-008
10-28

Dynamic SQL Operations Allocate Memory for the SQLDA Structures and
Names Buffers
Allocate Memory for the SQLDA Structures and Names Buffers

To allocate memory for the SQLDA structures and names buffers for the input and
output variables, use the malloc function. The malloc(n) function allocates a block
of memory, n bytes long, and returns the address of that block. The function returns a
pointer to void, which is compatible with any pointer type. However, to enhance
readability, specify the intended type using a cast operator. To include the malloc
function in the stdlibh library, specify:

#include <stdlibh>

The program calls malloc and puts the values returned by malloc into pointers to
the SQLDA structure and names buffer variables defined earlier in the program.

Initialize the eye_catcher and ind_ptr Fields

When you allocate the SQLDA, you must explicitly initialize the eye_catcher and
ind_ptr fields. You must initialize ind_ptr even if your program is not using
indicator variables to handle null values.

When you issue INCLUDE SQLDA to create the SQLDA template, the C compiler
creates a #define for SQLDA_EYE_CATCHER, which you then use to initialize the
eye_catcher field:

sqlda_name.eye_catcher = SQLDA_EYE_CATCHER;

Initialize the ind_ptr and var_ptr fields for each SQLVAR entry to NULL:

for (i = 0; i < num_entries; i++)
 sqlda-name -> sqlvar[i].ind_ptr = NULL;
 sqlda-name -> sqlvar[i].var_ptr = NULL;

Prepare to Allocate the SQLDA Structure and Names Buffer

In preparation for allocating memory to store the SQLDA structure, get the number of
input parameters or output variables from the SQLSA structure. Similarly, to allocate
memory for the names buffer, get the length of the input or output names buffer from
the SQLSA structure.

num_input_vars = sqlsa.u.prepare.input_num;

if (num_input_vars > 0)
 allocate_sqlda(num_input_vars);
...
in_nameslen = sqlsa.u.prepare.input_names_len;

if (in_nameslen > 0)
 allocate_namesbuf(in_nameslen);
HP NonStop SQL/MP Programming Manual for C—429847-008
10-29

Dynamic SQL Operations Allocate Memory for the SQLDA Structures and
Names Buffers
Example 10-4 shows the allocate_sqlda function, which is also called to allocate
the output SQLDA structure. This function initializes the eye_catcher and ind_ptr
fields.

To allocate memory for the names buffer, call malloc and pass in_nameslen. You
specify an arbitrarily large size for the space required because SQL must have
advance information about the space where to store the names. The program still
allocates only the memory that is actually needed for the names, and SQL ignores any
unused memory.

In this call, input_namesbuf_ptr is a pointer to the memory allocated for an input
names buffer:

typedef char (*arrayptr) [1000];
...
if (in_nameslen > 0)
 input_namesbuf_ptr = (arrayptr) malloc(in_nameslen);

Example 10-4. Allocating the SQLDA Structure

/* in main code: */
/* typedef struct SQLDA_TYPE *sqldaptr; */

/* sqlda_type and sqlvar_type are generated by INCLUDE SQLDA
*/

sqldaptr allocate_sqlda (num_entries)
 int num_entries; /* number of input or output variables */
 {
 sqldaptr sqlda_ptr; /* pointer to be returned */
 int mem_reqd; /* number of bytes required for SQLDA
 short i; /* loop counter */

 sqlda_ptr = NULL;

 mem_reqd = sizeof(struct SQLDA_TYPE) +
 ((num_entries - 1) * sizeof(struct SQLVAR_TYPE));
 ...
 /* call malloc to allocate memory (error checking omitted */
 sqlda_ptr = (sqldaptr)malloc (mem_reqd);

 sqlda_ptr->num_entries = num_entries;

 ...
 /* Initialize eye_catcher and ind_ptr */
 ...
 /* return the pointer to newly allocated memory: */
 return(sqlda_ptr);
}

HP NonStop SQL/MP Programming Manual for C—429847-008
10-30

Dynamic SQL Operations Allocate Memory for the SQLDA Structures and
Names Buffers
Allocate Memory for the Values

After the descriptions of input parameters and output variables are specified, the
program must allocate space for the actual values. The user might enter these values
for input parameters, or the system might return them for columns (output variables).
These paragraphs describe how to handle input parameters.

The program uses the DESCRIBE INPUT statement to fill in the SQLDA and names
buffer with the descriptions of input parameters in the SQL statement. If you specify
NAMES INTO, the names of the parameters are also returned in the names buffer. For
a statement whose name was stored in a statement host variable, the DESCRIBE
INPUT statement is as follows:

EXEC SQL
 DESCRIBE INPUT :statement_name
 INTO :*input_sqlda_ptr
 NAMES INTO :*input_namesbuf_ptr;

The DESCRIBE INPUT statement places the descriptions for parameters into the input
SQLDA and the names of parameters into the location pointed to by
input_namesbuf_ptr.

Immediately after DESCRIBE INPUT runs, the var_ptr field in the SQLDA points to
the first entry in the names buffer. You can use var_ptr to read the names from the
names buffer only if you access the names buffer immediately following the
DESCRIBE INPUT or DESCRIBE statement. After you have set var_ptr to point to
the data, you can no longer use var_ptr to access the names buffer and must loop
through the names buffer to get the names.

The program can now allocate memory for the parameter values to be entered.

Handle Scale

If your program must handle numeric values with scale, read the scale information from
the input SQLDA structure. The DESCRIBE INPUT statement places this information
in bits 0 through 7 of the data_len field in the SQLVAR array.

If you can ignore scale, you can set the data_len field to 0, causing data truncation.
Otherwise, save the scale information and write a function to handle scale. Your
program must check the data type of the values input to the program. For declarations
that represent the data types that you can use in your program, see Table 10-4 on
page 10-8. To include declarations for these literals, use the #include directive to copy
the sqlh file.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-31

Dynamic SQL Operations Allocate Memory for the SQLDA Structures and
Names Buffers
Example 10-5 allocates memory for input parameter values. You can use the same
code later to allocate memory for output variables.

Example 10-5. Allocating Memory for Parameters and Columns

int setupvarbuffers (sqlda_ptr)
 sqldaptr sqlda_ptr; /* pointer to input or output SQLDA */
{
 int num_entries; /* # of input parameters/output columns*/
 int mem_reqd; /* buffer size to be allocated */
 int i; /* loop counter */
 /* Pass the SQLDA pointer to a function to handle any */
 /* unsupported data types and scale (code omitted here).*/
 /* If you do not need to handle the scale, you can set */
 /* scale to 0. */
 num_entries = sqlda_ptr->num_entries;
 for (i = 0; i < num_entries; i++)
 {
 switch (sqlda_ptr->sqlvar[i].data_type)
 {
 case _SQLDT_ASCII_F : /* char type */
 mem_reqd = sqlda_ptr->sqlvar[i].data_len;
 break;
 case _SQLDT_ASCII_V: /* varchar type */
 mem_reqd = sqlda_ptr->sqlvar[i].data_len + 2;
 break;
 ...
 /* For the numeric data types, either save the */
 /* scale information found in bits 0:7, or set */
 /* these bits to 0. Then extract the length */
 /* from bits 8:15: */
 case _SQLDT_16BIT_S:
 case _SQLDT_16BIT_U:
 ...
 /* Set scale information to zero: */
 sqlda_ptr->sqlvar[i].data_len =
 sqlda_ptr->sqlvar[i].data_len & 0377;

 /* extract length from bits 8:15: */
 mem_reqd = sqlda_ptr->sqlvar[i].data_len & 0377;
 break;
 ... /* If data type is unsupported, return -1
 } /* end of switch statement; check data type */

 /* Allocate memory for the parameter or column; assign */
 /* address to the var_ptr field in the input SQLDA. */

 sqlda_ptr->sqlvar[i].var_ptr=(long) malloc (mem_reqd);

 } /* end of loop for memory for each parameter value */
 /* or column value */
 return (0);
}

HP NonStop SQL/MP Programming Manual for C—429847-008
10-32

Dynamic SQL Operations Allocate and Fill In Output Variables
The program can now prompt the user for the input parameter values, set the pointer
to the first SQLVAR element in the input SQLDA, and read through the SQLVAR array,
storing each value the user enters into the appropriate position in memory.

Allocate and Fill In Output Variables

To allocate space for output variables, you essentially perform the same set of
operations described for input parameters except that the pointers point to the output
SQLDA and names buffer. To get the descriptions of output variables into the output
SQLDA, use the DESCRIBE statement instead of DESCRIBE INPUT:

EXEC SQL DESCRIBE :statement_name
 INTO :*output_sqlda_ptr
 NAMES INTO :*output_namesbuf_ptr;

DESCRIBE places the descriptions of the variables to be output from the database into
the location in memory pointed to by output_sqlda_ptr, and the names of the
columns into the location pointed to by output_namesbuf_ptr. For code to allocate
memory, see Allocate Memory for the Values on page 10-31.

Handle Scale

If your program must handle numeric values with scale, read the scale information from
the output SQLDA structure. The DESCRIBE statement places this information in bits
0 through 7 of the data_len field in the sqlvar array. If you ignore scale, set the
data_len field to 0, causing data truncation. Otherwise, save the scale information
and write a function to handle the scale.

Display the Output

To display output from the database after the cursor FETCH, perform these steps:

1. Set pointers to the beginning of the first SQLVAR array and to the beginning of the
names buffer.

2. Get the number of output columns from the SQLDA structure.

3. Write the column name to the output file using the names buffer pointer (only if you
are doing a repetitive display of the column names).

4. Read the data_type field from the SQLVAR array to get the data type of the
column value to be written.

5. Write the value at the location pointed to by the var_ptr field from the SQLVAR
array. The steps to use depend on the data type of the value.

The sequence just described displays names and values repetitively. For example:

EMPNUM 2000
EMPNAME JANE ROBERTS

EMPNUM 1566
HP NonStop SQL/MP Programming Manual for C—429847-008
10-33

Dynamic SQL Operations Allocate and Fill In Output Variables
EMPNAME CATHERINE WILLIAMS

EMPNUM 1890
EMPNAME RICHARD SMITH

You can also display the column names as headings (similar to SQLCI) by executing
this loop for output_num iterations:

1. Get the length of the column name.

2. Advance to the name.

3. Display the name with some blank space.

4. Advance to the next length field.

If you use this second method, you must execute a second loop to interpret and
display the values, including enough blank space for each value to fall under its column
heading.

You can use data type literals to decide how to display output column values.

Example 10-6 displays output.

Example 10-6. Displaying Output (page 1 of 2)

/* Declare, open, fetch, and close the cursor. */
/* (for code, see sample program) */
int display_result (sqldaptr output_sqlda_ptr,
 char *output_namesbuf_ptr)

{
 int *len_ptr; /* Pointer to get length info */
 /* from the names buffer */
 int name_len; /* Number of bytes in column name */
 int num_entries; /* Number of columns to be output */
 int i; /* loop counter */
 char data_array[39]; /* Buffer to contain data to be */
 /* displayed (null terminated) */
 char *data_ptr; /* Pointer to retrieved data */
 int data_len; /* Data buffer size */
 char name_array[40]; /* Buffer for null terminated */
 /* column name, in the format */
 /* tablename.colname */
 /* (8 + 1 + 30 characters) */
 char *lastchar; /* Last character read */
HP NonStop SQL/MP Programming Manual for C—429847-008
10-34

Dynamic SQL Operations Allocate and Fill In Output Variables
 num_entries = output_sqlda_ptr->num_entries;

 for (i=0; i < num_entries; i++)
 {

 /* Position output_namesbuf_ptr to the length prefix in */
 /* the names buffer, store the length in name_len, move */
 /* the pointer past the prefix and onto a name, and store*/
 /* the column name in name_array. Code is the same as */
 /* that used for input parameter names (See "Getting */
 /* Parameter Values"), except that when no name is */
 /* supplied, name_array should be assigned the string */
 /* "(EXPR)". */

 /* If you want to display the column names once (as SQLCI*/
 /* does), rather than repetitively with each FETCH, */
 /* display all the names at this point. The remaining */
 /* code here assumes a repetitive display of column names*/
 /* and their associated values. */

switch (output_sqlda_ptr->sqlvar[i].data_type)
 {
 case _SQLDT_ASCII_F : /* char data type */
 data_ptr = (char *)output_sqlda_ptr->sqlvar[i].var_ptr;
 data_len = output_sqlda_ptr->sqlvar[i].data_len;
 ...
 strncpy (data_array, data_ptr, data_len);
 data_array[data_len] = '\0';
 printf("%-40s %s\n", name_array, data_array);
 ...
 break;

 ...

 /* Continue to handle all the possible data types for */
 /* output values and write the data pointed to by */
 /* the var_ptr field in the output SQLDA in a format */
 /* depending on the data type. */
 /* (For complete code, see sample program.) */

 } /* End of SWITCH statement to display values */
 /* according to data type */
 } /* End of loop to process each column */
}

Example 10-6. Displaying Output (page 2 of 2)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-35

Dynamic SQL Operations Developing a Dynamic SQL Pathway Server
Developing a Dynamic SQL Pathway Server
Follow these guidelines to develop a C server that interfaces with Pathway and uses
dynamic SQL statements. Except for constructing the SQL statement, these steps are
not unique to servers using NonStop SQL/MP. You perform these steps in addition to
the tasks you would perform for any dynamic SQL program.

1. Use the #include directive to copy the declarations in the cextdecs file for the
FILE_OPEN_, READUPDATE, and REPLY procedures.

2. Define storage for the messages the server will receive from the SCREEN COBOL
requester.

3. Define a character string to contain the dynamic SQL statement the program will
construct from the input.

4. Call the FILE_OPEN_ and READUPDATE procedures to open and read
$RECEIVE. For information about reading $RECEIVE, see the Guardian
Programmer’s Guide.

5. Construct the dynamic SQL statement. Check the values passed from the
requester in the buffer to determine the syntax of the statement. As you process
each value, concatenate the corresponding text to form the statement.

For example, suppose that the screen describes a personnel record. If any column
does not have a value, the user can enter an N. The request message you define
is named list_msg. This example checks the empnum field in list_msg and, if
required, concatenates the text “empnum” to the dynamic SQL statement:

char statement[200];
...
strcpy (statement, "SELECT");
if (list_msg.empnum != 'N') strcat (statement, " empnum");
...

The SQL statement now contains the string “SELECT empnum”. You continue to
construct the entire statement based on values entered by the user.

6. After you construct the statement, pad the remainder of the buffer, including the
null terminator position, with blanks.

7. Compile and run the SQL statement using either the PREPARE and EXECUTE
statements or the EXECUTE IMMEDIATE statement.

8. Construct the reply message to return information to the SCREEN COBOL
requester. The first field in the reply message must contain the reply code to
communicate with the SCREEN COBOL requester. The remaining fields in the
message contain data returned by the SQL statement.

9. Call the REPLY procedure to send the reply message to the SCREEN COBOL
requester.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-36

Dynamic SQL Operations Dynamic SQL Sample Programs
If possible, avoid having fields in your requester or server messages that contain an
odd number of bytes. There are some subtle differences in the way SCREEN COBOL
and C generate fields in records when fields contain an odd number of bytes. Also,
some C functions generate a null byte terminator for character strings. If your server
contains a message with null terminators, the message will not match the one sent
from the SCREEN COBOL requester. Therefore, to avoid these problems, follow these
guidelines:

 Use DDL to describe the request and reply messages and then use the C form of
the structures derived from the DDL compiler. The DDL compiler does not append
a null terminator to C character strings.

 In the SCREEN COBOL requester, avoid constructing messages by listing several
data items in the SEND statement. Instead, send a single structure to the C server.

 Ensure that the C server does not use logic that expects to find null terminators in
the request message. For example, the printf, strcpy, and strlen functions
expect the null byte. Consider moving the request data to another location that
allows room for the null byte and processing the data from the new location.

Dynamic SQL Sample Programs
These pages contain two complete dynamic SQL programs in C. The first program
processes a SELECT statement that is partially coded into the program; the user
supplies the WHERE clause. The second program allows the user to enter any SQL
statement.

Basic Dynamic SQL Program

The basic sample program contains a SELECT statement to find the average salary for
a selection of rows in the employee table. The program prompts the user for the
selection criteria and constructs the statement by adding a WHERE clause.

This program is an elementary one because there are no input parameters and there is
only one output variable (the salary column is the only column described in the output
SQLDA, and the average salary is the only value output to the user). Because no
parameter names or column headings are required, names buffers are not necessary.

This program allocates memory at compile time by using INCLUDE SQLDA and
specifying 1 output variable. You can specify 1 output variable because you know you
are only reporting data for one column. You must still assign the memory location of
the value to be output (in this case, the average) to the var_ptr field.

To run this program, you need a DEFINE that points to the employee table in the
sample database. A complete set of DEFINEs might look like this:

SET DEFMODE ON
ALTER DEFINE =_DEFAULTS, CATALOG \SYS1.$VOL1.TESTCAT
ALTER DEFINE =_DEFAULTS, VOLUME \SYS1.$VOL1.TESTVOL
HP NonStop SQL/MP Programming Manual for C—429847-008
10-37

Dynamic SQL Operations Basic Dynamic SQL Program
SET DEFINE CLASS MAP
ADD DEFINE =EMPLOYEE, FILE PERSNL.EMPLOYEE

Following is sample output for the program:

47> run ezout
PLEASE ENTER:
1 -- To find average salary based on employee number
2 -- To find average salary based on job code
3 -- To find average salary based on department number
1
Please enter the comparison criteria:
(for example: > 500, = 1000, <= 250)
> 500
THE AVERAGE SALARY IS: 52250
48>

The commented program listing appears in Example 10-7 on page 10-39.
HP NonStop SQL/MP Programming Manual for C—429847-008
10-38

Dynamic SQL Operations Basic Dynamic SQL Program
Example 10-7. Basic Dynamic SQL Program (page 1 of 4)

1 /* This program finds the average salary for employees */
2 /* according to criteria established by the user. The */
3 /* program contains a SELECT statement for the EMPLOYEE */
4 /* table; the user enters the selection criteria, which */
5 /* the program concatenates to the SELECT statement as a */
6 /* WHERE clause. */
7 /* */
8 #pragma inspect
9 #pragma symbols
10 #pragma SQL
11 #pragma xmem
12 #pragma runnable
13 #pragma nolmap
14 #pragma nomap
15
16 #pragma nolist
17 #include <stdioh>
18 #include <stdlibh>
19 #include <stringh>
20 #include <memoryh>
21
22 /* For SQL error reporting: */
23 #include <cextdecs (SQLCADISPLAY)>
24
25 /* For SQL data type literals: */
26 #include <sqlh>
27 #pragma list
28
29 #define MAXCMD 512
30
31 /* Global variables: */
32 int sqlcode; /* for error checking */
33 long average; /* for output value */
34 int i; /* loop counter */
35 char temp[100]; /* temporary storage for user input */
36
37 /* Buffers for storing SQL statements are always blank */
38 /* padded, never null terminated. */
39 char cmd[MAXCMD]; /* for SQL statement user enters */
40
41
42 /* Include SQLCA for error checking, SQLSA for dynamic SQL */
43 /* processing information: */
44 exec sql INCLUDE SQLCA;
45 exec sql INCLUDE SQLSA;
46
47 /* The program will have only one output column, SALARY. */
48 /* Since we will be generating its average, we do not need */
49 /* to print the column name--we can therefore omit */
50 /* declaring a names buffer. We will use this SQLDA (not */
51 /* a template) because we are not allocating memory */
52 /* dynamically--we know we need only one output variable. */
53
54 /* C differs from Pascal and COBOL in requiring that the */
55 /* INCLUDE SQLDA statement appear within a DECLARE section. */
56 exec sql BEGIN DECLARE SECTION;
57 exec sql INCLUDE SQLDA (osqlda,1) ;
58 exec sql END DECLARE SECTION;
59
60 /* --- */
61
HP NonStop SQL/MP Programming Manual for C—429847-008
10-39

Dynamic SQL Operations Basic Dynamic SQL Program
62 /* Declare error handling function: */
63 void sql_err()
64 {
65 SQLCADISPLAY ((int *) &sqlca);
66 }
67
68 /* --- */
69
70 /* Declare WHENEVER clause for error checking: */
71 exec sql WHENEVER SQLERROR CALL :sql_err;
72
73 /* --- */
74 void blank_pad(char *buf, size_t size)
75 /* */
76 /* For blank padding character strings to send to SQL */
77 /* */
78
79 {
80 size_t i;
81
82 i = strlen(buf);
83 if (i < size)
84 memset(&buf[i], ' ', size - i);
85 }
86
87 /* --- */
88
89 EXEC SQL BEGIN DECLARE SECTION;
90 void process_and_execute (char *cmd)
91 {
92 char (*prep_cmd)[MAXCMD];
93 /* SQL requires array of char, but we are passing in a */
94 /* pointer to char. We therefore create a pointer to */
95 /* array of char for use by SQL. */
96
97 EXEC SQL END DECLARE SECTION;
98
99 blank_pad (cmd, MAXCMD);
100
101 prep_cmd = cmd;
102
103 exec sql PREPARE dyncmd FROM :*prep_cmd;
104
105 strncpy (osqlda.eye_catcher,SQLDA_EYE_CATCHER, 2);
106
107 osqlda.num_entries = 1;
108
109 /* Initialize ind_ptr to NULL.You must always initialize */
110 /* this field, even when the program is not handling null */
111 /* values. */
112 osqlda.sqlvar[0].ind_ptr = NULL;
113
114 exec sql DESCRIBE dyncmd INTO :osqlda;
115
116 /* SQL tells you what it has to work with; you then */
117 /* communicate what your variable is like to SQL; you */
118 /* might want to look at the data_type field and adjust */
119 /* Here, we're just putting it into a LONG and ignoring */
120 /* scale. */
121

Example 10-7. Basic Dynamic SQL Program (page 2 of 4)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-40

Dynamic SQL Operations Basic Dynamic SQL Program
122 /* set DATA_TYPE to long: */
123 osqlda.sqlvar[0].data_type = _SQLDT_32BIT_U;
124
125 /* set data_len to 4 bytes; leave scale as 0 in */
126 /* upper byte of data_len: */
127 osqlda.sqlvar[0].data_len = 4;
128
129 /* set VAR_PTR to point to the address of the output value:*/
130 osqlda.sqlvar[0].var_ptr = (long)&average;
131
132 exec sql BEGIN WORK;
133
134 exec sql DECLARE c1 CURSOR FOR dyncmd;
135 exec sql OPEN c1;
136 exec sql FETCH c1 USING DESCRIPTOR :osqlda;
137
138 if (sqlcode >= 0)
139 printf("\nThe average salary is: %ld\n",average);
140
141 exec sql CLOSE c1;
142
143 exec sql COMMIT WORK;
144
145 } /* end of process_and_execute */
146
147 /* --- */
148
149 void get_cmd(char *cmd)
150 /* */
151 /* Assigns a SELECT statement to the statement buffer. */
152 /* Gets the WHERE clause from the user and concatenates it */
153 /* to the SELECT statement. */
154 /* */
155
156 {
157 char column[9]; /* column to be used in WHERE clause */
158 int sel_index; /* selects column for WHERE clause */
159 char predicate[10]; /* comparison predicate for WHERE */
160 /* clause */
161 size_t len; /* for length of command, to use in */
162 /* blanking out null terminator for */
163 /* transmission to SQL */
164
165 strcpy (cmd, "SELECT AVG(SALARY) FROM =EMPLOYEE WHERE ");
166
167 /* Create a simple menu: */
168 printf("\nPlease enter:\n\n");
169 printf("1 -- to find average salary based on employee number\n");
170 printf("2 -- to find average salary based on job code\n");
171 printf("3 -- to find average salary based on department number\n\n");
172
173 fgets(temp, (int)sizeof(temp), stdin);
174 sscanf(temp, "%d", &sel_index);
175
176 /* Initialize column and predicate to blanks: */
177
178 memset(column, ' ', 9);
179
180 memset(predicate, ' ', 10);
181

Example 10-7. Basic Dynamic SQL Program (page 3 of 4)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-41

Dynamic SQL Operations Detailed Dynamic SQL Program
Detailed Dynamic SQL Program

This program allows the user to enter any statement. The program prepares and runs
the statement in a TMF transaction. The code is independent of any database because
the program does not reference database definitions; only the entered statements
reference a particular database.

