
HP NonStop SQL/MP
Programming Manual
for COBOL
Abstract

This manual documents the programming interface to HP NonStop™ SQL/MP for
COBOL. It is intended for application programmers who are embedding SQL
statements and directives in COBOL programs.

Product Version

NonStop SQL/MP G06 and H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, G06.20 and all subsequent G-series RVUs, and D46.00
and all subsequent D-series RVUs until otherwise indicated by its replacement
publications.

Part Number Published

529758-003 August 2012

Document History
Part Number Product Version Published

429326-002 NonStop SQL/MP G06 May 2003

429326-003 NonStop SQL/MP G06 December 2003

429326-004 NonStop SQL/MP G06 December 2004

529758-001 NonStop SQL/MP G06 April 2005

529758-002 NonStop SQL/MP G06 and H01 August 2010

529758-003 NonStop SQL/MP G06 and H01 August 2012

Legal Notices
© Copyright 2012 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial

Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc. OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. OSF shall
not be liable for errors contained herein or for incidental consequential damages in connection with the
furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. The OSF documentation and the OSF
software to which it relates are derived in part from materials supplied by the following:© 1987, 1988,
1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.

© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc. ©
1987, 1988, 1989, 1990, 1991

Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992 International Business
Machines Corporation. © 1988, 1989 Massachusetts Institute of Technology. © 1988, 1989, 1990 Mentat
Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989, 1990, 1991, 1992 SecureWare, Inc. © 1990,
1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. ©
1989,1990, 1991 Transarc Corporation.OSF software and documentation are based in part on the
Fourth Berkeley Software Distribution under license from The Regents of the University of California.
OSF acknowledges the following individuals and institutions for their role in its development: Kenneth
C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert
Elz. © 1980, 1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org).

HP NonStop SQL/MP
Programming Manual for
COBOL
Index Examples Figures Tables
Legal Notices

What’s New in This Manual xi

Manual Information xi

New and Changed Information xi

About This Manual xiii

Who Should Read This Guide xiii

Related Manuals xiii

Notation Conventions xvi

HP Encourages Your Comments xix

1. Introduction
Advantages of Using Embedded SQL Statements 1-1

Development of a COBOL Program 1-2

Host Variables 1-2

SQL/MP Statements and Directives 1-2

SQL/MP System Procedures 1-4

Program Compilation and Execution 1-4

Error and Status Reporting 1-5

Dynamic SQL Operations 1-6

SQL/MP Version Management 1-7

COBOL in the Open System (OSS) Environment 1-7

Effect on Conformance to ISO/ANSI Standards 1-8

2. Host Variables
Specifying a Declare Section 2-1

Coding Host Variable Names 2-2

Using Corresponding SQL and COBOL Data Types 2-2

Specifying Host Variables in SQL Statements 2-6

Using the COBOL PICTURE Clause 2-7

Fixed-Length Character Data 2-7

Variable-Length Character Data 2-7
 Hewlett-Packard Company—529758-003
i

Contents 2. Host Variables (continued)
2. Host Variables (continued)
Numeric Data 2-8

Using COBOL Data Description Clauses 2-9

Using Date-Time and INTERVAL Data Types 2-9

Using Indicator Variables for Null Values 2-11

Inserting a Null Value 2-11

Testing for a Null Value 2-12

Retrieving Rows With Null Values 2-13

Creating Host Variables Using the INVOKE Directive 2-14

Advantages of Using an INVOKE Directive 2-14

COBOL Record Descriptions 2-15

Embedded Sign in a Decimal Data Type 2-18

System-Defined Primary Key (SYSKEY) 2-18

Date-Time and INTERVAL Data Types 2-19

Using Indicator Variables With the INVOKE Directive 2-22

 Using INVOKE With SQLCI 2-24

Associating a Character Set With a Host Variable 2-25

Treatment in COBOL Statements 2-26

VARCHAR Data Type 2-26

3. SQL/MP Statements and Directives
Embedding SQL Statements 3-1

Coding SQL Statements and Directives 3-1

Placing SQL Statements and Directives 3-2

Finding Information 3-3

4. Data Retrieval and Modification
Opening and Closing Tables and Views 4-2

Causes of SQL Error 8204 (Lost Open Error) 4-2

Recovering From SQL Error 8204 4-3

Single-Row SELECT Statement 4-4

Using a Column Value to Select Data 4-4

Using a Primary Key Value to Select Data 4-5

Using IN SHARE MODE or IN EXCLUSIVE MODE 4-6

INSERT Statement 4-6

Inserting a Single Row 4-7

Inserting a Null Value 4-7

Inserting a Timestamp 4-8

UPDATE Statement 4-8
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
ii

Contents 4. Data Retrieval and Modification (continued)
4. Data Retrieval and Modification (continued)
Updating a Single Row 4-9

Updating Multiple Rows 4-9

Updating Columns With Null Values 4-10

DELETE Statement 4-10

Deleting a Single Row 4-11

Deleting Multiple Rows 4-11

Using SQL Cursors 4-12

Steps for Using a Cursor 4-13

Access Requirements for Cursors 4-13

Cursor Position 4-14

Cursor Stability 4-14

Virtual Sequential Block Buffering (VSBB) 4-15

DECLARE CURSOR Statement 4-15

OPEN Statement 4-16

FETCH Statement 4-17

Multirow SELECT Statement 4-19

UPDATE Statement 4-20

Multirow DELETE Statement 4-22

CLOSE Statement 4-23

Using Foreign Cursors 4-23

5. SQL/MP System Procedures
COBOLEXT File 5-2

Guardian System Procedures 5-2

SQL Message File 5-2

SQLADDR 5-3

SQLCA_DISPLAY2_ 5-4

Using SQLCA_DISPLAY2_ With an Error Table 5-7

Additional Considerations for SQLCA_DISPLAY2_ 5-7

Generating Meaningful Messages 5-11

SQLCA_TOBUFFER2_ 5-11

Using SQLCA_TOBUFFER2_ With an Error Table 5-15

Additional Considerations for SQLCA_BUFFER2_ 5-16

SQLCAFSCODE 5-17

SQLCAGETINFOLIST 5-17

SQLGETCATALOGVERSION 5-24

SQLGETOBJECTVERSION 5-25

SQLGETSYSTEMVERSION 5-26
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
iii

Contents 5. SQL/MP System Procedures (continued)
5. SQL/MP System Procedures (continued)
SQLSADISPLAY 5-27

Superseded Procedures 5-30

SQLCADISPLAY 5-30

SQLCATOBUFFER 5-34

6. Explicit Program Compilation
Compilation Methods 6-1

TNS Mode Compilation 6-2

Native Mode Compilation for TNS/R Systems 6-4

Preparing for Compilation 6-5

Requirements for Compiling a COBOL Program 6-6

SQL Compiler Directive 6-7

Copying Source Code Into a Compilation Unit 6-9

Setting DEFINEs 6-9

Using PARAM Commands 6-11

Running the HP COBOL Compilers 6-12

Running HP COBOL Compilers in the Guardian Environment 6-13

Running HP COBOL Compilers in the OSS Environment 6-16

Running the Native COBOL Cross Compilers in a PC Host Environment 6-21

Binding and Linking 6-21

The Binder Program 6-22

The nld or ld Utility 6-23

Acceleration of TNS HP COBOL Programs 6-23

The Accelerator 6-24

Running the SQL Compiler 6-25

Required Access Authority 6-25

SQL Compiler Functions 6-25

Running the SQL Compiler in the Guardian Environment 6-27

Running the SQL Compiler in the OSS Environment 6-35

Using Current Statistics 6-35

SQL Compiler Messages 6-36

SQL Program File Format 6-38

SQL Compiler Listings 6-39

Using the EXPLAIN Utility 6-40

Using CONTROL Directives 6-42

Static SQL Statements 6-43

Dynamic SQL Statements 6-44

Using Compatible Components 6-45
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
iv

Contents 6. Explicit Program Compilation (continued)
6. Explicit Program Compilation (continued)
HP COBOL Compiler 6-45

SQL Compiler 6-45

SQL Program File 6-45

7. Program Execution
Required Access Authority 7-1

Using DEFINEs 7-2

Entering the TACL RUN Command 7-2

Using the CREATEPROCESS Routine 7-3

Using the CLU_PROCESS_CREATE_ Routine 7-4

Running a Program in the OSS Environment 7-5

Running a Program at a Low PIN on a D-Series or Later Node 7-5

Interactive Commands 7-6

Programmatic Commands 7-6

Pathway Environment 7-7

Determining Compatibility With the SQL Executor 7-7

8. Program Invalidation and Automatic SQL Recompilation
Program Invalidation 8-1

SQL Compiler Validation Functions 8-1

Causes of Program Invalidation 8-2

File-Label and Catalog Inconsistencies 8-4

Preventing Program Invalidation 8-4

Automatic SQL Recompilation 8-5

Causes of Automatic Recompilation 8-6

Run-Time Recompilation Errors 8-9

Preventing Automatic Recompilations 8-9

9. Error and Status Reporting
Using the INCLUDE STRUCTURES Directive 9-1

Generating Structures With Different Versions 9-2

Checking the Version of the HP COBOL Compiler 9-2

Sharing Structures 9-3

Returning Error and Warning Information 9-4

Checking the SQLCODE Identifier 9-4

Using the WHENEVER Directive 9-6

Returning Information From the SQLCA 9-12

Returning Performance and Statistics Information 9-21
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
v

Contents 10. Dynamic SQL Operations
10. Dynamic SQL Operations
Using Dynamic SQL 10-2

Uses for Dynamic SQL 10-4

Determining When to Use Dynamic SQL 10-5

Features of Dynamic SQL 10-5

Processing Database Requests 10-5

Using Parameters 10-6

Developing a Dynamic SQL Application 10-9

Declaring a Host Variable 10-10

Declaring the SQLCA and SQLSA Data Structures 10-10

Defining Storage for Input and Output Parameters 10-11

Preparing the SQL Statement 10-18

Checking for Parameters 10-18

Handling Parameters 10-20

Prompting the User for Input Values 10-24

Performing the Database Request 10-29

Displaying Output 10-32

Constructing a Server that Interfaces With Pathway 10-35

Constructing an SQL Statement from User Input 10-35

Constructing a Reply Message 10-36

Sample Dynamic SQL Program 10-37

11. Character Processing Rules (CPRL) Procedures
COBOLEXT File 11-2

CPRL Error Codes 11-2

CPRL_ARE_ 11-3

CPRL_AREALPHAS_ 11-4

CPRL_ARENUMERICS_ 11-5

CPRL_COMPARE1ENCODED_ 11-6

CPRL_COMPARE_ 11-7

CPRL_COMPAREOBJECTS_ 11-8

CPRL_DECODE_ 11-9

CPRL_DOWNSHIFT_ 11-10

CPRL_ENCODE_ 11-11

CPRL_GETALPHATABLE_ 11-12

CPRL_GETCHARCLASSTABLE_ 11-13

CPRL_GETDOWNSHIFTTABLE_ 11-14

CPRL_GETFIRST_ 11-14

CPRL_GETLAST_ 11-15
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
vi

Contents 11. Character Processing Rules (CPRL)
Procedures (continued)
11. Character Processing Rules (CPRL) Procedures (continued)
CPRL_GETNEXTINSEQUENCE_ 11-16

CPRL_GETNUMTABLE_ 11-17

CPRL_GETSPECIALTABLE_ 11-18

CPRL_GETUPSHIFTTABLE_ 11-19

CPRL_INFO_ 11-19

CPRL_READOBJECT_ 11-21

CPRL_UPSHIFT_ 11-22

A. SQL/MP Sample Database

B. Memory Considerations
SQL/MP Internal Structures B-1

Resizing Segments B-2

Avoiding Name Conflicts B-2

Using the SQLMEM Directive B-4

Estimating Memory Requirements B-5

Memory Requirements B-5

Guidelines for Memory Use B-6

C. Maximizing Local Autonomy
Using a Local Partition C-1

Using TACL DEFINEs C-2

Using Current Statistics C-2

Skipping Unavailable Partitions C-3

D. Converting COBOL Programs
Generating SQL Data Structures D-1

Generating SQLDA Structures D-2

Generating a Version 315 SQLDA Structure D-2

Generating a Version 2 SQLDA Structure D-2

Generating a Version 1 SQLDA Structure D-5

Using a Combination of SQLDA Structures D-7

Planning for Future PVUs D-8

SQL/MP Version Procedures D-8

RELEASE1 and RELEASE2 Options D-8

E. Writing Pathway Servers
PERFORM Model E-1

CALL Model: SQL Main Program E-4
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
vii

Contents E. Writing Pathway Servers (continued)
E. Writing Pathway Servers (continued)
CALL Model: SQL Subprograms E-8

UPDATE Subprogram E-8

INSERT Subprogram E-10

Index

Examples
Example 1-1. Static SQL Statements in a COBOL Program 1-4

Example 1-2. Dynamic SQL Statement in a COBOL Program 1-6

Example 2-1. CREATE TABLE Statements 2-15

Example 2-2. COBOL Record Descriptions Generated by the INVOKE
Directive 2-16

Example 2-3. Creating Valid DATETIME and INTERVAL Data Types 2-21

Example 2-4. Using Host and Indicator Variable Names 2-24

Example 4-1. Using a Column Value to Select Data 4-5

Example 4-2. Declaring a Cursor 4-16

Example 4-3. Using the UPDATE statement 4-21

Example 5-1. Error Processing Using SQLCA_DISPLAY2_ 5-9

Example 5-2. Error Routines in Copy Library 5-10

Example 5-3. Calling the SQLCAGETINFOLIST procedure 5-23

Example 5-4. SQLSADISPLAY Display 5-29

Example 6-1. Sample SQL Compiler Listing of a COBOL Program 6-39

Example 7-1. COBOL CREATEPROCESS Routine 7-4

Example 9-1. Enabling and Disabling the WHENEVER Directive 9-9

Example 9-2. Using the WHENEVER Directive 9-11

Example 9-3. SQLSA Structure 9-23

Example 10-1. Evaluating Input Parameter Values 10-25

Example 10-2. Prompting for Input 10-28

Example 10-3. Displaying Output Column Values 10-34

Example 10-4. Sample Dynamic SQL Program 10-37

Example A-1. COPYLIB File for Sample Database A-3

Example D-1. Version 2 SQLDA Structure D-3

Example D-2. Version 1 SQLDA Structure D-6

Example E-1. PERFORM Model E-2

Example E-2. CALL Model Main Program E-5

Example E-3. SQL UPDATE Subprogram E-8

Example E-4. SQL INSERT Subprogram E-10
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
viii

Contents Figures
Figures
Figure i. NonStop SQL/MP Library xiv

Figure 2-1. DATE Representation 2-20

Figure 2-2. INTERVAL Representation 2-20

Figure 4-1. Using a Static SQL Cursor in a COBOL Program 4-12

Figure 6-1. Compiling a COBOL Program in TNS Mode 6-2

Figure 6-2. Compiling a COBOL Program in TNS/R Native Mode 6-4

Figure 6-3. Accelerated SQL Program File 6-24

Figure 6-4. SQL Program File Format 6-38

Figure 8-1. Timestamp Check 8-8

Figure 10-1. Static and Dynamic SQL Programs 10-3

Figure 10-2. Names Buffer Structure 10-24

Figure A-1. SQL/MP Sample Database Relations A-2

Tables
Table i. NonStop SQL/MP Library xiii

Table ii. Program Development Manuals xv

Table iii. Guardian Manuals xvi

Table iv. Open System Services (OSS) Manuals xvi

Table 1-1. SQL/MP Statements and Directives 1-3

Table 2-1. Corresponding SQL and COBOL Data Types 2-3

Table 3-1. NonStop SQL/MP Statements and Directives 3-3

Table 3-2. COBOL Compiler Directives for SQL/MP 3-7

Table 4-1. SQL/MP Statements for Data Retrieval and Modification 4-1

Table 5-1. SQL/MP System Procedures 5-1

Table 5-2. Guardian System Procedures that Return SQL Information 5-2

Table 6-1. HP COBOL Compilers 6-12

Table 6-2. COBOL Compilation Mode and Execution Environment 6-12

Table 6-3. Environment Variables in the OSS Environment 6-16

Table 9-1. SQLCA Structure Fields 9-13

Table 9-2. SQLSA Structure Fields 9-23

Table 10-1. SQL Statements Used for Dynamic SQL Operations 10-1

Table 10-2. SQLDA Structure Fields 10-12

Table 10-3. SQLDA DATA-TYPE Values 10-13

Table 10-4. SQLSA Contents after a Prepare Operation 10-18

Table 11-1. Character Processing Rules (CPRL) Procedures 11-1

Table D-1. SQL Data Structures D-1

Table D-2. Version 2 SQLDA Structure Fields D-3

Table D-3. Version 1 SQLDA Structure Fields D-6
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
ix

Contents
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
x

What’s New in This Manual

Manual Information
HP NonStop SQL/MP Programming Manual for COBOL

Abstract

This manual documents the programming interface to HP NonStop™ SQL/MP for
COBOL. It is intended for application programmers who are embedding SQL
statements and directives in COBOL programs.

Product Version

NonStop SQL/MP G06 and H01

Supported Release Version Updates (RVUs)

This publication supports J06.03 and all subsequent J-series RVUs, H06.03 and all
subsequent H-series RVUs, G06.20 and all subsequent G-series RVUs, and D46.00
and all subsequent D-series RVUs until otherwise indicated by its replacement
publications.

Document History

New and Changed Information

Changes to the 529758-003 manual:

 Added -Wsqlconnect compiler option in -Wsqlconnect on page 6-21.

 Added -HP_NSK_CONNECT_MODE environment variable option in
HP_NSK_CONNECT_MODE on page 6-22.

Part Number Published

529758-003 August 2012

Part Number Product Version Published

429326-002 NonStop SQL/MP G06 May 2003

429326-003 NonStop SQL/MP G06 December 2003

429326-004 NonStop SQL/MP G06 December 2004

529758-001 NonStop SQL/MP G06 April 2005

529758-002 NonStop SQL/MP G06 and H01 August 2010

529758-003 NonStop SQL/MP G06 and H01 August 2012
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
xi

What’s New in This Manual Changes to the 529758-001 Manual
Changes to the 529758-002 manual:

 Added applicability note for SQL integer data types on page 2-5 and page 2-8.

 Modified the ALTER TABLE and ALTER INDEX information under Causes of SQL
Error 8204 (Lost Open Error) on page 4-2.

Changes to the 529758-001 Manual

 Changed the manual title from HP NonStop SQL/MP Programming Manual for
COBOL85 to HP NonStop SQL/MP Programming Manual for COBOL. The manual
now uses the term COBOL85 to refer only to the COBOL85 compiler. The
COBOL85 language is now referred to as COBOL. The HP COBOL compiler
means both the COBOL85 compiler and the NMCOBOL compiler.

 Updated information related to process access:

 On page 2-14, for the INVOKE directive

 On page 4-4, for the SELECT statement

 On page 4-6, for the INSERT statement

 On page 4-8, for the UPDATE statement

 On page 4-10, for the DELETE statement

 On page 4-13, for the OPEN CURSOR statement

 On page 4-17, for the FETCH statement

 On page 4-19, for a multirow SELECT statement

 On page 4-20, for the UPDATE statement used with a cursor

 On page 4-22, for the DELETE statement with a cursor

 On page 6-35, for the UPDATE STATISTICS statement

 Added information about compiling HP COBOL programs in the PC environment
and using TNS compilation tools in Section 6, Explicit Program Compilation.

 Added information about process access privileges for an SQL statement under
Required Access Authority on page 7-1.

 Added information about executing an SQL program from a COBOL program on a
TNS/R system Using the CLU_PROCESS_CREATE_ Routine on page 7-4.

 Changed the real memory from 2 KB to 16 KB pages under Guidelines for Memory
Use on page B-6.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
xii

About This Manual
This manual describes the NonStop SQL/MP programmatic interface for HP COBOL
for NonStop systems. Using this interface, a COBOL program can access a NonStop
SQL/MP database by using embedded SQL statements and directives. The HP
COBOL compiler means both the COBOL85 compiler and the NMCOBOL compiler.

Who Should Read This Guide
This manual is intended for application programmers who are embedding SQL/MP
statements and directives in a COBOL program. The reader should be familiar with
COBOL, NonStop SQL/MP terms and concepts (as described in the Introduction to
NonStop SQL/MP), and the HP NonStop operating system.

Related Manuals
The related manuals that an application programmer might find useful are:

 NonStop SQL/MP library
 Program development manuals
 Guardian system manuals

Table i describes the manuals in the NonStop SQL/MP library.

Table i. NonStop SQL/MP Library (page 1 of 2)

Manual Description

Introduction to NonStop SQL/MP Introduces the NonStop SQL/MP relational
database management system.

SQL/MP Reference Manual Describes the NonStop SQL/MP language
elements, including expressions, functions,
commands, statements, SQLCI utilities and
commands, and report writer commands.
(This manual is the printed version of online
help.)

SQL/MP Messages Manual Describes error and warning numbers and
messages returned by NonStop SQL, the SQL file
system, and FastSort.

SQL/MP Query Guide Describes how to retrieve and modify data in a
NonStop SQL/MP database and how to analyze
and improve query performance.

SQL/MP Version Management Guide Describes the rules governing version
management for the NonStop SQL/MP software,
catalogs, objects, messages, programs, and data
structures.

* C30.07 manual; does not include D-series information.
HP NonStop SQL/MP Programming Manual for COBOL—529758-002
xiii

About This Manual Related Manuals
SQL/MP Installation and Management
Guide

Describes how to plan, install, create, and
manage a NonStop SQL/MP database and SQL
programs.

SQL/MP Report Writer Guide Describes how to use report writer commands
and SQLCI options to design and produce
reports.

SQL/MP Programming Manual for C

SQL/MP Programming Manual for
COBOL

SQL Programming Manual for Pascal *

SQL Programming Manual for TAL *

Describes the NonStop SQL/MP programmatic
interface for C, COBOL, Pascal, and TAL
applications.

Figure i. NonStop SQL/MP Library

Table i. NonStop SQL/MP Library (page 2 of 2)

* C30.07 manual; does not include D-series information.

SQL/MP
Glossary

Introduction
to NonStop
SQL/MP

Guides

SQL/MP
Installation
and
Management
Guide

SQL/MP
Report Writer
Guide

SQL/MP
Version
Management
Guide

Reference Manuals

SQL/MP
Messages
Manual

Programming Manuals

VST001.vsd

SQL/MP
Reference
Manual

SQL/MP
Programming
Manual for
COBOL

SQL/MP
Programming
Manual for C

SQL/MP
Query Guide
HP NonStop SQL/MP Programming Manual for COBOL—529758-002
xiv

About This Manual Related Manuals
In addition to the NonStop SQL/MP library, program development, Guardian, and HP
NonStop Open System Services (OSS) manuals described in these tables can be
useful to a COBOL programmer.

Table ii. Program Development Manuals

Manual Description

COBOL85 for NonStop Systems Manual Describes the HP implementation of COBOL,
including the statement syntax, run-time library,
program execution environment, HP extensions,
and how to use HP COBOL.

CRE Programmer’s Guide Describes the Common Run-Time Environment
(CRE) and how to write and run mixed-language
programs.

Inspect Manual Describes the Inspect program, an interactive
source-level or machine-level debugger that
enables you to interrupt and resume program
execution and to display and modify variables.

CROSSREF Manual Describes the CROSSREF program, which
produces a cross-reference listing of selected
identifiers in an application.

Binder Manual Describes the Binder program, an interactive
linker that enables you to examine, modify, and
combine compilation units (object files) and to
generate load maps and cross-reference listings.

Accelerator Manual Describes the Accelerator for HP TNS/R systems
for optimizing the program-file object code.

Debug Manual Describes the Debug program, an interactive
machine-level debugger.
HP NonStop SQL/MP Programming Manual for COBOL—529758-002
xv

About This Manual Notation Conventions

Notation Conventions

General Syntax Notation

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

Table iii. Guardian Manuals

Manual Description

Guardian Application Conversion
Guide

Describes how to convert C, COBOL, Pascal, TAL,
and TACL applications to use the extended features
of the NonStop OS.

Guardian Procedure Calls Reference
Manual

Describes the syntax for Guardian procedure calls.

Guardian Programmer’s Guide Describes how to use Guardian procedure calls
from an application to access operating system
services.

Guardian Procedure Errors and
Messages Manual

Describes error codes, error lists, system
messages, and trap numbers for Guardian system
procedures.

Table iv. Open System Services (OSS) Manuals

Manual Description

Open System Services Programmer’s
Guide

Describes how to use the OSS application
programming interface to the operating system.

Open System Services Shell and
Utilities Reference Manual

Describes the syntax and semantics for using the
OSS shell and utilities.

Open System Services System Calls
Reference Manual

Describes the syntax and programming
considerations for using OSS system calls.
HP NonStop SQL/MP Programming Manual for COBOL—529758-002
xvi

About This Manual General Syntax Notation
italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name
HP NonStop SQL/MP Programming Manual for COBOL—529758-002
xvii

About This Manual Change Bar Notation
Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o

!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Change Bar Notation

Change bars are used to indicate substantive differences between this edition of the
manual and the preceding edition. Change bars are vertical rules placed in the right
HP NonStop SQL/MP Programming Manual for COBOL—529758-002
xviii

About This Manual HP Encourages Your Comments
margin of changed portions of text, figures, tables, examples, and so on. Change bars
highlight new or revised information. For example:

The message types specified in the REPORT clause are different in the HP
COBOL environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
HP NonStop SQL/MP Programming Manual for COBOL—529758-002
xix

About This Manual HP Encourages Your Comments
HP NonStop SQL/MP Programming Manual for COBOL—529758-002
xx

1 Introduction

NonStop SQL/MP is the HP relational database management system (RDBMS) that
uses SQL to define and manipulate data in an SQL/MP database. You can run SQL
statements interactively by using the SQL/MP conversational interface (SQLCI) or
programmatically by embedding SQL statements and directives in a host-language
program written in COBOL, C, Pascal, or TAL.

This manual describes the programmatic interface to SQL/MP for COBOL programs.

This section discusses:

 Advantages of Using Embedded SQL Statements

 Development of a COBOL Program on page 1-2

 Dynamic SQL Operations on page 1-6

 SQL/MP Version Management on page 1-7

 COBOL in the Open System (OSS) Environment on page 1-7

 Effect on Conformance to ISO/ANSI Standards on page 1-8

Advantages of Using Embedded
SQL Statements

Embedding SQL statements and directives in a COBOL program to access an
SQL/MP database has these advantages:

 A high-level, efficient database language—You can code a request to access the
database by using SQL statements. The SQL optimizer then generates an efficient
plan to perform your request.

 Insulation against database changes—If a database administrator modifies an
SQL/MP database (for example, adds a column to a table), the change does not
affect the logic of your program.

 COBOL statements for processing data—You can access a database by using
SQL statements and then use COBOL statements to process and manipulate the
data.

 System support for data consistency—If you require audited tables and views, the
system maintains data consistency with the locking feature and the HP NonStop
Transaction Management Facility (TMF) subsystem.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
1-1

Introduction Development of a COBOL Program
Development of a COBOL Program
You can embed static or dynamic SQL statements in a COBOL source file. You embed
a static SQL statement as an actual SQL statement and run the SQL compiler to
explicitly compile the statement before you run the program. To embed a dynamic SQL
statement, code a placeholder variable for the statement, and then construct, SQL
compile, and execute the statement at run time.

Host Variables

A host variable provides communication between COBOL statements and SQL
statements. A host variable is a COBOL data item with a data type that corresponds to
an SQL data type. You use host variables in SQL statements to receive data from a
database or to insert data into a database.

You declare host variables in a Declare Section in the Data Division. A Declare Section
is delimited by the BEGIN DECLARE SECTION and END DECLARE SECTION
directives. In this example, FILENUMBER and MESSAGE are host variables:

DATA DIVISION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 FILENUMBER PIC 9(6) DISPLAY.
01 MESSAGE PIC X(200).
...
EXEC SQL END DECLARE SECTION END-EXEC.

The HP COBOL compiler accepts the CHARACTER SET clause in a host variable
declaration to associate a single-byte or double-byte character set, such as Kanji,
KSC5601, and ISO 8859/n with a host variable.

When you specify a host variable in an SQL statement, precede the host variable
name with a colon (:). In COBOL statements, you do not need the colon as shown:

EXEC SQL
 SELECT COLUMN1 INTO :HOST-VARIABLE1 FROM =TABLEA
 WHERE COLUMN1 > :HOST-VARIABLE2
END-EXEC.
MOVE HOST-VARIABLE1 TO NEW-NAME.
...

For more information, see Section 2, Host Variables.

SQL/MP Statements and Directives

Table 1-1 on page 1-3 lists the SQL/MP statements and directives you can embed in a
COBOL program.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
1-2

Introduction SQL/MP Statements and Directives
Table 1-1. SQL/MP Statements and Directives

Type Statement or Directive

Data Declaration BEGIN DECLARE SECTION and END DECLARE SECTION

INVOKE

INCLUDE STRUCTURES

INCLUDE SQLCA, INCLUDE SQLDA, and INCLUDE SQLSA

Data Definition
Language (DDL)

ALTER CATALOG, ALTER COLLATION, ALTER INDEX, ALTER
PROGRAM, ALTER TABLE, and ALTER VIEW

COMMENT

CREATE CATALOG, CREATE COLLATION, CREATE INDEX,
CREATE PROGRAM, CREATE TABLE, and CREATE VIEW

DROP

HELP TEXT

UPDATE STATISTICS

Data Manipulation
Language (DML)

DECLARE CURSOR

OPEN

FETCH

SELECT, INSERT, UPDATE, DELETE

CLOSE

Data Status
Language (DSL)

GET CATALOG OF SYSTEM

GET VERSION (for SQL/MP software, catalogs, and objects)

GET VERSION OF PROGRAM

Dynamic SQL
Operations

PREPARE

DESCRIBE and DESCRIBE INPUT

EXECUTE and EXECUTE IMMEDIATE

RELEASE

Error Processing WHENEVER

Transaction Control BEGIN WORK, COMMIT WORK, and ROLLBACK WORK
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
1-3

Introduction SQL/MP System Procedures
 You code an SQL statement or directive by preceding it with EXEC SQL and then
terminating it with END-EXEC. Example 1-1 shows static SQL statements embedded
in a COBOL program:

For more information, see Section 3, SQL/MP Statements and Directives, and
Section 4, Data Retrieval and Modification.

SQL/MP System Procedures

SQL/MP provides system procedures that perform various SQL operations and
functions. For example, the SQLCA_DISPLAY2_ procedure returns error information
from the SQLCA structure after an SQL statement executes. You call SQL system
procedures from a COBOL program in the same manner you call other system
procedures (for example, FILE_OPEN_, READ, WRITEREAD, and FILE_CLOSE_).

This example shows a call to the SQLCA_DISPLAY2_ procedure using all default
parameters:

ENTER TAL "SQLCA_DISPLAY2_" USING SQLCA.

For more information, see Section 5, SQL/MP System Procedures, and Section 11,
Character Processing Rules (CPRL) Procedures.

Program Compilation and Execution

The procedure to compile and execute an HP COBOL program that contains
embedded SQL statements is similar to the steps you follow for an HP COBOL
program that does not contain embedded SQL statements. You must perform only one

Example 1-1. Static SQL Statements in a COBOL Program

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 IN-PARTS-REC.
 02 IN-PARTNUM PIC 9(4) COMP.
 02 IN-PRICE PIC S9(8)V99 COMP.
 02 IN-PARTDESC PIC X(18).
EXEC SQL END DECLARE SECTION END-EXEC.
...
PROCEDURE DIVISION.
...
410-INSERT-DATA.
 MOVE 4120 TO IN-PARTNUM.
 MOVE 60000.00 TO IN-PRICE.
 MOVE "V8 DISK OPTION" TO IN-PARTDESC.
 EXEC SQL
 INSERT INTO SALES.PARTS
 (PARTNUM, PRICE, PARTDESC)
 VALUES (:IN-PARTNUM, :IN-PRICE, :IN-PARTDESC)
 END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
1-4

Introduction Error and Status Reporting
extra step for an SQL program: you compile the embedded SQL statement by using
the SQL compiler.

1. Add any required class MAP or class CATALOG DEFINEs

Use class MAP DEFINEs to specify SQL objects—tables, views, indexes, and
collations—and class CATALOG DEFINEs to specify SQL catalogs).

2. Run an HP COBOL compiler (COBOL85 or the NMCOBOL compiler), specifying a
source file containing embedded SQL statements as input.

3. If necessary, run the Binder program (if you used the COBOL85 compiler), the nld
or ld utility (if you used the native mode NMCOBOL compiler) to combine the
COBOL object file with other object files.

4. Optionally, run the Accelerator on the COBOL object file to optimize it for execution
on a TNS/R system.

5. Run the SQL compiler (SQLCOMP) to compile the SQL source statements in the
COBOL object file and to validate the output SQL program file for execution.

6. Execute the SQL program file either interactively from TACL or the OSS prompt, or
programmatically by using the COBOL CREATEPROCESS routine.

SQL/MP software supports the development of COBOL programs containing
embedded SQL statements in both the Guardian and OSS environments. For more
information, see Section 6, Explicit Program Compilation, and Section 7, Program
Execution.

Error and Status Reporting

SQL/MP returns error and status information to a host-language program after the
execution of each embedded SQL statement or directive. SQL/MP returns an SQL
error or warning number to the SQLCODE variable and more extensive information to
these SQL data structures:

 SQL communications area (SQLCA)—run-time information, including errors and
warnings, generated by the most recently executed SQL statement.

 SQL statistics area (SQLSA)—statistics and performance information after the
execution of DML statements and some dynamic SQL statements.

 SQL descriptor area (SQLDA)—information about input parameters and output
variables in dynamic SQL statements.

For more information about the SQLCA and SQLSA structures, see Section 9, Error
and Status Reporting. For information about the SQLDA structure, see Section 10,
Dynamic SQL Operations.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
1-5

Introduction Dynamic SQL Operations
Dynamic SQL Operations
With static SQL operations, you code the actual SQL statement in the COBOL source
file. However, with dynamic SQL statements, a program can construct, compile, and
execute an SQL statement at run time. You code a host variable as a placeholder for
the dynamic SQL statement, which is usually unknown or incomplete until run time.

A dynamic SQL statement requires some input, often from a user at a terminal, to
construct the final statement. The statement is constructed at run time from the user’s
input, compiled by the SQL compiler using a PREPARE statement, and then executed
using an EXECUTE statement (or compiled and executed using an EXECUTE
IMMEDIATE statement).

Example 1-2 shows a dynamic SQL operation that uses an INSERT statement similar
to the static INSERT statement in Example 1-1 on page 1-4. In Example 1-1, the static
INSERT statement is embedded in the source program code. In Example 1-2, the
program dynamically builds the INSERT statement from information entered by a user.

Example 1-2 accesses the PARTS table, which exists on a different subvolume. A user
enters this information in the INTEXT variable to indicate the location of the PARTS
table and other values needed to construct the INSERT statement:

INSERT INTO $VOL5.SALES.PARTS
 (PARTNUM, PRICE, PARTDESC)
 VALUES (4120, 60000.00, "V8 DISK OPTION")

The example builds the INSERT statement from information in the INTEX variable and
moves the statement to the host variable named OPERATION. The host variable
OPERATION is available to both COBOL and SQL statements. The example uses the
EXECUTE IMMEDIATE statement to compile and execute the INSERT statement in
OPERATION. (This example could also have used a PREPARE statement to compile
the statement and an EXECUTE statement to execute it.)

For more information, see Section 10, Dynamic SQL Operations.

Example 1-2. Dynamic SQL Statement in a COBOL Program

DATA DIVISION.
WORKING-STORAGE SECTION.
01 INTEXT PIC X(200).
...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 OPERATION PIC X(200).
EXEC SQL END DECLARE SECTION END-EXEC.
...
PROCEDURE DIVISION.
...
400-INSERT-DATA.
 MOVE INTEXT TO OPERATION.
 EXEC SQL EXECUTE IMMEDIATE :OPERATION END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
1-6

Introduction SQL/MP Version Management
SQL/MP Version Management
Each product version update (PVU) of SQL/MP has an associated version number.
The initial PVUs were version 1 (C10 and C20) and version 2 (C30). Version 300 of
SQL/MP began using a three-digit version number to allow for software product
revision (SPRs). A new version number is always greater than the previous number,
but the new number might not follow a constant increment. For example, consecutive
version numbers after version 315 might be 320, 325, and 340.

In addition, SQL objects (tables, indexes, views, collations, and constraints), programs,
and catalogs have associated version numbers. This version number indicates the
SQL features used by the SQL object or program and the SQL/MP software with which
the SQL object or program is compatible. For example, a version 2 table might use the
date-time data types or allow null values in a column. A version 2 table is compatible
with SQL/MP software version 2 and 315 but is not compatible with version 1 software.

The version information in this manual includes these topics:

 Using compatible versions of the COBOL85 compiler, NMCOBOL compiler,
SQL compiler, and SQL executor to compile and execute a program

 Using the data status language (DSL) statements: GET VERSION (for SQL
objects, catalogs, and SQL/MP software), GET VERSION OF PROGRAM, and
GET CATALOG OF SYSTEM

 Generating different versions of the SQLSA and SQLDA structures

 Converting a COBOL program written for version 1 or version 2 SQL/MP software
to use version 300 (or later) SQL features and data structures

 Planning for future PVUs of SQL/MP

For additional information about version issues, see the SQL/MP Version Management
Guide.

COBOL in the Open System (OSS)
Environment

SQL/MP software supports the development of COBOL programs in the OSS
environment as well as in the Guardian environment. In the OSS environment, you can
code a COBOL program with a text editor such as vi and then use one of these HP
COBOL compilers:

 cobol utility to invoke the COBOL85 compiler, Binder program, Accelerator, and
SQL compiler. (The cobol utility is described in Section 6, Explicit Program
Compilation.)

 nmcobol utility to invoke the NMCOBOL compiler, ld or nld linker, and SQL
compiler on a TNS/R system
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
1-7

Introduction Effect on Conformance to ISO/ANSI Standards
For more information, see Running the HP COBOL Compilers on page 6-12. Most
features of the COBOL language and library are available in the OSS environment,
and most of them operate as they do in the Guardian environment. Differences in the
two environments as they relate to the COBOL interface to SQL/MP are discussed
throughout this manual. The COBOL85 for NonStop Systems Manual contains detailed
information on using COBOL in the OSS environment.

Effect on Conformance to ISO/ANSI Standards
When an HP COBOL program does not use the SQL directive (which notifies the
COBOL85 or NMCOBOL compiler to expect embedded SQL), embedded SQL does
not affect HP COBOL conformance to the COBOL ISO/ANSI standard. When a
program does use the SQL directive, embedded SQL affects HP COBOL conformance
to the COBOL ISO/ANSI standard only to the extent required to process SQL
statements. For information on HP COBOL conformance to the COBOL ISO/ANSI
standard, see the COBOL85 for NonStop Systems Manual.

The HP COBOL embedded SQL implementation conforms to the ANSI Database—
Embedded SQL Standard (ANSI X3.168-1989), with the restrictions and extensions
mentioned in this section.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
1-8

2 Host Variables

A host variable is a data item you can use in both COBOL and NonStop SQL/MP
statements to provide communication between these two types of statements. A host
variable appears as a COBOL name and can be any COBOL data item declared in a
Declare Section that has a corresponding SQL data type as shown in Table 2-1,
Corresponding SQL and COBOL Data Types, on page 2-3.

For static SQL operations, a host variable can be an input or output variable (or both in
some cases) in SQL statements. An input variable transfers data from the program to
the database, whereas an output variable transfers data from the database to the
program. (For dynamic SQL operations, input parameters and output variables fulfill
the same function as input and output host variables in static SQL statements.)

An indicator variable is a two-byte integer variable, also declared in the Declare
Section, that is associated with a host variable. An indicator variable indicates whether
a column contains, or can contain, a null value. A null value means that a value is
either unknown for the row or does not apply to the row. A program uses an indicator
variable to insert null values into a database or to test a column value for a null value
after retrieving the value from a database.

Topics include:

 Specifying a Declare Section

 Coding Host Variable Names on page 2-2

 Using Corresponding SQL and COBOL Data Types on page 2-2

 Specifying Host Variables in SQL Statements on page 2-6

 Using the COBOL PICTURE Clause on page 2-7

 Using COBOL Data Description Clauses on page 2-9

 Using Date-Time and INTERVAL Data Types on page 2-9

 Using Indicator Variables for Null Values on page 2-11

 Creating Host Variables Using the INVOKE Directive on page 2-14

 Associating a Character Set With a Host Variable on page 2-25

Specifying a Declare Section
You declare all host variables in a Declare Section. The BEGIN DECLARE SECTION
and END DECLARE SECTION directives designate a Declare Section. Follow these
guidelines when you specify a Declare Section:

 Use the BEGIN DECLARE SECTION and END DECLARE SECTION directives
only in pairs. A period after the END-EXEC key words for either directive is
ignored.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-1

Host Variables Coding Host Variable Names
 Place a Declare Section in the Data Division. You can specify more than one
Declare Section in a program, if necessary, but you cannot nest Declare Sections.

 Do not place a Declare Section within a COBOL record description.

 The first item after the BEGIN DECLARE SECTION directive must have level 01.

 The only directives you can specify in a Declare Section are the COBOL compiler
SOURCE directive and the SQL INVOKE directive.

 Use COBOL comment statements to document a Declare Section.

This example shows the declaration of host variables in a Declare Section:

DATA DIVISION.
..
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 CUSTNUM PIC S9(4) COMP.
01 CITY PIC X(14).
EXEC SQL INVOKE SALES.PARTS AS SALES-REC END-EXEC.
?SOURCE COBLIB(DECLARES)
..
EXEC SQL END DECLARE SECTION END-EXEC.

Coding Host Variable Names
Use COBOL naming conventions for host variable names. A COBOL name can
contain from 1 to 30 alphanumeric characters, including letters, digits, and hyphens (-).
The first or last letter cannot be a hyphen. Letters can be uppercase, lowercase, or a
combination of both. HP COBOL names must contain at least one letter or hyphen.
You must also avoid using names that conflict with these SQL structures:

 SQLINALL internal structure
 SQLCA, SQLSA, and SQLDA structures

To use a COBOL record description as a host variable, specify the record name as a
level 01 entry and use level numbers 01 to 49, 66, 77, and 88 for the host variables.
The individual data items, and not the record name, are the host variables. You must
use declarations compatible with the SQL data types as shown in Table 2-1 on
page 2-3. You must also observe certain restrictions for the PICTURE clause. For more
information, see Using the COBOL PICTURE Clause on page 2-7.

Using Corresponding SQL and COBOL Data
Types

Table 2-1 on page 2-3 lists the corresponding SQL and COBOL data types. You can
specify a COBOL data item as a host variable, if the COBOL data item has a
corresponding SQL data type.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-2

Host Variables Using Corresponding SQL and COBOL Data Types
Table 2-1. Corresponding SQL and COBOL Data Types (page 1 of 2)

SQL/MP Data Type COBOL Data Type

Fixed-Length Character Data Type

CHARACTER (l)
PIC X(l).

PIC X(l)

Fixed-Length Character Data Type With CHARACTER SET Clause

CHARACTER (l)
 CHARACTER SET charset
PIC X(l)
 CHARACTER SET charset

01 column-name
 CHARACTER SET charset
 PIC X(l).

Fixed-Length Character Data Type With NATIONAL CHARACTER Clause

NATIONAL CHARACTER (l) 01 column-name
 CHARACTER SET def-charset
 PIC X(l).

Variable-Length Character Data Type

VARCHAR(l) 02 column-name.
 03 LEN PIC S9(4) COMP.
 03 VAL PIC X(l).

Variable-Length Character Data Type With CHARACTER SET Clause

VARCHAR(l) @@@
 CHARACTER SET charset

01 column-name.
 02 LEN PIC S9(4) COMP.
 02 VAL CHARACTER SET charset
 PIC X(l).

Variable-Length Character Data Type With NATIONAL CHARACTER Clause

NATIONAL CHARACTER
 VARYING(l)

01 column-name.
 02 LEN PIC S9(4) COMP.
 02 VAL CHARACTER SET def-charset
 PIC X(l).

Numeric Data Types

NUMERIC (1 to 4,s) SIGNED PIC S9(4-s)V9(s) COMP.

NUMERIC (1 to 4,s)
UNSIGNED

PIC 9(4-s)V9(s) COMP.

NUMERIC (5 to 9,s)SIGNED PIC S9(9-s)V9(s) COMP.

l is a positive integer that represents the length in characters.
charset is one of these character-set keywords: KANJI, KSC5601, ISO8859n, where n is 1 – 9,
or UNKNOWN (a single-byte unknown character set). charset must be enclosed in double
quotation marks (").
def-charset is the default multibyte character set. def-charset is KANJI, unless it is
otherwise changed or set during system generation.
s is a positive integer that represents the scale of the number.
HP COBOL treats BINARY as COMPUTATIONAL (or COMP). Therefore, references to
COMPUTATIONAL (or COMP) also apply to BINARY.

The INTERVAL data type has an extra byte to store a sign. This extra byte can contain a blank, plus, or minus.
Indicator variables have the SQL data type SMALLINT SIGNED and the COBOL data type PIC S9(4) COMP.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-3

Host Variables Using Corresponding SQL and COBOL Data Types
NUMERIC (5 to 9,s)
UNSIGNED

PIC 9(9-s)V9(s) COMP.

NUMERIC (10 to 18,s)
SIGNED

PIC S9(18-s)V9(s) COMP.

DECIMAL (l,s) SIGN IS
LEADING

PIC S9(l-s)V9(s)
 DISPLAY SIGN IS LEADING.

DECIMAL (l,s) UNSIGNED PIC 9(l-s)V9(s) DISPLAY.

PIC 9(l-s)V9(s) COMP Same as NUMERIC.

Numeric Data Types

PIC 9(l-s)V9(s) Same as DECIMAL.

SMALLINT SIGNED PIC S9(4) COMP.

SMALLINT UNSIGNED PIC 9(4) COMP.

INTEGER SIGNED PIC S9(9) COMP.

INTEGER UNSIGNED PIC 9(9) COMP.

LARGEINT SIGNED PIC S9(18) COMP.

FLOAT (1 to 22 bits) Not supported.

REAL Not supported.

FLOAT (23 to 54 bits) Not supported.

DOUBLE PRECISION Not supported.

Date-Time and INTERVAL Data Types

DATETIME PIC X(26).

DATE PIC X(10).

TIME PIC X(8).

TIMESTAMP PIC X(26).

Table 2-1. Corresponding SQL and COBOL Data Types (page 2 of 2)

SQL/MP Data Type COBOL Data Type

l is a positive integer that represents the length in characters.
charset is one of these character-set keywords: KANJI, KSC5601, ISO8859n, where n is 1 – 9,
or UNKNOWN (a single-byte unknown character set). charset must be enclosed in double
quotation marks (").
def-charset is the default multibyte character set. def-charset is KANJI, unless it is
otherwise changed or set during system generation.
s is a positive integer that represents the scale of the number.
HP COBOL treats BINARY as COMPUTATIONAL (or COMP). Therefore, references to
COMPUTATIONAL (or COMP) also apply to BINARY.

The INTERVAL data type has an extra byte to store a sign. This extra byte can contain a blank, plus, or minus.
Indicator variables have the SQL data type SMALLINT SIGNED and the COBOL data type PIC S9(4) COMP.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-4

Host Variables Using Corresponding SQL and COBOL Data Types
Data Conversion

SQL/MP performs the conversion between SQL and COBOL data types:

 When a host variable serves as an input variable (supplies a value to the
database), SQL/MP first converts the value that the variable contains to a
compatible SQL data type and then uses the value in the SQL operation.

 When a host variable serves as an output variable (receives a value from a
database), SQL/MP converts the value to the data type of the host variable.

SQL/MP supports conversion within character types and numeric types, not between
character and numeric types.

For conversion between character strings of different lengths, SQL/MP pads the
receiving string on the right with blanks as necessary. If the receiving string is too
small, SQL/MP truncates the right part of the longer string and generates a warning
code in the SQLCODE variable.

If an input value is too large for the SQL column, SQL/MP reports error 8300 (file-
system error encountered). If you are using the SQLCA_DISPLAY2_ procedure to
display error messages, the specific file-system error (1031) is also returned.

For numeric type conversion, SQL/MP converts data between signed and unsigned
types and between types with different precisions. Scales and precisions can be
different. Decimal variables can have different sign placements.

CAST Function

The CAST function allows you to convert a parameter from one data type to another
data type (character and numeric data types only) in dynamic SQL statements. For
information about the CAST function, see the SQL/MP Reference Manual.

Note. To retrieve floating-point columns, you must declare all the required host variables with
corresponding data types supported by COBOL. (Floating-point columns will be handled during
data type conversion.) For example, you must declare numeric host variables, like REAL,
FLOAT, and DOUBLE PRECISION, as a numeric data type supported by COBOL.

Ensure that the actual values in a floating-point column can be converted without resulting in
an overflow.

Note. For systems running J06.09 and later J-series RVUs, H06.20 and later RVUs, or
G06.32 and later G-series RVUs, the SQL integer data types is mapped to the
corresponding COBOL data types with the COMP-5 option when the external DEFINE
=_SQL_MAPTO_COBOL_COMP5 is present in the system.

Note. For optimal performance, declare host variables with the same data types and lengths
as their respective columns in SQL statements. This programming practice minimizes the data
conversions performed by SQL/MP and, therefore, can improve the performance of your
program.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-5

Host Variables Specifying Host Variables in SQL Statements
Specifying Host Variables in SQL Statements
Use this syntax to specify a host variable in an SQL statement. You must precede the
host variable name with a colon (:). The colon causes the HP COBOL compiler to
handle the name as a host variable.

host-variable [{ OF | IN } record-name]

specifies the name of the host variable as declared in the program. record-name
specifies a level 01 item. The host variable name must be qualified by the record
name or group item name only if the data item name is not unique in the program.

INDICATOR indicator-host-variable [OF record-name]

specifies an indicator variable to handle null values that might be returned to the
host variable or to insert null values into the database through the host variable. If
you omit the keyword INDICATOR before the variable name, an indicator is
assumed because host variable names are separated by commas.

Declare indicator-host-variable as a data item of type PIC S9(4) COMP.
For a value returned to the host variable from the database, SQL/MP sets the
indicator variable to -1 if the value is null or 0 if the value is not null.

To insert null values into a database, set the indicator variable to a value less than
0 for a null value or a value equal to or greater than 0 for a nonnull a value.

For more information about indicator values, see Using Indicator Variables for
Null Values on page 2-11.

TYPE AS

specifies that the host variable will have the specified date-time or INTERVAL data
type. A host variable that is to contain date or time values must be defined with a
character data type.

:host-variable [{ OF | IN } record-name]

 [[INDICATOR]:indicator-host-variable [OF record-name]]

 [TYPE AS { DATETIME [start-date-time TO] end-date-time}]
 [{ }]
 [{ DATE }]
 [{ }]
 [{ TIME }]
 [{ }]
 [{ TIMESTAMP }]
 [{ }]
 [{ INTERVAL start-date-time }]
 [{ [(start-field-precision)] }]
 [{ [TO end-date-time] }]
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-6

Host Variables Using the COBOL PICTURE Clause
Using the COBOL PICTURE Clause
If you use the PICTURE clause to declare COBOL record descriptions as host
variables, the clause must conform to both COBOL syntax rules and SQL/MP
limitations.

Fixed-Length Character Data

Use the PICTURE clause to declare a host variable for fixed-length character data
(CHAR data type):

PICTURE X (length) [USAGE IS DISPLAY]

The length value must be a positive integer and not greater than 4096. Instead of
length, you can specify multiple Xs, with each X representing one character position,
or you can specify multiple Xs and lengths as allowed in COBOL. For example,
PIC XXX(3)X(3) is valid. DISPLAY is the default.

Variable-Length Character Data

Use a group item with two data items to declare a host variable for variable-length
character data (VARCHAR data type):

nn group-name.
 nm LEN PIC S9(4) COMP.
 nm VAL PIC X(len).

The group-name must follow COBOL naming conventions. The level numbers are
indicated by nn and nm: nn can be any level in the range 01 to 49, and nm is a
greater level than nn. LEN specifies the actual length of the character item in VAL. VAL
is a character data item with len specifying the maximum number of characters that
can be stored in VAL.

For example, the EMPLOYEE table has the EMP-NAME column defined as
VARCHAR(18). In a COBOL program, the column definition is:

05 EMP-NAME.
 10 LEN PIC S9(4) COMP.
 10 VAL PIC X(18).

In the Procedure Division, you must explicitly move a value to LEN before using
EMP-NAME in an SQL statement:

MOVE "SMITH" TO VAL OF EMP-NAME.
MOVE 5 to LEN OF EMP-NAME.
EXEC SQL INSERT INTO EMPLOYEE-TABLE(EMP_NAME)
 VALUES (:EMP-NAME)
END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-7

Host Variables Numeric Data
Numeric Data

Use the PICTURE clause to declare a host variable for numeric data (NUMERIC,
DECIMAL, SMALLINT, LARGEINT, and INTEGER data types):

PICTURE [S] { 9(integer) [V [9(scale)]] }
 { V9(scale) }

 [[USAGE IS] { DISPLAY }]
 [{ COMPUTATIONAL }]
 [{ COMP }]
 [{ BINARY }]

If you specify COMPUTATIONAL, COMP, or BINARY, the value is stored as a binary
integer with an implied decimal point. If you omit the USAGE clause, DISPLAY is the
default, and the digits are stored as ASCII characters.

The S specifies a signed variable. If you omit S, the variable is unsigned. The
9(integer) specifies integer number of digits; integer must be positive. The V
designates a decimal position. The 9(scale) designates the number of positions to the
right of the decimal. The value of scale must be a positive integer. If you do not
specify scale, the value 0 is used.

Instead of integer or scale, you can specify multiple 9s, with each 9 representing
one digit. You can also specify multiple 9s, integers, or scales as allowed in COBOL.
For example, PIC 9V9 has a scale of 1. PIC 999(4)V999 is equivalent to PIC 9(6)V9(3)
and has a scale of 3.

The values of integer and scale determine the size of the column. The sum of
these values cannot exceed 18.

There is no default numeric column definition. You must specify either 9(integer) or
V9(scale).

You must ensure that the value limit imposed by the PICTURE clause of COMP items
is valid for the data. Corresponding SQL columns defined as type NUMERIC,
SMALLINT, INTEGER, LARGEINT, or with COMPUTATIONAL can accept values as
large as the limit determined by the column size in bytes. For example, the COBOL
item described as PIC S9(4) COMP corresponds to an SQL integer column. SQL/MP
allows five-digit values up to 32767, but COBOL allows only four digits (maximum
value 9999).

Note. For systems running J06.09 and later J-series RVUs, H06.20 and later RVUs, or
G06.32 and later G-series RVUs, the SQL integer data types limitations are overridden when
the external DEFINE =_SQL_MAPTO_COBOL_COMP5 is present in the system. In these cases,
the SQL integer columns are mapped to the corresponding COBOL data types with COMP-5
option which rules out these value limitations
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-8

Host Variables Using COBOL Data Description Clauses
Using COBOL Data Description Clauses
The next table summarizes the COBOL data description clauses and their
interpretation by SQL/MP when they are used in host variable declarations. SQL/MP
does not support the COBOL special names option DECIMAL POINT IS COMMA.

Using Date-Time and INTERVAL Data Types

The SQL date-time and INTERVAL data types that you can use in host variable
declarations are:

COBOL Description SQL/MP Host Variable Interpretation

BLANK The clause is ignored.

data-name Any data name is allowed, including an SQL reserved word.
Specific hyphenation rules apply.

FILLER The clause is ignored.

JUSTIFIED The clause is not allowed. However, it can appear in an entry
already being ignored, such as REDEFINES.

level number Any number is allowed. Entries with the level number 66 or 88
are ignored.

OCCURS The clause is not allowed. However, it can appear in an entry
already being ignored, such as REDEFINES.

PICTURE The clause must be consistent with the PICTURE clause rules
for host variables.

REDEFINES The clause is ignored.

SIGN No restrictions apply, and the appropriate conversion for SQL
data types is made.

SYNC The clause is ignored.

USAGE The USAGE options correspond to these SQL data types:

 COMPUTATIONAL (COMP) or BINARY to SQL type
NUMERIC or to an integer type (SMALLINT, INTEGER, or
LARGEINT).

 DISPLAY to character (for PIC X) or decimal (for PIC 9).

 The INDEX and PACKED-DECIMAL options are not
allowed.

VALUE The clause is ignored.

Data Type Description

DATETIME Represents a date and time from year to microsecond (logical subsets,
such as MONTH TO DAY, are allowed)

DATE Represents a date and is equivalent to DATETIME YEAR TO DAY
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-9

Host Variables Using Date-Time and INTERVAL Data Types
TIME Represents a time and is equivalent to DATETIME HOUR TO SECOND

TIMESTAMP Represents a date and time and is equivalent to DATETIME YEAR TO
FRACTION(6)

INTERVAL Represents a duration of time as a year-month or day-time interval
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-10

Host Variables Using Indicator Variables for Null Values
Declare date-time values as character data types and then use the TYPE AS clause to
direct SQL/MP to interpret the value in the host variable as a date-time or INTERVAL
value. Sample TYPE AS clauses are:

 TYPE AS DATETIME YEAR TO HOUR
 TYPE AS DATE
 TYPE AS TIME
 TYPE AS TIMESTAMP
 TYPE AS INTERVAL YEAR

You can insert or retrieve date-time values in any of three formats, independently of the
SQL column definition. For example, you can specify formats such as 06/15/1996,
1996-06-15, or 15.06.1996. You must declare the host variable size to be consistent
with the format you will use. You then control the display format by retrieving the value
by using the DATEFORMAT function.

Using Indicator Variables for Null Values
A null value in an SQL column indicates that a value is either unknown for the row or is
not applicable to the row. If a column allows null values, a program can use an
indicator variable to set or receive the column value. An indicator variable is a two-byte
integer variable, defined in the Declare Section, associated with the host variable that
sets or receives the actual column value.

The INVOKE directive automatically declares indicator variables for columns defined to
allow null values. For information, see Using Indicator Variables With the INVOKE
Directive on page 2-22.

To send a value to SQL/MP for insertion, update, or comparison, a program sets the
indicator variable to less than zero (0) for a null value or zero (0) for a nonnull value.
When it returns a value that allows a null value to a program, SQL/MP sets the
indicator variable to less than zero (0) for a null value or zero (0) for a nonnull value.

A program can use indicator variables to perform these operations:

 To insert null values into a database with an INSERT or UPDATE statement

 To test for a null value after retrieving a value from a database with a SELECT
statement

Inserting a Null Value

To insert a null value, the program sets the indicator variable to a value less than 0 for
the column receiving the null value before executing the INSERT statement. This
INSERT statement uses an indicator variable to insert a null value into the RETIREES
table:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 RETIREE-REC.
 02 EMPNUM PIC 9(5) COMP.
 02 RETIRE-DATE PIC X(10).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-11

Host Variables Testing for a Null Value
 02 RETIRE-IND PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
...
PROCEDURE DIVISION.
...
MOVE NULL-EMPNUM TO EMPNUM.
MOVE -1 TO RETIRE-IND.

EXEC SQL
 INSERT INTO =RETIREES
 VALUES (:EMPNUM,:RETIRE-DATE INDICATOR :RETIRE-IND)
END-EXEC.
...

The next example uses the NULL keyword instead of an indicator variable to insert the
null value:

MOVE NULL-EMPNUM TO EMPNUM.
...
EXEC SQL
 INSERT INTO =RETIREES VALUES (:EMPNUM, NULL)
END-EXEC.

Testing for a Null Value

To test for a null value, a program tests the indicator variable associated with a host
variable. This example selects data from the PRODUCTS table and then tests for a null
value using the indicator variable SHIP-IND. After the SELECT statement executes,
the example tests the indicator variable for a null value. If the value of the indicator
variable is less than 0, the associated column contains a null value.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 PRODUCT-REC.
 02 PRODNUM PIC 9(5) COMP.
 02 DATE-SHIPPED PIC X(10).
 02 SHIP-IND PIC 9(4) COMP.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

* Variable for displaying the date or NULL:
 01 VALUE-DISPLAY PIC X(10) VALUE SPACES.
...
* Declare a cursor to perform the SELECT:
 EXEC SQL DECLARE GET-PRODNUM CURSOR FOR
 SELECT PRODNUM, DATE-SHIPPED FROM =PRODUCTS
 WHERE PRODNUM > MAX-PRODNUM
 END-EXEC.

 PROCEDURE DIVISION.
 0100-MAIN.
 ...
 EXEC SQL OPEN GET-PRODNUM END-EXEC.
 PERFORM 0150-SELECT UNTIL SQLCODE OF SQLCA NOT = 0.
 EXEC SQL CLOSE GET-PRODNUM END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-12

Host Variables Retrieving Rows With Null Values
 ...
 0150-SELECT.
 EXEC SQL FETCH GET-PRODNUM INTO
 :PRODNUM, :DATE-SHIPPED INDICATOR :SHIP-IND
 END-EXEC.
* NonStop SQL/MP sets SHIP-IND to -1 if the column
* contained a null value in the selected row.

 IF SHIP-IND = -1 THEN MOVE "NULL" TO VALUE-DISPLAY
 ELSE MOVE DATE-SHIPPED TO VALUE-DISPLAY.
 IF SQLCODE = 0 DISPLAY PRODNUM " " VALUE-DISPLAY.
 ...

Retrieving Rows With Null Values

You use an indicator variable to insert null values into a database or to test for a null
value after you retrieve a row. However, you cannot use an indicator variable set to -1
in a WHERE clause to retrieve a row that contains a null value. If you use an indicator
variable set to -1 in a WHERE clause, SQL/MP does not find the row and returns an
SQLCODE of 100, even if a column actually contains a null value.

To retrieve a row that contains a null value, use the NULL predicate in the WHERE
clause. For example, to retrieve rows that have null values from the EMPLOYEE table
using a cursor, specify the NULL predicate in the WHERE clause in the associated
SELECT statement when you declare the cursor:

* Declare a cursor to find rows with null salaries.
 EXEC SQL DECLARE GET-NULL-SALARY CURSOR FOR
 SELECT EMPNUM, FIRST-NAME, LAST-NAME,
 DEPTNUM, JOBCODE, SALARY
 FROM =EMPLOYEE
 WHERE SALARY IS NULL
 END-EXEC.
 ...
 PROCEDURE DIVISION.
 100-MAIN.
 ...
 EXEC SQL OPEN GET-NULL-SALARY END-EXEC.
 PERFORM 200-FETCH-NULL UNTIL SQLCODE OF SQLCA = 100.
 EXEC SQL CLOSE GET-NULL-SALARY END-EXEC.
 ...
 200-FETCH-NULL.

 EXEC SQL FETCH GET-NULL-SALARY INTO
 :EMPNUM OF EMPLOYEE-RECORD,
 :FIRST-NAME OF EMPLOYEE-RECORD
 :LAST-NAME OF EMPLOYEE-RECORD
 :DEPTNUM OF EMPLOYEE-RECORD
 :JOBCODE OF EMPLOYEE-RECORD
 :SALARY OF EMPLOYEE-RECORD
 END-EXEC.

* Process the row that contains the null salary.
 ...
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-13

Host Variables Creating Host Variables Using the INVOKE Directive
Creating Host Variables Using the INVOKE
Directive

The INVOKE directive creates host variables that correspond to columns in an SQL
table or view. Each host variable is a COBOL data item with the same name as the
respective column in the table or view. If a column allows null values, INVOKE also
generates an indicator variable for the column.

To execute an INVOKE directive, a process started by the program must have read
access to the invoked tables or views during COBOL compilation. For information
about process access, see Required Access Authority on page 7-1.

You code the INVOKE directive in a Declare Section. The HP COBOL compiler checks
the host variables generated by INVOKE for naming conflicts with other host variables
in the Declare Section, but not with COBOL reserved words. (If a name conflict occurs,
use SQLCI to generate the record description in a file, edit the names that conflict with
the reserved words, and copy the modified record description into your source
program. For more information, see Using INVOKE With SQLCI on page 2-24.)

Advantages of Using an INVOKE Directive

You can code host variables by creating a COBOL record definition that corresponds to
the SQL table. However, using an INVOKE directive to generate host variables has
these advantages:

 Program independence—If you modify a table or view, the INVOKE directive
recreates the host variables to correspond to the new table or view when you
recompile the program. (You must, however, modify a program that refers to a
deleted column or must access a new column.)

 TACL DEFINEs—The INVOKE directive accepts a class MAP DEFINE name for a
table or view name (but not for a record name).

 Program performance—The INVOKE directive maps the SQL data types to the
corresponding COBOL data types. No data conversion is required at run time.

 Program readability and maintenance—The INVOKE directive creates host
variables using the same names as column names in the table or view and
generates comments that show the table or view name and the time and date of
the definition.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-14

Host Variables COBOL Record Descriptions
COBOL Record Descriptions

The next examples show the correspondence between columns of various SQL data
types and the COBOL record description generated by the INVOKE directive.
Example 2-1 shows the CREATE TABLE statements that generate the SQL tables.

Example 2-1. CREATE TABLE Statements (page 1 of 2)

CREATE TABLE \NEWYORK.$DISK1.SQL.TYPECOB2 (

TYPE_CHAR1 CHARACTER (10) CHARACTER SET ISO88591 NOT NULL,

TYPE_CHAR1_NULL CHARACTER (10) CHARACTER SET ISO88591 ,

TYPE_CHAR2 CHARACTER (10) CHARACTER SET KANJI NOT NULL,

TYPE_CHAR2_NULL CHARACTER (10) CHARACTER SET KANJI ,

TYPE_VARCHAR1 VARCHAR (10) CHARACTER SET ISO88591 NOT NULL,

TYPE_VARCHAR1_NULL VARCHAR (10) CHARACTER SET ISO88591 ,

TYPE_VARCHAR2 VARCHAR (10) CHARACTER SET KANJI NOT NULL,

TYPE_VARCHAR2_NULL VARCHAR (10) CHARACTER SET KANJI ,

TYPE_NCHAR_F NATIONAL CHARACTER (10) NOT NULL,

TYPE_NCHAR_F_NULL NATIONAL CHARACTER (10) ,

TYPE_NCHAR_V NATIONAL CHARACTER VARYING (10) NOT NULL,

TYPE_NCHAR_V_NULL NATIONAL CHARACTER VARYING (10) ,

TYPE_COB_PICX1 PIC X(10) CHARACTER SET ISO88591 NOT NULL,

TYPE_COB_PICX1_NULL PIC X(10) CHARACTER SET ISO88591 ,

TYPE_COB_PICX2 PIC X(10) CHARACTER SET KANJI NOT NULL,

TYPE_COB_PICX2_NULL PIC X(10) CHARACTER SET KANJI
) CATALOG $SQL.SQLCAT ;

CREATE TABLE \NEWYORK.$DISK1.SQL.TYPECOB2 (

TYPE_CHAR1 CHARACTER (10) CHARACTER SET ISO88591 NOT NULL,

TYPE_CHAR1_NULL CHARACTER (10) CHARACTER SET ISO88591 ,

TYPE_CHAR2 CHARACTER (10) CHARACTER SET KANJI NOT NULL,

TYPE_CHAR2_NULL CHARACTER (10) CHARACTER SET KANJI ,

TYPE_VARCHAR1 VARCHAR (10) CHARACTER SET ISO88591 NOT NULL,

TYPE_VARCHAR1_NULL VARCHAR (10) CHARACTER SET ISO88591 ,

TYPE_VARCHAR2 VARCHAR (10) CHARACTER SET KANJI NOT NULL,

TYPE_VARCHAR2_NULL VARCHAR (10) CHARACTER SET KANJI ,

TYPE_NCHAR_F NATIONAL CHARACTER (10) NOT NULL,

TYPE_NCHAR_F_NULL NATIONAL CHARACTER (10) ,

TYPE_NCHAR_V NATIONAL CHARACTER VARYING (10) NOT NULL,

TYPE_NCHAR_V_NULL NATIONAL CHARACTER VARYING (10) ,

TYPE_COB_PICX1 PIC X(10) CHARACTER SET ISO88591 NOT NULL,
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-15

Host Variables COBOL Record Descriptions
These INVOKE directives are coded in a COBOL source file:

EXEC SQL BEGIN DECLARE SECTION;
EXEC SQL
 INVOKE \NEWYORK.$DISK1.SQL.TYPECOB1 AS TYPES-REC1 END-EXEC.

EXEC SQL
 INVOKE \NEWYORK.$DISK1.SQL.TYPECOB2 AS TYPES-REC2 END-EXEC.
EXEC SQL END DECLARE SECTION;

Example 2-2 shows the record descriptions generated by the INVOKE directives.

TYPE_COB_PICX1_NULL PIC X(10) CHARACTER SET ISO88591 ,

TYPE_COB_PICX2 PIC X(10) CHARACTER SET KANJI NOT NULL,

TYPE_COB_PICX2_NULL PIC X(10) CHARACTER SET KANJI
) CATALOG $SQL.SQLCAT ;

Example 2-2. COBOL Record Descriptions Generated by the INVOKE
Directive (page 1 of 2)

* Record Definition for table \NEWYORK.$DISK1.SQL.TYPECOB1
* Definition current at 15:55:34 - 10/10/94
 01 TYPES-REC1.
 02 TYPE-CHAR PIC X(10).
 02 TYPE-VARCHAR.
 03 LEN PIC S9(4) COMP.
 03 VAL PIC X(10).
 02 TYPE-NUM4-S PIC S9(4) COMP.
 02 TYPE-NUM4-U PIC 9(4) COMP.
 02 TYPE-NUM9-S PIC S9(7)V9(2) COMP.
 02 TYPE-NUM9-U PIC 9(7)V9(2) COMP.
 02 TYPE-NUM18-S PIC S9(16)V9(2) COMP.
 02 TYPE-SMALLINT-S PIC S9(4) COMP.
 02 TYPE-SMALLINT-U PIC 9(4) COMP.
 02 TYPE-INT-S PIC S9(9) COMP.
 02 TYPE-INT-U PIC 9(9) COMP.
 02 TYPE-LARGEINT-S PIC S9(18) COMP.
* TYPE-FLOAT: DOUBLE PRECISION IS NOT SUPPORTED
* TYPE-REAL: REAL IS NOT SUPPORTED
* TYPE-DOUBLE-PREC: DOUBLE PRECISION IS NOT SUPPORTED
 02 TYPE-DEC-S PIC S9(16)V9(2) DISPLAY SIGN IS LEADING.
 02 TYPE-DEC-U PIC 9(7)V9(2) DISPLAY.
 02 TYPE-COB-PIC9 PIC 9(9) COMP.
 02 TYPE-COB-PICX PIC X(10).
 02 TYPE-DATETIME PIC X(26).
 02 TYPE-DATE PIC X(10).
 02 TYPE-TIME PIC X(8).
 02 TYPE-INTERVAL PIC X(6).
 02 TYPE-ZCHAR-NULL-OK-I PIC S9(4) COMP.
 02 TYPE-ZCHAR-NULL-OK PIC X(10).
 02 TYPE-ZNUM-NULL-OK-I PIC S9(4) COMP.
 02 TYPE-ZNUM-NULL-OK PIC S9(4) COMP.

