
HP NonStop SQL/MP
Installation and
Management Guide
Abstract

This manual explains how to install HP NonStop™ SQL/MP, the HP relational database
management system, and how to plan, create, and manage SQL/MP databases and
applications.

Product Version

NonStop SQL/MP G06

Supported Release Version Updates (RVUs)

This publication supports G06.22 and all subsequent G-series RVUs until otherwise
indicated by its replacement publication.

Part Number Published

523353-004 December 2004

Document History
Part Number Product Version Published

520680-001 NonStop SQL/MP G06 November 2001

523353-001 NonStop SQL/MP G06 February 2002

523353-002 NonStop SQL/MP G06 December 2003

523353-003 NonStop SQL/MP G06 March 2004

523353-004 NonStop SQL/MP G06 December 2004

HP NonStop SQL/MP
Installation and Management
Guide
Index Figures Tables
What’s New in This Manual xiii
Manual Information xiii
New and Changed Information xiii

About This Manual xv
Audience and Task Analysis xv
Prerequisites xv
NonStop SQL/MP Library xvi
Related Manuals xvii
Notation Conventions xviii

1. The SQL/MP Database Management Environment
SQL/MP Software 1-1

SQL Objects 1-2
SQL Catalogs 1-3
Active Data Dictionary 1-3

SQL/MP Features 1-5
Distributed Databases 1-5
Database Protection and Recovery 1-5
Data Integrity 1-6
Multiple Character Sets 1-7
DEFINEs 1-7
Database Security 1-7
Parallel Processing 1-8
High Availability 1-8

Database Management Operating Environments 1-9
Database Management Tasks 1-10
Database Management Tools 1-10

2. Installing SQL/MP
Hardware and Software Requirements 2-1
SQL/MP Software Components 2-2
Installing SQL/MP 2-2
 Hewlett-Packard Company—523353-004
i

Contents 2. Installing SQL/MP (continued)
2. Installing SQL/MP (continued)
Starting the Transaction Management Facility (TMF) 2-2
Initializing SQL/MP 2-4
Setting Up Event Logging 2-9
Setting Up Alternate SQL Components 2-9
Additional Installation Considerations 2-10

Reinstalling SQL/MP Software 2-10
Migrating to a Newer Software Version 2-10

C-Series to D-Series Migration Considerations 2-12
Mixed-Version Network Considerations 2-13
Upgrading Catalogs 2-14

Reverting to an Older Software Version 2-15
Dropping Newer-Version Objects 2-15
Downgrading Catalogs 2-16
Recompiling Programs 2-17
Reverting to SQL/MP Version 2 2-17
Reverting to an Older Version of TMF 2-18

3. Understanding and Planning Database Tables
Understanding SQL File Structures 3-1

Primary Keys 3-2
Key-Sequenced File Structure 3-6
Entry-Sequenced File Structure 3-9
Relative File Structure 3-10

Determining a Database Layout 3-13
Using Base Tables 3-13
Using Views 3-13
Determining When to Use Indexes 3-16

4. Planning Database Security and Recovery
Security Guidelines 4-2

Sample Authorization Schemes 4-2
Guidelines for Security Schemes 4-4
Authorization Requirements for Database Operations 4-5
Safeguard Security Product 4-8

The TMF Subsystem 4-10
TMF Concepts 4-10
Levels of Database Recovery 4-11
SQL Requirements for TMF 4-12
HP NonStop SQL/MP Installation and Management Guide—523353-004
ii

Contents 4. Planning Database Security and
Recovery (continued)
4. Planning Database Security and Recovery (continued)
Guidelines for Configuring TMF 4-13
Guidelines for Online Dumps 4-15
TMF Considerations in Using SQLCI 4-16

Backup Strategies 4-17
Daily Backups 4-19
Periodic Full Backups 4-20
Daily Timestamp Backups 4-20
Using the FROM CATALOG Option for SQL Objects 4-20
Backing Up Partitions 4-21
Backing Up Indexes 4-22
Backing Up Views 4-22
Backing Up Collations 4-23
Using Volume-Mode or File-Mode Backup 4-24
Using OBEY Command Files for Recovery 4-24

5. Creating a Database
Creating Catalogs 5-1

Catalog Tables 5-2
Requirements for Catalogs 5-4
Design Considerations 5-5
Performance Considerations 5-6
Creating a Catalog 5-6
Securing Catalog Tables 5-7
Securing the System Catalog 5-10

Creating Base Tables 5-10
Determining the Organization of the Physical File 5-11
Determining the Number of Records per Block 5-15
Additional Guidelines for Creating Tables 5-16
Creating Tables on a System That Uses SMF 5-18
Defining Columns 5-19
Creating Table Partitions 5-32
Securing a Base Table 5-37

Creating Views of Base Tables 5-38
Creating a Protection View 5-38
Creating a Shorthand View 5-40
View Security and Underlying Table Security 5-41

Creating Indexes on Base Tables 5-42
Creating an Index 5-42
HP NonStop SQL/MP Installation and Management Guide—523353-004
iii

Contents 5. Creating a Database (continued)
5. Creating a Database (continued)
Defining Unique Indexes 5-47
Creating Index Partitions 5-48
Specifying Parallel Loading of Index Partitions 5-49

Creating Constraints on Data 5-51
Using the CREATE CONSTRAINT Statement 5-52
Examples of Creating Constraints 5-54

Creating Collations 5-55
Creating Collation Source Files 5-56
Creating Collation Objects 5-59
Securing Collations 5-59

6. Querying SQL/MP Catalogs
Determining Object and Program Dependencies 6-1

Using the DISPLAY USE OF Command 6-2
Displaying Information About Usages by Querying the Catalog 6-3

Displaying Current Database Definitions 6-3
Displaying Information About Catalogs 6-4
Displaying Information About Tables 6-4
Displaying Information About Views 6-5
Displaying Information About Constraints 6-6
Displaying Information About Collations 6-6
Displaying Information About Columns 6-7
Displaying Comments and Help Text 6-7
Displaying Information About Indexes 6-8
Displaying Information About Partitions 6-9
Joining Catalog Tables With UNION 6-10

Displaying File and Security Attributes 6-10
Determining Object Integrity and Consistency 6-12

Using VERIFY to Check Definitional Integrity 6-12
Using FILCHECK to Check Structural Consistency 6-14

Displaying Catalog, Object, and Program Versions 6-15

7. Adding, Altering, Removing, and Renaming Database Objects
Adding Objects to a Database 7-1

Adding Catalogs 7-2
Adding Tables 7-3
Adding Views 7-4
Adding Indexes 7-4
HP NonStop SQL/MP Installation and Management Guide—523353-004
iv

Contents 7. Adding, Altering, Removing, and Renaming
Database Objects (continued)
7. Adding, Altering, Removing, and Renaming Database
Objects (continued)

Adding Partitions to Tables and Indexes 7-7
Adding Columns 7-10
Adding Constraints 7-12
Adding Collations 7-13
Adding Comments 7-13

Altering Database Objects 7-13
Altering Catalog Attributes 7-15
Altering Table Attributes 7-15
Altering View Attributes 7-18
Altering Index Attributes 7-19
Altering Partition Attributes 7-19
Splitting, Moving, and Merging Partitions 7-20
Altering Columns 7-26
Altering Constraints 7-27
Altering Collation Attributes 7-27
Altering Comments 7-28

Dropping Objects From a Database 7-28
Dropping Catalogs 7-29
Dropping Tables 7-30
Dropping Views 7-30
Dropping Indexes 7-31
Dropping Partitions of Tables and Indexes 7-32
Deleting Columns 7-33
Dropping Constraints 7-34
Dropping Collations 7-34
Dropping Comments 7-35

Purging SQL Objects and Enscribe Files 7-35
Using DROP or PURGE 7-35

Renaming Objects 7-36

8. Reorganizing Tables and Maintaining Data
Choosing a Reorganization Method 8-1
Reorganizing a Database Online 8-2

Reorganizing Key-Sequenced Files 8-2
Determining the Status of a Reorganization 8-4
Suspending a Reorganization Operation 8-4

Reorganizing Partitions 8-5
HP NonStop SQL/MP Installation and Management Guide—523353-004
v

Contents 8. Reorganizing Tables and Maintaining
Data (continued)
8. Reorganizing Tables and Maintaining Data (continued)
Balancing Partition Sizes 8-5
Changing Extent Size Values 8-6
Adding Empty Partitions 8-7

Loading, Copying, Appending, and Purging Data 8-7
Guidelines for Loading Tables 8-8
Loading Individual Partitions 8-9
Examples of Loading Tables 8-10
Guidelines for Copying Tables 8-13
Examples of Copying Tables and Files 8-14
Appending Data to Tables or Partitions 8-15
Purging Data From SQL Tables 8-18

9. Moving a Database
Reasons for Moving a Database 9-1
Determining Move Dependencies 9-2
Choosing Utilities for the Move Operation 9-2

COPY and LOAD 9-3
DUP and BACKUP/RESTORE 9-4

Moving the System Catalog 9-9
Moving Database Objects 9-14

Dropping and Re-creating Catalogs 9-15
Moving Catalogs 9-15
Moving Tables 9-16
Moving Views 9-21
Moving Indexes 9-22
Moving Collations 9-23
Moving Partitions 9-23

Moving a Database to a Different Node or Different Volumes 9-24
Choosing a Method 9-24
Steps for Moving a Database 9-25
Example of Moving a Database 9-25
Catalog Mapping Schemes for DUP 9-30

Renaming or Renumbering a Node 9-32
Backing Up and Purging SQL Objects 9-33
Renaming or Renumbering Your System 9-37
Reinstalling SQL/MP on a Node 9-37
Restoring a SQL/MP Database on a Node 9-37
HP NonStop SQL/MP Installation and Management Guide—523353-004
vi

Contents 10. Managing Database Applications
10. Managing Database Applications
Program Validity 10-1

Operations That Invalidate a Program 10-1
Unexpected Events That Can Invalidate a Program 10-2
Operations That Do Not Invalidate a Program 10-3
Determining Validity of a Program 10-4

SQL Compilation and Recompilation 10-6
Explicit Compilation 10-6
Automatic Recompilation 10-7

Deferring Name Resolution 10-13
CONTROL QUERY BIND NAMES Directive 10-14
Avoiding Automatic SQL Recompilations 10-14

Using Similarity Checks 10-15
Using the CHECK Option 10-15
Using the COMPILE Option 10-23
Enabling the Similarity Check for Tables and Protection Views 10-26

Planning for TS/MP Requirements 10-29
Planning for Pathmaker Requirements 10-29
Using DEFINEs 10-30

Entering DEFINE Commands 10-30
DEFINE Rules 10-30
Using DEFINEs During Compilation 10-32
Using DEFINE Names With Programs 10-32
Using DEFINEs From SQLCI 10-34
Using DEFINEs to Switch Databases 10-35
Using DEFINEs With PATHMON 10-37

Manipulating Program Files 10-38
Moving Programs 10-39

Moving Programs Without Recompilation 10-40
Using BACKUP and RESTORE 10-42
Using SQLCI DUP 10-44

11. Performing Recovery Operations
Restoring Individual SQL Objects 11-2

Restoring Catalogs 11-2
Restoring Collations 11-2
Restoring Tables 11-2
Restoring Views 11-6
Restoring Indexes 11-6
HP NonStop SQL/MP Installation and Management Guide—523353-004
vii

Contents 11. Performing Recovery Operations (continued)
11. Performing Recovery Operations (continued)
Restoring Programs 11-6

Restoring Databases 11-7
Completing the Planning Phase 11-8
Restoring a Database as a Planned Event 11-9
Restoring a Database as an Unplanned Event 11-10

Recovering Consistent Files by Resetting the BROKEN Flag 11-11
Restoring Objects With TMF Recovery Operations 11-11

Database Recovery After a Disk or Node (System) Failure 11-12
Volume Recovery 11-12
File Recovery 11-13
File Recovery With the TIME Option 11-14
Recovering Purged SQL Tables 11-14
Operations That Invalidate TMF Online Dumps 11-15

Responding to Accidental Loss of an Audited SQL/MP Object 11-17
Recovery Precautions 11-17
Recovering Views and Indexes 11-18
Recovering Tables 11-19
Recovery Example 11-20

Recovering Catalogs 11-29
Purging Damaged Objects With the CLEANUP Utility 11-29
Recovering From Peripheral Utility Program (PUP) Commands (D-series only) 11-31

PUP LABEL 11-31
PUP RENAME 11-32
PUP FORMAT 11-33
PUP REMOVE and PUP REVIVE 11-33
PUP DOWN (or PUP REMOVE) and PUP UP 11-33

SCF Commands (G-series only) 11-35
SCF ALTER DISK, LABEL 11-35
SCF RENAME 11-35
SCF INITIALIZE DISK 11-35
SCF STOP DISK and SCF START DISK 11-35
SCF STOP and SCF START 11-35

Managing Shadow Disk Labels 11-36
Identifying Shadow Labels 11-36
Removing Shadow Labels 11-36
HP NonStop SQL/MP Installation and Management Guide—523353-004
viii

Contents 12. Managing a Distributed Database
12. Managing a Distributed Database
Managing a Locally Distributed Database 12-1

Using DEFINEs for Logical Name Mapping 12-1
Maintaining Local Autonomy 12-2

Managing a Network-Distributed Database 12-2
Naming Nodes 12-3
Using DEFINEs for Network Object Names 12-3
Using Catalogs in a Network 12-4
Managing Network Security 12-4
Maintaining Local Autonomy in a Network 12-5

Creating a Distributed Database 12-7
Altering Distributed Objects 12-8
Dropping Distributed Objects 12-9
Enhancing Performance for a Distributed Database 12-9

Using Local Partitions and Indexes 12-9
Supporting Replicated Data Through Indexes 12-10
Using Remote Servers 12-11

Managing Processor Usage in a Distributed Environment 12-11
Design Examples 12-12
SQL Compilation and the CPU Usage DEFINE 12-13
Using the Processor Usage DEFINE 12-13

Changing Network Environments 12-15
Managing Mixed Versions of SQL/MP 12-17

13. Measuring Performance
SQL/MP Tools for Gathering Statistics 13-1

FILEINFO Utility 13-2
SET SESSION STATISTICS and DISPLAY STATISTICS Commands 13-3
SQL Statistics Area (SQLSA) 13-4

Measure Performance Measurement Tool 13-5
Statistics and Reports for SQL/MP 13-6
SQL/MP Measurement Models 13-8

14. Enhancing Performance
Understanding the Implications of Concurrency 14-1

Minimizing Contention 14-2
Avoiding Contention Between DDL Operations 14-5
Other Operational Considerations 14-5

Keeping Statistics Current 14-7
HP NonStop SQL/MP Installation and Management Guide—523353-004
ix

Contents 14. Enhancing Performance (continued)
14. Enhancing Performance (continued)
Knowing When to Update Statistics 14-7
Analyzing the Possible Impact of Running UPDATE STATISTICS 14-8
Testing UPDATE STATISTICS 14-9
Running UPDATE STATISTICS 14-11

Using a Test Database for Emulation 14-12
Obtaining Statistics 14-12
Altering Statistics 14-14
Deleting a Test Database 14-15

Optimizing Index Use 14-16
Maximizing Parallel Index Maintenance 14-17
Managing Cache Memory Size 14-17
Maximizing Disk Process Prefetch Capabilities 14-18
Managing File System Double Buffering 14-18

Using an SQL DEFINE to Manage PFS Utilization 14-19
Changing the PFS Size Limit 14-20
Additional DEFINEs for Managing Double Buffering 14-21

Using Generic Locks 14-21
Checking Data Integrity 14-23
Creating Logical Views of Data 14-24
Specifying Block Sizes for Files 14-24
Adding and Dropping Partitions 14-25
Avoiding Automatic Recompilations 14-25
Matching Block Split Operation to Table Usage 14-25
Supporting Sort Operations 14-26

Specifying Scratch Volumes 14-26
Enhancing Query Performance 14-27
Supporting Parallel Query Execution 14-27

Planning for Temporary File Requirements 14-28

A. Licensed SQLCI2 Process
Licensing SQLCI2 A-1

Running SQLCI2 as SUPER.SUPER A-1
Running SQLCI2 as another user A-2

Revoking an SQLCI2 License A-3

B. Removing SQL/MP From a Node
Using the PUP FORMAT Command to Remove SQL Objects B-1
Using the CLEANUP Utility to Remove SQL Objects B-1
HP NonStop SQL/MP Installation and Management Guide—523353-004
x

Contents C. Format 2 Partitions
C. Format 2 Partitions
Planning for SQL Format 2-Enabled Tables and Format 2 Partitions C-1

General Planning Considerations C-5
Operational Considerations for SQL

Format 2-Enabled Table Use C-7
Fallback Considerations C-8

Fallback Scenario 1 C-8
Fallback Scenario 2 C-8
Fallback Scenario 3 C-9

Interoperability Considerations C-12
Third-Party Provider Considerations C-13

Index

Figures
Figure 1-1. Typical Use of the Data Dictionary 1-4
Figure 3-1. Key-Sequenced B-Tree Structure 3-8
Figure 3-2. Entry-Sequenced File Structure 3-10
Figure 3-3. Relative File Structure 3-11
Figure 5-1. Catalog Structure 5-3
Figure 5-2. Ordering Columns Within an Index 5-44
Figure 10-1. Name Resolution For SQL Statements 10-14
Figure 13-1. Measure Entities and Program Structures 13-6
Figure 14-1. Generic Locking Example 14-22
Figure C-1. Migration and Fallback Planning, G06.03 Through G06.12 C-2
Figure C-2. Migration and Fallback Planning, G06.03 and Earlier RVUs C-3
Figure C-3. Migration and Fallback Planning, pre G06.03 RVU C-4

Tables
Table 1-1. SQL/MP Statements and Commands for Database Management 1-11
Table 1-2. NonStop Tools for Database Management 1-14
Table 4-1. Authorization Requirements 4-6
Table 5-1. Summary of Corresponding Data Types 5-29
Table 10-1. Behavior of the SQL Executor for an Invalid Statement or a Changed

DEFINE Detected at SQL Load Time 10-20
Table 10-2. Behavior of the SQL Executor for an Invalid Statement Detected After

Load Time 10-22
Table 11-1. SQL/MP Operations That Invalidate TMF Online Dumps 11-16
HP NonStop SQL/MP Installation and Management Guide—523353-004
xi

Contents Tables
HP NonStop SQL/MP Installation and Management Guide—523353-004
xii

What’s New in This Manual

Manual Information
HP NonStop SQL/MP Installation and Management Guide

Abstract

This manual explains how to install HP NonStop™ SQL/MP, the HP relational database
management system, and how to plan, create, and manage SQL/MP databases and
applications.

Product Version

NonStop SQL/MP G06

Supported Release Version Updates (RVUs)

This publication supports G06.22 and all subsequent G-series RVUs until otherwise
indicated by its replacement publication.

Document History

New and Changed Information
• Updated the examples for the INSERT statement on page 9-13 and page 9-14.

• Added new information under PATHMON DEFINEs and SQL Recompilation on
page 10-10.

Part Number Published

523353-004 December 2004

Part Number Product Version Published

520680-001 NonStop SQL/MP G06 November 2001

523353-001 NonStop SQL/MP G06 February 2002

523353-002 NonStop SQL/MP G06 December 2003

523353-003 NonStop SQL/MP G06 March 2004

523353-004 NonStop SQL/MP G06 December 2004
HP NonStop SQL/MP Installation and Management Guide—523353-004
xiii

What’s New in This Manual New and Changed Information
HP NonStop SQL/MP Installation and Management Guide—523353-004
xiv

About This Manual
The SQL/MP relational database management system (RDBMS) uses the Structured
Query Language (SQL) to create databases and to describe and manipulate data.
SQL/MP is compatible with the American National Standards Institute (ANSI) and
International Organization for Standardization (ISO) standards for SQL. SQL/MP
provides high performance for production of online transaction processing (OLTP)
applications over a full range of centralized or distributed systems.

Audience and Task Analysis
This manual provides comprehensive descriptions of how to perform the tasks of
planning, creating, and managing an SQL/MP database, frequently giving step-by-step
instructions. As a database administrator or manager, you should find this manual
helpful when performing these tasks:

• Installing SQL/MP

• Determining the database layout and data dictionary plan

• Planning for database security, integrity, and recovery

• Creating the database

• Querying catalogs for information about the database

• Managing the database and programs

• Reorganizing the database

• Moving the database

• Managing database applications

• Performing recovery operations

• Managing a distributed database

• Measuring and enhancing performance

You should be familiar with the HP NonStop operating system, the HP NonStop
Transaction Management Facility (TMF), and any specific application environments
you manage, such as the Pathway transaction processing environment.

Prerequisites
Before using this manual, you should read the Introduction to NonStop SQL/MP so that
you are familiar with SQL/MP terminology and concepts. You will need a copy of the
SQL/MP Reference Manual, which documents SQL statements and SQLCI command
syntax and provides detailed information about how SQL/MP works. You will also need
a copy of the SQL/MP Query Guide, which explains how to design and tune database
HP NonStop SQL/MP Installation and Management Guide—523353-004
xv

About This Manual NonStop SQL/MP Library
queries, and the SQL/MP Version Management Guide, which explains how to work
with different versions of SQL/MP software, objects, and programs.

NonStop SQL/MP Library
This manual is a part of the SQL/MP library of manuals. The library also includes these
manuals:

• Introduction to NonStop SQL/MP provides an overview of the SQL/MP relational
database management system.

• SQL/MP Reference Manual describes the syntax and provides examples and
usage considerations for: SQL language elements, expressions, functions, and
statements; the SQLCI standard conversational commands, SQL utility commands,
and session attribute commands; and the SQL/MP report writer commands. This
manual is the printed version of SQL/MP Online Help.

• SQL/MP Version Management Guide describes the rules governing version
management for the SQL/MP software, catalogs, objects, messages, programs,
and data structures.

• SQL/MP Query Guide describes how to write SQL/MP queries and how to optimize
queries for enhanced performance.

• SQL/MP Report Writer Guide describes how to use report writer commands and
SQLCI options to design and produce reports.

• SQL/MP Programming Manual (available for C or COBOL) describes the
programmatic interface for the particular host language.

• SQL/MP Messages Manual describes the messages issued by SQL/MP software,
as well as file-system and FastSort messages returned by SQL/MP.

• SQL/MP Glossary defines the terms and expressions used in SQL/MP.
HP NonStop SQL/MP Installation and Management Guide—523353-004
xvi

About This Manual Related Manuals
This figure illustrates the relationships between the SQL/MP Installation and
Management Guide and other manuals in the SQL/MP library.

Related Manuals
These manuals contain more detailed information about NonStop systems and about
software products used with SQL/MP:

• DataLoader/MP Reference Manual describes how to use the DataLoader/MP
product to load and maintain SQL/MP or Enscribe databases.

• Guardian Disk and Tape Utilities Reference Manual describes the BACKUP and
RESTORE utilities for backing up files onto tape and restoring them to disk, the
Disk Compression Program (DCOM) for moving files to gain more usable disk
space, and the Disk Space Analysis Program (DSAP) for analyzing the use of disk
space on a volume.

• FastSort Manual describes FastSort, the sort-merge product for NonStop systems.

• File Utility Program (FUP) Reference Manual describes the utility program for
managing files on NonStop systems.

Programming Manuals

Reference Manuals

Guides

VST011.vsd

Introductory Manuals

NonStop
SQL/MP
Glossary

Introduction
to
NonStop
SQL/MP

NonStop
SQL/MP
Messages
Manual

NonStop
SQL/MP
Reference
Manual

NonStop
SQL/MP
Programming
Manual for
C

NonStop
SQL/MP
Programming
Manual for
COBOL85

NonStop
SQL/MP
Installation
and
Management
Guide

NonStop
SQL/MP
Version
Management
Guide

NonStop
SQL/MP
Query
Guide

NonStop
SQL/MP
Report Writer
Guide
HP NonStop SQL/MP Installation and Management Guide—523353-004
xvii

About This Manual Notation Conventions
• Measure Reference Manual describes the use of the Measure product to collect
statistical information on database objects and processes, and to generate reports
for performance analysis.

• Open System Services Shell and Utilities Reference Manual describes how to use
OSS utilities; this information is useful for OSS SQL programs.

• Peripheral Utility Program (PUP) Reference Manual contains syntax,
considerations, and examples for PUP interactive commands.

• Safeguard User’s Guide explains how to use the Safeguard security product.

• Security Management Guide describes Guardian security in detail and provides
examples of authorization schemes.

• Storage Management Foundation User’s Guide introduces the concepts and
components of the NonStop Storage Management Foundation (SMF) product. It
contains information on how to migrate an existing system to SMF and how to
configure and maintain SMF processes.

• SCF Reference Manual describes the operation of SCF on HP NonStop S-series
servers and how it is used to configure, control, and inquire about supported
systems.

• TACL Reference Manual presents the syntax and operations of the standard
commands and functions available in the operating system’s command interpreter.

• TMF Planning and Configuration Guide explains how to configure the TMF
subsystem.

• TMF Operations and Recovery Guide describes how to use the TMF subsystem to
protect a database against disk, system, and program failures.

Notation Conventions

Hypertext Links
Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

This requirement is described under Backup DAM Volumes and Physical Disk
Drives on page 3-2.

General Syntax Notation
This list summarizes the notation conventions for syntax presentation in this manual.
HP NonStop SQL/MP Installation and Management Guide—523353-004
xviii

About This Manual General Syntax Notation
UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words. Type
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words. Type these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }
HP NonStop SQL/MP Installation and Management Guide—523353-004
xix

About This Manual General Syntax Notation
… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be typed as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must type as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In this example, no
spaces are permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…

!i and !o. In procedure calls, the !i notation follows an input parameter (one that passes data
to the called procedure); the !o notation follows an output parameter (one that returns
data to the calling program). For example:

CALL CHECKRESIZESEGMENT (segment-id !i
 , error) ; !o

!i,o. In procedure calls, the !i,o notation follows an input/output parameter (one that both
passes data to the called procedure and returns data to the calling program). For
example:

error := COMPRESSEDIT (filenum) ; !i,o
HP NonStop SQL/MP Installation and Management Guide—523353-004
xx

About This Manual Notation for Messages
!i:i. In procedure calls, the !i:i notation follows an input string parameter that has a
corresponding parameter specifying the length of the string in bytes. For example:

error := FILENAME_COMPARE_ (filename1:length !i:i
 , filename2:length) ; !i:i

!o:i. In procedure calls, the !o:i notation follows an output buffer parameter that has a
corresponding input parameter specifying the maximum length of the output buffer in
bytes. For example:

error := FILE_GETINFO_ (filenum !i
 , [filename:maxlen]) ; !o:i

Notation for Messages
This list summarizes the notation conventions for the presentation of displayed
messages in this manual.

Bold Text. Bold text in an example indicates user input typed at the terminal. For example:

ENTER RUN CODE

?123

CODE RECEIVED: 123.00

The user must press the Return key after typing the input.

Nonitalic text. Nonitalic letters, numbers, and punctuation indicate text that is displayed or
returned exactly as shown. For example:

Backup Up.

lowercase italic letters. Lowercase italic letters indicate variable items whose values are
displayed or returned. For example:

p-register

process-name

[] Brackets. Brackets enclose items that are sometimes, but not always, displayed. For
example:

Event number = number [Subject = first-subject-value]

A group of items enclosed in brackets is a list of all possible items that can be
displayed, of which one or none might actually be displayed. The items in the list can
be arranged either vertically, with aligned brackets on each side of the list, or
horizontally, enclosed in a pair of brackets and separated by vertical lines. For
example:

proc-name trapped [in SQL | in SQL file system]

{ } Braces. A group of items enclosed in braces is a list of all possible items that can be
displayed, of which one is actually displayed. The items in the list can be arranged
HP NonStop SQL/MP Installation and Management Guide—523353-004
xxi

About This Manual Notation for Management Programming Interfaces
either vertically, with aligned braces on each side of the list, or horizontally, enclosed in
a pair of braces and separated by vertical lines. For example:

obj-type obj-name state changed to state, caused by
{ Object | Operator | Service }

process-name State changed from old-objstate to objstate
{ Operator Request. }
{ Unknown. }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

Transfer status: { OK | Failed }

% Percent Sign. A percent sign precedes a number that is not in decimal notation. The
% notation precedes an octal number. The %B notation precedes a binary number.
The %H notation precedes a hexadecimal number. For example:

%005400

%B101111

%H2F

P=%p-register E=%e-register

Notation for Management Programming Interfaces
This list summarizes the notation conventions used in the boxed descriptions of
programmatic commands, event messages, and error lists in this manual.

UPPERCASE LETTERS. Uppercase letters indicate names from definition files. Type these
names exactly as shown. For example:

ZCOM-TKN-SUBJ-SERV

lowercase letters. Words in lowercase letters are words that are part of the notation,
including Data Definition Language (DDL) keywords. For example:

token-type

!r. The !r notation following a token or field name indicates that the token or field is
required. For example:

ZCOM-TKN-OBJNAME token-type ZSPI-TYP-STRING. !r

!o. The !o notation following a token or field name indicates that the token or field is
optional. For example:

ZSPI-TKN-MANAGER token-type ZSPI-TYP-FNAME32. !o
HP NonStop SQL/MP Installation and Management Guide—523353-004
xxii

About This Manual Change Bar Notation
Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

The message types specified in the REPORT clause are different in the COBOL
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for
old message types. In the CRE, the message type SYSTEM includes all messages
except LOGICAL-CLOSE and LOGICAL-OPEN.
HP NonStop SQL/MP Installation and Management Guide—523353-004
xxiii

About This Manual Change Bar Notation
HP NonStop SQL/MP Installation and Management Guide—523353-004
xxiv

1
The SQL/MP Database Management
Environment

Managing an SQL/MP relational database typically involves managing sets of
continuously active programs in addition to the database itself. In this environment, you
must add new applications and disk volumes, and repair or change existing
applications, all without affecting other applications currently running on your system.

In this manual, the descriptions of managing a database are based on these
assumptions about the database environment at your site:

• An application includes database components (tables, indexes, views, and
collations) and the programs that access the database. Database definitions,
configuration, and distribution can significantly affect application performance.
An SQL/MP database is an integral part of an application.

• The database is a production database, not a test database. The database must
be consistent, accurate, and available.

• Application development is ongoing. New or changed applications must be
integrated with existing applications.

• Central database management is required. The database management tasks can
be performed by groups of people, but these tasks should be administered by a
single person or group.

The database management environment for SQL/MP includes:

• The SQL/MP relational database management system (RDBMS)

• Database management tools

° SQL statements, SQL utilities, and SQL conversational interface (SQLCI)
commands

° Guardian and OSS utilities

° HP products for database security, conversion, and reorganization

SQL/MP Software
An SQL/MP database is not just a storage mechanism for data. The database is an
active part of an application and should be designed for the best application
performance. You can design a database for each application, or you can use views to
customize a database for more than one application.

Each SQL database consists of a collection of SQL objects, the data dictionary for
these objects, and any files in which the objects are stored. The data dictionary
includes all catalogs and associated file labels that describe the objects. A catalog can
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-1

The SQL/MP Database Management Environment SQL Objects
be part of more than one database. Each node (system) can have more than one SQL
database, and a database can span more than one node.

You use SQL/MP through SQL statements, SQLCI commands, and SQL compiler
directives.

SQL Objects
An SQL/MP database includes these objects:

• One or more base tables

• Indexes on tables

• Views on tables

• Constraints on tables

• Collations used by tables, indexes, and views

Base Tables
A base table is a table of one or more columns for which rows of data are stored in a
file. The base table definition specifies the physical characteristics of the table for the
file system. Column definitions for the table specify data types and character sets for
row values.

Data is entered into the table, one row at a time. Each row contains a value for each
table column. Stored data is retrieved and displayed in columns and rows.

The order in which rows are stored in a file is determined by the table organization and
the table’s primary key. The table organization can be key-sequenced, entry-
sequenced, or relative, and the file organization corresponds to the table organization
explained in Understanding SQL File Structures on page 3-1. Primary keys are defined
as follows:

• The primary key of a table stored in a key-sequenced file is one or more columns
defined by the user, and the SQL/MP software, or solely by the SQL/MP software.

• The primary key of a table stored in a relative file is a relative record number
defined by the user or the SQL/MP software.

• The primary key for a table stored in an entry-sequenced file is a record address
defined by the SQL/MP software.

Indexes
An index is an alternate access path to a table (alternate key) that differs from the
primary access path (primary key). An SQL/MP index, stored in a file, includes
columns for the table’s primary key and the alternate key.
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-2

The SQL/MP Database Management Environment SQL Catalogs
Views
A view is a table that has a logical definition and a file label, but contains no data. A
protection view is derived from a single table by selecting a subset of the table columns
and rows. A shorthand view is derived by selecting columns and rows from one or
more tables and views.

Constraints
A constraint helps protect the integrity of data in a base table by specifying a condition
or conditions that all the values in a particular column of the table must satisfy. Unlike
other SQL objects, constraints have only SQL names, not Guardian names, and
constraints do not have external file labels.

Collations
A collation contains rules for collating sequence, upshifting, downshifting, character
class, and character string equivalence. A collation associated with a table, index, or
view column defines the default sort order for column values and shifting rules.

SQL Catalogs
An SQL/MP catalog consists of a set of tables on a single subvolume. Catalog tables
contain specific information about SQL objects and programs, such as keys,
comments, columns, partitions, attributes, and interdependencies. The catalog tables
themselves compose a normalized SQL database indexed for rapid access.

The SQL/MP catalog manager process automatically updates one or more sets of
catalog tables according to instructions in DDL statements. When you create an SQL
object, SQL/MP registers the object in an existing catalog. You can specify which
catalog is to contain the description of an object.

Each node that uses SQL/MP has a catalog called the system catalog, that contains
information about all the catalogs on the node. The system catalog is like any other
catalog, with a few exceptions (described in Requirements for Catalogs on page 5-4).

Active Data Dictionary
An SQL/MP data dictionary is the collection of all the catalogs and associated file
labels that describe all the SQL/MP tables, views, indexes, constraints, and collations
that make up a database.

The SQL/MP data dictionary is an active dictionary. Any changes to database
definitions immediately apply to programs that use the changed portion of the
database. The data dictionary is not a passive collection of definitions but an active
part of applications. When performing database management tasks, you must be
aware of how changes affect the data dictionary.
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-3

The SQL/MP Database Management Environment Active Data Dictionary
Figure 1-1 shows typical use of a data dictionary. DDL statements and the SQL
compiler access both the catalogs and the file labels, but SQL compiled programs
access only the file labels of objects during program execution. An executing program
requires catalog access only when the program requires automatic recompilation.

To understand how the active dictionary affects programs, consider the effect of adding
a constraint on a table. Suppose that your company has reorganized the boundaries of
its sales divisions, and your division no longer includes the state of New York. As a
result of the reorganization, all your New York customers have been given to the other
division and have been removed from your database.

The database includes a CUSTOMER table with a STATE column. Now you can add a
constraint to prohibit adding any customers from New York. A constraint specifies a
rule that rows in a table must satisfy. The statement to create the constraint follows:

CREATE CONSTRAINT CUSTOMER_NEW_YORK
 ON CUSTOMER CHECK STATE <> 'NEW YORK'

After this constraint is entered, either through SQLCI or through an application
program, no user can add a customer from the state of New York. SQL/MP enforces
this constraint. No programmatic changes are necessary to protect the database
against adding an invalid customer.

The RDBMS ensures that every program uses the current table definition by requiring
SQL recompilation of every program that uses the CUSTOMER table. When you do

Figure 1-1. Typical Use of the Data Dictionary

Data Dictionary

ALTER, CREATE, DROP, CONTROL

Register program in catalog

DML

VST001.vsd

Database
Administrator

Application
Programmer

Transaction
Originator

Catalog
Tables

File
Labels

SQL
DDL
DCL

SQL
Compiler

SQL OLTP
Application
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-4

The SQL/MP Database Management Environment SQL/MP Features
not recompile a program explicitly, an SQL recompilation occurs automatically before
each execution of the program to ensure it uses the current definition of the table.

SQL/MP Features
The SQL/MP RDBMS supports:

• Distributed databases

• Database protection and recovery

• Data integrity

• Multiple character sets, including single-byte and double-byte data

• DEFINEs

• Database security

• Parallel processing

• High availability

Distributed Databases
You can distribute an SQL/MP database across multiple nodes with complete
transparency, location independence, read and update capability, and data integrity.
Objects in the same database can reside on different nodes. The partitions of a table or
index can be spread across nodes as well, with the partitioning invisible to users.

Local autonomy guarantees that local processing is not affected by unreliable
communications links. This autonomy is facilitated by an active, distributed data
dictionary and a feature that opens partitions of a database only when demanded by a
query. Also, automatic recompilation is invoked to rebind plans when certain resources
are unavailable.

A distributed database can be managed by a central site, by each independent
distributed site, or by a combination of these. For more information, see Section 12,
Managing a Distributed Database.

Database Protection and Recovery
An SQL/MP database is protected by the TMF subsystem, which provides automatic
online recovery of audited SQL objects and files by using audit trails. A transaction in
progress can be aborted when a failure or error condition is detected. The TMF
subsystem terminates the transaction and restores the database to its state before the
beginning of the transaction. The TMF subsystem provides two additional recovery
mechanisms:

• Volume recovery, which recovers the database in the event of a disk crash or
system failure
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-5

The SQL/MP Database Management Environment Data Integrity
• File recovery, which reconstructs specific audited files when the current copies on
the data volume are not usable; for example, if a system or media failure
jeopardizes the consistency of one or more audited files

The BACKUP utility provides volume-mode and file-mode tape backups for database
objects and for SQL programs stored in Guardian files, which you can recover with
RESTORE. Volume-mode backup makes a physical copy of a disk volume on tape.
File-mode backup copies each SQL object or file in a file set list to tape.

You can also save database creation and loading scripts in OBEY command files or
write an automated program to handle TMF and backup and restore operations.

OSS utilities provide backup functionality for SQL programs stored in OSS files.

For more information about database protection and recovery, see The TMF
Subsystem on page 4-10 and Restoring Objects With TMF Recovery Operations on
page 11-11.

Data Integrity
The database management system protects the database by ensuring that entered
data meets the definitional requirements. Application programs, therefore, do not need
to perform data checking.

These data definition features ensure definitional integrity:

• Column definitions

• Protection views

• Constraints

• Indexes

These features provide additional data integrity for SQL/MP databases:

• Database changes are monitored by the TMF subsystem.

• Database access is restricted to SQL statements.

• Integrity constraints on tables are enforced by the disk process.

• Database consistency is maintained by concurrency control.

The TMF subsystem provides data integrity. Database updates performed as part of a
TMF transaction are either all committed to the database when the transaction
completes or all backed out if the transaction does not complete. With the TMF two-
phase commit protocol, an update changes a database from one consistent state to
another; an incomplete transaction does not change the database. TMF transactions
can be distributed across multiple nodes.

Database access is restricted to standard Data Manipulation Language (DML), Data
Definition Language (DDL), Data Control Language (DCL), and Data Status Language
(DSL) statements. No exit routines can inadvertently corrupt a database.
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-6

The SQL/MP Database Management Environment Multiple Character Sets
For each table, you can define one or more integrity constraints that the disk process
checks before inserting a row into the table. Each constraint is an SQL object. If a row
does not satisfy a condition specified in a constraint, the disk process does not insert
the row. Likewise, update values for existing rows must satisfy all constraints on the
table.

Concurrency control for database access provides different degrees of database
consistency to meet different needs: browse access, stable access, and repeatable
access. These access modes are maintained by shared or exclusive locks on rows,
sets of rows, partitions, and tables.

Multiple Character Sets
SQL/MP supports multiple character sets with the CHARACTER, PIC X, and
VARCHAR data types and the CHARACTER SET clause. In addition, the NATIONAL
CHARACTER data type supports double-byte character sets.

DEFINEs
A DEFINE is a named set of attributes and associated values stored in the process file
segment (PFS) of a running process. You simplify the SQL/MP environment by using
logical DEFINE names in commands, in OBEY command files, and in programs. You
can have the names apply to other SQL objects just by changing the DEFINEs.

You can use a DEFINE name to specify a subvolume, catalog, table, view, or index in
SQL/MP statements and commands and in host application programs. Typically, you
use a DEFINE to establish a one-to-one mapping between a logical name and a
physical name. For more information, see Using DEFINEs on page 10-30.

Database Security
Authorization to operate on SQL/MP tables, indexes, views, collations, and SQL
programs that run in the Guardian environment is maintained by Guardian security and
checked by SQL/MP. You can use the Safeguard security management facility for
additional security protection for volumes and subvolumes containing SQL objects and
for individual SQL programs stored in Guardian files. For more information, see
Security Guidelines on page 4-2.

Authorization for SQL programs stored in the OSS environment is maintained by the
OSS security subsystem.
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-7

The SQL/MP Database Management Environment Parallel Processing
Parallel Processing
 The following types of parallel processing are available in SQL/MP:

• Parallel query processing

• Parallel join operations

• Parallel index maintenance

• Parallel index loading

• Parallel sorting

• Parallel input-output operations

Parallel query processing can provide speed-up and scale-up. Speed-up is the
reduction of response time, which you can accomplish by spreading the database over
multiple partitions. Scale-up is the maintenance of a constant response time through
database growth, which you can accomplish by increasing the number of partitions.

When tables and indexes are partitioned across multiple disks, SQL/MP can use a
different process for each partition during query execution. This approach reduces the
time for scans and other set-oriented processing by a factor equivalent to the number
of partitions when there is no contention in the processor-controller disk path; that is,
when every participating disk is primary to a different processor.

Parallel join operations are performed by the SQL executor during query processing.

Parallel index maintenance reduces the effect of multiple indexes on performance.
Each index on a table is automatically updated whenever a row is inserted into the
table and whenever a value is updated in any key column of the index. Multiple
indexes on a table can be updated in parallel by different disk processes or by the
same disk process servicing multiple requests.

Parallel index loading speeds the loading of a partitioned index by loading all partitions
of the index at the same time. A different process loads each partition.

Parallel sorting is performed by the FastSort product, which SQL/MP uses for sort
operations. You can configure subsort processes for parallel sort operations.

Parallel input-output operations are performed on multiple partitions by different disk
processes. A single disk process can also perform parallel I/O by buffering operations
in cache.

High Availability
SQL/MP has these features to help ensure high availability for databases:

• Online dumps using the TMFCOM DUMP FILES command, with complete support
for TMF file recovery to recover a database in case of a disaster

• Online database reorganization capabilities such as online index creation with
concurrent read and update capability; online partition moving; partition splitting;
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-8

The SQL/MP Database Management Environment Database Management Operating Environments
and row redistribution with concurrent read and update capability available for the
table or index

• Parallel table loads (using multiple SQLCI LOAD PARTONLY operations) and
index loads (using CREATE INDEX or LOAD command with PARALLEL
EXECUTION ON) to reduce the time required to load the object

• Automatic recompilation or partial recompilation, which eliminates the need to
terminate program execution when changes in database structure or the
environment make rebinding necessary

• Ability to defer name resolution in SQL statements until execution time

Database Management Operating
Environments

SQL/MP is accessible to the Open System Services (OSS) and Guardian operating
environments, as follows:

• SQL/MP data is accessible to programs that run in the OSS and Guardian
environments.

• SQL tables, views, indexes, collations, catalogs, and SQL programs that are stored
in Guardian files are manipulated by using SQLCI or Guardian utilities as
described in this manual.

• SQL programs that are stored in OSS files are manipulated by using OSS utilities
as described in the Open System Services Shell and Utilities Reference Manual.

• There are two SQL compiler interfaces, one for the OSS environment and one for
the Guardian environment:

° c89 is used in the OSS environment, supports OSS path names as input files,
and produces OSS object files. For more information, see the SQL/MP
Programming Manual for C.

° SQLCOMP is used in the Guardian environment, supports Guardian file names
as input files, and produces Guardian object files. For more information, see
the SQL/MP programming manuals.

• The unique ZYQ name associated with an OSS path name can be used in some
Guardian and SQLCI utilities. There is only one ZYQ name for each SQL program
stored in the OSS environment, even if there are multiple links to the file.

• Guardian file names can be accessed from OSS—and supplied as input to c89—
by using this format:

/G/volume/subvolume/file

• An example of a file name follows:

/G/data1/subvol1/testfl
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-9

The SQL/MP Database Management Environment Database Management Tasks
• When referring to SQL objects from embedded SQL statements within an SQL
program compiled for the OSS environment, use Guardian names or DEFINEs.

Database Management Tasks
To manage an SQL/MP database, you must perform all the tasks required to create the
database, ensure its availability to users, and perform required changes. Because the
database is an integral part of the application, measuring application performance and
tuning the database configuration to enhance performance are also database
management tasks.

SQL/MP database administrators (DBAs) perform these tasks:

• Install the SQL/MP software

• Upgrade to newer versions of SQL/MP software or downgrade to older versions

• Determine database layouts and data dictionary plans

• Plan for database security, integrity, and recovery

• Create and load databases

• Query catalog tables for information about databases

• Alter databases

• Manage databases and programs

• Reorganize and move databases

• Manage database applications

• Perform recovery operations

• Manage distributed databases

• Assemble and optimize queries

• Measure and enhance performance

Database Management Tools
SQL/MP provides the following types of SQL statements:

• Data Definition Language (DDL) statements that define and manage database
objects.

• Data Manipulation Language (DML) statements that query and modify database
tables.

• Data Control Language (DCL) statements and directives that control performance-
related aspects of SQL/MP such as parallel processing and access paths.
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-10

The SQL/MP Database Management Environment Database Management Tools
• Data Status Language (DSL) statements that retrieve status information about
catalogs and about versions of objects and software components.

In addition, SQL/MP supplies installation commands to install SQL/MP and a set of
database management utilities.

DDL, DML, DCL, and DSL statements, Guardian utilities, and SQL utilities are the
basic tools of the SQL/MP database administrator. All these statements and
commands are available through the SQL/MP conversational interface (SQLCI).

Table 1-1 summarizes SQL/MP statements and commands for database management.

Note. For SQL programs in the OSS environment, OSS utilities are available that support DDL
functions. SQLCI and the SQL utilities listed in Table 1-1 do not, in general, support SQL
programs stored in OSS files, although exceptions are noted in descriptions of individual SQL
utilities in this manual. For more information about OSS utilities, see the Open System
Services Shell and Utilities Reference Manual.

Table 1-1. SQL/MP Statements and Commands for Database
Management (page 1 of 3)

Statement or
Command Type

Statement or
Command Description

DDL ALTER Alters the definition of a table; changes the
attributes of an index or table; alters security
attributes of a catalog, index, program, table, or
view; renames an index, table, view, or SQL
program stored in a Guardian file; adds, moves, or
drops a partition of a table or index; splits a
partition of a table or index.

COMMENT Adds a comment to an object definition.

CREATE Creates a catalog, constraint, index, table, or view.

DROP Drops a catalog, constraint, index, table, view, or
SQL program stored in a Guardian file.

HELP TEXT Specifies help text for a column of a table or view.

UPDATE
STATISTICS

Updates information about the contents of a table
and its indexes.

Operation on
Other SQL
Statements

DISPLAY
STATISTICS

Displays information about the most recently
executed DML or PREPARE statement.

Utilities APPEND Appends data to the end of a table or table
partition, adding to existing data.

CLEANUP Deletes damaged SQL objects that result from
corruption of definitions in the data dictionary.
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-11

The SQL/MP Database Management Environment Database Management Tools
CONVERT Converts an Enscribe file definition to an
equivalent SQL CREATE TABLE statement and,
optionally, generates SQLCI LOAD commands for
loading data from the Enscribe file into an
equivalent SQL table.

COPY Copies data to and from Enscribe files and SQL
tables, adding to existing data.

DISPLAY USE OF Displays a list of SQL objects that depend on
specified objects.

DUP Makes identical copies of Guardian files or of
objects and object descriptions.

EXPLAIN Explains how data is accessed by specific DML
statements and displays DEFINE mappings.

FILEINFO Displays physical characteristics of objects and
files.

FILENAMES Displays a set of names that match a pattern
specified with wild-card characters.

FILES Displays the names of files that are on one or
more subvolumes.

INVOKE Generates a record description of a table or view.

LOAD Loads data into a file or table, overwriting existing
data.

MODIFY
[DICTIONARY]

Modifies node numbers stored in file labels of SQL
objects (LABEL option), modifies node names
stored in SQL catalogs on the local node
(CATALOG option), and registers user-defined
catalogs in the local system catalog (REGISTER
option).

PURGE Purges one or more objects or Guardian files.

PURGEDATA Deletes data from Guardian files and tables.

SECURE Changes the owner or security of one or more
objects or Guardian files.

UPGRADE
CATALOG

Upgrades catalogs created with an older version
of SQL/MP to the format required to use new
features in a newer version.

VERIFY Checks the consistency and validity of object
definitions in catalogs and file labels and displays
names of invalid programs.

Table 1-1. SQL/MP Statements and Commands for Database
Management (page 2 of 3)

Statement or
Command Type

Statement or
Command Description
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-12

The SQL/MP Database Management Environment Database Management Tools
Through its Guardian environment, the NonStop OS provides additional utilities and
subsystems for managing an SQL/MP database. Collectively, these utilities and
subsystems are known as the NonStop Tools. You use these tools primarily in recovery
operations, in moving a database, or in reorganizing a database online. Table 1-2 on
page 1-14 summarizes these software products.

Installation CREATE
SYSTEM
CATALOG

Creates the system catalog, including the
CATALOGS table.

DROP SYSTEM
CATALOG

Deletes the system catalog, including the
CATALOGS table, and deletes the SQLCI2
program.

INITIALIZE SQL Prepares a NonStop system to run SQL/MP.

DML DELETE Deletes rows from a table or view.

INSERT Inserts rows into a table or view.

SELECT Retrieves data from tables and views.

UPDATE Updates values in columns of a table or view.

DCL CONTROL
EXECUTOR

Specifies whether to process data by using a
single executor or multiple executors working in
parallel.

CONTROL
QUERY

Specifies optimizing queries either for the first few
rows returned or for all rows returned.

CONTROL
TABLE

Specifies parameters that control locks and other
attributes of tables.

FREE
RESOURCES

Releases locks on nonaudited and some audited
objects and closes cursors.

LOCK TABLE Locks a table or underlying tables of a view and
associated indexes.

SHOW
CONTROL

Displays the values in effect for any options of
CONTROL statements.

UNLOCK TABLE Releases locks held on nonaudited tables or
views.

DSL GET CATALOG
OF SYSTEM

Retrieves the name of a local or remote system
catalog.

GET VERSION Retrieves the version of a specific SQL object,
catalog, or software component.

GET VERSION
OF PROGRAM

Retrieves the PCV, PFV, or HOSV of an SQL
program.

Table 1-1. SQL/MP Statements and Commands for Database
Management (page 3 of 3)

Statement or
Command Type

Statement or
Command Description
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-13

The SQL/MP Database Management Environment Database Management Tools

Table 1-2. NonStop Tools for Database Management

Program Description

BACKUP Copies Guardian files from disk to magnetic tape.

DataLoader/
MP

Loads and maintains SQL/MP databases (designed for large decision
support system (DSS) tables).

DSAP Disk Space Analysis Program: analyzes use of space on disk volumes,
reporting on factors such as free space availability and extent allocation.

FILCHECK Checks internal consistency of structured files and reports consistency
errors.

FUP File Utility Program: reorganizes key-sequenced files while they are in use,
licenses programs, and obtains information about SQL objects and files.

Measure
Product

Collects performance statistics on SQL objects, including information about
processes, SQL statements, and file activity.

PERUSE Invokes the PERUSE utility program.

PUP Peripheral Utility Program: A utility used in D-series and earlier RVUs to
manage disks and perform various operations on disk volumes in the
SQL/MP database environment. In G-series RVUs, PUP functions are
performed by the SCF.

RESTORE Copies Guardian files from magnetic tape to disk. The files on tape must
have been written by BACKUP.

Safeguard
Product

Protects network and system resources, such as Guardian disk volumes,
from unauthorized access.

SCF Subsystem Control Facility: An interactive interface for configuring,
controlling, and collecting information from a subsystem and its objects. SCF
enables you to configure and reconfigure devices, processes, and some
system variables while your HP NonStop S-series server is online.

TACL Tandem Advanced Command Language, the command interpreter for the
Guardian environment; provides an interactive user interface to a NonStop
system through the operating system; enables users to run SQLCI and
various system utilities, such as FUP, BACKUP, and RESTORE; and
enables users to start SQL/MP processes.

TEDIT
EDIT

Tandem PS Text Edit and EDIT text editor programs: used to create OBEY
command files, generate SQLCI command strings, and read SQLCI log files.

VIEWSYS Monitors disk input and output and cache memory use.
HP NonStop SQL/MP Installation and Management Guide—523353-004
1-14

2 Installing SQL/MP
After ensuring that your node meets the hardware and software requirements for
SQL/MP, you can install the SQL/MP relational database management system
(RDBMS).

After installing SQL/MP, you can install the sample application distributed with the
SQL/MP software, as explained in the SQL/MP Reference Manual. Use this application
to demonstrate embedding SQL statements in host language programs, querying the
catalogs, and querying and updating sample database tables. The sample database
provided with this application is the same database used in examples in the SQL/MP
manuals and education courses.

This section describes system requirements for SQL/MP, installation procedures,
migration to a newer version, and the use of D-series features (for users migrating from
a C-series node).

Hardware and Software Requirements
The hardware and software requirements for an SQL/MP RDBMS are:

• The hardware on which SQL/MP runs must be an SQL/MP system.

• Each system that includes SQL/MP requires a node (system) name, regardless of
whether the node stands alone or is part of a network.

• The version of the operating system must be D30 or later to support versions 315
and newer of the SQL/MP software.

• As a general rule, TMF must be available when users are running SQL/MP
application programs or using the conversational interface, SQLCI. The TMF
subsystem is required for SQL compilation and for execution of all DDL
statements, all SQL utilities, and DML statements that require TMF transactions for
audited tables or views. TMF transactions are not required for previously compiled
SQL statements that refer to nonaudited tables or views or for SELECT statements
that use BROWSE ACCESS.

• The product version of the TMF subsystem must be D30 or later to support
versions 315 and newer of SQL/MP software.

• All SQL objects must reside on volumes audited by the TMF subsystem. SQL
programs need not reside on audited volumes.

• If you plan to use a national character (NCHAR) data type from SQL/MP, the
system default multibyte character set must be a character set supported by
SQL/MP. To check the default character set, use the Guardian
MBCS_DEFAULTCHARSET_ procedure. To specify a different character set,

Note. If you are upgrading your SQL/MP environment from an older version of SQL/MP,
consider the issues discussed in the SQL/MP Version Management Guide in addition to those
discussed in this section before running your existing SQL/MP applications.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-1

Installing SQL/MP SQL/MP Software Components
rename the appropriate LIBOBJnn library object file to LIBOBJ before using
SYSGEN to generate the node. SYSGEN accepts only one LIBOBJ file.

• For a list of supported character sets, see Defining Columns on page 5-19.

Recommendations for a node running SQL/MP are:

• Mirrored volumes are recommended, but not required, for volumes containing SQL
objects.

• A minimum of 16 megabytes of memory is suggested for each processor in a node
running SQL/MP. Additional memory can improve performance.

SQL/MP Software Components
The SQL/MP relational database management system consists of:

• BACKUP and RESTORE utilities

• Disk process

• FastSort software

• SQL catalog manager (SQLCAT)

• SQL compiler (SQLCOMP)

• SQL compiler interface

• SQL conversational interface (SQLCI)

• SQL executor

• SQL file system

• SQL utilities (SQLUTIL)

• Collation compiler

• Audit server (AUDSERV)

Installing SQL/MP
You should follow any instructions given in the associated software release document
and any installation instructions that come with your site update tape (SUT). Install the
software from the SUT by using the INSTALL program provided with the tape. The
INSTALL program handles the installation of the SQL/MP system software on your
$SYSTEM disk or alternate boot disk.

Starting the Transaction Management Facility (TMF)
Typically, you develop TMF startup and configuration files as OBEY command files.
These files contain the TMF configuration options and parameters that describe the
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-2

Installing SQL/MP Starting the Transaction Management Facility (TMF)
audit trails and the dump process. For information about TMF auditing requirements,
configuration guidelines, and considerations for SQL/MP, see The TMF Subsystem on
page 4-10 and the TMF Planning and Configuration Guide.

Your version of TMF must be compatible with your version of SQL/MP software as
noted under Hardware and Software Requirements on page 2-1.

When you start the TMF subsystem, the configured data volumes are started for
transaction processing if they are accessible. You must ensure the volumes you intend
to use for SQL/MP catalogs and audited objects are configured and started for
transaction processing. You must also ensure that the TMF subsystem as a whole is
started for transaction processing. You can request status from TMFCOM, the TMF
command interface, by entering the TMFCOM command at the operating system
command interpreter prompt:

21> TMFCOM

~STATUS TMF <--Request for TMF status.

TMF Status:
 System: \SQLNLS, Time: 4-Nov-1994 13:35:26
 State: started
 Transaction Rate: 5.0 TPS
AuditTrail Status:
 Master
 Active audit trail capacity used: 14%
 First pinned file: $DATA.ZTMFAT.AA000012
 Reason: Current file
 Current file: $DATA.ZTMFAT.AA000012
 BeginTrans Status: ENABLED
 Catalog Status:
 Status: up

~STATUS DATAVOLS <--Request for status of data
volumes.

~status datavols
 Audit Recovery
 Volume Trail Mode State

 $RAT MAT Online Started
 $D00 MAT Online Started
 $XCEED MAT Online Started
 $C30SYS MAT Online Started
 $SYSTEM MAT Online Started
 $SQL MAT Online Started
 $TES MAT Online Started

~EXIT <--Exits TMFCOM.

If you plan to use a system management program to operate TMF, you can use
TMFSERVE, a TMF process that provides access to TMF by using the Subsystem
Programmatic Interface (SPI). Both of these mechanisms can be used to monitor and
control TMF operation.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-3

Installing SQL/MP Initializing SQL/MP
For configuration information, see Guidelines for Configuring TMF on page 4-13.

Initializing SQL/MP
Before you can use SQL/MP for the first time, or when reinstalling the product, you
must request initialization of SQL/MP by using the CREATE SYSTEM CATALOG and
INITIALIZE SQL commands. The SQL/MP Reference Manual describes the syntax of
these SQLCI commands.

SQL initialization involves creating the system catalog, SQL compiling the SQLCI2
program as a valid SQL program, then registering the program in the system catalog.
The SQLCI2 program, when in execution, serves as a backend process for SQLCI.

The system catalog is like any other catalog, except it contains an additional table,
CATALOGS, which is the system directory of catalogs. The CATALOGS table must
reside on a subvolume named SQL.

By default, the system catalog resides on the subvolume $SYSTEM.SQL; however,
you can specify another volume and subvolume in the CREATE SYSTEM CATALOG
command. If the system catalog is not on the subvolume SQL, the CATALOGS table is
placed on the same volume as the system catalog, but on a subvolume named SQL.

For information about locating and securing catalogs, see Creating Catalogs on
page 5-1.

Initialization Steps
To initialize SQL/MP, follow these steps:

1. Check that the TMF subsystem is configured correctly and started.

2. Check that the $SYSTEM.SYSTEM.ZZSQLCI2 file exists on the node and save a
copy. This temporary file, which contains the SQLCI2 program, is copied onto the
disk by the INSTALL program.

3. Log on as the local super ID. The super ID is required to run the CREATE
SYSTEM CATALOG and INITIALIZE SQL commands in Step 5 and Step 6 on page
2-6.

4. Start the SQLCI program. At the command interpreter prompt, enter the program
name:

23> SQLCI

5. If you are installing SQL for the first time on this node, create the system catalog. If
you are reinstalling it, you can skip this step.

Note. As a basic rule, HP recommends you save a copy of the
$SYSTEM.SYSTEM.ZZSQLCI2 (SQLCI2) program at all times. After the SQL initialization
is complete (Step 6), the temporary copy (ZZSQLCI2) is renamed and becomes the
permanent SQLCI2 program. If a subsequent SQL initialization is attempted or if the
SQLCI2 program is corrupted or purged, the saved copy provides a backup.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-4

Installing SQL/MP Initializing SQL/MP
By default, the system catalog resides on the subvolume $SYSTEM.SQL;
however, you can specify an alternative volume and subvolume.

The system catalog contains a table called CATALOGS, which is the system
directory of catalogs. If you put the system catalog on a volume other than
$SYSTEM, SQL/MP puts the CATALOGS table on a subvolume named SQL on
the same volume as the rest of the system catalog.

If you want the system catalog to reside on the default location ($SYSTEM.SQL),
enter this command at the SQLCI prompt:

>> CREATE SYSTEM CATALOG;

If you want the system catalog to reside on a volume or subvolume other than the
default location, enter this command at the SQLCI prompt:

>> CREATE SYSTEM CATALOG $vol.subvol;

In this command, $vol.subvol is a Guardian volume and subvolume name. If
you do not specify a subvolume, the RDBMS uses the name SQL by default. If you
specify a subvolume other than SQL, the RDBMS places all system catalog tables
except CATALOGS on the subvolume you specify and places the CATALOGS table
on a subvolume named SQL, on the same volume as the other catalog tables.

If you are installing SQL/MP on a system using the HP NonStop Storage
Management Foundation (SMF), and you want to ensure that you can fall back to a
non-SMF system, you should make sure that the system catalog tables reside on
one physical volume. If you specify a virtual volume for the system catalog, SMF
can distribute the system catalog tables among multiple physical volumes in the
storage pool. When this configuration is in place, there is no guarantee that you
can return to using a nonvirtual volume. When you are certain you will not need to
fall back to a non-SMF system, you can specify a virtual volume for the system
catalog tables without being concerned with the physical location of the files.

To ensure that the system catalog tables reside on one physical volume, you can
specify a direct volume that is not in any storage pool, or you can use the
PHYSVOL option, as follows:

>> CREATE SYSTEM CATALOG $virtual_vol.subvol
 PHYSVOL $physical_vol;

With the PHYSVOL option, you can specify only the volume name. Also, the virtual
volume specified with the CREATE SYSTEM CATALOG clause must be
associated with the same storage pool that contains the physical volume specified
with PHYSVOL. For more information about using this option, see the SQL/MP
Reference Manual and the Storage Management Foundation User’s Guide.

Note. It is recommended that you do not place the system catalog on the $SYSTEM
volume. When the system catalog resides on another volume, the $SYSTEM volume can
function as a nonaudited volume and can also be rebuilt from a system image tape (SIT),
in case of disaster, without affecting the SQL/MP catalog structure.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-5

Installing SQL/MP Initializing SQL/MP
6. Initialize SQL/MP by entering this command at the SQLCI prompt:

>> INITIALIZE SQL;

During the installation of the SQL/MP system software, the INSTALL program
places the new SQLCI2 program on the $SYSTEM.SYSTEM subvolume in the file
named ZZSQLCI2. SQLCI2 is the process through which the SQL/MP
conversational interface (SQLCI) communicates with the SQL/MP executor to
request various functions.

The SQL initialization process requested in this step drops the older version of
SQLCI2 if it exists on the system, renames the ZZSQLCI2 file to SQLCI2, SQL
compiles the program in $SYSTEM.SYSTEM.SQLCI2, and registers the program
in the PROGRAMS table of the system catalog. To run SQL statements from
SQLCI, SQLCI2 must be a valid, registered SQL program.

The INITIALIZE command performs the installation operations automatically. You
can request these operations directly, however, by entering commands at the
command interpreter prompt (for installation on $SYSTEM.SYSTEM):

24> PURGE $SYSTEM.SYSTEM.SQLCI2 (if you are reinstalling SQL)
25> RENAME $SYSTEM.SYSTEM.ZZSQLCI2, $SYSTEM.SYSTEM.SQLCI2
26> SQLCOMP/IN SQLCI2/ CATALOG system-catalog

In the SQLCOMP command, system-catalog is the Guardian name of the
system catalog.

7. Terminate SQLCI and create a backup copy of the collation compiler, which is in
the $SYSTEM.SYSTEM.NLCPCOMP file:

>> EXIT;
26> FUP DUP $SYSTEM.SYSTEM.NLCPCOMP, &
26> & $VOLBK.SUBVBK.NLCPCOBK, SOURCEDATE

(The collation compiler translates character processing rules specified in a source
file into an internal format.)

8. Use the SQLCOMP command to SQL compile the collation compiler:

27> SQLCOMP /IN $SYSTEM.SYSTEM.NLCPCOMP,NOWAIT/ CATALOG
$VOL1.SQL

In this command, $VOL1.SQL is the subvolume where the system catalog resides

9. If you are installing SQL for the first time on this node, set the appropriate security
string for the system catalog. You can use the ALTER CATALOG statement to alter
the owner ID and security string of all the system catalog tables at once. Then, you

Note. You must SQL compile the collation compiler manually anytime you install a
software product revision (SPR) to the T6570 - National Language Character Processing
product.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-6

Installing SQL/MP Initializing SQL/MP
can use ALTER TABLE statements to resecure the CATALOGS, USAGES,
TRANSIDS, and PROGRAMS tables separately.

>> ALTER CATALOG system-catalog SECURE "NG--";

>> ALTER TABLE system-catalog.CATALOGS SECURE "NA--";

For more information, see Securing the System Catalog on page 5-10.

10. Verify that these programs are secured for execute access on your node:

$SYSTEM.SYSTEM.SQLCI
$SYSTEM.SYSTEM.SQLCI2
$SYSTEM.SYSTEM.SQLCAT
$SYSTEM.SYSTEM.AUDSERV
$SYSTEM.SYSTEM.SQLCOMP
$SYSTEM.SYSTEM.SQLESP
$SYSTEM.SYSTEM.SQLESPMG
$SYSTEM.SYSTEM.SQLUTIL
$SYSTEM.SYSTEM.NLCPCOMP
$SYSTEM.SYSnn.RECGEN
$SYSTEM.SYSnn.SORTPROG

In the preceding list, nn represents two digits assigned during node generation
(SYSGEN operation).

Verify that this file is secured for read access on your node:

$SYSTEM.SYSTEM.SQLMSG

If your node is part of a network, check that the programs in the preceding list are
secured for network execute access and that the $SYSTEM.SYSTEM.SQLMSG
file is secured for network read access.

11. Verify that these Guardian utilities and SQL/MP components are licensed so that
they can access SQL/MP objects. The INSTALL process, when completed
normally, performs the licensing of these programs (automatically or manually):

$SYSTEM.SYSTEM.SQLCOMP
$SYSTEM.SYSTEM.SQLUTIL
$SYSTEM.SYSTEM.SQLCAT
$SYSTEM.SYSTEM.AUDSERV
$SYSTEM.SYSnn.BACKUP
$SYSTEM.SYSnn.DSAP
$SYSTEM.SYSnn.FUP
$SYSTEM.SYSnn.FILCHECK
$SYSTEM.SYSnn.PUP
$SYSTEM.SYSnn.SCF
$SYSTEM.SYSnn.RESTORE
$SYSTEM.SYSnn.SORTPROG

In the preceding list, nn represents two digits assigned during system generation
(SYSGEN operation).

Note. SQLCI2 and NLCPCOMP must have both read and execute access.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-7

Installing SQL/MP Initializing SQL/MP
You can use the FUP SECURE command to alter the security of these programs and
the FUP LICENSE command to license the programs, if necessary. To alter the
security of the SQL sensitive program SQLCI2, you can either use the SQL ALTER
PROGRAM statement or the FUP SECURE command.

1. If old versions of SORT, SORTPROG, and RECGEN programs still exist on
$SYSTEM.SYSTEM, remove them now by entering this command at the command
interpreter prompt:

26> PURGE $SYSTEM.SYSTEM.SORT, $SYSTEM.SYSTEM.SORTPROG,
 $SYSTEM.SYSTEM.RECGEN

If SORT, SORTPROG, or RECGEN programs exist on $SYSTEM.SYSTEM from a
previous RVU, the results are unpredictable.

SQL/MP uses the FastSort programs SORT and SORTPROG for sorting
operations and the RECGEN program for parallel loading of indexes. The INSTALL
process moves these programs to the SYSnn subvolume (in which nn is two digits
assigned during system generation).

2. Verify that the SORT, SORTPROG, and RECGEN programs on the SYSnn
subvolume are secured for execute access on your node. If your node runs in a
network, check that these programs are secured for network execute access. If
SQL/MP initiates a SORT operation and the SORT, SORTPROG, or RECGEN
security does not allow access, a run-time sort error, Sort Start Error 4, is
generated.

You can use the FUP SECURE command to alter the security of these programs, if
necessary.

3. Check that the SQLMSG file you are using is the one released with the new
version of SQL/MP. The message file contains error messages, warning
messages, and help text for SQL/MP. You can check the version by running SQLCI
and entering the ENV command; the message file version is listed as
MESSAGEFILE VRSN in the ENV output.

Check that these message files are secured for read access on your node:

$SYSTEM.SYSTEM.SQLMSG
$SYSTEM.SYSTEM.NLCPMSG

If your node is part of a network, check that these message files are secured for
network read access. If necessary, secure them for network access by entering
these commands:

32> FUP SECURE ($SYSTEM.SYSTEM.SQLMSG, &
32> & $SYSTEM.SYSTEM.NLCPMSG), “NN-N”

Note. The SQLCI2 program is not licensed under normal circumstances. Only the super ID
can license the SQLCI2 program. For more information, see Appendix A, Licensed SQLCI2
Process.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-8

Installing SQL/MP Setting Up Event Logging
4. If you use COBOL with SQL/MP, replace the COBOLEXT file on your
$SYSTEM.SYSTEM subvolume with the correct COBOL extension file. The
$SYSTEM.SYSTEM.COBOLEXT extension file installed by the INSTALL program
does not contain the complete COBOL extension libraries for SQL/MP, which are
stored under the name $SYSTEM.SYSTEM.COBOLEX0.

To replace the existing $SYSTEM.SYSTEM.COBOLEXT file with the appropriate
COBOL extension file, enter this command:

27> FUP DUP $SYSTEM.SYSTEM.COBOLEX0, $SYSTEM.SYSTEM.COBOLEXT,
PURGE, SOURCEDATE

If an incorrect extension file is used for programs containing SQL statements,
those programs might encounter a compilation error (UNIT OF PROPER
LANGUAGE NOT FOUND) or a run-time trap error.

Setting Up Event Logging
SQLCI provides logging capability to:

• Log certain events to a terminal or file automatically

• Log command strings entered interactively through SQLCI, and, optionally, output
from those commands, to an EDIT file

Both methods are effective for maintaining a record of events and commands. You
should routinely have the log file duplicated, printed, and cleared. For more information
about event logging, see the discussion of the =_SQL_CMP_EVENT DEFINE in the
SQL/MP Reference Manual.

Setting Up Alternate SQL Components
Users with the super group ID can specify alternate SQL components through the
=_SQL_component DEFINEs. These DEFINEs redirect the RDBMS to use the
specified programs or message files instead of the default programs or files residing on
$SYSTEM.SYSTEM. The use of these components is limited to members of the super
group only.

If you want an SQL/MP system available only for the super group, issue the
=_SQL_component DEFINEs before performing the initialization or reinstallation
steps. You might do this, for instance, when you want to allow a limited group of users
to access a customized SQL/MP system or to run SQL components not residing on
$SYSTEM.SYSTEM. For more information on the =_SQL_component DEFINEs, see
the SQL/MP Reference Manual.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-9

Installing SQL/MP Additional Installation Considerations
Additional Installation Considerations
Installation of SQL/MP might require installation of a specific version of related
software. For versioning requirements of products associated with SQL/MP, check the
documentation supplied with your software.

If you install an SPR to the T6570 - National Language Character Processing product,
you must SQL compile the collation compiler manually. For more information, see Step
8 on page 2-4.

If you plan to define large numbers of partitions for tables and indexes in the database,
consider using the =_SQL_CAT_HEAP_LIMIT DEFINE to increase the heap space
size limit for the catalog manager process. For more information, see the SQL/MP
Reference Manual or SQLCI online help. You can specify this DEFINE in the
TACLCSTM file for TACL sessions running applications or interactive queries.

Reinstalling SQL/MP Software
To reinstall SQL/MP on a node that has previously run the software, follow the steps
listed under Installing SQL/MP on page 2-2.

Note that if you have installed SQL/MP on your node before, you do not need to re-
create the system catalog.

Migrating to a Newer Software Version
To replace an existing version of the SQL/MP software, install the newer version of the
software as described under Installing SQL/MP on page 2-2.

After you install the new version of SQL/MP software, follow these guidelines:

• Continue to run existing applications without recompilation.

• Continue to use existing local user catalogs until you are ready to start using the
new features provided with the newer version of SQL/MP. You can continue to use
your existing system catalog indefinitely, unless you plan to register newer version
objects in the system catalog.

• Continue to access all local and remote objects in your database, except for
remote objects registered in catalogs whose versions are newer than the version of
the SQL/MP software on either the local or remote node. For information about
managing a network that has multiple versions of software, catalogs, and objects,
see the SQL/MP Version Management Guide.

• Test the newly installed software before you use new features. This evaluation
might require running the new software for several days of testing or simply
running your applications under the new software for however long is appropriate.
You can also test the new software by using the sample database distributed with
your older RVU or by using your own test database.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-10

Installing SQL/MP Migrating to a Newer Software Version
• Test the features available with the newer version of the software. Create test
catalogs and objects for testing purposes, rather than altering existing objects. For
example, collations require a version 300 or newer catalog to register the collation.
Before adding a collation, create a test catalog to associate with the collation.
Similarly, do not add a column with a new data type to an existing production table,
because the table will not be accessible if you need to revert to an older software
version.

If you need to revert to the older RVU, you can do it easily at this point because the
versions of production catalogs and objects are unchanged, and there are no
incompatible TMF audit records. (Guidelines for reverting are discussed under
Reverting to an Older Software Version on page 2-15.)

• When you migrate to an RVU that supports SQL Format 2-enabled tables and the
SQL Format 2 partitions they contain, the only consideration that might affect you
is which RVU you migrate from. For more information on planning for Format 2
partitions, operational and fallback considerations, and interoperability, see
Appendix C, Format 2 Partitions.

Do not perform any of these actions until you are reasonably sure you do not want to
return to the older version of SQL/MP software:

• Create a production catalog whose version is newer than your previous version of
the SQL/MP software. A newer version catalog is created automatically when you
create a catalog on a node running the new version of the software.

• Create a production table using features that cause the version of the table to be
newer than your previous version of SQL/MP software.

• Compile a program using the newer version of the SQL/MP compiler. If you do
recompile a program and decide to return to an older version of the software, you
must recompile the program with the older version of the SQL compiler after
reverting back to the older version. If you decide to compile programs with the
newer version of the software, keep track of which programs you compile.

When you are reasonably sure you do not want to revert to the older version of the
software, perform these steps as needed, based on your use of new features available
in the newer version of the software:

1. Upgrade catalogs. After you finish testing the newer version of the SQL/MP
software, upgrade the user catalogs on your node as needed to use version 300 or
newer features.

Note. You do not need to upgrade user catalogs until you are ready to register objects or
programs with newer-version features. You can also continue to use your older-version
system catalog indefinitely unless you register newer-version user objects or programs in
the system catalog, because newer-version user catalogs can be registered in a older-
version system catalog. For example, you can register version 300 catalogs in a version 1
or version 2 system catalog. You cannot, however, register version 300 or newer objects in
a version 1 or version 2 system catalog.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-11

Installing SQL/MP C-Series to D-Series Migration Considerations
If you are migrating from version 1 to a version 300 or newer version, you can use
these version 2 features without upgrading any version 1 catalogs: parallel
execution, local autonomy, parallel index maintenance, and virtual sequential block
buffering.

You can have a combination of versions of catalogs on a node. Unless you have
an important reason for keeping this combination (such as operating in a mixed-
version network), you should eventually upgrade all the catalogs on the node to
simplify your database management efforts.

For additional information, see Upgrading Catalogs on page 2-14.

2. Recompile applications if desired. You do not need to SQL compile your
application programs unless you want to take advantage of new features or
performance enhancements.

To take advantage of new features, you might have to modify your programs. For
example, versions 325 and newer software support CASE expressions. To use
them, you need to modify source code and then host-compile and SQL compile the
modified programs by using the newer versions of the SQL/MP compilers. For
more information, see the SQL/MP Programming Manual.

To take advantage of performance enhancements, host-compile and SQL compile
existing programs to ensure that the execution plan is optimal for the new SQL/MP
software. For example, versions 310 and newer SQL compilers generate query
execution plans that provide better performance than plans generated by older-
version SQL compilers.

With the exception of a dynamic SQL program that does not use the RELEASE
option, a program written for an older version of the SQL/MP software should
compile and execute on a node that has version 310 or newer software with no
source code changes.

C-Series to D-Series Migration Considerations
If your previous installation of SQL/MP was on a node that ran a C-series RVU of the
operating system, you should be aware of differences between the C series and D-
series systems that affect the operation of SQL/MP.

The D-series features that might affect your SQL/MP applications are high and low
process identification numbers (PINs), changes to file naming rules, and subvolume
defaulting. In addition, you must understand the rules for combining C-series and
D-series object modules.

For more information about D-series features, see the D-Series System Migration
Planning Guide.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-12

Installing SQL/MP Mixed-Version Network Considerations
Mixed-Version Network Considerations
SQL/MP processes run at a high PIN by default. However, a process that must access
objects on C-series nodes must not run at a high PIN. Therefore, these SQL/MP
processes must run at low PINs if they communicate with a process on a C-series
node (or any process that cannot respond to a high-PIN process):

• FastSort (RECGEN, SORT, SORTGEN)

• SQL catalog manager (SQLCAT)

• SQL compiler (SQLCOMP)

• SQL conversational interface (SQLCI)

• SQL executor server processes (SQLESP)

• SQL utilities (SQLUTIL)

• SQLCI2

• Collation compiler (NLCPCOMP)

There are several approaches for running SQL programs at low PINs, including these:

• Setting the TACL HIGHPIN environment variable to OFF when running any SQL
program:

° Arrange to have all TACL processes inherit a HIGHPIN OFF setting, either by
specifying SET HIGHPIN OFF in the initial TACL process (before starting all
other TACL processes on the node) or by placing a SET HIGHPIN OFF
command into the $SYSTEM.SYSTEM TACLCSTM file, executed by every
TACL process during logon.

° Alternatively, specify HIGHPIN OFF as needed in TACL RUN commands or
SQLCI OBEY command files.

Remove the HIGHPIN commands when access to C-series nodes is no longer
needed.

• Setting the HIGHPIN attribute to OFF in all object files by using the BIND CHANGE
command to change the HIGHPIN attribute for SQL program files after they have
been installed. The syntax is:

BIND CHANGE HIGHPIN OFF IN $SYSTEM.SYSTEM.<filename>

where <filename> is SQLCI, SQLCI2, SQLCAT, SQLUTIL, SQLCOMP, SQLESP,
RECGEN, and NLCPCOMP.

Before making this change, note the license flag setting for each file and relicense
any licensed files after changing the HIGHPIN attribute. If you use this approach,
continue to change the HIGHPIN setting after any subsequent installation of SQL
software until access to C-series nodes is no longer needed.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-13

Installing SQL/MP Upgrading Catalogs
For parallel index creation or parallel index load operations that access base table
partitions on nodes running older versions of SQL/MP, specify the LOCALONLY option
at the start of the CREATE INDEX configuration file to force RECGEN processes to run
on the local node. Alternatively, start the CREATE INDEX operation from the node
running the older version of software.

Upgrading Catalogs
You must upgrade or create at least one user catalog on a node running the new
version of SQL/MP software before you can do any of these:

• Create an object with attributes that cause the object version to be newer than the
current version of the user catalog. For example, you cannot create an object that
refers to a version 320 feature and registers the object in a version 1 or version 2
catalog.

• Alter an object by adding attributes that cause the object version to be newer than
the current version of the user catalog. For example, you cannot add a column with
a version 310 data type to a table registered in a version 1 or version 2 catalog.

• Register programs with a program catalog version newer than the current version
of the user catalog. For example, you cannot register a program that contains a
version 320 feature in a version 1 or version 2 catalog.

To create a version 300 or newer catalog, use the CREATE CATALOG command.

To upgrade an existing user catalog to version 300 or newer, use the UPGRADE
CATALOG command. This command requires exclusive access to the catalogs being
upgraded and to the objects to be registered in the catalogs. Specifically, to use
UPGRADE CATALOG, you must be the local owner of the catalog, the local super ID,
the group manager, or the remote owner with authority to purge the catalog tables. You
must also have authority to write to the CATALOGS system catalog table.

SQL/MP automatically requests the TMF subsystem to protect the integrity of the
database during the upgrade operation. If a user-defined TMF transaction (a
transaction explicitly defined by using language statements such as BEGIN WORK and
COMMIT WORK) is not in progress when you enter the UPGRADE CATALOG
command, SQL/MP begins and ends a TMF transaction for each catalog being
upgraded.

For statements issued within a user-defined TMF transaction, SQLCI does not initiate a
system-defined TMF transaction. You should allow SQLCI to initiate TMF transactions
for DDL commands.

You can use a single UPGRADE SYSTEM CATALOG command to upgrade all the
catalogs on a node. However, doing so can take several minutes, and during this time,

Caution. If an SQL object has the UNRECLAIMED FREESPACE (F) or INCOMPLETE
SQLDDL OPERATION (D) attribute set, do not attempt to back up, move, or duplicate the
object until the attribute is reset. For more information, see UNRECLAIMED FREESPACE (F)
and INCOMPLETE SQLDDL OPERATION (D) Flags on page 7-24.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-14

Installing SQL/MP Reverting to an Older Software Version
no user or program can access any catalogs or objects on the node. For this reason,
you might want to upgrade catalogs individually.

This example upgrades three user catalogs, one catalog at a time:

>> UPGRADE CATALOG \SYS1.$VOL1.SALES TO 310;
--- SQL operation complete.
>> UPGRADE CATALOG \SYS1.$VOL1.INVENT TO 310;
--- SQL operation complete.
>> UPGRADE CATALOG \SYS1.$VOL1.PERSNL TO 310;
--- SQL operation complete.

You can continue using the existing system catalog and create versions of catalogs
that are newer than the current system catalog (but not newer than the SQL/MP
software version on the node on which the catalog resides). For example, you can
create a version 310 catalog to be registered in a version 1 or version 2 system catalog
residing on a version 310 SQL/MP node.

If you decide to register objects and programs in the system catalog, instead of in user
catalogs, you must upgrade the system catalog before registering objects or SQL
programs that have a newer version than the system catalog. To do this, use the
UPGRADE SYSTEM CATALOG command, identifying the system catalog as the one
to be upgraded.

For the syntax and other examples of UPGRADE CATALOG and UPGRADE SYSTEM
CATALOG, see the SQL/MP Reference Manual. For more information about catalog
versions, see the SQL/MP Version Management Guide.

Reverting to an Older Software Version
If you have upgraded the system catalog to a newer version and you want to revert to
an older version of SQL/MP, you must first drop all objects whose versions are newer
than the version of SQL/MP to be reinstalled. You must then downgrade the system
catalog and any user catalog with a version newer than the version of SQL/MP to
which you are reverting. After you reinstall the older version of SQL/MP software, you
must recompile newer-version programs.

Dropping Newer-Version Objects
To preserve data in tables that have a newer version than the software to which you
are reverting, you must create each of the tables again, omitting any features that
caused the table to have the newer version. For example, if tables use extended
partition arrays, re-create them with standard partition arrays. If the tables you want to
preserve are defined with new features, write a program to move the required data

Caution. Because of database administration overhead, you should not register user objects
in the system catalog. Also, the impact of upgrading a system catalog in a mixed-node
environment can make this system inaccessible to other nodes in the network.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-15

Installing SQL/MP Downgrading Catalogs
from the newer-version tables to the older-version tables or use SQLCI for this
purpose. You must perform these tasks before installing the older-version software.

After preserving any necessary data, you can drop all newer-version objects. You can
also drop any programs that must be registered in a newer-version catalog; this
includes any program with a newer-version feature, which causes the program catalog
version to adopt the newer version.

Downgrading Catalogs
If you need to access objects in a newer-version user catalog, you must downgrade
the user catalog before installing the older version of SQL/MP software.

You must always downgrade a version 300 or newer system catalog when you revert
to an older version of the software, but you do not always need to downgrade version
300 user catalogs. For example, if you are temporarily reverting to version 2 from
version 310 and do not intend to access objects registered in user catalogs, you can
leave any version 310 user catalogs and objects on the node and downgrade only the
system catalog.

If, however, you need to access data from the version 310 user catalogs on the node
where you are reinstalling an older version of SQL/MP, you must downgrade these
catalogs. If you do not downgrade the catalogs on a node in which the SQL/MP
software reverts to an older version, a fallback situation results. In this situation, the
reinstalled SQL/MP software cannot access any catalogs whose versions are newer
than the version of the software or any objects or programs registered in the catalogs.
In addition, SQL/MP software on other nodes in a network can no longer access these
catalogs and objects, regardless of the versions of the software on the remote nodes.

Downgrading User Catalogs
Before downgrading a user catalog, you must:

• Drop any protection views on the catalog tables to be downgraded.

• Drop any object whose version would be newer than the version of the catalog
after the catalog is downgraded.

Caution. If any tables have the UNRECLAIMED FREESPACE (F) or INCOMPLETE SQLDDL
OPERATION (D) attribute set, remedy the situation before downgrading the version. Otherwise,
the table might be corrupt after the downgrade is completed. For more information, see
UNRECLAIMED FREESPACE (F) and INCOMPLETE SQLDDL OPERATION (D) Flags on
page 7-24.

Note. You do not need to downgrade any version 2 user or system catalogs, because version
2 catalogs are compatible with version 1 SQL/MP software.

Caution. If you want to downgrade any catalogs, you must do so before you reinstall the older
version of the SQL/MP software, because only version 300 or newer software supports the
DOWNGRADE CATALOG and DOWNGRADE SYSTEM CATALOG commands.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-16

Installing SQL/MP Recompiling Programs
• Drop any program whose program catalog version would be newer than the
version of the catalog after the catalog is downgraded. For example, drop version
310 and newer programs before reverting to version 2.

You cannot downgrade a catalog to version 1, but version 2 catalogs are compatible
with version 1 SQL/MP software if you access only version 1 objects.

For information about catalog, object, and program versions, see the SQL/MP Version
Management Guide.

You must have exclusive access to the catalog tables. You can downgrade more than
one catalog by specifying a catalog name pattern. For a detailed description of the
DOWNGRADE CATALOG command and the requirements for using it, see the
SQL/MP Reference Manual.

Downgrading the System Catalog
Before you can downgrade the system catalog to a version older than 300, you must
drop any version 300 or newer objects registered in the system catalog. You must be
logged on with the super ID.

You cannot downgrade the system catalog to version 1, but version 2 system catalogs
are compatible with version 1 SQL/MP software.

For a description of the syntax and more examples of using the DOWNGRADE
SYSTEM CATALOG command, see the SQL/MP Reference Manual.

Recompiling Programs
If you want to use a program compiled with a version 300 or newer SQL compiler (a
program whose program format version is 300 or newer), you must recompile the
program with the older-version SQL host compiler compatible with the version of
SQL/MP you have reinstalled, and then SQL compile the program with the appropriate
SQL compiler.

Reverting to SQL/MP Version 2
To revert to version 2 of SQL/MP:

1. If you have any version 300 or newer tables you want to preserve, use the
CREATE TABLE statement to create version 2 tables to contain any version 2 data
you want to preserve, and use the LOAD utility to move the data from the version
300 tables to the version 2 tables.

2. Use the DROP statement to drop version 300 or newer tables, indexes, views, and
collations.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-17

Installing SQL/MP Reverting to an Older Version of TMF
3. Make a list of all programs whose program format version or program catalog
version is 300 or newer. You can generate a list by entering a SELECT statement
like the following for each catalog on the node:

>> SELECT PROGRAMNAME, PROGRAMFORMATVERSION,
+> PROGRAMCATALOGVERSION
+> FROM $CATVOL.SYS.PROGRAMS <--PROGRAMS table in system catalog
+> WHERE PROGRAMCATALOGVERSION >= 300
+> OR PROGRAMFORMATVERSION >= 300 ;
--- SQL operation complete.

To inquire about the version of a specific program, use the GET VERSION OF
PROGRAM statement.

4. Use the DROP PROGRAM statement (or the corresponding OSS utility for OSS
programs) to drop all programs whose program catalog version is 300 or newer.

5. Use the DOWNGRADE CATALOG command to downgrade all version 300 or
newer user catalogs to version 2:

>> DOWNGRADE CATALOG catalog-name TO 2 ;
--- SQL operation complete.

6. If the system catalog is version 300 or newer, use the DOWNGRADE SYSTEM
CATALOG command to downgrade the system catalog to version 2:

>> DOWNGRADE SYSTEM CATALOG TO 2 ;
--- SQL operation complete.