The program performs these operations, which characterize dynamic SQL programs:

 Declares an SQLSA to determine the number of input parameters or output
variables.

 Declares an SQLDA to describe input parameters and another to describe output
variables. Because the program is allocating memory at run time, the SQLDA is
declared as a template and allocated dynamically when the query is run.

182 switch (sel_index)
183 {
184 case 1 : strcpy(column, "EMPNUM ");
185 break;
186 case 2 : strcpy(column, "JOBCODE ");
187 break;
188 case 3 : strcpy(column, "DEPTNUM ");
189 break;
190 }
191
192 printf("\nPlease enter the comparison criteria:\n");
193 printf("(for example: > 500, = 1000, <= 250)\n\n");
194
195 fgets(temp, (int)sizeof(temp), stdin);
196 sscanf(temp, "%[^\n]", predicate);
197
198 /* Construct the SQL statement: */
199 strcat (cmd, column);
200 strcat (cmd, predicate);
201
202 /* Get length of command string and blank out null */
203 /* terminator for transmission to SQL: */
204 len = strlen(cmd);
205 cmd[len] = ' ';
206
207 } /* end of get_cmd */
208
209 /* -- */
210
211 main()
212 {
213 /* Initialize command string to blanks: */
214 setmem (cmd, MAXCMD, ' ');
215
216 /* Get SQL statement from the user: */
217 get_cmd(cmd);
218
219 /* Compile the statement, access the SQL database, and */
220 /* report the result: */
221 process_and_execute(cmd);
222
223 } /* end of main */

Example 10-7. Basic Dynamic SQL Program (page 4 of 4)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-42

Dynamic SQL Operations Detailed Dynamic SQL Program
 Defines a buffer to store output variables, with storage for column values of
different data types.

 Defines a buffer to store input parameters, with storage for parameter values of
different data types.

 Prepares the SQL statement and assigns it a statement name. (Note: statement
and cursor host variables are not used in this program.)

 Determines the data types of the input parameters and moves them to the host
variables of the corresponding data types.

 Determines the data types of the output variables and moves them to the host
variables of the corresponding data types.

 Sets up the SQLDA to point to the storage for the variables referenced by the
query. The storage is allocated at run time.

 Using the input SQLDA if there were parameters, either performs a cursor FETCH
for a SELECT statement or runs a non-SELECT statement.

Before running the program, command interpreter ADD DEFINE commands were
entered to associate tables orders and odetail with logical names =orders and =odetail,
respectively. The sample query shown selects order numbers and customer numbers
from the orders table where the order includes part number 6400.

Following is sample output from the program. The program prompts for input with the
>> symbol. A semicolon is required to terminate input.

33> run cdynobj
This is DYNAMIC SQL test.
Enter SQL statement or SAME to reuse last statement or END:
>>select ordernum, custnum
from =orders where ordernum in
(select ordernum from =odetail where partnum = 6400);
ORDERS.ORDERNUM 200320
ORDERS.CUSTNUM 21
ORDERS.ORDERNUM 300350
ORDERS.CUSTNUM 543
ORDERS.ORDERNUM 800660
ORDERS.CUSTNUM 3210
ORDERS.ORDERNUM 400410
ORDERS.CUSTNUM 7654
--- 4 row(s) selected.
Enter SQL statement or SAME to reuse last statement or END:
>>end;
End of current session
34>
HP NonStop SQL/MP Programming Manual for C—429847-008
10-43

Dynamic SQL Operations Detailed Dynamic SQL Program
The commented program listing appears in Example 10-8.

Example 10-8. Detailed Dynamic SQL Program (page 1 of 22)

1 /***/
2 /* */
3 /* This program can accept any DDL or DML statement from the */
4 /* terminal, prepare the statement, prompt for parameter */
5 /* values, run the statement and output the result to the */
6 /* terminal. Records returned from a SELECT operation are */
7 /* displayed with column names */
8 /* */
9 /***/
10
11 #pragma inspect
12 #pragma symbols
13 #pragma SQL
14 #pragma xmem
15 #pragma runnable
16
17 #pragma nolist
18 #include <stdioh>
19 #include <stdlibh>
20 #include <stringh>
21 #include <memoryh>
22 #include <cextdecs (SQLCADISPLAY)>
23 #pragma list
24
25 #include <sqlh>
26
27 /***/
28 /* Declare Section -- for host variable declarations */
29 /***/
30
31 exec sql begin declare section;
32
33 int sqlcode; /* sqlcode (required) */
34 exec sql include sqlca;
35 exec sql include sqlsa;
36
37 /* --- */
38 /* Include sqlda to get SQLDA_TYPE struct and SQLVAR_TYPE */
39 /* struct declarations */
40 /* --- */
41 /* Note for SQLDA structure template: */
42 /* --- */
43 /* */
44 /* The template for sqlda struct (SQLDA_TYPE) is declared to */
45 /* contain 1 sqlvar entry (SQLVAR_TYPE). This is done to get */
46 /* easy addressability to the sqlvars array. When allocating */
47 /* memory for the sqlda and the sqlvars entries, allocate */
48 /* memory for: */
49 /* */
50 /* sizeof(struct SQLDA_TYPE) + */
51 /* (num_sqlda_entries - 1) * sizeof(struct SQLVAR_TYPE) */
52 /* */
53 /* --- */
54 exec sql include sqlda (dummy_da, 1, dummy_names, 1);
55
56 typedef struct SQLDA_TYPE *sqldaptr;
57
HP NonStop SQL/MP Programming Manual for C—429847-008
10-44

Dynamic SQL Operations Detailed Dynamic SQL Program
58 /* --- */
59 /* SQLDAs and names buffers for input and output variables */
60 /* --- */
61 sqldaptr sda_i; /* ptr to input sqlda */
62 sqldaptr sda_o; /* ptr to output sqlda */
63
64 /* To give SQL reasonable size information for the names */
65 /* buffers, pointers to arrays of 1000 chars are */
66 /* currently used. The program will still allocate */
67 /* memory just for the required size for the names buffer; */
68 /* but such a reference in the embedded SQL statements */
69 /* lets SQL get more reasonable sized data (other than */
70 /* 1 if a char pointer is used). If enough memory, */
71 /* as reported in the SQLSA after the PREPARE statement, */
72 /* is allocated for the names buffer, SQL will not use */
73 /* (hence, will overwrite) any undesired memory locations. */
74
75 typedef char (*arrayptr) [1000];
76 arrayptr cname_i; /* ptr to input names buffer */
77 arrayptr cname_o; /* ptr to output names buffer */
78
79 /* --- */
80 /* Buffers for storing SQL statements are always blank padded, */
81 /* never null terminated */
82 /* --- */
83 #define max_query_size 512
84 char host1[max_query_size + 1]; /* accepts SQL string */
85 char host2[max_query_size + 1]; /* copy of the last SQL stmt */
86
87 exec sql end declare section;
88
89 /* --- */
90 /* The following UNION is defined for pointers to buffers of */
91 /* different (SQL) data types. This program does not handle */
92 /* FLOAT, DOUBLE PRECISION, or DATETIME */
93 /* --- */
94 union in_out_ptrs_u {
95 char *char_ptr; /* for CHAR/VARCHAR */
96 short *smallint_ptr; /* SMALLINT */
97 unsigned short *usmallint_ptr; /* UNSIGNED SMALLINT */
98 long *integer_ptr; /* INTEGER */
99 unsigned long *uinteger_ptr; /* UNSIGNED INTEGER */
100 /* long long *longint_ptr; 64-BIT INTEGER */
101 } in_out_ptrs;
102
103 static short last_query_size = 0; /* num bytes in last query */
104 char datatype_name[50]; /* to display datatype name* /
105
106 /* --- */
107 /* Terminator character when requesting user query (semicolon) */
108 /* --- */
109 #define QUERY_TERMINATOR (char) ';'
110 /* Cast as char because C treats character constants as type int, */
111 /* and we want to reference it as type char in the function */
112 /* prototype */
113
114 /* --- */
115 /* Terminator character when requesting input param values (EOL) */
116 /* --- */
117 #define PARAM_TERMINATOR (char) '\n'
118

Example 10-8. Detailed Dynamic SQL Program (page 2 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-45

Dynamic SQL Operations Detailed Dynamic SQL Program
119 extern sqldaptr allocate_sqlda (int num_entries);
120 extern short get_string (char *data_array,
121 short array_size,
122 short nullit,
123 char terminator);
124 extern char *get_dtname (short datatype);
125
126 /* *** */
127 /* FUNCTION display_result */
128 /* This function accepts the output sqlda and the */
129 /* output names buffer as parameters and displays the */
130 /* output of a select statement with the following */
131 /* format: */
132 /* */
133 /* tablename.colname <data retrieved> */
134 /* tablename.colname <data retrieved> */
135 /* */
136 /* The display is currently restricted to at most */
137 /* 38 characters; this restriction can be easily */
138 /* relaxed by wrapping the display lines */
139 /* */
140 /* Return: 0 if successful */
141 /* -1 if failure */
142 /* */
143 /* *** */
144
145 int display_result (sqldaptr sqlda, /* ptr to output sqlda */
146 char *nb) /* ptr to names buffer */
147
148 { /* begin display_result */
149
150 short *len_ptr; /* int ptr to get the length */
151 /* from the names buffer */
152 short name_len; /* num bytes in a name */
153 short num_entries; /* number of sqlvar entries */
154 short i; /* loop index */
155 char data_array[39]; /* buffer to contain data to */
156 /* be displayed (null termi- */
157 /* nated) */
158 char *data_ptr; /* ptr to retrieved data */
159 short data_len; /* data buffer size */
160 char name_array[40]; /* buffer to contain null */
161 /* terminated name in a */
162 /* <tabname>.<colname> format */
163 /* [8 + 1 + 30 chars] */
164 char *lastchar;
165
166 num_entries = sqlda->num_entries;
167
168 for (i=0; i < num_entries; i++)
169 {
170 len_ptr = (short *) nb; /* get to length prefix */
171 name_len = *len_ptr;
172 nb += 2; /* advance nb to skip the */
173 /* 2-byte length prefix */
174
175 /* get null terminated name in name_array */
176 if (name_len == 0)
177 strcpy(name_array, "(EXPR)"); /* default name */
178 else

Example 10-8. Detailed Dynamic SQL Program (page 3 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-46

Dynamic SQL Operations Detailed Dynamic SQL Program
179 {
180 lastchar = nb + (name_len - 1);
181 if (*lastchar == ' ') /* last character is blank */
182 /* that SQL inserts to make */
183 /* length info fall on an */
184 /* even byte boundary */
185 /* (the name had an odd */
186 /* number of characters) */
187
188 { strncpy(name_array, nb, name_len - 1);
189 name_array[name_len - 1] = '\0';
190 }
191 else
192 { strncpy(name_array, nb, name_len);
193 name_array[name_len] = '\0';
194 }
195 }
196
197 /* advance nb to the next name */
198 nb = lastchar + 1;
199
200 /* -- */
201 /* Display data depending on data type */
202 /* -- */
203
204 switch (sqlda->sqlvar[i].data_type) {
205 /* -- */
206 case _SQLDT_ASCII_F : /* CHAR data type */
207
208 data_ptr = (char *) sqlda->sqlvar[i].var_ptr;
209 data_len = sqlda->sqlvar[i].data_len;
210
211 if (data_len <= 38)
212 { strncpy(data_array, data_ptr, data_len);
213 data_array[data_len] = '\0';
214 printf("%-40s %s\n", name_array, data_array);
215 fflush (stdout);
216 }
217 else
218 {
219 /* display first 38 characters of data */
220 printf("%-40s %.38s\n", name_array, data_ptr);
221 fflush (stdout);
222 }
223 break;
224
225 /* --- */
226 case _SQLDT_ASCII_V : /* VARCHAR datatype */
227
228 data_ptr = (char *) sqlda->sqlvar[i].var_ptr;
229 len_ptr = (short *) data_ptr; /* length prefix */
230 data_ptr += 2; /* skip length prefix */
231
232 if (*len_ptr <= 38)
233 { if (*len_ptr != 0) /* filter zero length */
234 strncpy(data_array, data_ptr, *len_ptr);
235 data_array[*len_ptr] = '\0';
236 printf("%-40s %s\n", name_array, data_array);
237 fflush (stdout);
238 }
239 else
240 {

Example 10-8. Detailed Dynamic SQL Program (page 4 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-47

Dynamic SQL Operations Detailed Dynamic SQL Program
241 /* display first 38 characters of data */
242 printf("%-40s %.38s\n", name_array, data_ptr);
243 fflush (stdout);
244 }
245
246 break;
247
248 /* --- */
249 case _SQLDT_16BIT_S : /* 16bit numeric */
250
251 in_out_ptrs.smallint_ptr = (short *) sqlda->sqlvar[i].var_ptr;
252 printf("%-40s %hd\n", name_array, *in_out_ptrs.smallint_ptr);
253 fflush (stdout);
254 break;
255
256 /* --- */
257 case _SQLDT_16BIT_U : /* 16 bit unsigned numeric */
258
259 in_out_ptrs.usmallint_ptr =
260 (unsigned short *) sqlda->sqlvar[i].var_ptr;
261 printf("%-40s %hu\n", name_array, *in_out_ptrs.usmallint_ptr);
262 fflush (stdout);
263 break;
264
265 /* --- */
266 case _SQLDT_32BIT_S : /* 32 bit signed numeric */
267
268 in_out_ptrs.integer_ptr = (long *) sqlda->sqlvar[i].var_ptr;
269 printf("%-40s %ld\n", name_array, *in_out_ptrs.integer_ptr);
270 fflush (stdout);
271 break;
272
273 /* --- */
274 case _SQLDT_32BIT_U : /* 32 bit unsigned numeric */
275
276 in_out_ptrs.uinteger_ptr =
277 (unsigned long *) sqlda->sqlvar[i].var_ptr;
278 printf("%-40s %lu\n", name_array, *in_out_ptrs.uinteger_ptr);
279 fflush (stdout);
280 break;
281
282 /* --- */
283 default: /* unsupported datatype */
284 printf("**** Error for %-40s: %s Datatype is unsupported.\n",
285 name_array, get_dtname(sqlda->sqlvar[i].data_type));
286 fflush (stdout);
287 break;
288
289 /* --- */
290 } /* end: switch stmt */
291 } /* end: for loop */
292
293 /* place a space line */
294 printf("\n"); fflush(stdout);
295
296 return (0);
297
298 } /* end: display_result */
299

Example 10-8. Detailed Dynamic SQL Program (page 5 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-48

Dynamic SQL Operations Detailed Dynamic SQL Program
300 /* *** */
301 /* FUNCTION request_invars */
302 /* This function accepts the input sqlda and the */
303 /* input names buffer as parameters and requests the */
304 /* input values for the needed input parameters */
305 /* */
306 /* Return: 0 if successful */
307 /* -1 if failure */
308 /* */
309 /* *** */
310
311 int request_invars (sqldaptr sqlda, /* ptr to input sqlda */
312 char *nb) /* ptr to names buffer */
313
314 { /* begin request_invars */
315
316 short *len_ptr; /* int ptr to get the length */
317 /* from the names buffer */
318 /* and write len prefix to */
319 /* varchar data buffers */
320 short name_len; /* num bytes in a name */
321 short num_entries; /* number of sqlvar entries */
322 short i; /* loop index */
323
324 #define data_array_size 21
325 char data_array[data_array_size];
326 /* buffer to get numeric data */
327 /* max 19 digits + sign byte */
328 /* + null terminator */
329 short data_len; /* #bytes of input data needed*/
330 short data_read; /* #bytes of input read */
331 char name_array[31]; /* buffer to contain null */
332 /* terminated name of the */
333 /* input param (without the */
334 /* leading '?') */
335 char *lastchar;
336 char *dummy;
337
338 num_entries = sqlda->num_entries;
339 printf("\nPlease provide data for input params \n");
340 printf("------------------------------------ \n\n");
341 fflush(stdout);
342
343 for (i=0; i < num_entries; i++)
344 {
345 len_ptr = (short *) nb; /* get to length prefix */
346 name_len = *len_ptr;
347 nb += 2; /* advance nb to skip the */
348 /* 2-byte length prefix */
349
350 /* sanity check */
351 if (name_len > 30)
352 { printf("**** Error: Param name is too long. Try again.\n");
353 fflush(stdout);
354 return (-1);
355 }
356
357 /* get null terminated param name in name_array */
358 if (name_len == 0)
359 name_array[0] = '\0'; /* unnamed param */
360 else
361 {

Example 10-8. Detailed Dynamic SQL Program (page 6 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-49

Dynamic SQL Operations Detailed Dynamic SQL Program
362 lastchar = nb + (name_len - 1);
363 if (*lastchar == ' ')
364 { strncpy(name_array, nb, name_len - 1);
365 name_array[name_len -1] = '\0';
366 }
367 else
368 { strncpy(name_array, nb, name_len);
369 name_array[name_len] = '\0';
370 }
371 /* advance nb to the next name */
372 nb = lastchar + 1;
373 }
374
375
376 /* -- */
377 /* Request input data depending on data type */
378 /* -- */
379
380 switch (sqlda->sqlvar[i].data_type) {
381 /* -- */
382 case _SQLDT_ASCII_F : /* CHAR data type */
383
384 in_out_ptrs.char_ptr = (char *) sqlda->sqlvar[i].var_ptr;
385 data_len = sqlda->sqlvar[i].data_len;
386
387 if (name_len > 0)
388 printf("Please enter max %d characters for ?%s: ",
389 data_len, name_array);
390 else
391 printf("Please enter max %d characters: ",
392 data_len);
393
394 if (get_string(in_out_ptrs.char_ptr, data_len,
395 0, PARAM_TERMINATOR) < 0)
396 { /* input info too long */
397 printf("\n**** Error: Input data is too long.\n");
398 fflush(stdout);
399 return (-1);
400 }
401
402 break;
403
404 /* --- */
405 case _SQLDT_ASCII_V : /* VARCHAR data type */
406
407 in_out_ptrs.char_ptr = (char *) (sqlda->sqlvar[i].var_ptr + 2);
408 data_len = sqlda->sqlvar[i].data_len;
409
410 if (name_len > 0)
411 printf("Please enter max %d characters for ?%s: ",
412 data_len, name_array);
413 else
414 printf("Please enter max %d characters: ",
415 data_len);
416
417 if ((data_read = get_string(in_out_ptrs.char_ptr, data_len,
418 0, PARAM_TERMINATOR)) < 0)
419 { /* input info too long; or some problem */
420 printf("\n**** Error: Input data is too long.\n");
421 fflush(stdout);
422 return (-1);
423 }
424

Example 10-8. Detailed Dynamic SQL Program (page 7 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-50

Dynamic SQL Operations Detailed Dynamic SQL Program
425 len_ptr = (short *) sqlda->sqlvar[i].var_ptr;
426 *len_ptr = data_read; /* #chars for the varchar buffer */
427
428 break;
429
430 /* --- */
431 case _SQLDT_16BIT_S : /* 16 bit signed numeric */
432 case _SQLDT_16BIT_U : /* 16 bit unsigned numeric */
433 case _SQLDT_32BIT_S : /* 32 bit signed numeric */
434 case _SQLDT_32BIT_U : /* 16 bit unsigned numeric */
435
436 if (name_len > 0)
437 printf("Please enter numeric value for ?%s: ", name_array);
438 else
439 printf("Please enter a numeric value: ");
440
441 if (get_string(data_array, data_array_size,
442 1, PARAM_TERMINATOR) < 0)
443 { /* input info too long; or some problem */
444 printf("\n**** Error: Input number is too big.\n");
445 fflush(stdout);
446 return (-1);
447 }
448
449 /* Convert input number to appropriate numeric form. */
450
451 switch (sqlda->sqlvar[i].data_type) {
452 /* --- */
453 case _SQLDT_16BIT_S : /* 16 bit signed numeric */
454 in_out_ptrs.smallint_ptr =
455 (short *) sqlda->sqlvar[i].var_ptr;
456 *in_out_ptrs.smallint_ptr = atoi(data_array);
457 break;
458
459 /* --- */
460 case _SQLDT_16BIT_U : /* 16 bit unsigned numeric */
461 in_out_ptrs.usmallint_ptr =
462 (unsigned short *) sqlda->sqlvar[i].var_ptr;
463 *in_out_ptrs.usmallint_ptr =
464 (unsigned short) atol(data_array);
465 break;
466
467 /* --- */
468 case _SQLDT_32BIT_S : /* 32 bit signed numeric */
469 in_out_ptrs.integer_ptr =
470 (long *) sqlda->sqlvar[i].var_ptr;
471 *in_out_ptrs.integer_ptr = atol(data_array);
472 break;
473
474 /* --- */
475 case _SQLDT_32BIT_U : /* 32 bit unsigned numeric */
476 in_out_ptrs.uinteger_ptr =
477 (unsigned long *) sqlda->sqlvar[i].var_ptr;
478 dummy = NULL;
479 *in_out_ptrs.uinteger_ptr = strtoul (data_array, &dummy, 10);
480
481 break;
482
483 /* --- */
484 } /* end: inner switch */
485
486 break;

Example 10-8. Detailed Dynamic SQL Program (page 8 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-51

Dynamic SQL Operations Detailed Dynamic SQL Program
487
488 /* --- */
489 default: /* unsupported datatype */
490 printf("**** Error for %-40s: %s Datatype is unsupported.\n",
491 name_array, get_dtname(sqlda->sqlvar[i].data_type));
492 fflush (stdout);
493
494 break;
495
496 /* --- */
497 } /* end: switch stmt */
498 } /* end: for loop */
499
500 printf("\n"); fflush(stdout);
501 return (0);
502
503 } /* end: request_invars */
504
505 /* ** */
506 /* FUNCTION get_dtname */
507 /* This function places the name of a given data type into */
508 /* the array datatype_name */
509 /* */
510 /* Return: pointer to array datatype_name */
511 /* (array is null terminated) */
512 /* ** */
513 char *get_dtname (short datatype)
514
515 { /* begin get_dtname */
516
517 switch (datatype) {
518 /* --- */
519 case _SQLDT_ASCII_F : /* CHAR data type */
520
521 strcpy(datatype_name, "CHARACTER");
522 break;
523
524 /* --- */
525 case _SQLDT_ASCII_V : /* VARCHAR data type */
526
527 strcpy(datatype_name, "VARCHAR");
528 break;
529
530 /* --- */
531 case _SQLDT_16BIT_S : /* 16 bit signed binary */
532
533 strcpy(datatype_name, "SIGNED 16BIT NUMERIC");
534 break;
535
536 /* --- */
537 case _SQLDT_16BIT_U : /* 16 bit unsigned binary */
538
539 strcpy(datatype_name, "UNSIGNED 16BIT NUMERIC");
540 break;
541
542 /* --- */
543 case _SQLDT_32BIT_S : /* 32 bit signed binary */
544
545 strcpy(datatype_name, "SIGNED 32BIT NUMERIC");
546 break;
547
548 /* --- */
549 case _SQLDT_32BIT_U : /* 32 bit unsigned binary */