Example 2-1. CREATE TABLE Statements (page 2 of 2)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-16

Host Variables COBOL Record Descriptions
When you use the INVOKE directive to generate host variables, the HP COBOL
compiler writes a COBOL data description for each column in the specified table or
view. In some cases, however, the compiler must convert an SQL column name or
data type as described:

* Record Definition for table \NEWYORK.$DISK1.SQL..TYPECOB2
* Definition current at 15:55:38 - 10/10/94
 01 TYPES-REC2.
 02 TYPE-CHAR1 CHARACTER SET "ISO88591" PIC X(10).
 02 TYPE-CHAR1-NULL-I PIC S9(4) COMP.
 02 TYPE-CHAR1-NULL CHARACTER SET "ISO88591" PIC X(10).
 02 TYPE-CHAR2 CHARACTER SET "KANJI" PIC X(10).
 02 TYPE-CHAR2-NULL-I PIC S9(4) COMP.
 02 TYPE-CHAR2-NULL CHARACTER SET "KANJI" PIC X(10).
 02 TYPE-VARCHAR1.
 03 LEN PIC S9(4) COMP.
 03 VAL CHARACTER SET "ISO88591" PIC X(10).
 02 TYPE-VARCHAR1-NULL-I PIC S9(4) COMP.
 02 TYPE-VARCHAR1-NULL.
 03 LEN PIC S9(4) COMP.
 03 VAL CHARACTER SET "ISO88591" PIC X(10).
 02 TYPE-VARCHAR2.
 03 LEN PIC S9(4) COMP.
 03 VAL CHARACTER SET "KANJI" PIC X(10).
 02 TYPE-VARCHAR2-NULL-I PIC S9(4) COMP.
 02 TYPE-VARCHAR2-NULL.
 03 LEN PIC S9(4) COMP.
 03 VAL CHARACTER SET "KANJI" PIC X(10).
 02 TYPE-NCHAR-F CHARACTER SET "KANJI" PIC X(10).
 02 TYPE-NCHAR-F-NULL-I PIC S9(4) COMP.
 02 TYPE-NCHAR-F-NULL CHARACTER SET "KANJI" PIC X(10).
 02 TYPE-NCHAR-V.
 03 LEN PIC S9(4) COMP.
 03 VAL CHARACTER SET "KANJI" PIC X(10).
 02 TYPE-NCHAR-V-NULL-I PIC S9(4) COMP.
 02 TYPE-NCHAR-V-NULL.
 03 LEN PIC S9(4) COMP.
 03 VAL CHARACTER SET "KANJI" PIC X(10).
 02 TYPE-COB-PICX1 CHARACTER SET "ISO88591" PIC X(10).
 02 TYPE-COB-PICX1-NULL-I PIC S9(4) COMP.
 02 TYPE-COB-PICX1-NULL CHARACTER SET "ISO88591" PIC X(10).
 02 TYPE-COB-PICX2 CHARACTER SET "KANJI" PIC X(10).
 02 TYPE-COB-PICX2-NULL-I PIC S9(4) COMP.
 02 TYPE-COB-PICX2-NULL CHARACTER SET "KANJI" PIC X(10).

Example 2-2. COBOL Record Descriptions Generated by the INVOKE
Directive (page 2 of 2)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-17

Host Variables Embedded Sign in a Decimal Data Type

Embedded Sign in a Decimal Data Type

SQL/MP supports only leading embedded signs for columns defined with a decimal
data type. Therefore, you cannot directly specify or use INVOKE to generate host
variables with embedded trailing signs from numeric columns defined as either of
these:

PICTURE S 9(n) DISPLAY or DECIMAL (n,s) SIGNED

To use a trailing sign with a numeric variable, follow these steps:

1. Use INVOKE to declare a host variable with a leading embedded sign.
2. Define a corresponding COBOL variable with a trailing sign.
3. Read data into the host variable with a leading sign.
4. Move the data to the COBOL variable with a trailing sign.

System-Defined Primary Key (SYSKEY)

INVOKE generates a host variable declaration for each column specified in the
CREATE TABLE or CREATE VIEW statement that created the table or view definition.
Therefore, if a system-defined primary key (SYSKEY) is specified for a view, INVOKE
generates a host variable for SYSKEY. If SYSKEY is not specified for a view, INVOKE

Column or Data Type Description of Change

Underscore (_) within a name Converts underscores to hyphens (–). For example, the
column name CITY_STREET becomes CITY-STREET.

Underscore (_) at the end of a
name

Truncates the underscore so that the resulting COBOL
name does not end in a hyphen. For example, the column
name HOME_ becomes HOME.

Column with VARCHAR data
type

Creates a group item with two elementary data items. The
group item name is derived from the VARCHAR column
name. The data names of the subordinate data items are:

 LEN, a numeric data item for the length.

 VAL, a fixed-length character data item for the string,
with the maximum length specified by the VARCHAR
column definition.

For example, CUSTNAME defined as VARCHAR (26)
becomes this group item:

02 CUSTNAME.
 03 LEN PIC S9(4) COMP.
 03 VAL PIC X(26).

DATETIME, DATE, TIME,
TIMESTAMP, or INTERVAL
data type

Converts columns to character fields. The size is
determined by the date-time or INTERVAL fields.

INTERVAL columns have an additional byte for a sign
(that is, a negative interval is possible). The format of the
column is the DEFAULT format (ANSI).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-18

Host Variables Date-Time and INTERVAL Data Types
does not generate a SYSKEY host variable. (INVOKE does not generate a column for
the SYSKEY of a table because SYSKEY cannot be specified in a CREATE TABLE
statement.)

For example, suppose that you create a table by using this statement:

CREATE TABLE TYPESTAB (COLUMN-A INT, COLUMN-B INT)

INVOKE generates host variables for columns COLUMN-A and COLUMN-B but does
not generate a host variable for the SYSKEY automatically associated with the table.

However, suppose that you create a view from the base table with a column
corresponding to the table's SYSKEY:

CREATE VIEW AVIEW (COLUMN-X, COLUMN-Y, COLUMN-Z)
 AS SELECT SYSKEY, COLUMN-A, COLUMN-B
 FROM TYPESTAB

INVOKE generates host variables for columns COLUMN-X, COLUMN-Y, and
COLUMN-Z because these columns are included in the view definition.

If the view definition does not specifically include the SYSKEY column, INVOKE does
not generate a host variable for SYSKEY as shown in the next example:

CREATE VIEW AVIEW
 AS SELECT * FROM TYPESTAB

INVOKE generates host variables for only COLUMN-A and COLUMN-B because a
SYSKEY column was not included in the view definition. The SELECT * statement acts
in the same manner as an INVOKE directive, that is, it only selects columns explicitly
specified in a CREATE statement.

Date-Time and INTERVAL Data Types

In an INVOKE directive, use the DATEFORMAT clause to specify the format of
date-time (DATETIME, DATE, TIME, TIMESTAMP) or INTERVAL columns. SQL/MP
converts the columns to character fields.

The size of each character field is determined by the size of the range of the fields
defined for the data type. For example, if the range of fields for the column is YEAR TO
DAY, the field in the invoked record description is 10 characters wide. Some examples
follow.

DATE Representation

Suppose that an SQL table has these column definitions:

NAME CHAR(18)
BIRTH_DATE DATE

Figure 2-1 on page 2-20 illustrates how a date is represented. The date is May 28,
1952.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-19

Host Variables Date-Time and INTERVAL Data Types
INVOKE generates this record description in the COBOL format:

01 EMPLOYEE
 02 NAME PIC X(18) VALUE SPACES.
 02 BIRTH-DATE PIC X(10) VALUE SPACES.

The host variable BIRTH-DATE is referenced in a program:

:BIRTH-DATE TYPE AS DATE

INTERVAL Representation

Suppose that an SQL table has these column definitions:

NAME CHAR(18)
AGE INTERVAL YEAR(2) TO MONTH

Figure 2-2 displays how an interval is represented. The age represented is 37 years,
11 months.

INVOKE generates this record description in the COBOL format:

01 EMPLOYEE
 02 NAME PIC X(18) VALUE SPACES.
 02 AGE PIC X(6) VALUE SPACES.

The host variable AGE is referenced in a program as follows:

:AGE TYPE AS INTERVAL YEAR(2) TO MONTH

Example—Creating DATETIME and INTERVAL Data Types

Example 2-3 on page 2-21 creates valid DATETIME data types. You can create
INTERVAL data types similarly.

Figure 2-1. DATE Representation

Figure 2-2. INTERVAL Representation

1 9 5 2 0 5 2 8

Year Separator Month Separator Day

VST013.vsd

+ 3 7 1 1

Sign Year Separator Month

VST014.vsd
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-20

Host Variables Date-Time and INTERVAL Data Types
Example 2-3. Creating Valid DATETIME and INTERVAL Data Types

?INSPECT
?SYMBOLS
 IDENTIFICATION DIVISION.
 PROGRAM-ID.
 COBEXT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. TANDEM/16.
 OBJECT-COMPUTER. TANDEM/16.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 OUTPUT-VAL PIC X(30).
 01 INPUT-VAL PIC X(30) VALUE SPACES.
 01 TEMP-STMT-TEXT PIC X(200) VALUE SPACES.
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.
?NOLIST
 EXTENDED-STORAGE SECTION.
?LIST

 PROCEDURE DIVISION.

 1000-DRIVER.
 PERFORM 3000-SPECIFY-ERROR-HANDLING.
 PERFORM 3100-PROCESS-QUERIES.
 STOP RUN.

 3000-SPECIFY-ERROR-HANDLING.
 EXEC SQL WHENEVER SQLERROR PERFORM :6000-HANDLE-ERROR END-EXEC.

 3100-PROCESS-QUERIES.

* Table DT has column TS of datatype DATETIME
 MOVE "2004-01-22:13:40:05.550000" TO INPUT-VAL
 MOVE "SELECT CAST(TS AS CHAR(29)) FROM dt where ts
- " >= CAST(CAST(? AS CHAR(29)) AS DATETIME
- " YEAR TO FRACTION)" TO TEMP-STMT-TEXT

 EXEC SQL BEGIN WORK END-EXEC
 EXEC SQL PREPARE S1 FROM :TEMP-STMT-TEXT END-EXEC
 EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC

 EXEC SQL OPEN C1 USING :INPUT-VAL END-EXEC

 PERFORM UNTIL SQLCODE < 0 OR SQLCODE = 100

 EXEC SQL FETCH C1 INTO :OUTPUT-VAL END-EXEC

 IF SQLCODE >= 0 AND SQLCODE NOT = 100 THEN
 DISPLAY "VALUE IS " OUTPUT-VAL
 END-IF

 END-PERFORM

 EXEC SQL CLOSE C1 END-EXEC
 EXEC SQL COMMIT WORK END-EXEC.

 6000-HANDLE-ERROR.
 ENTER TAL "SQLCADISPLAY" USING SQLCA
 STOP RUN.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-21

Host Variables Using Indicator Variables With the INVOKE Directive
Using Indicator Variables With the INVOKE Directive

The INVOKE directive automatically generates a two-byte indicator variable (data type
short) for each host variable that corresponds to a column that allows a null value. The
name of the indicator variable is the same name as the corresponding column plus a
prefix, if you specify one, and a suffix. If you do not specify a prefix or suffix, INVOKE
appends the default suffix -I to the name.

If a column name is 30 characters and the default indicator suffix -I is used, the -I is
truncated, and the indicator variable name is then identical to the corresponding host
variable name. To prevent this problem, use the PREFIX or NULL STRUCTURE
clause for column names that are 30 or 31 characters.

The format of the indicator variable name depends on the PREFIX, SUFFIX, and NULL
STRUCTURE clauses.

PREFIX and SUFFIX Clauses

The PREFIX and SUFFIX clauses causes INVOKE to generate an indicator variable
name derived from the column name and the prefix or suffix. A default suffix of -I
applies if the INVOKE directive omits these clauses. For example, if the column name
is RETIRE-DATE, the format of the indicator variable is RETIRE-DATE-I.

You can specify a suffix other than an I by specifying a SUFFIX clause with the
INVOKE statement. Or, you can replace the suffix with a prefix of your choosing by
specifying the PREFIX clause.

This INVOKE directive specifies both a prefix and a suffix for the indicator variables:

EXEC SQL INVOKE BTABLE PREFIX I- SUFFIX -END END-EXEC.

The HP COBOL compiler generates this structure:

* Record Definition for table \SYS1.$VOL1.SUBV1.BTABLE
* Definition current at 12:41:14 - 06/11/94
 01 BTABLE.
 02 I-ZCHAR-NULL-OK-END PIC S9(4) COMP.
 02 ZCHAR-NULL-OK PIC X(10).
 02 I-ZNUM-NULL-OK-END PIC S9(4) COMP.
 02 ZNUM-NULL-OK PIC S9(4) COMP.

NULL STRUCTURE Clause

The NULL STRUCTURE clause causes INVOKE to generate a group item for columns
that contain the indicator variables. The group item name is derived from the column
name. For example, a column named RETIRE-DATE has this format:

02 RETIRE-DATE.
 03 INDICATOR PIC S9(4) COMP.
 03 VALUE PIC X(10).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-22

Host Variables Using Indicator Variables With the INVOKE Directive
INDICATOR is the indicator variable. The SQL data type of an indicator variable is
SMALLINT. The corresponding COBOL data type is PIC S9(4) COMP. VALUE is the
host variable corresponding to the column value.

This example uses the NULL STRUCTURE clause, which causes columns that can
contain null values to be declared as group items. This INVOKE directive contains a
NULL STRUCTURE clause:

EXEC SQL INVOKE BTABLE NULL STRUCTURE END-EXEC.

The generated record description is:

* Record Definition for table \SYS1.$VOL1.SUBV1.BTABLE
* Definition current at 12:41:11 - 06/11/94
 01 BTABLE.
 02 ZCHAR-NULL-OK.
 03 INDICATOR PIC S9(4) COMP.
 03 VALUE PIC X(10).
 02 ZNUM-NULL-OK.
 03 INDICATOR PIC S9(4) COMP.
 03 VALUE PIC S9(4) COMP.

Example 2-4 on page 2-24 declares and uses qualified host variable names and
indicator variable names and shows the following:

 Host variable declaration with an INVOKE statement that specifies the suffix -I for
indicator variables. The invoked record declaration is included as a comment in the
example.

 Host variable indicator variable used in the SELECT statement. The columns that
might contain a null value require the indicator variable following the host variable
to receive information about null values.

 Indicator variable testing for a possible null value. If the value of the indicator
variable following the select is less than 0, the associated column's value is NULL.

The example retrieves four columns of an order detail table. The table is similar to the
ODETAIL table of the sample database except that the UNIT_PRICE and
QTY_ORDERED columns allow null values.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-23

Host Variables Using INVOKE With SQLCI
 Using INVOKE With SQLCI

You can also execute the INVOKE directive interactively through SQLCI to create host
variable declarations in a copy file. For example, this INVOKE directive generates a
COBOL copy file from the DEPT table:

>> INVOKE =DEPT FORMAT COBOL85 TO COPYLIB (DEPTREC);
 ...

Use the COBOL SOURCE directive to copy the host variable declarations in your
program’s compilation unit:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
?SOURCE COPYLIB (DEPTREC)
EXEC SQL END DECLARE SECTION END-EXEC.

Example 2-4. Using Host and Indicator Variable Names

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 EXEC SQL
 INVOKE ODETAIL AS ORDER-DETAIL-RECORD SUFFIX -I
 END-EXEC.
*Record Description *****************************
*01 ORDER-DETAIL-RECORD.
* 02 ORDERNUM PIC 9(6) COMP.
* 02 PARTNUM PIC 9(4) COMP.
* 02 UNIT-PRICE-I PIC S9(4) COMP.
* 02 UNIT-PRICE PIC S9(6)V9(2) COMP.
* 02 QTY-ORDERED-I PIC S9(4) COMP.
* 02 QTY-ORDERED PIC 9(5) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...

PROCEDURE DIVISION.
 ...
EXEC SQL
 SELECT ORDERNUM, PARTNUM, UNIT_PRICE, QTY_ORDERED
 INTO :ORDERNUM OF ORDER-DETAIL-RECORD,
 :PARTNUM OF ORDER-DETAIL-RECORD,
 :UNIT-PRICE OF ORDER-DETAIL-RECORD
 INDICATOR :UNIT-PRICE-I OF ORDER-DETAIL-RECORD,
 :QTY-ORDERED OF ORDER-DETAIL-RECORD
 INDICATOR :QTY-ORDERED-I OF ORDER-DETAIL-RECORD,
 FROM SALES.ODETAIL
 WHERE ORDERNUM = 300380 AND PARTNUM = 2402
END-EXEC.
...
IF UNIT-PRICE-I OF ORDER-DETAIL-RECORD < 0
 OR QTY-ORDERED-I OF ORDER-DETAIL-RECORD < 0 THEN
 PERFORM 0500-HANDLE-NULL-VALUE
ELSE PERFORM 0300-DISPLAY-RESULT.
...
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-24

Host Variables Associating a Character Set With a Host Variable
Using INVOKE with SQLCI provides less program independence than embedding
INVOKE in your program, because you must re-create the host variable declarations if
the referenced table changes. However, if necessary, you can edit the host variables
before copying them into your program’s compilation unit.

Associating a Character Set With a Host
Variable

By default, SQL/MP associates a single-byte unknown character set with a host
variable. To associate a specific character set such as ISO 8859/n, Kanji, or KSC5601
with a host variable, include the CHARACTER SET clause in the host variable
declaration using this syntax:

level

is the COBOL level number.

host-variable

is a COBOL identifier that is the name of the host variable, which must conform to
COBOL naming conventions.

"character-set-name"

specifies the name of the character set, which must be one of these keywords:

ISO8859n (where n ranges from 1 through 9)
KANJI
KSC5601
UNKNOWN

You must enclose character-set-name in double quotation marks ("). Any
leading or trailing spaces inside the double quotation marks are ignored.

The UNKNOWN keyword indicates an unknown single-byte character set and is
equivalent to omitting the CHARACTER SET clause.

length

is the length in characters (not bytes) of the host variable. For a double-byte
character set, you must code the PICTURE clause specification (the X part) on a
single line.

level host-variable
 [CHARACTER SET [IS] "character-set-name"]
 PIC[TURE] { X [(length)] }...[COBOL-clause]... .
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-25

Host Variables Treatment in COBOL Statements
COBOL-clause

is a COBOL clause such as VALUE or USAGE. For a description of the
COBOL clauses, see the COBOL85 for NonStop Systems Manual.

Treatment in COBOL Statements

A COBOL statement treats a host variable declared with the CHARACTER SET clause
as if the host variable had been declared without the clause. The total length of the
host variable is the length in the PICTURE clause multiplied by the number of bytes
per character for the specified character set.

For example, the total length of the first two declarations in this table is the same as
the length in the PICTURE clause. However, the total length of the third declaration is
twice the length in the PICTURE clause because KANJI is a double-byte character set.

VARCHAR Data Type

If you specify the CHARACTER SET clause with a host variable declared as a
VARCHAR data type, you must set the length data item (LEN) of the VARCHAR group
item to the host variable length in bytes and not characters. For example, this host
variable declaration uses the double-byte KSC5601 character set. The MOVE
statement sets the length (LEN OF EMPLOYEE-NAME) of the host variable name to
16, because the name (VAL OF EMPLOYEE-NAME) contains 8 double-byte
characters (represented as “c1c2c3c4c5c6c7c8”).

DATA DIVISION.
WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPLOYEE-NAME.
 02 LEN PIC S9(4) COMP.
 02 VAL CHARACTER SET "KSC5601" PIC X(10).
EXEC SQL END DECLARE SECTION END-EXEC.
...
PROCEDURE-DIVISION.
...
MOVE "c1c2c3c4c5c6c7c8" TO VAL OF EMPLOYEE-NAME.
MOVE 16 TO LEN OF EMPLOYEE-NAME.
EXEC SQL
 INSERT INTO EMPLOYEE VALUES (:EMPLOYEE-NAME)
END-EXEC.
...

Host Variable Declaration Treatment in COBOL Statement

77 HVAR-1 CHARACTER SET "ISO88591"
 PIC X(5).

77 HVAR-1 PIC X(5).

77 HVAR-1 CHARACTER SET "ISO88591"
 PIC X(10).

77 HVAR-1 PIC X(10).

77 HVAR-2 CHARACTER SET "KANJI"
 PIC X(10).

77 HVAR-2 PIC X(20).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
2-26

3
SQL/MP Statements and Directives

This section describes NonStop SQL/MP statements and directives you can embed in
a COBOL program. For a detailed description, including the syntax, of all SQL
statements and directives, see the SQL/MP Reference Manual.

Topics include:

 Embedding SQL Statements

 Finding Information on page 3-3

Embedding SQL Statements
Use this syntax to embed an SQL statement or directive in a COBOL source file:

sql-statement-or-directive

is any SQL statement or directive shown in Table 3-1, NonStop SQL/MP
Statements and Directives, on page 3-3. The statement or directive must begin
with the keywords EXEC SQL and end with END-EXEC. The EXEC SQL keywords
do not require a hyphen or period, but the END-EXEC keywords require both the
hyphen and period. (However, a period after the END-EXEC keywords after the
BEGIN DECLARE SECTION or END DECLARE SECTION directive is ignored.)

Coding SQL Statements and Directives

In general, handle embedded SQL statements and directives as if they were COBOL
statements. Follow the same formatting and line continuation conventions for SQL
statements as you use for COBOL statements. Here are a some specific guidelines to
follow when you embed SQL statements and directives in a COBOL program:

 Code an SQL statement or directive on a single source code line or over several
lines:

EXEC SQL WHENEVER SQLERROR PERFORM :HANDLE-ERROR END-EXEC.

EXEC SQL DROP TABLE \NY.$DISK1.INVENT.SUPPLIER END-EXEC.

EXEC SQL
 SELECT CUSTOMER.CUSTNAME
 INTO :CUSTOMER.CUSTNAME
 FROM =CUSTOMER
 WHERE CUSTNUM = :FIND_THIS_CUSTOMER
END-EXEC.

 Do not nest SQL statements or directives.

EXEC SQL sql-statement-or-directive END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
3-1

SQL/MP Statements and Directives Placing SQL Statements and Directives
 Precede an SQL statement with a COBOL section or paragraph name.

 If you place COBOL and SQL statements on the same line, these restrictions
apply:

 The COBOL statement cannot be a COPY or REPLACE statement.

 A COBOL statement must follow the embedded SQL statement terminator. It
cannot precede an embedded SQL statement on a line.

 Use either SQL or COBOL comments within SQL statements and directives. An
SQL comment begins with a double hyphen (--) and ends with the end of the line.
A COBOL comment has an asterisk (*) in the indicator field (column 1 in HP format
or column 7 in ANSI format) and ends with the end of the line.

 If you specify a delimiter on an executable SQL statement in the Procedure
Division, the delimiter affects program execution. A COBOL statement is generated
from the embedded SQL statement, and the delimiter is appended to the
generated statement. Consequently, you can use SQL statements in conditional
statements, such as IF and ELSE.

 If you specify a delimiter on an SQL statement in the Data Division or a
non-executable statement in the Procedure Division, the delimiter appears only in a
comment line. The HP COBOL compiler copies both the embedded SQL directive
and the delimiter to comment lines. The delimiter is not appended to any resulting
data declaration.

 Do not code an SQL statement or directive on a COBOL debugging line.

Placing SQL Statements and Directives

Place SQL statements, SQL directives, and COBOL compiler directives in a COBOL
source file as described in this subsection.

SQL Compiler Directive

You must specify the SQL compiler directive before the first Identification Division in
your program. The SQL directive indicates to the HP COBOL compiler that the
compilation unit contains SQL statements or directives.

You can specify the SQL directive either in your source code file or as a compiler
option in the implicit TACL RUN command for the HP COBOL compiler. This example
shows the SQL directive in a source code file:

?SQL

This example shows the SQL directive as a compiler option:

COBOL85 /IN COBSRC,OUT $S.#COBLIST,NOWAIT/ COBOBJ; SQL

After the SQL directive, place other SQL statements and directives in a COBOL source
file as described in this subsection.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
3-2

SQL/MP Statements and Directives Finding Information
Data Division

You can use these statements and directives in the Data Division:

 BEGIN DECLARE SECTION and END DECLARE SECTION directives
 DECLARE CURSOR statement
 INVOKE directive
 INCLUDE STRUCTURES directive
 INCLUDE SQLCA, INCLUDE SQLDA, and INCLUDE SQLSA directives
 INCLUDE SQLCODEX directive

Procedure Division

You can use these statements and directives in the Procedure Division:

 Data Control Language (DCL) statements
 Data Definition Language (DDL) statements
 Data Manipulation Language (DML) statements (including DECLARE CURSOR)
 Data Status Language (DSL) statements
 Dynamic SQL statements
 WHENEVER directive

Anywhere in the Program

You can use the CONTROL directive anywhere in a program.

Finding Information
Table 3-1 summarizes the SQL/MP statements and directives you can embed in a
COBOL program and shows where each statement or directive is documented.

Table 3-1. NonStop SQL/MP Statements and Directives (page 1 of 5)

Statement or Directive Manual* Description

Data Declaration Directives

BEGIN DECLARE SECTION SQLRM,
COBPM

Designates the beginning of host
variable declarations.

END DECLARE SECTION SQLRM,
COBPM

Designates the end of host variable
declarations.

INCLUDE STRUCTURES SQLRM,
COBPM

Specifies the version of SQL structures
generated.

INCLUDE SQLCA SQLRM,
COBPM

Generates the SQLCA structure for run-
time status and error information.

* This statement is documented in one or more of these manuals:

SQLRM SQL/MP Reference Manual

COBPM SQL/MP Programming Manual for COBOL
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
3-3

SQL/MP Statements and Directives Finding Information
Data Declaration Directives

INCLUDE SQLCODEX SQLRM,
COBPM

Enables declaring level-88 items to
check for specified conditions.

INCLUDE SQLDA SQLRM,
COBPM

Generates the SQLDA structure to
receive information about input and
output variables for dynamic SQL
statements.

INCLUDE SQLSA SQLRM,
COBPM

Generates the SQLSA structure to
receive execution statistics about DML
or PREPARE statements.

INVOKE SQLRM,
COBPM

Generates a COBOL record description
of a table or view.

Data Definition Language (DDL) Statements

ALTER CATALOG SQLRM Alters the security attributes of a catalog.

ALTER COLLATION SQLRM Alters the security attributes of a
collation; renames a collation.

ALTER INDEX SQLRM Alters security attributes of indexes;
alters physical file attributes of indexes
and partitions of indexes; adds and
drops partitions; renames indexes and
partitions.

ALTER PROGRAM SQLRM Alters security attributes for a program;
renames a program.

ALTER TABLE SQLRM Alters security attributes of tables; alters
physical file attributes of tables and
partitions of tables; alters the HEADING
attribute for columns of tables and views;
adds and drops table partitions; renames
tables and partitions of tables; adds new
columns to tables.

ALTER VIEW SQLRM Alters security attributes for a view or
renames a view.

COMMENT SQLRM Adds a comment to an object definition.

CREATE SQLRM Creates a collation, constraint, catalog,
index, table, or view.

DROP SQLRM Drops a collation, constraint, catalog,
index, program, table, or view.

Table 3-1. NonStop SQL/MP Statements and Directives (page 2 of 5)

Statement or Directive Manual* Description

* This statement is documented in one or more of these manuals:

SQLRM SQL/MP Reference Manual

COBPM SQL/MP Programming Manual for COBOL
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
3-4

SQL/MP Statements and Directives Finding Information
Data Definition Language (DDL) Statements

HELP TEXT SQLRM Specifies help text for a column of a
table or view.

UPDATE STATISTICS SQLRM Updates information about the contents
of a table and its indexes.

Data Manipulation Language (DML) Statements

CLOSE SQLRM,
COBPM

Terminates a cursor.

DECLARE CURSOR SQLRM,
COBPM

Defines a cursor.

DELETE SQLRM,
COBPM

Deletes rows from a table or view.

FETCH SQLRM,
COBPM

Retrieves a row from a cursor.

INSERT SQLRM,
COBPM

Inserts rows into a table or view.

OPEN SQLRM,
COBPM

Opens a cursor.

SELECT SQLRM,
COBPM

Retrieves data from tables and views.

UPDATE SQLRM,
COBPM

Updates values in columns of a table or
view.

Data Control Language (DCL) Statements

CONTROL EXECUTOR SQLRM,
COBPM

Specifies whether to process data using
a single executor or multiple executors
working in parallel.

CONTROL QUERY SQLRM,
COBPM

Specifies whether to optimize query time
for the first few rows or for all rows,
whether to consider a hash join
algorithm for executing queries, or
whether to use execution-time name
resolution.

CONTROL TABLE SQLRM,
COBPM

Specifies parameters that control locks,
opens, buffers, access paths, join
methods, and join sequences on tables
and views.

Table 3-1. NonStop SQL/MP Statements and Directives (page 3 of 5)

Statement or Directive Manual* Description

* This statement is documented in one or more of these manuals:

SQLRM SQL/MP Reference Manual

COBPM SQL/MP Programming Manual for COBOL
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
3-5

SQL/MP Statements and Directives Finding Information
Data Control Language (DCL) Statements

FREE RESOURCES SQLRM Closes cursors and releases locks held
by the program.

LOCK TABLE SQLRM Locks a table or underlying tables of a
view and associated indexes.

UNLOCK TABLE SQLRM Releases locks held on nonaudited
tables and views.

Data Status Language (DSL) Statements

GET CATALOG OF SYSTEM SQLRM Returns the name of a local or remote
system catalog.

GET VERSION SQLRM,
COBPM

Returns the version of a catalog,
collation, index, table, or view; also
returns the version of the SQL/MP
system software.

GET VERSION OF PROGRAM SQLRM,
COBPM

Returns the program catalog version
(PCV), program format version (PFV), or
host object SQL version (HOSV) of an
SQL program file.

Dynamic SQL Statements

DESCRIBE SQLRM,
COBPM

Returns information about output
variables in prepared statements.

DESCRIBE INPUT SQLRM,
COBPM

Returns information about input
variables in prepared statements.

EXECUTE SQLRM,
COBPM

Executes a prepared statement.

EXECUTE IMMEDIATE SQLRM,
COBPM

Executes an SQL statement contained in
a host variable.

PREPARE SQLRM,
COBPM

Compiles a DDL, DML, DCL, or DSL
statement.

RELEASE SQLRM Deallocates memory for a dynamic SQL
statement referred to through a host
variable.

Error-Checking Directive

WHENEVER SQLRM,
COBPM

Generates code that checks SQL
statement execution for errors, warnings,
and the not found condition for rows.

Table 3-1. NonStop SQL/MP Statements and Directives (page 4 of 5)

Statement or Directive Manual* Description

* This statement is documented in one or more of these manuals:

SQLRM SQL/MP Reference Manual

COBPM SQL/MP Programming Manual for COBOL
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
3-6

SQL/MP Statements and Directives Finding Information
Table 3-2 summarizes COBOL compiler directives that apply to a COBOL program
containing embedded SQL statements and directives. For a description of all other
COBOL compiler directives, see the COBOL85 for NonStop Systems Manual.

Transaction Control Statements

BEGIN WORK SQLRM Starts a TMF transaction.

COMMIT WORK SQLRM Commits all database changes made
during the current TMF transaction and
frees resources.

ROLLBACK WORK SQLRM Backs out the current TMF transaction
and frees resources.

Table 3-2. COBOL Compiler Directives for SQL/MP

Directive Manual * Description

SOURCE COBPM,
COBRM

Copies source code from a source file into the compilation.

SQL COBPM,
COBRM

Indicates to the HP COBOL compiler that a program contains
embedded SQL statements or directives.

Specifies options for processing the SQL statements or
directives:

 PAGES specifies the number of 2048-byte pages that the
HP COBOL compiler allocates to the SQL compiler
interface (SCI).

 SQLMAP generates an SQL map in the listing.

 WHENEVERLIST writes active WHENEVER options to
the listing file after each SQL statement is processed.

 RELEASE1 or RELEASE2 specifies the version of the
SQL/MP features in the program (including the SQL data
structures) and the version of SQL/MP software on which
the program can run.

SQLMEM COBPM,
COBRM

Controls the placement of SQL internal structures in either the
user data segment (Working-Storage Section) or extended
data segment (Extended-Storage Section).

* This statement is documented in one or more of these manuals:

SQLRM SQL/MP Reference Manual

COBPM SQL/MP Programming Manual for COBOL

Table 3-1. NonStop SQL/MP Statements and Directives (page 5 of 5)

Statement or Directive Manual* Description

* This statement is documented in one or more of these manuals:

SQLRM SQL/MP Reference Manual

COBPM SQL/MP Programming Manual for COBOL
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
3-7

SQL/MP Statements and Directives Finding Information
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
3-8

4 Data Retrieval and Modification

This section describes how to access data in a NonStop SQL/MP database by using
the Data Manipulation Language (DML) statements in a COBOL program.

Topics include:

 Opening and Closing Tables and Views on page 4-2

 Single-Row SELECT Statement on page 4-4

 INSERT Statement on page 4-6

 UPDATE Statement on page 4-8

 DELETE Statement on page 4-10

 Using SQL Cursors on page 4-12

 Table 4-1 provides some guidelines for using these statements.

Table 4-1. SQL/MP Statements for Data Retrieval and Modification

NonStop SQL/MP Statement Description

Single-Row SELECT statement Retrieves a single row of data from a table or
protection view and places the specified column
values in host variables. Use when you need to
retrieve only a single row.

SELECT statement with a cursor Retrieves a set of rows from a table or view, one row
at a time, and places the specified column values in
host variables. Use when you need to retrieve more
than one row.

INSERT statement Inserts one or more rows into a table or protection
view. Use for all INSERT operations.

UPDATE statement without a cursor Updates the values in one or more columns in a
single row or a set of rows of a table or protection
view. Use when you do not need to test a column
value in a row before you update the row.

UPDATE statement with a cursor Updates the values in one or more columns in a set
of rows, one row at a time. Use when you need to test
a column value in a row before you update the row.

DELETE statement without a cursor Deletes a single row or a set of rows from a table or
protection view. Use when you do not need to test a
column value in a row before you delete the row.

DELETE statement with a cursor Deletes a set of rows, one row at a time, from a table
or protection view. Use when you need to test a
column value in a row before you delete the row.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-1

Data Retrieval and Modification Opening and Closing Tables and Views
Opening and Closing Tables and Views
SQL/MP automatically opens and closes tables and views during the execution of DDL
statements, DML statements, and SQL utility operations such as a LOAD or COPY.
SQL/MP opens a table or view when a host-language program executes the first SQL
statement that refers to the table or view and then closes the table or view when the
program that opened it stops. A program cannot explicitly open an SQL table or view.
However, a program can force SQL/MP to close a table using the CLOSE TABLES
option of the FREE RESOURCES statement.

By default, SQL/MP opens partitions of base tables and indexes only as they are
needed by a program. To cause SQL/MP to open all indexes and partitions the first
time any partition is accessed, use the OPEN ALL option of the CONTROL TABLE
directive.

Causes of SQL Error 8204 (Lost Open Error)

SQL error 8204 is sometimes referred to as the “lost open” error. This scenario
explains how this error can occur:

1. A program accesses a table or view by using one or more static DML statements
(SELECT, INSERT, UPDATE, or DELETE) or a static cursor. The SQL executor
opens the table or view for the program.

2. Any locks associated with the statements in Step 1 are released (for example,
because the transaction ended). Another user then executes one of these DDL
statements or utility operations for the table or view, which causes the system to
terminate the program’s open:

 ALTER TABLE with ADD COLUMN, ADD PARTITION, DROP PARTITION, or
RENAME

 ALTER TABLE with AUDIT, LOCKLENGTH

 ALTER INDEX with ADD PARTITION, DROP PARTITION, or RENAME

Note. Using a cursor can sometimes degrade a program’s performance. A cursor operation
requires three statements (OPEN, FETCH, and CLOSE), which increase the messages
between the file system and disk process. Therefore, consider not using a cursor if a
single-row SELECT statement is sufficient.

Note. Using the CONTROL TABLE statement with the OPEN ALL option could increase the
amount of work done by an SQL statement. For efficient performance, use the OPEN ALL
option with the CONTROL TABLE statement only if all these are true:

 When all open activity must occur when the program first starts (add a "dummy" call to the
cursor during initialization).

 When the object containing the cursor will eventually access all partitions.

 When the plan for the cursor is not a parallel plan.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-2

Data Retrieval and Modification Recovering From SQL Error 8204
 ALTER INDEX with LOCKLENGTH

 ALTER VIEW with RENAME

 CREATE CONSTRAINT and CREATE INDEX

 DROP CONSTRAINT, DROP INDEX, DROP TABLE,
or DROP VIEW (protection view only)

 UPDATE STATISTICS

 COPY, LOAD, PURGEDATA, or RESTORE utility operation

(A disk or network line that goes down and then comes back up can also cause the
system to terminate a program’s open.)

3. The program tries to execute another SQL statement for the table or view.

4. The SQL executor tries to recover, as described in the next subsection. However, if
it cannot recover from the error, the executor returns error -8204 to the program,
and the program loses its open for the table or view.

Recovering From SQL Error 8204

If a program executes a static DML statement and the open for a table or view it is
using has been lost because of a DDL statement or utility operation, the SQL executor
tries to recover as described in this subsection.

Simple DML Statements

For static DML statements (SELECT, INSERT, UPDATE, and DELETE), the SQL
executor reopens the changed table or view and then retries the DML statement once
using the new definition of the table or view. If the retry is successful, the SQL executor
returns a warning (8204) to the program. However, if the retry fails, the SQL executor
returns an error (-8204).

To recover from SQL error -8204 for a simple DML statement, a program might need to
abort the transaction and restart the operation from its beginning.

Because some DDL changes can invalidate a DML statement, the SQL executor might
first need to recompile the DML statement to use the new definition of the changed
table or view. In some cases, the similarity check can prevent recompilation. For more
information, see Section 8, Program Invalidation and Automatic SQL Recompilation.

If the program does not allow automatic recompilation (the NORECOMPILE option is
set), the SQL executor returns error -8027. In this case, you must explicitly recompile
the program by using the new definition of the table or view.

Static Cursor Operations

For a static cursor operation, the SQL executor tries to reestablish the open in these
situations:
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-3

Data Retrieval and Modification Single-Row SELECT Statement
 The program has not yet opened the cursor.

 The program has opened the cursor, but the OPEN CURSOR statement did not
require any input host variables, and the first FETCH statement has not yet been
executed.

However, if the problem occurs on a FETCH statement, the SQL executor closes the
cursor and returns error -8204. The program must then close and reopen the cursor
before executing a subsequent FETCH statement. The program might need to abort
the transaction and restart the cursor operation from its beginning.

Single-Row SELECT Statement
A single-row SELECT statement retrieves a single row of data from one or more tables
or views and places the column values into corresponding host variables.

To select a set of rows one row at a time by using a cursor, see Using SQL Cursors on
page 4-12.

To execute a SELECT statement, a process started by the program must have read
access to all tables, protection views, and the underlying tables of shorthand views
used in the statement. For information about process access, see Required
Access Authority on page 7-1.

Do not use an asterisk (*) in a SELECT statement in a COBOL program. A SELECT
statement with an asterisk always assigns columns in the result table from the current
definition of the referenced tables or views. If columns have been added to a table, the
retrieved data values might not be in the expected order.

SQL/MP returns these values to SQLCODE after a SELECT statement.

For more information about SQLCODE, see Section 9, Error and Status Reporting.

Using a Column Value to Select Data

This SELECT statement returns a row containing a customer’s name and address
based on a unique column value (a nonkey value). Each customer is identified by a
unique number so that only one customer satisfies the query. This example uses a
WHERE clause to specify that the CUSTOMER.CUSTNAME column contains a unique
value equal to the host variable named FIND-THIS-CUSTOMER. Example 4-1 sets
FIND-THIS-CUSTOMER to customer number 5635 by using an assignment statement,
but in a typical application, a user would enter the customer number.

SQLCODE Value Description

 0 The SELECT statement was successful.

100 No rows qualified for the SELECT statement specification.

< 0 An error occurred; SQLCODE contains the error number.

> 0 (not 100) A warning occurred; SQLCODE contains the warning number.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-4

Data Retrieval and Modification Using a Primary Key Value to Select Data
SQL/MP scans the database to find the first row indicated by CUSTNUM and then
returns this row to the program. Because CUSTNUM is not a primary key, SQL/MP
also reads the remainder of the table to verify that the row returned is the only
qualifying row. If it is not, SQL/MP returns an error.

Using a Primary Key Value to Select Data

This SELECT statement returns an employee’s first name, last name, and department
number from the EMPLOYEE table by using a primary key value (EMPNUM column).
The WHERE clause specifies that the selected row contains a primary key with a value
equal to the host variable named FIND-THIS-EMPLOYEE. The SELECT statement
retrieves only one row because the primary key value is unique.

MOVE INPUT-EMPNAME TO FIND-THIS-EMPLOYEE.

EXEC SQL SELECT EMPLOYEE.FIRST-NAME,
 EMPLOYEE.LAST-NAME,

Example 4-1. Using a Column Value to Select Data

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 CUSTOMER.
 02 CUSTNUM PIC 9(4) DISPLAY.
 02 CUSTNAME PIC X(18).
 02 STREET PIC X(22).
 02 CITY PIC X(14).
 02 STATE PIC X(12).
 02 POSTCODE PIC X(10).
 01 FIND-THIS-CUSTOMER PIC 9(4) VALUE 0.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
100-BEGIN.
EXEC SQL WHENEVER NOT FOUND PERFORM :400-NOT-FOUND END-EXEC.

 MOVE 5635 TO FIND-THIS-CUSTOMER.
 EXEC SQL
 SELECT CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :CUSTNAME, :STREET, :CITY, :STATE, :POSTCODE
 FROM SALES.CUSTOMER
 WHERE CUSTNUM = :FIND-THIS-CUSTOMER
 BROWSE ACCESS
 END-EXEC.

 DISPLAY CUSTNAME, STREET, CITY, STATE, POSTCODE.

400-NOT-FOUND.
 PERFORM 5000-CLOSE-CURSOR.
 DISPLAY "CUSTOMER NOT FOUND: "FIND-THIS-CUSTOMER"
 PERFORM 8880-ABORT-TRANSACTION.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-5

Data Retrieval and Modification Using IN SHARE MODE or IN EXCLUSIVE MODE
 EMPLOYEE.DEPTNUM
 INTO :EMPLOYEE.FIRST-NAME,
 :EMPLOYEE.LAST-NAME,
 :EMPLOYEE.DEPTNUM
 FROM PERSNL.EMPLOYEE
 WHERE EMPLOYEE.EMPNUM = :FIND-THIS-EMPLOYEE
END-EXEC.

Using IN SHARE MODE or IN EXCLUSIVE MODE

If you include the keyword IN in the EXCLUSIVE MODE or SHARE MODE option after
a host variable, the statement generates a syntax error. For example, this statement
generates a syntax error because HOST-VAR IN EXCLUSIVE MODE is interpreted as
a host variable:

EXEC SQL SELECT COLUMN INTO :HOST-VAR FROM ATABLE
 WHERE COLUMN > :HOST-VAR IN EXCLUSIVE MODE END-EXEC.

To prevent the syntax error, omit the keyword IN:

EXEC SQL SELECT COLUMN INTO :HOST-VAR FROM ATABLE
 WHERE COLUMN > :HOST-VAR EXCLUSIVE MODE END-EXEC.

INSERT Statement
The INSERT statement inserts one or more rows into a table or protection view. To
insert data, a program moves the new data to a series of host variables and then
executes an INSERT statement to transfer the host variable values to the table.

To execute an INSERT statement, a process started by the program must have read
and write access to the table or view receiving the data and read access to tables or
views you include in a SELECT statement. For information about process access, see
Required Access Authority on page 7-1.

SQL/MP returns these values to SQLCODE after an INSERT statement.

If an INSERT statement executes successfully, the SQLCA structure contains the
number of rows inserted. (If the INSERT statement fails, do not rely on the SQLCA
structure for an accurate count of the number of rows inserted.) To return the contents
of the SQLCA structure, use the SQLCA_DISPLAY2_ or SQLCA_TOBUFFER2_
procedure.

For more information, see Section 5, SQL/MP System Procedures, and Section 9,
Error and Status Reporting.

SQLCODE Value Description

 0 The INSERT statement was successful.

100 No rows qualified for an INSERT using a SELECT statement
specification.

< 0 An error occurred; SQLCODE contains the error number.

> 0 (not 100) A warning occurred; SQLCODE contains the first warning number.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-6

Data Retrieval and Modification Inserting a Single Row
Inserting a Single Row

This INSERT statement inserts a row (JOBCODE and JOBDESC columns) into the
JOB table:

 EXEC SQL BEGIN DECLARE SECTION;
* Declare host variables HV-JOBCODE and HV-JOBDESC.
 ...
 EXEC SQL END DECLARE SECTION;
 ...
 PROCEDURE DIVISION.
 ...
* Move values to HV-JOBCODE and HV-JOBDESC.
 ...
 EXEC SQL INSERT INTO PERSNL.JOB (JOBCODE, JOBDESC)
 VALUES (:HV-JOBCODE, :HV-JOBDESC)
 END-EXEC.
 ...

If the INSERT operation fails, check for SQL error 8227, which indicates you attempted
to insert a row with an existing key (primary or unique alternate).

Inserting a Null Value

This example inserts a row into the EMPLOYEE table and sets the SALARY column to
a null value using an indicator variable:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
* Declare host variables EMPNUM, FIRST-NAME,
* LAST-NAME, DEPTNUM, JOBCODE, and SALARY.

 01 IND-1 PIC S9(4) COMP.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...

 PROCEDURE DIVISION.
 ...
 MOVE -1 TO IND-1.
* Move values to host variables EMPNUM, FIRST-NAME,
* LAST-NAME, DEPTNUM, JOBCODE, and SALARY.
 ...
 EXEC SQL INSERT INTO PERSNL.EMPLOYEE
 VALUES (:EMPNUM, :FIRST-NAME, :LAST-NAME,
 :DEPTNUM,:JOBCODE,
 :SALARY INDICATOR :IND-1)
 END-EXEC.

This example uses the NULL keyword instead of an indicator variable:

 EXEC SQL INSERT INTO PERSNL.EMPLOYEE
 VALUES (:EMPNUM, :FIRST-NAME, :LAST-NAME,
 :DEPTNUM,:JOBCODE, NULL)
 END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-7

Data Retrieval and Modification Inserting a Timestamp
Inserting a Timestamp

This example inserts a timestamp value into COLUMNA of TABLET. The COLUMNA
definition specifies the data type TIMESTAMP DEFAULT CURRENT. This example
uses the JULIANTIMESTAMP and CONVERTTIMESTAMP system procedures and the
SQL CONVERTTIMESTAMP function.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 DATETIME PIC S9(18) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
 MAIN-DRIVER.
 ...
* Get current Julian timestamp in Greenwich mean time.
 ENTER TAL "JULIANTIMESTAMP" GIVING DATETIME.
* Convert timestamp to local time.
 ENTER TAL "CONVERTTIMESTAMP" USING DATETIME GIVING DATETIME.
 ...
* Insert value into COLUMNA of TABLET.
 EXEC SQL INSERT INTO TABLET (COLUMNA)
 VALUES (CONVERTTIMESTAMP (:DATETIME))
 END-EXEC.

UPDATE Statement
The UPDATE statement updates the values in one or more columns in a single row or
a set of rows of a table or protection view. (To update a set of rows one row at a time
by using a cursor, see Using SQL Cursors on page 4-12.)

To execute an UPDATE statement, a process started by the program must have read
and write access to the table or view being updated and read access to any table or
view specified in subqueries of the search condition. For information about process
access, see Required Access Authority on page 7-1.

For audited tables and views, SQL/MP holds a lock on an updated row until the TMF
transaction is committed or rolled back. For a nonaudited table, SQL/MP holds the lock
until the program releases it.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-8

Data Retrieval and Modification Updating a Single Row
SQL/MP returns these values to SQLCODE after an UPDATE statement.

The UPDATE statement updates rows in sequence. If an error occurs, SQL/MP returns
an error code to SQLCODE and terminates the UPDATE operation. The SQLCA
structure contains the number of rows updated. (If the UPDATE statement fails, do not
rely on the SQLCA structure for an accurate count of the number of rows updated.) To
return the contents of the SQLCA structure, use the SQLCA_DISPLAY2_ or
SQLCA_TOBUFFER2_ procedure.

For more information, see Section 5, SQL/MP System Procedures, and Section 9,
Error and Status Reporting.

Updating a Single Row

This example updates a single row of the ORDERS table that contains information
about the order number specified by UPDATE-ORDERNUM. In a typical application, a
user enters the values for UPDATE-DATE and UPDATE-ORDERNUM. If the UPDATE
operation fails, check for SQL error 8227, which indicates you attempted to update a
row with an existing key (primary or unique alternate).

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 ORDERS.
 02 ORDERNUM PIC 9(6) DISPLAY.
 02 ORDER-DATE PIC 9(6) DISPLAY
 02 DELIV-DATE PIC 9(6) DISPLAY.
 02 SALESREP PIC 9(4) DISPLAY.
 02 CUSTNUM PIC 9(4) DISPLAY.
 01 NEWDATE PIC 9(6) DISPLAY.
EXEC SQL END DECLARE SECTION END-EXEC.
...

PROCEDURE DIVISION.
...
MOVE UPDATE-DATE TO NEWDATE.
MOVE UPDATE-ORDERNUM TO ORDERNUM OF ORDERS.
EXEC SQL UPDATE ORDERS SET DELIV-DATE = :NEWDATE
 WHERE ORDERNUM = :ORDERNUM OF ORDERS
 STABLE ACCESS END-EXEC.

Updating Multiple Rows

If you do not need to check a value in a row before you update the row, use a single
UPDATE statement to update multiple rows in a table. This example updates the
SALARY column of all rows in the EMPLOYEE table where the SALARY value is less

SQLCODE Value Description

 0 The UPDATE statement was successful.

100 No rows were found on a search condition.

< 0 An error occurred; SQLCODE contains the error number.

> 0 (not 100) A warning occurred; SQLCODE contains the first warning number.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-9

Data Retrieval and Modification Updating Columns With Null Values
than HOSTVAR-MIN-SALARY. A user enters the values for HOSTVAR-INC and
HOSTVAR-MIN-SALARY.

EXEC SQL UPDATE PERSNL.EMPLOYEE
 SET SALARY = SALARY * :HOSTVAR-INC
 WHERE SALARY < :HOSTVAR-MIN-SALARY END-EXEC.

This example updates all rows in the EMPLOYEE. DEPTNUM column that contain the
value in HOSTVAR-OLD-DEPTNUM. After the update, all employees who were in the
department specified by HOSTVAR-OLD-DEPTNUM are moved to the department
specified by HOSTVAR-NEW-DEPTNUM. A user enters the values for HOSTVAR-
OLD-DEPTNUM and HOSTVAR-NEW-DEPTNUM.

EXEC SQL UPDATE PERSNL.EMPLOYEE
 SET DEPTNUM = :HOSTVAR-NEW-DEPTNUM
 WHERE DEPTNUM = :HOSTVAR-OLD-DEPTNUM END-EXEC.

Updating Columns With Null Values

This example updates the specified SALARY column in the EMPLOYEE table to a null
value using an indicator variable. The SET-TO-NULLS host variable specifies the row
to update.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
EXEC SQL INVOKE PERSNL.EMPLOYEE AS EMP-TBL END-EXEC.
...
01 IND-1 PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
...
PROCEDURE DIVISION.
...
MOVE -1 TO IND-1.
MOVE NULL-JOBCODE TO SET-TO-NULLS.
EXEC SQL UPDATE PERSNL.EMPLOYEE
 SET SALARY =:SALARY OF EMP-TBL INDICATOR :IND-1
 WHERE JOBCODE OF EMP-TBL = :SET-TO-NULLS END-EXEC.

This example uses the NULL keyword instead of an indicator variable:

EXEC SQL UPDATE PERSNL.EMPLOYEE
 SET SALARY = NULL
 WHERE JOBCODE = :SET-TO-NULLS END-EXEC.

DELETE Statement
The DELETE statement deletes one or more rows from a table or protection view. If
you delete all rows from a table, the table still exists until it is deleted from the catalog
by a DROP TABLE statement. (To delete a set of rows one row at a time by using a
cursor, see Using SQL Cursors on page 4-12.)

To execute a DELETE statement, a process started by the program must have read
and write access to the table or view that contains the rows to be deleted and to tables
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-10

Data Retrieval and Modification Deleting a Single Row
or views in subqueries of the search condition. For information about process access,
see Required Access Authority on page 7-1.

SQL/MP returns these values to SQLCODE after a DELETE statement.

After a successful DELETE operation, the SQLCA structure contains the number of
rows deleted. If an error occurs on a DELETE operation, the SQLCA contains the
approximate number of rows deleted. To return the contents of the SQLCA, use
SQLCA_DISPLAY2_ or SQLCA_TOBUFFER2_ procedure.

For more information, see Section 5, SQL/MP System Procedures, and Section 9,
Error and Status Reporting.

Deleting a Single Row

To delete a single row, move a key value to a host variable and then specify the host
variable in the WHERE clause. This DELETE statement deletes only one row of the
EMPLOYEE table because each value in EMPNUM (the primary key) is unique. A user
enters the value for the host variable named HOSTVAR-EMPNUM.

EXEC SQL DELETE FROM PERSNL.EMPLOYEE
 WHERE EMPNUM = :HOSTVAR-EMPNUM END-EXEC.

Deleting Multiple Rows

If you do not need to check a column value before you delete a row, use a single
DELETE statement to delete multiple rows in a table. This example deletes all rows (or
employees) from the EMPLOYEE table specified by DELETE-DEPTNUM (which is
entered by a user).

EXEC SQL DELETE FROM PERSNL.EMPLOYEE
 WHERE DEPTNUM = :DELETE-DEPTNUM END-EXEC.

This example deletes all suppliers from the PARTSUPP table who charge more than
TERMINAL-MAX-COST for a terminal. Terminal part numbers range from TERMINAL-
FIRST-NUM to TERMINAL-LAST-NUM.

EXEC SQL DELETE FROM INVENT.PARTSUPP
 WHERE PARTNUM BETWEEN :TERMINAL-FIRST-NUM
 AND :TERMINAL-LAST-NUM
 AND PARTCOST > :TERMINAL-MAX-COST END-EXEC.

SQLCODE Value Description

 0 The DELETE statement was successful.

100 No rows were found on a search condition.

< 0 An error occurred; SQLCODE contains the error number.

> 0 (not 100) A warning occurred; SQLCODE contains the first warning number.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-11

Data Retrieval and Modification Using SQL Cursors
Using SQL Cursors
An SQL cursor is a named pointer that a host language program (C, COBOL, Pascal,
or TAL) can use to access a set of rows in a table or view, one row at a time. Using a
cursor, a program can process rows in the same way it might process records in a
sequential file. The program can test the data in each row at the current cursor position
and then, if the data meets certain criteria, the program can display, update, delete, or
ignore the row.

Figure 4-1 shows the steps you follow to declare and use a static SQL cursor in a
COBOL program. A cursor operation must execute each statement in this specified
order. All steps are required, even if you execute the FETCH statement only once to
retrieve a single row.

Figure 4-1. Using a Static SQL Cursor in a COBOL Program

 DATA DIVISION.
 • • •
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
* Declare host variable(s).
 • • •
 EXEC SQL END DECLARE SECTION END-EXEC.
 • • •
 EXEC SQL DECLARE CURSOR1 CURSOR FOR
 SELECT COLUMN1, COLUMN2, COLUMN n
 FROM =TABLE
 WHERE COLUMN1 = :HOSTVAR-FIND-ROW
 END-EXEC.
 • • •
 PROCEDURE DIVISION.
 • • •
* Initialize the host variable(s).
 MOVE INITIAL-VALUE TO HOSTVAR-FIND-ROW.
 • • •
 EXEC SQL OPEN CURSOR1 END-EXEC.

* Fetch data from a row into the host variable(s).
 EXEC SQL FETCH CURSOR1
 INTO :HOSTVAR_1, :HOSTVAR_2, :HOSTVAR n
 END-EXEC.

* Process the row values in the host variable(s).
 • • •
* Branch back to fetch another row.
 • • •
 EXEC SQL CLOSE CURSOR1 END-EXEC.

1

2

3

4

5

6

7

8

VST009.vsd
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-12

Data Retrieval and Modification Steps for Using a Cursor
Steps for Using a Cursor

These steps are shown in Figure 4-1 on page 4-12. Each step is described in detail on
subsequent pages in this section.

1. Declare any host variables you plan to use with the cursor.

2. Name and define the cursor by using a DECLARE CURSOR statement. Follow the
conventions for an SQL identifier for the cursor name. The DECLARE CURSOR
statement also associates the cursor with a SELECT statement that specifies the
rows to retrieve.

3. Initialize any host variables you specified in the WHERE clause of the SELECT
statement in the DECLARE CURSOR statement.

4. Open the cursor by using an OPEN statement. The OPEN statement determines
the result table and sorts the table if the SELECT statement includes the ORDER
BY clause. For audited tables or views, the OPEN statement also associates the
cursor with a TMF transaction.

5. Retrieve the column values from a row using the FETCH statement. The FETCH
statement positions the cursor at the next row of the result table and transfers the
column values defined in the associated SELECT statement to the corresponding
host variables. The FETCH statement also locks each row according to the access
specified by the SELECT statement.

For audited tables or views, the FETCH statement must execute within the same
TMF transaction as the OPEN statement.

6. Process the column values returned from the current row to the host variables. For
example, you might test a value and then delete or update the row.

7. After you process the current row, branch back to the FETCH statement and
retrieve the next row. Continue executing this loop until you have processed all
rows specified by the associated SELECT statement (and SQLCODE equals 100).

8. Close the cursor using the CLOSE statement. The CLOSE statement releases the
result table established by the OPEN statement. (The FREE RESOURCES
statement also releases the result table.)

Access Requirements for Cursors

To use an SQL cursor, a process started by the program must have the access
authority. SQL/MP checks this authority when the program opens the cursor.

Access SQL Objects

Read Tables or protection views referred to in the SELECT statement associated with
the cursor (that is, specified in the DECLARE CURSOR statement)

Read Tables or protection views underlying the shorthand view, if the cursor refers to
a shorthand view

Write Tables referenced, if the cursor declaration includes the FOR UPDATE clause
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-13

Data Retrieval and Modification Cursor Position
A program can use a cursor whose declaration does not specify FOR UPDATE to
locate rows in a table to delete. SQL/MP tests the table only for read access when the
OPEN statement executes. However, because a DELETE operation requires write
access, SQL/MP checks for write access when you execute the DELETE statement.

A program contending for data access with other users can specify the IN EXCLUSIVE
MODE clause in the associated SELECT statement. SQL/MP then does not have to
convert the lock for a subsequent UPDATE or DELETE operation. However, if a
program is reading records accessed concurrently by a cursor defined with an IN
EXCLUSIVE MODE clause in another program, the first program must wait to access
the data.

For information about process access, see Required Access Authority on page 7-1.

Cursor Position

The cursor position is similar to the record position in a sequential file. The SQL
statements that affect the cursor position in a program are:

Cursor Stability

Cursor stability guarantees that a row at the current cursor position cannot be modified
by another program. For SQL/MP to guarantee cursor stability, declare the cursor with
the FOR UPDATE clause or specify the STABLE ACCESS option. In some cases, a
program might be accessing a copy of a row instead of the actual row. For example, a
program might be accessing a copy of the row if the associated SELECT statement
defining the cursor requires that the system perform any of these operations:

 Ordering the rows by a column

 Removing duplicate rows

 Performing other operations that require the selected table to be copied into a
result table before it is used by a program

If your program is accessing a copy of a row instead of the actual row, the cursor
points to a copy of the data, and the data is concurrently available to other programs.
Accessing a copy of the data, however, never occurs if the cursor is declared with the

SQL Statement Cursor Position or Action

OPEN Positions the cursor before the first row.

FETCH Positions the cursor at the retrieved row (or the current position).

DELETE Positions the cursor between rows. For example, if the current row is
deleted, the cursor is positioned either between rows or before the next
row and after the preceding row.

SELECT Determines the order in which the rows are returned. To specify an
order, include an ORDER BY clause. Otherwise, the order is
undefined.

CLOSE Causes no position; release the result table established by the cursor.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-14

Data Retrieval and Modification Virtual Sequential Block Buffering (VSBB)
FOR UPDATE clause. In this case, your cursor points to the actual data and has cursor
stability.

Virtual Sequential Block Buffering (VSBB)

The SQL/MP optimizer often uses Virtual Sequential Block Buffering (VSBB) as an
access path strategy. Conflicting UPDATE, DELETE, or INSERT statements can
invalidate a cursor’s buffering for a table. Each invalidation forces the next FETCH
statement to send a message to the disk process to retrieve a new buffer, which can
substantially degrade a program’s performance. These statements invalidate the buffer
for cursor operations:

 An INSERT statement on the same table by the current process

 A stand-alone UPDATE or DELETE statement on the same table (directly or
through a view) by the same process

 An UPDATE...WHERE CURRENT or DELETE...WHERE CURRENT statement
using a different cursor to access the same table (directly or through a view) by the
same process

For example, a loop containing both a FETCH statement and a stand-alone UPDATE
or DELETE statement on the same table invalidates the cursor’s buffer on every loop
iteration. You can minimize or eliminate this problem by following these guidelines:

 Do not use INSERT statements within a cursor operation.

 Use the UPDATE...WHERE CURRENT or DELETE...WHERE CURRENT
statement for a cursor rather than a stand-alone UPDATE or DELETE statement.

 Do not open multiple cursors on a table if any of the cursors are used to update
that table.

DECLARE CURSOR Statement

The DECLARE CURSOR statement names and defines a cursor and associates the
cursor with a SELECT statement that specifies the rows to retrieve. A COBOL program
requires no special authorization to execute a DECLARE CURSOR statement.

Follow these guidelines when you use a DECLARE CURSOR statement:

 The cursor name specified in the DECLARE CURSOR statement is an SQL
identifier and is not case-sensitive. For example, SQL/MP considers Cur, cur, CUR,
and CuR as equivalent names.

 Declare all host variables you use in the associated SELECT statement before the
DECLARE CURSOR statement. Host variables must also be within the same
scope as all SQL statements that refer to them.

 Place the DECLARE CURSOR statement in listing order before the other SQL
statements, including the OPEN, FETCH, INSERT, DELETE, UPDATE, and
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-15

Data Retrieval and Modification OPEN Statement
CLOSE statements, that refer to the cursor. The DECLARE CURSOR statement
must also be within the scope of the statements that refer to the cursor.

 The DECLARE CURSOR statement does not affect the values in the SQLCA and
SQLSA data structures.

Example 4-2 declares a cursor named LIST-BY-PARTNUM:

OPEN Statement

The OPEN statement opens an SQL cursor. The OPEN operation orders and defines
the set of rows in the result table and then positions the cursor before the first row.

The OPEN statement does not acquire any locks unless a sort is necessary to order
the selected rows. (The FETCH statement acquires any locks associated with a
cursor.)

To execute an OPEN statement for a cursor, a process started by the program must
have the access authority described in Access Requirements for Cursors on
page 4-13.

If the associated SELECT statement contains host variables in the WHERE clause,
you must initialize these host variables before you execute the OPEN statement. When
the OPEN statement executes, SQL/MP defines the set of rows in the result table and
places the input host variables in its buffers. If you do not initialize the host variables
before you execute the OPEN statement, these problems can occur:

 If a host variable contains values with unexpected data types, overflow or
truncation errors can occur.

Example 4-2. Declaring a Cursor

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 PARTS.
 02 PARTNUM PIC 9(4) DISPLAY.
 02 PARTDESC PIC X(18).
 02 PRICE PIC S9(16)V9(2) COMP.
 02 QTY-AVAILABLE PIC S9(9) COMP.
...
EXEC SQL END DECLARE SECTION END-EXEC.
...
EXEC SQL DECLARE LIST-BY-PARTNUM CURSOR FOR
 SELECT PARTNUM,
 PARTDESC,
 PRICE,
 QTY-AVAILABLE
 FROM =PARTS
 WHERE PARTNUM>= :PARTNUM OF PARTS
 ORDER BY PARTNUM
 BROWSE ACCESS;

PROCEDURE DIVISION.
...
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-16

Data Retrieval and Modification FETCH Statement
 If a host variable contains old values from the previous execution of the program, a
subsequent FETCH statement uses these old values as the starting point to
retrieve data. Therefore, the FETCH does not begin at the expected location in the
result table.

The host variables must also be declared within the scope of the OPEN statement.

Some additional considerations for the OPEN statement are:

 You must code an OPEN statement within the scope of all other SQL statements
(including the DECLARE CURSOR, FETCH, INSERT, DELETE, UPDATE, and
CLOSE statements) that use the cursor.

 The OPEN statement must execute before any FETCH statements for the cursor.

 For audited tables and views, the OPEN statement must execute within a TMF
transaction.

 If data is materialized by the OPEN operation, SQL/MP returns statistics to the
SQLSA structure. For information about returning statistics to a program, see
Section 9, Error and Status Reporting.

 If the DECLARE CURSOR statement for the cursor specifies a sort operation (for
example, with an ORDER BY clause), do not issue an AWAITIO or AWAITIOX
statement with the filenum parameter set to -1 after you open the cursor.
Otherwise, the sort operation fails with SQL error -8301.

This OPEN statement opens the LIST-BY-PARTNUM cursor:

EXEC SQL OPEN LIST-BY-PARTNUM END-EXEC.

FETCH Statement

The FETCH statement positions the cursor at the next row of the result table and
transfers a value from each column in the row specified by the associated SELECT
statement to the corresponding host variable.

To execute a FETCH statement, a process started by the program must have read
access to tables or views associated with the cursor. For information about process
access, see Required Access Authority on page 7-1.

SQL/MP returns these values to SQLCODE after a FETCH statement.

The cursor must be open when the FETCH statement executes. The FETCH
statement must also execute within the scope of all other SQL statements, including

SQLCODE Value Description

 0 The FETCH statement was successful.

100 The end of a table was encountered.

< 0 An error occurred; SQLCODE contains the error number.

> 0 (not 100) A warning occurred; SQLCODE contains the first warning number.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-17

Data Retrieval and Modification FETCH Statement
the DECLARE CURSOR, OPEN, INSERT, DELETE, UPDATE, and CLOSE statements
that refer to the cursor.

SQL/MP resets values in an SQLSA structure immediately before a FETCH statement
executes. If you use an SQLSA value elsewhere in your program, save the value in a
variable immediately after the FETCH statement executes. To monitor statistics for a
cursor, declare accumulator variables for the required values and add the SQLSA
values to the accumulator variables after each FETCH statement executes.

For audited tables and views, the FETCH statement must execute within the same
TMF transaction as the OPEN statement for the cursor.

This FETCH statement retrieves information from the PARTS table:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 PARTS.
 02 PARTNUM PIC 9(4) DISPLAY.
 02 PARTDESC PIC X(18).
 02 PRICE PIC S9(16)V9(2) COMP.
 02 QTY-AVAILABLE PIC S9(9) COMP.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 EXEC SQL DECLARE LIST-BY-PARTNUM CURSOR FOR
 SELECT PARTNUM,
 PARTDESC,
 PRICE,
 QTY-AVAILABLE
 FROM =PARTS
 WHERE PARTNUM >= :PARTNUM OF PARTS
 ORDER BY PARTNUM
 BROWSE ACCESS END-EXEC.
 ...

 ...
 PROCEDURE DIVISION.
 ...
 0100-GET-DATA.

 EXEC SQL OPEN LIST-BY-PARTNUM END-EXEC.

 PERFORM 0200-FETCH-ROWS WITH TEST AFTER UNTIL
 SQLCODE OF SQLCA NOT = 0.
 ...
 EXEC SQL CLOSE LIST-BY-PARTNUM END-EXEC.
 ...
 0200-FETCH-ROWS.
 EXEC SQL
 FETCH LIST-BY-PARTNUM
 INTO :PARTNUM OF PARTS,
 :PARTDESC OF PARTS,
 :PRICE OF PARTS,
 :QTY-AVAILABLE OF PARTS
 END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-18

Data Retrieval and Modification Multirow SELECT Statement
* Process the retrieved values in the host variables.
...

Multirow SELECT Statement

When used with a cursor, a SELECT statement can return multiple rows from a table or
protection view, one row at a time. A cursor uses a FETCH statement to retrieve each
row and store the selected column values in host variables. The program can then
process the values (for example, list or save them in an array).

To execute a SELECT statement, a process started by a program must have read
access to all tables, protection views, and the underlying tables of shorthand views
used in the statement. For information about process access, see Required
Access Authority on page 7-1.

All statements that refer to the cursor, including the DECLARE CURSOR, OPEN,
FETCH, and CLOSE statements, must be within the same scope.

This example uses the GET-NAME-ADDRESS cursor to return the name and address
of all customers within a certain range from the CUSTOMER table. For data
consistency, the SELECT statement includes the REPEATABLE ACCESS clause to
lock the rows. The BETWEEN clause specifies the range of zip codes, and the
ORDER BY clause sorts the rows by zip code (POSTCODE).

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HOST-VARIABLES.
 02 BEGIN-CODE PIC X(10)
 02 END-CODE PIC X(10)
 ...
 EXEC SQL INVOKE =CUSTOMER AS CUSTOMER-REC END-EXEC.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL DECLARE GET-NAME-ADDRESS CURSOR FOR
 SELECT CUSTNAME, STREET, CITY, STATE, POSTCODE
 FROM =CUSTOMER
 WHERE POSTCODE BETWEEN :BEGIN-CODE AND :END-CODE
 ORDER BY POSTCODE
 REPEATABLE ACCESS END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 EXEC SQL OPEN GET-NAME-ADDRESS END-EXEC.
* Set values for BEGIN-CODE and END-CODE.
 ...
 1000-FETCH-A-ROW.
 EXEC SQL FETCH GET-NAME-ADDRESS
 INTO :CUSTNAME OF CUSTOMER-REC,
 :STREET OF CUSTOMER-REC,
 :CITY OF CUSTOMER-REC,
 :STATE OF CUSTOMER-REC
 :POSTCODE OF CUSTOMER-REC
 END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-19

Data Retrieval and Modification UPDATE Statement
* Process row values returned to host variables.
 ...
 EXEC SQL CLOSE GET-NAME-ADDRESS END-EXEC.