7. Reinstall version 2 of the SQL/MP software as described under Reinstalling
SQL/MP Software on page 2-10.

8. If any programs you want to use were host-compiled by a version 300 or newer
host compiler, use a version 2 host compiler to recompile the source code for these
programs.

9. If any programs you want to use have a program format version of 300 or newer
(as determined in Step 3), use a version 2 SQL compiler to recompile these
programs.

Reverting to an Older Version of TMF
When moving from version 300 or newer SQL/MP software back to an older version of
software, you must also revert back to the older version of TMF software. For more
information, see the TMF Planning and Configuration Guide.
HP NonStop SQL/MP Installation and Management Guide—523353-004
2-18

3
Understanding and Planning
Database Tables

An understanding of the types of organizations of tables and their corresponding file
structures is essential for effective use and functioning of the database.

This section presents conceptual information about tables and how to plan table
organization. Subsequent sections describe how to create tables and associated
database objects.

Understanding SQL File Structures
A relational database consists of two structural levels, the logical and the physical:

• The logical level includes the tables and views you access directly through SQL
statements. When you request an operation on the database or a display of its
contents, you work with the database at the logical level.

• The physical level underlies the logical level and is composed of physical files on
disks.

SQL tables and indexes are implemented on the physical level as Guardian files. If a
table or index is partitioned, it is implemented as multiple separate files. Table and
index files are managed by the SQL file system and are accessed implicitly through the
DP2 disk process.

The data you insert into tables and views is stored in these underlying files. Tables and
indexes are associated with their corresponding physical files through entries in the
data dictionary for your database. Views are associated with physical files through their
underlying tables.

When you create a table, you establish the characteristics of the underlying file by
specifying them as parameters in the CREATE TABLE statement. That is, you create
the file implicitly through this statement rather than directly through an explicit file-
creation statement.

The type of table created determines the type of the corresponding file:

• A key-sequenced table has a key-sequenced file structure.

• An entry-sequenced table has an entry-sequenced file structure.

• A relative file has a relative file structure.

Data-transfers to and from the files are done in terms of logical records and key fields
within those records.

Each file has a unique primary key associated with it, which contains a unique value
used to order and identify records in the file.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-1

Understanding and Planning Database Tables Primary Keys
The following text describes primary keys and then discusses the structures of the
three types of files. An understanding of these structures can help you plan for the best
use of disk storage space when sizing your database, implementing economical table
access methods, and analyzing various performance trade-offs. This understanding is
also essential for anyone using the FILCHECK or TANDUMP utility to operate on
physical file structures.

Primary Keys
All SQL/MP table organizations have a unique primary key. Key values affect the order
in which rows are stored and retrieved. The primary key also serves as the physical
primary key for the DP2 disk process.

At the physical level, a key is a field or group of fields the system can use to order
records and to identify records for processing. The primary key can be user-defined,
system-defined, or a combination of both.

User-Defined Primary Key
A user-defined primary key consists of one or more columns (fields) whose values
uniquely identify the rows of a table and determine the order in which the rows are
stored. The combined value of all primary-key columns must be unique for each row in
the table. You can define the primary key by using the PRIMARY KEY clause in the
CREATE TABLE statement.

Each column has an ordering attribute, either ASCENDING or DESCENDING, that
determines the order for storing and retrieving the rows.

For multicolumn (composite) keys, if multiple rows share the same value for the first
key column, the value in the second key column is used to determine the order for
storing or retrieving the rows. If multiple rows share the same values for the first and
second key columns, the third key column is used to determine the order, and so forth.

The length of a primary key cannot exceed 255 bytes. To calculate the length, find the
sum of the lengths in bytes of the columns that make up the key. For the length of a
varying-length column (VARCHAR, NCHAR VARYING), use the number of bytes
defined for the column only; do not include the two-byte descriptor. In a primary key for

Note. In this discussion of keys, do not confuse the physical primary key with the logical SQL
primary key. The differences are:

• The physical primary key is the key used by the DP2 disk process to access records within
the file. Within a record, this key must be unique. A key-sequenced file has only one
physical primary key.

• The primary key is the key recognized and used at the logical level by ANSI standard SQL.
This key is specified in the PRIMARY KEY clause of the CREATE TABLE statement or
partially specified in the CLUSTERING KEY clause. The value of the primary key must be
unique for each row. If you specify a PRIMARY KEY clause, the physical primary key is
also based upon this specification. But if you do not specify a PRIMARY KEY clause, the
RDBMS generates part or all the physical primary key.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-2

Understanding and Planning Database Tables Primary Keys
a table, a column cannot contain the null value; the column is implicitly defined as NOT
NULL.

User-defined primary keys facilitate generic locking as explained under Using Generic
Locks on page 14-21.

System-Defined Primary Key
A system-defined primary key consists of a column named SYSKEY, generated and
maintained internally by SQL. For each row (record), the SYSKEY column contains a
unique system-generated value. The SYSKEY value alone serves as the primary key
for a key-sequenced table when no primary key is specified by the PRIMARY KEY
clause and no clustering key is specified by the CLUSTERING KEY clause.

When a table is stored on the basis of SYSKEY values, the rows are not stored on the
disk in an order that is particularly useful, except for queries that scan rows in the order
of their entry. Consequently, queries often result in scans of the entire table.
Alternatively, when an index is used, queries that access a range of rows are not
processed efficiently because they require multiple random accesses to the table. To
improve efficiency in the absence of a primary key, you can physically order and
access the table by using a clustering key (described in Clustering Key Combined With
System-Defined Key).

The SYSKEY column has the data type LARGEINT SIGNED. The value is a unique
eight-byte number generated by the system on the basis of timestamps. SYSKEY is
physically created as the first column of the table. The description of the table in the
catalog reflects the presence of the SYSKEY column.

Inserts into the file cannot specify a value for SYSKEY, and SYSKEY values cannot be
updated.

A key-sequenced table with a system-defined primary key cannot have partitions.

Clustering Key Combined With System-Defined Key
A combination key consists of a user-defined clustering key, with columns specified in
the CLUSTERING KEY clause of the CREATE TABLE statement and a system-defined
SYSKEY column. When you use the CLUSTERING KEY clause, SQL/MP appends the
ascending system-defined SYSKEY column to the last column of the potentially
nonunique clustering key to make a unique primary key. The clustering key is always a
subset of the primary key.

Although SYSKEY is appended to the logical clustering key, the SYSKEY column is
physically created as the first column of the table. The SYSKEY column has the data
type LARGEINT.

Clustering keys apply to key-sequenced tables only.

A clustering key is useful for cases in which a table does not naturally contain a unique
SQL primary key, but ordering and scanning by SYSKEY alone or access through an
index is not desirable. Within the file, records can then be physically ordered by the
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-3

Understanding and Planning Database Tables Primary Keys
nonunique clustering key. Using these nonunique key values, a user can scan the file
more efficiently and can also create partitions.

The combined length of the clustering key, not including the appended SYSKEY
column, cannot exceed 247 bytes. Columns in the clustering key definition cannot be
updated.

Clustering keys have the same performance implications as primary keys, as
described next under Key Levels.

Key Levels
SQL/MP keys (including index keys) can be classified in three levels. The three levels
are associated with three different levels of performance related to the overhead
associated with the use of the keys, as follows:

• Level 1 keys have the best performance because these keys have the least
overhead. Level 1 keys have these column characteristics:

° Columns that are contiguous, have ascending values belonging to the ASCII
collating sequence, and are stored at fixed offsets

° Combined columns defined with numeric or character data types

° Columns with an UNSIGNED numeric data type (DECIMAL, NUMERIC,
SMALLINT, INTEGER, PIC 9 COMPUTATIONAL, PIC 9 DISPLAY, DATE,
TIME, or DATETIME)

° Columns defined as having an ASCII data type (CHARACTER, PIC X,
DECIMAL, or PIC 9 DISPLAY)

For example, keys defined with these columns are level 1 (ASCENDING is the
default):

KEY-1 NUMERIC (4.2) UNSIGNED, SMALLINT UNSIGNED
KEY-2 CHARACTER (8), DECIMAL(8) UNSIGNED
KEY-3 SMALLINT UNSIGNED, CHARACTER (24)
KEY-4 CHARACTER (24), DATETIME

• Level 2 keys have performance comparable to those of level 1, but with a small
amount of additional overhead. Level 2 keys have these column characteristics:

° Columns that are contiguous, either all ascending or all descending, and with a
fixed offset

° Columns with a SIGNED numeric data type (DECIMAL, NUMERIC, INTEGER,
SMALLINT, LARGEINT, PIC S9 COMPUTATIONAL, PIC S9 DISPLAY,
DATETIME, INTERVAL, or FLOAT)

° Contiguous columns that are defined as numeric data but with mixed signed
and unsigned columns

° Combined columns that include at most one VARCHAR column, which cannot
be the first column of the key
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-4

Understanding and Planning Database Tables Primary Keys
For example, keys defined with these columns are level 2 (SIGNED is the default):

KEY-1 INTEGER
KEY-2 CHARACTER (30) DESCENDING
KEY-3 CHARACTER(2), NUMERIC(8), DECIMAL(4), VARCHAR(20)
KEY-4 INTEGER, DATETIME, INTERVAL

• Level 3 keys include other possible keys not included in levels 1 or 2. Level 3 keys
have the poorest performance because the overhead for handling these keys by
the primary disk process is approximately 10 to 20 percent greater than that of
level 2 keys. (Note, however, that overall transaction overhead, or response time,
does not increase by 10 to 20 percent.) Level 3 keys have these column
characteristics:

° Noncontiguous columns

° A leading VARCHAR column, which causes a nonfixed initial offset

° Multiple VARCHAR columns

° Columns with ASCII data but with mixed ascending and descending orders

° Columns that use collations

For example, keys defined with these columns are level 3:

KEY-1 DECIMAL (8) ASCENDING, DECIMAL (8) DESCENDING
KEY-2 VARCHAR (20)
KEY-3 Column A, D, F <--Indicates that the columns
 are not contiguous in the table

The performance of level 3 keys is the poorest because the overhead for handling
these keys by the primary disk process is approximately 10 to 20 percent greater
than that of level 2 keys. (Note that overall transaction overhead, or response time,
does not increase by 10 to 20 percent.)

In a key-sequenced table, the data types of the columns in the user-defined primary
key or clustering key (a subset of the primary key; part of a combination key) define the
key level. Different key levels require increasing system overhead for processing;
therefore, the keys affect performance.

The key levels and performance implications also apply to indexes, and indexes can
be created on tables of all three organizations. After being created, the index is like a

Note. As an exception to the preceding key-level guidelines, a key column that can be
defined with either numeric or character data type should typically be defined as numeric.
This approach is especially important if the column is used in a predicate. The numeric
data type helps achieve optimum performance, because SQL/MP computes the selectivity
for numeric columns more efficiently than it does for character columns.

As an example, suppose that you want to use a key column that contains a telephone
number. Because this column is not used in calculations, you can create it as either a
numeric or character column; for best performance, you should choose a numeric column.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-5

Understanding and Planning Database Tables Key-Sequenced File Structure
key-sequenced table in which the index columns make up the primary key. By using
index keys to support a unique index, you can improve performance for queries.

For key level consideration, indexes always have contiguous columns because the
order of the columns in the CREATE INDEX statement defining the index applies
rather than the position of the columns in the underlying table. For indexes, the
columns of the primary key or clustering key of the underlying table are included in the
index key. For information about index keys, see the SQL/MP Reference Manual.

Key-Sequenced File Structure
Key-sequenced files store variable-length rows (records) that contain a primary key.
New rows are stored in sequence by primary key value. A user performing update
operations can update or delete rows and can lengthen or shorten values in a varying-
length column (VARCHAR, NCHAR VARYING), provided the column is not part of a
primary key or clustering key.

Rows are stored in a key-sequenced file logically in ascending or descending order,
according to their primary-key values in conjunction with the ASCENDING or
DESCENDING specification in the CREATE TABLE statement.

Defining a Primary Key
Each key-sequenced file can have only one primary key: a user-defined primary key, a
system-generated SYSKEY column, or a user-defined clustering key concatenated
with a system-generated SYSKEY column.

You typically create key-sequenced tables with user-defined keys, rather than using
the system-defined SYSKEY. To specify a unique user-defined primary key, indicate
particular columns with the PRIMARY KEY clause. Alternatively, you can specify a
nonunique clustering key with the CLUSTERING KEY clause. With a primary or
clustering key, you can achieve a naturally sorted order for the table that
accommodates the most commonly used path to the data.

Before deciding which type of primary key to use, carefully consider the type and
usefulness of the naturally sorted order of the base table, including points about key
types:

• At most, only one primary key or one clustering key can be defined for a particular
table; a table cannot have both a primary key and a clustering key. The key can
consist of more than one column, not necessarily adjacent to each other.

• A table with a primary key or a clustering key can be partitioned.

• The columns used as a primary key or clustering key cannot be defined to allow
null values. If you do not specify NOT NULL for a column in the PRIMARY KEY or
CLUSTERING KEY definition, the RDBMS defines the column to exclude null
values.

• A value cannot be supplied for the SYSKEY column in an INSERT statement. This
rule applies to key-sequenced tables using either a SYSKEY column by itself or
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-6

Understanding and Planning Database Tables Key-Sequenced File Structure
SYSKEY appended to a clustering key. This rule also applies to entry-sequenced
tables but not to relative tables.

• If you create a table with a SYSKEY column, consistency problems can result if the
values of SYSKEY are used in a column of a user-defined table as a foreign key in
that table. If the original table is reloaded, the SYSKEY values change because the
column is system defined. In this event, any references to these keys in other
tables will no longer point to the correct rows. When referring to keys in other
tables, or for any cases in which a unique key is necessary, always use a user-
defined primary key to avoid dependence upon the value of SYSKEY.

• SQL/MP primary keys, clustering keys, and alternate keys (indexes) can be
composed of one or more columns of a base table. Each column of a key can be in
either ascending or descending order and can be of a different data type from the
other key columns. Also, the columns need not be contiguous.

• A user-defined primary key or clustering key facilitates generic locking. Generic
locking enables an application to control the granularity of locks. If you define an
appropriate primary key, your applications can use generic locking to improve
performance.

When defining columns for a primary key, determine whether a specific set of columns
is the most appropriate based on actual use of the table. If a column is used as the
main access path to a table, consider defining it as the primary key or adding it to the
existing primary key as the leftmost column. To determine the main access path,
review transactions that use different access paths to the table.

For example, if an employee table has employee number as its primary key but most
accesses are by employee name, consider defining employee name as the primary
key. The key must include enough information to make it unique (perhaps by including
employee number as the second part of the key). A unique alternate index can help
enforce integrity in this instance.

If you change a column to be the primary key, you can change the former primary key
to an alternate unique index. If the new primary key column is not unique, add a
second column that makes it unique or define it as a clustering key that will have a
system-defined unique column associated with it.

Types of Access
You can access key-sequenced files either sequentially or randomly. Sequential
access is preferable, for example, when generating a report of the currently available
quantity of all parts in an inventory file. Random access is preferable when you want to
identify the vendor of a particular part.

When SQL reads a key-sequenced file by primary key, each read operation retrieves
the record containing the next sequentially higher primary-key value. Similarly, when
SQL reads by a clustering key, each operation retrieves the record containing the next
sequentially higher value in the specified clustering-key field. When SQL reads the file
through an index, each operation randomly accesses the data file.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-7

Understanding and Planning Database Tables Key-Sequenced File Structure
If you do not use an index, access occurs by primary or clustering key. Access can
begin with the first record in the file or can be requested for only a specified range of
records in the file.

Key-Sequenced Tree Structure
Key-sequenced files are physically organized as one or more bit-map blocks and a
B-tree structure of index blocks and data blocks. Bit-map blocks within a structured file
organize the file’s free space.

Figure 3-1 on page 3-8 illustrates a sample tree structure for a key-sequenced file.

Figure 3-1. Key-Sequenced B-Tree Structure

Saved
for future
insertions

First (Highest)-Level Index Block

Second-Level Index Block

Data Blocks

Second-Level Index Block

MOLLY

MOLLY NATE

Data Record

Primary Key

Legend

1

2

VST002.vsd

Variable-length
physical records

OLGA RUSTY Empty

STEVE ULENA Empty

 Empty

AMY BETTY Empty

CAROL CHRIS Empty

LOUISE MILLY Empty

OLGA STEVE

0 CAROL LOUISE

0 MOLLY VINCE

NATE is alphabetically greater than MOLLY but less than VINCE.
Go to the second-level index block that begins with MOLLY.

1

NATE is alphabetically greater than MOLLY but less than OLGA.
Go to the data block that begins with MOLLY.

2

HP NonStop SQL/MP Installation and Management Guide—523353-004
3-8

Understanding and Planning Database Tables Entry-Sequenced File Structure
Each data block contains a header, plus one or more data records, depending on the
record size and data-block size. For each data block, an entry in an index block
contains the value of the key field for the first record in the data block and the address
of that data block.

The position of a new record inserted into a key-sequenced file is determined by the
value of its primary-key field. If the data block is determined to be full when SQL/MP
attempts to insert a new record into it, a block split occurs: the disk process allocates a
new data block, moves part of the data from the old block into the new block if not at
the end of the file, and gives the index block a pointer to the new data block.

Key-sequenced files are also used to store indexes. When an index block fills up, it is
split in a similar manner: a new index block is allocated, and some of the pointers are
moved from the old index block to the new one. The first time a split occurs in a file, the
disk process must generate a new level of indexes. The disk process does this by
allocating a higher-level index block containing the low key and a pointer to the two or
more lower-level index blocks, which in turn point to many data blocks. The disk
process must do this again each time the highest-level block is split.

The disk process can perform a three-way block split, when appropriate, creating two
new blocks and distributing the original block’s data and pointers plus the new record
or pointer among all three.

In a key-sequenced file, data blocks are chained together with forward and backward
pointers stored in the header of each block. Data records within each block are stored
in key-value sequence. This storage arrangement enhances the sequential
performance for tables stored in key-sequenced files. Index blocks, however, are not
chained.

Uses of Key-Sequenced Tables
A good example of the use of key-sequenced files in an application environment is an
inventory file in which each record describes a part. The primary key field for that file
would probably be the part number, and the file would be ordered by part number. The
part numbers should be readily distinguishable from one another. Other fields in the
record would contain such information as vendor name, quantity on hand, and so forth,
and one or more of these fields could be used as index keys.

Another example of key-sequenced file use is the storage of indexes. Each index is
stored in a separate SQL index file and is named after the file. An index file has a
primary key that includes the indexed columns and, for nonunique indexes, the
columns of the primary key of the table being referenced.

Entry-Sequenced File Structure
Entry-sequenced files are designed for sequential access. They consist of variable-
length records. New records are always appended to the end of the file; as a result, the
records in the file are arranged physically in the order in which they were added to the
file. Users can update existing records but cannot delete them. Update operations,
however, cannot increase or decrease the lengths of existing records.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-9

Understanding and Planning Database Tables Relative File Structure
Figure 3-2 on page 3-10 illustrates the structure of an entry-sequenced file.

The primary key of an entry-sequenced file is a four-byte record address external to
the data record and consisting of a block number and a record number within the
block. This address is typically used and manipulated internally by the file system, and
there is usually no reason for you to know its value. Programs can, however, obtain the
address of the record just read or written by calling the
FILE_GETINFO[LIST][BYNAME]_ file-system procedure (for a D-series version of the
Guardian operating system), or the FILEINFO or FILERECINFO file-system procedure
(for a C-series version of the Guardian operating system).

After creating the file, you can perform four types of operations on the file:

• Insert new records at the end of the file

• Retrieve records from the file

• Specify an alternate access path through an index and then retrieve records that
contain the key values specified by the index

• Update records (rows) of the file, without increasing the record length

Relative File Structure
Relative files consist of fixed-length physical records accessed by relative record
number. A record number is an ordinal value and corresponds directly to the record’s

Figure 3-2. Entry-Sequenced File Structure

DataData DataDataData Unused

DataData DataData Unused

DataData DataDataData Unused

Variable-Length
Physical Records

VST003.vsd

1st
Record

2nd
Record

3rd
Record

4th
Record

5th
Record

6th
Record

7th
Record

8th
Record

9th
Record

10th
Record

11th
Record

12th
Record

13th
Record

14th
Record

Data
Blocks
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-10

Understanding and Planning Database Tables Relative File Structure
position in the file. The first record is identified by record number zero. Succeeding
records are identified by ascending record numbers in increments of one.

The value of the primary key is either a user-specified or system-generated relative
record number. Each new row is stored at the relative record number specified by the
primary key.

Figure 3-3 illustrates the structure of a relative file.

Each physical record position in a relative file occupies a fixed amount of space, and
each position can contain one variable-length data record (logical record). A logical
record can vary in size from zero, an empty record, to the maximum record size
specified when the file was created.

You can change a record’s logical length after it has been written to the file, but the
lengths of all logical records in the file must always be less than or equal to the
constant size of the physical record. Each logical record has a length attribute that can
be returned when a record is read. Logical records in a relative file can be logically
deleted, resulting in logical records of length zero.

After you have created the file and written a data record to it, all physical records
preceding that record are also created and actually occupy space on the disk, although
they contain no data. For example, if you create a relative file and then write a data
record to record number 135, records 0 through 134 are also physically created on the
disk at that time, although they have a logical record length of zero. Note that this

Figure 3-3. Relative File Structure

Data
Blocks

Record 0 Record 1 Record 2 Record 3

Data DataDataEmpty

Empty

VST004.vsd

Each record has a length
attribute. Therefore, the data

portion (logical record) can vary
within the physical record

Fixed-length physical records.

Each record position occupies
a fixed amount of space even
if the record contains no data.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-11

Understanding and Planning Database Tables Relative File Structure
characteristic represents a factor that could influence both space and time
performance of a relative file.

A user performing update operations on a table stored in a relative file can update or
delete rows and can lengthen or shorten values in varying-length columns up to the
actual defined record length.

Positioning in Relative Files
You can specify the exact position where a new row (record) is to be inserted into a
relative file by using the system-key parameter in the INSERT statement. The
system software accesses this position through a record number. Alternatively, you can
specify one of these options:

• Insert records into any available position (ANYWHERE)

• Append records to the end of a file (APPEND)

For example, in a relative file in which only record number 10 contains data, an
application can insert a new record into any zero-length record (such as record number
5). If the application indicates that any available position is permitted, the record is
written to an empty location based on last file access point.

If you use the ANYWHERE option for a partitioned file, SQL/MP sets the initial “insert
anywhere” partition to partition 0 when the file is opened. If an insert to that partition
fails, SQL searches forward sequentially through partitions until it finds an empty
position for the record. It then sets the “insert anywhere” partition to partition 0 and
uses that partition for subsequent INSERT ANYWHERE operations. When that
partition is full, SQL continues to search forward sequentially until an empty position is
found. When the last partition in the file is determined to be full, SQL sets the “insert
anywhere” partition back to partition 0. When all partitions are full, SQL returns a file
full error.

Uses of Relative Files
Relative files are best suited for applications in which random access to fixed-length
records is required and in which the record number has some meaningful relationship
to a particular piece of data within each logical record. An inventory file, for example,
could be a relative file with the part number serving as the record number. Such use,
however, would probably waste disk space, because part-numbering schemes often
leave large gaps in the overall number sequence; as a result, many records can be
allocated but not used.

An invoice file with the invoice number serving as the record number might be a better
candidate for the relative file type because there are typically no large gaps in that type
of numbering scheme. If your invoice numbers begin at some large number, such as
10,000, you probably should use an address conversion algorithm to generate a record
number sequence that begins at zero and then include the actual invoice number as a
data field within the record.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-12

Understanding and Planning Database Tables Determining a Database Layout
Determining a Database Layout
In your database scheme, users and applications can access the database with these:

• Base tables only

• Views only

• A combination of base tables and views

In addition, indexes can be an efficient underlying mechanism for data access.

Using Base Tables
You can use base tables to externalize all the data to the user. Using base tables is the
most direct method because views, constraints, and indexes ultimately depend on their
underlying tables.

Advantages to using only base tables as the external database scheme include these:

• Security schemes and access control are simplified.

• All other SQL objects (views, indexes, constraints, and programs) are directly or
indirectly dependent on the base tables.

• Recovery and management methods are simplified.

Disadvantages to using only base tables as the external database scheme include
these:

• A user who has read access to a table can read any data in that table. Column
masking can be done only at the application level because SQLCI queries are not
restricted in reading data.

• Alterations to tables generally have a greater impact on application code that uses
the tables directly. For example, an application should not use SELECT * to
retrieve values from a table, because adding a column to the table would mean
that the application must change.

Using Views
A view is a logical table derived from one or more base tables. A view can include a
projection of columns and a selection of rows from the table or tables. You can project
columns and select rows for a view directly from the base tables or indirectly through
other views. You can create more than one view on a table or combination of tables.

You can use views to externalize some or all the data to the user.

A view can have the same structure as an underlying base table, or the view can be
different. Views do not store data physically on the disk.

In general, views have these advantages and uses:
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-13

Understanding and Planning Database Tables Using Views
• Reducing the overhead of returning unnecessary rows or columns, depending on
the selection criteria

• Allowing the apparent structure of retrieved data to be different from the actual
stored data

• Giving individual windows on the data to many users

• Allowing logical renaming of columns

• Redefining headings for columns

• Redefining help text for columns

• Presenting only the columns and rows a user must work with, instead of all the
columns and rows in the underlying table or tables

SQL/MP has two types of views: protection views and shorthand views.

Protection Views
A protection view is derived from a single table by taking a projection of the columns of
the table or a selection of the rows of the table, or both, and defining the view with the
PROTECTION attribute. Users can change the data in the underlying table through a
protection view if the view is updatable.

A protection view is updatable if the view includes all user-defined primary-key
columns of the underlying table, specified in a PRIMARY or CLUSTERING KEY
clause, and all columns are defined with NO DEFAULT. A protection view can be
secured for read, write, execute, and purge access.

Protection views provide several features that ensure the consistency of the data:

• Protection against inserting rows that omit values for required columns

Rows of a protection view must include values for all the columns in the underlying
table that are defined with the NO DEFAULT option. If you violate this condition, an
SQL warning (4056) is issued when the view is created, and you cannot insert
rows into the view.

• Protection against unauthorized access to the data

Only the local owner of a table or remote owner with authority to purge the table
can create a protection view on the table. Only the owner of the underlying table
can own the view.

Note. A view does not insulate the programs that use it from being invalidated because of
changes to the base table definition. Also, changes that do not directly affect the view require
that programs be explicitly SQL compiled to be revalidated. The requirement for explicit
compilation is the same for the programs used by the table directly.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-14

Understanding and Planning Database Tables Using Views
• Limitations on access to the data

The SECURE clause can assign a security string to a protection view to limit
access to those users who have authority to read, write to, and purge the view.

• Protection against inserting or updating rows outside the definition of the view

A protection view defined with the WITH CHECK option specifies that only rows
that satisfy the view’s definition can be inserted by users. Omitting this option
allows rows to be inserted without satisfying the view’s definition.

Uses for protection views include:

° Providing validity checks on the underlying table for inserts and updates

° Providing security restrictions so that only certain information can be presented
to a user by masking rows and columns of the underlying table from displays or
updating

° Masking logically deleted and added columns of the underlying table

Shorthand Views
A shorthand view is derived from one or more tables or other views and defined
without the FOR PROTECTION option of the CREATE TABLE statement. A shorthand
view can be read but not updated; it can be secured only for purge authority. Any user
who has authority to read all tables underlying the view has authority to read the view.

One use for shorthand views is to provide security restrictions so that only certain
information can be presented to the user, for display only, by specifying a set of
columns and restricting rows to a given set of criteria.

When considering shorthand views for securing underlying tables from access by
users of shorthand views, consider these:

• Shorthand views do not limit a user’s access for reading an underlying table if the
user can find the table. The security of a shorthand view depends on the
underlying table. If the user is authorized to read the view, the user is authorized to
read the underlying table.

• Shorthand views are difficult to secure because only the purge attribute of the
security string has meaning. The other security attributes of a shorthand view are
the same as for the underlying table or tables.

• A shorthand view limits a user’s access to data if the user knows only about the
view and not about the underlying table or tables. You can try to prevent users from
reading a table by not making the name of the table available; however, a
knowledgeable user could query the catalog to determine the name of the
underlying table if the user has the authority to read the catalog.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-15

Understanding and Planning Database Tables Determining When to Use Indexes
Using Only Views to Externalize Data
Experienced database administrators have observed that having applications use only
views as the external interface for the database scheme has certain advantages for
both programs and ad hoc queries.

Advantages to using only views as the external database scheme include:

• The physical database structure of the base tables is not externalized to
programmers or other users.

• The database file layout can be normalized independent of a program or of a
user’s interpretation.

• New base tables and views can be easily created and integrated with the existing
scheme.

• Ad hoc queries are limited to the data returned by the views. Allowing users to use
only views can prevent them from accessing sensitive data.

• Protection views provide the same performance as the base tables.

• Protection views can help provide data integrity.

Disadvantages to using only views as the external database scheme include:

• Backing up views for recovery involves a slightly more complex recovery strategy
to ensure that you save all the view definitions. Views, however, are easily re-
created because they contain no data.

• Managing the database is more difficult because of the greater number of objects.

To use only views, you should create the views as:

• For each base table, create a read-only protection view that includes all columns
and rows of the table.

• For each write operation on a base table or tables, create a protection view.

• Create shorthand views based on the protection views instead of on base tables.
These shorthand views can be used only for queries.

Determining When to Use Indexes
Indexes are usually used to improve performance. An index is an alternate access path
to a table, which differs from the inherent access path (primary key) or clustering key
defined for the table at creation. Indexes provide alternate-key sequences for files of
any structure: key-sequenced, relative, or entry-sequenced. In general, an index
improves access speed when the data is requested in the order of the index key.

When compiling a statement, SQL/MP selects the query execution plan for a statement
by choosing the best access path to the data. If an index exists, SQL evaluates using
the index. Indexes give the optimizer more possible access options.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-16

Understanding and Planning Database Tables Determining When to Use Indexes
Each index is assigned a name and is physically stored in a separate key-sequenced
file that possesses the same file name as the index. Index files are not tables, and they
cannot be queried directly through SQL; they are only a tool for providing faster access
to tables.

Performance Benefits of Indexes
Indexes can improve performance by eliminating the need for the disk process to
access the underlying table. If the query can be satisfied by the columns contained in
the index and the access returns unique rows, the underlying table will not be
accessed. By using only the index, you reduce I/O to the table.

For example, consider this query in which ATABLE has a unique index named
AINDEX, which contains columns A and B, in that order, from ATABLE:

SELECT A,B FROM ATABLE
WHERE A > 100
ORDER BY A,B;

The query can be satisfied by accessing only AINDEX, which contains all the columns
requested. This type of index-only retrieval can be effective on both unique and
nonunique indexes.

Another use of an index is to eliminate a run time sort of data columns by providing an
access path to the data in the order of the desired selection.

A third use of an index is to avoid a full table scan. Consider this query:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVNTRY
WHERE RETAIL_PRICE = 100

Without an index on RETAIL_PRICE, SQL must scan the table and evaluate the
following predicate against each of the rows in the table; an index on RETAIL_PRICE
would improve query performance dramatically.

An index on RETAIL_PRICE might not help this query that contains an inequality
predicate, however, because ITEM_NAME is not part of the index:

SELECT ITEM_NAME, RETAIL_PRICE
FROM INVNTRY
WHERE RETAIL_PRICE > 100

For every index row that satisfies the predicate, an I/O operation (a request from the
file system to the disk process) must be incurred to retrieve the column ITEM_NAME
from the base table.

If the query selects only columns included in the index, the index on RETAIL_PRICE
can help performance. Including ITEM_NAME in the index could cause index-only
access, which would improve the performance of this query.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-17

Understanding and Planning Database Tables Determining When to Use Indexes
Evaluating the Benefit of a New Index
Creating alternate indexes can help the performance of some, but not all, queries. In
some applications, determining when an index could be efficient might be easier than
in others. Examine the WHERE clauses and ORDER BY clauses of the SELECT
statements in your application. You should consider creating indexes on only the most
frequently used columns.

In general, indexes are an efficient way to access data if the following are true:

• The number of rows retrieved is small.

• The result is presented in a certain order or grouped according to certain columns,
such as queries that use a DISTINCT, GROUP BY, ORDER BY, or UNION clause,
which can cause a sort operation if indexes are not available.

• An application has many queries that refer to a column in a table.

• All the necessary information can be obtained from the index (index-only access).

• The column is an argument of the MIN or MAX function.

Columns used as selection criteria, but that are also frequently updated, might not
improve overall performance as an index. When a column that is also an index column
is updated, both the table and index require updating. The system automatically
updates the index when it updates the table. Updating the index slightly degrades
performance for the update operation. The index, however, might improve performance
for the selection operation.

The use of an alternate index does not ensure that the optimizer will choose the index
as the access path. Index use depends highly on selectivity, described in the SQL/MP
Query Guide. In general, these guidelines apply:

• If the query can be satisfied with an index-only access, the optimizer uses the
index.

• For base-table access through an index, the optimizer performs a random access
read against the base table. If index selectivity becomes too high, the optimizer
scans the base table instead of using the index.

You can use the EXPLAIN facility (described in the SQL Query Guide) to determine if
the extra index will be used by SQL for a particular query. Furthermore, each additional
index adds overhead during updates. Queries that update index columns incur the
overhead of having one more index to update.

Note. After you create an index for a table, run UPDATE STATISTICS. Otherwise, SQL returns
a warning for subsequent operations that access that table.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-18

Understanding and Planning Database Tables Determining When to Use Indexes
Defining an Index
When you define an index, consider these guidelines:

• The maximum length for the rows of a nonunique index is 253 bytes. The row
length includes the sum of the lengths of the columns declared for the index plus
the sum of the lengths of the columns of the primary key of the underlying table.

• The maximum length for the rows of a unique index is 508 bytes. The rows can
include 253 bytes for the KEYTAG column and indexed columns and 255 bytes for
the primary key of the underlying table.

• For varying-length columns (VARCHAR, NCHAR VARYING), the length referred to
in these limits is the defined column length, not the stored length. The stored
length includes two additional bytes in which the RDBMS records the data length
of the item. For example, if the index includes VARCHAR columns, the actual
stored record length would be two bytes greater for each VARCHAR column than
the defined column length.

• If there are ordering requirements, consider defining the sequence of columns so
that it meets those requirements. Otherwise, a sort will be necessary to fulfill the
ordering requirements.

• If an index is unique, define it as unique. SQL can access the index more efficiently
if the index is unique and specify equality predicates on all index columns.

• In general, do not explicitly include primary key columns in an alternate index.
These columns are already stored at the end of the index. However, if primary key
columns are used for positioning or in an ORDER BY clause, consider including
those columns as part of the alternate index. This approach might avoid a sort
operation.

• If you frequently access a set of columns that is almost contained within your
index, consider adding the remaining columns to the alternate index to create
index-only access for such queries. This approach increases storage requirements
and update processing of those columns, so you should evaluate these trade-offs.

• If you access a set of information—the same values in several rows, such as all
names equal to Smith—consider using primary-key access for that data instead of
alternate index access.

Defining the Key for an Index
The primary key for an index file includes these columns:

• KEYTAG—a unique identifier for an index on a base table. KEYTAG is a two-byte
column that can contain either two characters or data of type SMALLINT
UNSIGNED with values from 1 through 65,535. All rows of a given index have the
same KEYTAG value. The KEYTAG values can either be user specified or system
generated, but each value must be unique among the set of KEYTAGS defined on
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-19

Understanding and Planning Database Tables Determining When to Use Indexes
the table. If SQL generates KEYTAG values, it sequentially numbers all indexes on
a table, beginning with 1. KEYTAG 0 is the primary key.

• Indexed columns—the columns located in the column list in the CREATE INDEX
statement.

• For nonunique indexes—columns of the primary key of the underlying table. These
columns are required to identify rows uniquely in the index. The primary key of a
nonunique index automatically includes the columns of the primary key of the
underlying table to associate the indexed columns with the rows of the table. In a
unique index, the columns of the primary key of the underlying table are not
logically included in the primary key of the index, but are physically included in the
index file.

The primary key of an index differs from the primary key of a table because primary
key columns of an index can contain null values. In calculating the length of an index
key, you must include the null indicator (two bytes) in the length for each column that
allows null values.

Creating Indexes for Specific Situations
These subsections describe the use of indexes for specific situations.

Creating an Index for Frequently Used Columns

If an application has many queries that refer to a column in a table, an index on that
column might improve the performance of some of the queries. For example, consider
this query:

SELECT QTY_ORDERED, RETAIL_PRICE FROM INVNTRY
 WHERE RETAIL_PRICE = 100 ;

If there is no index on RETAIL_PRICE, SQL must scan the table and evaluate the
predicate (RETAIL_PRICE = 100) against each of the rows in the table.

An index on both columns would enable an index-only access; that is, SQL could
retrieve all required data from the index and not have to read the base table. Consider
this query, for example:

CREATE INDEX RPRICE
 ON INVNTRY (RETAIL_PRICE, QTY_ORDERED) ;

Note. If a column such as QTY_ORDERED is frequently updated, an index on the column
incurs the index maintenance cost resulting from several insert and delete operations. This
approach might reduce the benefit obtained from having the index defined on the table.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-20

Understanding and Planning Database Tables Determining When to Use Indexes
For another example, suppose that applications frequently access the EMPLOYEE
table by employee name (and the primary key is EMPNUM). You can speed the
execution of these queries by creating an index of employee names based on the
LAST_NAME and FIRST_NAME columns, as shown in this example:

CREATE INDEX XEMPNAME
 ON EMPLOYEE (LAST_NAME, FIRST_NAME) ;

Avoiding Sort Operations

Indexes can help the performance of queries that might require a sort operation, such
as queries that contain one or more of these keywords:

DISTINCT

GROUP BY

ORDER BY

Consider this query:

SELECT * FROM INVNTRY
 ORDER BY QTY_ORDERED, RETAIL_PRICE ;

If the INVNTRY table is large, the cost of sorting the table might be very high. An index
on the columns QTY_ORDERED and RETAIL_PRICE, defined as follows, might mean
that no sort is required to satisfy the ORDER BY clause:

CREATE INDEX RPRICE
 ON INVNTRY (QTY_ORDERED, RETAIL_PRICE) ;

A large cache size would also help ensure the efficiency of such a query.

To avoid a sort, define an index that has the same key columns as the sort key
columns; the sequence of these columns in the ORDER BY clause should then match
the sequence of columns in the index. Ordering requirements should be explicitly
stated, however.

Do not assume that rows will be returned in a specific order because of the primary-
key sequence. Selectivity considerations might cause the optimizer to choose an
alternate index, and the rows might not be in the desired primary-key sequence. For
more information, see the SQL/MP Query Guide.

If the ORDER BY clause is specified for a nonkey column, consider adding the column
to the index, right after the matching index columns. Subsequent ORDER BY
operations would then refer to all preceding matching columns plus these ordering
columns. If the order of key or index columns changes in the database, notify users
and programmers so that they can change ORDER BY clauses to match the new
sequence.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-21

Understanding and Planning Database Tables Determining When to Use Indexes
Creating Indexes for MIN and MAX Functions

Indexes can also improve the processing of the MIN and MAX functions. For example,
consider these two queries.

Suppose that an index exists on the RETAIL_PRICE column. The same index can be
used to read both the MIN and the MAX example:

SELECT MIN(RETAIL_PRICE) FROM INVNTRY ;
SELECT MAX(RETAIL_PRICE) FROM INVNTRY ;

The first query can be evaluated by reading a single row from the index (specifying a
forward read) to satisfy MIN (RETAIL_PRICE). The second query can be evaluated by
reading a single row from the index (specifying a backward read) to satisfy MAX
(RETAIL_PRICE).

Creating Indexes to Improve OR Operations

Indexes help improve the performance of the OR operator if the predicates involve
reference index columns.

The term “key prefix” refers to a set of contiguous key columns taken from the leftmost
key column onwards. For example, if an index I contains 3 key columns (A, B, C), then
there are three key prefixes: A, AB, and ABC. The prefix ABC corresponds to the full
key, the other prefixes form a partial key.

In this example, COL1 and COL2 are key prefixes from two different indexes. SQL
uses the indexes to retrieve all the rows that satisfy the predicate COL2 = 20 and do
not have COL1 = 10:

SELECT * FROM T
 WHERE COL1 = 10 OR COL2 = 20 ;

Evaluating the query by using the indexes is much more efficient than scanning the
entire table.

Note. If you specify both the MIN and MAX functions in a single query, a scan of the index is
necessary.
HP NonStop SQL/MP Installation and Management Guide—523353-004
3-22

4
Planning Database Security and
Recovery

Database security and recovery are two important topics to consider before creating a
database:

• Planning for security and implementing an authorization scheme is the primary
protection against unauthorized user intervention. Security, however, cannot
eliminate errors by authorized users.

• Planning for recovery is essential for protecting your database. Your recovery plan
should include protection against disk failures, software failures, application errors,
other equipment failures, catastrophic disasters, and human errors of all types.

HP NonStop software provides several online recovery mechanisms, including:

• Mirrored disk volumes are a primary protection against disk failures. These
volumes also provide the ability to repair and maintain disk volumes online, without
interrupting application processing.

• The TMF subsystem provides the best online protection against application or
equipment failures. When used correctly, the TMF subsystem protects the
database from program failures that would leave the database inconsistent
because of incomplete transactions.

• The use of backup tapes of the data files can provide a way of protecting data in an
offline mode. Tapes can be physically removed from the site and saved for
possible disaster recovery.

• The Remote Duplicate Database Facility (RDF) maintains replicated databases at
a remote site that can be used for contingency planning. As end users modify the
local database, RDF replicates those changes in the remote database, keeping it
continuously up to date. For more information about managing a replicated
SQL/MP database with RDF, see the RDF/IMP and IMPX System Management
Manual.

NonStop fault-tolerant hardware and software strategies provide maximum protection
against most equipment failures, power failures, and some catastrophic failures. This
protection, however, does not eliminate the need to plan carefully to protect your
database and application software. After formulating a comprehensive recovery
strategy, practice carrying out the plan on a regular, consistent basis.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-1

Planning Database Security and Recovery Security Guidelines
Security Guidelines
Authorization to operate on SQL tables, views, indexes, collations, and SQL programs
that run in the Guardian environment is maintained by the Guardian security
subsystem. Authorization for SQL programs that run in the OSS environment is
maintained by the OSS security subsystem. When planning security, consider the
needs or restrictions of all the users of a system, or a network of systems, in addition to
the needs or restrictions of a particular database.

When planning authorization schemes, consider:

• What are the requirements for security on the system or network?

• How many different user groups use the same database?

• What are the anticipated requirements for cross security between databases or
user groups?

• Which users should have the authority to change the data dictionary?

• Which users should be given authority to purge SQL objects?

This discussion on planning authorization provides examples of authorization
schemes. Section 5, Creating a Database, lists security guidelines related to specific
types of database objects. For more information on Guardian security, see the Security
Management Guide.

Sample Authorization Schemes
Application needs on a system can define the needs for security authorization. Usually,
authorization schemes affect the number of catalogs you choose for your system. In
general, you should create the smallest number of catalogs logically possible, as
dictated by your business operations.

Three examples of possible application security and catalog schemes follow.

• Production banking system

This system has a limited number of user groups but high business activity and
strong security requirements for database management operations. This scheme
probably should use one, two, or just a few catalogs.

Characteristics of the application are:

° The production application should be valid without automatic recompilation.

° The database should be stable because only a few changes would be made
for location, security, or other DDL operations.

° Only the database administrator or the super ID user can perform DDL
operations, so that the catalogs are secured for access only by the DBA or the
super ID.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-2

Planning Database Security and Recovery Sample Authorization Schemes
° The tables, views, and indexes are secured for access by servers; all
application use is through programs initiated by the application environment.

° Queries on tables or views are limited to the database administrator and the
super ID user.

The most important security factor in this environment is securing the catalogs from
unauthorized DDL statements that could alter the database or from any operations
that could allow an unauthorized program to be registered.

• Development system

In this system, many user groups share the same or similar databases while the
application passes from development to testing, to documentation, and finally to
release control. This scheme probably should use one or more catalogs for each
user group.

Characteristics of system use are:

° Each user group needs control of the database and the ability to register
programs in a catalog.

° The user groups might share a database, and changes to the catalog
descriptions must be coordinated with each group.

° If each user group uses a separate catalog, users will frequently copy tables,
dependent views, and indexes by using the DUP command.

The most important security factor in this environment is securing the catalogs and
objects so that users can perform the many development tasks. The catalog and
object security should be simple to allow an authorized user to duplicate the entire
application for the next phase of development.

• Several unique application groups

These user groups share a system but have unique databases. This scheme
should use a system catalog plus one or more catalogs for each application group.
Users do not need to move or copy objects among these catalogs.

Characteristics of system use are:

° Each user group has a database administrator to manage the database and
the application for the group.

° Each user group wants autonomy and protection from the other groups. The
important security factor in this environment is the ability to restrict accidental
use by other groups.

For authorization in general, you should create the simplest authority and security
scheme possible. Dependent views, indexes, and programs should be owned by the
same user ID, and only that user ID should have purge authority. With this
authorization scheme, DDL operations and utility operations that can affect the entire
set of dependent objects, such as DUP, are simplified. Because anyone who has
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-3

Planning Database Security and Recovery Guidelines for Security Schemes
authority to purge an object can drop that object, an authorization scheme should limit
the authority for purging.

For an authorization scheme, you should establish catalog boundaries along the lines
of application and user access requirements. Associate catalogs with sets of tables
logically associated or used together. With this scheme, security follows the catalogs
you choose.

Guidelines for Security Schemes
When planning a security scheme, consider these guidelines:

• Security issues closely follow the use of three categories of SQL statements.
These categories and the most frequent users of each category are:

° Data Definition Language (DDL) statements, issued by the database
administrator

° Data Control Language (DCL) statements, issued by application users

° Data Manipulation Language (DML) statements, issued by application users

• The local owner of a table, view, index, collation, or program, the local group
manager, the local super ID, or the remote owner with purge authority generally
has the authority to perform DDL statements on these objects. Authority to purge
an object is required to drop a table, index, view, SQL program stored in a
Guardian file, or collation from the database.

• A group manager (user 255) can read or write to any local table owned by a group
member and can execute an SQL program that runs in the Guardian environment
that is owned by any group member. Remote tables, views, and programs must be
secured for remote access. When a statement requiring access to an object is
compiled, the catalog that describes the object must be accessible by the group
manager. To alter attributes of a table, view, index, collation, or SQL program
stored in the Guardian environment, or to run a DDL statement, a group manager
requires purge authority.

• SQL/MP security issues cover two areas:

° Security of a catalog that contains descriptions of SQL objects

° Security of SQL objects

Allowing access to the catalog does not automatically allow access to the objects
described in that catalog. Access to the catalog is required in addition to access to
the objects for execution of:

° DDL statements

° DML statement compilations for SQLCI or dynamic SQL

° Most utility commands

° SQL program compilations
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-4

Planning Database Security and Recovery Authorization Requirements for Database
Operations
Network databases require remote passwords (at the network level) and network
security strings for both catalogs and objects to allow remote access.

• When an SQL object is created, the ownership defaults to the owner of the session
or program. The security of the object defaults to either the security of the
underlying table or the current default security, unless the statement creating the
object provides another security string. Section 5, Creating a Database,contains
additional object-specific information about security.

• The security attributes of a table, view, index, or SQL program that runs in the
Guardian environment can be changed by an ALTER statement.

• The security string for an object must be set to allow users who have write
authority to also have read authority.

• A change in the ownership of an object affects the interpretation of the security
string. SQL interprets the security string at run-time against the user ID of the new
owner. The change does not apply to a running SQL program until program
execution ends.

• The owner and security of an underlying table determine those attribute values for
indexes on the table. If you change the owner or security string for the underlying
table, SQL automatically changes the owner or security string for any indexes on
the table.

• The CLEARONPURGE and NOPURGEUNTIL attributes for a table do not dictate
these attribute values for dependent indexes. You can set these two attributes
independently for indexes.

• The owner of a base table determines the owner of a dependent protection view. If
you change the owner of a table, SQL automatically changes the owner of any
dependent protection view.

• If you change the owner of a program, SQL automatically sets the PROGID
attribute to NO, regardless of the original setting.

Authorization Requirements for Database Operations
When creating a database, it is important to understand the authority necessary for
various types of operations on tables and programs. Table 4-1 on page 4-6 describes
what authority users must have to use specific statements and commands. For DDL
statements, users must also have authority to read and write to any catalogs affected
by the change.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-5

Planning Database Security and Recovery Authorization Requirements for Database
Operations
Table 4-1. Authorization Requirements (page 1 of 3)

Compile and Run Commands

Command Authority Required

SQLCOMP Read and purge authority for the program file; read and write
authority for the PROGRAMS, USAGES, and TRANSIDS table of
the catalog in which the program will be registered; and read and
write authority for the USAGES and TRANSIDS catalog tables of
any catalog that contains a description of a table or view that the
program uses.

Binder program Same authority requirements as for SQLCOMP.

RUN program file Read and execute authority for the program file; for dynamic
recompilation, read authority for any catalog with a description of a
table or view used by the program.

DCL Statements

Command Authority Required

FREE RESOURCES Read authority for affected objects.

LOCK TABLE
UNLOCK TABLE

Read authority for the table or view and all underlying tables of the
view.

DDL Statements

Statement Authority Required

DDL commands in
general

Read and write authority for affected catalogs unless otherwise
noted.

ALTER Local owner of the object, local super ID, local group manager, or
remote owner with purge authority for the object (or for the
underlying table if the object is an index).

To resecure program Read and write authority for the affected catalog and for the
program file.

To resecure catalog Either local owner or remote owner with purge authority for the
catalog.

COMMENT Local owner of the referenced table, view, or underlying table of the
index described by the comment; local super ID; local group
manager; or remote owner with purge authority for the object.

CREATE CATALOG Write authority for the SQL.CATALOGS table on the system that
contains the catalog.

CREATE
COLLATION

Read and write authority for the catalog in which the collation will be
registered and read authority for the collation source file.

CREATE
CONSTRAINT

Local owner of the underlying table, local super ID, local group
manager, or remote owner with purge authority for the table and
read authority for the underlying table.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-6

Planning Database Security and Recovery Authorization Requirements for Database
Operations
CREATE INDEX Local owner of the underlying table, local super ID, local group
manager, or remote owner with purge authority for the table; read
and write authority for the underlying table; and write authority for
the USAGES table of catalogs that describes the underlying table.

CREATE TABLE Read and write authority for all affected catalogs.

CREATE VIEW
Shorthand

Write authority for the USAGES and TRANSIDS tables in catalogs
that describe the underlying tables and views and write authority for
the VIEWS catalog table.

CREATE VIEW
Protection

Local owner of the underlying table, remote owner with purge
authority for the table, or the local super ID or group manager.

DROP CATALOG Read and purge authority for the catalog and read and write
authority for the SQL.CATALOGS table.

DROP CONSTRAINT
DROP INDEX

Local owner, local super ID, local group manager, or remote owner
with purge authority for the underlying table.

DROP PROGRAM
DROP TABLE
DROP VIEW

Purge authority for the object being dropped.

UPDATE
STATISTICS

Local owner, local super ID, local group manager, or remote owner
with purge authority for the table for which statistics are being
updated.

DML Statements

Statement Authority Required

DELETE
INSERT
UPDATE

Read and write authority for the table or protection view being
deleted or modified and read authority for tables, protection views,
and underlying tables of shorthand views specified in subqueries of
the statement.

SELECT Read authority for tables, protection views, and underlying tables of
shorthand views specified in the statement.

Utility Commands

Command Authority Required

CLEANUP Local super ID.

CONVERT Read authority for the file to be converted and the DDL dictionary
and the same authority as for CREATE TABLE, CREATE INDEX,
and LOAD.

COPY Read authority for the source file or object; write authority for the
target file or object; and for objects, read authority for the catalogs
containing the object descriptions.

DISPLAY USE OF Read authority for the catalogs containing the object descriptions.

Table 4-1. Authorization Requirements (page 2 of 3)
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-7

Planning Database Security and Recovery Safeguard Security Product
For a full explanation of the authorization scheme, see the Guardian User’s Guide.

Safeguard Security Product
For additional security protection, you can use the Safeguard product to restrict access
to volumes and subvolumes containing SQL tables, views, indexes, collations, and
SQL programs stored in Guardian files. You can use the Safeguard product to protect
an entire catalog by protecting the subvolume that contains the catalog.

The Safeguard product can authorize or prevent all attempts to access protected
system objects, including disk files, disk volumes and subvolumes, devices, and
named processes. The owner of a system object can create an access control list that

DUP Read authority for objects and files being duplicated; read authority
for the catalogs containing the object descriptions; same authority
as for CREATE statements for the types of objects being duplicated;
and purge authority for target files and objects if purging is
necessary.

EDIT Read and write authority for the file to be edited.

FILEINFO Read authority for each object or file for which statistics are to be
displayed.

INVOKE Read authority for the catalogs containing the object descriptions.

LOAD Read authority for the source file or object; write authority for the
target file or object; and for objects, read authority for the catalogs
containing the object descriptions. If the target file is a table, then
LOAD requires the authority to write to the catalog in which the
table is described.

MODIFY
[DICTIONARY]

Local super ID unless the CHECKONLY option is specified. For a
MODIFY LABEL CHECKONLY request, read authority for the SQL
objects and object programs. For a MODIFY CATALOG
CHECKONLY request, read authority for the catalogs.

PURGE Same authority as for DROP for objects being purged and local
super ID, local group manager, or purge authority for files being
purged.

PURGEDATA Write authority for the files and for the tables and affected catalogs.

SECURE Same authority as for ALTER for the object being secured and
owner of the file, local group manager, or local super ID.

TEDIT Read and write authority for the file to be edited.

UPGRADE
CATALOG

Local owner of the catalog, local super ID, local group manager, or
remote owner with purge authority for the catalog tables, and write
authority for the system CATALOGS table.

UPGRADE SYSTEM
CATALOG

Local super ID.

VERIFY Read authority for the catalogs containing the object descriptions.

Table 4-1. Authorization Requirements (page 3 of 3)
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-8

Planning Database Security and Recovery Safeguard Security Product
specifies the users and user groups who can or cannot access the object. If an access
control list does not specify access permission for a particular user, the Safeguard
product rejects that user’s access attempt.

The Safeguard product has these general attributes:

• The Safeguard product can restrict the creation of tables, views, indexes,
collations, and catalogs on volumes and subvolumes for which it maintains a
user-authentication record.

• The Safeguard product can protect the creation of SQL processes and the
execution and purging of SQL program files.

• Safeguard access lists cannot be created for individual SQL object names,
although names of SQL tables, views, indexes, collations, and programs are disk
file names.

• The Safeguard product works with the Guardian security system to enforce the
security controls established by system managers, security administrators, and
other users.

A Safeguard user-authentication record represents each user, and the owner of the
record controls the security attributes for that user.

Before a volume is protected by the Safeguard product, anyone with access to the
system can create objects on that disk volume.

To use Safeguard authorization control for creating SQL tables, views, or indexes, you
must add the disk volumes or subvolumes on which these objects will reside to the
Safeguard protection scheme. Every table for which you want a different access
control list should reside on a different subvolume. For a partitioned table or index, you
must secure each volume containing a partition of the object individually, providing the
same Safeguard protection for each partition.

To set up a volume, subvolume, or process under Safeguard protection, you must
invoke SAFECOM, the command interpreter for the Safeguard product. Then you can
alter the access for the volume, subvolume, or process, as in this example:

SAFECOM
= ASSUME VOLUME;
= ALTER $DATA,ACCESS *.GROUP1.USERID C;
= ALTER $DATA,ACCESS *.GROUP2.* C; ****
.
.
= ASSUME SUBVOLUME;
= ALTER $DATA.PERSNL , ACCESS *.GROUP1.USERID (C, P);
= ALTER $DATA.SALES , ACCESS *.GROUP2.* (C, P) ;
= ALTER $DATA.INVENT , ACCESS *.GROUP2.* (C, P) ;
= ALTER $DATA.DPROGS , ACCESS (*.GROUP1.*, *.GROUP2.*) (C, E, P)
.
.
= ASSUME PROCESS ;
= SET OWNER 100,255 ;
= SET ACCESS 100,255 (R, W, E, P, C); 200.* DENY (E, P);
.
.
= EXIT;
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-9

Planning Database Security and Recovery The TMF Subsystem
The TMF Subsystem
The TMF subsystem provides transaction protection, database consistency, and
database recovery.

TMF Concepts
Use of the TMF subsystem requires an understanding of these TMF elements:

• Transactions
• Audit trails
• Audit files
• Audit dumps
• Online dumps

These paragraphs give a brief overview of these elements; for more information, see
the TMF Introduction.

Transactions
A transaction, in general, is a multistep operation with a designated beginning and end
that changes a database. For example, a transaction for an airline reservation could
include the operations of adding a reservation to the airline passenger list, issuing a
ticket, and adding the ticket price to the accounts receivable table. Transactions
associated with SQL/MP operations are called TMF transactions.

A TMF transaction can span numerous database changes that affect multiple files on
multiple disk volumes and nodes. The TMF subsystem can abort an incomplete
transaction if a failure occurs during the transaction, thus ensuring consistency—either
all or none of the changes in a transaction are applied to the database. During normal
processing, the TMF subsystem also maintains the necessary locks on data to ensure
consistency of the database.

Audit Trails
If a system, disk, or program fails during a transaction, the TMF subsystem uses audit
trails to restore the files to their original state before the start of the transaction. Each
audit trail is a series of files in which the TMF subsystem records information about
transactions’ changes to a database. The information includes:

• Before-images, which are copies of data records before a transaction changes
them

• After-images, which are copies of the changed records
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-10

Planning Database Security and Recovery Levels of Database Recovery
Audited Files
Files or tables protected by the TMF subsystem are called audited files. Only audited
files have changes logged to audit trails. Files not protected by the TMF subsystem are
nonaudited files and do not have changes logged. You can choose which files are to
be audited on a file-by-file basis, depending on application requirements. Only files on
a TMF-configured data volume can be audited.

Audit Dumps
An audit dump is a copy of an audit trail file written to a tape or disk volume by an audit
dump process. If audit dumping is configured, audit dumps occur automatically when
an audit trail file becomes full. An audit dump process can be configured for each audit
trail; it can be reconfigured while the TMF subsystem is running. Audit dumps are used
by the file recovery process; they remain either on audit-restore volumes or on the
audit dump medium (disk or tape) until they are no longer needed for recovery.

Online Dumps
An online dump is a copy of an audited database file written to tape or disk in case of
media failure or other damage to a database such as an accidental purge operation.
Each online dump of a file provides an image of a file that can be used by the file
recovery process to reconstruct the file. Thus, online dumps are essential for most file
recovery operations.

An online dump is created when a TMF DUMP FILES command is issued. Online
dumps can be made while transactions are being processed by database applications.

Levels of Database Recovery
The TMF subsystem provides three mechanisms for database recovery: transaction
backout, volume recovery, and file recovery.

The consistency of an SQL database is ensured if any TMF recovery operation
completes without errors. TMF recovery methods protect both SQL catalog tables and
audited SQL objects.

Transaction Backout
Transaction backout provides automatic online recovery for aborted transactions. A
transaction is aborted when an event prevents the transaction from being committed.
Possible events include:

• Program suspension or abnormal termination because of an error or specific
programmatic request

• Processor failure

• Communication failure between participating nodes of a network-distributed
transaction
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-11

Planning Database Security and Recovery SQL Requirements for TMF
The TMF subsystem handles backout operations without operator intervention by using
the audit trails automatically cycled by the TMF subsystem. The TMF backout process
uses before-images in the audit trails to undo the effects of an aborted transaction.

Volume Recovery
Volume recovery recovers the database in the event of a disk crash or system failure.
When the TMF subsystem is restarted after a failure, volume recovery is initiated
automatically for each accessible data volume on the system (except for volumes
explicitly disabled in TMF).

To recover the files, the volume recovery process re-applies committed transactions to
ensure they are reflected correctly in the database, and then backs out all transactions
that were incomplete at the time of the interruption.

File Recovery
File recovery reconstructs specific audited files when the current copies on the data
volume are not usable: for example, if a system or media failure jeopardizes the
consistency of one or more audited files. A file could require file recovery for one or
more reasons, including:

• A disk failure (irreparable media failure) occurs.

• A volume or system failure occurs, and volume recovery cannot recover the file.

• A file is mistakenly purged.

• An application program incorrectly changes the database.

File recovery includes restoring online dumps from tape to disk, applying the after-
images from the audit trail to the database records, and then backing out all
transactions that were incomplete at the time of the system interruption or failure.

SQL Requirements for TMF
To protect the data dictionary in recovery situations, SQL/MP requires auditing of the
SQL catalogs by the TMF subsystem.

(Similarly, volumes that contain SQL objects, except programs, must be enabled for
auditing by the TMF subsystem.) Individual SQL tables, indexes, and views can be
nonaudited; however, both audited and nonaudited objects must reside on audited
volumes because the file labels are audited.

SQL catalogs, tables, views, indexes, collations, and partitions of tables and indexes
must reside on volumes enabled for auditing by the TMF subsystem. (Similarly,
volumes that contain SQL objects, except programs, must be enabled for auditing by
the TMF subsystem.)

Individual SQL tables, indexes, and views can be nonaudited, although both audited
and nonaudited objects must reside on audited volumes because the file labels are
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-12

Planning Database Security and Recovery Guidelines for Configuring TMF
audited. Consider using the TMF subsystem to audit all tables, views, and indexes to
ensure both the integrity of the database and a timely recovery from media failures or
incomplete transactions.

As a general rule, the TMF subsystem must be available when users are running SQL
application programs or using SQLCI. In particular, the TMF subsystem is required for
these operations:

• DDL statements

• SQL compilations, whether explicit or requested interactively through SQLCI or
through dynamic SQL applications

• DML statements performing INSERT, UPDATE, or DELETE operations on audited
tables or views

• SELECT statements not using BROWSE ACCESS on audited tables or views

Some previously compiled programs or previously prepared DML statements, however,
do run successfully when the TMF subsystem is unavailable, provided that the
statements do not require TMF transactions. These DML statements include:

• Queries (SELECT statements or cursor operations) that specify BROWSE access
on audited tables and views

• SELECT, INSERT, DELETE, and UPDATE statements that access only nonaudited
tables and views

Nevertheless, these queries and statements also fail if automatic recompilation is
required; for example, if an object in the access path becomes unavailable.

Guidelines for Configuring TMF
The appropriate version of the TMF subsystem (as described under Hardware and
Software Requirements on page 2-1) must be installed, configured correctly, and active
for transaction processing on a system before you install SQL/MP.

These guidelines apply to configuring the TMF subsystem for use with SQL/MP.

Determining What to Audit
You should audit all volumes on your system except the TMF audit-trail volume. Tables
in which data changes, during INSERT, UPDATE, or DELETE operations, need
auditing to protect the consistency of the database. This configuration enables you to
place SQL objects throughout the system. Normally, the volume that contains the audit
trails is not audited; therefore, SQL objects would not reside on this volume.

For certain systems with limited disk space, you can configure the TMF subsystem with
SELFAUDIT, which allows the volume containing the audit trails to be audited also.
With this configuration, SQL objects can reside on the same volume as the audit trails.

Certain tables should not be audited. For example, a log file should not be audited
because it typically records various events. If a log file is audited, the TMF subsystem
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-13

Planning Database Security and Recovery Guidelines for Configuring TMF
backs out event records, thereby eliminating valuable historical information about
events such as failures.

A database with a combination of audited and nonaudited tables can be left in an
inconsistent state after a failure. If a failure occurs, audited tables are recovered to the
original state, but updates to nonaudited tables are left in an unknown state. You will
need a strategy to recover the nonaudited tables so that the database will be
consistent.

The default volume for the system catalog is $SYSTEM. If you intend to use this
default volume, $SYSTEM must be audited.

Determining a Level of Data Protection
Configure the TMF subsystem for the level of protection your application needs. The
minimum level of protection uses the automatic recovery features of TMF backout and
volume recovery. Audit dumps and online dumps allowing for file recovery are optional.
After you determine the level of protection you need, configure the TMF subsystem
accordingly.

Size Considerations
When determining the size requirements of the TMF subsystem for SQL/MP, consider
these:

• The catalogs are audited tables; therefore, insertions and updates to catalogs are
audited.

• DDL statements run within system-defined TMF transactions, generating audit-trail
entries. DDL statements that refer to large tables can generate a large volume of
audit-trail entries.

• Transaction volume includes database use by both application programs and
SQLCI interactive capabilities. The interactive volume might be minimal or might
generate many audit-trail entries.

• You should estimate insert, update, and delete transaction activity for each table
and view.

• If parallel update and delete operations are being done, consider increasing the
amount of audit trail space available to TMF. For more information, see the TMF
Operations and Recovery Guide.

• For Enscribe systems being converted to use SQL/MP, you might need to increase
the size of TMF audit trails to accommodate the catalog auditing and database
manipulation activity.

• To prevent suspension of TMF transactions, you should have at least two tape
drives available. If you have only one tape drive and the drive fails, the TMF
subsystem suspends all new transactions if the maximum number of files is
reached.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-14

Planning Database Security and Recovery Guidelines for Online Dumps
Specifying TMF Attributes
Use these guidelines when specifying TMF attributes:

• You can define a separate audit trail for each volume or audit more than one
volume in the same audit trail.

• The volume or volumes containing the audit trails must have sufficient free space
to accommodate the extents required for the number of audit-trail files. If there is
insufficient space to create a new audit-trail file, transactions can be suspended
while the TMF operator dumps older audit-trail files to tape and frees enough
space to continue.

• The amount of audit-trail data generated can vary depending on the setting of the
AUDITCOMPRESS attribute for the audited database files. Using
AUDITCOMPRESS saves system resources for update operations. Using NO
AUDITCOMPRESS enables you to read the TMF audit-trail files with complete
before and after images. AUDITCOMPRESS is the default for audited tables,
including catalog tables. (A CREATE INDEX operation that uses the WITH
SHARED ACCESS option always uses the NOAUDITCOMPRESS option.)

• For a protection view, the AUDIT attribute value is automatically the same as the
value for the underlying table.

• For an index, the AUDIT attribute value is automatically the same as the value for
the base table.

• By altering the value of the AUDIT attribute for a base table, you also alter the
value for any dependent views and indexes.

For additional information on TMF configuration parameters and protection methods,
see the TMF Planning and Configuration Guide.

Guidelines for Online Dumps
Correct handling of online dumps is essential for effective functioning of file recovery
protection.

The TMF subsystem does not determine a schedule for online dumps. You must
decide on an online dump schedule that satisfies the needs of your business
operations. You can make online dumps without stopping your applications.

When scheduling online dumps, consider these guidelines:

• You can send online dumps to disk or to tape. Dumping to tape uses one tape drive
completely and some system resources. You might not want to schedule online
dumps and backups (described under Backup Strategies on page 4-17) at the
same time or during the peak hours of application processing.

• You should coordinate online dumps with application activity. For example, if your
site performs a series of batch processing or weekly updates at a particular time
each week, you should follow those operations with online dumps of database
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-15

Planning Database Security and Recovery TMF Considerations in Using SQLCI
objects. Thus, if a file recovery is necessary your online dumps already reflect the
batch updates. TMF would need to apply only those database changes that
occurred after the online dumps were taken.

• When you create a new table and you want to provide file recovery protection for
the table, you should make an initial online dump of the file after creating it.

• Certain DDL statements invalidate previous online dumps. For instance, whenever
you load tables, upgrade catalogs, create new indexes, partition tables or indexes,
or restructure or move the database, you should always make new online dumps to
ensure the new status of the database is recorded correctly.

For more information, see Operations That Invalidate TMF Online Dumps on
page 11-15.

• Operations that use the WITH SHARED ACCESS option allow you to take online
dumps while the operations are running.

• The TMF catalog can retain online dumps of several generations of each file. The
number of generations retained depends on the RETAINDEPTH option of the TMF
configuration parameters. Each generation of an online dump provides a starting
point for a file recovery operation. You gain greater reliability by keeping extra
generations of online dumps, but the site needs additional tape management for
the online dumps and audit trails.

For additional information about TMF recovery operations, see the TMF Operations
and Recovery Guide.

TMF Considerations in Using SQLCI
You can define and manage transactions from SQLCI, as follows:

• For DML statements, SQLCI generates TMF transactions for individual statements
if the AUTOWORK session option is set to ON. If you set AUTOWORK to OFF,
disabling automatic transaction generation for DML statements, you must explicitly
begin and end TMF transactions in the SQLCI session. The SQL statements that
explicitly control transactions are BEGIN WORK, COMMIT WORK, and
ROLLBACK WORK. AUTOWORK ON is the default.

• With AUTOWORK set to either ON or OFF, you can explicitly define a TMF
transaction, also called a user-defined TMF transaction. You can use a user-
defined TMF transaction to ensure that several statements are either all executed
successfully or all rolled back.

These commands and statements make up a complete user-defined TMF
transaction:

>> BEGIN WORK;
>> SELECT;
>> INSERT;
>> DELETE;
>> COMMIT WORK;
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-16

Planning Database Security and Recovery Backup Strategies
• For DDL statements, the catalog manager generates the appropriate number of
TMF transactions for the operations, reducing the overhead associated with TMF
audit trails and ensuring that the necessary locks are acquired for the operations.
These system-generated transactions occur regardless of the AUTOWORK
setting. For DDL statements issued within a user-defined TMF transaction, the
catalog manager does not initiate a system-defined TMF transaction.

• In addition to DDL statements, the COPY, PURGE, SECURE, and VERIFY
commands run within a TMF transaction when they operate on audited objects.

• You cannot run a DUP, LOAD, or PURGEDATA command within a user-defined
TMF transaction. You also cannot run a DDL statement or PURGE command
within a user-defined TMF transaction or with a statement embedded within a
program if the command operates on any nonaudited objects.

• You should not start a user-defined TMF transaction for the CREATE INDEX,
CREATE CONSTRAINT, DOWNGRADE CATALOG, MOVE PARTITION, or
UPDATE STATISTICS statement. For any of these operations, the catalog
manager automatically starts several TMF transactions. Certain portions of the
operation, however, are performed outside a TMF transaction unless you start one.
If performed on one or more large tables within a TMF transaction, the operation
could cause a TMF error.

• Only one user-defined TMF transaction can be active at a time in an SQLCI
session. You must commit or roll back the current user-defined transaction before
starting another.

• SQLCI provides an AUDITONLY option for the AUTOWORK ON command. If
AUDITONLY is in effect, SQLCI releases locks only on audited tables and holds
locks on nonaudited tables. You can use this option to hold locks on nonaudited
objects throughout a series of transactions and then use the UNLOCK TABLE
statement to release the locks on nonaudited tables. Using AUDITONLY helps
reduce the possibility of a deadlock between audited and nonaudited table locking.
AUTOWORK ON (without AUDITONLY) is the default.

Backup Strategies
Although you cannot determine whether you will ever need to use your backup tapes,
you should schedule backups regularly as a general precaution. In addition, you should
back up affected volumes or possibly the entire system when special events take
place, such as equipment changes, configuration changes, and major software
changes. You should also periodically back up to tape all nonaudited files, because no
other method of recovery is available for these files.

This subsection contains general guidelines for backing up SQL objects stored as
Guardian files, including information about these specific backup topics:

• Daily backups
• Periodic full backups
• Daily timestamp backups
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-17

Planning Database Security and Recovery Backup Strategies
• Backing up catalogs
• Backing up partitions
• Backing up indexes
• Backing up views
• Backing up collations
• Backing up by volume or by file
• Using OBEY command files for backup operations

For information about backing up OSS files, see the discussion of the pax utility in the
Open System Services Shell and Utilities Reference Manual.

When planning backup strategies, consider these guidelines:

• You should back up audited SQL objects by using TMF online dumps, as
discussed under The TMF Subsystem on page 4-10. Preserving files by using
BACKUP is not effective for recovery if any files are open during the BACKUP
operation. Also, if you use the OPEN option, the image saved during the dump of
the database might not be consistent. Before you begin a BACKUP operation, you
should close and refresh the files by using PUP (D-series only) or SCF (G-series
only). Files must remain closed throughout the BACKUP operation to ensure
consistency.

• Although not recommended as the primary archiving method, you can use
BACKUP to preserve audited in addition to the nonaudited files by using the
AUDITED option. BACKUP and RESTORE can recover the database only to the
time of the last backup; changes after that time are lost.

• You can back up entire tables and indexes or individual partitions. Also, you can
specify indexes to be backed up or have them backed up automatically with the
underlying tables. When you back up a table, index, or view, you must also back up
any collations the object depends on because when the object is restored, it must
use the same collations as before it was backed up.

• To archive nonaudited SQL tables, you must use BACKUP.

• SQL catalogs are not automatically dumped to tape in a BACKUP operation unless
the SQLCATALOGS ON option is specified. Note, however, that the RESTORE
utility cannot directly recover a catalog. All the catalog tables are audited so that
they can be archived by using the TMF subsystem and recovered by using either
TMF volume recovery or file recovery.

• Indexes backed up with INDEXES IMPLICIT, in effect by default, are not actually
copied. The index definition is backed up; when restored, the index is re-created.
Regardless of whether or not the index contained slack space, the restored index
is re-created without slack space. To back up indexes and retain slack space, use
the INDEXES EXPLICIT option.

Note. The BACKUP and RESTORE recovery method differs from recovery methods provided
by TMF. The BACKUP and RESTORE method is normally used as a secondary recovery
scheme. Remember that an SQL object restored by the RESTORE utility might not be
consistent with the current catalog description of the object.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-18

Planning Database Security and Recovery Daily Backups
• BACKUP has two formats for files: ARCHIVEFORMAT and DP2FORMAT.
ARCHIVEFORMAT is the default used by BACKUP when a system includes
SQL/MP. If you need to back up non-SQL files with DP2FORMAT, you must specify
a file set list that does not contain any SQL objects and specify DP2FORMAT in
the BACKUP command.

• If your system has only one tape drive, be careful not to perform a long backup at a
time when the TMF subsystem might also need to dump an audit trail to tape.
Before starting the backup, verify the status of the TMF audit trails to make sure no
dump is currently queued. If the TMF subsystem reaches its maximum file limit
during a period when the tape drive is unavailable for audit trail dumping, the TMF
subsystem suspends transaction processing until an audit trail is dumped.

• If your system has multiple tape drives, you can use one drive for backups and
another for the TMF audit-trail dumps.

• BACKUP accepts a qualified file set list for file-mode backups. You can use
DEFINE names for the tape drive name and within the qualified file set list.
BACKUP has many parameters that can improve the performance of tape
handling, qualify the file set list, ignore errors, verify tape validity, and perform
conversion between file types. For information about these parameters, see the
Guardian Disk and Tape Utilities Reference Manual.

Daily Backups
To provide a high degree of protection, you can perform daily backups. Then the
maximum amount of data lost from a failure never exceeds one working day.

A daily backup could be either a full backup of all files or a limited backup of specific
files. If you use limited daily backups, you should also perform periodic full backups, as
explained in Periodic Full Backups on page 4-20.

This example shows a BACKUP command to perform a full backup on all Enscribe
files and on all SQL audited and nonaudited files (except catalogs) on the local node:

BACKUP $TAPE, *.*.* , AUDITED, OPEN, LISTALL

For recovering a volume separately, it can be helpful to perform the backup by volume
name. This technique provides the same protection as the preceding command but
separates each volume on a set of tape reels.

This example backs up volumes separately:

BACKUP $TAPE, $SYSTEM.*.*, AUDITED, OPEN, LISTALL
BACKUP $TAPE, $VOL1.*.*, AUDITED, OPEN, LISTALL
...
BACKUP $TAPE, $VOL9.*.*, AUDITED, OPEN, LISTALL

Caution. If an SQL object has the UNRECLAIMED FREESPACE (F) or INCOMPLETE
SQLDDL OPERATION (D) attribute set, do not attempt to back up, move, or duplicate the
object until the attribute is reset. For more information, see UNRECLAIMED FREESPACE (F)
and INCOMPLETE SQLDDL OPERATION (D) Flags on page 7-24.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-19

Planning Database Security and Recovery Periodic Full Backups
You might not need to back up subvolumes that the SIT SYSGEN tape can recover or
the audit trails dumped to tape by TMF procedures. This example performs a full
backup on all files except $SYSTEM.SYSTEM.*, $SYSTEM.SYSnn.*, and
$AUDIT.TRAILS.*:

BACKUP $TAPE, *.*.* EXCLUDE ($SYSTEM.SYSTEM.*, $SYSTEM.SYSnn.*,
 $AUDIT.TRAILS.*), AUDITED, OPEN, LISTALL

For daily backups, you can also perform volume-mode backups, as explained under
Using Volume-Mode or File-Mode Backup on page 4-24.

Periodic Full Backups
A full backup performed periodically might be adequate for protecting your database.
The time between periodic backups should not exceed the maximum amount of work
that would be acceptable to lose or redo if a catastrophic failure occurred.

This command performs a full backup on all files and includes the catalog tables:

BACKUP $TAPE, *.*.* , AUDITED, SQLCATALOGS ON, OPEN, LISTALL

Daily Timestamp Backups
For large databases, a full backup can be inefficient. For some applications, the
amount of change to database files is uneven; some files might change frequently,
while other files seldom change from day to day.

BACKUP provides a mechanism to perform a partial backup automatically on only
those files that have changed since the last backup date. You can use the features of a
qualified file set list to isolate certain objects, such as files with a specified user ID, files
created or modified within a certain timestamp expression, or files with a certain file
code. By using the WHERE clause of the qualified file set list, you can back up only
SQL files that have been modified from a certain date. The PARTIAL parameter in the
BACKUP command set is valid only for Enscribe files.

If you perform partial backups, you must perform a full backup periodically to ensure
that all files have been saved.

This example uses a qualified file set list to restrict the backup to files that were
modified since the date of the last full backup:

BACKUP $TAPE, (*.*.* WHERE MODTIME AFTER JAN 10 1989),
 LISTALL, OPEN, AUDITED

Using the FROM CATALOG Option for SQL Objects
The qualified file set list includes a parameter that can specify objects registered in
specific catalogs. The FROM CATALOG option of a qualified file set list specifies that
only SQL objects registered in the specified catalog are part of the file set list. No
Enscribe files except SQL program files are processed by the FROM CATALOG
option. The objects affected are programs, tables, indexes, views, collations, and
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-20

Planning Database Security and Recovery Backing Up Partitions
partitions of tables and indexes; the catalog tables themselves are not backed up
unless you also specify the SQLCATALOGS ON option.

By using the FROM CATALOG option for an SQL database, you can achieve a backup
of a catalog or list of catalogs. This clause can be useful in maintaining backups of
logical groupings of SQL objects as they are grouped in the catalogs.

You can use a DEFINE name for the catalog name.

This example uses a series of commands to perform a full backup on all files from
each catalog specified in the FROM CATALOG clause, with the files from each catalog
on a separate reel. In this example, audited objects would not be backed up because
the AUDIT option is omitted.

BACKUP $TAPE, (*.*.* FROM CATALOG $VOL1.CAT1), LISTALL, OPEN
BACKUP $TAPE, (*.*.* FROM CATALOG $VOL2.CAT2), LISTALL, OPEN
...
BACKUP $TAPE, (*.*.* FROM CATALOG $VOL9.CAT9), LISTALL, OPEN

This command performs a full backup on all files from several catalogs specified in the
catalog list:

BACKUP $TAPE, (*.*.* FROM CATALOG ($VOL1.CAT1,$VOL2.CAT2, ...
 $VOL9.CAT9)), LISTALL, OPEN

Backing Up Partitions
You can use the PARTONLY ON option when a database has partitioned tables.
PARTONLY enables you to back up and restore single components of a partitioned
database.

PARTONLY could be applicable in these situations:

• A table partition resides on a remote node.

• A particular volume with partitioned objects is archived individually.

• A volume-mode backup is performed for archiving, and additional file-mode
archiving is needed for individual partitioned files.

You cannot use the PARTONLY option with the MAP NAMES option.

This example performs a full backup on each volume with the PARTONLY option:

BACKUP $TAPE, $SYSTEM.*.*, PARTONLY ON, OPEN, LISTALL
BACKUP $TAPE, $VOL1.*.*, PARTONLY ON, OPEN, LISTALL
...
BACKUP $TAPE, $VOL9.*.*, PARTONLY ON, OPEN, LISTALL

Caution. Use extreme caution when using PARTONLY in BACKUP and RESTORE operations
for partitioned files. It is possible to make the primary and secondary partitions of a file
inconsistent both with each other and with indexes.

For example, if you delete a table partition after a BACKUP PARTONLY operation, a RESTORE
PARTONLY operation would corrupt the table because the table no longer has that partition.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-21

Planning Database Security and Recovery Backing Up Indexes
Backing Up Indexes
The INDEXES option controls whether indexes are backed up automatically when the
underlying table is backed up. If you specify INDEXES IMPLICIT or use this option by
default, index definitions are backed up automatically with the underlying table,
regardless of whether it is explicitly named in the file set list. If you use the INDEXES
EXPLICIT option, only those indexes named in the file set list are backed up, and they
are copied in their entirety.

In either case, with either IMPLICIT or EXPLICIT, you must also back up any collations
used by the indexes.

The INDEXES IMPLICIT option produces this error message from the BACKUP utility,
whether you specify IMPLICIT or use it by default:

index-name *ERROR* SQL index-tables handled implicitly

This error generates a count of the files not backed up at the end of the BACKUP
operation; the count includes the indexes, because the index files are not actually
copied. When the underlying table is restored, however, indexes are re-created from
the catalog description, but the restored indexes are re-created without slack space,
regardless of whether or not they contained slack space. The error occurs in the
normal operation of BACKUP when INDEXES IMPLICIT is in effect.

The INDEXES EXPLICIT option could be applicable in these situations:

• You want to retain the slack space in an index when it is restored.

• The underlying table of a local index resides on a remote node.

Backing Up Views
Protection views are automatically backed up when you include the underlying table
name in the file set list of the BACKUP command. Protection views cannot be backed
up explicitly. In contrast, shorthand views are not automatically backed up unless you
specify the view names in the file set list of the BACKUP command.

No other options of the BACKUP and RESTORE commands enable you to control the
archiving of views.

When you back up a view, you must also back up any collations used by the view.

Caution. Use extreme caution when applying INDEXES EXPLICIT in a BACKUP operation.
Incorrect use of this strategy can result in making an index and its underlying table inconsistent
with each other.
For example, if you backed up a table with the INDEXES EXPLICIT option, deleted the
indexes, and then restored the table with the INDEXES EXPLICIT option, the table would be
corrupt because the table's file label no longer has any information about the indexes.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-22

Planning Database Security and Recovery Backing Up Collations
This example backs up the table EMPLOYEE, which has one protection view,
EMPLIST, and two shorthand views, EMPSHV1 and EMPSHV2. The example shows
the BACKUP command that backs up both protection and shorthand views:

BACKUP $TAPE,($VOL1.SVOL.EMPLOYEE,$VOL1.SVOL.EMPSHV1,
 $VOL2.SVOL.EMPSHV2), LISTALL, OPEN

Backing Up Collations
To back up collations, specify them in the file set list in the BACKUP command, as you
do tables and indexes. Whenever you back up a table, index, or view that uses a
collation, be sure to back up the collation as well, because when the object is restored,
it must use the same collation.

For example, for a table that includes names from different countries, this command
backs up a table, the indexes on a table, and the collations used by the table and the
indexes:

BACKUP $TAPE, ($VOL1.INVENT.SUPPLIER, $VOL2.COLLS.COLLFR,
 $VOL3.COLLS.COLLJPN, $VOL4.COLLS.COLLSP,
 $VOL5.COLLS.COLLIND, $VOL6.COLLS.COLLKOR),
 INDEXES IMPLICIT, LISTALL, OPEN

If you have only a few collations used by many objects, you might want to make a one-
time backup of all the collations and save the backup copies for restoring with
dependent objects. For collations that do not change often, this one-time backup is
easier to manage than repeated backups of the same collations with every dependent
object.

Note. When restoring collations, they must be restored before their dependent objects.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-23

Planning Database Security and Recovery Using Volume-Mode or File-Mode Backup
Using Volume-Mode or File-Mode Backup
Choose a volume-mode or file-mode backup, depending on the results you want to
achieve.

For a volume-mode backup, consider these characteristics of the operation:

• BACKUP makes a physical copy of a volume on tape. The copy includes the disk
data structures that are usually not apparent to the user. When a volume-mode
backup tape is restored, the entire disk volume, including the disk structures, is
restored and duplicates the original state of the disk.

• Only the super ID can perform the operation.

• A volume-mode backup tape cannot be used to restore individual files to a disk.

• The operation copies all data files, SQL files, and SQL catalog tables. A volume-
mode backup might be useful if you need to switch from one disk drive to another.

• Catalog consistency is assured only if the catalogs and the objects registered in
each catalog are on the same volume.

If you plan to do a volume-mode backup, see the Guardian Disk and Tape Utilities
Reference Manual.

For a file-mode backup, consider these characteristics of the operation:

• BACKUP copies each file defined in the file set list to tape. When a file is restored
to a disk, the file is copied to the best logical free space. Restoring a file-mode
backup tape to a clean disk compacts the files to use the free space on that disk
most efficiently.

• BACKUP does not back up the SQL catalogs unless the BACKUP command
includes the SQLCATALOGS ON option. RESTORE can restore the catalogs as
SQL tables but not as catalog tables. To recover catalogs, you should use the TMF
subsystem, as explained under Restoring Objects With TMF Recovery Operations
on page 11-11.

Because SQL/MP can introduce dependencies between disk volumes, both file-mode
and volume-mode backups can create inconsistent databases when RESTORE
operations are applied without regard to these interdependencies.

Using OBEY Command Files for Recovery
SQL/MP maintains an active data dictionary and uses the TMF subsystem to protect
the data dictionary by auditing the catalog tables. This dictionary, therefore, is subject
to the same recovery issues as SQL tables.

You must protect the database in every way possible. Although the TMF subsystem
protects the online database system, you might also want to use an offline method to
increase your protection.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-24

Planning Database Security and Recovery Using OBEY Command Files for Recovery
Another recovery method is to maintain EDIT files that contain database creation
statements and commands for re-creating your database. When you first create the
database, you should record the statements and commands in EDIT files. These EDIT
files are called OBEY command files because you can use the OBEY command
through SQLCI to run part or all the statements and commands in the files. OBEY
command files provide both a simple method for entering the detailed database
creation statements and commands and a method for backing up table, view, and
index definitions.

Whenever you enter a DDL statement, the active data dictionary changes. You should
always use the SQLCI logging facility when you make database changes, additions, or
deletions. Keep the log file for your records. If you need to determine valid definitions,
your original command file and a log of the changes can assist you in reconstructing
data definitions.

You can use your recovery command files to re-create a database on the same system
or on another system. You can also use these files as a verification point for the
correctness of the catalog descriptions if the data dictionary changes inadvertently.
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-25

Planning Database Security and Recovery Using OBEY Command Files for Recovery
HP NonStop SQL/MP Installation and Management Guide—523353-004
4-26

5 Creating a Database
The task of creating an SQL/MP database consists of creating catalogs, tables, views,
indexes, collations, and constraints. Before you attempt these operations, however,
you should understand planning schemes and define the database layout, as
described in Section 3, Understanding and Planning Database Tables. You should
have already planned your security, TMF requirements, and recovery mechanisms as
described in Section 4, Planning Database Security and Recovery. Finally, you create
the database itself.

After you create the database, you can load data into the base tables, compile your
application programs, and perform database management operations.

This section includes security guidelines for object creation. The following user names
and corresponding user IDs are used in the examples.

Super.Super 255,255
Super.Operator 255,001
DBA.Super 001,255
DBA.Dev 001,100
DBA.Prod 001,200
Dev.MGR 100,255
Dev.User 100,001
Prod.MGR 200,255
Appl.MGR 250,255
Appl.User 250,001

Creating Catalogs
An SQL/MP catalog consists of information stored in a set of tables that are indexed for
quick access. When you create a catalog, you automatically create all its tables and
indexes.

Each node on which SQL/MP is used must have at least one catalog. Each table, view,
index, partition, collation, or catalog table located at a node must be described in a
catalog on the same node.

Each volume on a node can have one or more catalogs. A given catalog on a volume
can describe objects on any volume in the same node.

Each subvolume of a volume can have only one catalog. This catalog can describe
objects on the same subvolume, on another subvolume of the same volume, or on
another volume of the same node.

Each catalog has the same name as the subvolume on which it resides. Thus, if a
catalog resides on subvolume SUBV1 of volume $VOL1 on node \SYS1, the full name
of the catalog is \SYS1.$VOL1.SUBV1.

When you create a new catalog with the CREATE CATALOG statement, you must
have authority to write to the CATALOGS table of the system catalog in which all
catalogs on a system are registered.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-1

Creating a Database Catalog Tables
A catalog has two types of components, described in these subsections:

• Catalog tables

• Indexes on catalog tables

Catalog Tables
Each SQL/MP catalog table describes either a particular type of object or some aspect
of an object. For instance, the BASETABS catalog table describes base tables.