Example 10-8. Detailed Dynamic SQL Program (page 9 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-52

Dynamic SQL Operations Detailed Dynamic SQL Program
550
551 strcpy(datatype_name, "UNSIGNED 32BIT NUMERIC");
552 break;
553
554 /* --- */
555 case _SQLDT_64BIT_S : /* 64 bit signed binary */
556
557 strcpy(datatype_name, "SIGNED 64BIT NUMERIC");
558 break;
559
560 /* --- */
561 case _SQLDT_DEC_U : /* DECIMAL datatype: unsi */
562
563 strcpy(datatype_name, "UNSIGNED DECIMAL");
564 break;
565
566 /* --- */
567 case _SQLDT_DEC_LSS : /* DECIMAL datatype: LSS */
568
569 strcpy(datatype_name, "LEADING SIGN SEPARATE DECIMAL");
570 break;
571
572 /* --- */
573 case _SQLDT_DEC_LSE : /* DECIMAL datatype: LSE */
574
575 strcpy(datatype_name, "LEADING SIGN EMBEDDED DECIMAL");
576 break;
577
578 /* --- */
579 case _SQLDT_DEC_TSS : /* DECIMAL datatype: TSS */
580
581 strcpy(datatype_name, "TRAILING SIGN SEPARATE DECIMAL");
582 break;
583
584 /* --- */
585 case _SQLDT_DEC_TSE : /* DECIMAL datatype: TSE */
586
587 strcpy(datatype_name, "TRAILING SIGN EMBEDDED DECIMAL");
588 break;
589
590 /* --- */
591 default:
592
593 strcpy(datatype_name, "UNEXPECTED");
594 break;
595
596 /* --- */
597 } /* end: switch */
598
599 return (datatype_name);
600
601 } /* end get_dtname */
602

Example 10-8. Detailed Dynamic SQL Program (page 10 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-53

Dynamic SQL Operations Detailed Dynamic SQL Program
603 /* ** */
604 /* FUNCTION get_string */
605 /* This function reads from the standard input, a character */
606 /* string, into the data_array */
607 /* Tha data_array will be null terminated, or blank padded, */
608 /* as requested. The reading stops when 'terminator' char is */
609 /* read or if array_size number of characters have been read, */
610 /* whichever comes first */
611 /* */
612 /* For multi-line input, all white space characters are */
613 /* replaced by blanks */
614 /* */
615 /* Return: +ve integer, if successful; = the number of chars */
616 /* read from the input (minus the terminator char) */
617 /* -1 if entered data is too long for data_array */
618 /* (if no room for the null terminator (if reqsted) */
619 /* (if array_size not enough for entire input, ie */
620 /* until the semicolon) */
621 /* ** */
622
623 short get_string(char *data_array, /* array to read data into */
624 short array_size, /* max #bytes in array */
625 short nullit, /* if != 0, terminate */
626 /* data_array on return, */
627 /* else blank pad array */
628 char terminator) /* terminator character */
629
630 { /* begin get_string */
631
632 char c;
633 short ix; /* next available slot */
634 /* also return code */
635 short i; /* loop index */
636
637 /* sanity check */
638 if (array_size == 0) /* buffer no good */
639 return (-1);
640
641 ix = 0;
642 while ((c = getchar()) != terminator)
643 {
644 if (c == '\t' || c == '\n')
645 *(data_array + ix) = ' '; /* replace by blank */
646 else
647 *(data_array + ix) = c;
648
649 if (++ix >= array_size) /* no more room in array */
650 { if (nullit == 0) /* blankpadding requested */
651 { if ((c = getchar()) == terminator)
652 { /* the next char was the terminator anyway. */
653 /* just made it. also consume extra input */
654 /* at while-loop exit */
655 break;
656 }
657 else
658 { while ((c = getchar()) != '\n')
659 { /* consume the input */ }
660 return (-1); /* array too small */
661 }
662 }
663 else /* null termination rqsted */

Example 10-8. Detailed Dynamic SQL Program (page 11 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-54

Dynamic SQL Operations Detailed Dynamic SQL Program
664 { while ((c = getchar()) != '\n')
665 { /* consume the input */ }
666 return (-1); /* array too small */
667 }
668 }
669 } /* end: while loop */
670
671 /* out of while loop only at terminator char. */
672 /* consume the remainder of input line */
673 if (terminator != '\n')
674 while ((c = getchar()) != '\n')
675 { /* consume the input */ }
676
677 /* ix points to next available slot */
678 /* null terminate or blank pad, as requested */
679 if (nullit == 0)
680 { for (i = ix; i < array_size; i++)
681 *(data_array + i) = ' '; /* blank pad */
682 }
683 else
684 *(data_array + ix) = '\0';
685
686 return (ix);
687
688 } /* end: get_string */
689
690 /* ** */
691 /* FUNCTION read_query */
692 /* This function reads from the standard input (terminal) */
693 /* the SQL query. A semicolon marks the end of the query. */
694 /* */
695 /* If the user types in END/end/E/e then the session is */
696 /* stopped. If the user types in SAME/same then the last */
697 /* user query is run. If the user types in an SQL */
698 /* query, the query is read in 'host1' array and a copy */
699 /* of it is made in 'host2' array */
700 /* */
701 /* Return: 0 if query read in or SAME case */
702 /* -1 if END case */
703 /* ** */
704 int read_query (void)
705 {
706 short query_len; /* length of query in bytes */
707
708 try_again:
709 printf ("\nEnter SQL statement or SAME to reuse last statement or
END:\n");
710 fflush (stdout);
711 printf (">> ");
712
713 if ((query_len = get_string (host1, max_query_size,
714 0, QUERY_TERMINATOR)) < 0)
715 { printf("**** Error: Input query is too long.\n");
716 fflush(stdout);
717 goto try_again;
718 }
719
720 if ((strncmp(host1, "E", 1) == 0) ||
721 (strncmp(host1, "e", 1) == 0))
722 return (-1);
723

Example 10-8. Detailed Dynamic SQL Program (page 12 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-55

Dynamic SQL Operations Detailed Dynamic SQL Program
724 if ((strncmp(host1, "same", 4) == 0) ||
725 (strncmp(host1, "SAME", 4) == 0))
726 { /* restore the saved query to host1 and display it */
727 strncpy (host1, host2, max_query_size); /* do an 'fc' */
728 printf("\nRe-executing Query >> ");
729 host1[last_query_size] = '\0'; /* temporarily null terminate */
730 puts(host1); fflush (stdout); /* display query */
731 host1[last_query_size] = ' '; /* restore the blank */
732
733 }
734 else
735 { /* backup the query and remember its size */
736 strncpy (host2, host1, max_query_size); /* backup the query */
737 last_query_size = query_len; /* remember size */
738 }
739 return (0);
740 } /* end: read_query */
741
742 /* *** */
743 /* FUNCTION adjust_sqlda_scale_types */
744 /* This function takes an SQLDA as a parameter and, */
745 /* for sqlda.num_entries, adjusts the recommended */
746 /* (by SQL) data types and scales to what C supports. */
747 /* */
748 /* Setting up buffers for supported data types */
749 /* involves modifying the data_len and data_type */
750 /* of the SQLVAR entry to reflect the data attributes */
751 /* of the allocated buffers. For example, an input */
752 /* parameter or output variable with */
753 /* data_type == _SQLDT_DEC_LSS and */
754 /* data_len == 7 (assuming scale = 0) */
755 /* can be modified to have */
756 /* data_type == _SQLDT_32BIT_S and */
757 /* data_len == 4 */
758 /* and a 4 byte buffer can be allocated for it */
759 /* */
760 /* Scale is set to 0 */
761 /* Data_type is set to nearest equivalent supported */
762 /* type */
763 /* */
764 /* *** */
765 int adjust_sqlda_scale_types (sqldaptr sqlda)
766
767 { /* begin adjust_sqlda_scale_types */
768
769 int num_entries; /* number of sqlvar entries */
770 int i; /* loop index */
771
772 num_entries = sqlda->num_entries;
773
774 for (i = 0; i < num_entries; i++)
775 {
776 switch (sqlda->sqlvar[i].data_type) {
777 /* -- */
778 case _SQLDT_16BIT_S : /* SMALLINT */
779 case _SQLDT_16BIT_U : /* UNSIGNED SMALLINT */
780 case _SQLDT_32BIT_S : /* INTEGER */
781 case _SQLDT_32BIT_U : /* UNSIGNED INTEGER */
782 case _SQLDT_64BIT_S : /* SIGNED LARGEINT */
783
784 /*--*/
785 /* set scale information to 0 */
786 /*--*/

Example 10-8. Detailed Dynamic SQL Program (page 13 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-56

Dynamic SQL Operations Detailed Dynamic SQL Program
787 sqlda->sqlvar[i].data_len = sqlda->sqlvar[i].data_len & 0377;
788
789
790 break;
791
792 /* -- */
793 /* DECIMAL is supported; if your database has DECIMAL */
794 /* items, you might not want to translate to 32-bit */
795 /* integers as this program does
796 case _SQLDT_DEC_U : /* DECIMAL unsigned */
797
798 /* The following types are unsupported: */
799 case _SQLDT_DEC_LSS : /* DECIMAL LSS */
800 case _SQLDT_DEC_LSE : /* DECIMAL LSE */
801 case _SQLDT_DEC_TSS : /* DECIMAL TSS */
802 case _SQLDT_DEC_TSE : /* DECIMAL TSE */
803
804 /*-- */
805 /* Map to _SQLDT_32BIT_S type */
806 /* Length info must be set to 4 bytes for */
807 /* scale information to be set to 0 */
808 /* Note: for DECIMAL, you might want to save */
809 /* the scale information instead of setting */
810 /* to zero as this program does */
811 /*-- */
812 sqlda->sqlvar[i].data_type = _SQLDT_32BIT_S;
813 sqlda->sqlvar[i].data_len = 4; /* and scale is 0 */
814
815 break;
816
817 /* -- */
818 default: /* UNSUPPORTED types or do not need adjustments */
819
820 break; /* (Nothing to be done) */
821
822 /* -- */
823 } /* switch stmt */
824
825 } /* for loop */
826
827 return (0);
828
829 } /* end adjust_sqlda_scale_types
831
832 /* *** */
833 /* FUNCTION setupvarbuffers */
834 /* This function takes an SQLDA as a parameter and, */
835 /* for sqlda.num_entries, allocates the data buffers */
836 /* for appropriate lengths. For each sqlvar, */
837 /* sqlda.sqlvar[i].var_ptr is set to point to that */
838 /* buffer */
839 /* */
840 /* The sqlda is also changed by altering unsupported */
841 /* data types to the nearest equivalent data types */
842 /* and by setting scale information to 0 */
843 /* */
844 /* sqlda.num_entries is assumed to have a valid value. */
845 /* */
846 /* Return: 0 if successful */
847 /* -1 if failure */
848 /* */
849

Example 10-8. Detailed Dynamic SQL Program (page 14 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-57

Dynamic SQL Operations Detailed Dynamic SQL Program
850 int setupvarbuffers (sqldaptr sqlda)
851 { /* begin setupvarbuffers */
852
853 int num_entries; /* number of sqlvar entries */
854 int mem_reqd; /* buffer size */
855 int i; /* loop index */
856
857 /* --- */
858 /* Handle unsupported types; set scale information to 0. */
859 /* --- */
860 adjust_sqlda_scale_types(sqlda);
861
862 num_entries = sqlda->num_entries;
863 for (i = 0; i < num_entries; i++)
864 {
865 switch (sqlda->sqlvar[i].data_type) {
866 /* -- */
867 case _SQLDT_ASCII_F : /* CHAR datatype */
868 mem_reqd = sqlda->sqlvar[i].data_len;
869 break;
870
871 /* -- */
872 case _SQLDT_ASCII_V : /* VARCHAR datatype */
873 mem_reqd = sqlda->sqlvar[i].data_len + 2;
874 break;
875
876 /* -- */
877 case _SQLDT_16BIT_S : /* SMALLINT */
878 case _SQLDT_16BIT_U : /* UNSIGNED SMALLINT */
879 case _SQLDT_32BIT_S : /* INTEGER */
880 case _SQLDT_32BIT_U : /* UNSIGNED INTEGER */
881
882 /*-- */
883 /* NOTE ON SCALE INFORMATION */
884 /*-- */
885 /* Bits 0 through 7 of sqlda->sqlvar[i].data_len */
886 /* have the scale information for the numeric */
887 /* data types. Either remember this scale */
888 /* information and later use the values in the */
889 /* host variables appropriately or set the */
890 /* scale information to 0 (which can lead to */
891 /* truncated values on retrievals and inability */
892 /* to provide scaled values through input */
893 /* parameters) */
894 /*-- */
895 /* Set scale information to 0 (see note above) */
896 /*-- */
897 sqlda->sqlvar[i].data_len = sqlda->sqlvar[i].data_len & 0377;
898
899 /*--*/
900 /* Extract length from bits 8:15 */
901 /*--*/
902 mem_reqd = sqlda->sqlvar[i].data_len & 0377;
903 break;
904
905 /* -- */
906 default: /* UNSUPPORTED types */
907
908
909 printf("\n**** Error: Unsupported Datatype: %s\n",
910 get_dtname(sqlda->sqlvar[i].data_type));
911 return (-1);
912

Example 10-8. Detailed Dynamic SQL Program (page 15 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-58

Dynamic SQL Operations Detailed Dynamic SQL Program
913 /* -- */
914 } /* switch statement */
915
916 /* -- */
917 /* Allocate memory for the data buffer and assign */
918 /* byte address of the data buffer to var_ptr of */
919 /* sqlvar[i]: */
920 /* -- */
921 sqlda->sqlvar[i].var_ptr = (long) (malloc (mem_reqd));
922
923 } /* for loop */
924
925 return (0); /* successful buffer allocation */
926 } /* end: setupvarbuffers */
927
928 /* *** */
929 /* FUNCTION allocate_sqlda */
930 /* This function allocates (using malloc): */
931 /* an sqlda structure with 'num_entries' entries; */
932 /* the function also initializes the sqlda and sqlvars. */
933 /* */
934 /* Return codes: sqlda pointer if successful */
935 /* NULL if failure */
936 /* *** */
937
938 sqldaptr allocate_sqlda (int num_entries)
939 /* number of sqlvar_s entries */
940
941 { /* begin allocate_sqlda */
942
943 /* local variables */
944 sqldaptr sqlda; /* pointer to be returned*/
945 int mem_reqd; /* num bytes required to */
946 /* allocate sqlda */
947 short i; /* loop index */
948
949 sqlda = NULL; /* init pointer */
950
951 /* return NULL if 0 entries requested */
952 if (num_entries == 0)
953 return (sqlda);
954
955 /* allocate sqlda */
956 mem_reqd = sizeof(struct SQLDA_TYPE) +
957 ((num_entries - 1) * sizeof(struct SQLVAR_TYPE));
958 if ((sqlda = (sqldaptr) malloc (mem_reqd)) == NULL)
959 /* memory allocation failed */
960 return (sqlda); /* return error condition */
961
962 /* Initialize sqlda; constant sqlda_eye_catcher is defined */
963 /* by the C compiler and is always 2 characters: */
964 strncpy(sqlda -> eye_catcher, SQLDA_EYE_CATCHER, 2);
965
966 sqlda -> num_entries = num_entries;
967
968 /* Initialize ind_ptr to NULL. ind_ptr must always be */
969 /* initialized, even when the program does not handle null */
970 /* values */
971 for (i=0; i < num_entries; i++)
972 sqlda -> sqlvar[i].ind_ptr = NULL;
973
974 return (sqlda); /* successful allocation and init. */
975 } /* end allocate_sqlda */

Example 10-8. Detailed Dynamic SQL Program (page 16 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-59

Dynamic SQL Operations Detailed Dynamic SQL Program
976
977 /* *** */
978 /* FUNCTION free_sqlda */
979 /* This function accepts an sqlda as a parameter and */
980 /* frees all memory that was allocated for the data */
981 /* buffers (pointed to as sqlvar[i].var_ptr) */
982 /* and for the sqlda and sqlvar entries */
983 /* */
984 /* The function assumes that if a valid sqlda is */
985 /* passed, then sqlda.num_entries has a valid value */
986 /* */
987 /* *** */
988 int free_sqlda (sqldaptr sqlda)
989 { /* begin free_sqlda */
990 int num_entries; /* number of sqlvar entries */
991 short i; /* loop index */
992 char *buf_ptr; /* pointer to sqlvar buffer */
993
994 /* sanity check */
995 if (sqlda == NULL)
996 return (0);
997
998 num_entries = sqlda->num_entries;
999 for (i = 0; i < num_entries; i++)
1000 { if ((buf_ptr = (char *) sqlda->sqlvar[i].var_ptr) != NULL)
1001 free(buf_ptr);
1002 }
1003
1004 free ((char *) sqlda); /* freeup the sqlda memory */
1005
1006 return (0);
1007
1008 } /* end free_sqlda */
1009
1010 /* *** */
1011 /* FUNCTION cleanup */
1012 /* This function frees up the allocated memory for the */
1013 /* input and output sqldas and names buffers and the */
1014 /* data buffers allocated for the sqldas */
1015 /* *** */
1016 void cleanup ()
1017 { /* cleanup */
1018
1019 free_sqlda(sda_i); /* free input sqlda. */
1020 free_sqlda(sda_o); /* free output sqlda. */
1021 sda_i = sda_o = NULL; /* init pointers */
1022
1023 if (cname_i != NULL)
1024 free ((char *) cname_i); /* free i/p names buffer */
1025 if (cname_o != NULL)
1026 free ((char *) cname_o); /* free o/p names buffer */
1027
1028 cname_i = cname_o = NULL; /* init pointers */
1029
1030 } /* cleanup */
1031
1032 main ()
1033 {

Example 10-8. Detailed Dynamic SQL Program (page 17 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-60

Dynamic SQL Operations Detailed Dynamic SQL Program
1034 /* --- */
1035 /* local variables */
1036 /* --- */
1037 int out_numvars; /* number of output variables */
1038 int in_numvars; /* number of input variables */
1039 unsigned int out_nameslen; /* size of o/p names buffer */
1040 unsigned int in_nameslen; /* size of i/p names buffer */
1041 int status;
1042 unsigned long num_fetches; /* #records fetched */
1043
1044 /* init pointers */
1045 sda_i = sda_o = NULL; /* sqlda pointers */
1046 cname_i = cname_o = NULL; /* names buffer pointers */
1047
1048 /* blank extra byte in host1, host2 */
1049 host1[max_query_size] = host2[max_query_size] = ' ';
1050
1051 printf("This is DYNAMIC SQL test.\n");
1052 fflush (stdout);
1053
1054 /***/
1055 /* Input SQL query from terminal */
1056 /***/
1057 enter_input:
1058
1059 /* freeup memory taken by sda_i, sda_o, */
1060 /* and cname_i, cname_o names buffers */
1061 cleanup ();
1062
1063 if ((status = read_query()) < 0)
1064 goto exit;
1065
1066 /***/
1067 /* BEGIN TRANSACTION */
1068 /***/
1069 exec sql begin work ;
1070
1071 /***/
1072 /* PREPARE the SQL statement */
1073 /***/
1074 exec sql PREPARE S1 from :host1;
1075
1076 if (sqlcode != 0)
1077 { /* display errors/warnings */
1078 printf ("\n"); fflush(stdout);
1079 SQLCADISPLAY ((int *) &sqlca);
1080 if (sqlcode < 0) /* errors present */
1081 {
1082 exec sql rollback work; /* abort transaction */
1083 goto enter_input; /* try again */
1084 }
1085 }
1086
1087 /***/
1088 /* Allocate input and output sqlda and names buffers */
1089 /***/
1090 out_numvars = sqlsa.u.prepare.output_num;
1091 out_nameslen = sqlsa.u.prepare.output_names_len;
1092 in_numvars = sqlsa.u.prepare.input_num;
1093 in_nameslen = sqlsa.u.prepare.input_names_len;
1094

Example 10-8. Detailed Dynamic SQL Program (page 18 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-61

Dynamic SQL Operations Detailed Dynamic SQL Program
1095 if (in_numvars > 0)
1096 if ((sda_i = allocate_sqlda(in_numvars)) == NULL)
1097 {
1098 printf ("\n**** Error: Memory allocation failure for input
sqlda.\n");
1099 printf (" Process stopped.");
1100 fflush (stdout);
1101 goto exit;
1102 }
1103
1104 if (out_numvars > 0)
1105 if ((sda_o = allocate_sqlda(out_numvars)) == NULL)
1106 {
1107 printf ("\n**** Error: Memory allocation failure for output
sqlda.\n");
1108 printf (" Process stopped.");
1109 fflush (stdout);
1110 if (sda_i != NULL) free((char *) sda_i);
1111 goto exit;
1112 }
1113
1114 if (in_nameslen > 0)
1115 if ((cname_i = (arrayptr) malloc(in_nameslen)) == NULL)
1116 {
1117 printf("\n**** Error: Memory allocation failure for input names
buffer.");
1118 printf("\n Process stopped.");
1119 fflush (stdout);
1120 if (sda_i != NULL) free((char *) sda_i);
1121 if (sda_o != NULL) free((char *) sda_o);
1122 goto exit;
1123 }
1124
1125 if (out_nameslen > 0)
1126 if ((cname_o = (arrayptr) malloc(out_nameslen)) == NULL)
1127 {
1128 printf ("\n");
1129 printf ("**** Error: Memory allocation failure for output names
buffer.");
1130 printf ("\n");
1131 printf (" Process stopped.");
1132 fflush (stdout);
1133 if (sda_i != NULL) free((char *) sda_i);
1134 if (sda_o != NULL) free((char *) sda_o);
1135 if (cname_i != NULL) free((char *) cname_i);
1136 goto exit;
1137 }
1138
1139 /***/
1140 /* Get information on input variables (if any) */
1141 /***/
1142 if (in_numvars > 0) {
1143
1144 exec sql DESCRIBE INPUT S1 INTO :*sda_i
1145 NAMES INTO :*cname_i ;
1146
1147 if (sqlcode != 0)
1148 { /* display error/warnings */
1149 printf ("\n"); fflush(stdout);
1150 SQLCADISPLAY ((int *) &sqlca);
1151 if (sqlcode < 0) /* errors present */
1152 {
1153 exec sql rollback work; /* abort transaction */
1154 goto enter_input; /* try again */

Example 10-8. Detailed Dynamic SQL Program (page 19 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-62