UPDATE Statement

When used with a cursor, an UPDATE statement updates rows, one row at a time, in a
table or protection view. To identify the set of rows to update (or test), specify the FOR
UPDATE OF clause in the associated SELECT statement. Before you update each
row, you can test one or more column values. If you decide to update the row, specify
the WHERE CURRENT OF clause in the UPDATE statement.

To execute an UPDATE statement, a process started by the program must have read
and write access to the table or view being updated. It must also have read access to
tables or views specified in subqueries of the search condition. For information about
process access, see Required Access Authority on page 7-1.

Do not use a stand-alone UPDATE statement to update a row that has been retrieved
using a FETCH statement. A stand-alone UPDATE statement invalidates the cursor's
buffering for the table and can substantially degrade performance.

An UPDATE statement must be within the scope of all other SQL statements, including
the DECLARE CURSOR, OPEN, FETCH, INSERT, and CLOSE statements, that refer
to the cursor. For audited tables and views, the UPDATE statement must execute
within the same TMF transaction as the OPEN and FETCH statements for the cursor.

Example 4-3 on page 4-21 uses the GET-BY-PARTNUM cursor and the host variables
named NEW-PARTDESC, NEW-PRICE, and NEW-QTY to update the PARTS table.

This example also uses a cursor. Suppose that you want a cursor to position in the
PARTS table on the part number specified by host variable STARTING-PARTNUM, so
that the program can fetch rows and determine whether to update data in the columns.
The row updated is at the current position of the cursor GET-BY-PARTNUM. The
example declares the host variables NEW-PARTDESC, NEW-PRICE, and NEW-QTY
and sets them to the new values for the columns before executing the UPDATE
statement.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-20

Data Retrieval and Modification UPDATE Statement
Example 4-3. Using the UPDATE statement

BEGIN DECLARE SECTION.
01 NEW-PARTS.
 02 STARTING-PARTNUM PIC 9(4).
 02 NEW-PARTDESC PIC X(18).
 02 NEW-PRICE PIC S9(16)V9(2) COMP.
 02 NEW-QTY PIC S9(9) COMP.
...
END DECLARE SECTION.

EXEC SQL DECLARE GET-BY-PARTNUM CURSOR FOR
 SELECT PARTNUM,
 PARTDESC,
 PRICE,
 QTY-AVAILABLE
 FROM SALES.PARTS
 WHERE (PARTNUM >= :STARTING-PARTNUM)
 STABLE ACCESS
 FOR UPDATE OF PARTDESC, PRICE, QTY-AVAILABLE
END-EXEC.
...
...
PROCEDURE DIVISION.
...
3000-UPDATE-PARTNUM.

MOVE FIRST-NUMBER TO STARTING-PARTNUM OF NEW-PARTS.

EXEC SQL OPEN GET-BY-PARTNUM END-EXEC.

* Fetch one row from the PARTS table.
EXEC SQL FETCH GET-BY-PARTNUM END-EXEC.

* Determine whether this is a row to be updated.
...
* If the row is to be updated, assign new values
* to NEW-PARTDESC, NEW-PRICE, and NEW-QTY.
* Update the row at the current cursor position.

EXEC SQL UPDATE SALES.PARTS
 SET PARTDESC = :NEW-PARTDESC OF NEW-PARTS,
 PRICE = :NEW-PRICE OF NEW-PARTS,
 QTY-AVAILABLE = :NEW-QTY OF NEW-PARTS
 WHERE CURRENT OF GET-BY-PARTNUM
END-EXEC.

* Branch back to fetch another row from the PARTS table.
...

EXEC SQL CLOSE GET-BY-PARTNUM END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-21

Data Retrieval and Modification Multirow DELETE Statement
Multirow DELETE Statement

When used with a cursor, a DELETE statement deletes multiple rows one row at a time
from a table or protection view. You identify the set of rows to delete (or test) in the
associated SELECT statement. Before you delete a row, you can test one or more
column values, and then, if you decide to delete the row, specify the WHERE
CURRENT OF clause in the DELETE statement.

If you delete all rows from a table, the table still exists until it is deleted from the catalog
with a DROP TABLE statement.

To execute a DELETE statement, a process started by a program must have read and
write access to the table or view containing the rows to be deleted and to tables or
views in subqueries of the search condition. For information about process access, see
Required Access Authority on page 7-1.

A DELETE statement must execute within the scope of all other SQL statements,
including the DECLARE CURSOR, OPEN, FETCH, INSERT, and CLOSE statements,
that refer to the cursor. For audited tables and views, the DELETE statement must
execute within the same TMF transaction as the OPEN and FETCH statements for the
cursor.

This example declares a cursor named GET-BY-PARTNUM, fetches data from the
PARTS table, tests the data, and then deletes specific rows:

 EXEC SQL DECLARE GET-BY-PARTNUM CURSOR FOR
 SELECT PARTNUM,
 PARTDESC,
 PRICE,
 QTY-AVAILABLE
 FROM SALES.PARTS
 WHERE (PARTNUM >= :PARTNUM OF PARTS)
 ORDER BY PARTNUM
 STABLE ACCESS END-EXEC.

 PROCEDURE DIVISION.
 ...
 EXEC SQL OPEN GET-BY-PARTNUM END-EXEC.

 EXEC SQL FETCH GET-BY-PARTNUM ... END-EXEC.

* Test the value(s) in the current row.
 ...
* Delete the current row.
 EXEC SQL DELETE FROM SALES.PARTS
 WHERE CURRENT OF GET-BY-PARTNUM
 END-EXEC.
 ...
 EXEC SQL CLOSE GET-BY-PARTNUM END-EXEC.

Note. Do not use a stand-alone DELETE statement to delete a row that has been retrieved
using a FETCH statement. A stand-alone DELETE statement can invalidate the cursor’s
buffering for the table and degrade performance.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-22

Data Retrieval and Modification CLOSE Statement
CLOSE Statement

The CLOSE statement closes an open SQL cursor. After the CLOSE statement
executes, the result table established by the OPEN statement no longer exists. To use
the cursor again, you must reopen it using an OPEN statement.

A program does not require special authorization to execute a CLOSE statement.

A CLOSE statement must be within the scope of all other SQL statements, including
the DECLARE CURSOR, OPEN, FETCH, INSERT, DELETE, and UPDATE
statements, that refer to the cursor.

This CLOSE statement closes the LIST-BY-PARTNUM cursor:

...
EXEC SQL CLOSE LIST-BY-PARTNUM END-EXEC.

Only an explicit CLOSE statement (or a FREE RESOURCES statement) closes an
open SQL cursor. The CLOSE operation releases the resources used by the cursor
and frees any locks the cursor holds. If you are planning to reuse a cursor later in your
program, you can usually leave it open to save the overhead of opening it. However, if
your program is a Pathway server, always close an open cursor before returning
control to the requester, especially if the requester initiated a TMF transaction.

Using Foreign Cursors

Foreign cursors are cursors that are not declared in the program or procedure in which
they are referenced. Foreign cursors can be static or dynamic.

A reference to a foreign cursor contains two parts, a procedure name part and a cursor
name part. This example refers to a foreign cursor named LIST-BY-PARTNUM which is
declared in the procedure 3000-UPDATE-INVENTORY:

3000-UPDATE-INVENTORY.LIST-BY-PARTNUM

A foreign cursor reference can appear in an OPEN, FETCH, or CLOSE cursor
statement. It references a cursor that is declared in another procedure, which is not
necessarily in the same source file. References to a dynamic foreign cursor are
resolved at run time by the SQL executor.

The prepare and dynamic cursor declarations must be in the same procedure so that
the resolution between the prepare and the cursor declaration can occur to detect
whether a statement name has been prepared or not, and to maintain proper
association between a procedure and a particular statement name.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-23

Data Retrieval and Modification Using Foreign Cursors
These statements open, fetch, and close a foreign cursor named LIST-BY-PARTNUM
which is declared in the procedure 3000-UPDATE-INVENTORY:

** While EOF=false

OPEN 3000-UPDATE-INVENTORY.LIST-BY-PARTNUM USING DESCRIPTOR
input-sqlda

FETCH 3000-UPDATE-INVENTORY.LIST-BY-PARTNUM USING DESCRIPTOR
output-sqlda.

CLOSE 3000-UPDATE-INVENTORY.LIST-BY-PARTNUM.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
4-24

5 SQL/MP System Procedures

Table 5-1 describes the NonStop SQL/MP system procedures a COBOL program can
call to return various SQL information. These procedures are described alphabetically
on subsequent pages in this section.

Table 5-1. SQL/MP System Procedures

Procedure Description

To Use With Dynamic SQL Operations

SQLADDR on page 5-3 Returns the address of an input parameter, output
variable, or indicator variable to an input or output
SQLDA structure (used only in dynamic SQL operations)

To Return Error and Warning Information

SQLCA_DISPLAY2_ on
page 5-4

Writes to a file or terminal the error and warning
messages that SQL/MP returns to the SQLCA structure

SQLCA_TOBUFFER2_ on
page 5-11

Returns to a record area in the program the error or
warning messages that SQL/MP returns to the SQLCA
structure

SQLCAFSCODE on page 5-17 Returns information about file-system, disk-process, or
operating system errors from the SQLCA structure

SQLCAGETINFOLIST on
page 5-17

Returns to an area in the program a specified subset of
the error or warning information in the SQLCA structure

To Return Version Information

SQLGETCATALOGVERSION
on page 5-24

Returns the version of an SQL catalog

SQLGETOBJECTVERSION on
page 5-25

Returns the version of an SQL object (table, index, or
view)

SQLGETSYSTEMVERSION on
page 5-26

Returns the version of the SQL file-system and disk-
process components for a specified system

To Return Execution Statistics

SQLSADISPLAY on page 5-27 Writes to a file or terminal the execution statistics that
SQL/MP returns to the SQLSA structure

To Return Error and Warning Information (Superseded Procedures on page 5-30)

SQLCADISPLAY on page 5-30 Writes error or warning messages from the SQLCA
structure to a file or terminal (superseded by
SQLCA_DISPLAY2_)

SQLCATOBUFFER on
page 5-34

Writes error or warning messages from the SQLCA
structure to a record area (superseded by
SQLCA_TOBUFFER2_)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-1

SQL/MP System Procedures COBOLEXT File
COBOLEXT File
To call the SQL/MP system procedures, which are written in TAL, use the COBOL
ENTER TAL statement. The COBOLEXT file contains source declarations for these
procedures (as well as for other system procedures). You might need to check with
your system administrator to make sure the COBOLEXT file for the procedures you
use in your program are available on your system. For more information about the
COBOLEXT file and the ENTER TAL statement, see the COBOL85 for NonStop
Systems Manual.

Guardian System Procedures
In addition to procedures in Table 5-1 on page 5-1, a COBOL program can also call the
Guardian system procedures described in Table 5-2 to return information about SQL
objects and programs. For a detailed description of these procedures, see the
Guardian Procedure Calls Reference Manual.

SQL Message File
The SQLMSG file contains error messages, informational messages, and help text
used by SQLCI, the SQL compiler, and host-language programs. The default SQL
message file is $SYSTEM.SYSTEM.SQLMSG. A COBOL program opens and reads
the SQL message file when it calls an SQL system procedure that returns error or
status information (for example, SQLCA_DISPLAY2_ or SQLCA_TOBUFFER2_).

The SQLMSG file contains text in English. You can specify a different SQL message
file (for example, a file translated into French) with the =_SQL_MSG_system
DEFINE. For the alternate SQL message files available on your node, ask your
database administrator or service provider.

You can add (or modify) the =_SQL_MSG_system DEFINE either interactively from
TACL or SQLCI or programmatically from a COBOL program:

Table 5-2. Guardian System Procedures that Return SQL Information

Procedure Description

FILE_GETINFO_ Returns limited information, including the last error
and type, about a file using the file number

FILE_GETINFOBYNAME_ Returns limited information about a file using the file
number

FILE_GETINFOLIST_ Returns detailed information about a file using the file
number. Item codes 40, 82, 83, 84, and 85 apply to
SQL/MP

FILE_GETINFOLISTBYNAME_ Returns detailed information about a file using the file
name. Item codes 40, 82, 83, 84, and 85 apply to
SQL/MP
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-2

SQL/MP System Procedures SQLADDR
 From TACL or SQLCI, enter an ADD DEFINE (or ALTER DEFINE) command. Do
not include a backslash (\) or a space before the node name. For example, this
command adds a new DEFINE for the $SQL.MSG.FRENCH message file on the
\PARIS node:

ADD DEFINE =_SQL_MSG_PARIS,CLASS MAP,FILE $SQL.MSG.FRENCH

For the _SQL_MSG_system DEFINE to be in effect for an SQLCI session, you
must add or change the DEFINE before you start the SQLCI session. If you add or
change the DEFINE after you start the session, SQL/MP returns warning message
10201, which indicates that the DEFINE has been changed but the old message
file is still in effect.

 From a COBOL program, call the DEFINEADD (or DEFINESETATTR) system
procedure. Your program must add or alter the DEFINE before it calls a system
procedure that opens and reads the SQL message file. Otherwise, your program
uses the default message file. For more information about system procedures, see
the Guardian Procedure Calls Reference Manual.

SQLADDR
The SQLADDR procedure returns the address of an input parameter, output variable,
or indicator variable to an input or output SQLDA structure. This procedure is used only
for dynamic SQL operations.

variable-name

is the name of an input parameter, output variable, or indicator variable.
variable-name must be defined in the Data Division.

Specify the name in the GIVING clause:

 If variable-name is the name of an input parameter or output variable,
specify VAR-PTR in the GIVING clause.

 If variable-name is the name of an indicator variable, specify IND-PTR in
the GIVING clause.

sqlda-name

is the name of an input or output SQLDA structure. sqlda-name is defined in the
Data Division by an INCLUDE SQLDA directive.

For more information about the SQLADDR procedure, see Section 10, Dynamic SQL
Operations.

ENTER TAL "SQLADDR"
 USING variable-name
 GIVING { VAR-PTR }
 { IND-PTR }
 OF SQLVAR OF sqlda-name.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-3

SQL/MP System Procedures SQLCA_DISPLAY2_
SQLCA_DISPLAY2_
The SQLCA_DISPLAY2_ procedure displays the error or warning messages that
SQL/MP returns to the SQLCA structure. SQLCA_DISPLAY2_ writes the information to
a file or to a terminal.

The information returned to the SQLCA structure can originate from these subsystems
or system components:

 SQL/MP
 NonStop OS
 File system
 Disk process (DP2)
 FastSort program (SORTPROG process)
 Sequential I/O (SIO) procedures

SQL/MP communicates errors, warnings, and statistics to a program through the
SQLCA structure. However, because the SQLCA contains information in a format that
is not appropriate to display, you must call the SQLCA_DISPLAY2_ procedure to
convert this information to an appropriate format.

sqlca required input

is the record name of the SQLCA structure.

output-file-number optional input

PIC S9(4) COMP

is the output file number. If you omit this value or set it to a negative value,
SQLCA_DISPLAY2_ displays information on your home terminal.

ENTER TAL "SQLCA_DISPLAY2_" USING
 sqlca,
 [output-file-number,]
 [output-record-length,]
 [sql-msg-file-number,]
 [errors,]
 [warnings,]
 [statistics,]
 [caller-error-loc,]
 [internal-error-loc,]
 [prefix,]
 [prefix-length,]
 [suffix,]
 [suffix-length].
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-4

SQL/MP System Procedures SQLCA_DISPLAY2_
output-record-length optional input

PIC S9(4) COMP

is the length in bytes of records to be written to the output file. The length must be
an integer value from 60 to 600.

The default length is 79 bytes.

sql-msg-file-number optional input/output

PIC S9(4) COMP

is the file number of the SQL message file (SQLMSG is the default file). If you
specify -1 as the input value, the system opens the message file and returns the
resulting file number. If you specify a value other than -1, the system uses that
value as the file number of the message file.

To improve the performance of multiple calls to the SQLCA_DISPLAY2_
procedure, specify -1 on the first call and then use the returned file number for
subsequent calls. By using the file number, the system opens the file only once
and uses the file number for subsequent calls. Otherwise, the system opens the
file for each call.

errors optional input

PIC X

controls the display of error messages:

The default is Y.

warnings optional input

PIC X

controls the display of warning messages:

The default is Y.

Y Display all errors.

N Display only the first error.

B Display all errors but suppress this prefix:
ERROR from subsystem [nn]

Y Display all warning messages.

N Do not display any warning messages.

B Display all warnings but suppress this prefix:
WARNING from subsystem [nn]
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-5

SQL/MP System Procedures SQLCA_DISPLAY2_
statistics optional input

PIC X

controls the display of statistics:

The default is Y.

caller-error-loc optional input

PIC X

controls the display of the program name and line number of the SQL statement
that received the error:

The default is Y.

internal-error-loc optional input

PIC X

controls the display of the system-code location where the first error in the SQLCA
occurred:

The default is Y.

prefix optional input

PIC X(length)

is a string that the program uses to precede each output line. The default is three
asterisks and a space (***).

prefix-length optional input

PIC S9(4) COMP

is the length of the prefix string for each output line. This length must be an
integer value from 1 to 15. If you include prefix, prefix-length is required.

Y Display row and cost statistics if the value returned to the SQLCA in the
ROW or COST field is greater than or equal to 0.

N Do not display statistics.

R Display row statistics only.

C Display cost statistics only.

Y Display the program name and line number.

N Suppress the display.

Y Display the location.

N Suppress the display.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-6

SQL/MP System Procedures Using SQLCA_DISPLAY2_ With an Error Table
suffix optional input

PIC X(length)

is a string to be appended to each output line. The default is a null string.

suffix-length optional input

PIC S9(4) COMP

is the length of the suffix string for each output line. This length must be an
integer value from 1 to 15. If you include suffix, suffix-length is required.

Using SQLCA_DISPLAY2_ With an Error Table

If you plan to write the buffer to an SQL table for subsequent access through SQLCI,
you might want to reduce the number of lines of error information and the amount of
information in each line. To reduce the line length and the number of lines, specify
SQLCA_DISPLAY2_ parameters that suppress the statistics and the internal error
location and change the prefix to a single space.

Making these changes results in two or three lines per error at the most, or a maximum
of 14 to 21 lines for the rare case where seven errors are returned. In most cases,
space for four errors is sufficient. If you set the line length to 80 characters, four errors
require a buffer of 960 characters.

If you use SQLCA_TOBUFFER2_ to write to an SQL error table, make the same
changes to the parameter defaults.

When you create the table to receive the error information, specify the text columns as
multiples of 80 but less than 255 characters each. If you use SQLCI to retrieve error
information from an error table, it displays a maximum of 255 characters per column. If
you put the entire buffer in one column, SQLCI displays only the first 255 characters of
text. To avoid truncation and allow 80-character lines, define text columns of 240 bytes
each. Depending on the size of the buffer, you might need two, three, or four columns
to hold error information.

Additional Considerations for SQLCA_DISPLAY2_

 SQL/MP returns errors as negative numbers and warnings as positive numbers.
Therefore, you might need to modify your program accordingly.

 If there is no text for an error number, SQL/MP displays:

No error text found.

If you receive this message, the version of the SQL message file might be invalid.
To determine the version of the SQL message file, use the SQLCI ENV command
and check the version specified by MESSAGEFILEVSRN.

 If the error text exceeds output-record-length, the output is folded at word
boundaries, which produces subsequent lines indented five spaces.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-7

SQL/MP System Procedures Additional Considerations for SQLCA_DISPLAY2_
 The SQLCA can contain a maximum of seven errors and 180 bytes of text of the
actual parameters returned to the program. Information that exceeds these limits is
lost. SQLCA_DISPLAY2_ displays a warning message that indicates when
information is lost.

Example 5-1 on page 5-9 shows a program that performs these functions:

 Processes these two transactions in a single server:

 TRANS-CODE-1 retrieves a row from a table and displays the row values on a
terminal screen.

 TRANS-CODE-2 updates the previously retrieved row with data entered at the
terminal.

 Processes these reply codes for the transactions:

REPLY-CODE = 0000 Successful operation occurred.
REPLY-CODE = 9998 Operation failed; record not found.
REPLY-CODE = 9999 Error, operation failed; backout transaction.

 Displays an advisory message for each transaction to indicate the result of the
requested operation. The message must be displayed in the advisory line (line 25)
of the terminal screen and be self-explanatory, because the terminal operator has
no knowledge of SQL and no access to an SQL error messages manual.

 Processes any error or warning conditions:

 Sends SQL warnings only to HOMETERM and not to the terminal. SQL
warnings occur rarely and usually have no meaning for a terminal operator.

 Routes SQL errors to HOMETERM for analysis by the database administrator,
suppressing statistics and the internal location of the error message.

HOMETERM is the terminal used by subsystems such as Pathway and TMF to
receive error messages that must be processed by an operator or database
administrator.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-8

SQL/MP System Procedures Additional Considerations for SQLCA_DISPLAY2_
Example 5-1. Error Processing Using SQLCA_DISPLAY2_

WORKING-STORAGE SECTION.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 PROCEDURE DIVISION.
 EXEC SQL WHENEVER NOT FOUND PERFORM :8000-NOT-FOUND END-EXEC.
 EXEC SQL WHENEVER SQLWARNING PERFORM :9900-SQL-WARN END-EXEC.
 EXEC SQL WHENEVER SQLERROR PERFORM :9999-SQL-ERROR END-EXEC.

 DO-BEGIN.
 PERFORM READ-MESSAGE.
 IF NOT EOF-MESSAGE-IN
 MOVE MSG-KEY TO HOSTVAR-KEY
 MOVE ZERO TO REPLY-CODE
 PERFORM DO-TRANS
 PERFORM WRITE-REPLY.

 DO-TRANS.
 EVALUATE TRANS-CODE OF INPUT MSG
 WHEN 1 PERFORM TRANS-CODE-1
 WHEN 2 PERFORM TRANS-CODE-2
 WHEN OTHER PERFORM INVALID-TRANS-CODE.

 TRANS-CODE-1.
 MOVE "REQUESTED ROW DISPLAYED" TO ADVISORY-LINE OF REPLY
 EXEC SQL SELECT COL1, COL2
 FROM TABLE
 INTO :HOSTVAR1, :HOSTVAR2
 WHERE KEY = :HOSTVAR-KEY
 FOR BROWSE ACCESS
 END-EXEC.

 MOVE HOSTVAR1 TO REPLY-FIELD1.
 MOVE HOSTVAR2 TO REPLY-FIELD2.
...
 TRANS-CODE-2.
 MOVE "SPECIFIED ROW UPDATED" TO ADVISORY-LINE OF REPLY.
 MOVE MSG-COL1 TO HOSTVAR1.
 MOVE MSG-COL2 TO HOSTVAR2.
 EXEC SQL UPDATE TABLE
 SET COL1 = :HOSTVAR1,
 COL2 = :HOSTVAR2
 WHERE KEY = :HOSTVAR-KEY
 END-EXEC.
...

* Copy error processing routines from the copy library COPYCODE

COPY REQUEST-NOT-FOUND OF COPYCODE.
COPY SQL-WARNING OF COPYCODE.
COPY SQL-ERROR OF COPYCODE.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-9

SQL/MP System Procedures Additional Considerations for SQLCA_DISPLAY2_
Example 5-2 shows the routines in the file COPYCODE.

Example 5-2. Error Routines in Copy Library

?SECTION REQUEST-NOT-FOUND, TANDEM
8000-NOT-FOUND.
 MOVE "REQUESTED ROW NOT FOUND" TO ADVISORY-LINE OF REPLY.
 MOVE 9998 TO REPLY-CODE.

?SECTION SQL-WARNING, TANDEM
9900-SQL-WARN.
 MOVE -1 to SQL-MSG-FILE-NO.
 MOVE "N" to STATS.
 MOVE "N" to ERR-LOC.

* Send the SQL Warning message to HOMETERM for DBA analysis. *

 ENTER TAL "SQLCA_DISPLAY2_" USING SQLCA,
 OMITTED,
 OMITTED,
 SQL-MSG-FILE-NO,
 OMITTED,
 OMITTED,
 STATS,
 OMITTED,
 ERR-LOC.
?SECTION SQL-ERROR, TANDEM
9999-SQL-ERROR.
 MOVE "PROCESS ERROR SQL = FS = - NOTIFY DB ADMINISTRATOR"
 TO ADVISORY-LINE OF REPLY.
 MOVE 9999 TO REPLY-CODE.

* *
* Move the SQL return code to the advisory line and multiply it *
* by -1 to show a positive number. *
* Move any file system error to the advisory line. *
* *

 MOVE SQLCODE OF SQLCA TO ADVISORY-SQL OF ADVISORY-LINE.
 MULTIPLY ADVISORY-SQL OF ADVISORY LINE BY -1
 GIVING ADVISORY-SQL OF ADVISORY-LINE END-MULTIPLY.

 ENTER TAL "SQLCAFSCODE" USING SQLCA GIVING MY-FS-CODE.
 MOVE MY-FS-CODE TO ADVISORY-FS OF ADVISORY-LINE.

 MOVE -1 to SQL-MSG-FILE-NO.
 MOVE "N" to STATS.
 MOVE "N" to ERR-LOC.

* Send the SQL error message to HOMETERM for DBA analysis. *

 ENTER TAL "SQLCA_DISPLAY2_" USING SQLCA,
 OMITTED,
 OMITTED,
 SQL-MSG-FILE-NO,
 OMITTED,
 OMITTED,
 STATS,
 OMITTED,
 ERR-LOC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-10

SQL/MP System Procedures Generating Meaningful Messages
As shown in Example 5-2 on page 5-10, the messages sent to the HOMETERM
contain neither the internal location where the error was encountered nor the statistics
and cost of the SQL statement. Usually, this information is not important and can be
omitted to reduce the number of error lines.

Consider an SQL constraint that is violated during the update, causing this message to
be sent to HOMETERM:

SQLCA display of SQL statement at SAMPLE.#5141.854 process \AAA.$BBB
ERROR from SQL [-8233] Constraint Number 2 violated on base table T1.

Upon receiving this message, the database administrator can query the catalog
through SQLCI to display the actual constraint predicate that was violated. This
information is in the catalog CONSTRNT table. For this particular error, it is the second
entry for the table T1.

Generating Meaningful Messages

The previous error message illustrates why it is sometimes difficult for a program to
generate meaningful messages for display at a terminal. For example, consider the
steps required for a program to generate a message such as “DATA FOR colname
EXCEEDS LIMITS” that identifies the specific column in error:

1. The error routine might call SQLCA_TOBUFFER2_ (instead of
SQLCA_DISPLAY2_) so the program can examine the buffer to retrieve the SQL
error message with the constraint number and the table name.

2. If the program has read access to the catalog tables, it could develop a query
against the CONSTRNT table by using the constraint number and table name
returned by SQLCA_TOBUFFER2_ to retrieve more information about the
constraint.

3. The program could then generate a message using the constraint information from
the CONSTRNT table and return this message to the terminal.

SQLCA_TOBUFFER2_
The SQLCA_TOBUFFER2_ procedure writes to a buffer the error or warning
messages that SQL/MP returns to the application program. The buffer is a record area
declared in the Working-Storage or Extended-Storage Section.

The information returned to the buffer can originate from these subsystems or system
components:

 SQL/MP
 NonStop OS
 File system
 Disk process (DP2)
 FastSort program (SORTPROG process)
 Sequential I/O (SIO) procedures
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-11

SQL/MP System Procedures SQLCA_TOBUFFER2_
This procedure is similar to the SQLCA_DISPLAY2_ procedure, which writes error
information to a file or terminal.

sqlca required input

is the record name of the SQLCA.

The SQLCA is declared automatically when you give the INCLUDE SQLCA
directive in the Working-Storage Section.

output-buffer required input/output

PIC X(length)

is the record name to which SQLCA_TOBUFFER2_ writes the error information.

output-buffer-length required input

PIC S9(4) COMP

is the length of output-buffer in bytes. The length must be:

 An integer value from output-record-length through 600
 A multiple of output-record-length.

The minimum length recommended is 300 bytes.

first-record-number optional input

PIC S9(4) COMP

is the ordinal number of the first error record (line) to be moved to the output buffer.
The procedure discards any error records with a lower number. The count of lines
moved begins with 1.

ENTER TAL "SQLCA_TOBUFFER2_" USING
 sqlca,
 output-buffer,
 output-buffer-length,
 [first-record-number,]
 [output-records,]
 [more,]
 [output-record-length,]
 [sql-msg-file-number,]
 [errors,]
 [warnings,]
 [statistics,]
 [caller-error-loc]
 [internal-error-loc,]
 [prefix,]
 [prefix-length,]
 [suffix,]
 [suffix-length].
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-12

SQL/MP System Procedures SQLCA_TOBUFFER2_
The default is 1.

To obtain more than one error record, you must increment the value in first-
record-number.

output-records optional output

PIC S9(4) COMP

is the number of records (lines) written by SQLCA_TOBUFFER2_ to
output-buffer.

more optional output

PIC X

is a flag that indicates whether all the desired lines fit into the output-buffer:

output-record-length optional input

PIC S9(4) COMP

defines the length of records to be written to the output-buffer. The length
must be an integer value from 60 to 600.

The default length is 79 bytes.

The procedure pads each line with spaces and adds the suffix and prefix strings if
the ENTER statement specifies them.

sql-msg-file-number optional input/output

PIC S9(4) COMP

is the file number of the SQL message file (SQLMSG is the default file). If you
specify -1 as an input value, the system opens the message file and returns the
resulting file number. If you specify a value other than -1, the system uses that
value as the file number of the message file.

To improve the performance of a program that makes multiple calls to the
SQLCA_TOBUFFER2_ procedure, specify -1 on the first call and then use the
returned file number for subsequent calls. By using the file number, the system
opens the file only once and uses the file number for subsequent calls. Otherwise,
the system opens the file for each call.

The SQLMSG file contains text in English. You can specify a different SQL
message file with the =_SQL_MSG_system DEFINE. For more information, see
SQL Message File on page 5-2.

Y There were additional records; the buffer overflowed.

N There were no additional records.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-13

SQL/MP System Procedures SQLCA_TOBUFFER2_
errors optional input

PIC X

controls the writing of error messages to the buffer:

The default is Y.

warnings optional input

PIC X

controls the writing of warning messages to the buffer:

The default is Y.

statistics optional input

PIC X

controls the writing of statistics to the buffer:

The default is Y.

caller-error-loc optional input

PIC X

controls the writing of the program name and line number of the SQL statement
that received the error:

Y Write all errors.

N Write only the first error.

B Write all errors but suppress this prefix:
ERROR from subsystem [nn]:

Y Write all warning messages.

N Do not write any warning messages.

B Write all warnings but suppress this prefix:
WARNING from subsystem [nn]

Y Write row and cost statistics if the value returned to the SQLCA in the
ROW or COST field is greater than or equal to 0.

N Do not write statistics.

R Write row statistics only.

C Write cost statistics only.

Y Write the program name and line number.

N Suppress the information.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-14

SQL/MP System Procedures Using SQLCA_TOBUFFER2_ With an Error Table
The default is Y.

internal-error-loc optional input

PIC X

controls the writing of the system-code location where the first error in the SQLCA
occurred:

The default is Y.

prefix optional input

PIC X(length)

is a string to precede each output line. The default is three asterisks and a space
(***).

prefix-length optional input

PIC S9(4) COMP

is the length of the prefix string for each output line. This length must be an
integer value from 1 to 15. If you include prefix, prefix-length is required.

suffix optional input

PIC X(length)

is a string to be appended to each output line. The default is a null string.

suffix-length optional input

PIC S9(4) COMP

is the length of the suffix string for each output line. This length must be an
integer value from 1 to 15. If you include suffix, suffix-length is required.

Using SQLCA_TOBUFFER2_ With an Error Table

If you plan to write the buffer to an SQL table for subsequent access through SQLCI,
you might want to reduce the number of lines of error information and the amount of
information in each line. To reduce the line length and the number of lines, specify
SQLCA_DISPLAY2_ parameters that suppress the statistics and the internal error
location and change the prefix to a single space.

Making these changes results in two or three lines per error at the most, or a maximum
of 14 to 21 lines for the rare case where seven errors are returned. In most cases,

Y Write the location.

N Suppress the information.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-15

SQL/MP System Procedures Additional Considerations for SQLCA_BUFFER2_
space for four errors is sufficient. If you set the line length to 80 characters, four errors
require a buffer of 960 characters.

If you use SQLCA_DISPLAY2_ to write to an SQL error table, make the same changes
to the parameter defaults.

When you create the table to receive the error information, specify the text columns as
multiples of 80 but less than 255 characters each. If you use SQLCI to retrieve error
information from an error table, it displays a maximum of 255 characters per column. If
you put the entire buffer in one column, SQLCI displays only the first 255 characters of
text. To avoid truncation and allow 80-character lines, define text columns of 240 bytes
each. Depending on the size of the buffer, you might need two, three, or four columns
to hold error information.

Additional Considerations for SQLCA_BUFFER2_

Additional considerations for the SQLCA_BUFFER2_ procedure are:

 SQL/MP returns errors as negative numbers and warnings as positive numbers.
Therefore, you might need to modify your program accordingly.

 If there is no text for an error number, SQL/MP displays:

No error text found

If you receive this message, the version of the SQL message file might be invalid.
To determine the version of the SQL message file, use the SQLCI ENV command
and check the version specified by MESSAGEFILEVSRN.

 SQLCA_TOBUFFER2_ works by starting with the first-record-number
indicated to move output lines to the record area until all error messages are
moved or until the text fills the record area. SQLCA_TOBUFFER2_ returns to
output-records a count of the lines moved to the buffer. If overflow occurs, the
procedure sets the more flag to Y.

 On an overflow condition, the program can retrieve the remainder of the error
message text by calling SQLCA_TOBUFFER2_ again, setting
first-record-number to output-records + 1.

This example uses a 75-character output record and declares a buffer
SQLMSG-BUFFER as 375 characters. The ENTER statement specifies the SQLMSG
file number with data item SQLMSG-FILENUM set to -1. The statement returns the file
number so that subsequent calls retain the number.

WORKING-STORAGE SECTION.

01 SQLMSG-BUFFER PIC X(375).
01 SQLMSG-FILENUM PIC S9(4) COMP VALUE -1.

PROCEDURE DIVISION.
 ...
 ENTER TAL "SQLCA_TOBUFFER2_" USING
 SQLCA,
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-16

SQL/MP System Procedures SQLCAFSCODE
 SQLMSG-BUFFER,
 375,
 OMITTED,
 OMITTED,
 OMITTED,
 75,
 SQLMSG-FILENUM.
 ...

SQLCAFSCODE
The SQLCAFSCODE procedure returns either the first or the last error in the SQLCA
structure that was set by the file system, disk process, or operating system. If there
was no such error, SQLCAFSCODE returns 0. If the SQLCA is full when an error
occurs, the error is lost.

sqlca required input

is the record name of the SQLCA, which is declared automatically when you
include the INCLUDE SQLCA directive.

first-flag optional input

PIC S9(4) COMP

specifies whether the first or the last error is set in the SQLCA:

The default is the first error.

error-info required output

PIC S9(4) COMP

specifies the error you are requesting. If no error is returned, error-info is 0.

SQLCAGETINFOLIST
The SQLCAGETINFOLIST procedure returns error or warning information that
SQL/MP sets in the SQLCA structure. You specify a list of numbers, called item codes,
to specify the error or warning information, and SQLCAGETINFOLIST returns the
information to a buffer in your program.

ENTER TAL "SQLCAFSCODE" USING
 sqlca,
 [first-flag]
 GIVING error-info.

Nonzero value (or omitted) First error

0 (zero) Last error
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-17

SQL/MP System Procedures SQLCAGETINFOLIST
The information in the SQLCA structure can originate from these subsystems or
system components:

 SQL/MP
 NonStop OS
 File system
 Disk process (DP2)
 FastSort program (SORTPROG process)
 Sequential I/O (SIO) procedures

sqlca required input

is the record name of the SQLCA structure.

item-list required input

PIC X(length-of-table)

is a table of item codes that describes the information you want returned in the
result buffer. For a list of these codes, see call-error output on page 5-20.

number-items required input

PIC S(9) COMP

is the number of items you specified in the item-list table.

result required output

PIC X(length-of-table)

is a table you define to receive the requested information. The items are returned
in the order you specified in item-list. Each item is aligned on a word boundary.

Note. The SQLCAGETINFOLIST procedure returns error numbers as positive values and
warning numbers as negative values. A program might need to switch the sign before
processing the error or warning.

ENTER TAL "SQLCAGETINFOLIST" USING
 sqlca,
 item-list,
 number-items,
 result,
 result-max,
 [error-index,]
 [names-max,]
 [params-max,]
 [result-len,]
 [error-item]
 GIVING call-error.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-18

SQL/MP System Procedures SQLCAGETINFOLIST
result-max required input

PIC S9(4) COMP

is the maximum size, in bytes, of the result table.

error-index optional input

PIC S9(4) COMP

is the index of the SQLCA error entry you want to see.

The SQLCA structure has a fixed set of fields (item codes 1 through 21) for errors
and warnings. In addition, SQLCA has a table of records (item codes 22 through
29), with each record describing one error or warning. SQL/MP uses
error-index to access this table to determine the error or warning.

If error-index is omitted, the first error record is returned.

names-max optional input

PIC S9(4) COMP

is the maximum length your program allows for procedure IDs or file names (item
codes 9, 13, and 19). Names that exceed this length are truncated (no error results
from the truncation).

params-max optional input

PIC S9(4) COMP

is the maximum length your program allows for parameter information (item codes
16 and 29). Parameter information that exceeds this length is truncated (no error
results from the truncation).

result-len optional output

PIC S9(4) COMP

returns the total number of bytes used in the result buffer.

error-item output

PIC S9(4) COMP

returns the index of the item being processed when the error occurred. The index
starts at 0.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-19

SQL/MP System Procedures SQLCAGETINFOLIST
call-error output

PIC S9(4) COMP

is a variable you declare for the GIVING parameter to store the SQL error code
that indicates the results of the call. SQLCAGETINFOLIST procedure error codes
are:

 The item codes you can specify in the item-list array are:

Error Code Description

8510 A required parameter is missing.

8511 The program specified an invalid item code.

8512 The program specified an invalid SQLCA structure.

8513 The program specified an SQLCA structure with a version more recent
than the version of the SQLCAGETINFOLIST procedure.

8514 Insufficient buffer space is available.

8515 The program specified an error entry index less than zero or greater
than the number of errors.

8516 The program specified a namesmax parameter less than or equal to
zero.

8517 The program specified a paramsmax parameter less than or equal to
zero.

Item Code Size (Bytes) Description

1 2 SQLCA version.

2 2 Maximum number of errors or warnings the SQLCA
can represent.

3 2 Actual number of errors or warnings.

4 2 Whether there were more errors or warnings than the
SQLCA had space to store:

0 = There were no more errors or warnings
nonzero = There were more errors or warnings

5 2 Whether there were more parameters than the
SQLCA had space to store:

0 = There were no more parameters
nonzero = There were more parameters

6 2 Maximum length, in bytes, of the name of the
paragraph in which the SQL statement appears.

7 2 Actual length, in bytes, of the name of the paragraph
in which the SQL statement appears.

8 (in item code 7) Program ID of the program in which the SQL
statement appears.

9 4 Source code line number of the SQL statement that
caused an error.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-20

SQL/MP System Procedures SQLCAGETINFOLIST
10 2 Syntax error location. If there was no syntax error,
SQL returns -1.

11 2 Maximum length, in bytes, of the system procedure
that sets the first error or warning.

12 2 Actual length, in bytes, of the system procedure that
sets the first error or warning.

13 (in item code 12) Location of the system procedure that sets the first
error or warning.

14 2 Maximum length, in bytes, of the parameter buffer.

15 2 Used bytes in the parameter buffer.

16 (in item code 15) Parameter buffer.

17 2 Maximum length, in bytes, of the source name buffer.

18 2 Used bytes in the source name buffer.

19 (in item code 18) Source name buffer.

20 4 Number of processed rows.

21 8 Estimated query cost.

22 2 SQL error or warning number. Error numbers are
positive, warning numbers are negative.

23 2 Subsystem ID: First byte is 0. The second byte can
be one of these letters:

 S = SQL/MP component:
SQL compiler
SQL catalog manager
SQL executor
SQLUTIL process
SQLCI or SQLCI2 process

 F = SQL file system
 D = DP2 disk process
 G = NonStop OS
 R = FastSort program (SORTPROG process)
 L = Load routines
 I = Sequential I/O (SIO) procedures

24 2 Suppress printing this error
 (0 = False, nonzero = True)

25 2 Offset into the parameters buffer for parameters
associated with the call.

SQL/MP returns -1 if there are no parameters.

26 2 Number of parameters for this error.

Item Code Size (Bytes) Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-21

SQL/MP System Procedures SQLCAGETINFOLIST
Example 5-3 on page 5-23 shows a call to the SQLCAGETINFOLIST procedure that
returns these items:

 The name of the procedure containing the SQL/MP statement that produced one or
more errors or warnings

 The name length of the procedure name

 The number of errors or warnings that occurred

 The error code of the fifth error returned

27 2 Sequence in which the error or warning was set.

28 2 Size of the buffer that contains parameters. Each
string is delimited by a zero.

29 (in item code 28) Buffer that contains parameters, delimited by a zero.
Each parameter begins on an even word boundary
and is preceded by 2 bytes.

Item Code Size (Bytes) Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-22

SQL/MP System Procedures SQLCAGETINFOLIST
Example 5-3. Calling the SQLCAGETINFOLIST procedure (page 1 of 2)

WORKING-STORAGE SECTION.
 ...
* Declare a buffer to hold the error information:

 01 ERRORS-AND-WARNINGS.
 02 NAME-LEN PIC S9(4) COMP.
 02 NUM-ERRS PIC S9(4) COMP.
 02 NAME PIC X(32).
 02 ERR-CODE PIC S9(4) COMP.

* Include the SQLCA declaration:
 EXEC SQL INCLUDE SQLCA END-EXEC.

* Declare a variable to hold the size of the buffer, to
* be calculated using INSPECT..TALLYING:
 01 ERR-WARN-SIZE PIC S9(4) COMP.
* Declare a variable to hold the return code for the call:

 01 CALL-ERROR PIC S9(4) COMP.

* Declare the item-list table:

 01 ITEM-LIST.
 02 ITEMS PIC S9(4) COMP OCCURS 4 TIMES.

 01 ERROR-ITEM PIC S9(4) COMP.
 PROCEDURE DIVISION.

* Initialize the item-list table:

* Code for actual name length:
 MOVE 7 TO ITEMS(1).

* Code for actual number of errors or warnings:
 MOVE 3 TO ITEMS(2).

* Code for procedure name:
 MOVE 8 TO ITEMS(3).

* Code for error number:
 MOVE 22 TO ITEMS(4).

* Calculate the size of the buffer for passing to
* SQLCAGETINFOLIST:
 INSPECT ERRORS-AND-WARNINGS
 TALLYING ERR-WARN-SIZE FOR CHARACTERS.
 ...
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-23

SQL/MP System Procedures SQLGETCATALOGVERSION
To avoid hard-coding the maximum length for the procedure name (NAME-LEN OF
ERRORS-AND-WARNINGS in this example), perform these steps:

1. Call SQLCAGETINFOLIST and pass item code 6 (the maximum length of
procedure name).

2. Call SQLCAGETINFOLIST again and pass a buffer of the appropriate size.

SQLGETCATALOGVERSION
The SQLGETCATALOGVERSION procedure returns the version of a catalog.

catalog-name optional input

PIC X(length)

is the fully qualified file name of the catalog for which you are requesting
information. The name must be:

 Left justified and padded with spaces on the right
 A maximum of 26 characters

If you omit catalog-name, SQLGETCATALOGVERSION uses the default
catalog.

* Call SQLCAGETINFOLIST. The third parameter is the number
* of codes you are supplying in item-list. The seventh
* parameter will cause the program to truncate all names to
* 32 characters. The ERROR-ITEM parameter receives
* information about the fifth entry in the errors array.

 ENTER TAL "SQLCAGETINFOLIST" USING
 SQLCA,
 ITEM-LIST,
 4,
 ERRORS-AND-WARNINGS,
 ERR-WARN-SIZE,
 OMITTED,
 32,
 OMITTED,
 OMITTED,
 ERROR-ITEM
 GIVING CALL-ERROR.

ENTER TAL "SQLGETCATALOGVERSION" USING
 [catalog-name,]
 sql-version
 GIVING error-info.

Example 5-3. Calling the SQLCAGETINFOLIST procedure (page 2 of 2)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-24

SQL/MP System Procedures SQLGETOBJECTVERSION
sql-version output

PIC S9(4) COMP

is the version of the catalog. For information about versions of SQL/MP, see the
SQL/MP Version Management Guide.

error-info output

PIC S9(4) COMP

indicates the results of the SQLGETCATALOGVERSION call. If the call is
successful, error-info is 0. If an error occurs, error-info contains the
operating system or SQL error number. For a description of SQL errors, see the
SQL/MP Messages Manual.

SQLGETOBJECTVERSION
The SQLGETOBJECTVERSION procedure returns the version of an SQL object.

object-name required input

PIC X(length)

is the fully qualified file name of the SQL object for which you are requesting
information. The name must be:

 Left justified and padded with spaces on the right
 A maximum of 34 characters

sql-version output

PIC S9(4) COMP

is the version of the SQL object. For information about versions of SQL/MP, see
the SQL/MP Version Management Guide.

Note. Although version 315 SQL/MP software supports the SQLGETCATALOGVERSION
procedure, HP might not support this procedure in a future PVU. If you are running version 300
(or later) SQL/MP software, use the GET VERSION OF CATALOG statement to return the
version of a catalog. For information about this statement, see the SQL/MP Reference Manual.

ENTER TAL "SQLGETOBJECTVERSION" USING
 object-name,
 sql-version
 GIVING error-info.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-25

SQL/MP System Procedures SQLGETSYSTEMVERSION
error-info output

PIC S9(4) COMP

indicates the results of the SQLGETOBJECTVERSION call. If the call is
successful, error-info is 0. If an error occurs, error-info contains the
operating system or SQL error number. For a description of SQL errors, see the
SQL/MP Messages Manual.

SQLGETSYSTEMVERSION
The SQLGETSYSTEMVERSION procedure returns the version of the SQL file-system
and disk-process components running on a specific node. For a specific node, you can
assume that all SQL components are of the same PVU.

If you request the version for a remote node, SQLGETSYSTEMVERSION returns
information about the remote disk process. A successful call does not guarantee that
SQL/MP is installed on the remote node.

node-number optional input

PIC S9(4) COMP

is the node number for which you are requesting information. If you omit this
parameter, SQLGETSYSTEMVERSION returns the version of the local node.

sql-version output

PIC S9(4) COMP

is the SQL/MP software version for the specified system. For information about
versions of SQL/MP, see the SQL/MP Version Management Guide.

Note. Although version 315 SQL/MP software supports the SQLGETOBJECTVERSION
procedure, HP might not support this procedure in a future PVU. If you are running version 300
(or later) SQL/MP software, use the GET VERSION statement to return the version of an SQL
object. For information about this statement, see the SQL/MP Reference Manual.

ENTER TAL "SQLGETSYSTEMVERSION" USING
 [node-number,]
 sql-version
 GIVING error-info.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-26

SQL/MP System Procedures SQLSADISPLAY
error-info output

PIC S9(4) COMP

indicates the results of the call. The procedure returns zero after a successful
operation. Otherwise, it returns a nonzero value to indicate an error or warning. For
a description of SQL errors, see the SQL/MP Messages Manual.

SQLSADISPLAY
The SQLSADISPLAY procedure displays the execution statistics of SQL statements in
tabular form.

Because the PREPARE statement continually redefines the fields of the SQLSA
structure during the execution of dynamic SQL statements, SQLSADISPLAY does not
display an SQLSA structure returned by a PREPARE statement.

sqlsa required input

is the SQLSA to be displayed. The SQLSA is automatically declared in the
program when you specify the INCLUDE SQLSA directive.

sqlca optional input

is the SQLCA that contains the procedure name and line number of the SQL
statement that sets the SQLSA to be displayed. If the SQLCA name is not
included, the display does not contain the procedure name and process name of
the caller. The SQLCA is declared automatically if you specify the INCLUDE
SQLCA directive.

out-file-num optional input/output

PIC S9(4) COMP

is the output file number. If you omit this value or set it to a negative value,
SQLSADISPLAY displays information on your home terminal. SQL/MP ignores this
parameter if detail-params specifies sequential I/O (SIO).

Note. Although version 315 SQL/MP software supports the SQLGETSYSTEMVERSION
procedure, HP might not support this procedure in a future PVU. If you are running version 300
(or later) SQL/MP software, use the GET VERSION OF SYSTEM statement to return the
version of a system. For information about this statement, see the SQL/MP Reference Manual.

ENTER TAL "SQLSADISPLAY" USING
 sqlsa,
 [sqlca,]
 [out-file-num,]
 [detail-params].
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-27

SQL/MP System Procedures SQLSADISPLAY
detail-params optional input

determines whether sequential I/O (SIO) or Enscribe I/O is used for writing to the
output file. A COBOL program usually omits detail-params and uses Enscribe
I/O (the default). The parameter detail-params points to a structure with this
TAL declaration:

STRUCT detail^params;
BEGIN
 sio STRING;
 out^fcb^1 INT .EXT;
 out^fcb^2 INT .EXT;
END;

sio

specifies whether sequential I/O is used:

out^fcb^1

specifies the first output file control block if SIO is enabled.

out^fcb^2

specifies the second output file control block if SIO is enabled. To use this field,
assign it a value greater than 0.

Example of the SQLSADISPLAY Display

SQLSADISPLAY displays statistics in this format:

SQL statistics @ \system.$vol.subvol.file.#line process cpu,pin

 Records Records Disc Message Message Lock
Table Name Accessed Used Reads Count Bytes WE

The elements of the SQLSADISPLAY procedure display are:

Y Use SIO; ignore output-file-number.

N Do not use SIO; write to output-file-number.

Element Description

\system.$vol.subvol.file The fully qualified file name of the calling program

#line The line number of the calling program

process cpu,pin The process ID of the calling program

Table Name The name of each table

Records Accessed The number of records accessed in each table (this
includes records examined by the disk process, the
file system, and the SQL executor)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-28

SQL/MP System Procedures SQLSADISPLAY
Example 5-4 shows the information SQLSADISPLAY displays. To generate this
display, a program follows these steps:

1. Generates the SQLSA and SQLCA structures.
2. Executes an SQL DML statement.
3. Calls the SQLSADISPLAY procedure.

Records Used The number of records actually used by the
statement

Disc Reads The number of disk reads caused by accessing this
table

Message Count The number of messages sent to execute operations
on this table

Message Bytes The number of message bytes sent to access this
table

Lock WE A flag indicating either that lock waits occurred (W) or
that lock escalations occurred (E) for the table

Example 5-4. SQLSADISPLAY Display

SQL statistics @ \sanfran.$system.accts.prog10.#333.2 process 12,255

 Records Records Disc Message Message Lock
Table Name Accessed Used Reads Count Bytes WE

\sanfran.$sqlvol.accts.tab10

 123 22 3 10 3245

\sanfran.$vol001.fy93.employee

 9987231 1 99999 1 100 e

\sanfran.$sqlvol.accts.tab20

 1 1 0 1 100 w

Element Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-29

SQL/MP System Procedures Superseded Procedures
Superseded Procedures
The SQLCADISPLAY and SQLCATOBUFFER procedures have been superseded by
the SQLCA_DISPLAY2_ and SQLCA_TOBUFFER2_ procedures, respectively. The
data type of parameters in the SQLCA_DISPLAY2_ and SQLCA_TOBUFFER2_ make
those procedures easier to use in COBOL programs. These procedures are included in
this manual for compatibility with earlier PVUs.

SQLCADISPLAY

The SQLCADISPLAY procedure displays the error or warning messages returned to
the SQLCA structure. This procedure displays the information to a file or to a terminal.

The error or warning messages can be from these subsystems or system components:

 SQL/MP
 NonStop OS
 File system
 Disk process (DP2)
 FastSort program (SORTPROG process)
 Sequential I/O (SIO) procedures

sqlca required input

is the record name of the SQLCA to be displayed. The SQLCA is declared
automatically when you include the INCLUDE SQLCA directive.

output-file-number optional input

PIC S9(4) COMP

is the output file number. If you omit this value or set it to a negative value,
SQLCADISPLAY displays information at your home terminal. SQL/MP ignores this
parameter if detail-params specifies sequential I/O (SIO).

ENTER TAL "SQLCADISPLAY" USING
 sqlca,
 [output-file-number,]
 [output-record-length,]
 [sql-msg-file-number,]
 [errors,]
 [warnings,]
 [statistics,]
 [caller-error-loc,]
 [internal-error-loc,]
 [prefix,]
 [prefix-length,]
 [suffix,]
 [suffix-length,]
 [detail-params].
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-30

SQL/MP System Procedures SQLCADISPLAY
output-record-length optional input

PIC S9(4) COMP

is the length in bytes of records to be written to the output file. The length must be
an integer value from 60 to 600.

The default is 79 bytes.

sql-msg-file-number optional input/output

PIC S9(4) COMP

is the file number of the SQL message file (SQLMSG is the default file). If you
specify -1 as an input value, the system opens the message file and returns the
resulting file number. If you specify a value other than -1, the system uses that
value as the file number of the message file.

To improve the performance of a program that makes multiple calls to the
SQLCADISPLAY procedure, specify -1 on the first call and then use the returned
file number for subsequent calls. By using the file number, the system opens the
file only once and uses the file number for subsequent calls. Otherwise, the system
opens the file for each call.

The SQLMSG file contains text in English. You can specify a different SQL
message file with the =_SQL_MSG_system DEFINE. For more information, see
SQL Message File on page 5-2.

errors optional input

PIC S9(4) COMP

controls the display of error messages to the buffer:

The default is Y.

warnings optional input

PIC S9(4) COMP

controls the display of warning messages to the buffer:

Y Display all errors.

N Display only the first error.

B Display all errors but suppress this prefix:
ERROR from subsystem [nn]:

Y Display all warning messages.

N Do not display any warning messages.

B Display all warnings but suppress this prefix:
WARNING from subsystem [nn]
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-31

SQL/MP System Procedures SQLCADISPLAY
The default is Y.

statistics optional input

PIC S9(4) COMP

controls the display of statistics:

The default is Y.

caller-error-loc optional input

PIC S9(4) COMP

controls the display of the program name and line number of the SQL statement
that received the error:

The default is Y.

internal-error-loc optional input

PIC S9(4) COMP

controls the display of the system-code location where the first error in the SQLCA
occurred:

The default is Y.

prefix optional input

PIC X(length)

is a string to precede each output line. The default is three asterisks and a space
(***).

Y Display row and cost statistics if the value returned to the SQLCA in the
ROW or COST field is greater than or equal to 0.

N Do not display statistics.

R Display row statistics only.

C Display cost statistics only.

Y Display the program name and line number.

N Suppress the display.

Y Display the location.

N Suppress the information.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-32

SQL/MP System Procedures SQLCADISPLAY
prefix-length optional input

PIC S9(4) COMP

is the length of the prefix string for each output line. This length must be an
integer value from 1 to 15. If you include prefix, prefix-length is required.

suffix optional input

PIC X(length)

is a string to be appended to each output line. The default is a null string.

suffix-length optional input

PIC S9(4) COMP

is the length of the suffix string for each output line. This length must be an integer
value from 1 to 15. If you include suffix, suffix-length is required.

detail-params input

(record)

determines whether sequential I/O (SIO) or Enscribe I/O is used for writing to the
output file. A COBOL program usually omits detail-params and uses Enscribe
I/O (the default). The parameter detail-params points to a structure with this
TAL declaration:

STRUCT detail^params;
BEGIN
 sio STRING;
 out^fcb^1 INT .EXT;
 out^fcb^2 INT .EXT;
END;

sio

specifies whether sequential I/O is used:

out^fcb^1

specifies the first output file control block if SIO is enabled.

out^fcb^2

specifies the second output file control block if SIO is enabled. To use
out^fcb^2, assign it a value greater than 0.

Y Use SIO; ignore output-file-number.

N Do not use SIO; write to output-file-number.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-33

SQL/MP System Procedures SQLCATOBUFFER
Example

This SQLCADISPLAY statement uses all default values:

ENTER TAL “SQLCADISPLAY” USING SQLCA.

SQLCATOBUFFER

The SQLCATOBUFFER procedure writes to a buffer the error or warning messages
returned by SQL/MP. The buffer is a record area declared in the Working-Storage or
Extended-Storage Section of the program.

The information returned to the buffer can originate from these subsystems or system
components:

 SQL/MP
 NonStop OS
 File system
 Disk process (DP2)
 FastSort program (SORTPROG process)
 Sequential I/O (SIO) procedures

This procedure is similar to the SQLCADISPLAY procedure, which writes error
information to a file or terminal.

sqlca required input

is the record name of the SQLCA.

The SQLCA is declared automatically when you specify the INCLUDE SQLCA
directive.

ENTER TAL "SQLCATOBUFFER" USING
 sqlca,
 output-buffer,
 output-buffer-length,
 [first-record-number,]
 [output-records,]
 [more,]
 [output-record-length,]
 [sql-msg-file-number,]
 [errors,]
 [warnings,]
 [statistics,]
 [caller-error-loc,]
 [internal-error-loc,]
 [prefix,]
 [prefix-length,]
 [suffix,]
 [suffix-length].
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-34

SQL/MP System Procedures SQLCATOBUFFER
output-buffer required input/output

PIC X(length)

is the record name to which SQLCATOBUFFER writes the error information.

output-buffer-length required input

PIC S9(4)

is the length of output-buffer in bytes. This length must be

 An integer value from output-record-length through 600
 A multiple of output-record-length

The minimum length recommended is 300 bytes.

first-record-number optional input

PIC S9(4) COMP

is the ordinal number of the first error record (line) to be moved to the output buffer.
The procedure discards any error records with a lower number. The count of lines
moved begins with 1.

The default is 1.

To obtain more than one error record, you must increment the value in
first-record-number.

output-records optional output

PIC S9(4) COMP

is the number of records (lines) written by SQLCATOBUFFER to output-buffer.

more optional output

PIC X

is a flag that indicates whether all the desired lines fit into the output-buffer:

output-record-length optional input

PIC S9(4) COMP

defines the length of records to be written to the output-buffer. The length
must be an integer value from 60 to 600.

The default is 79 bytes.

Y There were additional records; the buffer overflowed.

N There were no additional records.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-35

SQL/MP System Procedures SQLCATOBUFFER
The procedure pads each line with spaces and adds the suffix and prefix strings if
the ENTER statement specifies them.

sql-msg-file-number optional input/output

PIC S9(4) COMP

is the file number of the SQL message file (SQLMSG is the default file). If you
specify -1 as the input value, the system opens the message file and returns the
resulting file number. If you specify a value other than -1, the system uses that
value as the file number of the message file.

To improve the performance of multiple calls to the SQLCA_DISPLAY2_
procedure, specify -1 on the first call and then use the returned file number for
subsequent calls. By using the file number, the system opens the file only once
and uses the file number for subsequent calls. Otherwise, the system opens the
file for each call.

The SQLMSG file contains text in English. You can specify a different SQL
message file with the =_SQL_MSG_system DEFINE. For more information, see
SQL Message File on page 5-2.

errors optional input

PIC S9(4) COMP

controls the writing of error messages to the buffer:

The default is Y.

warnings optional input

PIC S9(4) COMP

controls the writing of warning messages to the buffer:

The default is Y.

Y Write all errors.

N Write only the first error.

B Write all errors but suppress this prefix:
ERROR from subsystem [nn]:

Y Write all warning messages.

N Do not write any warning messages.

B Write all warnings but suppress this prefix:
WARNING from subsystem [nn]
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-36

SQL/MP System Procedures SQLCATOBUFFER
statistics optional input

PIC S9(4) COMP

controls the writing of statistics to the buffer:

The default is Y.

caller-error-loc optional input

PIC S9(4) COMP

controls the writing of the program name and line number of the SQL statement
that received the error:

The default is Y.

internal-error-loc optional input

PIC S9(4) COMP

controls the writing of the system-code location where the first error in the SQLCA
occurred:

The default is Y.

prefix optional input

PIC X(length)

is a string to precede each output line. The default is three asterisks and a space
(***).

prefix-length optional input

PIC S9(4) COMP

is the length of the prefix string for each output line. This length must be an
integer value from 1 to 15. If you include prefix, prefix-length is required.

Y Write row and cost statistics if the value returned to the SQLCA in the
ROW or COST field is greater than or equal to 0.

N Do not write statistics.

R Write row statistics only.

C Write cost statistics only.

Y Write the program name and line number.

N Suppress the information.

Y Write the location.

N Suppress the information.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-37

SQL/MP System Procedures SQLCATOBUFFER
suffix optional input

PIC X(length)

is a string to be appended to each output line. The default is a null string.

suffix-length optional input

PIC S9(4) COMP

is the length of the suffix string for each output line. This length must be an
integer value from 1 to 15. If you include suffix, suffix-length is required.

This example uses a 75-character output record and declares a buffer
SQLMSG-BUFFER as 375 characters. The ENTER statement specifies the SQLMSG
file number with data item SQLMSG-FILENUM set to -1. The statement returns the file
number so that subsequent calls retain the number.

WORKING-STORAGE SECTION.

01 SQLMSG-BUFFER PIC X(375).
01 SQLMSG-FILENUM PIC S9(4) COMP VALUE -1.

PROCEDURE DIVISION.
 ...
 ENTER TAL "SQLCATOBUFFER" USING
 SQLCA,
 SQLMSG-BUFFER,
 375,
 OMITTED,
 OMITTED,
 OMITTED,
 75,
 SQLMSG-FILENUM.
 ...
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
5-38

6 Explicit Program Compilation

This section describes the explicit compilation of an HP COBOL program containing
embedded SQL statements and directives in the Guardian, OSS, and PC host
environments using TNS and TNS/R compilation tools.

Topics include:

 Compilation Methods

 Preparing for Compilation on page 6-5

 Running the HP COBOL Compilers on page 6-12

 Binding and Linking on page 6-21

 Acceleration of TNS HP COBOL Programs on page 6-23

 Running the SQL Compiler on page 6-25

 Using CONTROL Directives on page 6-42

 Using Compatible Components on page 6-45

Compilation Methods
The HP COBOL compilers translate HP COBOL source programs into machine
language that is specific to a particular NonStop system architecture. Therefore, the
type of HP COBOL compiler that you use to compile your program determines the
NonStop system where you can run the program. For more information, see Table 6-2,
COBOL Compilation Mode and Execution Environment, on page 6-12.

You can compile a source program in TNS mode or native mode on a NonStop system.
A TNS-compiled program uses TNS process and memory architecture and consists of
TNS object code (TNS instructions), whereas a natively compiled program uses native
process and memory architecture and consists of native object code (RISC
instructions). The steps for compiling an embedded SQL/MP program for each
compilation mode are:

 TNS Mode Compilation on page 6-2

 Native Mode Compilation for TNS/R Systems on page 6-4
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-1

Explicit Program Compilation TNS Mode Compilation
TNS Mode Compilation

A TNS-compiled program uses TNS process and memory architecture and consists of
TNS object code (TNS instructions). Compiling an HP COBOL program in TNS mode
enables you to execute the program on a TNS system. You can also execute TNS
programs on TNS/R systems and boost the execution speed on those systems by
generating accelerated object code after compilation.

Figure 6-1 shows the steps you follow to explicitly SQL compile a COBOL program in
TNS mode.

Figure 6-1. Compiling a COBOL Program in TNS Mode

VST003.vsd

COBOL Source File
With Embedded SQL

Statements

In the OSS environment on a TNS/R system, Steps 2 through 5 can be invoked
with the cobol utility.

COBOL Object File
With SQL Source

Statements
(File code 100)

Binder Process

SQL Compiler
(SQLCOMP)

Accelerated
Object File

SQL Program File

Accelerator

COBOL85 Compiler

 Run the SQL compiler.5

Valid SQL Program File Ready for Execution
on TNS or TNS/R Systems

Optionally, run the
Accelerator (TNS/R).

4

Add any required
DEFINEs.

1

Run the compiler.2

Run the Binder
program (if
necessary).

3

HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-2

Explicit Program Compilation TNS Mode Compilation
To compile a COBOL program that contains embedded SQL statements and directives
for execution on a TNS (or TNS/R) system:

1. Add any required class MAP or class CATALOG DEFINEs.

2. Run the COBOL85 compiler and specify a source file as input.

Your compilation unit must include an SQLCODE variable declaration (either
declared explicitly or implicitly with the INCLUDE SQLCA directive). You must
specify the SQL compiler directive in the compilation unit or on the compiler
command line.

3. If necessary, use the Binder program to combine the COBOL object file with other
object files.

4. Optionally, run the Accelerator on the COBOL object file to optimize it for a TNS/R
system.

5. Run the SQL compiler (SQLCOMP) to compile the SQL source statements in the
COBOL object file and to produce a valid SQL program file for execution.

The SQL program file that is produced can be executed in either the OSS or Guardian
operating environment, depending on how you compile the program:

 In the Guardian environment, execute the SQL program file, either interactively by
using the TACL RUN (or RUND) command or programmatically by using the
COBOL CREATEPROCESS or CLU_PROCESS_CREATE_ routine.

 In the OSS environment of a TNS/R system, add the directory of the SQL program
file to your search path by using the export command and then execute the SQL
program file by entering its name at the OSS prompt.

For more information, see Section 7, Program Execution.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-3

Explicit Program Compilation Native Mode Compilation for TNS/R Systems
Native Mode Compilation for TNS/R Systems

A natively compiled program for a TNS/R system uses native TNS/R process and
memory architecture and consists of native object code (RISC instructions). Compiling
an HP COBOL program in native TNS/R mode enables you to execute the program on
a TNS/R system only.

Figure 6-2 shows the steps you follow to explicitly SQL compile a COBOL program in
TNS/R native mode.

Figure 6-2. Compiling a COBOL Program in TNS/R Native Mode

VST003R.vsd

COBOL Source File
With Embedded SQL

Statements

In the OSS environment, Steps 2 through 4 can be invoked with the nmcobol
utility.

COBOL Object File
With SQL Source

Statements
(File code 700)

nld or ld
Process

SQL Compiler
(SQLCOMP)

SQL Program File

NMCOBOL
Compiler

Valid SQL Program File Ready for
Execution on TNS/R Systems Only

Add any required
DEFINEs.

1

Run the compiler.2

 Run the SQL compiler.4

Run the linker (if
necessary).

3

HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-4

Explicit Program Compilation Preparing for Compilation
To compile a COBOL program that contains embedded SQL statements and directives
for execution on a TNS/R system:

1. Add any required class MAP or class CATALOG DEFINEs.

2. Run the NMCOBOL compiler and specify a source file as input.

Your compilation unit must include an SQLCODE variable declaration (either
declared explicitly or implicitly with the INCLUDE SQLCA directive). You must
specify the SQL compiler directive on the compiler command line.

3. If necessary, use the nld or ld utility to combine the COBOL object file with other
object files.

4. Run the SQL compiler (SQLCOMP) to compile the SQL source statements in the
COBOL object file and to produce a valid SQL program file for execution.

The SQL program file that is produced can be executed in either the OSS or Guardian
operating environment, depending on how you compile the program:

 In the Guardian environment, execute the SQL program file, either interactively by
using the TACL RUN (or RUND) command or programmatically by using the
COBOL CREATEPROCESS or CLU_PROCESS_CREATE_ routine.

 In the OSS environment, add the directory of the SQL program file to your search
path by using the export command, and then execute the SQL program file by
entering its name at the OSS prompt.

For more information, see Section 7, Program Execution.

Preparing for Compilation
Before compiling an embedded SQL/MP program, verify that the source code is ready
for compilation and configure the compilation environment. Follow these guidelines:

 Requirements for Compiling a COBOL Program on page 6-6

 SQL Compiler Directive on page 6-7

 Copying Source Code Into a Compilation Unit on page 6-9

 Setting DEFINEs on page 6-9

 Using PARAM Commands on page 6-11
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-5

Explicit Program Compilation Requirements for Compiling a COBOL Program
Requirements for Compiling a COBOL Program

Before compiling the program, verify that the source code contains the required
elements for compilation.

Feature or Option COBOL Compiler Requirements

SQL directive Required either in the compilation unit before the first Identification
Division or on the compiler command line of the COBOL85
compiler (TNS mode)

Required on the compiler command line of the NMCOBOL
compiler (TNS/R mode)

See the SQL Compiler Directive on page 6-7.

SQLMEM directive Optional in the source code or on the compiler command line of
the COBOL85 compiler (TNS mode)

See the COBOL85 for NonStop Systems Manual.

SQLCODE identifier Required for each program and nested program. You must
declare an SQLCODE identifier either explicitly as a data item or
implicitly using the INCLUDE SQLCA directive.

See Section 9, Error and Status Reporting.

SQLCODE level-88
items

Optional. You can use level-88 items with an SQLCODE data item
by substituting an SQLCODEX data item. See Using the
SQLCODEX Data Item on page 9-6.

SQLCA data structure The compiler:

 Declares an SQLCA structure in a program only if the source
file specifies an INCLUDE SQLCA directive.

 Allows an INCLUDE SQLCA directive in the
Extended-Storage Section.

SQL statement
placement

Allows COBOL statements and embedded SQL statements to be
on the same line, except that a COBOL statement must follow the
SQL statement terminator, cannot precede an SQL statement,
and cannot be a COPY or REPLACE statement.

Library files Supports the COBOL SOURCE directive.

COPY and
REPLACE statements

The compiler implements these restrictions:
A COPY or REPLACE statement is not allowed within SQL
statements and cannot contain SQL statements. COPY and
REPLACE affect SQL statements only between BEGIN DECLARE
and END DECLARE directives.

 A COPY statement cannot copy source text that contains
SQL statements.

 A REPLACE statement that precedes one or more SQL
statements does not affect them, except in a Declare Section.

SQL cursors Supports local and foreign cursors.

SQL statements in
listing

Lists SQL statements in the compiler listing exactly as they appear
in the source program.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-6

Explicit Program Compilation SQL Compiler Directive
SQL Compiler Directive

The SQL compiler directive indicates to the HP COBOL compiler that a program
contains embedded SQL statements or directives and specifies various options for
processing the SQL statements or directives. Use this syntax for the SQL directive:

PAGES num-pages

specifies the number of 2048-byte pages of memory the compiler should allocate
to the SQL compiler interface (SCI) to process SQL statements and directives. The
default (and minimum) value for num-pages is 560 (on TNS/R systems). The
maximum value is 1000.