Each catalog table has a name assigned by the system; for example, BASETABS.
Although the table names are the same in all catalogs, the full name of each catalog
table is unique in the network. For example, the full name of the BASETABS catalog
table in the SUBV1 catalog is \SYS1.$VOL1.SUBV1.BASETABS.

The individual catalog tables that make up a SQL/MP catalog are:

Table Name Table Function (page 1 of 2)

BASETABS Describes base tables (database tables but not views).

CATALOGS Describes all catalogs on the system. This table is the system
directory of catalogs and resides only in the system catalog.

COLUMNS Describes the columns of each table listed in the TABLES catalog
table.

COMMENTS Contains comments on tables, views, indexes, constraints, and
collations; comments on columns described in the catalog; and help
text for columns.

CONSTRNT Describes constraints defined on base tables.

CPRULES Describes collations.

CPRLSRCE Stores source text for character processing rules.

FILES Describes attributes of files that contain tables and indexes.

INDEXES Describes columns of primary keys and indexes.

KEYS Describes the key columns of indexes.

PARTNS Describes partitions of tables and indexes.

PROGRAMS Describes object program files that have been SQL compiled.

TABLES Describes tables and protection and shorthand views.

TRANSIDS Keeps TMF transaction IDs for current DDL operations on the
catalog. This information helps prevent multiple DDL operations
from being executed on the same catalog at the same time within
the same TMF transaction ID
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-2

Creating a Database Catalog Tables
Figure 5-1 illustrates relations between catalog tables.

Indexes on Catalog Tables
The catalog tables that have indexes, their index names, and the names of indexed
columns are listed in this table. These indexes are required by the system and are
created automatically for the catalog:

USAGES Describes dependencies among SQL objects.

VERSIONS Contains version information about the catalog. This is a backup
copy of the version information in the CATALOGS table of the
system catalog.

VIEWS Describes views defined on base tables.

Figure 5-1. Catalog Structure

Table Name Index Name Index Columns (page 1 of 2)

INDEXES IXINDE01 INDEXNAME

PARTNS IXPART01 PARTITIONNAME

Table Name Table Function (page 2 of 2)

COLUMNS

TABLES VIEWS

BASETABS FILES INDEXES

CONSTRNT PARTNS KEYS

PROGRAMS COMMENTS USAGES TRANSIDS VERSIONS

CPRULES

CPRLSRCE

Legend

One-to-many

One-to-one
VST005.vsd
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-3

Creating a Database Requirements for Catalogs
Only IXINDE01 is a unique index.

The SQL/MP Reference Manual presents a detailed description of each catalog table.

Requirements for Catalogs
A system that includes SQL/MP can have one or more catalogs to describe an SQL
database.

Following are the location-related requirements for SQL/MP catalogs on a system:

• All SQL objects on a system must be described in a catalog on the same system.

• Each system that includes SQL/MP must have at least one catalog.

• Each volume containing a catalog must be enabled and audited by the TMF
subsystem, because catalogs are collections of audited SQL tables.

• Each audited volume on a system can have one or more catalogs or no catalogs.
Each catalog on a volume can describe objects on that volume or on another
volume on the same system.

• A single subvolume can have only one catalog. Each catalog has the same name
as the subvolume that contains the catalog.

For example, the full name of a catalog on the system \SYS1, volume $VOL1, and
subvolume SUBVOL1 is \SYS1.$VOL1.SUBVOL1.

• Catalog tables cannot be partitioned.

Each system that uses SQL/MP has a catalog called the system catalog that contains
information about all the catalogs on the system. The system catalog is like any other
catalog, with these exceptions:

• The system catalog is established during the installation of SQL/MP. For more
information, see Installing SQL/MP on page 2-2.

• The system catalog contains an additional table, CATALOGS, which is the system
directory of catalogs.

• To obtain the name of a local or remote system catalog, use the GET CATALOG
OF SYSTEM statement. (For more information, see the SQL/MP Reference
Manual or SQLCI online help.)

PROGRAMS IXPROG01 GROUPID, USERID

TABLES IXTABL01 GROUPID, USERID

USAGES IXUSAG01 USINGOBJNAME, USINGOBJTYPE

Table Name Index Name Index Columns (page 2 of 2)
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-4

Creating a Database Design Considerations
Design Considerations
Because only a few rules apply to catalog location, many possible schemes exist for
creating catalogs. Before deciding how to create your catalog structure, consider these
performance issues for catalogs:

• Dependent relationships in the USAGES tables of catalogs should be easily
accessible. Dispersing tables, views, and indexes among catalogs does not
improve throughput.

• A small performance penalty is associated with the use of multiple catalogs: a one-
time penalty per process at table-open time for each catalog accessed for SQL
compilation. This penalty applies for both DDL and DML statements. Because this
penalty affects both explicit SQL compilation and automatic recompilation at run
time, the penalty might be significant.

• The number of catalogs does not affect the collective number of rows stored in the
catalog or catalogs, with one exception: When an object described in a catalog is
related to an object described in a different catalog, the USAGES relationship is
stored in both catalogs.

Multiple-Catalog Approach
A multiple-catalog approach, in which all objects are registered in the system catalog,
has these advantages:

• The multiple-catalog approach simplifies security considerations if different user
groups or applications have different security requirements.

• Concurrency problems are reduced if many operations use one catalog.

• If the catalog becomes unavailable because of a down or damaged volume, SQL
compilations that require the catalog are suspended until the catalog is available.

When SQL catalogs are unavailable, users cannot enter any DDL statement,
dynamic SQL statement, or SQLCI command that requires the catalog or that
starts an explicit SQL compilation. Also, programs cannot be automatically
recompiled; only explicitly compiled programs can run, if they do not require any
recompilations. The use of multiple catalogs reduces the effect of a single catalog
becoming unavailable.

Single-Catalog Approach
The advantages of a single-catalog approach are:

• When using a single catalog, you do not need to unite the information in multiple
catalogs to generate a single report on catalog information. (You can, however, join
multiple catalogs by using the UNION operator to obtain a unified report across
catalogs. Because the catalog tables are identical for all catalogs, these tables are
ideal for use with the UNION operator.)
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-5

Creating a Database Performance Considerations
• Administrative control is easier, and perhaps safer, with fewer catalogs. If
restricting the authority for users to create SQL objects is important, controlling
fewer security strings is easier.

If you are using the $SYSTEM default location for the system catalog, you might want
to limit use of the catalog to minimize SQL/MP disk accesses on $SYSTEM during
SQL compilations. In this situation, you would not use the system catalog as a general-
purpose catalog for applications, but only as a catalog directory, and you would have
one or more other catalogs for your applications.

Performance Considerations
The disk process cache setting for a disk that contains an SQL catalog affects the
performance of SQL DDL statements. The system administrator should set the disk
process cache to an appropriate value by using the PUP SETCACHE command (D-
series only) and the SCF ALTER DISK, CACHE command (G-series only). This action
is especially useful for catalogs that store information about tables with many
partitions. The performance of DDL statements such as CREATE TABLE, ALTER
TABLE ADD PARTITION, and DROP TABLE can be greatly enhanced with an effective
cache setting.

For example, a table with 200 partitions, all described in a single catalog, has 40,000
rows in the PARTNS catalog table and in the IXPART01 index on the PARTNS catalog
table. Creating such a table causes more than 80,000 writes to the catalog. Using the
default cache value can cause this operation to take up to 25 times longer than if you
set disk cache to 4 MB.

For more information about cache memory, see Managing Cache Memory Size on
page 14-17. For information about PUP, see the Peripheral Utility Program (PUP)
Reference Manual (D-series only). For more information about SCF, see the SCF
Reference Manual for G-Series RVUs.

Creating a Catalog
This example creates a catalog on $VOL1.SALES, the current default volume and
subvolume:

>> CREATE CATALOG;
--- SQL operation complete.

You can use the SQLCI ENV command to list information about the current
environment.

When creating catalogs in SQLCI, you must be aware of the SQLCI session
environment. When you have not specified a current catalog in a session and you do

Note. The recommendation for the number of catalogs is to create the smallest number of
catalogs you need for your business operations. Typically, you should establish catalog
boundaries along the lines of application and user security requirements. Associate catalogs
with sets of tables that are logically associated or that are used together.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-6

Creating a Database Securing Catalog Tables
not explicitly specify a catalog in the CREATE CATALOG statement, SQL/MP creates
the catalog on the current default volume and subvolume.

This example specifies the location of the catalog. The catalog name is the subvolume
name.

>> CREATE CATALOG \SYS1.$VOL1.MFG;
--- SQL operation complete.

You can use a DEFINE name to specify a catalog name. In this example, the catalog is
created on \SYS1.$VOL1.MFG as defined by the DEFINE =MFG. The INFO DEFINE
command displays the DEFINE, showing the actual catalog name.

>> INFO DEFINE =MFG;

 DEFINE NAME =MFG
 CLASS CATALOG
 SUBVOL \SYS1.$VOL1.MFG

>> CREATE CATALOG =MFG;
--- SQL operation complete.

If you are running SQL/MP on a system using the SMF product and you want to ensure
that you can fall back to a non-SMF system, make sure that a given catalog’s tables
reside on one physical volume. If you specify a virtual volume for a catalog, SMF can
distribute the catalog tables among multiple physical volumes in the storage pool.
When this configuration is in place, there is no guarantee that you can return to using a
nonvirtual volume. When you are certain you will not need to fall back to a non-SMF
system, you can specify a virtual volume for a catalog without being concerned with the
physical location of the files.

To ensure that a catalog’s tables reside on one physical volume, you can specify a
direct volume that is not in any storage pool, or you can use the PHYSVOL option, as
follows:

>> CREATE CATALOG $virtual_vol.subvol PHYSVOL $physical_vol;

With the PHYSVOL option, you specify only the volume name. Also, the virtual volume
specified with the CREATE CATALOG clause must be associated with the same
storage pool that contains the physical volume specified with PHYSVOL. For more
information about using this option, see the SQL/MP Reference Manual and the
Storage Management Foundation User’s Guide.

Securing Catalog Tables
When you create a catalog, SQL/MP assigns the catalog ownership to your Guardian
user ID with your default security, unless you specify the SECURE attribute in the
CREATE CATALOG statement.

The catalog tables compose the data dictionary, a vital part of an application’s integrity.
The security of a catalog should protect the data dictionary information from
unauthorized removal or alteration.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-7

Creating a Database Securing Catalog Tables
If you specify a security string in the CREATE CATALOG statement, you must specify
the catalog name. This example specifies the location of a new catalog and the
security:

>> CREATE CATALOG \SYS1.$VOL1.MFGCAT SECURE "GGNO";
--- SQL operation complete.

When you create a catalog or alter the security string for a catalog, the catalog security
applies to all the catalog tables. If you do not specify a security string in the CREATE
CATALOG statement, SQL/MP assigns your current default security to the catalog and
all the catalog tables.

Access to Catalog Objects
Allowing access to the catalog does not automatically allow access to the objects
described in that catalog. Access to the catalog is required in addition to access to the
objects for DDL statements, DML statement compilations for SQLCI and dynamic SQL,
most utility commands, and SQL program compilations.

Altering Security
To make the USAGES, TRANSIDS, and PROGRAMS tables accessible for SQL
compilations of programs, you might need to change the security of each table in an
ALTER TABLE statement. During explicit SQL compilation, any dependencies that a
program has on tables or views described in a catalog are recorded in the catalog’s
USAGES table. To insert the dependency record into the USAGES table, the catalog
manager must start a TMF transaction, which is registered in the TRANSIDS table.
Write access to the PROGRAMS table is required so that the SQL compiler can
register programs in the table.

You can change the catalog security at creation time by specifying the SECURE
attribute in the CREATE CATALOG statement. You can also change the security of
these individual tables at any later time by using the ALTER CATALOG statement:

• CATALOGS (system catalog only)
• USAGES
• TRANSIDS
• PROGRAMS

If you use the SECURE attribute, you must specify a security string that gives the
owner of the catalog tables read access.

For a user to compile a program, the user needs read and write access to the
USAGES and TRANSIDS tables in any catalog containing descriptions of tables,
views, collations, partitions, and indexes that the program uses in addition to write
access to the PROGRAMS table of the catalog in which the program is registered.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-8

Creating a Database Securing Catalog Tables
Examples
These examples show access to the catalog tables. Actual access for certain
statements can depend on the security of a table, view, or index.

The first example shows security that enables any network user to read or write to the
catalogs in which objects are registered. Any network user can compile and register
programs in this catalog and can create tables, views, and indexes. Only the super ID
user in the DBA user group can drop the catalog.

$VOL1.SUBVOL catalog Owner = 001,255
 Security = "NNNO"

The next example shows security that enables any group 100 user to compile
programs that use tables and views described in the $VOL1.APPLPGM or
$VOL2.APPLCAT catalog:

$VOL1.APPLPGM catalog Owner = 100,255
 Security = "GGNO"
$VOL2.APPLCAT catalog Owner = 001,255
 Security = "NGOO"
$VOL2.APPLCAT.USAGES Owner = 001,255
 Security = "NNOO"
$VOL2.APPLCAT.TRANSIDS Owner = 001,255
 Security = "NNOO"

All programs for this application are registered in the catalog $VOL1.APPLPGM. Any
group 001 user can:

• Read or write to the catalog $VOL2.APPLCAT in which the objects are described

• Create tables, views, and indexes registered in this catalog (local users only)

• Execute programs registered in $VOL1.APPLPGM

Any network user can query descriptions in the catalog $VOL2.APPLCAT. Only the
super ID user of each group can drop the catalog.

The next example shows security that enables any network group 001 user to read or
write to the catalog in which the objects are described or to execute programs
registered in the catalog $VOL2.APPLCAT. Only local group 001 users can create
dependencies on any objects described in the catalog or compile programs that use
any tables or views described in the catalog.

$VOL2.APPLCAT catalog Owner = 001,255
 Security = "CCCO"
$VOL2.APPLCAT.USAGES Owner = 001,255
 Security = "CGOO"

$VOL2.APPLCAT.PROGRAMS Owner = 001,255
 Security = "CGOO"
$VOL2.APPLCAT.TRANSIDS Owner = 001,255
 Security = "CGOO"
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-9

Creating a Database Securing the System Catalog
Securing the System Catalog
The system catalog maintains the directory of catalogs on each system in the
CATALOGS table. Except for this table, the system catalog is like any other catalog on
the system. You can use the system catalog as a catalog directory only or as a
general-purpose catalog.

The security of the system catalog should protect the catalog from removal.

CATALOGS Table
For a user to create other catalogs on the system, the user must have authority to write
to the system directory of catalogs, the SQL.CATALOGS table. You can secure this
table separately from the rest of the system catalog to restrict the capability to create
catalogs within your application.

You might consider giving read authority to all users, enabling them to query the
SQL.CATALOGS table.

Examples
This example shows catalog security that ensures that catalogs can be created only by
the local database administrator’s group (DBA.Super, DBA.Dev, and DBA.Prod):

System catalog ($SYSTEM.SQL) Owner = 001,255
 Security = "OOOO"
$SYSTEM.SQL.CATALOGS Owner = 001,255
 Security = "GGOO"

This example shows catalog security that gives any network user remote read access.
Any user in the database administrator’s user group can create catalogs on this
system, either locally or remotely.

System catalog ($SYSTEM.SQL) Owner = 001,255
 Security = "OOOO"
$SYSTEM.SQL.CATALOGS Owner = 001,255
 Security = "NCOO"

Creating Base Tables
Base tables are the foundation of an SQL/MP database. All data physically resides in
the base tables. When you create a table with the CREATE TABLE statement, you
specify the definition of each data column and the attributes of the physical file in which
the table is to be stored. Carefully consider the file attributes to ensure that the table
will meet the needs of your application.

The CREATE TABLE statement stores the table definition in the specified SQL catalog
and creates the table, which physically exists as a disk file. Before creating a table, you
should understand the three types of table organizations and column, key, and index
design considerations. For more information, see Understanding SQL File Structures
on page 3-1.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-10

Creating a Database Determining the Organization of the Physical File
For information about loading base tables, see Guidelines for Loading Tables on
page 8-8.

Determining the Organization of the Physical File
When you create a table, you can use the ORGANIZATION clause in the CREATE
TABLE statement to organize the physical file. The ORGANIZATION clause is optional.

The file organization can be key-sequenced, entry-sequenced, or relative. If you do not
choose a file organization by using the ORGANIZATION clause, the organization
defaults to key-sequenced.

Creating Key-Sequenced Tables
When you define a key-sequenced table, you also define the primary key used to
access rows in the table. The data type, physical ordering, and primary key type play a
role in the primary access sequence of the table.

Defining Primary Keys

Use these commands to define primary keys:

• User-defined primary key: specify columns of the primary key in the PRIMARY
KEY clause of the CREATE TABLE statement. A user-defined primary key can
include a number of contiguous or noncontiguous columns but cannot exceed 255
bytes.

• System-defined primary key: this is the default type of key generated by SQL/MP if
you do not specify a PRIMARY KEY or CLUSTERING KEY clause.

• Clustering key: specify columns of the primary key in the CLUSTERING KEY
clause of the CREATE TABLE statement. To this group of columns, SQL/MP
appends a SYSKEY column to form a unique primary key.

Creating a Key-Sequenced Table With a User-Defined Primary Key

This example creates a key-sequenced table with a user-defined primary key on the
current default subvolume and registers the table in the current default catalog. You
can also use the ENV command to list the current environment before using the
CREATE TABLE command.

>> CREATE TABLE ORDERS
+> (ORDERNUM DECIMAL (6) UNSIGNED NO DEFAULT NOT NULL,
+> ORDER_DATE DATETIME YEAR TO DAY NO DEFAULT NOT NULL,
+> DELIV_DATE DATETIME YEAR TO DAY NO DEFAULT NOT NULL,
+> SALESREP DECIMAL (4) UNSIGNED DEFAULT SYSTEM,
+> CUSTNUM DECIMAL (4) UNSIGNED NO DEFAULT NOT NULL,
+> PRIMARY KEY ORDERNUM)
+> EXTENT (100,100)
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-11

Creating a Database Determining the Organization of the Physical File
+> BLOCKSIZE 4096
+> MAXEXTENTS 24

+> ORGANIZATION KEY SEQUENCED
+> SECURE "GGOO";
--- SQL operation complete.

Creating a Key-Sequenced Table With a Clustering Key

If you want the rows in a key-sequenced table ordered by a column or combination of
columns whose values do not uniquely identify rows, you can specify these columns as
a clustering key in the CLUSTERING KEY clause of the CREATE TABLE statement. A
clustering key is part of the primary key; SQL/MP adds a system-defined SYSKEY
column to the clustering key to make the primary-key value in each row unique. The
total key length, including the SYSKEY column, cannot exceed 255 bytes.

This example shows a table created with a CLUSTERING KEY definition that consists
of the ORDERITEM and ORDERNUM columns. Internally, the actual primary key used
will consist of the ORDERITEM, ORDERNUM, and SYSKEY columns.

>> CREATE TABLE ODETAIL
+> (ORDERITEM DECIMAL (6) UNSIGNED NO DEFAULT NOT NULL,
+> ORDERNUM NUMERIC (6) UNSIGNED NO DEFAULT NOT NULL,
+> ORDER_DATE DATETIME YEAR TO DAY NO DEFAULT NOT NULL,
+> DELIV_DATE DATETIME YEAR TO DAY NO DEFAULT NOT NULL,
+> SALESREP DECIMAL (4) UNSIGNED DEFAULT SYSTEM,
+> CUSTNUM DECIMAL (4) UNSIGNED NO DEFAULT NOT NULL)
+> CLUSTERING KEY (ORDERITEM,ORDERNUM)
+> EXTENT (100,100)
+> BLOCKSIZE 4096
+> MAXEXTENTS 64
+> ORGANIZATION KEY SEQUENCED
+> SECURE "GGOO";
--- SQL operation complete.

If you do not specify the organization in the CREATE TABLE statement, the
organization defaults to key sequenced.

Creating a Key-Sequenced Table With Dependent Objects

Example 5-1 on page 5-13 creates a table and a set of objects that depends on the
table. The example uses DEFINE names in SQL statements. The INFO DEFINE
command displays the DEFINEs. You would usually enter this set of commands into an
EDIT file you could use as an OBEY command file within SQLCI.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-12

Creating a Database Determining the Organization of the Physical File
Example 5-1. Creating a Table and Dependent Objects (page 1 of 2)

--- DEFINEs were previously added during this SQLCI
--- session or inherited from the command interpreter.
>> INFO DEFINE =MCAT;
 DEFINE NAME =MCAT
 CLASS CATALOG
 SUBVOL \SYS1.$VOL1.MFG
>> INFO DEFINE =ORDERS;
 DEFINE NAME =ORDERS
 CLASS MAP
 FILE $VOL1.MFG.ORDERS
>> INFO DEFINE =REPORDS;
 DEFINE NAME =REPORDS
 CLASS MAP
 FILE $VOL1.MFG.REPORDS

>> INFO DEFINE =XORDCUS;
 DEFINE NAME =XORDCUS
 CLASS MAP
 FILE $VOL2.MFG.XORDCUS
 BLOCKSIZE 4096
>> CREATE TABLE =ORDERS
+> (ORDERNUM DECIMAL (6) UNSIGNED NO DEFAULT NOT NULL,
+> ORDER_DATE DATETIME YEAR TO DAY NO DEFAULT NOT NULL,
+> DELIV_DATE DATETIME YEAR TO DAY NO DEFAULT NOT NULL,
+> SALESREP DECIMAL (4) UNSIGNED DEFAULT SYSTEM,
+> CUSTNUM DECIMAL (4) UNSIGNED NO DEFAULT NOT NULL,
+> PRIMARY KEY ORDERNUM)
+> EXTENT (100,100)
+> MAXEXTENTS 24
+> CATALOG =MCAT
+> SECURE “GGOO”;
--- SQL operation complete.
>> CREATE CONSTRAINT DATE_CONSTRNT
+> ON =ORDERS
+> CHECK DELIV_DATE >= ORDER_DATE;
--- SQL operation complete.
>> COMMENT ON TABLE =ORDERS
+> IS “ACTIVE ORDERS TABLE”;
--- SQL operation complete.
>> COMMENT ON COLUMN ORDER_DATE
+> ON =ORDERS
+> IS “FORMAT IS YYMMDD”;
--- SQL operation complete.
>> COMMENT ON COLUMN DELIV_DATE
+> ON =ORDERS
+> IS “FORMAT IS YYMMDD”;
--- SQL operation complete.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-13

Creating a Database Determining the Organization of the Physical File
Creating Entry-Sequenced Tables
Entry-sequenced files are designed for sequential access. They consist of variable-
length records. New records are always appended to the end of the file; as a result, the
records in the file are arranged physically in the order in which they were added to the
file. Existing records can be updated, but they cannot be deleted. A user performing
update operations can update rows but cannot delete them and cannot lengthen or
shorten values in varying-length columns (VARCHAR, NCHAR VARYING).

This example creates an entry-sequenced table. This table is nonaudited, and the
primary extent is preallocated to ensure enough space.

>> CREATE TABLE \SYS1.$VOL3.LOGS.TRANSEQ
+> (TRANSEQ_NUM NUMERIC (10) NO DEFAULT NOT NULL,
+> CLASS_CODE PIC 9(4) DEFAULT SYSTEM,
+> CLASS_STATUS NUMERIC (6) DEFAULT SYSTEM,
+> STATUS_MSG PIC X(45) DEFAULT SYSTEM)
+> EXTENT (10000,1000)
+> CATALOG \SYS1.$VOL3.ADMIN
+> ALLOCATE 1
+> NO AUDIT
+> ORGANIZATION ENTRY SEQUENCED;
--- SQL operation complete.

Creating Relative Tables
Relative files consist of fixed-length physical records accessed by relative record
number. A record number is an ordinal value and corresponds directly to the record’s
position in the file. The first record is identified by record number zero. Succeeding
records are identified by ascending record numbers in increments of one.

You can refer to specific records within a relative table either by their primary key
(relative record number) or by the content of other key fields denoted by an index, such

>> CREATE VIEW =REPORDS
+> AS SELECT SALESREP,ORDERNUM,DELIV_DATE,ORDER_DATE
+> FROM =ORDERS
+> CATALOG =MCAT
+> FOR PROTECTION;
--- SQL operation complete.
>> CREATE INDEX =XORDCUS
+> ON =ORDERS (CUSTNUM)
+> KEYTAG “OC”
+> EXTENT (100,50)
+> BLOCKSIZE 2048
+> MAXEXTENTS 24
+> ICOMPRESS
+> CATALOG =MCAT;
--- SQL operation complete.

Example 5-1. Creating a Table and Dependent Objects (page 2 of 2)
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-14

Creating a Database Determining the Number of Records per Block
as a department number or zip code in an employee table. This reference is made
through the WHERE clause in a DELETE, SELECT, or UPDATE statement.

A user performing update operations can update or delete rows and can lengthen or
shorten values in varying-length columns. If the logical length of the record varies,
however, the physical space consumed in a relative table is always the same.
Moreover, all blocks allocated for a relative table are always full, even if the table
includes zero-length records.

This example creates a relative table. RECLENGTH is specified as 100 to allow space
for adding columns later.

>> CREATE TABLE \SYS1.$VOL3.CODS.HCODES
+> (CODENUM PIC 9(4) NO DEFAULT NOT NULL,
+> ORGANIZATION PIC X(10) DEFAULT SYSTEM,
+> USAGES_CODE NUMERIC (6) DEFAULT SYSTEM,
+> DESCRIPTION PIC X(45) NO DEFAULT NOT NULL)
+> EXTENT (10,10)
+> BLOCKSIZE 2048
+> RECLENGTH 100
+> AUDIT
+> CATALOG \SYS1.$VOL3.ADMIN
+> ORGANIZATION RELATIVE;
--- SQL operation complete.

Determining the Number of Records per Block
The BLOCKSIZE attribute in the CREATE TABLE statement lets you specify the block
size for SQL tables. The maximum block size of 4096 is recommended. Choice of
block size can affect the performance of your database. For additional performance
information, see Specifying Block Sizes for Files on page 14-24.

Key-Sequenced Tables
The maximum record size for a key-sequenced table is the block size less 32 bytes for
block header information. In addition, each record in a block requires two bytes to store
the record’s offset location from the block header. Thus, for the maximum block size of
4096, the maximum usable record size is 4062 bytes if you store one record per block.

To determine the number of records that can be guaranteed to fit in each block, use
this formula, in which N is the number of records, B is the block size, and R is the
record length:

N = (B - 32) / (R + 2)

Thus, if your record length is 202 bytes and the block size is 4096, you can compute
the number of records per block as follows:

N = (4096 - 32) / (202 + 2) = 19

For a key-sequenced table, the number of bytes allocated for a row equals the number
of bytes in the row when the row is inserted into the file. After a row has been inserted,
its length can be changed by updates that change values of varying-length columns.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-15

Creating a Database Additional Guidelines for Creating Tables
Thus, the actual number of rows stored in a block might be greater than your
calculated value of N if VARCHAR columns use fewer bytes than their maximum byte
length.

Although the size of a VARCHAR column can change, the total row length cannot
exceed the specified maximum record size for the table.

Moreover, if applications will update and insert records, you will want to leave free
space in the block to avoid too-frequent block splits, which eventually fragment the file,
use unnecessary storage space, and, possibly, affect performance. The SLACK,
ISLACK, and DSLACK options in the SQLCI LOAD command and in the online FUP
RELOAD command allow you to specify the amount of free space that will be left in
each block when records are loaded into the table. For more information about these
options, see Reorganizing a Database Online on page 8-2 and Loading, Copying,
Appending, and Purging Data on page 8-7.

Entry-Sequenced and Relative Tables
The maximum record size for an entry-sequenced or relative table is the block size
less 22 bytes for block header information. In addition, each record in a block requires
two bytes to store the record’s offset location from the block header. Thus, for the
maximum block size of 4096, the maximum usable record size is 4072 bytes if you
store one record per block.

To determine the maximum number of records that will fit in each block (for an entry-
sequenced table) or fill each block (for a relative table), use this formula, in which N is
the number of records, B is the block size, and R is the record length:

N = (B - 22) / (R + 2)

If your record length is 35 bytes and the block size is 4096, you can compute the
number of records per block as follows:

N = (4096 - 22) / (35 + 2) = 110

Additional Guidelines for Creating Tables
Consider these additional guidelines when creating tables:

• Specify PARTITION ARRAY EXTENDED to take advantage of the greater number
of partitions and indexes available for tables and indexes on versions 320 and later
of SQL/MP software. Note, however, that DML and DDL statements on tables and
indexes with extended partition arrays can only be performed from nodes running
version 320 or later of SQL/MP software.

• Specify table attributes that are best for the performance, access, size, and
protection of the data in the base table:

° Use BLOCKSIZE, EXTENTS, MAXEXTENTS, ALLOCATE, ICOMPRESS,
DCOMPRESS, and RECLENGTH, if applicable, for controlling the size of the
table.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-16

Creating a Database Additional Guidelines for Creating Tables
° Use AUDIT to protect the table with TMF auditing. If neither AUDIT nor NO
AUDIT is specified, AUDIT is assigned by default.

° Use AUDITCOMPRESS to minimize the amount of audit-trail resources
required. Use NO AUDITCOMPRESS if you need to read the complete before-
images and after-images directly from the audit trails.

° Use BUFFERED, SERIALWRITES, and VERIFIEDWRITES to control the disk
processing of the table.

° Use CLEARONPURGE, SECURE, and NOPURGEUNTIL to control the
security and the ability to write to or purge (drop) a table.

• Create tables from EDIT files that you use as OBEY command files within SQLCI.
These EDIT files store the data definitions outside the data dictionary and make
the definitions available for repeatable operations, if necessary. Because CREATE
TABLE statements can be very long, it is easier to correct errors in an EDIT file
than interactively in SQLCI.

• Use class MAP DEFINE names to identify the actual table names. The use of
DEFINEs allows mobility of the EDIT command files: you can use the same files to
create tables on different volumes and systems. For more information about
DEFINEs, see Using DEFINEs on page 10-30.

• Consider creating dependent objects at the same time you create a table. To
simplify these operations, you can put all the statements (such as CREATE
TABLE, CREATE VIEW, CREATE CONSTRAINT, COMMENT, and CREATE
INDEX) in the same EDIT file.

• To specify the catalog in which the table is to be registered, include the CATALOG
option in the CREATE TABLE statement if this catalog is different from the default
catalog. You can use a class CATALOG DEFINE name to identify the target
catalog. The target catalog must be an existing catalog.

• To create a table exactly like an existing table, use the LIKE option in the CREATE
TABLE statement. The new table always contains the same column structure as
the source table. The new table is not partitioned, however, even if the source table
is partitioned, unless you use the PARTITION clause when creating the table. In
such a case, the target table has partitions even if the source table does not.

Optionally, you can create the new table with the same comments, constraints,
headings, and help text as the source table. Alternatively, you can override these
attributes and create the new table with different comments, constraints, headings,
and help text.

The new table inherits collation information from the existing table. The columns in
the new table cannot refer to different collations.

• If you plan to use similarity checking with the table, be sure to use the CREATE
TABLE statement’s SIMILARITY CHECK ENABLE clause.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-17

Creating a Database Creating Tables on a System That Uses SMF
Creating Tables on a System That Uses SMF
If you are running SQL/MP on a system using the SMF product, you can specify a
virtual volume for a table. The virtual volume is associated with a storage pool; SMF
places the table on a physical volume in that storage pool. SMF chooses a physical
location based on its size estimate of the file and on the available space in the pool.

In exceptional cases, you might want a file to reside on a particular physical volume. To
accomplish this, you can specify a direct volume that is not in any storage pool, or you
can specify a virtual volume for the table and use the PHYSVOL option to select a
particular physical volume in the pool.

If you do need to specify a physical volume for a file, it can be advantageous to use the
PHYSVOL option rather than specifying a direct volume outside the control of SMF. If
you use the PHYSVOL option, you can move the file to a different physical location in
the future without having to recompile query execution plans or change other SQL
objects (such as indexes, views, and catalog tables) that refer to the file. You can move
the file even if a referencing object—an index, for example—is unavailable.

However, if the file is on a direct volume and you move the file with the ALTER TABLE.
. . MOVE statement, SQL changes the external references to the file. In this situation,
the referencing objects must be available.

This example creates a table on a virtual volume, $VIR1, associated with a SMF pool.
The example specifies that the file reside on the physical volume, $PVOL3:

>> CREATE TABLE $VIR1.MFG.ORDERS
+> (ORDERNUM DECIMAL (6) UNSIGNED NO DEFAULT NOT NULL,
+> |
+> PRIMARY KEY ORDERNUM)
+> PHYSVOL $PVOL3
+> |
+> ORGANIZATION KEY SEQUENCED;
--- SQL operation complete.

In the preceding example, $VIR1 must be associated with the storage pool that
contains $PVOL3. When you create a table name on a virtual volume such as $VIR1,
you use the same syntax you would use for volumes not managed by SMF. However,
with the PHYSVOL option, you specify only the volume name (such as $PVOL3). SQL
returns an error if you specify a full volume.subvolume.file name with the
PHYSVOL option. If you omit the PHYSVOL option, SMF determines the physical
volume on which the ORDERS table resides.

For more information about using this feature, see the SQL/MP Reference Manual and
the Storage Management Foundation User’s Guide.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-18

Creating a Database Defining Columns
Defining Columns
To ensure the validity of your database, you must first define columns correctly for the
use of the data and assign data types that provide the best design for your application.
It is the database administrator’s task to consider how the data is used and to assign
appropriate data types and constraints.

To define columns for a table, specify the column definitions in the CREATE TABLE
statement or in ALTER TABLE statements with the ADD COLUMN clause. When you
define a column, you specify the column name, data type, and, optionally, other column
attributes.

For information about constraints, see Creating Constraints on Data on page 5-51.

Specifying Column Names
When naming columns, consider these guidelines:

• A column name is an SQL identifier that can contain at most 30 of these
characters: letters (A-Z, a-z), digits (0-9), and the underscore (_). The name must
begin with a letter. SQL/MP reserved words, listed in the SQL/MP Reference
Manual, are not allowed as column names.

• Column names should be descriptive names for your application to help
programmers and users remember the names correctly.

These examples of column definitions show the column names, column
descriptions, and default values:

LOCATION PIC X(20) DEFAULT SYSTEM NOT NULL
AREA CHAR (3) DEFAULT SYSTEM NOT NULL
STATE CHAR (2) DEFAULT "MO" NOT NULL
PHONE PIC 9(7) DEFAULT SYSTEM NOT NULL
LAST_AMOUNT PIC S9(6)V99 COMP DEFAULT SYSTEM NOT NULL
CHANGE_DATE DATETIME YEAR TO MINUTE NOT NULL
EMPLOYEE_NUMBER NUMERIC (4) NO DEFAULT NOT NULL
JOB_CODE_NUMBER SMALLINT DEFAULT SYSTEM NOT NULL
TYPEJOBINCODE NUMERIC (4) UNSIGNED NO DEFAULT
TYPEJOBDESCRIPTION VARCHAR(20) NOT NULL
LAST_VALUE INT UNSIGNED DEFAULT SYSTEM NOT NULL

• Column names can be specified in the CREATE TABLE statement in any
combination of uppercase and lowercase letters. For example, these three column
names are equivalent: LOCATION, Location, and location.

Specifying Data Types for Columns
Three basic formats of data can be stored in columns:

• Character and numeric data

• Binary numeric data

• Date, time, and time interval data
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-19

Creating a Database Defining Columns
When determining the data type and attributes for a column, consider these guidelines:

• SQL/MP supports the ASCII character set and several other character sets for
character data. For more information, see Defining Character Data on page 5-21.

• Specify a column default value for each column. This default value must be
DEFAULT, DEFAULT SYSTEM, NOT NULL, NULL, NO DEFAULT, DEFAULT
NULL, or LITERAL literal, or a valid combination of these values. For more
information, see Using Default and Null Values on page 5-26.

• Specify any of these attributes for your application’s use, if applicable: HEADING,
HELP TEXT, and UPSHIFT. For more information, see Specifying Column
Attributes on page 5-28.

• Collation of single-byte character data is performed in the order represented by the
ordinal positions of the characters in the ASCII set. Alternatively, you can specify a
different collating sequence for single-byte character data by creating a collation
object and associating the collation with the character data. If you do associate a
collation with the column, the character set associated with the collation must be
the same as the character set defined for the column.

• Collation of numeric values occurs with negative numbers preceding positive
numbers.

• For sorting, the null value is considered to be greater than all other values.

• For compatibility of SQL/MP data types, any character string type can be
compared with all other character data types, and any numeric data type can be
compared with all other numeric data types in DML comparison expressions.
Character strings and numeric data types, however, are not compatible with each
other; they cannot be compared directly by SQL/MP during a retrieval using
predicates.

Comparisons between character strings and numeric data types can occur only
within user-written application code or, for parameters, by using the CAST function.
For more information about the CAST function, see the SQL/MP Reference
Manual or online help available through SQLCI.

• A date-time data type cannot be used with other SQL/MP data types except
INTERVAL in arithmetic expressions or comparisons. INTERVAL values can be
multiplied or divided by scalar data types and added to or subtracted from date-
time data types.

• A SIGNED column is required for a number with 10 or more digits.

Performance Considerations

To achieve maximum performance, consider these issues when defining columns:

• Define the column data type so that the values stored in the column match the use
of the data in applications. You should attempt to eliminate unnecessary data
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-20

Creating a Database Defining Columns
conversion in programs. Data conversions in programs can decrease application
performance.

• Define varying-length columns (VARCHAR, NCHAR VARYING) as the last
columns of the table. For all the other data types, the column structure within the
table does not affect the performance of queries or updates. For the most efficient
use of varying-length columns, however, these columns should be trailing.

• Define columns as numeric if they contain numeric-only values. SQL calculates its
execution plan more accurately for numerically defined data.

• Do not define columns as SIGNED numeric unless they need to be signed. Signed
columns are less efficient than unsigned columns.

• Place all varying-length variables at the end of a row. If a VARCHAR variable is
inside a row, the VARCHAR column is extended to its maximum length, and a
second move is required to retrieve any data after the VARCHAR.

• Avoid specifying odd-length strings, such as CHAR (1), CHAR (3), or
VARCHAR (5).

Two moves are required to handle the filler required when an odd-length string
precedes a number, INTERVAL, varying-length, or nullable column.

• Define data types to match those used in host variables or by users, or encourage
those who use and program the system to match the data types in the database,
including date-time data type ranges. This strategy minimizes data type
translations. For example, a NUMERIC data type in DDL might translate to a
double data type for the host variable in C code. In this instance, you could change
the DDL definition to FLOAT(54) so that the two match and do not require
translation.

Defining Character Data

 SQL includes both fixed-length character data and variable-length character data. The
data types for character data are:

Either type of character data can be associated with a character set by specifying the
CHARACTER SET clause on the host variable declaration. A character data type is
compatible with another character data type with the same character set, but is not
compatible with numeric, date-time, or interval data types, and not with character data
associated with a different character set.

You can specify one of these character sets for a column:

CHARACTER
NCHAR
PIC X DISPLAY

Fixed-length characters

VARCHAR
CHAR VARYING
NCHAR VARYING

Variable-length characters
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-21

Creating a Database Defining Columns
• ISO 8859/1 through ISO 8859/9: 8-bit character sets, of which ASCII (a 7-bit set) is
a subset

• HP Kanji: the HP representation of the character set defined in the JIS X0208
standard and commonly used in Japan

• HP KSC5601: a double-byte character set that is the Korean Industrial Standard
character set

SQL/MP also supports the UNKNOWN character set for character columns that do not
have a specified character set.

Defining Numeric Data

The data types for numeric data are:

FLOAT is compatible with other numeric data types. SQL/MP performs implicit data
conversion from other numeric types to handle arithmetic or comparison operations
when required.

A column of an exact numeric type can accept a floating-point number. Also, a column
of the FLOAT data type can accept either a floating-point number or an exact numeric
type. These rules apply both to columns of an SQL object and to a host variable field.

When SQL/MP performs arithmetic operations on operands that have mixed data
types, the data type allowing the largest value is used to evaluate the numbers. For
instance, if a REAL number is used and REAL is the data type that allows the largest
value, all other numeric data types are converted first to REAL and then used in the
expression. These numeric data types are in order of increasing size: DECIMAL,
SMALLINT, INTEGER, LARGEINT, REAL, DOUBLE PRECISION.

Note. The NATIONAL CHARACTER (or NCHAR) data type uses the default multibyte
character set for the node. To use the NCHAR data type, the system default multibyte character
set must be a character set that is supported by SQL/MP. For more information, see Hardware
and Software Requirements on page 2-1.

NUMERIC
PIC 9 COMP

Exact numeric binary data

SMALLINT
INTEGER
LARGEINT

Binary integer

FLOAT
REAL
DOUBLE PRECISION

Floating-point number

DECIMAL
PICTURE 9 DISPLAY

Decimal numeric ASCII characters
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-22

Creating a Database Defining Columns
Defining Date-Time and Time Interval Data

The data types for date-time data are:

The data type for time interval data is as follows:

Columns of the DATETIME, DATE, TIME, TIMESTAMP, and INTERVAL data types
contain information about dates, times, and time intervals. A comparison of these data
types follows, denoting in each case the data type, its meaning, and the range of data
allowed in fields of a value of this type. The fields in these data types are not
equivalent to columns.

A column value of type DATETIME is made up of any subset of these contiguous
fields:

YEAR Year 1 to 9999
MONTH Month of year 1 to 12
DAY Day of month 1 to 31 (maximum value
 depends on length of
month)
HOUR Hour of day 0 to 23
MINUTE Minute of hour 0 to 59
SECOND Second of minute 0 to 59
FRACTION Fraction of second 0 to 0.9(n) in
 which n is the precision.
 The maximum precision is 6;
 the default is 6.

A DATETIME column is defined to have a range of these contiguous fields, specified
by an optional start-date-time field and a required end-date-time field. You cannot
include the FRACTION precision in the start-date-time specification.

A column value of type DATE is made up of these contiguous fields:

YEAR Year 1 to 9999
MONTH Month of year 1 to 12
DAY Day of month 1 to 31

The DATE data type is equivalent to DATETIME YEAR TO DAY. The maximum value
of DAY depends on the length of the month.

DATETIME Date and time data, optionally including specific time
periods

DATE Date only data

TIME Time only data

TIMESTAMP Date and time data

INTERVAL Duration of time
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-23

Creating a Database Defining Columns
An item of type TIME indicates a time of day based on a 24-hour clock. An item of type
TIME is made up of these contiguous fields:

HOUR Hour of day 0 to 23
MINUTE Minute of hour 0 to 59
SECOND Second of minute 0 to 59

The TIME data type is equivalent to DATETIME HOUR TO SECOND.

A column value of type TIMESTAMP is made up of any subset of the following year-
month or day-time contiguous fields:

YEAR Year 1 to 9999
MONTH Month of year 1 to 12
DAY Day of month 1 to 31
HOUR Hour of day 0 to 23
MINUTE Minute of hour 0 to 59
SECOND Second of minute 0 to 59
FRACTION Fraction of second 0 to 0.9(6), in which
 6 is the precision.

The TIMESTAMP data type is equivalent to DATETIME YEAR TO FRACTION(6). The
maximum value of DAY depends on the length of the month.

A column value of type INTERVAL is made up of these contiguous fields:

YEAR Number of years Not constrained
MONTH Number of months 0 to 11
 or
DAY Number of days Not constrained
HOUR Number of hours 0 to 23
MINUTE Number of minutes 0 to 59
SECOND Number of seconds 0 to 59
FRACTION Fraction of second 0 to 0.9(n), in which n is
 the precision. The
 maximum precision is 6;
 the default is 6.

An INTERVAL column is defined to have a range of these contiguous fields, specified
by a required start-date-time field and an optional end-date-time field. You can specify
a precision for any start-date-time field, but you cannot include the FRACTION
precision in the start-date-time specification.

Guidelines

When you define a column to hold date and time, date, time, or time interval values,
use these general guidelines:

• A column of the DATETIME, DATE, TIME, or TIMESTAMP type holds a value that
represents a date or an instant in time, and a column of the INTERVAL type holds
a value that represents a time interval, or duration.

• A column of the DATE, TIME, or TIMESTAMP type is equivalent to a DATETIME
type with a specific range of DATETIME fields.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-24

Creating a Database Defining Columns
• A column defined as DATETIME can have a range of DATETIME fields to limit the
set of values stored:

COLUMN_1 DATETIME YEAR TO SECOND
COLUMN_2 DATETIME MONTH TO DAY
COLUMN_3 DATETIME HOUR TO MINUTE

• A date-time column stores values in local civil time (LCT). The LCT is determined
by the node where the SQL executor is running, based upon the TIME ZONE
OFFSET and DAYLIGHT SAVINGS parameters established for the system during
system generation.

• The range of fields defined for an INTERVAL column can limit the value stored; for
example:

COLUMN_1 INTERVAL YEAR
COLUMN_2 INTERVAL HOUR(3)
COLUMN_3 INTERVAL YEAR TO MONTH
COLUMN_4 INTERVAL DAY TO MINUTE

• The fields in a date-time or INTERVAL value have this implied order: YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, FRACTION.

• Possible default values for a DATETIME column are:

DEFAULT date-time-literal A valid date-time literal
DEFAULT SYSTEM Initialized to the current
timestamp
DEFAULT CURRENT Initialized to the current
timestamp
DEFAULT NULL Initialized to the null value

• Possible default values for an INTERVAL column are:

DEFAULT interval-literal A valid INTERVAL literal
DEFAULT SYSTEM Initialized to zero
DEFAULT NULL Initialized to the null value

• A date-time column cannot be used with other SQL data types in arithmetic
expressions or comparisons, except with INTERVAL data types. This table shows
the results of arithmetic operations involving date-time and INTERVAL values:

• A negative value is not a valid entry for a date-time column. An INTERVAL column,
however, can contain negative values.

First Operand Operator Second Operator Result

Date-time - Date-time INTERVAL

Date-time + or - INTERVAL Date-time

INTERVAL + Date-time Date-time

INTERVAL + or - INTERVAL INTERVAL

INTERVAL * or / Scalar INTERVAL

Scalar * INTERVAL INTERVAL

INTERVAL / INTERVAL Numeric
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-25

Creating a Database Defining Columns
• A date-time value cannot be multiplied by -1, but an INTERVAL value can be.
Negative date-time values are not valid.

These guidelines apply to arithmetic operations on date-time and INTERVAL data
types:

• The result of subtracting two date-time values is an INTERVAL value.

• The result of adding or subtracting INTERVAL values is an INTERVAL value.

• The result of adding a positive INTERVAL value to a date-time value is a date-time
value with an increased value in a DATETIME field or fields. The result of
subtracting a positive INTERVAL value from a date-time value is a date-time value
with a decreased value in a DATETIME field or fields.

For instance, if you add INTERVAL (1) MONTH to a TIMESTAMP value, only the
MONTH field changes. The rest of the fields in the TIMESTAMP value remain the
same.

If the INTERVAL value for the field increases or decreases the value so that it
affects the value of another field, the other field changes accordingly. For instance,
if you add INTERVAL (5) MONTH to a MONTH field that is already 9, both the
MONTH field and the YEAR field change. If an arithmetic expression results in
invalid data, an SQL error is generated.

Using Default and Null Values

In SQL/MP, a null value is a marker that indicates that a column in a specified row has
no value. The null character is not treated as a normal data value; it serves strictly as a
placeholder necessary for certain relational operations. To an application interacting
with a database, the null value indicates “unknown” or “do not know.”

The DEFAULT and NULL clauses determine the value used when a column value is
not supplied for a row during data entry. The following discussion describes the
DEFAULT and NULL variations you can use and their effects on the data allowed in
columns.

The DEFAULT and NULL clauses are independent of each other and must be specified
separately. The options for DEFAULT clause values apply in defining columns as
follows:

• Use the NO DEFAULT clause in a column definition when you want your
application to explicitly supply values for the column. The NO DEFAULT clause
ensures that any inserted or updated row contains a value for the column. The
system does not allow the insert or update if the column value is omitted. The NO
DEFAULT restriction applies to inserts and updates made either directly to the
base table or through protection views. In particular, these guidelines apply:

° Declaring NO DEFAULT for a column requires the application to supply a value
for the column. The supplied value can be a null value.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-26

Creating a Database Defining Columns
° Declaring NO DEFAULT NOT NULL for a column requires the application to
supply a value. The supplied value cannot be a null value.

• Use the DEFAULT literal clause in a column definition when a literal default
value for the column is acceptable. The data type of the literal must match the data
type of the column, as follows:

° Declaring a column with DEFAULT literal specifies using the default value
if no entry is made for the column. The column can contain a null value.

° Declaring a column with DEFAULT literal NOT NULL specifies using the
default value if no entry is made for the column. The column cannot contain a
null value.

• Use the DEFAULT SYSTEM clause when you want to use the SQL/MP default
value. The column data type determines the assigned system default value. The
default value for each type is as follows:

Numeric column Zero
CHARACTER column String of blanks
NATIONAL CHARACTER column String of blanks
VARCHAR column Zero-length string
NATIONAL CHARACTER VARYING column Zero-length string
Date-time column Zero
INTERVAL column Zero

Declaring a column with DEFAULT SYSTEM specifies initializing the column to the
system default value if no value is supplied for the column. The column can contain
a null value.

Declaring a column with DEFAULT SYSTEM NOT NULL specifies initializing the
column to the system default value if no value is supplied for the column. The
column cannot contain a null value.

• Use the NOT NULL clause to specify that the column cannot contain null values. If
this clause is used separately without a DEFAULT clause, the user must supply a
value for this column.

• Use the DEFAULT NULL clause to specify that the column takes on a null value if
no value is supplied for it.

• You cannot use the DEFAULT NULL and NOT NULL clauses for the same column.

The use of a column as a key column or the partitioning of a table affects use of the
NULL clause as follows:

• A column specified in the PRIMARY KEY or CLUSTERING KEY clause of a
CREATE TABLE statement cannot allow null values. Therefore, you should use the
NOT NULL clause to define primary key or clustering key columns. In the absence
of the NOT NULL clause, any columns defined in the PRIMARY KEY or
CLUSTERING KEY clause are implicitly set to NOT NULL, while all other columns
are implicitly set to allow nulls by default.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-27

Creating a Database Defining Columns
• A column used in nonunique index keys can contain null values because duplicate
values are allowed in such columns.

• A column used as a unique key for a single-column index can contain null values,
but only one row with a null value is allowed. Therefore, you might want to define a
column used in this manner as NOT NULL.

Unique multicolumn indexes can contain columns with null values. The same rule
applies as for single-column unique indexes; that is, the index can have at most
one row of all null values in the columns. Null values are treated as all other values
and therefore cause duplication of rows in the same manner.

• For partitioning an index, a null value is considered greater than other values and
equal to other instances of the null value. You can use the NULL indicator in the
FIRST KEY clause to group all rows with null values in the index key into the same
partition. In an index with an ascending key, all rows with null values in the key
column appear in the last partition; in an index with a descending key, all rows with
null values in the key column appear in the first partition.

Specifying Column Attributes
A column definition can specify the HEADING, HELP TEXT, and UPSHIFT attributes,
which can be used by programs and retrieved from the catalog description. These
descriptive column attributes are used automatically by applications generated through
the Pathmaker application development tool. To assist with application development
and integrity, the attributes can also be used by applications generated outside of the
Pathmaker environment.

HEADING Attribute

The HEADING attribute associates heading text with a column to enable applications
to refer to an alternate heading in place of the column name itself. A column can have
a default heading of up to 132 characters. Alternatively, if NO HEADING is specified for
the column, the application uses the column name as the default.

HELP TEXT Attribute

The HELP TEXT attribute associates help text with a column name to provide help
information. The help text is stored in the COMMENTS table, in order of entry, as
single rows of up to 77 characters each. You can retrieve the help text by querying the
COMMENTS table.

UPSHIFT Attribute

The UPSHIFT attribute is allowed for single-byte character-type columns only. If
UPSHIFT is specified, SQL/MP upshifts all data entered before storing the data in the
column.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-28

Creating a Database Defining Columns
Defining Corresponding Columns in Different Tables
Data type cross-matching between tables is the responsibility of the database
administrator. You must ensure that corresponding columns used in different tables are
defined with the same characteristics: data type, size, default values, and constraints.

For example, a part-number column defined in several tables should have the same
definition. Do not define one column as PIC X(4) and another as PIC 9(4). By using the
same column definition, you ensure that applications can perform join operations
during data retrieval or predicate comparisons.

Understanding Data Type Correspondence With Host
Languages
Data type correspondence between SQL/MP and the host programming languages
supported for embedded SQL is shown in Table 5-1. The table lists selected column
data types representing different possible data descriptions generated by INVOKE
statements.

Table 5-1. Summary of Corresponding Data Types (page 1 of 3)

SQL/MP Column
Name and Data
Type COBOL C Pascal TAL

A CHAR(10)
 PIC X(10)
 NCHAR (10)

PIC X(10). char a[11]; fstring(10); string a[0:9];

B VARCHAR(10)
 NCHAR
 VARYING(10)

02 B.
 03 LEN
 PIC S9(4)
COMP.
 03 VAL PIC
X(10).

struct {
short len;
char val[11];
}b;

string(10); struct b;
begin
int len;
string val[0:9];
end;

C CHAR(10)
 CHAR SET y
 PIC X(10)
 CHAR SET y
 NCHAR (10)

01 B
 CHARACTER
SET y
 PIC X(10).

char
 CHARACTER
SET y
 a[11];

fstring(10)
CHARACTE
R SET y;

string
 CHARACTER
SET y
 a[0:9];

D VARCHAR(10)
 CHAR SET y
 NCHAR
 VARYING(10)

01 B.
 02 LEN
 PIC S9(4)
COMP.
 02 VAL

CHARACTER
SET y
 PIC X(10).

struct {
short len;
char
 CHARACTER
SET y
 val[11];
}b;

string(10)
CHARACTE
R SET y;

struct b;
begin
int len;
string
 CHARACTER
SET y
 val[0:9];
end;
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-29

Creating a Database Defining Columns
E NUMERIC(4, 0) PIC S9(4)
COMP.

short c; int16; int c;

F NUMERIC(4, 0)
 UNSIGNED

PIC 9(4) COMP. unsigned short
d;

cardinal; int d
/SMALLINT
UNSIGNED/;

G NUMERIC(9, 2) PIC S9(7)V9(2)
COMP.

long e;
/* scale is 2 */

int32; {*
scale is 2 *}

int(32) e; ! scale
is 2

H NUMERIC(9, 2)
 UNSIGNED

PIC 9(7)V9(2)
COMP.

unsigned long f;
/* scale is 2 */

int32; {*
scale is 2 *}

int(32) f
/INTEGER
UNSIGNED/;
! scale is 2

I NUMERIC(18, 2) PIC S9(16)V9(2)
COMP.

long long f;
/* scale is 2 */

int64; {*
scale is 2 *}
(No
arithmetic in
Pascal)

fixed(2) g;

J SMALLINT PIC S9(4)
COMP.

short h; int16; int h;

K SMALLINT
 UNSIGNED

PIC 9(4) COMP. unsigned short i; cardinal; int i
/SMALLINT
UNSIGNED/;

L INTEGER PIC S9(9)
COMP.

long j; int32; int(32) j;

M INTEGER
 UNSIGNED

PIC 9(9) COMP. unsigned long k; {* k:
UNSIGNED
INTEGER IS
NOT
SUPPORTE
D *}

int(32) k
/INTEGER
UNSIGNED/;

N LARGEINT PIC S9(18)
COMP.

long long l; int64;
(No
arithmetic in
Pascal)

fixed(0) l;

O DECIMAL(18, 2) PIC S9(16)V9(2)
DISPLAY SIGN
IS LEADING.

decimal m[19];
/* scale is 2 */

decimal(18);
{* scale is 2
*}

string m[0:17]
/DECIMAL(18)/;
! scale is 2

P DECIMAL(9, 2)
 UNSIGNED

PIC 9(7)V9(2)
DISPLAY.

decimal n[10];
/* scale is 2 */

decimal(9);
{* scale is 2
*}

string n[0:8]
/DECIMAL(9)
UNSIGNED/;
! scale is 2

Table 5-1. Summary of Corresponding Data Types (page 2 of 3)

SQL/MP Column
Name and Data
Type COBOL C Pascal TAL
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-30

Creating a Database Defining Columns
Q PIC 9(9) COMP PIC 9(9) COMP unsigned long o; int32; int(32) o
/INTEGER
UNSIGNED/;

R FLOAT(15) * Q: REAL IS
NOT
SUPPORTED

float q; real; real q;

S FLOAT(30) * R: DOUBLE
PRECISION IS
NOT
SUPPORTED

double r; longreal; real(64) r;

T REAL
 (Same as
 FLOAT(22))

* S: REAL IS
NOT
SUPPORTED

float s; real; real s;

U DOUBLE
 PRECISION
 (Same as
 FLOAT(54))

* T: DOUBLE
PRECISION IS
NOT
SUPPORTED

double t; longreal; real(64) t;

V DATETIME
 YEAR TO DAY

PIC X(10). char u[11]; fstring(10); string u[0:9];

W DATE
 (Same as
 DATETIME
 YEAR TO DAY)

PIC X(10). char v[11]; fstring(10); string v[0:9];

X TIME
 (Same as
 DATETIME
 HOUR TO
 SECOND)

PIC X(8). char w[9]; fstring(8); string w[0:7];

Y TIMESTAMP
 (Same as
 DATETIME
 YEAR TO
 FRACTION(3))

PIC X(26). char x[27]; fstring(26); string x[0:25];

Z INTERVAL
 MONTH(6)

PIC X(7). char y[8]; fstring(7); string y[0:6];

Table 5-1. Summary of Corresponding Data Types (page 3 of 3)

SQL/MP Column
Name and Data
Type COBOL C Pascal TAL
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-31

Creating a Database Creating Table Partitions
Creating Table Partitions
To promote parallel processing of queries and parallel index maintenance, you should
partition data across available disk volumes. For a very large table or a table used at
different geographical sites, partitions can make the data more accessible and can
reduce the time required for table scans by a factor almost equal to the number of
partitions.

Partitions are allowed for tables of all three organization types. For key-sequenced
tables, however, the table must have a user-defined primary key to have partitions.

A partition of a table or index holds all the rows within a range of key values. Partitions
can reside on one system or across many systems in a network.

You can partition a table or index upon creation. You can also split an existing table or
index into partitions, or you can add or drop a partition by using the ALTER TABLE or
ALTER INDEX statement. There are special rules for adding, moving, and splitting
partitions based on file type (key-sequenced, entry-sequenced, or relative). For more
information, see Adding Partitions to Tables and Indexes on page 7-7 and Altering
Partition Attributes on page 7-19.

Performance Benefits
The benefits of using partitioned tables and indexes are:

• Partitions are independent of one another for access. Only the accessed partition
must be available.

• Partitions improve transaction throughput by allowing simultaneous disk access to
different partitions of the same table.

• Partitions require no special access procedures. SQL manages partition access for
you automatically.

• Partitions enable SQL to more readily process queries in parallel.

• Partitions allow you to have tables larger than the size of a single disk volume.

Partitioning the indexes of a table enables SQL to take maximum advantage of parallel
index updates. Indexes should reside on separate volumes and should be configured
on separate processors.

Creating Partitions on a System That Uses SMF
If you create tables and indexes with a large number of partitions—for example, tables
supporting a DSS application—you can use the SMF product to manage the
distribution of partitions across physical disk volumes. When you create a table or
index, you can specify partition names using virtual volumes as the volume portion of
the volume.subvolume.file name; SMF automatically distributes the partitions
across the physical volumes assigned to the storage pool (or pools). You can also
place nonpartitioned tables and indexes on virtual volumes managed by SMF.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-32

Creating a Database Creating Table Partitions
 examples suggest possible configurations of storage pools:

• You can configure a pool containing physical volumes primaried to a particular
processor or set of processors. By partitioning a table across virtual volumes
associated with that pool, you ensure that disk access to the table will be managed
by the specified processors.

SQL/MP provides a complementary mechanism for controlling (limiting) which
processors run parallel queries. For more information about using SMF with this
feature, see Managing Processor Usage in a Distributed Environment on
page 12-11.

• You can configure a pool for a particular application. Create SQL objects for that
application on virtual volumes associated with the pool; the objects will reside on
the physical volumes in the pool. To maximize performance of parallel queries, you
can balance the number of physical volumes primaried to each processor.

• As a variation on the preceding configurations, you can configure a pool for each
processor. That is, the physical volumes in each pool are primaried to a particular
processor. You then create partitions on virtual volumes associated with each pool;
be sure to distribute the partitions across all the pools. This configuration allows
SMF to manage the physical storage of files and ensures that the partitions are
distributed across all processors, which enhances the parallel execution of queries.

• However you partition tables and indexes, you can allow temporary files used
during SQL queries (such as files used for repartitioning or FastSort scratch files)
to be distributed across physical volumes primaried to all processors.

The preceding examples are general suggestions for the use of SMF. You will need to
configure partitions and storage pools according to the requirements of your
environment. For more information about SMF, see the Storage Management
Foundation User’s Guide.

SMF allows multiple virtual volumes to be associated with the same storage pool,
which can cause the storage of two or more partitions of the same file being allocated
to the same physical disk, if that is determined to be the most efficient use of available
space. To ensure that a partition resides on a unique physical volume, you can place it
on a direct volume that is not in any storage pool or use the PHYSVOL option when
you create or alter a table or index.

If a direct volume is also in a storage pool, it becomes more complicated to ensure that
a specified partition is the only one residing on that physical volume. To achieve this
goal, it is generally better to specify a virtual volume for the partition and use the
PHYSVOL option than to specify a direct volume. When you use the PHYSVOL option,
the partition has the benefit of being managed by SMF.

The PHYSVOL option lets you place a partition on a specified physical volume in the
pool. You do not have to use the PHYSVOL option on all partitions in a table. You can
use it for particular partitions that you want to locate on specified physical disks, while
letting SMF manage the physical location of other partitions in the table.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-33

Creating a Database Creating Table Partitions
The trade-off of using PHYSVOL is that when you assign a partition to a particular
physical volume, SMF might not be able to relocate the file (partition) automatically. For
the syntax and definition of the PHYSVOL option, see the CREATE and ALTER entries
in the SQL/MP Reference Manual.

Defining a Large Number of Partitions
To take advantage of the larger number of indexes and the larger number of partitions
available for tables and indexes on versions 320 and later of SQL software, use the
PARTITION ARRAY EXTENDED option when you create the base table.

The length of the key is a factor in determining the maximum number of partitions for a
table or index and relates to the storage of FIRST KEY values for all the partitions in a
fixed-size file label; however, the actual calculation is complex and depends on
additional factors, such as disk label space and the message size of the operating
system. Examples of partition limits for base tables are:

Examples of partition limits for indexes are:

Note that the size of the primary key of an index table equals (primary key of the base
table + index key + 2 bytes). The maximum number of partitions for a base table with a
primary key length of 44 bytes is the same as that of an index table with a primary key
of 10 bytes, an index key of 32 bytes, and the 2-byte offset.

Primary Key
Size (bytes)

Approximate Limit on Number of Partitions
(with EXTENDED partition array)

10 900

44 450

100 250

250 110

Primary Key
Size (bytes)

Index Key Size
(bytes)

Approximate Limit on Number of
Partitions (with EXTENDED partition
array)

10 10 670

10 32 450

50 48 250

100 100 130
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-34

Creating a Database Creating Table Partitions
Special Considerations for DSS Applications
DSS applications typically require periodic addition and deletion of data. Further,
access must be well balanced. The choice of leftmost primary key column—and thus
the partitioning strategy—can greatly affect access. Choose a leftmost key column that
minimizes contention while allowing acceptable load and delete performance.
Possibilities include a date column (if access is distributed evenly across date values),
a nondate column in the primary key (if access across the date column is weighted
toward specific ranges), or an artificial “partition number” value, with rows distributed
across all partitions.

Further, when defining partitions for a DSS application, consider using one or more of
these strategies:

• Leave the primary partition empty (with minimal size) and use secondary partitions
for all data. The primary partition of a partitioned table cannot easily be dropped. If
all your data resides in secondary partitions, you have the greatest flexibility for
adding, dropping, and splitting partitions.

• Mirror the volume associated with the primary partition to maximize availability.
Queries and programs that refer to the primary partition require its availability when
accessing data.

• Configure mirrored disks on separate channels. This strategy maximizes
performance and should be used for volumes containing primary and secondary
partitions where possible.

Note. SQL tables and indexes with many partitions (typically around 400) might cause
SQLCAT, SQLUTIL, or AUDSERV processes to incur file-system error 31 or 34 because of
insufficient memory in the process file segment (PFS). To increase the PFS size for any of
these SQL processes, use the BIND statement CHANGE PFS command. For programs run
from TACL, you can specify the PFS size in the TACL RUN command. Save the original copy of
any program you modify. If you alter PFS size for SQLCAT, SQLUTIL, or AUDSERV, you must
license the modified copy and re-alter the PFS size when you install a newer version of
SQL/MP.
SQL tables and indexes with many partitions might also cause the PARTNS catalog table and
its associated index, IXPART01, to become full. The PARTNS table contains N**2 rows for
each table and index with N partitions. Thus, three tables of 400 partitions each would fill the
PARTNS table. To remedy this situation, distribute the definitions of objects across catalogs.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-35

Creating a Database Creating Table Partitions
Sample Table Definition
This example shows the definition for the PARTLOC table. This table contains data
maintained at three different sites: New York, Los Angeles, and San Francisco. The
table is partitioned by its primary key (which consists of LOC_CODE and PARTNUM)
into three partitions, one for each site:

CREATE TABLE \NY.$WHS1.INVENT.PARTLOC (
 LOC_CODE CHARACTER (3) NO DEFAULT,
 PARTNUM NUMERIC (4) UNSIGNED NO DEFAULT,
 QTY_ON_HAND NUMERIC (7) NO DEFAULT,
 PRIMARY KEY (LOC_CODE, PARTNUM
)

CATALOG \NY.$WHS1.INVENT
PARTITION (\SF.$WHS2.INVENT.PARTLOC
 CATALOG \SF.$WHS2.INVENT
 FIRST KEY ("G00", 0) ,
 \LA.$WHS3.INVENT.PARTLOC
 CATALOG \LA.$WHS3.INVENT
 FIRST KEY ("P00", 0)
) ;

This example creates a partitioned table with a primary partition and two secondary
partitions. The example shows the use of DEFINE names to identify a table and
catalog.

-- DEFINEs were previously added during this SQLCI
-- session or inherited from the command interpreter.

>> INFO DEFINE =MCAT;
 DEFINE NAME =MCAT
 CLASS CATALOG
 SUBVOL \SYS1.$VOL1.MFG

>> INFO DEFINE =ORDERS;
 DEFINE NAME =ORDERS
 CLASS MAP
 FILE $VOL1.MFG.ORDERS

>> CREATE TABLE =ORDERS
+> (ORDERNUM DECIMAL (6) UNSIGNED NO DEFAULT NOT NULL,
+> ORDER_DATE DATETIME YEAR TO DAY NO DEFAULT NOT NULL,
+> DELIV_DATE DATETIME YEAR TO DAY NO DEFAULT NOT NULL,
+> SALESREP DECIMAL (4) UNSIGNED DEFAULT SYSTEM,
+> CUSTNUM DECIMAL (4) UNSIGNED NO DEFAULT NOT NULL,
+> PRIMARY KEY ORDERNUM)
+> PARTITION (=ORDERS2
+> CATALOG =MCAT
+> FIRST KEY 20000,
+> =ORDERS3
+> CATALOG =MCAT
+> FIRST KEY 40000)
+> EXTENT (1000,100)
+> BLOCKSIZE 2048
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-36

Creating a Database Securing a Base Table
+> CATALOG =MCAT
+> SECURE "NNOO";
--- SQL operation complete.

For more information, see the SQL/MP Reference Manual or the SQLCI HELP entry
for the CREATE TABLE statement

Securing a Base Table
Base tables are the foundation of the database, and base table security ultimately
defines much of the security for views, indexes, and DML statements. The local owner
of an object, a remote owner with purge authority, and the super ID user generally
have the authority to perform DDL operations on existing tables. Anyone with authority
to purge a table can drop the table.

You can alter the security of a table by using the ALTER TABLE statement or the
SECURE command.

Security of Dependent Objects
When you alter the security of a base table, SQL/MP automatically alters the security
attributes for the dependent indexes. The security of dependent protection views might
also be altered if the new security of the table violates the system-enforced relationship
between these objects, as explained later in “Security Guidelines for Protection Views.”

Examples of Securing a Table
These examples show ways of securing a table to control DML access and to control
who has the authority to perform this set of DDL operations. Authority to purge the
table and ownership of the table is required for any of these operations:

• Create a protection view
• Create or drop a constraint
• Create or drop an index
• Update statistics for a table
• Alter the attributes
• Add a partition to a table
• Add a column to a table

This example shows security that enables any network user to read or write to a table.
Only the product manager (user 200, 255) can perform the listed DDL operations.

$VOL2.APPLTAB.TABLE1 Owner = 200,255
 Security = "NN-O"

This example shows security that enables any network user to read a table but restricts
update operations to the local application group. Only the application manager (user
250, 255) has the authority to perform the listed DDL operations.

$VOL2.APPLTAB.TABLE2 Owner = 250,255
 Security = "NGOO"
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-37

Creating a Database Creating Views of Base Tables
This example shows security that enables any network user to read or write to a table.
Only the development manager (user 100, 255) has the authority to perform the listed
DDL operations. Although the security gives read, write, and purge access to additional
users, the DDL statements, except DROP TABLE, require ownership of the table. Any
user in group 100 can drop the table.

$VOL2.APPLTAB.TABLE2 Owner = 100,255
 Security = "NNOG"

Creating Views of Base Tables
To create a view, use the CREATE VIEW statement. CREATE VIEW statements
enable you to define new column names for a view, instead of using the column names
from the underlying tables. When using the view, applications use the view-defined
column names. Applications can also use views to rename, reorder, and project
subsets of columns from one or more base tables. For background information about
views, see Using Views on page 3-13.

Before you create views for your database, see the SQL/MP Query Guide for
information about formulating queries.

Creating a Protection View
A protection view is a view that has only one underlying table and is defined with the
PROTECTION attribute. The view can be a projection of columns or a selection of
rows from the underlying table, or both. The rows in a protection view are accessible
by applications for read, insert, update, and delete operations. A protection view can
be secured for read, write, execute, and purge access.

If you plan to use similarity checking with a protection view, be sure to use the
CREATE VIEW statement’s SIMILARITY CHECK ENABLE clause.

Security Guidelines for Protection Views
These guidelines apply to securing protection views:

• A protection view can have only a single underlying table. You must put a
protection view on the same volume as its underlying table and register the view in
the same catalog as the table.

• To create a protection view, you must have read, write, and purge authority for the
underlying table and write authority for the catalog in which the underlying table is
registered. You must also be the local owner of the underlying table or a remote
owner with authority to purge the table.

• The owner of a protection view is always the same as the owner of the underlying
table.

• The security string of a protection view has these dependencies on the underlying
table:
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-38

Creating a Database Creating a Protection View
° The purge authority for the protection view must include all users who have
purge authority for the underlying table. Normally, the purge authority for a
protection view is the same as the purge authority for the underlying table.

° The security string at creation time must meet security dependency
requirements. If the creator’s default security string violates the rules, the
creation attempt fails. The creator can then include the SECURE clause in the
CREATE VIEW statement and reissue the statement.

° If an alteration of the security string for the underlying table violates the
security criteria, SQL issues a warning and automatically changes the security
strings for the protection view.

Examples
This example creates a protection view of the EMPLOYEE table. The table columns
are renamed in the view definition.

>> CREATE VIEW $VOL1.PERSNL.EMPLIST
+> (EMPLOYEE_NUMBER, LAST_NAME, FIRST_NAME, DEPARTMENT)
+> AS SELECT EMPNUM, LAST_NAME, FIRST_NAME, DEPTNUM
+> FROM EMPLOYEE
+> FOR PROTECTION
+> WITH HEADINGS
+> CATALOG $VOL1.PERSNL;

This example shows a view definition including the WITH CHECK option and the effect
on an attempted insertion of a row that violates the WITH CHECK condition. Only rows
with EMPNUM values greater than 1 and less than 1000 can be inserted.

>>CREATE VIEW $VOL1.PERSNL.EMPVIEW
+> AS SELECT EMPNUM, FIRST_NAME, LAST_NAME,
+> DEPTNUM, JOBCODE, SALARY
+> FROM $VOL1.PERSNL.EMPLOYEE
+> WHERE EMPNUM > 1 AND
+> EMPNUM < 1000
+> FOR PROTECTION
+> CATALOG $VOL1.PERSNL
+> SECURE "NCNC"
+> WITH CHECK OPTION;
--- SQL operation complete.

-- Because the WITH CHECK OPTION is defined, the following
-- INSERT statement is rejected:

>>INSERT INTO $VOL1.PERSNL.EMPVIEW (*)
+> VALUES (1200, "WAYLAN","JAMES", 4000, 250, 55000.00);
 ^
*** ERROR from SQL [-8300]: File system error occurred on
 \SYS1.$VOL1.PERSNL.EMPVIEW.
*** ERROR from File System [1026]: The selection expression
 on an SQL view has been violated.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-39

Creating a Database Creating a Shorthand View
Creating a Shorthand View
A shorthand view is a view derived from one or more tables and other views and
defined without the PROTECTION attribute. A shorthand view can only be queried and
it can be secured only for purge access. Any user who has authority to read the
underlying table or tables, has authority to read the shorthand view.

Security Guidelines for Shorthand Views

• A shorthand view can have more than one underlying table or view or a
combination of underlying tables and views.

• The view’s creator must have authority to write to the VIEWS catalog table that
contains the view description and to the USAGES and TRANSIDS catalog tables in
the catalogs that contain the descriptions of the underlying tables and views.

• The owner of a shorthand view is set to that of the creator. The security string
defaults to the current default security of the creating process. You can specify a
security string in the SECURE clause of the CREATE VIEW statement.

• The owner of a shorthand view does not have to be the same as the owner of an
underlying table or view. Different users can own the tables and views underlying a
shorthand view.

• Only purge authority has meaning in the security string for a shorthand view,
although the entire string is required. Anyone with authority to read all the
underlying tables has authority to read a shorthand view. When you create a
shorthand view, you should verify that read authority is available for all the
underlying tables and views.

Examples
This example creates a shorthand view of two tables by using the DEPTNUM columns
in the joining criterion. Correlation names are required because DEPTNUM appears in
both tables.

>> CREATE VIEW \SYS1.$VOL1.PERSNL.EMPDEPT
+> AS SELECT E.EMPNUM, E.LAST_NAME, E.FIRST_NAME,
+> E.DEPTNUM, D.DEPTNAME
+> FROM \SYS1.$VOL1.PERSNL.EMPLOYEE E,
+> \SYS1.$VOL1.PERSNL.DEPT D
+> WHERE E.DEPTNUM = D.DEPTNUM
+> CATALOG \SYS1.$VOL1.PERSNL;

Example 5-2 on page 5-41 creates a shorthand view of four joined tables. Correlation
names are required because of duplicate column names in the tables. The INFO
DEFINE command displays the DEFINEs used in creating the view. For more
information about DEFINEs, see Using DEFINEs on page 10-30.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-40

Creating a Database View Security and Underlying Table Security
View Security and Underlying Table Security
These examples show how the security of a view depends on its underlying table or
tables. Suppose that the underlying table has this security:

$VOL4.APPLTAB.EMPLOYEE Owner = 200,255
 Security = "GG-O"

This example shows a protection view on the table $VOL4.APPLTAB.EMPLOYEE. The
owner of the underlying table is the same as the owner of this view. The security of the
view enables any group 200 user to read the view but restricts updating and inserting
rows to the view owner.

$VOL4.APPLTAB.PREMPV1 Owner = 200,255
 Security = "GO-O"

Example 5-2. A Shorthand View of Four Joined Tables

-- DEFINEs were previously added during this SQLCI
-- session or inherited from the command interpreter.
>> INFO DEFINE =ICAT;
 DEFINE NAME =ICAT
 CLASS CATALOG
 SUBVOL \SYS1.$VOL3.INVT
>> INFO DEFINE =INVENTORY_VIEW1;
 DEFINE NAME =INVENTORY_VIEW1
 CLASS MAP
 FILE $VOL1.MFG.IVIEW1
>> INFO DEFINE =PARTS;
 DEFINE NAME =PARTS
 CLASS MAP
 FILE $VOL1.MFG.PARTFILE
>> INFO DEFINE =ORDERS;
 DEFINE NAME =ORDERS
 CLASS MAP
 FILE $VOL2.MFG.ORDFILE
>> INFO DEFINE =ODETAIL;
 DEFINE NAME =ODETAIL
 CLASS MAP
 FILE $VOL2.MFG.ODETFILE
>> INFO DEFINE =PSUPPLIER;
 DEFINE NAME =PSUPPLIER
 CLASS MAP
 FILE $VOL3.MFG.PSUPFILE
>> CREATE VIEW =INVENTORY_VIEW1
+> AS SELECT A.PARTNUM, A.PARTDESC, A.PRICE, D.PARTCOST,
+> C.QTY_ORDERED, A.QTY_AVAILABLE,
D.QTY_RECEIVED,
+> B.DELIV_DATE,D.EST_RECD_DATE
+> FROM =PARTS A, =ORDERS B, =ODETAIL C, =PSUPPLIER D
+> WHERE A.PARTNUM = C.PARTNUM AND
+> A.PARTNUM = D.PARTNUM AND
+> C.ORDERNUM = B.ORDERNUM
+> CATALOG =ICAT;
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-41

Creating a Database Creating Indexes on Base Tables
This example shows a protection view on the table $VOL4.APPLTAB.EMPLOYEE. The
owner of the underlying table is the same as the owner of this view. The security of the
view enables any network user to read the view and any local group 200 user to
update or insert rows into the view.

$VOL3.APPLTAB.PREMPV2 Owner = 200,255
 Security = "NG-O"

This example shows a shorthand view on the table $VOL4.APPLTAB.EMPLOYEE and
other tables. The owner of the view can be different from the owner of the underlying
tables. The security of the shorthand view is not the basis for access. Read access to
the underlying tables authorizes access to this view. For this example, only group 200
users can read the view because $VOL4.APPLTAB.EMPLOYEE is secured for group
200 users.

$VOL1.APPLTAB.SHEMPV1 Owner = 100,255
 Security = "NNNO"

Creating Indexes on Base Tables
An index provides an alternate access path to a table; the alternate path is different
from the inherent access path (primary key). Indexes can improve application
performance for data retrieval operations by providing the optimizer with a greater
choice of access paths. Indexes can be scanned forward or backward.

If an existing index includes the selection columns for an SQL statement, the SQL
compiler uses the index as an access path to the data. For more information about
indexes and performance, see Determining When to Use Indexes on page 3-16,
Optimizing Index Use on page 14-16, and Maximizing Parallel Index Maintenance on
page 14-17.

Creating an Index
To create an index, use the CREATE INDEX statement, which creates both the index
definition in the catalog and the physical file. If the underlying table contains data, the
creation process automatically loads the index. CREATE INDEX statements refer to
existing columns of a base table and create alternate indexes on the specified
columns.

When you define an alternate index, first consider the column-related guidelines
described under Defining Columns on page 5-19.

Also consider primary key definitions, as noted in Primary Keys on page 3-2 and
Creating Key-Sequenced Tables on page 5-11. Determine if the primary key is the
most appropriate based on actual use of the table.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-42

Creating a Database Creating an Index
Guidelines
When defining indexes, consider these general guidelines:

• When you create an index, you specify the column or columns that make up the
key. The key is classified into one of three levels, depending on the data types of
the columns that make up the key. The key level affects performance as described
under Key Levels on page 3-4.

• When you create an index, the index inherits the type of partition array associated
with the base table. To take advantage of the larger number of indexes and index
partitions available with versions 320 and later of SQL/MP software, specify an
extended partition array for the base table.

• Define key columns with NO DEFAULT NOT NULL and define nonkey columns
with SYSTEM DEFAULT NOT NULL (if the columns do not allow null values) to
save two bytes of storage space for each column and avoid complex null logic.

• Define index columns so that their order reflects frequency of access and relative
importance of queries competing for the index (see Figure 5-2 on page 5-44):

° Specify columns to be accessed with equality predicates as leftmost columns.

° Follow these columns by columns with inequality predicates (predicates that
specify a range).

° If there is more than one column that will be accessed with an inequality
condition, consider ordering the columns by decreasing selectivity (as
described in the SQL/MP Query Guide). These columns become positioning
columns because they are used to position within the index and mark the
range of qualifying rows.

° Follow the index columns with nonpositioning columns that will have predicates
specified on them and columns that will be selected and have not been
included already.

Note. SQL tables and indexes with many partitions (typically around 400) might cause
SQLCAT, SQLUTIL, or AUDSERV processes to incur file-system error 31 or 34 or cause the
PARTNS catalog table and its associated index, IXPART01, to become full. For more
information about this situation, see Creating Table Partitions on page 5-32.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-43

Creating a Database Creating an Index
• Arrange columns to minimize unpacking or maximize bulk move operations,
depending on how the columns are used:

° To avoid unpacking operations, arrange columns to end at word boundaries.

° To optimize bulk moves, place columns in groups that will be selected together.

• An index column can refer to a different collation from the collation used by the
corresponding base table column, provided the shifting rules for both collations are
the same.

• Collation of single-byte character data is performed in the order represented by the
ordinal positions of the characters in the ASCII set. Alternatively, you can specify a
different collating sequence for single-byte character columns by creating a
collation object and associating the collation with the character data. If you do
associate a collation with the column, the character set associated with the
collation must be the same as the character set associated with the column.

• Indexes you create before a table is loaded are loaded automatically as the table is
loaded.

• You can load partitioned indexes in parallel. For more information, see Specifying
Parallel Loading of Index Partitions on page 5-49.

• If you are loading an index on a large table, you might need to set the
=_SORT_DEFAULTS DEFINE to enable FastSort to use alternate swap files or
scratch file volumes. The SQL/MP Reference Manual describes this DEFINE.

• Indexes can be updated in parallel by the disk process after the table has been
updated. To take full advantage of parallel updating, you should create a table’s
indexes on separate disk volumes, with each disk volume configured for a separate
processor. The performance effects of parallel updates are discussed under
Maximizing Parallel Index Maintenance on page 14-17.

• If you are creating an index on an existing table, follow the CREATE INDEX
statement with an UPDATE STATISTICS statement to update the statistics in the
catalog for the table.

Figure 5-2. Ordering Columns Within an Index

. . .

VST006.vsd

Columns with equality
predicates, in order of
descending selectivity,
from frequently used or
otherwise important
queries

Column with
range (inequality)
predicate with
lowest selectivity

Non-
positioning
key columns

Columns for
index-only
access

Primary key
columns (implicitly
added and maintained
by NonStop SQL/MP)
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-44

Creating a Database Creating an Index
• Index creation can be a long operation, depending on the size of the table and the
load on the system. Therefore, two locking strategies are available:

° Default locking requires a shared table lock on the underlying table. The
shared table lock ensures that no users can modify rows during the creation of
the index. This lock can prohibit access to the table by other users.

° The WITH SHARED ACCESS option for the CREATE INDEX statement allows
access to the table for DML operations during all but the short final stage of
index creation. The option includes a reporting feature for monitoring index
creation. In addition, you can request a time window or request explicit
operator authorization for the final stage of index creation that requires table
locking.

° The WITH SHARED ACCESS option can be used in conjunction with the
PARALLEL EXECUTION ON option if the initiating node, all nodes with base
table partitions, and all nodes that will have index partitions are running version
315 or later of SQL/MP software.

For more information about the WITH SHARED ACCESS option and concurrent
access to tables by multiple users, see Understanding the Implications of
Concurrency on page 14-1 and the “WITH SHARED ACCESS” description in the
SQL/MP Reference Manual.

• For an audited index, make a TMF online dump of the index immediately after
creating it to prepare for possible file recovery, which might be faster than
rebuilding the index. The WITH SHARED ACCESS option, when used with the
CREATE INDEX statement, allows you to take the online dump while the CREATE
INDEX operation is progressing.

• Creating an index invalidates any registered programs that use the underlying
table unless you use one of these:

° The CHECK INOPERABLE PLANS compiler option, described in Using
Similarity Checks on page 10-15, with similarity checking enabled for the index.
The use of similarity checking is the recommended method for avoiding
automatic recompilations.

° The NO INVALIDATE option in the CREATE INDEX statement

An invalidated program can be executable, but you must explicitly SQL compile the
program to revalidate it. If you do not use similarity checking, or if the similarity
check does not succeed, you must recompile to avoid automatic recompilation.

• You can influence the optimizer’s choice of index by using the CONTROL QUERY
directive. For more information, see the SQL/MP Query Guide and the SQL/MP
Reference Manual.

• If you are running SQL/MP on a system using the SMF product, you can specify a
virtual volume for the index. The virtual volume is associated with a storage pool;
SMF places the index file on a physical volume in that storage pool. SMF chooses
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-45

Creating a Database Creating an Index
a physical location based on its size estimate of the index file and on the available
space in the pool.

In exceptional cases you might want a file to reside on a particular physical
volume. To accomplish this, you can specify a direct volume that is not in any
storage pool, or you can use the PHYSVOL option to specify a particular physical
volume in a pool. For more information about using this feature, see the SQL/MP
Reference Manual and the Storage Management Foundation User’s Guide.

Examples
This example creates an index on the ORDERS table by using the CUSTNUM column
as the key:

>> CREATE INDEX $VOL1.SALES.XORDCUS
+> ON $VOL1.SALES.ORDERS (CUSTNUM)
+> KEYTAG "OC"
+> EXTENT (100,50)
+> BLOCKSIZE 2048
+> MAXEXTENTS 24
+> ICOMPRESS
+> CATALOG $VOL1.SALES;
--- SQL operation complete.

This example creates an index on the ORDERS table in order of the most recent
DELIV_DATE:

>> CREATE INDEX $VOL1.SALES.XORDCUS
+> ON $VOL1.SALES.ORDERS (DELIV_DATE DESC)
+> KEYTAG "LD"
+> EXTENT (100,100)
+> ICOMPRESS
+> CATALOG $VOL1.SALES;
--- SQL operation complete.

This example creates an index on a virtual volume, $VIR1, associated with a SMF
pool. The example specifies that the file reside on the physical volume, $PVOL6:

>> CREATE INDEX $VIR1.SALES.XORDCUS
+> ON $VIR1.SALES.ORDERS (CUSTNUM)
+> |
+> CATALOG $VIR1.SALES
+> PHYSVOL $PVOL6;
--- SQL operation complete.

In the preceding example, $VIR1 must be associated with the storage pool that
contains $PVOL3. When you create an index name on a virtual volume such as $VIR1,
you use the same syntax you would use for volumes not managed by SMF. However,
with the PHYSVOL option, you specify only the volume name (such as $VOL6). SQL
returns an error if you specify a full volume.subvolume.file name with the
PHYSVOL option. If you omit the PHYSVOL option, SMF determines the physical
volume on which the XORDCUS index resides.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-46

Creating a Database Defining Unique Indexes
Defining Unique Indexes
You can use the technique of defining index keys as UNIQUE to enhance the
performance of a SELECT statement that returns only one row. A unique index
requires that the value of the columns that make up the index key is unique in the
table. The index value is the value of columns together in the index and not the
individual values of the column.

If the table contains duplicate values in the specified columns, you cannot create a
unique index on those columns.

You should consider creating a unique index if you know that a column contains only
unique values and the column is used in SELECT queries that have a WHERE clause
of this format:

WHERE column = expression

If you create a unique index on the column, the system determines that only one value
can be returned, and the execution of the statement requests only one row.

If there is no unique index on the column, the system expects duplicate values in the
column and the executor must request a scan of values from the disk process. The
system then requests the disk process to validate that only one row satisfies the
WHERE clause of the statement.

This example shows a SELECT statement that uses the column SOC-SECURITY-
NUMBER, which has been defined as a unique index. The SQL executor requests only
one row from the disk process.

>> SELECT LAST_NAME, FIRST_NAME, EMPNUM, SOC-SECURITY-NUMBER
+> FROM EMPLOYEE
+> WHERE SOC-SECURITY-NUMBER = "534-90-1111";

Defining a unique index on columns is a technique that you might use to improve the
response only for the SELECT queries that use the column or columns indexed and
that return only one row. As with all indexes and keys, you must consider performance
issues for all DML operations before determining when to create an index.

For more information on how indexes can enhance performance, see Determining
When to Use Indexes on page 3-16, Optimizing Index Use on page 14-16, and
Maximizing Parallel Index Maintenance on page 14-17.