Dynamic SQL Operations Detailed Dynamic SQL Program
1155 }
1156 }
1157
1158 /***/
1159 /* Input parameter values from terminal */
1160 /* Initialize SQLDA var-ptr to point to input data buffer */
1161 /***/
1162 if (setupvarbuffers(sda_i) != 0)
1163 { printf("**** Error: Problem in allocating input param buffers.\n");
1164 fflush (stdout);
1165 exec sql rollback work;
1166 goto enter_input;
1167 }
1168
1169 if (request_invars(sda_i, (char *) cname_i) < 0)
1170 {
1171 exec sql rollback work;
1172 goto enter_input; /* try again */
1173 }
1174
1175 } /* if in_numvars > 0 */
1176
1177 /***/
1178 /* Get information on output variables */
1179 /***/
1180 if (out_numvars > 0) {
1181
1182 exec sql DESCRIBE S1 INTO :*sda_o
1183 NAMES INTO :*cname_o ;
1184
1185 if (sqlcode != 0)
1186 { /* display error/warnings */
1187 printf ("\n"); fflush(stdout);
1188 SQLCADISPLAY ((int *) &sqlca);
1189 if (sqlcode < 0) /* errors present */
1190 {
1191 exec sql rollback work; /* abort transaction */
1192 goto enter_input; /* try again */
1193 }
1194 }
1195
1196 /***/
1197 /* Allocate output data buffers and update output sqlda */
1198 /* Initialize SQLDA var-ptr to point to output data buffer */
1199 /***/
1200 if (setupvarbuffers(sda_o) != 0)
1201 { printf("**** Error: Problem in allocating output buffers\n");
1202 fflush (stdout);
1203 exec sql rollback work;
1204 goto enter_input;
1205 }
1206
1207 } /* if out_numvars > 0 */
1208
1209 if (out_numvars > 0)
1210 { /***/
1211 /* SELECT statement */
1212 /***/
1213

Example 10-8. Detailed Dynamic SQL Program (page 20 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-63

Dynamic SQL Operations Detailed Dynamic SQL Program
1214 /* --- */
1215 /* Define a cursor name for the statement S1, to be */
1216 /* used later in OPEN, FETCH and CLOSE statements */
1217 /* --- */
1218 exec sql DECLARE C1 CURSOR for S1 ;
1219
1220 /** */
1221 /* Open the cursor. By this point, all input */
1222 /* parameters must have valid values */
1223 /** */
1224 if (in_numvars > 0)
1225 exec sql OPEN C1 USING DESCRIPTOR :*sda_i ;
1226 else
1227 exec sql OPEN C1;
1228
1229 if (sqlcode != 0)
1230 { /* display error/warnings */
1231 printf ("\n"); fflush(stdout);
1232 SQLCADISPLAY ((int *) &sqlca);
1233 if (sqlcode < 0) /* errors present */
1234 {
1235 exec sql rollback work; /* abort transaction */
1236 goto enter_input; /* try again */
1237 }
1238 }
1239
1240 /***/
1241 /* FETCH loop */
1242 /***/
1243 sqlcode = 0;
1244 num_fetches = 0;
1245
1246 while (sqlcode >= 0) {
1247 exec sql fetch C1 USING DESCRIPTOR :*sda_o ;
1248
1249 if (sqlcode == 100) /* eof */
1250 { printf("\n--- %lu row(s) selected.\n", num_fetches);
1251 fflush (stdout);
1252 exec sql close C1 ; /* close cursor */
1253 exec sql commit work;
1254 goto enter_input;
1255 }
1256
1257 /* -- */
1258 /* Successful FETCH. Display results */
1259 /* -- */
1260 if (sqlcode >= 0)
1261 {
1262 display_result(sda_o, (char *) cname_o);
1263 num_fetches++; /* increment counter */
1264 }
1265 } /* while loop */
1266
1267 /* --- */
1268 /* FETCH error. Close cursor. Get next request */
1269 /* --- */
1270 if (sqlcode < 0)
1271 {

Example 10-8. Detailed Dynamic SQL Program (page 21 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-64

Dynamic SQL Operations Detailed Dynamic SQL Program
1272 printf ("\n"); fflush(stdout);
1273 SQLCADISPLAY ((int *) &sqlca); /* display errors */
1274 exec sql close C1; /* close cursor */
1275 exec sql rollback work;
1276 goto enter_input;
1277 }
1278 } /* end: select stmt case */
1279 else
1280 { /***/
1281 /* Not a SELECT statement. Perform EXECUTE with */
1282 /* USING DESCRIPTOR if there are input variables; */
1283 /* otherwise, perform EXECUTE */
1284 /***/
1285 if (in_numvars > 0)
1286 {
1287 exec sql execute S1 using descriptor :*sda_i ;
1288 }
1289 else
1290 {
1291 exec sql execute S1 ;
1292 }
1293
1294 if (sqlcode != 0)
1295 { /* display error/warnings */
1296 printf ("\n"); fflush(stdout);
1297 SQLCADISPLAY ((int *) &sqlca);
1298 if (sqlcode < 0) /* errors present */
1299 {
1300 exec sql rollback work; /* abort transaction */
1301 goto enter_input; /* try again */
1302 }
1303 }
1304
1305 printf("\n--- SQL Operation Complete.\n");
1306 fflush(stdout);
1307
1308 } /* end: not a select stmt case */
1309
1310 /* --- */
1311 /* Successful execution of present query. Commit work. */
1312 /* Process next query */
1313 /* --- */
1314 exec sql commit work;
1315
1316 goto enter_input;
1317
1318 exit:
1319 printf("\nEnd of current session\n");
1320 fflush (stdout);
1321 } /* end of main */

Example 10-8. Detailed Dynamic SQL Program (page 22 of 22)
HP NonStop SQL/MP Programming Manual for C—429847-008
10-65

Dynamic SQL Operations Detailed Dynamic SQL Program
HP NonStop SQL/MP Programming Manual for C—429847-008
10-66

11
Character Processing Rules (CPRL)
Procedures

A C program can call character processing rules (CPRL) procedures to process these
collation objects:

 SQL collation––A NonStop SQL/MP object with file code 941 generated
by the CREATE COLLATION statement

 Collation object––A Guardian file with file code 199 generated by the
NLCP compiler

Table 11-1 summarizes the CPRL system procedures. These procedures are listed
alphabetically.

Table 11-1. Character Processing Rules (CPRL) Procedures (page 1 of 2)

Procedure Description

CPRL_ARE_ Determines if all characters in a string are in the
character class defined by the specified SQL
collation or collation object

CPRL_AREALPHAS_ Determines if all characters in a string are in the
ALPHAS character class according to the specified
SQL collation or collation object

CPRL_ARENUMERICS_ Determines if all characters in a string are numeric
according to the specified SQL collation or collation
object

CPRL_COMPARE1ENCODED_ Compares two strings (one encoded) according to
the collation defined by an SQL collation or collation
object

CPRL_COMPARE_ Compares two strings (neither encoded) according
to the collation defined by an SQL collation or
collation object

CPRL_COMPAREOBJECTS_ Compares two SQL collations or collation objects

CPRL_DECODE_ Decodes a string that has been encoded by
CPRL_ENCODE_

CPRL_DOWNSHIFT_ Downshifts a character string according to the
downshift rules in the specified SQL collation or
collation object

CPRL_ENCODE_ Encodes a character string for comparison purposes

CPRL_GETALPHATABLE_ Extracts ALPHAS character class information from
an SQL collation or collation object
HP NonStop SQL/MP Programming Manual for C—429847-008
11-1

Character Processing Rules (CPRL) Procedures cextdecs Header File
cextdecs Header File
The cextdecs header file contains source declarations for CPRL procedures, which
are written in TAL. Use the #include directive as shown in this example to copy the
declarations from the cextdecs header file for the procedures you want to call in your
program:

#include <cextdecs (FILE_OPEN_ , /
 WRITEREAD , /
 FILE_CLOSE_ , /
 CPRL_INFO_ , /
 CPRL_UPSHIFT_)> nolist
 ...

CPRL Return Codes
Each CPRL procedure returns specific codes, which are listed in each procedure
description. A return code of zero (0) indicates that the operation was successful.
All other CPRL return codes are negative, so they can be distinguished from
file-system errors, which are always positive. The condition code (CC) setting has no
meaning after the execution of a CPRL procedure.

CPRL_GETCHARCLASSTABLE_ Extracts character class information from an SQL
collation or collation object

CPRL_GETDOWNSHIFTTABLE_ Extracts downshift information from an SQL collation
or collation object

CPRL_GETFIRST_ Finds the first string of a specified length according
to an SQL collation or collation object

CPRL_GETLAST_ Finds the last string of a specified length according
to an SQL collation or collation object

CPRL_GETNEXTINSEQUENCE_ Finds the next string after a specified string
according to an SQL collation or collation object

CPRL_GETNUMTABLE_ Extracts numeric character class information from an
SQL collation or collation object

CPRL_GETSPECIALTABLE_ Extracts SPECIALS character class information from
an SQL collation or collation object

CPRL_GETUPSHIFTTABLE_ Extracts an array that might be used for upshifting

CPRL_INFO_ Returns information about a collation contained in an
SQL collation or collation object

CPRL_READOBJECT_ Reads an collation object (with file code 199) from a
Guardian file into a buffer

CPRL_UPSHIFT_ Upshifts a character string according to the upshift
rules in the specified SQL collation or collation object

Table 11-1. Character Processing Rules (CPRL) Procedures (page 2 of 2)
HP NonStop SQL/MP Programming Manual for C—429847-008
11-2

Character Processing Rules (CPRL) Procedures CPRL_ARE_
CPRL_ARE_
The CPRL_ARE_ procedure determines if all characters in a string are in the character
class defined by the specified CPRL. You can also call CPRL_ARE_ to scan a string
for the first character not in a specific character class.

The CPRL_ARE_ procedure returns these values:

classname

is an array containing the name of the specified character class.

classnamelength

is the number of bytes in the character class name classname.

inputstring

is a string containing the data to be scanned.

inputstringlength

is the number of bytes to be scanned in inputstring.

#include <cextdecs(CPRL_ARE_)>

short CPRL_ARE_ (
 char *classname /* i */
 ,short classnamelength /* i */
 ,char *inputstring /* i */
 ,short inputstringlength /* i */
 ,long *exceptcharaddr /* o */
 ,long cprladdr) ; /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–5 The user-specified character class does not exist in the specified SQL collation or
collation object.

–6 The input string contains a character not in the specified character class.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-3

Character Processing Rules (CPRL) Procedures CPRL_AREALPHAS_
exceptcharaddr

is set as follows:

 If the call is successful, all scanned characters are in the character class
defined by the specified SQL collation or collation object, and
exceptcharaddr is set as follows:

exceptcharaddr = inputstring + inputstringlength

 If –6 is returned, the first character in inputstring not in the specified
character class was found; exceptcharaddr is set to the address of this
character.

 For other error codes, exceptcharaddr is set to an invalid address.

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_AREALPHAS_
The CPRL_AREALPHAS_ procedure determines if all characters in a string are in the
ALPHAS character class according to a specified SQL collation or collation object. You
can also use this procedure to scan for the first character in the string that is not in the
ALPHAS character class.

The CPRL_AREALPHAS_ procedure returns these values:

inputstring

is an array containing the string to be scanned.

inputstringlength

is the number of bytes to be scanned in inputstring.

#include <cextdecs(CPRL_AREALPHAS_)>

short CPRL_AREALPHAS_ (
 char *inputstring /* i */
 ,short inputstringlength /* i */
 ,long *exceptcharaddr /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–6 The input string contains a character not in the specified character class.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-4

Character Processing Rules (CPRL) Procedures CPRL_ARENUMERICS_
exceptcharaddr

is set as follows:

 If the call is successful, all the scanned characters are in the ALPHAS
character class, and exceptcharaddr is set as follows:

exceptcharaddr = address(inputstring) + inputstringlength

 If –6 is returned, the first character in inputstring that is not in the
ALPHAS character class was found; exceptcharaddr is set to the address
of this character.

 For other error codes, exceptcharaddr is set to an invalid address.

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_ARENUMERICS_
The CPRL_ARENUMERICS_ procedure determines if all characters in a string are
numeric according to the specified SQL collation or collation object. You can also use
CPRL_ARENUMERICS_ to scan for the first nonnumeric character in a string.

The CPRL_ARENUMERICS_ procedure returns these values:

inputstring

is an array containing the data to be scanned.

inputstringlength

is the number of bytes in inputstring to be scanned.

#include <cextdecs(CPRL_ARENUMERICS_)>

short CPRL_ARENUMERICS_ (
 char *inputstring /* i */
 ,short inputstringlength /* i */
 ,long *exceptcharaddr /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–6 The input string contains a character not in the specified character class.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-5

Character Processing Rules (CPRL) Procedures CPRL_COMPARE1ENCODED_
exceptcharaddr

is set as follows:

 If the call is successful, all the scanned characters are numeric characters, and
exceptcharaddr is set as follows:

exceptcharaddr = address(inputstring) + inputstringlength

 If –6 is returned, the first nonnumeric character in inputstring was found;
exceptcharaddr is set to the address of this character.

 For other error codes, exceptcharaddr is set to an invalid address.

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_COMPARE1ENCODED_
The CPRL_COMPARE1ENCODED_ procedure compares two strings according to an
SQL collation or collation object. The first string is assumed to be in encoded form, and
the second is assumed to be in original (not encoded) form. For strings of unequal
length, the procedure logically pads the shorter string with blanks.

Use the CPRL_COMPARE1ENCODED_ procedure to compare a constant with a set
of values in one pass. The procedure encodes as much of the second string as
necessary to perform the compare, and the overhead of repeatedly encoding the
constant is saved.

The CPRL_COMPARE1ENCODED_ procedure returns these values:

string1

is an array containing the first string to be compared. string1 is assumed to be
in encoded form.

#include <cextdecs(CPRL_COMPARE1ENCODED_)>

short CPRL_COMPARE1ENCODED_ (
 char *string1 /* i */
 ,short string1length /* i */
 ,char *string2 /* i */
 ,short string2length /* i */
 ,short *result /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-6

Character Processing Rules (CPRL) Procedures CPRL_COMPARE_
string1length

is the number of bytes in string1 to be compared.

string2

is an array containing the second string to be compared. string2 is assumed to
be in original (not encoded) form.

string2length

is the length of string2.

result

indicates the result of the comparison:

For error codes other than 0 (zero), result is meaningless.

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_COMPARE_
The CPRL_COMPARE_ procedure compares two strings according to an SQL
collation or collation object. Both strings are assumed to be in original (not encoded)
form. For strings of unequal length, CPRL_COMPARE_ pads the shorter string with
blanks.

CPRL_COMPARE_ is more efficient for isolated compares, because only the
necessary part of each string is encoded to do the compare. If the same data is
repeatedly compared, use the CPRL_ENCODE_ and CPRL_COMPARE1ENCODED_
procedures (or CPRL_ENCODE_ with binary compares.)

-1 The first operand is less than the second

 0 The operands collate equally

 1 The first operand is greater than the second

#include <cextdecs(CPRL_COMPARE_)>

short CPRL_COMPARE_ (
 char *string1 /* i */
 ,short string1length /* i */
 ,char *string2 /* i */
 ,short string2length /* i */
 ,short *result /* o */
 ,long cprladdr); /* i */
HP NonStop SQL/MP Programming Manual for C—429847-008
11-7

Character Processing Rules (CPRL) Procedures CPRL_COMPAREOBJECTS_
The CPRL_COMPARE_ procedure returns these values:

string1

is an array containing the first string to be compared.

string1length

is the length in bytes of string1.

string2

is an array containing the second string to be compared.

string2length

is the length in bytes of string2.

result

indicates the result of the comparison, if the error code is 0 (zero):

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_COMPAREOBJECTS_
The CPRL_COMPAREOBJECTS_ procedure compares two SQL collations or collation
objects to determine whether they are equal.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

-1 string1 is less than string2.

 0 The strings collate equally.

 1 string1 is greater than string2.

#include <cextdecs(CPRL_COMPAREOBJECTS_)>

short CPRL_COMPAREOBJECTS_ (
 long cprladdr1 /* i */
 ,long cprladdr2); /* i */
HP NonStop SQL/MP Programming Manual for C—429847-008
11-8

Character Processing Rules (CPRL) Procedures CPRL_DECODE_
The CPRL_COMPAREOBJECTS_ procedure returns these values:

cprladdr1

is the address of the first SQL collation or collation object.

cprladdr2

is the address of the second SQL collation or collation object.

CPRL_DECODE_
The CPRL_DECODE_ procedure decodes a string that has been encoded by the
CPRL_ENCODE_ procedure. If the same (or equivalent) SQL collation is used for both
CPRL_ENCODE_ and CPRL_DECODE_, the decoded string equals the original string
with respect to that SQL collation.

Because encoding is not generally a one-to-one function, the decoded string might not
be identical to the original string. For example, an SQL collation that is case-insensitive
might produce a decoded string with different case letters than the original string. The
string ABCDE might encode to a value, which when decoded, is aBcDe.

The CPRL_DECODE_ procedure returns these values:

Code Description

 0 The operation was successful; the SQL collations or collation objects are equal.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–21 The collations in the two specified SQL collations or collation objects do not match.

#include <cextdecs(CPRL_DECODE_)>

short CPRL_DECODE_ (
 char *encodedstring /* i */
 ,short encodedstringlength /* i */
 ,char *decodedstring /* o */
 ,short decodedstringmaxlength /* i */
 ,short *decodedstringlength /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-9

Character Processing Rules (CPRL) Procedures CPRL_DOWNSHIFT_
encodedstring

is an array containing the data to be decoded.

encodedstringlength

is the number of bytes in encodedstring to be decoded.

decodedstring

is an array in which CPRL_DECODE_ returns the decoded string. Overlapping
encodedstring and decodedstring causes unpredictable results.

decodedstringmaxlength

specifies the maximum length of decodedstring.

decodedstringlength

is the number of bytes of encodedstring that were decoded. CPRL_DECODE_
pads the remainder of decodedstring with blanks up to
decodedstringmaxlength.

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_DOWNSHIFT_
The CPRL_DOWNSHIFT_ procedure downshifts a character string according to the
downshift rules in a specified SQL collation or collation object.

The CPRL_DOWNSHIFT_ procedure returns these values:

#include <cextdecs(CPRL_DOWNSHIFT_)>

short CPRL_DOWNSHIFT_ (
 char *inputstring /* i */
 ,short inputstringlength /* i */
 ,char *shiftedstring /* o */
 ,short shiftedstringmaxlength /* i */
 ,short *shiftedstringlength /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.

–21 The collations in the two specified SQL collations or collation objects do not match.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-10

Character Processing Rules (CPRL) Procedures CPRL_ENCODE_
inputstring

is an array in which CPRL_UPSHIFT_ returns the downshifted string.

inputstringlength

is the number of bytes to be downshifted in inputstring.

shiftedstring

is an array in which CPRL_DOWNSHIFT_ returns the downshifted string.

The values for inputstring and shiftedstring can be equal, but other
values can cause unpredictable results.

shiftedstringmaxlength

specifies the maximum length of shiftedstring; it must be greater than equal to
inputstring.

shiftedstringlength

specifies the length of the downshifted string returned in shiftedstring.

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_ENCODE_
The CPRL_ENCODE_ procedure encodes a character string so that a subsequent
binary comparison produces proper results for the specified SQL collation. Use
CPRL_ENCODE_ in situations where the number of encodings required is
substantially less than the number of comparisons (for example, during a sort).

#include <cextdecs(CPRL_ENCODE_)>

short CPRL_ENCODE_ (
 char *decodedstring /* i */
 ,short decodedstringlength /* i */
 ,char *encodedstring /* o */
 ,short encodedstringmaxlength /* i */
 ,short *encodedstringlength /* o */
 ,long cprladdr); /* i */
HP NonStop SQL/MP Programming Manual for C—429847-008
11-11

Character Processing Rules (CPRL) Procedures CPRL_GETALPHATABLE_
The CPRL_ENCODE_ procedure returns these values:

decodedstring

is an array containing data to be encoded.

decodedstringlength

is the number of bytes in decodedstring to be encoded.

encodedstring

is an array in which CPRL_ENCODE_ returns the encoded string. Overlapping
decodedstring and encodedstring causes unpredictable results.

encodedstringmaxlength

specifies the maximum length of encodedstring.

encodedstringlength

is the number of bytes that were encoded. CPRL_ENCODE_ pads the remainder
of decodedstring with encoded blanks up to decodedstringmaxlength.

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_GETALPHATABLE_
The CPRL_GETALPHATABLE_ procedure extracts ALPHAS character class
information for single-byte character sets from an SQL collation or collation object.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.

#include <cextdecs(CPRL_GETALPHATABLE_)>

short CPRL_GETALPHATABLE_ (
 char *array /* o */
 ,long cprladdr); /* i */
HP NonStop SQL/MP Programming Manual for C—429847-008
11-12

Character Processing Rules (CPRL) Procedures CPRL_GETCHARCLASSTABLE_
The CPRL_GETALPHATABLE_ procedure returns these values:

array

is a 256-byte array specified by the user. If the call is successful,
CPRL_GETALPHATABLE_ sets each byte in array as follows:

If the call is unsuccessful, array is not modified.

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_GETCHARCLASSTABLE_
The CPRL_GETCHARCLASSTABLE_ procedure extracts character class information
from an SQL collation or collation object for a user-specified character class.

The CPRL_GETCHARCLASSTABLE_ procedure returns these values:

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

1 The corresponding character code in the SQL collation or collation object
is in the ALPHAS character class.

0 The corresponding character code in the SQL collation or collation object
is not in the ALPHAS character class.

#include <cextdecs(CPRL_GETCHARCLASSTABLE_)>

short CPRL_GETCHARCLASSTABLE_ (
 char *array /* o */
 ,long cprladdr /* i */
 ,char *classname /* i */
 ,short classnamelength); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–5 The user-specified character class does not exist in the specified SQL collation or
collation object.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-13

Character Processing Rules (CPRL) Procedures CPRL_GETDOWNSHIFTTABLE_
array

is a 256-byte array specified by the user. If the call is successful,
CPRL_GETCHARCLASSTABLE_ sets each byte in array as follows:

If the call is unsuccessful, array is not modified.

cprladdr

is a pointer to the SQL collation or collation object.

classname

is the name of the user-specified character class.

classnamelength

is the length of classname in bytes.

CPRL_GETDOWNSHIFTTABLE_
The CPRL_GETDOWNSHIFTTABLE_ procedure extracts downshift information from
an SQL collation or collation object.

The CPRL_GETDOWNSHIFTTABLE_ procedure returns these values:

array

is a 256-byte array specified by the user.

If the call is successful, CPRL_GETDOWNSHIFTTABLE_ sets each byte in array
to the downshifted version of the corresponding character in the SQL collation or
collation object.

If the call is unsuccessful, array is not modified.

1 The corresponding character code in the SQL collation or collation object
is in the character class specified by classname.

0 The corresponding character code in the SQL collation or collation object
is not in the specified character class.

#include <cextdecs(CPRL_GETDOWNSHIFTTABLE_)>

short CPRL_GETDOWNSHIFTTABLE_ (
 char *array /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-14

Character Processing Rules (CPRL) Procedures CPRL_GETFIRST_
cprladdr

is a pointer to the SQL collation or collation object.

CPRL_GETFIRST_
The CPRL_GETFIRST_ procedure finds the first string of a specified length according
to an SQL collation or collation object.

This procedure replaces the practice of using a string of hexadecimal zeros to
generate the first string of a specified length, which does not work correctly for
nonbinary collating sequences.

The CPRL_GETFIRST_ procedure returns these values:

firststring

is an array in which CPRL_GETFIRST_ returns the first string.

firststringmaxlength

is the maximum length of firststring.

firststringlength

specifies the number of bytes of firststring that were scanned. (If
CPRL_GETFIRST_ is successful, firststringmaxlength and
firststringlength are equal.)

cprladdr

is a pointer to the SQL collation or collation object.