SQLMAP

directs the compiler to include an SQL map in the listing file. An SQL map contains
this information:

 Each run-time data unit (RTDU), which is a region of the object file that
contains both SQL source statements and object code

INVOKE and
INCLUDE directives

Replaces INVOKE and INCLUDE directives with COBOL data
declarations that correspond to the SQL structures being invoked
or included.

Inspect debugger You can use the Inspect debugger (for TNS/R) on a COBOL
object file. However, the current source line indicated by the
Inspect debugger depends on how you produced the object file.
When you use the Inspect debugger on an object file that contains
embedded SQL, the current source line indicated by the debugger
is the embedded SQL statement itself. See the Inspect Manual.

CROSSREF program
and
CROSSREF directive

Lists any embedded SQL statements that contain referenced and
changed variables in TNS HP COBOL programs.
The NMCOBOL compiler does not produce a cross-reference
listing. If you need one for a native TNS/R program, use the noft
utility with the XREFPROC flag. See the nld and noft Manual.

SQL [sql-option-list | (sql-option-list)]

sql-option-list is:
sql-option[, sql-option]...

sql-option is:

PAGES num-pages
| SQLMAP
| WHENEVERLIST
| { RELEASE1 | RELEASE2 }

Feature or Option COBOL Compiler Requirements
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-7

Explicit Program Compilation SQL Compiler Directive
 Section location table (SLT) index number, which maps a single SQL statement
to a table in the RTDU

 Source file name and number

 Source file line number

The SQL map is sorted first by RTDU name and then by SLT index number. You
can use this map to correlate MEASURE output with the SQL statements.

The SQLMAP option also directs the compiler to include the HOSV version in the
compiler listing. For example:

Host Object SQL Version = 315

The default is not to include the SQL map in the listing.

WHENEVERLIST

directs the compiler to write active WHENEVER options to the listing file after each
embedded SQL statement is processed.

The default is not to write the WHENEVER options.

RELEASE1 or RELEASE2

specifies the version of the SQL/MP features in the program (including the SQL
data structures) and the version of SQL/MP software on which the program file can
run.

RELEASE1

specifies version 1 features. A program that uses the RELEASE1 option is
compatible with SQL/MP version 1, 2, or 300 (or later) software. This option
applies to the COBOL85 compiler only and does not apply to the NMCOBOL
compiler.

RELEASE2

specifies version 2 features. A program that uses the RELEASE2 option is
compatible with SQL/MP version 2 or 300 (or later) software, but not with
version 1 software. RELEASE2 is the default.

Note. Although the compiler allows the RELEASE1 and RELEASE2 options, these
options might not be supported in a future RVU. If you are using a version 300 (or
later) compiler to generate version 1 or version 2 data structures, use the INCLUDE
STRUCTURES directive with the VERSION 1 or VERSION 2 option rather than the
RELEASE1 or RELEASE2 option. For more information, see Using the INCLUDE
STRUCTURES Directive on page 9-1.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-8

Explicit Program Compilation Copying Source Code Into a Compilation Unit
Copying Source Code Into a Compilation Unit

To copy the COBOL source code from a separate file into a compilation unit, use one
of these options:

 COBOL SOURCE directive
 COBOL COPY statement

You cannot use SQL statements in a file you are copying with the COPY statement.
For information about the COPY statement or SOURCE directive, see the COBOL85
for NonStop Systems Manual.

Setting DEFINEs

You can use DEFINE names in an SQL program to specify the names of SQL catalogs
and objects (tables, views, indexes, partitions, and collations). You must set all
DEFINE names used in SQL statements before SQL load time (the time when an SQL
program executes its first statement) unless your program uses execution-time name
resolution.

 Using DEFINEs in the Guardian Environment

 Using DEFINEs in the OSS Environment on page 6-10

Using DEFINEs in the Guardian Environment

Use a class CATALOG DEFINE for a catalog and a class MAP DEFINE for an object:

 To use DEFINEs, the DEFMODE attribute must be ON for your TACL process. To
determine the DEFMODE setting, enter the SHOW DEFMODE command at the
TACL prompt:

10> SHOW DEFMODE
 Defmode OFF

If DEMODE is OFF, enter a SET DEFMODE ON command:

11> SET DEFMODE ON

 Before you run the HP COBOL compiler, add the DEFINEs for the names of SQL
objects you use in INVOKE directives.

12> ADD DEFINE =employee, CLASS MAP, FILE persnl.employee
13> ADD DEFINE =emplist, CLASS MAP, FILE persnl.emplist
...

 Before you run the SQL compiler (SQLCOMP), add the DEFINEs for the names of
tables, view, indexes, or collations you use in SQL statements.

20> ADD DEFINE =dept, CLASS MAP, FILE persnl.dept
21> ADD DEFINE =xempname, CLASS MAP, FILE persnl.xempname
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-9

Explicit Program Compilation Setting DEFINEs
22> ADD DEFINE =collate1, CLASS MAP, FILE collate1
...

If you specify a DEFINE name in an SQL statement that is not in your current set
of DEFINEs, the SQL compiler issues a warning message and leaves the
statement uncompiled in the object file. When you run your program, the SQL
executor automatically tries to recompile the SQL statement. If the DEFINE is still
not available at run time, the SQL compiler issues an error message.

 When you run the SQL compiler, you can specify a CLASS SPOOL DEFINE for
the OUT file and a class CATALOG DEFINE for the catalog option. If you use these
DEFINEs, add them before you enter the SQLCOMP command:

30> ADD DEFINE =persnl, CLASS CATALOG, SUBVOL persnl
31> ADD DEFINE =sqlist, CLASS SPOOL, LOC $S.#sqlist
32> SQLCOMP /IN sqlcbprg,OUT =sqlist,NOWAIT/ CATALOG =persnl

 To use the DEFINEs stored in the program file when you explicitly recompile a
program, specify the STOREDDEFINES option of the SQLCOMP command. For a
description of the STOREDDEFINES option, see SQL Compiler Options on
page 6-28.

Using DEFINEs in the OSS Environment

Use these OSS utilities to create and manipulate class MAP and class CATALOG
TACL DEFINEs in the OSS environment:

Although you run these utilities in the OSS environment, each utility uses Guardian
conventions for its DEFINE attribute and the associated values. For a detailed
description, including the syntax of these utilities, see the Open System Services Shell
and Utilities Reference Manual.

Considerations for using TACL DEFINEs in the OSS environment are:

 The add_define utility implicitly sets the DEFMODE attribute to ON before it
creates the new DEFINE.

 Before you run the compiler using the cobol or nmcobol utility, add these
DEFINEs:

Note. For information on adding DEFINEs in the OSS environment, see Using DEFINEs
in the OSS Environment on page 6-10.

add_define Creates a new class MAP, CATALOG, SPOOL, SORT,
SUBSORT, SEARCH, or TAPE DEFINE

del_define Deletes one or more DEFINEs

info_define Displays the attributes and values of existing DEFINEs

set_define Sets the values for one or more DEFINE attributes in the
current working attribute set

show_define Displays the values for one or more DEFINE attributes in the
current working attribute set
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-10

Explicit Program Compilation Using PARAM Commands
 Class MAP DEFINEs specified in INVOKE directives
 Class MAP or class CATALOG DEFINEs specified in SQL statements

 If you specify a class CATALOG DEFINE for the SQLCOMP CATALOG option
when you run the SQL compiler using the cobol or nmcobol utility, add the
DEFINE before you issue the cobol or nmcobol command.

 You must precede a backslash (\) in a system name or a dollar sign ($) in a catalog
or subvolume name with the OSS shell escape character (\). For example, these
commands create a class MAP DEFINE and a class CATALOG DEFINE:

add_define =emptab class=map file=\\ny.\$disk2.fy94.empfile
add_define =sqlcat class=catalog subvol=\$sql.sqlcat

 Use seven characters or fewer for system names or the names of volumes where
OSS objects reside.

 To alter an existing DEFINE, use the add_define utility and specify all DEFINE
attributes and their new values. In this situation, the add_define utility essentially
adds a new DEFINE with the same name in place of the old DEFINE.

Using PARAM Commands

If you choose to use a PARAM command, you must enter it before you enter the
command to run the compiler. The HP COBOL compilers accept these command
interpreter PARAM commands:

A PARAM command does not apply to automatic SQL recompilation or dynamic SQL
compilation. For more information about using PARAM commands during compilation,
see the COBOL85 for NonStop Systems Manual. For the syntax of the PARAM
command, see the TACL Reference Manual.

PARAM Command Accepted by...

PARAM BINSERV COBOL85 compiler

PARAM SAMECPU COBOL85 compiler

PARAM SWAPVOL COBOL85 and NMCOBOL

PARAM SYMBOL-BLOCKS COBOL85 and NMCOBOL compilers

PARAM SYMSERV COBOL85 compiler
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-11

Explicit Program Compilation Running the HP COBOL Compilers
Running the HP COBOL Compilers
The type of HP COBOL compiler that you can use to compile an embedded SQL/MP
program depends on your operating environment and platform. Table 6-1 lists the HP
COBOL compilers, their compilation mode, and the environment and server on which
you can run the compilers.

The compilation mode that you use, depending on your choice of an HP COBOL
compiler, determines where you can run the program, as Table 6-2 shows.

Before compiling an embedded SQL/MP program, verify that the source code is ready
for compilation and configure the compilation environment. For more information, see
Preparing for Compilation on page 6-5.

To use an HP COBOL compiler to compile an embedded SQL/MP program, see:

 Running HP COBOL Compilers in the Guardian Environment on page 6-13

 Running HP COBOL Compilers in the OSS Environment on page 6-16

 Running the Native COBOL Cross Compilers in a PC Host Environment on
page 6-21

Table 6-1. HP COBOL Compilers

Compiler Compilation Mode
Operating Environment
of the Compiler

NonStop Server
of the Compiler

COBOL85 TNS Guardian D-series
G-series

cobol TNS OSS D-series
G-series

NMCOBOL TNS/R native Guardian D-series
G-series

nmcobol TNS/R native OSS D-series
G-series

Native COBOL cross
compiler for TNS/R

TNS/R native PC D-series host*
G-series host

* The HP Enterprise Toolkit—NonStop Edition (ETK) and PC command line are not supported on D-series
servers. Instead, use the native COBOL cross compiler of the HP Tandem Development Suite (TDS). For more
information, see the COBOL85 for NonStop Systems Manual.

Table 6-2. COBOL Compilation Mode and Execution Environment

Compilation Mode NonStop System Where you can run the Program

TNS TNS system (C-series servers)
TNS/R system (D-series and G-series servers)

TNS/R native TNS/R system (D-series and G-series servers)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-12

Explicit Program Compilation Running HP COBOL Compilers in the Guardian
Environment
Running HP COBOL Compilers in the Guardian Environment

To run an HP COBOL compiler in the Guardian environment, see:

 Running the COBOL85 Compiler in the Guardian Environment

 Running the NMCOBOL Compiler in the Guardian Environment on page 6-14

Running the COBOL85 Compiler in the Guardian
Environment

To run the COBOL85 compiler in the Guardian environment, enter the COBOL85
command at the TACL prompt or from a TACL OBEY command file using this syntax:

For more information about the syntax, see the COBOL85 for NonStop Systems
Manual.

For example, this command invokes the COBOL85 compiler and specifies a source
file, MYSRC, which contains embedded SQL statements and directives:

COBOL85 /IN MYSRC/

The source file can be a disk file, terminal, magnetic tape unit, or process.

By default, the compiler generates an object file, RUNUNIT, qualified by the default
system, volume, and subvolume names. To name the object file, specify a target file on
the command line. For example, this command generates an object file, MYPROG:

COBOL85 /IN MYSRC/ MYPROG

To compile an embedded SQL program, you must specify the SQL directive, which
tells the compiler to expect SQL statements in the compilation unit. If you do not
specify the SQL directive before the first Identification Division in the source program,
you must specify it on the compiler command line. For example, this SQL directive tells
the compiler to expect embedded SQL statements, to accept only version 1 features of
SQL/MP, and to include an SQL map in the listing file, $VOL1.SUBVOL.LST:

COBOL85 /IN MYSRC, OUT $VOL1.SUBVOL.LST/ MYPROG; SQL (RELEASE1,
SQLMAP)

For the syntax of the SQL directive, see the SQL Compiler Directive on page 6-7.

When compiling an embedded SQL program using the COBOL85 compiler, you can
optionally use the SQLMEM directive to cause the compiler to declare SQL data
structures in either the Working-Storage Section or the Extended-Storage Section of

COBOL85 /IN source-file [, OUT [list-file]][, run-option].../
 [target-file]
 [, copy-library]
 [; compiler-directive] ...

Note. To terminate a compilation in the Guardian environment, use the Break key to return to
the command interpreter and stop the process using its process identification number (PIN).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-13

Explicit Program Compilation Running HP COBOL Compilers in the Guardian
Environment
the program. For example, this command directs the compiler to declare SQL data
structures in the Extended-Storage Section:

COBOL85 /IN MYSRC/ MYPROG; SQL; SQLMEM EXT

For more information about the compiler directives, see the COBOL85 for NonStop
Systems Manual.

When you run the COBOL85 compiler, it automatically invokes the BINSERV process
of the Binder program, which validates and resolves references to other programs or
routines and produces a single object file. To invoke the Binder program separately,
use BIND. For more information, see The Binder Program on page 6-22.

After compiling and binding the object file, you can optimize the TNS object file for
execution on a TNS/R system by invoking the Accelerator. For more information, see
Acceleration of TNS HP COBOL Programs on page 6-23.

Finally, you must run the SQL compiler to generate SQL object code in the program
file. For more information, see Running the SQL Compiler in the Guardian Environment
on page 6-27.

Running the NMCOBOL Compiler in the Guardian
Environment

To run the NMCOBOL compiler in the Guardian environment, enter the NMCOBOL
command at the TACL prompt or from a TACL OBEY command file using this syntax:

For more information about the syntax, see the COBOL85 for NonStop Systems
Manual.

For example, this command invokes the NMCOBOL compiler and specifies a source
file, MYSRC, which contains embedded SQL statements and directives:

NMCOBOL /IN MYSRC/; SQL

The source file must be an EDIT file.

Note. Run the Binder program before SQL compiling the program.

Caution. Because the Accelerator invalidates SQL program files, run the Accelerator before
you explicitly SQL compile the program to avoid having to recompile.

NMCOBOL /IN source-file [, OUT [list-file]][, run-option].../
 [target-file]
 [, copy-library]
 [; compiler-directive] ...

Note. To terminate a compilation in the Guardian environment, use the Break key to return to
the Command Interpreter and stop the process using its process identification number (PIN).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-14

Explicit Program Compilation Running HP COBOL Compilers in the Guardian
Environment
By default, the compiler generates an object file, RUNUNIT, qualified by the default
system, volume, and subvolume names. To name the object file, specify a target file on
the command line. For example, this command generates an object file, MYPROG:

NMCOBOL /IN MYSRC/ MYPROG; SQL

For natively compiled programs, the SQL directive is not accepted in the source code.
You must specify the SQL directive on the compiler command line as the previous
example shows.

The NMCOBOL compiler does not automatically invoke the linker. You must specify
the RUNNABLE directive either in the source code or on the compiler command line
for the NMCOBOL compiler to call the linker to produce an executable object file
(loadfile):

NMCOBOL /IN MYSRC/ MYPROG; SQL; RUNNABLE

If you specify the RUNNABLE directive but not the CALL-SHARED or SHARED
directive, the NMCOBOL compiler automatically links the program by using the
COBOLFE process and the nld utility to produce a non-PIC loadfile.

If you specify the RUNNABLE and CALL-SHARED directives, the NMCOBOL compiler
automatically links the program by using the ld utility to produce a PIC loadfile:

NMCOBOL /IN MYSRC/ MYPROG; SQL; RUNNABLE; CALL-SHARED

If you do not specify the RUNNABLE directive when compiling the source program,
you must invoke the linker directly to link the object files. For more information, see
The nld or ld Utility on page 6-23.

Finally, you must run the SQL compiler to generate SQL object code in the program
file. For more information, see Running the SQL Compiler in the Guardian Environment
on page 6-27.

Note. Embedded SQL/MP programs are disallowed in user libraries, shared run-time libraries
(SRLs), and dynamic-link libraries (DLLs). When compiling embedded SQL/MP programs, do
not use the SHARED directive, which produces a DLL.

Note. Run the linker before SQL compiling the program.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-15

Explicit Program Compilation Running HP COBOL Compilers in the OSS
Environment
Running HP COBOL Compilers in the OSS Environment

To run an HP COBOL compiler in the OSS environment, see:

 Changing Default Path Names and Disk Volume in the OSS Environment

 Running the cobol Utility in the OSS Environment on page 6-17

 Running the nmcobol Utility in the OSS Environment on page 6-19

Changing Default Path Names and Disk Volume in the OSS
Environment

Table 6-3 lists the default path names of the programs that the cobol or nmcobol
commands invoke and the default disk volume on which these programs create
temporary files.

Table 6-3. Environment Variables in the OSS Environment

Variable Effect Default

COBOL85 Determines the path name of the
COBOL85 compiler that the cobol
utility invokes

/G/system/system/cobol85

NMCOBOL Determines the path name of the
NMCOBOL compiler that the
nmcobol utility invokes

/G/system/system/cobolfe

BIND Determines the path name of the
Binder that the cobol utility invokes

/G/system/system/bind

NLD Determines the path name of the nld
utility that the nmcobol utility invokes

/usr/bin/nld

LD Determines the path name of the ld
utility that the nmcobol utility invokes

/usr/bin/ld

AXCEL Determines the path name of the
Accelerator that the cobol utility
invokes

/G/system/system/axcel

SQLCOMP Determines the path name of the SQL
compiler that the cobol or nmcobol
utility invokes

/G/system/system/sqlcomp

SWAPVOL Determines the disk volume on which
the COBOL85 compiler, Binder,
Accelerator, and SQL compiler create
temporary files

Same as in the Guardian
environment—see the COBOL85
for NonStop Systems Manual.

TMPDIR Determines the path name that
overrides the default directory for
temporary files created by the
nmcobol utility and the components
that it invokes

/tmp
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-16

Explicit Program Compilation Running HP COBOL Compilers in the OSS
Environment
To change one or more of the defaults before executing the cobol or nmcobol
command, use the export command. The effect of the export command lasts until
you explicitly change the value of the export command.

To execute a cobol or nmcobol command with a specified set of environment
variables, use the OSS env function with the environment variables listed in Table 6-3.
The effect of the env function applies only to the cobol or nmcobol utility command
with which you use it.

For the syntax of the export command and the env function, see the Open System
Services Shell and Utilities Reference Manual.

Running the cobol Utility in the OSS Environment

The OSS utility cobol generates COBOL programs that run in the OSS environment
of TNS or TNS/R systems. The cobol utility invokes the COBOL85, optionally
followed by the Binder, Accelerator, and SQL compiler. The flags and the types of files
in the operands determine which processes operate on the files in the operands.

Text file inputs to the compiler can be OSS ASCII text files (code 180) or Guardian
EDIT files (code 101). Embedded SQL/MP source code can be in one of these OSS
file types (identified by the file suffix):

The command syntax for running the COBOL85 compiler in the OSS environment
follows. The cobol utility is case-sensitive. Bracketed items are optional. Insert spaces
between flags and their parameters, but do not insert spaces on either side of equal
signs.

For detailed information on the cobol utility, see the Open System Services Shell and
Utilities Reference Manual.

These examples show how to compile an embedded SQL/MP program by using the
cobol utility:

.cbl

.cob
COBOL source program to be compiled and optionally bound

.o Object file produced by a previous COBOL compilation to be directly passed to
the Binder

.a Archive, typically produced by the ar utility of nonexecutable linkfiles to be
directly passed to the Binder

Note. Embedded SQL/MP programs are disallowed in user libraries, shared run-time libraries
(SRLs), and dynamic-link libraries (DLLs).

cobol [flag [flag]...] operand ...

Note. To terminate a compilation in the OSS environment, press the Control and c keys
(Ctrl-c) simultaneously.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-17

Explicit Program Compilation Running HP COBOL Compilers in the OSS
Environment
 To compile, bind, and SQL compile an embedded SQL/MP program, use this type
of command:

cobol -o /usr/mydir/myprog -L /nonnative/usr/lib
-Wcobol="SQL" -Wsql="catalog \$vol.subvol" mysrc.cbl

 The -Wcobol flag directs the cobol utility to pass a string of compiler
directives to the COBOL85 compiler. In this case, the SQL directive tells the
COBOL85 compiler to expect embedded SQL in the source file. The SQL
directive is required either in the source code or on the compiler command line.
For more information, see the SQL Compiler Directive on page 6-7.

 The -Wsql flag directs the cobol utility to invoke the SQL/MP compiler
(SQLCOMP), passing the specified arguments to the SQL/MP compiler. In this
case, a catalog, $vol.subvol, is passed to the SQL/MP compiler.

 The -o flag directs the cobol utility to use the specified path name instead of
default a.out for the executable file produced.

 The -L flag specifies the /nonnative/usr/lib directory, which contains
libc.a and other .a files that Binder requires to function properly.

 To accelerate an object file for TNS/R systems, after compiling and binding and
before SQL compiling the program file, use this type of command:

cobol -o /usr/mydir/myprog -L /nonnative/usr/lib
-Waxcel="StmtDebug" -Wsql mysrc.cob

The -Waxcel flag directs the cobol utility to invoke the Accelerator, passing the
specified arguments to the Accelerator. For more information, see the Accelerator
Manual.

 By default, the cobol utility automatically invokes the BINSERV process of the
Binder to bind object files into an executable object file. To suppress the invocation
of the Binder, use the -c or -Wnobind flag on the cobol command line:

 In this example, the -c flag directs the cobol utility to compile the specified
source file, mysrc.cob, but not to bind it or remove the object file, mysrc.o,
that is created in the current directory:

cobol -c mysrc.cob

 This command invokes the SQL/MP compiler to SQL compile the program file,
myprog, without invoking the Binder:

cobol -Wnobind -Wsql myprog

Note. Do not use the -Wsql and -s flags in the same invocation of the cobol utility.
The -s option strips symbols information from the object file. The SQL compiler
requires the symbols region to be present for SQL compilation to succeed.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-18

Explicit Program Compilation Running HP COBOL Compilers in the OSS
Environment
 To invoke the Binder program to bind object files into a program file and then
invoke the SQL/MP compiler to SQL compile the program file, use this command:

cobol -o myprog -L /nonnative/usr/lib
-Wbind="set heap_max 64" -Wsql x.o y.o z.o

The -Wbind flag directs the cobol utility to pass arguments to the Binder. In the
previous example, the Binder sets the maximum heap size to 64 pages. For more
information, see the Binder Manual.

Running the nmcobol Utility in the OSS Environment

The OSS utility nmcobol generates native COBOL programs that run in the OSS
environment of TNS/R systems. The nmcobol utility invokes the native HP COBOL
compiler, NMCOBOL, optionally followed by the linker and SQL compiler. The flags
and the types of files in the operands determine which processes operate on the files
in the operands.

Text file inputs to the compiler can be OSS ASCII text files (code 180) or Guardian
EDIT files (code 101). Embedded SQL/MP source code can be in one of these OSS
file types (identified by the file suffix):

The command syntax for running the NMCOBOL compiler in the OSS environment
follows. The nmcobol utility is case-sensitive. Bracketed items are optional. Put
spaces between flags and their parameters, but do not put spaces on either side of
equal signs.

For detailed information on the nmcobol utility, see the Open System Services Shell
and Utilities Reference Manual.

These examples show how to compile an embedded SQL/MP program by using the
nmcobol utility:

Note. Run the Binder program before SQL compiling the program.

.cbl

.cob
COBOL source program to be compiled and optionally linked

.o Object file produced by a previous COBOL compilation to be passed directly to
the linker

.a Archive, typically produced by the ar utility, of nonexecutable linkfiles to be
passed directly to the linker

Note. Embedded SQL/MP programs are disallowed in user libraries, shared run-time libraries
(SRLs), and dynamic-link libraries (DLLs). When compiling embedded SQL/MP programs, do
not use the -Wshared flag, which produces a DLL.

nmcobol [flag [flag]...] operand ...

Note. To terminate a compilation in the OSS environment, press the Control and c keys
(Ctrl-c) simultaneously.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-19

Explicit Program Compilation Running HP COBOL Compilers in the OSS
Environment
 To compile, link, and SQL compile an embedded SQL/MP program, use this
command:

nmcobol -o /usr/mydir/myprog -Wsql="WHENEVERLIST"
-Wsqlcomp="catalog \$vol.subvol" mysrc.cbl

 The -Wsql flag tells the NMCOBOL compiler to expect embedded SQL in the
source file and passes optional SQL directive options, such as
WHENEVERLIST, to the NMCOBOL compiler. For natively compiled programs,
the SQL directive is not accepted in the source code but is on the compiler
command line during compilation. For more information, see the SQL Compiler
Directive on page 6-7. The -Wsql flag also invokes the
-Wsqlcomp flag if you do not specify it on the command line.

 The -Wsqlcomp flag directs the nmcobol utility to invoke the SQL/MP
compiler (SQLCOMP) after the linking step, passing the specified arguments to
the SQL/MP compiler. In this case, a catalog, $vol.subvol, is passed to the
SQL/MP compiler.

 The -o flag directs the nmcobol utility to use the specified path name instead
of default a.out for the executable file produced.

 By default, the nmcobol utility automatically invokes the nld utility to link object
files into a non-PIC object file (loadfile). To create a PIC program loadfile, use the
-Wcall_shared flag to invoke the ld utility:

nmcobol -o /usr/mydir/myprog -Wcall_shared -Wsql mysrc.cbl

You can optionally pass arguments to the ld utility using the -Wld or -Wld_obey
flag. For more information, see the ld and rld Reference Manual.

 To suppress the invocation of the linker, use the -c or -Wnolink flag on the
nmcobol command line:

 In this example, the -c flag directs the nmcobol utility to compile the specified
source file, mysrc.cob, but not to link it or remove the object file, mysrc.o,
that is created in the current directory:

nmcobol -c mysrc.cob

 This command invokes the SQL/MP compiler to SQL compile the program file,
myprog, without invoking the linker:

nmcobol -Wnolink -Wsql myprog

 To invoke the nld utility to link object files into a non-PIC program file, and then
invoke the SQL/MP compiler to SQL compile the program file, use this command:

nmcobol -o myprog -Wnld="set heap_max 64" -Wsql x.o y.o z.o

Note. Do not use the -Wsql and -s flags in the same invocation of the nmcobol
utility. The -s option strips symbols information from the object file. The SQL compiler
requires the symbols region to be present for SQL compilation to succeed.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-20

Explicit Program Compilation -Wsqlconnect = mode
The -Wnld or -Wnld_obey flag directs the nmcobol utility to pass arguments to
the nld utility. In the previous example, the nld utility sets the maximum heap size
to 64 pages. For more information, see the nld and noft Manual.

-Wsqlconnect

This option instructs the compiler about which security mode must be used while
communicating with the NSK host. This option works with compilers supported on
windows operating system. For example: ecobol.

The syntax is:

 -Wsqlconnect = mode

 Where mode is:

Usage Considerations

This option requires both the -Wsqlhost and -Wsqluser options to be specified. If an
invalid value is specified, an error is returned.

Using the secure connection mode can increase the compilation time of modules with
embedded SQL/MP, by up to a factor of two. This is due to the cost of performing
encryption and decryption by using Secure Shell(SSH) or Secure Sockets Layer(SSL),
or both. (SQL/MP compilations use both SSL and SSH).

For more information about NSK security, see the Security Management Guide.

Note. Run the linker before SQL compiling the program.

legacy Directs the compiler to connect using the legacy
(unencrypted) mode.

secure_quiet Directs the compiler to connect using the secure
(encrypted) mode. If a secure connection cannot
be established, the compiler uses the legacy
mode. This option does not generate any
diagnostics.

secure_warn Directs the compiler to connect using the secure
(encrypted) mode. If a secure connection cannot
be established, the compiler uses the legacy
mode. A warning message is generated when this
option is used. This is the default option.

secure_err Directs the compiler to connect using the secure
(encrypted) mode. If a secure connection cannot
be established, an error occurs, and the
compilation terminates.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-21

Explicit Program Compilation Running the Native COBOL Cross Compilers in a
PC Host Environment
HP_NSK_CONNECT_MODE

This environment variable is introduced in H06.25/J06.07 RVU and can be set to
any of the following values:

 legacy

 secure_quiet

 secure_warn

 secure_err

If the environment variable is set to any of the previous values, these values are used
by the compiler to set the connection mode. If the environment variable is set to any
other value, the compiler returns an error.

If both the –Wsqlconnect option is specified and the environment variable is set, the
value specified in the option overrides the value set in the environment variable.

Running the Native COBOL Cross Compilers in a PC Host
Environment

By using these tools, you can use native COBOL cross compilers to build embedded
SQL/MP applications on a PC:

 HP Enterprise Toolkit—NonStop Edition (ETK), which provides a graphical user
interface (GUI)

 Command-line interface in Microsoft Windows

 HP Tandem Development Suite (TDS) on D-series servers

After building applications on a PC, you transfer them to the Guardian or OSS
environment of a NonStop server for use in production.

A native COBOL cross compiler enables you to build embedded SQL/MP applications
for execution on TNS/R systems. The native COBOL cross compiler for TNS/R uses
the nmcobol utility as its driver.

To perform SQL/MP operations on a PC, you must be connected to a NonStop host.
For information about using the native COBOL cross compilers, see:

 ETK online help

 Using the Command-Line Cross Compilers on Windows on the native COBOL
cross compiler CD or in the ETK online help under References

 COBOL85 for NonStop Systems Manual
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-22

Explicit Program Compilation Binding and Linking
Binding and Linking
Binding TNS object files or linking native object files involves validating and resolving
references to other programs or routines and collecting and modifying code and data
blocks from one or more object files to produce a single object file.

The Binder or linker is a tool that you can use to read, link, modify, and build
executable object files. Follow these guidelines when you bind or link SQL program
files:

 Handle SQL program files like other object files.

 Bind or link object files after they are compiled by the HP COBOL compiler.

You can bind or link object files after running the SQL compiler. However, the
binding or linking operation invalidates the resulting target file, and you must then
explicitly recompile the program file to validate it.

 SQL compile only the final bound or linked object. You are not required to
separately SQL compile each object of a multiple-module program.

 Give a COBOL program a unique program name if you plan to bind or link it with
other programs.

The type of binding or linking process that occurs during compilation or that you can
use after compilation depends on the compilation mode that you use. For more
information, see:

 The Binder Program on page 6-22

 The nld or ld Utility on page 6-23

The Binder Program

Binding applies only to object files created in TNS mode by the COBOL85 compiler (or
by the cobol utility in the OSS environment of a TNS/R system). By default, the
COBOL85 compiler invokes the Binder program to bind the TNS object files. However,
in some cases, you might want to bind object files after compilation. For example, you
might want to replace one version of a program (in a object file that contains blocks
from several programs) with a new version of the program. The BIND command allows
you to invoke the Binder program interactively in the Guardian environment.

To run the Binder program interactively, enter BIND at the TACL prompt. The Binder
program displays its banner and prompt, an at sign (@). In this example, the Binder
commands combine the COBOBJ1 and COBOBJ2 files into an executable object file,
PROGFILE. The SELECT LIST * OFF command improves system performance by
turning off all listings.

:BIND

@ADD * FROM cobobj1
@ADD * FROM cobobj2
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-23

Explicit Program Compilation The nld or ld Utility
@SELECT LIST * OFF
@BUILD progfile
@EXIT

For more information on the Binder program, see the Binder Manual. For more
information on binding HP COBOL programs, see the COBOL85 for NonStop Systems
Manual.

The nld or ld Utility

The process of linking by the nld or ld utility applies only to native TNS/R objects
created by the NMCOBOL compiler (or by the nmcobol utility in the OSS
environment).

If you specify the RUNNABLE directive when compiling a source program in the
Guardian environment, the NMCOBOL compiler uses the COBOLFE process and a
linker to validate and resolve internal and external references and produce an
executable object file. If you do not specify the RUNNABLE directive when compiling
the source program, you must invoke a linker after compilation to link the object files.

Use either the nld or ld utility to link TNS/R object files:

 If you compiled the source program with the NON-SHARED directive (the default),
use the nld utility to produce a non-PIC loadfile or linkfile.

To run the nld utility in the Guardian environment, enter nld at the TACL prompt.
In this example, the nld utility links the object files to create a non-PIC loadfile,
myprog:

nld embdsqlobj obja objb -o myprog

For more information on the nld utility, see the nld and noft Manual.

 If you compiled the source program with the CALL-SHARED directive, use the ld
utility to produce a PIC loadfile or linkfile.

To run the ld utility in the Guardian environment, enter ld at the TACL prompt. In
this example, the ld utility links the object files to create a PIC loadfile, myprog:

ld embdsqlobj obja objb -o myprog

For more information on the ld utility, see the ld and rld Reference Manual.

For more information on linking HP COBOL programs, see the COBOL85 for NonStop
Systems Manual.

Caution. The Binder STRIP command without the SYMBOLS or AXCEL option removes the
Binder table from an object file. Without the Binder table, the SQL compiler cannot compile the
program file, and the SQL executor cannot execute it.

Caution. The -strip option of the linker removes symbols information from an object file.
Without the symbols region, the SQL compiler cannot compile the program file, and the SQL
executor cannot execute it.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-24

Explicit Program Compilation Acceleration of TNS HP COBOL Programs
Acceleration of TNS HP COBOL Programs
The process of acceleration applies only to object files created in TNS mode by the
COBOL85 compiler (or by the cobol utility in the OSS environment of a TNS/R
system). Natively compiled programs cannot be accelerated. Accelerated object code
improves the execution speed of TNS programs on TNS/R systems. To accelerate a
TNS object file, use The Accelerator on page 6-24.

Figure 6-3 shows an SQL program file that has accelerated object code.

Caution. Because the Accelerator invalidates SQL program files, run the Accelerator before
you explicitly SQL compile the program to avoid having to recompile.

Figure 6-3. Accelerated SQL Program File

COBOL Object Code

SQL Source Statement 1

SQL Source Statement 2

SQL Source Statement n

SQL Program File

SQL VALID Flag

SQL Object Code

•
•
•

Compilation Timestamp
SQL SENSITIVE Flag

VST004A.vsd

Accelerated Object Code
for TNS/R (AXCEL)

File Label
Information
Generated by the
SQL Compiler

Object Code
Generated by the
COBOL85
Compiler

Accelerated
Object Code

SQL Source
Statements
Stored by the
COBOL85
Compiler

Execution Plans
Generated by the
SQL Compiler
Including Stored
DEFINEs
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-25

Explicit Program Compilation The Accelerator
The Accelerator

The Accelerator enables you to optimize TNS programs to run faster on TNS/R
systems. A TNS object file that has been accelerated for a TNS/R system has the
original TNS code plus the logically equivalent optimized RISC instructions.

If you compiled a TNS object file in the Guardian environment or chose not to
accelerate a TNS object file during compilation in the OSS environment, run the
Accelerator at a TACL prompt to accelerate the object file.

For example, this command accelerates a TNS object file, embdsqlobj, which
contains embedded SQL/MP statements, and generates an accelerated object file
named tnsrsqlobj:

AXCEL embdsqlobj, tnsrsqlobj

For more information, see the Accelerator Manual.

Running the SQL Compiler
The SQL compiler (SQLCOMP) generates SQL object code in the program file.
SQLCOMP verifies SQL objects used in SQL statements and generates an optimized
execution plan for each SQL statement. Optionally, you can invoke the EXPLAIN utility
during compilation to generate a report on the execution plans for SQL DML
statements and DEFINEs used by the program.

Required Access Authority

To run the SQL compiler for an SQL program file, you must have this access authority:

 Read and purge access to the SQL program file

 Read and write access to the PROGRAMS, USAGES, and TRANSIDS tables of
the catalog in which the SQL program file is to be registered

 Read and write access to the USAGES and TRANSIDS tables of any catalog in
which a table, view, collation, or index that the SQL program file uses is registered

Note. In the OSS environment of a TNS/R system, you can invoke the Accelerator by
specifying the -Waxcel flag on the cobol utility command line. For more information, see
Running the cobol Utility in the OSS Environment on page 6-17.

Caution. You can use the Accelerator to optimize TNS object code running on a TNS/R
system. The Accelerator, however, invalidates SQL program files. Therefore, run the
Accelerator before you explicitly SQL compile the program to avoid having to recompile. For
more information, see Acceleration of TNS HP COBOL Programs on page 6-23.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-26

Explicit Program Compilation SQL Compiler Functions
SQL Compiler Functions

 Resolves names and expands SQL object names, including DEFINE names, using
the current default volume and the current catalog, and then stores the DEFINE
names in the SQL object file.

 Performs type checking for COBOL and SQL data types.

 Expands views.

 Checks object references in catalogs for SQL object names to verify their
existence and to read their descriptions, and then evaluates the object type and
characteristics for each reference.

 Determines an optimized execution plan by analyzing SELECT, INSERT, UPDATE,
and DELETE statements to determine the best access paths and join, sort, and
blocking strategies. Estimates the execution costs for DML statements based on
the statistics in the catalogs.

 Generates executable code for the execution plans.

 Registers the program in the specified PROGRAMS table and stores any
dependencies for tables, views, collations, and indexes in the USAGES table for
each table, view, or index that is accessed.

For example, if a program refers to a collation, SQLCOMP generates a row in the
USAGES table showing that the program depends on the collation and sets
USAGES.USEDOBJTYPE to CP.

 Generates a listing of the SQL statements in the program file, including warning or
error messages that occur.

 Sets the SQL SENSITIVE and SQL VALID flags in the program file label if the
compilation is successful.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-27

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
Running the SQL Compiler in the Guardian Environment

To run the SQL compiler in the Guardian environment, enter the SQLCOMP command
at the TACL prompt or from a TACL OBEY command file using this syntax:

object-file

is a Guardian disk file name. This file cannot be part of a user library, a system
library, or a DLL. The object file can be generated by these programs:

 HP COBOL compiler
 Binder program or linker
 Accelerator
 SQL compiler

You must run the SQL compiler on the same system where object-file exists.
If you do not specify a system or volume name, the SQL compiler uses current
default values.

SQLCOMP / IN object-file [, OUT [list-file]]

 [, run-option] [, run-option]... /

 [compiler-option [, compiler-option]...]

compiler-option is:

 [CATALOG catalog-name]
 [CURRENTDEFINES | STOREDDEFINES]
 [EXPLAIN]
 [[PLAN]]
 [[DEFINES [file-name] [, OBEYFORM]]]
 []
 [NOEXPLAIN]

 [FORCE | NOFORCE]
 [OBJECT | NOOBJECT]
 [RECOMPILE | NORECOMPILE]
 [RECOMPILEONDEMAND | RECOMPILEALL]
 [REGISTERONLY { ON | OFF }]
 [NOREGISTER { ON | OFF }]

 [CHECK { INVALID PROGRAM }
 { INVALID PLANS }
 { INOPERABLE PLANS }]

 [COMPILE { PROGRAM [STORE SIMILARITY INFO] }
 { INVALID PLANS }
 { INOPERABLE PLANS }]
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-28

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
list-file

is the destination to which the SQL compiler directs the listing. list-file can be
a disk file name, process name (including a spooler collector), or a device name
(including a terminal, magnetic tape unit, or line printer):

[\node.]file

\node

is an optional node (system) name.

\file

is one of these Guardian names:

[$volume-name.][subvolume-name.]disk-file-name
$device-name
$device-number
$process-name
$spooler-collector-name[.#spooler-location-name]

list-file can also be a class SPOOL DEFINE name.

If list-file does not exist, the SQL compiler creates it. If list-file already
exists, the SQL compiler appends the new output to it.

If you specify OUT but omit list-file, the SQL compiler does not generate a
listing. If you omit OUT, the SQL compiler directs the listing to the OUT file of the
invoking process (usually, your home terminal).

run-option

is a TACL RUN command option as described in the TACL Reference Manual.

SQL Compiler Options

CATALOG catalog-name

is the name of the catalog to hold a description of the program. catalog-name is
a subvolume name. If you partially qualify the catalog name, the system expands
the name by using the current default values.

The SQL compiler, the object file, and the catalog must reside on the same
system.

You can also specify a CLASS catalog DEFINE name for catalog-name.

If the program was previously SQL compiled and recorded in a different catalog,
the catalog-name overrides the catalog name stored in the program file. The
program is dropped from the previous catalog and recorded in catalog-name.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-29

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
If you omit the CATALOG clause, the SQL compiler uses the current default
catalog. If you have not defined a default catalog, the SQL compiler uses your
current default subvolume.

CURRENTDEFINES | STOREDDEFINES

specifies the set of DEFINEs used to interpret DEFINE names in the SQL
statements in the program file.

CURRENTDEFINES

selects the current set of DEFINEs for compiling the program.
CURRENTDEFINES is the default.

STOREDDEFINES

selects the set of DEFINEs stored with the program the last time it was SQL
compiled. This option applies only to previously compiled SQL programs.

EXPLAIN

invokes the EXPLAIN utility.

PLAN

selects the optimized execution plan determined by the SQL compiler for DML
statements in the program. PLAN is the default.

DEFINES [file-name] [, OBEYFORM]

generates a listing of the TACL DEFINEs that the SQL compiler used to
compile the SQL statements. (The SQL compiler uses these DEFINEs to
recompile the program if you specify the STOREDDEFINES option.)

file-name

is the destination to which the DEFINE listing is written in addition to the
compiler listing. See list-file for a description.

OBEYFORM

directs the SQL compiler to write the DEFINE listing in an OBEY
command-file format so that you can use an OBEY command to set the
DEFINEs. If you omit OBEYFORM, the SQL compiler uses the format
displayed by the TACL INFO DEFINE command. If you omit DEFINES, the
SQL compiler does not generate a DEFINE listing.

NOEXPLAIN

disables the EXPLAIN utility. NOEXPLAIN is the default.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-30

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
FORCE | NOFORCE

controls how errors affect SQL compilation.

FORCE

directs the SQL compiler to produce a valid, executable object file regardless
of syntax errors. The SQL compiler writes the SQL source statements to the
program file so that the statements can automatically be recompiled if
executed at run time. Use the FORCE option to debug a program if you do not
need to execute the SQL statements that generate errors.

NOFORCE

directs the SQL compiler to produce the SQL object code only if there are no
syntax errors. NOFORCE is the default.

OBJECT | NOOBJECT

controls whether the compiler produces an SQL program file.

OBJECT

directs the compiler to produce a program file (depending on whether errors
occur and whether the FORCE or NOFORCE option is in effect). OBJECT is
the default.

NOOBJECT

directs the compiler to perform checking functions and to generate an
EXPLAIN listing, if requested, but not to produce a program file.

RECOMPILE | NORECOMPILE

specifies whether the program should be automatically recompiled, if necessary,
during program execution.

RECOMPILE

directs the SQL executor to automatically recompile a program whenever any
of these conditions occur:

 The program file is SQL invalid.

 The DEFINEs used at SQL load time are different from the DEFINEs used
during explicit SQL compilation.

 The timestamp check fails for an SQL object in an SQL statement.

 An access path (index) is unavailable.

RECOMPILE is the default.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-31

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
If the program uses the similarity check, automatic recompilation might not
occur. For more information, see Section 8, Program Invalidation and
Automatic SQL Recompilation.

NORECOMPILE

directs the SQL executor not to automatically recompile the program. If any of
the conditions described under the RECOMPILE option occur during
execution, an error is generated, and the program is subject to explicit SQL
recompilation for validation.

RECOMPILEONDEMAND | RECOMPILEALL

specifies whether the SQL executor should invoke the recompilation of an entire
invalid program or only SQL statements actually executed. If you specify
NORECOMPILE, this option is ignored.

RECOMPILEONDEMAND

directs the SQL executor to recompile only the statements in the invalid
program that are actually executed. Automatic recompilation occurs the first
time the individual SQL statement is executed.

RECOMPILEALL

directs the SQL executor to automatically recompile the entire program at SQL
load time if it is invalid. RECOMPILEALL is the default.

REGISTERONLY

directs the SQL compiler to register a previously SQL compiled program in a
specific catalog without recompiling the program. To use the REGISTERONLY
option, you must have an SQL/MP software version of 310 (or later).

ON

directs the SQL compiler to register a program in the specified catalog without
compiling the SQL statements in the program or creating a new program file.
The SQL compiler marks the program’s file label as SQL sensitive and SQL
valid. The program retains its existing execution plans. If the program was not
previously SQL compiled, the operation fails with SQL error 2115.

The CATALOG option is the only other SQLCOMP option you can specify with
the REGISTERONLY ON option. If you specify an option other than CATALOG,
the operation fails with SQL error 2111. If the program was previously compiled
with the NOREGISTER ON option, the operation fails with SQL error 2108. If
the program was modified by the Binder program or linker after it was SQL
compiled, the operation fails with SQL error 2103.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-32

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
OFF

directs the SQL compiler to explicitly SQL compile the program and perform all
SQL compiler functions.

OFF is the default.

NOREGISTER

directs the SQL compiler to compile a program without registering the program in a
catalog. To use the NOREGISTER option, you must have an SQL/MP software
version of 310 (or later).

ON

directs the SQL compiler to explicitly compile the program but not to register it
in a catalog. The SQL compiler does not mark the program as SQL sensitive
and SQL valid in its file label. Therefore, the program file can be executed
without being registered in an SQL catalog. If you specify the CATALOG option
with the NOREGISTER ON option, the compilation fails with SQL error 2116. If
the program is already registered in a catalog, the compilation fails with SQL
error 2110. If the program was modified by the Binder program or linker after it
was SQL compiled, the operation fails with SQL error 2103.

OFF

directs the SQL compiler to explicitly compile the program and perform all
specified compiler functions, including registering the program in the catalog.

OFF is the default.

CHECK

determines the behavior of the SQL executor when it executes an invalid SQL
statement or a statement that references a DEFINE that has changed since the
last explicit SQL compilation. To use a CHECK option, you must have an SQL/MP
software version of 310 (or later).

If you specify the CHECK INVALID PLANS or CHECK INOPERABLE PLANS
option (which stores similarity information in the program file), the SQL compiler
sets the program’s PFV and PCV to 310 (or later). To support these options, an
SQL catalog must have a catalog version of 310 (or later).

If you restore a program using the SQLCOMPILE option, the RESTORE program
invokes the recompilation of the program by using the SQLCOMP CHECK option
specified during the last explicit SQL compilation.

INVALID PROGRAM

specifies that the SQL executor should automatically recompile all SQL
statements in an invalid program or a program that references changed
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-33

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
DEFINEs (if NORECOMPILE is not specified). The SQL executor does not
attempt to execute any plans in the program without recompiling them.

CHECK INVALID PROGRAM is the default.

INVALID PLANS

specifies that the SQL executor should automatically recompile an SQL
statement if either of these conditions occur (and NORECOMPILE is not
specified):

 The statement is invalid. Invalid statements have plans that fail the
redefinition timestamp.

 The statement references a DEFINE at SQL load time that has changed
since the last explicit SQL compilation.

The SQL executor reuses the execution plans from the program file for the
other SQL statements, which have valid plans and unchanged DEFINE values.

During explicit SQL compilation, the CHECK INVALID PLANS option directs
the SQL compiler to store similarity information in the program file (even if the
similarity check is not enabled for the table or protection view).

INOPERABLE PLANS

specifies that the SQL executor should perform the similarity check on each
SQL object in an SQL statement if the similarity check is enabled for
referenced tables and protection views and either of these conditions occur:

 The statement is invalid. Invalid statements have plans that fail the
redefinition timestamp.

 The statement references a DEFINE at SQL load time that has changed
since the last explicit SQL compilation.

If the similarity check passes, the SQL executor considers the plan to be
operable (although it might not be optimal) and executes the SQL statement
without automatically recompiling it, therefore reusing the existing execution
plan.

If the similarity check fails, the SQL executor considers the plan to be
inoperable. The SQL executor then recompiles (in memory only) the SQL
statement that generated the inoperable plan (if NORECOMPILE is not
specified) and executes the recompiled statement.

During explicit SQL compilation, the CHECK INOPERABLE PLANS option
directs the SQL compiler to store similarity information in the program file (even
if the similarity check is not enabled for the table or protection view).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-34

Explicit Program Compilation Running the SQL Compiler in the Guardian
Environment
COMPILE

determines which SQL statements are compiled during an explicit SQL
compilation. You can direct the SQL compiler to use the similarity check to
determine if a statement’s execution plan from a previous compilation is operable.
The SQL compiler then recompiles only the statements that fail the similarity
check. Other SQL statements retain their existing plans.

To use a COMPILE option, you must have an SQL/MP software version of 310 (or
later).

To support the COMPILE PROGRAM STORE SIMILARITY INFO, COMPILE
INVALID PLANS, or COMPILE INOPERABLE PLANS option, an SQL catalog must
have a catalog version of 310 (or later).

If you specify the COMPILE PROGRAM STORE SIMILARITY INFO, COMPILE
INVALID PLANS, or COMPILE INOPERABLE PLANS option (which stores
similarity information in the program file), the SQL compiler sets the program’s PFV
and PCV to 310. If you omit the COMPILE option or specify the COMPILE
PROGRAM option (the default), the SQL compiler sets the PCV to 1 (unless the
program includes other version 310 features).

PROGRAM [STORE SIMILARITY INFO]

directs the SQL compiler to explicitly compile all SQL statements in the
program. If you include the STORE SIMILARITY INFO clause, the SQL
compiler also stores similarity information for each SQL statement in the
program file.

CHECK PROGRAM is the default.

INVALID PLANS

directs the SQL compiler to explicitly compile these SQL statements:

 Statements that reference changed DEFINEs.

 Statements with plans that fail the redefinition timestamp check.

 Statements with altered execution plans, which are invalid but operable
plans that the SQL compiler has updated without recompiling.

 Uncompiled SQL statements with empty sections. The SQL compiler
generates an empty section if an SQL statement references a nonexistent
DEFINE or SQL object.

Other SQL statements retain their existing execution plans.

The COMPILE INVALID PLANS option stores similarity information in the
program file and updates the program’s dependencies on database objects in
the USAGES tables.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-35

Explicit Program Compilation Running the SQL Compiler in the OSS Environment
If the program has not been previously compiled or if the program does not
contain similarity information, the COMPILE INVALID PLANS option directs the
SQL compiler to compile all SQL statements in the program.

INOPERABLE PLANS

directs the SQL compiler to explicitly compile these SQL statements:

 Statements with inoperable plans (invalid plans that fail the similarity
check).

 Uncompiled statements with empty sections. The SQL compiler generates
an empty section if an SQL statement references a nonexistent DEFINE or
SQL object. (The SQL compiler also generates empty sections for
CONTROL directives and DDL statements.)

Other SQL statements retain their existing execution plans.

The COMPILE INOPERABLE PLANS option stores similarity information in the
program file and updates the program’s name map and usages in the
USAGES tables.

If the program has not been previously compiled or if the program does not
contain similarity information, the COMPILE INOPERABLE PLANS option
directs the SQL compiler to compile all SQL statements in the program.

To terminate a compilation in the Guardian environment, use the Break key to return to
the Command Interpreter and stop the process using its process identification number.

Running the SQL Compiler in the OSS Environment

In the OSS environment, the SQL compiler is invoked by the cobol utility (on a TNS/R
system) with the -Wsql flag or by the nmcobol utility with the -Wsql or
-Wsqlcomp flag. For more information, see Running HP COBOL Compilers in the
OSS Environment on page 6-16 or the Open System Services Shell and Utilities
Reference Manual.

Using Current Statistics

For the SQL compiler to generate the best execution plan, it must have current
statistics for the referenced tables. SQL/MP does not automatically update these
statistics. A program must execute the UPDATE STATISTICS statement to generate
current statistics in a catalog.

To execute the UPDATE STATISTICS statement, the process started by the program
must:

 Have read access to the table

 Have write access to the catalogs that contain the table descriptions
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-36

Explicit Program Compilation SQL Compiler Messages
 Be the local owner of the table or a remote owner with purge access to the table
(or be the local super ID user)

For information about process access, see Required Access Authority on page 7-1.

In these examples, the first statement updates the statistics for all columns in the
ORDERS table. The second statement updates the statistics columns in the primary
key or clustering key or in any indexes for the table ODETAIL.

EXEC SQL UPDATE ALL STATISTICS FOR TABLE =ORDERS END-EXEC.
EXEC SQL UPDATE STATISTICS FOR TABLE =ODETAIL END-EXEC.

For more information about the UPDATE STATISTICS statement, see the SQL/MP
Reference Manual.

SQL Compiler Messages

The SQL compiler issues messages for error and warning conditions. An error can
prevent successful compilation of a program file, but a warning does not. For a
description of all SQL compiler messages, see the SQL/MP Messages Manual.

Error Conditions

An error condition results from an invalid reference to an SQL object in an SQL
statement. Examples of invalid references are an incorrect column name or an
incompatible data type. If an error occurs, the SQL compiler generates a listing, but it
does not record the program file in the catalog and does not validate it for execution.

You can force an SQL compilation regardless of errors by specifying the SQLCOMP
FORCE option. The FORCE option directs the compiler to record the SQL program file
in the catalog and to validate it for execution even if errors occur. The SQL compiler
also writes the SQL statements with errors to the program file so that the statements
can be automatically recompiled at run time. You can use the FORCE option to debug
a program when you are not concerned about executing the SQL statements that
produce errors.

Dynamic SQL statements are not compiled during explicit SQL compilation. Errors in
these statements are returned at run time after dynamic compilation by a PREPARE or
EXECUTE IMMEDIATE statement.

Warning Conditions

A warning condition usually occurs when the SQL compiler has insufficient information
available. If a warning occurs, the SQL compiler still records the program file in the
catalog, validates the file for execution, and then returns a warning message.

In these two situations, the SQL compiler issues a warning message but still compiles
the statement:

 Compiler assumption. The SQL compiler made an assumption necessary to
complete the compilation. For example, if the number of columns in the SELECT
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-37

Explicit Program Compilation SQL Compiler Messages
statement does not match the number of host variables, the compiler returns a
warning message and assumes that you do not want to use either the extra
columns or the extra host variables.

 Unavailable statistics. The SQL compiler does not have the necessary statistics for
a table or view to optimize an execution plan. The compiler then uses statistics in
the catalog to determine an optimized execution plan.

In other situations, the SQL compiler marks the statement as having insufficient
information to compile and does not record dependencies in the USAGES catalog
tables for the affected statement. The SQL executor then tries to resolve the problem
at run time by automatically recompiling the statement.

At run time, the uncompiled statement causes an error in these cases:

 Insufficient information. The SQL compiler does not have enough information to
determine the validity of a statement. For example, an SQL statement refers to an
unavailable table. The table might not exist, or it might reside on an unavailable
remote node. (This situation always occurs for a program that both creates and
refers to a table. The table, of course, does not exist when the program is explicitly
SQL compiled.)

 Unresolved DEFINEs. An SQL statement references a nonexistent DEFINE.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-38

Explicit Program Compilation SQL Program File Format
SQL Program File Format

The input program file to the SQL compiler can be a COBOL object file, a file
generated by the Binder program (TNS programs) or linker (native programs), a file
generated by the Accelerator (TNS programs only), or a file previously compiled by the
SQL compiler. Figure 6-4 shows the format of an SQL program file. For an SQL
program file that has accelerated object code, see Figure 6-3 on page 6-24.

Figure 6-4. SQL Program File Format

COBOL Object Code

SQL Source Statement 1

SQL Source Statement 2

SQL Source Statement n

SQL Program File

SQL VALID Flag

SQL Object Code

•
•
•

Compilation Timestamp
SQL SENSITIVE Flag

VST004.vsd

File Label
Information
Generated by the
SQL Compiler

Object Code
Generated by the
HP COBOL
Compiler

SQL Source
Statements
Stored by the HP
COBOL Compiler

Execution Plans
Generated by the
SQL Compiler
Including Stored
DEFINEs
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-39

Explicit Program Compilation SQL Compiler Listings
SQL Compiler Listings

The SQL compiler writes all SQL statements in the program file to the listing (or OUT)
file. If an error or warning occurs, the compiler includes a message after the statement
that caused the problem. For DML statements, the compiler also includes the
estimated cost of processing the statement, which is a positive integer indicating the
relative cost. The larger the integer, the more CPU time and disk access time are
required to execute the statement. Example 6-1 is a sample compiler listing.

Example 6-1. Sample SQL Compiler Listing of a COBOL Program (page 1 of 2)

 SQL - Source File = \NEWYORK.$SQL.SQLPGMS.COBPGM

 SQL - SLT Index = 0, Run-Unit = NEWPART

30 DECLARE GET_SUPPLIER_CURSOR CURSOR FOR
31 SELECT SUPPNUM,
32 SUPPNAME,
33 STREET,
34 CITY,
35 STATE,
36 POSTCODE
37 FROM =SUPPLIER
38 WHERE SUPPNUM = :SUPPLIER-OF-PARTS
39 REPEATABLE ACCESS
40
*** Statistics: Estimated cost: 1

 SQL - SLT Index = 1, Run-Unit = NEWPART

73 BEGIN WORK

 SQL - SLT Index = 2, Run-Unit = NEWPART

97 INSERT INTO =PARTLOC
98 VALUES (:LOC-CODE OF PARTLOC-REC,
99 :PARTNUM OF PARTLOC-REC,
100 :QTY-ON-HAND OF PARTLOC-REC)
101
*** Statistics: Estimated cost: 1

 SQL - SLT Index = 3, Run-Unit = NEWPART

110 INSERT INTO =PARTS
111 VALUES (:PARTNUM OF PARTS-REC,
112 :PARTDESC OF PARTS-REC,
113 :PRICE OF PARTS-REC,
114 :QTY-AVAILABLE OF PARTS-REC)
115
*** Statistics: Estimated cost: 2
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-40

Explicit Program Compilation Using the EXPLAIN Utility
Using the EXPLAIN Utility

The EXPLAIN utility generates reports about execution plans for each SQL statement.
Use EXPLAIN reports to determine the tables and indexes used by a program and
whether creating other indexes or modifying a query would improve the performance of
the program. The EXPLAIN utility has these report options:

 EXPLAIN PLAN report
 EXPLAIN DEFINES report

EXPLAIN PLAN Report

The EXPLAIN PLAN report, which applies only to DML statements, shows the strategy
for executing a DML statement and includes optimized access paths, joins, and sorts.
The EXPLAIN PLAN report generates a plan for a statement containing subqueries in
separate query plans: one for each subquery and one for the statement itself. This
report numbers the query plans in each statement in the order they appear. Each plan
can contain these steps:

 Scan a table
 Join two or more tables
 Insert into a table
 Perform a sort operation

In this example, the SQL compiler compiles the SQLPROG program file using the
EXPLAIN PLAN option. The SQLCOMP command specifies a catalog other than the

 SQL - SLT Index = 4, Run-Unit = NEWPART

121 COMMIT WORK

 SQL - SLT Index = 5, Run-Unit = NEWPART

137 ROLLBACK WORK
BINDER - OBJECT FILE BINDER - T9621D30 - (17JUL95) SYSTEM \NEWYORK
Copyright Tandem Computers Incorporated 1982-1995

Object file \NEWYORK.$SQL.SQLPGMS.COBOBJ
TIMESTAMP 1996-06-17 14:47:05

 0 Binder Warnings
 0 Binder Errors

 SQL **
 SQL - Summary of SQL Compiling
 SQL - Number of SQL Statements = 6
 SQL - Number of SQL Errors = 0
 SQL - Number of SQL Warnings = 0
 SQL - Number of other Errors = 0
 SQL - Compile Time = 00:00:00.249
 SQL - Elapsed Time = 00:00:22.915
 SQL - Program file is \NEWYORK.$SQL.SQLPGMS.COBOBJ
 SQL - >>> SQL COMPILATION STORED IN PROGRAM FILE <<<
 SQL **

Example 6-1. Sample SQL Compiler Listing of a COBOL Program (page 2 of 2)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-41

Explicit Program Compilation Using the EXPLAIN Utility
current default catalog. The SQL compiler uses the current set of DEFINEs and writes
the output to the spooler location $S.#EXPLAIN:

SQLCOMP / IN SQLPROG, OUT $S.#EXPLAIN /
CATALOG $DISK2.SALES, EXPLAIN PLAN

EXPLAIN DEFINES Report

The EXPLAIN DEFINES report shows the mapping of DEFINE names used in SQL
statements with this information:

 The default volume and catalog used by the program (obtained from the
=_DEFAULTS DEFINE)

 Each DEFINE name and its associated Guardian name

The EXPLAIN utility can generate EXPLAIN DEFINES reports in either of these
formats:

This example shows an OBEY command file format report. In an actual report, each
instance of subvolume-name, guardian-name, and define-name would be
replaced by the actual name.

ALTER DEFINE =_DEFAULTS, VOLUME subvolume-name
ALTER DEFINE =_DEFAULTS, CATALOG subvolume-name

ADD DEFINE define-name, FILE guardian-name
ADD DEFINE define-name, FILE guardian-name
...

When you issue an OBEY command to execute the file shown previously, ensure that
the DEFINE mode (DEFMODE) is ON, and the DEFINE CLASS is MAP.

The INFO DEFINE format uses the same format as the INFO DEFINE command. This
example shows an INFO DEFINE format report. In an actual report, each
guardian-name and define-name would be replaced by the actual name.

DEFINE NAME =_DEFAULTS
CLASS DEFAULTS
VOLUME guardian-name
CATALOG guardian-name

DEFINE NAME define-name
CLASS MAP
FILE guardian-name

DEFINE NAME define-name
CLASS MAP

OBEY command file
format

EXPLAIN generates the ADD DEFINE commands that add
DEFINEs. You can then use a TACL OBEY command to
execute these commands.

INFO DEFINE format EXPLAIN generates a report in the format used by the
TACL INFO DEFINE command.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-42

Explicit Program Compilation Using CONTROL Directives
FILE guardian-name
... ...

In the next example, the SQL compiler writes an execution plan and DEFINEs to the
spooler location $S.#EXPLAIN. The OBEYFORM option directs the compiler to write
the DEFINEs in OBEY command file format to the file named SETDEFS for
subsequent execution. The catalog name is not included in the SQLCOMP command
because it is stored in the program file. The NOOBJECT option suppresses the
generation of a new object file, so the SQL compiler does not register the program file
in a catalog.

SQLCOMP /IN SQLPROG,OUT $S.#EXPLAIN/ NOOBJECT,
 EXPLAIN PLAN DEFINES SETDEFS, OBEYFORM

For more information about the EXPLAIN utility, including detailed examples and
reports, see the SQL/MP Query Guide.

Using CONTROL Directives
You can use these CONTROL directives with either static or dynamic SQL statements
in a COBOL program:

CONTROL EXECUTOR

allows or prohibits parallel execution of a query by multiple SQL executors. Parallel
execution can decrease the elapsed time for processing a query.

CONTROL QUERY

controls query execution plans as follows:

 Optimization of query response time for returning only the first few rows found
or for returning all rows found

 Use of hash join algorithms in execution plans

 Use of execution-time name resolution to resolve names in execution plans
when the SQL statement executes rather than during explicit SQL compilation
or at SQL load time

CONTROL TABLE

controls these performance-related options for accessing tables and views:

 Selection of access paths, join methods, join sequences, and lock types
 Selection of block buffering and block splitting algorithms
 Action to take for locked data or unavailable partitions
 Opening of indexes and partitions at the initial access to a table
 Checkpointing of unaudited write operations

The use of CONTROL directives in a COBOL program is discussed next. For the
syntax of each CONTROL directive, see the SQL/MP Reference Manual.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-43

Explicit Program Compilation Static SQL Statements
Static SQL Statements

Follow these guidelines when you use CONTROL directives with static SQL
statements:

 A CONTROL directive affects subsequent static DML statements in listing order,
regardless of the execution order, until either of these conditions occur:

 Another CONTROL directive resets the CONTROL options.

 The program encounters the end of the run-time data unit (RTDU) that
contains the CONTROL directive. (An RTDU is a region of the program file that
contains both SQL source statements and object code.)

Each COBOL main program and nested program is a separate RTDU. Therefore, a
CONTROL directive in a main program does not affect statements in a nested
program, and a CONTROL directive in a nested program affects only statements in
the nested program but not in the main program or in other nested programs.

An SQL map shows each RTDU. To generate an SQL map in the compiler listing,
specify the SQLMAP option in the SQL directive.

 A dynamic CONTROL directive does not affect static SQL statements in the
program, except as described in the note under Dynamic SQL Statements on
page 6-44.

 A CONTROL directive coded within flow-control statements (for example, IF and
ELSE) affects SQL statements in the listing order regardless of the execution
order.

 To affect a cursor, you must code the CONTROL directive before the DECLARE
CURSOR statement. The CONTROL directive must also be in the same RTDU as
the DECLARE CURSOR statement.

In this example, the CONTROL EXECUTOR directive specifies parallel evaluation
when the program executes the first FETCH statement for the cursor:

EXEC SQL
 CONTROL EXECUTOR PARALLEL EXECUTION ON END-EXEC.
EXEC SQL
 DECLARE LIST_CUSTOMERS_WITH_ORDERS CURSOR FOR
 SELECT CUSTOMER.CUSTNUM ,
 CUSTOMER.CUSTNAME
 FROM =CUSTOMER, =ORDERS
 WHERE CUSTOMER.CUSTNUM = ORDERS.CUSTNUM
 STABLE ACCESS END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-44

Explicit Program Compilation Dynamic SQL Statements
This example varies the wait time for cursors that access the PARTS table. The default
wait time (60 seconds) applies only to the first cursor (CURSOR1):

PROCEDURE DIVISION.
...
200-DEFAULT-WAIT.
EXEC SQL
 DECLARE CURSOR CURSOR1 FOR SELECT PARTNUM, PARTDESC, PRICE
 FROM SALES.PARTS
 WHERE (PARTNUM > :MIN-PARTNUM AND PARTNUM < :MAX-PARTNUM)
 ORDER BY PARTNUM END-EXEC.
...

...
500-SHORT-WAIT.
EXEC SQL
 CONTROL TABLE SALES.PARTS TIMEOUT .1 SECOND END-EXEC.

EXEC SQL
 DECLARE CURSOR CURSOR2 FOR SELECT PARTNUM, PARTDESC, PRICE
 FROM SALES.PARTS
 WHERE (PARTNUM > :MIN-PARTNUM AND PARTNUM < :MAX-PARTNUM)
 ORDER BY PARTNUM END-EXEC.

800-INFINITE-WAIT.
EXEC SQL
 CONTROL TABLE SALES.PARTS TIMEOUT -1 SECOND END-EXEC.

EXEC SQL
 DECLARE CURSOR CURSOR3 FOR SELECT PARTNUM, PARTDESC, PRICE
 FROM SALES.PARTS
 WHERE (PARTNUM > :MIN-PARTNUM AND PARTNUM < :MAX-PARTNUM)
 ORDER BY PARTNUM END-EXEC.
...

Dynamic SQL Statements

A static CONTROL TABLE directive does not affect dynamic SQL statements. To use a
CONTROL TABLE directive with dynamic SQL statements, specify a dynamic
CONTROL TABLE directive by using the PREPARE and EXECUTE (or EXECUTE
IMMEDIATE) statements. A dynamic CONTROL directive affects only dynamic SQL
statements prepared after the CONTROL directive in execution order, except as noted.

Note. A dynamic CONTROL TABLE directive with the TIMEOUT option affects all static and
dynamic SQL statements that follow in execution order (as opposed to listing order) until
another dynamic CONTROL TABLE directive resets the TIMEOUT option or until the program
encounters the end of the run-time data unit (RTDU) that contains the CONTROL TABLE
directive.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-45

Explicit Program Compilation Using Compatible Components
Using Compatible Components
Before you compile an SQL program file, you might need to determine the versions of
the HP COBOL compiler, SQL compiler (SQLCOMP), and all SQL program files to
ensure that all components and files are compatible.

HP COBOL Compiler

The host SQL version (HSV) identifies the SQL version of the HP COBOL compiler.
A COBOL program that uses version 300 (or later) SQL features must be compiled
with a version of 300 (or later) HP COBOL compiler. To determine the version of the
HP COBOL compiler, use one of these methods:

 Run the VPROC program for the HP COBOL compiler object file. VPROC displays
a line for each object bound into the target object file. Check the version in the
VPROC line that contains S7094, which is the SQL compiler interface (SCI)
product number.

 When you run the HP COBOL compiler, specify the SQLMAP option in the SQL
compiler directive. The SQLMAP option directs the HP COBOL compiler to include
the HOSV in the map at the end of the source-file listing. For example, a
version 335 COBOL compiler listing includes this line:

Host Object SQL Version = 335

SQL Compiler

The SQL compiler (SQLCOMP) must have the same version as (or later than) the
HOSV of the SQL program file. To determine the version of the SQL compiler, use the
GET VERSION OF SYSTEM statement. All SQL/MP components on a NonStop
system, including the SQL compiler, must have the same version.

SQL Program File

An SQL program file has these versions:

Host object SQL version (HOSV) The version of the HP COBOL compiler used to
compile the program. Generated by the COBOL
compiler, the version is, therefore, the same as the
host SQL version (HSV) of the compiler.

Program format version (PFV) The version of the SQL compiler used to compile the
program and the oldest version of an SQL executor
that can execute the program. Generated by the SQL
compiler.

Program catalog version (PCV) The oldest version of an SQL catalog in which the
program can be registered. Generated by the SQL
compiler.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-46

Explicit Program Compilation SQL Program File
This subsection describes the HOSV and its relationship to the HP COBOL compiler
and SQL compiler. For more information about the PFV and PCV, see the SQL/MP
Version Management Guide.

The HP COBOL compiler generates the HOSV and stores the value in the object file.

If multiple object files are bound together in a single target object file, the HOSV of the
target object file is the newest (maximum) HOSV of the individual object files. For
example, if an object file with an HOSV of 2 and another object file with an HOSV of
310 are bound into a new target object file, the HOSV of the target object file is 310.

To return the HOSV of a program object file, use the GET VERSION OF PROGRAM
statement with the HOST OBJECT option. You can execute this statement from SQLCI
or embedded in a COBOL program. This GET VERSION OF PROGRAM statement is
executed from SQLCI:

GET HOST OBJECT VERSION OF PROGRAM sqlprog;

VERSION: 310
--- SQL operation complete.

To embed a static GET VERSION OF PROGRAM statement in a COBOL program,
you must include the INTO clause with a host variable. This statement returns the
HOSV of SQLPROG to the host variable named HV-HOSV:

EXEC SQL
 GET HOST OBJECT VERSION OF PROGRAM SQLPROG INTO :HV-HOSV
END-EXEC.

You can also execute a dynamic GET VERSION OF PROGRAM statement by using
the PREPARE and EXECUTE statements:

MOVE "GET HOST OBJECT VERSION OF PROGRAM SQLPROG" TO HV-TEXT.
EXEC SQL
 PREPARE DYNAMIC-STATEMENT FROM :HV-TEXT
END-EXEC.
EXEC SQL
 EXECUTE DYNAMIC-STATEMENT RETURNING :HV-HOSV
END-EXEC.