Creating Unique Indexes for Integrity Checking
One use of a unique index is to provide an integrity check between rows that is not
possible by using constraints. An index defined as unique prevents two or more rows
of the table from having the same values in the indexed columns. The system ensures
that rows inserted or updated satisfy the unique index requirement.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-47

Creating a Database Creating Index Partitions
This example creates a unique index on the EMPLOYEE table. Each row must contain
a unique value (a social security number, in this case) because the index is unique.

>> CREATE UNIQUE INDEX IEMPSS ON $VOL1.PERSNL.EMPLOYEE
+> (EMP_SOCIAL_SEC_NUMBER ASC)
+> CATALOG \SYS1.$VOL1.ADMIN;
--- SQL operation complete.

If the index definition specifies multiple columns, the value of the columns as a group
instead of the values of the individual columns determines uniqueness.

You can make all columns unique by creating a unique index for each column of the
base table.

A collation specified for an index column can affect the uniqueness of rows. Rows that
contain unique values in a base table column that uses one collation might not contain
unique values for an index column that uses a different collation. The uniqueness is
based on collation rules.

Creating Index Partitions
The following CREATE INDEX statement creates a partitioned index with the primary
partition and an additional partition. The INFO DEFINE command displays the
DEFINEs used to identify the index, table, and catalog.

-- DEFINEs were previously added during this SQLCI
-- session or inherited from the command interpreter.
>> INFO DEFINE =PCAT;
 DEFINE NAME =PCAT
 CLASS CATALOG
 SUBVOL \SYS1.$VOL1.PERSNL

>> INFO DEFINE =EMPFILE;
 DEFINE NAME =EMPFILE
 CLASS MAP
 FILE $VOL1.PERSNL.EMPLOYEE
>> INFO DEFINE =EMP_NAME_INDEX;
 DEFINE NAME =EMP_NAME_INDEX
 CLASS MAP
 FILE $VOL1.PERSNL.XEMPNAME
>> CREATE INDEX =EMP_NAME_INDEX
+> ON =EMPFILE (LAST_NAME, FIRST_NAME)
+> PARTITION ($VOL2.PERSNL.XEMPNAME
+> CATALOG =PCAT
+> FIRST KEY "M")
+> EXTENT (1000,100)
+> BLOCKSIZE 2048
+> CATALOG =PCAT
+> SECURE "NNOO";
--- SQL operation complete.

Note that an index inherits the partition array value associated with its base table.

For performance considerations see Creating Table Partitions on page 5-32.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-48

Creating a Database Specifying Parallel Loading of Index Partitions
Specifying Parallel Loading of Index Partitions
To load the partitions of a partitioned index in parallel, use the PARALLEL EXECUTION
ON option of the CREATE INDEX statement or the LOAD command. The parallel
feature loads all partitions of an index at the same time by using multiple processes in
parallel. The parallel feature does not load more than one index at the same time.

For example, this statement specifies parallel processing for loading index partitions:

>> CREATE INDEX AGEINDEX ON CUSTABLE PARALLEL EXECUTION ON
+> PARTITION ($VOL2.CUSTOMER.AGEINDEX FIRST KEY 36) ;

To load the index partitions in parallel, SQL starts processes called record generators
and sort processes. The record generators read the base table; the sort processes sort
rows and write them to the index. SQL creates one record generator process for each
partition of the base table and one sort process for each partition of the index. If the
base table is not partitioned, the RDBMS creates only one record generator process
and one sort process.

If the target base table in a LOAD command has more than one partitioned index, then
the partitions of the first index are loaded in parallel. After the first index has been
loaded, the partitions of the second index are loaded in parallel, and so forth.

Performance Considerations
Although the processor cycles and disk processes used in parallel processing might be
approximately equal to the processor cycles and disk processes used in serial
(nonparallel) processing, parallel processing uses more of these cycles and processes
at the same time and might temporarily monopolize system resources.

For best performance, the disk processes for the volumes used should be distributed
evenly across all processors. If the index is partitioned, the processor for the volume's
disk process should be available for loading each partition.

By default, parallel index loading uses SORTPROG and RECGEN processes located
on the nodes where the partitions reside. When the total number of table and index
partitions nears 750, however, a load operation might stop with an SQL error 1910 and
a sort start error 10, or with an SQL error 1928, record generator error 10. When any of
these errors occur, increase the process file segment (PFS) space of the SQLCAT
process by using the BIND statement SET PFS command. Alternatively, for programs
run from TACL, you can specify the PFS size in the TACL RUN command. Save the
original copy of SQLCAT and license the new copy.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-49

Creating a Database Specifying Parallel Loading of Index Partitions
Using a Configuration File
You can specify the processors and other configuration options for both record
generators and sort processes in a configuration file. In a LOAD command, you can
specify a different configuration file for each partitioned index. The configuration
options you can specify include:

• Default priority for the record generators and the sort processes (PRI)

• Default object files for the record generators and the sort processes (PROGRAM)

• Default number of records (NUMRECS)

• Default pool of processors in which to run the record generators and another pool
in which to run the sort processes (processor)

• Default pool of volumes to use for the initial set of sort scratch files for the sort
processes (SCRATCH)

• Default pool of volumes to use for overflow storage for the sort processes if
needed (SCRATCHON)

• Set of volumes to exclude from overflow storage (NOSCRATCHON)

• Default pool of volumes to use for swap files for the record generators and another
pool for swap files for the sort processes (SWAP)

In addition, you can specify any of these attributes for a specific partition.

Example 5-3 on page 5-51 shows a sample configuration file:
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-50

Creating a Database Creating Constraints on Data
For detailed information about loading index partitions in parallel, including the syntax
of the configuration file, see “Parallel Index Loading” in the SQL/MP Reference Manual
or use the SQLCI HELP command.

Creating Constraints on Data
The SQL/MP data dictionary provides for data validity checking. Application programs
do not have to perform data verification and checking, because a constraint defined on
a table ensures that SQL performs the checking. Constraints provide for independence
between data and code.

With SQL/MP, the definition of a constraint specifies a rule that all rows in the table
must satisfy. The RDBMS enforces the constraint criteria when the constraint is
created on a table with existing data and when rows of the table are updated or

Example 5-3. Sample Configuration File

== Sample configuration file for loading index
== partitions in parallel. Creates index AGEINDEX
== on table CUST, which is partitioned as follows:
== $DATA1.SALES.CUST
== $DATA2.SALES.CUST
== $DATA3.SALES.CUST
== \NEWYORK.$DATA1.SALES.CUST

== AGEINDEX is partitioned as follows:
== $DATA4.SALES.AGEINDEX
== $DATA5.SALES.AGEINDEX
== \NEWYORK.$DATA2.SALES.AGEINDEX
== \NEWYORK.$DATA3.SALES.AGEINDEX
== Set up a default priority for the RECGEN processes.
CREATEINDEX BASETABLE DEFAULT PRI (140)
CREATEINDEX BASETABLE DEFAULT \NEWYORK PRI (140)

== Set up default pools of scratch files for the sort
processes.
CREATEINDEX INDEX DEFAULT SCRATCH ($TEMP1,$TEMP2,$TEMP3)
CREATEINDEX INDEX DEFAULT \NEWYORK SCRATCH ($TEMP4,$TEMP5)

== Request that overflow scratch files avoid certain
== disks--those specified plus $SYSTEM and TM/MP audit
== trail disks.
CREATEINDEX INDEX DEFAULT NOSCRATCHON ($SYS*,$WORK*)
== Request that overflow scratch files use specific
== disks on the remote node.

CREATEINDEX INDEX DEFAULT \NEWYORK SCRATCHON ($TEMP*)
== Request that the $data3 sort process use $temp7 for
== scratch space.
CREATEINDEX INDEX \NEWYORK.$data3 SCRATCH ($TEMP7)

== End of Configuration File
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-51

Creating a Database Using the CREATE CONSTRAINT Statement
inserted. You can drop or add constraints at any time, as validity requirements for the
data change, without affecting the application programs.

Constraints created on a table ensure that any data entered into the table satisfies the
rules imposed by the constraints. To create a constraint on a table, use the CREATE
CONSTRAINT statement.

For additional information on constraints and related performance issues, see
Checking Data Integrity on page 14-23.

Using the CREATE CONSTRAINT Statement
The CREATE CONSTRAINT statement enforces these rules:

• Constraint names are SQL identifiers that can contain at most 30 of these
characters: letters (A-Z, a-z), digits (0-9), and the underscore (_). The name must
begin with a letter. SQL/MP reserved words, listed in the SQL/MP Reference
Manual, are not allowed.

These are examples of constraint names:

VALID_EMPLOYEE_NUMBER
VALID_JOB_CODES
VALIDENDDATE
MAXIMUM_SALARY

• Although you can specify constraint names in the CREATE CONSTRAINT
statement in either uppercase or lowercase letters, the internal format is always the
same: uppercase letters. So, the constraint names MAXIMUM_SALARY and
maximum_salary are equivalent.

• The SYSKEY column is not allowed in the search condition defining a constraint.

• The CREATE CONSTRAINT statement requires an exclusive open of the
underlying table, including all partitions, to ensure that no rows are inserted during
the creation of the constraint. To add a constraint on a table loaded with data, the
system verifies that all rows in the table satisfy the constraint. On a very large
table, this processing can run for an extended time. You should create a constraint
when the application is not active.

• The CREATE CONSTRAINT statement requires an exclusive table.

• You cannot create constraints directly on views. The constraints on underlying
tables, however, affect the dependent views.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-52

Creating a Database Using the CREATE CONSTRAINT Statement
Additional Guidelines
When defining constraints, also consider these guidelines:

• You can use collations in the search condition defining a constraint.

• Aggregate functions and subqueries are not allowed in the search condition
defining a constraint.

• For any given row of a table, the constraint must be able to be resolved by
checking only that row.

• Constraint names should be as descriptive as possible.

• If you create a comment on a constraint, applications can use the comment text for
routines that handle errors related to that constraint.

• Ensure that constraints on the same table are not logically in conflict. A conflict
could cause all rows to be invalid.

The CONSTRNT catalog table contains the description of constraints for tables
recorded in the catalog. You can query this table to display the constraints on a
table.

This example queries the CONSTRNT table but first sets VARCHAR_WIDTH to
255 so that 255 characters of each row of the constraint definitions are displayed
instead of 80 characters (the default width):

>> SET STYLE VARCHAR_WIDTH 255;
>> SELECT * FROM CONSTRNT
+> WHERE TABLENAME = "\SYS1.$VOL1.PERSNL.EMPLOYEE";

• To place a constraint on a particular partition, include the partition keys as part of
the WHERE clause criteria in the search condition that defines the constraint.

• Whenever possible, you should create constraints after creating the table but
before loading data into the table. If you create the constraint before loading the
table, the data integrity of the table is ensured, because the LOAD utility does not
put rows into a table if the rows do not conform to constraints. Depending on the
error limit specified in the ALLOWERRORS option, the load operation either fails
when encountering a row that does not conform to the constraints or loads only
rows that do conform.

• If you are creating a constraint on an existing table, you should perform an
interactive query on the table that is a negation of the constraint. This query
identifies rows that violate the constraint. You should change or delete any
identified rows before creating the constraint. The CREATE CONSTRAINT
operation fails if rows in the table do not satisfy the constraint.

• You should not create a constraint on a loaded table within a user-defined TMF
transaction because the transaction could overflow the TMF audit trails and cause
an error. The CREATE CONSTRAINT statement automatically initiates several
TMF transactions, as necessary, but performs tests outside a TMF transaction to
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-53

Creating a Database Examples of Creating Constraints
ensure that the rows satisfy the constraint. With this testing technique and the
automatic transactions, the operation minimizes the TMF overhead of a potentially
very long transaction and reduces output to the audit trails.

Examples of Creating Constraints
This example creates a constraint that checks for a valid employee number in the
range 0 through 9999. The INFO DEFINE command displays DEFINEs used to identify
the table for the constraint.

-- DEFINEs were previously added during this SQLCI
-- session or inherited from the command interpreter.
>> INFO DEFINE =EMPLOYEE;
 DEFINE NAME =EMPLOYEE
 CLASS MAP
 FILE \SYS1.$VOL1.PERSNL.EMPLOYEE
>> CREATE CONSTRAINT VALID_EMPLOYEE_NUMBER
+> ON =EMPLOYEE
+> CHECK EMPNUM BETWEEN 0 AND 9999;

This example creates a constraint, VALID_JOB_CODES, that ensures job code values
are between 100 and 900, and the department is greater than or equal to 2500 but less
than 5000. This constraint could apply to a partition of the table.

>> CREATE CONSTRAINT VALID_JOB_CODES
+> ON \SYS1.$VOL1.PERSNL.DEPT
+> CHECK JOBCODE BETWEEN 100 AND 900
+> AND (DEPTNUM >= 2500 AND
+> DEPTNUM < 5000);

This example creates a constraint, VALID_PRICE_RANGE, that checks for a valid
markup range in which the price must be greater than or equal to a 20 percent markup
but less than or equal to a 200 percent markup:

>> CREATE CONSTRAINT VALID_PRICE_RANGE
+> ON $VOL3.INV.PARTLIST
+> CHECK PRICE >= PARTS_COST * 1.20 AND
+> PRICE <= PARTS_COST * 2.00;

This example creates a constraint, MIN_INVENTORY_FACTOR, that ensures that the
quantity ordered is less than or equal to the quantity on hand or that the quantity
ordered can be available by the estimated date when additional parts will be available:

>> CREATE CONSTRAINT MIN_INVENTORY_FACTOR
+> ON $VOL3.INV.INVFILE
+> CHECK QTY_ORDERED <= QTY_ON_HAND OR
+> (QTY_ORDERED <= QTY_ON_HAND + QTY_RECEIVED AND
+> DELIV_DATE > EST_RECEIVED_DATE);

This example creates a constraint to ensure that the value of the EMPNUM column is
greater than 0 and less than 9999:

>> CREATE CONSTRAINT VALID_EMPLOYEE_NUMBER
+> ON $VOL1.PERSNL.EMPLOYEE
+> CHECK EMPNUM > 0 AND
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-54

Creating a Database Creating Collations
+> EMPNUM < 9999;
--- SQL operation complete.

For the constraint VALID_EMPLOYEE_NUMBER, you might create this comment:

>> COMMENT ON CONSTRAINT VALID_EMPLOYEE_NUMBER
+> ON $VOL1.PERSNL.EMPLOYEE
+> IS "VALID EMPLOYEE NUMBERS ARE 1 to 9998";
--- SQL operation complete.

This example creates a constraint to ensure that the delivery date is greater than or
equal to the order date:

>> CREATE CONSTRAINT VALID_DELIV_DATE
+> ON $VOL.SALES.ORDERS
+> CHECK DELIV_DATE >= ORDER_DATE;
--- SQL operation complete.

Creating Collations
A collation is an SQL object that contains rules for:

• Collating sequence (the sequence in which characters are ordered for sorting)

• Case (upshifting and downshifting)

• Character class

Collations can be applied to single-byte character columns in SQL tables.

You can define and create a collation and then associate the collation with a column in
an SQL table. For example, you can define a collation by using the CREATE
COLLATION statement that sorts characters in a different order than their character
codes dictate. (If you do not specify a collation for a column, or if you specify the
COLLATE CHARACTER SET clause, SQL collates the column according to the binary
values of the data.)

Then when you create a column that has a character data type and a single-byte
character set by using a CREATE TABLE or ALTER TABLE statement, you can specify
the name of the collation to associate with the column. If the column is part of the
primary key for the table, the collation also affects the storage order for rows in the
table.

A collation name must be a Guardian name.

SQL allows a collation (or a class MAP DEFINE name that points to a collation) in the
COLLATE clause of these statements:

• CREATE TABLE, ALTER TABLE...ADD COLUMN, or CREATE VIEW statement to
specify a default collating sequence for one or more columns in a table or view

• The GROUP BY or ORDER BY clause in a SELECT statement to override the
default collating sequence for a column
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-55

Creating a Database Creating Collation Source Files
• An SQL expression in a SELECT statement to specify different collating sequences
(including upshifting) for character strings

• The WHERE clause in an UPDATE or DELETE statement to specify a different
collating sequence for a column

• The CREATE INDEX statement to specify an order that differs from the base table

• The CREATE CONSTRAINT statement to specify a collating sequence for a
column in the constraint

For the syntax of these statements, see the SQL/MP Reference Manual.

Creating Collation Source Files
To create a collation source file, you enter rules for character processing into an EDIT
file in collation compiler syntax. The SQL/MP Reference Manual describes the syntax
for specifying these rules in a collation source file. You must create a collation source
file for each collation specified in your database design.

You then create the collation by executing the CREATE COLLATION statement either
from SQLCI or embedded in a C program. The CREATE COLLATION statement calls
the collation compiler to compile the collation source file and generate the collation.
This statement also registers the collation in the SQL catalog.

After you create a collation, you can use the ALTER COLLATION statement to rename
it or change its security string or owner if necessary. To delete a collation, you can use
the DROP COLLATION statement, as long as the collation is not used by any SQL
objects or programs. HP also provides a set of system procedures you can use to
manipulate collations (for example, to read a collation or to compare two collations).

Example 5-4 shows a sample source file.

Example 5-4. Collation Source File (page 1 of 3)

LC_COLLATE

This file contains character processing rules.
#
The collating sequence sorts most of the accented forms of a, e, i,
o, and u equal to the unaccented form. The collating sequence is
case insensitive.
#
Upshift for a, e, i, o, u -grave -acute -circumflex is
A, E, I, O, U. Upshift for e-umlaut is E. Upshift for i-umlaut
is I, and upshift for y-acute is Y.
#
These character processing rules are for the ISO88591 character set.

Start the collating orders.
order_start forward
 \d032 \d032 # 32 = space #
 \d160 \d032 # NBSP #
 <0> <0>

HP NonStop SQL/MP Installation and Management Guide—523353-004
5-56

Creating a Database Creating Collation Source Files
 <9> <9>
 <A> <A>
 <Z> <Z>
 <a> <A>

 <z> <Z>
 \d192 <A> # 192 - 195, 224 - 227 are various forms
 ... <A> # of “A” and “a”
 \d195 <A>
 \d224 <A>
 ...
 \d227 <A>
 \d199 <C> # 199 = C-cedilla
 \d231 <C> # 231 = c-cedilla
 \d208 <D> # 208 = Eth
 \d240 <D> # 240 = eth
 \d200 <E> # 200 - 203, 232 - 235 are various forms
 ... <E> # of “E” and “e”
 \d203 <E>
 \d232 <E>
 ... <E>
 \d235 <E>
 \d204 <I> # 204 - 207, 236 - 239 are various forms
 ... <I> # of “I” and “i”
 \d207 <I>
 \d236 <I>
 ... <I>
 \d239 <I>
 \d209 <N> # 209 = N-tilde
 \d241 <N> # 241 = n-tilde
 \d210 <O> # 210 - 213, 242 - 245 are various forms
 ... <O> # of “O” and “o”
 \d213 <O>
 \d242 <O>
 ... <O>
 \d245 <O>
 \d217 <U> # 217 - 219, 249 - 251 are various forms
 ... <U> # of “U” and “u”
 \d219 <U>
 \d249 <U>
 \d224 <U>
 ... <U>
 \d221 <Y> # 221 = Y-acute
 \d253 <Y> # 253 = y-acute
 \d255 <Y> # 255 = y-acute
 \d198 \d198 # 198 = AE
 \d230 \d230 # 230 = ae
 \d216 \d216 # 216 = O-slash
 \d248 \d248 # 248 = o-slash
 \d197 \d197 # 197 = A-ring
 \d229 \d197 # 229 = a-ring
 \d222 \d222 # 222 = Thorn
 \d254 \d222 # 254 = thorn
 \d033 <!> # 33 - 47 are symbols encoded in
 # sequences
 \d047 </>
 \d173 <-> # 173 = SHY
 \d058 <:> # 58 - 63 are symbols encoded in
 # sequences
 \d063 <?>
 \d064 <@>
 \d091 <[> # 91 - 96 are symbols encoded in
 # sequences

Example 5-4. Collation Source File (page 2 of 3)
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-57

Creating a Database Creating Collation Source Files
 \d096 <`>
 \d123 <{> # 123 - 126 are symbols encoded in
 # sequences
 \d126 <~>
 \d127 IGNORE

 \d196 “<a><e>“ # A-umlaut is sorted as a string of a and e
 \d228 “<a><e>“ # a-umlaut is sorted as a string of a and e
 \d214 “<o><e>“ # O-umlaut is sorted as a string of o and e
 \d246 “<o><e>“ # o-umlaut is sorted as a string of o and e
 \d220 “<u><e>“ # U-umlaut is sorted as a string of u and e
 \d252 “<u><e>“ # u-umlaut is sorted as a string of u and e
 \d223 “<s><s>“ # sharp-s is sorted as a string of s and s
 \d163 \d163 # upper half specials and controls
 \d215 \d215 # multiply sign

.

.

.

 UNDEFINED IGNORE
order_end

END LC_COLLATE

LC_CTYPE

charclass alphas; numerics; specials
alphas <A>;...;<Z>;\
 <a>;...;<z>;\
 \d192;...;\d214;\d216;...;\d246;\d248;...;\d255

numerics <0>;<1>;\d050;\x33;\
 <4>;...;<9>

specials

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);(<f>,<F>);\
 (<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);(<k>,<K>);(<l>,<L>);\
 (<m>,<M>);(<n>,<N>);(<o>,<O>);(<p>,<P>);(<q>,<Q>);(<r>,<R>);\
 (<s>,<S>);(<t>,<T>);(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);\
 (<y>,<Y>);(<z>,<Z>);\
 (\d224,\d065);(\d225,\d065);\
 (\d226,\d065);(\d227,\d195);\
 (\d231,\d199);\
 (\d236,\d073);(\d237,\d073);\
 (\d238,\d073);(\d239,\d073);\
 (\d241,\d209);\
 (\d242,\d079);(\d243,\d079);\
 (\d244,\d079);(\d245,\d213);\
 (\d249,\d085);(\d250,\d085);\
 (\d251,\d085);\
 (\d255,\d089);\
 (\d229,\d197);\
 (\d248,\d216);\
 (\d230,\d198);\
 (\d254,\d222);\
 (\d228,\d196);\
 (\d252,\d220)
END LC_LCTYPE

LC_TDMCODESET
ISO88591 # This specifies the ISO88591 character set.
END LC_TDMCODESET

Example 5-4. Collation Source File (page 3 of 3)
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-58

Creating a Database Creating Collation Objects
Creating Collation Objects
To create SQL collation objects, you must have the collation compiler compiled as an
SQL program and registered in a catalog, as explained under Installing SQL/MP on
page 2-2. When you issue the CREATE COLLATION statement, SQL invokes the
collation compiler to compile the source file you specify.

Create all the collations for your database first, before you create the objects that refer
to collations. To create a collation, you can specify an existing collation source file in a
CREATE COLLATION statement, as in this example:

>> CREATE COLLATION COLL1
>> FROM =COLLATE1
>> CATALOG =SALES ;

The DEFINE =COLLATE1 specifies the source file.

You can also create a collation like another collation, without specifying a source file:

>> CREATE COLLATION COLL2
>> LIKE COLL1
>> CATALOG =INVENT ;

Each collation has a single-byte character set associated with it, stored in the
CHARACTERSET column of the CPRULES catalog table. This character set must
match the character set associated with a column when you use the COLLATE clause
to define or specify an index for a column.

Securing Collations
When you define a collation, SQL assigns it your current default security. You can alter
this security, but be careful. If you alter the security so that fewer users have access to
the collation, you also restrict the access to any table, index, view, or program that
uses the collation.

For example, suppose that the database administrator creates a collation and makes it
available to an application developer, and the developer creates a table that uses the
collation. Then the DBA alters the security to a string that takes access to the collation
away from the developer. When the developer attempts to compile SQL statements
that refer to the table, the compilations fail because of security violations. SQL reports
the name of the collation causing the violations, however.

To alter the security of a collation, you must have authority to read and write to the
collation and the catalog in which the collation is registered. You can alter a collation's
security by using the ALTER COLLATION statement or the SECURE command.

Note. Consider the locations for your collations carefully. Moving a collation after you create
dependent objects is difficult. To move a collation, you must stop transaction processing on all
dependent objects, save the object definitions and data, delete the dependent objects, copy the
collation to the new location, delete the original collation, and then re-create the dependent
objects.
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-59

Creating a Database Securing Collations
HP NonStop SQL/MP Installation and Management Guide—523353-004
5-60

6
Querying SQL/MP Catalogs

SQL/MP catalogs contain information you can use to manage the database. Obtaining
information from the catalogs with SQL queries can help you determine the current
status of the database. You can also use the FILEINFO and VERIFY utilities to show
the status of objects and the DISPLAY USE OF utility to show usage relationships.

Determining Object and Program
Dependencies

The USAGES catalog table stores information about dependencies between objects. A
dependent object and the object on which it depends can be registered in different
catalogs; therefore, the USAGES tables in both catalogs have an entry about the
dependency. This table lists initial and dependent objects:

The next example illustrates corresponding dependency entries for a table and a
dependent program whose definitions are stored in different catalogs on different
nodes.

Initial Object Dependent Objects

Table Index
Protection view
Shorthand view
SQL object program

Protection view Shorthand view
SQL object program

Shorthand view Shorthand view
SQL object program

Index SQL object program

Collation Table
Index
Protection view
Shorthand view
SQL object program

Note. If you specify the NOREGISTER option for a program, as described under Moving
Programs on page 10-39, SQL/MP does not register the program in the catalog and it will not
appear as a dependent object. In addition, the program can be installed at a different location
(subvolume or node) without recompilation or registration.
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-1

Querying SQL/MP Catalogs Using the DISPLAY USE OF Command
\SYS1.$V.CAT1 Catalog \SYS2.$V.CAT2 Catalog

USAGES Table USAGES Table

\SYS1.$V.SV.TABLEA has dependent \SYS2.$V.P.PROG2 uses
 object \SYS2.$V.P.PROG2 \SYS1.$V.SV.TABLEA

You can display dependent objects by using the DISPLAY USE OF utility or by directly
querying individual USAGES tables. The DISPLAY USE OF utility is convenient to use
because it searches multiple USAGES tables for dependencies. The system prepares
the display by searching all the catalogs for all the objects that depend directly or
indirectly on the object you specify in the command.

Using the DISPLAY USE OF Command
The DISPLAY USE OF command enables you to specify a table, index, view, or
collation. The utility displays the objects that depend on the specified object.

The DISPLAY USE OF utility has two formats: standard and brief. The standard format
is the default. The brief format does not display the partition flags, the owners, the
security of the objects, or the catalog name.

The next examples show the standard and brief formats of the DISPLAY USE OF
utility. Each example includes the DISPLAY USE OF command and the information
displayed.

This example shows the standard format:

>> DISPLAY USE OF INVENT.SUPPLIER;

 Object Name Type S P Owner Name Secure
 -- ---- - -- ---------------- ------
 Catalog Name

 0 \SYS1.$VOL.INVENT.SUPPLIER TA AUSER .ERIC NCNC
 $SQL.INVENT
 1 \SYS1.$VOL.INVENT.XSUPPNAM IN AUSER .ERIC NCNC
 $SQL.INVENT
 2 \SYS1.$VOL.AUSERSV.OPROG2 PG AUSER .PAT NCNC
 $SQL.SALES
 1 \SYS1.$VOL.AUSERSV.OPROG2 PG *

U = Undefined node N = Node unavailable T = Unsupported type
@ = Node not in list * = Previously displayed ? = System error

Number of unique dependencies : 2
Number of direct dependencies : 1
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-2

Querying SQL/MP Catalogs Displaying Information About Usages by Querying
the Catalog
This example shows the brief format:

 Object Name Type S
 --------------------------------------- ---- -
0 \SYS1.$VOL.INVENT.SUPPLIER TA
 1 \SYS1.$VOL.INVENT.XSUPPNAM IN
 2 \SYS1.$VOL.AUSERSV.OPROG2 PG
 1 \SYS1.$VOL.AUSERSV.OPROG2 PG *

U = Undefined node N = Node unavailable T = Unsupported type
@ = Node not in list * = Previously displayed ? = System error

Number of unique dependencies : 2
Number of direct dependencies : 1

The DISPLAY USE OF utility does not accept OSS path names as parameters, but
does display OSS programs if they are dependent on the list of requested objects. The
name of an SQL program stored in an OSS file is displayed as its Guardian file name
equivalent and then in its path name format. If there is more than one path name linked
to the program, only one path name is displayed (the first path name available to the
current user). If the OSS path name is not accessible to the user, SQL returns “No path
name is accessible” instead of the path name.

The code for an OSS object is PG (same as for SQL programs stored in Guardian
files).

Displaying Information About Usages by Querying the Catalog
This example displays all dependency information stored in the specified catalog. The
VOLUME command indicates the default volume and designates the subvolume name,
which is also the catalog name, as the default subvolume. This SELECT statement
does not need to include the fully qualified name of the catalog table:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM USAGES;

Displaying Current Database Definitions
You can query the catalog tables to display current database definitions. When
selecting information from the catalog tables, you must either use fully qualified names
or use partially qualified names in conjunction with the LIKE predicate. You must use
uppercase letters for data, but you can use either uppercase or lowercase letters for
column names. Instead of typing all uppercase letters, you can use the UPSHIFT
function or a COLLATE clause that specifies a case-insensitive collation.

For the descriptions of the columns of the catalog tables, see the SQL/MP Reference
Manual.

Note: If you query the catalog tables directly, the results of your query can be affected by the
version level of the catalog, as described under Displaying Catalog, Object, and Program
Versions on page 6-15.
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-3

Querying SQL/MP Catalogs Displaying Information About Catalogs
Displaying Information About Catalogs
Information about all the catalogs on the node appears in the system directory of
catalogs, which is the CATALOGS table in the system catalog.

The CATALOGS table must reside on the subvolume SQL on the same volume as the
system catalog. The default location is $SYSTEM.SQL.

This query displays all SQL catalogs on the node \SYS1:

>> SELECT * FROM \SYS1.$SYSTEM.SQL.CATALOGS;

Displaying Information About Tables
Catalogs have three tables that describe base tables:

• BASETABS describes the attributes of a base table, such as whether any
constraints are defined on the table and the number of rows in the table.

• TABLES describes file-label information, such as the security string, owner ID,
creation timestamp, and number of columns.

• FILES describes file-label information, such as the file type (organization), extents,
audit flag, partitioned flag, address of the end of file, record size, and various other
flags.

You can query each catalog table separately, or you can create a joined view of the
tables.

This example displays BASETABS information about a base table:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM BASETABS
+> WHERE TABLENAME = "\SYS1.$VOL1.SALES.CUSTOMER";

This example displays TABLES information about a table:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM TABLES
+> WHERE TABLENAME = "\SYS1.$VOL1.SALES.CUSTOMER";

This example displays FILES information about a table. The query uses the LIKE
predicate with the wild-card character % to indicate that a string ranging from no
characters to many characters is acceptable in the wild-card position for a qualifying
file name. Also, notice that characters in LIKE predicates are case sensitive and that
references to data contained in tables are in uppercase letters.

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM FILES
+> WHERE FILENAME LIKE "%CUSTOMER%";
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-4

Querying SQL/MP Catalogs Displaying Information About Views
This example displays tables and views described in TABLES for a given owner ID. For
this example, the group ID is 240, and the user ID is 100.

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT TABLENAME, TABLETYPE
+> FROM TABLES
+> WHERE GROUPID = 240 AND USERID = 100;

This example displays selected columns from a join of the TABLES and FILES catalog
tables. The search condition for the join operation is WHERE TABLENAME =
FILENAME.

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT TABLENAME, TABLETYPE, GROUPID, USERID,
+> SECURITYVECTOR, AUDIT, FILETYPE, EOF
+> FROM TABLES, FILES
+> WHERE TABLENAME = FILENAME;

Displaying Information About Views
Catalogs have two tables that describe views:

• VIEWS describes the attributes of a view, such as the text of the view definition
and whether the view is a protection or shorthand view.

• TABLES describes some file-label information, such as the security string, owner
ID, creation timestamp, and number of columns.

You can query each catalog table separately, or you can create a joined view of the
tables.

The default width for displaying view text (with varying-length data) is 80 characters.
For example, you can use the SET STYLE command to specify a VARCHAR display
width of 255 characters. This width ensures that you can display 255 characters of the
view text.

This example displays VIEWS information for a view:

>> VOLUME \SYS1.$VOL1.PERSNL;
>> SET STYLE VARCHAR_WIDTH 255;
>> SELECT * FROM VIEWS
+> WHERE VIEWNAME = "\SYS1.$VOL1.PERSNL.EMPLIST";

This example displays TABLES information for a view:

>> VOLUME \SYS1.$VOL1.PERSNL;
>> SELECT * FROM TABLES
+> WHERE TABLENAME = "\SYS1.$VOL1.PERSNL.EMPLIST";

This example displays view names and the audit flag settings of all views. The
VALIDDEF column of the display shows Y or N to indicate the validity of a view.

>> VOLUME \SYS1.$VOL1.PERSNL;
>> SELECT VIEWNAME, VALIDDEF, AUDIT
+> FROM VIEWS;
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-5

Querying SQL/MP Catalogs Displaying Information About Constraints
This example displays selected columns from a join of the TABLES and VIEWS
catalog tables for group ID 240:

>> VOLUME \SYS1.$VOL1.PERSNL;
>> SELECT VIEWNAME, GROUPID, USERID, SECURITYVECTOR,
+>> AUDIT, PROTECTION, WITHCHECKOPTION
+> FROM TABLES, VIEWS
+> WHERE VIEWNAME = TABLENAME AND
+> GROUPID = 240;

Displaying Information About Constraints
Information about constraints on a table appears in the CONSTRNT catalog table in
the catalog that contains the table description.

To determine whether a table has constraints, you can query the BASETABS table to
check whether the constraints flag is set. If CONSTRAINTS is Y, one or more
constraints exist. If CONSTRAINTS is N, no constraint exists.

This example displays the TABLENAME and CONSTRAINTS columns:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT TABLENAME, CONSTRAINTS
+> FROM BASETABS
+> WHERE TABLENAME = "\SYS1.$VOL1.SALES.ORDERS";

The default width for displaying a constraint definition (with varying-length data) is 80
characters. For example, you can use the SET STYLE command to specify a
VARCHAR display width of 255 characters.

This example displays all the current constraints on a table:

>> VOLUME \SYS1.$VOL1.SALES;
>> SET STYLE VARCHAR_WIDTH 255;
>> SELECT * FROM CONSTRNT
+> WHERE TABLENAME = "\SYS1.$VOL1.SALES.ORDERS";

Displaying Information About Collations
Catalogs have two tables that describe collations:

• CPRULES describes characteristics of collations, including whether the collation
ever considers two different characters as being equal (for example, whether ‘A’ =
‘a’), the character set to which the collation rules apply, and the size and version of
the collation.

• CPRLSRCE describes the collation source definition, including the entire source
text that specifies the character processing rules.

This example displays CPRULES information about a collation:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM CPRULES
+> WHERE CPRULESNAME = "\SYS1.$VOL1.SALES.FRENCH";
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-6

Querying SQL/MP Catalogs Displaying Information About Columns
This example displays CPRLSRCE information about a collation:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM CPRLSRCE
+> WHERE CPRULESNAME LIKE "%FRENCH%";

Displaying Information About Columns
Information about columns appears in the COLUMNS catalog table and includes the
data type definitions.

You can query the COLUMNS table for information about particular column definitions,
or you can obtain a list of columns for a specific table. You might also query the
COLUMNS table to check the definitions of columns whose definitions must match.

This example displays all column names for a table and the data type definitions:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT COLNAME, DATATYPE, COLSIZE, SCALE
+> FROM COLUMNS
+> WHERE TABLENAME = "\SYS1.$VOL1.SALES.ORDERS";

This example displays all tables in which the column PRICE is found and includes the
data definitions of the columns:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT COLNAME, TABLENAME, DATATYPE, COLSIZE, SCALE,
+> PRECISION, PICTURETEXT, CHARACTERSET
+> FROM COLUMNS
+> WHERE COLNAME = "PRICE";

Displaying Comments and Help Text
Comments specified for an object are located in the COMMENTS catalog table. You
can query this table to display the comments.

This example selects all the comments on the table CUSTOMER:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM COMMENTS
+> WHERE OBJNAME = "\SYS1.$VOL1.SALES.CUSTOMER";

This example selects all the comments on all the constraints defined for the table
CUSTOMER. Constraints are denoted by the value “CN” in the OBJTYPE column of
the COMMENTS table.

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM COMMENTS
+> WHERE OBJNAME = "\SYS1.$VOL1.SALES.CUSTOMER" AND
+> OBJTYPE = "CN";

The COMMENTS catalog table also records help text for columns. You can query this
table to display the help text. The OBJSUBNAM column of the COMMENTS table
contains column names, and the OBJTYPE column contains “HC” to denote help text.
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-7

Querying SQL/MP Catalogs Displaying Information About Indexes
This example selects the help text for the column LAST_NAME from the table
EMPLOYEE:

>> VOLUME \SYS1.$VOL1.PERSNL;
>> SELECT * FROM COMMENTS
+> WHERE OBJNAME = "\SYS1.VOL1.PERSNL.EMPLOYEE" AND
+> OBJSUBNAME = "LAST_NAME" AND
+> OBJTYPE = "HC";

Displaying Information About Indexes
Three catalog tables contain information about keys and indexes:

• KEYS describes the columns of each primary key and index.

• INDEXES describes index-file information and includes an entry for the primary
key of each base table.

• FILES describes file-label information for each index, such as the file type, number
of extents, audit flag, partitioned flag, end-of-file address, and record size.

This example displays values from the TABLENAME column of the CUSTOMER table:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT TABLENAME
+> FROM BASETABS
+> WHERE TABLENAME = "\SYS1.$VOL1.SALES.CUSTOMER";

This example displays all indexes for the table CUSTOMER that are described in the
catalog \SYS1.$VOL1.SALES:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM INDEXES
+> WHERE TABLENAME = "\SYS1.$VOL1.SALES.CUSTOMER";

This example displays key information for the table CUSTOMER in a joined view of the
INDEXES and KEYS catalog tables:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT K.INDEXNAME, KEYSEQNUMBER, TABLECOLNUMBER, ORDERING
+> FROM KEYS K, INDEXES I
+> WHERE TABLENAME = "\SYS1.$VOL1.SALES.CUSTOMER" AND
+> K.INDEXNAME = I.INDEXNAME;
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-8

Querying SQL/MP Catalogs Displaying Information About Partitions
This TACL macro displays the keys and indexes of a table:

?TACL MACRO
#FRAME
#PUSH #INLINEECHO, #INLINEPREFIX
#SET #INLINEECHO -1
#SET #INLINEPREFIX //
#PUSH tname
#SET tname [#SHIFTSTRING /UP/ %1%]
$SYSTEM.SYSTEM.SQLCI /INLINE/
// VOLUME %2%;
//
// -- Report on the different keys and indexes of a table:
//
// SELECT I.TABLENAME, KEYTAG, KEYSEQNUMBER, COLNAME, ORDERING
// FROM COLUMNS C, KEYS K, INDEXES I
// WHERE C.TABLENAME = I.TABLENAME AND
// I.INDEXNAME = K.INDEXNAME AND
// I.TABLENAME LIKE "%%[tname]%%" AND
// K.TABLECOLNUMBER = C.COLNUMBER
// ORDER BY I.TABLENAME, KEYTAG, KEYSEQNUMBER
// ;
// EXIT;
#UNFRAME

For more information about TACL macros and how to write them, see the TACL
Reference Manual.

This example displays attribute information for the index XORDCUS. The query uses
the LIKE predicate with the wild-card character % to indicate that a string of 0, 1, or
more characters is acceptable in each wild-card position for a qualifying file name.

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT * FROM FILES
+> WHERE FILENAME LIKE "%XORDCUS%";

Displaying Information About Partitions
Information about partitions appears in the PARTNS catalog table. Your first query
about partitions should determine whether the object has partitions.

To obtain information on partitions, query the FILES table to determine whether the
partitions flag is set for the object. If PARTITIONED is Y, the object has partitions; if
PARTITIONED is N, the object is not partitioned.

This example displays the PARTITIONED column value for the PARTLOC table:

>> VOLUME \SYS1.$VOL1.INVENT;
>> SELECT FILENAME, PARTITIONED
+> FROM FILES
+> WHERE FILENAME = "\SYS1.$VOL1.INVENT.PARTLOC";
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-9

Querying SQL/MP Catalogs Joining Catalog Tables With UNION
This example displays all the partition information for the PARTLOC table. The query
uses the LIKE predicate with the wild-card character % to indicate that a string of 0, 1,
or more characters is acceptable in the wild-card position for a qualifying name.

>> VOLUME \SYS1.$VOL1.INVENT;
>> SELECT * FROM PARTNS
+> WHERE FILENAME LIKE "%PARTLOC%";

Joining Catalog Tables With UNION
The UNION operator in a SELECT statement can effectively join catalog tables of the
same type.

Suppose that you want to join the TABLES catalog tables from two catalogs, SALES
and INVENT, to produce a joined output display. These catalogs, in fact, reside on two
different nodes. This SELECT statement selects the TABLENAME, TABLECODE, and
SECURITYVECTOR columns but eliminates tables in which TABLECODE is greater
than or equal to 572:

>> VOLUME \SYS1.$VOL1.SALES;
>> SELECT TABLENAME, TABLECODE, SECURITYVECTOR
+> FROM \SYS1.$DATA2.SALES.TABLES
+> WHERE TABLECODE < 572
+> UNION SELECT TABLENAME, TABLECODE, SECURITYVECTOR
+> FROM \SYS2.$DATA7.INVENT.TABLES
+> WHERE TABLECODE < 572
+> ORDER BY TABLECODE;

Displaying File and Security Attributes
The FILEINFO utility displays file and security attributes for catalog tables, base tables,
indexes, views, collations, and Enscribe and OSS files. You can request a display for
one object or for each object specified in a qualified file set list.

You can request that the file information be displayed in brief format (a condensed,
one-line format) or in the detailed, standard format. You can also request statistical
information about the data bit map.

This command obtains a brief format listing for all objects described in the
$VOL1.INVENT catalog:

>> FILEINFO *.*.* FROM CATALOG $VOL1.INVENT;

This command obtains a brief format listing from the $VOL1.INVENT catalog for SQL
tables that have not been updated since January 10, 1989:

>> FILEINFO *.*.* FROM CATALOG $VOL1.INVENT
+> WHERE SQL AND MODTIME BEFORE JAN 10 1989;

If your files are managed by SMF, you typically create an SQL object with a logical file
name. You can find out the corresponding physical file name by using the detailed
format of the FILEINFO command and specifying the logical name.
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-10

Querying SQL/MP Catalogs Displaying File and Security Attributes
This command obtains a detailed format listing, including the physical file name, for the
SQL table whose logical name is $VIR1.SALES.ORDERS (only part of the listing is
shown):

>> FILEINFO $VIR1.SALES.ORDERS, DETAIL;

$VIR1.SALES.ORDERS 20 Aug 1996, 11:41
 SQL BASE TABLE
 CATALOG $VIR1.SALES
 |
 |
 PHYSICAL NAME: $PVOL11.ZYS00025.A045OR02

If you know a physical file name and want to find out the corresponding logical name,
you can use the FILEINFO command. This command displays the logical name
corresponding to a specified physical file name:

>> FILEINFO $PVOL11.ZYS00025.A045OR02, DETAIL;

$PVOL11.ZYS00025.A045OR02 20 Aug 1996, 11:41
 SQL BASE TABLE
 CATALOG $VIR1.SALES
 |
 |
 LOGICAL NAME: $VIR1.SALES.ORDERS

Suppose that your starting point is a physical volume. You can use the detailed format
of the FILEINFO command to display the names of all the physical files managed by
SMF that reside on a specified physical volume. In addition, the FILEINFO command
displays the logical file names associated with those physical files. To perform this
task, you must include the ZYS prefix in the subvolume part of the qualified file set.
SMF reserves the ZYS prefix for physical file names.

This command displays the physical file names managed by SMF and residing on the
volume $PVOL11. It also displays the logical file names (in addition to other file and
security attributes) associated with those files.

>> FILEINFO $PVOL11.ZYS*.*, DETAIL;

This command omits the ZYS prefix. This example does not display any physical files
managed by SMF. It does display files residing on $PVOL11 that are outside the
control of SMF.

>> FILEINFO $PVOL11.*.*, DETAIL;

For OSS files, these considerations apply:

• You cannot specify an OSS path name as input to the FILEINFO command, but
you can specify the Guardian ZYQ name associated with the OSS program.

• The owner and security are displayed as appropriate OSS values.

• The STATISTICS option is equivalent to the DETAIL option.
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-11

Querying SQL/MP Catalogs Determining Object Integrity and Consistency
• The name of a program stored in an OSS file is displayed as its Guardian file name
equivalent and then in its path name format. If there is more than one path name
linked to the program, only one path name is displayed (the first path name
available to the current user).

• Several informational items are not displayed because they do not apply to OSS
files. For example, the EXTENTS option displays a message that EXTENTS
information does not apply to an OSS file.

As an alternative, run FUP or OSS utilities to obtain information about an OSS file.

Determining Object Integrity and Consistency
Two tools are available to verify the definitional integrity of an object or to check the
consistency of an object’s internal blocks:

• The SQLCI VERIFY utility checks the definitional integrity of an object.

• The Guardian FILCHECK utility reports on the internal, physical data structure of
objects and checks that the structure is consistent.

Using VERIFY to Check Definitional Integrity
The VERIFY utility determines the definitional integrity of an object. The utility does not
verify data integrity. An object has definitional integrity if it is consistently described in
all file labels and catalog tables and if the descriptions of all related objects are valid.

The database can become inconsistent through database changes that are not applied
consistently throughout the related objects. SQL can prevent many of the operations
that can cause inconsistency, but it does not always detect all the operational errors.
For instance, when you drop a table, SQL attempts to drop all dependencies; however,
a user could restore objects that might not be consistent with the related objects.
System operational problems or system failures could also cause inconsistencies in
the data dictionary.

You can use VERIFY to check catalogs, tables, views, indexes, collations, and
programs. VERIFY checks each object for dependent relations or underlying table
consistency, as required by the object.

For SQL programs stored in OSS files, VERIFY checks for consistency between the
label and the catalog information for [IN]VALID, PFV, and PCV.

For information on invalid programs, see Determining Validity of a Program on
page 10-4.

The VERIFY utility uses a qualified file set list to assist you in identifying a specific
object or group of objects. You can verify programs and have the list of invalid
programs written to an EDIT file. This example verifies all objects that are in the
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-12

Querying SQL/MP Catalogs Using VERIFY to Check Definitional Integrity
catalog SALES and that have a FILECODE value less than 572. This report does not
verify catalog tables because their file codes are not less than 572.

>> VERIFY *.*.* FROM CATALOG SALES WHERE FILECODE < 572;

--- Verifying $VOL1.SALES.ATABLE1
--- $VOL1.SALES.ATABLE1 verified.

--- Verifying $VOL1.SALES.AVIEW1
--- $VOL1.SALES.AVIEW1 verified.

--- Verifying $VOL1.SALES.AINDEX1
--- $VOL1.SALES.AINDEX1 verified.

--- SQL operation complete.

This example verifies the definition of a single object, the table EMPLOYEE:

>> VERIFY DEF OF $VOL1.PERSNL.EMPLOYEE;

--- Verifying $VOL1.PERSNL.EMPLOYEE
--- $VOL1.PERSNL.EMPLOYEE verified.

--- SQL operation complete.

This example shows the error generated by an invalid object in the catalog SALES:

>> VERIFY *.*.* FROM CATALOG $DATA1.SALES;

--- Verifying $DATA1.SALES.ODETAIL
--- $DATA1.SALES.ODETAIL verified.

--- Verifying $DATA1.SALES.ORDERS
--- $DATA1.SALES.ORDERS verified.

--- Verifying $DATA1.SALES.ORDREP
*** ERROR from SQL [-1233]: The catalog entry in the TABLES
table
*** for \SQLA.$DATA1.SALES.ORDREP indicates an invalid COLCOUNT:
0.
*** ERROR from SQL [-9881]: Unable to obtain catalog definition
for
*** SQL shorthand view object.

--- SQL operation complete.
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-13

Querying SQL/MP Catalogs Using FILCHECK to Check Structural Consistency
Using FILCHECK to Check Structural Consistency
The FILCHECK utility checks the physical structure of a DP2 structured object and
reports any errors. The internal checks include:

• Forward and backward pointers in blocks

• Relative sector number and checksum of every block

• Correct index levels

• Data block and index block linkage and length

• Block headers and rows in relative files

• Offset pointers and order

FILCHECK does not correct any errors in the physical structure. If errors are detected,
you might want to use TMF file recovery to recover the object. Alternatively, contact
your service provider for other possible recovery methods. If you contact the Global
Customer Support Center (GCSC), have your FILCHECK output available and
determine whether full TMF recovery is a possibility.

You can request that the file information be displayed in brief format (a condensed
summary format) or in the detailed standard format.

This example shows a brief format listing for the EMPLOYEE table from the catalog
$VOL1.PERSNL:

14> FILCHECK $VOL1.PERSNL.EMPLOYEE, BRIEF ;
 @@@@ CHECKING $VOL.PERSNL.EMPLOYEE
 Time: 18:36:57 3/28/89
 This is an audited table
 SQL root table
 SQL integrity constraints present.
 Key-Sequenced file
 >Begin Summary Report.
 Data blocks checked : 5
 Data records checked : 190
 Index blocks checked : 1
 Index records checked : 5
 Free block checked : 0
 Bitmap blocks checked : 1
 Soft bitmap errors : 0
 >End of summary report.
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-14

Querying SQL/MP Catalogs Displaying Catalog, Object, and Program Versions
Displaying Catalog, Object, and Program
Versions

The different product version updates (PVUs) of SQL/MP produce and support
different versions of SQL catalogs, objects, and programs, as discussed in detail in the
SQL/MP Version Management Guide. Because the behavior and capabilities of a
catalog or object depend on its version, you must be able to determine the version of
catalogs or objects that your applications or interactive queries reference. The catalog
tables contain version information, which you can display, but you can also use a GET
VERSION statement to retrieve this information for you as follows:

>> GET VERSION OF TABLE $VOL1.PERSNL.EMPLOYEE;
 VERSION: 310
 --- SQL operation complete.

To retrieve information about any of the three types of program versions (PCV, PFV,
and HOSV), use the GET VERSION OF PROGRAM statement. When inquiring about
an OSS file, specify the ZYQ name of the OSS file.

The VERSIONS catalog table provides version information about the catalog. You can
use the GET VERSION statement to get this information for you as follows:

>> GET VERSION OF CATALOG $VOL1.$DATA1.PERSNL.VERSIONS;
 VERSION: 310
 --- SQL operation complete.

This information is also replicated for each catalog in the CATALOGS table in the
system catalog. The catalog format version is located in the CATALOGFORMAT
column, and the catalog version is located in the CATALOGVERSION column:

>> SELECT CATALOGFORMAT, CATALOGVERSION FROM catalog-
name.VERSIONS;

You can also obtain version information from the system catalog CATALOGS table,
which contains the version of each catalog on the node, as shown:

>> SELECT CATALOGNAME, SUBSYSTEMNAME, VERSION
+> FROM sys-cat-volume.SQL.CATALOGS
+> WHERE CATALOGNAME = "\SYS1.$DATA1.PERSNL";

CATALOGNAME SUBSYSTEMNAME VERSION
----------------------- ----------------- -------

\SYS1.$DATA1.PERSNL SQL A310

--- 1 row(s) selected.
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-15

Querying SQL/MP Catalogs Displaying Catalog, Object, and Program Versions
In the information returned from either the VERSIONS or the CATALOGS table, the
code A010 indicates a version 1 catalog, A011 indicates a version 2 catalog, A300
indicates a version 300 catalog, A310 indicates a version 310 catalog, A315 indicates
a version 315 catalog, and so on.

You can also determine the version of SQL/MP tables, views, indexes, and collations
by using the FILEINFO command with the DETAIL option. (You cannot use the
FILEINFO command to obtain catalog versions.)

You can also obtain version information programmatically by issuing procedure calls.
For more information about this method, see the SQL/MP Version Management Guide.
HP NonStop SQL/MP Installation and Management Guide—523353-004
6-16

7
Adding, Altering, Removing, and
Renaming Database Objects

After you create a database, you can assume that the database is consistent and that
application data is valid. Database management operations must ensure the same
level of data consistency and validity.

Any addition, alteration, or deletion to the database should be carefully planned. Only
authorized persons should make changes to the active data dictionary.

You should review all changes to the database for these issues, discussed further in
this section:

• Will dependent SQL objects be affected? Sometimes a single change makes other
changes necessary for consistency. Your plan for completing a change should
include performing an initial change and, if needed, changes to dependent SQL
objects throughout the database.

• Does the user making the change have the authority to do so?

• Are the necessary base tables, partitions, and systems available?

• What impact would the change have on the production application? Should the
application be stopped to apply this change consistently and without system
degradation?

• Does the user making the change have a valid recovery mechanism to undo the
change if required?

When you make changes to the database, you should always maintain a log of the
operations of adding, dropping, and altering database objects.

Adding Objects to a Database
Because an SQL/MP database has an active data dictionary, you can add objects to
the database online:

• Adding a catalog or table to the database is the same as creating the object for the
first time. The addition can require integration into the existing database but does
not affect the validity of the current database or its use.

• Adding a new dependency (an index, view, column, constraint, comment, or
partition; or object, column or constraint that uses a collation) alters the current
state of the database.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-1

Adding, Altering, Removing, and Renaming
Database Objects

Adding Catalogs
This table summarizes the objects that can be added to the database and the SQL
statements you use to add the objects:

As with any change to the database, the first step is careful planning. Additional
information on creating (adding) objects is located in Section 3, Understanding and
Planning Database Tables, and Section 5, Creating a Database.

All changes to a database require the specified authority for protection of the database.
The authority to add new SQL objects is given to anyone with authority to write to the
catalog in which the object is registered. The authority to add to existing objects is
controlled by the ownership and security of that object. For details on the authorization
requirements, see Authorization Requirements for Database Operations on page 4-5.

Adding Catalogs
To add new catalogs to an existing data dictionary, use the CREATE CATALOG
statement. Adding catalogs does not affect existing dictionary objects and items. The
catalog format version of a new catalog is the same as the version of the SQL/MP
software that creates the catalog, as explained in the SQL/MP Version Management
Guide.

To create a new catalog and also secure the catalog in one statement, use the
CREATE CATALOG statement with the SECURE option. For more information, see
Altering Catalog Attributes on page 7-15. For general guidelines about the CREATE
CATALOG statement, see Creating Catalogs on page 5-1.

To add a catalog:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Query the CATALOGS table of the system catalog to determine if the catalog name
is available, or use the FILEINFO catalog-name TABLES command to verify that
the catalog does not exist.

Object Operation SQL Statement

Catalog (all tables) Add CREATE CATALOG

Table Add CREATE TABLE

View Add CREATE VIEW

Index Add CREATE INDEX

Collation Add CREATE COLLATION

Partition Add ALTER TABLE PARTONLY MOVE
ALTER INDEX PARTONLY MOVE

Column Add ALTER TABLE ADD COLUMN

Constraint Add CREATE CONSTRAINT

Comment Add/Append COMMENT
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-2

Adding, Altering, Removing, and Renaming
Database Objects

Adding Tables
3. Enter the CREATE CATALOG statement, with or without the SECURE option.

4. Verify that the catalog’s security is set to allow SQL objects to be added and
accessed.

Adding Tables
Like adding new catalogs, adding new tables does not directly affect the existing
dictionary objects, except for collations. Creating a table is the first step in defining
SQL object dependencies, and no existing dependencies are affected. The new table
can, however, be dependent on one or more collations.

You can add new tables to new catalogs or to existing catalogs. To add a table, use the
CREATE TABLE statement.

If you are adding a new table to an existing application’s database, you should ensure
that the security and authority for the new table matches any existing security plan for
allowing access.

If any column of the new table corresponds to an existing column in another table, you
should define the new column with the same characteristics as the existing column.

A table added by a new version of SQL/MP software does not have the same version
as the software unless the table uses one of the new features in that software version.
For example, a table added by version 310 software is not a version 310 table unless it
uses a feature not available in an older version of SQL/MP software. For more
information, see the SQL/MP Version Management Guide.

To add a table, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Query the CATALOGS table of the system catalog or use the FILEINFO command
to check that the target catalog already exists. The catalog must exist to create a
table.

3. Query the TABLES table of the catalog to check that the table name is available.

4. Plan the column definitions, checking that the data type of any column that might
be necessary for join or predicate search operations matches the joined column.

5. Make sure that collations exist before you refer to them in column definitions. If a
collation to be used by a column does not exist, create the collation as explained
under Creating Collations on page 5-55.

6. Enter the CREATE TABLE statement, or put the statement text into an EDIT file
and enter an OBEY command to run the statement from the file.

7. Alter the security and ownership of the new table, if necessary.

8. For an audited table, make a TMF online dump. For a partitioned audited table,
make an online dump of each partition.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-3

Adding, Altering, Removing, and Renaming
Database Objects

Adding Views
For additional information and guidelines related to adding a table, see Creating Base
Tables on page 5-10.

Adding Views
Adding views on existing tables does not affect existing database dependencies. To
add a view, use the CREATE VIEW statement, following these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the names of any tables whose columns you want to include in the view.
Shorthand views can also refer to other views.

3. Determine the column names of the view and the column names of the underlying
table or tables of the view. To display the columns of the underlying table or tables,
you can either use the INVOKE command or query the COLUMNS table of the
catalog.

4. Enter the CREATE VIEW statement, or put the statement text into an EDIT file and
enter an OBEY command to run the statement from the file.

5. Alter the security and ownership of the new view, if necessary.

6. For an audited view, make a new TMF online dump.

For additional information and examples of creating views, see Creating Views of Base
Tables on page 5-38.

Adding Indexes
Use the CREATE INDEX statement to add an index to an existing table. The statement
both creates and loads the new index.

Evaluating the Benefit of a New Index
Knowing when to add an index to improve performance requires a detailed
understanding and analysis of your application. Following are the ways to collect data:

• Analyze the programs and ad hoc queries for the columns used in the DISTINCT,
GROUP BY, ORDER BY, and WHERE clauses, and in join operations.

• Run the SQL compiler with the EXPLAIN option to obtain a report on the access
paths the compiler chooses for the programs.

• Analyze Measure statistics on SQL statements.

If you need to determine whether an index can benefit performance, you could test the
performance before implementing the index in the production system.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-4

Adding, Altering, Removing, and Renaming
Database Objects

Adding Indexes
To test the effect of an index on performance, follow these steps:

1. Test a sample set of queries against the production tables by using the DISPLAY
STATISTICS command to obtain the statistical information.

2. Duplicate the table or tables involved to a test location.

3. Create the new index.

4. Enter an UPDATE STATISTICS statement to update the statistical information
stored in the catalog and get statistics on the new index. The CREATE INDEX
statement does not automatically update statistical information.

5. SQL compile (recompile) any programs that use the table with the EXPLAIN option
to determine whether the index is the chosen path.

6. Test the same queries against the tables by using DISPLAY STATISTICS to obtain
the new statistical information.

7. Determine any improvement in performance.

8. If the query execution plans include using the new index and if you determine that
the performance improvement is sufficiently advantageous over the increased
system overhead of maintaining the index, add the index to the production
database.

9. If you add the index, recompile programs that use the table.

Consider these guidelines when adding an index to an existing table:

• You should not create an index on a loaded table within a user-defined TMF
transaction because the transaction could overflow the TMF audit trails and cause
an error. The CREATE INDEX operation automatically initiates several TMF
transactions, as necessary, but loads the index outside a TMF transaction. With
this loading technique and the automatic transactions, the operation minimizes the
TMF overhead of a potentially very long transaction and reduces output to the
audit trails.

• Index creation can be a long operation, depending on the size of the table and the
load on the system. Therefore, two locking strategies are available:

° The default locking strategy acquires a shared table lock on the underlying
table. The shared table lock ensures that no users can modify rows during the
creation of the index. This lock can prohibit access to the table by other users
that make write requests.

° The WITH SHARED ACCESS option for the CREATE INDEX statement allows
access to the table for DML operations during all but the short final stage of
index creation. The option includes a reporting feature for monitoring index
creation. In addition, you can request a time window or request explicit
operator authorization for the final stage of index creation that requires table
locking.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-5

Adding, Altering, Removing, and Renaming
Database Objects

Adding Indexes
The WITH SHARED ACCESS option can be used in conjunction with the
PARALLEL EXECUTION ON option if the initiating node, all nodes with base
table partitions, and all nodes that will have index partitions are running version
315 or later of SQL/MP software.

For more information about the WITH SHARED ACCESS option and concurrent
access to tables by multiple users, see Understanding the Implications of
Concurrency on page 14-1 and the “WITH SHARED ACCESS” description in the
SQL/MP Reference Manual.

• For an audited index, make a TMF online dump of the index immediately after
creating it to prepare for possible file recovery, which might be faster than
rebuilding the index.

For additional guidelines related to index creation, including performance-related
considerations, see Creating Indexes on Base Tables on page 5-42.

Validation Considerations
Adding a new index invalidates the programs that depend on the underlying table
unless you use one of these:

• The NO INVALIDATE option in the CREATE INDEX statement

• The CHECK INOPERABLE PLANS compiler option, described under Using
Similarity Checks on page 10-15, with similarity checking enabled for the index

If you do not use one of the preceding options, you should include steps to explicitly
SQL compile the dependent programs to avoid automatic recompilation and to return
the application to a valid state.

The creation of the index does not automatically update the table’s statistics, which the
SQL compiler uses to determine the best access path. You should always follow the
creation of an index with the UPDATE STATISTICS statement to ensure that the table’s
statistics are current. If the statistics are incorrect, the SQL compiler might not choose
the most efficient access path.

Note. SQL tables and indexes with many partitions (typically around 400) might cause
SQLCAT, SQLUTIL, or AUDSERV processes to incur file-system error 31 or 34 or cause the
PARTNS catalog table and its associated index, IXPART01, to become full. For more
information about this situation, see Creating Table Partitions on page 5-32.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-6

Adding, Altering, Removing, and Renaming
Database Objects

Adding Partitions to Tables and Indexes
Steps for Adding an Index
To add an index, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the table for which you want to add the index.

3. Optionally, determine which programs depend on this table by using the DISPLAY
USE OF command. These programs will be invalidated unless you use one of the
options discussed previously.

4. Optionally, prevent the use of the table for the duration of the CREATE INDEX
operation to eliminate conflicts in access to the table; this operation requires
exclusive use of the table during the final phase of the creation process.

5. For an index column, you can specify a different collation than the collation used
by the corresponding base table column, provided the shifting rules of both
collations are the same. Make sure that collations exist before you refer to them in
column definitions. If a collation to be used by a column does not exist, create the
collation as explained under Adding Collations on page 7-13.

6. Enter the CREATE INDEX statement. To allow an online dump during index
creation, use the WITH SHARED ACCESS option.

7. Enter the UPDATE STATISTICS statement for the underlying table.

8. SQL compile the invalidated programs to enable the compiler to determine the best
access strategy.

9. For audited indexes, make a new TMF online dump.

10. Restart use of the table if you stopped its use.

To maximize concurrent access during the index creation operation, use the WITH
SHARED ACCESS option. For more information, see Understanding the Implications
of Concurrency on page 14-1.

Adding Partitions to Tables and Indexes
To add a new partition to a key-sequenced table, use the ALTER TABLE statement
with the PARTONLY MOVE specification. To add a new partition to an index, use the
ALTER INDEX statement. Alternatively, you can split partitions, merge partitions, or
move row boundaries within existing partitions.

You can also use the ADD PARTITION option with the ALTER TABLE or ALTER
INDEX statement to add a new partition to a table or index. The ADD PARTITION
option is equivalent to the one-way split form of the PARTONLY MOVE option.
However, to use enhanced features such as the WITH SHARED ACCESS option, you
must use the PARTONLY MOVE option.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-7

Adding, Altering, Removing, and Renaming
Database Objects

Adding Partitions to Tables and Indexes
For a relative or entry-sequenced table, the only way to add a new partition is to add
an empty partition to the end of a table with the ADD PARTITION option. You cannot
use the PARTONLY MOVE option with a relative or entry-sequenced table.

Evaluating the Benefit of a New Partition
Partitioning might increase performance in these cases:

• If disk accesses are queued in the disk process, partitioning the table across
multiple volumes might increase performance.

• If a partition of a table or index is full, the partition can be split into two partitions.

• If a certain subset of a remote table’s data is accessed more frequently at the local
node than from a remote node, partitioning the table so that the frequently
accessed portion of the data resides on the local node can increase local
performance.

• If a distributed table residing on a remote node might be frequently unavailable,
partitioning the table so that the local partition can be accessed regardless of the
remote table’s availability can increase local performance.

• If an application program that disables row lock escalation to table locks receives
an error from the disk process because the disk process has used up the control
block space for locks, the table can be partitioned to allow more locks. Partitioning
allows more locks to be placed on a table because the disk process lock limit
functions on a partition basis.

• If queries are processed in parallel, partitioning a table or index is often required.
Partitioning is necessary, for example, for parallel execution of a SELECT
statement on a single table. Also for join queries, which do not require partitioning
of the objects involved, parallel processing operates best when a table or index is
partitioned.

You can use the Measure product to obtain statistics concerning disk message levels,
queuing, and other measurements on various volumes or file partitions to identify the
levels of use.

Steps for Adding a Partition
You can add partitions to tables and indexes within the guidelines listed in the SQL/MP
Reference Manual in the descriptions of the ALTER TABLE and ALTER INDEX
statements.

To add a partition, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the table or index to which you want to add the partition.

3. For a key-sequenced table or index, determine the starting key of the new partition.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-8

Adding, Altering, Removing, and Renaming
Database Objects

Adding Partitions to Tables and Indexes
4. If you are splitting a partition, check that ample disk space is available for the new
partition. For information about space requirements, see the ALTER TABLE or
ALTER INDEX statement in the SQL/MP Reference Manual.

5. Use the DISPLAY USE OF command to determine which programs depend on the
table. These programs will be invalidated unless the programs are compiled with
the CHECK INOPERABLE PLANS option and the table has similarity checking
enabled, as described under Using Similarity Checks on page 10-15.

6. If you wish to add Format 2 partitions to a Format 2-enabled table, enter the
ALTER TABLE or ALTER INDEX statement with the FORMAT clause to specify the
format of the new partition. For more information about Format 2 partitions, see
Appendix C, Format 2 Partitions.

7. Enter the ALTER TABLE or the ALTER INDEX statement with the PARTONLY
MOVE clause to add the partition.

8. SQL compile the invalidated programs identified by the DISPLAY USE OF
command in Step 5.

9. For an audited table or index, make new TMF online dumps of all affected
partitions.

Note that the new partition inherits the partition array value associated with the
base table. If PARTITION ARRAY is EXTENDED, the partition can make use of the
larger number of partitions available for versions 320 and later of SQL/MP
software. If PARTITION ARRAY is FORMAT2ENABLED, the partition can make
use of the larger size of partitions available for versions 350 and later of SQL/MP
software. In Step 6, use the FORMAT clause to specify whether the added partition
should be Format 1 or Format 2. Partitions added to Format 2-enabled tables and
indexes will be Format 2 partitions by default.

For information about redistributing rows across partitions, see Splitting, Moving, and
Merging Partitions on page 7-20.

Example
This example adds an empty partition to a key-sequenced table, leaving existing data
in the existing partition (assuming there are no key values past 4999). In this one-way
split operation, the starting key value for the new partition is 5000.

>> ALTER TABLE $VOL1.SALES.CUSTOMER
+> PARTONLY MOVE FROM KEY 5000 TO $VOL3.SALES.CUSTOMER
+> CATALOG $VOL1.SALES
+> EXTENT (1000,200);
--- SQL operation complete.

Note. SQL tables and indexes with many partitions (typically around 400) might cause
SQLCAT, SQLUTIL, or AUDSERV processes to incur file-system error 31 or 34 or cause the
PARTNS catalog table and its associated index, IXPART01, to become full. For more
information about this situation, and for general information about adding a partition, see
Creating Table Partitions on page 5-32.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-9

Adding, Altering, Removing, and Renaming
Database Objects

Adding Columns
Adding Columns
You can add a column to any key-sequenced table. In addition, you can add a column
to any relative table already defined with enough extra bytes in the RECLENGTH value
to accommodate the new column. You cannot, however, add columns to entry-
sequenced tables or to views or indexes. To add a column, use the ALTER TABLE
statement with the ADD COLUMN clause. Each ALTER TABLE statement adds only
one column. To add several columns, use the statement once for each column.

Each new column is added as the last column in the table. If you want to add a column
to a table so that it does not appear as the last column, follow the steps for altering
columns under Altering Database Objects on page 7-13.

Existing programs that depend on the table are not affected by the addition of a new
column unless a program needs to use the new column or includes an INSERT * or a
SELECT * statement that refers to the new column’s table. Adding a column, however,
invalidates programs that depend on the table unless the program was compiled with
the CHECK INOPERABLE PLANS option and the similarity check is enabled for the
table. For more information, see Using Similarity Checks on page 10-15.

You should include steps to explicitly SQL compile invalid programs to avoid automatic
recompilation and to return the application to a valid state.

Adding a column does not cause any existing data to be rewritten. For existing rows,
the new column takes on the system default value unless you specify a default value.
Adding a column to a table does not affect existing dependent views or indexes.

The ALTER TABLE statement with the ADD COLUMN clause requires an exclusive
table lock to ensure that no rows are inserted during creation of the column. All
partitions and protection views must also be accessible.

After you add a column, you should consider whether the new column must be
integrated into existing or new views and indexes. Application programmers can write
new programs to use the new column or alter existing programs to use the new
column.

This example adds a column to the CUSTOMER table:

>> LOG $VOL.DBCHANGE.CNGLOG;
>> ALTER TABLE $VOL1.SALES.CUSTOMER
+> ADD COLUMN PRIOR_YEARS_SALES
+> PIC S9(9)V99 COMP DEFAULT SYSTEM NOT NULL;
--- SQL operation complete.

Note. Views previously defined as “SELECT * FROM...” will not select the new column.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-10

Adding, Altering, Removing, and Renaming
Database Objects

Adding Columns
To add a column, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the table to which you want to add the column. You can
add columns to all key-sequenced tables or to relative tables with sufficient
RECLENGTH length.

3. Match the data type for the column with any corresponding column’s data type so
that users can perform joins or predicate searches.

4. Determine which programs depend on the table by using the DISPLAY USE OF
command. These programs will be invalidated unless a program was compiled with
the CHECK INOPERABLE PLANS option and the similarity check is enabled for
the table. For more information, see Using Similarity Checks on page 10-15.

5. Optionally, prevent the use of the table for the duration of the ALTER TABLE
operation to eliminate conflicts in access to the table; this operation requires
exclusive use of the table.

6. Enter the ALTER TABLE statement with the ADD COLUMN clause.

7. Determine if the new column will also be added to any existing index or view or if
program changes are required. After adding the new column, follow the steps for
integrating the new column into an existing application, described in the following
text.

8. SQL compile the invalidated programs.

9. For an audited table, make a new TMF online dump.

10. Restart use of the table if you stopped its use.

To integrate the new column into the existing database or application programs, do
these:

• If you want to create a new index using the new column, follow the steps for adding
indexes.

• If you want to add the new column to an existing index, first follow the steps for
dropping indexes, then follow the steps for adding indexes to add the new column
definition. You cannot alter an index or view to add a column.

• If you want to create a new view using the new column, follow the steps for adding
views.

• If you want to add the new column to an existing view, first follow the steps for
dropping views, then follow the steps for adding views. You cannot alter a view to
add a column.

• If you want to use the new column in programs, you must change existing
programs to refer to the new column. You might need to change screen sections to
display the column on the screen, and you might need to change code sections to
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-11

Adding, Altering, Removing, and Renaming
Database Objects

Adding Constraints
retrieve or update the column. After you SQL compile a program changed to use
the new table definition, the program can use the column.

• If you want to add constraints that control values in the new column or if you want
to add comments on the new column, you can run the CREATE CONSTRAINT or
COMMENT statement at any time after the column is added.

For additional information about column positioning and performance-related aspects
of columns, see Defining Columns on page 5-19.

Adding Constraints
Adding a constraint to the database is similar to making a program change. Any future
data insertions or updates must satisfy the new rule imposed by the constraint. In
addition, all existing rows must satisfy the rule before a constraint can be added. To
add a constraint, use the CREATE CONSTRAINT statement.

Adding a constraint to a table invalidates any programs that depend on the table. You
should include steps to explicitly SQL compile the dependent programs to avoid
automatic recompilation and to return the application to a valid state.

To add a constraint, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the table for which you want to add the constraint.

3. Check any existing constraints by querying the CONSTRNT catalog table and
determine whether the new constraint would supersede or conflict with any
constraint already defined for the same table.

4. Enter a query on the table by making the predicate of the query the negation of the
constraint. This query would identify rows that do not satisfy the constraint. If the
query identifies any rows, change or delete the rows before creating the constraint.
If the query refers to a collation, verify that the collation exists and is secured to
allow you write access before creating the constraint.

5. Determine which programs depend on the table by using the DISPLAY USE OF
command. These programs will be invalidated.

6. Optionally, prevent the use of the table for the duration of the CREATE
CONSTRAINT operation to eliminate conflicts in table access; this operation
requires exclusive use of the table.

7. Enter the CREATE CONSTRAINT statement.

8. SQL compile the invalidated programs.

9. Restart use of the table if you stopped its use.

For additional information on constraints and related performance issues, see Creating
Constraints on Data on page 5-51 and Checking Data Integrity on page 14-23.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-12

Adding, Altering, Removing, and Renaming
Database Objects

Adding Collations
Adding Collations
Adding collations to a database does not affect existing database dependencies. To
add a collation, use the CREATE COLLATION statement, following these steps:

1. Create the collation source file, as explained under Creating Collations on
page 5-55.

2. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

3. Enter the CREATE COLLATION statement, or put the statement text into an EDIT
file and enter an OBEY command to run the statement from the file.

4. Alter the security and ownership of the new collation if necessary.

5. For more information about collations, see Creating Collations on page 5-55.

Adding Comments
Comments are allowed for these objects: a column, table, view, constraint, or index,
table or view column, or collation. To add comments, use the COMMENT statement.

You can add comments to clarify how the object is used. Having comments in the
active data dictionary can help both database administrators and programmers in
understanding the database structure. Application users would not normally use the
dictionary comments.

You can add or append comments to any existing text. If you use the CLEAR clause,
the new comment overwrites any existing comments on the specified object.

To add a comment, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the object for which you want to add a comment.

3. Determine if any comments exist and whether you want the new comment to be
appended or to overwrite existing comments.

4. Enter the COMMENT statement.

Altering Database Objects
The active data dictionary enables you to make certain changes to the database
online. As with any change to the database, careful planning should be the first step.

To alter the security and physical file attributes of SQL objects, use the ALTER
statement. To alter the security attributes of tables, views, collations, and SQL
programs stored in Guardian files, use the SECURE utility. To alter the security
attributes of SQL programs stored in OSS files, use the appropriate OSS utility. For
more information, see the Open System Services Shell and Utilities Reference Manual.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-13

Adding, Altering, Removing, and Renaming
Database Objects

Altering Database Objects
All changes to a database require the specified authority for protection of the database.
The authority to alter existing objects is controlled by the ownership and security of that
object. For details on authorization requirements, see Authorization Requirements for
Database Operations on page 4-5.

This table summarizes the database objects that can be altered and the statements,
commands, and options you use for the operations:

Object Operation Statement or Command (page 1 of 2)

Catalog (all tables) Security ALTER CATALOG

Catalog tables
PROGRAMS
USAGES
TRANSIDS
CATALOGS

Security ALTER TABLE

Table Security/attributes ALTER TABLE
SECURE

View Security

Column attributes
Heading text
Help text

ALTER VIEW
SECURE
ALTER VIEW COLUMN
ALTER VIEW COLUMN
HELP TEXT

Index File attributes ALTER INDEX

Partition File attributes

Add/split/move

Drop

ALTER TABLE PARTONLY
ALTER INDEX PARTONLY

ALTER TABLE PARTONLY MOVE
ALTER INDEX PARTONLY MOVE

ALTER TABLE DROP PARTITION
ALTER INDEX DROP PARTITION

Column New definition

Column attributes

Heading text

Help text

CREATE TABLE
LOAD
DROP TABLE

ALTER TABLE ADD COLUMN

ALTER TABLE COLUMN

ALTER TABLE COLUMN

HELP TEXT
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-14

Adding, Altering, Removing, and Renaming
Database Objects

Altering Catalog Attributes
Altering Catalog Attributes
Use the ALTER CATALOG statement to change the security of an entire set of catalog
tables. You can alter only the security specifications of a catalog. This statement does
not affect the system catalog CATALOGS table. You must alter that table with the
ALTER TABLE statement.

You cannot specify a security string for a catalog that does not include read access by
the owner of the catalog. Requiring that the catalog has read access by the owner
ensures that the owner of the catalog can subsequently read it.

The PROGRAMS, USAGES, and TRANSIDS tables of an SQL catalog and the
CATALOGS table of the system catalog can be secured separately from the remainder
of the catalog tables. To resecure these tables, you can use the ALTER TABLE
statement as described next under Altering Table Attributes on page 7-15.

This example alters the security of all the catalog tables of the catalog PERSNL:

>> ALTER CATALOG PERSNL SECURE "NNNO";
--- SQL operation complete.

To alter the security of a catalog, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the catalog name and existing security.

3. Enter the ALTER CATALOG statement.

For more information about defining catalog tables, see Creating Catalogs on
page 5-1.

Altering Table Attributes
To alter the security and physical file attributes of SQL tables, use the ALTER
statement. To alter the security attributes of tables, use the SECURE utility.

Altering a table's attributes or security specification neither invalidates any programs
nor affects dependencies of the table. If you alter the security of the table, however,
you might damage the security scheme of the dependent views and the access

Constraint New definition DROP CONSTRAINT
CREATE CONSTRAINT

Collation Security

Rename

ALTER COLLATION
SECURE

ALTER COLLATION RENAME

Comment Add/append/drop COMMENT

Object Operation Statement or Command (page 2 of 2)
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-15

Adding, Altering, Removing, and Renaming
Database Objects

Altering Table Attributes
strategy. If you alter the audit flag, you can invalidate the most recent TMF online
dump, and programs expecting an audited table will receive a TMF run-time error.

You can alter a single partition of a partitioned table by specifying the PARTONLY
clause in the ALTER statement. For a partitioned table, if you omit PARTONLY, the
statement operates on all partitions, and all partitions must be accessible.

These examples demonstrate altering the security and file attributes of a table:

>> ALTER TABLE $VOL1.PERSNL.EMPLOYEE OWNER 100,001
+> SECURE "NGOO";
--- SQL operation complete.
>> ALTER TABLE $VOL1.SALES.ORDERS MAXEXTENTS 300;
--- SQL operation complete.
>> ALTER TABLE $VOL1.SALES.CUSTOMER NOPURGEUNTIL DEC 31 1990;
--- SQL operation complete.

Use the ALTER TABLE statement with the COLUMN specification to add or change
heading text for an existing column of a table. Use the HELP TEXT statement to add or
change help text for a column. It is not possible to alter the other attributes or the data
type of a column.

Use the ALTER TABLE statement with the SIMILARITY CHECK ENABLE clause to
enable similarity checking for a table.

This example shows how to alter the heading text for the column EMPNUM of the
EMPLOYEE table. If the column did not previously have a heading, the new heading is
added. If the column previously had a heading, the old heading is replaced by the new
one.

>> ALTER TABLE $VOL1.PERSNL.EMPLOYEE COLUMN EMPNUM
+> HEADING "Employee ID Number";
--- SQL operation complete.

Specifying NO HEADING in the ALTER TABLE COLUMN statement deletes any
existing heading text from the column.

Altering the heading text for a table column does not update any dependent views
created with the headings of the underlying table columns. To keep the two objects
synchronized, you must update the view’s column headings independently.

You can also alter the partition array type associated with a table. If you change the
array type, all programs that refer to the table are invalidated. In addition, if you modify
the type from EXTENDED to STANDARD, the data structures might not fit within the
STANDARD format. When this situation occurs, SQL returns an error.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-16

Adding, Altering, Removing, and Renaming
Database Objects

Altering Table Attributes
Steps for Altering Table Attributes
1. Start an SQLCI session. Enter a LOG command to initiate a log file for the

statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the table you want to alter.

3. If you are altering security or the audit attribute, determine whether the change will
affect current users or programs.

4. Enter the ALTER TABLE statement.

For more information about table columns and attributes, see Creating Base Tables on
page 5-10.

Altering Security
To make the USAGES, TRANSIDS, and PROGRAMS tables accessible for SQL
compilations of programs, you might need to change the security of each table in an
ALTER TABLE statement. During explicit SQL compilation, any dependencies a
program has on tables or views described in a catalog are recorded in the catalog’s
USAGES table. To insert the dependency record into the USAGES table, the catalog
manager must start a TMF transaction that is registered in the TRANSIDS table. Write
access to the PROGRAMS table is required so that the SQL compiler can register
programs in the table.

You can change the catalog security at creation time by specifying the SECURE
attribute in the CREATE CATALOG statement. You can also change the security of
these individual tables at any later time by using the ALTER CATALOG statement:

• CATALOGS (system catalog only)

• USAGES

• TRANSIDS

• PROGRAMS

If you use the SECURE attribute, you must specify a security string that gives the
owner of the catalog tables read access.

For a user to compile a program, the user needs read and write access to the
USAGES and TRANSIDS tables in a catalog containing descriptions of tables, views,
collations, partitions, and indexes that the program uses. Additionally required is write
access to the PROGRAMS table of the catalog in which the program is registered.

The catalog tables compose the data dictionary, a vital part of an application’s integrity.
The security of a catalog should protect the data dictionary information from
unauthorized removal or alteration.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-17

Adding, Altering, Removing, and Renaming
Database Objects

Altering View Attributes
Altering View Attributes
You can alter the security string specification of a view but not the attributes. You can
alter the owner ID for a shorthand view but not for a protection view. To alter the
security or owner ID, use the ALTER VIEW statement.

Altering a view’s security neither invalidates any programs nor affects the dependent
views. If you alter the security of the view, however, you might damage the security
scheme of the dependent views and the access strategy. You can alter the security of a
view by using the ALTER VIEW statement or the SECURE command. For a detailed
description of view security dependencies, see the description of the ALTER VIEW
statement in the SQL/MP Reference Manual.

This example alters the security attributes of a shorthand view:

>> ALTER VIEW $VOL1.PERSNL.NAMELIST OWNER 100,001
+> SECURE "NNNO";
--- SQL operation complete.

You can create a view that inherits the heading text or help text from the underlying
table. Alternatively, you can create new headings and help text for the columns of the
view. After the view is created, you can also alter the heading text or help text as an
independent operation.

To add or alter the heading text for a column, use the ALTER VIEW statement. To add
or alter help text for a column, use the HELP TEXT statement. Altering the heading text
or help text of the columns in the underlying table does not alter the heading text or
help text inherited by the view.

Use the ALTER VIEW statement with the SIMILARITY CHECK ENABLE clause to
enable similarity checking for a protection view.

This example demonstrates altering the heading text for the column EMPNUM of the
EMPLIST view. If the column did not previously have a heading, the new heading is
added. If the column already had a heading, the old heading is replaced by the new
one.

>> ALTER VIEW $VOL1.PERSNL.EMPLIST COLUMN EMPNUM
+> HEADING "Employee ID Number";
--- SQL operation complete.

To alter a view, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the view you want to alter and the name of the table that
underlies the view.

3. Determine whether the change meets the security dependencies of dependent
views.

4. Enter the ALTER VIEW statement.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-18

Adding, Altering, Removing, and Renaming
Database Objects

Altering Index Attributes
For more information about view attributes, see Creating Views of Base Tables on
page 5-38.

Altering Index Attributes
The ALTER INDEX statement can alter several file and security attributes of an index.
For security attributes, you can alter only CLEARONPURGE, NOPURGEUNTIL, or
SECURE. The index owner and security are set and altered by those attributes of the
underlying table. You can independently alter all file attributes of an index except the
AUDIT attribute.

You can alter a single partition of a partitioned index by specifying the PARTONLY
clause in the ALTER INDEX statement.

For a partitioned index, if you omit PARTONLY, the statement operates on all partitions,
and all partitions must be accessible.

For a detailed description of index security dependencies, see the description of the
ALTER INDEX statement in the SQL/MP Reference Manual.

These examples alter attributes of an index:

>> ALTER INDEX $VOL1.PERSNL.XEMPL NO CLEARONPURGE;
--- SQL operation complete.
>> ALTER INDEX $VOL1.SALES.XORDCUS
+> PARTONLY MAXEXTENTS 300;
--- SQL operation complete.

To alter an index, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the index you want to alter.

3. Enter the ALTER INDEX statement.

For more information about index attributes, see Creating Indexes on Base Tables on
page 5-42.

Altering Partition Attributes
You can alter the attributes of a single partition of a partitioned table or index by
specifying the PARTONLY clause in the ALTER TABLE or ALTER INDEX statement.

You can alter the partition attributes MAXEXTENTS, ALLOCATE, and DEALLOCATE.
You cannot alter the security string for a partition.

This example deallocates unused extents of a table partition located on
$VOL1.SALES:

>> ALTER TABLE $VOL1.SALES.ORDERS
+> PARTONLY DEALLOCATE;
--- SQL operation complete.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-19

Adding, Altering, Removing, and Renaming
Database Objects

Splitting, Moving, and Merging Partitions
This example sets the maximum number of extents for a partition of an index located
on $VOL1.SALES:

>> ALTER INDEX $VOL1.SALES.XORDCUS
+> PARTONLY MAXEXTENTS 300;
--- SQL operation complete.

Splitting, Moving, and Merging Partitions
You can move rows within partitions of a base table or index. To do this, use the
PARTONLY MOVE option with the ALTER TABLE or ALTER INDEX statement. You
can perform these operations that split, move, or merge partitions:

• Move a partition from one volume to another

• Perform a one-way partition split

• Perform a two-way partition split

• Move partition boundaries—move rows from one partition into another existing
partition

• Merge a partition into another existing partition

For many of these operations, you can specify the WITH SHARED ACCESS option to
retain full read and write access to data throughout most of the operation. (Some
operations require the WITH SHARED ACCESS option.)

For a description of the steps you should follow when performing these operations, see
Steps for Adding a Partition on page 7-8.

Moving a Partition to Another Volume
You can move a partition to another volume with or without using the WITH SHARED
ACCESS option. If a table or index is not partitioned, you can use the MOVE option
without the PARTONLY clause to move the entire table or index to the new volume.
You can perform this move to change the format of a partition.

After the partition is moved to the target volume, SQL automatically drops the original
partition (from the source volume).

This example moves a partition of the EMPLOYEE table to another volume while
keeping the partition available for updates and reads during most of the operation:

>> ALTER TABLE $VOL5.PERSNL.EMPLOYEE
+> PARTONLY MOVE TO $VOL10.PERSNL.EMPLOYEE
+> CATALOG $VOL1.PERSNL
+> EXTENT (1000,200)
+> WITH SHARED ACCESS;
--- SQL operation complete.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-20

Adding, Altering, Removing, and Renaming
Database Objects

Splitting, Moving, and Merging Partitions
Performing a One-Way Partition Split
A one-way split moves data in the first or last part of a partition into a new partition. The
remaining part of the data stays in the original partition. You can perform a one-way
split with or without using the WITH SHARED ACCESS option.

You can perform this move to change the format of a partition.

If you do not use the WITH SHARED ACCESS option, you can only move data in the
last part of the partition to a new partition; you cannot move data in the first part of the
partition. That is, you can only use the FROM KEY value clause with the PARTONLY
MOVE option; you cannot use the UP TO KEY value clause. (You can optionally use
the UP TO LAST KEY clause, which indicates that SQL should move the data from the
FROM KEY value up to the last key value in the partition.)

If you do use the WITH SHARED ACCESS option, you can specify either the first or
last part of the data during the operation. That is, you can use either the FROM KEY
value clause or the UP TO KEY value clause with the PARTONLY MOVE option.

This example splits an existing partition of an index. Before the split operation, the
index has three partitions with these starting key values:

In this one-way split operation, the starting key value for the new index partition is
5000. The new partition resides on $VOL4. Rows with index key values that equal or
exceed 5000, but that are less than the starting key value assigned to the next numeric
partition (that is, rows with key values from 5000 to 9999) are relocated to the new
partition:

>> ALTER INDEX $VOL1.SALES.CUSTNAME
+> PARTONLY MOVE FROM KEY 5000 TO $VOL4.SALES.CUSTNAME
+> CATALOG $VOL1.SALES
+> EXTENT (1000,200);
--- SQL operation complete.