#include <cextdecs(CPRL_GETFIRST_)>

short CPRL_GETFIRST_ (
 char *firststring /* o */
 ,short firststringmaxlength /* i */
 ,short *firststringlength /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-15

Character Processing Rules (CPRL) Procedures CPRL_GETLAST_
CPRL_GETLAST_
The CPRL_GETLAST_ procedure finds the last string of a specified length according
to an SQL collation or collation object.

This procedure replaces the practice of using a string of binary ones to generate the
last string of a specified length, which does not work correctly for nonbinary collating
sequences.

The CPRL_GETLAST_ procedure returns these values:

laststring

is an array in which CPRL_GETFIRST_ returns the last string.

laststringmaxlength

specifies the maximum length of laststring.

laststringlength

specifies the number of bytes of laststring that were scanned. (If
CPRL_GETLAST_ is successful, laststringlength and
laststringmaxlength are equal.)

cprladdr

is a pointer to the SQL collation or collation object.

#include <cextdecs(CPRL_GETLAST_)>

short CPRL_GETLAST_ (
 char *laststring /* o */
 ,short laststringmaxlength /* i */
 ,short *laststringlength /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-16

Character Processing Rules (CPRL) Procedures CPRL_GETNEXTINSEQUENCE_
CPRL_GETNEXTINSEQUENCE_
The CPRL_GETNEXTINSEQUENCE_ procedure finds the next string after a specified
string according to an SQL collation or collation object.

This procedure replaces the practice of adding 1 to the least significant character of a
string to find the next greater string, which does not work correctly for nonbinary
collating sequences.

The CPRL_GETNEXTINSEQUENCE_ procedure returns these values:

inputstring

is an array containing the input string.

inputstringlength

is the number of bytes in the input string inputstring.

nextstring

is an array in which CPRL_GETNEXTINSEQUENCE_ returns the next string.
Overlapping inputstring and nextstring causes unpredictable results.

nextstringmaxlength

specifies the maximum length of nextstring. The returned value is padded with
blanks as necessary to fill nextstring for this length. In most cases, set
nextstring to the same value as inputstring.

#include <cextdecs(CPRL_GETNEXTINSEQUENCE_)>

short CPRL_GETNEXTINSEQUENCE_ (
 char *inputstring /* i */
 ,short inputstringlength /* i */
 ,char *nextstring /* o */
 ,short nextstringmaxlength /* i */
 ,short *nextstringlength /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.

–23 The inputstring parameter is already the maximum string of length
inputstringlength.

–24 The input string is longer than the maximum length (256).
HP NonStop SQL/MP Programming Manual for C—429847-008
11-17

Character Processing Rules (CPRL) Procedures CPRL_GETNUMTABLE_
nextstringlength

specifies the number of bytes of nextstring that were scanned. (If
CPRL_GETNEXTINSEQUENCE_ is successful, nextstringlength and
nextstringmaxlength are equal.)

CPRL_GETNEXTINSEQUENCE_ pads nextstring with blanks up to
nextstringmaxlength, and nextstringlength is the length of nextstring
up to the point where the blank begin (nextstringlength should also be the
same as inputstringlength).

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_GETNUMTABLE_
The CPRL_GETNUMTABLE_ procedure extracts numeric character class information
from an SQL collation or collation object.

The CPRL_GETNUMTABLE_ procedure returns these values:

array

is a 256-byte array specified by the user. If the call is successful,
CPRL_GETNUMTABLE_ sets each byte in array as follows:

If the call is unsuccessful, array is not modified.

cprladdr

is a pointer to the SQL collation or collation object.

#include <cextdecs(CPRL_GETNUMTABLE_)>

short CPRL_GETNUMTABLE_ (
 char *array /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

1 The corresponding character code in the SQL collation or collation object
is numeric.

0 The corresponding character code in the SQL collation or collation object
is not numeric.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-18

Character Processing Rules (CPRL) Procedures CPRL_GETSPECIALTABLE_
CPRL_GETSPECIALTABLE_
The CPRL_GETSPECIALTABLE_ procedure extracts SPECIALS character class
information from an SQL collation or collation object, if the SPECIALS character class
exists.

If the SPECIALS character class does not exist, CPRL_GETSPECIALTABLE_ creates
it. In this case, characters are considered SPECIALS if they are not ALPHAS or
NUMERICS. (The ALPHAS and NUMERICS character classes exist in all SQL
collations or collation objects.)

The CPRL_GETSPECIALTABLE_ procedure returns these values:

array

is a 256-byte array specified by the user. If the call is successful,
CPRL_GETALPHATABLE_ sets each byte in array as follows:

If the call is unsuccessful, array is not modified.

cprladdr

is a pointer to the SQL collation or collation object.

#include <cextdecs(CPRL_GETSPECIALTABLE_)>

short CPRL_GETSPECIALTABLE_ (
 char *array /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

1 The corresponding character code in the SQL collation or collation object
is in the SPECIALS character class.

0 The corresponding character code in the SQL collation or collation object
is not in the SPECIALS character class.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-19

Character Processing Rules (CPRL) Procedures CPRL_GETUPSHIFTTABLE_
CPRL_GETUPSHIFTTABLE_
The CPRL_GETUPSHIFTTABLE_ procedure extracts upshift information from an SQL
collation or collation object.

The CPRL_GETUPSHIFTTABLE_ procedure returns these values:

array

is a 256-byte array specified by the user.

If the call is successful, CPRL_GETALPHATABLE_ sets each byte in array to the
upshifted version of the corresponding character code in the SQL collation or
collation object.

If the call is unsuccessful, array is not modified.

cprladdr

is a pointer to the SQL collation or collation object.

CPRL_INFO_
The CPRL_INFO_ procedure returns information about an SQL collation or collation
object. (The SQL CREATE COLLATION statement uses this procedure to determine
the characteristics of SQL collations.)

#include <cextdecs(CPRL_GETUPSHIFTTABLE_)>

short CPRL_GETUPSHIFTTABLE_ (
 char *array /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

#include <cextdecs(CPRL_INFO_)>

short CPRL_INFO_ (
 long cprladdr /* i */
 , [short *cprlsize] /* o */
 ,[short *is1to1] /* o */
 ,[short *lengtheningfactor] /* o */
 ,[short *characterset] /* o */
 ,[short *version]); /* o */
HP NonStop SQL/MP Programming Manual for C—429847-008
11-20

Character Processing Rules (CPRL) Procedures CPRL_INFO_
The CPRL_INFO_ procedure returns these values:

cprladdr

is a pointer to the SQL collation or collation object.

cprlsize

is the length in bytes of the SQL collation or collation object.

is1to1

is set as follows:

lengtheningfactor

specifies the maximum lengthening that encodings can cause. (That is, for a
specified string, the encoding is not more than lengtheningfactor times the
original string length. For SQL collations or collation objects that preserve (or
shorten) the length on encoding, lengtheningfactor is 1.)

characterset

specifies the character set assumed by the SQL collation or collation object:

version

is the format version of the SQL collation or collation object.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.

1 The encoding for this SQL collation or collation object is a one-to-one
map.

0 The encoding is not a one-to-one map.

0 UNKNOWN 105 ISO88595

101 ISO88591 106 ISO88596

102 ISO88592 107 ISO88597

103 ISO88593 108 ISO88598

104 ISO88594 109 ISO88599
HP NonStop SQL/MP Programming Manual for C—429847-008
11-21

Character Processing Rules (CPRL) Procedures CPRL_READOBJECT_
CPRL_READOBJECT_
The CPRL_READOBJECT_ procedure reads a collation object from a Guardian disk
file (file code 199) into a user-specified buffer. CPRL_READOBJECT_ does not read
SQL collations (file code 941) generated by a CREATE COLLATION statement.

The CPRL_READOBJECT_ procedure returns these values:

If a file-system error occurs, CPRL_READOBJECT_ returns a file-system error code
rather than a CPRL error code. File-system error codes are always positive, whereas
CPRL error codes are less than or equal to zero (0).

buffer

is a user-supplied buffer to which CPRL_READOBJECT_ returns the collation
object if the call is successful. CPRL_READOBJECT_ uses a local 4 KB buffer
allocated on the data stack. If you are concerned about stack size limitations, use
this procedure with caution.

bufferlength

is the size of buffer in bytes.

objectlength

is the actual length in bytes of the collation object read into buffer.

#include <cextdecs(CPRL_READOBJECT_)>

short CPRL_READOBJECT_ (
 short *buffer /* o */
 ,short bufferlength /* i */
 ,short *objectlength /* o */
 ,char *filename /* i */
 ,short filenamelength /* i */
 ,long *cprladdr); /* o */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–11 The user-specified buffer is too small for the SQL collation or collation object.

–12 The CPRL_READOBJECT_ local buffer is too small for the SQL collation or
collation object.

–13 An error occurred during a call to the FNAMEEXPAND procedure for the Guardian
file name.

–14 The file code of the Guardian file containing the collation object is not 199.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-22

Character Processing Rules (CPRL) Procedures CPRL_UPSHIFT_
filename

is the Guardian file name in external format containing the collation object. The file
code for filename must be 199.

filenamelength

is the length in bytes of filename.

cprladdr

is the address of the collation object if 0 (zero) is returned. Otherwise, cprladdr
is set to an invalid address.

CPRL_UPSHIFT_
The CPRL_UPSHIFT_ procedure upshifts a character string according to the upshift
rules in the specified SQL collation or collation object.

The CPRL_UPSHIFT_ procedure returns these values:

inputstring

is an array containing the data to be upshifted.

inputstringlength

is the number of bytes in inputstring to be upshifted.

shiftedstring

is an array in which CPRL_UPSHIFT_ returns the upshifted string.

The values for inputstring and shiftedstring can be equal, but other
values can cause unpredictable results.

#include <cextdecs(CPRL_UPSHIFT_)>

short CPRL_UPSHIFT_ (
 char *inputstring /* i */
 ,short inputstringlength /* i */
 ,char *shiftedstring /* o */
 ,short shiftedstringmaxlength /* i */
 ,short *shiftedstringlength /* o */
 ,long cprladdr); /* i */

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-23

Character Processing Rules (CPRL) Procedures CPRL_UPSHIFT_
shiftedstringmaxlength

specifies the maximum length of shiftedstring; it must be greater than or
equal to inputstringlength.

shiftedstringlength

specifies the length of the upshifted string returned in shiftedstring.

cprladdr

is a pointer to the SQL collation or collation object.
HP NonStop SQL/MP Programming Manual for C—429847-008
11-24

A SQL/MP Sample Database

This appendix describes the NonStop SQL/MP sample database included on the
product site update tape (SUT). Many examples in this manual (in addition to other
SQL/MP manuals) refer to this sample database. You can create your own copy of the
sample database and access it using SQLCI commands or by embedding SQL
statement in a host-language program.

The sample database includes the PERSNL, SALES, and INVENT subvolumes. Each
subvolume contains a catalog and these tables:

HP distributes the sample database in the ZTSQLMSG subvolume. (Ask your
database administrator or system manager for the volume where the ZTSQLMSG
subvolume is installed on your system.)

The ZTSQLMSG.DOCUMENT file describes the files in the ZTSQLMSG subvolume.
The DOCUMENT file also explains how to create a copy of the sample database. To
print the DOCUMENT file, enter this TGAL command at your TACL prompt:

TGAL / IN ZTSQLMSG.DOCUMENT, OUT $S.#loc /

The loc parameter is a spooler location for your system.

PERSNL EMPLOYEE, JOB, and DEPT tables, which hold personnel data.

SALES CUSTOMER, ORDERS, ODETAIL, and PARTS tables, which are used
for order data. Also, the SUPPKANJ table, which accepts Kanji data for
the supplier’s name and address.

INVENT SUPPLIER, PARTSUPP, PARTLOC, and ERRORS tables, which hold
inventory data. (PARTLOC can be partitioned over three volumes, if they
are available.)
HP NonStop SQL/MP Programming Manual for C—429847-008
A-1

SQL/MP Sample Database
Figure A-1 shows the names of columns and tables and the relations between the
tables in the sample database.

Figure A-1. SQL/MP Sample Database Relations

custnum
custname
street
city
state
postcode
credit

errors_date
errors_time
errors_id
errors_sql
errors_text 1
errors_text 2

ordernum
partnum

unit_price
qty_ordered

EMPLOYEE Table CUSTOMER Table ERRORS Table

DEPT Table ORDERS Table SUPPLIER Table

JOB Table

ODETAIL Table

PARTLOC Table *

PERSNL
Subvolume

SALES
Subvolume

INVENT
Subvolume

empnum

first_name
last_name
deptnum
jobcode
salary

suppnum
suppname
street
city
state
postcode

ordernum
order_date
deliv_date
salesrep
custnum

deptnum
deptname

manager
rptdept

location

jobcode

jobdesc

PARTSUPP Table

partnum
suppnum
partcost
qty_received

loc_code
partnum

qty_on_hand

PARTS Table

partnum
partdesc
price
qty_available

Legend

The PARTLOC table can
be partitioned by the
value of LOC_CODE.

*

One to one
One to many

SUPPKANJ Table

suppnum
suppname_kanji
suppname_katakana
suppname_english
street
city

state
postcode

VST007.vsd
HP NonStop SQL/MP Programming Manual for C—429847-008
A-2

SQL/MP Sample Database
Example A-1 shows the COPYLIB file containing the record descriptions of the sample
database tables. This file was generated using INVOKE directives executed from
SQLCI. For example, this INVOKE directive generates the DEPT table:

INVOKE PERSNL.DEPT FORMAT C TO COPYLIB (DEPT);

For more information about SQLCI, see the SQL/MP Reference Manual. For a
description of the SUPPKANJ table, see the ZTSQLMSG.DOCUMENT file.

Example A-1. COPYLIB File for Sample Database (page 1 of 3)

/* Personnel (PERSNL) */
/* */
#pragma SECTION EMPLOYEE
/* Record Definition for \SYS1.$VOL1.PERSNL.EMPLOYEE */
/* Definition current at 09:53:58 - 11/10/96 */
 struct employee_type {
 unsigned short empnum;
 char first_name[16];
 char last_name[21];
 unsigned short deptnum;
 unsigned short jobcode;
 unsigned long salary; /* scale is 2 */
 };
#pragma SECTION DEPT
/* Record Definition for \SYS1.$VOL1.PERSNL.DEPT */
/* Definition current at 09:54:00 - 11/10/96 */
 struct dept_type {
 unsigned short deptnum;
 char deptname[13];
 unsigned short manager;
 unsigned short rptdept;
 struct {
 short len;
 char val[19];
 } location;
 };
#pragma SECTION JOB
/* Record Definition for \SYS1.$VOL1.PERSNL.JOB */
/* Definition current at 09:54:02 - 11/10/96 */
 struct job_type {
 unsigned short jobcode;
 struct {
 short len;
 char val[19];
 } jobdesc;
 };
/* */
/* Sales (SALES) */
/* */
HP NonStop SQL/MP Programming Manual for C—429847-008
A-3

SQL/MP Sample Database
#pragma SECTION CUSTOMER
/* Record Definition for \SYS1.$VOL1.SALES.CUSTOMER */
/* Definition current at 09:54:03 - 11/10/96 */
 struct customer_type {
 unsigned short custnum;
 char custname[19];
 char street[23];
 char city[15];
 char state[13];
 char postcode[11];
 char credit[3];
 };
#pragma SECTION ORDERS
/* Record Definition for \SYS1.$VOL1.SALES.ORDERS */
/* Definition current at 09:54:05 - 11/10/96 */
 struct orders_type {
 unsigned long ordernum;
 long order_date;
 long deliv_date;
 unsigned short salesrep;
 unsigned short custnum;
 };
#pragma SECTION ODETAIL
/* Record Definition for \SYS1.$VOL1.SALES.ODETAIL */
/* Definition current at 09:54:06 - 11/10/96 */
 struct odetail_type {
 unsigned long ordernum;
 unsigned short partnum;
 long unit_price; /* scale is 2 */
 unsigned long qty_ordered;
 };
#pragma SECTION PARTS
/* Record Definition for \SYS1.$VOL1.SALES.PARTS */
/* Definition current at 09:54:08 - 11/10/96 */
 struct parts_type {
 unsigned short partnum;
 char partdesc[19];
 long price; /* scale is 2 */
 long qty_available;
 };

Example A-1. COPYLIB File for Sample Database (page 2 of 3)
HP NonStop SQL/MP Programming Manual for C—429847-008
A-4

SQL/MP Sample Database
#pragma SECTION PARTSUPP
/* Record Definition for \SYS1.$VOL1.INVENT.PARTSUPP */
/* Definition current at 09:54:09 - 11/10/96 */
 struct partsupp_type {
 unsigned short partnum;
 unsigned short suppnum;
 long partcost; /* scale is 2 */
 unsigned long qty_received;
 };
/* */
/* Inventory (INVENT) */
/* */
#pragma SECTION SUPPLIER
/* Record Definition for \SYS1.$VOL1.INVENT.SUPPLIER */
/* Definition current at 09:54:11 - 11/10/96 */
 struct supplier_type {
 unsigned short suppnum;
 char suppname[19];
 char street[23];
 char city[15];
 char state[13];
 char postcode[11];
 };
#pragma SECTION PARTLOC
/* Record Definition for \SYS1.$VOL1.INVENT.PARTLOC */
/* Definition current at 09:54:12 - 11/10/96 */
 struct partloc_type {
 char loc_code[4];
 unsigned short partnum;
 long qty_on_hand;
 };
#pragma SECTION ERRORS
/* Record Definition for \SYS1.$VOL1.INVENT.ERRORS */
/* Definition current at 09:54:14 - 11/10/96 */
 struct errors_type {
 long errors_date
 long errors_time
 long errors_id
 short errors_sql
 char errors_text1[241];
 char errors_text2[241];
 };

Example A-1. COPYLIB File for Sample Database (page 3 of 3)
HP NonStop SQL/MP Programming Manual for C—429847-008
A-5

SQL/MP Sample Database
HP NonStop SQL/MP Programming Manual for C—429847-008
A-6

B Memory Considerations

This appendix describes the NonStop SQL internal data structures generated in a C
program and the memory considerations for these structures.

Topics include:

 SQL/MP Internal Structures

 Using the SQLMEM Pragma on page B-2

 Estimating Memory Requirements on page B-2

 Avoiding Memory Stack Overflows on page B-4

SQL/MP Internal Structures
The C compiler generates internal SQL data structures to maintain information about
the SQL statements, directives, and host variables that are used in the program.
Table B-1 lists SQL data structures and when each structure is generated.

Table B-1. SQL/MP Data Structures

SQL Data Structure Statement, Directive, or Host Variable

SQLIN SQL statement or directive that generates a call to the SQL
executor, except the following:

 BEGIN DECLARE SECTION or END DECLARE SECTION
directive

 CONTROL directives

 INCLUDE directive

 INVOKE directive

 WHENEVER directive

 DECLARE CURSOR statement for static cursors

 DECLARE CURSOR statement for dynamic cursors that do
not use cursor or statement host variables

SQLIVARS Each input host variable specified in the program

SQLOVARS Each output host variable specified in the program
HP NonStop SQL/MP Programming Manual for C—429847-008
B-1

Memory Considerations Using the SQLMEM Pragma
Using the SQLMEM Pragma
For programs that use the large-memory model and are compiled on TNS systems, the
SQLMEM pragma specifies where in memory the C compiler should place the SQL
internal data structures. Use this syntax for the SQLMEM pragma:

USER

causes the C compiler to allocate the SQL data structures in the user data space,
which is the global area addressable with 16 bits. Although the USER option can
improve access time to the SQL structures, specify USER only if the global area
can hold the specific structures.

EXT

causes the C compiler to place the SQL data structures in an extended data
segment. EXT is the default.

Follow these guidelines when you use the SQLMEM pragma:

 The SQLMEM pragma applies only to the C compiler on TNS systems. The NMC
compiler on TNS/R systems ignores this pragma.

 The SQLMEM pragma is valid only for the large-memory model, which is the
default for the C compiler. If you specify SQLMEM for the small-memory model
(NOXMEM pragma) on a TNS system, the C compiler returns error 172.

 To specify the SQLMEM pragma in your program, you must first specify the SQL
pragma. Otherwise, the C compiler returns error 173 (illegal SQLMEM option).

 Use the SQLMEM pragma as many times as necessary in your program to control
the placement of SQL data structures.

Estimating Memory Requirements
A program that uses embedded SQL statements and directives to access an SQL/MP
database uses more memory than a program that accesses an Enscribe database.
This subsection describes how to estimate the virtual memory used by embedded SQL
statements and directives in a program’s extended data segment.

Some statements require no extra extended memory, but other statements generate a
run-time call to the SQL executor and use the extra memory. The SQL executor uses
extended memory to run and uses the memory shown in this table for parameters and
data structures.

SQLMEM { USER | EXT }
HP NonStop SQL/MP Programming Manual for C—429847-008
B-2

Memory Considerations Estimating Memory Requirements
These structures are shared by all SQL statements and directives in a program:

Use Table B-2 to estimate the memory used by each SQL statement and directive.

Follow these guidelines when you use Table B-2:

 Count a host variable once per occurrence.

 Count these SQL statements and directives (which generate a run-time call to the
SQL executor):

Do not count these SQL statements and directives:

 BEGIN DECLARE SECTION and END DECLARE SECTION

 CONTROL EXECUTOR, CONTROL QUERY, and CONTROL TABLE

 DECLARE CURSOR

 INVOKE

 WHENEVER

Structure Bytes Description

SQLCA 430 Count once if you specify the INCLUDE SQLCA directive.

SQLSA 838 or
1790

Count once if you specify the INCLUDE SQLSA directive. A
version 330 or later SQLSA structure is 1790 bytes; older SQLSA
structures are 838 bytes.

Table B-2. Virtual Memory Requirements for SQL Statements

Bytes Required Description

72 Base value for a statement with no host
variables

+ 4 + (24 * number of input host variables) Required for a statement with input host
variables

+ 4 + (24 * number of output host variables) Required for a statement with output host
variables

+ 146 Required for a static SQL statement that
uses a cursor declared in the global area of
the program

ALTER
BEGIN WORK
CLOSE
COMMENT
CREATE
DELETE
DESCRIBE
DESCRIBE INPUT

DROP
END WORK
EXECUTE
EXECUTE IMMEDIATE
FETCH
FREE RESOURCES
GET VERSION
HELP TEXT

INSERT
LOCK TABLE
OPEN
RELEASE
ROLLBACK WORK
SELECT
UNLOCK TABLE
UPDATE
UPDATE STATISTICS
HP NonStop SQL/MP Programming Manual for C—429847-008
B-3

Memory Considerations Avoiding Memory Stack Overflows
The system allocates real memory in 16 KB pages. If an SQL statement uses only part
of a page, the system allocates the entire page. Therefore, the real memory used by
embedded SQL statements can be larger than the figures shown in Table B-2 on
page B-3.

A program can encounter memory problems in these situations:

 The program contains a large number of embedded SQL statements.

 The program runs on a system with limited memory (for example, 16 MB or less).

 The program runs in a CPU that is also running a large number of other programs.

To reduce the memory use in the extended data segment, follow these guidelines:

 Declare only the host variables that your program actually requires.

 Declare all host variables in one Declare Section, if possible. The system allocates
the host variables contiguously in one or more pages, rather than allocating each
host variable in a separate page.

 Run SQL statements in listing order as often as possible. Thus, the SQL
statements can share many of the pages in the extended data segment.

 As a last measure, use dynamic SQL statements. Using dynamic SQL statements
can reduce memory use; however, it can also degrade a program’s performance
because of the additional SQL run-time compilations.