However, you cannot use the GET VERSION OF PROGRAM statement with the
EXECUTE IMMEDIATE statement.

For the syntax of the GET VERSION statement, see the SQL/MP Reference Manual.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-47

Explicit Program Compilation SQL Program File
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
6-48

7 Program Execution

This section describes the execution of a COBOL program containing embedded SQL
statements and directives in the OSS environment.

Topics include:

 Required Access Authority

 Using DEFINEs on page 7-2

 Entering the TACL RUN Command on page 7-2

 Using the CREATEPROCESS Routine on page 7-3

 Using the CLU_PROCESS_CREATE_ Routine on page 7-4

 Running a Program in the OSS Environment on page 7-5

 Running a Program at a Low PIN on a D-Series or Later Node on page 7-5

 Determining Compatibility With the SQL Executor on page 7-7

Required Access Authority
To execute an SQL program file, you (or the creator process if you use the COBOL
CREATEPROCESS routine) must have this access authority:

 Read and execute authority to the SQL program file

 Read authority to the catalog in which the program is registered

 Read authority to any catalogs in which tables or views used by the program are
registered for SQL statements that require automatic SQL recompilation

For an embedded SQL statement (either static or dynamic) to access and operate on a
database object, such as a table or view, the process started by the program must
have specific privileges associated with it. The privileges of both the process access ID
(PAID) and group list are evaluated to determine if a process can be granted access to
a database object. The group list is always associated with the creator access ID
(CAID), which represents the user who starts the process. The PAID depends on the
PROGID setting.

If the program owner does not enable the PROGID attribute for the program file, the
PAID will be the same as the user ID of the process creator (that is, the CAID). When a
user executes the program, the process uses the privileges of the process creator and
accesses only resources to which the process creator has access.

If the program owner enables the PROGID attribute for the program file, the PAID will
be the same as the user ID of the program owner. When a user executes this program,
the process uses the privileges of the program owner and accesses only the resources
to which the program owner has access. PROGID programs enable one user to
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
7-1

Program Execution Using DEFINEs
temporarily gain a controlled subset of another user’s privileges. For more information
about PROGID programs, see the Security Management Guide.

Using DEFINEs
Before running an SQL program file, you can specify DEFINE, PARAM, or ASSIGN
commands. This subsection describes DEFINEs. For information about PARAM and
ASSIGN commands, see the TACL Reference Manual.

You can use DEFINE names in an SQL program to specify the names of SQL catalogs
and objects (tables, views, indexes, partitions, and collations). Use a class CATALOG
DEFINE for a catalog and a class MAP DEFINE for an object.

You enable and disable DEFINEs by using the DEFMODE attribute. If DEFMODE is
ON when a program begins execution, the system propagates the current set of
DEFINEs from the process file segment (PFS) of your TACL process to the new
process. If DEFMODE is OFF, the system propagates only the =_DEFAULTS DEFINE
to the new process. To display the current DEFMODE setting, use the SHOW
DEFMODE command.

You can create, modify, delete, and display DEFINEs with TACL (or SQLCI)
commands, Guardian system procedures, and OSS shell commands. You can also
specify the =_SORT_DEFAULTS DEFINE to control sort operations.

You must set all DEFINE names used in SQL statements before SQL load time unless
your program uses execution-time name resolution.

To determine the DEFINE set used when an SQL program was compiled, use the
EXPLAIN DEFINES option of the SQLCOMP command.

Entering the TACL RUN Command
To execute an SQL program file from a TACL process, use the TACL RUN (or RUND
to invoke the INSPECT program) command. You can enter a RUN command either
explicitly or implicitly by using this syntax:

RUN

executes the program file without invoking the Inspect debugger.

RUND

executes the program file under the control of the Inspect symbolic debugger.

[RUN[D]] program-file [/ [, run-option]... /]
 [param-set]
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
7-2

Program Execution Using the CREATEPROCESS Routine
program-file

is the name of the SQL program file. For an explicit RUN command, TACL qualifies
a partially qualified file name by using the =_DEFAULTS DEFINE. For an implicit
RUN command, TACL searches for program-file in the TACL
#PMSEARCHLIST variable.

run-option

is a RUN command run option as described in the TACL Reference Manual.

param-set

is one or more parameters to pass to the new process.

For example, this RUN command runs the program file, SQLPROG, and specifies the
NAME, OUT, and NOWAIT run options:

RUN sqlprog / NAME $sqlrun, OUT $s.#sqllist, NOWAIT /

This RUND command runs the program file, $DISK2.SQL.SQLPROG, under the
control of the Inspect debugger:

RUND $disk.sql.sqlprog

For additional information about the RUN command, see the TACL Reference Manual.

Using the CREATEPROCESS Routine
To execute an SQL program file from a COBOL program, use the COBOL
CREATEPROCESS routine. The CREATEPROCESS routine starts a new process by
using the parameters you supply and (optionally) sends process-creation messages
altered by COBOL saved message utility (SMU) routines to the new process.

To call the CREATEPROCESS routine, use the COBOL ENTER statement. However,
do not include the TAL keyword after the ENTER keyword.

Example 7-1 on page 7-4 illustrates a CREATEPROCESS routine. The user enters
values for NEW-PROGRAM, NEW-OPTION, and NEW-CPU.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
7-3

Program Execution Using the CLU_PROCESS_CREATE_ Routine
For more information about the CREATEPROCESS routine, see the COBOL85 for
NonStop Systems Manual.

Using the CLU_PROCESS_CREATE_ Routine
To execute an SQL program from a COBOL program on a TNS/R system, use the
CLU_PROCESS_CREATE_ routine. Use this routine for programs that run in the CRE
or in a COBOL run-time environment on a TNS/R system. The
CLU_PROCESS_CREATE_ routine calls the system procedure,
PROCESS_CREATE_, and starts a new high-pin process by using the parameters that
you supply. For more information, see the CRE Programmer’s Guide.

Example 7-1. COBOL CREATEPROCESS Routine

IDENTIFICATION DIVISION
 PROGRAM-ID. RUNSQL.
 ...
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
...
 SPECIAL-NAMES.
 FILE $SYSTEM.SYSTEM.COBOLLIB IS COBOL-LIBRARY.
...
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 SQL-PROGRAM-FILE PIC X(36).
 01 CREATE-OPTION PIC 9999 COMP.
 01 PRIMARY-CPU PIC S9999 COMP.
 01 RETURN-STATUS PIC S9999 COMP.
...
 PROCEDURE DIVISION.
 ...
* User enters values for NEW-PROGRAM, NEW-OPTION, and NEW-CPU.
 MOVE NEW-PROGRAM TO SQL-PROGRAM-FILE.
 MOVE NEW-OPTION TO CREATE-OPTION.
 MOVE NEW-CPU TO PRIMARY-CPU.

 ENTER "CREATEPROCESS" OF COBOL-LIBRARY
 USING SQL-PROGRAM-FILE,
 OMITTED,
 CREATE-OPTION,
 OMITTED,
 PRIMARY-CPU,
 OMITTED,
 OMITTED
 GIVING RETURN-STATUS.

 IF RETURN-STATUS IS NOT EQUAL TO ZERO
 PERFORM 1000-ERROR-ROUTINE.
...
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
7-4

Program Execution Running a Program in the OSS Environment
Running a Program in the OSS Environment
After successfully compiling your COBOL program with the cobol or the nmcobol
utility in the OSS environment, you have an executable object file. Its name is either
a.out (by default) or the name you gave it with the -o flag. If the current directory is
in your search path, you can run your program by typing the name of the executable
object file and pressing the Return key. For example, if the name of the executable
object file is a.out, enter:

a.out

If the current directory is not in your search path, add it with this command:

export PATH=$PATH:.

In an OSS environment, you execute a program file by entering its name at the OSS
shell prompt and pressing the Return key. The current directory must be in your search
path. If the current directory is not in your search path, add it with this command:

export PATH=$PATH:.

You can also use the OSS run command to run a program file by using HP attributes
(for example, a CPU or priority for the process). For example, to run the program with
the Inspect symbolic debugger, enter:

run -debug a.out

 For information about the run command, see the Open System Services Shell and
Utilities Reference Manual.

The COBOL85 for NonStop Systems Manual also has detailed information on running
COBOL programs from the OSS environment.

Running a Program at a Low PIN on a D-Series
or Later Node

The operating system identifies a process (a running program) by a unique process
identification number (PIN). In displays and printouts, a PIN usually appears after the
number of the processor (CPU) where the process is running. For example, the
operating system identifies a process in processor 4 with PIN 195 as 4,195.

The D-series operating system supports an architectural limit of 65,535 concurrent
processes per processor. The actual number of concurrent processes depends on the
available system resources (such as virtual memory) and the values specified during
system generation.

A D-series or later PIN has these divisions:

 A low PIN ranges from 0 through 254.
 A high PIN ranges from 256 through 65,535 (or the maximum number).
 PIN 255 is reserved.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
7-5

Program Execution Interactive Commands
The information about D-series nodes also applies to G-series nodes. If an SQL
program was written (or converted) to run at a high PIN, you usually want the program
to run at a high PIN because more high PINs are available, and it frees the low PINs
for processes that cannot run at a high PIN. If necessary, you can force the program to
run at a low PIN interactively from a TACL process or programmatically from an
application process. In a Pathway environment, you can also force a server process to
run at a low PIN.

Interactive Commands

To interactively force an SQL program to run at a low PIN on a D-series node, use
either of these methods:

 Before you run the SQL program, set the HIGHPIN object-file attribute to OFF in
the SQL program file by using the Binder CHANGE command:

@CHANGE HIGHPIN OFF IN sqlprog

To change an object-file attribute in a program file, you must have read and write
access to the program file. For a description of the Binder CHANGE command,
see the Binder Manual.

 If you have not set the HIGHPIN object-file attribute to OFF (or cannot set it
because of the file security), specify the HIGHPIN OFF run option in the
TACL RUN command:

RUN sqlprog / HIGHPIN OFF, ... /

Programmatic Commands

If a COBOL creator program must create an SQL program programmatically at a low
PIN on a D-series node, consider these situations:

 The COBOL creator program was not written (or converted) to use the Common
Run-Time Environment (CRE), or the COBOL creator uses the CRE but was
compiled with the ENV OLD compiler directive.

The SQL program runs at a low PIN by default, even if it was written (or converted)
to run at a high PIN.

 The COBOL creator program was written (or converted) to run at a high PIN and to
create a high PIN process. The SQL program was also written (or converted) to
run at a high PIN.

A high-PIN COBOL creator program that uses the CRE automatically creates a
new process at a high PIN. Therefore, for the COBOL program to create the SQL
program at a low PIN, you must set the HIGHPIN object-file attribute to OFF in the
SQL program file by using the Binder CHANGE command as previously described
under Interactive Commands on page 7-6.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
7-6

Program Execution Pathway Environment
Pathway Environment

In a Pathway environment, an SQL program running as a server process can run at an
available high PIN if these conditions are met:

 The SQL program was written (or converted) to run at a high PIN.

 The HIGHPIN server attribute for the SQL program in the Pathway
configuration file is ON.

 The HIGHPIN object-file attribute in the SQL program file is ON.

 A high PIN is available when the server runs.

If a Pathway server must run at a low PIN, use either of these methods:

 In the SQL program file, set the HIGHPIN object-file attribute to OFF by using the
Binder CHANGE command as previously described under “Interactive
Commands.”

 In the Pathway configuration file, set the HIGHPIN server attribute to OFF by using
the SET SERVER or ALTER SERVER command. (The default for the HIGHPIN
server attribute is OFF.)

Determining Compatibility With the
SQL Executor

The PFV of an SQL program indicates the oldest version of the SQL executor that can
execute the program. During SQL compilation, the SQL compiler writes the PFV in the
program’s file label. Then, at run time, the SQL executor checks the PFV, and if the
executor version is the same as or later than the program’s PFV, it executes the
program. Otherwise, the executor returns an error.

To determine the version of the SQL executor, use the GET VERSION OF SYSTEM
statement (all NonStop SQL/MP components on a system, including the executor,
must have the same version). You can execute the GET VERSION OF SYSTEM
statement from SQLCI or embedded in a COBOL program.

For a static embedded GET VERSION OF SYSTEM statement, include the INTO
clause with a host variable:

EXEC SQL
 GET VERSION OF SYSTEM \NEWYORK INTO :HV-SYSTEM-VERSION
END-EXEC.

In this example, the statement returns the SQL/MP software version on the
\NEWYORK system to the HV-SYSTEM-VERSION host variable. If you do not specify
a system name, the statement returns the version of the local system.

To determine the PFV of an SQL program, use a FUP INFO or SQLCI FILEINFO
command with the DETAIL option. For programs registered in version 300 (or later)
catalogs, you can also query the PROGRAMS.PROGRAMFORMATVERSION column.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
7-7

Program Execution Determining Compatibility With the SQL Executor
However, for version 300 (or later) SQL/MP software, HP recommends that you use
the GET VERSION OF PROGRAM statement with the FORMAT option. You can enter
this statement from SQLCI or embedded in a COBOL program. To embed a static
GET VERSION OF PROGRAM statement in a COBOL program, you must include the
INTO clause with a host variable. This statement returns the PFV of SQLPROG to the
host variable named HV-PFV:

EXEC SQL
 GET FORMAT VERSION OF PROGRAM SQLPROG INTO :HV-PFV
END-EXEC.

You can also execute a dynamic GET VERSION OF PROGRAM statement by using
the PREPARE and EXECUTE statements as shown in this example:

MOVE "GET FORMAT VERSION OF PROGRAM SQLPROG" TO HV-TEXT.
EXEC SQL
 PREPARE DYNAMIC-STATEMENT FROM :HV-TEXT
END-EXEC.
EXEC SQL
 EXECUTE DYNAMIC-STATEMENT RETURNING :HV-PFV
END-EXEC.

You cannot, however, use a GET VERSION OF PROGRAM statement with the
EXECUTE IMMEDIATE statement.

For the complete syntax of the GET VERSION statements, see the SQL/MP Reference
Manual.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
7-8

8
Program Invalidation and Automatic
SQL Recompilation

This section describes the causes of program invalidation and automatic SQL
recompilation and preventive steps you can take in either case.

Program Invalidation
An SQL program file can be valid or invalid. A valid program can run without SQL
recompilation using its current execution plans. An invalid program is subject to SQL
recompilation (depending on options such as the similarity check) because of changes
either to the program file itself or to an SQL object it references. An SQL program file
has these classifications of SQL validity:

 The SQL SENSITIVE flag in the program’s file label indicates the file is an SQL
program that has been SQL compiled (although it might be invalid). The
SENSITIVE flag also protects the program file from access by Enscribe utilities.

 The VALID flag in the program’s file label and in the PROGRAMS catalog table
indicates whether the program file can run without SQL recompilation.

SQL Compiler Validation Functions

The SQL compiler validates an SQL program file after a successful explicit SQL
compilation or after errors occurred during a compilation with the FORCE option
specified. During explicit compilation, the SQL compiler performs these functions
related to program validation:

 Sets the VALID and SENSITIVE flags in the program’s file label

 Records the timestamp of the SQL compilation in the program’s file label

 Registers the program and sets the VALID flag in the PROGRAMS table

 Creates entries in the USAGES table for any SQL objects (tables, views, indexes,
or collations) required by the program’s execution plans

For a list of all SQL compiler functions, see Section 6, Explicit Program Compilation.

To determine if an SQL program is valid, use the SQLCI VERIFY utility or the SQLCI
(or FUP) FILEINFO command with the DETAIL option. From a program, call the
FILE_GETINFOLIST_ or FILE_GETINFOLISTBYNAME_ system procedure and
specify item codes 82 and 83. Item code 82 indicates whether the file is an SQL
program (1=SQL program, 0=other), and item code 83 indicates whether the program
file is valid (1=valid, 0=invalid).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-1

Program Invalidation and Automatic SQL
Recompilation

Causes of Program Invalidation
Causes of Program Invalidation

Program invalidation is caused by certain operations performed on the program file
and by DDL operations that alter an SQL object that the program references. During
program invalidation, the SQL catalog manager performs these operations:

 Sets the VALID flag to N in the PROGRAMS catalog table and in the program’s file
label if the program file is accessible

 Deletes the program’s usages entries in the USAGES table

An invalid SQL program must be recompiled either explicitly or automatically to
generate valid execution plans before it can execute.

Operations Performed on an SQL Program File

These operations performed on an SQL program file cause the program file to be
invalidated:

 Copying a program file. If you copy a program file by using the FUP or SQLCI DUP
command, the original file is unaffected, but the new file is invalid.

 Binding or linking a program file. If you explicitly bind a program file by using the
Binder program or link a program file by using the nld or ld utility, the original file
is unaffected, but the resulting target file is invalid.

 Restoring a program file. If you restore a program file by using the RESTORE
program without specifying the SQLCOMPILE ON option, the restored program
becomes invalid.

 Running the Accelerator on a program file. If you run the Accelerator to optimize
the object code, the program file becomes invalid.

Changes to Referenced SQL Objects

These changes to an SQL object cause a program file that references the object to be
invalidated, except as described in Preventing Program Invalidation on page 8-4:

 Adding an index to a table, including an underlying table of a protection or
shorthand view, by using the CREATE INDEX statement without the
NO INVALIDATE option

 Adding a constraint, column, or partition on a table, including an underlying table of
a protection or shorthand view

 Dropping a table or view

 Dropping a partition on a table or index

 Dropping an index or constraint on a table

 Moving a partition on a table

 Enabling or disabling the similarity check for a table or protection view
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-2

Program Invalidation and Automatic SQL
Recompilation

Causes of Program Invalidation
 Changing a collation, which includes dropping and then re-creating the collation,
renaming a collation, or changing a DEFINE that points to a collation

 Executing an UPDATE STATISTICS statement with the RECOMPILE option
for a table (RECOMPILE is the default option)

 Restoring a table, including an underlying table of a protection or shorthand view,
by using the RESTORE program with the SQLCOMPILE OFF option specified

Changes to the AUDIT Attribute

Changing the AUDIT attribute of a table referenced by an SQL statement does not
invalidate the program file. However, in these cases, changing the AUDIT attribute can
cause automatic SQL recompilation (if it is allowed):

 If a statement performs a DELETE or UPDATE set operation on a nonaudited table
with a SYNCDEPTH of 1, the SQL executor returns SQL error 8203 and forces the
automatic recompilation of the statement.

 If a statement is executed in parallel on a table whose AUDIT attribute has
changed since the last explicit SQL compilation, the SQL executor returns SQL
error 8207 and forces the automatic recompilation of the statement.

Operations That Do Not Invalidate a Program File

These operations performed on an SQL program file or to an SQL object referenced by
an SQL program file do not invalidate the program file:

 Renaming a program file

 Altering the security or owner of a program file or an SQL object

 Restoring a program file by using the RESTORE program with the
SQLCOMPILE ON option specified

 Creating a view on a table

 Altering the file attributes of a table, except for changes to the AUDIT attribute as
described in Changes to the AUDIT Attribute on page 8-3

 Adding an index to a table by using the CREATE INDEX statement with the
NO INVALIDATE option

 Adding or dropping comments on an SQL object

 Executing an UPDATE STATISTICS statement with the NO RECOMPILE option
specified for a table
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-3

Program Invalidation and Automatic SQL
Recompilation

File-Label and Catalog Inconsistencies
File-Label and Catalog Inconsistencies

Because NonStop SQL/MP records SQL validity in both the program’s file label and in
the PROGRAMS catalog table, inconsistencies can occur. An invalid program file is
sometimes recorded as valid in the catalog, or a valid program file is recorded as
invalid in the catalog. Consider these situations:

 A program file is not accessible to the SQL catalog manager.

A DDL operation alters an SQL object referenced by a program file. The SQL
catalog manager marks the program as invalid in the PROGRAMS table, but then
finds that the file is not accessible. The invalid program file remains marked as
valid in its file label. At run time, however, the SQL executor performs the
timestamp check for the referenced SQL object. When the timestamp check fails,
the SQL executor invokes the automatic recompilation of the program.

 An SQL compiler (SQLCOMP) process abends.

An event such as a CPU failure causes an SQLCOMP process to abend after it
has generated a program file, marked the program file label as valid, and
registered the program in the PROGRAMS table. TMF backs out the changes to
the PROGRAMS table but not to the program’s file label, because the file label is
not audited. Therefore, a seemingly valid SQL program exists on disk, but an entry
for the program does not exist in the catalog.

You can sometimes recover from this condition by running SQLCOMP again to
reenter the information in the catalog. However, you might first need to use the
CLEANUP or GOAWAY utility to remove the invalid program file.

 The SQL catalog manager (SQLCAT) process abends.

A DDL operation (described in Changes to Referenced SQL Objects on page 8-2)
causes a program file to be marked as invalid both in the PROGRAMS table and in
the program’s file label. Then, an event such as a CPU failure causes the SQLCAT
process to abend. TMF backs out the changes to the PROGRAMS table but not to
the program’s file label, because the file label is not audited. The valid SQL
program file remains marked as invalid. To recover, you must re-execute the
original DDL operation.

Preventing Program Invalidation

Compiling a program with the CHECK INOPERABLE PLANS option can prevent
certain DDL operations from invalidating the program file. These DDL operations do
not invalidate a program compiled with the CHECK INOPERABLE PLANS option if the
similarity check is also enabled for each referenced object:

 ALTER TABLE...ADD PARTITION statement

 ALTER TABLE...ADD COLUMN statement (for more information, including
restrictions, see ALTER TABLE... ADD COLUMN Statement and the Similarity
Check on page 8-13)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-4

Program Invalidation and Automatic SQL
Recompilation

Automatic SQL Recompilation
 ALTER TABLE statement to move or split partitions (including a simple move,
one-way split, or two-way split)

 ALTER TABLE...DROP PARTITION statement

 ALTER INDEX...DROP PARTITION statement (if the similarity check is enabled for
the base table)

 ALTER INDEX statement to move or split index partitions

 CREATE INDEX statement

 UPDATE STATISTICS...RECOMPILE statement

The program also retains its entries in the USAGES table. These operations, however,
do update the redefinition timestamp of each referenced object in the DDL statement.

The ALTER TABLE ... RENAME, ALTER INDEX ... RENAME, and ALTER INDEX ...
ADD PARTITION statements do not invalidate a program regardless of whether it was
compiled with the CHECK INOPERABLE PLANS option.

Automatic SQL Recompilation
Automatic SQL recompilation is the run-time SQL compilation, invoked by the SQL
executor, of either an entire SQL program or a single static SQL statement in the
program, depending on whether the RECOMPILE or RECOMPILEONDEMAND option
was specified during explicit SQL compilation.

Automatic SQL recompilation validates only the copy of the SQL program or statement
in memory. It does not validate the SQL program file on disk. Only explicit SQL
compilation validates an SQL program file on disk.

Automatic SQL recompilation uses the default volume and catalog settings used for the
explicit SQL compilation and the set of DEFINEs in effect at SQL load time (that is,
when the SQL executor executes the first SQL statement in the program).

Automatic SQL recompilation performs these functions:

Note. These DDL operations always invalidate a program, even if the program was compiled
with the CHECK INOPERABLE PLANS option:

 ADD CONSTRAINT statement

 DROP CONSTRAINT statement

 DROP TABLE statement

 DROP VIEW statement

 ALTER TABLE or ALTER VIEW statement with the SIMILARITY CHECK clause (for more
information, see Enabling the Similarity Check for Tables and Protection Views on
page 8-10)

 DROP INDEX statement, if the program contains a plan that references the dropped index
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-5

Program Invalidation and Automatic SQL
Recompilation

Causes of Automatic Recompilation
 Uses the current description of the database to determine the most efficient access
path for each referenced database object

 Maximizes database availability and node autonomy by generating a new
execution plan at run time

 Allows a program to reference database objects that did not exist during explicit
SQL compilation

 Allows a program to use a new set of DEFINEs to specify a different database (for
example, a development database rather than a production database)

You can enable or disable automatic SQL recompilation when you explicitly SQL
compile a program. The RECOMPILE option (the default) enables automatic SQL
recompilation, whereas the NORECOMPILE option disables it.

Causes of Automatic Recompilation

If automatic SQL recompilation is enabled (the NORECOMPILE option is not
specified), the SQL executor invokes the SQL compiler to recompile a program or
statement (depending on the RECOMPILEALL or RECOMPILEONDEMAND option) in
these situations:

 The program file is marked invalid at SQL load time.

 The DEFINE values at SQL load time are different from the DEFINE values used
to explicitly SQL compile the program.

 The timestamp check fails for an SQL object referenced in an SQL statement.

 An unavailable access path (index) exists.

 The program file contains an uncompiled SQL statement.

In some cases, you can prevent automatic recompilation by using the similarity check.
For more information, see Preventing Automatic Recompilations on page 8-9.

Invalid SQL Program File

SQL load time occurs when the SQL executor executes the first SQL statement in a
program. If the SQL program on disk is invalid for any of the reasons listed in Causes
of Program Invalidation on page 8-2, the SQL executor forces the recompilation of the
program or statement. To control the automatic recompilation, specify the
RECOMPILEALL option (the default) to cause the recompilation of the entire program
or the RECOMPILEONDEMAND option to limit the recompilation to statements
actually executed.

Changed DEFINEs

If the values of the DEFINEs used in the program at SQL load time differ from the
values of the DEFINEs used for explicit SQL compilation, the SQL executor forces the
automatic recompilation of the program or statement by using the new DEFINE values.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-6

Program Invalidation and Automatic SQL
Recompilation

Causes of Automatic Recompilation
(For a dynamic SQL statement, the SQL compiler uses the current set of DEFINEs
when the PREPARE or EXECUTE IMMEDIATE statement executes.)

Failed Timestamp Check

The SQL executor performs the timestamp check for each SQL object referenced in an
SQL statement at table open time (the first time the table is opened). The timestamp
check ensures that a statement’s current execution plan uses a valid definition of each
SQL object (table or view, or a dependent object such as an index or collation), even if
the program file was not accessible when the invalidating operation was performed on
the SQL object. (For operations that invalidate an SQL program, see Changes to
Referenced SQL Objects on page 8-2.)

Each SQL object contains a redefinition timestamp in its file label. An SQL program file
also contains the redefinition timestamps of all referenced SQL objects in each SQL
statement’s execution plan. When the SQL executor executes a statement, it compares
the timestamp in the object’s file label to the timestamp for the same object in the
statement’s execution plan. If the timestamps differ, the SQL executor forces a
recompilation with the new definition of the object.

After opening a table, the SQL executor usually leaves a table open until the program
stops running. However, a subsequent DDL or utility operation performed on the table
(or a dependent object such as an index or collation), causes the table to be closed
and its redefinition timestamp to be updated. If the SQL statement that refers to the
table executes again, the SQL executor reopens the table and then performs the
timestamp check, which forces a recompilation.

These steps describe the run-time timestamp check as shown in Figure 8-1 on
page 8-8.

1. A valid SQL program named PROG refers to an SQL table named TAB in a
SELECT statement. During explicit SQL compilation, SQL/MP generates an
execution plan, which includes the TAB redefinition timestamp, for the SELECT
statement and stores the plan in the PROG program file.

2. After PROG is running, a database administrator adds a new column to TAB using
the ALTER TABLE statement. This operation updates the redefinition timestamp in
the TAB file label.

3. When the SELECT statement executes, the SQL executor opens TAB and
compares the timestamp in TAB file label with the TAB timestamp in the PROG
execution plan. The TAB file label timestamp is more recent than the PROG
execution plan timestamp. Therefore, the execution plan for the SELECT
statement that was generated from the old definition of TAB during explicit SQL
compilation is no longer valid.

4. The SQL executor invokes the SQL compiler to recompile the SELECT statement
using the current TAB definition. This recompilation does not modify the PROG
program file on disk; it only changes the copy of PROG in memory.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-7

Program Invalidation and Automatic SQL
Recompilation

Causes of Automatic Recompilation
Unavailable Access Path (Index)

If the SQL executor encounters an unavailable access path (index) in the execution
plan of an SQL statement, the SQL executor invokes the SQL compiler to recompile
the statement. The SQL compiler then determines the best alternate access path, if
such a path exists, to execute the statement. The SQL compiler recompiles only the
affected SQL statement when an access path is unavailable.

Uncompiled SQL Statement

If the SQL executor encounters an uncompiled SQL statement, it invokes the SQL
compiler to compile the statement. An SQL program file can contain an uncompiled
SQL statement in these cases:

 The SQL statement referenced an SQL object that did not exist or was unavailable
during explicit SQL compilation.

 The SQL statement referenced a DEFINE that did not exist during explicit
SQL compilation.

 The program was explicitly compiled with the SQLCOMP FORCE option, and the
SQL statement generated an error.

Figure 8-1. Timestamp Check

Processor (CPU) Memory

SQL Executor Object
Code
. . .

PROG Execution Plans
 . . .
SELECT ... FROM TAB ...

SQL Executor compares
TAB timestamps in
PROG execution plan
and in TAB file label.

SQL recompilation rewrites copy of
PROG execution plan in memory only.

PROG
(object code)

NonStop
SQL/MP
Database

 PROG Execution Plans
 . . .
SELECT ... FROM TAB ...
 TAB Redefinition Timestamp
 . . .

TAB Data

 TAB File Label
Redefinition Timestamp
. . .

Timestamp Check

VST005.vsd
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-8

Program Invalidation and Automatic SQL
Recompilation

Run-Time Recompilation Errors
Run-Time Recompilation Errors

If an automatic SQL recompilation is successful, the SQL statement executes.
However, if the recompilation fails, the SQL executor returns compilation errors or
warnings:

 Recompilation of a single statement. The SQL executor returns error information to
the SQLCODE variable and the SQLCA structure (if declared).

 Recompilation of an entire program. If an entire program is recompiled, an SQL
statement that causes an error or warning remains uncompiled and the SQL
executor suppresses the error or warning message. If the SQL executor
subsequently executes the uncompiled statement, the SQL executor tries again to
recompile the statement. If the statement still causes a compilation error or
warning, the SQL executor returns error information to the SQLCODE variable and
the SQLCA structure (if declared).

Preventing Automatic Recompilations

The SQL executor can perform the similarity check for SQL objects to determine if an
invalid execution plan is operable or inoperable. An operable plan is semantically
correct and can execute correctly without SQL recompilation (although the plan might
not be optimal), whereas an inoperable plan must be recompiled to execute correctly.

By performing the similarity check, the SQL executor recompiles only SQL statements
that have inoperable execution plans. It executes other SQL statements by using their
existing plans. Executing the similarity check for an SQL statement eliminates
unnecessary recompilations and is much faster than recompiling the statement.

This subsection describes the CHECK option and its effect on the SQL executor at run
time. The COMPILE option directs the SQL compiler to perform similarity checks
during explicit SQL compilation to explicitly recompile only statements with inoperable
plans. For more information about the CHECK and COMPILE options, including their
syntax, see Section 6, Explicit Program Compilation.

To direct the SQL executor to perform similarity checks for a program at run time,
follow these steps:

1. Explicitly compile the program by using the CHECK INOPERABLE PLANS option.

2. Enable the similarity check by using DDL statements for each table or protection
view referenced in the program. (SQL/MP implicitly enables the similarity check for
other SQL objects.)

Note. You cannot use the similarity check for a query that uses parallel execution plans.
At run time, a query that uses parallel execution plans will fail the similarity check, and the
SQL statement containing the query must be automatically recompiled before it can
execute (if NORECOMPILE is not specified). To use the similarity check in this query, you
must disable parallel execution by using a CONTROL QUERY PARALLEL EXECUTION
OFF directive.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-9

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
Specifying the CHECK INOPERABLE PLANS Option

To direct the SQL executor to use the similarity check for a program, specify the
CHECK INOPERABLE PLANS option when you explicitly compile the program as
shown in the next example:

SQLCOMP /IN sqlprog,OUT $s.#sqlist/ CHECK INOPERABLE PLANS

For the complete syntax of the CHECK option, see Section 6, Explicit Program
Compilation.

The CHECK INOPERABLE PLANS option directs the SQL compiler to store similarity
information in the program file. The SIMILARITYINFO column in the PROGRAMS table
indicates whether a program file contains similarity information:

To use the CHECK INOPERABLE PLANS option, you must have an SQL/MP software
version of 310 or later. If you specify a CHECK option, the SQL compiler sets the
program’s PFV to 310 (or later). The SQL compiler also sets the program’s PCV to 310
(or later). Therefore, the SQL catalog in which the program is registered must have a
catalog version of 310 (or later).

For more information, see the SQL/MP Version Management Guide.

Enabling the Similarity Check for Tables and Protection
Views

To use the CHECK INOPERABLE PLANS option, the similarity check must be enabled
for any referenced tables or protection views at run time. You must explicitly enable the
similarity check for a table or protection view, including any underlying tables for the
view, as shown in these DDL statements. (SQL/MP implicitly enables the similarity
check for other SQL objects.)

Y The execution plans in the program file contain similarity information.

N The program file does not contain similarity information.

CREATE TABLE table-name ...
 [SIMILARITY CHECK { ENABLE | DISABLE }]

CREATE VIEW view-name ...
 FOR PROTECTION
 ...
 [SIMILARITY CHECK { ENABLE | DISABLE }]

ALTER TABLE table-name ...
 [SIMILARITY CHECK { ENABLE | DISABLE }]

ALTER VIEW view-name ...
 [SIMILARITY CHECK { ENABLE | DISABLE }]
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-10

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
table-name or view-name

is the Guardian name or DEFINE name of the table or protection view. The name
cannot be a shorthand view. For the ALTER TABLE statement with the
SIMILARITY CHECK clause, table-name cannot be an SQL catalog table.

SIMILARITY CHECK ENABLE | DISABLE

enables or disables the similarity check for the specified table or protection view.
DISABLE is the default.

For the complete syntax of these statements, see the SQL/MP Reference Manual.

If you use the ALTER TABLE or ALTER VIEW statement to change the similarity check
attribute, the SQL catalog manager invalidates any programs, as identified in the
USAGES table, that reference the table or protection view. If the ALTER TABLE or
ALTER VIEW statement sets the similarity check attribute to its current value,
programs are not invalidated.

If you enable the similarity check for a protection view, the operation does not enable
the check for any underlying tables. You must explicitly enable the similarity check for
the underlying table. If you enable the similarity check for an underlying table, the
operation does not enable the check for a protection view defined on the table.

The SIMILARITYCHECK column in the TABLES table indicates whether a table or
protection view has the similarity check enabled:

A table or protection view that has the similarity check enabled has a version of 310 (or
later). All SQL/MP components, including the executor, catalog manager, and compiler,
must have a software version of 310 (or later) to access the table or protection view.
An SQL catalog that supports the similarity check must have a catalog version of 310
(or later). For more information, see the SQL/MP Version Management Guide.

Similarity Rules for Tables

For two tables to be similar, the characteristics and attributes of the tables must be the
same, except for the differences listed in this subsection. These tables are used to
describe these differences:

 COMPILE-TIME-TABLE is the table SQLCOMP uses to generate the execution
plan during explicit SQL compilation. COMPILE-TIME-TABLE must have the
similarity check enabled for the COMPILE INOPERABLE PLANS option. (If the
similarity check is not enabled for COMPILE-TIME-TABLE, the CHECK
INOPERABLE PLANS option returns SQL warning 4315.)

 RUN-TIME-TABLE is the table the program accesses at run time.
RUN-TIME-TABLE must have the similarity check enabled for the CHECK

ENABLED The similarity check is enabled.

DISABLED The similarity check is disabled.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-11

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
INOPERABLE PLANS option. Otherwise, the similarity check fails and automatic
recompilation occurs.

RUN-TIME-TABLE can be the same table as COMPILE-TIME-TABLE, a modified
version of COMPILE-TIME-TABLE, or a different table altogether.

For RUN-TIME-TABLE to be similar to COMPILE-TIME-TABLE, all characteristics and
attributes must be the same, except for these allowable differences:

 Names of the tables.

 Contents of the tables (that is, the data in the table).

 Partitioning attributes (number of partitions and partitioning key ranges).

 Number of indexes–RUN-TIME-TABLE must have all indexes used by
COMPILE-TIME-TABLE in the execution plan. RUN-TIME-TABLE can also have
additional indexes that COMPILE-TIME-TABLE does not have.
COMPILE-TIME-TABLE can have indexes that RUN-TIME-TABLE does not have
but only if the execution plan does not use the additional indexes.

 Key tags (or values) for indexes.

 Creation timestamp and redefinition timestamp.

 AUDIT attribute–If, however, a statement performs a DELETE or UPDATE set
operation on a nonaudited table that has a SYNCDEPTH of 1, the SQL executor
returns an error and forces the automatic recompilation of the statement (if
NORECOMPILE is not specified).

 Any of these file attributes:

 Statistics on the tables.

 Column headings.

 Comments on columns, constraints, indexes, or tables.

 Catalog where the table is registered.

 Help text.

 Number of columns–RUN-TIME-TABLE can have more columns than
COMPILE-TIME-TABLE, but the common columns of both tables must have
identical attributes. However, if a statement uses a SELECT list containing an

Note. The similarity check does not support parallel execution plans. Tables are not
considered similar if they are specified in a query that uses a parallel execution plan.

ALLOCATE
AUDITCOMPRESS
BUFFERED
CLEARONPURGE
EXTENT (primary and secondary

LOCKLENGTH
MAXEXTENTS
NOPURGEUNTIL
OWNER

SECURE
SERIALWRITES
TABLECODE
VERIFIEDWRITES
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-12

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
asterisk (*), RUN-TIME-TABLE must have the same number of columns as
COMPILE-TIME-TABLE. For more information, see the next subsection.

Similarity Rules for Protection Views

The similarity check does not support shorthand views. The similarity rules for
protection views are:

 A protection view is never similar to a table or other SQL object.

 To pass the similarity check, two protection views must follow this criteria:

 Have similar underlying base tables

 Project the same columns from the base tables

 Have the same column names

 Have the same selection expression, which is determined by a binary
comparison of the generated objects for the two selection expressions

ALTER TABLE... ADD COLUMN Statement and the Similarity
Check

Two tables are not required to have the same number of columns to pass the similarity
check, but tables with a different number of columns must observe these restrictions
(as well as the other similarity check rules) to pass the check:

 The number of columns in COMPILE-TIME-TABLE must be less than or equal to
the number of columns in RUN-TIME-TABLE.

 The common columns of the tables must have identical attributes. For example,
if COMPILE-TIME-TABLE has five columns, RUN-TIME-TABLE can have more
than five columns, but the first five columns of each table must be identical.

Therefore, you can use the ALTER TABLE ... ADD COLUMN statement for a table
without forcing the recompilation of a program that accesses the table. However, these
cases show several problems that can occur when you use the ALTER TABLE ... ADD
COLUMN statement and the similarity check.

An SQL statement uses an asterisk (*) in a select list with the similarity check for tables
with a different number of columns as shown in these statements:

Statement Similarity Check Results

SELECT * FROM table1 TABLE1 = Fail

SELECT DISTINCT * FROM table1 TABLE1 = Fail

SELECT COUNT (*) FROM table1 TABLE1 = Pass

SELECT columna FROM table1
 WHERE columnb relation-operator
 (SELECT COUNT(*) FROM table2)

TABLE1 = Pass,
TABLE2 = Pass
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-13

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
An SQL statement uses unqualified column names and the additional columns make
one of the column names used in the statement ambiguous. When the statement is
compiled, the column names are resolved unambiguously. However, if the execution
plan for the statement is executed against a RUN-TIME-TABLE with more columns
than the COMPILE-TIME-TABLE, the column names might not be resolved
unambiguously.

For example, consider these SQLCI commands:

CREATE TABLE table1 (a INTEGER, b INTEGER);
INSERT INTO table1 VALUES (11,22);

CREATE TABLE table2 (c INTEGER, d INTEGER);
INSERT INTO table2 VALUES (33,44);

PREPARE statement1 FROM SELECT a,b,c,d FROM table1, table2;
EXECUTE statement1; -- Returns 11,22,33,44

ALTER TABLE table1 ADD COLUMN c INTEGER DEFAULT NULL;
PREPARE statement1; -- Returns an error because the compiler
 -- cannot resolve column c unambiguously

A similar situation occurs if you specify the CHECK INOPERABLE PLANS option and
execution-time name resolution. When the SQL executor attempts to use the plan with
a new set of tables, it retains the association of the unqualified column names with
tables established when the statement was explicitly compiled. However, if the
similarity check fails and automatic recompilation is attempted, the recompilation also
fails because of the ambiguity.

If an INSERT statement does not specify the column-name list, the statement must
specify values for all the columns in the table:

INSERT INTO table1 VALUES (1,2,3,4);
INSERT INTO table1 (SELECT a,b,c,d FROM table2);

For these statements to compile successfully, TABLE1 must have four columns at both
compile time and run time. A program cannot use the CHECK INOPERABLE PLANS
option to execute the statement against TABLE1 after a column has been added to the
run-time version of TABLE1. In this case, the similarity check fails, and the statement is
automatically recompiled.

SELECT columna FROM table1
 WHERE EXISTS
 (SELECT [DISTINCT] * FROM table2)

TABLE1 = Pass
TABLE2 = Fail

INSERT INTO table1
 (SELECT [DISTINCT] * FROM table2)

TABLE1 = Fail
TABLE2 = Fail

SELECT table1.*,table2.x
 FROM table1,table2

TABLE1 = Fail,
TABLE2 = Pass
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-14

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
Collations

You do not have to explicitly enable the similarity check for a collation, because
collations always have the check implicitly enabled. Two collations are similar only if
they are equal. SQL/MP uses the CPRL_COMPAREOBJECTS_ procedure to compare
the two collations. Consequently, two tables that contain character columns associated
with collations are similar only if the collations are equal.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-15

Program Invalidation and Automatic SQL
Recompilation

Preventing Automatic Recompilations
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
8-16

9 Error and Status Reporting

This section provides information about error and status reporting after the execution of
an SQL statement or directive in a COBOL program. For information about the SQL
descriptor area (SQLDA), see Section 10, Dynamic SQL Operations.

Topics include:

 Using the INCLUDE STRUCTURES Directive

 Returning Error and Warning Information on page 9-4

 Returning Performance and Statistics Information on page 9-21

Using the INCLUDE STRUCTURES Directive
The INCLUDE STRUCTURES directive specifies the version of SQL structures that the
HP COBOL compiler generates. You must specify the INCLUDE STRUCTURES
directive to generate version 300 or later SQL data structures. If you omit this directive,
the HP COBOL compiler generates version 2 structures by default and includes this
informational message in the compilation summary:

INCLUDE STRUCTURES directive for SQL is missing. SQL
VERSION 2 is assumed. This may produce incorrect SQL
results in programs which use features introduced
in SQL versions greater than VERSION 2.

Code the INCLUDE STRUCTURES directive in the declarations area of the procedure
before you code an INCLUDE SQLCA, INCLUDE SQLSA, or INCLUDE SQLDA
directive. If the procedure is part of a compilation unit that consists of more than one
procedure, place the INCLUDE STRUCTURES directive in the global declarations area
or in the declarations area of the first procedure. The directive then applies to all
procedures in the compilation unit.

Use this syntax for the INCLUDE STRUCTURES directive:

ALL VERSION

are keywords that specify the same version for all three SQL structures (SQLCA,
SQLSA, and SQLDA).

INCLUDE STRUCTURES { structure-spec }

 structure-spec is:

 { [ALL] VERSION version }

 { { SQLCA | SQLSA | SQLDA } VERSION version }...

 { { SQLCA | SQLSA } [EXTERNAL] }
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-1

Error and Status Reporting Generating Structures With Different Versions
{ SQLCA | SQLSA | SQLDA } VERSION

are keywords that specify the SQLCA, SQLSA, or SQLDA structure, respectively.

version

is the version number of the generated data structures. version can be 1, 2,
300, or later.

{ SQLCA | SQLSA } [EXTERNAL]

specifies that the structures are declared as external, making it possible to share
them among subprograms of the main program.

As a result, the SQLCA object or the SQLSA object can be referenced by any
subprogram in the main program that describes the object. All such descriptions
must be identical, or the results of the references are unpredictable. References to
an external object from different programs are always to the same object. In the
main program, there is only one representation of an external object. The storage
associated with that object is associated with the main program rather than with
any particular program within it.

Generating Structures With Different Versions

You can generate SQL structures that are all the same version or structures of different
versions. For example, to generate all version 310 structures in a program, specify this
directive:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 310 END-EXEC.

Or, to generate different versions for each structure, specify this directive:

EXEC SQL INCLUDE STRUCTURES
 SQLCA VERSION 2
 SQLSA VERSION 2
 SQLDA VERSION 310
END-EXEC.

Checking the Version of the HP COBOL Compiler

If you try to compile a COBOL program that uses the INCLUDE STRUCTURES
directive to specify a later version of a structure than the HP COBOL compiler can
generate, the compiler returns SQL error 11203. To determine the version of the HP
COBOL compiler before you compile a program, run the VPROC program for the HP
COBOL compiler object file. Then, check the version in the VPROC line that contains
S7094, which is the SQL compiler interface (SCI) product number.

When you compile the program, you can specify the SQLMAP option in the SQL
compiler directive. The SQLMAP option directs the HP COBOL compiler to include the
host object SQL version (HOSV) in the map at the end of the source-file listing. For
example, a version 310 HP COBOL compiler listing includes this line:

Host Object SQL Version = 310
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-2

Error and Status Reporting Sharing Structures
For more information about versions of NonStop SQL/MP, see the SQL/MP Version
Management Guide.

Sharing Structures

Sharing a single SQLCA and SQLSA structure among subprograms of a host program
saves a large amount of memory space. The SQLCA structure is 430 bytes. The
pre-R330 SQLSA structure is 838 bytes, and the R330 SQLSA structure is 1790 bytes.
A program with many subprograms that contain embedded SQL can consume
enormous amounts of memory space for the multiple structures alone.

The COBOL external object generated by the INCLUDE SQLCA EXTERNAL directive
is:

01 SQLCA EXTERNAL.
 02 EYE-CATCHER PIC X(2).
 02 VERSION PIC S9(4) COMP.
 02 NUM-ERR-ENTRIES PIC S9(4) COMP.
 02 PARAMS-BUFFER-LEN PIC S9(4) COMP.
 02 SRC-NAME-BUFFER-LEN PIC S9(4) COMP.
 02 NUM-ERRORS PIC S9(4) COMP.
 02 NEXT-P-OFFSET PIC S9(4) COMP.
 02 FLAGS PIC S9(4) COMP.
 02 PROCEDURE-ID PIC X(32).
 02 USER-LINE-NUMBER PIC S9(9) COMP.
 02 SYNTAX-ERR-LOC PIC S9(4) COMP.
 02 ERROR-LOCATION PIC X(40).
 02 ROWS PIC S9(9) COMP.
 02 COST PIC S9(18) COMP.
 02 SQLCA-RESERVED PIC X(40).
 02 ERRORS-ALL.
 03 SQL-ERROR OCCURS 7 TIMES.
 04 ERRCODE PIC S9(4) COMP.
 04 SUBSYSTEM-ID PIC X.
 04 SUPPRESS-DISPLAY PIC X.
 04 PARAMS-OFFSET PIC S9(4) COMP.
 04 PARAMS-COUNT PIC S9(4) COMP.
 04 ARRIVAL-SEQ PIC S9(4) COMP.
 02 SQLCODEA REDEFINES ERRORS-ALL.
 03 SQLCODE PIC S9(4) COMP.
 03 FILLER PIC X(68).
 02 PARAMS-BUFFER PIC X(180).
 02 SRC-NAME-BUFFER PIC X(34).

The COBOL external object generated by the INCLUDE SQLSA EXTERNAL directive
is:

01 SQLSA EXTERNAL.
 02 EYE-CATCHER PIC X(2).
 02 VERSION PIC S9(4) COMP.
 02 DML.

 03 NUM-TABLES PIC 9(4) COMP.
 03 STATS OCCURS 16 TIMES.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-3

Error and Status Reporting Returning Error and Warning Information
 04 TABLE-NAME PIC X(24).
 04 RECORDS-ACCESSED PIC S9(9) COMP.
 04 RECORDS-USED PIC S9(9) COMP.
 04 DISC-READS PIC S9(9) COMP.
 04 MESSAGES PIC S9(9) COMP.
 04 MESSAGE-BYTES PIC S9(9) COMP.
 04 WAITS PIC S9(4) COMP.
 04 ESCALATIONS PIC S9(4) COMP.
 04 SQLSA-RESERVED PIC X(4).
 02 PREPARE REDEFINES DML.
 03 INPUT-NUM PIC 9(4) COMP.
 03 INPUT-NAMES-LEN PIC 9(4) COMP.
 03 OUTPUT-NUM PIC 9(4) COMP.
 03 OUTPUT-NAMES-LEN PIC 9(4) COMP.
 03 NAME-MAP-LEN PIC 9(4) COMP.
 03 SQL-STATEMENT-TYPE PIC 9(4) COMP.
 88 SQL-STATEMENT-SELECT VALUE 1.
 88 SQL-STATEMENT-INSERT VALUE 2.
 88 SQL-STATEMENT-UPDATE VALUE 3.
 88 SQL-STATEMENT-DELETE VALUE 4.
 88 SQL-STATEMENT-DDL VALUE 5.
 88 SQL-STATEMENT-CONTROL VALUE 6.
 88 SQL-STATEMENT-DCL VALUE 7.

Returning Error and Warning Information
SQL/MP provides these methods you can use to check for and process errors and
warnings in your program:

 Checking the SQLCODE (or SQLCODEX) data item
 Using the WHENEVER directive
 Using constraints to check for errors
 Checking information from the SQLCA structure

Checking the SQLCODE Identifier

SQL/MP returns an error or warning code to SQLCODE after the execution of each
embedded SQL statement or directive:

Each SQL/MP error or warning message has an assigned code. For the codes and
their meanings, see the SQL/MP Messages Manual.

Value Status

< 0 Error

> 0 Warning

 0 Successful
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-4

Error and Status Reporting Checking the SQLCODE Identifier
Using the SQLCODE Data Item

The HP COBOL compiler does not automatically generate an SQLCA structure, which
includes the SQLCODE data item. You must declare an SQLCODE identifier either
explicitly as a PIC S9(4) COMP data item or implicitly with an INCLUDE SQLCA
directive. You cannot specify SQLCODE both explicitly as a data item and implicitly
with an INCLUDE SQLCA directive.

This example uses the INCLUDE SQLCA directive to implicitly declare the SQLCODE
data item:

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 IN-PARTS-REC.
 10 IN-PARTNUM PIC 9(4).
 10 IN-PRICE PIC 9(6)V99.
 10 IN-PARTDESC PIC X(18).
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.
...

This example checks SQLCODE only for errors and warnings:

 PROCEDURE DIVISION.
 ...
 300-INSERT-DATA.
 MOVE 4120 TO IN-PARTNUM.
 MOVE 60000.00 TO IN-PRICE.
 MOVE "V8 DISK OPTION" TO IN-PARTDESC.
 EXEC SQL
 INSERT INTO SALES.PARTS (PARTNUM, PRICE, PARTDESC)
 VALUES (:IN-PARTNUM, :IN-PRICE, :IN-PARTDESC)
 END-EXEC.
* Check for errors and warnings
 IF SQLCODE < 0 PERFORM 900-HANDLE-ERRORS.
 IF SQLCODE > 0 AND
 SQLCODE NOT = 100 PERFORM 910-HANDLE-WARNINGS.
 ...

This example checks for all values for SQLCODE:

 PROCEDURE DIVISION.
 ...
 IF SQLCODE OF SQLCA = 0
 PERFORM DISPLAY-ROW-3000
 ELSE
 IF SQLCODE OF SQLCA = 100
 PERFORM ROW-NOT-FOUND-7000
 ELSE
 IF SQLCODE OF SQLCA < 0
 PERFORM SQL-ERROR-9000
 ELSE
 IF SQLCODE OF SQLCA > 0
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-5

Error and Status Reporting Using the WHENEVER Directive
 PERFORM SQL-WARNING-8000
...

Using the SQLCODEX Data Item

You can use level-88 items with an SQLCODE data item, such as:

1. Substitute an SQLCODEX data item for the SQLCODE data item.

To do this, include an INVOKE SQLCODEX statement in each program or nested
program in which you want an SQLCODEX data item.

2. Attach level-88 items to the SQLCODEX data item.

3. Declare the SQLCA structure.

However, this approach is not recommended, because SQLCODEX is not part of the
ANSI Database—Embedded SQL Standard. Rather, omit the INCLUDE SQLCA
directive from each program or nested program to prevent the compiler from declaring
the SQLCODE data item implicitly so that you can declare it explicitly and attach level-
88 items to it.

Using the WHENEVER Directive

The WHENEVER directive specifies an action that a program takes, depending on the
result of subsequent DML, DCL, and DDL statements. WHENEVER provides tests for
these conditions:

 An error occurred.
 A warning occurred.
 No rows were found.

You must specify a WHENEVER directive in the Procedure Division after a section or
paragraph name. When you specify this directive, the HP COBOL compiler inserts
statements that perform run-time checking after an SQL statement using the
SQLCODE variable. You do not have to explicitly check the SQLCODE value.

Although using WHENEVER directives is simpler than writing a routine to test
SQLCODE, you still must code the error routines. Typically, you code the routines once
and save them in a library file to be copied into your programs as needed. You can use
the COBOL SOURCE directive to copy the error routines into your program.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-6

Error and Status Reporting Using the WHENEVER Directive
This table indicates the HP COBOL compiler pseudocode that checks SQLCODE and
the order in which the checks are made:

action-specification is one of:

PERFORM :host-identifier ;
GOTO :host-identifier ;
GO TO :host-identifier;
CONTINUE ;

When more than one WHENEVER condition applies to an SQL statement, SQL/MP
processes the conditions in order of precedence. For example, an SQL error and an
SQL warning can occur for the same statement, but the error condition has a higher
precedence and is processed first.

These WHENEVER directives check for the error, warning, and not-found conditions:

EXEC SQL
 WHENEVER NOT FOUND PERFORM :ROW-NOT-FOUND-7000 END-EXEC.
EXEC SQL
 WHENEVER SQLERROR PERFORM :SQL-ERROR-9000 END-EXEC.
EXEC SQL
 WHENEVER SQLWARNING PERFORM :SQL-WARNING-8000 END-EXEC.
...

Determining the Scope of a WHENEVER Directive

The order in which WHENEVER directives appear in the listing determines their scope.
Some considerations follow:

 A WHENEVER directive remains in effect until another WHENEVER directive for
the same condition appears. If you want to execute a different routine when an
error occurs, specify a new WHENEVER directive with a different PERFORM
routine.

For example, to insert a new row only when a row is not found, specify a new
WHENEVER directive:

EXEC SQL WHENEVER NOT FOUND PERFORM :INSERT-ROW END-EXEC.

The new WHENEVER directive remains in effect until it is disabled or changed.

Order Condition Compiler Pseudocode

1 NOT FOUND IF SQLCODE = 100
 THEN action-specification

2 SQLERROR IF SQLCODE < 0
 THEN action-specification

3 SQLWARNING IF SQLCODE > 0 AND SQLCODE NOT = 100
 THEN action-specification

Note. SQL/MP sometimes returns values other than 100 for a not-found condition. For
example, SQL error 8230 indicates that a subquery did not return any rows, and SQL error
8423 indicates that an indicator variable was not specified for a null output value.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-7

Error and Status Reporting Using the WHENEVER Directive
 If another program is called within the error handling code, the position of the
called program in the listing order determines the WHENEVER directive in effect.
The context of the calling program has no effect.

 The listing order includes files copied into the program through a SOURCE
directive. If a copied file contains a WHENEVER directive, that directive is in effect
following the SOURCE directive.

 SQL statements are not affected by the WHENEVER directive if they appear in the
program before the WHENEVER directive enables condition checking.

 Do not code WHENEVER directives inside IF statements. A COBOL terminator on
a WHENEVER directive or any other nonexecutable statement, such as DECLARE
CURSOR or CONTROL statement, does not affect execution.

Enabling and Disabling WHENEVER Checking

You can enable and disable the WHENEVER directive for different parts of your
program. For example, you might want to handle SQL errors by checking SQLCODE
after an SQL statement instead of using WHENEVER SQLERROR. Example 9-1 on
page 9-9 shows how to enable and disable the WHENEVER directive.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-8

Error and Status Reporting Using the WHENEVER Directive
Avoiding Infinite Loops

To avoid an infinite loop if the error handling code generates errors or warning, you can
disable the WHENEVER directive within the error handling procedure. An infinite loop
can occur in these situations:

 The SQLERROR condition executes a statement that generates an error.

 The SQLWARNING condition executes a statement that generates a warning.

 The NOT FOUND condition executes a statement that generates a
NOT FOUND condition.

To avoid these situations, disable the appropriate WHENEVER directive for the part of
your program that handles the condition. Example 9-2 on page 9-11 enables and
disables the WHENEVER directive.

Example 9-1. Enabling and Disabling the WHENEVER Directive

 PROCEDURE-DIVISION.

 0010-SET-UP.
 EXEC SQL
 WHENEVER SQLERROR PERFORM :9900-SQL-ERROR-HANDLER
 END-EXEC.
...
 9900-SQL-ERROR-HANDLER.
* Disable SQLERROR handling to prevent looping.
 EXEC SQL WHENEVER SQLERROR END-EXEC.
 ...
 EXEC SQL
 INSERT INTO ERRLOG
 (..., ERRORS_SQL, ...)
 VALUES (..., :SQLCODE-NUM, ...)
 END-EXEC.
 ...

 ...
 EXEC SQL
 INSERT INTO ERRLOG
 (..., ERRORS_SQL, ...)
 VALUES (..., :SQLCODE-NUM, ...)
 END-EXEC.
 ...
* Enable SQLERROR handling for subsequent statements.
 EXEC SQL
 WHENEVER SQLERROR PERFORM :9900-SQL-ERROR-HANDLER
 END-EXEC.

* Exit code
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-9

Error and Status Reporting Using the WHENEVER Directive
Using an Aggregate Function

All aggregate functions except COUNT return a null value when operating on an empty
set. If a host variable receives the null value as the result of an aggregate function, you
must specify an indicator variable and test the result of the indicator variable.
Otherwise, SQL/MP returns a “no indicator variable provided” condition instead of a “no
rows found” condition. A WHENEVER NOT FOUND directive does not detect this
condition.

Example 9-2 on page 9-11 illustrates the use of WHENEVER directives that detect
error and warning conditions. For the INSERT statement, the SQLERROR directive is
processed first. This directive has a higher precedence, although the SQLWARNING
directive is specified first in the source code.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-10

Error and Status Reporting Using the WHENEVER Directive
Example 9-2. Using the WHENEVER Directive

WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 IN-PARTS-REC.
 10 IN-PARTNUM PIC 9(4).
 10 IN-PRICE PIC 9(8)V99.
 10 IN-PARTDESC PIC X(18).
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 WARNING-SUM PIC S9(4) COMP.

 EXEC SQL INCLUDE SQLCA END-EXEC.
 ...
 PROCEDURE DIVISION.
 100-OPENING.
 EXEC SQL WHENEVER SQLWARNING PERFORM :910-WARNINGS END-EXEC.
 EXEC SQL WHENEVER SQLERROR PERFORM :900-ERRORS END-EXEC.
 ...
 300-WORK.
 PERFORM 5000-BEGIN-TRANSACTION.
* Execute an SQL INSERT into the PARTS table.
 MOVE 4120 TO IN-PARTNUM.
 MOVE 60000.00 TO IN-PRICE.
 MOVE "V8 DISK OPTION" TO IN-PARTDESC.
 EXEC SQL INSERT INTO SALES.PARTS (PARTNUM, PRICE, PARTDESC)
 VALUES (:IN-PARTNUM, :IN-PRICE, :IN-PARTDESC)
 END-EXEC.

 EXEC SQL DELETE FROM SALES.PARTS WHERE QTY_AVAILABLE = 0
 END-EXEC.

 PERFORM 6000-COMMIT-TRANSACTION.
 STOP RUN.
 900-ERRORS.
 DISPLAY "SQLCODE = " SQLCODE.
 EXEC SQL ROLLBACK WORK END-EXEC.
 DISPLAY " TRANSACTION ABORTED. "
 STOP RUN.
 910-WARNINGS.
 ADD 1 TO WARNING-SUM.
 DISPLAY " WARNING: SQLCODE = " SQLCODE.

 5000-BEGIN-TRANSACTION.
 EXEC SQL BEGIN WORK END-EXEC.

 6000-COMMIT-TRANSACTION.
 EXEC SQL COMMIT WORK END-EXEC.
 DISPLAY " COMMIT TRANSACTION".
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-11

Error and Status Reporting Returning Information From the SQLCA
Returning Information From the SQLCA

SQL/MP returns run-time information, including errors and warnings, for the most
recently executed SQL statement to the SQL communication area (SQLCA). The
SQLCA structure can contain up to seven error or warning codes (in any combination)
that might be returned by a single SQL statement or directive.

Declaring the SQLCA Structure

The HP COBOL compiler does not automatically generate an SQLCA structure. You
must explicitly declare an SQLCA structure using an INCLUDE SQLCA directive in the
Data Division of your program. To declare an SQLCA structure, specify the
INCLUDE SQLCA directive using this syntax (if you do not first specify the
INCLUDE STRUCTURES directive, SQL/MP generates version 2 structures by
default):

Using System Procedures With the SQLCA Structure

The SQL system procedures are written in TAL, but you can call them from a COBOL
program using an ENTER TAL statement. Use the SQL system procedures to return
SQLCA information:

For more information, see Section 5, SQL/MP System Procedures.

Table 9-1 on page 9-13 describes the SQLCA fields generated by the INCLUDE
SQLCA directive. Do not access the SQLCA fields directly. HP reserves the right to
change the SQLCA fields in future PVUs.

EXEC SQL INCLUDE SQLCA END-EXEC.

System Procedure Description

SQLCA_DISPLAY2_ Writes SQL error and warning messages from the SQLCA
structure to a file or terminal

SQLCAGETINFOLIST Writes a specified subset of the SQL error or warning
information from the SQLCA structure to a record area in the
program

SQLCA_TOBUFFER2_ Writes SQL error or warning messages from the SQLCA
structure to a record area in the program

SQLCAFSCODE Returns information about file-system, disk-process, or
operating system errors returned to the program
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-12

Error and Status Reporting Returning Information From the SQLCA
Table 9-1. SQLCA Structure Fields (page 1 of 3)

Field Name Description

EYE-CATCHER Identification field, always set by the system to CA.

VERSION-ID Current version of the SQLCA; subsequent SQL/MP
software PVUs can change this value.

NUM-ERR-ENTRIES Maximum number of error entries that the ERRORS-ALL
group item can hold. The number is 7.

PARAMS-BUFFER-LEN Byte length of the PARAMS-BUFFER item. The maximum
length is 180 bytes.

SRC-NAME-BUFFER-LEN Length of the buffer that contains the name of the program
source file.

NUM-ERRORS Current number of errors or warnings returned to the
ERRORS-ALL group item.

NEXT-P-OFFSET First empty byte in PARAMS-BUFFER. By subtracting this
number from 180, you can determine the remaining space
in the buffer. The first byte is byte 0.

FLAGS Code for a flag. Interpret the values:

0 No flags
1 More errors or warnings than ERRORS-ALL can hold
2 More parameters than PARAMS-BUFFER can hold
3 Both 1 and 2 are true

PROCEDURE-ID Program ID of the program that contains the SQL
statement receiving the error or warning messages. If
there are no error or warning messages, this field is blank.

USER-LINE-NUMBER Source code line number of the SQL statement that
causes errors or warnings (zero if none occurred).

SYNTAX-ERR-LOC Character position in the SQL statement where the syntax
error occurs. The value -1 indicates that the error is not a
syntax error.

ERROR-LOCATION Buffer that contains the name of the system procedure that
detected the error and the offset within the procedure
where the error occurred.

ROWS Number of rows updated, deleted, or inserted in the table
or protection view. If there is an error on the statement, the
value of ROWS is an approximate count. It could be less
than the number actually changed. This item is set to 0 for
any statement except UPDATE, DELETE, and INSERT.

COST Execution cost of a query as estimated by the SQL
compiler (set only for dynamic SQL programs).

SQLCA-RESERVED Reserved

ERRORS-ALL Group item for error information.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-13

Error and Status Reporting Returning Information From the SQLCA
SQL-ERROR Repeating group for error information. There are 7
occurrences, each of which returns information for a single
error or warning.

ERRCODE Error and warning messages are documented in the
SQL/MP Messages Manual.

SUBSYSTEM-ID One-byte code that identifies the system component
issuing the error or warning:

D DP2 disk process

F SQL file system

G NonStop OS

I Sequential I/O (SIO) procedures

L Load routines

S SQL/MP component: (SQL compiler, catalog manager,
executor, SQLUTIL, SQLCI, SQLCI2)

R SORTPROG process (FastSort program)

SUPPRESS-DISPLAY Code that indicates whether to suppress the display. The
system component issuing the message sets this data item
to Y (for yes) to suppress the display, or to N (for no) to
display the item ERRCODE and the text of the error
message. If the component does not set the item, the
default is N.

PARAMS-OFFSET Offset in item PARAMS-BUFFER for the parameters of the
error or warning message. The value is -1 if
PARAMS-COUNT equals 0.

PARAMS-COUNT Number of parameters returned for the error or warning
message.

ARRIVAL-SEQ Sequence in which the error was set. The value is set to -1
when the SQLCA is initialized. For internal use only.

SQLCODEA Redefinition of ERRORS-ALL.

SQLCODE First error or warning code. SQLCODE redefines
ERRCODE (1). Use this data item to test if errors or
warnings occur. Use the SQLCA_DISPLAY2_,
SQLCA_TOBUFFER2_, and SQLCAFSCODE procedures
to obtain detailed information.

Table 9-1. SQLCA Structure Fields (page 2 of 3)

Field Name Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-14

Error and Status Reporting Returning Information From the SQLCA
Using Constraints to Check for Errors

SQL/MP supports constraints to protect the integrity of base tables. A constraint is a
condition that must be met before data is added to a row in the base table to which the
condition applies. For example, a constraint might restrict employee numbers to the
range between 0001 and 9999. If you try to enter a value outside this range, SQL/MP
returns an error when it executes the UPDATE or INSERT statement.

You can create or drop constraints at any time. Creating or dropping a constraint,
however, causes the system to invalidate all SQL program files that use the underlying
table. Ensure that these files are explicitly SQL compiled to avoid automatic
recompilation every time a program runs.

Constraints are also a replacement for program code for all programs that refer to a
table to which constraints apply. For example, constraints can be used to establish
value ranges for columns, true or false conditions, and so forth.

Consider this example:

EXEC SQL CREATE CONSTRAINT MGRNUM_CONST ON DEPT
 CHECK MANAGER BETWEEN MIN_MANAGER AND MAX_MANAGER END-EXEC.

In this example, the constraint on the DEPT table restricts the value of the MANAGER
column to the range shown. A program does not have to check the value for each
insertion or update to this table. SQL/MP ensures the value is within the range. If the
value is not within the range, SQL/MP returns an error message and aborts current
TMF transactions. Constraints are a database protection mechanism. A program does
not have to perform the checks to avoid corrupting the database.

FILLER Filler item.

PARAMS-BUFFER Information about warnings and errors. PARAMS-
BUFFER-LEN is the length in bytes. You can use the
SQLCA_DISPLAY2_ procedure to read information
returned to this buffer. Each parameter is stored as a string
of ASCII printable characters terminated by a byte
containing binary 0.

SRC-NAME-BUFFER Name of the program source file. This buffer contains the
name of a file specified with a SOURCE directive. When
the SQL statement source code is in the input, this buffer
is empty.

Note. When you add a constraint, SQL/MP checks all rows in the table. For large tables, the
CREATE CONSTRAINT operation can cause performance problems.

Table 9-1. SQLCA Structure Fields (page 3 of 3)

Field Name Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-15

Error and Status Reporting Returning Information From the SQLCA
This constraint in this example examines two columns within the same row and
ensures that the employee termination date is equal to or greater than the date of hire:

EXEC SQL CREATE CONSTRAINT VALIDATE_CONST ON EMPLOYEE
 CHECK TERM_DATE >= HIRE_DATE END-EXEC.

Before coding constraint-checking logic into requester programs, consider that
constraints can change over time and that such changes mean recoding the
requesters with new checks to match the changed constraints. Also, consider that
operators learn quickly what causes data-entry errors and can be trained during
system testing to avoid such errors. Constraints are a database protection mechanism,
not a substitute for operator training and proper system documentation.

Instead of allowing constraints to check for errors, you can code a Pathway requester
to check entered data for compliance with the constraints. If certain data is prone to
operator-entry error, a constraint detects the error only when the server attempts to
update the database. A requester program can detect such operator-entry errors
before sending the data to the server.

When the requester checks for errors rather than letting constraints do the checking,
error message traffic decreases between the requester and server and between the
server and disk process, and performance improves. Also, if there are many
constraints on the same table, the server might find it difficult to determine which
constraint caused which error, making it difficult to return a specific message to the
terminal. It is easier for a requester to determine which entered value caused an error.

System designers must evaluate each application to determine whether or not to code
constraint logic in programs to detect errors. When making this decision, consider
these points:

 Requester checks that parallel constraints on entered data are very efficient.
However, such checks require extensive coding and must be recoded to match
changes to constraints.

 Constraints protect the database from operator error in applications and from
update error in SQLCI. However:

 Constraint checks are less efficient because they increase the message traffic.

 When multiple constraint errors occur in a program, it is difficult to determine
which entered value violated which constraint.

 Server checks on entered data are sometimes required (for example, if the result
of the check affects subsequent processing).

Displaying and Storing Errors and Warnings

When you display SQL errors and warnings, you must consider where to display or
store the error. For example, do you send the error message to a terminal, a file, or an
SQL table? Usually, sending the error message to an SQL table is the preferred
method.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-16

Error and Status Reporting Returning Information From the SQLCA
Terminal

Using HOMETERM is not always advisable because more error messages could be
generated than HOMETERM can handle. For example, an incorrect table name in a
DEFINE could make the table unavailable to a Pathway system. This error would
cause every server program to receive an SQL error each time it referred to that table.

Also, consider that other components of the system, such as TMF, might be using
HOMETERM. If HOMETERM is a printer, printing might be delayed, or if HOMETERM
is a terminal, messages can be lost when text exceeds the size of the screen buffer.

Another consideration is that access to HOMETERM might not be easy for an end user
of the application. Suppose that the end user is notified that something failed, but the
error text is sent to HOMETERM. The end user might find it difficult to determine the
exact reason for the failure to correct it. If many errors are routed to HOMETERM, the
database administrator might find it difficult to match the error to the user. Processing
so many errors can also be time consuming.