After the split operation, the index has four partitions with these starting key values:

Partition Location Starting Key Value

$VOL1 0

$VOL2 10000

$VOL3 20000

Partition Location Starting Key Value

$VOL1 0

$VOL4 5000

$VOL2 10000

$VOL3 20000
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-21

Adding, Altering, Removing, and Renaming
Database Objects

Splitting, Moving, and Merging Partitions
This example shows how to move the latter portion of one partition into a new partition
(a one-way split), using a define for the index name:

>> ALTER INDEX =XPART_LOC
+> PARTONLY MOVE
+> FROM KEY “H00” UP TO LAST KEY TO =XPART_EUROPE
+> CATALOG =INVENT_EUROPE
+> EXTENT (8,8) SLACK 20;
--- SQL operation complete.

The preceding example uses the FROM KEY value clause together with the UP TO
LAST KEY clause to specify the last part of the partition. (The LAST KEY refers to the
last key value in the partition, not the entire file.) The UP TO LAST KEY clause is
optional; if you omitted it, the preceding example would move the same rows (from
H00 to the last key in the partition) into the new partition.

Performing a Two-Way Partition Split
A two-way split moves all the data from an existing partition into two new partitions.
After a two-way split, SQL automatically drops the original partition. The data is now
divided between the two new, different partitions. You cannot use the WITH SHARED
ACCESS option with a two-way split operation.

You can perform this move to change the format of a partition.

This example shows how to split an existing partition into two new partitions and
register the new partitions in other catalogs (a two-way split):

>>ALTER TABLE $DISK1.SALES.ORDERS
+> PARTONLY MOVE
+> (FROM FIRST KEY UP TO KEY 50 TO $DISK2 CATALOG =CAT2,
+> FROM KEY 50 UP TO LAST KEY TO $DISK3 CATALOG =CAT3);
--- SQL operation complete.

The preceding example specifies the two destination volumes with the volume names
only ($DISK2 and $DISK3). You do not have to specify the subvolume and file names
because these names must be the same for each partition in the table or index. (If you
omit the node name, SQL defaults to the local node.)

Moving Partition Boundaries
You can move the boundaries between two existing partitions—that is, move rows from
one partition to another—by using the PARTONLY MOVE option. A move partition
boundary operation moves data in the first or last part of a partition into the logically
adjacent partition. You must use the WITH SHARED ACCESS option to perform this
operation.

During this operation, SQL moves the specified rows and automatically adjusts the key
ranges of the two affected partitions. The move partition boundary operation is similar
to a one-way split, but it moves data into an existing partition instead of a new partition.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-22

Adding, Altering, Removing, and Renaming
Database Objects

Splitting, Moving, and Merging Partitions
Suppose, for example, that a partition residing on $DISK2 contains rows in the key
range 3000 through 5999, and a partition residing on $DISK3 contains the key range
6000 through 8999. Suppose further that users have inserted many more rows into
lower key range than the higher one, and that you want to adjust the partition
boundaries accordingly.

This example moves rows from the partition residing on $DISK2 into the adjacent
partition residing on $DISK3. SQL moves the rows starting with the value 5000 up to
the last row in the partition.

>>ALTER TABLE $DISK2.SALES.ORDERS
+> PARTONLY MOVE
+> FROM KEY 5000 UP TO LAST KEY TO $DISK3
+> CATALOG $DISK1.SALES
+> WITH SHARED ACCESS;
--- SQL operation complete.

The preceding example specifies the table by naming the exact partition from which
rows will be moved (ALTER TABLE $DISK2.SALES.ORDERS). In fact, you can specify
any partition to identify the table; SQL will move rows from the correct partition based
on the FROM KEY value clause you specify.

Merging Partitions
A merge operation moves all the data in a partition into an existing, logically adjacent
partition. Merging partitions is a form of moving partition boundaries, except that the
merge operation moves all rows from the original partition into the destination partition.
After a merge operation, SQL automatically drops the original partition.

A merge operation is also similar to a move operation, except that it moves the data
into an existing partition instead of a new partition. You must use the WITH SHARED
ACCESS option with a merge operation.

This example moves all rows from the partition of the CUSTOMER table residing on
$VOL10 into the existing partition residing on $VOL11. The two partitions are logically
adjacent:

>>ALTER TABLE $VOL10.SALES.CUSTOMER
+> PARTONLY MOVE TO $VOL11
+> CATALOG $VOL1.SALES
+> WITH SHARED ACCESS;
--- SQL operation complete.

To perform a merge operation, you must specify the exact partition being merged in the
ALTER TABLE statement. The merge operation does not require you to specify a key
range because, like a move operation, it moves all the rows in the partition. In the
preceding example, suppose that he FIRST KEY value of the partition residing on
$VOL10 is 5000, and the FIRST KEY value of the partition on $VOL11 is 10000. After
the merge operation, the FIRST KEY of the partition residing on $VOL11 is 5000, and
the partition on $VOL10 no longer exists.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-23

Adding, Altering, Removing, and Renaming
Database Objects

Splitting, Moving, and Merging Partitions
UNRECLAIMED FREESPACE (F) and INCOMPLETE SQLDDL
OPERATION (D) Flags
A split partition, merge partition, or move partition boundary operation can cause these
flags to be set:

• UNRECLAIMED FREESPACE (F) indicates that an SQL object contains unusable
space. This flag is set as follows:

° For the source partition after a move boundary or one-way split operation using
the WITH SHARED ACCESS option completes successfully. Move boundary
operations perform a special partial PURGEDATA request to eliminate the data
from the source partition copied to the target partition. The UNRECLAIMED
FREESPACE flag indicates that space must be deallocated in the partition.
Applications can continue to read and update the table or index, even though
the UNRECLAIMED FREESPACE flag is set, but subsequent ALTER
operations and BACKUP, DUP, or move operations might fail.

To reclaim the space, issue a FUP RELOAD operation for the source partition.
After the UNRECLAIMED FREESPACE flag is reset, you can stop the FUP
RELOAD operation if desired and resume normal activity on the table or index.
(The FUP RELOAD operation reclaims free space first. If you do not stop the
FUP RELOAD operation, it continues with a file reorganization step.) For more
information about stopping a FUP RELOAD operation, see Suspending a
Reorganization Operation on page 8-4.

° For the target partition, if a move boundary request fails after data is loaded
into the target partition. In this situation, there is free space in the target
partition.

To reclaim the space, issue a FUP RELOAD operation for the target partition
before rerunning the ALTER operation.

• INCOMPLETE SQLDDL OPERATION (D) indicates one of these two situations:

° A move partition boundary or merge partition operation using the WITH
SHARED ACCESS option is in progress. The INCOMPLETE SQLDDL
OPERATION flag is set for the target partition during the operation and is reset
when the operation completes successfully.

° If a merge partition or move partition boundary operation does not complete
successfully because of a processor failure or another reason, the
INCOMPLETE SQLDDL OPERATION flag remains set. In this instance, the
object might contain invalid data and be in a corrupted state.

To recover from this situation, issue an ALTER statement with the RECOVER
INCOMPLETE SQLDDL OPERATION option. After recovering the table or
index, check the UNRECLAIMED FREESPACE flag to see if a FUP RELOAD
operation is needed. Avoid using the object while the INCOMPLETE SQLDDL
OPERATION flag is set; the data cannot be assumed to be accurate.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-24

Adding, Altering, Removing, and Renaming
Database Objects

Splitting, Moving, and Merging Partitions
Operational Considerations Related to F and D Flags
If an SQL object has the UNRECLAIMED FREESPACE or INCOMPLETE SQLDDL
OPERATION flag set, reset the flag as described previously before backing up,
moving, or duplicating the object. Otherwise, these situations occur:

• If you attempt to use SQLCI DUP on an object that has either flag set, SQL returns
an error.

• If you attempt to use BACKUP on an object with the UNRECLAIMED FREESPACE
flag set, SQL returns a warning and backs up the object.

A subsequent RESTORE of the object generates a warning, and SQL restores the
object without the UNRECLAIMED FREESPACE flag set.

Use the FILCHECK utility to determine if unreclaimed free space exists in the
object. If the object has unreclaimed free space, use one of these actions to
correct the problem:

° Create a new SQL object similar to the one with unreclaimed free space and
use the SQL COPY or LOAD command to load data from the defective object.

° Use the SQLCI ALTER TABLE <name> PARTONLY MOVE statement to create
a new partition for the data.

• If you attempt to use BACKUP for the primary partition of an object or for a
secondary partition (using the PARTONLY attribute), and the INCOMPLETE
SQLDDL OPERATION flag is set for the object, one of this occurs:

° If the IGNORE option is not specified, SQL returns an error and does not back
up the object.

° If the IGNORE option is specified, SQL returns a warning and backs up the
object.

A subsequent RESTORE of the object operates as follows:

° If the IGNORE option is not specified, SQL returns an error and does not
restore the object.

° If the IGNORE option is specified, SQL returns a warning and restores the
object. The newly-restored object does not have the INCOMPLETE SQL DDL
OPERATION flag set. At this point, there is no way to determine whether this
flag had been set.

Caution. Do not run FUP RELOAD to recover the free space in the object; you might cause a
processor to fail.

Note. In the current version of software, if you attempt to use BACKUP for an entire
partitioned table or index and a secondary partition has the INCOMPLETE SQLDDL
OPERATION flag set, SQL backs up (and restores, if requested) the entire table or index
regardless of the flag setting.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-25

Adding, Altering, Removing, and Renaming
Database Objects

Altering Columns
If there is a concern that a restored table might have had the INCOMPLETE
SQLDDL OPERATION flag set, use the SQLCI ALTER TABLE <name>
PARTONLY RECOVER INCOMPLETE SQLDDL OPERATION command for the
table. This step will not harm the table, even if it did not have the flag set
previously.

• If you attempt to use SQL DUP from a node running version 315 or earlier, SQL
does not recognize the flag and proceeds with the operation. If the
UNRECLAIMED FREESPACE flag is set, a FUP RELOAD of the object from a
node running a SQL/MP version earlier than 315 might corrupt the object or cause
a processor halt. If the INCOMPLETE SQLDDL OPERATION flag is set, the target
object might have extraneous data that will be visible to accessing applications. Do
not run UPDATE STATISTICS when one of these flags is set. The results might be
incorrect.

For more information about partitions, see Creating Table Partitions on page 5-32 and
Creating Index Partitions on page 5-48.

Altering Columns
You are not allowed to alter column definitions or sizes. To achieve an alteration of an
existing column, you must first create a new table with the column sizes and data type
definitions you want and then load the new table from the old table.

You cannot alter a view or index definition to add or delete columns. You can
accomplish these operations by dropping the old object and adding a new object to
comply with the new structure.

Also, you cannot change a collation associated with a column. You can, however, add
an index with a different collation for the column, provided both collations have the
same shifting rules.

Example 7-1 on page 7-27 shows the operations required to effectively alter a column.
The column CUST_PO is increased from 35 to 45 bytes. The example includes the
original table definition ($VOL1.SALES.ORDERS), the CREATE TABLE statement for
the new table, and the LOAD command. The LOAD command must include the
MOVEBYNAME option to load the new table correctly.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-26

Adding, Altering, Removing, and Renaming
Database Objects

Altering Constraints
For more information about column attributes, see Defining Columns on page 5-19.

Altering Constraints
You cannot alter constraints, but you can change them by dropping an existing
constraint or adding a new constraint to the table. Constraints reside in definition only;
therefore, they have no physical or security attributes to alter.

Altering Collation Attributes
You can alter the collation’s owner or security string by using the ALTER COLLATION
statement. To alter a collation, you must have authority to read and write to the
collation and the catalog in which the collation is registered.

Example 7-1. Altering a Column

* Record Definition for $VOL1.SALES.ORDERS
 01 ORDERS.
 02 ORDERNUM PIC 9(6).
 02 ORDER_DATE PIC S9(6) COMP.
 02 DELIV_DATE PIC S9(6) COMP.
 02 SALESREP PIC 9(4).
 02 CUST_PO PIC X(35).
 02 CUSTNUM PIC 9(4).

>> LOG $VOL1.DBCHANGE.CNGLOG;
>> CREATE TABLE $VOL1.SALES.ZZORDERS
+> (ORDERNUM PIC 9(6) NO DEFAULT NOT NULL,
+> ORDER_DATE PIC S9(6) COMP DEFAULT SYSTEM NOT
NULL,
+> DELIV_DATE PIC S9(6) COMP DEFAULT SYSTEM NOT
NULL,
+> SALESREP PIC 9(4) DEFAULT SYSTEM,
+> CUST_PO PIC X(45) DEFAULT SYSTEM NOT NULL,
+> CUSTNUM PIC 9(4) DEFAULT SYSTEM NOT NULL,
+> PRIMARY KEY ORDERNUM)
+> EXTENT (1000,100)
+> CATALOG $VOL1.SALES;
--- SQL operation complete.
>> ALTER TABLE $VOL1.SALES.ZZORDERS NO AUDIT;
--- SQL operation complete.
>> LOAD $VOL1.SALES.ORDERS, $VOL1.SALES.ZZORDERS,
+> MOVEBYNAME;
--- SQL operation complete.
>> ALTER TABLE $VOL1.SALES.ZZORDERS AUDIT;
--- SQL operation complete.

Caution. Altering the security of a collation might restrict access to objects and programs that
use the collation.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-27

Adding, Altering, Removing, and Renaming
Database Objects

Altering Comments
If you alter the security of a collation, be careful not to restrict access for dependent
objects and programs. Altering collation security also alters the security of all objects
and programs that use the collation.

This example changes the security of a collation to allow all network users access to
the collation:

>> ALTER COLLATION $VOL1.SALES.SPANISH
+> SECURE “NU-U”;
--- SQL operation complete.

For more information about collation attributes, see Creating Collations on page 5-55.

Altering Comments
The COMMENT statement can add a comment to existing comments for an object or
replace existing comments with a new one.

You can use the CLEAR clause to clear the existing comments and add a new
comment to the object. If you do not use the CLEAR clause, the comment is added as
a new row in the COMMENTS catalog table after any existing comments for the object.

Dropping Objects From a Database
The active data dictionary provides the mechanism to drop objects easily from the
database as the application requirements change. When an object other than a
collation is dropped, SQL/MP ensures the integrity of the database by dropping or
invalidating associated dependent objects. This effect on other objects must be
carefully reviewed before any object is dropped.

To ensure that collations are not dropped when other objects or SQL programs still
need to use them, SQL does not drop a collation that has any dependent objects or
programs.

SQL provides the DROP statement and the PURGE utility to delete objects from the
data dictionary. The DROP statement operates on a specified object, deletes the
catalog definitions, and purges the physical file, if any. The PURGE utility provides the
same capability, but the utility enables you to identify objects with file-set lists.

To logically remove specific objects from your database, use the DROP statement; you
must use DROP to remove catalogs or constraints. If you need to remove groups of
objects as file sets, however, using the PURGE utility is the fastest way.

Both DROP and PURGE require authority to purge the object and any dependent
objects. Write authority is required for the catalogs in which the objects are described.
For details on authorization requirements, see the SQL/MP Reference Manual.

Note. To delete an SQL program stored in an OSS file, use the appropriate OSS utility to
delete the pathname. The file is purged when the last link to the file is removed. For more
information, see the Open System Services Shell and Utilities Reference Manual.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-28

Adding, Altering, Removing, and Renaming
Database Objects

Dropping Catalogs
This table summarizes the objects you can remove from the database and the
statements and commands that perform the operations. All these operations are
discussed in the following paragraphs except for dropping damaged SQL objects,
described in Purging Damaged Objects With the CLEANUP Utility on page 11-29.

For information about programs, see Section 10, Managing Database Applications.

Dropping Catalogs
To drop a catalog, use the DROP CATALOG statement. The catalog must be empty of
all user-defined SQL objects but will still contain the catalog tables and catalog table
index definitions.

To drop a catalog, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Query the catalog tables for objects described in this catalog. Use the DISPLAY
USE OF command on each object to determine the dependencies.

3. Drop all the objects from the catalog: each user-defined table, view, index,
constraint, collation, comment, partition, and program registered in the catalog.

4. Enter the DROP CATALOG statement.

Object Operation Statement or Command

Catalog (all tables) Delete DROP CATALOG

Table File and definition

Data

DROP TABLE
PURGE

PURGEDATA

View File label and
definition

DROP VIEW
PURGE

Index File and definition DROP INDEX
PURGE

Partition Drop ALTER TABLE DROP PARTITION
ALTER INDEX DROP PARTITION

Column Delete DROP TABLE

Constraint Definition DROP CONSTRAINT

Collation Drop object DROP COLLATION
PURGE

Comment Definition COMMENT

Damaged SQL
object

Drop CLEANUP
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-29

Adding, Altering, Removing, and Renaming
Database Objects

Dropping Tables
Dropping Tables
To drop a table, use the DROP TABLE statement. Dropping a base table with
dependencies is essentially dropping each of the dependent objects separately. SQL
drops all the dependencies automatically. These guidelines apply:

• To have the authority to drop a table, you must have all the security and authority
required to drop or invalidate all dependent objects, including access to all the
catalogs describing all the dependent objects.

• When you drop a table, the operation invalidates the programs that depend on that
table. Dropping a table can be very complicated if the table has many dependent
objects.

• Dropping a table also drops the table definition and the definitions of all dependent
indexes, views, constraints, and comments from the data dictionary. To re-create
the environment, you must recover these definitions from backup tapes or OBEY
recovery files.

• Dropping a table does not drop any collations used by the table columns.

To drop a table, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine all the dependent objects of the table by using the DISPLAY USE OF
command.

3. Prevent all access to the table and its dependent objects.

4. Enter the DROP TABLE statement.

If you plan to use the TMF subsystem for recovering an audited SQL table, see
Recovering Purged SQL Tables on page 11-14 before proceeding.

Dropping Views
Dropping a view with the DROP VIEW statement is similar to dropping a table,
because the operation drops all the dependent views and invalidates all programs that
use the view. A view, however, contains no physical data.

Dropping a view with dependencies is essentially the same as dropping each of the
dependent objects separately. SQL drops all the dependent objects automatically, but
not dependent programs. These guidelines apply:

• The DROP VIEW statement does not affect any underlying tables; indexes,
constraints, or programs that use the underlying tables; or collations used by view
or table columns. Likewise, views that are not dependent on the view you are
dropping are not affected.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-30

Adding, Altering, Removing, and Renaming
Database Objects

Dropping Indexes
• Dropping the view also drops the view definition from the data dictionary. To
re-create the environment, you must recover these definitions from backup tapes
or OBEY recovery files.

To drop a view, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine all the objects and programs dependent on the view by using the
DISPLAY USE OF command.

3. Prevent all access to the view and its dependent objects.

4. Stop execution of any dependent programs.

5. Enter the DROP VIEW statement to the SQLCI session.

6. For an audited view, make a new TMF online dump so that file recovery does not
replace the view.

7. If you want to use the dependent programs again, revise program source files to
delete references to the dropped view and recompile the programs.

Dropping Indexes
To drop an index, use the DROP INDEX statement. This statement purges the physical
file that contains the index and eliminates the access path to the underlying table.

Dropping an index invalidates programs that depend on the underlying table. You
should include steps to explicitly SQL compile the dependent programs to avoid
automatic recompilation and to return the application to a valid state.

To drop an index, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the table for which you want to drop the index.

3. Determine which programs depend on the table by using the DISPLAY USE OF
command. These programs will be invalidated.

4. Optionally, prevent the use of the table for the duration of the DROP INDEX
operation to eliminate conflicts in access to the table; this operation requires
exclusive use of the table.

5. Enter the DROP INDEX statement.

6. SQL compile the invalidated programs.

7. Restart use of the table if you stopped its use.

If you plan to use the TMF subsystem for recovering an audited SQL index, see
Recovering Purged SQL Tables on page 11-14 before proceeding.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-31

Adding, Altering, Removing, and Renaming
Database Objects

Dropping Partitions of Tables and Indexes
Dropping Partitions of Tables and Indexes
Use the ALTER TABLE statement with the DROP PARTITION option to drop a partition
of a key-sequenced, entry-sequenced, or relative table and the ALTER INDEX
statement with the DROP PARTITION option to drop a partition of an index.

Determining When to Drop a Partition
When all information in a partition becomes obsolete, or when a database design
deficiency leaves a partition continually empty, a reference to a table or index defined
across this partition results in an unnecessary message being issued to the partition.

For example, an index label is updated to include the names of all index partitions
whenever the label for an associated object is altered. This update can happen, for
example, when a table is backed up or restored or when an index is added or dropped.
(Simply recompiling a program does not update the labels for the referenced objects.)

This unnecessary message results in a correspondingly longer access time to the table
or index. In such circumstances, you might want to drop this partition while leaving the
others defined for the object intact.

Guidelines for Dropping Partitions
You can drop partitions of tables and indexes within these guidelines:

• The partition must be empty.

• The partition cannot be the primary partition of the table or index.

• For a relative or entry-sequenced table, you can drop only the last partition of that
table.

• All partitions of the table or index must be available when you enter the ALTER
statement with the DROP PARTITION option.

• Dropping a partition of a table also drops the corresponding partition of any
protection views defined on the table.

• Dropping a partition of a table invalidates all programs that use the table or a view
that depends on the table unless a program was compiled with the CHECK
INOPERABLE PLANS option and the similarity check is enabled for the table and
any associated protection views. (Similarity checking is not available for shorthand
views.) For more information, see Using Similarity Checks on page 10-15.

• Dropping a partition of an index invalidates all programs that use the underlying
table or a view that depends on that table unless a program was compiled with the
CHECK INOPERABLE PLANS option and the similarity check is enabled for the
table and any associated protection views. (Similarity checking is not available for
shorthand views.)

• You should include steps to explicitly SQL compile dependent programs to avoid
automatic recompilation and to return the application to a valid state.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-32

Adding, Altering, Removing, and Renaming
Database Objects

Deleting Columns
Steps for Dropping Partitions
This example drops an empty partition of a key-sequenced table:

>> ALTER TABLE $VOL1.SALES.CUSTOMER
+> DROP PARTITION $VOL5.SALES.CUSTOMER;
--- SQL operation complete.

To drop a partition, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the table or index from which you want to drop the partition.

3. Determine if the partition is empty by using the FILEINFO command to check the
end-of-file indicator for the partition.

4. Determine which programs depend on the table by using the DISPLAY USE OF
command. These programs will be invalidated.

5. Enter the ALTER TABLE or ALTER INDEX statement with the DROP PARTITION
specification.

6. SQL compile the invalidated programs.

If you plan to use the TMF subsystem for recovering an audited SQL table or index,
Recovering Purged SQL Tables on page 11-14 before proceeding.

Deleting Columns
Deleting columns from a table is not allowed. If you want to prevent access to a column
of a table, you might create a protection view of the table, excluding the column you
want to drop. This method does not physically alter the table structure but essentially
masks the unwanted column. This method can work only if the excluded column is
defined with a default value. If the excluded column is defined with the NO DEFAULT
clause, no user can perform update or insert operations through the view.

To physically delete a column, you must create a new table as follows:

1. Rename the old table and create a new table definition, excluding the columns you
do not want in the new table.

2. After creating the new table, load the old table’s data into the new table with the
LOAD or COPY command, eliminating the missing columns.

3. After the LOAD or COPY operation completes, drop the old table.

You cannot drop columns from views or indexes. To remove a column from a view or
index, you must drop the existing object and create a new object, excluding any
unwanted columns.

For more information, see Altering Columns on page 7-26.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-33

Adding, Altering, Removing, and Renaming
Database Objects

Dropping Constraints
Dropping Constraints
Dropping constraints on the database is similar to making a program change. Any
future data inserts or updates will not have to satisfy the constraint. The DROP
CONSTRAINT statement drops only the constraint definition from the catalog and does
not affect the data in the table.

Dropping a constraint on a table invalidates the programs that depend on the table.
You should include steps to explicitly SQL compile the dependent programs to avoid
automatic recompilation and to return the application to a valid state.

To drop a constraint, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the table for which you want to drop the constraint.

3. Determine which programs depend on the table by using the DISPLAY USE OF
command. These programs will be invalidated.

4. Optionally, prevent the use of the table for the duration of the DROP CONSTRAINT
operation to eliminate conflicts in access to the table; this operation requires
exclusive use of the table.

5. Enter the DROP CONSTRAINT statement.

6. SQL compile the invalidated programs identified by the DISPLAY USE OF
command in Step 3.

7. Restart use of the table if you stopped its use.

Dropping Collations
To drop a collation, use the DROP COLLATION statement. This statement drops the
collation only if no objects or programs depend on it.

To drop a collation, you must own the collation and have authority to read and write to
the catalog in which the collation is registered. Follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine all the objects and programs dependent on the collation by using the
DISPLAY USE OF command.

3. Drop any dependent objects and programs.

4. Enter the DROP COLLATION statement.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-34

Adding, Altering, Removing, and Renaming
Database Objects

Dropping Comments
Dropping Comments
You can drop comments at any time with no effect on the database. To drop
comments, use the COMMENT statement with the CLEAR option. The CLEAR option
drops all comments on the specified object.

This example drops all comments on a constraint on the DEPT table:

>> COMMENT ON CONSTRAINT MGRNUM_CONSTRAINT ON DEPT
+> IS "" CLEAR;

Purging SQL Objects and Enscribe Files
Use the PURGE command to delete a set of SQL objects and Enscribe files specified
in a qualified file set list. The PURGE command deletes the table or file and the
description in the catalog for SQL objects. PURGE also deletes dependent objects.

The results of a PURGE command are very similar to the results of a DROP statement.

If you want to purge only the data from an audited or nonaudited SQL table, use the
PURGEDATA command. This command deletes the data in the table and leaves the
table itself (the catalog description) intact. For more information about using
PURGEDATA, see Purging Data From SQL Tables on page 8-18.

Using DROP or PURGE
This list summarizes the differences between the operations of the DROP statement
and PURGE command:

• PURGE allows many objects identified by a qualified file set list to be purged with
one command. The DROP statement drops one object at a time.

• PURGE allows a file set list that contains both SQL objects and Enscribe files.
DROP operates only on SQL objects.

• PURGE includes the ALLOWERRORS clause. If ALLOWERRORS is ON, the
command tries to purge the specified file set list regardless of the number of errors
that are encountered. If ALLOWERRORS is OFF or if you are using the DROP
statement, the first error encountered terminates the statement.

• PURGE includes the LISTALL clause. If you specify LISTALL, you receive a
confirming message for each purged object. If you use the DROP statement or if
you omit the LISTALL option from the PURGE command, you receive no
confirming message about each purged object.

• PURGE enables you to browse a selected file set list and select the objects to be
purged.

• Both PURGE and DROP require the same security and authorization to purge or
drop objects.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-35

Adding, Altering, Removing, and Renaming
Database Objects

Renaming Objects
• Both DROP and PURGE automatically initiate a TMF transaction for the operation
if one has not already been started. You cannot drop or purge a nonaudited object
within a user-defined transaction.

• Only the DROP statement is valid for purging a constraint or catalog.

• PURGE enables you to purge shadow labels, as described under Managing
Shadow Disk Labels on page 11-36.

• Both the DROP statement and PURGE command can be entered interactively
through SQLCI. Only DROP, however, can be used programmatically.

Renaming Objects
You can rename most objects by using an ALTER statement with the RENAME option.
This table lists the objects you can rename and the ALTER statements for renaming.

To rename these objects, use these guidelines:

• You can rename an object only on the same volume where it already exists.

• When you rename a table, all associated protection views, shorthand views, and
indexes must be accessible during the renaming so that catalog references can be
altered.

• When you rename an index, the underlying table must also be accessible so that
catalog references can be altered.

• When you rename a protection view, the underlying table and indexes must be
accessible so that file-label references can be altered.

• When you rename a shorthand view, the underlying protection view and table must
be accessible so that catalog references can be altered.

• When you rename a partitioned table or index, all partitions of that object must be
available. All partitions are automatically renamed.

• When you rename a collation, all dependent objects must be available so that file-
label and catalog references can be altered.

Object Operation Statement

Table Rename ALTER TABLE

View Rename ALTER VIEW

Index Rename ALTER INDEX

Collation Rename ALTER COLLATION

Constraint (Not Allowed) (Not Applicable)
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-36

Adding, Altering, Removing, and Renaming
Database Objects

Renaming Objects
These are examples of requests for rename options:

>> ALTER TABLE SALES.CUSTOMER RENAME NYSALES.CUSTOMER;
--- SQL operation complete.
>> ALTER INDEX SALES.CUSTNAME RENAME NYSALES.CUSTNAME;
--- SQL operation complete.

To rename an object, follow these steps:

1. Start an SQLCI session. Enter a LOG command to initiate a log file for the
statements and commands entered in this session. Keep the log for your records.

2. Determine the name of the object that you want to rename.

3. Make sure that the new name is not already in use by entering the FILEINFO
command.

4. Enter the ALTER TABLE, ALTER INDEX, ALTER VIEW, or ALTER COLLATION
statement with the RENAME specification for the appropriate object.

5. SQL compile the invalidated programs.

6. For an audited table, index, or view, make a new TMF online dump.
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-37

Adding, Altering, Removing, and Renaming
Database Objects

Renaming Objects
HP NonStop SQL/MP Installation and Management Guide—523353-004
7-38

8
Reorganizing Tables and Maintaining
Data

Sometimes you might need to restructure the data in a table by reloading or
reorganizing the table. You might do this restructuring, for example, when you want to
perform operations such as:

• Reload the data to increase the data-block free space, reducing block splits during
insertions and updates

• Partition or repartition a table or an index

• Split a partition to create additional space by distributing data across volumes

• Organize data blocks to eliminate empty space and reduce the number of index
levels

• Increase the available disk space when the data or index block structure becomes
very fragmented

• Reduce empty but allocated free space that occurs when a large number of
records are deleted from a file

• Compress a file to improve disk space usage

An essential step in creating a DSS database is to populate the tables with data
derived from operational systems. SQL/MP provides the SQLCI LOAD utility to move
data into a table.

To maintain the data in a DSS database, you must periodically add new data and purge
the oldest data from the database. SQL/MP provides several SQLCI utilities, including
APPEND, COPY, and PURGEDATA, to perform these data-maintenance operations.

Choosing a Reorganization Method
Three methods are available to perform the restructuring function: online
reorganization through the RELOAD command of FUP, offline reorganization through
the LOAD or COPY command of SQLCI, and physical reorganization through partition
move operations.

These restructuring methods have these capabilities and restrictions:

• Reorganizing a table online with the FUP RELOAD command:

° The table must be a key-sequenced table.

° The table is accessible for use by the application at all times because of the
shared-mode reorganization method.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-1

Reorganizing Tables and Maintaining Data Reorganizing a Database Online
° The table is reorganized within the physical or partition structure that already
exists; with RELOAD, data is reorganized within the current structure only.

° The table cannot use index or data compression.

• Reorganizing a table offline with the SQLCI LOAD or COPY command:

° If the table is relative or entry-sequenced, this second method must be used. If
the table is key-sequenced, the offline method can be used as an alternative to
the online reorganization method.

° If you use the LOAD command, the table must not be audited by the TMF
subsystem. If you use COPY, the table can be audited.

° If the object is a relative or entry-sequenced table, it must be repartitioned.

° If the table has a new physical column layout, caused by adding or dropping a
column in the middle of the table, this reorganization method must be used.
The new table layout must be created; then, the data from the old table must
be loaded or copied into the new table.

For more information about using LOAD and COPY, see Loading, Copying,
Appending, and Purging Data on page 8-7.

• Reorganizing values stored in a multipartitioned key-sequenced table or index by
moving or splitting partitions or by redefining row boundaries:

° An existing partition of a key-sequenced table or index can be moved, split, or
merged with another partition by using the ALTER TABLE (or ALTER INDEX)
PARTONLY MOVE statement, as explained under Splitting, Moving, and
Merging Partitions on page 7-20.

° Empty partitions can be added to an SQL table.

Reorganizing a Database Online
You can reorganize only key-sequenced, audited tables online. If the table you need to
reorganize is not of this type, you must use the offline approach described under
Loading, Copying, Appending, and Purging Data on page 8-7.

Reorganizing Key-Sequenced Files
The RELOAD command of FUP lets you reorganize a key-sequenced file while the file
remains available for use by the application. The RELOAD operation physically
restructures the file to improve access performance and space usage. The result of
RELOAD is equivalent to using a LOAD command to load the source file to a target file
of the same format. The RELOAD command, however, allows for shared read-write
access to the file during the operation.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-2

Reorganizing Tables and Maintaining Data Reorganizing Key-Sequenced Files
Before performing a RELOAD operation, consider these issues:

• The file must be key-sequenced.

• The operation can cause degraded performance. You can, however, control the
amount of degradation by using the command’s RATE option. The higher the rate,
the faster the reload occurs, but the more performance degrades. Conversely, the
lower the rate, the slower the reload occurs, but the less performance degrades.
The default value for RATE is 100 percent.

• For tables audited by the TMF subsystem, the operation generates audit-trail
records describing the movement of data within the file. The total amount of audit-
trail data generated for any given file cannot be calculated exactly. For a large file
with a lot of data movement, however, the amount can be two to three times the
total number of rows in the table. For this reason, the parameters governing the
use of TMF audit trails might need to be increased to accommodate the audit-trail
data. Or, as a more convenient alternative to increasing these parameters, you
might want to increase the frequency of the audit-trail dumps. For more
information, see the TMF Operations and Recovery Guide.

• The RELOAD command reorganizes either a table or an index independent of
each other.

• Three RELOAD parameters control block slack:

° DSLACK controls the amount of free space in a table’s data blocks. The default
value for this parameter is 15 percent.

° ISLACK controls the amount of free space in a table’s index blocks. The
default value for this parameter is 15 percent.

° SLACK controls the amount of free space in both index and data blocks. The
default value for this parameter is 15 percent.

• When the RELOAD command is issued, FUP initiates a background process to
perform the operations requested by the command. After the process is initiated,
FUP displays the message RELOAD STARTED and either returns a prompt or
terminates (depending upon whether FUP was initiated interactively or
noninteractively).

• The RELOAD operation might take a long time, depending upon the size of the file
and the rate specified for the command.

• You can suspend the RELOAD operation or request a status report about the
progress of the operation, as explained in the next subsection, Determining the
Status of a Reorganization.

This command initiates a RELOAD operation for the table named CUSTOMER. The
SLACK option sets a minimum amount of free space in the blocks.

13> FUP
 - RELOAD $VOL.SALES.CUSTOMER, RATE 30, SLACK 50
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-3

Reorganizing Tables and Maintaining Data Determining the Status of a Reorganization
Determining the Status of a Reorganization
The FUP STATUS command reports the status of a RELOAD operation. Use the
STATUS command to determine if the operation has completed or has been
suspended and to find out what percentage of the file has been processed.

This command requests the status of the RELOAD operation started in the previous
example for the table CUSTOMER:

14> FUP
 - STATUS $VOL.SALES.CUSTOMER

The status is reported in this format:

 OPERATION INITIATED date-time of initiation
 DSLACK = 50%
 ISLACK = 50%
 RATE = 30%
 10% COMPLETED

If the operation is completed, terminated abnormally, or suspended, FUP displays an
appropriate message.

Suspending a Reorganization Operation
During the reorganization of a table, you might need to suspend the reorganization
process. In most cases, the suspension is necessary for performance considerations.
Later, you can restart the reorganization, causing the process to continue from the
point where it left off.

This command suspends the RELOAD operation started in the previous example for
the table CUSTOMER:

15> FUP
 - SUSPEND $VOL.SALES.CUSTOMER

If you issue a STATUS command for the RELOAD operation suspended for the
CUSTOMER table in the preceding example, the status message follows that
command:

16> FUP
 - STATUS $VOL.SALES.CUSTOMER
 OPERATION INITIATED date-time of initiation
 OPERATION SUSPENDED date-time of suspension
 DSLACK = 50%
 ISLACK = 50%
 RATE = 30%
 10% COMPLETED

When you want to restart the reorganization of the table, reissue the RELOAD
command. In this case, you must omit the NEW option so that FUP restarts a
previously suspended reload operation.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-4

Reorganizing Tables and Maintaining Data Reorganizing Partitions
If you want to change the RATE or SLACK option, you can do so in the restart
command. This command restarts the RELOAD operation for the table CUSTOMER,
but adjusts the reloading rate to 20 percent:

17> FUP
 - RELOAD $VOL.SALES.CUSTOMER, RATE 20, SLACK 50

If you want to keep the same RATE and SLACK values when you restart the
reorganization process, enter the RELOAD command without the RATE and SLACK
parameters:

18> FUP
 - RELOAD $VOL.SALES.CUSTOMER

After a RELOAD operation has been suspended and you want to start this operation
completely over again, enter the RELOAD command with the NEW option:

19> FUP
 - RELOAD $VOL.SALES.CUSTOMER, NEW, RATE 30, SLACK 50

In the RELOAD command, the NEW option is necessary only when restarting a
RELOAD operation over again from the beginning, following a RELOAD suspension.

Reorganizing Partitions
As table partitions become full, you can reorganize the structure of a table or index by
adding, splitting, or dropping a partition, redefining the row boundaries of a partition,
changing file extent values, adding empty partitions, or creating and loading a new
table.

For many of these operations, you can specify the WITH SHARED ACCESS option to
retain full read and write access to data throughout most of the operation. Thus, many
of these operations can be performed almost entirely online. (Some operations require
the WITH SHARED ACCESS option.)

Before requesting these operations, carefully examine your situation and the desired
effect of the operation. For specific information about each of these operations, see
Section 7, Adding, Altering, Removing, and Renaming Database Objects.

Balancing Partition Sizes
When a partition of a table or index becomes full, you can split the partition to make
room for additional insert and update operations. Suppose, for example, that a table
has three partitions based on the CUSTNUM key. The table is partitioned according to
the customer number (CUSTNUM) ranges 1 through 2999, 3000 through 5999, and
6000 through 99999, respectively.

Eventually, the last partition becomes full because most new customers are assigned a
customer number in the higher ranges of the table (over 6000), adding records to the
last partition at a higher rate than the other two stable partitions. In this case, you
should split the last partition into two new partitions, one with customer numbers 6000
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-5

Reorganizing Tables and Maintaining Data Changing Extent Size Values
through 9999 and the other with numbers 10000 through 99999, respectively. When
the last partition becomes full again at a later time, this operation can be repeated.

Consider again the case of the table with three partitions based on the CUSTNUM key.
The partitions are defined by the customer number (CUSTNUM) ranges 1 through
2999, 3000 through 5999, and 6000 through 99999, respectively. As time passes, the
partitions fill 30, 75, and 100 percent of the available space, respectively. You are still
limited, however, to only three disk volumes on which you can place partitions.

Ideally, you want to have three partitions that are each about 60 percent full. To
achieve this goal, you can reorganize the table by moving the partition boundaries. The
FIRST KEY values of the three partitions might now need to indicate the ranges 1
through 4999, 5000 through 7999, and 8000 through 99999, respectively. To perform
this operation, you can use the PARTONLY MOVE option of the ALTER TABLE
statement.

For more information about splitting partitions and moving partition boundaries, see
Splitting, Moving, and Merging Partitions on page 7-20.

If a partition remains empty due to a design or data miscalculation, you can drop the
partition. For key-sequenced tables and indexes, you can drop any empty partition—
even one that lies in the middle of a set of partitions. The one exception is that you
cannot drop the primary partition of a table, although it is empty. For relative and entry-
sequenced tables, however, you can drop only the last partition of the table. For more
information, see Dropping Partitions of Tables and Indexes on page 7-32.

Changing Extent Size Values
Partitioning might not always be required. For instance, if an entry-sequenced table
caused an error 45 (file is full), the error might be based only on the EXTENT SIZE and
MAXEXTENTS values specified when the file was created. If the file is full and does
not need to be spread across disk volumes, you can increase the MAXEXTENTS value
by using the SQLCI ALTER TABLE statement:

>> ALTER TABLE PARTS MAXEXTENTS nnn;

In this statement, nnn is a number greater than the current MAXEXTENTS value. The
maximum value allowed for MAXEXTENTS is 959 for primary partitions and 940 for
secondary partitions.

The same guideline applies to a particular partition of a table; that is, you can increase
the MAXEXTENTS value for a single partition to allow for additional growth.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-6

Reorganizing Tables and Maintaining Data Adding Empty Partitions
Adding Empty Partitions
If a table is filling its primary partition or its last secondary partition, you can add an
empty partition after the last existing partition to allow for growth. For relative or entry-
sequenced tables, the partition is always added to the end of the table. This type of
extension spreads the access to the table over additional volumes or nodes. For a
table of any organization, an empty partition can be added at any time. If any partition
of a key-sequenced table or index is nearly full, split the partition by using an ALTER
TABLE or ALTER INDEX statement, as described in Altering Database Objects on
page 7-13.

Loading, Copying, Appending, and Purging
Data

SQL/MP provides four utilities to move data into or out of tables and Enscribe files
offline: the SQLCI CONVERT, LOAD, APPEND, and COPY utilities. For LOAD,
APPEND, or COPY, the source file can reside on either disk or tape.

The CONVERT utility uses the LOAD utility to move the data from Enscribe files to
SQL tables. If you are converting Enscribe data files into SQL tables, use the
CONVERT utility directly.

The LOAD and COPY utilities have very similar options and perform similar tasks. The
basic differences follow:

• LOAD enters data into an empty target table. The COPY utility appends or inserts
rows into an existing table without purging existing data.

• LOAD provides options for processing key-sequenced files. You can specify, for
instance, that the rows are in sorted order. You can specify a maximum number of
rows to be loaded. You can define the DSLACK, ISLACK, and SLACK percentages
allowed. LOAD reorders unsorted input data and optionally uses a user-specified
scratch file location for the SORTPROG processes.

• The LOAD utility is faster than COPY. LOAD sorts rows and then writes them in
blocks to the target table. COPY does multiple inserts, one row at a time.

• LOAD enters data into any indexes already created on the table, overwriting any
existing data. COPY automatically inserts rows into indexes that already exist.

• LOAD provides an option to load individual partitions of a table.

• You can use COPY to copy data within a user-defined TMF transaction on an
audited table. You cannot use LOAD to load an entire audited table without
resetting the AUDIT attribute, but you can use LOAD to load data into a single
partition of an audited table.

• You can use COPY to copy data from Enscribe unstructured files; LOAD does not
operate on unstructured files.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-7

Reorganizing Tables and Maintaining Data Guidelines for Loading Tables
• The COPY utility has a DISPLAY FORMAT option that enables you to display data
on your terminal or printer.

• COPY can write to a tape file.

The APPEND utility appends data to an existing table or to a partition of a key-
sequenced table. The APPEND utility is like the LOAD utility except that it adds data to
a table without purging the existing data. The LOAD and APPEND utilities have similar
options and rules. For more information about APPEND, see Appending Data to Tables
or Partitions on page 8-15.

Guidelines for Loading Tables
When you load tables, consider these guidelines:

• You cannot use the LOAD command to load an entire audited table. If the table is
audited, you must alter the AUDIT attribute to NO AUDIT before performing the
load. After completing the load, you must alter the AUDIT attribute back to AUDIT
and then make a TMF online dump of the table.

When loading a single partition, you need not alter the AUDIT attribute. You must,
however, do an online dump of the partition when finished with the load to preserve
TMF recovery capability. For more information about loading a single partition, see
Loading Individual Partitions on page 8-9.

• Each source record of an Enscribe file is written as a row to the target table (or
each row of the source table is written as a target record of an Enscribe file),
overwriting any existing data. The operation must satisfy constraints and provide a
corresponding source column value for all columns defined with NO DEFAULT.

• If you are loading a table that uses a SYSKEY primary key or a clustering key with
the SYSKEY column appended to the clustering key, the values of the SYSKEY
column will change. If your application has used SYSKEY values, alone or with a
clustering key, as a user-defined embedded linkage field in other tables, a
reloading of the table invalidates your linkage of the tables. Use of a SYSKEY
column, alone or with a clustering key, precludes this reload operation.

• A relative table uses a relative record pointer. If you load a relative table, the record
automatically compacts, deleting unused slots. To avoid this outcome, use the NO
COMPACT option to retain the relative record locations.

• Three LOAD parameters control block slack:

° DSLACK controls the amount of free space in a table’s data blocks.

° ISLACK controls the amount of free space in a table’s index blocks.

° SLACK controls the amount of free space in both data and index blocks.

• LOAD automatically loads any indexes defined for the target table but does not
automatically load any alternate-key files associated with a target Enscribe file.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-8

Reorganizing Tables and Maintaining Data Loading Individual Partitions
• If the LOAD utility fails during the LOAD operation, the target table or file is left in
an invalid state and is unusable. You can restart the LOAD operation to overwrite
the existing data using the same source file.

• If you are loading data from an Enscribe file into an SQL table, from an SQL table
into an Enscribe file, or from an SQL table into another SQL table, the data types of
the source and target fields or columns must be compatible. The rules for valid field
or column compatibility are the same as those described for the CONVERT utility
in the SQL/MP Reference Manual.

• You must create all target files or tables before issuing the LOAD command. LOAD
does not create the files or tables.

Loading Individual Partitions
The LOAD utility allows partitions of tables to be loaded separately. You must perform
these operations carefully to ensure that all partitions are loaded with logically
consistent data.

You can use the DataLoader/MP product to load data into multiple partitions of a fact
table or history table. Although you can use DataLoader/MP to load data into any
SQL/MP table, it is primarily useful for loading and maintaining large tables such as
those used in a data warehouse. With DataLoader/MP, you can initially populate a data
warehouse with data derived from an operational database; you can also perform
periodic load operations that update an existing data warehouse. DataLoader/MP can
use the LOAD utility to perform load operations. Therefore, users of DataLoader/MP, in
addition to users of the LOAD utility, should read the following description of loading
partitions. For more information about the DataLoader/MP product, see the
DataLoader/MP Reference Manual.

Loading a Single Partition
This example loads a secondary partition of the ORDERS table that resides on
$VOL1.MKT when the primary partition resides on $VOL4.MKT:

>> LOAD $OLD.SALES.ORDERS, $VOL1.MKT.ORDERS, PARTONLY;

When you load a single partition of an audited table, you need not reset the AUDIT
attribute before the load operation. This action is only required when loading an entire
audited table. Be sure to do an online dump of the partition when the load is finished if
you want to preserve TMF recovery capability.

Loading Multiple Partitions in Parallel
The PARTONLY option lets you load partitioned base tables in parallel. This strategy
can improve load performance if table partitions are distributed across disks,
processors, and I/O channels. These steps describe possible strategies for loading
partitions in parallel:
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-9

Reorganizing Tables and Maintaining Data Examples of Loading Tables
1. Start an SQLCI process for each partition. One way to do this is to start each
SQLCI process in the processor associated with the partition to be loaded. Another
way is to start SQLCI processes in the processors associated with the data
sources for the LOAD command.

2. Issue one LOAD...PARTONLY command for each SQLCI process (and thus each
corresponding partition).

3. Supply each LOAD command with the specific range of input data for the partition
it is loading. Three possible strategies are:

• Arrange the input data such that it is divided into separate files, each
containing input for a specific target partition. Use these files as input to the
LOAD commands.

• Do a SORTED load and specify FIRST KEY. When the SORTED option is
specified, LOAD stops processing input as soon as it encounters a row beyond
the end of the target partition.

• Use processes to read input data. Start each data source process as a named
process before entering the LOAD command. Use the process name as the
input file for the LOAD command. The process must wait for requests on its
$RECEIVE file and then supply data by replying to those requests. When using
this approach, be sure to balance processing for optimal performance.

You can use the DataLoader/MP product to help implement the preceding tasks.
For example, you can use DataLoader/MP to arrange to have the input data
delivered to the correct target partitions. For more information about the
DataLoader/MP product, see the DataLoader/MP Reference Manual.

Examples of Loading Tables
This example loads an SQL table from an Enscribe file. The LOAD command moves
the fields in order by using the default MOVEBYORDER option. The fields involved in
the transfer from the source file must be compatible with the data type and order of the
receiving columns in the target table.

>> LOAD $ENSC.SALES.ORDERS, $VOL1.SALES.ORDERS,
+> SCRATCH $TEMP.SCRATCH.JUNK
+> SOURCEDICT $ENSC.SALES SOURCEREC ORDERREC;

The next example loads data from one table into another table. You might perform this
move to increase lengths of existing columns or to drop columns. Columns are
matched by name as specified by the MOVEBYNAME option. The source table must
contain a matching column for each column defined in the target table. The columns
must have compatible data types, but can be of different sizes.

>> LOAD \SYS1.$OLD.SALES.ORDERS, \SYS1.$VOL1.SALES.ORDERS,
+> SORTED
+> TRUNCATION ON
+> MOVEBYNAME;
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-10

Reorganizing Tables and Maintaining Data Examples of Loading Tables
Loading Data From an Enscribe File
This example loads data into a table from an Enscribe file. The LOAD command
includes the MOVE option to match fields to columns because DELIV_DATE is missing
from the source file and the field names are not the same as the column names. The
layout of the Enscribe file $ENSC.SALES.ORDERS precedes the commands that
create and load the new table, $VOL1.SALES.ORDERS:

* Record Layout for $ENSC.SALES.ORDERS
 01 ORDERS.
 02 ORDER-NUM PIC 9(6).
 02 ORDERED-DATE PIC S9(6) COMP.
 02 SALESMAN PIC 9(4).
 02 CUSTOMER-NUMBER PIC 9(4).
>> CREATE TABLE $VOL1.SALES.ORDERS
+> (ORDERNUM PIC 9(6) NO DEFAULT NOT NULL,
+> ORDER_DATE PIC S9(6) COMP DEFAULT SYSTEM NOT
NULL,
+> DELIV_DATE PIC S9(6) COMP DEFAULT SYSTEM NOT
NULL,
+> SALESREP PIC 9(4) DEFAULT SYSTEM,
+> CUSTNUM PIC 9(4) DEFAULT SYSTEM NOT NULL,
+> PRIMARY KEY (ORDERNUM))
+> CATALOG $VOL1.SALES
+> EXTENT(1000,100);
--- SQL operation complete.
>> LOAD $ENSC.SALES.ORDERS, $VOL1.SALES.ORDERS,
+> SCRATCH $TEMP.SCRATCH.JUNK
+> SLACK 50
+> SOURCEDICT $ENSC.SALES SOURCEREC ORDERREC
+> MOVE (ORDER-NUM TO ORDERNUM, ORDERED-DATE TO ORDER_DATE,
+> SALESMAN TO SALESREP, CUSTOMER-NUMBER TO CUSTNUM);

This example loads data into a table from an Enscribe file. Some of the source numeric
fields contain spaces, which are allowed in Enscribe files but are not allowed in SQL
tables. The REPLACE SPACES WITH ZEROS option specifies converting numeric
decimal fields from blanks to zeros. Because the MOVEBYORDER option is the
default, the fields involved in the transfer from the source file must be compatible with
the data types and order of the receiving columns in the target table.

>> LOAD $ENSC.SALES.ORDERS, $VOL1.SALES.ORDERS,
+> REPLACE SPACES WITH ZEROES
+> SOURCEDICT $ENSC.SALES SOURCEREC ORDERREC;
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-11

Reorganizing Tables and Maintaining Data Examples of Loading Tables
This example loads data into a table from an Enscribe file. The LOAD command with
the MOVE option specifies explicit matching of the source fields and target columns.
The source file and target table have these differences:

• DELIV_DATE is a new column not in the source file; this field must be defined with
a DEFAULT option to perform the LOAD.

• The CUST_PO column size has been increased by five bytes.

• The ITEM-LIST OCCURS clause has been broken into the 10 element fields.

The Enscribe record layout of the source file follows:

* Record Layout for $ENSC.SALES.ORDERS
 01 ORDERS.
 02 ORDER-KEY.
 05 ORDER-NUM PIC 9(6).
 05 ORDERED-DATE PIC S9(6) COMP.
 02 SALESMAN PIC 9(4).
 02 CUSTOMER-INFO.
 05 CUSTOMER-PO-NUM PIC X(30).
 02 CUSTOMER-NUMBER PIC 9(4).
 02 ITEM-LIST PIC X(4)
 OCCURS 10 TIMES.

The SQL table layout of the target table follows. The table must be created before the
LOAD operation.

>> INVOKE $VOL1.SALES.ORDERS FORMAT COBOL85;

* Record Definition for table \SYS1.$VOL1.SALES.ORDERS
* Definition current at 09:07:21 - 04/12/89
 01 ORDERS.
 02 ORDERNUM PIC 9(6).
 02 ORDER-DATE PIC S9(6) COMP.
 02 DELIV-DATE PIC S9(6) COMP.
 02 SALESREP PIC 9(4).
 02 CUST-PO PIC X(35).
 02 CUSTNUM PIC 9(4).
 02 ITEM-1 PIC X(4).
 02 ITEM-2 PIC X(4).
 02 ITEM-3 PIC X(4).
 02 ITEM-4 PIC X(4).
 02 ITEM-5 PIC X(4).
 02 ITEM-6 PIC X(4).
 02 ITEM-7 PIC X(4).
 02 ITEM-8 PIC X(4).
 02 ITEM-9 PIC X(4).
 02 ITEM-10 PIC X(4).

Next is the LOAD command to load the Enscribe file into the new SQL table. The
MOVE option explicitly names all the field-to-column conversions. The source file
OCCURS array is subscripted in the MOVE clause to the target data element of the
table.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-12

Reorganizing Tables and Maintaining Data Guidelines for Copying Tables
>> LOAD $ENSC.SALES.ORDERS, $VOL1.SALES.ORDERS,
+> SORTED
+> MOVE (ORDER-NUM TO ORDERNUM,
+> ORDERED-DATE TO ORDER_DATE,
+> SALESMAN TO SALESREP,
+> CUSTOMER-PO-NUM TO CUST_PO,
+> CUSTOMER-NUMBER TO CUSTNUM,
+> ITEM-LIST(1) TO ITEM_1,
+> ITEM-LIST(2) TO ITEM_2,
+> ITEM-LIST(3) TO ITEM_3,
+> ITEM-LIST(4) TO ITEM_4,
+> ITEM-LIST(5) TO ITEM_5,
+> ITEM-LIST(6) TO ITEM_6,
+> ITEM-LIST(7) TO ITEM_7,
+> ITEM-LIST(8) TO ITEM_8,
+> ITEM-LIST(9) TO ITEM_9,
+> ITEM-LIST(10) TO ITEM_10),
+> SOURCEDICT $DATA1.EORDERS SOURCEREC ORDERREC;

Loading Data Into an Enscribe File
This example loads data into an Enscribe file from an SQL table. The LOAD command
must specify the Enscribe dictionary subvolume unless the dictionary resides on the
current default subvolume. MOVEBYORDER is the default field-matching protocol,
which requires that the fields are compatible with the columns in the physical order (the
order of the fields in the DDL record and the order of the columns in the corresponding
table description).

>> LOAD $VOL1.SALES.ORDERS, $ENSC.SALES.ORDERS,
+> SCRATCH $TEMP.SCRATCH.JUNK
+> TARGETDICT $ENSC.SALES TARGETREC ORDERREC
+> MOVEBYORDER;

Guidelines for Copying Tables
The COPY utility provides another method of loading tables and files with data. When
you copy tables, consider these guidelines:

• If the target is a table, the COPY operation is effectively a set of INSERT
statements with the STABLE ACCESS option and, except for key-sequenced
tables, the APPEND option. The operation must satisfy constraints and provide a
corresponding source-column value for each column defined with NO DEFAULT.
The data types of the source and target fields or columns must be compatible.

• If the target is an unstructured, relative, or entry-sequenced file, data is appended
to the end of the file.

• For relative input files, the COMPACT option controls whether zero-length records
are ignored or written.

• COPY automatically copies values to indexes of a target table. COPY also updates
alternate-key files of a target Enscribe file.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-13

Reorganizing Tables and Maintaining Data Examples of Copying Tables and Files
• You can copy within a user-defined TMF transaction or, if the table is audited,
COPY initiates the transaction. If you are copying large amounts of data, you must
plan to ensure that the TMF audit trail space is large enough to handle the copied
rows.

• For an audited table, you can alter the AUDIT attribute of the table to NO AUDIT
before the COPY operation. After the COPY operation completes, alter the
attribute to AUDIT again; then make a TMF online dump, because any previous
dump of the table is no longer valid.

• If the COPY operation fails or is stopped during the data loading, the state of the
target table or file depends on whether it is audited or nonaudited. If the target is
audited, the TMF transaction terminates abnormally, and the work is undone by the
TMF subsystem. If the target is nonaudited, all the inserted rows are committed.

• The rules for valid field compatibility are the same as those described for the
CONVERT utility in the SQL/MP Reference Manual.

Examples of Copying Tables and Files
Several examples of copying tables and files follow.

The first example copies data into a table from an Enscribe file. The COPY command
maps the fields with MOVEBYORDER and specifies truncation if necessary. The fields
involved in the transfer from the source file must be compatible with the data type and
order of the receiving columns in the target table.

>> COPY $ENSC.SALES.ORDERS, $VOL1.SALES.ORDERS,
+> MOVEBYORDER ON
+> TRUNCATION ON
+> SOURCEDICT $ENSC.SALES SOURCEREC ORDERREC;

The next example copies data from one table into another table, with only those rows
in which EMPNUM is greater than or equal to 4000 copied to the target table. The
tables have identical definitions.

>> COPY \SYS1.$VOL1.PERSNL.EMPLOYEE,
+> \SYS1.$VOL1.SPECIAL.EMPLOYEE,
+> FIRST KEY 4000
+> MOVEBYNAME;

This command copies data into a table from a tape file:

>> COPY $TAPE, $VOL1.SALES.CUSTOMERS;

This example copies data from a table to a terminal in hexadecimal format:

>> COPY $VOL1.SALES.CUSTOMERS, \SYS1.$TERM1,
+> HEX;

This example copies 100 rows from a table to a terminal in ASCII format:

>> COPY $VOL1.SALES.CUSTOMERS, \SYS1.$TERM1,
+> ASCII COUNT 100;
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-14

Reorganizing Tables and Maintaining Data Appending Data to Tables or Partitions
Appending Data to Tables or Partitions
The APPEND utility adds data to the end of a table or partition of a key-sequenced
table. The APPEND utility is a form of the LOAD utility adapted for a specific purpose;
it performs at the same speed as LOAD. Thus, the APPEND and LOAD utilities have
similar options and perform similar tasks.

The APPEND utility preserves the existing data in the target table; in this respect
APPEND is similar to COPY and differs from LOAD. For a comparison of the LOAD
and COPY utilities, see Loading, Copying, Appending, and Purging Data on page 8-7.

The APPEND utility is especially useful in a DSS environment. To keep a data
warehouse up to date, you can use APPEND to perform periodic (for example, daily,
weekly, or monthly) updates to the database.

You can use the APPEND utility to append data to multiple partitions of a table; the
DataLoader/MP product can help you streamline this task. DataLoader/MP is a
nonprivileged batch program that provides a library of utility routines for loading and
maintaining SQL tables. DataLoader/MP can use the APPEND utility to perform
append operations. For more information about the DataLoader/MP product, see the
DataLoader/MP Reference Manual.

Guidelines for Appending Data to Tables
When you append data to tables or table partitions, consider these guidelines:

• The APPEND utility adds data to the end of a table or partition without purging
existing data. APPEND cannot insert data into arbitrary places in the table. (Use
COPY to insert rows between existing rows.)

• APPEND adds data to key-sequenced or entry-sequenced SQL tables. You cannot
use APPEND to add data to a relative table, Enscribe file, unstructured file, or any
file other than an SQL file.

• APPEND can use any source file that LOAD uses, including a SQL table, Enscribe
file, unstructured disk file, tape file, a device such as a terminal, or a Guardian
process.

• Like LOAD, the APPEND utility writes rows in blocks to the target table. APPEND
is faster than COPY.

• APPEND does not operate on tables with indexes.

• APPEND provides the PARTONLY option to append data to individual partitions of
a key-sequenced table. APPEND adds rows with key values logically greater than
the last existing row in the target partition. The added key values must be logically
less than that of the first row in the next partition.

• APPEND provides options for processing key-sequenced files. You can specify, for
instance, that the rows are in sorted order. You can specify a maximum number of
rows to be loaded. APPEND reorders unsorted input data and optionally uses a
user-specified scratch file location for the SORTPROG processes.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-15

Reorganizing Tables and Maintaining Data Appending Data to Tables or Partitions
• Three APPEND parameters control block slack:

° DSLACK controls the amount of free space in a table’s data blocks.

° ISLACK controls the amount of free space in a table’s index blocks.

° SLACK controls the amount of free space in both data and index blocks.

• You cannot use APPEND to append data to an entire audited table without
resetting the AUDIT attribute, but you can use APPEND to add data to a single
partition of an audited, key-sequenced table.

• Applications do not have access to a table being modified by APPEND. If you use
the APPEND PARTONLY option to modify a partition, the affected partition is not
accessible to applications while APPEND is in progress; other partitions remain
available.

• If an error occurs during an append operation, and APPEND is able to terminate
gracefully, no new data is added to the target table. To determine if an append
operation succeeded, check the SQLCI listing to see if error messages occurred.

• If a processor failure, process failure, BREAK command, or another event
interrupts an append operation, and APPEND cannot terminate gracefully, the
target table remains inaccessible to applications. You must use the
APPENDRESTART or APPENDCANCEL command to restore the target table to its
original state and either complete the append operation (with APPENDRESTART)
or cancel the operation (with APPENDCANCEL).

For more information about the APPENDRESTART and APPENDCANCEL
commands, see the SQL/MP Reference Manual.

For information about loading tables, see Guidelines for Loading Tables on page 8-8.

Appending Data to Multiple Partitions in Parallel
The PARTONLY option lets you append data to partitioned tables in parallel. This
strategy can improve append performance if table partitions are distributed across
disks, processors, and I/O channels. These steps describe possible strategies for
appending data to partitions in parallel:

1. Start an SQLCI process for each partition. One way to do this is to start each
SQLCI process in the processor associated with the target partition. Another way is
to start SQLCI processes in the processors associated with the data sources for
the APPEND command.

2. Issue one APPEND...PARTONLY request for each SQLCI process (and thus each
corresponding partition).
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-16

Reorganizing Tables and Maintaining Data Appending Data to Tables or Partitions
3. Supply each APPEND command with the specific range of input data for the target
partition. Three possible strategies are:

• Arrange the input data so that it is divided into separate files, each containing
input for a specific target partition. Use these files as input to the APPEND
commands.

• Do a SORTED append and specify FIRST KEY. When the SORTED and
PARTONLY options are specified, APPEND stops processing input as soon as
it encounters a row beyond the end of the target partition.

• Use processes to read input data. Start each data source process as a named
process before entering the APPEND command. Use the process name as the
input file for the APPEND command. The process must wait for requests on its
$RECEIVE file and then supply data by replying to those requests. When using
this approach, be sure to balance processing for optimal performance.

You can use the DataLoader/MP product to help implement the preceding tasks.
For example, you can use DataLoader/MP to arrange to have the input data
delivered to the correct target partitions. For more information about the
DataLoader/MP product, see the DataLoader/MP Reference Manual.

Example of Appending Data
This example assumes you have a history table containing 80 weeks of data. You
could partition the table so that each week of data resided on one partition. This
scheme, however, might create disproportionate requests for data from certain
partitions, particularly those containing the most recent weeks of data. Therefore, the
table is partitioned by a hash value so that each week of data is striped (partitioned)
across 16 partitions. To maximize parallel execution, each partition is associated with a
different processor.

The example uses the APPEND utility each week to add the most recent week of data
to the appropriate 16 partitions. It starts an SQLCI process for each target partition (in
each associated processor). The NOWAIT option allows you to run separate,
concurrent SQLCI processes—you can enter the next SQLCI command without having
to wait for the last process to finish. Prompts, errors, and other messages are directed
to separate output files so that you can distinguish events occurring in each process.

The example divides the input data into 16 Enscribe files; each file’s data is appended
to the corresponding target partition. The input files reside on volumes $VOL1 through
$VOL4. The target partitions reside on volumes $VOL33 through $VOL48. The
Enscribe record layout corresponds exactly to the target table layout; therefore, no
move options are needed to convert input fields into target columns.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-17

Reorganizing Tables and Maintaining Data Purging Data From SQL Tables
The SORTED option indicates that the input data has already been sorted; the append
operation does not need to perform further sorting. The ALLOWERRORS option
ensures that append operation will proceed even if an input record contains data that
could not be converted into a target column.

> SQLCI / CPU 0, OUT $S.#LOG33, NOWAIT / &
>& APPEND $VOL1.WEEK25.PART33, $VOL33.TARGET.HIST, &
>& RECOVERYFILE $VOL2.RECOVER.PART33 &
>& PARTONLY, SORTED, ALLOWERRORS ON ; &
>& EXIT ;
> |
> SQLCI / CPU 1, OUT $S.#LOG34, NOWAIT / &
>& APPEND $VOL1.WEEK25.PART34, $VOL34.TARGET.HIST, &
>& RECOVERYFILE $VOL2.RECOVER.PART34 &
>& PARTONLY, SORTED, ALLOWERRORS ON ; &
>& EXIT ;
> |
> |
> |
> SQLCI / CPU 15, OUT $S.#LOG48, NOWAIT / &
>& APPEND $VOL4.WEEK25.PART48, $VOL48.TARGET.HIST, &
>& RECOVERYFILE $VOL2.RECOVER.PART48 &
>& PARTONLY, SORTED, ALLOWERRORS ON ; &
>& EXIT ;

The example issues 16 similar APPEND commands, one for each target partition. The
append operation executes in parallel against the 16 partitions.

The RECOVERYFILE parameter specifies a file that stores information needed to
restore the target partition to its initial state if a process failure or processor failure
interrupts the APPEND operation. For more information about this parameter, and
about the syntax and use of APPEND options, see the SQL/MP Reference Manual.

Purging Data From SQL Tables
If you want to purge only the data from a nonaudited or audited SQL table, use the
PURGEDATA command. This command clears only the data, leaving the catalog
description of the table valid. These guidelines apply:

• The PURGEDATA operation temporarily invalidates the table and indexes to
prevent concurrent access by other users until the data is purged.

If an error occurs after the table is marked invalid but before the PURGEDATA
operation begins, the table is revalidated, and the data remains unchanged. If an
error occurs during the PURGEDATA operation and the operation fails to complete,
PURGEDATA leaves the table marked as corrupt. To recover, resolve the problem
that caused the first attempt to fail, then reissue the PURGEDATA command.

• After purging the data, the PURGEDATA operation validates the table and indexes
so that they are again accessible to other users.

• The PURGEDATA operation does not automatically alter the table’s statistics. After
purging the data and after you (or any programs) have added data to the table, run
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-18

Reorganizing Tables and Maintaining Data Purging Data From SQL Tables
an UPDATE STATISTICS statement to record current statistics for the table in the
catalog. If the statistics are incorrect, the SQL compiler might not select the best
access path for performance.

• You cannot include the PURGEDATA command within a user-defined TMF
transaction.

• You cannot use the PURGEDATA command on an SQL program, view, catalog
table, or index.

• With the PARTONLY option of the PURGEDATA command, you can purge data
from a single partition of a partitioned table without indexes. (If you omit the
PARTONLY option but specify a primary or secondary partition in the command,
the data is removed from all partitions and indexes.)

• When using the PARTONLY option of the PURGEDATA command for a relative or
an entry-sequenced table, you can only purge data from the last partition. For a
key-sequenced table, however, you can purge data from any partition. The
PARTONLY option applies only to tables with no dependent indexes.

To use PURGEDATA, follow these steps:

1. Start an SQLCI session.

2. Enter a LOG command to initiate a log file for the statements and commands
entered in this session. Keep the log for your records.

3. Prevent the use of the table.

4. Enter the PURGEDATA command. To purge data from an individual partition of a
table, use the PARTONLY option of this command.

When you perform a PURGEDATA operation on an SQL audited table, the end-of-file
marker is moved backward in the table, and the TMF audit record generated contains
the before-images and after-images of the altered file label; however, before-images of
the data in the table are not generated.

Under these circumstances, no data exists to enable you to roll back the PURGEDATA
operation to the previous state. However, if you make periodic online dumps of the
table and note the times at which you issue PURGEDATA commands, the purged data
is retained in audit images that can be recovered. For this recovery, use one of the
TMF interfaces (such as TMFCOM) to issue the RECOVER FILES command with the
TIME attribute set for file recovery to the time before the data was purged.
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-19

Reorganizing Tables and Maintaining Data Purging Data From SQL Tables
HP NonStop SQL/MP Installation and Management Guide—523353-004
8-20

9 Moving a Database
The guidelines required for moving a database depend on knowing the current
database scheme used at each site. The database administrator should analyze all the
factors and develop a plan before attempting to move a database.

Reasons for Moving a Database
The reason for moving a database usually falls into one of these categories:

• Moving objects to enhance performance

This category might include moving objects to another volume, splitting or moving
partitions across different volumes, or redefining partition row boundaries for tables
and indexes.

• Adding or changing equipment

This category might include moving objects to new volumes, partitioning tables and
indexes, or restoring a volume following an equipment change.

• Moving objects from one application development phase or group to another, such
as moving the database and application programs from development to production

The move can be from one subvolume to another, from one volume to another, or
from one node to another.

• Moving objects from one node to another, such as the release of software to an
end-user node.

This category includes the creation of new catalogs, the creation or moving of the
database, and the SQL compilation of application programs.

• Moving objects from a node running an older version of SQL/MP software to a
node running a newer version.

This category involves a series of staged operations and testing, described in the
SQL/MP Version Management Guide.

Moving a database involves moving a set of SQL catalogs and objects from one
environment to another. For example, if you move a catalog or any of its objects, you
probably want to move the objects and all the definitions and relations associated with
those objects.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-1

Moving a Database Determining Move Dependencies
Determining Move Dependencies
The steps you take to move SQL objects or an entire database depend on the layout of
your database. The duplication process cannot ignore or overrule the dependency
requirements of database objects, described in earlier sections of this manual. The
complexity of the layout of your database dictates the complexity of the statements and
commands required to move the database.

Before moving a database, consider these issues:

• What are the dependent SQL objects that might be affected by the move?

• Does the moving plan consider the effect of the move on dependent objects or on
subsequent moves?

• Does the plan include revalidation of the dependent programs?

• Do you have the authority to move the objects and all the dependent objects?

• Are the underlying tables, partitions, and systems available, as required?

• What media are available and appropriate for the move?

• Do you have sufficient disk space in the target locations?

• How will the move affect the users of the database or the users of the application
programs?

• Do you have a valid recovery mechanism for the new database scheme?

• What steps must you take to ensure the consistency of the database during and
after the move?

• Are you moving the objects from one SQL/MP release environment to another and
planning to upgrade the catalogs?

Choosing Utilities for the Move Operation
To move SQL objects, you must create copies of the objects at the new location. You
can create a copy of an SQL table, index, view, or an SQL program stored in a
Guardian file, with either the SQLCI DUP utility or the Guardian BACKUP and
RESTORE utilities. The SQLCI COPY and LOAD utilities also provide a mechanism for
moving SQL tables.

If you only need to rename a table, index, view, collation, or SQL program stored in a
Guardian file, you can use an SQLCI ALTER statement with the RENAME option to
rename the object. For more information, see Renaming Objects on page 7-36.

For SQL programs stored in an OSS file, use the appropriate OSS utility to move or
rename the program. For example, you can use the mv utility or the rename() api to
rename an OSS file. For more information about OSS utilities, see the Open System
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-2

Moving a Database COPY and LOAD
Services Shell and Utilities Reference Manual. The remainder of this subsection
applies to SQL tables, indexes, views, and SQL programs stored in Guardian files.

COPY and LOAD
The COPY and LOAD utilities operate only on tables. You must create a table before
you can copy or load data into it. The CREATE TABLE LIKE statement creates a new
table identical to the original one; this operation simplifies creating a new table. For
additional information about using the COPY and LOAD utilities, see Section 8,
Reorganizing Tables and Maintaining Data, or the SQL/MP Reference Manual.

You can use the COPY command for operations similar to those of the LOAD
command. These differences, however, exist between the two operations:

• The COPY command can run within a user-defined TMF transaction, but you must
ensure that the audit trails are large enough to contain the data. For LOAD, the
table must be nonaudited; therefore, a TMF transaction is not allowed.

• The COPY command does not allow the SLACK option.

• The COPY command can insert data into a table that has data or is empty. The
LOAD command removes any data in the target table before inserting data.

• A COPY operation is usually slower than an equivalent LOAD operation.

• COPY can handle two tables whose columns use different collations, while LOAD
cannot.

The success of the COPY and LOAD operations depends upon various factors,
including the software releases of the source and target SQL/MP systems and the
versions of the source and target objects.

A column in a source object can use a different collation than a column in a target
object. COPY and LOAD do not consider whether the source object uses collations;
this situation can cause duplicate key errors.

Caution. Some utilities, as well as SQLCI, let you request purge operations on target files that
fall within the context of the command issued. When you refer to qualified file-set lists in such a
command, the utility might inadvertently purge an object you did not expect to be purged. You
can protect your catalogs, tables, and indexes against the effects of an incorrectly specified file
set list by using SQLCI to assign the NOPURGEUNTIL attribute to these objects.
NOPURGEUNTIL lets you specify an expiration date and time for the objects and prevents
them from being removed before that time.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-3

Moving a Database DUP and BACKUP/RESTORE
DUP and BACKUP/RESTORE
The DUP utility duplicates objects from one location to another interactively. DUP can
move SQL objects from one node to another when the nodes are connected in a
network and the requesting user ID has the appropriate remote security to allow the
transfer.

The BACKUP and RESTORE utilities provide another method of moving SQL/MP
objects. You can use these utilities to move objects to another location on the same
node or to another node. BACKUP and RESTORE must be used in cases in which the
target node is not physically connected to the source node.

When you back up files, you specify a qualified file set to indicate the set of files to be
backed up. A qualified file-set list specifies a set of objects and files and optionally
includes clauses that restrict the objects and files operated on based on attributes of
the objects and files. For information about the syntax of a qualified file-set list, see the
“Qualified File-set List” entry in the SQL/MP Reference Manual or use the SQLCI
HELP command.

This list compares DUP with BACKUP/RESTORE:

• The DUP and BACKUP/RESTORE utilities allow these options:

° Using qualified file set lists and wild-card characters

° Working with both SQL/MP objects and Enscribe files

° Selecting options to keep or purge targets of the file set lists to prevent
duplication or overwriting

° Continuing with an operation despite errors

° Automatically moving comments and constraints to the target catalog of the
target table

• DUP allows these options:

° Saving current file information with the new file (the SAVEID, SOURCEDATE,
and SAVEALL options)

° Choosing automatic duplication, explicit duplication, or no duplication for
protection and shorthand views

° Choosing either automatic duplication or no duplication for dependent indexes

° Duplicating the source object only when the command has exclusive use of the
object
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-4

Moving a Database DUP and BACKUP/RESTORE
• BACKUP/RESTORE allows these options:

° Choosing either automatic duplication or explicit duplication for dependent
indexes

° Using tape handling features

° Automatically moving protection views with the underlying table

° Explicitly duplicating shorthand views named in a file set list

° Automatically SQL-compiling program files upon restoration with the
SQLCOMPILE ON option

° Automatically creating necessary catalogs with the AUTOCREATECATALOG
ON option

° Copying the source object while other users have access to the object

° Choosing either automatic duplication or explicit duplication of individual table
and index partitions

To handle SQL files, both the BACKUP and RESTORE processes must be licensed.
During a typical INSTALL operation, both BACKUP and RESTORE are licensed
automatically. In special circumstances, sites might deliberately create unlicensed
BACKUP and RESTORE object files, but these processes cannot access SQL files.

The success of the DUP and BACKUP/RESTORE operations depends upon several
factors, including whether operations involve different versions of SQL/MP software
and different versions of SQL objects.

Guidelines for DUP Operations
You cannot perform a DUP operation within a user-defined TMF transaction. If the
source object is audited, the DUP command completes the DUP operation on a
nonaudited target object and then automatically changes the AUDIT attribute to AUDIT
as the operation completes. BACKUP and RESTORE can move audited files by using
the AUDITED option, in the same manner as DUP. You must make TMF online dumps
of all restored audited objects, after using DUP or RESTORE, to create a new recovery
point.

Caution. If an SQL object has the UNRECLAIMED FREESPACE (F) or INCOMPLETE
SQLDDL OPERATION (D) attribute set, do not attempt to back up, move, or duplicate the
object until the attribute is reset. For more information, see UNRECLAIMED FREESPACE (F)
and INCOMPLETE SQLDDL OPERATION (D) Flags on page 7-24.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-5

Moving a Database DUP and BACKUP/RESTORE
Guidelines for Name Mapping in BACKUP and RESTORE
To move interrelated SQL objects from one volume or node to another, you can use the
MAP NAMES option. Use of this option requires familiarity with the way in which the
BACKUP and RESTORE utilities handle file names. Be sure to specify a target file set
list or define the MAP NAMES and CATALOG options correctly for the dependencies of
the target object, or the moved objects might be left in an invalid state or might not be
moved.

File set Considerations

All files in the specified file set must originate from the same node; you cannot specify
two nodes in the BACKUP command.

Although the files in a file set all reside on one node, they might have implicit
relationships with files on other nodes. For example, a file might be partitioned across
several nodes, or a base table might reside on one node and have indexes on another.
Unless you specify otherwise, the BACKUP utility backs up these related files along
with the files specified explicitly in the file set.

The BACKUP utility saves the names of the backed-up files in local or network format,
depending on the location of the file set relative to the BACKUP process:

• The files are considered “local” if the file set is on the node running the BACKUP
utility. Local file names are saved without a node identifier.

• The files are considered “remote” if they reside on a node other than that running
the BACKUP utility. That is, if the BACKUP utility is running on node \A and is
backing up a file set from remote node \B, the file set defined on remote node \B
would be considered “remote” by BACKUP. The BACKUP utility stores the names
of files from remote nodes in remote internal format
(\<node-number>.<volume>.<subvolume>.<file-identifier>) to prevent accidental
overwriting of files that have the same file names.

This example backs up a remote table and a local index. Suppose that TABLE1
resides on remote node \B and has index TINDX on local node \A. This BACKUP
command (issued from node \A) backs up TINDX along with TABLE1:

BACKUP $TAPE, \B.$VOL.SUBVOL.TABLE1

The files are backed up as:

\B.$VOL.SUBVOL.TABLE1 $VOL.SUBVOL.TINDX

Note. The PARTONLY and MAP NAMES options are mutually exclusive. So, if you use the
PARTONLY option during BACKUP and RESTORE, you will not be able to use the
MAP NAMES option.

Caution. When backing up files, be aware that you cannot currently restore files in a remote
file set if their associated node number is not available on the destination network.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-6

Moving a Database DUP and BACKUP/RESTORE
Restoring Files to Multiple Nodes

When you restore a file set that resides on multiple nodes, the RESTORE utility
searches the network for a node that matches the node number of each remote file on
the tape.

Whether you are restoring files to the node from which the files were backed up, or to
another node on the same network, you need not be concerned about file names or
the destination of remote files. Local files are restored on the “local” node (as defined
under File set Considerations on page 9-6). Remote files are restored to their original
nodes. Thus, if you restore a file set to a node other than their original node, the
default behavior results in a node name change for local files but not for remote files.
Use the MAP NAME clause to redirect files as needed.

When restoring files from a BACKUP tape, note the following handling of wild-card
characters:

• A file set with an asterisk in the volume, subvolume, and file-identifier positions
(*.*.*) directs the RESTORE utility to restore all files on the tape, including local
and remote files.

• A file set with a dollar sign in the volume location ($*.*.*) directs the RESTORE
utility to restore all of the local files on the tape. Files stored in the remote node
format will not be restored or listed using this format.

For example, if you run RESTORE on node \A and specify the file set “$*.*.*” for a tape
with a remote file set from node \B, RESTORE does not restore the tape:

RESTORE $Tape, ($*.*.*)

\A
Files not found - Error 2013

$*.*
* *ERROR -2013* Fileset not dumped (ERROR 11)

In the preceding example, you could use the fileset “*.*.*” and an appropriate MAP
NAMES option to restore all files to the local node:

RESTORE $Tape, (*.*.*), MAP NAMES (*.*.* TO $New.Sub.*)

\A.$New.Sub
 TABLE1 TINDX

If you know the remote node name for the file set list, you can specify the node name
in the file set (by using the format \<node-name>.$*.*.*) to direct the RESTORE utility
to restore all files from that node, as follows;

RESTORE $Tape, (\B.$Vol.*.*),
MAP NAMES (\B.$VOL.*.* TO $NEW.SVOL.*)

\A.$New.Sub
 Table1
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-7

Moving a Database DUP and BACKUP/RESTORE
Restoring Files to a Different Network

When restoring files on a node that is not connected to the network where the original
BACKUP process was run, RESTORE attempts:

• If all files on the BACKUP tape are in local format, the files are restored to the local
node.

• If any files on the BACKUP tape are in remote format, RESTORE attempts to
restore the files to the node assigned to the node number stored with the file name.

In this situation, follow these steps before requesting the restore operation:

1. Run the RESTORE utility with the LISTONLY option:

RESTORE $Tape, (*.*.*), LISTONLY

The output describes how the node numbers of the backed-up files match the node
names on the destination network. If the source node number exists in the
destination network, the output from the LISTONLY option displays the matching
node name in the destination network, as follows:

$VOL.SUBVOL
 TINDX
\B.$VOL.SUBVOL
 TABLE1

2. Run the RESTORE utility again, specifying the appropriate file set in the
RESTORE command. Use the MAP NAMES option to specify destination node
names. For example, this command restores the files in the previous example:

RESTORE $TAPE, (\B.$VOL.SUBVOL.TABLE1),
MAP NAMES (\B.$VOL.SUBVOL.* TO $NEW.SV2.*)

If the node number does not exist on the destination network, the node name is
replaced by “\??” in the LISTONLY output, as follows:

$VOL.SUBVOL
 TINDX
\??.$VOL.SUBVOL
 TABLE1

 For additional examples of the MAP NAMES option in the RESTORE utility, see the
Guardian Disk and Tape Utilities Reference Manual.

Caution. You cannot currently restore files of a remote file set if their associated node number
is not available on the destination network.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-8

Moving a Database Moving the System Catalog
Moving the System Catalog
Although you can move the system catalog to a new location after SQL/MP has been
installed, this operation is extremely complex. You should consider moving the system
catalog only in special cases.

These instructions are based on the assumptions that the TMF subsystem is
operational, that the user is the super ID, and that the SQLCI2 program is on the
$SYSTEM.SYSTEM subvolume and is described in the system catalog.

To move the system catalog, follow these steps:

1. Check that no SQL/MP operations or transactions are in progress during the move
operation. The system catalog should not be moved on an active system.

2. If your system catalog contains SQL objects, perform a BACKUP of the objects
that you want to save, or move the objects to another catalog. You must save the
information because the system catalog must be empty for you to drop it. You can
use this BACKUP command to save the user-defined objects in the system
catalog; enter the command at the command interpreter prompt:

20> BACKUP $TAPE, *.*.* FROM CATALOG sys-catalog, AUDITED,
 OPEN, LISTALL

In the BACKUP command, sys-catalog is the volume and subvolume on which
your system catalog resides.

3. If you have only a few objects in the system catalog, purge all objects from the
system catalog except for the CATALOGS table and SQLCI2. Remove the objects
one at a time by using the DROP statement or PURGE command.

If the previous method is impractical because you have many objects, save a copy
of your SQLCI2 program, and then purge everything in the system catalog
(including the SQLCI2 program) with a single command. To save the SQLCI2
program, use DUP to copy the program to a file named ZZSQLCI2. After the
PURGE operation, the INITIALIZE SQL command renames and SQL compiles the
saved copy of SQLCI2.

This command sequence accomplishes these operations:

21> VOLUME $SYSTEM.SYSTEM
22> FUP DUP SQLCI2, ZZSQLCI2, SAVEALL
23> SQLCI
>> PURGE *.*.* FROM CATALOG sys-catalog, ALLOWERRORS ON;
>> INITIALIZE SQL;

In the PURGE command, sys-catalog is the volume and subvolume on which
your system catalog resides.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-9

Moving a Database Moving the System Catalog
4. Create an OBEY command file you can use to insert the rows from the existing
CATALOGS table into the re-created CATALOGS table. This command sequence
queries the existing CATALOGS table and generates an OBEY command file that
contains a report in INSERT-statement format. This command series appears in
OBEY command file format for entering through SQLCI. Use this command file for
CATALOGS table versions 300 and later.

-- --
-- BEGIN OBEY COMMAND FILE COMMAND SEQUENCE TO QUERY THE CATALOGS
-- TABLE AND GENERATE A REPORT IN INSERT-STATEMENT FORMAT
-- --
OUT_REPORT obey-insert-file CLEAR;

RESET LAYOUT *;
SET LAYOUT PAGE_LENGTH ALL;

RESET SESSION *;
SET SESSION LIST_COUNT 0;

RESET STYLE *;
SET STYLE HEADINGS OFF;
SELECT CATALOGNAME,
 SUBSYSTEMNAME,
 VERSION,
 VERSIONUPGRADETIME,
 CATALOGCLASS,
 CATALOGVERSION
FROM $catalogs-vol.SQL.CATALOGS
 WHERE CATALOGCLASS <> "S"
;
DETAIL "INSERT INTO $new-catalogs-vol.SQL.CATALOGS", SKIP,
 " VALUES (""", CATALOGNAME, """,", SKIP,
 " """, SUBSYSTEMNAME, """,", SKIP,
 " """, VERSION, """,", SKIP,
 " ", VERSIONUPGRADETIME, " ,", SKIP,
 " """, CATALOGCLASS, """," , SKIP,
 " ", CATALOGVERSION, SKIP,
 ")", SKIP,
 ";", SKIP
;
LIST ALL;
-- in which obey-insert-file is any EDIT file;
-- catalogs-vol is the volume on which the current CATALOGS table
-- resides;
-- new-catalogs-vol is the volume on which the new CATALOGS table
is to
-- reside.
OUT_REPORT; -- Closes report file
RESET LAYOUT *; RESET STYLE *; -- Resets report defaults
RESET SESSION *; SET SESSION LIST_COUNT ALL;
-- --
-- END REPORT PRODUCING COMMAND SERIES --------------------
-- --
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-10

Moving a Database Moving the System Catalog
For the CATALOGS table versions that are earlier than version 300, use this OBEY
command file:

If the CATALOGS table does not contain any entries or you do not have any user
catalogs, skip to Step 6 on page 9-12.

5. Set up a licensed SQLCI2L program from a copy of the SQLCI2 program as
described in Appendix A, Licensed SQLCI2 Process:

33> LOGON SUPER.SUPER, password
34> FUP DUP $SYSTEM.SYSTEM.SQLCI2, $SYSTEM.SYSTEM.SQLCI2L
35> FUP SECURE SQLCI2L, "NN--"
36> SQLCOMP /IN SQLCI2L/ CATALOG $SYSTEM.SQL
37> FUP LICENSE SQLCI2L

-- --
-- BEGIN OBEY COMMAND FILE COMMAND SEQUENCE TO QUERY THE CATALOGS
-- TABLE AND GENERATE A REPORT IN INSERT-STATEMENT FORMAT
-- --
OUT_REPORT obey-insert-file CLEAR;

RESET LAYOUT *;
SET LAYOUT PAGE_LENGTH ALL;

RESET SESSION *;
SET SESSION LIST_COUNT 0;

RESET STYLE *;
SET STYLE HEADINGS OFF;
SELECT CATALOGNAME,
 SUBSYSTEMNAME,
 VERSION,
 VERSIONUPGRADETIME,
 CATALOGCLASS
 FROM $catalogs-vol.SQL.CATALOGS
 WHERE CATALOGCLASS <> "S"
;
DETAIL "INSERT INTO $new-catalogs-vol.SQL.CATALOGS", SKIP,
 " VALUES (""", CATALOGNAME, """,", SKIP,
 " """, SUBSYSTEMNAME, """,", SKIP,
 " """, VERSION, """,", SKIP,
 " ", VERSIONUPGRADETIME, " ,", SKIP,
 " """, CATALOGCLASS, """" , SKIP,
 ")", SKIP,
 ";", SKIP
;
LIST ALL;
-- in which obey-insert-file is any EDIT file;
-- catalogs-vol is the volume on which the current CATALOGS table
-- resides;
-- new-catalogs-vol is the volume on which the new CATALOGS table
is to
-- reside.
OUT_REPORT; -- Closes report file
RESET LAYOUT *; RESET STYLE *; -- Resets report defaults
RESET SESSION *; SET SESSION LIST_COUNT ALL;
-- --
-- END REPORT PRODUCING COMMAND SERIES --------------------
-- --
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-11

Moving a Database Moving the System Catalog
To enable SQLCI to use the licensed SQLCI2 version rather than the normal
SQLCI2 version, you must create the =_SQL_CI2_sys DEFINE pointing to the
licensed version. This command performs this operation:

38> ADD DEFINE =_SQL_CI2_sys, CLASS MAP,
 FILE $SYSTEM.SYSTEM.SQLCI2L

In the ADD DEFINE command, sys is the node (system) name without the
backslash.