Avoiding Memory Stack Overflows
To avoid memory stack overflows for most SQL statements, the SQL executor needs at
least 3000 words of available stack space. To calculate the approximate stack space
that should be available to run an SQL statement, use this formula:

Stack Space (words) = 3000 +
 300 * (number of referenced tables - 3)

For example, using this formula, an SQL statement that refers to five tables needs
approximately 3600 words of stack space:

Stack Space (words) = 3000 + (300 * (5-3))
 = 3600

The SQL executor handles a stack overflow caused by an SQL statement as follows:

 Less than 1024 words of stack space are available. (The limit of 1024 words is an
arbitrary number that is used to prevent problems for existing applications, and
might be increased in a future RVU.)

If there is enough stack space available to call an error handling routine, the SQL
executor returns SQL error 8003. If there is not enough stack space to call the
routine, the executor abends without returning a message.

 At least 1024 words of stack space are available.
HP NonStop SQL/MP Programming Manual for C—429847-008
B-4

Memory Considerations Avoiding Memory Stack Overflows
If a stack overflow occurs, the executor traps (trap number 3), sends a message to
the EMS collector process ($0), and then abends. You can read the EMS event log
for this message. For a description of the SQL/MP messages sent to the $0
process, see the SQL/MP Messages Manual. If a call to the file system causes a
stack overflow, the SQL executor returns SQL error 8003 and file-system error 22.

You can prevent a stack overflow in a C program by following these guidelines:

 Use the large-memory model. Specify the XMEM pragma (the default) to select the
large-memory model and the XVAR pragma (also the default) to direct the
C compiler to allocate static aggregates in extended memory.

 Allocate SQL internal data structures (SQLIN, SQLIVARS, and SQLOVARS) in
extended memory (which is the default for the large-memory model). The
SQLMEM pragma (USER or EXT) controls the placement of the SQL structures;
SQLMEM EXT (extended memory) is the default.

 Use the Binder SET EXTENDSTACK command to extend the user stack space.
For more information, see the Binder Manual.

 When you start the program, increase the number of data pages for the program
using one of these options:

 Interactively, specify the MEM option to increase the data pages in the TACL
RUN command. For more information, see the TACL Reference Manual.

 Programmatically, set the memory-pages parameter of the NEWPROCESS or
PROCESS_CREATE_ system procedure. For more information, see the
Guardian Procedure Calls Reference Manual.
HP NonStop SQL/MP Programming Manual for C—429847-008
B-5

Memory Considerations Avoiding Memory Stack Overflows
HP NonStop SQL/MP Programming Manual for C—429847-008
B-6

C Maximizing Local Autonomy

This appendix describes about the local autonomy in the NonStop SQL/MP
network-distributed database.

Topics include:

 Using a Local Partition

 Using TACL DEFINEs on page C-2

 Using Current Statistics on page C-2

 Skipping Unavailable Partitions on page C-3

Local autonomy in a network-distributed database ensures that a program can access
data on the local node, regardless of the availability of remote SQL objects. In some
cases, the design of NonStop SQL/MP allows for local autonomy. For example, if a
DDL change alters a table on \NODEA when \NODEB is unavailable, an SQL program
file on \NODEB that uses the altered \NODEA table is not marked as invalid. The
invalid SQL program on \NODEB that is erroneously marked as valid is detected at run
time by the timestamp check and then automatically recompiled.

If your program accesses a network-distributed database, you can maximize local
autonomy by following these guidelines:

 Use a local partition, rather than the primary partition, as the table name.
 Use TACL DEFINEs.
 Use current statistics.
 Skip unavailable partitions.

For collations, NonStop SQL/MP supports run-time node autonomy, because collations
are stored in an SQL object’s file label and within expressions that operate on the SQL
objects.

For example, suppose that you create a partitioned table named TABLEA with
partitions on \NEWYORK and \PARIS. TABLEA requires the collation
\NEWYORK.$SQL.COLLATE.FRENCH. If \NEWYORK goes down, programs on
\PARIS that refer to TABLEA continue to run because they get the collation information
from the TABLEA file label. However, the recompilation of a program on \PARIS that
uses TABLEA fails because the \NEWYORK.$SQL.COLLATE.FRENCH collation is not
available.

Using a Local Partition
If your program accesses a remote partition, the SQL compiler looks for information
about the table in a remote catalog. If the remote node is down, the SQL compilation
fails. However, if your program uses a local partition, the SQL compiler looks for the
information in a local catalog. If the local node and data are available, the SQL
compilation is successful.
HP NonStop SQL/MP Programming Manual for C—429847-008
C-1

Maximizing Local Autonomy Using TACL DEFINEs
The next example uses the concept of maximizing local autonomy. The parts table is a
partitioned table that resides on these nodes:

A program declares an SQL cursor as follows:

EXEC SQL DECLARE get_part_cursor CURSOR FOR
 SELECT partnum, partdesc, price, qty_available
 FROM =parts
 WHERE parts.partnum < 5000
 AND parts.partdesc = "V8 DISK OPTION";

The program running on \NEWYORK uses a DEFINE to associate the PARTS table
with the first partition located at \NEWYORK.

If \PARIS is unavailable at compile time, the SQL compiler can still compile the
program because enough information is available in the catalogs on \NEWYORK,
where the first partition is registered.

Suppose that the compiler uses the index on \PARIS in the optimized execution plan. If
\PARIS is still unavailable at run time, the SQL executor invokes the SQL compiler to
automatically recompile the statement. The SQL compiler determines an execution
plan that does not use the index IXPART but sequentially scans the rows in the first
partition to find all parts that have “V8 DISK OPTION” in the PARTDESC column.

Using TACL DEFINEs
By using TACL DEFINEs in a program to refer to tables and associating those
DEFINEs with local partitions, you increase the number of successful compilations of
programs that access a distributed database. All SQL compilations are affected,
including explicit compilations and automatic recompilations.

Using Current Statistics
For a partitioned table to have local autonomy, the UPDATE STATISTICS statement
must be run on the table at least once. If the SQL catalog in which a table is registered
does not have any statistics for the table, the SQL optimizer does a catalog look-up
operation for each partition of the table to estimate the aggregate number of nonempty
blocks and records. Also, if the statistics for an unavailable partitioned table have not
been updated, you will receive an SQL warning and file-system error even if your query
does not try to retrieve any rows from the unavailable partition. Executing the UPDATE
STATISTICS statement eliminates both these problems.

\NEWYORK The first partition contains all rows in which PARTS.PARTNUM (the
primary key) is less than 5000.

\PARIS The second partition contains all rows in which PARTS.PARTNUM is
5000 or greater. An index on the PARTDESC column of table PARTS
is named IXPART.
HP NonStop SQL/MP Programming Manual for C—429847-008
C-2

Maximizing Local Autonomy Skipping Unavailable Partitions
Skipping Unavailable Partitions
Use the SKIP UNAVAILABLE PARTITION option of the CONTROL TABLE directive to
cause NonStop SQL/MP to skip a partition that is not available and to open the next
available partition that satisfies the search condition of a query. (NonStop SQL/MP also
returns warning message 8239 to the SQLCA structure.) The SKIP UNAVAILABLE
PARTITION option applies to static or dynamic SQL statements that refer to partitioned
tables and partitioned indexes of the tables.
HP NonStop SQL/MP Programming Manual for C—429847-008
C-3

Maximizing Local Autonomy Skipping Unavailable Partitions
HP NonStop SQL/MP Programming Manual for C—429847-008
C-4

D Converting C Programs

A C program developed for NonStop SQL/MP version 1 or version 2 software can run
on SQL/MP version 300 (or later) software without any changes to its embedded SQL
statements or directives. However, to use new SQL features, you must modify and
recompile the program.

Topics include:

 Generating SQL Data Structures

 Generating SQLDA Structures on page D-2

 Planning for Future PVUs on page D-8

Generating SQL Data Structures
The SQLCA, SQLSA, and SQLDA data structures can change in future PVUs of
NonStop SQL/MP. Follow these guidelines if you are converting an existing C program
(that is, a program that uses version 1 or version 2 structures) or writing a new
program to use version 300 (or later) SQL structures:

 Use the INCLUDE STRUCTURES directive to specify the version of the SQL
structures, even if you require version 1 or version 2 structures. To generate
version 300 or later structures, you must use the INCLUDE STRUCTURES
directive. For more information, see Section 9, Error and Status Reporting.

 If you allocate SQL data structures at run time, use the compiler-generated length
identifiers (for example, SQLSA_LEN for the length of an SQLSA structure) to
specify the memory to allocate. (In some cases, you can also use a C function to
generate the length of a structure.) Using the compiler-generated length identifiers
can reduce the impact on a program if the size of an SQL data structure changes
in a future PVU.

 Use the system-generated eye-catcher identifiers to initialize the eye-catcher
fields. Do not hard code eye-catcher values or write code that depends on
hard-coded values. The eye-catcher values can change in a new PVU.

 Use the SQLCAGETINFOLIST procedure to return information from the SQLCA
structure. Do not access this structure directly. HP reserves the right to change the
SQLCA structure in future PVUs.

Note. A D20 (or later) C compiler requires that a C program comply to the ISO/ANSI C
standard. For information about converting a program to follow this standard, see the C/C++
Programmer’s Guide.
Also, a C-series program can run at a low PIN on a D-series system without any changes.
However, for a C-series program to use D-series features (for example, to run at a high PIN),
you might need to convert certain parts of the program. For information about converting a
C-series program to use D-series features, see the Guardian Application Conversion Guide.
HP NonStop SQL/MP Programming Manual for C—429847-008
D-1

Converting C Programs Generating SQLDA Structures
Table D-1 lists the changes to the SQL data structures and the changes that occurred
with each version of NonStop SQL/MP.

Generating SQLDA Structures
If an existing C program generates SQLDA structures and you are converting the
program to run on version 300 (or later) SQL/MP software, you might need one or
more of these combinations of SQLDA structures:

 A version 300 (or later) SQLDA structure

 A version 1 or 2 SQLDA structure

 A version 300 (or later) SQLDA structure and a version 1 or 2 SQLDA structure

Table D-1. Changes to SQL Data Structures

Version
Size,
Bytes

Eye-Catcher
Value New Fields

SQLCA Structure

1, 2, Š 300 430 CA None

SQLSA Structure

1 838 SA –

2 838 SA None

300 - 325 838 SA output_collations_len

Š 330 1790 SA master_executor_elapsed_time
total_esp_cpu_time
total_sortprog_cpu_time
vsbb_write
vsbb_flushed

SQLDA Structure

1 Variabl
e

DA –

2 Variabl
e

D1 precision, null_info, ind_ptr

Š 300 Variabl
e

D1 cprl_ptr, user-defined collation buffer
HP NonStop SQL/MP Programming Manual for C—429847-008
D-2

Converting C Programs Generating a Version 300 (or Later) SQLDA
Structure
Generating a Version 300 (or Later) SQLDA Structure

To convert a program that generates a version 1 or version 2 SQLDA structure to
generate a version 300 (or later) SQLDA structure, follow these steps:

1. If necessary, remove the RELEASE1 or RELEASE2 option from the SQL compiler
directive or from the INCLUDE SQLDA directive. The C compiler returns an error if
you specify the RELEASE1 or RELEASE2 option and the
INCLUDE STRUCTURES directive.

2. Remove any _R1 or _R2 suffixes appended to SQLDA field names.

3. If you are converting a version 1 SQLDA structure, make sure you initialize the
null_info and ind_ptr fields.

4. Add an INCLUDE STRUCTURES directive and specify the version you want. For
example, this directive generates a version 315 structure:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 315;

Or specify only the SQLDA VERSION 315 option:

EXEC SQL INCLUDE STRUCTURES SQLDA VERSION 315;

5. Add the necessary executable statements to process the version 310
SQLDA structure. For the layout of a version 300 (or later) SQLDA structure and a
description of each field, see Section 10, Dynamic SQL Operations.

Generating a Version 2 SQLDA Structure

If you are converting a program to use the INCLUDE STRUCTURES directive, but you
require a version 2 SQLDA structure, follow these steps:

1. If necessary, remove the RELEASE2 option from the SQL compiler directive or the
INCLUDE SQLDA directive. The C compiler returns an error if you specify the
RELEASE2 option and the INCLUDE STRUCTURES directive.

2. If you specified the RELEASE2 option in an INCLUDE SQLDA directive, remove
any _R2 suffixes you appended to SQLDA field names.

3. If you are converting a version 1 SQLDA structure, initialize the null_info and
ind_ptr fields. (A program should already initialize these fields for a version 2
SQLDA structure.)

4. Add an INCLUDE STRUCTURES directive with the ALL VERSION 2 option:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 2;

Or specify only the SQLDA VERSION 2 option:

EXEC SQL INCLUDE STRUCTURES SQLDA VERSION 2;
HP NonStop SQL/MP Programming Manual for C—429847-008
D-3

Converting C Programs Generating a Version 2 SQLDA Structure
Example D-1 shows a version 2 SQLDA structure.

Table D-2 describes the fields in a version 2 SQLDA structure.

Example D-1. Version 2 SQLDA Structure

#define SQLDA_EYE_CATCHER "D1" /* can have _R2 appended */
struct SQLDA_TYPE /* can have _R2 appended */
{
 char eye_catcher[2];
 short num_entries;
 struct SQLVAR_TYPE /* can have _R2 appended */
 {
 short data_type;
 short data_len;
 short precision;
 short null_info;
 long var_ptr;
 long ind_ptr;
 long long reserved;
 } sqlvar[sqlvar-count];
} sqlda-name;
char names-buffer-name[length + 1];

Table D-2. Version 2 SQLDA Structure Fields (page 1 of 2)

Field Name Description

eye_catcher An identifying field that a program must initialize as D1 for version 1 or
DA for version 2. SQL/MP statements do not return values to
eye_catcher.

num_entries Number of input parameters or output variables the SQLDA structure
can accommodate.

sqlvar Group item that describes input parameters or database columns. The
DESCRIBE INPUT and DESCRIBE statements return one sqlvar entry
for each input parameter or each output variable.

data_type Data type of the parameter or output variables. For the table of data type
values, see Section 10, Dynamic SQL Operations.
HP NonStop SQL/MP Programming Manual for C—429847-008
D-4

Converting C Programs Generating a Version 2 SQLDA Structure
data_len data_len depends on the data type:

Fixed-length character Number of bytes in the string.

Variable-length character Maximum number of bytes in the string.

Decimal numeric Bits 0:7 contain the decimal scale.
Bits 8:15 contain the byte length of the item.

Binary numeric Bits 0:7 contain the decimal scale.
Bits 8:15 contain the byte length of the item (2,
4, or 8).

Date-time or INTERVAL Bits 0:7 contain a value for the range date-time
fields. For the table of values, see Section 10,
Dynamic SQL Operations.
Bits 8:15 contain the storage size of the
item.

precision Binary numeric Numeric precision.

Date-time or INTERVAL Bits 0:7 contain the leading field precision.
Bits 8:15 contain the fraction precision (or 0, if
the fraction field is not included.

null_info For input parameters A negative integer if the column permits null
values.

For output columns A negative integer if the row returned is null.

var_ptr Extended address of the actual data (value of input parameter or
column). NonStop SQL/MP does not return var_ptr; a program must
initialize var_ptr to point to the input and output data buffers

ind_ptr Address of a flag that indicates whether a parameter or column is
actually null.

For input parameters A program sets the ind_ptr location to –1 if
the user entered a null value.

For output columns NonStop SQL/MP sets the ind_ptr location
to –1 if the column value is null.

If a program does not process null values, set the ind_ptr location to
an invalid address.

Table D-2. Version 2 SQLDA Structure Fields (page 2 of 2)

Field Name Description
HP NonStop SQL/MP Programming Manual for C—429847-008
D-5

Converting C Programs Generating a Version 1 SQLDA Structure
Generating a Version 1 SQLDA Structure

If you are converting a program to use the INCLUDE STRUCTURES directive, but you
require a version 1 SQLDA structure, follow these steps:

1. If necessary, remove the RELEASE1 option from the SQL compiler directive or the
INCLUDE SQLDA directive. The C compiler returns an error if you specify the
RELEASE1 option and the INCLUDE STRUCTURES directive.

2. If you specified the RELEASE1 option in an INCLUDE SQLDA directive, remove
any _R1 suffixes you appended to SQLDA field names.

3. Add an INCLUDE STRUCTURES directive with the ALL VERSION 1 option:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 1;

Or specify only the SQLDA VERSION 1 option:

EXEC SQL INCLUDE STRUCTURES SQLDA VERSION 1;

Example D-2 shows a version 1 SQLDA structure.

Table D-3 describes the fields in a version 1 SQLDA structure.

Example D-2. Version 1 SQLDA Structure

#define SQLDA_EYE_CATCHER "DA" /* can have _R1 appended */
struct SQLDA_TYPE /* can have _R1 appended */
{
 char eye_catcher[2];
 short num_entries;
 struct SQLVAR_TYPE /* can have _R1 appended */
 {
 short data_type;
 short data_len;
 short null_info;
 long var_ptr;
 long reserved;
 } sqlvar[sqlvar_count];
} sqlda-name;
char names-buffer-name[length + 1];

Table D-3. Version 1 SQLDA Structure Fields (page 1 of 2)

Field Name Description

eye_catcher Identifying field that a program must initialize as D1 for version 1 or DA
for version 2. SQL/MP statements do not return values to eye_catcher.

num_entries Number of input parameters or output variables the SQLDA structure can
accommodate.

sqlvar Group item that describes input parameters or database columns. The
DESCRIBE INPUT and DESCRIBE statements return one sqlvar entry
for each input parameter or each output variable.
HP NonStop SQL/MP Programming Manual for C—429847-008
D-6

Converting C Programs Generating a Version 1 SQLDA Structure
Using a Combination of SQLDA Structures

Version 300 (or later) SQL/MP software does not support different versions of SQLDA
structures in the same compilation unit. If a program requires more than one SQLDA
structure in a compilation unit, convert all SQLDA structures to version 315. However,
to use a combination of SQLDA structures (for example, a version 2 structure and a
version 315 structure), follow these steps:

1. Separate the program into different compilation units so that the version 315
SQLDA structure and the supporting executable statements are in a different
compilation unit than the version 2 (or version 1) SQLDA structure and its
executable statements.

2. Specify an INCLUDE STRUCTURES directive with the appropriate VERSION
clause in each compilation unit.

3. Compile each compilation unit separately.

4. Use the Binder program to combine the object files into a single target object file.

data_type Data type of the parameter or output variable. For the table of data type
values, see Section 10, Dynamic SQL Operations.

data_len data_len depends on the data type:

Fixed-length character Number of bytes in the string.

Variable-length character Maximum number of bytes in the string.

Decimal numeric Bits 0:7 contain the decimal scale.
Bits 8:15 contain the byte length of the item.

Binary numeric Bits 0:7 contain the decimal scale.
Bits 8:15 contain the byte length of the item
(2, 4, or 8).

Date-time or INTERVAL Bits 0:7 contain a value specifying the range of
date-time fields. For the table of values, see
Section 10, Dynamic SQL Operations.
Bits 8:15 contain the storage size of the item.

var_ptr Extended address of the actual data (value of input parameter or
column). NonStop SQL/MP does not return var_ptr; a program must
initialize var_ptr to point to the input and output data buffers.

Table D-3. Version 1 SQLDA Structure Fields (page 2 of 2)

Field Name Description
HP NonStop SQL/MP Programming Manual for C—429847-008
D-7

Converting C Programs Planning for Future PVUs
Planning for Future PVUs
If you are converting a C program developed for NonStop SQL/MP version 1 or
version 2 software to use version 300 (or later) features and to run on NonStop
SQL/MP version 300 (or later) software, consider making these changes in the
program for compatibility with future NonStop SQL/MP PVUs.

SQL/MP Version Procedures

The SQLGETOBJECTVERSION, SQLGETCATALOGVERSION, and
SQLGETSYSTEMVERSION system procedures, which return SQL version
information, might not be supported in a future PVU and might generate a run-time
error.

If you call any of these procedures, consider modifying the program as follows:

For more information, including the syntax of the GET VERSION statements, see the
SQL/MP Reference Manual.

RELEASE1 and RELEASE2 Options

The RELEASE1 and RELEASE2 options used in the SQL pragma and the
INCLUDE SQLDA directive might not be supported in future PVUs.

Consider modifying the program to use the INCLUDE STRUCTURES directive with the
VERSION 1 or VERSION 2 options to generate version 1 or version 2 SQLDA
structures. Or, convert the program to use version 300 (or later) SQLDA structures.
Remove the RELEASE1 or RELEASE2 option from the SQL pragma or the INCLUDE
SQLDA directive.

For more information about the INCLUDE STRUCTURES directive, see Section 9,
Error and Status Reporting.

Procedure Description of Conversion

SQLGETOBJECTVERSION Convert to the GET VERSION statement, or query the
TABLES.OBJECTVERSION column.

SQLGETCATALOGVERSION Convert to the GET VERSION OF CATALOG statement,
or query the VERSIONS.CATALOGVERSION column.