Errors File

An option in SQLCA_DISPLAY2_ allows errors and warnings to be routed to a file. You
might consider this alternative, but it has the disadvantage that you must write a
program to extract the errors and warnings from the file.

You could write a separate process to monitor the file and print the messages as they
arrive. The process could search the file for specific errors. If the prefix and suffix of the
messages contain unique data, such as the terminal ID and a timestamp, the process
could use this data to locate and report on specific errors.

SQL Errors Table

Instead of sending errors to a file, send the errors to a nonaudited SQL table. Using an
SQL table makes it easy to retrieve the error information from the table with SQLCI.
Users or database administrators can formulate queries to answer their questions and
to monitor the systems. The report writer facilities of SQLCI help you produce complete
reports.

You use a nonaudited table so you can keep a log of messages generated by backed
out transactions. If you use an audited table, messages are lost when they are
associated with transactions backed out by TMF. Another advantage is that inserts to a
nonaudited table do not incur TMF overhead.

Your SQL error routine could include a call to SQLCA_TOBUFFER2_ to send the error
messages to a storage buffer and a call to SQLCAFSCODE to obtain any file system
errors associated with the SQL error. Then, you could code your program to insert a
row into the table.

You can create the error table as a key-sequenced table with a timestamp as the
primary key and indexes on other useful information. Although you could create a
relative table that allows rows to be appended at the end, or an entry-sequenced table,
a key-sequenced table with alternate keys offers the best searching capability.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-17

Error and Status Reporting Returning Information From the SQLCA
Suppose that TABLEX and its index XTABLX are created:

CREATE TABLE TABLEX (
 ERRDATE NUMERIC (6) NO DEFAULT ,
 ERRTIME NUMERIC (6) NO DEFAULT ,
 TERMID NUMERIC (6) NO DEFAULT ,
 SQLCODE NUMERIC (4) NO DEFAULT ,
 FSCODE NUMERIC (4) SYSTEM DEFAULT ,
 TEXT1 CHARACTER (240) SYSTEM DEFAULT ,
 TEXT2 CHARACTER (240) SYSTEM DEFAULT ,
 TEXT3 CHARACTER (240) SYSTEM DEFAULT ,
 TEXT4 CHARACTER (240) SYSTEM DEFAULT ,
 PRIMARY KEY (ERRDATE ASC, ERRTIME ASC))
NO AUDIT
SECURE "NNNN"

CREATE INDEX XTABLX ON TABLEX (
 TERMID,
 SQLCODE,
 FSCODE)

The timestamp (ERRDATE, ERRTIME) is the primary key of the table. The terminal ID,
the SQL code, and any file system code are the composite alternate index for the
table. For each error, you write one row to the table. To collect the information for this
table, the program can perform these steps:

1. Retrieve the timestamp, terminal ID, and SQLCODE for the first four columns.

2. Call SQLCAFSCODE to retrieve FSCODE (or zero) for the fifth column.

3. Call SQLCA_TOBUFFER2_ to retrieve the error message text for the last four
columns.

If you send error information to an SQL table, you might consider setting up a help
desk to provide end users with more information about errors returned by the
application. (A help desk is a person or group of people responsible for helping end
users with their problems.) When individual users require more explicit information
about errors, the help desk staff can query the error table with SQLCI.

A query from TABLEX could specify the user terminal ID and the date and approximate
time of the error (for example, between 2:00 p.m. and 3:00 p.m. June 8, 1996) as
shown:

SELECT * FROM TABLEX
 WHERE ERRDATE = "960608"
 AND TERMID = "012300"
 AND ERRTIME BETWEEN "140000" AND "150000"

Other queries could look for specific SQL errors (such as -8300) using the SQLCODE
column, or specific file-system errors (such as 11) using the FSCODE column.

On a periodic basis, you can archive the SQL error table with the COPY or DUP
utilities available through SQLCI, and you can clear the current table with the
PURGEDATA utility. In this way, you can restrict the table to contain errors for a
specific period of time, such as one week.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-18

Error and Status Reporting Returning Information From the SQLCA
Each Monday, for example, you could use DUP to copy TABLEX to a TABLEX1, and
then clear TABLEX before activating the Pathway system. The errors found this week
and last week are available. Only a minimum amount of program code is needed to
support this facility.

Selective Error Reporting

SQL/MP returns an error condition for many different errors. Some of these are true
errors, others are not. For example, -8227 indicates the user is trying to insert a
duplicate row (a mistake), and -8300 indicates a file-system error (a true error).

Both conditions cause the WHENEVER SQLERROR procedure to be executed. You
could assume that the first condition should be reported only to the terminal as a
mistake, whereas the second condition should be reported as an error to database
administration.

Mistakes can also be considered as anticipated errors because the program can
anticipate them. A record not found or an end-of-file condition, like the duplicate record
condition, are errors that can be anticipated and reported to the terminal, not logged to
an error table.

Here are some other examples of anticipated errors:

You could examine all the SQL error codes and decide which should be reported as
true errors and which should be reported to a terminal as anticipated errors. This task
is not recommended because the number of errors is large. Also, the application
requirements might vary. For example, it might depend on your application
requirements whether you consider timeout errors to be anticipated errors or true
errors to be reported to a log file.

You can develop a common routine to test such conditions and to react accordingly. If
you develop such a common routine, consider having two such routines: one to use for
testing and one for production.

Many errors are programming errors, such as 8225 and 8226, which are cursor
declaration errors. Other errors are run-time errors. To facilitate testing, reply to the
terminal when anticipated errors are found during development and also log them as
errors. Use this strategy to determine which SQL statements failed and why.

When you go to production, you no longer want to log the anticipated errors. As a
result, the number of errors logged during production is less than the total number
logged during development. The production routine should check for anticipated errors
and reply to the terminal only.

Error Number Description

4028 Value for column x has an incompatible data type.

8230 Zero rows returned by subquery.

8233 Constraint number x violated (possibly a special situation).

8405 Decimal data encountered with some nonnumeric digits.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-19

Error and Status Reporting Returning Information From the SQLCA
Summary of Error Processing Recommendations

This list summarizes the recommendations described in this subsection for processing
errors.

 Use WHENEVER directives to test for SQL errors, warnings, and other conditions.
Each WHENEVER directive should refer to a common error handling routine.

 Develop common error handling routines that can be saved in a source library and
copied with a COBOL COPY command or an COBOL SOURCE directive.

 Include a call to the SQLCA_TOBUFFER2_ or to SQLCA_DISPLAY2_
procedure in any error routine that logs or displays the errors.

 Consider using two sets of common error handling routines: one for
development and one for production. In the development routine, specify a
breakpoint or a call to the Inspect program.

 Establish meaningful messages to be returned to the operator, such as:

 A not-found condition returns Requested Data Does Not Exist.

 A duplicate condition returns Data Cannot Be Inserted - Already Exists.

 A file-system error returns File-System Error error occurred. Use
SQLCAFSCODE to determine the file-system error number.

 An SQL error returns SQL Error error occurred.

 Create an SQL table to save the error messages. Use SQLCA_TOBUFFER2_ to
return the error code, message text, program line number, and other information
you save in the error table:

 Put a timestamp, terminal ID, SQL error, and file-system error in the first
columns of the table row to be used as search criteria for later retrieval.

 Write the error information to the last columns of the table row.

 Specify parameters in the calls to SQLCA_TOBUFFER2_ to reduce the
number of error lines generated for each error by suppressing statistics and the
internal error location and by setting the prefix to a single blank character.

 Specify parameters in the calls to SQLCA_TOBUFFER2_ to generate error
lines of 80 characters each to match the line length that SQLCI displays.

 Define the table columns that are to receive the error information as multiples
of 80, but not greater than 240, characters. This size prevents wraparound
because SQLCI displays large columns as 80-character lines and prevents
truncation because SQLCI displays a maximum of 255 characters per column.

 In summary, retrieve the error information in 80-byte error lines and define two,
three, or four text columns of 240 bytes each in the SQL error table.

 Use SQLCI to query and display the error table.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-20

Error and Status Reporting Returning Performance and Statistics Information
 If you route errors directly to HOMETERM by using the SQLCA_DISPLAY2_
routine, save the errors in an SQL error table also. This table can be used as an
easily retrievable record of errors.

 Archive the error table. Using the SQL utilities, make a copy of the table and purge
the current data. Retain the copy for future reference. The error table might also be
useful for reporting errors to your service provider.

 Distinguish between true errors, such as file-system errors, and anticipated errors,
such as an attempt to insert a duplicate row.

 Save all errors, including anticipated errors, in the development routines.
 Save only selected (true) errors in the production routines.

 Consider establishing a help desk to assist end users in resolving errors. A help
desk staff can query the error table to determine which error is associated with
which user. In some situations, an end user might query the table directly if the
user has access to SQLCI and the data is understandable.

 A database administrator might also want to query the table for other errors such
as file-system errors (SQL error 8300).

 A database administrator might generate reports to answer these questions:

 How many errors occurred today?
 How often does a user or group of users violate constraints?
 How often does a user or group of users attempt to insert duplicate rows?

Returning Performance and Statistics
Information

SQL/MP returns performance and statistics information to the SQL statistics area
(SQLSA) after the execution of these DML statements:

 An INSERT, UPDATE, and DELETE statement

 A SELECT statement with the INTO clause for a host variable

 An OPEN, CLOSE, or FETCH statement for a cursor operation that has a SELECT
statement specified in the DECLARE CURSOR statement

For dynamic SQL operations, SQL/MP returns information in the SQLSA structure for
these statements:

 Each PREPARE statement, which includes information about input parameters,
output columns, and the length of the input and output names buffer

 Each DESCRIBE statement, including information about input parameters, output
columns, the names buffer, and the collation buffer

 Each DESCRIBE INPUT statement, including information about input parameters,
output columns, and the names buffer
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-21

Error and Status Reporting Returning Performance and Statistics Information
The SQLSA structure is undefined after the execution of a DSL, DDL, DCL, or
transaction control statement.

Use this syntax for the INCLUDE SQLSA directive to declare the SQLSA in the Data
Division of your program (but not in a Declare Section):

Follow these guidelines when you declare and use an SQLSA structure:

 You might need to specify an INCLUDE STRUCTURES directive with the version
of the SQLSA structure you require. If you do not first specify this directive,
SQL/MP generates version 2 SQL structures by default.

 Use the SQLSADISPLAY system procedure to write information from the SQLSA
structure to a file or terminal. For information about SQL system procedures, see
Section 5, SQL/MP System Procedures.

 A new statement resets the SQLSA structure fields. If you are using a value
elsewhere in your program, you might need to save the value immediately after the
statement executes (or declare more than one SQLSA structure).

 Each FETCH statement resets the SQLSA structure. To calculate statistics for a
cursor, declare accumulator variables for the required statistics. Then add values
from the SQLSA fields to the accumulator variables after each FETCH operation.

Example 9-3 on page 9-23 shows an SQLSA structure generated in a COBOL program
by the INCLUDE SQLSA directive. (For the version 1 and version 2 SQLSA structures,
see Appendix D, Converting COBOL Programs.)

EXEC SQL INCLUDE SQLSA END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-22

Error and Status Reporting Returning Performance and Statistics Information
Table 9-2 describes each SQLSA structure field.

Example 9-3. SQLSA Structure

01 SQLSA.
 02 EYE-CATCHER PIC X(2) VALUE "SA".
 02 VERSION PIC S9(4) COMP VALUE 0.
 02 DML.
 03 NUM-TABLES PIC 9(4) COMP VALUE 0.
 03 STATS OCCURS 16 TIMES.
 04 TABLE-NAME PIC X(24) VALUE SPACES.
 04 RECORDS-ACCESSED PIC S9(9) COMP VALUE 0.
 04 RECORDS-USED PIC S9(9) COMP VALUE 0.
 04 DISC-READS PIC S9(9) COMP VALUE 0.
 04 MESSAGES PIC S9(9) COMP VALUE 0.
 04 MESSAGE-BYTES PIC S9(9) COMP VALUE 0.
 04 WAITS PIC S9(4) COMP VALUE 0.
 04 ESCALATIONS PIC S9(4) COMP VALUE 0.
 04 SQLSA-RESERVED PIC X(4) VALUE SPACES.
 02 PREPARE REDEFINES DML.
 03 INPUT-NUM PIC 9(4) COMP.
 03 INPUT-NAMES-LEN PIC 9(4) COMP.
 03 OUTPUT-NUM PIC 9(4) COMP.
 03 OUTPUT-NAMES-LEN PIC 9(4) COMP.
 03 NAME-MAP-LEN PIC 9(4) COMP.
 03 SQL-STATEMENT-TYPE PIC 9(4) COMP.
 88 SQL-STATEMENT-SELECT VALUE 1.
 88 SQL-STATEMENT-INSERT VALUE 2.
 88 SQL-STATEMENT-UPDATE VALUE 3.
 88 SQL-STATEMENT-DELETE VALUE 4.
 88 SQL-STATEMENT-DDL VALUE 5.
 88 SQL-STATEMENT-CONTROL VALUE 6.
 88 SQL-STATEMENT-DCL VALUE 7.
 88 SQL-STATEMENT-GET VALUE 8.
 03 OUTPUT-COLLATIONS-LEN PIC 9(4) COMP.

Table 9-2. SQLSA Structure Fields (page 1 of 2)

Field Name Description

EYE-CATCHER Identification field. The compiler sets EYE-CATCHER to SA.

VERSION Current version of the SQLSA.

DML Group item where statistics for DML statement execution are
returned.

NUM-TABLES Number of tables accessed by a DML statement. The
maximum number is 16.

STATS Array containing NUM-TABLES valid entries, one for each
table accessed.

TABLE-NAME Guardian internal file name of the table accessed.

RECORDS-ACCESSED Number of records accessed in the corresponding table.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-23

Error and Status Reporting Returning Performance and Statistics Information
RECORDS-USED Number of records altered or returned.

DISC-READS Number of disk reads and writes.

MESSAGES Number of messages sent to the disk process.

MESSAGE-BYTES Number of bytes sent in all the messages sent to the disk
process.

WAITS Number of lock waits or timeouts.

ESCALATIONS Number of times record locks are escalated to file locks.

SQLSA-RESERVED Reserved.

PREPARE Group item where statistics for a PREPARE statement are
returned.

INPUT-NUM Number of input parameters in the prepared statement.

INPUT-NAMES-LEN Length of the buffer required to contain names of the input
parameters.

OUTPUT-NUM Number of output variables (host variables or SELECT
columns) in the prepared statement.

OUTPUT-NAMES-LEN Length of the buffer required to contain names of the output
variables.

NAME-MAP-LEN Length of the buffer for name maps. A value is returned in this
item only if the name map will be used or saved for later use.
The system stores in name maps the context of DEFINEs,
default subvolume, and so forth.

SQL-STATEMENT-TYPE Type of statement being prepared. The values can be:

Level 88 Item Name Value SQL Statement or Directive

SQL-STATEMENT-SELECT 1 Cursor SELECT

SQL-STATEMENT-INSERT 2 INSERT

SQL-STATEMENT-UPDATE 3 UPDATE

SQL-STATEMENT-DELETE 4 DELETE

SQL-STATEMENT-DDL 5 DDL statement

SQL-STATEMENT-CONTROL 6 Run-time CONTROL TABLE

SQL-STATEMENT-DCL 7 LOCK, UNLOCK, FREE
RESOURCES

SQL-STATEMENT-GET 8 GET VERSION...

OUTPUT-COLLATIONS-
LEN

Length of the output collation buffer.

Table 9-2. SQLSA Structure Fields (page 2 of 2)

Field Name Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
9-24

10 Dynamic SQL Operations

Dynamic SQL is useful if you do not know all or part of an SQL statement before run
time. In this case, you cannot program the statement into your application. The
program must be constructed at run time. For example, you might want to process
SQL statements from a user or accept a statement generated by an application on a
personal computer.

When you use dynamic SQL, you can construct or obtain SQL statements at run time
and then compile them and execute them. A set of SQL statements known as dynamic
SQL statements support this capability. When you use these statements, you can
submit other SQL statements (such as UPDATE or DELETE requests) dynamically at
run time.

Table 10-1 summarizes dynamic SQL statements. These statements are described,
with examples, in the remainder of this section. Your use of a specific statement
depends on your application requirements.

Topics include:

 Using Dynamic SQL on page 10-2

 Features of Dynamic SQL on page 10-5

Table 10-1. SQL Statements Used for Dynamic SQL Operations

Statement Description

DESCRIBE INPUT Obtains information about input parameters.

DESCRIBE Obtains information about output parameters (SELECT
columns).

PREPARE Dynamically compiles a statement—such as one requested by
a user or constructed by the program—that was not known until
run time.

EXECUTE Executes a prepared statement.

EXECUTE IMMEDIATE Executes a statement without preparing it first.

DECLARE CURSOR Defines a cursor and associates the cursor with a statement
name or host variable name. (Used only with SELECT
statements.)

OPEN Opens a cursor. The dynamic form includes a USING clause
that allows you to provide values for dynamic parameters.
(Used only with SELECT statements.)

FETCH Fetches data through the cursor. (Used only with SELECT
statements.)

RELEASE Deallocates space for a dynamic SQL statement prepared from
a host variable. (Used only with SELECT statements.)

CLOSE Closes the cursor. (Used only with SELECT statements.)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-1

Dynamic SQL Operations Using Dynamic SQL
 Developing a Dynamic SQL Application on page 10-9

 Constructing a Server that Interfaces With Pathway on page 10-35

 Sample Dynamic SQL Program on page 10-37

Using Dynamic SQL
Figure 10-1 shows part of a COBOL program (top) that contains an embedded static
SQL statement and a part of another COBOL program (bottom) that accepts a request
from a user to execute a dynamic SQL statement. The steps used for the dynamic SQL
statements are:

1. Define a character string host variable to hold the dynamic SQL statement.
2. Display a prompt to the user, requesting the SQL statement.
3. Accept the SQL statement into the host variable and determine its length.
4. Execute the SQL statement using an EXECUTE IMMEDIATE statement.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-2

Dynamic SQL Operations Using Dynamic SQL
Dynamic SQL can be less efficient than static SQL because more work is deferred until
run time. This table compares stages of processing for static and dynamic SQL:

Figure 10-1. Static and Dynamic SQL Programs

SQL Operation Static SQL Operation Dynamic SQL Operation

Parse the SQL statement At compile time (or as invoked
by COBOL)

Run time

Validate the statement At compile time (or as invoked
by COBOL)

Run time

Optimize the statement SQLCOMP Run time

3

4

* COBOL program with dynamic SQL statement.
...
* Declare host variables:
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 STATEMENT-BUFFER PIC x(256)
...
 EXEC SQL END DECLARE SECTION END-EXEC.

...

 DISPLAY "Enter SQL statement to be executed".

 ACCEPT STATEMENT-VALUE OF STATEMENT-BUFFER.
...

* Determine length of statement (STATEMENT-VALUE).
...
* Execute the dynamic SQL statement:
 EXEC SQL
 EXECUTE IMMEDIATE :STATEMENT-BUFFER END-EXEC.

...
User enters this SQL command:

 "INSERT INTO EMP VALUES ('BROWN', 6400)"

* COBOL program with static SQL statement....

EXEC SQL

 INSERT INTO EMP VALUES ('BROWN', 6400)" END-
EXEC

...

VST012.vsd

1

2

HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-3

Dynamic SQL Operations Uses for Dynamic SQL
Uses for Dynamic SQL

Dynamic SQL can be very useful if an application requires:

 Flexibility to construct SQL statements at run time (for example, an interactive
interface similar to SQLCI but designed for an inexperienced user).

 Flexibility to defer an association with a database until run time (for example, an
application that switches between several copies of identical databases). For this
application, use a dynamic SQL program with run-time TACL DEFINEs.

 Restriction of access to data in a table. For example, the program might code an
UPDATE statement for certain columns in a table but allow the user to enter any
selection criteria (WHERE clause) at run time.

 Client-server support with deferral of definition of SQL statements until run time.
For example, the user of an application on a personal computer wants to
manipulate data in a database on a host system. Such an application cannot use
SQLCI. The user formulates an SQL statement on the personal computer, and the
application sends the statement to a server process on the host system over
Multilan or another communications protocol.

If you plan to execute an SQL statement only once, execute the statement dynamically
and save any memory that would have stored the execution plan.

A dynamic SQL application can accept statements directly from the user or through a
screen interface like Pathway, or the program can build the statements with little or no
user input. The application might process an entire SQL statement, or it might process
only part of a statement (such as the WHERE clause) and explicitly code the
remainder of the statement in the program. For more information about using dynamic
SQL within a Pathway server, see Constructing a Server that Interfaces With Pathway
on page 10-35.

A program that uses dynamic SQL to process input directly from a user can be similar
to SQLCI, requiring the user to understand SQL syntax to formulate a complete SQL
statement. The statement can contain input parameters. If it does, the program can
prompt the user for the parameter values.

You can also write a program for direct user input so that the user does not have to
understand SQL syntax. In this case, the program prompts the user for the necessary
values (or displays a screen on which the user enters the values) and then constructs
the SQL statement by concatenating these values to known syntax elements.

For example, a program can handle any CREATE TABLE statement by concatenating
the string “CREATE TABLE” and punctuation (for example commas and colons) to the

Generate an application plan SQLCOMP Run time

Store the application plan SQLCOMP Not applicable

Execute the statement Run time Run time

SQL Operation Static SQL Operation Dynamic SQL Operation
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-4

Dynamic SQL Operations Determining When to Use Dynamic SQL
table name, column names, data types, and options entered by a user and stored in
local variables. The program user sees only a series of prompts, such as ENTER THE
TABLE NAME, ENTER THE FIRST COLUMN NAME, and so forth.

Determining When to Use Dynamic SQL

If you do not know the whole text of an SQL statement at development time but there
are only a few alternatives, you might want to program the alternatives into your
application. Otherwise, for applications that require greater flexibility, use dynamic SQL
statements.

Features of Dynamic SQL
When you write a program that uses dynamic SQL, you use many of the same SQL
statements as you would in static SQL. You can perform most of the same operations
using dynamic SQL statements that you perform with static SQL statements. You can
use DDL, DML, and DCL statements in both modes.

The difference between the two modes is that all or part of a dynamic SQL statement is
obtained from the user or generated by your program, stored in a character host
variable, compiled, and executed at run time. With dynamic SQL statements you must
perform some additional operations, such as building descriptors for host variables,
that the HP COBOL compiler performs for you when you use static SQL statements.

After compilation, NonStop SQL/MP executes statements in the same way whether
they are dynamic SQL statements or static SQL statements. SQL/MP places results of
dynamic SELECT statements into output parameters. You can use the DESCRIBE
statement to obtain information about the output parameters (also called select
columns).

Processing Database Requests

Use these SQL statements to execute an SQL database request dynamically:

 Use the EXECUTE IMMEDIATE statement to compile and execute a statement
whose text is contained in a host variable. Execution is performed in one step,
which is very useful if you plan to execute an SQL statement only once. SQL/MP
does not store any information about the statement.

 Use the PREPARE and EXECUTE statements to prepare a statement for
execution, save the information about the statement, and then execute the
statement as often as needed with these considerations:

 The PREPARE statement associates a statement name with the SQL
statement specified by an SQL identifier and dynamically compiles an SQL/MP
statement. After a statement is prepared, the program can execute the
statement with the EXECUTE statement or (for SELECT statements) with a
cursor.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-5

Dynamic SQL Operations Using Parameters
When you prepare a statement, the database environment generates an
access plan and a description of the result set. Preparation is useful if you want
to execute a statement multiple times with the previously generated access
plan to minimize processing overhead.

 The EXECUTE statement executes a previously prepared dynamic SQL
statement. You can use EXECUTE for any DDL, DML, or DCL statement
except SELECT. (Use a cursor to process a SELECT statement.)

Applications must process SELECT and nonSELECT statements differently. You do
not necessarily know what type of statement your program is processing. The
statement could, for example, be a SELECT, UPDATE, or DELETE statement. To
determine whether a statement is a SELECT statement, check the SQLSA. SELECT
and cursor statements always have at least one returned value.

This example functions the same as the example in Figure 10-1 on page 10-3, except
that it uses the PREPARE and EXECUTE statements instead of EXECUTE
IMMEDIATE:

(define the host variable)
 DISPLAY "Enter statement to be executed:".
* User enters INSERT statement here
 ACCEPT VAL of STATEMENT-BUFFER
(determine length of VAL)

 EXEC SQL PREPARE S1 FROM :STATEMENT-BUFFER END-EXEC.
...

 EXEC SQL EXECUTE S1 END-EXEC.

 (Insertion performed)

Using Parameters

A parameter is an SQL identifier that serves as a place holder in a dynamic SQL
statement for a value substituted when the statement executes. (You can also use a
parameter with SQLCI.) You use parameter markers, with names preceded by question
marks (?), in place of each parameter. For example:

SELECT * FROM MONTHLY_PAYROLL WHERE NAME = ?NM.

The SQL statement is compiled without the actual input values, which are substituted
for the parameter when the SQL statement executes. For the syntax for a parameter,
see the SQL/MP Reference Manual.

Input Parameters

A dynamic SQL statement can contain input parameters, which allow your program to
construct SQL statements at run time. Input parameters convey data from the host
program to the SQL statement. They might denote criteria to be used in a WHERE
clause, values to be inserted into the database, or values used to update or delete
database records.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-6

Dynamic SQL Operations Using Parameters
Input parameters function in much the same way as host variables in embedded SQL.
An input parameter can appear in an SQL expression wherever a constant can appear.
You specify input parameters in a statement as either a question mark (?) or a question
mark plus a name (?VAL). Before execution, you assign values to the place held by
each parameter. Unlike static SQL, dynamic parameters do not require length or data
type definition before program compilation.

When you submit an SQL statement dynamically, you do not necessarily know the
number or types of parameters. To obtain information about input parameters and
obtain pointers to the names of the input values, use the DESCRIBE INPUT statement.
You can obtain the number of input values from the SQLSA.

Output Parameters

SQL/MP returns data to your program through output parameters, which are user-
defined areas in the program. Output parameters can be host variables or individual
data buffers to which the program’s output SQLDA structure points. Output parameters
usually contain columns returned from a SELECT operation.

When you submit an SQL statement dynamically, you do not always know the number
or types of parameters. To obtain information about the output parameters, use the
DESCRIBE statement with an output SQLDA structure. You can obtain the number of
output values from the SQLSA.

Using a Parameter List

To ensure a one-to-one correspondence between a parameter list and the host
variables you use to supply values for the parameters, use unnamed parameters. If
duplicate parameter names appear in a statement, the names require a value for only
the first occurrence, and the duplicate occurrences receive the same value.

For example, suppose that this UPDATE statement is stored in the host variable
UPDATE-STATEMENT:

UPDATE ATABLE SET COL1 = ?A, COL2= ?A, COL3 = ?B

A PREPARE statement prepares the statement in the host variable named
UPDATE-STATEMENT:

EXEC SQL
PREPARE EXECUTE-STATEMENT FROM :UPDATE-STATEMENT
END-EXEC.

To supply values for the UPDATE statement at run time, the program uses the two host
variables HOST-VAR1 and HOST-VAR2:

EXEC SQL
 EXECUTE EXECUTE-STATEMENT USING :HOST-VAR1, :HOST-VAR2
END-EXEC.

The value in HOST-VAR1 is used for both instances of parameter ?A. The value in
HOST-VAR2 is used for parameter ?B. For three host variables, SQL/MP uses the
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-7

Dynamic SQL Operations Using Parameters
value in the first host variable for both occurrences of parameter ?A. The value in the
second host variable is used for parameter ?B, but the value in HOST-VAR3 is unused.

For example, in this statement, SQL/MP uses the value in HOST-VAR1 for both
occurrences of parameter ?A and the value in HOST-VAR2 for parameter ?B. The
value in HOST-VAR3 is ignored.

EXEC SQL
 EXECUTE EXECUTE-STATEMENT USING USING :HOST-VAR1,
 :HOST-VAR2,
 :HOST-VAR3
END-EXEC.

Using Parameters in a Loop

Parameters are often used when a dynamic SQL statement is executed repeatedly
with different input values. In these examples, a dynamic SQL statement uses a
parameter. Because the user of this program can enter any SQL statement, the
program does not have information about the statement during compilation. The
DEFINE =PARTS represents the PARTS table.

1. A user enters this SQL statement from a terminal:

2. UPDATE =PARTS SET PRICE = ?P

3. The program copies the statement into the host variable INTEXT.

4. The program uses the PREPARE and DESCRIBE INPUT statements to put a
description of the parameter in the SQLDA structure IN-SQLDA and to put the
name of the parameter in NAMESBUF, the input names buffer. The prepared
statement is named S1.

EXEC SQL PREPARE S1 FROM :INTEXT END-EXEC.
EXEC SQL
 DESCRIBE INPUT S1 INTO :IN-SQLDA NAMES INTO :NAMESBUF
END-EXEC.

5. The program enters a loop and prompts the user to supply values for successive
execution of the statement:

* BEGINNING OF LOOP

* PROMPT THE USER FOR A VALUE USING THE
* PARAMETER NAME FROM THE NAMES BUFFER.
...

Caution. If you use the same parameter name more than once in a statement, SQL/MP gives
each duplicate occurrence of the parameter the same data type, length, and other attributes as
the first occurrence. Therefore, data can be lost in some cases.

For example, during the execution of an INSERT statement, a parameter gets the same data
type and attributes as the column into which the parameter’s value is first inserted. If the
parameter value is truncated to fit into the column, the values of any duplicate occurrences of
the parameter are also truncated, even if a column is large enough to hold the complete value.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-8

Dynamic SQL Operations Developing a Dynamic SQL Application

* STORE THE VALUE IN AN INPUT BUFFER
* POINTED TO BY IN-SQLDA.

* EXECUTE THE STATEMENT USING EACH SUCCESSIVE VALUE.

 EXEC SQL EXECUTE S1 USING DESCRIPTOR :IN-SQLDA END-EXEC.

* END OF LOOP

Using Indicator Parameters

A program uses an indicator parameter to indicate that a null value was entered for a
parameter. The indicator parameter follows the parameter in the SQL statement as
shown in the next example:

INSERT INTO =employee VALUES (1000, ?p INDICATOR ?i);

If a user enters a null value for ?P, the program should set ?I to a value less than zero.
If a user enters a nonnull value for ?P, the program should set ?I to 0. Both ?P and ?I
are in the names buffer, so the program can prompt the user for a null value.

Developing a Dynamic SQL Application
The simplest type of dynamic SQL program does not have any input parameters or
output parameters. This type of program processes statements such as CREATE
TABLE or DROP INDEX, which do not require input parameters.

These features add complexity to dynamic SQL programs:

 Support for input or output parameters. For example, a SELECT statement can
add complexity to a dynamic SQL program. The program cannot determine the
number of SELECT columns and input parameters until run time.

 Support for null values and indicator parameters and variables.

This subsection includes information about how to support parameters and null values
in dynamic programs. The topics might not all apply to your application.

In general, the steps in a dynamic SQL application are:

1. Declare a host variable for the SQL statement to be submitted.

2. Declare the SQLCA and SQLSA data structures.

3. If you plan to support input or output parameters in the SQL statement, perform
these steps:

a. Declare the SQLDA, names buffer, if desired, and collation buffer, if desired, to
describe the parameters.

b. Define buffers for parameter values of different data types.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-9

Dynamic SQL Operations Declaring a Host Variable
4. If you plan to execute the statement more than once, or if your statement includes
input or output parameters, prepare the SQL statement to compile the statement
dynamically and assign it a statement name.

5. Determine whether there are parameters in the SQL statement by examining the
SQLSA. Then use the DESCRIBE INPUT and DESCRIBE statements as needed.

6. If there are parameters in the statement, move their descriptions into an SQLDA,
set up the SQLDA structure to point to the storage for variables referenced by the
query, and initialize appropriate field values.

7. If there are input parameters in the statement, prompt the user for input. You can
use the names buffer to prompt the user. Depending on your situation, you might
also want to handle null values on input.

8. Using the input SQLDA (if there were parameters), perform one of these database
requests:

 Execute the statement (for a statement that is not a SELECT statement). If you
prepared the statement, use an EXECUTE statement. Otherwise, use an
EXECUTE IMMEDIATE statement.

 Process the SELECT statement by issuing a cursor FETCH statement.

9. Display the output. If necessary, handle null results in the output.

The next subsections discuss these steps. Examples illustrate a dynamic SQL program
that handles any statement and allocates memory at run time. The examples use hard-
coded cursor names and statement names (such as C1 and S1) to store the cursor
name and statement name. When a program uses host variables, the program can
dynamically compile multiple statements and make all the statements available for
execution simultaneously.

These examples show several methods of using dynamic SQL statements but are not
intended to represent either the most efficient or the only method to develop a
particular application.

Declaring a Host Variable

In a Declare Section in the Data Division, declare a host variable to serve as the buffer
or “container” for the SQL statement:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 STATEMENT-BUFFER PIC X(256) VALUE SPACES.
EXEC SQL END DECLARE SECTION END-EXEC.

Declaring the SQLCA and SQLSA Data Structures

In the Data Division, declare the SQLCA and SQLSA data structures using INCLUDE
directives:

EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC SQL INCLUDE SQLSA END-EXEC.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-10

Dynamic SQL Operations Defining Storage for Input and Output Parameters
The SQLSA stores information about the statement. (In contrast, the SQLDA stores
information about parameters.)

Defining Storage for Input and Output Parameters

This subsection describes how to allocate storage for parameters. The discussion
starts with a description of the SQLDA structure and associated buffers.

SQLDA Structure, Names Buffer, and Collation Buffer

SQL/MP uses the SQL descriptor area (SQLDA) to return information about input
parameters and output parameters in dynamic SQL statements. The SQLDA also
stores pointers to these optional data buffers:

 The names buffer, which stores the names of input parameters or lists the names
of selected columns.

 The collation buffer, which receives copies of any collations used by columns in the
query.

You can use the SQLDA data structure in:

 A DESCRIBE INPUT statement to return information about input parameters.

 A DESCRIBE statement to return information about output columns or copies of
any collations used by the columns

 The USING DESCRIPTOR clause of a FETCH statement to retrieve rows from an
SQL table.

 The USING DESCRIPTOR clause of an EXECUTE statement to execute a
dynamic SQL statement.

The sizes of the SQLDA and names buffer depend on the number of input parameters
or output parameters referenced in dynamic SQL statements. Your program can have
more than one SQLDA. In some cases, you can reuse the same structure for different
SQL statements.

If there are input parameters in the dynamic SQL statement, you must have an input
SQLDA to describe them. Similarly, if your program handles dynamic SELECT
operations, declare an SQLDA to describe the output results (SELECT columns).

If your application prompts the user for parameter values or displays column names for
output to the user, declare one or more names buffers.

SQLDA Contents

Table 10-2 describes the information stored in the SQLDA structure. Note that the
SQLDA structure contains an SQLVAR record for each input parameter or output
variable.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-11

Dynamic SQL Operations Defining Storage for Input and Output Parameters
Table 10-2. SQLDA Structure Fields (page 1 of 2)

Field Name Description

EYE-CATCHER An identifying field that a program must initialize. SQL/MP does not
return a value to EYE-CATCHER.

NUM-ENTRIES The number of input or output parameters the SQLDA structure can
accommodate.

SQLVAR Group item that describes input parameters or database columns. The
DESCRIBE INPUT and DESCRIBE statements return one SQLVAR entry
for each input parameter or each output variable.

DATA-TYPE The data type of the parameter. For the values used for each data type,
see Table 10-3 on page 10-13.

DATA-LEN The DATA-LEN value depends on the data type:

Fixed-length character The number of bytes in the string.

Variable-length character The maximum number of bytes in the string.

Decimal numeric Bits 0:7 contain the decimal scale. Bits 8:15
contain the byte length of the item.

Binary numeric Bits 0:7 contain the decimal scale. Bits 8:15
contain the byte length of the item (2, 4, or 8).

Date-time or INTERVAL Bits 0:7 contain one of these codes for the
range of the field. Bits 8:15 contain the storage
size of the item.

1 Year to Year 11 Year to Minute 20 Day to Minute
2 Month to Month 12 Year to Second 21 Day to Second
3 Day to Day 13 Year to Fraction 22 Day to Fraction
4 Hour to Hour 14 Month to Day 23 Hour to Minute
5 Minute to Minute 15 Month to Hour 24 Hour to Second
6 Second to Second 16 Month to Minute 25 Hour to Fraction
7 Fraction to Fraction 17 Month to Second 26 Minute to Second
8 Year to Month 18 Month to Fraction 27 Minute to Fraction
9 Year to Day 19 Day to Hour 28 Second to
Fraction
10 Year to Hour

PRECISION The PRECISION value depends on the data type:

Binary numeric The numeric precision.

Date-time or INTERVAL Bits 0:7 contain the leading field precision.
Bits 8:15 contain the fraction precision. If the
FRACTION field is not included, bits 8:15
are 0.

Character and VARCHAR The character set ID
(0 = UNKNOWN):

1 KANJI 101 ISO88591 104 ISO88594 107 ISO88597
12 KSC5601 102 ISO88592 105 ISO88595 108 ISO88598

103 ISO88593 106 ISO88596 109 ISO88599
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-12

Dynamic SQL Operations Defining Storage for Input and Output Parameters
This example shows a version 315 SQLDA structure. For a description of version 1
and version 2 SQLDA structures, see Appendix D, Converting COBOL Programs.

01 sqlda-name.
 05 EYE-CATCHER PIC X(2) VALUE "D1".
 05 NUM-ENTRIES PIC S9(4) COMP VALUE sqlvar-count.
 05 SQLVAR OCCURS sqlvar-count TIMES.
 10 DATA-TYPE PIC S9(4) COMP.
 10 DATA-LEN NATIVE-2.
 10 PRECISION PIC S9(4) COMP.
 10 NULL-INFO PIC S9(4) COMP.
 10 VAR-PTR PIC S9(9) COMP VALUE -999999.
 10 IND-PTR PIC S9(8) COMP VALUE -999999.
 10 CPRL-PTR PIC S9(9) COMP VALUE -999999.
 10 RESERVED PIC S9(9) COMP VALUE -1.
01 names-buffer PIC X(names-buffer-length).
01 collations-buffer PIC X(collation-buffer-length).

Table 10-3 lists the SQLDA DATA-TYPE values for each specific data type.

NULL-INFO For input parameters, NULL-INFO contains a negative integer if the
parameter permits null values.

For output parameters, NULL-INFO contains a negative integer if the
parameter can return a null value.

VAR-PTR The extended address of the actual data (value of input parameter or
database column). SQL/MP does not return VAL-PTR. Your program
must initialize it to point to the input and output data buffer.

IND-PTR The address of a flag that indicates whether a parameter or column is
actually null. For input parameters, your program initializes IND-PTR to -
1 if the user entered a null value. For output columns, SQL/MP initializes
the location referenced by IND-PTR to -1 if the column value was null. If
you program does not need to process null values, initialize IND-PTR to
an invalid address.

CPRL-PTR For input columns, CPRL-PTR is not set.

For output columns, CPRL-PTR contains the address of the collation
used by the column, if a collation was used. If a collation was not used
for the output column, CPRL-PTR contains a negative integer.

Table 10-3. SQLDA DATA-TYPE Values (page 1 of 3)

Value Type of Data

Fixed-Length Character Data Types (0 – 63)

0 Fixed-length single-byte character

1 Fixed-length single-byte character, upshifted

2 Fixed-length double-byte character

Table 10-2. SQLDA Structure Fields (page 2 of 2)

Field Name Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-13

Dynamic SQL Operations Defining Storage for Input and Output Parameters
VARCHAR Data Types (64 – 127)

64 Variable-length single-byte character

65 Variable-length single-byte character, upshifted

66 Variable-length double-byte character

Numeric Data Types (128 – 191)

130 16-bit signed (signed SMALLINT)

131 16-bit unsigned (unsigned SMALLINT)

132 32-bit signed (signed INT)

133 32-bit unsigned (unsigned INT)

134 64-bit signed (signed LARGEINT)

140 32-bit FLOAT (REAL)

141 64-bit FLOAT (DOUBLE PRECISION)

150 Unsigned DECIMAL

151 DECIMAL, leading sign separate (not SQL type)

152 DECIMAL, leading sign embedded

153 DECIMAL, trailing sign separate (not SQL type)

154 DECIMAL, trailing sign embedded (not SQL type)

Date-Time and INTERVAL Data Types (192 – 212)

192 General Date-Time (DATETIME)

195 Year to Year (INTERVAL)

196 Month to Month (INTERVAL)

197 Year to Month (INTERVAL)

198 Day to Day (INTERVAL)

199 Hour to Hour (INTERVAL)

200 Day to Hour (INTERVAL)

201 Minute to Minute (INTERVAL)

202 Hour to Minute (INTERVAL)

203 Day to Minute (INTERVAL)

204 Second to Second (INTERVAL)

205 Minute to Second (INTERVAL)

206 Hour to Second (INTERVAL)

207 Day to Second (INTERVAL)

208 Fraction to Fraction (INTERVAL)

209 Second to Fraction (INTERVAL)

Table 10-3. SQLDA DATA-TYPE Values (page 2 of 3)

Value Type of Data
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-14

Dynamic SQL Operations Defining Storage for Input and Output Parameters
Declaring the SQLDA Structure, Names Buffer, and Collation
Buffer

To declare an SQLDA structure and associated buffers, use the INCLUDE SQLDA
directive in the Data Division of your program (but not in a Declare Section). The
syntax is:

sqlda-name

is the name of the SQLDA structure. sqlda-name must follow the conventions for
COBOL names.

sqlvar-count

is either the maximum number of parameters (excluding indicator parameters) for
which you expect to receive input values or, for an output SQLDA, the maximum
number of output parameters. The default is 1. The HP COBOL compiler
generates a separate SQLVAR structure within the SQLDA for each parameter.

names-buffer

is the COBOL record name of the names buffer. The INCLUDE SQLDA directive
generates a template. For the names buffer, you must declare your own template.

max-name-length

is the maximum number of bytes you expect in a parameter name to be returned in
a DESCRIBE or DESCRIBE INPUT statement. If you expect indicator parameters,
double the value of max-name-length.

210 Minute to Fraction (INTERVAL)

211 Hour to Fraction (INTERVAL)

212 Day to Fraction (INTERVAL)

INCLUDE SQLDA (sqlda-name [, sqlvar-count]

 [, names-buffer, max-name-length]

 [, release-option]

 [, CPRULES collation-buffer, max-collation-size]
)

Table 10-3. SQLDA DATA-TYPE Values (page 3 of 3)

Value Type of Data
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-15

Dynamic SQL Operations Defining Storage for Input and Output Parameters
release-option

specifies the version of the SQLDA structure generated by the HP COBOL
compiler. RELEASE1 specifies SQL/MP version 1, and RELEASE2 specifies
SQL/MP version 2.

CPRULES

is a keyword that is required if you specify a collation buffer.

collation-buffer

is a host variable that is a COBOL record name of the collation buffer. The
DESCRIBE statement includes the COLLATIONS INTO clause, which directs
SQL/MP to return collations to collation-buffer.

For more information, see Calculating the Lengths of the Names and Collation
Buffers on page 10-20.

max-collation-size

is the maximum number of bytes you expect for any one collation.

Considerations

These guidelines apply to the use of the INCLUDE SQLDA directive:

 You must supply both the number of parameters you expect as well as the
maximum lengths of their names. Be sure to specify sufficient numbers and sizes.
You can specify large numbers to ensure that any data you might obtain at run time
will fit. If you are not concerned about memory use, this approach is most efficient.

 Declare buffers in working storage. Use redefines to store differing data types.

 One reason to specify a collation buffer is to access collation rules in your COBOL
code so that you can make comparisons using the same rules that SQL/MP does
for a given column.

Examples

In this example, the INCLUDE SQLDA directive generates a version 300 SQLDA
structure named SQLDAX with these buffers:

 NAMES-BUFFER, which reserves space for 20 names with a maximum length of
30 bytes each

Note. Although the HP COBOL compiler supports the RELEASE1 and RELEASE2
options, HP might not support these options in a future PVU. If you are using a version 300
(or later) HP COBOL compiler to generate version 1 or version 2 data structures, use the
INCLUDE STRUCTURES directive with the VERSION 1 or VERSION 2 option and
remove the RELEASE1 or RELEASE2 option from the INCLUDE SQLDA directive.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-16

Dynamic SQL Operations Defining Storage for Input and Output Parameters
 COLLATION-BUFFER, which supports collations with a maximum length of 512
bytes each

The INCLUDE STRUCTURES and INCLUDE SQLDA directives in the COBOL
program are:

DATA DIVISION.
EXEC SQL INCLUDE STRUCTURES SQLDA VERSION 315 END-EXEC.
...
EXEC SQL INCLUDE SQLDA (SQLDAX, 20, NAMES-BUFFER, 30,
 CPRULES COLLATION-BUFFER, 512)
END-EXEC.

The HP COBOL compiler generates this SQLDA structure:

01 SQLDAX.
 05 EYE-CATCHER PIC X(2) VALUE "D1".
 05 NUM-ENTRIES PIC S9(4) COMP VALUE 20.
 05 SQLVAR OCCURS 20 TIMES.
 10 DATA-TYPE PIC S9(4) COMP VALUE 0.
 10 DATA-LEN NATIVE-2.
 10 PRECISION PIC S9(4) COMP VALUE 0.
 10 NULL-INFO PIC S9(4) COMP VALUE 0.
 10 VAR-PTR PIC S9(9) COMP VALUE -999999.
 10 IND-PTR PIC S9(9) COMP VALUE -999999.
 10 CPRL-PTR PIC S9(9) COMP VALUE -999999.
 10 RESERVED PIC S9(9) COMP VALUE -1.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 NAMES-BUFFER PIC X(840).
01 COLLATION-BUFFER PIC X(10320).
EXEC SQL END DECLARE SECTION END-EXEC.

The HP COBOL compiler generates a Declare Section for the NAMES-BUFFER and
COLLATION-BUFFER declarations and determines their lengths:

NAMES-BUFFER = ((30 + 11) + 1) * 20
 = 840 bytes
COLLATION-BUFFER = (512 + 4) * 20
 = 10320 bytes

Defining Buffers for Parameter and Variable Storage

Define storage for parameter values according to data type. For example:

* Define storage for all possible data types. The VAR-PTR
* field in the input SQLDA points to this storage.
 01 PARAM-REC.
 02 PARAMS OCCURS 20 TIMES.
 03 P PIC X(60).
 03 PCHAR REDEFINES P PIC X(60).
 03 PVARCHAR REDEFINES P.
 04 LEN PIC S9(4) COMP.
 04 VAL PIC X(58).
 03 PNUMERIC REDEFINES P PIC S9(15)V9(3) COMP.
 03 PINT REDEFINES P PIC 9(9) COMP.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-17

Dynamic SQL Operations Preparing the SQL Statement
 03 PDECIMAL REDEFINES P PIC S9(9)V9(3) DISPLAY.
 03 PLARGINT REDEFINES P PIC 9(18) COMP.
 03 PSMLINT REDEFINES P PIC 9(4) COMP.

Declare buffers in working storage. Use redefines to store differing data types.

Preparing the SQL Statement

Before preparing the statement, specify WHENEVER directives for error handling in
the Procedure Division:

EXEC SQL
 WHENEVER SQLERROR PERFORM :100-HANDLE-ERROR END-EXEC.
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.

If you are obtaining the SQL statement from a user, read the statement. In the
Procedure Division, prepare the SQL statement. This example shows the sequence
you can follow for the PREPARE statement, which assigns the name S1 to the SQL
statement:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 STATEMENT-BUFFER PIC X(256).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 DISPLAY "Enter a new SQL statement:"
 ACCEPT STATEMENT-BUFFER.
 ...
* Check the contents of the statement (The sample program
* checks for permutations of "END" or "SAME")
 ...
EXEC SQL PREPARE S1 FROM :STATEMENT-BUFFER END-EXEC.

Checking for Parameters

After you have prepared the statement, you can check to see if there are any input or
output parameters (unless you know there are not any). Table 10-4 lists the information
that the PREPARE statement stores in the SQLSA structure.

Table 10-4. SQLSA Contents after a Prepare Operation (page 1 of 2)

SQLSA Field Description

INPUT-NUM Number of input parameters in the SQL statement. Use this
information to decide how many parameter values to solicit
from the user.

INPUT-NAMES-LEN Length of the buffer required to contain the names of the input
parameters.

OUTPUT-NUM Number of output parameters in the statement. Use this
information to decide how many column values to report.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-18

Dynamic SQL Operations Checking for Parameters
To check the input parameters:

1. Retrieve the number of input parameters from INPUT-NUM OF SQLSA.

2. Specify a DESCRIBE INPUT statement to access input parameters:

EXEC SQL DESCRIBE INPUT S1
 INTO :IN-SQLDA NAMES INTO :IN-NAMESBUF
END-EXEC.

Checking for Output Parameters

To check for output parameters, you perform essentially the same set of operations
described for input parameters except that the pointers point to the output SQLDA and
names buffer and collations buffer. To get the descriptions of the output parameters
into the output SQLDA, use the DESCRIBE statement instead of DESCRIBE INPUT.

To check for variables and allocate space if necessary, perform these steps:

1. Retrieve the number of output parameters from OUTPUT-NUM OF SQLSA.

2. Issue a DESCRIBE statement to access the output parameters. The DESCRIBE
statement can include a COLLATIONS INTO clause, which directs SQL/MP to
return collations to COLL-BUF:

EXEC SQL
 DESCRIBE S1
 INTO :OUT-SQLDA NAMES INTO :OUT-NAMESBUF
 COLLATIONS INTO :COLL-BUF
END-EXEC.

OUTPUT-NAMES-LEN Length of the buffer required to contain the names of the output
parameters.

SQL-STATEMENT-TYPE Type of statement being prepared. Use this information to
decide what type of statement was entered. SQL-
STATEMENT-TYPE can have these values:

1 Cursor SELECT
2 INSERT
3 UPDATE
4 DELETE
5 DDL statement
6 Run-time CONTROL TABLE
7 LOCK, UNLOCK, or FREE RESOURCES
8 GET VERSION OF object

OUTPUT-COLLATIONS-
LEN

Length of the output collations buffer if the application uses
collations.

Table 10-4. SQLSA Contents after a Prepare Operation (page 2 of 2)

SQLSA Field Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-19

Dynamic SQL Operations Handling Parameters
Calculating the Lengths of the Names and Collation Buffers

Use the names buffer to store the names of your input parameters (after a DESCRIBE
INPUT operation) or the names of selected columns (after a DESCRIBE operation).
SQL/MP returns a name to the names buffer as a VARCHAR item. A column name is
qualified with the table name. The HP COBOL compiler processes the name as a
group item defined as:

02 LEN PIC 9(4) COMP.
02 VAL PIC X(value-of-len).

A name with an odd number of characters is padded with a trailing blank to make the
length an even number. The HP COBOL compiler determines the length in bytes of the
names buffer:

names-buffer-length =
 (EVEN (max-name-length + 11)) * sqlvar-count

The 11 bytes added to name-string-size are derived from the length field
(2 bytes), table name (8 bytes), and period separator (1 byte), rounded to an even
number.

The names buffer contains null strings for unnamed input parameters. For an output
expression, the names buffer contains a null string.

The collation buffer receives copies of any collation objects used by columns in the
query. SQL/MP returns a collation object to the collation buffer as a VARCHAR item.
The HP COBOL compiler processes a collation as a group item defined as:

02 LEN PIC 9(4) COMP.
02 VAL PIC X(value-of-len).

The HP COBOL compiler determines the length in bytes of the collation buffer:

collation-buffer-length =
 (max-collation-size + 4) * sqlvar-count

The 4 bytes added to max-collation-size is the length (LEN) field in the
VARCHAR item.

Handling Parameters

If the SQL statement has parameters, the INPUT-NUM field (for input parameters) or
OUTPUT-NUM field (for output parameters) of the SQLSA does not equal 0. If the
statement has parameters, you must change the descriptions in the SQLDA to point to
appropriate host variables. Change the corresponding data types and set up the
SQLDA structure to point to the storage for variables referenced by the query. In
addition, depending on your application, you must check and possibly set several
SQLDA fields related to null values and scaled data.

Loop through the SQLVAR array in the input (for input parameters) or output (for output
parameters) SQLDA structure. Loop n times, where n is the number of parameters
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-20

Dynamic SQL Operations Handling Parameters
from INPUT-NUM or OUTPUT-NUM, respectively. On each iteration, follow these
steps:

1. Check the DATA-TYPE field. If necessary, adjust the data type and reset DATA-
LEN and PRECISION accordingly. For an example of this, see Example 10-1 on
page 10-25.

2. Allocate an amount of memory equal to DATA-LEN for the parameter.

3. Initialize EYE-CATCHER, NUM-ENTRIES, VAR-PTR, and IND-PTR in the SQLDA
structure.

4. Use the NULL-INFO field to tell whether a parameter can contain a null value. Use
the IND-PTR field to tell is the associated value is actually null.

5. To display column headings for output parameters (as SQLCI does), loop through
the names buffer to read the corresponding name for each column and display the
column names.

If you know the number and data types of your parameter values, you can set
DATA-TYPE, DATA-LEN, and VAR-PTR.

The next subsections provide more information about each of these steps.

Checking the DATA-TYPE Field

The DATA-TYPE field in the SQLDA indicates the data type of the parameter. Check
the DATA-TYPE field to decide how to store input parameter values and how to display
output column values. When you evaluate data types, check for these numeric ranges:

You might need to change the value of the DATA-TYPE field if the data type of the
parameter you declared is compatible with the data type SQL uses.

Checking the DATA-LEN Field

If your program must handle numeric values with scale, you need to read scale
information from the output SQLDA. DESCRIBE places this information in bits 0
through 7 of the DATA-LEN field in the SQLVAR entry.

If you can ignore scale, you can set bits 0 through 7 of the DATA-LEN field to 0,
causing data truncation. Otherwise, COBOL data types handle scale. To determine
whether scale is present, check whether DATA-LEN is greater than 255. If it is, the
upper byte has a nonzero value, and scale information is present.

 0 – 63 CHARACTER data

 64 – 127 VARCHAR data

128 – 191 VARCHAR data

192 – 212 Date-time or INTERVAL data
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-21

Dynamic SQL Operations Handling Parameters
The same considerations apply if your program must handle precision for date-time,
INTERVAL, FLOAT, or binary numeric values. The precision information is in the
PRECISION field of the SQLVAR entry.

This example checks for scale in an output value and sets the scale information to 3 for
numeric and decimal items. You would follow a similar procedure to handle a scaled
input parameter value, using the input SQLDA instead of the output SQLDA.

* Set DATA-LEN to (3,8) for numeric and to (3,12)
* for decimal if scale exists. DATA-TYPE between 127 and
* 150 is numeric:
 IF DATA-TYPE OF SQLVAR OF OUT-SQLDA (INDEX) > 127
 AND DATA-LEN OF SQLVAR OF OUT-SQLDA (INDEX) > 255
 IF DATA-TYPE OF SQLVAR OF OUT-SQLDA (INDEX) < 150

* Move a binary 3 to upper byte and a binary 8 to lower byte:
 MOVE 776 TO DATA-LEN OF SQLVAR OF OUT-SQLDA(INDEX)
 ELSE
* Move a binary 3 to upper byte and a binary 12 to lower
* byte:
 MOVE 780 TO DATA-LEN OF SQLVAR OF OUT-SQLDA (INDEX)
 END-IF

To find the decimal equivalents for binary values, start Inspect and enter the
hexadecimal equivalent for the decimal value in each byte:

>INSPECT

* You are in INSPECT here
--display (%h0308) in d
776
--exit

* You are in your program here
... MOVE 776 TO DATA-LEN OF OUTPUT-SQLDA

Checking the PRECISION Field for Character Set ID

For character (including VARCHAR) parameters and variables, the PRECISION field
contains the character set ID. When a dynamic SQL statement executes, SQL/MP
checks the PRECISION field to ensure that the character set ID matches the expected
character set of the parameter, which is determined by the
COLUMNS.CHARACTERSET value.

If the character sets do not match, SQL/MP returns an error. If, however, the program
expects an UNKNOWN character set and the CHARACTERSET value for the
parameter indicates a single-byte character set, SQL/MP does not return an error.

Initializing the SQLDA Structure

When a program issues a DESCRIBE INPUT or DESCRIBE statement, the system
supplies values for all fields of the SQLDA except EYE-CATCHER, NUM-ENTRIES,
VAR-PTR, and IND-PTR. If an application supports parameters, it must explicitly
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-22

Dynamic SQL Operations Handling Parameters
reference the DATA-TYPE, DATA-LEN, and VAR-PTR fields in the SQLDA. In addition,
this program must initialize these fields:

 EYE-CATCHER to point to the value D1 (for a version 2 or 300 SQLDA) or DA (for
a version 1 SQLDA).

 VAR-PTR to point to the input or output data buffer. Because COBOL programs
cannot generate addresses, you must call a TAL procedure, SQLADDR, to
accomplish this task. SQLADDR takes the address of a host variable in Working
Storage and places the address in VAR-PTR. To call SQLADDR, use the format in
the next example. Its syntax is described in Section 5, SQL/MP System
Procedures.

 IND-PTR to point to indicator variables, if any. If you are handling null values,
check NULL-INFO. If NULL-INFO is 0, do not allocate any memory. If NULL-INFO
is -1, allocate two bytes of memory for the indicator value and set IND-PTR to the
address of the indicator variable.

If the program does not process null values, set IND-PTR to an invalid address.

* For input data buffer (variable definitions appear in
* Example 10-1). INDEX is a loop counter--you are
* setting VAR-PTR for each input parameter:

 ENTER TAL "SQLADDR"
 USING P OF PARAMS(INDEX)
 GIVING VAR-PTR OF SQLVAR OF IN-SQLDA(INDEX)

* For output data buffer (variable definitions appear in
* Example 10-3). INDEX is a loop counter--you are
* setting VAR-PTR for each output parameter:

 ENTER TAL "SQLADDR"
 USING C OF COLUMN(INDEX)
 GIVING VAR-PTR OF SQLVAR OF OUT-SQLDA(INDEX)

Using the NULL-INFO and IND-PTR Fields

The DESCRIBE INPUT statement sets the NULL-INFO field depending on whether the
prepared SQL statement includes a null indicator and not whether the parameter
actually supports a null value. To determine if a parameter supports a null value, check
the NULLALLOWED column in the COLUMNS table for the catalog where the table is
registered.

The input and output SQLDA structures have two fields, NULL-INFO and IND-PTR,
that are used for handling null values:

 NULL-INFO tells whether the input parameter or output variable can contain a null
value, based on whether the prepared statement includes an associated null
indicator parameter.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-23

Dynamic SQL Operations Prompting the User for Input Values
 IND-PTR points to a flag in Working-Storage that indicates whether the parameter
actually was null. If the parameter or output variable is not null, you use the
location referenced by VAR-PTR to indicate the value.

If your program processes indicator parameters, IND-PTR points to the indicator
parameter associated with that input parameter in the names buffer after DESCRIBE
INPUT executes. This behavior is parallel to that of VAR-PTR after DESCRIBE INPUT
or DESCRIBE executes.

You access the IND-PTR in the SQLVAR array in the same way you access VAR-PTR:
you call SQLADDR to make IND-PTR point to the Working-Storage flag that indicates
whether the value is null. If you want all your parameters and output parameters to
handle null values, your program should access IND-PTR every time it accesses
VAR-PTR.

Figure 10-2 illustrates the structure of the names buffer immediately after DESCRIBE
INPUT executes when indicator parameters are present for two parameters, where
len is a 2-byte length, name is a parameter name, ind-len is the length of an
indicator parameter name, and ind-name is an indicator parameter name.

Like parameter names, indicator variable names are blank padded to even lengths.

Prompting the User for Input Values

If there are input parameters, prompt the user for values before executing the SQL
statement. Read the name of each parameter and prompt the user for each value in
this way:

1. Loop through the names buffer and read each value into the data buffer you have
allocated for the parameter, according to the data type of the value.

2. If the parameter can be null (NULL-INFO is -1) and the value entered was null, set
the indicator variable at the location in IND-PTR to -1.

Before prompting for input, use the DATA-TYPE field in the SQLDA structure to
evaluate input parameter values. Example 10-1 on page 10-25 shows one way to do
this.

Figure 10-2. Names Buffer Structure

VAR-PTR
of

SQLVAR(1)

IND-PTR of

SQLVAR(1)

VAR-PTR
of

SQLVAR(2)

IND-PTR of

SQLVAR(2)

len1
name1

ind-len-1 ind-name-
1

len2
name2

ind-len-2 ind-name-
2

VST008.vsd
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-24

Dynamic SQL Operations Prompting the User for Input Values
Example 10-1. Evaluating Input Parameter Values (page 1 of 2)

 DATA DIVISION.
* Loop counter:
 01 INDEX PIC S9(4) COMP.

* Define storage for all possible data types. The VAR-PTR
* field in the input SQLDA points to this storage.
 01 PARAM-REC.
 02 PARAMS OCCURS 20 TIMES.
 03 P PIC X(60).
 03 PCHAR REDEFINES P PIC X(60).
 03 PVARCHAR REDEFINES P.
 04 LEN PIC S9(4) COMP.
 04 VAL PIC X(58).
 03 PNUMERIC REDEFINES P PIC S9(15)V9(3) COMP.
 03 PINT REDEFINES P PIC 9(9) COMP.
 03 PDECIMAL REDEFINES P PIC S9(9)V9(3) DISPLAY.
 03 PLARGINT REDEFINES P PIC 9(18) COMP.
 03 PSMLINT REDEFINES P PIC 9(4) COMP.

 PROCEDURE DIVISION.

 MOVE 1 TO INDEX
 ...
 PERFORM UNTIL INDEX IS > INPUT-NUM OF SQLSA
 ...
* Check for character data type:
* Guard against the case where the database column is longer
* than the data variable in Working-Storage.
 IF DATA-TYPE OF SQLVAR OF IN-SQLDA(INDEX) < 64
 ACCEPT PCHAR OF PARAMS(INDEX)
 IF DATA-LEN OF IN-SQLDA(INDEX) > 60
 MOVE 60 TO DATA-LEN OF SQLVAR OF IN-SQLDA(INDEX)
 END-IF
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-25

Dynamic SQL Operations Prompting the User for Input Values
Using the Names Buffer to Prompt for Input Parameter
Values

You can use the names buffer to prompt the user for input parameter values, in which
case the names buffer contains the names of the input parameters. You can also use
the names buffer to display column names, in which case the names buffer contains
the names of the columns.

The data returned to the names buffer is in this form:

len-1 name-1 len-2 name-2 ... len-n name-n

In this case, name-1 represents the first parameter or column name, name-2 the
second, and name-n the last. The length information is a 2-byte integer (SQL data
type PIC S9(4) COMP). All names with a length of an odd number of characters are
padded with a blank to make the length an even number. When you display the names,
you might want to check for this blank padding. Names for output expressions or
unnamed input parameters appear as a null string with a length of 0.

To determine the names in the names buffer programmatically, you can write a routine
to return the names structure when given the address of the column information
desired. After the DESCRIBE INPUT or DESCRIBE statement executes, the VAR-PTR
field of each SQLVAR entry in the input or output SQLDA contains the address of the
length field associated with the name of the corresponding parameter or column in the
names buffer.

 ELSE

* Check for VARCHAR data type; store length and value in
* separate sub-fields:
 IF DATA-TYPE OF SQLVAR OF IN-SQLDA(INDEX) = 64
 ACCEPT VAL OF PVARCHAR OF PARAMS(INDEX)
 IF DATA-LEN OF IN-SQLDA(INDEX) > 58
 MOVE 58 TO DATA-LEN OF SQLVAR OF IN-SQLDA(INDEX)
 END-IF

* If you want SQL to check whether the string the user
* entered will fit into the database column, you can also
* determine the length of the user-supplied string and move
* that length to DATA-LEN OF SQLVAR OF IN-SQLDA(INDEX) and to
* LEN OF PVARCHAR OF PARAMS(INDEX).

 ELSE

* Check for 16-bit integer:
 IF DATA-TYPE OF SQLVAR OF IN-SQLDA(INDEX) <= 131
 ACCEPT PSMLINT OF PARAMS(INDEX)

 ELSE ...
* Continue to check for and store all possible data types.

Example 10-1. Evaluating Input Parameter Values (page 2 of 2)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-26

Dynamic SQL Operations Prompting the User for Input Values
You can use VAR-PTR to read the names from the names buffer only if you access the
names buffer immediately following DESCRIBE INPUT or DESCRIBE. After you have
set VAR-PTR to point to the data, you can no longer use VAR-PTR to access the
names buffer and must loop through the names buffer to get the names.

Some examples of entries in the names buffer are:

A complete names buffer with the names shown in this example might look like this:

|04|ABCD|06|ABCDE |00|

When reading the names buffer, check to see if NULL-INFO is -1. If so, read the length
field for the indicator and add this length field to the index to skip to the next name in
the names buffer.

Complete Entry Entry Part Description

|04|ABCD| |04|

|ABCD|

2-byte length 4-character string with value = 4

4-character string

|06|ABCDE | |06|

|ABCDE |

2-byte length 4-character string with value = 6

5-character string padded with 1 trailing blank

|00|| |00|

||

2-byte length with value = 0

Null string
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-27

Dynamic SQL Operations Prompting the User for Input Values
Example 10-2 prompts for input.

Handling Null Values in Input Parameters

If your program handles null values on input, each parameter in the statement entered
by the user or constructed by your program must have a corresponding indicator
parameter to handle possible null values, or a run-time error will occur when a null
value is encountered.

Example 10-2. Prompting for Input

 DATA DIVISION.
 ...
 01 NAME PIC X(30).
 01 NAME-IX PIC S9(4) COMP.

* This variable will store the 2-byte length field:
 01 NAMESIZEX PIC X(2).

* This variable redefines the 2-byte length field
* as an integer so you can perform arithmetic to advance
* through the buffer:
 01 NAMESIZE REDEFINES NAMESIZEX PIC S9(4) COMP.

 PROCEDURE DIVISION.
 ...

 DISPLAY "ENTER PARAMETER VALUES: "
 MOVE 1 TO NAME-IX

* In PERFORM loop for a number of iterations equal to
* INPUT-NUM OF SQLSA:

* Store the 2-byte length field in variable NAMESIZEX:
 MOVE IN-NAMESBUF (NAME-IX : 1) TO NAMESIZEX (1 : 1)
 MOVE IN-NAMESBUF (NAME-IX + 1 : 1) TO NAMESIZEX (2 : 1)

* Move pointer NAME-IX past the LENGTH field and onto the
 name:
 COMPUTE NAME-IX = NAME-IX + 2

* If NAMESIZE > 0, display the name with a prompt character:
 MOVE SPACE TO NAME
 MOVE IN-NAMESBUF(NAME-IX : NAMESIZE) TO NAME
 DISPLAY "?", NAME

* Position to the next length field:
 COMPUTE NAME-IX = NAME-IX + NAMESIZE

* ACCEPT the parameter value according to its data type:
 ...
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-28

Dynamic SQL Operations Performing the Database Request
After DESCRIBE INPUT executes and for each input parameter described in an
SQLVAR array in the input SQLDA, SQL/MP sets NULL-INFO to -1 if the input
parameter in the prepared statement could have a null value (that is, if the prepared
statement included a null indicator parameter).

If the user specifies a null value for the parameter, set the Working-Storage location
referenced by IND-PTR to -1. SQL/MP checks this value and assumes a null value for
the parameter.

If instead the user does not enter a null value for the input parameter, you can assign a
0 to the location pointed to by IND-PTR. SQL/MP checks IND-PTR, sees that IND-PTR
indicates a nonnull value, and gets the parameter value from the Working-Storage
location pointed to by VAR-PTR for the parameter value.

Performing the Database Request

An application must process statements that are not SELECT statements differently
than SELECT statements.

Processing NonSELECT Statements

To determine if a statement is not a SELECT statement, check SQL-STATEMENT-
TYPE OF SQLSA to see if it equals 0. If so, perform these steps:

1. Begin a TMF transaction:

EXEC SQL BEGIN WORK END-EXEC.

(Depending on your transaction definition you might not want to do this for every
statement.)

2. Execute a statement other than a SELECT statement.

 If there were input parameters:

EXEC SQL EXECUTE S1
 USING DESCRIPTOR :IN-SQLDA END-EXEC.

 If there were no input parameters:

EXEC SQL EXECUTE S1 END-EXEC.

3. End the TMF transaction (for both SELECT and other statements):

EXEC SQL COMMIT WORK END-EXEC.

(Depending on your transaction definition you might not want to do this for every
statement.)

Note. The DESCRIBE INPUT statement sets the NULL-INFO field, depending on whether the
prepared SQL statement includes a null indicator and not on whether the column in the table
supports a null value. To determine if a column allows a null value, check the NULLALLOWED
column in the COLUMN catalog table for the catalog where the table is registered.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-29

Dynamic SQL Operations Performing the Database Request
Processing SELECT Statements

To determine if a statement is a SELECT statement, check SQL-STATEMENT-TYPE
OF SQLSA to see if it equals 1. If so, perform these steps:

1. Declare a cursor to handle the SELECT statement:

EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.

For more information about dynamic cursors, see Using Dynamic SQL Cursors,
following.

2. Begin a TMF transaction:

EXEC SQL BEGIN WORK END-EXEC.

(Depending on your transaction definition you might not want to do this for every
statement.)

3. Open the cursor:

EXEC SQL OPEN C1 USING DESCRIPTOR :IN-SQLDA END-EXEC.

4. Execute a loop to fetch the values and display them:

EXEC SQL FETCH C1 USING DESCRIPTOR :OUT-SQLDA END-EXEC.
* **SQLDA contains pointers to output data buffers

Display the values in a format according to data type. (For a repetitive display of
column names, use the output names buffer at this point and omit Steps 1through
3.)

If you know in advance which columns to select, you could use this form of the
FETCH statement:

 EXEC SQL FETCH cursor INTO :

, :SAL END-EXEC.
* **Output parameters are :

 and :SAL

5. Close the cursor:

EXEC SQL CLOSE C1 END-EXEC.

6. End the TMF transaction:

EXEC SQL COMMIT WORK END-EXEC.

(Depending on your transaction definition you might not want to do this for every
statement.)

Using Dynamic SQL Cursors

Dynamic SQL statements use cursors to process SELECT statements in the same way
static SQL statements use cursors. The program reads rows from a table, one by one,
and sends the column values to output data buffers specified in the program. This
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-30

Dynamic SQL Operations Performing the Database Request
subsection describes some guidelines for the use of cursors. The order for executing
statements for using a cursor with dynamic SQL operations is:

Follow these guidelines when you declare and use a cursor:

 If you are using the HP COBOL or SQL compiler interface, you can use a host
variable wherever you can use the cursor-name and statement-name
parameters. For each new statement and cursor, store the name in the host
variable before executing the statements.