6. After setting up the licensed SQLCI2L process, delete the catalog entries from the
CATALOGS table (except for the system catalog entry). The CATALOGS table
must be empty before you can drop the existing system catalog; therefore, you
must delete any references to user catalogs without affecting the dependent SQL
catalogs and objects. Enter this statement using the licensed SQLCI2L process to
delete the rows:

>> DELETE FROM catalogs-vol.SQL.CATALOGS
+> WHERE CATALOGCLASS <> "S";

In the DELETE statement, catalogs-vol is the volume on which your
CATALOGS table resides. The subvolume is always SQL.

7. Save a copy of the SQLCI2 program because the DROP SYSTEM CATALOG
command also drops SQLCI2. Enter this FUP DUP command to save a copy of
SQLCI2:

>> VOLUME $SYSTEM.SYSTEM;
>> FUP DUP SQLCI2, ZZSQLCI2, SAVEALL;

8. If you have SQL compiled the licensed SQLCI2L program into your system catalog
to perform Step 5 on page 9-11, drop the program so that the system catalog is
empty. If you are still using the licensed SQLCI2L program from Step 5 on page
9-11, exit from SQLCI and delete the DEFINE. These commands accomplish this
operation:

>> EXIT;
24> DELETE DEFINE =_SQL_CI2_sys
25> SQLCI
>> DROP PROGRAM $SYSTEM.SYSTEM.SQLCI2L;

In the DELETE DEFINE command, sys is the node (system) name without the
backslash.

9. Drop the old system catalog and create the new one in its new location. The
system catalog should be empty, but you can query the catalog to verify that all
references are dropped, except the tables themselves, including the CATALOGS
table.

To drop the system catalog, you must use the DROP SYSTEM CATALOG
command. If you are not running SQLCI, you can drop the catalog from SQLCI by
entering these commands:

>> DROP SYSTEM CATALOG sys-catalog;
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-12

Moving a Database Moving the System Catalog
In the DROP command, sys-catalog is the volume and subvolume on which
your system catalog resides.

You cannot, however, enter the DROP SYSTEM CATALOG command while
SQLCI2 is running, as it normally is when you are running SQLCI and have
entered other commands during the current session. If you attempt to enter this
command in that case, the command terminates abnormally, and the RDBMS
returns an error message. So, you must exit from SQLCI, which implicitly
terminates SQLCI2. Next restart SQLCI and enter the DROP SYSTEM CATALOG
command at the first SQLCI prompt.

10. Create the new system catalog through SQLCI as follows:

>> CREATE SYSTEM CATALOG new-system-catalog;

In the command, new-system-catalog names the volume and subvolume on
which the new system catalog is to reside. The CATALOGS table will be created on
the same volume as the system catalog but on the SQL subvolume. For more
information on the CREATE SYSTEM CATALOG command, see the SQL/MP
Reference Manual.

11. Reinitialize SQL/MP through SQLCI as follows:

>> INITIALIZE SQL;

This operation renames ZZSQLCI2 to SQLCI2, compiles SQLCI2, and registers
the SQLCI2 program in the system catalog.

12. Rebuild the CATALOGS table unless the CATALOGS table does not contain any
entries or you do not have user catalogs, in which case, skip to Step 14 on page
9-14.

Add the entries to the CATALOGS table without affecting the dependent SQL
catalogs and objects. To accomplish this task, you must be using a licensed
SQLCI2 process, as described in Appendix A, Licensed SQLCI2 Process. After
setting up the licensed SQLCI2L process, use it to run the OBEY command file
(generated by the commands shown in Step 4 on page 9-10) to insert the catalog
entries into the CATALOGS table:

>> OBEY obey-insert-file;

Each INSERT statement in the file (for CATALOGS table versions 300 and later)
should look like this sample:

INSERT INTO new-catalogs-vol.$SQL.CATALOGS
 VALUES ("\SYS1.$VOL4.INVENT ",
 "SQL ",
 "A345",
 0,
 "U",
 345
) ;
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-13

Moving a Database Moving Database Objects
Each INSERT statement in the file (for CATALOGS table earlier than version 300)
should look like this sample:

INSERT INTO new-catalogs-vol.$SQL.CATALOGS
 VALUES ("\SYS1.$VOL4.INVENT ",
 "SQL ",
 "A011",
 0,
 "U"
) ;

13. Drop the licensed SQLCI2L process so that you cannot mistakenly use the
process. You should also drop the DEFINE for the SQLCI2L file. These commands
accomplish these operations:

>> EXIT;
28> DELETE DEFINE =_SQL_CI2_sys
29> SQLCI
>> DROP PROGRAM $SYSTEM.SYSTEM.SQLCI2L;

In the DELETE DEFINE command, sys is the node (system) name
without the backslash.

14. If you backed up any SQL objects in Step 2 on page 9-9, restore them to the new
system catalog by specifying the CATALOG option pointing to the new system
catalog:

30> RESTORE $TAPE, *.*.* CATALOG new-system-catalog,
 AUDITED, OPEN, LISTALL

In the RESTORE command, new-system-catalog is the volume and
subvolume on which your system catalog resides.

Moving Database Objects
You can move individual SQL objects such as tables, views, indexes, and SQL
programs stored in Guardian files separately. Usually the dependent objects
(shorthand and protection views and indexes) are moved with the underlying table or
tables. Comments and constraints are automatically moved with a table.

The DUP and BACKUP/RESTORE utilities support the qualified file-set list to identify
the source file list. Qualified file-set list expressions enable you to refine the file set list
to specify objects. For information about the qualified file-set list, see DUP and
BACKUP/RESTORE on page 9-4. For a more thorough definition of a qualified file-set
list, see the SQL/MP Reference Manual.

You can move both audited and nonaudited objects either with DUP or with BACKUP
and RESTORE. Whenever you move any audited objects, you should include steps to
make TMF online dumps of all restored audited objects following the move. The online
dumps give the TMF subsystem the current location of the objects for file recovery.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-14

Moving a Database Dropping and Re-creating Catalogs
For information about moving an SQL program stored in a Guardian file, see Moving
Programs on page 10-39. To move an SQL program stored in an OSS file, use the
appropriate OSS utility.

Dropping and Re-creating Catalogs
To move a catalog, you must first drop all the objects described in it, drop the catalog,
and then re-create it in a new location. Finally, restore the SQL objects to disk,
referring to the new catalog name.

If you want to move both a catalog and all the dependent objects described in that
catalog to a new location, see Steps for Moving a Database on page 9-25.

If you want to move only the catalog tables to a new location and keep the dependent
objects in the same location, you must use the BACKUP/RESTORE method, because
the DUP utility does not allow for the redefinition of a source and target catalog without
also mapping target locations for the objects.

Moving Catalogs
To move a catalog, follow these steps:

1. Determine the dependent programs of the objects described in the catalog by
using the DISPLAY USE OF command. The move operations invalidate these
programs.

2. Back up all the dependent objects described in the catalog, including programs.
Use the FROM CATALOGS parameter of the qualified file-set list to identify the
objects from the catalog. This command, entered at the command interpreter
prompt, accomplishes the operation:

43> BACKUP $TAPE, *.*.* FROM CATALOG old-catalog-name,
 AUDITED, OPEN, LISTALL

3. Create the new catalog in SQLCI, as shown in this statement:

>> CREATE CATALOG new-catalog-name;

4. Drop the specified objects and the old catalog:

>> PURGE *.*.* FROM CATALOG old-catalog-name ALLOWERRORS ON;
>> DROP CATALOG old-catalog-name;

5. Restore the backup tape by using the CATALOG option to define the new catalog.
At the command interpreter prompt, enter:

45> RESTORE $TAPE, *.*.*, CATALOG new-catalog-name,
 AUDITED, OPEN, TAPEDATE, LISTALL

6. SQL compile the programs described in the new catalog or any programs
referencing the objects described in the new catalog.

7. Make new TMF online dumps of the catalog and all restored audited objects.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-15

Moving a Database Moving Tables
Moving Tables
You can move a table with the SQLCI DUP, LOAD, or COPY utility, or with the
Guardian utilities BACKUP and RESTORE. Each utility involves some special
considerations.

The DUP and BACKUP/RESTORE utilities enable you to specify the source tables by
name or by qualified file-set list. If the table and its dependent objects all reside on the
same subvolume and are moved to another subvolume, you can use a target file-set
list to specify the new location. If the table and its dependent objects are to reside on
two or more subvolumes, you must use the MAP NAMES option. You cannot use the
MAP NAMES option and the target file-set list in the same command. If the dependent
objects are described in a new catalog, use the CATALOG clause to define the new
catalog for the objects.

If you want to move a table to a new subvolume on the same volume or to rename the
table, you can use the ALTER TABLE statement with the RENAME option. This
approach does not actually transport the data, but alters the directory entry and all
associated catalog references to the table.

The move utilities do not automatically move dependent programs with the underlying
table. Programs are moved only if they are included in the file set list. After you have
moved a table, you should include steps to explicitly SQL compile the dependent
programs to avoid automatic recompilation. Programs are not invalidated by the move
operation but will be invalidated when the old table is dropped.

The move utilities also do not automatically move any collations used by a table or its
dependent objects.

You can move a nonpartitioned table to another volume by using the MOVE option of
the ALTER TABLE statement. For more information, see Splitting, Moving, and
Merging Partitions on page 7-20. You can also move all or part of a partition of a table.
For more information, see Moving Partitions on page 9-23.

Using DUP
When you DUP a table, the utility attempts to duplicate all partitions, indexes, and
protection and shorthand views. To duplicate all these objects along with your table,
specify either a target file-set list or the MAP NAMES option so that DUP can map the
dependent source objects to the target objects. In addition, DUP writes all constraints,
comments, and statistical information to the appropriate tables of the target catalog.
You can limit the automatic duplication of indexes and views with the INDEXES and
VIEWS parameters.

Using COPY and LOAD
You can move tables with the COPY and LOAD utilities. During the LOAD operation,
you can define the block structuring of a target key-sequenced table. By specifying
SLACK or DSLACK, you can load a source table into a target table with free space for
future insertions.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-16

Moving a Database Moving Tables
COPY and LOAD do not move dependent objects automatically except any indexes
that are defined on the table. Both COPY and LOAD require that you create the new
table before copying or loading the data. For additional information on copying or
loading tables, see Section 8, Reorganizing Tables and Maintaining Data, or the
SQL/MP Reference Manual.

Using BACKUP and RESTORE
When you use BACKUP and RESTORE to move a table, the utilities attempt to
duplicate all partitions, indexes, and protection views. Shorthand views are duplicated
only if you explicitly name them in the file set list. If you use a wild-card string for the
file set list, any shorthand view names identified in the wild-card string are treated as if
you had explicitly named them.

To move all these objects, specify the MAP NAMES option so that RESTORE can map
the dependent source objects to the target objects. In addition, RESTORE writes all
constraints, comments, and statistical information to the appropriate tables of the target
catalog.

The DUP and BACKUP/RESTORE utilities enable you to specify the source tables by
name or by qualified file-set list. If the table and its dependent objects all reside on the
same subvolume and are moved to another subvolume, you can use a target file-set
list to specify the new location. If the table and its dependent objects are to reside on
two or more subvolumes, you must use the MAP NAMES option.

You cannot use the MAP NAMES option and the target file-set list in the same
command. If the dependent objects are described in a new catalog, use the CATALOG
clause to define the new catalog for the objects.

If you want to move a table to a new subvolume on the same volume or to rename the
table, you can use the ALTER TABLE statement with the RENAME option. By using
this approach, you do not actually move the data, but you alter the directory entry and
all associated catalog references to the table.

The moving utilities do not automatically move dependent programs with the
underlying table. Programs are moved automatically only if they are included in the file
set list. After you have moved a table, you should include steps to explicitly SQL
compile the dependent programs to avoid automatic recompilation. Programs are not
invalidated by the moving operation but will be invalidated when the old table is
dropped.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-17

Moving a Database Moving Tables
Operational Steps
To move a table, follow these steps:

1. Determine the name of the table you want to move.

2. Determine the dependent objects with the DISPLAY USE OF command. Any
dependent programs are invalidated when you drop the old table.

3. Check that sufficient space exists on the targeted volumes to create the new table
and its dependent objects.

4. Create an OBEY command file for the command if the command is long or will be
reused. Consider whether the new table will refer to the same collations as the old
table; if not, update the CREATE TABLE statement to refer to the new collations.

5. Check that the table is not in use.

6. Perform the move command of your choice. Use the logging facility of SQLCI or
the LISTALL option of BACKUP and RESTORE. Keep the log for your records.

7. Drop the old table by using the DROP TABLE statement.

8. Alter the DEFINEs, if used, to refer to the new location of the table and any
dependent views.

9. SQL compile all invalidated programs.

10. Make a new TMF online dump if the table is audited.

11. Restart the application, if stopped, by using the new DEFINEs.

Examples of Using DUP to Move Tables
This example shows how to use the DUP command to move a single table that has no
dependent objects from one subvolume to another. The new table is to be registered in
the same catalog as the source table. The CATALOG option is required if the current
default catalog does not apply. This example sets the default catalog before the DUP
command is entered.

>> CATALOG $VOL1.SALES;
>> DUP $VOL1.SALES.ODETAIL, $VOL1.MKTG.ODETAIL;

In this example, the wild-card file name * identifies the target file-set list. By using the
wild-card character, you enable a table with dependencies to be moved where the
dependent objects are also duplicated. The new table and its dependencies are to be
registered in the catalog $VOL1.ADMIN. In this example, all the dependent objects of
EMPLOYEE also reside on $VOL1.PERSNL, so a target file-set list is used.

>> DUP $VOL1.PERSNL.EMPLOYEE, $VOL1.ADMIN.*,
+> CATALOG $VOL1.ADMIN, ALLOWERRORS ON;

This example demonstrates the MAP NAMES and CATALOG options. The table
EMPLOYEE and its dependencies are being moved from the PERSNL subvolume to
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-18

Moving a Database Moving Tables
the ADMIN subvolume. The MAP NAMES option is used to define the target
subvolumes for each object source. The CATALOG option defines the new catalog for
each object.

The table and its dependent objects to be moved follow:

This DUP command moves these objects:

>> DUP $VOL1.PERSNL.EMPLOYEE,
+> MAP NAMES ($VOL1.PERSNL.* TO $VOL1.ADMIN.*,
+> $VOL2.PERSNL.* TO $VOL2.ADMIN.*)
+> CATALOG ($VOL1.ADMIN FOR $VOL1.ADMIN.EMPLOYEE,
+> $VOL1.ADMIN FOR $VOL1.ADMIN.EMPLIST,
+> $VOL2.ADMIN FOR $VOL2.ADMIN.XEMPNAME),
+> ALLOWERRORS ON;

This example demonstrates the use of the INDEXES OFF and VIEWS OFF options.
You can use these options to duplicate a table with dependent views and indexes
without automatically duplicating those dependent views and indexes.

>> DUP $VOL1.PERSNL.EMPLOYEE, $VOL1.ADMIN.*,
+> CATALOG $VOL1.ADMIN, INDEXES OFF, VIEWS OFF;

Examples of Using BACKUP and RESTORE to Move Tables
This example shows how to use BACKUP and RESTORE from an OBEY command
file on a single nonaudited table with no dependent objects. BACKUP writes the table
to tape. RESTORE moves the table from one subvolume to another and describes it in
a new catalog.

BACKUP $TAPE, $VOL1.PERSNL.MANAGERS, LISTALL

RESTORE $TAPE, $VOL1.PERSNL.MANAGERS,&
 MAP NAMES ($VOL1.PERSNL.MANAGERS TO $VOL1.ADMIN.MANAGERS),&
 CATALOG ($VOL1.ADMIN FOR $VOL1.ADMIN.MANAGERS),&
 TAPEDATE, LISTALL

This example shows how to use BACKUP and RESTORE from an OBEY command
file on an audited table with dependent objects that reside on different volumes. You
must use the MAP NAMES option to map the dependent objects correctly to new
subvolumes. You must also use the CATALOG option to specify the new catalog for
each object.

EMPLOYEE A table that resides on $VOL1.PERSNL, described in the catalog
$VOL1.PERSNL

EMPLIST A protection view that resides on the same subvolume, described
in the same catalog as its underlying table, EMPLOYEE

XEMPNAME An index that resides on $VOL2.PERSNL, described in the catalog
$VOL2.PERSNL
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-19

Moving a Database Moving Tables
The table and dependent objects to be moved follow:

These commands accomplish the move operation:

BACKUP $TAPE, $VOL1.PERSNL.EMPLOYEE, AUDITED,LISTALL

RESTORE $TAPE, *.*.*,
 MAP NAMES ($VOL1.PERSNL.* TO $VOL1.ADMIN.*,&
 $VOL2.PERSNL.* TO $VOL2.ADMIN.*),&
 CATALOG ($VOL1.ADMIN FOR $VOL1.ADMIN.EMPLOYEE,&
 $VOL1.ADMIN FOR $VOL1.ADMIN.EMPLIST,&
 $VOL2.ADMIN FOR $VOL2.ADMIN.XEMPNAME),&
 AUDITED, TAPEDATE, LISTALL

Examples of Using LOAD or COPY to Move a Table
The next two examples compare using LOAD and COPY in moving SQL tables and
dependent objects.

The table and its dependent objects follow:

The first example shows how to create the appropriate dependent structure so that
dependent objects are loaded correctly with the table. The CREATE TABLE and
CREATE INDEX operations precede the load. Auditing of the table is disabled before
the LOAD operation and enabled after the LOAD operation. The SLACK option of the
LOAD command specifies the amount of empty space in the block structure. Because
a view is only a definition and does not require loading, you could create the view
EMPLIST either before or after the LOAD operation.

EMPLOYEE A table that resides on $VOL1.PERSNL, described in the catalog
$VOL1.PERSNL

EMPLIST A protection view that resides on the same subvolume, described
in the same catalog as its underlying table

XEMPNAME An index that resides on $VOL2.PERSNL, described in the catalog
$VOL2.PERSNL

EMPLOYEE A table that resides in $OLD.PERSNL, described in the catalog
$OLD.PERSNL

EMPLIST A protection view that resides in the same subvolume, described in
the same catalog as its underlying table, EMPLOYEE

XEMPNAME An index that resides in $OLD2.PERSNL, described in the catalog
$OLD2.PERSNL
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-20

Moving a Database Moving Views
>> CREATE TABLE $VOL1.PERSNL.EMPLOYEE LIKE $OLD.PERSNL.EMPLOYEE
+> WITH CONSTRAINTS;
>> CREATE INDEX $VOL2.PERSNL.XEMPNAME
+> ON $VOL1.PERSNL.EMPLOYEE (LAST_NAME, FIRST_NAME)
+> CATALOG $VOL2.PERSNL;
>> ALTER TABLE $VOL1.PERSNL.EMPLOYEE NO AUDIT;
>> LOAD $OLD.PERSNL.EMPLOYEE, $VOL1.PERSNL.EMPLOYEE,
+> SORTED, SLACK 20;
>> ALTER TABLE $VOL1.PERSNL.EMPLOYEE AUDIT;
>> CREATE VIEW $VOL1.PERSNL.EMPLIST
+> AS SELECT
+> EMPNUM, FIRST_NAME, LAST_NAME, DEPTNUM, JOBCODE
+> FROM $VOL1.PERSNL.EMPLOYEE
+> FOR PROTECTION
+> CATALOG $VOL1.PERSNL;

The LOAD utility automatically loads any dependent indexes created before loading
the underlying table. The CREATE TABLE LIKE statement, however, does not apply
associated partitions, views, or indexes to the target table. You must create these after
creating the table.

The next example shows a sequence of statements and commands to copy the
EMPLOYEE table and its dependent index and view. If the target table is empty, this
COPY example and the preceding LOAD example create the same files except for the
slack space created with the load operation. The COPY operation occurs within a user-
defined TMF transaction.

>> CREATE TABLE $VOL1.PERSNL.EMPLOYEE LIKE $OLD.PERSNL.EMPLOYEE
+> WITH CONSTRAINTS;
>> CREATE INDEX $VOL2.PERSNL.XEMPNAME
+> ON $VOL1.PERSNL.EMPLOYEE (LAST_NAME, FIRST_NAME)
+> CATALOG $VOL2.PERSNL;
>> BEGIN WORK;
>> COPY $OLD.PERSNL.EMPLOYEE, $VOL1.PERSNL.EMPLOYEE;
>> COMMIT WORK;
>> CREATE VIEW $VOL1.PERSNL.EMPLIST
+> AS SELECT
+> EMPNUM, FIRST_NAME, LAST_NAME, DEPTNUM, JOBCODE
+> FROM $VOL1.PERSNL.EMPLOYEE
+> FOR PROTECTION
+> CATALOG $VOL1.PERSNL;

Moving Views
Views do not maintain any physical data to be moved, but they do maintain physical file
labels. Typically, protection views are implicitly moved when the underlying table is
moved. Dependencies between a protection view and the underlying table are
enforced by SQL/MP. Shorthand views can be moved with normal BACKUP and
RESTORE procedures.

The DUP utility enables you to implicitly move both protection and shorthand views
when you move the underlying table. You can restrict whether a view is duplicated by
using the VIEWS EXPLICIT option. If you explicitly name a view in the file set list and
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-21

Moving a Database Moving Indexes
specify the VIEWS EXPLICIT option, the view is moved. If the file set list does not
include the view but you do specify VIEWS EXPLICIT, the view is not moved
automatically. You can specify not to automatically duplicate views with the underlying
table by including the VIEWS OFF option.

The BACKUP and RESTORE utilities always move protection views when moving the
underlying table. Shorthand views are not automatically moved unless they are
explicitly named in the file set list. No options apply to BACKUP and RESTORE to
restrict the automatic move of protection views with the underlying table.

In cases where you need to move a large number of views, it will be easier for you to
create the views on the target instead of using the BACKUP and RESTORE utilities to
move them.

Invalid Views
The possibility that a shorthand view definition might refer to tables or views that have
not yet been moved to the new location means that the view definition might be
created but marked invalid. After all the objects have been moved, the utilities attempt
to make the view valid. If the utility does not complete for any reason or if you specified
an invalid mapping scheme, a view might be left in an invalid state. If a view is invalid
after a move operation, you must drop the view and re-create it. For more information
about invalidity, see Program Validity on page 10-1.

If you want to move a view to a new subvolume on the same volume or rename a view,
use the ALTER VIEW statement with the RENAME option. This approach alters the
directory entry and all associated catalog references to the view.

Shorthand views and protection views contain no physical data; therefore, there is an
easy way to move the view: re-create the view definition at the new location,
registering the view in a catalog, then drop the view definition at the old location.

Example
This example moves a view by re-creating the view in a new location and then
dropping the old view:

>> CREATE VIEW new-view ...;
>> DROP VIEW old-view;

Moving Indexes
An index moves with the underlying table. The DUP utility and the BACKUP/RESTORE
utilities enable you to move the underlying table and indexes to a new location by using
the MAP NAMES option. You can move an index on the same volume with the ALTER
INDEX RENAME statement. Furthermore, you can move an index to another volume
by re-creating the index on the target volume with the CREATE INDEX statement and
then dropping the index from the source volume with the DROP statement.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-22

Moving a Database Moving Collations
The DUP utility enables you to either implicitly move all indexes with the underlying
table or to turn the implicit index duplication off. If you specify INDEXES OFF, no
indexes are moved with the underlying table. DUP implicitly moves indexes with the
underlying table by default or when you specify the INDEXES IMPLICIT option,
regardless of whether the indexes are named in the file set list.

The BACKUP and RESTORE utilities enable you to either implicitly move all indexes
with the underlying table or to move only the indexes explicitly named in the source
file-set list. If you explicitly name the index in the file set list and include the INDEXES
EXPLICIT option, the index is moved. If you do not include the index in the file set list
but include the INDEXES EXPLICIT option, the index is not moved. BACKUP and
RESTORE implicitly move indexes with the underlying table by default or when you
specify the INDEXES IMPLICIT option, regardless of whether they are named in the
file set list.

If you want to move an index to a new subvolume on the same volume or to rename
the index, you can use the ALTER INDEX statement with the RENAME option. This
strategy does not actually move the data, but alters the directory entry and all
associated catalog references to the index.

If you want to move an index from one location to another without moving the
underlying table, re-create the index in the new location, registering it in a catalog, and
then drop the old index.

This example moves an index by re-creating the index in a new location and then
dropping the old index:

>> CREATE INDEX new-index ...;
>> DROP INDEX old-index;

You can also move all or part of a partition of an index. For more information, see
Moving Partitions on page 9-23.

Moving Collations
If you move a collation, any dependent objects that refer to the original collation do not
refer to the moved collation. You can move a collation by copying it with the SQLCI
DUP utility or the Guardian BACKUP and RESTORE utilities. If you want dependent
objects to refer to the new collation, you must drop and re-create the dependent
objects, with references to the moved collation.

Moving Partitions
To move, split, merge, or redefine row boundaries of partitions of tables and indexes,
use the PARTONLY MOVE option of the ALTER TABLE or ALTER INDEX statement.
To minimize interruptions to data availability during the operation, use the WITH
SHARED ACCESS option.

For more information, see Splitting, Moving, and Merging Partitions on page 7-20 and
the descriptions of the ALTER TABLE and ALTER INDEX statements in the SQL/MP
Reference Manual.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-23

Moving a Database Moving a Database to a Different Node or Different
Volumes
Moving a Database to a Different Node or
Different Volumes

Moving a database involves moving a set of SQL objects from one environment to
another. This move might be of database objects from one group to another group or of
an entire database from one node (system) to another node.

This discussion examines a scenario where you want to move a complete grouping of
SQL objects defined in one or more catalogs. Suppose that you also want the
database to retain the same consistent state in the new location as it has in the old
location.

Choosing a Method
You might choose the DUP method or the BACKUP/RESTORE method of moving
objects. Your choice depends on the location of the two environments and the available
media for transfer.

You might choose the BACKUP/RESTORE method in these cases:

• The target volumes do not have enough space to maintain two copies of the
objects at the same time. DUP requires both objects to be online simultaneously
until the operation is complete.

• The source and target locations are not physically connected.

• You want to maintain a backup copy of the database on tape media.

• The database objects might need to be restored multiple times; for example, the
database environments are released or moved to a group to do testing or
documentation. The tape method gives you an archive copy so you can restore the
database many times to the same consistent state.

If you have SQL programs stored in OSS files in your database, use OSS utilities to
move these programs separately and then recompile them on the new node. For more
information about OSS utilities, see the Open System Services Shell and Utilities
Reference Manual.

Moving databases can be very complicated if the database files and catalog layout is
intricate. You must also have the proper read authority to the source objects and
catalogs, and you must have write authority to the target catalogs.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-24

Moving a Database Steps for Moving a Database
Steps for Moving a Database
To move a database, follow these steps, which are demonstrated in Example 9-1 on
page 9-26:

1. Determine the name of the SQL catalogs involved in this move by querying the
CATALOGS table.

2. Determine the names of the SQL objects involved in this move by querying the
catalogs determined in Step 1.

3. Determine the dependencies with the DISPLAY USE OF command or with catalog
queries. It is important that you consider the interdependencies of the database for
the move.

4. If you need a consistent copy of the database, you should make sure the SQL
objects are not in use.

5. Perform the DUP or BACKUP/RESTORE command.

6. Verify the status of the database with the VERIFY utility or with catalog queries.

7. SQL compile the programs (by using SQLCOMP for SQL programs that run in the
Guardian environment or c89 for SQL programs that run in the OSS environment).

8. Make new TMF online dumps of all restored catalogs and audited objects.

Example of Moving a Database
The sample database released with the software is the database used in the example
of moving a database shown in Example 9-1 on page 9-26. This example shows
moving the database from volume $DATA to $DATA1 by using the DUP utility. The
example also shows the necessary steps and information required for moving a
database. In the example, descriptions of the steps for moving the database appear in
boldface text.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-25

Moving a Database Example of Moving a Database
Example 9-1. Example of Moving the Sample Database (page 1 of 5)

1. Determine the name of the SQL catalogs involved in this move by querying
 the CATALOGS table. You should always log the commands and information
 returned in the move operations.

>> LOG log-file CLEAR;
>> SELECT CATALOGNAME FROM $SYSTEM.SQL CATALOGS;

CATALOGNAME

\SYS1.$DATA.INVENT
\SYS1.$DATA.PERSNL
\SYS1.$DATA.SALES

2. Determine the names of the SQL objects involved in this move. The TABLES
 catalog table can be queried to obtain a list of tables. In the case of
 the sample database, the TABLECODE for the application tables is 0. This
 table code might not always be applicable.

>> SELECT TABLENAME FROM INVENT.TABLES
+> WHERE TABLECODE = 0;
TABLENAME

\SYS1.$DATA.INVENT.ERRORS
\SYS1.$DATA.INVENT.PARTLOC
\SYS1.$DATA.INVENT.PARTSUPP
\SYS1.$DATA.INVENT.SUPPLIER
\SYS1.$DATA.INVENT.VIEW207

--- 5 row(s) selected.

>> SELECT TABLENAME FROM PERSNL.TABLES
+> WHERE TABLECODE = 0;

TABLENAME

\SYS1.$DATA.PERSNL.DEPT
\SYS1.$DATA.PERSNL.EMPLIST
\SYS1.$DATA.PERSNL.EMPLOYEE
\SYS1.$DATA.PERSNL.JOB
\SYS1.$DATA.PERSNL.MGRLIST

--- 5 row(s) selected.
>> SELECT TABLENAME FROM SALES.TABLES
+> WHERE TABLECODE = 0;
TABLENAME

\SYS1.$DATA.SALES.CUSTLIST
\SYS1.$DATA.SALES.CUSTOMER
\SYS1.$DATA.SALES.ODETAIL
\SYS1.$DATA.SALES.ORDERS
\SYS1.$DATA.SALES.ORDREP
\SYS1.$DATA.SALES.PARTS

--- 6 row(s) selected.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-26

Moving a Database Example of Moving a Database
3. Determine the dependencies with the DISPLAY USE OF command or with
 catalog queries.
 The layout of the dependencies determines the structure of the correct
 DUP command used in Step 5. For more information about interpreting
 dependencies, see Catalog Mapping Schemes for DUP on page 9-30.

4. If you need a consistent copy of these tables, check that the SQL objects
 are not in use.

5. Perform the DUP or BACKUP/RESTORE command.
 This example uses the DUP command, but you can use either utility. The
 DUP command requires that you create new catalogs before you perform the
 move operation. You might want to create an OBEY command file for the
 following statements and commands.

>>CREATE CATALOG $DATA1.INVENT;
--- SQL operation complete.
>>CREATE CATALOG $DATA1.PERSNL;
--- SQL operation complete.
>>CREATE CATALOG $DATA1.SALES;
--- SQL operation complete.
>>DUP ($DATA.INVENT.*, $DATA.PERSNL.*, $DATA.SALES.*),
+> MAP NAMES ($DATA.INVENT.* TO $DATA1.INVENT.*,
+> $DATA.PERSNL.* TO $DATA1.PERSNL.*,
+> $DATA.SALES.* TO $DATA1.SALES.*),

+> CATALOG ($DATA1.INVENT FOR $DATA1.INVENT.*,
+> $DATA1.PERSNL FOR $DATA1.PERSNL.*,
+> $DATA1.SALES FOR $DATA1.SALES.*),
+>ALLOWERRORS ON, LISTALL;
DUPLICATED TABLE $DATA.INVENT.ERRORS TO $DATA1.INVENT.ERRORS
DUPLICATED TABLE $DATA.INVENT.PARTLOC TO
 $DATA1.INVENT.PARTLOC
DUPLICATED TABLE $DATA.INVENT.PARTSUPP TO
 $DATA1.INVENT.PARTSUPP
 INDEX $DATA.INVENT.XSUPORD TO
 $DATA1.INVENT.XSUPORD
DUPLICATED TABLE $DATA.INVENT.SUPPLIER TO
 $DATA1.INVENT.SUPPLIER
 INDEX $DATA.INVENT.XSUPPNAM TO
 $DATA1.INVENT.XSUPPNAM
DUPLICATED TABLE $DATA.PERSNL.DEPT TO $DATA1.PERSNL.DEPT
 INDEX $DATA.PERSNL.XDEPTMGR TO
 $DATA1.PERSNL.XDEPTMGR
 INDEX $DATA.PERSNL.XDEPTRPT TO
 $DATA1.PERSNL.XDEPTRPT
DUPLICATED TABLE $DATA.PERSNL.EMPLOYEE TO
 $DATA1.PERSNL.EMPLOYEE

Example 9-1. Example of Moving the Sample Database (page 2 of 5)
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-27

Moving a Database Example of Moving a Database
 PVIEW $DATA.PERSNL.EMPLIST TO
 $DATA1.PERSNL.EMPLIST
 INDEX $DATA.PERSNL.XEMPNAME TO
 $DATA1.PERSNL.XEMPNAME
 INDEX $DATA.PERSNL.XEMPDEPT TO
 $DATA1.PERSNL.XEMPDEPT
DUPLICATED TABLE $DATA.PERSNL.JOB TO $DATA1.PERSNL.JOB
DUPLICATED TABLE $DATA.SALES.CUSTOMER TO
 $DATA1.SALES.CUSTOMER
 PVIEW $DATA.SALES.CUSTLIST TO
 $DATA1.SALES.CUSTLIST
 INDEX $DATA.SALES.XCUSTNAM TO
 $DATA1.SALES.XCUSTNAM
DUPLICATED TABLE $DATA.SALES.ODETAIL TO $DATA1.SALES.ODETAIL
DUPLICATED TABLE $DATA.SALES.ORDERS TO $DATA1.SALES.ORDERS
 INDEX $DATA.SALES.XORDREP TO $DATA1.SALES.XORDREP
 INDEX $DATA.SALES.XORDCUS TO $DATA1.SALES.XORDCUS
DUPLICATED TABLE $DATA.SALES.PARTS TO $DATA1.SALES.PARTS
 INDEX $DATA.SALES.XPARTDES TO
 $DATA1.SALES.XPARTDES
 SVIEW $DATA.INVENT.VIEW207 TO
 $DATA1.INVENT.VIEW207
 SVIEW $DATA.PERSNL.MGRLIST TO
 $DATA1.PERSNL.MGRLIST
 SVIEW $DATA.SALES.ORDREP TO $DATA1.SALES.ORDREP
26 OBJECT(S) DUPLICATED
 catalog queries.

>> VERIFY $DATA1.INVENT.*;
 ... <-- omitted miscellaneous tables
--- Verifying $DATA1.INVENT.ERRORS
--- $DATA1.INVENT.ERRORS verified.
--- Verifying $DATA1.INVENT.PARTLOC
--- $DATA1.INVENT.PARTLOC verified.
--- Verifying $DATA1.INVENT.PARTSUPP
--- $DATA1.INVENT.PARTSUPP verified.
--- Verifying $DATA1.INVENT.SUPPLIER
--- $DATA1.INVENT.SUPPLIER verified.
--- Verifying $DATA1.INVENT.VIEW207
--- $DATA1.INVENT.VIEW207 verified.
--- Verifying $DATA1.INVENT.XSUPORD
--- $DATA1.INVENT.XSUPORD verified.
--- Verifying $DATA1.INVENT.XSUPPNAM
--- $DATA1.INVENT.XSUPPNAM verified.
--- SQL operation complete.

Example 9-1. Example of Moving the Sample Database (page 3 of 5)
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-28

Moving a Database Example of Moving a Database
>> VERIFY $DATA1.PERSNL.*;
 ... <-- omitted miscellaneous tables
--- Verifying $DATA1.PERSNL.DEPT
--- $DATA1.PERSNL.DEPT verified.
--- Verifying $DATA1.PERSNL.EMPLIST
--- $DATA1.PERSNL.EMPLIST verified.
--- Verifying $DATA1.PERSNL.EMPLOYEE
--- $DATA1.PERSNL.EMPLOYEE verified.
--- Verifying $DATA1.PERSNL.JOB
--- $DATA1.PERSNL.JOB verified.
--- Verifying $DATA1.PERSNL.MGRLIST
--- $DATA1.PERSNL.MGRLIST verified.
--- Verifying $DATA1.PERSNL.XDEPTMGR
--- $DATA1.PERSNL.XDEPTMGR verified.
--- Verifying $DATA1.PERSNL.XDEPTRPT
--- $DATA1.PERSNL.XDEPTRPT verified.
--- Verifying $DATA1.PERSNL.XEMPDEPT
--- $DATA1.PERSNL.XEMPDEPT verified.
--- Verifying $DATA1.PERSNL.XEMPNAME
--- $DATA1.PERSNL.XEMPNAME verified.
--- SQL operation complete.
>> VERIFY $DATA1.SALES.*;
 ... <-- omitted miscellaneous tables
--- Verifying $DATA1.SALES.CUSTLIST
--- $DATA1.SALES.CUSTLIST verified.
--- Verifying $DATA1.SALES.CUSTOMER
--- $DATA1.SALES.CUSTOMER verified.
--- Verifying $DATA1.SALES.ODETAIL
--- $DATA1.SALES.ODETAIL verified.
--- Verifying $DATA1.SALES.ORDERS
--- $DATA1.SALES.ORDERS verified.
--- Verifying $DATA1.SALES.ORDREP
--- $DATA1.SALES.ORDREP verified.
--- Verifying $DATA1.SALES.PARTS
--- $DATA1.SALES.PARTS verified.
--- Verifying $DATA1.SALES.XCUSTNAM
--- $DATA1.SALES.XCUSTNAM verified.
--- Verifying $DATA1.SALES.XORDCUS
--- $DATA1.SALES.XORDCUS verified.
--- Verifying $DATA1.SALES.XORDREP
--- $DATA1.SALES.XORDREP verified.
--- Verifying $DATA1.SALES.XPARTDES
--- $DATA1.SALES.XPARTDES verified.
--- SQL operation complete.
>> EXIT
End of SQLCI Session

Example 9-1. Example of Moving the Sample Database (page 4 of 5)
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-29

Moving a Database Catalog Mapping Schemes for DUP
Catalog Mapping Schemes for DUP
The structure of the MAP NAMES and CATALOG clauses of the DUP command
depend on the structure of database dependencies. You can use the DISPLAY USE
OF command or queries of catalog tables to determine the dependencies. These
guidelines apply:

• The current location of the objects determines the source file-set list for the DUP
command.

• The source and target locations of objects to be moved determines the MAP
NAMES layout.

• For the DUP command to automatically duplicate all the dependent objects, the
source file-set list must include all tables to be duplicated or all subvolumes that
contain these tables.

The DUP command must specify a valid mapping scheme for each object listed in the
file set list and all the dependencies of the objects listed; these objects will be
automatically duplicated. You must analyze the output of the DISPLAY USE OF utility
to determine whether the mapping scheme will identify a valid source to target
mapping scheme for all objects. An invalid mapping scheme causes errors, invalid
dependent objects, or objects that are not moved.

These examples explain the relationship between the database layout as produced by
the DISPLAY USE OF utility and the layout specified in the DUP command.

7. SQL compile the programs.
 To validate the programs, you should explicitly SQL compile them with the
 DEFINEs pointing to the new location of the tables and views. The
 following commands demonstrate setting the new DEFINEs and compiling a
 set of SQL programs that run in the Guardian environment. The sample
 database programs reside in the SAMPDB subvolume.

SET DEFINE CLASS CATALOG
ADD DEFINE =INVENT , SUBVOL $DATA1.INVENT
SET DEFINE CLASS MAP
ADD DEFINE =PARTS , FILE $DATA1.SALES.PARTS
ADD DEFINE =SUPPLIER, FILE $DATA1.INVENT.SUPPLIER
ADD DEFINE =PARTSUPP, FILE $DATA1.INVENT.PARTSUPP
VOLUME $DATA1.SAMPDB
SQLCOMP /IN OBJ205, OUT $S.#HOLD / CATALOG =INVENT,
 EXPLAIN DEFINES
SQLCOMP /IN OBJ206, OUT $S.#HOLD / CATALOG =INVENT,
 EXPLAIN DEFINES

8. Make new TMF online dumps of all restored audited objects.

Example 9-1. Example of Moving the Sample Database (page 5 of 5)
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-30

Moving a Database Catalog Mapping Schemes for DUP
This DUP command uses a wild-card character for files in the source file-set list to
specify that all objects residing on $VOL1.PERSNL are to be duplicated to a new
volume. All the dependent objects also reside on $VOL1.PERSNL, so the MAP
NAMES specification can use the wild-card character to identify the target location for
all objects. All of the objects in this example are described in the catalog
$VOL2.PERSNL.

>> DUP $VOL1.PERSNL.*,
+> MAP NAMES ($VOL1.PERSNL.* TO $VOL2.PERSNL.*),
+> CATALOG ($VOL2.PERSNL FOR $VOL2.PERSNL.*);

This example is similar to the preceding example except that the objects identified by
the source file-set list $VOL1.PERSNL.* have dependent objects that reside on other
volumes. A mapping scheme must be specified that includes both the objects on
$VOL1.PERSNL and the dependent objects on $VOL3.PERSNL and $VOL5.PERSNL.

>> DUP $VOL1.PERSNL.*,
+> MAP NAMES ($VOL1.PERSNL.* TO $VOL2.PERSNL.*,
+> $VOL3.PERSNL.* TO $VOL4.PERSNL.*,
+> $VOL5.PERSNL.* TO $VOL6.PERSNL.*),
+> CATALOG ($VOL2.PERSNL);

This example shows a DUP command in which the source file-set list specifies a
qualified file-set list with the FROM CATALOG specification. All objects described in the
catalog $VOL1.PERSNL are to be duplicated to a new volume and described in a new
catalog on $VOL2. The source objects could reside anywhere on the node. This DUP
command must include a detailed MAP NAMES specification that identifies each
source object and its target location.

>> DUP (*.*.* FROM CATALOG $VOL1.PERSNL),
+> MAP NAMES ($VOL1.PERSNL.EMPLOYEE TO $VOL2.PERSNL.EMPLOYEE,
+> $VOL1.PERSNL.XEMPNAME TO $VOL2.PERSNL.XEMPNAME,
+> $VOL1.SALES.XEMPSLM TO $VOL2.SALES.XEMPSLM,
+> $VOL2.SALES.ORDREP TO $VOL4.SALES.ORDREP),
+> CATALOG ($VOL2.PERSNL FOR $VOL2.PERSNL.EMPLOYEE,
+> $VOL2.PERSNL FOR $VOL2.PERSNL.XEMPNAME,
+> $VOL2.PERSNL FOR $VOL2.SALES.XEMPSLM,
+> $VOL2.PERSNL FOR $VOL4.SALES.ORDREP);

The DUP command must specify a catalog for each object. If all objects in a
subvolume are described in one catalog, the command can use a simple file-set list for
each CATALOG specification. If objects residing in the same subvolume are described
in different catalogs, the command must use a CATALOG specification to identify a
catalog for each object. The target catalogs must exist when the DUP command
executes.

This example shows a DUP command in which the CATALOG specification is mapped
to a simple file-set list. All objects residing on $VOL2.PERSNL are to be described in
the same catalog.

>> DUP $VOL1.PERSNL.*,
+> MAP NAMES ($VOL1.PERSNL.* TO $VOL2.PERSNL.*),
+> CATALOG ($VOL2.PERSNL FOR $VOL2.PERSNL.*);
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-31

Moving a Database Renaming or Renumbering a Node
This example shows a DUP command in which the CATALOG specification identifies
individual objects. The objects residing on $VOL2.PERSNL are to be described in
several catalogs.

>> DUP $VOL1.PERSNL.*,
+> MAP NAMES ($VOL1.PERSNL.* TO $VOL2.PERSNL.*),
+> CATALOG ($VOL2.PERSNL FOR $VOL2.PERSNL.EMPLOYEE,
+> $VOL2.PERSNL FOR $VOL2.PERSNL.XEMPNAME,
+> $VOL2.SALES FOR $VOL2.PERSNL.ORDREP);

Renaming or Renumbering a Node
Choose your node name and number carefully to avoid the need to change them in the
future. The node name is expanded in the catalog entries, and the node number is
entered in the file labels throughout the database. SQL/MP relies on the file names and
node numbers of SQL objects. If you rename or renumber a node without changing the
file labels, SQL generates an error the next time one of the SQL objects on that node is
used or referenced.

A change to a node name or number in a distributed environment requires one of these
procedures:

• Backing up, purging, and restoring these SQL objects:

° All SQL noncatalog objects on the affected node

° All SQL objects that have a partition on the affected node

° All SQL objects that refer to an object on the affected node, such as dependent
objects (views, indexes, constraints)

• Using the MODIFY DICTIONARY utility to change the node name or node number
or to register a user catalog in the local system catalog. Before using the MODIFY
DICTIONARY utility, see the Nomadic Disk Subsystem User’s Guide for a detailed
description of the process, including coordination with TMF operations. The
general steps are:

° Backing up these SQL objects:

° All SQL non-catalog objects on the affected node

° All SQL objects that have a partition on the affected node

° All SQL objects that refer to an object on the affected node, such as
dependent objects (views, indexes, constraints)

Note. To verify that the file labels of SQL objects contain the correct internal file names, you
must back up and purge all SQL objects from a node before the node is renumbered and
then restore the objects after the renumbering operation. Alternately, use the MODIFY
DICTIONARY utility, described next.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-32

Moving a Database Backing Up and Purging SQL Objects
° Using the MODIFY DICTIONARY utility to make the necessary changes, as
follows:

° Use the MODIFY DICTIONARY CATALOG command to change node
names in catalogs on the local node.

° Use the MODIFY DICTIONARY LABEL command to change node
numbers in file labels of SQL objects and SQL object programs on the
local node.

° Use the MODIFY DICTIONARY REGISTER command to register a user-
defined catalog in the local system catalog.

• Moving all SQL objects and all partitions of SQL objects from the affected node to
another node

The time needed to restore an SQL/MP database depends on the size of the database
and could be substantial. You can reduce the time by removing all unwanted SQL
objects before you back up the database.

Backing Up and Purging SQL Objects
Before renaming or renumbering a node, follow these steps to back up and purge SQL
objects. Each step is explained later in detail.

1. Find all the objects on the local node and on remote nodes that need to be backed
up.

2. Back up the SQL programs by using the appropriate utility depending on whether
the program is stored in a Guardian or OSS file.

3. Back up all other SQL objects except catalogs by using the BACKUP utility.

4. Create an OBEY command file that will re-create the catalogs with the same
ownership and security as the original catalogs and catalog tables.

5. Purge the SQL objects and programs.

6. Drop all user catalogs.

7. Back up and drop the system catalog, removing SQL/MP from the node.

8. Check for and purge any detached SQL objects (objects not registered in a
catalog).

Finding Objects to Be Backed Up (Step 1)
The SQL/MP system catalog contains the names of all catalogs on the node, in the
CATALOGNAME column of the CATALOGS table. Use the SQLCI FILEINFO
command to find the volume name of the system catalog:

>> FILEINFO $*.SQL.CATALOGS;
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-33

Moving a Database Backing Up and Purging SQL Objects
Then, use the SELECT statement to list the catalog names:

>> LOG log-file CLEAR;
>> SELECT CATALOGNAME FROM $volume.SQL.CATALOGS;

In the example, log-file is a device, process, or disk file, and $volume is the
volume on which the system catalog resides.

To find all local and remote objects that need to be backed up and the catalog names
of dependent objects, query the USAGES table in each catalog:

>> SELECT * FROM catalog-name.USAGES;

All user-defined objects listed in the USAGES tables of the catalogs on the affected
node need to be backed up and purged before the renaming or renumbering operation.
For example, if you have an index on a node you want to renumber, you must back up
the underlying table even if the table does not have a single partition on the node.

Do not attempt to back up and restore catalog tables and indexes; those objects are
re-created when the catalogs are re-created.

Backing Up SQL Programs (Step 2)
To back up SQL programs stored in Guardian files on your node, use the Guardian
BACKUP utility. Back up all the programs registered in each catalog by using the
FROM CATALOG option to back up all programs in a catalog onto tape.

To back up an SQL program stored in an OSS file, use the appropriate OSS utility.

Backing up SQL programs separately from SQL objects is recommended. You can
issue BACKUP commands at a TACL prompt, but it is probably more efficient to do the
BACKUP operation by using an OBEY command file.

This command backs up all SQL programs registered in the specified catalog:

53> BACKUP $TAPE1, *.*.*
 FROM CATALOG old-catalog-name WHERE SQLPROGRAM,
 ARCHIVEFORMAT, AUDITED, OPEN, LISTALL

Use the AUDITED option for all objects, including nonaudited ones, because the file
labels for the objects are audited.

Backing Up Other SQL Objects (Step 3)
This command backs up all SQL objects other than programs registered in the
specified catalog:

54> BACKUP $TAPE2, *.*.*
 FROM CATALOG old-catalog-name WHERE NOT SQLPROGRAM,
 ARCHIVEFORMAT, AUDITED, OPEN, LISTALL

Note. Do not back up user catalogs, because RESTORE cannot restore them as user
catalogs. Use an OBEY command file instead to re-create the catalogs and the catalog
security and ownership.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-34

Moving a Database Backing Up and Purging SQL Objects
Creating an OBEY Command File to Re-Create the Catalogs
(Step 4)
Create an OBEY command file containing SQL statements that will re-create your
catalogs. The statements must specify the same security and the same owners for
each catalog and for each catalog table that can be individually secured.

The catalog security is the security of the catalog tables, except for the USAGES,
TRANSIDS, and PROGRAMS tables, which can be secured individually. In the system
catalog, the CATALOGS table can also be secured individually.

To find out the security and owner of your catalog tables, query the catalog TABLES
table:

>> LOG log-file CLEAR;
>> SELECT TABLENAME, SECURITYVECTOR, GROUPID, USERID
+> FROM catalog-name.TABLES
+> WHERE TABLENAME = "\system.$volume.catalog-name.TABLES";

To find out the security and owner of the USAGES, TRANSIDS, and PROGRAMS
tables, specify those tables in a query:

>> SELECT TABLENAME, SECURITYVECTOR, GROUPID, USERID
+> FROM catalog-name.TABLES
+> WHERE TABLENAME = "\system.$volume.catalog-name.USAGES"
+> OR TABLENAME = "\system.$volume.catalog-name.TRANSIDS"
+> OR TABLENAME = "\system.$volume.catalog-name.PROGRAMS";

The OBEY command file needs to contain these statements:

• A CREATE CATALOG statement for each catalog on the node. To make sure the
catalog is re-created with the same security, use the SECURE option to specify the
catalog security:

>> CREATE CATALOG $volume.subvolume SECURE "security-string";

• An ALTER TABLE statement for any table whose security or owner is different from
the catalog security or owner:

>> ALTER TABLE $volume.subvolume.PROGRAMS
+> SECURE "security-string"
+> OWNER "group-num, user-num" ;

Purging SQL Objects and Programs (Step 5)
To purge all SQL objects and programs, do these:

1. Log on as the super ID to avoid security restrictions.

2. Remove all SQL objects from the node except the system catalog, the CATALOGS
table, and the SQLCI2 program you are using. From SQLCI, enter this command
for each catalog except the system catalog:

>> PURGE *.*.* FROM CATALOG catalog-name !,
+> ALLOWERRORS ON;
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-35

Moving a Database Backing Up and Purging SQL Objects
Dropping User Catalogs (Step 6)
To drop all catalogs except the system catalog from the node, enter this statement for
each catalog while you are logged on as the super ID:

>> DROP CATALOG catalog-name;

If you get an error while attempting to drop a catalog, use the SQLCI CLEANUP utility,
as described later under Purging Detached SQL Objects (Step 8).

Backing Up and Dropping the System Catalog (Step 7)
Before dropping the system catalog, back up any SQL objects it contains and save a
copy of the SQLCI2 program to be recompiled on the renamed or renumbered node by
following these steps:

1. If your system catalog contains SQL objects, back up the objects you want to save,
or move the objects to another catalog. You can use this BACKUP command to
save the objects in the system catalog; enter the command at the command
interpreter prompt:

20> BACKUP *.*.* FROM CATALOG sys-catalog, AUDITED,
 OPEN, LISTALL

In the BACKUP command, sys-catalog is the name of the volume and
subvolume on which your system catalog resides.

2. Use the SQLCI DUP command to save the SQLCI2 program in ZZSQLCI2:

>> DUP SQLCI2, ZZSQLCI2, SAVEALL;

3. Remove the system catalog, including the CATALOGS table and the SQLCI2
program:

>> EXIT
21> SQLCI
>> DROP SYSTEM CATALOG sys-catalog;

You cannot drop the system catalog while SQLCI2 is running, as it normally is
during an SQLCI session in which you have entered other commands. As the
example shows, you probably need to end the current SQLCI session and start a
new one before entering the DROP SYSTEM CATALOG command. Alternatively,
you can exit from SQLCI and enter the command at the command interpreter
prompt:

>> EXIT
21> SQLCI DROP SYSTEM CATALOG sys-catalog

Be sure to drop all the user catalogs before attempting to drop the system catalog.
You cannot drop the system catalog until all entries for user catalogs are deleted
from the CATALOGS table.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-36

Moving a Database Renaming or Renumbering Your System
Purging Detached SQL Objects (Step 8)
Run the Guardian DSAP utility with the SQL option to determine if your node has
detached SQL objects:

22> DSAP $volume, SQL, DETAIL

Then use the SQLCI CLEANUP utility to purge any detached objects:

>> CLEANUP $volume.subvolume.object ! ;

For a description of the CLEANUP utility, see the SQL/MP Reference Manual.

Renaming or Renumbering Your System
Use the SYSGEN utility to rename or renumber your system.

Reinstalling SQL/MP on a Node
Make sure that the TMF subsystem has been brought back up and the appropriate
volumes have been enabled. Then re-create the system catalog and initialize SQL/MP
by following the instructions in Installing SQL/MP on page 2-2. The two steps are listed
briefly here:

1. Create the system catalog:

>> CREATE SYSTEM CATALOG catalog-name;

2. Initialize SQL/MP:

>> INITIALIZE SQL;

Restoring a SQL/MP Database on a Node
1. Re-create the SQL catalogs with the same security and ownership for the catalogs

and catalog tables using the SQLCI CREATE utility.

2. Use one of these:

• Use TMF to recover all audited files except SQL catalog files using the
RECOVER utility.

• Restore the SQL objects from the backup tape or disk files using the
RESTORE utility.

3. Restore SQL programs stored as Guardian files from the backup tape or disk files,
optionally with recompilation; for an SQL program stored in an OSS file, use the
appropriate OSS utility.

4. Make TMF online dumps of all restored audited objects.

5. Verify database consistency.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-37

Moving a Database Restoring a SQL/MP Database on a Node
Re-creating the SQL Catalogs (Step 1)
Use the SQLCI OBEY command to run the OBEY command file, created previously,
with the commands to re-create the catalogs with the same security and ownership.

The catalog owner is the user ID executing the CREATE CATALOG statement.
Ownership can later be given to another user ID, if necessary, by using the ALTER
CATALOG statement.

Restoring TMF Audited Files (Step 2)
Use the TMF RECOVER FILES command to recover all audited files except SQL
catalog files. The SQL catalog files were created in Step 1 on page 9-37.

For information about recovering audited files using the TMF RECOVER FILES
command, see the TMF Operations and Recovery Guide.

Restoring SQL Objects (Step 3)
Restoring SQL objects before restoring SQL programs is recommended. You can issue
the RESTORE commands at a TACL prompt, but it is probably more efficient to do the
RESTORE operation by using an OBEY command file.

To restore the SQL objects on a node to a new location, use the RESTORE utility with
the MAP NAMES and CATALOG options (when needed). Issue the RESTORE
command on the node renamed or renumbered.

This command restores objects on a node renamed from \source to \target:

56> RESTORE $TAPE2, *.*.*,
 AUDITED,
 MAP NAMES (\SOURCE.$VOL1.*.* TO \TARGET.$DATA1.*.*)
 CATALOG ($DATA1.SALES FOR $DATA1.SALES.*,
 $DATA1.ADMIN FOR $DATA1.PERSNL.*,
 $DATA2.INVENT FOR $DATA1.INVENT.*)

Restoring SQL Programs (Step 4)
To restore SQL programs stored as Guardian files, specify the tape containing the
backed up programs in a RESTORE command. Use the SQLCOMPILE ON option if
you want these programs recompiled.

58> RESTORE $TAPE1, *.*.*,
 AUDITED
 SQLCOMPILE ON

To restore an SQL program stored in an OSS file, use the appropriate OSS utility. For
more information, see the Open System Services Shell and Utilities Reference Manual.

Note. You may need to create catalogs before recovery, either manually or by specifying the
AUTOCREATE CATALOG option of the RESTORE command.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-38

Moving a Database Restoring a SQL/MP Database on a Node
Making TMF Online Dumps (Step 5)
When you purge SQL objects, the TMF online dumps of the objects are lost. You must
make new online dumps of all audited objects restored, including the catalogs.

For information about making online dumps of SQL objects, see the TMF Operations
and Recovery Guide.

Verifying Database Consistency (Step 6)
Verify database consistency by using the SQLCI VERIFY utility, as explained in Using
VERIFY to Detect Invalid Programs on page 10-4.
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-39

Moving a Database Restoring a SQL/MP Database on a Node
HP NonStop SQL/MP Installation and Management Guide—523353-004
9-40

10
Managing Database Applications

Managing your database includes supporting the operating requirements and access
requirements of your application programs and maintaining valid application programs.
Providing this support and maintenance can include both performance-related and
operational tasks.

Program Validity
Certain DDL statements and utility commands can invalidate a program and mark the
program as invalid in the catalog and program file label. When a program is marked as
invalid, it is subject to automatic recompilation on subsequent executions, depending
on the values of various compile and run time options.

If the file label changes during these DDL operations, the operation completes without
marking the program as invalid. The invalid condition of the program, however, is
detected at run time.

If a DDL operation causes a program to become invalid, SQL notifies operations in
progress by invalidating all opens of the object that changed, causing the next I/O to
fail. In many cases SQL can automatically reopen the object and continue processing.
In some cases, however, the application must retry the request. For cursor operations,
this typically requires a close and reopen of the cursor to reestablish the open. In other
cases, you might need to end abnormally and rerun the current transaction. If you
obtain an open invalidation error, see the associated error message for specific
recovery information.

Operations That Invalidate a Program

• Copying the program file. If you copy a program file by using the FUP DUPLICATE
command, the original file is unaffected, but the new file is invalid. For more
information, see Moving Programs on page 10-39.

• Binding the program file. If you explicitly bind a program file by using the Binder
program, the original file is unaffected, but the resulting target file is invalid.

• Restoring a program file. If you restore a program file (or an underlying table of a
protection or shorthand view used by the program) by using the RESTORE
program without specifying the SQLCOMPILE ON option, the restored program is
invalid.

• Running the Accelerator for the program file. If you run the accelerator to optimize
the object code (TNS/R systems only), the program file becomes invalid.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-1

Managing Database Applications Unexpected Events That Can Invalidate a Program
These changes to SQL objects used by an SQL program file invalidate the program
file:

• Adding a constraint to a table used by the program

• Adding a column or partition to a table used by the program (including an
underlying table of a protection or shorthand view used by the program) unless the
program is compiled with the CHECK INOPERABLE PLANS option and the table
and any associated protection views have the similarity check enabled. (For more
information about similarity checks, see Using Similarity Checks on page 10-15.)

• Adding an index to a table used by the program, or to an underlying table of a
protection or shorthand view used by the program, unless you specify the NO
INVALIDATE option in the CREATE INDEX statement or unless the program is
compiled with the CHECK INOPERABLE PLANS option and the table and any
associated protection views have the similarity check enabled.

• Changing a collation: dropping and then re-creating the collation, renaming a
collation, or changing a DEFINE that points to a collation

• Executing the UPDATE STATISTICS statement unless you specify the
NORECOMPILE option on tables used by the program or unless the program is
compiled with the CHECK INOPERABLE PLANS option and the table and
protection views referenced by the program have the similarity check enabled.

• Dropping or doing a cleanup on a table or view

• Dropping a partition of a table or index unless the program is compiled with the
CHECK INOPERABLE PLANS option and the table referenced by the program has
the similarity check enabled

• Dropping an index or constraint on a table

• Restoring a table, including an underlying table of a protection or shorthand view,
using the RESTORE program

• Changing the PARTITION ARRAY type associated with the base table

To maintain valid programs, you need procedures that explicitly SQL compile affected
programs after these listed operations occur. Otherwise, automatic recompilation
occurs at run time. For more information, see Explicit Compilation on page 10-6 and
Automatic Recompilation on page 10-7.

Unexpected Events That Can Invalidate a Program
Sometimes, object program files are created and appear to be valid but are not. These
events can produce such a situation:

• After an invalidating DDL change if the program’s catalog was available during the
change but the object program file was not available

• When a processor failure or other event destroys the SQL compiler process and its
context after the compiler has produced the object file, has updated the SQL
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-2

Managing Database Applications Operations That Do Not Invalidate a Program
catalog to register the program, and has marked the object file label as SQL-
sensitive and valid, but before the compiler normally terminates

If a compilation terminates abnormally, the TMF subsystem backs out the updates
to the catalog but cannot undo the changes to the object file label because the
label for an SQL object file is always nonaudited. In such a case, a seemingly valid
object file exists on disk, but no entry for this file exists in the PROGRAMS table of
the catalog.

You can sometimes recover from this condition by running SQLCOMP again to
reenter the information in the catalog. If this strategy does not resolve the problem,
use the CLEANUP utility or the GOAWAY utility to remove the object file, and
recompile the program. (For more information about using the CLEANUP and
GOAWAY utilities, see the SQL/MP Reference Manual.)

Operations That Do Not Invalidate a Program
Not all changes to the program or database invalidate a program. These operations do
not invalidate a program:

• Altering the security or owner of the program or SQL objects

• Creating new views on a table

• Altering file attributes, including the AUDIT flag

• Adding or dropping comments on a table or view

• Adding a column or partition if the CHECK INOPERABLE PLANS option is used
and referenced tables and protection views have the similarity check enabled

• Adding an index with the NO INVALIDATE option in the CREATE INDEX statement
or if the CHECK INOPERABLE PLANS option is used and referenced tables and
protection views have the similarity check enabled

• For the source object, duplicating a program or SQL object

• Executing the UPDATE STATISTICS statement with the NORECOMPILE option on
tables used by the program; however, the new statistics might enable the SQL
compiler to determine a better access path for the programs.

Although changing the AUDIT attribute of a table referred to by an SQL statement does
not invalidate the statement, this change does cause automatic SQL recompilation (if it
is specifically allowed) in these cases:

• If a statement performs a DELETE or UPDATE set operation on a nonaudited table
that has a SYNCDEPTH of 1, the SQL executor returns SQL error 8203 and forces
automatic recompilation of the statement.

• If a statement is executed in parallel on a table whose AUDIT attribute has
changed since the last explicit SQL compilation, the SQL executor returns SQL
error 8207 and forces automatic recompilation of the statement.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-3

Managing Database Applications Determining Validity of a Program
Determining Validity of a Program
A program is invalid if any of these are true:

• The VALID flag of the program entry in the PROGRAMS table is not set or is set
to N.

• The VALID flag in the program file label is not set or does not correspond to the
VALID flag in the PROGRAMS entry.

• The value of RECOMPILETIME in the program file label does not correspond to
the RECOMPILETIME recorded in the PROGRAMS catalog table.

• The RECOMPILATION timestamp in the program file label represents a time
earlier than any redefinition timestamp of any SQL object on which the program
depends.

There are several ways to verify and maintain valid programs in your application:

• Use the VERIFY utility through SQLCI to read the PROGRAMS catalog tables and
the program file labels to determine validity.

• Query the PROGRAMS catalog table directly to find programs marked as invalid.

• Monitor SQL compilations and automatic recompilations by using the logging
facility.

Using VERIFY to Detect Invalid Programs
You can use VERIFY to check file labels and catalogs for invalid programs. VERIFY
can produce an output EDIT file that contains a list of the invalid programs. You can
edit the invalid warning message for each invalid program written to an EDIT file to
create an OBEY command file to explicitly SQL compile these programs.

VERIFY can detect only those programs actually marked as invalid in the file labels
and catalogs tables. VERIFY cannot detect all the conditions that could cause
automatic recompilation at run time.

VERIFY does not detect the invalid status of programs in these situations:

• The FORCE option was used.

• A program was explicitly SQL compiled, but the best query execution plan was not
available at compile time.

In the latter case, the valid flag is set to Y, but certain statements in the program are
invalid and must be automatically recompiled at run time.

To maintain valid programs, use VERIFY in combination with the logging facility that
detects all automatic recompilations. This VERIFY example shows the invalid warning
messages. A VERIFY request generates SQLCOMP commands to recompile any
invalid programs. In this example, these commands are written to a cleared EDIT file
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-4

Managing Database Applications Determining Validity of a Program
named COMPFILE. You can edit this file and use it as a command file in an OBEY
command, directing the command interpreter to recompile the programs.

>> VERIFY *.*.* WHERE SQLPROGRAM, SOURCE COMPFILE CLEAR;
...
--- Verifying $VOL1.PPROGS.UEMPLIST
*** WARNING $VOL1.PPROGS.UEMPLIST IS AN INVALID PROGRAM.

--- SQL operation complete.

Querying the PROGRAMS Catalog Table
You can query the catalog tables to verify whether VALID flags are set. You can check
the catalog VALID flags but not the program’s file label. Similar to the VERIFY utility,
these queries might not detect all conditions that can cause programs to be
automatically recompiled.

The PROGRAMS table of the catalog stores information about program validity. You
can query each catalog for invalid programs. If you set up an SQLCI log file, the output
of the query is duplicated in an EDIT file.

This example shows setting a log file and then querying the PROGRAMS table:

>> LOG $SYSTEM.PGMS.INVALID;
>> CATALOG \SYS1.$VOL1.SALES;
>> SELECT * FROM PROGRAMS
+> WHERE VALID = "N" OR
+> AUTOCOMPILE = "Y";

Monitoring Compilations
If you want to be sure that all programs are valid, you should monitor recompilation
with the SQL logging facility. The logging of messages about explicit compilations and
automatic recompilations (described later in this section) is automatically directed to $0
for certain SQL compilation events. Compilations can be initiated by SQLCI commands
(which use dynamic SQL), dynamic SQL statements, explicit SQL compiles, or
automatic SQL recompilation.

You can use the DEFINE =_SQL_CMP_EVENT to redirect the logging to a disk file, or
a terminal, or to disable the logging facility. Logging to $0 is automatic unless you
disable the logging. Exceptionally heavy SQLCI DML activity or compilation activity can
exceed the capacity of $0. For the description of how to set up and use the DEFINE
=_SQL_CMP_EVENT to control the device to which messages are logged, see the
NonStop SQL/MP Reference Manual.

Caution. If a program is marked as invalid in the catalog or is detected as invalid by the
VERIFY utility, you should explicitly SQL compile the program to revalidate the program to
avoid automatic recompilations.

You should not attempt to validate a program file by altering the VALID column in the
PROGRAMS table. Validation information is also stored in the program’s file label, which
cannot be altered with SQL utilities.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-5

Managing Database Applications SQL Compilation and Recompilation
Logging might be especially helpful on a system where automatic recompilations are
not wanted for performance reasons. Examine any program that has a recompilation
logged to determine whether the program needs explicit recompilation. Use VERIFY to
check the program entry in the catalog.

Programs marked invalid in the catalog need explicit SQL compilation. A program or
statement could be logged for recompilation but might not be invalid, such as a
recompilation because of an unavailable node. Programs recompiled at run time but
not otherwise invalid do not need explicit compilation.

SQL Compilation and Recompilation
SQL compilation verifies the use of SQL objects, optimizes access paths to the
database for each SQL statement, and writes the object code for the plan to use the
chosen paths. Successful SQL compilation always generates an executable query
execution plan for each SQL statement in all interfaces, namely explicit SQL
compilation, automatic recompilation, dynamic SQL statements, and SQLCI ad hoc
queries (which are dynamic SQL statements).

The results of a compilation depend on whether the compilation is explicit or automatic
and on the SQL compiler options that are in effect.

Results also depend on statistics. SQL compilation uses statistics in the catalogs to
determine access paths, depending on the availability of the objects. Unavailable
objects, such as an index, affect the path chosen. For more information about
statistics, see Keeping Statistics Current on page 14-7.

This subsection describes features of SQL compilation, including explicit compilation
and automatic recompilation, SQL compiler options that control recompilation, and
query execution plans. For additional information about query execution plans, see the
SQL/MP Query Guide.

Explicit Compilation
Explicit compilation occurs when you run the SQL compiler, specifying a host-language
object program file. Explicit compilation also occurs for SQL programs stored in
Guardian files when you specify the SQLCOMPILE ON option for the RESTORE utility.
The results of successful explicit compilation are:

• Executable object code is generated in the program file for the optimized access
paths.

• The file label of the program file is marked with the SQL SENSITIVE and SQL
VALID flags being true (set on).
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-6

Managing Database Applications Automatic Recompilation
• The program file is registered in the catalog. This operation includes storing a
description of the program in the PROGRAMS catalog table and storing usage
dependencies in the USAGES tables of the catalogs in which objects referred to by
this program are described.

• Explicit compilation produces an object program that can be executed without first
being automatically recompiled. To avoid the overhead of automatic recompilation,
you must ensure that programs are valid as described under Determining Validity
of a Program on page 10-4.

• If similarity checking is enabled by using the CHECK INOPERABLE PLANS option,
certain types of run-time recompilations can be minimized or avoided (described in
the next subsection).

Automatic Recompilation
Automatic recompilation is the SQL recompilation, in memory, of a program or SQL
statement. The recompilation is invoked automatically by the SQL executor at run time.

The RECOMPILE option (described later in this subsection) is required during the
explicit SQL compilation if you want to enable subsequent automatic recompilation for
the program. The extent of recompilation depends on whether the RECOMPILEALL or
RECOMPILEONDEMAND compiler option is used for explicit compilation.

Automatic recompilation can occur in these situations:

• A program file is marked as invalid. The SQL compiler CHECK option (described
under Using Similarity Checks on page 10-15) determines the extent of
recompilation. Similarity checking can avoid or minimize recompilation.

• DEFINEs at run time are different from the values of the DEFINEs in effect at
explicit compilation time. The SQL compiler CHECK option determines the extent
of recompilation.

• An event occurs during execution that changes the definition of an object used by
a program. (The executor determines that the RECOMPILATION timestamp in the
program file label represents a time that is earlier than the redefinition timestamp of
a dependent SQL object.)

• Some objects required for the query execution plan are not available at run time.
The objects could be local or remote tables, views, or indexes.

• RECOMPILEONDEMAND is selected, and an attempt is made to run an invalid
statement.

• The access path used by the plan is not available. If an index is not available, the
executor can recompile the plan to use the primary access path.

• The program was compiled with the FORCE option, and some statements had
errors; the statements with errors are automatically recompiled.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-7

Managing Database Applications Automatic Recompilation
• The AUDIT attribute of a table referred to by an SQL statement is altered. This
does not invalidate the statement, but in these cases altering the AUDIT attribute
can cause automatic recompilation:

° If a statement performs a DELETE or UPDATE set operation on a nonaudited
table with a SYNCDEPTH of 1, the SQL executor returns SQL error 8203 and
forces automatic recompilation of the statement.

° If a statement is executed in parallel on a table whose AUDIT attribute has
changed since the last explicit SQL compilation, the SQL executor returns SQL
error 8207 and forces automatic recompilation of the statement.

The SQL executor detects the condition requiring recompilation and invokes the SQL
compiler. The compiler generates an execution plan based on the available information
and the best available access path.

If a statement cannot be executed again because of another invalid path, a last attempt
is made to compile the statement by using the primary key as the access path. The
SQL executor tries to recompile only two times. If, in these two attempts, the SQL
compiler cannot find an available access path that returns all requested data, the data
is considered unavailable, and an error is returned to the program for the statement.

Subsequent use of the same statement within the same process (SQLCI session) uses
the plan developed by the previous recompilation, so that recompilation does not occur
again.

If an access path becomes unavailable before the execution of an SQL statement
finishes, the SQL executor takes one of these actions:

• If no records were returned during the statement execution, the SQL executor
again attempts recompilation as described in the preceding paragraphs.

• If one or more records were returned during the statement execution, the SQL
executor returns an error indication and terminates.

Automatic recompilation does not occur if an object that was initially unavailable
becomes available while a program is running. If a program was automatically
recompiled because a path in the best query execution plan became unavailable, the
program continues to run with the best available access path until the program is
stopped and restarted.

The results of automatic recompilation are:

• Executable object code for the optimized access paths is generated in the copy of
the program file in the SQL executor’s memory.

• The program is validated only for the duration of the current session. No
compilation changes or validation flags are stored in the program file or in catalogs.

You can reduce compilation time for an application by directing the SQL compiler to
recompile only plans that are actually inoperable, not merely invalid. If you do so, the
SQL compiler uses similarity checks to determine whether certain invalid plans (those
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-8

Managing Database Applications Automatic Recompilation
that are invalid because objects they reference have been changed or redefined) are
actually operable plans.

Performance Considerations
Performance is best if you ensure that programs do not need recompilation at run time.
Some programs can be marked valid and still require automatic recompilation, so plan
to eliminate as many causes of automatic recompilation as possible, as described
under Program Validity on page 10-1. Options are available that govern the extent of
recompilation for an application; these options are discussed in this subsection.

Monitor programs that are automatically recompiled because of unavailable objects so
that you can restart the programs when the object becomes available. If you are
running applications in a Pathway environment, for example, you can stop and restart
the server class to initiate use of the program version with the best access path. For
other programs, stop and restart the programs.

SQL Compiler Options for Recompilation
These compiler options control whether recompilation occurs:

• RECOMPILE specifies that if the program becomes invalid, the system is to
recompile either the whole program or the SQL statements used, depending on the
choice of the RECOMPILEALL or RECOMPILEONDEMAND option. RECOMPILE
sets the AUTOCOMPILE flag in the PROGRAMS table to Y. This option is the
default.

For continuous access to your database or for local autonomy in a distributed
database, use RECOMPILE to ensure:

° Programs run if access paths are available although database changes
occurred since the programs were explicitly compiled.

° You have local autonomy because the system can automatically recompile
programs to determine access paths if access paths through other systems
become unavailable.

• NORECOMPILE specifies that if the program becomes invalid, the system cannot
automatically recompile it. The resulting program file cannot run if the program
becomes invalid or if tables or indexes become unavailable. NORECOMPILE sets
the AUTOCOMPILE flag in the PROGRAMS table to N.

To control recompilations by detecting the occurrence of an invalid program
immediately, use NORECOMPILE. This option ensures that any cause of invalidity
is immediately detected, because an invalid program cannot run. With

Note. An operable plan, while executable, might not be optimal—and that recompilation might
improve performance. For more information, see Using Similarity Checks on page 10-15.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-9

Managing Database Applications Automatic Recompilation
NORECOMPILE, the only way to revalidate the program is to explicitly SQL
compile it again. By using NORECOMPILE, you ensure that:

° All programs use the best query execution plan to enhance performance.

° Alterations to the database, object moves, or errors in the DEFINE setup
cannot inadvertently affect the production environment.

If you specify RECOMPILE, determine the extent of recompilation that is best for your
application. Use the SQL compiler RECOMPILEALL or RECOMPILEONDEMAND
option that causes the least overhead for the recompilations:

• RECOMPILEALL specifies that if the program becomes invalid, the entire program
is automatically recompiled before execution continues. After being automatically
recompiled, the program is executed as any valid program. This option is the
default.

• RECOMPILEONDEMAND specifies that if the program becomes invalid, only the
statements actually executed are automatically recompiled. Recompilation occurs
on the first execution of each invalid statement. This option can save system
resources if the server has a number of unexecuted SQL statements.

PATHMON DEFINEs and SQL Recompilation
Setting DEFINE names in the PATHMON configuration file does not change DEFINEs
that were in effect when a server was SQL compiled.

After a program has been SQL compiled using a specified DEFINE set, the program is
valid only for those objects in that set. Changing the DEFINE set in the PATHMON
configuration file triggers an automatic recompilation at run time if the DEFINE set is
different from that used at compilation time.

If no DEFINEs are set within the configuration file for the server class, the server uses
the DEFINE set that was valid during the last explicit SQL compilation.

While it is always advantageous to run valid SQL programs (programs that do not
recompile at run time), setting the DEFINE set within the configuration ensures that all
programs use the proper DEFINE set, regardless of the last explicit SQL compilation.
The DEFINE set within the PATHMON configuration for the server class and the
DEFINE set used at compilation should be identical.

If an SQL program is explicitly SQL recompiled while the previously generated object
program is running, a ZZBInnnn file is produced. The object program currently in use is
renamed ZZBInnnn, and the newly compiled program becomes the named program.
The PATHMON process continues to use the ZZBInnnn program for the servers that
are presently in run state. New server programs started by the PATHMON process,
however, will use the newly compiled program.

If the object program is a native application (code 700), the currently in use program
file is renamed as ZZNDnnnn instead of ZZBInnnn. Here nnnn denotes a random four
digit number.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-10

Managing Database Applications Automatic Recompilation
Following the explicit recompilation, you can stop and start the server class to ensure
that all running objects use the newly compiled program. These commands illustrate
this action:

= FREEZE SERVER SRV-SDB102
= STOP SERVER SRV-SDB102
= THAW SERVER SRV-SDB102
= START SERVER SRV-SDB102

For more information about DEFINEs see Using DEFINEs on page 10-30.

For information about execution-time name resolution and how it relates to PATHMON
DEFINES, see Deferring Name Resolution on page 10-13.

Explicit Compilation and Query Execution Plans
A query execution plan is an execution method, including the semantics and execution
characteristics, for a compiled SQL statement. The SQL compiler stores the execution
plan in the program file during explicit compilation, and the SQL executor uses the plan
to run the SQL statement at run time.

For queries, the SQL optimizer usually examines as many execution plans as there are
ways to access the data. The optimizer then chooses the plan it considers the most
efficient, based on the number of input-output operations and the use of processor
time. The plans include any indexes used and any sort operations performed to order
the data as requested. The EXPLAIN utility displays the query execution plan chosen
by the optimizer.

The SQL compiler tries to compile each DML statement with the best query execution
plan, which provides the best performance. The compiler can determine the best query
execution plan only when all the required information for the SQL objects referred to in
the statements is available and current.

Necessary information includes:

• The catalogs of the referenced objects. These catalogs contain the description of
the objects. The referenced objects can be local or remote tables or views and
local or remote partitions of tables.

• The statistics on the tables and associated indexes.

Both explicit compilation and automatic recompilation determine query execution plans
for DML statements. The types of query execution plans depend on the type of SQL
compilation.

Explicit SQL compilation requires all the necessary information to be available to
create the best query execution plan. If some of the required information is not
available, the compiler cannot generate a query execution plan for the affected
statements.

If the compilation is otherwise successful in generating an object file, the program is
registered and marked valid in the catalog; the statements for which the best query
execution plan could not be generated are marked invalid on a statement-by-statement
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-11

Managing Database Applications Automatic Recompilation
basis. At run time, these statements are automatically recompiled when the compiler
directives allow this recompilation.

The quality of the query execution plans depends on the accuracy of the statistics used
by the compiler when determining the plan. If the statistics are not current, compilation
can cause a valid program, but the chosen query execution plan could give less than
the best performance. For the best performance for programs, you must ensure that
the statistics represent the current state of the table and indexes with reasonable
accuracy.

If you want to review the chosen query execution plans, you can SQL compile the
program and use the EXPLAIN option. The EXPLAIN utility reports the access paths
for each DML statement and, optionally, the DEFINEs in effect. For additional
information about the SQL compiler EXPLAIN utility, see the SQL/MP Reference
Manual.

Automatic Recompilation and Query Execution Plans
For automatic recompilation of programs or statements or for SQLCI queries or
dynamic SQL queries, the SQL compiler tries to generate the best query execution
plan that provides the best performance. If some of the required information is not
available, the compiler tries to generate the best available query execution plan using
the available objects.

These are points to consider about the best available query execution plan:

• The best available query execution plan is the optimal access plan if all objects are
available. This best query execution plan typically results from automatic
recompilations because of these conditions:

° The program was previously explicitly compiled, but statements were left
uncompiled because objects were not available.

° The program was automatically recompiled because DDL operations on
referenced tables invalidated the program.

• The best available query execution plan generated by automatic recompilation is
typically not the optimal plan when objects required for the previously compiled
best query execution plan are not available. In such a case, the best available
query execution plan can produce suboptimal performance. The plan, however,
ensures access to the data.

For automatic recompilation, the file label of the named or underlying table and the
catalog in which the named object is registered must be available. For a partitioned
table, only the file label of the specified partition must be available.

For statement execution, any partition of the named object can be opened. Other
partitions must be available only if the query requests data from another partition and
the SKIP UNAVAILABLE PARTITION option is not in effect.

For the execution of an INSERT or DELETE statement, all affected partitions of the
table and corresponding partitions of all indexes must be available. For the execution
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-12

Managing Database Applications Deferring Name Resolution
of an UPDATE statement, all affected partitions of the table and only the affected
partitions of indexes that include columns being updated must be available.

Consider this example:

Table X (columns A1, B1, C1, C2, C3, C4) resides on $VOL1
Index A using column A1 and B1 resides on $VOL3
Index B using column A1 and C4 resides on $VOL1

If a query is compiled to use index A as the access path and $VOL3 is down, the query
is recompiled to attempt to get the data by using index B or by using the primary key. If
you attempt to insert a row into table X with values for all the columns, the insert fails if
$VOL3 is unavailable. If you attempt an update for table X, in which columns C1 and
C2 are updated, the update completes even if $VOL3 is unavailable. Index A, which
resides on $VOL3, is not required for the update.

Deferring Name Resolution
Execution-time name resolution is the resolution of the name of an SQL object (table,
view, index, or partition), program, or catalog in an SQL statement, at statement
execution time rather than during explicit SQL compilation or at SQL load time. Thus, a
program can resolve SQL names at statement execution time without using dynamic
SQL statements. You can develop programs that run SQL statements against different
tables than those for which the programs were originally compiled.

SQL/MP resolves SQL names in static SQL statements as described next and as
shown in Figure 10-1 on page 10-14:

• During explicit SQL compilation, SQL/MP resolves the names in SQL statements.

• At SQL load time (which is when the first SQL statement in the program executes),
the SQL executor resolves the SQL names again, if the program is invalid or a
DEFINE specified in an SQL statement has changed since the last explicit SQL
compilation.

• If execution-time name resolution is enabled, the SQL executor resolves names in
an SQL statement when the statement actually executes.

Execution-time name resolution applies to Guardian names and DEFINE names as
follows:

Execution-time name resolution is implemented by an option in the CONTROL QUERY
statement.

Name Description

Guardian file name
Class MAP DEFINE

SQL object (table, view, collation, index, and partition),
or SQL program

Guardian subvolume name
Class CATALOG DEFINE

SQL catalog
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-13

Managing Database Applications CONTROL QUERY BIND NAMES Directive
The sample database described in the SQL/MP Reference Manual includes a sample
program that uses execution-time name resolution. For sample scenarios of use, see
Using DEFINEs on page 10-30.

CONTROL QUERY BIND NAMES Directive
Execution-time name resolution is requested by using the CONTROL QUERY BIND
NAMES directive. This directive is used at the statement level in SQL programs and,
as such, is not accessible at a system management level. Using this option, however,
might be appropriate for your application. For more information about the CONTROL
QUERY BIND NAMES directive, see the SQL/MP programming manual for your host
language.

Avoiding Automatic SQL Recompilations
To prevent unnecessary automatic SQL recompilations of a program or SQL
statement, use the similarity check with execution-time name resolution. You use DDL
statements to enable the similarity check for each table or protection view referenced
in the statement. (SQL implicitly enables the similarity check for other SQL objects.) To
enable the similarity check for an SQL program, compile the program by using the
CHECK INOPERABLE PLANS option. For more information, see Using Similarity
Checks on page 10-15.

Figure 10-1. Name Resolution For SQL Statements

SQL Load Time

Run-Time Environment

Execution-Time Name Resolution

...

VST007.vsd

SQL Statement-1
Execution Time

Execution Plan-1
 name-1,
 name-2,

 ...
 name-n

Execution Plan-2
 name-1,
 name-2,

 ...
 name-n

Execution Plan-n
 name-1,
 name-2,

 ...
 name-n

2 3

SQL
Program

File

Explicit SQL
Compilation

1

SQLCOMP
Process

SQL Statement-2
Execution Time

SQL Statement-n
Execution Time
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-14

Managing Database Applications Using Similarity Checks
Using Similarity Checks
A similarity check is a comparison made by SQL to determine whether two objects (or
the compile-time and execution time version of the same object) are sufficiently similar
that a serial execution plan compiled for one can work as an operable plan for the
other. For example, if a statement refers to a table at run time, which is similar to the
table the statement was compiled against, SQL/MP allows the statement to run without
automatic recompilation.

Similarity checks work by comparing information stored in an execution plan with
information current at recompilation time. Executing the similarity check is faster than
recompiling an execution plan, can potentially avoid a recompilation, and can therefore
reduce the downtime for an SQL program.

The similarity check is done on a per-statement and per-object basis. There are three
aspects of setting up similarity checking:

• Specifying similarity checking at compile-time of a program

• Specifying similarity checking at run time of the program

• Enabling similarity checking for specific tables and collations accessed by the
program; it is explicitly enabled for all other objects except shorthand views

Because SQL/MP must have information about programs, objects, and views before
doing similarity checking, all three actions are necessary.

You can use similarity checking along with execution-time name resolution or to
recover from DDL compilations; in both cases you can avoid automatic recompilations.

This subsection includes this information about similarity checking:

• Using the CHECK option to direct the SQL executor to perform the similarity check
at execution time for recompilations

• Using the COMPILE option to direct the SQL compiler to perform the similarity
check during explicit SQL compilation

• Enabling the similarity check for tables and protection views using DDL statements

• Enabling similarity checking for table and protection views

Using the CHECK Option
The CHECK option determines the behavior of the SQL executor at run time, during an
automatic recompilation, when it executes an invalid SQL statement or a statement
that refers to a DEFINE that has changed since the last explicit SQL compilation.

You can direct the SQL executor to use the similarity check to determine if a
statement’s execution plan is operable and can run without automatic recompilation.
The SQL executor then recompiles only the SQL statements that fail the similarity
check; it executes other SQL statements using their existing plans.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-15

Managing Database Applications Using the CHECK Option
The CHECK option has three forms:

• INVALID PROGRAM specifies automatic recompilation for all SQL statements in
an invalid program, or a program that refers to changed DEFINEs (if
NORECOMPILE is not specified). This option is the default.

• INVALID PLANS specifies automatic recompilation for an SQL statement if either
of these conditions occur (and NORECOMPILE is not specified):

° The statement is invalid.

° The statement refers to a DEFINE at SQL load time that has changed since
the last explicit SQL compilation.

• INOPERABLE PLANS specifies that the SQL executor should perform the
similarity check for each SQL object in an SQL statement if the similarity check is
enabled for referenced tables and protection views and either of these conditions
occur:

° The statement is invalid.

° The statement refers to a DEFINE at SQL load time that has changed since
the last explicit SQL compilation.

If the similarity check passes, the SQL executor considers the plan to be operable
(although it might not be optimal) and executes the statement without automatically
recompiling it.

If the similarity check fails, the SQL executor considers the plan to be inoperable.
The SQL executor then recompiles (in memory only) the statement that generated
the inoperable plan (if NORECOMPILE is not specified) and executes the
recompiled statement.

Parallel Execution Plans
You cannot use the similarity check for a query that uses parallel execution plans. At
run time, a query that uses parallel execution plans fails the similarity check, and the
SQL statement containing the query must be automatically recompiled before it can
run (if NORECOMPILE is not specified). To use the similarity check in this query, you
must disable parallel plans by using a CONTROL QUERY PARALLEL EXECUTION
OFF directive.

Preventing Program Invalidation Caused by DDL Operations
Certain DDL operations on an SQL object cause a program that refers to the object to
be invalidated. When a program is invalidated, the SQL catalog manager sets the
VALID flag to N in the PROGRAMS catalog table and in the program’s file label (if the
program file is accessible) and deletes the program’s usages entries in the USAGES
table. An invalid program must be recompiled either explicitly or automatically before it
can execute.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-16

Managing Database Applications Using the CHECK Option
These DDL operations do not invalidate a program compiled with the CHECK
INOPERABLE PLANS option if the similarity check is enabled for each referenced
object. The program also retains its entries in the USAGES table. (These operations,
however, do update the redefinition timestamp of each referenced object in the DDL
statement.)

• ALTER TABLE...ADD PARTITION statement

• ALTER TABLE...ADD COLUMN statement (for more information, including
restrictions, see Enabling the Similarity Check for Tables and Protection Views on
page 10-26)

• ALTER TABLE statement to move or split partitions (including a simple move,
one-way split, or two-way split) or change the type of partition array

• ALTER TABLE...DROP PARTITION statement

• ALTER INDEX...DROP PARTITION statement (if the similarity check is enabled for
the base table)

• ALTER INDEX statement to move or split index partitions

• CREATE INDEX statement

• UPDATE STATISTICS...RECOMPILE statement

The ALTER TABLE... RENAME, ALTER INDEX... RENAME, and ALTER INDEX...
ADD PARTITION statements do not invalidate a program whether or not it was
compiled with the CHECK INOPERABLE PLANS option.