SQLGETSYSTEMVERSION Convert to the GET VERSION OF SYSTEM statement.
HP NonStop SQL/MP Programming Manual for C—429847-008
D-8

Index

A
Accelerator

effect on SQL validity 8-2

running on object file 1-5, 8-2

running on program file 6-13, 6-14

Access authority
DELETE statement 4-23

FETCH statement 4-20

OPEN statement 4-19

SELECT statement 4-21

SQL compilation requirements 6-13

SQL cursor 4-16, 4-18

UPDATE statement 4-22

Access path
EXPLAIN utility 6-16, 6-27

local autonomy 8-6

RECOMPILE option 6-17

SQL compiler function 6-13

unavailable 8-8

valid programs 8-1

ADD command, Binder program 6-12
ADD CONSTRAINT statement, program
invalidation 8-5
add_define OSS utility 6-29
Aggregate functions 9-9
ALLOCATE attribute, similarity check
rules 8-12
ALTER INDEX statement

error 8204 4-3

program invalidation 8-5

ALTER TABLE statement
error 8204 4-3

program invalidation 8-4

similarity check considerations 8-13

ALTER VIEW statement 4-3
Altering SQL file attribute 8-3
Arguments, C compiler, RUN command 7-3
ASSIGN command, TACL 7-2

Asterisk (*)
with pointer as host variable 2-6

with similarity check 8-13

Attributes, SQL file 8-3
AUDIT attribute

altering and automatic
recompilation 8-3

similarity check rules 8-12

AUDITCOMPRESS attribute, similarity
check rules 8-12
Authority requirements for program
execution 7-1
Automatic SQL recompilation

causes 8-6

collation 8-3

functions 8-6

performance considerations B-4

B
Backslash (\), OSS shell escape
character 6-29
Base table

See Table, SQL

BEGIN DECLARE SECTION directive 1-2,
2-1
BEGIN WORK statement 10-27
BIND command 6-12
Binder program

ADD command 6-12

BIND command 6-12

binding object files 6-11

BUILD command 6-12

C programs 6-11

CHANGE command 7-5

description 1-5

effect on SQL validity 8-2

SELECT command 6-12

SET EXTENDSTACK command B-5
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-1

Index C
Binder program (continued)
SQL compiler 6-22

STRIP command 6-12

BINSERV option, PARAM command 6-22
BROWSE ACCESS with SELECT
statement 4-4
BUFFERED attribute, similarity check
rules 8-12
BUILD command, Binder program 6-12

C
C comments, Declare Section 2-2
C compiler

determining version 6-36, 9-3

OSS environment 6-30

pragmas

RUNNABLE 6-9, 6-12

SQL 3-2, 6-7, 10-23

SQLMEM 3-7, B-2, B-5

SYSTYPE 6-9

XMEM 10-18, B-5

XVAR B-5

RUN command arguments 7-3

WHENEVER directive pseudocode 9-6

C language
compiler 3-2

program development 1-1

c89 utility
Accelerator 6-31

Binder program 6-31

C compiler 6-30

SQL compiler 6-32

version considerations 6-33

CALL format, WHENEVER directive 9-8
CAST function 2-5
Catalog

authority for program execution 7-1

CHECK options 8-10

SQLGETCATALOGVERSION 5-18

version considerations 8-10

CATALOG clause, SQL compiler 6-6, 6-15
CATALOG TACL DEFINE 6-6, 6-15
cextdecs file

CPRL procedures 11-2

dynamic SQL applications 10-23,
10-36

header file 5-2

JULIANTIMESTAMP procedures 4-10

SQLCA structure 9-12

SQL/MP procedures 1-4

system procedures 5-2

CHAR data type, host variable
declaration 2-7
Character data

array as host variable 2-7

Corresponding SQL and C data
types 2-3

INSERT statement 2-8

INVOKE directive 2-19

SELECT statement 2-7

VARCHAR data type 2-9

Character processing rules (CPRL)
procedures

CPRL_AREALPHAS_ 11-4

CPRL_ARENUMERICS_ 11-5

CPRL_ARE_ 11-3

CPRL_COMPARE1ENCODED_ 11-6

CPRL_COMPAREOBJECTS_ 11-8

CPRL_COMPARE_ 11-7

CPRL_DECODE_ 11-9

CPRL_DOWNSHIFT_ 11-10

CPRL_ENCODE_ 11-11

CPRL_GETALPHATABLE_ 11-12

CPRL_GETCHARCLASSTABLE_ 11-1
3

CPRL_GETDOWNSHIFTTABLE_ 11-1
4

CPRL_GETFIRST_ 11-15

CPRL_GETLAST_ 11-16

CPRL_GETNEXTINSEQUENCE_ 11-1
7

HP NonStop SQL/MP Programming Manual for C—429847-008
Index-2

Index C
Character processing rules (CPRL)
procedures (continued)

CPRL_GETNUMTABLE_ 11-18

CPRL_GETSPECIALTABLE_ 11-19

CPRL_GETUPSHIFTTABLE_ 11-20

CPRL_INFO_ 11-20

CPRL_READOBJECT_ 11-22

CPRL_UPSHIFT_ 11-23

CHAR_AS_ARRAY option, SQL
pragma 2-7, 6-7
CHAR_AS_STRING option, SQL
pragma 6-7
CHECK clause, SQL compiler 6-18
CHECK option syntax 8-10
CLEARONPURGE attribute, similarity
check rules 8-12
CLOSE statement 4-24
CLOSE TABLES option, FREE
RESOURCES statement 4-2, 4-24
Closing tables and views 4-2
COBOL as host language 1-1
Coding rules for embedding SQL
statements 3-1
Collation

automatic SQL recompilation 8-3

CPRL_COMPAREOBJECTS_
procedure 8-15

similarity check 8-15

Collation buffer, determining length 10-7
Collector process, EMS B-5
Colon (:) with host variable 1-2, 2-6
Column headings, similarity check
rules 8-12
Comments

Declare Section 2-2

similarity check rules 8-12

COMMIT WORK statement 10-28
Communications area, SQL

See SQLCA structure

Compilation
automatic recompilation 8-5

C compiler syntax 6-9

Compilation (continued)
C source file 1-5

dynamic SQL statements 6-23

explicit SQL 6-13, 6-14

COMPILE clause, SQL compiler 6-20
CONTROL TABLE directive C-3
Conversational interface

See SQL Conversational Interface
(SQLCI)

Conversion, between SQL and C data 2-5
CONVERTTIMESTAMP function 4-10
COPY command and lost open error 4-3
Copying SQL files, effect on SQL
validity 8-2
CPRL_AREALPHAS_ procedure 11-4
CPRL_ARENUMERICS_ procedure 11-5
CPRL_ARE_ procedure 11-3
CPRL_COMPARE1ENCODED_
procedure 11-6
CPRL_COMPAREOBJECTS_
procedure 8-15, 11-8
CPRL_COMPARE_ procedure 11-7
CPRL_DECODE_ procedure 11-9
CPRL_DOWNSHIFT_ procedure 11-10
CPRL_ENCODE_ procedure 11-11
CPRL_GETALPHATABLE_
procedure 11-12
CPRL_GETCHARCLASSTABLE_
procedure 11-13
CPRL_GETDOWNSHIFTTABLE_
procedure 11-14
CPRL_GETFIRST_ procedure 11-15
CPRL_GETLAST_ procedure 11-16
CPRL_GETNEXTINSEQUENCE_
procedure 11-17
CPRL_GETNUMTABLE_ procedure 11-18
CPRL_GETSPECIALTABLE_
procedure 11-19
CPRL_GETUPSHIFTTABLE_
procedure 11-20
CPRL_INFO_ procedure 11-20
CPRL_READOBJECT_ procedure 11-22
CPRL_UPSHIFT_ procedure 11-23
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-3

Index D
CREATE CONSTRAINT statement 4-3
CREATE INDEX statement

NO INVALIDATE option 8-3

program invalidation 8-5

Creation timestamp, similarity check
rules 8-12
C-series Guardian operating system 7-5
CURRENTDEFINES, SQL compiler
option 6-15
Cursor operations

CLOSE statement (dynamic) 10-27

CLOSE statement (static) 4-24

DECLARE CURSOR statement 4-18

DELETE statement 4-23

dynamic SQL cursors

declaration 10-27

description of 10-20

opening 10-27

FETCH statement 4-15, 4-20

foreign cursors 4-24

guidelines 4-22, 10-20

host variables 4-19

initializing 4-19

lost open error 4-4

OPEN statement 4-15, 4-19

process access ID (PAID) requirements

DECLARE CURSOR
statement 4-18

DELETE statement 4-23

description 4-22

FETCH statement 4-20

OPEN statement 4-19

SELECT statement 4-21

SQL objects 4-16

UPDATE statement 4-22

SELECT statement 4-21

stability of cursor 4-17

Virtual sequential block buffering
(VSBB) 4-17

WHERE clause 4-21

D
Data conversion between C and SQL data
types 2-5
Data declarations

BEGIN DECLARE SECTION
directive 2-1

END DECLARE SECTION
directive 2-1

statements 1-3

tables and views 2-19

Data Definition Language (DDL)
SQL statements 1-3

Tandem statements 10-37

Data Manipulation Language (DML)
statements 1-3
Data status language (DSL) statements 1-3
Data structures, SQL

description B-1

placing in memory B-2

Data types
C 2-3, 2-4

conversion between SQL and C 2-5

SQL 2-3, 2-4

Database, sample A-1
Data, SQL

DELETE statement 4-12, 4-23

FETCH statement 4-20

INSERT statement 4-8

SELECT statement 4-4

type correspondence (SQL and C) 2-3,
2-4

UPDATE statement 4-10

DATEFORMAT clause
example 2-14

INVOKE directive 2-14

Date-time data type with INVOKE
directive 2-14
DDL operations, invalidating 8-4
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-4

Index D
Debugging
FORCE option 6-16, 6-23

RUND command 7-3

Decimal data type as host variable 2-11
Declarations, SQLDA

SQLDA_EYE_CATCHER 10-5

SQLDA_HEADER_LEN 10-5

SQLDA_NAMESBUF_OVHD_LEN 10-
5

SQLDA_SQLVAR_LEN 10-5

DECLARE CURSOR statement 4-18
Declare Section 1-2, 2-1
dec_to_longlong C routine 2-11
DEFAULTS DEFINE

See =_DEFAULTS DEFINE, TACL

DEFINE format, EXPLAIN report 6-27
DEFINES option

EXPLAIN utility 6-16

SQL compiler 6-16

DEFINEs, TACL
automatic recompilation 8-7

INVOKE directive 2-19

local autonomy C-2

SQL program file 7-2

DELETE statement
automatic recompilation 8-3

multiple rows 4-13

with a cursor 4-23

del_define OSS utility 6-29
Descriptor area, SQL

See SQLDA structure

DETAIL option, FILEINFO command 8-1
Directives

See SQL/MP directives

Disk process (DP2)
SQLCADISPLAY 5-3

SQLCAFSCODE 5-8

SQLCATOBUFFER 5-14

Distributed database, maximizing local
autonomy C-1

Double hyphen (--) in SQL statements 3-1
Double quotes (") in SQL statements 3-1
DP2

See Disk process (DP2)

DROP CONSTRAINT statement
error 8204 4-3

program invalidation 8-5

DROP INDEX statement
error 8204 4-3

program invalidation 8-5

DROP TABLE statement
error 8204 4-3

program invalidation 8-5

DROP VIEW statement
error 8204 4-3

program invalidation 8-5

D-series Guardian operating system 7-4
DUPLICATE command, FUP 8-2
Duplicating SQL files, effect on SQL
validity 8-2
Dynamic memory allocation 10-18
Dynamic SQL

compilation 8-5

conversational interface 10-1

description 1-6

dynamic SQL statements 1-3, 10-2

getting information 10-3

input parameters 10-11

names buffer 10-3

null values 10-16

output variables 10-12

overview 10-1

parameter list 10-12

Pathway server 10-36

SQLDA structure 10-3

SQLSA statistics 9-13

statements 10-2

Dynamic SQL, statement compilation 6-23
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-5

Index E
E
Embedded SQL statements

advantages 1-1

description 1-3

in C source file 1-3, 3-1

overview 1-1

Empty section in SQL program 6-21
EMS collector process B-5
END DECLARE SECTION directive 1-2,
2-1
Enscribe database

memory use by program B-2

utilities protection for SQL objects 8-1

Enscribe I/O 5-6, 5-21
Error and status reporting

description 1-5, 9-1

display format control 5-5, 5-15

SQL procedures 5-1

SQLCADISPLAY procedure 5-3

SQLCAFSCODE procedure 5-8

SQLCATOBUFFER procedure 5-14

sqlcode 9-4

SQLMSG file 5-2

SQLSA structure 9-13

WHENEVER directive 9-6

Errors and warnings
SQL/MP, SQL compiler 6-23

Errors and warnings, SQL/MP
DELETE statement 4-13, 4-23

disk-process errors 5-8

FETCH statement 4-20

file-system errors 5-8

INSERT statement 4-8

operating system errors 5-8

run-time SQL recompilation 8-9

UPDATE statement 4-11

EXEC SQL keywords 3-1
EXECUTE IMMEDIATE statement

description 1-6

EXECUTE IMMEDIATE statement, SQL
compilation errors 6-23
EXECUTE statement 1-6
Executing a C program 1-5, 7-1
Execution plan

EXPLAIN report 6-27

optimized by SQL compiler 6-13

optimized by statistics 6-23

SQL compiler function 6-13

EXPLAIN utility
EXPLAIN DEFINES report 6-27

EXPLAIN PLAN report 6-27

SQL compiler option 6-16

SQLCOMP DEFINES option 7-2

-Wverbose flag 6-33

Explicit SQL compilation
description 1-5

Explicit SQL compilation, SQLCOMP
command 6-14
EXT option, SQLMEM pragma B-2
Extended data segment, specifying
default B-2
EXTENT attribute, similarity check
rules 8-12
eye_catcher field in SQLDA,
initializing 10-5, 10-29

F
FastSort program 5-3, 5-14
FETCH statement 4-15, 4-22, 10-12
File attributes, SQL

effect of altering 8-3

similarity check rules 8-12

File label, SQL program
inconsistency with catalog 8-4

SQL validation 8-1

File number of SQLMSG file 5-4, 5-15
File Utility Program (FUP)

DUPLICATE command 8-2

FILEINFO command 8-1
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-6

Index G
FILEINFO command
FUP 8-1

SQLCI 8-1

File-system errors
SQLCADISPLAY procedure 5-3

SQLCAFSCODE procedure 5-8

SQLCATOBUFFER procedure 5-14

FILE_GETINFOBYNAME_ procedure 5-2
FILE_GETINFOLISTBYNAME_
procedure 5-2
FILE_GETINFOLIST_ procedure 5-2
FILE_GETINFO_ procedure 5-2
First error flag, SQLCAFSCODE
procedure 5-8
Fixed-length character data, host variable
declaration 2-7
Fixed-point numeric data, host variable
declaration 2-11
Flag, SQL object file 8-1
FOR UPDATE OF clause, UPDATE
statement 4-22
FORCE option

error messages 6-23

SQL compiler 6-16

free function, C language 10-28
FREE RESOURCES statement 4-2, 4-24

G
GET VERSION statement 6-37, 7-7
Global memory area B-2
GOTO format, WHENEVER directive 9-8
Guardian system procedures

See System procedures, Guardian

H
Help text, similarity check rules 8-12
HIGHPIN object-file attribute 7-5
HIGHPIN run option, TACL RUN
command 7-5

Host object SQL version (HOSV)
C compiler 6-37

definition 6-37

Host variable
colon (:) 1-2

creating with INVOKE 2-19

data conversion 2-5

decimal data type 2-11

declaration 1-2, 2-1

declare sections 2-1

definition 2-1

DELETE statement 4-13

fields in a structure 2-9

fixed-point data type 2-11

INDICATOR clause 2-6

naming conventions 2-2

null value 2-17

pointer 2-2, 2-6

SQL cursor 4-19, 4-21

syntax 2-6

TYPE AS clause 2-7

VARCHAR data type 2-9

Host variable, mismatch effect on SQL
compilation 6-23
Hyphen, double (--) in SQL statements 3-1

I
IN file, SQL compiler 6-14
INCLUDE SQLCA directive 5-4, 9-12
INCLUDE SQLDA directive 10-3, 10-24
INCLUDE SQLSA directive 9-13, 10-24
INCLUDE STRUCTURES directive 9-1,
D-1
Index, SQL, changes and program file
validity 8-3
INDICATOR clause with host variable 2-6
Indicator parameter

function 10-17

names buffer 10-18
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-7

Index J
Indicator variable
aggregate function 9-9

definition 2-1

host variable 2-6

INVOKE directive 2-22

PREFIX and SUFFIX clauses 2-23

ind_ptr field, initializing 10-29
INFO DEFINE format, EXPLAIN
report 6-27
info_define OSS utility 6-29
Inoperable execution plan 8-10
Input host variable 2-1
Input parameter, dynamic SQL 10-11,
10-24
Insert operation of timestamp value 4-10
INSERT statement

description 4-8

null values 2-17, 4-9

scale for numeric data 2-12, 2-13

Inspect program, RUND command 7-3
INTERVAL data types

description 2-13

INSERT statement 2-14

INVOKE directive 2-14

INVALIDATE option, CREATE INDEX
statement 8-3
Invalidation caused by DDL operations 8-4
INVOKE directive

creating host variables 2-19

through SQLCI 2-24

Item codes
SQLCAGETINFOLIST 5-11

SQLCAGETINFOLIST parameter 5-10

J
JULIANTIMESTAMP procedure 4-10

K
Key tags, similarity check rules 8-12

L
Library procedures, system 1-4
List file

C compiler 6-9

SQL compiler 6-14

LOAD command and lost open error 4-3
Load time, SQL 8-6
Local autonomy

maximizing for distributed
database C-1

program execution 8-6

program file validity 8-4

TACL DEFINEs C-2

using current statistics C-2

Local partition, to maximize local
autonomy C-1
LOCKLENGTH attribute, similarity check
rules 8-12
Locks, FREE RESOURCES
statement 4-24
Logical DEFINE

See DEFINEs, TACL

longlong_to_dec C routine 2-11
Loops, infinite, WHENEVER directive 9-8
Lost open error (SQL error -8204) 4-2

M
MAXEXTENTS attribute, similarity check
rules 8-12
Maximizing local autonomy

See Local autonomy

Measure program 6-7
MEM option, TACL B-5
Memory management

dynamic allocation 10-18

estimating use B-2

SQLMEM pragma B-2

Memory model 10-18, 10-29
Memory stack overflows B-4
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-8

Index N
Modifying data
DELETE statement 4-12, 4-23

UPDATE statement 4-10

Moving SQL files, effect on SQL
validity 8-2
Multirow operation

DELETE statement 4-13

SELECT statement 4-21

UPDATE statement 4-12

N
Names buffer

determining length 10-7

indicator parameters 10-18

using with parameter 10-14

Naming conventions for host variables 2-2
Native mode C compiler (NMC)

Guardian environment 6-10

SQL pragma 6-7

SQLMEM pragma 3-7, B-2

NEWPROCESS procedure B-5
NO INVALIDATE option, CREATE INDEX
statement 8-3
NOEXPLAIN option, SQL compiler 6-16
NOFORCE option, SQL compiler 6-16
NOOBJECT option, SQL compiler 6-16
NOPURGEUNTIL attribute, similarity check
rules 8-12
NORECOMPILE option, SQL
compiler 6-17, 8-6
NOSQLMAP option, SQL pragma 6-7
Not found condition, WHENEVER
directive 9-6
NOWHENEVERLIST option, SQL
pragma 6-7
NOXMEM pragma B-2
NULL keyword

with INSERT statement 4-9

with UPDATE statement 4-12

NULL STRUCTURE clause with INVOKE
directive 2-23

Null terminator
C strings 2-7

host variables in arrays 2-7

Null value
definition 2-1

dynamic SQL 10-16, 10-27

input parameters 10-17

INSERT statement 2-17, 4-9

INVOKE directive 2-22

names buffer 10-18

output variables 10-17

parameters 10-17

retrieving rows 2-18

SELECT statement 2-17

testing 2-17

UPDATE statement 4-12

O
OBEY command file, format for EXPLAIN
report 6-16
OBEYFORM option

EXPLAIN report 6-27

SQL compiler 6-16

Object file
Accelerator 6-14

Binder program 6-11

C compiler 6-9

SQL compilation 6-12, 6-14

TACL RUN command 7-3

validation 8-1

OBJECT option, SQL compiler 6-16
Object, SQL

access authority for program
execution 7-1

changes and program file validity 8-3

with SQLGETOBJECTVERSION 5-19

OPEN procedure 10-36
OPEN statement 4-15, 4-19, 4-22, 4-24
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-9

Index P
Open System Services (OSS)
Accelerator 6-31

Binder program 6-31

C compilation 6-30

c89 utility 6-30

program development 6-28

shell escape character 6-29

SQL compiler 6-32

TACL DEFINEs 6-29

version considerations 6-28

Open tables, SQL 8-7
Opening tables and views 4-2
Operable execution plan 8-10
Operating system, Guardian

SQLCADISPLAY procedure 5-3

SQLCAFSCODE procedure 5-8

SQLCATOBUFFER procedure 5-14

Optimized execution plan
EXPLAIN PLAN report 6-27

SQL compiler function 6-13

statistics requirement 6-23

OUT file
C compiler 6-9

SQL compiler 6-14

Output host variable 2-1
Output variable

allocating space 10-33

displaying 10-33

dynamic SQL 10-12, 10-25

Overflow, stack space B-4
OWNER attribute, similarity check
rules 8-12

P
Parallel execution plans

automatic recompilation 8-3

similarity check 8-9

PARAM command, TACL
for SQL program file 7-2

PARAM command, TACL, with SQL
compiler 6-22
Parameter

dynamic SQL 10-11

indicator 10-17

unnamed 10-11

using a list 10-12

using in loop 10-13

value substitution 10-11

Partition
local, to maximize local autonomy C-1

similarity check rules for attributes 8-12

skipping unavailable C-3

Pascal, host language 1-1
Pathway environment

dynamic SQL server 10-36

error checking through requester 4-24

running C server process 7-6

Performance
automatic recompilation 8-5

INVOKE directive 2-19

memory considerations B-4

SQL cursor considerations 4-2

SQLSA statistics 9-13

PLAN option for EXPLAIN utility 6-16
PMSEARCHLIST TACL variable
Pointer, host variable 2-2, 2-6
Pragmas, C compiler

NOXMEM B-2

RUN options 6-9

RUNNABLE 6-9, 6-12

SQL

description 3-2

SQLMEM B-2, B-5

SQL, specifying 6-7

SYSTYPE 6-9

XMEM B-5

XVAR B-5

PREFIX clause, INVOKE statement 2-23
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-10

Index Q
PREPARE statement
dynamic SQL compilation 10-25

PREPARE statement, SQL compilation
errors 6-23
Primary key in SELECT statement 4-6
Procedures

See SQL/MP system procedures

process access ID (PAID)
DECLARE CURSOR statement 4-18

DELETE statement 4-23

FETCH statement 4-20

OPEN statement 4-19

privileges 7-1

SELECT statement 4-21

SQL cursor requirements 4-16

UPDATE statement 4-22

Process file segment (PFS) 7-2
Process identification numbers (PIN)

description 7-4

high and low 7-4

Processes, concurrent 7-4
PROCESS_CREATE_ procedure

authority 7-1

memory B-5

programmatic commands 7-5

PROGID attribute 7-1
Program catalog version (PCV)

CHECK options 6-18, 8-10

definition 6-37

OSS program file 6-33

similarity check 8-11

Program development, C
advantages of INVOKE directive 2-19

automatic recompilation
dependencies 8-3

overview 1-1

Program file, SQL
binding object file 6-11

execution 7-1

SQL compilation 6-12

Program file, SQL (continued)
TACL DEFINEs 7-2

TACL RUN command 7-3

Program format version (PFV)
CHECK options 6-18, 8-10

definition 6-37

OSS program file 6-33

similarity check 8-11

SQL executor 7-7

Program object file
See Program file, SQL

Program size, estimating B-2
PROGRAMS table

file-label and catalog
inconsistencies 8-4

program invalidation 8-1

SIMILARITYINFO column 8-10

PROGRAMS table, SQL compilation 6-13
Protection view

similarity check rules 8-13

UPDATE statement 4-10

PURGEDATA command and lost open
error 4-3

Q
Question mark (?), unnamed
parameter 10-11

R
READ procedure 1-4
READUPDATE procedure 10-36
RECEIVE file

See $RECEIVE file

RECOMPILE option, SQL compiler 6-17,
8-6
RECOMPILEALL option, SQL
compiler 6-17, 8-6
RECOMPILEONDEMAND option, SQL
compiler 6-17
Record descriptions, tables and views 2-19
Records, SQLSA statistics 9-14
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-11

Index S
Redefinition timestamp
program invalidation 8-5

similarity check rules 8-12

REGISTERONLY clause, SQL
compiler 6-17
Relational database management system
(RDBMS) 1-1
Release 1, SQL/MP

catalog 5-18

object 5-19

system software 5-20

Release 2, SQL/MP
catalog 5-18

object 5-19

system software 5-20

RELEASE1 option in SQL pragma 6-8
RELEASE2 option in SQL pragma 6-8
RENAME statement, effect on SQL
validity 8-3
REPLY procedure 10-36
Requester, SCREEN COBOL 10-36
RESTORE operation and lost open
error 4-3
RESTORE program with CHECK
option 6-18
Retrieving SQL data

cursor declaration 4-18

multiple rows 4-21

single row 4-4

RISC (TNS/R) system 1-5
Row in SQL table

DELETE statement 4-12, 4-23

FETCH statement 4-15, 4-20

INSERT statement 4-8

single-row DELETE statement 4-13

single-row SELECT statement 4-4

single-row UPDATE statement 4-11

SQLSA statistics 9-14

UPDATE statement 4-10, 4-22

RTDU (run time data unit) 6-8

RUN command, TACL
SQL object file 1-5

SQL program file 7-3

Run option, TACL
C compiler 6-9

SQL compiler 6-15

SQL program file 7-3

Run time data unit (RTDU) 6-8
RUND command, TACL 7-3
RUNNABLE pragma 6-9, 6-12
Run-time memory allocation 10-18
Run-time recompilation errors 8-9