 The DECLARE CURSOR, PREPARE, OPEN, FETCH, CLOSE, DELETE WHERE
CURRENT, UPDATE WHERE CURRENT, DESCRIBE INPUT, and DESCRIBE
statements for a particular cursor and its associated statement must all appear in
the same procedure, unless you are using a foreign cursor. See Using Foreign
Cursors on page 4-23.

 The PREPARE statement does not have to precede the other statements in the
program listing order. However, the PREPARE statement must precede the
DECLARE CURSOR statement and any DESCRIBE, DESCRIBE INPUT, OPEN,
FETCH, and CLOSE statements (for extended dynamic SQL statements, where
the cursor and statement names are stored in host variables). Foreign cursors do
not have this restriction.

Using Cursors With a USING DESCRIPTOR Clause

If the program is handling input parameters with values entered at run time, use the
USING DESCRIPTOR clause with the OPEN statement to specify values for the
parameter values in the SELECT statement. The input SQLDA describes the input
location for each parameter. The DESCRIBE INPUT statement fills in the SQLVAR
entries in the SQLDA, and your program sets the VAR-PTR fields and prompts the user
for values for the parameters.

Operation Description

PREPARE statement-name
 FROM :host-variable

Dynamically compiles the SELECT
statement defining the cursor

Issue the DESCRIBE INPUT and DESCRIBE
statements

DECLARE cursor-name CURSOR
 FOR statement-name

Declares the cursor

OPEN cursor-name
 USING DESCRIPTOR input-sqlda

Opens the cursor and gets parameter
values from an input data buffer in the
program

Loop until end-of-file

FETCH cursor-name
 USING DESCRIPTOR output-sqlda

Retrieves data and outputs column values
to an output data buffer in the program

CLOSE cursor-name Closes the cursor
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-31

Dynamic SQL Operations Displaying Output
You also use the USING DESCRIPTOR clause with the FETCH statement to write
column values to an output buffer specified in the program’s variable declarations. The
output SQLDA describes a list of memory locations into which FETCH copies the data.

Using Cursors With an UPDATE WHERE CURRENT Clause

To use UPDATE WHERE CURRENT with a static SQL cursor, specify a FOR UPDATE
OF clause with a column list in the DECLARE CURSOR statement. In contrast, to use
UPDATE WHERE CURRENT with a dynamic SQL cursor, you must specify a FOR
UPDATE OF clause in the SELECT statement that defines the cursor.

This example shows an UPDATE WHERE CURRENT operation with a dynamic SQL
cursor. In the example, the host variable HOSTVAR contains the SELECT statement to
define the cursor. The host variable :SALVAR receives the selected values.

PROCEDURE DIVISION.

 MOVE "SELECT SALARY FROM =EMPLOYEE FOR UPDATE OF SALARY"
 TO HOSTVAR.

 EXEC SQL PREPARE S1 FROM :HOSTVAR END-EXEC.

 EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.

 EXEC SQL OPEN C1 END-EXEC.

 EXEC SQL FETCH C1 INTO :SALVAR END-EXEC.

 EXEC SQL
 UPDATE =EMPLOYEE SET SALARY = SALARY * 1.20
 WHERE CURRENT OF C1
 END-EXEC.

Displaying Output

There are several ways to display column values. Three ways to display column values
are:

 Using the Names Buffer to Display Output

 Displaying Names as Headings on page 10-33

 Using DATA-TYPE to Evaluate Column Values on page 10-33

Using the Names Buffer to Display Output

After the FETCH operation for each row, you can display output by performing
essentially the same operations you did to prompt for input. However, you might
display the column names at a different point.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-32

Dynamic SQL Operations Displaying Output
For input, this sequence was described in Prompting the User for Input Values on
page 10-24:

1. Get the length of the parameter name.
2. Advance to the name.
3. Display the name and ask for a value for that name.
4. Interpret the value entered according to data type.

To display output, one possible sequence is:

1. Get the length of the column name.
2. Advance to the name.
3. Interpret the data type of the column value.
4. Display the name with the value.

This sequence displays names and values repetitively. For example:

EMPNUM 2000
EMPNAME MARILYN ROBERTS

EMPNUM 1566
EMPNAME CATHERINE WILLIAMS

EMPNUM 1890
EMPNAME RICHARD JONES

Displaying Names as Headings

Another possible sequence for displaying output would show the column names as
headings, the way SQLCI does. To do this, loop (OUTPUT-NUM OF SQLSA) times:

 Get the length of the column name.
 Advance to the name.
 Display the name with some blank space.
 Advance to the next length field.

If you use this second method, you must execute a second loop to interpret and
display the values, including enough blank space for each value to fall under its column
heading.

Using DATA-TYPE to Evaluate Column Values

You can use DATA-TYPE to evaluate SELECT column values before displaying values.
The code shown in Example 10-3 on page 10-34 illustrates one way to do this. This
code displays the column names repetitively rather than displaying all the names as
headings as SQLCI does.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-33

Dynamic SQL Operations Displaying Output
Example 10-3. Displaying Output Column Values

 DATA DIVISION.

* Define storage for all possible data types for output columns:
 01 COLUMNS-REC.
 02 COLUMN OCCURS 20 TIMES.
 03 C PIC X(60).
 03 RCHAR REDEFINES C PIC X(60).
 03 RINT REDEFINES C PIC 9(9) COMP.
 03 RVARCHAR REDEFINES C.
 04 LEN PIC S9(4) COMP.
 04 VAL PIC X(30) .
 03 RNUMERIC REDEFINES C PIC S9(15)V9(3) COMP.
 03 RDECIMAL REDEFINES C PIC S9(9)V9(3) DISPLAY.
 03 RLARGINT REDEFINES C PIC 9(18) COMP.
 03 RSMLINT REDEFINES C PIC 9(4) COMP.

* Define loop counter:
 01 INDEX PIC S9(4) COMP.

* Define a variable to save the length of a column:
 01 CLEN PIC S9(4) COMP.

* Define a variable to store the column name:
 01 NAME PIC X(30).

* Get the column name from the names buffer and store in
* NAME.

 PROCEDURE DIVISION.

 PERFORM UNTIL INDEX IS > OUTPUT-NUM OF SQLSA
 ...
* Check for character data type:
 IF DATA-TYPE OF SQLVAR OF OUT-SQLDA(INDEX) < 64
 MOVE DATA-LEN OF SQLVAR OF OUT-SQLDA(INDEX) TO CLEN
 DISPLAY NAME, " = ",
 RCHAR OF COLUMN(INDEX) (1 : CLEN)
 ELSE
* Check for VARCHAR data type:
 IF DATA-TYPE OF SQLVAR OF OUT-SQLDA (INDEX) = 64
 MOVE LEN OF RVARCHAR OF COLUMN(INDEX) TO CLEN
 DISPLAY NAME, " = ",
 VAL OF RVARCHAR OF COLUMN(INDEX) (1 : CLEN)

 ELSE
* Check for 16-bit integer data type:
 IF DATA-TYPE OF SQLVAR OF OUT-SQLDA (INDEX) <= 131
 DISPLAY NAME , " = ", RSMLINT OF COLUMN(INDEX)

 ELSE ...
* Continue checking all possible data types.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-34

Dynamic SQL Operations Constructing a Server that Interfaces With Pathway
Handling Null Results

If the value returned is null, SQL/MP checks NULL-INFO and moves a -1 into the
location pointed to by IND-PTR. (Errors are returned if the value is null but NULL-INFO
is 0 or if IND-PTR is an invalid address.)

Your program must check NULL-INFO to determine whether the value returned could
be null. Handle null values as follows:

 If NULL-INFO is -1, check the indicator variable pointed to by IND-PTR of
SQLVAR. If the indicator variable is also -1, then a null value was returned. Display
something representing a null value (perhaps blanks or zeros). Otherwise, display
the value in the location pointed to by VAR-PTR.

 If NULL-INFO is 0, display the value pointed to by VAR-PTR.

If ignoring null values, simply display the value pointed to by VAR-PTR.

Constructing a Server that Interfaces With
Pathway

A dynamic SQL application can accept statements directly from a screen interface like
Pathway. The dynamic SQL statement (or part of a statement) accepted directly from
the user is compiled and executed, and the program replies to the user.

In many cases, you can use Pathmaker to code applications for a Pathway
environment. For detailed information on coding servers using SQL with Pathway
screens, see the Pathmaker Programming Guide. This subsection presents guidelines
for writing a dynamic SQL COBOL server that interfaces with Pathway. For general
guidelines on writing COBOL servers for Pathway, see the COBOL85 for NonStop
Systems Manual and the Pathway/TS SCREEN COBOL Reference Manual.

Constructing an SQL Statement from User Input

If the program functions with Pathway input, the user enters statements in a Pathway
screen, and the SCREEN COBOL requester program sends the data to your program.
Your program then performs the database request and replies to the SCREEN COBOL
requester, which replies to the user through the Pathway screen.

If the user enters field values (instead of SQL statements), your program must
construct the SQL statement from the input values. To construct the statement, first
check values passed from the requester in the buffer to decide what the statement

Note. The DESCRIBE INPUT statement sets the NULL-INFO field, depending on whether the
prepared SQL statement includes a null indicator and not on whether the column in the table
supports a null value. To determine if a column supports a null value, check the
NULLALLOWED column in the COLUMN catalog table for the catalog where the table is
registered.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-35

Dynamic SQL Operations Constructing a Reply Message
includes. As each value is read, you concatenate the corresponding text to form the
statement.

Example

Suppose that an application screen describes a personnel record. If any column does
not have a value, the user can enter N. LIST-MSG is the name of the request message
you defined. The code in these examples checks the EMPNUM field in
LIST-MSG and, if required, concatenates the text “EMPNUM” to the statement you are
constructing:

One way to concatenate text in the statement is to use the STRING verb:

01 STATEMENT PIC X(256) VALUE SPACES.
...
MOVE "SELECT" TO STATEMENT.
...
IF EMPNUM OF LIST-MSG NOT = "N"
 STRING "EMPNUM" DELIMITED BY SIZE
 INTO STATEMENT
 END-STRING
ELSE IF EMPNAME OF LIST-MSG NOT = "N"
 ...
ELSE ...

Another way to concatenate text is to use PERFORM VARYING:

01 STATEMENT PIC X(256) VALUE SPACES.
01 INDX PIC 999 COMP.
...
MOVE "SELECT" TO STATEMENT.
...
IF EMPNUM OF LIST-MSG NOT = "N"
 PERFORM VARYING INDX FROM 256 BY -1
 UNTIL STATEMENT (INDX:1) NOT = SPACE
 END-PERFORM
 MOVE "EMPNUM" TO STATEMENT(INDX + 2:)
ELSE IF EMPNAME OF LIST-MSG NOT = "N"
 ...
ELSE ...

In either of these examples, the statement could now contain the string SELECT
EMPNUM. You continue to construct the entire statement based on the values the user
entered.

Constructing a Reply Message

When you construct the reply message after the database request has been
processed, you assign the output values to the reply message instead of formatting
and displaying the values. You must define a reply message for every possible set of
columns in the reply. The first field in the reply message record must contain the reply
code to communicate with the SCREEN COBOL requester.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-36

Dynamic SQL Operations Sample Dynamic SQL Program
Sample Dynamic SQL Program
Example 10-4 shows an HP COBOL program that constructs a set of SELECT
statements, prepares them, and retrieves the associated data.

Example 10-4. Sample Dynamic SQL Program (page 1 of 2)

?SQL
?INSPECT
?SYMBOLS
 IDENTIFICATION DIVISION.
 PROGRAM-ID.
 COBEXT.

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. TANDEM/16.
 OBJECT-COMPUTER. TANDEM/16.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 CURSORS.
 02 CURSOR-NAME PIC X(2) OCCURS 3 TIMES.
 01 STATEMENTS.
 02 STMT-NAME PIC X(2) OCCURS 3 TIMES.
 01 STMT-TEXT.
 02 TEXT-STRING PIC X(80) VALUE SPACES OCCURS 3 TIMES.
 01 IDX PIC S9(4) COMP.
 01 DISPLAY-VALUE PIC Z(5)9.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 ANSWER PIC 9(6) COMP.

* Note: the following three host variables are declared here
* because COBOL does not allow an OCCURS clause in a host
* variable. Table entries from outside the Declare Section
* are therefore moved into these host variables one by one,
* and the SQL operations are performed on the host variables.

 01 TEMP-CURSOR-NAME PIC X(2).
 01 TEMP-STMT-NAME PIC X(2).
 01 TEMP-STMT-TEXT PIC X(80) VALUE SPACES.
 EXEC SQL END DECLARE SECTION END-EXEC.

* Include SQLCA for error checking:
 EXEC SQL INCLUDE SQLCA END-EXEC.
* Declare Extended Storage Section for SQLIN structures:
?NOLIST
 EXTENDED-STORAGE SECTION.
?LIST
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-37

Dynamic SQL Operations Sample Dynamic SQL Program
 PROCEDURE DIVISION.
 1000-DRIVER.
 PERFORM 3000-SPECIFY-ERROR-HANDLING.
 PERFORM 3100-PROCESS-QUERIES.
 STOP RUN.
 3000-SPECIFY-ERROR-HANDLING.
 EXEC SQL
 WHENEVER SQLERROR PERFORM :6000-HANDLE-ERROR
 END-EXEC.
 3100-PROCESS-QUERIES.
 MOVE "SELECT EMPNUM FROM =EMPLOYEE WHERE
- " SALARY > 100000" TO TEXT-STRING OF STMT-TEXT (1)
 MOVE "SELECT EMPNUM FROM =EMPLOYEE WHERE
- " SALARY < 20000" TO TEXT-STRING OF STMT-TEXT (2)
 MOVE "SELECT SALARY FROM =EMPLOYEE WHERE
- " JOBCODE = 400" TO TEXT-STRING OF STMT-TEXT (3)

 MOVE "C1" TO CURSOR-NAME OF CURSORS (1)
 MOVE "C2" TO CURSOR-NAME OF CURSORS (2)
 MOVE "C3" TO CURSOR-NAME OF CURSORS (3)
 MOVE "S1" TO STMT-NAME OF STATEMENTS (1)
 MOVE "S2" TO STMT-NAME OF STATEMENTS (2)
 MOVE "S3" TO STMT-NAME OF STATEMENTS (3)

 PERFORM VARYING IDX FROM 1 BY 1 UNTIL IDX > 3
 EXEC SQL BEGIN WORK END-EXEC
 MOVE TEXT-STRING OF STMT-TEXT (IDX) TO TEMP-STMT-TEXT
 MOVE STMT-NAME OF STATEMENTS (IDX) TO TEMP-STMT-NAME
 MOVE TEXT-STRING OF STMT-TEXT (IDX) TO TEMP-STMT-TEXT
 EXEC SQL PREPARE :TEMP-STMT-NAME FROM :TEMP-STMT-TEXT
 END-EXEC
 MOVE CURSOR-NAME OF CURSORS (IDX) TO TEMP-CURSOR-NAME
 EXEC SQL DECLARE :TEMP-CURSOR-NAME CURSOR FOR
 :TEMP-STMT-NAME
 END-EXEC
 EXEC SQL OPEN :TEMP-CURSOR-NAME END-EXEC
 PERFORM UNTIL SQLCODE < 0 OR SQLCODE = 100
 EXEC SQL FETCH :TEMP-CURSOR-NAME INTO
 :ANSWER END-EXEC
 IF SQLCODE >= 0 AND SQLCODE NOT = 100 THEN
 MOVE ANSWER TO DISPLAY-VALUE
 DISPLAY "ANSWER IS " DISPLAY-VALUE
 END-IF
 END-PERFORM
 EXEC SQL CLOSE :TEMP-CURSOR-NAME END-EXEC
 EXEC SQL COMMIT WORK END-EXEC
 END-PERFORM.
 6000-HANDLE-ERROR.
 ENTER TAL "SQLCADISPLAY" USING SQLCA
 STOP RUN.

Example 10-4. Sample Dynamic SQL Program (page 2 of 2)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
10-38

11

Character Processing Rules (CPRL)
Procedures

This section describes CPRL procedures that a COBOL program can call to process
these collation objects:

 SQL collation—An SQL/MP object with file code 941 generated
by the CREATE COLLATION statement

 Collation object—A Guardian file with file code 199 generated by the NLCP
collation compiler ($system.system.NLCPCOMP)

Table 11-1 summarizes the CPRL procedures. These procedures are alphabetically
described in detail on subsequent pages in this section.

Table 11-1. Character Processing Rules (CPRL) Procedures (page 1 of 2)

Procedure Description

CPRL_ARE_ Determines if all characters in a string are in the
character class defined by the specified SQL
collation or collation object

CPRL_AREALPHAS_ Determines if all characters in a string are in the
ALPHAS character class according to the specified
SQL collation or collation object

CPRL_ARENUMERICS_ Determines if all characters in a string are numeric
according to the specified SQL collation or collation
object

CPRL_COMPARE1ENCODED_ Compares two strings (one encoded) according to
the collation defined by an SQL collation or collation
object

CPRL_COMPARE_ Compares two strings (neither encoded) according to
the collation defined by an SQL collation or collation
object

CPRL_COMPAREOBJECTS_ Compares two SQL collations or collation objects

CPRL_DECODE_ Decodes a string that has been encoded by
CPRL_ENCODE_

CPRL_DOWNSHIFT_ Downshifts a character string according to the
downshift rules in the specified SQL collation or
collation object

CPRL_ENCODE_ Encodes a character string for comparison purposes

CPRL_GETALPHATABLE_ Extracts ALPHAS character class information from
an SQL collation or collation object
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-1

Character Processing Rules (CPRL) Procedures COBOLEXT File
COBOLEXT File
To call the CPRL procedures, which are written in TAL, use the COBOL ENTER TAL
statement. The COBOLEXT file contains source declarations for these procedures (as
well as for other system procedures). You might need to check with your system
administrator to make sure the COBOLEXT file for the procedures you use in your
program are available on your system. For more information about the COBOLEXT file
and the ENTER TAL statement, see the COBOL85 for NonStop Systems Manual.

CPRL Error Codes
Each CPRL procedure returns specific error codes, which are listed in each procedure
description. An error code of zero (0) indicates that the operation was successful.
All other CPRL error codes are less than zero, so they can be distinguished from
file-system errors, which are always positive. The condition code (CC) setting has no
meaning after the execution of a CPRL procedure.

CPRL_GETCHARCLASSTABLE_ Extracts character class information from an SQL
collation or collation object

CPRL_GETDOWNSHIFTTABLE_ Extracts downshift information from an SQL collation
or collation object

CPRL_GETFIRST_ Finds the first string of a specified length according to
an SQL collation or collation object

CPRL_GETLAST_ Finds the last string of a specified length according to
an SQL collation or collation object

CPRL_GETNEXTINSEQUENCE_ Finds the next string after a specified string according
to an SQL collation or collation object

CPRL_GETNUMTABLE_ Extracts numeric character class information from an
SQL collation or collation object

CPRL_GETSPECIALTABLE_ Extracts SPECIALS character class information from
an SQL collation or collation object

CPRL_GETUPSHIFTTABLE_ Extracts an array that can be used for upshifting

CPRL_INFO_ Returns information about a collation contained in an
SQL collation or collation object

CPRL_READOBJECT_ Reads an collation object (with file code 199) from a
Guardian file into a buffer

CPRL_UPSHIFT_ Upshifts a character string according to the upshift
rules in the specified SQL collation or collation object

Table 11-1. Character Processing Rules (CPRL) Procedures (page 2 of 2)

Procedure Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-2

Character Processing Rules (CPRL) Procedures CPRL_ARE_
CPRL_ARE_
The CPRL_ARE_ procedure determines if all characters in a string are in the character
class defined by the specified CPRL. You can also call CPRL_ARE_ to scan a string
for the first character not in a specific character class.

The CPRL_ARE_ procedure returns these error codes:

classname pic X(classnamelength) input

is an array containing the name of the specified character class.

classnamelength pic S9(4) input

is the number of bytes in the character class name classname.

inputstring pic X(inputstringlength) input

is a string containing the data to be scanned.

inputstringlength pic S9(4) input

is the number of bytes to be scanned in inputstring.

exceptcharaddr pic S9(9) output

is set as follows:

 If the call is successful, all the scanned characters are in the character class
defined by the specified SQL collation or collation object, and
exceptcharaddr is set as follows:

exceptcharaddr = address(inputstring) + inputstringlength

ENTER TAL "CPRL_ARE_" USING
 classname,
 classnamelength,
 inputstring,
 inputstringlength,
 exceptcharaddr,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

-2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–5 The user-specified character class does not exist in the specified SQL collation or
collation object.

–6 The input string contains a character not in the specified character class.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-3

Character Processing Rules (CPRL) Procedures CPRL_AREALPHAS_
 If -6 is returned, the first character in istring not in the specified character
class was found; exceptcharaddr is set to the address of this character.

 For other error codes, exceptcharaddr is set to an invalid address.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_AREALPHAS_
The CPRL_AREALPHAS_ procedure determines if all characters in a string are in the
ALPHAS character class according to a specified SQL collation or collation object. You
can also use this procedure to scan for the first character in the string that is not in the
ALPHAS character class.

The CPRL_AREALPHAS_ procedure returns these error codes:

inputstring pic X(inputstringlength) input

is an array containing the string to be scanned.

inputstringlength pic S9(4) input

is the number of bytes to be scanned in inputstring.

exceptcharaddr pic S9(9) output

is set as follows:

 If the call is successful, all the scanned characters are ALPHAS character
class, and exceptcharaddr is set:

exceptcharaddr = address(inputstring) + inputstringlength

 If –6 is returned, the first character in inputstring that is not in the
ALPHAS character class was found; exceptcharaddr is set to the address
of this character.

ENTER TAL "CPRL_AREALPHAS_" USING
 inputstring,
 inputstringlength,
 exceptcharaddr,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–6 The input string contains a character not in the ALPHAS character class.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-4

Character Processing Rules (CPRL) Procedures CPRL_ARENUMERICS_
 For other error codes, exceptcharaddr is set to an invalid address.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_ARENUMERICS_
The CPRL_ARENUMERICS_ procedure determines if all characters in a string are
numeric according to the specified SQL collation or collation object. You can also use
CPRL_ARENUMERICS_ to scan for the first nonnumeric character in a string.

The CPRL_ARENUMERICS_ procedure returns these error codes:

inputstring pic X(inputstringlength) input

is an array containing the data to be scanned.

inputstringlength pic S9(4) input

is the number of bytes in istring to be scanned.

exceptcharaddr pic S9(9) output

is set as follows:

 If the call is successful, all the scanned characters are numeric characters, and
exceptcharaddr is set:

exceptcharaddr = address(inputstring) + inputstringlength

 If -6 is returned, the first nonnumeric character in inputstring was found;
exceptcharaddr is set to the address of this character.

 For other error codes, exceptcharaddr is set to an invalid address.

ENTER TAL "CPRL_ARENUMERICS_" USING
 inputstring,
 inputstringlength,
 exceptcharaddr,
 cprladdr,
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–6 The input string contains a character not in the specified character class.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-5

Character Processing Rules (CPRL) Procedures CPRL_COMPARE1ENCODED_
cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_COMPARE1ENCODED_
The CPRL_COMPARE1ENCODED_ procedure compares two strings according to an
SQL collation or collation object. The first string is assumed to be in encoded form, and
the second is assumed to be in original (not encoded) form. For strings of unequal
length, the procedure logically pads the shorter string with blanks.

Use the CPRL_COMPARE1ENCODED_ procedure to compare a constant with a set
of values in one pass. The procedure encodes as much of the second string as
necessary to perform the compare, and the overhead of repeatedly encoding the
constant is saved.

The CPRL_COMPARE1ENCODED_ procedure returns these error codes:

string1 pic X(string1length) input

is an array containing the first string to be compared. string1 is assumed to be
in encoded form.

string1length pic S9(4) input

is the number of bytes in string1 to be compared.

string2 pic X(string2length) input

is an array containing the second string to be compared. string2 is assumed to
be in original (not encoded) form.

string2length pic S9(4) input

is the length of string2.

ENTER TAL "CPRL_COMPARE1ENCODED_" USING
 string1,
 string1length,
 string2,
 string2length,
 result,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-6

Character Processing Rules (CPRL) Procedures CPRL_COMPARE_
result pic S9(4) output

indicates the result of the comparison:

For error codes other than 0 (zero), result is meaningless.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_COMPARE_
The CPRL_COMPARE_ procedure compares two strings according to an SQL
collation or collation object. Both strings are assumed to be in original (not encoded)
form. For strings of unequal length, CPRL_COMPARE_ pads the shorter string with
blanks.

Use CPRL_COMPARE_ for isolated compares. Only the necessary part of each string
is encoded to perform the compare. However, if the same data is compared repeatedly,
use the CPRL_ENCODE_ and CPRL_COMPARE1ENCODED_ procedures (or
CPRL_ENCODE_ with binary compares).

The CPRL_COMPARE_ procedure returns these error codes:

string1 pic X(string1length) input

is an array containing the first string to be compared.

string1length pic S9(4) input

is the length in bytes of string1.

-1 The first operand is less than the second

 0 The operands collate equally

 1 The first operand is greater than the second

ENTER TAL "CPRL_COMPARE_" USING
 string1,
 string1length,
 string2,
 string2length,
 result,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-7

Character Processing Rules (CPRL) Procedures CPRL_COMPAREOBJECTS_
string2 pic X(string2length) input

is an array containing the second string to be compared.

string2length pic S9(4) input

is the length in bytes of string2.

result pic S9(4) output

indicates the result of the comparison, if the error code is 0 (zero):

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_COMPAREOBJECTS_
The CPRL_COMPAREOBJECTS_ procedure compares two SQL collations or collation
objects to determine whether they are equal.

The CPRL_COMPAREOBJECTS_ procedure returns these error codes:

cprladdr1 pic S9(9) input

is the address of the first SQL collation or collation object.

cprladdr2 pic S9(9) input

is the address of the second SQL collation or collation object.

-1 string1 is less than string2.

 0 The strings collate equally.

 1 string1 is greater than string2.

ENTER TAL "CPRL_COMPAREOBJECTS_" USING
 cprladdr1,
 cprladdr2
 GIVING errorcode.

Code Description

 0 The operation was successful; the SQL collations or collation objects are equal.

 –2 The SQL collation or collation object is invalid.

 –4 The version of the SQL collation or collation object is not supported.

–21 The collations in the two specified SQL collations or collation objects do not
match.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-8

Character Processing Rules (CPRL) Procedures CPRL_DECODE_
CPRL_DECODE_
The CPRL_DECODE_ procedure decodes a string that has been encoded by the
CPRL_ENCODE_ procedure. If the same (or equivalent) SQL collation is used for both
CPRL_ENCODE_ and CPRL_DECODE_, the decoded string will be equal to the
original string with respect to that SQL collation.

Because encoding is not generally a one-to-one function, the decoded string might not
be identical to the original string. For example, an SQL collation that is case-insensitive
might produce a decoded string with different case letters than the original string. The
string ABCDE might encode to a value, which is aBcDe when decoded.

The CPRL_DECODE_ procedure returns these error codes:

encodedstring pic X(encodedstringlength) input

is an array containing the data to be decoded.

encodedstringlength pic S9(4) input

is the number of bytes in encodedstring to be decoded.

decodedstring pic X(decodedstringmaxlength) output

is an array in which CPRL_DECODE_ returns the decoded string. Overlapping
encodedstring and decodedstring causes unpredictable results.

decodedstringmaxlength pic S9(4) input

specifies the maximum length of decodedstring.

ENTER TAL "CPRL_DECODE_" USING
 encodedstring,
 encodedstringlength,
 decodedstring,
 decodedstringmaxlength,
 decodedstringlength,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

 –2 The SQL collation or collation object is invalid.

 –4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-9

Character Processing Rules (CPRL) Procedures CPRL_DOWNSHIFT_
decodedstringlength pic S9(4) output

is the number of bytes of encodedstring that were decoded. CPRL_DECODE_
pads the remainder of decodedstring with blanks up to
decodedstringmaxlength.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_DOWNSHIFT_
The CPRL_DOWNSHIFT_ procedure downshifts a character string according to the
downshift rules in a specified SQL collation or collation object.

The CPRL_DOWNSHIFT_ procedure returns these error codes:

inputstring pic X(inputstringlength) input

is an array in which CPRL_UPSHIFT_ returns the downshifted string.

inputstringlength pic S9(4) input

is the number of bytes to be downshifted in inputstring.

shiftedstring pic X(shiftedstringmaxlength) output

is an array in which CPRL_DOWNSHIFT_ returns the downshifted string.

The values for inputstring and shiftedstring can be equal, but other
values can cause unpredictable results.

ENTER TAL "CPRL_DOWNSHIFT_" USING
 inputstring,
 inputstringlength,
 shiftedstring,
 shiftedstringmaxlength,
 shiftedstringlength,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

 –2 The SQL collation or collation object is invalid.

 –4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.

–21 The collations in the two specified SQL collations or collation objects do not
match.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-10

Character Processing Rules (CPRL) Procedures CPRL_ENCODE_
shiftedstringmaxlength pic S9(4) input

specifies the maximum length of shiftedstring, which must be greater than
equal to inputstring.

shiftedstringlength pic S9(4) output

specifies the length of the downshifted string returned in shiftedstring.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_ENCODE_
The CPRL_ENCODE_ procedure encodes a character string so that a subsequent
binary comparison will produce the proper results for the specified SQL collation. Use
CPRL_ENCODE_ in situations where the number of encodings required is
substantially less than the number of comparisons (for example, during a sort).

The CPRL_ENCODE_ procedure returns these error codes:

decodedstring pic X(decodedstringlength) input

is an array containing data to be encoded.

decodedstringlength pic S9(4) input

is the number of bytes in decodedstring to be encoded.

encodedstring pic X(encodedstringmaxlength) output

is an array in which CPRL_ENCODE_ returns the encoded string. Overlapping
decodedstring and encodedstring causes unpredictable results.

ENTER TAL "CPRL_ENCODE_" USING
 decodedstring,
 decodedstringlength,
 encodedstring,
 encodedstringmaxlength,
 encodedstringlength,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

 –2 The SQL collation or collation object is invalid.

 –4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-11

Character Processing Rules (CPRL) Procedures CPRL_GETALPHATABLE_
encodedstringmaxlength pic S9(4) input

specifies the maximum length of encodedstring.

encodedstringlength pic S9(4) output

is the number of bytes of decodedstring that were encoded. CPRL_ENCODE_
pads the remainder of decodedstring with encoded blanks up to
decodedstringmaxlength.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_GETALPHATABLE_
The CPRL_GETALPHATABLE_ procedure extracts ALPHAS character class
information for single-byte character sets from an SQL collation or collation object.

The CPRL_GETALPHATABLE_ procedure returns these error codes:

array pic X(256) output

is a 256-byte array specified by the user. If the call is successful,
CPRL_GETALPHATABLE_ sets each byte in array as follows:

If the call is unsuccessful, array is not modified.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

ENTER TAL "CPRL_GETALPHATABLE_" USING
 array,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

1 The corresponding character code in the SQL collation or collation object
is in the ALPHAS character class.

0 The corresponding character code in the SQL collation or collation object
is not in the ALPHAS character class.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-12

Character Processing Rules (CPRL) Procedures CPRL_GETCHARCLASSTABLE_
CPRL_GETCHARCLASSTABLE_
The CPRL_GETCHARCLASSTABLE_ procedure extracts character class information
from an SQL collation or collation object for a user-specified character class.

The CPRL_GETCHARCLASSTABLE_ procedure returns these error codes:

array pic X(256) output

is a 256-byte array specified by the user. If the call is successful,
CPRL_GETCHARCLASSTABLE_ sets each byte in array as follows:

If the call is unsuccessful, array is not modified.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

classname pic X(classnamelength) input

is the name of the user-specified character class.

classnamelength pic S9(4) input

is the length of classname in bytes.

ENTER TAL "CPRL_GETCHARCLASSTABLE_" USING
 array,
 cprladdr,
 classname,
 classnamelength,
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

–5 The user-specified character class does not exist in the specified SQL collation or
collation object.

1 The corresponding character code in the SQL collation or collation object
is in the character class specified by classname.

0 The corresponding character code in the SQL collation or collation object
is not in the specified character class.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-13

Character Processing Rules (CPRL) Procedures CPRL_GETDOWNSHIFTTABLE_
CPRL_GETDOWNSHIFTTABLE_
The CPRL_GETDOWNSHIFTTABLE_ procedure extracts downshift information from
an SQL collation or collation object.

The CPRL_GETDOWNSHIFTTABLE_ procedure returns these error codes:

array pic X(256) output

is a 256-byte array specified by the user.

If the call is successful, CPRL_GETDOWNSHIFTTABLE_ sets each byte in array
to the downshifted version of the corresponding character in the SQL collation or
collation object.

If the call is unsuccessful, array is not modified.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_GETFIRST_
The CPRL_GETFIRST_ procedure finds the first string of a specified length according
to an SQL collation or collation object.

This procedure replaces the practice of using a string of hexadecimal zeros to
generate the first string of a specified length, which does not work correctly for
non-binary collating sequences.

ENTER TAL "CPRL_GETDOWNSHIFTTABLE_" USING
 array,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

ENTER TAL "CPRL_GETFIRST_" USING
 firststring,
 firststringmaxlength,
 firststringlength,
 cprladdr
 GIVING errorcode.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-14

Character Processing Rules (CPRL) Procedures CPRL_GETLAST_
The CPRL_GETFIRST_ procedure returns these error codes:

firststring pic X(firststringmaxlength) output

is an array in which CPRL_GETFIRST_ returns the first string.

firststringmaxlength pic S9(4) input

is the maximum length of firststring.

firststringlength pic S9(4) output

specifies the number of bytes of firststring that were scanned. If the call is
successful, firststringmaxlength and firststringlength will be equal.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_GETLAST_
The CPRL_GETLAST_ procedure finds the last string of a specified length according
to an SQL collation or collation object.

This procedure replaces the practice of using a string of binary ones to generate the
last string of a specified length, which does not work correctly for non-binary collating
sequences.

The CPRL_GETLAST_ procedure returns these error codes:

laststring pic X(laststringmaxlength) output

is an array in which CPRL_GETFIRST_ returns the last string.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

ENTER TAL "CPRL_GETLAST_" USING
 laststring,
 laststringmaxlength,
 laststringlength,
 cprladdr,
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-15

Character Processing Rules (CPRL) Procedures CPRL_GETNEXTINSEQUENCE_
laststringmaxlength pic S9(4) input

specifies the maximum length of laststring.

laststringlength pic S9(4) output

specifies the number of bytes of laststring that were scanned. (When
CPRL_GETFLAST_ is successful, laststringlength and
laststringmaxlength will be equal.)

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_GETNEXTINSEQUENCE_
The CPRL_GETNEXTINSEQUENCE_ procedure finds the next string after a specified
string according to an SQL collation or collation object.

This procedure replaces the practice of adding 1 to the least significant character of a
string to find the next greater string, which does not work correctly for non-binary
collating sequences.

The CPRL_GETNEXTINSEQUENCE_ procedure returns these error codes:

inputstring pic X(inputstringlength) input

is an array containing the input string.

inputstringlength pic S9(4) input

is the number of bytes in the input string inputstring.

ENTER TAL "CPRL_GETNEXTINSEQUENCE_" USING
 inputstring,
 inputstringlength,
 nextstring,
 nextstringmaxlength,
 nextstringlength,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

 –2 The SQL collation or collation object is invalid.

 –4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.

–23 The inputstring parameter is already the maximum string of length
inputstringlength.

–24 The input string is longer than the maximum length (256 bytes).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-16

Character Processing Rules (CPRL) Procedures CPRL_GETNUMTABLE_
nextstring pic X(nextstringmaxlength) output

is an array in which CPRL_GETNEXTINSEQUENCE_ returns the next string.
Overlapping inputstring and nextstring causes unpredictable results.

nextstringmaxlength pic S9(4) input

specifies the maximum length of nextstring. The returned value is padded with
blanks as necessary to fill nextstring for this length. In most cases, set
nextstring to the same value as inputstring.

nextstringlength pic S9(4) output

specifies the number of bytes of nextstring that were scanned. (If
CPRL_GETNEXTINSEQUENCE_ is successful, nextstringlength and
nextstringmaxlength are equal.)

CPRL_GETNEXTINSEQUENCE_ pads nextstring with blanks up to
nextstringmaxlength, and nextstringlength is the length of nextstring
up to the point where the blank begin (nextstringlength should also be the
same as inputstringlength).

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_GETNUMTABLE_
The CPRL_GETNUMTABLE_ procedure extracts numeric character class information
from an SQL collation or collation object.

The CPRL_GETNUMTABLE_ procedure returns these error codes:

ENTER TAL "CPRL_GETNUMTABLE_" USING
 array,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-17

Character Processing Rules (CPRL) Procedures CPRL_GETSPECIALTABLE_
array pic X(256) output

is a 256-byte array specified by the user. If the call is successful,
CPRL_GETNUMTABLE_ sets each byte in array as follows:

If the call is unsuccessful, array is not modified.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_GETSPECIALTABLE_
The CPRL_GETSPECIALTABLE_ procedure extracts SPECIALS character class
information from an SQL collation or collation object, if the SPECIALS character class
exists.

If the SPECIALS character class does not exist, CPRL_GETSPECIALTABLE_ creates
it. In this case, characters are considered SPECIALS if they are not ALPHAS or
NUMERICS. (The ALPHAS and NUMERICS character classes exist in all SQL
collations or collation objects.)

The CPRL_GETSPECIALTABLE_ procedure returns these error codes:

array pic X(256) output

is a 256-byte array specified by the user. If the call is successful,
CPRL_GETSPECIALTABLE_ sets each byte in array as follows:

If the call is unsuccessful, array is not modified.

1 The corresponding character code in the SQL collation or collation object
is numeric.

0 The corresponding character code in the SQL collation or collation object
is not numeric.

ENTER TAL "CPRL_GETSPECIALTABLE_" USING
 array,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

1 The corresponding character code in the SQL collation or collation object
is in the SPECIALS character class.

0 The corresponding character code in the SQL collation or collation object
is not in the SPECIALS character class.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-18

Character Processing Rules (CPRL) Procedures CPRL_GETUPSHIFTTABLE_
cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_GETUPSHIFTTABLE_
The CPRL_GETUPSHIFTTABLE_ procedure extracts upshift information from an SQL
collation or collation object.

The CPRL_GETUPSHIFTTABLE_ procedure returns these error codes:

array pic X(256) output

is a 256-byte array specified by the user.

If the call is successful, CPRL_GETUPSHIFTTABLE_ sets each byte in array to
the upshifted version of the corresponding character code in the SQL collation or
collation object.

If the call is unsuccessful, array is not modified.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

CPRL_INFO_
The CPRL_INFO_ procedure returns information about an SQL collation or collation
object. (The SQL CREATE COLLATION statement uses this procedure to determine
the characteristics of SQL collations.)

ENTER TAL "CPRL_GETUPSHIFTTABLE_" USING
 array,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

–2 The SQL collation or collation object is invalid.

–4 The version of the SQL collation or collation object is not supported.

ENTER TAL "CPRL_INFO_" USING
 cprladdr
 [, cprlsize]
 [, is1to1]
 [, lengtheningfactor]
 [, characterset]
 [, version]
 GIVING errorcode.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-19

Character Processing Rules (CPRL) Procedures CPRL_INFO_
The CPRL_INFO_ procedure returns these error codes:

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.

cprlsize pic S9(4) output

is the length in bytes of the SQL collation or collation object.

is1to1 pic S9(4) output

is set as follows:

lengtheningfactor pic S9(4) output

specifies the maximum lengthening that encodings can cause. (That is, for a
specified string, the encoding is not more than lengtheningfactor times the
original string length. For SQL collations or collation objects that preserve (or
shorten) the length on encoding, lengtheningfactor is 1.)

characterset pic S9(4) output

specifies the character set assumed by the SQL collation or collation object:

version pic S9(4) output

is the format version of the SQL collation or collation object.

Code Description

 0 The operation was successful.

 –2 The SQL collation or collation object is invalid.

 –4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.

1 The encoding for this SQL collation or collation object is a one-to-one
map.

0 The encoding is not a one-to-one map.

0
101
102
103
104

UNKNOWN
ISO88591
ISO88592
ISO88593
ISO88594

105
106
107
108
109

ISO88595
ISO88596
ISO88597
ISO88598
ISO88599
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-20

Character Processing Rules (CPRL) Procedures CPRL_READOBJECT_
CPRL_READOBJECT_
The CPRL_READOBJECT_ procedure reads a collation object from a Guardian disk
file (file code 199) into a user-specified buffer. CPRL_READOBJECT_ does not read
SQL collations (file code 941) generated by a CREATE COLLATION statement.

The CPRL_READOBJECT_ procedure returns these error codes:

If a file-system error occurs, CPRL_READOBJECT_ return a file-system error code
rather than a CPRL error code. File-system error codes are always positive, whereas
CPRL error codes are less than or equal to zero (0).

buffer pic S9(4) output

is a user-supplied buffer to which CPRL_READOBJECT_ returns the collation
object if the call is successful. CPRL_READOBJECT_ uses a local 4 KB buffer
allocated on the data stack. If you are concerned about stack size limitations, use
this procedure with caution.

bufferlength pic S9(4) input

is the size of buffer in bytes.

objectlength pic S9(4) output

is the actual length in bytes of the collation object read into buffer.

ENTER TAL "CPRL_READOBJECT_" USING
 buffer
 bufferlength
 objectlength
 filename
 filenamelength
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

 –2 The SQL collation or collation object is invalid.

 –4 The version of the SQL collation or collation object is not supported.

–11 The user-specified buffer is too small for the SQL collation or collation object.

–12 The CPRL_READOBJECT_ local buffer is too small for the SQL collation or
collation object.

–13 An error occurred during a call to the FNAMEEXPAND procedure for the Guardian
file name.

–14 The file code of the Guardian file containing the collation object is not 199.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-21

Character Processing Rules (CPRL) Procedures CPRL_UPSHIFT_
filename pic X(filenamelength) input

is the Guardian file name in external format containing the collation object. The file
code for filename must be 199.

filenamelength pic S9(4) input

is the length in bytes of filename.

cprladdr pic S9(9) output

is the address of the collation object if 0 (zero) is returned. Otherwise, cprladdr
is set to an invalid address.

CPRL_UPSHIFT_
The CPRL_UPSHIFT_ procedure upshifts a character string according to the upshift
rules in the specified SQL collation or collation object.

The CPRL_UPSHIFT_ procedure returns these error codes:

inputstring pic X(inputstringlength) input

is an array containing the data to be upshifted.

inputstringlength pic S9(4) input

is the number of bytes in inputstring to be upshifted.

shiftedstring pic X(shiftedstringmaxlength) output

is an array in which CPRL_UPSHIFT_ returns the upshifted string.

The values for inputstring and shiftedstring can be equal, but other
values can cause unpredictable results.

ENTER TAL "CPRL_UPSHIFT_" USING
 inputstring,
 inputstringlength,
 shiftedstring,
 shiftedstringmaxlength,
 shiftedstringlength,
 cprladdr
 GIVING errorcode.

Code Description

 0 The operation was successful.

 –2 The SQL collation or collation object is invalid.

 –4 The version of the SQL collation or collation object is not supported.

–20 The user-specified buffer is not large enough to receive the returned string.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-22

Character Processing Rules (CPRL) Procedures CPRL_UPSHIFT_
shiftedstringmaxlength pic S9(4) input

specifies the maximum length of shiftedstring, which must be greater than or
equal to inputstringlength.

shiftedstringlength pic S9(4) output

specifies the length of the upshifted string returned in shiftedstring.

cprladdr pic S9(9) input

is a pointer to the SQL collation or collation object.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-23

Character Processing Rules (CPRL) Procedures CPRL_UPSHIFT_
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
11-24

A SQL/MP Sample Database

This appendix describes the NonStop SQL/MP sample database and sample
application that are included on the product site update tape (SUT). Many examples in
this manual (as well as other SQL/MP manuals) refer to the sample database. You can
create your own copy of the sample database and access it using SQLCI commands
or by embedding SQL statement in a host-language program.

The sample database includes the PERSNL, SALES, and INVENT subvolumes. Each
subvolume contains a catalog and these tables:

The sample application demonstrates the use of SQL/MP in a Pathway environment. It
includes requestors written in SCREEN COBOL and servers written in C, COBOL,
Pascal, and TAL. The servers use embedded SQL statements to access the sample
database.

HP distributes the sample database and application in the ZTSQLMSG subvolume.
(Ask your database administrator or system manager for the volume where the
ZTSQLMSG subvolume is installed on your system.)

The ZTSQLMSG.DOCUMENT file describes the files in the ZTSQLMSG subvolume.
The DOCUMENT file also explains how to create a copy of the sample database and
how to compile and run the sample application. To print the DOCUMENT file, enter this
command at the TACL prompt:

10> TGAL / IN ZTSQLMSG.DOCUMENT, OUT $S.#loc /

The loc parameter is a spooler location for your system.

PERSNL EMPLOYEE, JOB, and DEPT tables, which hold personnel data.

SALES CUSTOMER, ORDERS, ODETAIL, and PARTS tables, which are used
for order data. Also, the SUPPKANJ table, which accepts Kanji data for
the supplier’s name and address.

INVENT SUPPLIER, PARTSUPP, PARTLOC, and ERRORS tables, which hold
inventory data. (PARTLOC can be partitioned over three volumes, if they
are available.)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
A-1

SQL/MP Sample Database
Figure A-1 shows the names of columns and tables and the relations between the
tables in the sample database.

Figure A-1. SQL/MP Sample Database Relations

custnum
custname
street
city
state
postcode
credit

CUSTOMER Table

errors_date
errors_time
errors_id
errors_sql
errors_text 1
errors_text 2

ERRORS Table

ordernum
partnum
unit_price
qty_ordered

ODETAIL Table

PERSNL
Subvolume

SALES
Subvolume

INVENT
Subvolume

PARTSUPP Table

partnum
suppnum
partcost
qty_received

PARTLOC Table *

loc_code
partnum
qty_on_hand

PARTS Table

partnum
partdesc
price
qty_available

EMPLOYEE Table

empnum
first_name
last_name
deptnum
jobcode
salary

JOB Table

jobcode
jobdesc

ORDERS Table

ordernum
order_date
deliv_date
salesrep
custnum

Legend

The PARTLOC table can
be partitioned by the
value of LOC_CODE.

*

One to one
One to many

SUPPLIER Table

suppnum
suppname
street
city
state
postcode

SUPPKANJ Table

suppnum
suppname_kanji
suppname_katakana
suppname_english
street
city
state
postcode

DEPT Table

deptnum
deptname
manager
rptdept
location

VST007.vsd
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
A-2

SQL/MP Sample Database
Example A-1 shows the COPYLIB file containing the record descriptions of the sample
database tables. This file was generated using INVOKE directives executed from
SQLCI. For example, this INVOKE directive generates the DEPT table:

INVOKE PERSNL.DEPT FORMAT COBOL85 TO COPYLIB (DEPT) ;

For more information about SQLCI, see the SQL/MP Reference Manual.

The COPYLIB was edited to change the descriptions generated from VARCHAR
columns to fixed-length data item descriptions, which are more appropriate for COBOL
applications. For a description of the SUPPKANJ table, see the
ZTSQLMSG.DOCUMENT file.

Example A-1. COPYLIB File for Sample Database (page 1 of 3)

* Personnel (PERSNL) *

?SECTION EMPLOYEE
* Record Definition for \SYS1.$VOL1.PERSNL.EMPLOYEE
* Definition current at 17:09:06 - 10/10/94
 01 EMPLOYEE.
 02 EMPNUM PIC 9(4) COMP.
 02 FIRST-NAME PIC X(15).
 02 LAST-NAME PIC X(20).
 02 DEPTNUM PIC 9(4) COMP.
 02 JOBCODE PIC 9(4) COMP.
 02 SALARY PIC 9(6)V9(2) COMP.
?SECTION DEPT
* Record Definition for \SYS1.$VOL1.PERSNL.DEPT
* Definition current at 17:09:07 - 10/10/94
 01 DEPT.
 02 DEPTNUM PIC 9(4) COMP.
 02 DEPTNAME PIC X(12).
 02 MANAGER PIC 9(4) COMP.
 02 RPTDEPT PIC 9(4) COMP.
* 02 LOCATION. <-- VARCHAR edited to be fixed-length
item.
* 03 LEN PIC S9(4) COMP.
* 03 VAL PIC X(18).
 02 LOCATION PIC X(18).
?SECTION JOB
* Record Definition for \SYS1.$VOL1.PERSNL.JOB
* Definition current at 17:09:09 - 10/10/94
 01 JOB.
 02 JOBCODE PIC 9(4) COMP.
* 02 JOBDESC. <-- VARCHAR edited to be fixed-length
item.
* 03 LEN PIC S9(4) COMP.
* 03 VAL PIC X(18).
 02 JOBDESC PIC X(18).
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
A-3

SQL/MP Sample Database

* Sales (SALES) *

?SECTION CUSTOMER
* Record Definition for \SYS1.$VOL1.SALES.CUSTOMER
* Definition current at 17:09:10 - 10/10/94
 01 CUSTOMER.
 02 CUSTNUM PIC 9(4) COMP.
 02 CUSTNAME PIC X(18).
 02 STREET PIC X(22).
 02 CITY PIC X(14).
 02 STATE PIC X(12).
 02 POSTCODE PIC X(10).
 02 CREDIT PIC X(2).
?SECTION ORDERS
* Record Definition for \SYS1.$VOL1.SALES.ORDERS
* Definition current at 17:09:11 - 10/10/94
 01 ORDERS.
 02 ORDERNUM PIC 9(6) COMP.
 02 ORDER-DATE PIC S9(6) COMP.
 02 DELIV-DATE PIC S9(6) COMP.
 02 SALESREP PIC 9(4) COMP.
 02 CUSTNUM PIC 9(4) COMP.
?SECTION ODETAIL
* Record Definition for \SYS1.$VOL1.SALES.ODETAIL
* Definition current at 17:09:12 - 10/10/94
 01 ODETAIL.
 02 ORDERNUM PIC 9(6) COMP.
 02 PARTNUM PIC 9(4) COMP.
 02 UNIT-PRICE PIC S9(8)V9(2) COMP.
 02 QTY-ORDERED PIC 9(5) COMP.
?SECTION PARTS
* Record Definition for \SYS1.$VOL1.SALES.PARTS
* Definition current at 17:09:13 - 10/10/94
 01 PARTS.
 02 PARTNUM PIC 9(4) COMP.
 02 PARTDESC PIC X(18).
 02 PRICE PIC S9(8)V9(2) COMP.
 02 QTY-AVAILABLE PIC S9(7) COMP.

Example A-1. COPYLIB File for Sample Database (page 2 of 3)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
A-4

SQL/MP Sample Database

* Inventory (INVENT) *

?SECTION SUPPLIER
* Record Definition for \SYS1.$VOL1.INVENT.SUPPLIER
* Definition current at 17:09:14 - 10/10/94
 01 SUPPLIER.
 02 SUPPNUM PIC 9(4) COMP.
 02 SUPPNAME PIC X(18).
 02 STREET PIC X(22).
 02 CITY PIC X(14).
 02 STATE PIC X(12).
?SECTION PARTSUPP
* Record Definition for \SYS1.$VOL1.INVENT.PARTSUPP
* Definition current at 17:09:15 - 10/10/94
 01 PARTSUPP.
 02 PARTNUM PIC 9(4) COMP.
 02 SUPPNUM PIC 9(4) COMP.
 02 PARTCOST PIC S9(8)V9(2) COMP.
 02 QTY-RECEIVED PIC 9(5) COMP.
?SECTION PARTLOC
* Record Definition for \SYS1.$VOL1.INVENT.PARTLOC
* Definition current at 17:09:16 - 10/10/94
 01 PARTLOC.
 02 LOC-CODE PIC X(3).
 02 PARTNUM PIC 9(4) COMP.
 02 QTY-ON-HAND PIC S9(7) COMP.
?SECTION ERRORS
* Record Definition for table \SYS1.$VOL1.INVENT.ERRORS
* Definition current at 17:09:16 - 10/10/94
 01 ERRORS.
 02 ERRORS-DATE PIC 9(6) COMP.
 02 ERRORS-TIME PIC 9(6) COMP.
 02 ERRORS-ID PIC 9(6) COMP.
 02 ERRORS-SQL PIC 9(4) COMP.
 02 ERRORS-TEXT1 PIC X(240).
 02 ERRORS-TEXT2 PIC X(240).

Example A-1. COPYLIB File for Sample Database (page 3 of 3)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
A-5

SQL/MP Sample Database
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
A-6

B Memory Considerations

This appendix describes the SQL internal data structures generated in a COBOL
program, including this information:

 Using the SQLMEM directive to control the placement of the SQL internal
data structures

 Estimating the memory required by a COBOL program

Topics include:

 SQL/MP Internal Structures

 Resizing Segments on page B-2

 Avoiding Name Conflicts on page B-2

 Using the SQLMEM Directive on page B-4

 Estimating Memory Requirements on page B-5

 Memory Requirements on page B-5

 Guidelines for Memory Use on page B-6

SQL/MP Internal Structures
The HP COBOL compiler generates the SQLINALL internal data structure to maintain
information about the SQL statements and host variables used in the program.
Depending on the statements used in a program, SQLINALL can contain these
substructures:

 SQLINn for each SQL statement that generates a call to the SQL executor
 SQLVARSnI for each input host variable in the program
 SQLVARSnO for each output host variable in the program

Each SQL structure or substructure name includes an identification number (n)
assigned by the HP COBOL compiler. Although you cannot directly manipulate these
structures, you can control their placement in memory and avoid using their names in
your own structures.

The system automatically creates an extended data segment for each COBOL
program at run time and places the SQL internal structures in this extended data
segment, even if you do not declare an Extended-Storage Section in your program. If
your program requires the SQL internal structures to be placed in the user data
segment (for example, for a program that runs as a process pair), see Using the
SQLMEM Directive on page B-4.

All Extended-Storage Sections in a main program and in any subprograms called by
the main program are automatically consolidated into the single extended data
segment allocated by the main program. You do not need to use the Binder program to
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
B-1

Memory Considerations Resizing Segments
perform this function, and you do not need to allocate space in your data stack or your
Extended-Storage Section for these data structures.

Resizing Segments
The SQL executor and any utilities that use the SQLINALL data structure use Guardian
procedures for resizing an existing extended segment. Therefore, you do not need to
be concerned about the size of the extended data segments that NonStop SQL/MP
uses to store the SQLINALL data structure.

If an executing program requires more memory, SQL/MP automatically increases the
size of extended data segments. As a result, different listings from different executions
of the same program could show different memory sizes. This difference reflects the
dynamic memory management provided by SQL/MP.

The HP COBOL compiler initializes all the pointers in the SQLINALL structure in the
SQL-INIT section, which the compiler writes at the end of the source program. To
initialize the pointers, the compilers insert a call to the SQLADDR procedure.

Avoiding Name Conflicts
In a COBOL program, avoid using names that conflict with the names in the internal
SQL data structures. The section names generated by the HP COBOL compiler in your
program are SQLDO-n (where n is an integer) and SQL-INIT. These examples show
the names used in internal SQL structures.

SQLINALL Structure

The SQLINALL structure is shown in the next example. The HP COBOL compiler
generates an SQLINn substructure for each SQL statement that causes a call to the
SQL executor.

01 SQLINALL-T9192-TANDEM.
 05 STMT-PROCEDURE-ID PIC X(32) VALUE "proc-name".
 05 SQLINIT-FLAG PIC S9(4) COMP VALUE -1.
 05 SQLINn
 10 EYE-CATCHER PIC X(2) VALUE "IN".
 10 VERSION PIC S9(4) COMP VALUE 0.
 10 SLT-INDEX PIC S9(4) COMP VALUE index.
 10 PROCEDURE-ID PIC X(32) VALUE "proc-name".
 10 USER-LINE-NUMBER PIC S9(9) COMP VALUE line.
 10 STMT-PROCEDURE-ID-PTR PIC S9(9) COMP VALUE -999999.
 10 SRCFILE-PTR PIC S9(9) COMP VALUE -999999.
 10 OPCODE PIC S9(4) COMP VALUE opcode.
 10 FLAGS PIC S9(4) COMP VALUE 0.
 10 P-CKSUM PIC S9(4) COMP VALUE 0.
 10 IOVAR-CKSUM PIC S9(9) COMP VALUE 0.
 10 IVARS-PTR PIC S9(9) COMP VALUE -999999.
 10 OVARS-PTR PIC S9(9) COMP VALUE -999999.
 10 SQLSA-PTR PIC S9(9) COMP VALUE -999999.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
B-2

Memory Considerations Avoiding Name Conflicts
If the compiler cannot determine the procedure name, PROCEDURE-ID is replaced by
this declaration, and the executor provides the name later.

 10 BVARS-PTR PIC S9(9) COMP VALUE -999999.
 10 FILLER PIC X(27).

SQLVARS Structure

If the SQL statement contains input or output host variables, the HP COBOL compiler
creates an SQLVARSnI structure for each input variable and an SQLVARSnO structure
for each output variable:

05 SQLVARSn{I|O}.
 10 EYE-CATCHER PIC X(2) VALUE "D1".
 10 NUM-ENTRIES PIC S9(4) COMP VALUE num-entries.
 10 VARSn.
 15 DATA-TYPE PIC S9(4) COMP VALUE datatype.
 15 DATA-LEN NATIVE-2 VALUE length.
 15 PRECISION PIC S9(4) COMP VALUE precision.
 15 NULL-INFO PIC S9(4) COMP VALUE null-flag.
 15 VAR-PTR PIC S9(9) COMP VALUE -999999.
 15 IND-PTR PIC S9(9) COMP VALUE -999999.
 15 CPRL-PTR PIC S9(9) COMP VALUE -999999.
 15 RESERVED PIC S9(9) COMP VALUE -1.

For a host variable with a numeric, date-time, or interval data type, DATA-LEN is
replaced by this declaration:

 15 DATA-SCALEN PIC S9(4) COMP VALUE length.

Depending on the data type of the host variable, the DATA-SCALEN data item has
these values:

For a host variable with a character, date-time or interval data type, PRECISION has
these values:

Data Type of Host Variable Value of DATA-SCALEN

Numeric Byte 1: scale
Byte 2: length

Date-time or interval Byte 1: Date-time qualifier
Byte 2: length

Data Type of Host Variable Value of PRECISION

Numeric Zero (0)

Date-time or interval Byte 1: leading field precision
Byte 2: fractional precision

Character Character set ID
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
B-3

Memory Considerations Using the SQLMEM Directive
SQLBVARS Structure

If the SLT-INDEX item of SQLINn is -1, the HP COBOL compilers creates an
SQLBVARS entry. This entry occurs when a qualified cursor or statement name has a
qualifying program name other than the current program name. The SQLBVARS entry
follows the declaration of its corresponding SQLIN:

05 SQLBVARSn.
 10 EYE-CATCHER PIC X(2) VALUE "VB".
 10 NUM-ENTRIES PIC S9(4) COMP VALUE 2.
 10 BVARS1.
 15 DATA-TYPE PIC S9(4) COMP VALUE proc-type.
 15 DATA-LEN PIC S9(4) COMP VALUE length.
 15 RESERVED0 PIC S9(4) COMP VALUE 0.
 15 VAR-PTR PIC S9(9) COMP VALUE -999999.
 15 IND-PTR PIC S9(9) COMP VALUE -999999.
 10 BVARS2.
 15 DATA-TYPE PIC S9(4) COMP VALUE cursor-type.
 15 DATA-LEN PIC S9(4) COMP VALUE length.
 15 RESERVED0 PIC S9(4) COMP VALUE 0.
 15 VAR-PTR PIC S9(9) COMP VALUE -999999.
 15 IND-PTR PIC S9(9) COMP VALUE -999999.
05 SQLBVARS-PROC-NAMEn PIC X(32) VALUE procedure-name.
05 SQLBVARS-CUR-STMT-NAMEn PIC X(30) VALUE statement-name.

Using the SQLMEM Directive
The SQLMEM compiler directive specifies where in memory (user data segment or
extended data segment) the HP COBOL compiler should place the internal SQL data
structures. Although a program does not explicitly declare the SQL internal data
structures and cannot directly access them, it can control their placement in memory.

Specify the SQLMEM directive before the Data Division in a COBOL program using
this syntax:

USER

directs the compiler to place the SQL data structures in the user data segment
(Working-Storage Section) even if the program includes an Extended-Storage
Section.

EXT

At run time, the system automatically creates an extended data segment for a
COBOL program and places the SQL structures in this segment, even if the
program does not include an Extended-Storage Section.

EXT is the default.

SQLMEM { USER | EXT }
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
B-4

Memory Considerations Estimating Memory Requirements
Estimating Memory Requirements
A program that uses embedded SQL statements and directives to access an SQL/MP
database uses more memory than a program that accesses an Enscribe database.
This subsection describes how to estimate the virtual memory used by embedded SQL
statements and directives. Some statements require no extra extended memory.
However, other statements generate a run-time call to the SQL executor and do use
extra memory.

Memory Requirements
These structures are shared by all SQL statements and directives:

Use this table to estimate the number of bytes used by each embedded SQL statement
and directive.

Follow these guidelines when you estimate bytes required:

 Count a host variable once per occurrence.

 Count only these SQL statements and directives (which generate a run-time call to
the SQL executor):

Note. The HP COBOL compiler does not perform checkpointing on data in an extended data
segment. Therefore, to ensure data integrity, HP recommends that you use the NonStop
Transaction Management Facility (TMF).

Structure Bytes Description

SQLCA 430 Count once if you specify the INCLUDE SQLCA directive.

SQLSA 838 Count once if you specify the INCLUDE SQLSA directive.

Bytes Required Description

 32 Base value for header information.

+ 72 Base value for each SQL statement with no
host variables.

+ 4 + (24 x number of input host variables) Required for a statement with input host
variables.

+ 4 + (24 x number of output host variables) Required for a statement with output host
variables.

+ 146 Required for a static SQL statement that
uses a cursor declared in the global area of
the program.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
B-5

Memory Considerations Guidelines for Memory Use

Do not count these SQL statements and directives:

 BEGIN DECLARE SECTION and END DECLARE SECTION

 CONTROL EXECUTOR, CONTROL QUERY, and CONTROL TABLE

 DECLARE CURSOR

 INVOKE

 WHENEVER

Guidelines for Memory Use
The system allocates real memory in 16 KB pages. If an SQL statement uses only part
of a page, the system allocates the entire page. Therefore, the real memory used by
embedded SQL statements can be larger than the figures shown under Memory
Requirements on page B-5.

A program can encounter memory problems in these situations:

 The program contains a large number of embedded SQL statements.
 The program runs on a system with limited memory (for example, 16 MB or less).
 The program runs in a CPU that is also running a large number of other programs.

To reduce the memory use in an extended data segment, follow these guidelines:

 Declare only the host variables that your program actually requires.

 Declare all host variables in one Declare Section. The system then allocates the
host variables contiguously in one or more pages, rather than allocating each host
variable in a separate page.

 Execute SQL statements in listing order as often as possible. Therefore, the SQL
statements can share many of the pages in the extended data segment.

 As a last measure, use dynamic SQL statements. Using dynamic SQL statements
can reduce memory use. However, it can also degrade a program’s performance
because of the additional SQL run-time compilations.

ALTER
BEGIN WORK
CLOSE
COMMENT
CREATE
DELETE
DESCRIBE
DESCRIBE INPUT

DROP
END WORK
EXECUTE
EXECUTE IMMEDIATE
FETCH
FREE RESOURCES
GET VERSION
HELP TEXT

INSERT
LOCK TABLE
OPEN
RELEASE
ROLLBACK WORK
SELECT
UNLOCK TABLE
UPDATE
UPDATE STATISTICS
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
B-6

C Maximizing Local Autonomy

This appendix describes about the local autonomy in the NonStop SQL/MP
network-distributed database.

Topics include:

 Using a Local Partition

 Using TACL DEFINEs on page C-2

 Using Current Statistics on page C-2

Local autonomy in the NonStop SQL/MP network-distributed database ensures that a
program can access data on the local node, regardless of the availability of SQL
objects on remote nodes. In some cases, the design of NonStop SQL/MP allows for
local autonomy. For example, if a DDL change alters a table on \NODEA when
\NODEB is unavailable, an SQL program file on \NODEB that uses the altered
\NODEA table is not marked as invalid. The invalid SQL program on \NODEB that is
erroneously marked as valid is detected at run time by the timestamp check and then
automatically recompiled.

If your program accesses a network-distributed database, you can maximize local
autonomy by following these guidelines:

 Use a local partition, rather than the primary partition, as the table name for
partitioned tables.

 Use TACL DEFINEs to refer to tables.

 Use current statistics.

 Skip unavailable partitions.

For collations, SQL/MP supports run-time node autonomy because collations are
stored in an SQL object’s file label and within expressions that operate on the SQL
objects. For example, suppose that you create a partitioned table, TABLEA, with
partitions on \NEWYORK and \PARIS. TABLEA requires the collation
\NEWYORK.$SQL.COLLATE.FRENCH. If \NEWYORK goes down, programs on
\PARIS that refer to TABLEA continue to run, because they get the collation
information from the TABLEA file label. However, the recompilation of a program on
\PARIS that uses TABLEA fails, because the \NEWYORK.$SQL.COLLATE.FRENCH
collation is not available.

Using a Local Partition
If your program uses a remote partition, the SQL compiler looks for information about
the table in a remote catalog. If the remote node is down, the SQL compilation fails.
However, if your program uses a local partition, the SQL compiler looks for the
information in a local catalog. If the local node and the data is available, the SQL
compilation is successful.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
C-1

Maximizing Local Autonomy Using TACL DEFINEs
This example shows the concept of maximizing local autonomy. The PARTS table is a
partitioned table that resides on the \NEWYORK and \PARIS nodes:

A program declares an SQL cursor as follows:

EXEC SQL DECLARE GET_PART_CURSOR CURSOR FOR
 SELECT PARTNUM, PARTDESC, PRICE, QTY_AVAILABLE
 FROM =PARTS
 WHERE PARTS.PARTNUM < 5000
 AND PARTS.PARTDESC = "V8 DISK OPTION"
END-EXEC.

The program running on \NEWYORK uses a DEFINE to associate the PARTS table
with the first partition located at \NEWYORK:

SET DEFINE CLASS MAP
ADD DEFINE =parts, FILE \NEWYORK.$VOL1.SALES.PARTS

If \PARIS is unavailable at compile time, the program can still compile because enough
information is available in the catalogs on \NEWYORK, where the first partition is
registered.

Suppose that the compiler uses the index on \PARIS in the optimized execution plan. If
\PARIS is still unavailable at run time, the executor invokes the compiler to
automatically recompile the statement. The compiler determines an execution plan that
does not use the index IXPART but will sequentially scan the rows in the first partition
to find all parts that have “V8 DISK OPTION” in the PARTDESC column.

Using TACL DEFINEs
Use class MAP DEFINEs in a program to refer to tables. By associating DEFINEs with
local partitions rather than remote partitions, you can increase the number of
successful compilations of the programs that access a distributed database. All SQL
compilations are affected, including both explicit compilations and automatic
recompilations.

Using Current Statistics
For a partitioned table to have local autonomy, the UPDATE STATISTICS statement
must be executed on the table at least once. If the SQL catalog in which a table is
registered does not have any statistics for the table, the SQL optimizer does a catalog
look-up operation for each partition of the table to estimate the aggregate number of
nonempty blocks and records. Also, if the statistics for an unavailable partitioned table
have not been updated, you will receive an SQL warning and file-system error even if

\NEWYORK The first partition contains all rows in which PARTS.PARTNUM (the
primary key) is less than 5000.

\PARIS The second partition contains all rows in which PARTS.PARTNUM is
5000 or greater. An index on the PARTDESC column of table
PARTS, is named IXPART.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
C-2

Maximizing Local Autonomy Skipping Unavailable Partitions
your query does not try to retrieve any rows from the unavailable partition. Executing
the UPDATE STATISTICS statement can eliminate both these problems.

Skipping Unavailable Partitions

Use the SKIP UNAVAILABLE PARTITION option of the CONTROL TABLE directive to
cause SQL/MP to skip a partition that is not available and to open the next available
partition that satisfies the search condition of a query. (SQL/MP also returns warning
message 8239 to the SQLCA structure.) The SKIP UNAVAILABLE PARTITION option
applies to static or dynamic SQL statements that refer to partitioned tables and
partitioned indexes of the tables.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
C-3

Maximizing Local Autonomy Skipping Unavailable Partitions
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
C-4

D Converting COBOL Programs

This appendix describes how a COBOL program developed for NonStop SQL/MP
version 1 or version 2 software can execute on SQL/MP version 300 (or later) software
without changes to its embedded SQL statements or directives. However, to use new
SQL features, you must modify and recompile the program.

Topics include:

 Generating SQL Data Structures

 Generating SQLDA Structures on page D-2

 Planning for Future PVUs on page D-8

Generating SQL Data Structures
The SQLCA, SQLSA, and SQLDA data structures can change in new PVUs of
SQL/MP. Table D-1 lists the SQL data structure and the changes that occurred with
each version.

Follow these guidelines if you are converting an existing COBOL program (that is, a
program that uses version 1 or version 2 structures) or writing a new program to use
version 300 (or later) SQL structures:

 Use the INCLUDE STRUCTURES directive to specify the version of each structure
you require, even if you require version 1 or version 2 structures. To generate
version 300 or later SQL data structures, you must use the

Table D-1. SQL Data Structures

Version Size, Bytes Eye-Catcher Literals New Fields

SQLCA Structure

1 430 CA None –

2 430 CA None None

Š 300 430 CA None None

SQLSA Structure

1 838 SA None –

2 838 SA None None

Š 300 838 SA None OUTPUT–COLLATIONS–LEN

SQLDA Structure

1 Variable DA None –

2 Variable D1 None PRECISION, NULL–INFO, and
IND–PTR

Š 300 Variable D1 None CPRL–PTR, user-defined
collation buffer
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
D-1

Converting COBOL Programs Generating SQLDA Structures
INCLUDE STRUCTURES directive. For more information, see Section 9, Error and
Status Reporting.

 Use the SQLCAGETINFOLIST procedure to return information from the SQLCA
structure. Do not access this structure directly. HP reserves the right to change it in
future PVUs.

Generating SQLDA Structures
If your existing COBOL program generates SQLDA structures and you are converting it
to run on version 300 (or later) SQL/MP software, you might need one or more of these
combinations of SQLDA structures:

 A version 300 (or later) SQLDA structure

 A version 1 or version 2 SQLDA structure

 A version 300 (or later) SQLDA structure and a version 1 or version 2
SQLDA structure

Generating a Version 315 SQLDA Structure

To convert a program that generates a version 1 or version 2 SQLDA structure to
generate a version 300 (or later) SQLDA structure, follow these steps:

1. If necessary, remove the RELEASE1 or RELEASE2 option from the SQL compiler
directive or from the INCLUDE SQLDA directive. The HP COBOL compiler returns
an error if you specify the RELEASE1 or RELEASE2 option and the
INCLUDE STRUCTURES directive.