Note. These DDL operations always invalidate a program, even if the program is compiled with
the CHECK INOPERABLE PLANS option:

• ADD CONSTRAINT statement

• DROP CONSTRAINT statement

• DROP TABLE statement

• DROP VIEW statement

• ALTER TABLE or ALTER VIEW statement with the SIMILARITY CHECK clause (for more
information, see Enabling the Similarity Check for Tables and Protection Views on
page 10-26)

• DROP INDEX statement if the program contains a plan that refers to the dropped index
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-17

Managing Database Applications Using the CHECK Option
Example: Preventing Recompilations After a DDL Change
To prevent recompilation, enable the similarity check for all referenced tables and
protection views and compile the program with the CHECK INOPERABLE PLANS
option. To do this, follow these steps:

1. Enable the similarity check for each table or protection view specified in the SQL
statements as follows:

• For existing tables, use the ALTER TABLE or ALTER VIEW statement with the
SIMILARITY CHECK ENABLE clause.

• If you are creating a new table or protection view, use the CREATE TABLE or
CREATE VIEW statement with the SIMILARITY CHECK ENABLE clause.

2. Explicitly SQL compile the program with the CHECK INOPERABLE PLANS option
to enable the similarity check.

3. Run the program as usual. These DDL operations do not invalidate the program,
because it was compiled with the CHECK INOPERABLE PLANS option and uses
the similarity check for any referenced tables or protection views:

• ALTER TABLE...ADD PARTITION statement

• ALTER TABLE...ADD COLUMN statement (for more information, including
restrictions, see Enabling the Similarity Check for Tables and Protection Views
on page 10-26)

• ALTER TABLE statement to move or split partitions (including a simple move,
one-way split, or two-way split)

• ALTER TABLE...DROP PARTITION statement

• ALTER INDEX...DROP PARTITION statement

• ALTER INDEX statement to move or split index partitions

• CREATE INDEX statement

• UPDATE STATISTICS...RECOMPILE statement

Also, if a DDL operation does cause a program to be invalidated, the SQL executor
still performs the similarity check. If the similarity check passes for an SQL
statement, the SQL executor executes the statement without recompiling it.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-18

Managing Database Applications Using the CHECK Option
Interaction Between the CHECK Option and Other
SQLCOMP Options
Table 10-1 on page 10-20 describes the actions of the SQL executor when it runs an
SQL program compiled with a CHECK option and the RECOMPILE, NORECOMPILE,
RECOMPILEONDEMAND, or RECOMPILEALL option for this situation.

At SQL load time, the SQL executor detects invalid statements or statements that refer
to a DEFINE that has changed since the last explicit SQL compilation. (SQL load time
occurs when a program executes its first SQL statement.)

HP NonStop SQL/MP Installation and Management Guide—523353-004
10-19

Managing Database Applications Using the CHECK Option
Table 10-1. Behavior of the SQL Executor for an Invalid Statement or a Changed
DEFINE Detected at SQL Load Time (page 1 of 2)

SQLCOMP Options Behavior

CHECK INVALID PROGRAM Option

RECOMPILE RECOMPILEALL The SQL executor recompiles (in
memory) all SQL statements. This
option is the default behavior.

RECOMPILE RECOMPILEONDEMAND The SQL executor recompiles
(in memory) a statement the first time it
is executed using Guardian names and
DEFINE names as follows:

• Uses names at SQL load-time if
execution-time name resolution is
not enabled

• Uses names at statement
execution time if execution-time
name resolution is enabled

NORECOMPILE RECOMPILEALL or
RECOMPILEONDEMAND

The SQL executor returns an error to
the program.

CHECK INVALID PLANS Option

RECOMPILE RECOMPILEALL The SQL executor recompiles (in
memory) only invalid SQL statements
and statements that refer to changed
DEFINEs.

The SQL executor executes other
statements using existing plans.

RECOMPILE RECOMPILEONDEMAND The SQL executor recompiles (in
memory) the statement the first time it
is executed using Guardian names and
DEFINE names as follows:

• Uses names at SQL load time if
execution-time name resolution is
not enabled

• Uses names at statement
execution time if execution-time
name resolution is enabled

The SQL executor executes other
statements using existing plans from
the program file

NORECOMPILE RECOMPILEALL or
RECOMPILEONDEMAND

The SQL executor returns an error to
the program.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-20

Managing Database Applications Using the CHECK Option
SQLCOMP Options Behavior

CHECK INOPERABLE PLANS Option

RECOMPILE RECOMPILEALL The SQL executor performs the
similarity check as follows:

• If the similarity check passes, the
SQL executor executes the
statement using its existing plan
from the program file.

• If the similarity check fails, the SQL
executor recompiles (in memory)
the statement at SQL load time.

 RECOMPILEONDEMAND The SQL executor performs the
similarity check for the statement the
first time it is executed as follows:

• If the similarity check passes, the
SQL executor executes the
statement using existing plans from
the program file.

• If the similarity check fails, the SQL
executor recompiles (in memory)
the statement using Guardian
names and DEFINE names as
follows:

Uses names at SQL load time if
execution-time name resolution is
not enabled

Uses names at statement
execution time if execution-time
name resolution is enabled

NORECOMPILE RECOMPILEALL or
RECOMPILEONDEMAND

The SQL executor performs the
similarity check for the statement as
follows:

• If the similarity check passes, the
SQL executor executes the
statement using plans from the
program file.

• If the similarity check fails, the SQL
executor returns an error to the
program because of the
NORECOMPILE option.

Table 10-1. Behavior of the SQL Executor for an Invalid Statement or a Changed
DEFINE Detected at SQL Load Time (page 2 of 2)
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-21

Managing Database Applications Using the CHECK Option
Table 10-2 describes the behavior of the SQL executor when it encounters an invalid
static or dynamic statement during the execution of an SQL program compiled with a
CHECK option and the RECOMPILE or NORECOMPILE option for this situation. A
statement is invalidated during program execution when a DDL operation takes place
during program execution.

After SQL load time, the SQL executor detects invalid static or dynamic SQL
statements. (The RECOMPILEALL and RECOMPILEONDEMAND options do not
apply to this situation.)

Table 10-2. Behavior of the SQL Executor for an Invalid Statement Detected After
Load Time (page 1 of 2)

 SQLCOMP
Option

Behavior

CHECK INVALID PROGRAM or CHECK INVALID PLANS Option

RECOMPILE The SQL executor recompiles (in memory) the invalid SQL statement
using Guardian names and DEFINE names as follows:

• Uses names at SQL load time if execution-time name resolution is
not enabled

• Uses names at statement execution time if execution-time name
resolution is enabled

NORECOMPILE The behavior depends on the type of statement:

• For static SQL statements, the SQL executor returns an error to
the program and does not recompile the statement because of the
NORECOMPILE option.

• For dynamic SQL statements, the SQL executor recompiles the
statement. The NORECOMPILE option has no effect on dynamic
SQL statements, and invalid dynamic plans are always recompiled.

CHECK INOPERABLE PLANS Option

RECOMPILE For an invalid static SQL statement, the SQL xecutor performs the
similarity check as follows:

• If the similarity check passes, the SQL executor executes the
statement without recompilation.

• If the similarity check fails, the SQL executor recompiles (in
memory) and executes the statement using Guardian names and
DEFINE names as follows:

Uses names at SQL load time if execution-time name resolution is
not enabled

Uses names at statement execution time if execution-time name
resolution is enabled
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-22

Managing Database Applications Using the COMPILE Option
Using the COMPILE Option
The COMPILE option influences the behavior of the SQL compiler. The option
determines which SQL statements are compiled during an explicit SQL compilation.
You can direct the SQL compiler to use the similarity check to determine if a
statement’s execution plan from a previous compilation is operable. The SQL compiler
then recompiles only the statements that fail the similarity check; the other SQL
statements retain their existing plans.

The COMPILE option has three forms:

• COMPILE PROGRAM directs the SQL compiler to explicitly compile all SQL
statements in the program. COMPILE PROGRAM is the default.

If you include the STORE SIMILARITY INFO clause, the SQL compiler stores
similarity information for each SQL statement in the program file.

SQLCOMP
Option Behavior

CHECK INOPERABLE PLANS Option (continued)

RECOMPILE
(continued)

For an invalid dynamic SQL statement, the SQL executor performs the
similarity check as follows:

• If the similarity check passes, the SQL executor executes the
statement without recompilation.

• If the similarity check fails, the SQL executor recompiles (in
memory) and executes the statement using Guardian names and
DEFINE names as follows:

Uses names at prepare time if execution-time name resolution is
not enabled

Uses names at statement execution time if execution-time name
resolution is enabled

NORECOMPILE The SQL executor performs the similarity check for the invalid SQL
statement as follows:

• If the similarity check passes, the SQL executor executes the
statement without recompilation.

• If the similarity check fails, the behavior depends on the type of
statement:

• For a static SQL statement, the SQL executor returns an error to
the program because of the NORECOMPILE option.

• For a dynamic SQL statement, the SQL executor recompiles the
statement because the NORECOMPILE option has no effect on
dynamic SQL statements. Invalid dynamic plans are always
recompiled.

Table 10-2. Behavior of the SQL Executor for an Invalid Statement Detected After
Load Time (page 2 of 2)
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-23

Managing Database Applications Using the COMPILE Option
• COMPILE INVALID PLANS directs the SQL compiler to explicitly compile these
SQL statements:

° Statements that refer to changed DEFINEs.

° Statements with plans that fail the redefinition timestamp check.

° Statements with altered execution plans. An altered execution plan is an invalid
but operable plan that the SQL compiler has updated without recompiling. For
more information, see Altered Execution Plans.

° Uncompiled SQL statements with empty sections. The SQL compiler
generates an empty section if an SQL statement refers to a nonexistent
DEFINE or SQL object.

Other SQL statements retain their existing execution plans.

The COMPILE INVALID PLANS option stores similarity information in the program
file and updates the program’s name map and usages in the USAGES tables.

If the program has not been previously compiled or if the program does not contain
similarity information, the COMPILE INVALID PLANS option directs the SQL
compiler to compile all SQL statements in the program.

• COMPILE INOPERABLE PLANS directs the SQL compiler to explicitly compile
these SQL statements:

° Statements with inoperable plans (plans that fail the similarity check).

° Uncompiled statements with empty sections. The SQL compiler generates an
empty section if an SQL statement refers to a nonexistent DEFINE or SQL
object. (The SQL compiler also generates empty sections for CONTROL
directives and DDL statements.)

Other SQL statements retain their existing execution plans.

The COMPILE INOPERABLE PLANS option stores similarity information in the
program file and updates the program’s name map and usages in the USAGES
tables.

If the program has not been previously compiled or if the program does not contain
similarity information, the COMPILE INOPERABLE PLANS option directs the SQL
compiler to compile all SQL statements in the program.

Altered Execution Plans
If you recompile a program by using the COMPILE INOPERABLE PLANS option, the
SQL compiler performs the similarity check if an SQL object refers to a changed
DEFINE or the timestamp check fails for a referenced object in the execution plan.
If the similarity check passes, the SQL compiler alters the execution plan with this new
information:
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-24

Managing Database Applications Using the COMPILE Option
• Physical name

• Redefinition timestamp. The new timestamp prevents future similarity checks for
the plan until the SQL object changes again.

• Partition node array. SQL uses the partition node array to determine alternate
paths when partitions are unavailable to a plan.

SQL considers an altered execution plan to be invalid but operable and recompiles the
plan as follows:

• During explicit compilation, the SQL compiler recompiles an altered plan if you
specify the COMPILE PROGRAM or COMPILE INVALID PLANS option.

• At run time, the SQL executor automatically recompiles an altered plan if you
specified the CHECK INVALID PROGRAM or CHECK INVALID PLANS option
during the previous explicit SQL compilation.

CURRENTDEFINES and STOREDDEFINES Options
If you recompile a program using the CURRENTDEFINES option (which is the default)
and a statement refers to a DEFINE that does not exist, the SQL compiler recompiles
the statement and generates an empty section, regardless of whether the previous
execution plan was valid.

If you recompile a program by using the STOREDDEFINES option, the SQL compiler
resolves DEFINE names using the values stored in the program’s name map during
the previous explicit compilation. In this case, the current DEFINE values have no
effect on the COMPILE INVALID PLANS and COMPILE INOPERABLE PLANS
options, and the STOREDDEFINES option does not change the name map in the
program file.

Example: Explicitly Recompiling Only Inoperable Plans
If you must explicitly recompile a program, but you want to minimize downtime for the
program, use the COMPILE INOPERABLE PLANS option and the similarity check to
recompile only the statements with inoperable plans that fail the similarity check.

Follow these steps to implement this solution:

1. Enable the similarity check for each table or protection view specified in the SQL
statements as follows:

• For existing tables, use the ALTER TABLE or ALTER VIEW statement with the
SIMILARITY CHECK ENABLE clause.

• If you are creating a new table or protection view, use the CREATE TABLE or
CREATE VIEW statement with the SIMILARITY CHECK ENABLE clause.

2. Explicitly SQL compile the program with the COMPILE INOPERABLE PLANS
option. The SQL compiler compiles only the SQL statements with invalid plans that
fail the similarity check (and any uncompiled statements).
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-25

Managing Database Applications Enabling the Similarity Check for Tables and
Protection Views
If the program has not been previously compiled or does not contain similarity
information, the COMPILE INOPERABLE PLANS option directs the SQL compiler
to compile all SQL statements in the program.

New Indexes

If you add any new indexes, you might decide to explicitly SQL compile the program
with the COMPILE INVALID PLANS option. The SQL compiler then recompiles the
SQL statements that refer to the tables affected by the new indexes. Consequently, the
compiler might generate new and more efficient execution plans that use the new
indexes.

New SQL Compiler Version

If you have installed a new version of the SQL compiler since the last explicit
compilation, you might decide to explicitly SQL compile the program with the COMPILE
PROGRAM STORE SIMILARITY INFO option. The SQL compiler recompiles all SQL
statements and stores similarity information in the program file. Also, the new compiler
might generate more efficient execution plans.

Enabling the Similarity Check for Tables and Protection Views
You must explicitly enable the similarity check for a table or protection view (including
any underlying tables for the view) to use these options. (SQL implicitly enables the
similarity check for other SQL objects.)

• CHECK options: To use the CHECK INOPERABLE PLANS option, the similarity
check must be enabled for any tables or protection views referenced at run time.

• COMPILE options: To use the COMPILE INOPERABLE PLANS option, the
similarity check must be enabled for any tables or protection views referenced
during explicit SQL compilation.

To enable or disable the similarity check for a table or protection view, specify the
SIMILARITY CHECK clause in the CREATE or ALTER TABLE or VIEW statements.
For the complete syntax of these statements, see the NonStop SQL/MP Reference
Manual.

Invalidation of Programs
If you use the ALTER TABLE or ALTER VIEW statement to change the similarity check
attribute, the SQL catalog manager invalidates any programs, as identified in the
USAGES table, that refer to the table or protection view. If the ALTER TABLE or
ALTER VIEW statement sets the similarity check attribute to its current value,
programs are not invalidated.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-26

Managing Database Applications Enabling the Similarity Check for Tables and
Protection Views
Underlying Tables
If you enable the similarity check for a protection view, the operation does not enable
the check for any underlying tables. You must explicitly enable the similarity check for
the underlying table. If you enable the similarity check for an underlying table, the
operation does not enable the check for a protection view defined on the table.

Collations
You do not have to enable the similarity check for a collation, because collations
always have the similarity check enabled. Collations are similar only if they are equal.
SQL uses the CPRL_COMPAREOBJECTS_ procedure to compare the collations.
Consequently, two tables that contain character columns associated with collations are
similar only if the collations are equal.

Similarity Rules for Tables
There are two separate comparison situations that apply to similarity checking:

• Static compilation, with previously compiled access to a table and a current
compilation that accesses a table

• Execution time, with previously compiled access to a table and current access to a
table

For two tables to be similar, the characteristics and attributes of the tables must be the
same except for a specific set of allowable differences, such as:

• Names of the tables

• Contents of the tables (that is, the data in the table)

• Partitioning attributes (number of partitions and partitioning key ranges)

• Number of indexes. RUN-TIME-TABLE must have all indexes used by
COMPILE-TIME-TABLE in the execution plan. RUN-TIME-TABLE can also have
additional indexes that COMPILE-TIME-TABLE does not have.
COMPILE-TIME-TABLE can have indexes that RUN-TIME-TABLE does not have
but only if the execution plan does not use the additional indexes.

• Key tags (or values) for indexes

• Creation timestamp and redefinition timestamp

• AUDIT attribute. If, however, a statement performs a DELETE or UPDATE set
operation on a nonaudited table with a SYNCDEPTH of 1, the SQL executor
returns an error and forces the automatic recompilation of the statement (if
NORECOMPILE is not specified).
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-27

Managing Database Applications Enabling the Similarity Check for Tables and
Protection Views
• Any of these file attributes:

• Statistics on the tables

• Column headings

• Comments on columns, constraints, collations, indexes, or tables

• Catalog where the table is registered

• Help text

• Number of columns. RUN-TIME-TABLE can have more columns than
COMPILE-TIME-TABLE, but the common columns of both tables must have
identical attributes. However, if a statement uses a SELECT list containing an
asterisk (*), RUN-TIME-TABLE must have the same number of columns as
COMPILE-TIME-TABLE. For more information, see the following subsections.

For more information about similarity, see the SQL/MP programming manual for your
host language.

Similarity Rules for Protection Views
The similarity check does not support shorthand views; similarity rules for protection
views are:

• A protection view is never similar to a table or any other object.

• To pass the similarity check, two protection views must follow these criteria:

° Have similar underlying base tables

° Project the same columns from the base tables

° Have the same column names

° Have the same selection expression, which is determined by a binary
comparison of the generated objects for the two selection expressions

ALLOCATE LOCKLENGTH SECURE

AUDITCOMPRESS MAXEXTENTS SERIALWRITES

BUFFERED NOPURGEUNTIL TABLECODE

CLEARONPURGE OWNER VERIFIEDWRITES

EXTENT (primary and secondary)

Note. The similarity check does not apply to parallel execution plans. Tables are not
considered similar if they are specified in a query that uses a parallel execution plan.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-28

Managing Database Applications Planning for TS/MP Requirements
Planning for TS/MP Requirements
Transaction processing applications can access both SQL and Enscribe databases. To
access an SQL database, the servers must use embedded SQL statements coded in
host language programs such as COBOL, C, or Pascal. To access an Enscribe
database, servers use languages, such as COBOL, FORTRAN, C, or Pascal, or TAL
statements, with calls to Enscribe I/O procedures. A single server can access both an
SQL database and an Enscribe database with the appropriate database statement for
each type of table or file access.

To access either an SQL or Enscribe database from a TMF environment, programs can
use logical names with the actual file names specified at compile or run time. To use
logical names for an SQL database, use SET SERVER DEFINE commands coded in
the PATHMON configuration file. To use logical names for Enscribe files, use SET
SERVER DEFINE or SET SERVER ASSIGN commands in the PATHMON
configuration file. Servers can use hard-coded names (table or view names for SQL or
file names for Enscribe) to access either database.

When you are running HP NonStop TS/MP, make sure that the security of the SQL
objects allows the user ID running TS/MP to access the same tables and views that the
servers use.

If you want to log SQL compilations and automatic recompilations for your application
environment, you must add the =_SQL_CMP_EVENT DEFINE mapped to a disk file.
The disk file must be accessible by the user ID under which the applications are
running. Recompilations are automatically logged to $0 unless you either turn logging
off or designate a different device with a DEFINE. For more information on logging, see
Monitoring Compilations on page 10-5.

Planning for Pathmaker Requirements
Three column attributes are particularly useful for applications generated by the
Pathmaker application development tool. These are the HEADING, HELP TEXT, and
UPSHIFT attributes. If these attributes are assigned when the columns are defined, the
Pathmaker tool automatically incorporates their use in the DB requesters.

• The HEADING attribute assigns an alternate heading for the column. If no heading
is assigned, however, the Pathmaker tool uses the column name as the default
heading.

• The HELP TEXT attribute associates help text, which is stored in the COMMENTS
table, with the column. When building an application, the Pathmaker tool retrieves
the help text from COMMENTS and inserts the text into its HELP facility.

• The UPSHIFT attribute signifies that the data will automatically be upshifted before
storage in the column. UPSHIFT is supported for single-byte character data types
only.

For additional information about how the Pathmaker tool uses these column attributes,
see the Pathmaker Reference Manual and the Pathmaker Programming Guide.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-29

Managing Database Applications Using DEFINEs
Using DEFINEs
A DEFINE is a named set of attributes and associated values stored in the process file
segment (PFS) of a running process.

By using logical names, you can run SQLCI commands and host programs using
different sets of files, depending on the DEFINEs in effect at the time. Application code
that uses logical names instead of hard-coded file names can be compiled or executed
to use different physical databases.

You can use a DEFINE name to specify a subvolume, catalog, table, view, collation, or
index in SQL/MP statements and commands and in host application programs.
Typically, you use a DEFINE to establish a one-to-one mapping between a logical
name and a physical name. When combined with execution-time name resolution, you
can use DEFINEs to run a program against a different database or dynamically select
a database at run time.

There are several ways to use DEFINEs with SQL/MP at compile time, from SQLCI,
and from within programs.

Entering DEFINE Commands
To use DEFINEs, preset the DEFINE names and attribute values by entering DEFINE
commands at the command interpreter or SQLCI prompt or by using Guardian DEFINE
procedures in a host language program. When you run an SQL statement or SQLCI
command that includes a DEFINE name, the system substitutes the name of the actual
object for the logical name.

The SQL software uses DEFINEs to override default processing for SQL components.
For information about these DEFINEs, see the SQL/MP Reference Manual.

DEFINE Rules
These rules apply when using DEFINEs in applications and in SQLCI:

• A DEFINE name can contain from 2 to 24 characters; the first character must be
an equal sign (=), and the second must be a letter (for user-defined names). After
the first two characters, the name can contain any combination of alphanumeric
characters, hyphens (-), underscores (_), and circumflexes (^).

Some examples of DEFINE names follow:

=EMPLOYEE
=DEPT_MGR_NAMES
=AR_CATALOG
=MGR_PROTECTION_VIEW

Note. A special class of DEFINE names begins with an equal sign and an underscore (=_).
These names are reserved for HP use only. Do not attempt to create DEFINE names that
begin with these two characters unless specifically directed to do so in NonStop system
documentation.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-30

Managing Database Applications DEFINE Rules
• The DEFMODE option must be set to ON to enable adding DEFINEs. The
DEFMODE setting remains in effect for the duration of the command interpreter or
SQLCI session in which the setting is established.

These are the DEFMODE settings and the commands to set them:

• SQL/MP statements and commands recognize DEFINEs but do not recognize file
names set by the command interpreter ASSIGN command.

General Guidelines
These general guidelines apply to using DEFINEs:

• Using DEFINEs that identify the wrong objects causes errors or ambiguity. In
general, the user cannot determine the effects of using a DEFINE at run time;
therefore, a query or program could access the wrong SQL object if security is not
properly set. Be sure that the DEFINEs in effect identify the objects you want to
use.

• If the DEFMODE option is set to ON when you start an SQLCI session, SQLCI
inherits all the DEFINEs already set for the command interpreter process.

• Putting DEFINE commands in an OBEY command file, by using a text editor, is a
simple way to ensure the consistency of the environment. To set DEFINEs, place
the SET DEFMODE ON command first, and then include an ADD DEFINE or
ALTER DEFINE command for each DEFINE. If the DEFINE set is shared by
multiple users, each user must run the OBEY command file at the command
interpreter prompt.

• After you create a DEFINE, it stays in effect until you change it with the ALTER
DEFINE command, delete it with the DELETE DEFINE command, disable the use
of DEFINEs in the current SQLCI session with the SET DEFMODE OFF
command, or end the session or the process. If you create DEFINEs in an SQLCI
session, they are released when the session ends. If you create the DEFINEs in a
command interpreter session, they remain in effect until you delete or alter them or
until you log off.

SET DEFMODE ON Enables DEFINEs; a new process inherits the DEFINE
set from the initiating process. This setting is the default
value.

SET DEFMODE OFF Disables DEFINEs; a new process inherits only the
=_DEFAULTS DEFINE from the initiating process.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-31

Managing Database Applications Using DEFINEs During Compilation
• In SQLCI, the DELETE DEFINE, ALTER DEFINE, and ADD DEFINE commands
apply only to the DEFINE set for the SQLCI session. For example, in an SQLCI
session, if you alter a DEFINE inherited from the command interpreter process, the
DEFINE is altered only for the SQLCI session. When you return to the command
interpreter prompt after ending the SQLCI session, the original DEFINE is still in
effect.

Using DEFINEs During Compilation
Use DEFINEs to establish various attributes and other values during compilation.
These compiler options control the DEFINE set in effect during the compilation:

• CURRENTDEFINES— selects the set of DEFINEs in effect for logical name
mapping at the time of the last explicit or automatic compilation. This option is the
default.

• STOREDDEFINES— selects the DEFINE name mapping stored with the program
from the last explicit SQL compilation.

The SQL compiler stores the DEFINEs current at explicit compile time in the
program code.

Your choice of compiler option for DEFINEs depends on the situation. If you are
explicitly compiling a program because a table has a new index, you should use
the STOREDDEFINES option. This option ensures that all the original DEFINEs
are used, thereby eliminating the possibility of setting incorrect DEFINEs. You
should not use STOREDDEFINES when compiling a program for the first time,
because the program has no stored DEFINEs.

If you are explicitly compiling a program because a table has been moved, you
should use the CURRENTDEFINES to enable the current set of DEFINEs to
identify the new location of the table.

Using DEFINE Names With Programs
Use DEFINEs to establish various attributes and other values for your programs to
use. These guidelines apply to using DEFINEs:

• To refer to DEFINEs within your programs, you must create the DEFINEs during
your command interpreter session with the DEFMODE option set to ON. The
DEFINE set is inherited by the compilers and programs that are subsequently
started. DEFINEs that are referred to in a program are evaluated, and physical file
names are resolved first, at compile-time.

If your application executes in a Pathway transaction processing environment,
however, you specify DEFINE names for a server class by using the SET SERVER
DEFINE command, as described under Using DEFINEs With PATHMON on
page 10-37.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-32

Managing Database Applications Using DEFINE Names With Programs
• After a program that uses DEFINE names is SQL compiled and registered as a
valid program in a catalog, the program is valid only for the table and views
identified by the DEFINEs at compile time. If a different set of DEFINEs is used at
run time, the program is automatically recompiled with the new DEFINEs if
automatic recompilation is enabled.

If you want the program to be valid for a different table or view, you must SQL
compile the program with the new DEFINEs to revalidate the program with the
objects identified by the new DEFINEs.

• You must know which DEFINEs are required in the run time environment: only
those DEFINEs that refer to a catalog or SQL object are required at run time.
These DEFINEs are optional at SQL compile time. Other DEFINEs used in
programming, such as =COPYLIB (referring to COPY libraries of the source code),
are already resolved by the precompilers and are not part of the run time DEFINE
set.

• The EXPLAIN DEFINES option of the SQL compiler lists the DEFINE set used to
compile the program. You can access this listing in an OBEY command-file format
to use before executing the programs.

• Using DEFINEs simplifies mobility issues for application programs. Using
DEFINEs, however, can create problems if the wrong DEFINE is active at run time.
If the incorrect DEFINE is in effect and identifies a table or view that exists, the
program could write to the wrong table. This error could happen most easily on a
system shared by groups using similar databases when security is not planned
carefully.

Examples
To demonstrate the use of DEFINEs with programs, several examples follow.

The first example uses a DEFINE in an INVOKE statement of a COBOL program. The
logical name =PARTS identifies a table. The DEFINE for =PARTS must be in effect
only during the preprocessing step of the COBOL compilation.

EXEC SQL
 INVOKE =PARTS AS PARTS-REC LEVEL (01,04)
END-EXEC.

This example uses the logical name =PARTS in an INSERT statement. The DEFINE
for =PARTS must be in effect to identify the table when this statement is SQL compiled
and executed.

EXEC SQL
 INSERT INTO =PARTS
 VALUES (:PARTNUM OF PARTS,
 :PARTDESC OF PARTS,
 :PRICE OF PARTS,
 :QTY-AVAILABLE OF PARTS)
END-EXEC.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-33

Managing Database Applications Using DEFINEs From SQLCI
This example uses a logical name to identify a COBOL library. The logical name is
resolved only at preprocess time when the associated information is copied into the
program.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 EXEC SQL
 SOURCE =COPYLIB(DEPT, JOB) END-EXEC.
EXEC SQL END DECLARE SECTION END-EXEC.

Using DEFINEs From SQLCI
These examples illustrate the use of DEFINEs with SQLCI.

These commands first set the DEFMODE option to ON and then create DEFINEs in an
SQLCI session:

>> SET DEFMODE ON;
>> ADD DEFINE =AR_CATALOG, CLASS CATALOG,
+> SUBVOL \SYS1.$VOL.ARCAT;
>> ADD DEFINE =EMPLOYEE, CLASS MAP,
+> FILE \SYS1.$VOL1.PERSNL.EMPS;
>> ADD DEFINE =MGR_PROTECTION_VIEW, CLASS MAP,
+> FILE \SYS1.$VOL1.PERSNL.EMPSP1;
>> ADD DEFINE =PR_CATALOG, LIKE =AR_CATALOG,
+> SUBVOL \SYS1.$VOL.PRCAT;

These commands alter DEFINEs in an SQLCI session:

>> ALTER DEFINE =AR_CATALOG, SUBVOL \SYS1.$NEWVOL.ARCAT;
>> ALTER DEFINE =EMPLOYEE, FILE \SYS1.$NEWVOL.PERSNL.EMPS;

These commands delete DEFINEs in an SQLCI session:

>> DELETE DEFINE =AR_CATALOG;
>> DELETE DEFINE (=EMPLOYEE,=MGR_PROTECTION_VIEW);

These commands alter the =_DEFAULTS DEFINE in an SQLCI session:

>> VOLUME \SYS1.$VOL1.PERSNL;
>> CATALOG \SYS1.$VOL1.PERSNL;

You can also use an ALTER DEFINE command to alter the =_DEFAULTS DEFINE as
shown:

>> ALTER DEFINE =_DEFAULTS, CATALOG \SYS1.$VOL1.SALES;

This example uses DEFINEs in the CREATE TABLE statement to identify the table and
catalog. Suppose that the DEFINEs were previously added as shown in the preceding
examples:
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-34

Managing Database Applications Using DEFINEs to Switch Databases
>> CREATE TABLE =EMPLOYEE
+> (EMP_NUM PIC 9(6) DEFAULT SYSTEM NOT NULL,
+> EMP_NAME PIC X(30) NO DEFAULT NOT NULL,
+> SS_NUMBER PIC X(11) NO DEFAULT NOT NULL,
+> ADDRESS PIC X(30) DEFAULT SYSTEM NOT NULL,
+> CITY PIC X(30) DEFAULT SYSTEM NOT NULL,
+> ST PIC X(2) DEFAULT SYSTEM NOT NULL,
+> ZIP_CODE PIC X(5) DEFAULT SYSTEM NOT NULL,
+> PRIMARY KEY EMP_NUM)
+> CATALOG =PR_CATALOG;
--- SQL operation complete.

Using DEFINEs to Switch Databases
By using the similarity check and DEFINEs, you can run programs against different
databases or dynamically select a database without auto-recompilation.

Running a Program Against Different Databases
This scenario describes a situation where you explicitly SQL compile a program using
a specific database. Several users, each with a different but similar database, want to
run the program. Each user wants to specify a set of DEFINEs that point to the
respective new database.

To allow access to different databases, specify DEFINEs for all tables and protection
views and use the similarity check to avoid automatic recompilation.

Follow these steps to implement this solution:

1. Specify DEFINEs for all tables and protection views used in the SQL statements.
These DEFINEs should point to tables and protection views in the first database.

2. Explicitly SQL compile the program with the CHECK INOPERABLE PLANS option
to enable the similarity check for the program.

Each user should then perform these steps:

1. Enable the similarity check for each table or protection view specified in the SQL
statements as follows:

• For existing tables, use the ALTER TABLE or ALTER VIEW statement with the
SIMILARITY CHECK ENABLE clause.

• If you are creating a new table or protection view, use the CREATE TABLE or
CREATE VIEW statement with the SIMILARITY CHECK ENABLE clause.

2. Run the program with DEFINEs that point to the new database. The SQL executor
uses the similarity check to compare the original tables with the new tables. If the
similarity check passes for an SQL statement, the SQL executor executes the
statement without recompiling it. (The usage information is available only for the
original tables specified during the explicit SQL compilation.)
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-35

Managing Database Applications Using DEFINEs to Switch Databases
Dynamically Selecting Different Databases
This scenario describes a situation where you have several similar SQL/MP databases
and you want a program to dynamically determine which database to access. For
example, your program might select the database depending on the type of
transaction. You do not want to use dynamic SQL statements because they require
extra programming time to write and can degrade your node’s performance during
execution. You could combine all the databases into a single database, but the
management of a large database would be complicated.

To provide dynamic access, specify DEFINEs for all table names and then use
execution-time name resolution and the similarity check.

Follow these steps to implement this solution:

1. Modify the program as follows:

• Specify the CONTROL QUERY BIND NAMES AT EXECUTION directive in the
source file to enable execution-time name resolution for all DML statements.

You might need to specify more than one directive depending on the structure
of your program and the scoping rules for the host language you are using. For
more information, see The SQL/MP Reference Manual.

• Use DEFINEs in all SQL DML statements.

• Add source code that alters the DEFINEs used in each SQL statement to point
to the appropriate database when the SQL statement is executed.

2. Enable the similarity check for each table or protection view specified in the SQL
statements as follows:

• For existing tables, use the ALTER TABLE or ALTER VIEW statement with the
SIMILARITY CHECK ENABLE clause.

• If you are creating a new table or protection view, use the CREATE TABLE or
CREATE VIEW statement with the SIMILARITY CHECK ENABLE clause.

3. Explicitly SQL compile the program with the CHECK INOPERABLE PLANS option
to enable the similarity check for the program.

4. Run the program. The program uses the different DEFINE values to determine the
database to access. The SQL executor resolves the DEFINE names at statement
execution time and executes the similarity check to prevent automatic
recompilation.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-36

Managing Database Applications Using DEFINEs With PATHMON
Using DEFINEs With PATHMON
If your application executes in a Pathway transaction processing environment, you
specify DEFINE names for a server class by using the SET SERVER DEFINE
command. SQL tables and views are referred to by using DEFINE names. When you
specify DEFINEs within the server configuration, you are associating DEFINE names
used by that server class with actual physical files.

You should indicate the maximum number of DEFINEs that will exist across all server
class definitions by entering a SET PATHWAY MAXDEFINES command. The Pathway
transaction processing environment must be cold started to set this attribute. Be sure
to allow an ample number of DEFINEs for your environment. If you do not specify a
value for MAXDEFINES, the default value is 0.

Suppose that you expect a total of 53 DEFINEs for your application. You indicate the
maximum number of DEFINEs by specifying this command in the PATHMON
configuration file:

= SET PATHWAY MAXDEFINES 53

Suppose that a server class, SRV-SDB102, contains SQL statements that refer to
these DEFINE names: =EMP, =DEPT, and =JOB. To associate these DEFINE names
with a physical object in your database, include these commands in your server class
configuration:

= SET SERVER DEFINE =EMP , CLASS MAP, &
= FILE \SYS1.$VOL1.TEST1.EMPLOYEE
= SET SERVER DEFINE =DEPT , CLASS MAP, &
= FILE \SYS1.$VOL1.TEST1.DEPT
= SET SERVER DEFINE =JOB , CLASS MAP, &
= FILE \SYS1.$VOL1.TEST1.JOB
 .
 .
= ADD SERVER SRV-SDB102

When a server process in the server class SRV-SDB102 starts, the specified DEFINE
definitions are included as part of the process environment. The system uses the
information in the DEFINE definitions when the server refers to a DEFINE by name.
For MAP DEFINEs or CATALOG DEFINEs, this approach results in the substitution of
the associated object or catalog name for the DEFINE name in the SQL statement at
run time.

Altering PATHMON DEFINEs
You can change DEFINEs without stopping the PATHMON environment. You must stop
the server class, however, to alter the DEFINEs it uses. To stop the server class, you
must freeze it.

Suppose that during development you must move the referenced objects to a new
volume. You can use the ALTER SERVER commands to replace the existing DEFINEs
with new DEFINEs, as shown:
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-37

Managing Database Applications Manipulating Program Files
= FREEZE SERVER SRV-SDB102
= STOP SERVER SRV-SDB102
= ALTER SRV-SDB102, DEFINE =EMP , CLASS MAP, &
= FILE \SYS1.$VOL2.TEST2.EMPLOYEE
= ALTER SRV-SDB102, DEFINE =DEPT, CLASS MAP, &
= FILE \SYS1.$VOL2.TEST2.DEPT
= ALTER SRV-SDB102, DEFINE =JOB , CLASS MAP, &
= FILE \SYS1.$VOL2.TEST2.JOB
= THAW SERVER SRV-SDB102
= START SERVER SRV-SDB102

You can delete the existing DEFINEs for a server with these commands:

= FREEZE SERVER SRV-SDB102
= STOP SERVER SRV-SDB102
= ALTER SRV-SDB102, DELETE DEFINE =EMP
= ALTER SRV-SDB102, DELETE DEFINE =DEPT
= ALTER SRV-SDB102, DELETE DEFINE =JOB
= THAW SERVER SRV-SDB102
= START SERVER SRV-SDB102

After you alter DEFINEs for a server, automatic recompilation occurs every time the
server is started. For this reason, you might want to explicitly SQL compile the server
after altering DEFINEs.

You do not need to cold start the PATHMON environment when you alter the DEFINE
set for the server classes. To change the MAXDEFINES attribute, however, you must
cold start the Pathway transaction processing environment.

The PATHMON process manages the active set of DEFINEs while TS/MP is running.
DEFINEs in this environment are completely separate from DEFINEs associated with
the command interpreter process or other processes. You can alter DEFINEs outside
of the transaction processing environment without affecting the active set for your
TS/MP applications.

Manipulating Program Files
SQL program files can be manipulated just like other program files:

• SQL programs stored in Guardian files can be objects of the FUP commands
RENAME, PURGE, and SECURE; the TACL commands RENAME and PURGE;
and the system procedures FILE_RENAME_ , FILE_PURGE_ , and SETMODE.

• SQL programs stored in OSS files are manipulated by using OSS utilities such as
rm and mv. For more information about OSS utilities, see the Open System
Services Shell and Utilities Reference Manual.

SQL program files, unlike other SQL objects, can reside on nonaudited volumes.

SQL DDL statements that require all other dependent objects to be available, such as
DROP TABLE, can complete when a dependent program is not available if the
program’s catalog is available. If the program file is available, these DDL operations
invalidate the programs by registering the invalidation in the catalogs and program file
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-38

Managing Database Applications Moving Programs
label. If the program file is not available, the invalidation is registered in the program’s
catalog and detected at run time.

Moving Programs
Moving a program is similar to moving other SQL objects, but somewhat easier
because programs have no dependencies. You can use either FUP DUP or SQLCI
DUP or the BACKUP and RESTORE utilities to move SQL programs stored in
Guardian SQL files. To move SQL programs stored in OSS files, use the appropriate
OSS utility. (For more information about OSS utilities, see the Open System Services
Shell and Utilities Reference Manual.)

Normally, when you move a program the new program is not registered in a target
catalog and authority to write to the catalog is not required for the move operation. The
new file is created with the SQL SENSITIVE flag turned off so that the new program file
is no longer a valid SQL program. If you specified a similarity check during the original
compilation of your program, you do not need to recompile your program. Otherwise,
you must explicitly SQL compile the program files after a move to validate the
programs and register them in a catalog.

Programs are easily moved between databases in these situations:

• Logical names have been used in the programs. Logical names in a program make
program code independent of the location of the database so that the program can
be compiled with a new set of DEFINEs and validated to a new database.

• The program accesses similar objects and can run without recompilation.

These paragraphs describe the use of compiler options that affect recompilation when
moving programs, followed by information about using RESTORE and SQLCI DUP to
move SQL programs stored in Guardian files. For a comparison of moving SQL objects
with the SQLCI DUP utility and with the BACKUP and RESTORE utilities, see Moving
Database Objects on page 9-14.

Caution. If an SQL object has the UNRECLAIMED FREESPACE (F) or INCOMPLETE
SQLDDL OPERATION (D) attribute set, do not attempt to back up, move, or duplicate the
object until the attribute is reset. For more information, see UNRECLAIMED FREESPACE (F)
and INCOMPLETE SQLDDL OPERATION (D) Flags on page 7-24.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-39

Managing Database Applications Moving Programs Without Recompilation
Moving Programs Without Recompilation
These SQL compiler options can be useful in the management of SQL programs:

• The REGISTERONLY option directs the SQL compiler to register a previously SQL
compiled program in a specific catalog without recompiling any SQL statements in
the program. You can use this option to install a program in a catalog after you
have SQL compiled and moved the program. Although the REGISTERONLY
option requires you to run the compiler, this option is more efficient than explicitly
recompiling the entire program.

If the REGISTERONLY ON option is used, the SQL compiler summary listing
specifies that the SQL statements were not compiled and the plans are
unchanged.

• The NOREGISTER option directs the SQL compiler to compile a program without
registering the program in a catalog. You can then move the program by using a
FUP or SQLCI DUP command or the BACKUP and RESTORE programs. After the
move, you can run the program without recompiling or registering it in a catalog.

A program compiled with the NOREGISTER ON option can never be registered in
a catalog. If you try to register a program compiled with the NOREGISTER ON
option by using the REGISTERONLY ON option, the operation fails with an SQL
error. If a program was compiled with the NOREGISTER ON option and you need
to register the program in a catalog, you must explicitly recompile it with the
REGISTERONLY and NOREGISTER options set to OFF (or without these options
altogether, which is the default).

If the NOREGISTER ON option is used, the SQL compiler summary listing
specifies that the program is not registered in a catalog.

The REGISTERONLY and NOREGISTER options operate independently of similarity
checking, but the use of similarity checking with these options makes a move operation
more efficient by minimizing recompilations.

If you install a program with the REGISTERONLY option and the program was not
previously compiled with the CHECK INOPERABLE PLANS option, the SQL executor
forces the automatic recompilation of static SQL statements in the program unless the
program accesses the same tables at run time that it accessed during explicit SQL
compilation. This restriction does not apply to dynamic SQL statements.

Note. The REGISTERONLY and NOREGISTER options are mutually exclusive options.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-40

Managing Database Applications Moving Programs Without Recompilation
Restrictions for the NOREGISTER Option
These static SQL statements, when compiled with the NOREGISTER ON option, must
use execution-time name resolution, or the SQL compilation fails with SQL error 2109:

• DML statements: SELECT, INSERT, UPDATE, DELETE, and DECLARE CURSOR

• LOCK and UNLOCK statements

• GET VERSION and GET CATALOG statements

To prevent automatic SQL recompilation of these statements at SQL load time, specify
the CHECK INOPERABLE PLANS option during explicit compilation (if the SQL names
used in the statements are changed after explicit SQL compilation).

Example: Installing a Program at a New Location Without
Recompilation
The next example describes a scenario where you might develop a program on a
development system and then move the program to a production system. You do not
want new plans to be generated for the production system. You would like to avoid a
required compilation on the production system. The recompilation causes downtime for
the program and degrades the performance for the system.

To avoid recompilation, enable the similarity check for the program and any referenced
tables or protection views. After compiling the program on the development system,
move it to the production system and then install it by using the REGISTERONLY
option. Follow these steps:

1. On the development system, explicitly SQL compile the program using the CHECK
INOPERABLE PLANS option. Specify DEFINEs that point to objects on the
development system. You are not required to enable the similarity check for the
tables or protection views on the development system.

2. Move the program to the production system by using the FUP or SQLCI DUP
command or the BACKUP and RESTORE program.

3. On the production system, enable the similarity check for each table or protection
view specified in the SQL statements as follows:

• For existing tables, use the ALTER TABLE or ALTER VIEW statement with the
SIMILARITY CHECK ENABLE clause.

• If you are creating a new table or protection view, use the CREATE TABLE or
CREATE VIEW statement with the SIMILARITY CHECK ENABLE clause.

4. On the production system, run SQLCOMP with the REGISTERONLY ON option to
register the program in an SQL catalog. Specify a catalog name, if you wish, or use
the default catalog. This operation is much faster than explicitly compiling the
entire program, because it does not generate new execution plans.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-41

Managing Database Applications Using BACKUP and RESTORE
The REGISTERONLY ON option does not generate usages in the USAGES table.
If you require usages on the production system, you must explicitly recompile the
program. If you do recompile the program, specify the COMPILE INOPERABLE
PLANS option to improve performance.

5. Run the program with DEFINEs that point to the objects on the production system.
The SQL executor uses the similarity check to compare the production tables with
the development tables. If the similarity check passes for an SQL statement, the
SQL executor executes the statement without recompiling it.

Example: Moving a Program Without Registering It on the
New System
The next example describes a scenario where you want to compile a program on one
system and then move it to a different system before you run it. You do not require that
the program be registered in the catalog on the second system. To eliminate
recompilation on the new system, use execution-time name resolution for all DML
statements and compile the program with the NOREGISTER ON option before you
move it to the new system.

Follow these steps:

1. Specify the CONTROL QUERY BIND NAMES AT EXECUTION directive in the
program’s source file to enable execution-time name resolution for all DML
statements.

You might need to specify this directive more than once, depending on the
structure of your program and the scoping rules for the host language you are
using. For more information, see Deferring Name Resolution on page 10-13.

2. Explicitly SQL compile the program with the NOREGISTER ON option.

3. Move the program to the other systems by using the FUP or SQLCI DUP
command or the BACKUP and RESTORE programs.

4. Run the program. The NOREGISTER option enables the program to run although
the program is not recompiled on the new system or registered in the catalog.

Using BACKUP and RESTORE
To use the BACKUP and RESTORE programs to move an SQL program file from one
node to another node:

1. On the first node, back up the program.

2. On the second node, restore the program using the SQLCOMPILE ON and
REGISTERONLY ON options. The program is restored and registered on the
second node without being recompiled.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-42

Managing Database Applications Using BACKUP and RESTORE
RESTORE Program and the SQLCOMPILE Option
If you restore a program using the SQLCOMPILE option, the RESTORE program
invokes the recompilation of the program using the SQLCOMP CHECK option
specified during the last explicit SQL compilation.

The SQLCOMPILE ON option of RESTORE can restore a program and automatically
recompile the program. The program is explicitly recompiled with the DEFINEs stored
in the program description, the same effect as specifying STOREDDEFINES in the
SQLCOMP command. You would use the SQLCOMPILE ON option in recovery
operations but not for moving programs from one database to another.

This example uses RESTORE to restore a single SQL program stored in a Guardian
file. The example then uses the SQLCOMPILE ON option to request automatic
recompilation of the program:

RESTORE $TAPE, $VOL1.PERSNL.EMPPROG,
 MAP NAMES ($VOL1.PERSNL.EMPPROG to $VOL1.ADMIN.*),
 SQLCOMPILE ON, LISTALL

RESTORE Program and the REGISTERONLY ON Option
The REGISTERONLY ON option adds a few considerations to the use of RESTORE to
restore programs. Consider an SQL program explicitly compiled with the
REGISTERONLY ON option (the initial compilation) and then backed up by using the
BACKUP program. If you restore this program by using the SQLCOMPILE ON option,
the RESTORE program invokes the SQL recompilation of the program using the
SQLCOMP options specified during the explicit SQL compilation (that is, the explicit
SQL compilation immediately before the compilation using the REGISTERONLY ON
option).

When using the REGISTERONLY option with the RESTORE program, the SQL
program is not recompiled, but is restored and registered in the catalog.

RESTORE Program and the NOREGISTER ON Option
The NOREGISTER ON option causes an SQL program file to appear as an Enscribe
file to the RESTORE program. Therefore, if you restore a program file using the
SQLCOMPILE option, the RESTORE program does not invoke the SQL compiler for
an SQL program file compiled with the NOREGISTER ON option.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-43

Managing Database Applications Using SQLCI DUP
Using SQLCI DUP
This example shows using the SQLCI DUP command to move a single SQL program
stored in a Guardian file. After the move, the user requests explicit compilation with
registration in catalog $VOL1.ADMIN:

>> DUP $VOL1.PERSNL.EMPPROG, $VOL1.ADMIN.*,
+> SAVEALL;
>> EXIT;
21> SQLCOMP /IN $VOL1.ADMIN.EMPPROG, OUT $S.#HOLD/
 CATALOG $VOL1.ADMIN

If you do not need to recompile your programs, omit the second step.

If you have stored your programs in a separate subvolume, you can use the wild-card
character as the file set list in the DUP command to efficiently duplicate groups of
Guardian programs.

This example shows how to use the wild-card character * (asterisk) to move sets of
programs. The SAVEALL option creates the target file with the same security, owner,
and timestamps as the corresponding source file.

>> DUP $VOL1.PERSNL.*, $VOL1.ADMIN.*,
+> SAVEALL;

The SQLCI DUP command supports the qualified file-set list so that only program files
are identified by the list. This example uses a qualified file-set list to identify and move
a set of programs from a specified catalog:

>> DUP $VOL1.PERSNL.* WHERE SQLPROGRAM,
+> MAP NAMES ($VOL1.PERSNL.* TO $VOL1.ADMIN.*), SAVEALL;

You might store programs in many subvolumes throughout the system. In this case,
you can specify a qualified file-set list to move all the programs from one or many
catalogs; however, you must also include a detailed MAP NAMES and CATALOG
specification to handle all the cases.

If the mapping strategy is complex, you can use other methods for moving programs.
These two examples show two methods of using the DUP command to move these
programs:

$OLD1.PROGS.PROGA1, described in catalog $OLD1.ACCTG
$OLD2.PROGS.PROGA2, described in catalog $OLD1.ACCTG
$OLD3.PROGS.PROGA3, described in catalog $OLD1.ACCTG
$OLD3.PROGS.PROGB3, described in catalog $OLD1.SALES
$OLD1.PROGS.PROGB1, described in catalog $OLD1.SALES
$OLD2.PROGS.PROGB2, described in catalog $OLD1.SALES
$OLD3.PROGS.PROGC3, described in catalog $OLD1.SALES
$OLD2.PROGS.PROGC2, described in catalog $OLD1.SALES
$OLD1.PROGS.PROGC1, described in catalog $OLD1.ORDERS
$OLD1.PROGS.PROGD1, described in catalog $OLD1.ORDERS
$OLD2.PROGS.PROGD2, described in catalog $OLD1.ORDERS
$OLD2.PROGS.PROGE2, described in catalog $OLD1.ORDERS
$OLD3.PROGS.PROGD3, described in catalog $OLD1.ORDERS
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-44

Managing Database Applications Using SQLCI DUP
Example: Method 1 (Moving Programs With DUP)
This DUP command moves these programs to new volumes; namely, $VOL1, $VOL2,
and $VOL3. The MAP NAMES option correctly defines the source and target volumes
for each program. After the DUP operation, the programs are SQL compiled to register
them in the new catalog.

>> DUP ($OLD1.PROGS.*, $OLD2.PROGS.*, $OLD3.PROGS.*)
+> WHERE SQLPROGRAM,
+> MAP NAMES ($OLD1.PROGS.* TO $VOL1.PROGS.*,
+> $OLD2.PROGS.* TO $VOL2.PROGS.*,
+> $OLD3.PROGS.* TO $VOL3.PROGS.*), SAVEALL;
19> VOLUME $VOL1
20> SQLCOMP /IN PROGS.PROGA1, OUT $S.#HOLD/ CATALOG ACCTG
21> SQLCOMP /IN PROGS.PROGB1, OUT $S.#HOLD/ CATALOG SALES
22> SQLCOMP /IN PROGS.PROGC1, OUT $S.#HOLD/ CATALOG ORDERS
23> SQLCOMP /IN PROGS.PROGD1, OUT $S.#HOLD/ CATALOG ORDERS
24> VOLUME $VOL2
25> SQLCOMP /IN PROGS.PROGA2, OUT $S.#HOLD/ CATALOG
 $VOL1.ACCTG
26> SQLCOMP /IN PROGS.PROGB2, OUT $S.#HOLD/ CATALOG
 $VOL1.SALES
27> SQLCOMP /IN PROGS.PROGC2, OUT $S.#HOLD/ CATALOG
 $VOL1.SALES
28> SQLCOMP /IN PROGS.PROGD2, OUT $S.#HOLD/ CATALOG
 $VOL1.ORDERS
29> SQLCOMP /IN PROGS.PROGE2, OUT $S.#HOLD/ CATALOG
 $VOL1.ORDERS
30> VOLUME $VOL3
31> SQLCOMP /IN PROGS.PROGA3, OUT $S.#HOLD/ CATALOG
 $VOL1.ACCTG
32> SQLCOMP /IN PROGS.PROGB3, OUT $S.#HOLD/ CATALOG
 $VOL1.SALES
33> SQLCOMP /IN PROGS.PROGC3, OUT $S.#HOLD/ CATALOG
 $VOL1.SALES
34> SQLCOMP /IN PROGS.PROGD3, OUT $S.#HOLD/ CATALOG
 $VOL1.ORDERS

Example: Method 2 (Moving Programs With DUP)
This method is a multiple-step approach for moving the programs.

1. Obtain a list of the program names from the PROGRAMS table of each catalog.

2. Edit the list, specifying the program names first in DUP commands (or the
corresponding OSS command for SQL programs stored in OSS files) and then in
SQLCOMP (or c89, for OSS) commands to SQL compile the programs before
registering them in the new catalog.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-45

Managing Database Applications Using SQLCI DUP
Step 1 queries the PROGRAMS table. The query produces a list of program names
from the catalog $OLD1.ACCTG and writes the list in the log file
$VOL1.PGMS.PROGLIST.

>> LOG $VOL1.PGMS.PROGLIST;
>> VOLUME $OLD1.ACCTG;
>> SELECT PROGRAMNAME FROM PROGRAMS;

This list appears in the log file:

PROGRAMNAME

\SYS1.$OLD1.PROGS.PROGA1
\SYS1.$OLD2.PROGS.PROGA2
\SYS1.$OLD3.PROGS.PROGA3

Step 2 displays the edited results of the first entry in the list file. Editing has changed
the listed Guardian programs into DUP commands in an OBEY command file entered
at an SQLCI prompt. This step also displays the SQLCOMP commands entered
through TACL to SQL compile the programs.

>> DUP $OLD1.PROGS.PROGA1, $VOL1.PROGS.*, SAVEALL;
>> DUP $OLD2.PROGS.PROGA2, $VOL2.PROGS.*, SAVEALL;
>> DUP $OLD3.PROGS.PROGA3, $VOL3.PROGS.*, SAVEALL;
>> EXIT
19> SQLCOMP /IN $VOL1.PROGS.PROGA1, OUT $S.#HOLD/
 CATALOG $VOL1.ACCTG
20> SQLCOMP /IN $VOL2.PROGS.PROGA2, OUT $S.#HOLD/
 CATALOG $VOL1.ACCTG
21> SQLCOMP /IN $VOL3.PROGS.PROGA3, OUT $S.#HOLD/
 CATALOG $VOL1.ACCTG

Steps 1 and 2 must be performed for each catalog.
HP NonStop SQL/MP Installation and Management Guide—523353-004
10-46

11
Performing Recovery Operations

The success of recovery operations depends on the effectiveness and consistency of
the plan developed for handling recovery situations. Before you begin any recovery
operation, you should thoroughly evaluate the tools—backup tapes, TMF online
dumps, and so forth—available and appropriate for the type of failure.

Recovery procedures described in this section use these tools:

• BACKUP and RESTORE: Guardian utilities for dumping files or tables to tape and
restoring them

• Peripheral Utility Program (PUP): The Guardian utility used in D-series and earlier
RVUs to manage disks and other peripheral devices, and perform various
operations on disk volumes in the SQL/MP database environment. In G-series
RVUs, PUP functions are performed by the SCF.

• Subsystem Control Facility (SCF): An interactive interface for configuring,
controlling, and collecting information from a subsystem and its objects. SCF
enables you to configure and reconfigure devices, processes, and some system
variables while your HP NonStop S-series server is online.

• Volume recovery: A TMF recovery mechanism that returns a database to a
consistent state after a system failure. Volume recovery reapplies committed
transactions to ensure they are reflected correctly in the database and then backs
out all transactions that were incomplete at the time of the interruption.

• File recovery: A TMF recovery mechanism used for recovery from disk and media
failures and the effects of incorrect programs. File recovery restores the database
from the most recent online dumps, applying the after-images from the audit trail to
the database records, and then backs out all transactions that were incomplete at
the time of the system interruption or failure.

If you need to recover a database to a different node, see Renaming or Renumbering a
Node on page 9-32 in addition to the material in this section.

For information about using the RDF product to maintain a duplicate database at a
remote site, see the RDF/IMP and IMPX System Management Manual.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-1

Performing Recovery Operations Restoring Individual SQL Objects
Restoring Individual SQL Objects
The RESTORE utility can replace SQL objects that have been backed up on tape. For
this discussion, restoring SQL objects and databases means you are replacing existing
objects in the same location. For a discussion about using the RESTORE utility to
move SQL objects and databases, see Section 9, Moving a Database.

RESTORE automatically creates SQL catalogs for SQL objects being restored if a
catalog does not exist and the command includes the AUTOCREATECATALOG ON
option.

During object restoration, if RESTORE determines that a referenced catalog does not
exist, RESTORE directs the catalog manager to create the catalog, and alter the
catalog security and owner ID, to match the security and owner ID at the time of the
backup operation. After the catalog security and owner are altered, the user performing
the restore might not have the appropriate security to update the catalog;
consequently, the objects might not be restored in the catalog.

The default for RESTORE is AUTOCREATECATALOG OFF.

Restoring Catalogs
The RESTORE utility cannot directly recover a catalog. TMF recovery methods protect
SQL/MP catalogs. All of the catalog tables are audited so that they can be archived by
using the TMF subsystem and recovered by using either TMF volume recovery or file
recovery procedures.

Restoring Collations
If you restore objects and programs that use collations, you must restore the collations
first. For audited collations, however, use the TMF file recovery operation, discussed
under Restoring Objects With TMF Recovery Operations on page 11-11, instead of
RESTORE.

Restoring Tables
Typically, you would want to use the RESTORE utility to recover programs or
nonaudited tables. For audited tables, use the TMF file recovery operation discussed
under Restoring Objects With TMF Recovery Operations on page 11-11.

The RESTORE utility replaces the file with a file of the same type. You cannot use
RESTORE to drop an SQL table and restore it as an Enscribe file or use it to drop an
Enscribe file and restore it as an SQL table.

When restoring a table, the RESTORE utility tries to duplicate all partitions, indexes,
and protection views. In addition, the utility restores all comments and constraints to
the COMMENTS and CONSTRNT tables, respectively, of the target catalog.
RESTORE does not attempt to restore any dependent shorthand views unless their
names are explicitly included in the file set list that specifies which objects to restore.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-2

Performing Recovery Operations Restoring Tables
These are options of the RESTORE utility and how they affect restoring SQL objects:

• RESTORE allows the use of a qualified file-set list to identify the source objects to
be restored.

• The PURGE option effectively performs an SQL DROP statement before restoring
the table. By using the default, PARTONLY OFF, with the PURGE option, you can
drop all partitions of a table and all the dependencies, which are indexes,
partitions, protection views, comments, and constraints; then, you can restore them
all.

• The INDEXES IMPLICIT or INDEXES EXPLICIT option controls the restoration of
indexes. The default is for indexes to be implicitly restored with the underlying
table. If you specify INDEXES EXPLICIT, the indexes are not automatically
restored with the underlying table unless specified in the file set list.

• Some of the inconsistencies or other problems that can occur by using RESTORE
with the INDEXES EXPLICIT option are:

° All components might not be restored.

° Pointers in the file labels could point to the wrong file. (This is more likely to
happen when you are moving objects with the MAP NAMES clause, however.)

° Index data might be inconsistent with the underlying table data.

• By specifying the PARTONLY ON option, you can restore a partition of a table
separately or restore multiple partitions collectively. Only partitions identified by the
file set list are purged and restored.

• Some of the inconsistencies or other problems that can occur by using RESTORE
with the PARTONLY option are:

° The security of partitions might be inconsistent.

° Recovery might commence before RESTORE PARTONLY determines whether
recovery is truly viable.

° Parallel RESTORE operations might cause deadlock.

° Programs might be invalidated unnecessarily.

° Physical attributes of partitions might be mismatched.

° The definition of a recovered partition might be inconsistent with those of its
associated partitions if the object definition was changed because the backup
was performed.

Caution. You must be extremely careful when using the INDEXES EXPLICIT option because
it can cause tables to become inconsistent.

Caution. You must be extremely careful when using the PARTONLY ON option because it can
cause tables to become inconsistent.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-3

Performing Recovery Operations Restoring Tables
These inconsistencies can occur because RESTORE PARTONLY uses information
from the backup tape to reconstruct the definition of the recovered partition.

Steps to Restore a Table
To restore a table, perform these steps. Restoring a table invalidates dependent
programs.

1. Identify the table to be restored.

2. Determine the dependencies that will be affected by the drop operation by using
the DISPLAY USE OF command.

3. Enter the RESTORE command at the command interpreter prompt.

4. Determine the status of the dependencies and the validity of the programs by using
the DISPLAY USE OF command or VERIFY utility.

5. SQL compile invalid programs.

Examples of Restoring Tables
This example restores a single table that has no dependencies as this command would
be entered from an OBEY command file:

RESTORE $TAPE, $VOL1.PERSNL.EMPLOYEE, &
 CATALOG $VOL1.PERSNL, OPEN, TAPEDATE, LISTALL

This example restores a table with a protection view named PROTEMP and an index
named XEMP. PROTEMP is registered in the same catalog and resides on the same
subvolume as the table. XEMP resides on another volume and is described in catalog
$VOL2.PERSNL.

RESTORE $TAPE, $VOL1.PERSNL.EMPLOYEE, &
 CATALOG ($VOL1.PERSNL FOR $VOL1.PERSNL.EMPLOYEE, &
 $VOL1.PERSNL FOR $VOL1.PERSNL.PROTEMP, &
 $VOL2.PERSNL FOR $VOL2.PERSNL.XEMP), &
 OPEN, TAPEDATE, LISTALL

This command restores a single partition of a table:

RESTORE $TAPE, $VOL1.PERSNL.EMPLOYEE, PARTONLY, &
 CATALOG $VOL1.PERSNL, OPEN, TAPEDATE, LISTALL

This example restores a table that has dependent indexes, but because the INDEXES
EXPLICIT option is specified, the indexes are not restored automatically unless listed
in the file set list. In this case, the indexes are not specified in the file set list, so only
the table and protection views, if any, are restored.

RESTORE $TAPE, $VOL1.PERSNL.EMPLOYEE, INDEXES EXPLICIT, &
 CATALOG $VOL1.PERSNL, OPEN, TAPEDATE, LISTALL
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-4

Performing Recovery Operations Restoring Tables
This example restores a table including the dependent shorthand view, EMPSVIEW.
Shorthand views are restored only when they are explicitly named in the file set list.

RESTORE $TAPE, ($VOL1.PERSNL.EMPLOYEE, $VOL2.ADMIN.EMPSVIEW), &
 CATALOG $VOL1.PERSNL, OPEN, TAPEDATE, LISTALL

The next example restores a table with a protection view from a backup operation
performed on another node and volume. To restore objects from another node onto
your node, you must specify the MAP NAMES option to map dependent source objects
(partitions, indexes, and protection views) to target objects. You must be careful to
define the MAP NAMES target file-set list correctly; if you specify an invalid mapping
scheme, the complete set of source objects might not be moved to the target objects.
For more information, see Choosing Utilities for the Move Operation on page 9-2.

In this example, the backup tape contains a table named EMPLOYEE (stored on the
$VOL1.PERSNL subvolume) and a protection view named EMPAUX (stored on the
$VOL1.PERSNAUX subvolume).

This RESTORE command illustrates how to map source objects with node names to
target objects with node names and source objects without node names to target
objects without node names:

RESTORE $TAPE, $VOL1.PERSNL.EMPLOYEE, NOUNLOAD, &
 LISTALL, OPEN, AUDITED, AUTOCREATECATALOG ON, &
 MAP NAMES (\CHI.$VOL1.PERSNL.* TO \DENV.$VOL7.PERSNL.*,
&
 $VOL1.PERSNL.* TO $VOL7.PERSNL.*,&
 \CHI.$VOL1.PERSNAUX.* TO
 \DENV.$VOL7.PERSNAUX.*,
&
 $VOL1.PERSNAUX.* TO
 $VOL7.PERSNAUX.*),&
 CATALOG ($VOL7.PERSNL FOR $VOL7.PERSNL.*, &
 $VOL7.PERSNL FOR $VOL7.PERSNAUX.*)

The next example presents alternative syntax for accomplishing the tasks in the
previous example:

RESTORE $TAPE, $VOL1.PERSNL.EMPLOYEE, NOUNLOAD, &
 LISTALL, OPEN, AUDITED, AUTOCREATECATALOG ON, &
 MAP NAMES (\CHI.$*.*.* TO \DENV.$VOL7.PERSNL.*, &
 $*.*.* TO $VOL7.PERSNL.*,&
 \CHI.$*.*.* TO \DENV.$VOL7.PERSNAUX.*, &
 $*.*.* TO $VOL7.PERSNAUX.*),&
 CATALOG ($VOL7.PERSNL FOR $VOL7.PERSNL.*, &
 $VOL7.PERSNL FOR $VOL7.PERSNAUX.*)
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-5

Performing Recovery Operations Restoring Views
Restoring Views
Protection views cannot be explicitly restored; they are restored with the underlying
table only. Shorthand views, however, can be only explicitly restored.

When a table is restored, only those shorthand views explicitly identified by the file set
list are automatically restored. If you use a wild-card character in a file set list and a
shorthand view name satisfies the file set list, the shorthand view is considered to be
explicitly identified.

Restoring a shorthand view restores any comments associated with the view. A
shorthand view can be restored, but the view might subsequently be marked invalid.
After restoring the complete file set list, RESTORE tries to validate the view. A
shorthand view might have several underlying tables or views; RESTORE might not be
able to validate the view if the underlying objects are not available. You should always
check the status of the views after RESTORE completes. If a view is invalid, you must
drop and re-create the view.

Views contain no physical data; therefore, you might want to re-create the view instead
of performing a RESTORE of the definition.

Restoring Indexes
You should normally restore indexes automatically with the underlying table. You can
prohibit the restoration of indexes by specifying INDEXES EXPLICIT in the RESTORE
command so that only those indexes identified by the file set list are explicitly restored.

To restore the primary partition of an index, restore the entire index.

Restoring Programs
Restored SQL programs are not automatically registered in an SQL catalog; the SQL
sensitive flag is set off, and the programs cannot be run without first being compiled.

The RESTORE operation allows SQL programs stored in Guardian files to be explicitly
SQL compiled during the restore operation. If you include the SQLCOMPILE ON
option, RESTORE directs the SQL compiler to recompile the program with the
DEFINEs stored in the program during the last explicit compilation.

You can use the SQLCOMPILE ON option effectively when restoring programs
individually or for restoring programs when you know that the referenced SQL tables
and views already exist on the system. If the referenced tables and views are not
available when the program is restored, the recompile cannot produce a valid query
execution plan. You should not use the SQLCOMPILE ON option if you are using
RESTORE to move the database.

Caution. You must be extremely careful when using the INDEXES EXPLICIT option because
it can cause tables to become inconsistent. A list of possible inconsistencies appears earlier
under Restoring Tables.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-6

Performing Recovery Operations Restoring Databases
If you are restoring databases, file set lists, or moving objects, you might not want to
use the SQLCOMPILE ON option. The recompilations can be unsuccessful if objects
are restored alphabetically by volume, subvolume, and file name. If programs are
restored before the tables, views, or indexes on which they depend are restored, the
recompilations will be unsuccessful.

To restore a program, follow these steps:

1. Determine the name of the program and the tables or views used by the program.

2. Perform the RESTORE command.

3. If the RESTORE command uses SQLCOMPILE OFF, compile the program to
validate and register the program in a catalog. You can use the STOREDDEFINES
option in the SQLCOMP command if you are not restoring the programs on a
different node.

This example restores a program. After being restored, the program is no longer SQL
sensitive and is no longer registered in a catalog; therefore, the program must be
explicitly SQL compiled.

RESTORE $TAPE, $VOL1.PERSNL.PROG1, TAPEDATE, LISTALL

This example uses the SQLCOMPILE ON option of the RESTORE command to
restore and compile a program. The command specifies the catalog in which the
program is registered.

RESTORE $TAPE, $VOL1.PERSNL.PROG1, SQLCOMPILE ON, &
 CATALOG $VOL1.PERSNL, TAPEDATE, LISTALL

To restore SQL programs stored in OSS files, use the appropriate OSS utility.

Restoring Databases
Restoring a complete database should be a simple process, as long as the system
configuration is identical to the configuration when the backup was performed.

If you are planning to restore a complete database but include such operations as
renaming the disk volumes, adding new volumes, or making other configuration
changes, see Section 9, Moving a Database.

You can simplify restoring a complete database by performing certain steps before the
RESTORE. If you are planning a complete database restoration for some planned
event, you can accomplish the complete restoration by using only the RESTORE utility
for both audited and nonaudited files and SQL objects.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-7

Performing Recovery Operations Completing the Planning Phase
Completing the Planning Phase
You should prepare for restoring the database when the database is consistent and
inactive. To complete planning for restoring the database, perform these steps.

1. Ensure that the database is not active.

2. If you are not planning a volume-mode RESTORE operation, described under
Restoring a Database as a Planned Event on page 11-9, create an EDIT file
containing SQL statements that will re-create your catalogs. The statements must
specify the same security and the same owners for each catalog and for each
catalog table that can be individually secured.

The catalog security is the security of the catalog tables, except for the USAGES,
TRANSIDS, and PROGRAMS tables, which can be secured individually. In the
system catalog, the CATALOGS table can also be secured individually. To find out
the security and owner of your catalog tables, you can query the catalog TABLES
table as follows:

>> LOG log-file CLEAR;
>> SELECT TABLENAME, SECURITYVECTOR, GROUPID, USERID
+> FROM catalog-name.TABLES
+> WHERE TABLENAME = "\system.$volume.catalog-name.TABLES";

To find out the security and owner of the USAGES, TRANSIDS, and PROGRAMS
tables, you can specify those tables in a query:

>> SELECT TABLENAME, SECURITYVECTOR, GROUPID, USERID
+> FROM catalog-name.TABLES
+> WHERE TABLENAME = "\system.$volume.catalog-name.USAGES"
+> OR TABLENAME = "\system.$volume.catalog-name.TRANSIDS"
+> OR TABLENAME = "\system.$volume.catalog-name.PROGRAMS";

The EDIT file must contain these two types of statements:

• A CREATE CATALOG statement for each catalog on the node. To make sure
the catalog is re-created with the same security, use the SECURE option to
specify the catalog security:

>> CREATE CATALOG $volume.subvolume SECURE "security-
string";

• An ALTER TABLE statement for any table whose security or owner is different
from the catalog security or owner:

>> ALTER TABLE $volume.subvolume.PROGRAMS
+> SECURE "security-string"
+> OWNER "group-num, user-num" ;

3. Back up the entire node and use the AUDITED option so that both audited and
nonaudited files are dumped. To back up the node, enter:

BACKUP $TAPE, *.*.*, OPEN, AUDITED, LISTALL
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-8

Performing Recovery Operations Restoring a Database as a Planned Event
4. If you need a list of programs that will be invalidated by this procedure, use these
commands to produce a list of programs in a log file:

>> LOG log-file;
>> FILEINFO *.*.* WHERE SQLPROGRAM;

Restoring a Database as a Planned Event
To restore a database as a planned event, follow these steps:

1. Check that SQL is running on the node. The system catalog must be present, and
the TMF subsystem must be running. If you need to reinstall the SQL system,
perform the installation as described under Reinstalling SQL/MP Software on
page 2-10.

2. If you are not performing a volume-mode backup, re-create the catalogs. Use the
SQLCI OBEY command to run the statements in the EDIT file you created before
the BACKUP operation.

The catalog owner is the user ID executing the CREATE CATALOG statement.
Ownership can later be given to another user ID, if necessary, by using the ALTER
CATALOG statement.

3. Issue the RESTORE command.

For a file-mode RESTORE operation, use a set of commands that match those
used in the BACKUP process. This is an example of the RESTORE command:

RESTORE $TAPE, *.*.*, AUDITED, OPEN, LISTALL, TAPEDATE

To restore SQL programs stored in OSS files, use the appropriate OSS utility.

4. After you have restored all the tables and views that the programs use, SQL
compile the programs.

For a volume-mode RESTORE operation, issue a command like this for each disk
volume containing database files:

RESTORE $TAPE, VOLUMEMODE, *

5. SQL compile the programs. A list of programs is saved in a log file created in
Step 3 of the planning activities.

Caution. Do not use the SQLCOMPILE option in the RESTORE command with this type of
restoration. The program compilations could cause invalid programs because dependent
tables, views, and indexes might not yet be restored when the program is restored.

Caution. Use volume-mode RESTORE only if the configuration of the restored disk is identical
to the configuration of the backed up disk. If you change the configuration, you could lose a
volume of data.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-9

Performing Recovery Operations Restoring a Database as an Unplanned Event
6. Verify the database by using the VERIFY utility; following is an example of the
VERIFY command:

>> VERIFY *.*.*;

7. Drop and re-create any invalid shorthand views. By using VERIFY in Step 6, you
can identify any invalid shorthand views.

8. Perform new TMF online dumps of all catalogs and audited SQL objects.

Restoring a Database as an Unplanned Event
If you were not able to plan for restoring the database because of a catastrophic
failure, you must begin to restore the system by using the most recent backups and
TMF online dumps.

To restore the database as an unplanned event:

1. Perform TMF file recovery for all audited files as described under Restoring
Objects With TMF Recovery Operations on page 11-11.

2. Issue the RESTORE command to recover Enscribe and nonaudited files. Use a set
of commands that match those used in the BACKUP process. Also include the
AUTOCREATECATALOG ON option in the RESTORE command to create the
necessary catalogs. An example of the RESTORE command, where *.*.*
represents unaudited and Enscribe files, follows:

RESTORE $TAPE, *.*.*, AUTOCREATECATALOG ON, OPEN, &
 LISTALL, TAPEDATE

You should not use the SQLCOMPILE option in the RESTORE command with this
type of restoration. The program compilations could cause invalid programs
because dependent tables, views, and indexes might not yet be restored when the
program is restored.

To restore OSS files, use the appropriate OSS utility.

3. After you have restored all the tables and views that the programs use, SQL
compile the programs.

4. Manually resolve any inconsistencies in the data between audited and nonaudited
tables. At this step, your database might be consistently defined in the catalogs,
but the data in the audited and nonaudited files might be inconsistent. The
inconsistency occurs from the time difference between the backups and the online
dumps.

5. Verify the database by using the VERIFY utility; enter:

>> VERIFY *.*.*;

6. Drop and re-create any invalid shorthand views. Using VERIFY in Step 5 identifies
any invalid shorthand views.

7. Perform new TMF online dumps of all catalogs and audited SQL objects.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-10

Performing Recovery Operations Recovering Consistent Files by Resetting the
BROKEN Flag
Recovering Consistent Files by Resetting the
BROKEN Flag

When a disk volume or node crashes or a process terminates unexpectedly, files that
are open at that time are left in a questionable state. In many cases, the files are really
inconsistent because they were actively involved in interrupted database transactions.
These files must be recovered with the volume recovery or file recovery methods. In
other cases, files marked as questionable are actually consistent. These files, although
open at the time of the crash, were not actively taking part in database transactions.

In many cases, you know which files are actually corrupt and which are actually
consistent. Normally, it is better to allow TMF recovery to recover all the files and to
determine which are corrupt and which are not. If, however, you are able to determine
that a file is not corrupt, it can be much quicker to simply reset the BROKEN flag that
indicates to the system that the file is corrupt. To reset this flag, issue an ALTER
TABLE or ALTER INDEX statement using the RESETBROKEN option.

Use the RESETBROKEN option to reset the BROKEN flags for SQL catalog tables. A
catalog, although sometimes open at the time of a crash (as a result of activities such
as automatic recompilation or dynamic SQL operations), is often not actively involved
in update operations. Also, to facilitate recovery of database files, you can reset the
BROKEN flags for the catalog tables if these tables are not corrupt.

You must use the RESETBROKEN option before you use a TMF recovery method.
After it starts, TMF recovery resets the flag.

Restoring Objects With TMF Recovery
Operations

With the TMF volume recovery and file recovery mechanisms, you can recover SQL
catalogs and objects after a system or disk volume crash. You can also use file
recovery to recover a purged object and to recover a database to a specified time.
These recovery operations, and others, are described next. For additional information
about volume recovery and file recovery, see The TMF Subsystem on page 4-10 or the
TMF Operations and Recovery Guide.

Caution. Avoid using the RESETBROKEN option on files that might be corrupt. If you are
unsure of the state of a file, use TMF recovery methods instead. RESETBROKEN is not a
replacement for other recovery methods when the file is corrupt.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-11

Performing Recovery Operations Database Recovery After a Disk or Node (System)
Failure
Database Recovery After a Disk or Node (System) Failure
When a disk or node (system) fails, often SQL catalogs tables and database files on
the disk or node are left in a crash-open state. To recover the database, both the
catalogs and the files must be recovered to a consistent state.

Depending upon the situation, choose an appropriate method from this list to achieve
the desired result:

• Use the file recovery method to recover the database, starting with online dumps
(files containing copies of consistent catalogs and objects saved by the TMF
DUMP FILES command). The file recovery function starts with the saved files and
updates transactions to the last consistent point in the audit trails.

• Use the file recovery method with a specified TIME option to recover a database to
a given consistent time, as described under File Recovery With the TIME Option
on page 11-14.

• Use the file recovery method to recover files that cannot be recovered by volume
recovery because the audit trails are missing or damaged in some way. In some
cases, the damage could also prevent file recovery to the most recent point.

Volume Recovery
TMF volume recovery is invoked automatically by the TMF commands START TMF,
and is invoked as needed thereafter when a volume becomes accessible. Volume
recovery uses the audit trails to roll back incomplete transactions and return the
database to the last consistent state.

Volume recovery might fail to recover a volume or a file. Some of the recoverable
cases follow:

• A volume becomes unavailable during the volume recovery operation. When you
bring up the volume, TMF automatically restarts volume recovery to the last
recovery point in the database.

• A file is corrupted or inconsistent in such a way that volume recovery cannot apply
the audit trail information. If volume recovery fails to recover a file, FILEINFO
displays setting of the REDONEEDED and UNDONEEDED flags. For tables,
indexes, and Enscribe files, the information appears after the modification
timestamp of the table. For views, the information appears after the open states
LABEL QUESTIONABLE and DEFINITION INVALID if they appear in the display.

Normally, volume recovery recovers such files when the volume is started for
transaction processing. If, however, the volume is already started and the file is still
marked with REDONEEDED or UNDONEEDED, you must recover the file by using
file recovery.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-12

Performing Recovery Operations File Recovery
File Recovery
File recovery is usually the recovery method used if other methods have failed. File
recovery can be used only if you consistently dump audit trails to tape and make online
dumps. File recovery reconstructs an audited file from the initial starting point of the
online dumps and applies all the changes to the file from the history of the audit trails.
The file is recovered to the last consistent point in the database. These guidelines
apply:

• The file recovery process is invoked by issuing the RECOVER FILES command to
one of the TMF interfaces (such as TMFCOM). The file recovery process prompts
the operator for the online dumps and audit-trail tapes as needed. Audit trails that
still reside on disk are read directly from disk.

• If you do not specify the FROMARCHIVE option in the RECOVER FILES
command, the file recovery process recovers only the files marked undo-needed. If
you specify the FROM ARCHIVE option of the RECOVER FILES command, file
recovery tries to recover the entire file set, regardless of the setting of the redo-
needed and undo-needed flags.

• The file recovery process cannot recover any file that did not exist at the time of an
online dump. The file recovery process cannot perform a create function. You must
perform an online dump following any create operation. If you do not perform this
dump, you cannot recover the file because the TMF subsystem looks for a starting
point on the most recent online dump.

• If your database uses a scheme of audited and nonaudited files, you might not be
able to recover a consistent database, depending on the date and time of the most
recent BACKUP and TMF recovery point of audited files. You must then manually
attempt to put the database into a consistent state.

• A REDONEEDED or UNDONEEDED flag in the FILEINFO display for a file
indicates that you must use file recovery to recover the file.

• If your system uses the SMF product to manage disk volumes, TMF file recovery
procedures might differ slightly from those described in these sections. For
example, a file might be recovered to a different disk volume if the volume on
which it originally resided is not available. For more information about how TMF
performs file recovery on volumes managed by SMF, see TMF manuals. For more
information about SMF, see the Storage Management Foundation User’s Guide.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-13

Performing Recovery Operations File Recovery With the TIME Option
File Recovery With the TIME Option
By using the file recovery feature with the TIME option, you can resolve several
different kinds of problems:

• If a database object is purged by accident, you can use the TIME option to recover
the object's file as it existed just prior to the purge. This action effectively recovers
the entire file but not the catalog definition of the object.

• If an application error updates the database in an inconsistent way, you can
recover the database to the state it was in at a specified time before the error
occurred.

• If a licensed SQLCI2 or CLEANUP operation incorrectly alters or damages the
database or catalogs, you can recover the database or catalogs to their previous
state.

• If you have a saved test database or starting database, you can recover that
database to the same point many times. Suppose that in your testing procedures
you need to always start with the same database. This database can be loaded to
the node or recovered by using TMF file recovery with the TIME option.

Using file recovery with the TIME option can be difficult, however, because this method
requires you to coordinate recovery of interrelated objects, such as tables and their
indexes.

For more information about using file recovery with the TIME option, see the TMF
Operations and Recovery Guide.

Recovering Purged SQL Tables
There are two ways of using TMF to recover an SQL table that was accidentally
purged:

• Use file recovery to recover the catalog and the purged table. This approach works
adequately only if no updates were applied to the catalog after the table was
purged (which is usually not the case).

• Re-create the table to put the entry back into the catalog, and then recover the
table and update the creation and redefinition timestamps in the catalog (if
needed).

Caution. The TMF subsystem carries no information about the relationships between file
labels and catalogs. If a table is dropped, for example, file recovery cannot restore the catalog
entries for the table. If the file recovery operation starts at a time just before a table was
dropped, you might lose subsequent DDL changes.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-14

Performing Recovery Operations Operations That Invalidate TMF Online Dumps
For detailed steps to recover accidentally dropped tables, see Recovering Tables on
page 11-19.

Operations That Invalidate TMF Online Dumps
Some SQL/MP operations invalidate TMF online dumps, affecting TMF file recovery.
The TMF subsystem maintains the integrity and consistency of databases for online
transaction processing. You must understand how SQL/MP and the TMF subsystem
work together so that you do not lose or damage important data.

To execute any SQL/MP operation that invalidates online dumps, you must have either
the super ID or ownership of all affected tables.

Some SQL/MP operations invalidate TMF catalog entries, which invalidates TMF
online dumps. These SQL/MP operations delete or significantly alter the file labels or
the file contents.

To keep file recovery protection for these files, you must make new TMF online dumps
after any of these operations. Even if the operation fails to complete properly, file labels
or file contents might be affected. Plan to make new TMF online dumps even if one of
these operations is unsuccessful.

If you need to recover an affected table or index to a point before the SQL operation
that invalidated the applicable dump, the TMF file recovery process might require that
you manually modify the online and audit dump entries in the TMF catalog by using the
TMF ALTER DUMPS or ADD DUMPS command. To preserve consistency, this type of
a recovery must include not only the tables or indexes directly affected, but also all
partitions of each table or index and all logically related objects in the database.

For more information on making online dumps, see the TMF Operations and Recovery
Guide.

Note. If you follow the first approach, and any dependant objects of the dropped table were
registered in different catalog(s), those catalogs must also be recovered along with the catalog
in which the dropped table was registered.

Caution. If the TMF catalog entries are incorrect and a problem occurs with the database, you
could lose the ability to use TMF file recovery operations to recover the database.

Caution. If a full recovery of a table is needed and the catalog is not going to be recovered,
the timestamps can cause inconsistencies that leave the table unusable.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-15

Performing Recovery Operations Operations That Invalidate TMF Online Dumps
Table 11-1. SQL/MP Operations That Invalidate TMF Online Dumps

SQL Statement Option Effect Recovery Strategy

ALTER INDEX
and
ALTER TABLE

NO AUDIT Invalidates all online
dumps of the affected
object. The object does
not have any TMF file
recovery protection if it
is not audited.

If the AUDIT attribute is
later turned back on, make
new online dumps of all
partitions of the index or
table to retain TMF file
recovery protection.

ADD
PARTITION
(with data
movement)

Invalidates all online
dumps of the source
partition.

Make new online dumps of
the source partition and
added partition to retain
TMF file recovery
protection.

MOVE
(simple move)

Invalidates all online
dumps of the source
partition.

Make a new online dump
of the moved partition to
retain TMF file recovery
protection.

MOVE
(one-way split)

Invalidates all online
dumps of the source
partition.

Make new online dumps of
the source partition and
moved partition to retain
TMF file recovery
protection.

MOVE
(two-way split)

Invalidates all online
dumps of the source
partition.

Make online dumps of the
new partitions to provide
TMF file recovery
protection.

RENAME Invalidates all online
dumps of the renamed
object.

Make a new online dump
of the renamed object to
keep TMF file recovery
protection for it.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-16

Performing Recovery Operations Responding to Accidental Loss of an Audited
SQL/MP Object
Responding to Accidental Loss of an Audited
SQL/MP Object

The method for recovering an accidentally dropped SQL object depends on whether
that object is a view, an index, or a table.

Recovery of a single view or index is usually a straightforward operation. Recovery of a
table, however, can be complex and difficult, particularly if the table has multiple
dependent objects. For safety's sake, take the precautions discussed next to prevent
accidental loss of an object or to simplify recovery if it does become necessary.

Recovery Precautions

• Set the NOPURGEUNTIL attribute for your objects to some date in the far future,
using the SQLCI ALTER command. For example, this SQLCI command sets the
NOPURGEUNTIL attribute for the table named $DATA.PERSNL.EMPLOYEE to a
safe date. (If this is a partitioned table, this command sets NOPURGEUNTIL for all
partitions.)

>>ALTER TABLE $DATA.PERSNL.EMPLOYEE NOPURGEUNTIL DEC 31 2050;

If you later try to purge the object before the NOPURGEUNTIL date, the purge
fails, and you receive an error message. Now, the only way you can remove the
object is to change the NOPURGEUNTIL date and then retry the purge.

• Maintain current OBEY command files containing SQLCI command scripts for
creating and re-creating your SQL tables, indexes, and views.

• If you alter an object, be sure to alter the OBEY command file used to create that
object too.

• Anytime you perform a SQLCI DDL operation, also request a TMF online dump for
the affected object. (With each new dump, you decrease the number of tapes that
must be processed during future recovery operations.)

• Maintain a hard copy of the entire TMF catalog, using the TMFCOM INFO DUMPS,
DETAIL command.

• Whenever you request a TMF online dump, back up that dump to tape and use the
TMFCOM INFO DUMPS, OBEYFORM command to obtain a hard copy with that
tape. For good TMF practice, be sure to maintain a backup copy of the entire TMF
catalog on tape.

° If you perform the dumps with separate groups of disks (for example, a dump
for each group attached to a particular processor), the dumps for your SQL
objects and catalogs will be scattered among numerous tapes. The advantage
of this approach is that you are less likely to miss a vital object during recovery.

Note. Because SQLCI does not provide an OBEYFORM option, you must manually create the
OBEY command files in edit format, using your text editor.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-17

Performing Recovery Operations Recovering Views and Indexes
The disadvantage is that it requires a lot of work because you must continually
keep track of all interdependent objects and process many tapes during
recovery.

° If you perform collective dumps of the SQL catalog and all its objects, you
might gain a faster recovery, but you must continually update the SQL OBEY
command files that you use to rebuild your SQL objects.

Finally, before dropping an object, check that you have:

• A current OBEY command file for re-creating your objects

• Output from a SQLCI DISPLAY USE OF command, showing for each object the
other objects that depend upon it

• Current online dumps of the objects

• Hard copies of the TMF catalog and object dumps, obtained with the TMFCOM
INFO DUMPS, OBEYFORM command

Recovering Views and Indexes
If the SQL object purged is a view or an index and its related table still exists in the
system, you can recover the object by simply re-creating it:

• An SQL view does not contain data. The data referenced by the view is stored in
the underlying table. Therefore, you can easily return a purged view to the
database by re-creating the view definition using the SQLCI CREATE VIEW
statement. After you recover the view, be sure to make a new online dump of the
view and its related table.