S
Sample database 10-37, A-1
Sample program

basic 10-37

detailed 10-42

Scale in numeric data
INSERT statement 2-12, 2-13

INVOKE directive 2-13

SELECT statement 2-12, 2-13

SQLDA data_len field 10-33

UPDATE statement 2-12, 2-13

SCI (SQL compiler interface) 9-3
SCREEN COBOL 10-36
Section location table (SLT) 6-8
SECURE attribute, similarity check
rules 8-12
Security attribute, effect on SQL validity 8-3
SELECT command, Binder 6-12
SELECT statement

cursor declaration 4-18

null values 2-17

scale for numeric data 2-12, 2-13

single row 4-4

Semicolon (;) in SQL statements 1-3, 3-1
SENSITIVE flag, SQL 8-1
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-12

Index S
Sequential I/O (SIO) procedures
SQLCADISPLAY 5-3

SQLCATOBUFFER 5-14

SERIALWRITES attribute, similarity check
rules 8-12
Set operation

automatic recompilation 8-3

DELETE statement 4-13

UPDATE statement 4-12

SETSCALE function 2-5, 2-11
set_define OSS utility 6-29
show_define OSS utility 6-29
Similarity check

ALTER TABLE statement 8-13

description 8-9

for collations 8-15

rules for protection views 8-13

rules for tables 8-11

SIMILARITYCHECK column, TABLES
table 8-11
SIMILARITYINFO column, PROGRAMS
table 8-10
Single row in SQL table

SELECT statement 4-4

UPDATE statement 4-11

SIO
See Sequential I/O (SIO)

SKIP UNAVAILABLE PARTITION option,
CONTROL TABLE directive C-3
Software Product Revision (SPR) 1-7
Sort operations, TACL DEFINEs 7-2
SORTPROG process 5-3, 5-14
SORT_DEFAULTS DEFINE

See =_SORT_DEFAULTS DEFINE

SOURCE directive, SQL 2-2
Source file, C compiler 6-9
SQL comments, Declare Section 2-2
SQL communications area

See SQLCA structure

SQL compiler interface (SCI) 9-3

SQL compiler (SQLCOMP)
automatic recompilation 8-5

CATALOG clause 6-6

DEFINEs 6-6

description 1-5, 6-12

determining version 6-36

dynamic SQL statements 6-23

error messages 6-23

EXPLAIN report 6-26, 6-27

EXPLAIN utility 6-26

functions 6-13

insufficient information 6-24

PARAM command 6-22

SQLCOMP command 6-12, 6-14

unresolved TACL DEFINEs 6-24

warning messages 6-23

SQL Conversational Interface (SQLCI),
INVOKE 2-24
SQL descriptor area

See SQLDA structure

SQL directives
See SQL/MP directives

SQL executor, determining version 7-7
SQL file attributes 8-3
SQL functions

CONVERTTIMESTAMP 4-10

SETSCALE 2-5, 2-11

SQL object file
See Program file

SQL object flag 8-1
SQL pragma

description 3-2

specifying 10-23

SQL pragma, specifying 6-7
SQL sensitive flag 8-1
SQL statements

See SQL/MP statements

SQL statistics area
See SQLSA structure

SQL structures, internal B-1
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-13

Index S
SQLCA structure
automatic SQL recompilation errors 8-9

description 9-12

FETCH statement 4-20

INSERT statement 4-8

SQLCADISPLAY procedure 5-3

SQLCAFSCODE procedure 5-8

SQLCAGETINFOLIST procedure 5-9

SQLCATOBUFFER procedure 5-14

UPDATE statement 4-11

SQLCADISPLAY procedure
description 5-3

example 1-4

SQLCA structure 9-12

SQLCAFSCODE procedure
description 5-8

SQLCA structure 9-12

SQLCAGETINFOLIST procedure
description 5-9

SQLCA structure 9-12, D-1

SQLCATOBUFFER procedure
description 5-14

SQLCA structure 9-12

SQLCI
See SQL Conversational Interface
(SQLCI)

sqlcode variable
after DELETE statement 4-13

after FETCH statement 4-20

after INSERT statement 4-8

after UPDATE statement 4-11

automatic recompilation 8-9

checking for error 9-4

data conversion 2-5

declaration 9-4

dynamic SQL use 10-23

WHENEVER directive 9-6

SQLCOMP command
description 6-12

EXPLAIN DEFINES option 7-2

SQLCOMP command (continued)
SQLMAP option 9-3

syntax 6-14

SQLCOMPILE option, RESTORE, CHECK
option 6-18
SQLDA structure

declarations 10-8

eye_catcher field 10-5

names buffer 10-4

parameter 10-14

SQL statements 10-3

Version 300 template 10-4

Version 315 (or later) template 10-5

version management D-1

SQLDA_EYE_CATCHER declaration 10-5
SQLDA_EYE_CATCHER literal 10-24
SQLDA_HEADER_LEN declaration 10-5
SQLDA_NAMESBUF_OVHD_LEN
declaration 10-5
SQLDA_SQLVAR_LEN declaration 10-5
SQLGETCATALOGVERSION
procedure 5-18
SQLGETOBJECTVERSION
procedure 5-19
SQLGETSYSTEMVERSION
procedure 5-19
SQLIN data structure B-1
SQLIVARS data structure B-1
SQLMAP option

SQLCOMP command 9-3

SQLMAP option, SQL pragma 6-7
SQLMEM pragma B-2, B-5
SQLMSG file

description 5-2

file number 5-4, 5-15

SQLCADISPLAY procedure 5-4

SQLCATOBUFFER procedure 5-15

SQLOVARS data structure B-1
SQLSA structure

declaration 9-13

description 9-13
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-14

Index S
SQLSA structure (continued)
dynamic SQL statement statistics 9-13

fields 9-14, 9-17

INCLUDE SQLSA directive 9-13

SQLSADISPLAY procedure 5-20

static SQL statement statistics 9-13

SQLSADISPLAY procedure 5-20
SQL/MP database

overview 1-1

sample A-1

version management 1-7

SQL/MP directives
BEGIN DECLARE SECTION 1-2, 2-1

coding 3-1

description 1-3

END DECLARE SECTION 1-2, 2-1

INCLUDE SQLCA 5-4, 9-12

INCLUDE SQLDA 10-3, 10-24

INCLUDE SQLSA 9-13, 10-24

INCLUDE STRUCTURES 9-1, D-1

INVOKE 2-19

placing in source file 3-2

WHENEVER 9-6, 10-23

SQL/MP statements
ADD CONSTRAINT, program
invalidation 8-5

ALTER INDEX

error 8204 4-3

program invalidation 8-5

ALTER TABLE

error 8204 4-3

program invalidation 8-4

similarity check 8-13

ALTER VIEW 4-3

BEGIN WORK 10-27

coding guidelines 3-1

coding in source file 3-2

COMMIT WORK 10-28

CREATE CONSTRAINT 4-3

SQL/MP statements (continued)
CREATE INDEX

NO INVALIDATE option 8-3

program invalidation 8-5

DECLARE CURSOR 4-18

DELETE 4-12, 4-23

description 1-3

DROP CONSTRAINT

error 8204 4-3

program invalidation 8-5

DROP INDEX

error 8204 4-3

DROP INDEX, program
invalidation 8-5

DROP TABLE

error 8204 4-3

program invalidation 8-5

DROP VIEW

error 8204 4-3

program invalidation 8-5

EXECUTE 1-6

EXECUTE IMMEDIATE 1-6

FETCH 10-12

FREE RESOURCES 4-2, 4-24

GET VERSION 6-37, 7-7

INSERT 4-8

OPEN 4-19

placing in source file 3-2

PREPARE 10-25

RENAME 8-3

SELECT 4-4

UPDATE 4-10

UPDATE STATISTICS

error 8204 4-3

execution plans 6-21

local autonomy C-2

program invalidation 8-3, 8-5
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-15

Index T
SQL/MP system procedures
description 5-1

SQLCADISPLAY

data conversion 2-5

example 1-4

syntax 5-3

SQLCAFSCODE 5-8, 9-12

SQLCAGETINFOLIST 9-12, D-1

SQLCATOBUFFER 9-12

SQLGETCATALOGVERSION 5-18

SQLGETOBJECTVERSION 5-19

SQLGETSYSTEMVERSION 5-19

SQLSADISPLAY 5-20

Stability, SQL cursor 4-17
Stack space requirements B-4
Statements

See SQL/MP statements

Statistics
local autonomy C-2

optimized execution plan 6-23

similarity check rules 8-12

SQL compilation 6-21

SQLCADISPLAY procedure 5-3

SQLCAGETINFOLIST procedure 5-9

SQLCATOBUFFER procedure 5-14

SQLSA structure 9-13

SQLSADISPLAY procedure 5-5, 5-20

UPDATE STATISTICS statement 6-21

Statistics area, SQL
See SQLSA structure

Status and error reporting 1-5, 9-1
STOREDDEFINES option

SQL compiler 6-15

SQLCOMP command 6-6

STRIP command, Binder 6-12
Structure as host variable 2-9
SUFFIX clause with INVOKE
statement 2-23
Swap file volume for SQL compiler 6-22
SWAPVOL option, PARAM command 6-22

SYNCDEPTH and automatic
recompilation 8-3
System procedures, Guardian

CLOSE 1-4

FILE_GETINFOBYNAME_ 5-2

FILE_GETINFOLISTBYNAME_ 5-2

FILE_GETINFOLIST_ 5-2

FILE_GETINFO_ 5-2

JULIANTIMESTAMP 4-10

NEWPROCESS

access authority 7-1

memory B-5

OPEN 10-36

PROCESS_CREATE_

authority 7-1

memory B-5

programmatic commands 7-5

READ 1-4

READUPDATE 10-36

REPLY 10-36

WRITEREAD 1-4

System procedures, SQL/MP
description 5-1, 5-2

SQLCADISPLAY 1-4, 2-5, 5-3

SQLCAFSCODE 5-8

SQLCAGETINFOLIST 5-9, D-1

SQLCATOBUFFER 5-14

SQLGETCATALOGVERSION 5-18

SQLGETOBJECTVERSION 5-19

SQLGETSYSTEMVERSION 5-19

SQLSADISPLAY 5-20

SYSTYPE pragma 6-9

T
TABLECODE attribute, similarity check
rules 8-12
TABLES table 8-11
Table, SQL

changes and program file validity 8-3

declaring record descriptions 2-19
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-16

Index U
Table, SQL (continued)
maximizing local autonomy for
partitions C-1

open time and automatic SQL
recompilation 8-7

SELECT statement 4-4

similarity check rules 8-12

UPDATE statement 4-10

Table, SQL, updating statistics 6-21
Tandem Advanced Command Language
(TACL)

DEFINEs

catalog name 6-6, 6-15

CLASS CATALOG 6-6, 6-15

description 7-2

maximizing local autonomy C-2

OSS environment 6-29

RECOMPILE clause 6-17

SQL compilation 6-15, 6-24

SQL compiler 6-6

SQL program file 7-2

HIGHPIN run option 7-5

PARAM command 7-2

RUN command

C pragma 3-2

SQL program file 1-5, 7-3

RUN command, C compiler 6-9

run options for SQL program file 7-3

RUND command 7-3

Tandem NonStop Series/RISC (TNS/R)
system 6-11, 6-31
Terminator, SQL statement 3-1
Timestamp

check at table open time 8-7

collation check 8-15

INSERT statement 4-10

program validation time 8-1

run-time check 8-7

TMF
See Transaction Management Facility
(TMF)

TNS/R system 1-5
Transaction Application Language (TAL),
host language 1-1
Transaction control statements 1-3
Transaction Management Facility (TMF)

catalog inconsistencies 8-4

data consistency 1-1

example 9-11

FETCH statement 4-20

OPEN statement 4-15

UPDATE statement 4-10

with dynamic SQL 10-27

TRANSIDS tables 6-13
TYPE AS clause

example 2-14

with date-time data 2-14

with host variable 2-7

with INVOKE directive 2-14

U
Uncompiled SQL statements, FORCE
option 6-23
Underlying SQL tables and similarity
check 8-10
Unqualified column names with similarity
check 8-14
UPDATE set operations, automatic
recompilation 8-3
UPDATE statement

description 4-10

multiple rows 4-12

null values 4-12

scale for numeric data 2-12, 2-13

set of rows 4-12

single row 4-11

using parameter 10-12
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-17

Index V
UPDATE STATISTICS statement
effect on program invalidation 8-3

effect on SQL validity 8-3

error 8204 4-3

maximizing local autonomy C-2

RECOMPILE option, program
invalidation 8-5

UPDATE STATISTICS statement, SQL
compiler 6-21
UPDATE WHERE CURRENT clause for a
cursor 10-21
USAGES table

CHECK INOPERABLE PLANS
option 8-5

SQL compiler access 6-13

SQL compiler entries 8-1

unrecorded program
dependencies 6-23

USER option, SQLMEM pragma B-2
USING DESCRIPTOR clause

FETCH statement 10-12

for a cursor 10-21

V
VALID flag, SQL

checking 8-1

PROGRAMS table 8-4

Validation, program file
checking 8-1

Validation, program file, FORCE
option 6-23
VARCHAR data type

correspondence in C 2-3, 2-4

host variable declaration 2-9

Variable-length character data, host
variable declaration 2-9
VERIFIEDWRITES attribute, similarity
check rules 8-12
VERIFY utility, SQL 8-1
Version management

C compiler 6-36, 9-3

Version management (continued)
description 1-7

displaying information

SQLGETCATALOGVERSION
procedure 5-18

SQLGETOBJECTVERSION
procedure 5-19

SQLGETSYSTEMVERSION
procedure 5-19

INCLUDE STRUCTURES directive 9-1

SQL compiler 6-36

SQL Executor 7-7

SQL program file 6-37

VPROC program 9-3

vi text editor 6-28
View, SQL

changes and program file validity 8-3

declaring record descriptions 2-19

Virtual sequential block buffering (VSBB),
SQL cursor operations 4-17
VPROC program 9-3

W
Warning messages

detecting with WHENEVER
directive 9-6

Warning messages, SQL compiler 6-23
WHENEVER directive

description 9-6

disabling checking 9-7

dynamic SQL 10-23

enabling checking 9-7

scope 9-7

WHENEVERLIST option, SQL pragma 6-7
WHERE CURRENT OF clause, UPDATE
statement 4-22
WRITEREAD procedure 1-4
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-18

Index X
X
XMEM pragma 10-18, B-5
XVAR pragma B-5

Z
ZZBInnnn object file 6-9

Special Characters
" (double quotes) in SQL statements 3-1
#define C directive 2-1
#include C directive 2-2, 11-2
$0 collector process B-5
$RECEIVE file 10-36
$SYSTEM.SYSTEM.SQLMSG file 5-2
* (asterisk)

with pointer as host variable 2-6

with similarity check 8-13

-Wverbose flag and EXPLAIN utility 6-33
-- (double hyphen) in SQL statements 3-1
/bin/compilers directory 6-30
/nonnative/bin/compilers directory 6-30
: (colon) with host variable 1-2, 2-6
; (semicolon) in SQL statements 1-3, 3-1
=_DEFAULTS DEFINE, TACL 6-27
=_SORT_DEFAULTS DEFINE 7-2
? (question mark), unnamed
parameter 10-11
\ (backslash), OSS shell escape
character 6-29
HP NonStop SQL/MP Programming Manual for C—429847-008
Index-19

	HP NonStop SQL/MP Programming Manual for C
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information

	About This Manual
	Who Should Read This Guide
	Related Manuals
	Notation Conventions
	HP Encourages Your Comments

	1 Introduction
	Advantages of Using Embedded SQL Statements
	Developing a C Program
	Declaring and Using Host Variables
	Embedding SQL/MP Statements and Directives
	Calling SQL/MP System Procedures
	Compiling and Executing a Host-Language Program
	Processing Errors, Warnings, and Status Information

	Dynamic SQL
	SQL/MP Version Management

	2 Host Variables
	Specifying a Declare Section
	Coding Host Variable Names
	Using Corresponding SQL and C Data Types
	Specifying Host Variables in SQL Statements
	Declaring and Using Host Variables
	Fixed-Length Character Data
	Variable-Length Character Data
	Structures
	Decimal Data Types
	Fixed-Point Data Types
	Date-Time and INTERVAL Data Types

	Using Indicator Variables for Null Values
	Inserting a Null Value
	Testing For a Null Value
	Retrieving Rows With Null Values

	Creating Host Variables Using the INVOKE Directive
	Advantages of Using an INVOKE Directive
	C Structures Generated by the INVOKE Directive
	Using Indicator Variables With the INVOKE Directive
	Using INVOKE With SQLCI

	Associating a Character Set With a Host Variable
	Treatment in C Statements
	VARCHAR Data Type

	3 SQL/MP Statements and Directives
	Embedding SQL Statements
	Coding Statements and Directives
	Placing Statements and Directives

	Finding Information

	4 Data Retrieval and Modification
	Opening and Closing Tables and Views
	Causes of SQL Error 8204 (Lost Open Error)
	Recovering From SQL Error 8204

	Single-Row SELECT Statement
	Using a Column Value to Select Data
	Using a Primary Key Value to Select Data

	Multirow SELECT Statement
	Simple Example
	A More Complex Example
	The Most Complex Example

	INSERT Statement
	Inserting a Single Row
	Inserting a Null Value
	Inserting a Timestamp Value

	UPDATE Statement
	Updating a Single Row
	Updating Multiple Rows
	Updating Columns With Null Values

	DELETE Statement
	Deleting a Single Row
	Deleting Multiple Rows

	Using SQL Cursors
	Steps for Using a Cursor
	Process Access ID (PAID) Requirements
	Cursor Position
	Cursor Stability
	Virtual Sequential Block Buffering (VSBB)
	DECLARE CURSOR Statement
	OPEN Statement
	FETCH Statement
	Multirow SELECT Statement
	UPDATE Statement
	Multirow DELETE Statement
	CLOSE Statement
	Using Foreign Cursors

	5 SQL/MP System Procedures
	Guardian System Procedures
	cextdecs Header File
	SQL Message File
	SQLCADISPLAY
	SQLCAFSCODE
	SQLCAGETINFOLIST
	SQLCATOBUFFER
	SQLGETCATALOGVERSION
	SQLGETOBJECTVERSION
	SQLGETSYSTEMVERSION
	SQLSADISPLAY

	6 Explicit Program Compilation
	Explicit Program Compilation
	Developing a C Program in the Guardian Environment
	Using TACL DEFINEs in the Guardian Environment
	Specifying the SQL Pragma in the Guardian Environment
	Running the TNS C Compiler in the Guardian Environment
	Running the TNS/R NMC and TNS/E CCOMP Compiler in the Guardian Environment
	Binding SQL Program Files in the Guardian Environment
	Running the SQL Compiler in the Guardian Environment
	SQL Program File Format
	SQL Compiler Listings

	Developing a C Program in the OSS Environment
	Using TACL DEFINEs in the OSS Environment
	Using the c89 Utility in the OSS Environment

	Developing a C Program in a PC Host Environment
	Using CONTROL Directives
	Static SQL Statements
	Dynamic SQL Statements

	Using Compatible Compilation Tools
	C Compiler
	SQL Compiler
	SQL Program Files

	7 Program Execution
	Required Access Authority
	Using TACL DEFINEs
	Entering the TACL RUN Command
	Running a Program in the OSS Environment
	Running a Program at a Low PIN
	Interactive Commands
	Programmatic Commands
	Pathway Environment

	Determining Compatibility With the SQL Executor

	8 Program Invalidation and Automatic SQL Recompilation
	Program Invalidation
	SQL Compiler Validation Functions
	Causes of Program Invalidation
	File-Label and Catalog Inconsistencies
	Preventing Program Invalidation

	Automatic SQL Recompilation
	Causes of Automatic Recompilation
	Run-Time Recompilation Errors
	Preventing Automatic Recompilations

	9 Error and Status Reporting
	Using the INCLUDE STRUCTURES Directive
	Generating Structures With Different Versions
	Checking the Version of the C Compiler
	Sharing Structures

	Returning Error and Warning Information
	Checking the sqlcode Variable
	Using the WHENEVER Directive
	Returning Information From the SQLCA Structure

	Returning Performance and Statistics Information
	Declaring the SQLSA Structure
	Using the SQLSA Structure

	10 Dynamic SQL Operations
	Uses for Dynamic SQL
	Dynamic SQL Statements
	Dynamic SQL Features
	SQLDA Structure, Names Buffer, and Collation Buffer
	Input Parameters and Output Variables
	Null Values
	Dynamic Allocation of Memory
	Using Dynamic SQL Cursors

	Developing a Dynamic SQL Program
	Specify the SQL Pragma
	Copy any External Declarations
	Declare the sqlcode Variable and Host Variables
	Specify Any WHENEVER Directives
	Specify the INCLUDE STRUCTURES Directive
	Declare the SQLDA Structure and Names Buffer
	Declare an SQLSA Structure
	Process the Input Parameters
	Read and Compile the SQL Statement
	Process the Output Variables
	Perform the Database Request and Display the Values
	Allocate Memory for the SQLDA Structures and Names Buffers
	Allocate and Fill In Output Variables

	Developing a Dynamic SQL Pathway Server
	Dynamic SQL Sample Programs
	Basic Dynamic SQL Program
	Detailed Dynamic SQL Program

	11 Character Processing Rules (CPRL) Procedures
	cextdecs Header File
	CPRL Return Codes
	CPRL_ARE_
	CPRL_AREALPHAS_
	CPRL_ARENUMERICS_
	CPRL_COMPARE1ENCODED_
	CPRL_COMPARE_
	CPRL_COMPAREOBJECTS_
	CPRL_DECODE_
	CPRL_DOWNSHIFT_
	CPRL_ENCODE_
	CPRL_GETALPHATABLE_
	CPRL_GETCHARCLASSTABLE_
	CPRL_GETDOWNSHIFTTABLE_
	CPRL_GETFIRST_
	CPRL_GETLAST_
	CPRL_GETNEXTINSEQUENCE_
	CPRL_GETNUMTABLE_
	CPRL_GETSPECIALTABLE_
	CPRL_GETUPSHIFTTABLE_
	CPRL_INFO_
	CPRL_READOBJECT_
	CPRL_UPSHIFT_

	A SQL/MP Sample Database
	B Memory Considerations
	SQL/MP Internal Structures
	Using the SQLMEM Pragma
	Estimating Memory Requirements
	Avoiding Memory Stack Overflows

	C Maximizing Local Autonomy
	Using a Local Partition
	Using TACL DEFINEs
	Using Current Statistics
	Skipping Unavailable Partitions

	D Converting C Programs
	Generating SQL Data Structures
	Generating SQLDA Structures
	Generating a Version 300 (or Later) SQLDA Structure
	Generating a Version 2 SQLDA Structure
	Generating a Version 1 SQLDA Structure

	Planning for Future PVUs
	SQL/MP Version Procedures
	RELEASE1 and RELEASE2 Options

	Index