2. Remove any -R1 or -R2 suffixes appended to SQLDA field names.

3. If you are converting a version 1 SQLDA structure, make sure you initialize the
NULL-INFO and IND-PTR fields.

4. Add an INCLUDE STRUCTURES directive with the ALL VERSION 315 option:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 315 END-EXEC.

Or specify only the SQLDA VERSION 315 option:

EXEC SQL INCLUDE STRUCTURES SQLDA VERSION 315 END-EXEC.

5. Add the necessary Procedure Division statements to process the version 315
SQLDA structure. For the layout of a version 315 SQLDA structure and a
description of each field, see Section 10, Dynamic SQL Operations.

Generating a Version 2 SQLDA Structure

If you are converting a program to use the INCLUDE STRUCTURES directive, but you
require a version 2 SQLDA structure, follow these steps:
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
D-2

Converting COBOL Programs Generating a Version 2 SQLDA Structure
1. If necessary, remove the RELEASE2 option from the SQL compiler directive or the
INCLUDE SQLDA directive. The HP COBOL compiler returns an error if you
specify the RELEASE2 option and the INCLUDE STRUCTURES directive.

2. If you specified the RELEASE2 option in an INCLUDE SQLDA directive, remove
any -R2 suffixes you appended to SQLDA field names.

3. If you are converting a version 1 SQLDA structure, initialize the NULL-INFO and
IND-PTR fields. (Your program should already initialize these fields for a version 2
SQLDA structure.)

4. Add an INCLUDE STRUCTURES directive with the ALL VERSION 2 option:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 2 END-EXEC.

Or specify only the SQLDA VERSION 2 option:

EXEC SQL INCLUDE STRUCTURES SQLDA VERSION 2 END-EXEC.

Example D-1 shows a version 2 SQLDA structure.

Table D-2 describes each field in a version 2 SQLDA structure.

Example D-1. Version 2 SQLDA Structure

01 sqlda-name.
 05 EYE–CATCHER PIC X(2) VALUE "D1".
 05 NUM–ENTRIES PIC S9(4) COMP VALUE sqlvar-count.
 05 SQLVAR [–R2] OCCURS sqlvar-count TIMES.
 10 DATA–TYPE PIC S9(4) COMP.
 10 DATA–LEN NATIVE–2.
 10 PRECISION PIC S9(4) COMP.
 10 NULL–INFO PIC S9(4) COMP..
 10 VAR–PTR PIC S9(9) COMP.
 10 IND–PTR PIC S9(9) COMP.
 10 RESERVED PIC S9(18) COMP.

01 names-buffer-name PIC X(length).

Table D-2. Version 2 SQLDA Structure Fields (page 1 of 3)

Field Name Description

EYE-CATCHER An identifying field your program must initialize as D1 for version 1 or DA
for version 2. SQL/MP statements do not return values to EYE-
CATCHER.

NUM-ENTRIES The number of input or output parameters the SQLDA structure can
accommodate.

SQLVAR Group item that describes input parameters or database columns. The
DESCRIBE INPUT and DESCRIBE statements return one SQLVAR entry
for each input parameter or each output variable.

DATA-TYPE The data type of the parameter or output variable.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
D-3

Converting COBOL Programs Generating a Version 2 SQLDA Structure
DATA-LEN DATA-LEN depends on the data type.

Fixed-length character The number of bytes in the string.

Variable-length character The maximum number of bytes in the string.

Decimal numeric Bits 0:7 contain the decimal scale.
Bits 8:15 contain the byte length of the item.

Binary numeric Bits 0:7 contain the decimal scale.
Bits 8:15 contain the byte length of the item (2,
4, or 8).

Date-time or INTERVAL Bits 0:7 contain one of these codes for the
range of date-time fields.
Bits 8:15 contain the storage size of the item.

1 Year to Year 11 Year to Minute 20 Day to Minute
2 Month to Month 12 Year to Second 21 Day to Second
3 Day to Day 13 Year to Fraction 22 Day to Fraction
4 Hour to Hour 14 Month to Day 23 Hour to Minute
5 Minute to Minute 15 Month to Hour 24 Hour to Second
6 Second to Second 16 Month to Minute 25 Hour to Fraction
7 Fraction to Fraction 17 Month to Second 26 Minute to Second
8 Year to Month 18 Month to Fraction 27 Minute to Fraction
9 Year to Day 19 Day to Hour 28 Second to
Fraction
10 Year to Hour

PRECISION The PRECISION value depends on the data type.

Binary numeric PRECISION contains the numeric precision.

Date-time or INTERVAL Bits 0:7 contain the leading field precision. Bits
8:15 contain the fraction precision. If the
FRACTION field is not included, bits 8:15 are
0.

Table D-2. Version 2 SQLDA Structure Fields (page 2 of 3)

Field Name Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
D-4

Converting COBOL Programs Generating a Version 1 SQLDA Structure
Generating a Version 1 SQLDA Structure

If you are converting a program to use the INCLUDE STRUCTURES directive, but you
require a version 1 SQLDA structure, follow these steps:

1. If necessary, remove the RELEASE1 option from the SQL compiler directive or the
INCLUDE SQLDA directive. The HP COBOL compiler returns an error if you
specify the RELEASE1 option and the INCLUDE STRUCTURES directive.

2. If you specified the RELEASE1 option in an INCLUDE SQLDA directive, remove
any -R1 suffixes you appended to SQLDA field names.

3. Add an INCLUDE STRUCTURES directive with the ALL VERSION 1 option:

EXEC SQL INCLUDE STRUCTURES ALL VERSION 1 END-EXEC.

Or specify only the SQLDA VERSION 1 option:

EXEC SQL INCLUDE STRUCTURES SQLDA VERSION 1 END-EXEC.

NULL-INFO For input parameters, NULL-INFO contains a negative integer if the
column permits null values.

For output columns, NULL-INFO contains a negative integer if the row
returned is null.

VAR-PTR The extended address of the actual data (value of input parameter or
column). SQL/MP does not return VAL-PTR. Your program must initialize
VAR-PTR to point to the input and output data buffers.

IND-PTR The address of a flag that indicates whether a parameter or column is
actually null.

 For input parameters, your program initializes IND-PTR to -1 if the
user entered a null value.

 For output columns, SQL initializes the location IND-PTR points to -1
if the user entered a null value.

If your program does not need to process null values, initialize IND-PTR
to an invalid address.

Table D-2. Version 2 SQLDA Structure Fields (page 3 of 3)

Field Name Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
D-5

Converting COBOL Programs Generating a Version 1 SQLDA Structure
Example D-2 shows a version 1 SQLDA structure.

Table D-3 describes each field in a version 1 SQLDA structure.

Example D-2. Version 1 SQLDA Structure

01 sqlda-name.
 05 EYE–CATCHER PIC X(2) VALUE "DA".
 05 NUM–ENTRIES PIC S9(4) COMP.
 05 SQLVAR [–R1] OCCURS sqlvar-count TIMES.
 10 DATA–TYPE PIC S9(4) COMP.
 10 DATA–LEN NATIVE–2.
 10 RESERVED–0 PIC S9(4) COMP.
 10 VAR–PTR PIC S9(9) COMP.
 10 RESERVED PIC S9(9) COMP.
01 names-buffer-name PIC X(length).

Table D-3. Version 1 SQLDA Structure Fields (page 1 of 2)

Field Name Description

EYE-CATCHER An identifying field that a program must initialize as D1 for version 1 or
DA for version 2. SQL/MP statements do not return values to EYE-
CATCHER.

NUM-ENTRIES The number of input parameters or output variables the SQLDA structure
can accommodate.

SQLVAR Group item that describes input parameters or database columns. The
DESCRIBE INPUT and DESCRIBE statements return one SQLVAR entry
for each input parameter or each output variable.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
D-6

Converting COBOL Programs Using a Combination of SQLDA Structures
Using a Combination of SQLDA Structures

Version 300 (or later) SQL/MP does not support different versions of SQLDA structures
in the same compilation unit. If your program requires more than one SQLDA structure
in a compilation unit, convert all SQLDA structures to version 315. However, if you
want to use a combination of SQLDA structures (for example, a version 2 structure and
a version 315 structure), follow these steps:

1. Separate your program into different compilation units so that the version 315
SQLDA structure and the supporting Procedure Division statements are in a
different compilation unit than the version 2 (or version 1) SQLDA structure and
Procedure Division statements.

2. Specify an INCLUDE STRUCTURES directive with the appropriate VERSION
clause in each compilation unit.

3. Compile each compilation unit separately.

4. Use the Binder program to combine the object files into a single target object file.

DATA-TYPE The data type of the parameter or output variable.

DATA-LEN The DATA-LEN value depends on the data type.

Fixed-length character The number of bytes in the string.

Variable-length character The maximum number of bytes in the string.

Decimal numeric Bits 0:7 contain the decimal scale.
 Bits 8:15 contain the byte length of the item.

Binary numeric Bits 0:7 contain the decimal scale.
Bits 8:15 contain the byte length of the item (2,
4, or 8).

Date-time or INTERVAL Bits 0:7 contain one of these codes for the
range of the field.
Bits 8:15 contain the storage size of the item.

1 Year to Year 11 Year to Minute 20 Day to Minute
2 Month to Month 12 Year to Second 21 Day to Second
3 Day to Day 13 Year to Fraction 22 Day to Fraction
4 Hour to Hour 14 Month to Day 23 Hour to Minute
5 Minute to Minute 15 Month to Hour 24 Hour to Second
6 Second to Second 16 Month to Minute 25 Hour to Fraction
7 Fraction to Fraction 17 Month to Second 26 Minute to Second
8 Year to Month 18 Month to Fraction 27 Minute to Fraction
9 Year to Day 19 Day to Hour 28 Second to
Fraction
10 Year to Hour

VAR-PTR The extended address of the actual data (value of input parameter or
column). SQL/MP does not return VAL-PTR. Your program must initialize
it to point to the input and output data buffers.

Table D-3. Version 1 SQLDA Structure Fields (page 2 of 2)

Field Name Description
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
D-7

Converting COBOL Programs Planning for Future PVUs
Planning for Future PVUs
If you are converting a COBOL program developed for SQL/MP version 1 or version 2
software to use version 300 (or later) features and to run on SQL/MP version 300 (or
later) software, consider making these changes in your program for compatibility with
future SQL/MP PVUs.

SQL/MP Version Procedures

The SQLGETOBJECTVERSION, SQLGETCATALOGVERSION, and
SQLGETSYSTEMVERSION system procedures, which return SQL version
information, might not be supported in a future PVU and will return an
“Unresolved External References” error at run time.

If you call any of these procedures, consider modifying your program.

For more information, including the syntax of the GET VERSION statements, see the
SQL/MP Reference Manual.

RELEASE1 and RELEASE2 Options

The RELEASE1 and RELEASE2 options used in the SQL compiler directive and the
INCLUDE SQLDA directive might not be supported in a future PVU.

Consider modifying your program to use the INCLUDE STRUCTURES directive with
the VERSION 1 or VERSION 2 options to generate version 1 or version 2 SQLDA
structures. Or, convert your program to use version 300 (or later) SQLDA structures.
Remove the RELEASE1 or RELEASE2 option from the SQL compiler directive or the
INCLUDE SQLDA directive.

For more information about the INCLUDE STRUCTURES directive, see Using the
INCLUDE STRUCTURES Directive on page 9-1.

Procedure Description of Conversion

SQLGETOBJECTVERSION Convert to the GET VERSION statement, or query the
TABLES.OBJECTVERSION column.

SQLGETCATALOGVERSION Convert to the GET VERSION OF CATALOG statement,
or query the VERSIONS.CATALOGVERSION column.

SQLGETSYSTEMVERSION Convert to the GET VERSION OF SYSTEM statement.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
D-8

E Writing Pathway Servers

Writing a Pathway application that accesses a NonStop SQL/MP database is similar to
writing an application that accesses an Enscribe database. In either case, you manage
terminal requests and displays in the requester portion of the application and perform
database manipulation in the servers. When coding a Pathway application that
accesses an SQL/MP database, you embed the SQL DML statements in the server
code.

Most Pathway servers use subroutines. Subroutines are efficient because they reduce
the amount of coding to a minimum. Also, subroutines separate the database
manipulation operations from the main logic, which makes it easier to develop and
maintain programs.

This appendix provides sample program code to illustrate two possible models for
writing Pathway servers that use subroutines to separate the database manipulation
operations from the main logic.

 PERFORM model. This model uses COBOL PERFORM statements in the main
logic flow of a program to execute subroutines in the same program. When the
PERFORM is executed, the program enters the subroutine, performs the
requested function, and returns control to the next instruction in the main logic.

 CALL model. This model uses COBOL CALL statements in the main program to
call subprograms. In this model, a program consists of a collection of subprograms
managed by a main program.

If the main program passes arguments to the subprogram, the subprogram must
contain a Linkage Section. If no arguments are passed, the subprogram need not
contain a Linkage Section. In HP COBOL, a main program cannot contain a
Linkage Section.

PERFORM Model
This PERFORM model Pathway server program modifies a single file, called PARTS in
the sample database, depending on the value of the ENTRY-TYPE flag of the message
received. When the flag is U, the server updates the inventory count for the specified
part number. When the flag is I, it inserts a new PARTS record.

The reply message fields REPLY-CODE and ERROR-CODE are set as follows:

Reply Message REPLY-CODE ERROR-CODE

Operation successful 0 N.A.

Error, operation not performed 9999 Positive SQLCODE value
(transformed from original negative
value)

Warning, but operation successful 9998 Positive SQLCODE value

Invalid ENTRY-TYPE 9997 N.A.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-1

Writing Pathway Servers PERFORM Model
The sample code for the PERFORM model server is shown in Example E-1.

Example E-1. PERFORM Model (page 1 of 3)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. perform-model-sql.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. Tandem NonStop.
 OBJECT-COMPUTER. Tandem NonStop.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT msg-in
 ASSIGN TO $RECEIVE
 FILE STATUS IS receive-file-status.
 SELECT msg-out
 ASSIGN TO $RECEIVE
 FILE STATUS IS receive-file-status.

 DATA DIVISION.
 FILE SECTION.
 FD msg-in
 LABEL RECORDS ARE OMITTED.
* The definition of ENTRY-MSG should be a COPY statement.
 01 entry-msg.
 02 pw-header.
 04 reply-code PIC S9(4) COMP.
 04 application-code PIC XX.
 04 function-code PIC XX.
 04 trans-code PIC 99.
 04 term-id PIC X(15).
 04 log-request PIC X.
 02 entry-type PIC X.
 02 parts-info.
 04 partnum PIC 9(4).
 04 partname PIC X(18).
 04 inventory PIC S999 COMP.
 04 location PIC XXX.
 04 price PIC 9(6)V99 COMP.

 FD msg-out
 LABEL RECORDS ARE OMITTED.
 RECORD CONTAINS 1 TO 26 CHARACTERS.
* The definition of ENTRY-REPLY should be a COPY statement.
 01 entry-reply.
 02 pw-header.
 04 reply-code PIC S9(4) COMP.
 04 filler PIC X(22).
 02 error-code PIC S9(4) COMP.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-2

Writing Pathway Servers PERFORM Model
 WORKING-STORAGE SECTION.
 01 receive-file-status.
 02 stat-1 PIC 9.
 88 close-from-requester VALUE 1.
 02 stat-2 PIC 9.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

* The definition of PARTS-RECORD should be an INVOKE directive.

 01 parts-record.
 02 partnum PIC 9(4).
 02 partname PIC X(18).
 02 inventory PIC S999 COMP.
 02 location PIC XXX.
 02 price PIC 9(6)V99 COMP.

 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 MAIN-SECTION SECTION.
 00-whenever.
 EXEC SQL WHENEVER NOT FOUND PERFORM :sql-notfnd END-
EXEC.
 EXEC SQL WHENEVER SQLERROR PERFORM :sql-error END-
EXEC.
 EXEC SQL WHENEVER SQLWARNING PERFORM :sql-warning END-
EXEC.

 a-init.
 OPEN INPUT msg-in.
 OPEN OUTPUT msg-out SYNCDEPTH 1.
 PERFORM b-trans UNTIL close-from-requester.
 STOP RUN.

 b-trans.
 MOVE SPACES to entry-reply, entry-msg.
 MOVE ZERO to reply-code OF entry-reply.
 READ msg-in
 AT END STOP RUN
 END-READ.
 MOVE pw-header OF msg-in TO pw-header OF msg-out.
 IF entry-type = "U" THEN
 PERFORM update-parts
 ELSE IF entry-type = "I" THEN
 PERFORM insert-parts
 ELSE
 MOVE 9997 TO reply-code OF entry-reply
 END-IF.
 WRITE entry-reply END-WRITE.

Example E-1. PERFORM Model (page 2 of 3)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-3

Writing Pathway Servers CALL Model: SQL Main Program
CALL Model: SQL Main Program
This CALL model Pathway server program modifies a single file, called PARTS in the
sample database, depending on the value of the ENTRY-TYPE flag of the message
received. When the flag is U, the server updates the inventory count for the specified
part number. When the flag is I, it inserts a new PARTS record.

 update-parts.
 MOVE partnum OF parts-info TO partnum OF parts-record.
 MOVE inventory OF parts-info TO inventory OF parts-record.

 EXEC SQL UPDATE $mkt.sample.parts
 SET inventory = :parts-record.inventory
 WHERE partnum = :parts-record.partnum
 END-EXEC.

 insert-parts.
 MOVE partnum OF parts-info TO partnum OF parts-record.
 MOVE partname OF parts-info TO partname OF parts-record.
 MOVE inventory OF parts-info TO inventory OF parts-record.
 MOVE location OF parts-info TO location OF parts-record.
 MOVE price OF parts-info TO price OF parts-record.

 EXEC SQL INSERT INTO $mkt.sample.parts
 VALUES (:parts-record.partnum,
 :parts-record.partname,
 :parts-record.inventory,
 :parts-record.location,
 :parts-record.price)
 END-EXEC.

 sql-error.
* Return the error code as a positive number.
*
 MOVE 9999 TO reply-code OF entry-reply.
 MOVE sqlcode OF sqlca TO error-code.
 MULTIPLY error-code BY -1 GIVING error-code END-MULTIPLY.

 sql-warning.
 MOVE 9998 TO reply-code OF entry-reply.
 MOVE sqlcode OF sqlca TO error-code.

 sql-notfnd.
 MOVE 9999 TO reply-code OF entry-reply.
 MOVE sqlcode OF sqlca TO error-code.

Example E-1. PERFORM Model (page 3 of 3)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-4

Writing Pathway Servers CALL Model: SQL Main Program
The reply message fields REPLY-CODE and ERROR-CODE are set as follows:

The main program for the sample server illustrating the CALL model is shown in
Example E-2.

Reply Message REPLY-CODE ERROR-CODE

Operation successful 0 N.A.

Error, operation not performed 9999 Positive SQLCODE value
(transformed from original negative
value)

Warning, but operation successful 9998 Positive SQLCODE value

Invalid ENTRY-TYPE 9997 N.A.

CALL error occurred 9996 N.A.

Example E-2. CALL Model Main Program (page 1 of 3)

IDENTIFICATION DIVISION.
 PROGRAM-ID. call-model-sql.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. Tandem NonStop.
 OBJECT-COMPUTER. Tandem NonStop.
 SPECIAL-NAMES.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT msg-in
 ASSIGN TO $RECEIVE
 FILE STATUS IS receive-file-status.
 SELECT msg-out
 ASSIGN TO $RECEIVE
 FILE STATUS IS receive-file-status.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-5

Writing Pathway Servers CALL Model: SQL Main Program
DATA DIVISION.
 FILE SECTION.
 FD msg-in
 LABEL RECORDS ARE OMITTED.
* The definition of ENTRY-MSG should be a COPY statement.
 01 entry-msg.
 02 pw-header.
 04 reply-code PIC S9(4) COMP.
 04 application-code PIC XX.
 04 function-code PIC XX.
 04 trans-code PIC 99.
 04 term-id PIC X(15).
 04 log-request PIC X.
 02 entry-type PIC X.
 02 parts-info.
 04 partnum PIC 9(4).
 04 partname PIC X(18).
 04 inventory PIC S999 COMP.
 04 location PIC XXX.
 04 price PIC 9(6)V99 COMP.

 FD msg-out
 LABEL RECORDS ARE OMITTED.
 RECORD CONTAINS 1 TO 26 CHARACTERS.
* The definition of ENTRY-REPLY should be a COPY statement.
 01 entry-reply.
 02 pw-header.
 04 reply-code PIC S9(4) COMP.
 04 filler PIC X(22).
 02 error-code PIC S9(4) COMP.

 WORKING-STORAGE SECTION.
 01 receive-file-status.
 02 stat-1 PIC 9.
 88 close-from-requester VALUE 1.
 02 stat-2 PIC 9.*

* The definition of PARTS-PARAMS should be an INVOKE directive.

 01 parts-params.
 02 partnum PIC 9(4).
 02 partname PIC X(18).
 02 inventory PIC S999 COMP.
 02 location PIC XXX.
 02 price PIC 9(6)V99 COMP.

Example E-2. CALL Model Main Program (page 2 of 3)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-6

Writing Pathway Servers CALL Model: SQL Main Program
 PROCEDURE DIVISION.
 MAIN-SECTION SECTION.
 a-init.
 OPEN INPUT msg-in.
 OPEN OUTPUT msg-out SYNCDEPTH 1.
 PERFORM b-trans UNTIL close-from-requester.
 STOP RUN.

 b-trans.
 MOVE SPACES to entry-reply, entry-msg.
 MOVE ZERO to reply-code OF entry-reply.
 READ msg-in
 AT END STOP RUN
 END-READ.
 MOVE pw-header OF msg-in TO pw-header OF msg-out.
 IF entry-type = "U" THEN
 MOVE partnum OF parts-info TO partnum OF parts-
params.
 MOVE inventory OF parts-info TO inventory OF parts-
params.
 CALL update-parts USING BY REFERENCE
 parts-params
 reply-code OF entry-reply
 error-code OF entry-reply
 ON EXCEPTION MOVE 9996 TO reply-code OF entry-reply.
 END-CALL
 ELSE
 IF entry-type = "I" THEN
 MOVE partnum OF parts-info TO partnum OF parts-
params.
 MOVE partname OF parts-info TO partname OF parts-
params.
 MOVE inventory OF parts-info TO inventory OF parts-
params.
 MOVE location OF parts-info TO location OF parts-
params.
 MOVE price OF parts-info TO price OF parts-
params.
 CALL insert-parts USING BY REFERENCE
 parts-params
 reply-code OF entry-reply
 error-code OF entry-reply
 ON EXCEPTION MOVE 9996 TO reply-code OF entry-reply.
 END-CALL
 ELSE
 MOVE 9997 TO reply-code OF entry-reply
 END-IF.
 WRITE entry-reply END-WRITE.

Example E-2. CALL Model Main Program (page 3 of 3)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-7

Writing Pathway Servers CALL Model: SQL Subprograms
CALL Model: SQL Subprograms
Following are the two subprograms that are called to perform SQL operations on the
PARTS table.The reply message fields REPLY-CODE and ERROR-CODE are set as
follows:

UPDATE Subprogram

The SQL subprogram UPDATE-PARTS that updates the PARTS table is illustrated in
Example E-3.

Reply Message REPLY-CODE ERROR-CODE

Operation successful 0 N.A.

Error, operation not performed 9999 Positive SQLCODE value
(transformed from original negative
value)

Warning, but operation successful 9998 Positive SQLCODE value

Example E-3. SQL UPDATE Subprogram (page 1 of 2)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. update-parts.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. Tandem NonStop.
 OBJECT-COMPUTER. Tandem NonStop.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
* The definition of PARTS-RECORD should be an INVOKE directive.

 01 parts-record.
 02 partnum PIC 9(4).
 02 partname PIC X(18).
 02 inventory PIC S999 COMP.
 02 location PIC XXX.
 02 price PIC 9(6)V99 COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

* LINKAGE SECTION.
* The definition of PARTS-PARAMS should be an INVOKE directive.

 01 parts-params.
 02 partnum PIC 9(4).
 02 partname PIC X(18).
 02 inventory PIC S999 COMP.
 02 location PIC XXX.
 02 price PIC 9(6)V99 COMP.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-8

Writing Pathway Servers UPDATE Subprogram
* The definition of these LINKAGE parameters should be COPY
* statements.
 01 reply-code PIC S9(4) COMP.
 01 error-code PIC S9(4) COMP.

PROCEDURE DIVISION USING parts-params,
 reply-code,
 error-code.
 MAIN-SECTION SECTION.
 00-whenever.
 EXEC SQL WHENEVER NOT FOUND PERFORM :sql-notfnd END-
EXEC.
 EXEC SQL WHENEVER SQLERROR PERFORM :sql-error END-
EXEC.
 EXEC SQL WHENEVER SQLWARNING PERFORM :sql-warning END-
EXEC.

 start-program.
 MOVE partnum OF parts-params TO partnum OF parts-
record.
 MOVE inventory OF parts-params TO inventory OF parts-
record.

 EXEC SQL UPDATE $mkt.sample.parts
 SET inventory = :parts-record.inventory
 WHERE partnum = :parts-record.partnum
 END-EXEC.
 EXIT PROGRAM.

 sql-error.
* Return the error code as a positive number.
*
 MOVE 9999 TO reply-code.
 MOVE sqlcode OF sqlca TO error-code.
 MULTIPLY error-code BY -1 GIVING error-code END-MULTIPLY.
*
 sql-warning.
 MOVE 9998 TO reply-code
 MOVE sqlcode OF sqlca TO error-code

 sql-notfnd.
 MOVE 9999 TO reply-code OF entry-reply
 MOVE sqlcode OF sqlca TO error-code.

 END PROGRAM update-parts.

?ENDUNIT

Example E-3. SQL UPDATE Subprogram (page 2 of 2)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-9

Writing Pathway Servers INSERT Subprogram
INSERT Subprogram

The SQL subprogram INSERT-PARTS that inserts new parts into the PARTS table is
illustrated in Example E-4.

Example E-4. SQL INSERT Subprogram (page 1 of 2)

 IDENTIFICATION DIVISION.
 PROGRAM-ID. insert-parts.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. Tandem NonStop.
 OBJECT-COMPUTER. Tandem NonStop.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

* The definition of PARTS-RECORD should be an INVOKE directive.

 01 parts-record.
 02 partnum PIC 9(4).
 02 partname PIC X(18).
 02 inventory PIC S999 COMP.
 02 location PIC XXX.
 02 price PIC 9(6)V99 COMP.

 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 LINKAGE SECTION.
* The definition of PARTS-PARAMS should be an INVOKE directive.

 01 parts-params.
 02 partnum PIC 9(4).
 02 partname PIC X(18).
 02 inventory PIC S999 COMP.
 02 location PIC XXX.
 02 price PIC 9(6)V99 COMP.
*
* The definition of these LINKAGE parameters should be COPY
* statements.
 01 reply-code PIC S9(4) COMP.
 01 error-code PIC S9(4) COMP.
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-10

Writing Pathway Servers INSERT Subprogram
 PROCEDURE DIVISION USING parts-params,
 reply-code,
 error-code.

 MAIN-SECTION SECTION.
 00-whenever.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-
EXEC.
 EXEC SQL WHENEVER SQLERROR PERFORM :sql-error END-
EXEC.
 EXEC SQL WHENEVER SQLWARNING PERFORM :sql-warning END-
EXEC.

 start-program.
 MOVE partnum OF parts-params TO partnum OF parts-
record.
 MOVE partname OF parts-params TO partname OF parts-
record.
 MOVE inventory OF parts-params TO inventory OF parts-
record.
 MOVE location OF parts-params TO location OF parts-
record.
 MOVE price OF parts-params TO price OF parts-
record.

 EXEC SQL INSERT INTO $mkt.sample.parts
 VALUES (:parts-record.partnum,
 :parts-record.partname,
 :parts-record.inventory,
 :parts-record.location,
 :parts-record.price)
 END-EXEC.
 EXIT PROGRAM.

 sql-error.
* Return the error code as a positive number.
 MOVE 9999 TO reply-code.
 MOVE sqlcode OF sqlca TO error-code.
 MULTIPLY error-code BY -1 GIVING error-code END-MULTIPLY.

 sql-warning.
 MOVE 9998 TO reply-code
 MOVE sqlcode OF sqlca TO error-code

 END PROGRAM insert-parts.

Example E-4. SQL INSERT Subprogram (page 2 of 2)
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-11

Writing Pathway Servers INSERT Subprogram
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
E-12

Index

A
Accelerator

compiling process 1-5

effect on SQL validity 8-2

OSS environment 6-18

OSS environment variable 6-16

to optimize object code 6-14, 6-24

Access authority
for a DELETE statement

multirow 4-22

single-row 4-10

for a FETCH statement 4-17

for a SELECT statement

multirow 4-19

single-row 4-4

for an INSERT statement 4-6

for an INVOKE directive 2-13

for an UPDATE statement 4-8

for an UPDATE STATISTICS
statement 6-35

to run an SQL program file 7-1

to run the SQL compiler 6-25

Access path
determined by SQL compiler 6-26

EXPLAIN PLAN report 6-40

EXPLAIN utility 6-29

unavailable 8-8

ADD command, Binder program 6-22
ADD CONSTRAINT, DDL statement 8-5
Aggregate functions, using in a
program 9-10
ALTER CATALOG, DDL statement 3-4
ALTER COLLATION, DDL statement 3-4
ALTER INDEX, DDL statement 3-4
ALTER PROGRAM, DDL statement 3-4
ALTER TABLE, DDL statement 3-4
ALTER VIEW, DDL statement 3-4
ARRIVAL-SEQ, SQLCA structure field 9-14

Asterisk
in SELECT statement 4-4

with similarity check 8-13

AUDIT attribute, changing 8-3
Automatic SQL recompilation

AUDIT attribute changes 8-3

causes 8-6

compiler operations 6-30

description 8-5

functions 8-5

NORECOMPILE option 8-6

preventing 8-9

RECOMPILE option 8-6

B
BEGIN DECLARE SECTION

description 3-3

host variables 1-2

specifying 2-1

BEGIN WORK, transaction control
statement 3-7
Binder program

ADD command 6-22

BIND command 6-22

BUILD command 6-22

CHANGE command 7-6

guidelines 6-21

OSS environment 6-18

SELECT command 6-22

SQL program file format 6-38

STRIP command 6-22

BLANK clause, host variable
declaration 2-9
Buffer invalidation, cursor operations 4-15
BUILD command, Binder program 6-22
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-1

Index C
C
Case sensitivity, SQL identifiers 4-15
CAST function 2-5
Catalog version

CHECK options 8-10

SQLGETCATALOGVERSION 5-24

Character processing rules (CPRL)
procedures 11-1
CHARACTER SET clause, host variable
declaration 2-24
Character set, associating with a host
variable 2-24
CHECK INOPERABLE PLANS, SQLCOMP
option 8-10
CLOSE statement

cursor operations 4-13

description 4-23

CLU_PROCESS_CREATE_ routine 7-4
COBOL compiler directives

placement 3-2

SOURCE 3-7, 6-9

SQL 3-7, 6-7

SQLMEM 3-7

COBOL COPY statement 6-9
COBOL data type, mapped to SQL data
type 2-2
COBOL ENTER statement,
CREATEPROCESS routine 7-3
COBOL ENTER TAL statement 11-2
COBOL record descriptions 2-14
COBOL routines

CREATEPROCESS 1-5, 7-3

save message utility (SMU) 7-3

COBOL source code, copying into
compilation unit 6-9
COBOL SOURCE directive

Declare Section 2-2

cobol utility, OSS environment
DEFINEs 6-10

flag description 6-17

syntax 6-17

COBOL85 compiler
Guardian environment 6-13

OSS environment 6-17

syntax 6-13

COBOLEXT file
CPRL procedures 11-2

description 5-2

ENTER TAL statement 5-2

Coding, embedding SQL statements 3-1
Collation

buffer

description 10-24

determining length 10-20

CPRL_COMPAREOBJECTS_
procedure 8-15

node autonomy C-1

objects 11-1

similarity check 8-15

Comments
COBOL 2-2, 3-2

SQL 3-2

COMMENT, DDL statement 3-4
COMMIT WORK, transaction control
statement 3-7
Compatibility of compiler versions 6-45
COMPILE-TIME-TABLE 8-11
Compiling with embedded SQL statements

example 1-4

TNS mode compilation 6-2

TNS/R mode compilation 6-4

Constraints
considerations 9-16

creating 9-15

CONTROL directives
description 6-42

with dynamic SQL statements 6-44

with static SQL statements 6-43

CONTROL EXECUTOR, DCL
statement 3-5
CONTROL QUERY, DCL statement 3-5
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-2

Index D
CONTROL TABLE directive
description 3-5

OPEN ALL option 4-2

CONVERTTIMESTAMP, system procedure
and SQL function 4-8
COPY

COBOL statement 6-9

SQL utility 4-2

COST, SQLCA structure field 9-13
CPRL error codes 11-2
CPRL procedures

CPRL_AREALPHAS_ 11-4

CPRL_ARENUMERICS_ 11-5

CPRL_ARE_ 11-3

CPRL_COMPARE1ENCODED_ 11-6

CPRL_COMPAREOBJECTS_ 11-8

CPRL_COMPARE_ 11-7

CPRL_DECODE_ 11-9

CPRL_DOWNSHIFT_ 11-10

CPRL_ENCODE_ 11-11

CPRL_GETALPHATABLE_ 11-12

CPRL_GETCHARCLASSTABLE_
11-13

CPRL_GETDOWNSHIFTTABLE_
11-14

CPRL_GETFIRST_ 11-14

CPRL_GETLAST_ 11-15

CPRL_GETNEXTINSEQUENCE_
11-16

CPRL_GETNUMTABLE_ 11-17

CPRL_GETSPECIALTABLE_ 11-18

CPRL_GETUPSHIFTTABLE_ 11-19

CPRL_INFO_ 11-19

CPRL_READOBJECT_ 11-21

CPRL_UPSHIFT_ 11-22

description 11-1

CPRL-PTR, SQLDA structure field 10-13
CREATE COLLATION statement 11-1
CREATE TABLE statements, example 2-14
CREATEPROCESS, COBOL routine 1-5,
7-3

CREATE, DDL statement 3-4
Cursor operations

CLOSE statement 4-13, 4-23

closing 4-13, 4-23

cursor stability 4-14

DECLARE CURSOR statement 4-15

DELETE statement 4-22

determining cursor position 4-14

dynamic SQL statements 10-30

FETCH statement 4-17

foreign cursors 4-23

guidelines 10-31

OPEN statement 4-16

performance considerations 4-2, 4-15,
4-22

static SQL cursor 4-12

VSBB 4-15

D
Data

deleting 4-22

fetching 4-17

updating 4-8

Data Control Language (DCL)
statements 3-5
Data conversion

between SQL and COBOL data
types 2-5

dynamic SQL statements 2-5

Data Declaration directives 3-3, 3-4
Data Definition Language (DDL)
statements 3-4
Data description clauses, COBOL 2-8
Data Division

Declare Section 2-2

statement placement 3-3

Data Manipulation Language (DML)
statements 3-5
Data retrieval statements 4-1
Data Status Language (DSL)
statements 3-6
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-3

Index D
Data structures, internal SQL B-1
Data types, SQL and COBOL
correspondence 2-2
DATA-LEN, SQLDA structure field 10-12

checking 10-21

DATA-TYPE, SQLDA structure field 10-12
checking 10-21

DATEFORMAT clause, INVOKE
directive 2-18
Date-time data type 2-9, 2-18
Debugging

FORCE option 6-36

RUND command 7-2

DECIMAL POINT IS COMMA option,
COBOL 2-8
DECLARE CURSOR statement

description 4-15

example 4-13

guidelines 4-15

placement 4-15

Declare Section
declaring host variables 1-2, 2-1

INVOKE directive 2-13

specifying 2-1

DEFINE format, EXPLAIN report 6-41
DEFINEs

automatic SQL recompilation 8-6

class CATALOG 1-5, 6-9

class MAP 1-5, 2-13, 6-9

DEFMODE attribute 7-2

determining set used 7-2

guidelines 6-9

SQL compiler options 6-28

=_DEFAULTS 6-41

=_SQL_MSG_system 5-2

DEFINES option, EXPLAIN utility 6-29
DEFMODE attribute 6-10
DELETE statement

description 4-10

multirow 4-11, 4-22

single-row 4-11

DELETE statement (continued)
SQLCODE values 4-11

with a cursor 4-1, 4-22

without a cursor 4-1

Delimiters 3-2
DESCRIBE INPUT, dynamic SQL
statement 3-6
DESCRIBE, dynamic SQL statement 3-6
DISC-READS, SQLSA structure field 9-24
Displaying information

SQLCA_DISPLAY2_ procedure 5-4

SQLCA_TOBUFFER2_ procedure 5-11

SQLSADISPLAY procedure 5-27

DML statements
effect of CONTROL directives 6-43

EXPLAIN PLAN report 6-40

DML, SQLSA structure field 9-23
DROP CONSTRAINT, DDL statement 8-5
DROP INDEX, DDL statement 8-5
DROP TABLE statement 4-22
DROP TABLE, DDL statement 8-5
DROP VIEW, DDL statement 8-5
DROP, DDL statement 3-4
Dynamic SQL

declaring host variables 10-10

declaring SQLCA and SQLSA data
structures 10-10

defining storage for parameters 10-11

description 1-6

handling parameters 10-20

indicator parameters 10-9

input parameters 10-6

interface with Pathway 10-35

output parameters 10-7

parameter list 10-7

parameters in a loop 10-8

PREPARE statement 10-18

processing database requests 10-5

processing nonSELECT
statements 10-29
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-4

Index E
Dynamic SQL (continued)
processing SELECT statements 10-30

programming techniques 10-5

prompting user for input 10-24

sample program 10-37

SQLSA statistics 9-21

SQL/MP system procedures 5-1

statements, description 3-6, 10-1

steps for developing an
application 10-9

steps for use 10-2

uses 10-4

D-series node, running a program at low
PIN 7-5

E
Embedded NonStop SQL/MP

conformance to ISO/ANSI
standards 1-8

Embedded sign, decimal data type 2-17
Embedded SQL statements

advantages 1-1

compiling a program containing 1-4,
6-1

description 3-3

guidelines 3-1

syntax for COBOL source file 3-1

END DECLARE SECTION
description 3-3

host variables 1-2

specifying 2-1

END-EXEC 2-1, 3-1
ENTER TAL statement 5-2, 11-2
Environment variables, OSS 6-16
ERRCODE, SQLCA structure field 9-14
Error codes, CPRL 11-2
Error processing

constraints 9-15

error table 9-17

recommendations, summary 9-20

Error processing (continued)
without WHENEVER 9-5

Errors and warnings
anticipated, examples 9-19

checking SQLCODE directly 9-5

determining disk process, file system,
or operating system errors 5-17

displaying and storing 9-16

errors file 9-17

SQL errors table 9-17

SQLCA_DISPLAY2_ 5-4

SQLCA_TOBUFFER2_ 5-11

system procedures 9-12

terminal 9-17

Lost Open error 4-2

obtaining error information 5-11

retrieving with SQLCI 9-17

selective reporting 9-19

sending to HOMETERM 5-8, 5-11

SQL compiler 6-36

SQL compiler options 6-30

SQL procedures 5-1

SQLCA structure 5-4

SQLCADISPLAY procedure 5-30

SQLCAFSCODE procedure 5-17

SQLCATOBUFFER procedure 5-34

SQLCA_DISPLAY2_ procedure 2-5,
5-4

SQLCA_TOBUFFER2_ procedure 5-11

SQLCODE variable 1-5

SQLMSG file 5-2

SQL/MP system procedures 5-1

WHENEVER directive 9-6

Errors table 9-17
ERRORS-ALL, SQLCA structure field 9-13
Error-Checking directive, WHENEVER 3-6
ERROR-LOCATION, SQLCA structure
field 9-13
ESCALATIONS, SQLSA structure
field 9-24
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-5

Index F
EXCLUSIVE MODE, SELECT
statement 4-6
EXECUTE IMMEDIATE, dynamic SQL
statement 3-6
EXECUTE, dynamic SQL statement 3-6
Execution statistics, SQL/MP system
procedures 5-1
EXPLAIN DEFINES report 6-41
EXPLAIN PLAN report 6-40
EXPLAIN utility 6-29, 6-40
EYE-CATCHER

SQLCA structure field 9-13

SQLDA structure field 10-12

SQLSA structure field 9-23

F
FETCH statement

audited tables and views 4-18

cursor operations 4-13

description 4-17

SQLCODE values 4-17

File format, SQL program 6-38
File position, sequential 4-14
File system, error detection 5-17
FILE_GETINFOBYNAME_, Guardian
system procedure 5-2
FILE_GETINFOLISTBYNAME_, Guardian
system procedure 5-2
FILE_GETINFOLIST_, Guardian system
procedure 5-2
FILE_GETINFO_, Guardian system
procedure 5-2
FILLER clause, host variable
declaration 2-9
FLAGS, SQLCA structure field 9-13
FOR UPDATE clause, cursor
declaration 4-14
FOR UPDATE OF clause, UPDATE
statement 4-20
FORCE option, SQLCOMP 6-36

FREE RESOURCES, DCL statement
cursors 4-13, 4-23

description 3-6

G
GET CATALOG OF SYSTEM
statement 1-7, 3-6
GET VERSION OF PROGRAM
statement 1-7, 3-6
GET VERSION statement 1-7, 3-6
Guardian environment

running SQL compiler 1-7, 6-27

syntax 6-27

Guardian system procedures 5-2

H
Help desk, for error handling 9-18
HELP TEXT, DDL statement 3-5
HIGHPIN, object-file attribute or TACL RUN
command option 7-6
HOMETERM, for error and warning
messages 5-8, 5-11, 9-17
Host object SQL version (HOSV) 6-45
Host variables

as placeholders for dynamic SQL
statements 1-6

associating with a character set 2-24

COBOL statements 2-25

creating with INVOKE directive 2-13

declaring 1-2, 2-2

description 1-2, 2-1

initializing 4-16

naming conventions 2-2

syntax for specifying 2-6

use of colon when specifying 1-2, 2-6

HOSV (host object SQL version) 6-45
HP COBOL compiler

DEFINEs 6-9

determining version 9-2

SQL compiler directive 1-5, 6-7
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-6

Index I
I
IN EXCLUSIVE MODE, SELECT
statement 4-6, 4-14
IN SHARE MODE, SELECT statement 4-6
INCLUDE SQLCA directive

description 3-3

example 9-5

syntax 9-12

INCLUDE SQLCODEX directive 3-4
INCLUDE SQLDA directive

considerations 10-16

description 3-4

syntax 10-15

INCLUDE SQLSA directive
description 3-4

syntax 9-22

INCLUDE STRUCTURES directive
embedded 3-3

syntax 9-1

versions D-1

Indicator parameters
dynamic SQL 10-9

names buffer 10-24

Indicator variable
description 2-1

null value 2-10

specifying 2-6

with aggregate function 9-10

with INVOKE directive 2-13, 2-21

IND-PTR, SQLDA structure field 10-13
Infinite loops, avoiding with
WHENEVER 9-9
INFO DEFINE format, EXPLAIN
report 6-41
Inoperable plan, description 8-9
Input parameters, handling null
values 10-28
Input variable, description 2-1
INPUT-NAMES-LEN, SQLSA structure
field 9-24
INPUT-NUM, SQLSA structure field 9-24

INSERT statement
description 4-1, 4-6

example 1-6

indicator variables 2-10

null value 4-7

single-row 4-7

SQLCODE values 4-6

timestamp value 4-8

Inspect debugger
current source line 6-7

Inspect program, RUND command 7-2
INTERVAL data type

date-time 2-18

description 2-9

specifying 2-6

with INVOKE directive 2-17

Invalid SQL program 8-1, 8-6
Invalidation

causes 8-2

changes to referenced SQL objects 8-2

file-label and catalog
inconsistencies 8-4

preventing with CHECK INOPERABLE
PLANS option 8-4

INVOKE directive
advantages 2-13

creating host variables 2-13

description 3-4

NULL STRUCTURE clause 2-21

PREFIX clause 2-21

SUFFIX clause 2-21

through SQLCI 2-23

INVOKE SQLCODEX statement 9-6

J
JULIANTIMESTAMP system procedure 4-8
JUSTIFIED clause, host variable
declaration 2-9
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-7

Index L
L
ld utility

guidelines 6-23

OSS environment 6-20

-strip option 6-23

Level-88 items, INCLUDE SQLCODEX 9-6
Linker

guidelines 6-21

SQL program file format 6-38

-strip option 6-23

Load time, SQL 8-6
LOAD, SQL utility 4-2
Local partition, maximizing local
autonomy C-2
LOCK TABLE, DCL statement 3-6
Loops, avoiding with WHENEVER 9-9
Lost Open error

causes 4-2

recovery 4-3

M
Memory

guidelines B-6

requirements B-5

MESSAGES, SQLSA structure field 9-24
MESSAGE-BYTES, SQLSA structure
field 9-24
Multiple rows

deleting 4-11, 4-22

selecting 4-19

updating 4-9

Multirow DELETE Statement 4-22

N
Name conflicts, avoiding B-2
Names buffer

entries 10-27

indicator parameters 10-24

output display 10-32

Names buffer (continued)
prompting for input 10-26

NAME-MAP-LEN, SQLSA structure
field 9-24
Naming conventions, host variables 2-2
Native mode compilation 6-4
Native objects 6-23
NEXT-P-OFFSET, SQLCA structure
field 9-13
NLCP compiler 11-1
nld utility

guidelines 6-23

OSS environment 6-20

-strip option 6-23

NMCOBOL compiler
Guardian environment 6-14

OSS environment 1-7, 6-19

program compilation 1-5

syntax 6-14

nmcobol utility, OSS environment
DEFINEs 6-10

flag description 6-19

syntax 6-19

Node autonomy for collations C-1
NORECOMPILE option, SQL compiler 8-6
NULL keyword

instead of indicator variable 2-11

with INSERT statement 4-8

with UPDATE statement 4-10

NULL STRUCTURE clause, INVOKE
directive 2-21
Null value

description 2-1

indicator variable 2-10

input parameters 10-28

inserting into a table 2-10

names buffer 10-24

result of aggregate functions 9-10

retrieving rows 2-12

testing 2-11

with INSERT statement 4-7
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-8

Index O
Null value (continued)
with INVOKE directive 2-13

NULL-INFO, SQLDA structure field 10-13
NUM-ENTRIES, SQLDA structure
field 10-12
NUM-ERRORS, SQLCA structure
field 9-13
NUM-ERR-ENTRIES, SQLCA structure
field 9-13
NUM-TABLES, SQLSA structure field 9-23

O
OBEY file format, EXPLAIN report 6-41
Object file, TACL RUN command 7-3
OCCURS clause, host variable
declaration 2-9
OPEN ALL option, CONTROL TABLE
directive 4-2
OPEN statement

considerations 4-17

cursor operations 4-13, 4-16

description 3-5

Open System Services environment
See OSS environment

Operable plan, description 8-9
Optimization, Accelerator 6-14, 6-24
Optimized execution plan, EXPLAIN PLAN
report 6-40
ORDER BY clause, SELECT
statement 4-13
OSS environment

changing default pathnames and disk
volume 6-16

cobol utility

description 1-7

cobol utility, flag description 6-17

description 1-7

nmcobol utility, flag description 6-19

running a program 7-5

utilities 6-10

Output display, using the names
buffer 10-32

Output parameters, handling null
values 10-35
Output variable, description 2-1
OUTPUT-COLLATIONS-LEN, SQLSA
structure field 9-24
OUTPUT-NAMES-LEN, SQLSA structure
field 9-24
OUTPUT-NUM, SQLSA structure field 9-24

P
Parallel execution plans, and similarity
check 8-9
Parameters, description 10-6
PARAMS-BUFFER, SQLCA structure
field 9-15
PARAMS-BUFFER-LEN, SQLCA structure
field 9-13
PARAMS-COUNT, SQLCA structure
field 9-14
PARAMS-OFFSET, SQLCA structure
field 9-14
Pathway environment

running a program at high PIN 7-7

running a program at low PIN 7-7

Pathway servers
CALL model

description E-4

INSERT subprogram E-10

UPDATE subprogram E-8

PERFORM model E-1

PCV (program catalog version) 6-45
Performance, information from
SQLSA 9-21
PFV (program format version) 6-45, 7-7
PICTURE clause

fixed-length character data 2-7

host variable declaration 2-9

numeric data 2-8

variable-length character data 2-7

PIN (process identification number) 7-5
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-9

Index R
PRECISION, SQLDA structure field
checking for character set ID 10-22

description 10-12

PREFIX clause, INVOKE directive 2-21
PREPARE, dynamic SQL statement 3-6
PREPARE, SQLSA structure field 9-24
Primary key, SELECT statement 4-5
Procedure Division, statement
placement 3-3
PROCEDURE-ID, SQLCA structure
field 9-13
process access ID (PAID) 7-1
PROGID attribute 7-1
Program catalog version (PCV) 6-45
Program file, TACL RUN command 7-3
Program format version (PFV) 6-45, 7-7
Program invalidation, causes 8-2
PROGRAMS table 8-10
Protection views, similarity check
rules 8-13

R
Reading a row 4-17
RECOMPILE option, SQL compiler 8-6
RECOMPILEALL option, SQL compiler 8-6
RECOMPILEONDEMAND option, SQL
compiler 8-6
Record descriptions, COBOL

as host variables 2-7

example 2-14

host variables 2-2

RECORDS-ACCESSED, SQLSA structure
field 9-23
RECORDS-USED, SQLSA structure
field 9-24
Release options, SQL directive 6-8
RELEASE1, RELEASE2

specifying valid version 6-8

specifying version of SQLDA
structure 10-16

RELEASE, dynamic SQL statement 3-6
Reserved words, COBOL B-2

Retrieving data, cursor declaration 4-15
ROLLBACK WORK, transaction control
statement 3-7
Row in SQL table

deleting 4-22

fetching 4-17

updating 4-20

ROWS, SQLCA structure field 9-13
RTDU (run-time data unit)

CONTROL directives 6-43

description 6-7

RUN command, TACL, SQL program
file 7-2
RUND command, TACL, SQL program
file 7-2
Run-time recompilation errors 8-9
RUN-TIME-TABLE 8-11

S
S7094, SCI product number 9-2
Saved message utility (SMU) routines 7-3
SCI (SQL compiler interface) 9-2
Section location table (SLT) 6-8
Segments, resizing for SQLINALL B-2
SELECT command, Binder program 6-22
SELECT statement

column value 4-4

cursor declaration 4-15

cursor operations 4-13

description 3-5

indicator variables 2-10

multirow 4-19

primary key 4-5

single-row 4-1, 4-4

with a cursor 4-1, 4-19

SENSITIVE flag, program file label 8-1
SHARE MODE, SELECT statement 4-6
SHOW DEFMODE command 6-9
SIGN clause, host variable declaration 2-9
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-10

Index S
Similarity check
at run time 8-9

collations 8-15

COMPILE-TIME-TABLE 8-11

description 8-9

enabling for tables and protection
views 8-10

rules for protection views 8-13

rules for tables 8-11

RUN-TIME-TABLE 8-11

syntax 8-10

SIMILARITYCHECK column, TABLES
table 8-11
SIMILARITYINFO column, PROGRAMS
table 8-10
SOURCE directive

COBOL compiler directive 3-7

SQL communications area (SQLCA)
See SQLCA structure

SQL compiler
binding and linking 6-22

DEFINEs 6-9

description 6-25

determining version 6-45

EXPLAIN utility 6-40

functions 6-25

Guardian environment 6-27

messages 6-36

options 6-28

OSS environment 6-35

required access authority 6-25

sample listing 6-39

warning messages 6-36

SQL compiler directive
compiler option 3-2

description 3-2

source code file 3-2

syntax 6-7

SQL compiler interface (SCI) 9-2
SQL cursor, description 4-12

SQL data type, mapped to COBOL data
type 2-2
SQL descriptor area (SQLDA)

See SQLDA structure

SQL error 8204
causes 4-2

recovery 4-3

SQL executor
determining version 7-7

encountering uncompiled SQL
statements 8-8

similarity check 8-10

timestamp check 8-7

SQL INVOKE directive
Declare Section 2-2

SQL message file (SQLMSG) 5-2
SQL objects, changes 8-2
SQL program file

access authority required 7-1

format 6-38

specifying DEFINEs before running 7-2

SQL statements
dynamic, use of CONTROL
directives 6-44

static, use of CONTROL
directives 6-43

SQL statistics area (SQLSA)
See SQLSA structure

SQLADDR procedure
syntax 5-3

SQLCA structure
automatic SQL recompilation errors 8-9

declaring 9-12

description 1-5

example 9-5

fields 9-13

information returned 5-4

number of rows deleted 4-11

number of rows inserted 4-6

number of rows updated 4-9
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-11

Index S
SQLCA structure (continued)
returning information 9-12

SQLCAGETINFOLIST procedure 5-17

SQLCA_DISPLAY2_ procedure 1-4

SQLCADISPLAY procedure
syntax 5-30

SQLCAFSCODE procedure
syntax 5-17, 9-12

SQLCAGETINFOLIST procedure
description 5-1

syntax 5-18, 9-12

SQLCATOBUFFER procedure
syntax 5-34

SQLCA-RESERVED, SQLCA structure
field 9-13
SQLCA_BUFFER2_ procedure

considerations 5-16

with an error table 5-15

SQLCA_DISPLAY2_ procedure
considerations 5-7

description 5-1

example 1-4

syntax 5-4

system procedures 9-12

with an error table 5-7

SQLCA_TOBUFFER procedure,
syntax 5-11
SQLCA_TOBUFFER2_ procedure

description 5-1

syntax 5-12, 9-12

SQLCI
FILEINFO command 8-1

INVOKE 2-23

VERIFY utility 8-1

SQLCODE
checking directly 9-4

checking with WHENEVER 9-6

cursor operations 4-13

error reporting 1-5

SQLCA structure field 9-14

SQLCODE (continued)
values after a SELECT statement 4-4

values after DELETE statement 4-11

values after FETCH statement 4-17

values after INSERT statement 4-6

values after UPDATE statement 4-9

WHENEVER directive 9-6

with automatic SQL recompilation
errors 8-9

with level 88 items 9-6

SQLCODEA, SQLCA structure field 9-14
SQLCODEX data item 9-6
SQLCOMP command

SQLMAP option 9-2

syntax 6-27

SQLDA structure
DATA-TYPE values 10-13

description 1-5

fields 10-12

IND-PTR field 10-23

information returned 5-3

initializing 10-22

NULL-INFO field 10-23

syntax for declaring 10-15

uses 10-11

version 1 layout D-6

version 2 layout D-3

version 315

example 10-13

generating D-2

SQLGETCATALOGVERSION system
procedure

syntax 5-24

SQLGETOBJECTVERSION system
procedure

syntax 5-25

SQLGETSYSTEMVERSION system
procedure

syntax 5-26

SQLINALL structures B-1
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-12

Index S
SQLMAP option, SQLCOMP command 9-2
SQLMEM, COBOL compiler directive 3-7,
B-4
SQLMSG file

description 5-2

file number 5-31, 5-36

with SQLCA_DISPLAY2_
procedure 5-36

SQLSA structure
FETCH statement 4-18

fields 9-23

guidelines 9-22

SQLSADISPLAY procedure
syntax 5-27

SQLSA-RESERVED, SQLSA structure
field 9-24
SQLVAR, SQLDA structure field 10-12
SQL, COBOL compiler directive 3-7, 6-7
SQL-ERROR, SQLCA structure field 9-14
SQL-STATEMENT-TYPE, SQLSA structure
field 9-24
SQL/MP directives

BEGIN DECLARE SECTION 1-2, 2-1

Declare Section 2-2

description 1-2, 3-3

END DECLARE SECTION 1-2, 2-1

INCLUDE SQLCA 9-12

INCLUDE STRUCTURES 9-1, D-1

INVOKE 2-13

SQL/MP optimizer 4-15
SQL/MP sample database A-1
SQL/MP statements

ADD CONSTRAINT 8-5

ALTER INDEX 8-5

ALTER TABLE 8-5

ALTER VIEW 8-5

CLOSE 4-23

CREATE COLLATION 11-1

DECLARE CURSOR 4-15

DELETE 4-10, 4-22

SQL/MP statements (continued)

description 1-2, 3-3

DROP CONSTRAINT 8-5

DROP INDEX 8-5

DROP TABLE 8-5

DROP VIEW 8-5

FETCH 4-17

OPEN 4-16

placement 3-2

SELECT 4-4

UPDATE STATISTICS 6-35

SQL/MP system procedures
description 1-4, 5-1

SQLCAFSCODE 9-12

SQLCAGETINFOLIST 9-12

SQLCA_DISPLAY2_ 9-12

SQLCA_TOBUFFER2_ 9-12

SQLGETCATALOGVERSION 5-24

SQLGETOBJECTVERSION 5-25

SQLGETSYSTEMVERSION 5-26

SQL/MP version, similarity check 8-11
SRC-NAME-BUFFER, SQLCA structure
field 9-15
SRC-NAME-BUFFER-LEN, SQLCA
structure field 9-13
STABLE ACCESS option, cursor
declaration 4-14
Statements

embedding 3-1

format 3-1

Static SQL statements, COBOL
program 1-4
Statistics

SQL compilation 6-35

SQLCADISPLAY procedure 5-32

SQLCAGETINFOLIST procedure 5-17

SQLSA 9-21

SQLSADISPLAY procedure 5-27

updating with UPDATE
STATISTICS 6-35

STATS, SQLSA structure field 9-23
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-13

Index T
Storage allocation, parameters in dynamic
SQL 10-11
STOREDDEFINES option, SQLCOMP
command 6-10
STRIP command 6-22
SUBSYSTEM-ID, SQLCA structure
field 9-14
SUFFIX clause, INVOKE directive 2-21
SUPPRESS-DISPLAY, SQLCA structure
field 9-14
SYNC clause, host variable declaration 2-9
SYNTAX-ERR-LOC, SQLCA structure
field 9-13
SYSKEY (system-defined primary
key) 2-17
System procedures

description 1-4, 5-1

SQLADDR 5-3

SQLCAFSCODE 5-17

SQLCAGETINFOLIST 5-17

SQLCA_DISPLAY2_ 5-4

SQLCA_TOBUFFER2_ 5-11

SQLGETCATALOGVERSION 5-24

SQLGETOBJECTVERSION 5-25

SQLGETSYSTEMVERSION 5-26

SQLSADISPLAY 5-27

System procedures, Guardian 5-2
System-defined primary key
(SYSKEY) 2-17

T
TABLES table 8-11
Table, SQL

maximizing local autonomy for
partitions C-3

similarity check rules 8-11

updating statistics 6-35

TABLE-NAME, SQLSA structure field 9-23
TACL

DEFINEs for automatic SQL
recompilation 8-6

HIGHPIN run option 7-6

TACL (continued)
RUN command, SQL program file 7-2

RUND command, SQL program file 7-2

TIME data type, with INVOKE
directive 2-17
Timestamp check

by SQL executor 8-7

collation 8-15

run-time, steps 8-7

TIMESTAMP data type, with INVOKE
directive 2-17
Timestamp, with INSERT statement 4-8
TNS

compilation 6-2

object files 6-22

TNS/R
compilation 6-4

object files 6-23

Transaction Control statements 3-7
TYPE AS clause 2-10

U
Unavailable access path (index) 8-8
Uncompiled SQL statement, FORCE
option 6-36
Underscore (_), with INVOKE
directive 2-17
UNLOCK TABLE, DCL statement 3-6
UPDATE statement

description 3-5, 4-8

indicator variables 2-10

multiple rows 4-9

null value 4-10

single-row 4-9

SQLCODE values 4-9

with a cursor 4-1, 4-20

without a cursor 4-1

UPDATE STATISTICS statement 3-5, 6-35
UPDATE WHERE CURRENT clause, with
cursors 10-32
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-14

Index V
USAGE clause, host variable
declaration 2-9
USER-LINE-NUMBER, SQLCA structure
field 9-13
USING DESCRIPTOR clause, with
cursors 10-31

V
VALID flag, program file label 8-1
Valid SQL program 8-1
Validation functions, of SQL compiler 8-1
VALUE clause, host variable
declaration 2-9
VARCHAR data type

description 2-25

with INVOKE directive 2-17

Variables, environment, OSS 6-16
VAR-PTR, SQLDA structure field 10-13
Version information

displaying with SQL
GETOBJECTVERSION 5-25

displaying with
SQLGETSYSTEMVERSION 5-24,
5-26

GET VERSION OF PROGRAM 6-46,
7-8

GET VERSION OF SYSTEM 7-7

SQL/MP system procedures 5-1

Version management
converting COBOL programs D-1

HP COBOL compiler 6-45, 9-2

INCLUDE STRUCTURES directive 9-1

similarity check 8-11

SQL compiler 6-45

SQL components 6-45

SQL data structures D-1

SQL program file 6-45

SQL/MP 1-7

VPROC program 9-2

Version number
of SQL objects 1-7

of SQL/MP releases 1-7

VERSION, SQLSA structure field 9-23
VERSION-ID, SQLCA structure field 9-13
Virtual Sequential Block Buffering
(VSBB) 4-15
VPROC program 6-45, 9-2
VSBB (Virtual Sequential Block
Buffering) 4-15

W
WAITS, SQLSA structure field 9-24
Warning messages

detection 9-6

displaying with system
procedures 9-12

SQL compiler 6-36

WHENEVER directive
description 9-6

determining scope 9-7

enabling and disabling 9-8

error checking 9-6

WHERE clause
DELETE statement 4-11

indicator variable 2-12

SELECT statement 4-13

WHERE CURRENT OF clause
DELETE statement 4-22

UPDATE statement 4-20

Special Characters
$SYSTEM.SYSTEM.SQLMSG file 5-2
-strip option 6-23
=_DEFAULTS DEFINE, TACL, EXPLAIN
utility 6-41
=_SQL_MSG_system DEFINE, adding or
modifying 5-2
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-15

Index Special Characters
HP NonStop SQL/MP Programming Manual for COBOL—529758-003
Index-16

	HP NonStop SQL/MP Programming Manual for COBOL
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information

	About This Manual
	Who Should Read This Guide
	Related Manuals
	Notation Conventions
	HP Encourages Your Comments

	1 Introduction
	Advantages of Using Embedded SQL Statements
	Development of a COBOL Program
	Host Variables
	SQL/MP Statements and Directives
	SQL/MP System Procedures
	Program Compilation and Execution
	Error and Status Reporting

	Dynamic SQL Operations
	SQL/MP Version Management
	COBOL in the Open System (OSS) Environment
	Effect on Conformance to ISO/ANSI Standards

	2 Host Variables
	Specifying a Declare Section
	Coding Host Variable Names
	Using Corresponding SQL and COBOL Data Types
	Specifying Host Variables in SQL Statements
	Using the COBOL PICTURE Clause
	Fixed-Length Character Data
	Variable-Length Character Data
	Numeric Data

	Using COBOL Data Description Clauses
	Using Date-Time and INTERVAL Data Types
	Using Indicator Variables for Null Values
	Inserting a Null Value
	Testing for a Null Value
	Retrieving Rows With Null Values

	Creating Host Variables Using the INVOKE Directive
	Advantages of Using an INVOKE Directive
	COBOL Record Descriptions
	Embedded Sign in a Decimal Data Type
	System-Defined Primary Key (SYSKEY)
	Date-Time and INTERVAL Data Types
	Using Indicator Variables With the INVOKE Directive
	Using INVOKE With SQLCI

	Associating a Character Set With a Host Variable
	Treatment in COBOL Statements
	VARCHAR Data Type

	3 SQL/MP Statements and Directives
	Embedding SQL Statements
	Coding SQL Statements and Directives
	Placing SQL Statements and Directives

	Finding Information

	4 Data Retrieval and Modification
	Opening and Closing Tables and Views
	Causes of SQL Error 8204 (Lost Open Error)
	Recovering From SQL Error 8204

	Single-Row SELECT Statement
	Using a Column Value to Select Data
	Using a Primary Key Value to Select Data
	Using IN SHARE MODE or IN EXCLUSIVE MODE

	INSERT Statement
	Inserting a Single Row
	Inserting a Null Value
	Inserting a Timestamp

	UPDATE Statement
	Updating a Single Row
	Updating Multiple Rows
	Updating Columns With Null Values

	DELETE Statement
	Deleting a Single Row
	Deleting Multiple Rows

	Using SQL Cursors
	Steps for Using a Cursor
	Access Requirements for Cursors
	Cursor Position
	Cursor Stability
	Virtual Sequential Block Buffering (VSBB)
	DECLARE CURSOR Statement
	OPEN Statement
	FETCH Statement
	Multirow SELECT Statement
	UPDATE Statement
	Multirow DELETE Statement
	CLOSE Statement
	Using Foreign Cursors

	5 SQL/MP System Procedures
	COBOLEXT File
	Guardian System Procedures
	SQL Message File
	SQLADDR
	SQLCA_DISPLAY2_
	Using SQLCA_DISPLAY2_ With an Error Table
	Additional Considerations for SQLCA_DISPLAY2_
	Generating Meaningful Messages

	SQLCA_TOBUFFER2_
	Using SQLCA_TOBUFFER2_ With an Error Table
	Additional Considerations for SQLCA_BUFFER2_

	SQLCAFSCODE
	SQLCAGETINFOLIST
	SQLGETCATALOGVERSION
	SQLGETOBJECTVERSION
	SQLGETSYSTEMVERSION
	SQLSADISPLAY
	Superseded Procedures
	SQLCADISPLAY
	SQLCATOBUFFER

	6 Explicit Program Compilation
	Compilation Methods
	TNS Mode Compilation
	Native Mode Compilation for TNS/R Systems

	Preparing for Compilation
	Requirements for Compiling a COBOL Program
	SQL Compiler Directive
	Copying Source Code Into a Compilation Unit
	Setting DEFINEs
	Using PARAM Commands

	Running the HP COBOL Compilers
	Running HP COBOL Compilers in the Guardian Environment
	Running HP COBOL Compilers in the OSS Environment
	-Wsqlconnect = mode
	Running the Native COBOL Cross Compilers in a PC Host Environment

	Binding and Linking
	The Binder Program
	The nld or ld Utility

	Acceleration of TNS HP COBOL Programs
	The Accelerator

	Running the SQL Compiler
	Required Access Authority
	SQL Compiler Functions
	Running the SQL Compiler in the Guardian Environment
	Running the SQL Compiler in the OSS Environment
	Using Current Statistics
	SQL Compiler Messages
	SQL Program File Format
	SQL Compiler Listings
	Using the EXPLAIN Utility

	Using CONTROL Directives
	Static SQL Statements
	Dynamic SQL Statements

	Using Compatible Components
	HP COBOL Compiler
	SQL Compiler
	SQL Program File

	7 Program Execution
	Required Access Authority
	Using DEFINEs
	Entering the TACL RUN Command
	Using the CREATEPROCESS Routine
	Using the CLU_PROCESS_CREATE_ Routine
	Running a Program in the OSS Environment
	Running a Program at a Low PIN on a D-Series or Later Node
	Interactive Commands
	Programmatic Commands
	Pathway Environment

	Determining Compatibility With the SQL Executor

	8 Program Invalidation and Automatic SQL Recompilation
	Program Invalidation
	SQL Compiler Validation Functions
	Causes of Program Invalidation
	File-Label and Catalog Inconsistencies
	Preventing Program Invalidation

	Automatic SQL Recompilation
	Causes of Automatic Recompilation
	Run-Time Recompilation Errors
	Preventing Automatic Recompilations

	9 Error and Status Reporting
	Using the INCLUDE STRUCTURES Directive
	Generating Structures With Different Versions
	Checking the Version of the HP COBOL Compiler
	Sharing Structures

	Returning Error and Warning Information
	Checking the SQLCODE Identifier
	Using the WHENEVER Directive
	Returning Information From the SQLCA

	Returning Performance and Statistics Information

	10 Dynamic SQL Operations
	Using Dynamic SQL
	Uses for Dynamic SQL
	Determining When to Use Dynamic SQL

	Features of Dynamic SQL
	Processing Database Requests
	Using Parameters

	Developing a Dynamic SQL Application
	Declaring a Host Variable
	Declaring the SQLCA and SQLSA Data Structures
	Defining Storage for Input and Output Parameters
	Preparing the SQL Statement
	Checking for Parameters
	Handling Parameters
	Prompting the User for Input Values
	Performing the Database Request
	Displaying Output

	Constructing a Server that Interfaces With Pathway
	Constructing an SQL Statement from User Input
	Constructing a Reply Message

	Sample Dynamic SQL Program

	11 Character Processing Rules (CPRL) Procedures
	COBOLEXT File
	CPRL Error Codes
	CPRL_ARE_
	CPRL_AREALPHAS_
	CPRL_ARENUMERICS_
	CPRL_COMPARE1ENCODED_
	CPRL_COMPARE_
	CPRL_COMPAREOBJECTS_
	CPRL_DECODE_
	CPRL_DOWNSHIFT_
	CPRL_ENCODE_
	CPRL_GETALPHATABLE_
	CPRL_GETCHARCLASSTABLE_
	CPRL_GETDOWNSHIFTTABLE_
	CPRL_GETFIRST_
	CPRL_GETLAST_
	CPRL_GETNEXTINSEQUENCE_
	CPRL_GETNUMTABLE_
	CPRL_GETSPECIALTABLE_
	CPRL_GETUPSHIFTTABLE_
	CPRL_INFO_
	CPRL_READOBJECT_
	CPRL_UPSHIFT_

	A SQL/MP Sample Database
	B Memory Considerations
	SQL/MP Internal Structures
	Resizing Segments
	Avoiding Name Conflicts
	Using the SQLMEM Directive
	Estimating Memory Requirements
	Memory Requirements
	Guidelines for Memory Use

	C Maximizing Local Autonomy
	Using a Local Partition
	Using TACL DEFINEs
	Using Current Statistics
	Skipping Unavailable Partitions

	D Converting COBOL Programs
	Generating SQL Data Structures
	Generating SQLDA Structures
	Generating a Version 315 SQLDA Structure
	Generating a Version 2 SQLDA Structure
	Generating a Version 1 SQLDA Structure
	Using a Combination of SQLDA Structures

	Planning for Future PVUs
	SQL/MP Version Procedures
	RELEASE1 and RELEASE2 Options

	E Writing Pathway Servers
	PERFORM Model
	CALL Model: SQL Main Program
	CALL Model: SQL Subprograms
	UPDATE Subprogram
	INSERT Subprogram

	Index