• An SQL index specifies an alternate access path to a table. You can recover a
purged index by re-creating it using the SQLCI CREATE INDEX statement. This
approach ensures that the new index includes keys for all rows of the table. After
you recover the index, make a new online dump of the index and its related table.

You can also recover a view or an index by using the TMFCOM RECOVER FILES
command, using the steps described under Recovering Tables on page 11-19.
However, because it is potentially more complex and open to error, do not use the
TMFCOM RECOVER FILES command if you are attempting to recover views and
indexes only. To recover only views or indexes, use the SQLCI CREATE statements
discussed previously.

Note. You can use OBEY command files containing TMFCOM command scripts for
TMF tasks that you perform repeatedly.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-18

Performing Recovery Operations Recovering Tables
Recovering Tables
If the SQL object purged is a table, recovery can be much more complex than one
involving only views and indexes. In some cases (for example if the TMF subsystem is
not configured for file recovery), recovery might not be possible at all. For this reason,
follow the Recovery Precautions on page 11-17.

For the best results in most cases, to recover a table and its dependent objects:

1. Determine what dependent objects (views, indexes, and other tables) might have
been dropped along with the table, using SQLCI.

2. Re-create the table and its dependent objects, using SQLCI. The DDL definition of
the newly created table must exactly match the DDL definition of the purged table.

3. Reset the INVALID and RELEASED attributes of the online dumps for the dropped
objects to OFF, using the TMFCOM ALTER DUMPS command.

4. If any indexes were associated with the file, re-create them.

5. Recover the table and its dependent objects with the TMFCOM RECOVER FILES
command, using the TOFIRSTPURGE option.

6. For the recovered objects, verify that the creation and redefinition timestamps in
the file labels match those in the SQL catalog, using the SQLCI VERIFY
command.

7. For all objects for which VERIFY identifies a mismatch, update the timestamps in
the SQL catalog to match those in the file labels, using a licensed SQLCI2 utility.

8. Update the statistics for the recovered table.

9. SQL compile any SQL programs that access this table.

Partitioned Tables

Recovery of partitioned tables requires special attention. The CREATE statement for a
partitioned table must indicate the number and names of the partitions as they were at
the time the table was dropped. (If you are recovering tables to a different location,
however, their partition names can be different.)

Over time, partitions are dropped, moved, added, and split. To rebuild a CREATE
statement reflecting the partitions at the time of the drop, therefore, you should file a

Caution. Unless performed with great care and precision, SQL table recovery involves risk of
database corruption and loss of data integrity. Recovery should be done only by experienced
users of SQL/MP and TMF users who understand:

• How objects are defined in the SQL catalog and the results of altering those definitions
• How to use the licensed SQLCI2 utility

If no one with this expertise is present at your site, contact the Global Customer Support
Center (GCSC) or your service provider before proceeding.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-19

Performing Recovery Operations Recovery Example
copy of a FILEINFO, DETAIL statement for partitioned files, together with a copy of an
INVOKE statement, after the most recent change.

After you have re-created the partitions and recovered them with TMF, the timestamps
in the catalogs might be wrong for every partition. Because the redefinition timestamp
is the same for all partitions, you can use a single UPDATE statement for each catalog
involved.

If a mismatch is identified, however, you must update the creation timestamp
individually. Use care when updating because earlier versions of VERIFY do not name
the partitions having the mismatched timestamp. If you are using an earlier version,
follow the method described in Step 8 of the Recovery Example.

Recovery Example
For example, suppose that you have defined a table named EMPLOYEE on the
subvolume \HIL3.$DATA.PERSNL. A SQLCI DISPLAY USE OF command lists the
EMPLOYEE table and its dependent objects: EMPLIST (a protection view), MGRLIST
and ORDREP (two shorthand views), and XEMPDEPT and XEMPNAME (two
indexes):

>>DISPLAY USE OF $DATA.PERSNL.EMPLOYEE;

 Object Name Type S P Owner Name Secure
 -------------------------- ---- - - ----------- ------
 Catalog Name

 0 \HIL3.$DATA.PERSNL.EMPLOYEE TA TEG .SAM GG00
 $DATA.PERSNL
 1 \HIL3.$DATA.PERSNL.EMPLIST PV TEG .SAM GG00
 $DATA.PERSNL
 1 \HIL3.$DATA.PERSNL.MGRLIST SV TEG .SAM GG00
 $DATA.PERSNL
 1 \HIL3.$DATA.PERSNL.XEMPDEPT IN TEG .SAM GG00
 $DATA.PERSNL
 1 \HIL3.$DATA.PERSNL.XEMPNAME IN TEG .SAM GG00
 $DATA.PERSNL
 1 \HIL3.$DATA.SALES.ORDREP SV TEG .SAM GG00
 $DATA.SALES

 U = Undefined node N = Node unavailable T = Unsupported type
 @ = Node not in list * = Previously displayed ? = System error

 Number of unique dependencies : 5
 Number of direct dependencies : 5

Later, you discover that someone has issued a SQLCI DROP TABLE command that
purged the EMPLOYEE table:

>>DROP TABLE $DATA.PERSNL.EMPLOYEE;
---SQL operation complete.

You determine that this table was dropped inadvertently. To recover it:

1. Verify that the EMPLOYEE table has been removed from the database by
entering the SQLCI DISPLAY USE OF command:

 >> DISPLAY USE OF EMPLOYEE;
 *** ERROR from SQL [-1220]: The label of \HIL3.$DATA.PERSNL.EMPLOYEE
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-20

Performing Recovery Operations Recovery Example
 *** could not be accessed.
 *** ERROR from File System [11]: file not in directory or row not
 *** in file, or the specified tape file is not present on a
 *** labeled tape.
 >>

These error messages confirm that the table has been removed.

2. Identify the EMPLOYEE table's dependent objects that might also have been
dropped. To do this, check the output from the last DISPLAY USE OF command
issued for this table (see Recovery Example on page 11-20) to determine what
objects depend on the table. Now you can conclude that the EMPLIST protection
view, the MGRLIST and ORDREP shorthand views, and the XEMPDEPT and
XEMPNAME indexes have also been dropped.

3. Further confirm that these dependent objects were actually dropped by issuing a
TMFCOM INFO DUMPS, DETAIL command for each object. These commands list
the online dump entries in the TMF catalog for the objects. The dump entries for
three objects (EMPLOYEE, EMPLIST, and MGRLIST) appear next:

 ~INFO DUMPS $DATA.PERSNL.EMPLOYEE, DETAIL

 Dump Dump
 Date-Time Type Master Data Status
 --------------------- ----- ------ ----- -------
 12-Dec-1997 14:15:12 online 1 1 invalid. . .
 .
 .
 .
 ~INFO DUMPS $DATA.PERSNL.EMPLIST, DETAIL

 Dump
 Date-Time Type Master Data Status
 --------------------- ----- ------ ----- -------
 12-Dec-1997 14:15:14 online 1 1 invalid. . .
 .
 .
 .
 ~INFO DUMPS $DATA.PERSNL.MGRLIST, DETAIL

 Dump
 Date-Time Type Master Data Status
 --------------------- ---- ------ ----- -------
 12-Dec-1997 14:15:17 online 1 1 invalid. . .
 .
 .
 .

The dump status “invalid” that appears for each object indicates that the object was
lost.

Similar INFO DUMPS DETAIL commands for XEMPNAME, XEMPDEPT, and
ORDREP reveal that they, too, were dropped.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-21

Performing Recovery Operations Recovery Example
4. Re-create the EMPLOYEE table and all its dependent objects:

a. Check that the OBEY (script) command file you maintain for this purpose
contains a SQLCI CREATE command for the EMPLOYEE table and all its
dependent objects.

b. Issue the SQLCI OBEY command to execute the commands in the OBEY
command file. (In this case, the OBEY command file is named DBCREATE.)

>>OBEY DBCREATE

As SQLCI executes the commands, they appear onscreen, along with certain
related messages:

 >>?SECTION employee
 >> CREATE TABLE =employee (
 +> empnum NUMERIC (4) UNSIGNED
 +> NO DEFAULT
 +> NOT NULL
 +> HEADING "Employee/Number"
 +> ,first_name CHARACTER (15)
 +> DEFAULT SYSTEM
 +> NOT NULL
 +> HEADING "First Name"
 +> ,last_name CHARACTER (20)
 +> DEFAULT SYSTEM
 +> NOT NULL
 +> HEADING "Last Name"
 +> ,deptnum NUMERIC (4)
 +>. UNSIGNED
 +> NO DEFAULT
 +> NOT NULL
 +> HEADING "Dept/Num"
 +> ,jobcode NUMERIC (4) UNSIGNED
 +> DEFAULT NULL
 +> HEADING "Job/Code"
 +> ,salary NUMERIC (8, 2) UNSIGNED
 +> DEFAULT NULL
 +> HEADING "salary"
 +> ,PRIMARY KEY (empnum)
 +>)
 +> CATALOG =persnl
 +> ORGANIZATION KEY SEQUENCED
 +> ;
 --- SQL operation complete.

 >> CREATE VIEW =EMPLIST
 +> AS SELECT
 +> empnum
 +> ,first_name
 +> ,last_name
 +> ,deptnum
 +> ,jobcode
 +> FROM =employee
 +> FOR PROTECTION
 +> CATALOG =persnl
 +> ;
 --- SQL operation complete.
 .
 .
 .
 >> CREATE INDEX =xempname
 +> ON =employee (
 +> last_name
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-22

Performing Recovery Operations Recovery Example
 +> ,first_name
 +>)
 +> CATALOG =persnl
 +> ;
 --- SQL operation complete.
 .
 .
 .
 >> CREATE INDEX =xempdept
 +> ON =employee (
 +> deptnum
 +>)
 +> CATALOG =persnl
 +> ;
 --- SQL operation complete.
 .
 .
 .
 >> CREATE VIEW =mgrlist (
 +> first_name
 +> ,last_name
 +> ,department
 +>)
 +> AS SELECT
 +> first_name
 +> ,last_name
 +> ,deptname
 +> FROM
 +> =dept
 +> ,=employee
 +> WHERE
 +> dept.manager = employee.empnum
 +> CATALOG =persnl
 +> ;
 --- SQL operation complete.
 .
 .
 .
 >> CREATE VIEW =ordrep
 +> AS SELECT empnum
 +> ,last_name
 +> ,ordernum
 +> ,o.custnum
 +> FROM
 +> =employee e
 +> ,=orders o
 +> ,=customer c
 +> WHERE
 +> e.empnum = o.salesrep
 +> AND
 +> o.custnum = C.custnum
 +> CATALOG =sales
 +> ;
 --- SQL operation complete.
 .
 .
 .

5. Verify that all the objects have been re-created by issuing the SQLCI DISPLAY
USE OF command:

>> DISPLAY USE OF $DATA.PERSNL.EMPLOYEE;
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-23

Performing Recovery Operations Recovery Example
The resulting display is identical to the one shown under Recovery Example on
page 11-20. The objects exist once again. However, the EMPLOYEE table does
not yet contain any data.

6. When the objects were purged, TMF set the INVALID and RELEASED attributes of
the online dumps for the objects to ON. Before you can recover the objects, you
must first reset these attributes to OFF, using the TMFCOM ALTER DUMPS
command:

~ ALTER DUMPS (&
~ $DATA.PERSNL.EMPLOYEE &
~ ,$DATA.PERSNL.EMPLIST &
~ ,$DATA.PERSNL.MGRLIST &
~ ,$DATA.PERSNL.XEMPNAME &
~ ,$DATA.PERSNL.XEMPDEPT &
~ ,$DATA.SALES.ORDREP &
~) &
~ ,INVALID OFF &
~ ,RELEASED OFF &
~ ,SERIAL 73

 Now, you are ready to recover the table and its dependent objects.

7. Proceed with recovery by entering the TMFCOM RECOVER FILES command:

~ RECOVER FILES (&
~ $DATA.PERSNL.EMPLOYEE &
~ ,$DATA.PERSNL.EMPLIST &
~ ,$DATA.PERSNL.MGRLIST &
~ ,$DATA.PERSNL.XEMPNAME &
~ ,$DATA.PERSNL.XEMPDEPT &
~ ,$DATA.SALES.ORDREP &
~) &
~ ,FROMARCHIVE &
~ ,TOFIRSTPURGE

The objects are now recovered in the database, but additional work might remain
to be done because of possible inconsistencies between the objects’ file labels on
disk and the corresponding information for them in the SQL catalog.

TMF does not update or insert entries in the SQL catalog during a RECOVER
FILES operation for a table. As it performs recovery, TMF attempts to automatically
synchronize the objects’ create time and redefinition time between the catalog and
the file label on disk. If TMF cannot perform this synchronization, it displays EMS
Message 203 (with Subsystem Error 9038) for each inconsistency. For example:

Note. If, for any reason, the dumps were completely removed from the TMF catalog, you
would need to add them again, using the TMFCOM ADD DUMPS command. In this
command, you would also set the INVALID and RELEASED attributes to OFF.

Caution. Normally, the objects to be recovered are spread across different disk volumes and
subvolumes. However, in this example, some of the objects are located in the same subvolume
as the SQL/MP catalog. In such a case, use care to avoid recovering the catalog tables so that
the current state of the catalog is maintained.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-24

Performing Recovery Operations Recovery Example
NonStop TMF on \PLUTO *0203* RECOVER FILES [57]
OnLineRestore Process #1 OnlineDumpMgmt: *WARNING*
TMF-9038: $DATA.PERSNL.EMPLIST: Unable to retrieve the
CreateTime and RedefTime for this object from disk. Using the
values from the online dump instead.

8. At the end of recovery operation, use these EMS messages to determine which
files have timestamps on disk that are inconsistent with their timestamps in the
SQL catalog. You must then manually perform the synchronization for these
objects, as explained in Step 9 on page 11-26.

Alternatively, use the SQLCI VERIFY utility to list the inconsistencies between the
object descriptions in the file labels and in the SQL catalog:

>>VERIFY $DATA.PERSNL.*;
 .
 .
 .
--- Verifying $DATA.PERSNL.EMPLIST
*** ERROR from SQL [-9853]: Column LA^CrTime^F in disk label does
*** not match TABLES.CreateTime in catalog \HIL3.$DATA.PERSNL.
*** ERROR from SQL [-9886]: Value of LA^CrTime^F is:
*** 211929379570628303 in partition \HIL3.$DATA.PERSNL.EMPLIST
*** ERROR from SQL [-9853]: Column CatalogOptime^F in disk label
*** does not match TABLES.Redeftime in catalog
*** \HIL3.$DATA.PERSNL.
*** ERROR from SQL [-9886]: Value of CatalogOptime^F is:
 211929379552916402 in partition \HIL3.$DATA.PERSNL.EMPLIST
 .
--- Verifying $DATA.PERSNL.EMPLOYEE
--- $DATA.PERSNL.EMPLOYEE verified.
 .
 .
 .
--- Verifying $DATA.PERSNL.MGRLIST
--- $DATA.PERSNL.MGRLIST verified.
 .
 .
 .
--- Verifying $DATA.PERSNL.XEMPDEPT
-- $DATA.PERSNL.XEMPDEPT verified.
 .
 .
 .
--- Verifying $DATA.PERSNL.XEMPNAME
-- $DATA.PERSNL.XEMPNAME verified.
 .
 .
 .

>>VERIFY $DATA.SALES.*;
 .
 .
 .
--- Verifying $DATA.SALES.ORDREP
-- $DATA.SALES.ORDREP verified.
 .
 .
 .
--- SQL operation complete.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-25

Performing Recovery Operations Recovery Example
If no objects are identified as inconsistent, recovery is complete. Otherwise,
proceed to Step 9 on page 11-26.

9. Use a licensed SQLCI2 utility to update the timestamps in the SQL catalog to
match those in the file labels for all objects identified as inconsistent in Step 8. Be
sure to use a log file to record the changes to be made. Also, to reduce error, HP
recommends that you use fully qualified object names in the commands you enter.
These commands create a log file and accomplish this updating for the objects
identified in Step 8 on page 11-25 :

>>LOG $DATA.FIXUP.FIX1;
>>UPDATE $DATA.PERSNL.TABLES SET CREATETIME =
211929379570628303
>+WHERE TABLENAME = "\HIL3.$DATA.PERSNL.EMPLIST";
--- 1 ROW(S) UPDATED.

>>UPDATE $DATA.PERSNL.TABLES SET REDEFTIME =
211929379552916402
>+WHERE TABLENAME = "\HIL3.$DATA.PERSNL.EMPLIST";
--- 1 ROW(S) UPDATED.

10. Use the SQLCI VERIFY utility once again, as in Step 8 on page 11-25, to validate
the entries in the catalog against those in the file labels. If you find no mismatches,
you know that recovery of the table and its dependent objects is complete and your
work is done. Otherwise, return to Step 9.

>>VERIFY $DATA.PERSNL.*;
--- Verifying $DATA.PERSNL.EMPLIST
--- $DATA.PERSNL.EMPLIST verified.
 .
 .
 .

11. Use the UPDATE ALL STATISTICS command to update the table statistics:

>>UPDATE ALL STATISTICS for TABLE $data.persnl.employee;

--- SQL operation complete.

12. Determine if any SQL programs access the recovered table and do an explicit SQL
recompilation for those programs using SQLCOMP.

Tables That Have Indexes
Always remember that if a table has indexes, it is better to re-create the indexes, along
with the table, and then to recover them, along with the table, in the same TMFCOM
RECOVER FILES command. Otherwise, recovery will face even greater problems. The
number of indexes is maintained in the file label in the disk directory. When you use
SQLCI to create just the table and not the indexes, and later recover the table,
additional mismatches will occur between the SQL catalog and the file label in the
directory, making recovery even more difficult.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-26

Performing Recovery Operations Recovery Example
Recovering Files to New Volumes, Subvolumes, or File-IDs
You can also re-create SQL objects under different file IDs and place them on different
volumes or subvolumes than the source objects. Target objects can be created in a
different SQL catalog, but the target object description in the catalog must match that in
the source catalog. For example, in the case of a partitioned file, both the target and
source files must have the same number of partitions. Indexes for the target and
source files must match.

Because TMF does not apply SQL file-label modification records encountered in an
audit trail for a source object being recovered to the target object, the file label in the
online dump must match the file label of the newly created target, and the target’s file
label must match the final form of the source file label. Therefore, to recover to a new
location, you must take new online dumps each time the file label is modified.

SQL objects being recovered to a new location must be created before recovery, and
the target objects must exactly match the source objects. If you attempt to recover
without creating the target object, the restore process fails with Error 9037, as shown in
this example, and the object is not recovered:

NonStop TMF on \PLUTO *0202* RECOVER FILES [58]
OnLineRestore Process #1 OnlineDumpMgmt: *ERROR*
TMF-9037: $DATA17.PERSNL.EMPLOYEE: File System error 11
occurred attempting to retrieve the SQL file label from
disk.

If, for any other reason, the target object is inaccessible during the restore process, this
process also fails with Error 9037. For example:

NonStop TMF on \PLUTO *0202* RECOVER FILES [58]
OnLineRestore Process #1 OnlineDumpMgmt: *ERROR*
TMF-9037: $DATA17.PERSNL.EMPLIST: File System error 1059
occurred attempting to retrieve the SQL file label from
disk.

If TMF detects a mismatch between the source file’s label and the target file’s label, the
object’s recovery fails with Error 9036. For example:

NonStop TMF on \PLUTO *0202* RECOVER FILES [59]
OnLineRestore Process #1 OnlineDumpMgmt: *ERROR*
TMF-9036: $DATA17.PERSNL.EMPLOYE2: The SQL label for this file
does not match the label for the source $DATA17.PERSNL.EMPLOYEE.

If no mismatches occur, file recovery completes successfully. At the end of this
recovery, verify the SQL objects recovered to a different location and perform Step 9
on page 11-26 if needed.

When recovering purged SQL objects to a different location, you do not need to re-
create the source objects before recovery. Only the target objects must exist and
match the source objects in terms of indexes, number of partitions, and so forth. You

Caution. Do not attempt to recover SQL catalog files to a new location, because this action
creates unusable SQL objects.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-27

Performing Recovery Operations Recovery Example
must alter the dumps of the purged objects to reset the INVALID and RELEASED flags
before attempting recovery.

You can recover SQL objects to a different location even when the source objects have
not been purged. You can create the target objects to match the source, and then
perform recovery to obtain a copy of your source objects. Transactions can be active
against the source objects at the time of recovery.

Other Recovery Methods
Other methods of recovering a dropped SQL table are possible, but they are riskier
than the method just described. For example, you could use the same TMFCOM
RECOVER FILES command to recover the SQL catalog as well as the table and its
dependent objects. If successful, this method would eliminate the need to synchronize
the timestamps in the catalog with those in the file labels, but note:

• You must recover the catalog precisely up to the time of the SQL table drop.
Recovering to a later time causes you once again to lose the entries for the table.

• If you recover the catalog to the time of the table drop and if any updates were
done to the catalog after the drop, the resulting catalog would miss those updates.
Therefore, you should definitely avoid this method if it is possible that a catalog
update occurred after the table drop. Such a step could create even more
inconsistencies between the SQL catalog and the SQL objects. Consequently, you

Caution. Use the TOFIRSTPURGE, TIME, or TOMATPOSITION option in the RECOVER
FILES command to avoid replaying the purge operation on a target object. If you do not do this
and the file-recovery process encounters a purge record for an object being recovered to a
different location, the process terminates recovery of that object with these EMS messages:

NonStop TMF on \PLUTO *0437* RECOVER FILES [60]
FileRecovery Process #1: Encountered a purge record
for audited file $DATA16.PERSNL.EMPLIST while performing
FLABMOD REDO operation; Audit Trail Index #2, SNO #1,
RBA #22707360.

NonStop TMF on \PLUTO *0358* RECOVER FILES [60]
FileRecovery Process #1: Recovery on $DATA16.PERSNL.EMPLIST
has terminated.

Caution. If you use the MAP NAMES option of the RECOVER FILES command to recover
files to a new location, you must immediately make new online dumps of the target data files
recovered. Without these new dumps, you will not have file-recovery protection for those files,
and subsequent file recovery operations can fail. In particular, if you later try to use old online
dumps of the target files to recover the target files to a point beyond the time that the last
RECOVER FILES command was issued, the file recovery process fails during the redo phase
and transmits EMS message 175:

Encountered a File Hiatus record for audit file filename at
audit trail Index #index, SNO #sno, RBA #rba.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-28

Performing Recovery Operations Recovering Catalogs
can recover the table only by following all the steps under Recovery Example on
page 11-20.

• You cannot use this method to recover a SQL object, along with its catalog, to a
new location.

Recovering Catalogs
There are several ways you can recover a catalog that becomes corrupt.

Because the catalog tables are TMF audited tables, you can use the TMF file recovery
method to recover the catalogs to a point where the catalogs were consistent. If any
tables of the catalog have the undo-needed or redo-needed flag set, you should
recover all the catalog tables by following the TMF recovery procedures for this
method, described under File Recovery and File Recovery With the TIME Option on
page 11-14.

If TMF recovery fails or is not available, you might be able to correct the
inconsistencies by using a licensed SQLCI2 process to change catalog entries.
Inconsistencies can arise from the incorrect use of PUP commands (D-series only) and
SCF commands (G-series only) or the incorrect use of licensed programs.

Purging Damaged Objects With the CLEANUP
Utility

The SQL/MP data dictionary, consisting of file labels and the catalog descriptions of
the files, is extremely reliable because the TMF subsystem is used to audit the catalog
tables and file labels. The catalog descriptions or file labels can become corrupt,
however, through misuse of the BACKUP and RESTORE utilities, the TMF RECOVER
FILES command, low-level system utilities such as PUP and TANDUMP, or because of
software or hardware problems.

When the catalog description or file label for an object becomes corrupt, it might not be
possible to purge the object by using the normal SQLCI PURGE or DROP command.

Caution. Do not recover individual catalog tables.To keep an SQL catalog consistent, you
must recover all the tables in the catalog as a set.

Note. A verify must be done on the restored table to find cases where USAGES entries are
not updated for dependent objects that are registered in a catalog table different from the main
table. If such cases are found, rows have to be added to the USAGES table of the other
catalogs using a licensed SQLCI2.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-29

Performing Recovery Operations Purging Damaged Objects With the CLEANUP Utility
The CLEANUP utility, however, is specifically designed to purge a file, the file’s catalog
description, and any dependent objects, when the SQL object is damaged.

The command syntax for the CLEANUP utility is described in the SQL/MP Reference
Manual.

When using the CLEANUP utility to remove damaged objects, follow these guidelines:

• Be careful when using a qualified file set or the ”!” format with the CLEANUP utility
because you might inadvertently purge valid objects.

• To execute the CLEANUP utility, you must log on as the local super ID.

• The local super ID does not give you authority to purge objects on a remote node.
Therefore, to purge objects distributed over multiple nodes, you must run the
CLEANUP utility separately on each node.

• You cannot specify the CATALOGS option (for purging catalogs) and the
SHADOWSONLY option (to enable or disable removal of shadow labels) in the
same CLEANUP command.

• If the CLEANUP utility is used on a distributed database table, view, or index that
has partitions or remote dependent objects, the remaining objects and the catalogs
in which they are registered can still contain references to the objects purged with
the CLEANUP utility. This situation is most likely in the case of a network-
distributed object because the CLEANUP utility affects objects on the local node
only. Be sure you remove the entire structure of a distributed object.

• The CLEANUP utility treats the dependents of an object as individual objects and
purges them independently. Therefore, in unusual circumstances, it is possible to
run the CLEANUP utility and still have dependent objects, partitions, views, or
indexes that refer to a table that has been purged, or to be unable to apply the
CLEANUP utility to objects because they are corrupt in an unusual way. These
unusual circumstances are outlined under the discussion of the CLEANUP utility in
the SQL/MP Reference Manual. In these cases, you must use a licensed SQLCI2
process to remove the offending catalog entries, and you must use the GOAWAY
stand-alone utility to purge the disk file labels for the damaged objects.

• If an SQL program is dependent on an object being purged, the CLEANUP utility
invalidates the program but does not purge it. If the program is stored in a
Guardian file and is explicitly identified for deletion in a qualified file set, however,
the CLEANUP utility purges the program. The CLEANUP utility does not purge
SQL programs stored in OSS files.

• The CLEANUP utility does not transmit status information and operational results
to the system log. Information about operational results is returned through SQLCI,
however.

Caution. The CLEANUP utility purges undamaged files in addition to damaged ones. The
CLEANUP utility should never be used as a substitute for the SQL DROP statement or SQLCI
PURGE command. The CLEANUP utility should be used only for removing objects that cannot
be repaired using the TMF subsystem or removed by DROP or PURGE.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-30

Performing Recovery Operations Recovering From Peripheral Utility Program (PUP)
Commands (D-series only)
• You cannot specify the CLEANUP command within a user-defined TMF
transaction. The CLEANUP utility protects the database, however, by automatically
starting its own TMF transaction for each SQL object catalog description and file
label operated upon. If the CLEANUP utility fails during execution, only the deletion
of the last SQL object or partition is backed out.

Recovering From Peripheral Utility Program
(PUP) Commands (D-series only)

SQL/MP introduces new relationships between volumes and nodes in a network. Disk
names and node names are hard-coded references in the SQL/MP file labels and
catalogs. Incorrect use of PUP commands or of the MAP NAMES option in RESTORE
commands can lead to serious and possibly irreparable inconsistencies in an SQL/MP
database.

If your site needs to use any of these PUP commands on a volume with SQL objects,
you should carefully plan for a recovery method before using these commands:
LABEL, RENAME, COPY, FORMAT, REMOVE, REVIVE, DOWN and UP. Each listed
PUP command is discussed next.

PUP LABEL
PUP LABEL can irretrievably corrupt an SQL database. PUP LABEL should not be
used on disks containing SQL catalogs or objects with a few exceptions.

PUP LABEL can be used on volumes that do not contain SQL catalogs or SQL objects.
Do not attempt to recover a single volume when the database is distributed.

Use PUP LABEL on volumes with SQL objects in these situations:

• To label a disk that has been destroyed and has completely corrupt data

• To label all the disks on a node and recover the database with a complete restore

• To PUP LABEL a disk following repair or replacement if a volume with SQL objects
has a catastrophic failure and no mirrored volume is available. In this situation, you
should label the disk with its previous name.

If you use the PUP LABEL command, these are the steps for recovering the volume:

1. Use RESTORE to retrieve the nonaudited database residing on this volume; an
example of the RESTORE command follows:

50> RESTORE $TAPE, $VOL.*.*, AUTOCREATECATALOG ON,
 TAPEDATE, OPEN, LISTALL

2. Retrieve audited tables by using the most recent TMF online dumps and TMF file
recovery. To initiate a file recovery of all files on $VOL, enter this command through
one of the TMF interfaces; this example uses TMFCOM:

~ RECOVER FILES $VOL.*.*, CRASHOPEN OFF
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-31

Performing Recovery Operations PUP RENAME
3. Check that dependent objects residing on other volumes have also been recovered
and re-create objects as necessary.

For example, a table resides on another volume, but a dependent index resides on
the newly labeled disk volume. If the index was not recovered, re-create the index.
You should also check that all view definitions are current and that all shorthand
views were recovered. Re-create any views that were not recovered.

4. Depending on the date and time of the most recent BACKUP and TMF recovery
point, the restore operations might not be able to retrieve a consistent database
with mixed audited and nonaudited files. Manually resolve any inconsistencies
between audited and nonaudited database files.

5. SQL compile any programs that were invalidated by this process and that reside
on other volumes. Also, SQL compile all programs restored to $VOL to validate
them and register them in a catalog.

6. Verify the database by using the VERIFY utility; an example of the VERIFY
command follows:

>> VERIFY $VOL.*.*;

7. Drop and re-create any shorthand views that might have been left in an invalid
state. Any invalid shorthand views will be identified in Step 6.

8. Make new TMF online dumps of all catalogs and audited objects on the volume.

PUP RENAME

If a volume is renamed inadvertently, use the PUP RENAME command to rename the
volume to its previous name.

If a volume must be renamed, only a knowledgeable database administrator should
attempt the operation. Files must be backed up to tape and then restored to the
renamed volume. This task is similar to that described in Steps for Moving a Database
on page 9-25. Note that volumes can be recovered only if all the objects on the
renamed volume are described in catalogs on the same volume. If this is the case, use
the Guardian BACKUP and RESTORE utilities to back up the volume, as follows:

1. Determine all the SQL objects to be renamed and all dependencies. Produce hard-
copy reports containing this information.

Caution. Do not use RESTORE to restore an index; doing so might cause inconsistencies in
the database.

Caution. The use of PUP RENAME is extremely dangerous because it can corrupt a
database. The PUP RENAME operation renames the files on a volume, but SQL catalogs and
file labels still contain the old name. Do not use PUP RENAME on disks that contain SQL
catalogs or objects. PUP RENAME should only be used for volumes that do not contain SQL
catalogs or other SQL objects.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-32

Performing Recovery Operations PUP FORMAT
2. Create an EDIT file containing CREATE CATALOG and ALTER TABLE statements
to re-create the catalogs and reset the security of the catalog tables.

3. Back up the volume by using a file-mode BACKUP command.

Next, use PUP RENAME to rename the disk. You might first want to label the disk with
PUP LABEL to clear all the old files.

Finally, restore the files as follows:

1. Re-create the catalogs on the renamed volume using the file created in Step 2 as
the input file for the SQLCI OBEY command.

2. Restore the volume, mapping the old volume names to the new volume names in
the RESTORE command. Map the objects to the new catalogs.

3. Verify the database by using the VERIFY utility; an example of the VERIFY
command follows:

>> VERIFY $VOL.*.*;

4. SQL compile all the programs with new DEFINEs to revalidate the programs.

PUP FORMAT
The PUP FORMAT command erases all the information on a disk volume. If a disk
volume is formatted, you must follow the same procedure as you would with the PUP
LABEL command.

PUP REMOVE and PUP REVIVE
You can use the PUP REMOVE command on a mirrored volume pair to make one half
of the pair inactive. The active disk drive of the mirrored pair continues to maintain the
current database, without the protection of mirroring.

After the disk drive is removed, you can bring the disk up as a phantom drive (without a
name), label the disk with another volume name, or reuse the disk in any other way.
This operation is often done on nodes where nonmirrored disk space is needed for a
short time.

Later, you can return the previously removed disk drive to its original mirrored state by
performing a PUP REVIVE.

You should not use the removed drive to store production SQL database files. You
typically use the drive for a test database or for temporary space for sort files. The use
of the drive must ensure that you can make the volume inactive and revive the drive
back to its original mirrored configuration with no effect on the original database.

PUP DOWN (or PUP REMOVE) and PUP UP
Use the PUP DOWN or PUP REMOVE command on a volume to put a particular
volume out of operation; you can later use the PUP UP command to put the same disk
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-33

Performing Recovery Operations PUP DOWN (or PUP REMOVE) and PUP UP
back into operation. There is no danger of inconsistency as long as the disk brought up
is identical to the disk brought down. You should always perform a PUP STOPOPENS
on the volume and a PUP REFRESH on the volume to ensure valid file labels before
you make the volume inactive.

The only exception to the preceding rule is if the entire database has been consistently
brought down as a unit. For example, suppose that you use PUP DOWN to bring down
all the backup volumes of the mirrored pairs containing SQL objects in a consistent
state. The other mirrored set continues the active database, but the inactive mirrors
also contain a set of consistent SQL objects.

You can also use PUP DOWN bring down the active database and PUP UP to bring up
the saved database in a database swapping technique. This technique might be useful
for testing scenarios. As long as you bring each set of mirrors down and then up
together, each copy of the database continues to be consistent.

Caution. You cannot use PUP DOWN or PUP REMOVE on a volume and replace the volume
with an older version of that same volume without causing inconsistencies in the database.

Note. The corresponding SCF commands (G-series only) for the PUP commands (D-series
only) are listed on page 11-35. Use the same strategies for recovering from SCF commands as
indicated for PUP commands.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-34

Performing Recovery Operations SCF Commands (G-series only)
SCF Commands (G-series only)
In G-series RVUs, PUP functions are performed by SCF.

SCF is an interactive interface for configuring, controlling, and collecting information
from a subsystem and its objects. SCF enables you to configure and reconfigure
devices, processes, and some system variables while your NonStop S-series server is
online.

SCF ALTER DISK, LABEL
The ALTER DISK, LABEL command erases the existing files and writes a volume label
on a new or previously labeled volume.

SCF RENAME
The RENAME command replaces only the default or alternate name of the volume
(VOLNAME or ALTNAME options). If you use the ALTER DISK, LABEL command to
change both names, all files on the volume are deleted.

SCF INITIALIZE DISK
The INITIALIZE DISK command erases existing files, labels the disk, and starts it.

SCF STOP DISK and SCF START DISK
The SCF STOP DISK command performs an implicit remove. (An implicit remove is
also performed when the system is shut down.)

The SCF START DISK command performs an implicit revive, if needed, to update one
half of a mirrored volume.

SCF STOP and SCF START
The SCF STOP command stops the object in an orderly way. The device is not
stopped until the current activity ends.

The SCF START command starts the object or process if it is in a STOPPED state,
making it available to user processes. START DISK is also used to revive one half of a
mirrored volume that is in a STOPPED state, substate DOWN.
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-35

Performing Recovery Operations Managing Shadow Disk Labels
Managing Shadow Disk Labels
Shadow labels are the internal labels created by the disk process when SQL objects
are dropped within a transaction. Normally, these labels are deleted soon after the
transaction completes. In some situations, however, especially during abnormal
processing or a system crash, these labels are not deleted until file recovery is
performed.

Usually, shadow labels do not cause any problems on the system, but if users issue
subsequent CREATE statements to create objects with the same file name as the
shadowed label, the create operation fails.

You can remove shadow labels with the SHADOWSONLY option of the PURGE utility.

Identifying Shadow Labels
You might see shadow labels for a short period of time following the DROP or PURGE
command; this is normal. Sometimes shadow labels are left on the system.

You can detect shadow labels by using either the DSAP or FILEINFO commands. You
must run the command on all the volumes or qualified file-set lists that might have
resident SQL labels to check that no shadow labels exist.

DSAP reports the message “(SQL Shadow)” after the file name to indicate the file label
is shadow only. DSAP might also indicate that the file has doubly allocated extents.
These shadow labels might be the result of active DROP or PURGE commands that
have not removed the shadow label. The extents are allocated until the shadow label is
dropped or removed.

This command illustrates using DSAP on volume $VOL1:

51> DSAP $VOL1 DETAIL SQL

FILEINFO indicates shadow labels by displaying an S in the file type field of the report.
If you request a detailed FILEINFO display, SQL SHADOW LABEL appears in the line
describing file type; however, some other information is not available, such as key
information and index information.

These commands use FILEINFO to detect shadow labels:

>> FILEINFO *.*.*, SHADOWS

>> FILEINFO *.*.*, DETAIL SHADOWS

Removing Shadow Labels
You can remove shadow labels from the system with either the PURGE or CLEANUP
utility. The SHADOWSONLY option of these utilities enables or disables the purging of
shadow labels.

The SHADOWSONLY option is like a toggle. If you specify SHADOWSONLY, only
shadow labels in the file set list are purged; other files in the file set list are not
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-36

Performing Recovery Operations Removing Shadow Labels
considered for the purge. If you omit the SHADOWSONLY option, no shadow labels
are affected; only files in the file set list are purged.

When you use the SHADOWSONLY option, follow these guidelines.

• You must be logged on as the super ID. If you are not the super ID user, a warning
is issued and nothing is purged.

• When you run the PURGE or CLEANUP command to remove shadow labels, no
user-defined TMF transaction should be active. These utility commands are meant
to purge the shadow labels produced because of a damaged system or hardware
malfunction, but not to purge the ones produced in normal operation.

This command purges shadow labels by using PURGE:

>> PURGE $VOL1.*.*, SHADOWSONLY;

This command purges shadow labels by using the CLEANUP utility:

>> CLEANUP $VOL1.*.*, SHADOWSONLY;
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-37

Performing Recovery Operations Removing Shadow Labels
HP NonStop SQL/MP Installation and Management Guide—523353-004
11-38

12
Managing a Distributed Database

Databases can be distributed over disk volumes on a single system (node) or in a
network of nodes. Likewise, application programs can be distributed across processors
in a single node or in a network.

When managing a database distributed across volumes or nodes, use the same SQL
statements you would use with a nondistributed database. When accessing a
distributed SQL object, some SQL statements enable you to use distinct file names
that refer to individual partitions of the object. For other statements, however, a
partition name refers to the entire object rather than to the individual partition.

The distribution issues discussed in this section are divided into the general areas of
locally distributed databases (distributed over two or more disk volumes on the same
node) and network-distributed databases.

Managing a Locally Distributed Database
An SQL/MP database is locally distributed if any tables, views, or indexes are
partitioned over two or more volumes. The goals for managing a locally distributed
database are:

• Using the total available processing power of the system while balancing the
workload

• Enabling very large data files to physically spread across multiple disk volumes
while accessed as single files

Using DEFINEs for Logical Name Mapping
When you are working with distributed objects, you should always fully qualify each
reference, either in each statement or by using DEFINEs.

Use DEFINEs for a distributed database in the same way you would for a
nondistributed database. You might want to create DEFINE names for each partition of
the object because the partitions might be accessed separately. For a distributed
object, you can include the partition number in the DEFINE name to avoid any
confusion about the applicable partition in this format:

=partition-number_define-name

These DEFINE names are examples of distributed names:

=PART1_EMPLOYEE, CLASS MAP, FILE \LOCAL1.$VOL1.PERSNL.EMPLOYEE
=PART2_EMPLOYEE, CLASS MAP, FILE \LOCAL1.$VOL2.PERSNL.EMPLOYEE
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-1

Managing a Distributed Database Maintaining Local Autonomy
Maintaining Local Autonomy
Local autonomy implies that a DML request, initiated either interactively or with an
application program, can access local data, regardless of the availability of remote
dependent objects or other local dependent objects if the local data can satisfy the
request.

For example, if a table named PARTS is partitioned with a partition on $VOL1 and
another partition on $VOL2, a query of PARTS can access the partition on $VOL2
regardless of the availability of $VOL1. The $VOL2 partition can be opened upon
demand for its access if the CONTROL TABLE OPEN ACCESSED statement is in
effect.

Similarly, if a query tries to access the table named EMPLOYEE, residing on $VOL2,
through an index named IEMP2, residing on $VOL1, the query can be completed
regardless of the availability of $VOL1. If $VOL1 is not available, SQL/MP
automatically tries to find an alternate path. For more information about access paths,
see Maintaining Local Autonomy in a Network on page 12-5.

Managing a Network-Distributed Database
NonStop systems can be linked together by communication lines to create a network.
Each system on the network is called a node.

An SQL/MP database or application can be distributed over a network of nodes in
several ways:

• Tables or indexes are partitioned over two or more nodes.

• Tables, indexes, views, or programs reside on two or more nodes.

• A local shorthand view or index references a remote base table.

• Local programs access remote tables or views or use a remote access path.

• Remote programs access local tables, views, or indexes.

The goals for managing a network-distributed database area follows:

• Efficiently share data among users located remotely from one another.

• Allow for local identity and control while sharing information.

• Eliminate duplication of data.

• Increase the local computing power by the aggregate total of the computing power
of the network.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-2

Managing a Distributed Database Naming Nodes
Naming Nodes
An SQL/MP system requires a node name. An SQL/MP system in a network requires a
node number in addition to a node name.

After an SQL/MP database is created using a node name and node number, you
should minimize changes to the name and number. The node name is expanded in the
catalog entries, and the node number is entered in the file labels throughout the
database. Choose your node name and number carefully so that you will not need to
change them in the future.

Using DEFINEs for Network Object Names
When you work with distributed objects, always fully qualify each reference, either in
each statement or by using DEFINEs.

Use DEFINEs for a network distributed database in the same way you would for a local
system. For a network distributed system, however, you should include the node name
in the DEFINE name to avoid any confusion about the applicable node.

A possible format for DEFINE names that include the node name follows:

=node-name_define-name

These DEFINE names are examples of distributed names:

=REMOTE1_EMPLOYEE, CLASS MAP, FILE
\REMOTE1.$VOL1.PERSNL.EMPLOYEE
=LOCAL_XEMP, CLASS MAP, FILE \LOCAL.$VOL3.PERSNL.EMPLOYEE

Always qualify the =_DEFAULTS DEFINE with the fully qualified name, including the
node name. Likewise, you should always fully qualify names in VOLUME and
CATALOG commands.

When using the SYSTEM command with SQLCI, the node (system) you specify is
stored in the volume.subvolume string. Then, when you specify Guardian names
without fully qualifying them, these names are expanded with the fully qualified volume
string that includes the node you specified.

The CATALOG string also stores a fully qualified catalog name, such as
\SYS1.$VOL1.SALES. The CATALOG command qualifies a partially specified catalog
name by using the current node and does not automatically expand the name by
using the node name stored in the SYSTEM volume.subvolume string.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-3

Managing a Distributed Database Using Catalogs in a Network
Using Catalogs in a Network
Each node must have a system catalog and catalogs for the objects located on that
node. A catalog can hold the descriptions of objects that reside only on the same node.
For example, you cannot describe a table on node \SYSA in a catalog that resides on
node \SYSB.

For distributed and partitioned tables or indexes, you must define a catalog to describe
the partition resident on that node. Partitioned tables and indexes must have the table
or index description in a catalog on each node where any partition resides;
consequently, each node with a partition maintains a copy of the description.

When a distributed SQL object is created, the fully qualified Guardian name of the
object (\system.$vol.subvol.filename) is coded in each catalog that contains a
description of the object and also in the file label.

Managing Network Security
Managing a network-distributed database has additional demands on security and
authorization schemes.

All users of a distributed node must have remote passwords for remote access. All
remote objects and local objects must be secured for network access.

In addition to the authority and security for the SQL objects, statements that require
access to catalogs also require that the remote catalogs be secured for network
access.

For security in a local node in a network, the rule for authority is this: to perform DDL
operations on existing objects you must be the local owner of an object, a remote
owner with authority to purge the object, or the super ID.

Authority to purge the object is required to drop a table, program, or view. Authority to
purge the underlying table is required to drop an index or constraint.

For security on a remote node, the rule for authority is this: to have the authority to
perform DDL operations on an existing object, you must be the remote owner of the
object with authority to purge the object. To drop a table, program, or view, you must
have authority to purge that object. To drop an index or constraint, you must have
authority to purge the underlying table. The super ID does not have the remote
capabilities that the super ID has in the local environment.

Group managers, like other users, must meet the normal purge authority requirements
to perform DDL operations on a remote object; however, a group manager can read,
write, or execute any object owned by any member of the group. The remote object
must be secured for remote access with the letters U, C, or N.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-4

Managing a Distributed Database Maintaining Local Autonomy in a Network
Maintaining Local Autonomy in a Network
In the context of a network distributed database, local autonomy ensures that a user
can access local data regardless of the availability of remote dependent objects. For
example, if a table is partitioned with a portion on \SYS1 and another portion on \SYS2,
a local user of \SYS1 can access the local partition of the table when \SYS2 is not
available. This access is useful, of course, only if the needed rows reside in the
partition on \SYS1.

Each partition of a distributed table or index is described in a catalog on each local
node. This duplication of description allows for local autonomy. Access to the primary
partition of a distributed table or index is not required to access any other partition. For
index-only scans, however, the partition of the base table that corresponds to the
requested data range must be accessible.

In a distributed application, you can maximize local autonomy by referring to a local
partition as a table name in local programs.

When the program refers to a local partition, the SQL compiler checks for information
about the table in a local catalog. When a program refers to a remote partition, the
SQL compiler must check for information about the table in the remote catalog. If the
remote node is down, SQL compilation fails. When the local node is up and the data is
available locally, the local SQL compilation can succeed.

By using DEFINEs and a program to refer to tables, and by associating the DEFINEs
with local partitions, you increase the possibilities for successful SQL compilations for
programs that use distributed data. This advantage applies to explicit SQL
compilations, automatic SQL recompilations, and dynamic SQL statement
compilations.

Local Autonomy and DML Operations
Local autonomy applies to run time DML access. When a node required for an access
path is detected as unavailable at run time, the DML statement can be SQL recompiled
to find another access path using the available nodes. If there is another access path,
the statement is executed.

An INSERT, UPDATE, or DELETE statement cannot complete if the statement tries to
write or delete a row in an unavailable table, index, or partition of a table or index.

For example, a table and two indexes are located on two different nodes:

• Table X (Columns A1, B1, C1, C2, C3, C4) resides on \NODE1

• Index A, using Columns A1 and B1, resides on \NODE3

• Index B, using Columns A1 and C4, resides on \NODE1

Using this table and these indexes, these scenarios illustrate some of the features and
restrictions of local autonomy for DML operations:
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-5

Managing a Distributed Database Maintaining Local Autonomy in a Network
• If a query uses Index A as the access path but \NODE3 is down, the query is
recompiled to attempt to access the data by using Index B or by using the primary
key residing on \NODE1.

• If an INSERT statement tries to insert a row into Table X with values for all the
columns, the insert fails if \NODE3 is down, because Index A cannot be updated.

• If an UPDATE statement tries to update Columns C1 and C2 of Table X, the update
completes although \NODE3 is unavailable, because Index A on \NODE3 is not
required for the update.

Local Autonomy and DDL Operations
Local autonomy does not usually apply to DDL operations, which usually require the
availability of all dependent objects affected by the operation. For example, the
CREATE INDEX statement requires that all partitions and protection views of an
underlying table be available. Certain DDL statements, however, such as ALTER
TABLE PARTONLY, can be performed successfully on the partition involved.

Local Autonomy and SQL Compilations
Autonomy is also not completely supported at SQL compile time. A program is
compiled with the best query execution plan only if all the local and remote catalogs of
the tables, views, and associated indexes are available. If all the required information
is available and the compilation is successful, the program is entered in the
PROGRAMS and USAGES tables and marked valid in the catalog and in the program
file label.

SQL compilations that occur when nodes are unavailable can still register the compiled
programs in the PROGRAMS and USAGES catalog tables and mark the programs as
valid if the FORCE option was chosen. Those statements that could not be compiled
with the best query execution plan are marked invalid on a statement-by-statement
basis. The invalid statements will be automatically recompiled at run time.

You should SQL compile programs used in a network only when all referenced nodes
are available so that the compiler can create the best query execution plan. You should
also use the RECOMPILE option of the SQL compiler so that the automatic
recompilation can occur at run time if access paths become unavailable.

For more information about the access strategies of programs, see Section 10,
Managing Database Applications.

Network Availability and Use
Network lines have a direct impact on the performance of a distributed database. The
line speed, network routing, and network message traffic use significantly affect
response time. The setup and management of a network should be thoroughly studied
by the system or network manager. For more information, see the Communications
Management Interface (CMI) Operator Reference Manual.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-6

Managing a Distributed Database Creating a Distributed Database
Remote Node Availability
Unavailable remote nodes can prevent programs that require data from those nodes
from obtaining needed data. You can, however, distribute data in an SQL/MP database
so that local data is stored locally and is available locally regardless of remote node
availability.

To ensure automatic recompilation for programs when access paths become
unavailable, you should explicitly SQL compile programs in a distributed environment
with the RECOMPILE compiler option.

Automatic recompilation can decrease performance for the amount of time required to
recompile the program or statement for the first time. When the same program is again
executed after the node has been restored to the network, the program is not
automatically recompiled but uses the original plan determined by the SQL compiler
when the program was explicitly compiled. A running process, however, does not
revert to the original query execution plan; only a newly started process would attempt
to use that plan.

Creating a Distributed Database
Objects can be distributed individually or distributed as partitions of tables or indexes.

Objects are distributed at creation by fully qualifying the names in the CREATE
statement or DEFINE. If you have the authority, you can create objects on a remote
node or create local objects that refer to remote objects.

All nodes referred to in a CREATE statement must be available to create an object.

This example creates a local shorthand view on both a local and a remote table:

>> CREATE VIEW \LOCAL.$VOL1.SALES.REPORDS
+> AS SELECT A.SALESREP, A.ORDERNUM, A.DELIV_DATE,
+> B.CUSTNUM, B.CUSTNAME
+> FROM \LOCAL.$VOL1.SALES.ORDERS A,
+> \REMOTE.$VOL4.SALES.CUSTOMER B
+> WHERE A.CUSTNUM = B.CUSTNUM
+> CATALOG \LOCAL.$VOL1.SALES;
--- SQL operation complete.

This example creates a remote table and a local index on the table. The table and
index are registered in catalogs on the nodes on which they reside.

>> CREATE TABLE \REMOTE.$VOL4.SALES.PARTS
+> (PARTNUM NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
+> PARTDESC CHARACTER (18) NO DEFAULT NOT NULL,
+> PRICE NUMERIC (8,2) NO DEFAULT NOT NULL,
+> QTY_AVAILABLE NUMERIC (7) DEFAULT SYSTEM NOT NULL,
+> PRIMARY KEY PARTNUM)
+> CATALOG \REMOTE.$VOL4.SALES
+> SECURE "NNOC";
--- SQL operation complete.
>> CREATE INDEX \LOCAL.$VOL1.SALES.XPARTDES
+> ON \REMOTE.$VOL4.SALES.PARTS (PARTDESC)
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-7

Managing a Distributed Database Altering Distributed Objects
+> CATALOG \LOCAL.$VOL1.SALES;
--- SQL operation complete.

This example creates a partitioned table with partitions on both a local node and a
remote node:

>> CREATE TABLE \LOCAL.$VOL1.INVENT.PARTLOC
+> (LOC_CODE CHARACTER (3) NO DEFAULT NOT NULL,
+> PARTNUM NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
+> QTY_ON_HAND NUMERIC (7) NO DEFAULT NOT NULL,
+> PRIMARY KEY (LOC_CODE, PARTNUM))
+> CATALOG \LOCAL.$VOL1.INVENT
+> ORGANIZATION KEY SEQUENCED
+> PARTITION (\REMOTE1.$VOL2.INVENT.PARTLOC
+> CATALOG \REMOTE1.$VOL2.INVENT
+> FIRST KEY "G00",
+> \REMOTE2.$VOL3.INVENT.PARTLOC
+> CATALOG \REMOTE2.$VOL3.INVENT
+> FIRST KEY "P00")
+> SECURE "NNOO";
--- SQL operation complete.

When creating a table on a remote system, the local system default multibyte character
set is used.

Altering Distributed Objects
You can perform alter operations on distributed databases, as described under Altering
Database Objects on page 7-13.

The ALTER statement allows these operations to be performed on partitions
independently of the other partitions: you can allocate or deallocate extents or specify
a different MAXEXTENTS value for each partition. To alter these attributes, use the
PARTONLY option of the ALTER statement. PARTONLY applies to tables or indexes.
Alterations that do not allow the PARTONLY option affect the entire table or index (all
distributed partitions of a table or index).

This example demonstrates altering the maximum extents. In the example,
$VOL1.SALES.ORDERS is a secondary partition of a partitioned table.

>> ALTER TABLE $VOL1.SALES.ORDERS PARTONLY MAXEXTENTS 124;
--- SQL operation complete.

You can also add, split, or drop partitions of tables or indexes, as explained in
Section 7, Adding, Altering, Removing, and Renaming Database Objects.

Note that ALTER operations are subject to versioning requirements. For example, you
cannot use the WITH SHARED ACCESS option with a split, merge, or move boundary
request unless each source object and each target object reside on a node running
version 315 or later of SQL/MP software. You can only perform DML or DDL operations
on tables with extended partition arrays from nodes running version 320 or later of
SQL/MP software.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-8

Managing a Distributed Database Dropping Distributed Objects
Dropping Distributed Objects
When you DROP or PURGE a distributed table, all indexes, partitions, and views must
be accessible, in addition to the catalogs that describe these objects. If you do not
have the authority to drop a shorthand view, the operation only invalidates the view.

When you specify dropping any partition of a table or index, the operation drops the
entire table or index. You cannot specify a DROP, PURGE, or PURGEDATA operation
on any individual partition.

You can also drop empty partitions of a table or index with the ALTER TABLE or
ALTER INDEX statement. Dropping partitions is discussed in Dropping Partitions of
Tables and Indexes on page 7-32.

Enhancing Performance for a Distributed
Database

The performance issues of a distributed database encompass those of a local
database and also include these:

• Effective use of local partitions or indexes

• Use of replicated data to increase local performance

• Use of remote servers to increase performance

These issues, not covered in this manual, also affect performance of a distributed
database:

• Network availability and use

• Remote node availability

For additional information about enhancing performance, see Section 14, Enhancing
Performance.

Using Local Partitions and Indexes
Defining local partitions of a table, so that the local partition can satisfy a significant
number of local queries, can improve performance. Also, the local partition remains
available to satisfy the queries even when other nodes are unavailable.

Performance might also improve for queries on a remote table if a local index exists to
resolve queries locally. If the local index columns can resolve a query, the SQL
executor does not need to query the remote table.

Before defining the index or local partitions, you must weigh the benefits against any
performance considerations that occur when the underlying table is modified. Insert,
update, or delete operations on the table from anywhere in the network also require
access to the local index and possibly to the local partition.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-9

Managing a Distributed Database Supporting Replicated Data Through Indexes
This example creates a local index on a remote table:

>> CREATE TABLE \REMOTE.$VOL1.SALES.CUSTOMER (
+> (CUSTNUM NUMERIC (4) UNSIGNED NO DEFAULT NOT NULL,
+> CUSTNAME CHARACTER (18) NO DEFAULT NOT NULL,
+> STREET CHARACTER (22) NO DEFAULT NOT NULL,
+> CITY CHARACTER (14) NO DEFAULT NOT NULL,
+> STATE CHARACTER (12) DEFAULT SYSTEM NOT NULL,
+> POSTCODE CHARACTER (10) NO DEFAULT NOT NULL,
+> CREDIT CHARACTER (2) DEFAULT "C1" NOT NULL,
+> PRIMARY KEY CUSTNUM)
+> CATALOG SALES
+> ORGANIZATION KEY SEQUENCED
--- SQL operation complete.

>> CREATE INDEX \LOCAL.$DATA1.SALES.XCUSTNAM
+> ON SALES.CUSTOMER (CUSTNAME)
+> CATALOG \LOCAL.$DATA1.SALES;
--- SQL operation complete.

This query can be satisfied by information in the local index. The query should be able
to be completed without retrieving data from the remote underlying table.

>> SELECT CUSTNAME
+> FROM \REMOTE.$VOL1.SALES.XCUSTNAM;

Supporting Replicated Data Through Indexes
SQL/MP does not specifically support replicated data except through indexes. You can
create an index on a remote node with all the columns in the table as keys in the index,
provided the index row length does not exceed the maximum length. This technique
effectively provides system support for replication.

SQL/MP supports replication through indexes as follows:

• First, create an index on a remote node that specifies all the columns except the
primary key columns in a local table; the primary key columns are included in the
index automatically.

• When you update the local table, SQL/MP automatically updates the index at the
remote node. Because the index contains all columns in the table, this approach is
just the same as updating a replica of the table at the remote node.

• When you run a query at the remote node to select data from the table, SQL/MP
selects the data from the index because the index is local to the query.

• When you run a query at the local node to select data from the table, SQL/MP
selects the data from the table because the table is local to the query.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-10

Managing a Distributed Database Using Remote Servers
Using Remote Servers
When you use a network-distributed database, you can often control whether remote
data is updated directly by a local server or indirectly by a remote server. Any local
program can update or retrieve data directly by using the remote I/O capabilities of the
Guardian file system and disk process.

Alternatively, when you need to update data stored at a remote node, you can send a
message containing an update request to a server at that remote node. Ultimately, this
issue might be one of performance and processing power distribution across nodes.

One of the main advantages of using a remote server for distributed processing is to
reduce the amount of data sent across communication lines. One message makes the
request of the server at the remote node. Then, that server manages all access to, and
updating of, the remote data. This approach reduces message traffic on the slower
communication lines and increases performance.

Managing Processor Usage in a Distributed
Environment

For a query that executes in parallel in a distributed system or network, you can
choose a specified set of processors in which the query will run. The remaining
processors are free for other tasks—for example, executing a different type of query for
another application.

You control processor usage by using the _SQL_CMP_CPUS DEFINE. Before
compiling a query, you add this DEFINE to select a set of “usable” processors. The
optimizer chooses an access plan that uses only the allowable processors for executor
server processes (ESPs) and for temporary files chosen for repartitioning.

The DEFINE influences all parallel execution plans compiled while the DEFINE is in
effect. You can reset the DEFINE to change the usable processors before compiling
other queries, so different queries can have different “usable” processors.

By determining that certain sets of queries (or applications) run on certain processors,
you can improve the performance and manageability of a distributed system or
network—especially one used for multiple purposes. You can select usable processors
in a single node or across multiple nodes.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-11

Managing a Distributed Database Design Examples
Design Examples
These examples suggest the potential benefits of using the _SQL_CMP_CPUS
DEFINE:

• A development-and-test environment and a production environment share a single
system. By limiting the development and test activity to certain processors, you
enhance the performance of the production queries.

• You have an existing OLTP environment, possibly supported by batch applications,
and an expanding DSS environment. As (or before) you scale up the DSS
environment, it shares processor resources with the OLTP environment. By
segregating the batch queries and DSS queries into separate processors, you can
improve the performance of both.

The mixed workload feature already allows you to prioritize DP2 requests for
different queries. Limiting processor use for different queries increases your ability
to manage query performance in a multiple-use environment. For a brief
description of the mixed workload feature, see the Introduction to NonStop
SQL/MP.

These considerations apply to the _SQL_CMP_CPUS DEFINE:

• It only operates on queries that use parallel execution plans. The DEFINE
influences the location of ESPs but not the location of the master executor, so
serial plans are not affected by it.

• It does not determine the processor locations of multiple sort processes used in a
parallel execution plan. However, the ESPs communicating with the sort processes
are limited to the processors specified in the DEFINE.

• It does not determine the processor locations of disk processes involved in the
query. Partitions accessed by the query determine the locations. Each partition is
accessed by a disk process in the processor managing that partition’s disk volume,
regardless of whether the processor is specified as usable by the DEFINE.

Consequently, when you use this DEFINE to limit the usable processors, you can still
read tables partitioned across disk volumes primaried to “unusable” processors. This
gives you two basic design options:

• You can limit the usable processors to a smaller or different set than the set of
processors that manages access to the database. This approach makes a single
database available to different types of queries (or applications), but you should
limit the processors used in each type of query.

• You can partition your tables so that the same set of processors manages data
access and is specified as usable for parallel queries. This choice lets you
completely segregate the processors for separate uses.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-12

Managing a Distributed Database SQL Compilation and the CPU Usage DEFINE
You can use this feature together with the SMF product to manage resources in a
distributed environment. For example, to set up a system in which a specified subset of
processors performs both parallel query operations and data access for a particular
application:

1. Using SMF, create a storage pool and assign it physical volumes that are all
primaried to a specified set of processors.

2. Create partitioned tables and indexes for the application; use virtual volumes
associated with the storage pool defined in Step 1.

3. Set the _SQL_CMP_CPUS DEFINE to limit parallel queries (ESPs) to the specified
set of processors.

4. Compile the programs for the application.

These steps suggest in a general way how to use these two features together. Specific
uses will vary according to the requirements of your environment.

For an overview of the benefits of using SMF to manage disk volumes for partitioned
SQL tables, see Creating Partitions on a System That Uses SMF on page 5-32. For
more information about using SMF, see the Storage Management Foundation User’s
Guide.

SQL Compilation and the CPU Usage DEFINE
The _SQL_CMP_CPUS DEFINE affects the compilation of queries. In a parallel
execution plan, the compiler assigns ESPs to the processors specified as usable by
the DEFINE. If a processor is unavailable at compilation time, the compiler does not
assign any ESPs to that processor, although the DEFINE has specified it as usable.

If a processor that was specified as usable is unavailable at run time, the executor
reassigns its ESP to another processor. The substitute processor does not have to be
described as usable by the DEFINE.

You can reset the DEFINE after you compile (and run) a query. If you need to
recompile the query, or if it undergoes automatic recompilation, the compiler will use
the potentially different DEFINE values in effect at the time of recompilation. If you
want the compiler to use the original DEFINE values, use the STOREDDEFINES
option when you first compile the query. For more information about the
STOREDDEFINES option, see Using DEFINEs During Compilation on page 10-32.

Using the Processor Usage DEFINE
You specify which processors are usable in a given system by using the FILE clause of
the _SQL_CMP_CPUS DEFINE. The FILE clause has the format Xhhhh.The four
variables (hhhh) are hex characters that identify up to 16 processors in a system.
Each hex character identifies four processors, as follows:

First hex character: CPUs 0-3
Second hex character: CPUs 4-7
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-13

Managing a Distributed Database Using the Processor Usage DEFINE
Third hex character: CPUs 8-11
Fourth hex character: CPUs 12-15

SQL translates each hex character into its binary counterpart. Each bit represents one
processor. If a bit is on, SQL uses the corresponding processor. If a bit is off, SQL does
not use the corresponding processor.

This hex conversion table shows how each hex character represents four processors
with on or off bits:

If you have fewer than 16 processors in a system, you can use fewer than four hex
characters in the FILE clause. SQL assumes that missing trailing hex characters are
zero, so the processors they represent are not used.

For a complete description of the syntax of the _SQL_CMP_CPUS DEFINE, see the
SQL/MP Reference Manual.

To use hex conversion to specify the processors you want to use:

1. Determine the processor numbers you want to use. For example, suppose that you
want to use processors 0, 1, 2, 3, 8, 10, 12, and 15.

2. Lay out the processor numbers from 0 through 15 (or your highest processor
number). Place a 1 under each specified processor you want to use. Place a 0
(zero) under each specified processor that should not be used.

3. Convert the numbers to their hex counterparts.

4. Use the hex characters in the FILE clause of the _SQL_CMP_CPUS DEFINE.

In this example, suppose that you want to use processors 0, 1, 2, 3, 8, 10, 12, and 15:

CPU #: + 0 1 2 3 + 4 5 6 7 + 8 9 10 11 + 12 13 14 15
ON/OFF: + 1 1 1 1 + 0 0 0 0 + 1 0 1 0 + 1 0 0 1
HEX value: F 0 A 9

Using this conversion, you can set the DEFINE as follows:

>> ADD DEFINE =_SQL_CMP_CPUS_SYS1, CLASS MAP, FILE XF0A9;

Hex Binary (CPUs on or off) Hex Binary (CPUs on or
off)

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-14

Managing a Distributed Database Changing Network Environments
In the preceding example, the SYS1 specifies the system for which you are controlling
processor usage. If you do not include a system name, the DEFINE applies to the
current system.

This example limits the processor usage on \MYSYS to processors 0 and 1:

>> ADD DEFINE =_SQL_CMP_CPUS_MYSYS, CLASS MAP, FILE XC;

This example limits the processor usage on \DEV1 to processors 2 and 3:

>> ADD DEFINE =_SQL_CMP_CPUS_DEV1, CLASS MAP, FILE X3;

This example limits the processor usage on \PROD1 to processors 0, 2, 4, 6, 8, 10, 12,
and 14:

>> ADD DEFINE =_SQL_CMP_CPUS_PROD1, CLASS MAP, FILE XAAAA;

Changing Network Environments
Network environments are often subject to change. Nodes can be added or removed,
system configurations at each node can change, the operating system can be updated
independently at each node, communication line speeds or types can change, and the
needs of the node with respect to the database or application can change.

Many of these changes do not affect the SQL database or environment and need not
concern you if you are a system manager. Certain changes, however, can cause
problems or affect the SQL environment and must be anticipated.

Generally, these situations need to be considered on a case-by-case basis:

• A new node is added to the network. This addition does not affect the existing
database scheme. To access this node and incorporate it into the overall
environment, however, network passwords and security must be added to all other
nodes. After SQL is initialized on this node, SQL objects can be placed on the new
node.

• An existing node is permanently removed from the network. All SQL objects that
refer to this node and all distributed SQL objects using this node must be purged
before the node is removed. If objects referring to this node are left in the
environment, these objects will receive errors from SQL on the remaining nodes.

• A node must be renamed or given a new node number. This procedure can be
complex because the objects throughout the network that refer to an object,
partition, view, or index on this node have the node name and number embedded
in the file labels and referred to in the catalogs. For more information, see
Renaming or Renumbering a Node on page 9-32.

• The operating system at a node is updated. Usually nodes run compatible but
different operating systems. Consult the current software release documents for
compatibility issues between operating system releases.

• Communication to a node is lost. Situations can occur where nodes become
unavailable for various reasons. If at all possible, network transactions should be
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-15

Managing a Distributed Database Changing Network Environments
quiesced before the communication loss for planned downtime. Transactions on
other nodes will continue, and might not be adversely affected, as a result of local
autonomy, but you might need to use one of the TMF interfaces (such as
TMFCOM) to back out or commit the transactions manually. Transactions requiring
data on the unavailable node return errors. After communication is restored,
transactions can proceed normally.

• Recovery takes place for a system crash on a single node. If a node crashes, you
can recover it by using a TMF recovery method. HP recommends that you initiate
the START TMF, TRANSACTIONS OFF operation at the crashed node. This
approach enables the TMF subsystem to resolve any network-distributed
transactions active at the time of the crash and to attempt volume recovery.

Keeping TRANSACTIONS OFF during this procedure enables the function to
complete successfully, before new transactions are introduced to the database. If
the node is successfully recovered, transactions can then be turned on. For
additional information, see the TMF Operations and Recovery Guide.

• A number of situations can cause severe problems with the consistency of a
SQL/MP database. Various techniques can resolve these problems. You should
not, however, attempt these operations without help from your service provider:

° Recovering a node with distributed objects by using the TIME option of the
TMF subsystem, which can cause an inconsistent database

° Performing a RESTORE of objects on a node, such that the restored objects
are not consistent with the rest of the database

° Changing a node name or number by performing a system generation
(SYSGEN)

° Performing licensed SQLCI2 operations inconsistently throughout the network
catalogs

° Using the CLEANUP utility on portions of a network database, which can leave
unresolvable references in other catalogs

° Loading or copying inconsistent data into a network partition

If any situation arises that you think might affect the network-distributed SQL database,
contact your service provider for additional information.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-16

Managing a Distributed Database Managing Mixed Versions of SQL/MP
Managing Mixed Versions of SQL/MP
Sometimes a network might be required to run in a SQL/MP mixed-version
environment. These activities can produce this situation:

• Running different versions of SQL/MP software simultaneously on separate nodes
of an interrelated SQL database application

• Running a newer version of SQL/MP software on a development node that
supports a production node or nodes running an older version of SQL/MP software

• Upgrading to a newer version of SQL/MP or downgrading to an older version

Different SQL/MP software versions are not a concern if the nodes involved in a
network are not database-interrelated. If your network is operating in one of the
preceding scenarios, however, see the SQL/MP Version Management Guide for
information about software and object version compatibilities in mixed-version
networks.

If your network has nodes running C-series and D-series software, processes on
D-series nodes must run at a low PIN if they communicate with processes on C-series
nodes. For more information, see Mixed-Version Network Considerations on
page 2-13.
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-17

Managing a Distributed Database Managing Mixed Versions of SQL/MP
HP NonStop SQL/MP Installation and Management Guide—523353-004
12-18

13 Measuring Performance
During the life of an SQL application, you might need to measure the performance of
all, or part, of the application. Several NonStop software products can provide
statistical information about performance.

Collecting these statistics requires an in-depth understanding of the system, the layout
of the database tables, and the use of the application programs. You usually gather
statistics under one of these conditions:

• A benchmark of performance. Typically, you obtain statistics for a benchmark
during ideal conditions when all volumes and nodes are available and functioning
at peak performance. You obtain these statistics on a finite set of data loaded for
the best possible performance.

• A performance problem. Typically, you obtain statistics to determine the cause of a
problem. You might have to obtain several samples during different periods of time
to compare the results.

• A general sampling. To monitor performance as the SQL database grows and
changes, you should periodically obtain a sample of statistics and compare the
results against previous samples.

• An equipment change or move requiring database relocation. Whenever the
database is moved or changed, you should obtain a performance sampling; the
move or change can affect performance.

This section provides an overview of the tools you can use to gather statistics. You can
then use these statistics to determine ways of enhancing performance for your
application. Enhancing performance is discussed in Section 14, Enhancing
Performance.

SQL/MP Tools for Gathering Statistics
Both SQLCI and the SQL programmatic interface have tools for gathering statistics.

The SQLCI commands that display statistics are:

• FILEINFO utility

• SET SESSION STATISTICS ON command

• DISPLAY STATISTICS command

The programmatic data area that receives statistical information is the SQL statistics
area (SQLSA).
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-1

Measuring Performance FILEINFO Utility
FILEINFO Utility
The SQLCI FILEINFO utility displays the physical characteristics of SQL tables,
indexes, views, collations, and programs. FILEINFO also displays information about
Enscribe files. You typically use FILEINFO to display the file label information of files.

For performance statistics, use the FILEINFO utility to determine the index levels and
extent and data block use of a table or index. You can improve application performance
by effectively using data and index blocks and by effectively using free space in these
blocks as follows:

• Index levels

Index levels are a factor that the SQL compiler analyzes when determining the
best access path for a statement, because performance improves as the number of
levels decreases. You can obtain the index levels of an index by using the
FILEINFO index-file-name, the DETAIL command, or by querying the
INDEXES catalog table containing the description of the index.

• Extent use

The EXTENTS option of the FILEINFO utility displays information about the
number and use of a file’s extents. You can use this information to monitor
available extents of a file or empty extents.

For distributed or partitioned tables or indexes, you can determine the extent
spread over the partitions.

• Data block use

The STATISTICS option of the FILEINFO utility displays a map of the data blocks.
This information shows used blocks, free blocks, number of records in a file, and
slack information. As a file becomes full, the slack and free blocks decrease. With
less space, insert and update operations can cause block splits.

For OSS files, these considerations apply:

• You cannot specify an OSS path name as input to the FILEINFO command, but
you can specify the Guardian ZYQ name associated with the OSS program.

• The name of an OSS file is displayed in its Guardian file name equivalent and then
in its path name format. If there is more than one path name linked to the program,
only one path name is displayed (the first path name available to the current user).

• Several informational items are not displayed because they do not apply to OSS
files. For example, the EXTENTS option displays a message that EXTENTS
information does not apply to an OSS file.

• The owner and security are displayed as OSS.

• The STATISTICS option is equivalent to the DETAIL option.

As an alternative, run FUP or an appropriate OSS utility to obtain information about an
OSS file.
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-2

Measuring Performance SET SESSION STATISTICS and DISPLAY
STATISTICS Commands
SET SESSION STATISTICS and DISPLAY STATISTICS
Commands

SQLCI provides the STATISTICS option of the SET SESSION command; this option
displays the statistics after each DDL, DML, or DCL statement executed in the session.

You can also use the DISPLAY STATISTICS command to get statistics on a single
statement. The DISPLAY STATISTICS command displays statistics for the immediately
preceding DDL, DML, or DCL statement.

To obtain statistics, you use either of these commands in your SQLCI session:

>> SET SESSION STATISTICS ON; --Enter before statements

>> DISPLAY STATISTICS; --Enter after a statement

The statistics displayed after each statement appear in this format, preceded by
information about statement execution timing:

 Records Records Disk Message Message Lock
Table Name Accessed Used Reads Count Bytes WE

Elements of the display follow:

• Table Name is the name of the table for which statistics are being displayed.

• Records Accessed gives a count of the number of records accessed in each table.
This count includes records examined by the disk process, the file system, and the
SQL executor.

• Records Used gives a count of records actually used by the statement. For
INSERT and FETCH operations, the count is always 0 or 1. For UPDATE,
DELETE, and SELECT operations, the count can be greater than 1.

• Disk Reads gives a count of the number of disk reads caused by accessing this
table.

• Message Count gives a count of the number of messages sent to execute
operations on this table. For example, a FETCH operation through a secondary
index generally sends two messages.

• Message Bytes gives a count of the message bytes sent to access this table.

• Lock displays flags indicating that lock waits occurred (W) or that lock escalations
occurred (E) for the table. If this field is blank, no locks were obtained during the
processing of this statement.

For example, the DISPLAY STATISTICS command might present this data:
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-3

Measuring Performance SQL Statistics Area (SQLSA)
Estimated Cost 9

Start Time 89/04/01 13:07:12.822479
End Time 89/04/01 13:07:18.865150
Elapsed Time 00:00:06.042671
SQL Execution Time 00:00:00.392796

 Records Records Disk Message Message Lock
Table Name Accessed Used Reads Count Bytes WE
\a.$b.c.d 123 22 3 10 3245
\w.$x.y.z 9987231 1 99999 1 100 e
\sanfran.$mamoth.longestt.filename
 1 1 0 1 100 w

With these statistics, you can quickly monitor the performance of a specific statement
on specific objects. The information provided can help you to:

• Determine the comparative performance of similar objects. For instance, you can
determine the effect of a new index on a table compared to the performance
without the index, or you can determine the performance after an UPDATE
STATISTICS statement.

• Display the statistics of various queries or DML statements.

• Monitor the estimated cost of a compiled statement or an ad hoc query. The larger
the estimated cost, the greater the execution time. You can then investigate costly
SQL statements for additional indexes, for out-of-date statistics on referenced
tables, or for poorly designed queries.

SQL Statistics Area (SQLSA)
The SQL statistics area (SQLSA) is a data area programmers can use to receive
statistics after SQL statement execution. To use this area, programmers must include
the INCLUDE SQLSA statement in the host language program. When the SQLSA is
present, the program passes the data area to the SQL executor; then the executor
accumulates and returns statistics.

The DML statements for which statistics are returned are: OPEN CURSOR, FETCH,
SELECT, INSERT, UPDATE, and DELETE. Statistics are also returned for prepared
DML statements executed with either the EXECUTE or EXECUTE IMMEDIATE
statement.

Statistics are kept on a table-by-table basis for a maximum of 16 tables. These
statistics include the number of tables accessed, records accessed, records used,
number of disk reads, number of wait times for locks, and so forth.

SQLSA statistics also return the total processor time used by all ESPs and sort
processes (SORTPROGs). These statistics are useful for queries that use parallel
execution plans. They are not kept for each individual table or for each individual ESP
or SORTPROG, but rather for all tables and ESP and SORTPROG processes involved
in the query.
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-4

Measuring Performance Measure Performance Measurement Tool
SQLSA statistics are not cumulative. For example, while a CURSOR is open, the
statistics reported apply only to each specific SQL statement issued, such as the
OPEN statement and each individual FETCH statement, not to the entire set of
operations spanning the use of the cursor from open to close. To accumulate statistics
for a sequence of operations, you must maintain separate counters and add to them
after each SQL statement that affects the SQLSA.

The SQLSA also receives statistics on prepared dynamic SQL statements. These
statistics include the number of input and output variables, the length of the buffer
required for input and output variables, and the length of a buffer for name maps.

For additional information on using the SQLSA, see the SQL/MP Programming Manual
for your host language.

Measure Performance Measurement Tool
Use the Measure product to collect statistical information on SQL database objects and
SQL processes (host language programs with SQL statements) and to generate
reports. You select a process for measurement by specifying the process in a Measure
ADD command in effect when the process executes.

You can collect performance statistics for SQL/MP objects by using these Measure
entities:

• SQLPROC provides information about an SQL process. There is one SQLPROC
counter record per SQL process selected.

• SQLSTMT provides information about all SQL statements within an SQL process.
There is one SQLSTMT counter record per SQL statement of a selected SQL
process.

• FILE allows an SQL database object to be selected for accumulating information
about file activities.

Figure 13-1 on page 13-6 illustrates Measure entities and corresponding program
structures for SQL processes.
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-5

Measuring Performance Statistics and Reports for SQL/MP
To reduce the cost of overhead for the Measure interface to SQL/MP, the Measure
product updates more than one counter per call. The overall cost of using the Measure
product depends on the frequency of the intervals for measurements and on the
number of active SQL statements. As the number of active SQL statements in a
program increases, the cost of performing measurements increases.

The Measure product provides other entities to measure activity on processes,
processors, and disk processes. For information on how to set up the Measure product
and prepare reports, see the Measure Reference Manual and the Measure User’s
Guide.

Statistics and Reports for SQL/MP
You can use the three Measure entities to gather statistics on an SQL database and
application programs. After gathering the statistics, you can generate reports about the
statistics. The following paragraphs describe the information gathered by the entities.

SQLPROC Statistics
The SQLPROC report provides information on specific statistics concerning
recompilations, NEWPROCESS calls, and opens of an SQL process.

You can monitor automatic recompilation time with the SQLPROC report so that you
can determine the best compiler option: RECOMPILEALL or
RECOMPILEONDEMAND. For a description of these compiler options and their effects
on performance, see SQL Compilation and Recompilation on page 10-6.

Figure 13-1. Measure Entities and Program Structures

Procedure 1
 SQL Statement 1
 SQL Statement 2
 SQL Statement 3
 Access T1, T2,T3

Procedure 2
 SQL Statement 1
 SQL Statement 2
 SQL Statement 3
 Access T1, T2,T3

SQLSTMT
SQLSTMT
SQLSTMT

SQLSTMT
SQLSTMT
SQLSTMT

SQLPROCProcess (Program)

Measure Entities

FILE
FILE
FILE

Tables

••
•

VST009.vsd

T3

T2

T1
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-6

Measuring Performance Statistics and Reports for SQL/MP
SQLSTMT Statistics
The SQLSTMT report provides information for specific statements of an SQL process.
SQLSTMT entities gather statistics for all statements of a process selected for
measurement; there is one SQLSTMT entity for each statement. The SQLSTMT report
identifies the SQLSTMT section name for each statement.

In the report, a section name is identified by the procedure name and index #nn, which
relates to the SQL Section Paragraph number generated during the host language
compilation. An SQL section is generated for each SQL statement and is listed in the
compilation output following the program code. The exception is for the statements on
cursors: OPEN, FETCH, and CLOSE cursor statements. The counters of the OPEN,
FETCH, and CLOSE cursor statements all contribute to the counter of the DECLARE
CURSOR section number.

The SQLSTMT report gathers statistics on busy time, disk reads, sorts, lock waits,
timeouts, and message activity. Although the SQLSTMT report can provide you with a
large amount of information, you need an in-depth understanding of the program to
interpret the statistics correctly.

When enabled, the Measure product allocates the SQLSTMT counter records upon
receiving the first call from the SQL executor. This initial call to the Measure product
takes slightly longer than subsequent updates. Because the records for each
statement are created only when a statement is used, a LIST command on SQL
entities returns only allocated records.

You can use the SQLSTMT report for various purposes. For instance, you can relate
the SQL statement indexes in the SQLSTMT report to Source Line Table (SLT) indexes
that appear on compiler listings, as follows:

• In the case of a COBOL program, compare the SQLSTMT report with the
preprocessor listing generated by the COBOL compiler.

° For each COBOL statement, use the SQL preprocessor to generate a
PERFORM SQL DO n statement that is actually a call to a subprocedure. This
subprocedure, in turn, calls the SQL executor and passes to the executor a
parameter named SQLINn.

° In the preprocessor listing, locate the declaration for SQLINn. Then, in the
SQLSTMT report, find the point where the value of the field named SLT-INDEX
also equals n.

For example, if you are looking at an SQLSTMT report in which SLT-INDEX
has a value of 2, find the place in the preprocessor listing where the
SQLINn.SLT-INDEX data structure shows n with a value of 2. You can then
use this data structure to determine which COBOL statement called
PERFORM SQL DO n.

For more information about the SQLINn.SLT-INDEX data structure, see the
SQL/MP Programming Manual for COBOL85.
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-7

Measuring Performance SQL/MP Measurement Models
• In the case of a C, Pascal, or TAL program, no separate preprocessing occurs, and
no preprocessor listing is generated. The source listing produced by the compiler,
however, includes comments that show the value of SLT-INDEX. By using this
value, you can find the corresponding information in the SQLSTMT report in much
the same way as you can with a COBOL program.

FILE Statistics
You can monitor database files with the FILE entity. The FILE report provides
information on specific file and record use by a user process. Counters accumulate
information for these events: busy time, reads, writes, updates, deletes, records used,
message activity, lock waits, timeouts, and escalations of locks. The FILE report can
provide you with specific data on SQL tables. You can use the FILE report along with
other reports on a specific volume or subvolume.

SQL/MP Measurement Models
When using the Measure product, you must determine whether the overhead for
gathering Measure statistics is worth the information provided by the reports. You might
find certain statistical information more meaningful with a few samplings. You should,
of course, use the Measure product for gathering detailed statistical information for
problem analysis.

This subsection describes three types of statistics:

• Startup cost of an application program

• Execution cost of a running process

• Database access costs for SQL tables and indexes

Startup Cost
You can use these counters to analyze the startup cost of an application program.
These statistics are gathered by the SQLPROC entity.

• SQL-OBJ-RECOMPILE-TIME contains the elapsed time spent on recompiling an
invalid program. The recompile time should be zero when a valid program
executes and is not recompiled. (An SQL program is automatically recompiled at
run time if the SQL compiler option RECOMPILEALL is specified at explicit compile
time and the program has been subsequently invalidated.)

• SQL-NEWPROCESS contains the number of times the SQL compiler or SQL
catalog manager was started. The call to NEWPROCESS should be zero when a
valid program executes if the program is not automatically recompiled and does
not contain any DDL statements.

For SQLCI or for programs being automatically recompiled, the count should be 2
or fewer. A number higher than 2 indicates that multiple catalog managers might
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-8

Measuring Performance SQL/MP Measurement Models
be required on distributed nodes or that compiler or catalog manager timeouts
have occurred.

The counter SQL-NEWPROCESS-TIME contains the amount of time spent waiting
for the call to NEWPROCESS to complete and is included in the total startup time.

• OPENS contains the number of calls to open tables that were required by this
program. The elapsed time spent executing the opens is stored in OPEN-TIME.
After an SQL program is started, the files are open and remain open for the
duration of the session.

Execution Costs
Use these SQLSTMT counters to analyze the execution costs of a running SQL/MP
process. These counters provide information on a statement basis. For counters that
have the same names as counters for database access costs (described in the
following subsection), you can directly compare the statement values with the table
values returned by those counters.

After a program begins running, startup costs have already been incurred. The costs
associated with processing the statements are stored in the SQLSTMT entity. The first
time a statement in a procedure executes, overhead is added for setting up the
counters for the procedure.

You can use these SQLSTMT counters to analyze a running process:

• CALLS stores the number of times the SQL statement was executed.

• ELAPSED-BUSY-TIME stores the wall-clock elapsed time spent on the particular
statement. To compute the average elapsed time per call, divide the elapsed busy
time by the number of calls.

Note that the first time a statement in a procedure executes after measurement has
been started, a setup time is included for allocating all the SQLSTMT counters for
the procedure.

• DISK-READS stores the number of physical disk reads performed for a particular
statement.

• RECOMPILES stores the number of times the statement was recompiled. For valid
statements, this number should be zero. If the statement has been recompiled, the
counter for each session would be 1, because an invalid statement is usually
recompiled only once in a session. If this number is 1 or greater, you should
consider explicit SQL compiling the program.

The time spent in recompiling this statement is stored in the ELAPSED-
RECOMPILE-TIME value. This value includes the actual compilation time, plus
disk read, message, and NEWPROCESS time, involved in initiating the SQL
compiler.

• RECORDS-ACCESSED stores the number of records accessed for the statement.
If the statement accesses many records but uses only a few, you could create an
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-9

Measuring Performance SQL/MP Measurement Models
index to reduce the number of records searched before returning records that
satisfy the query.

• SORTS stores the number of times the external sort process was invoked to return
the data in the desired order. A value in this field indicates that the data is not
being retrieved in the order supported by a key (primary key or index). The amount
of time spent sorting is stored in the ELAPSED-SORT-TIME counter.

Performance might decrease in proportion to the amount of time spent sorting
data. By monitoring the sort time of each statement, you can determine the
statements and the associated indexes that might improve performance. An
external sort is not invoked if the number of records to sort is fewer than 400.

• TIMEOUTS stores the number of times this statement received a request timeout
because of a possible congested disk volume or network. This number should be
zero. You should examine the cause for any number greater than zero.

• LOCK-WAITS stores the number of times the statement waited for a lock request.
This number should be zero or be quite small. If the number is large for your
application, you should examine the cause. Depending on the situation, you might
consider a finer locking granularity (for example, row locks instead of generic locks
or table locks) or redesigning the database.

• ESCALATIONS stores the number of times a record lock was escalated to a file
(table) lock. This number should be zero. If this number is greater than zero, you
should consider using a table lock for the program.

Database Access Costs
Use the FILE entity to measure database access costs for SQL tables and indexes.
The following counters provide information for analyzing disk processing costs for the
database.

These counters provide useful information on SQL database tables. You can use these
counters to determine the cost of queries.

• RECORDS-USED stores the number of rows returned to the SQL executor on
reads, inserts, writes, updates, or deletes.

• RECORDS-ACCESSED stores the number of rows read by the disk process or file
system to return the RECORDS-USED value. RECORDS-ACCESSED should
always be the same or greater than RECORDS-USED. The ratio between
RECORDS-USED/RECORDS-ACCESSED is the selectivity of the statement.

A query is most efficient when the number of records used is the same or slightly
lower than the number of records accessed. If the number of records accessed is
much larger than the number used, the query is accessing many unnecessary
rows. You can create an index to improve the selectivity.

• DISK-READS stores the number of physical disk reads performed on the file.
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-10

Measuring Performance SQL/MP Measurement Models
• LOCK-WAITS stores the number of times a call to the disk process waited on
locked data.

• TIMEOUTS stores the number of timeouts issued on the file. If the number is
greater than zero, the file’s timeout value might be too low, thereby defining an
insufficient time.

• ESCALATIONS stores the number of times a record lock was escalated to a file
(table) lock.
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-11

Measuring Performance SQL/MP Measurement Models
HP NonStop SQL/MP Installation and Management Guide—523353-004
13-12

14 Enhancing Performance
The initial step in achieving maximum performance is providing sufficient hardware to
handle the throughput and size of the application database.

In addition to hardware, many factors affect the performance of a database and
application. Some factors are system dependent, others are application dependent.
The factors discussed in this section are specific performance issues that can arise in
an SQL/MP environment after it is in use.

Queries are the basis of a relational database application. You specify queries explicitly
by using application-embedded SELECT and CURSOR statements, ad hoc query
requests, and report writer selections. You specify queries implicitly by using UPDATE,
INSERT/SELECT, and DELETE statements.

The number and type of queries used in an SQL/MP environment influence the
performance of the database. For a detailed discussion of how to formulate queries to
improve query performance while retrieving the desired output, see the SQL/MP Query
Guide.

Understanding the Implications of
Concurrency

Concurrency is defined as access to the same data by two or more processes at the
same time. The degree of concurrency available depends on the purpose of the
access, on the access modes in effect, and on whether virtual sequential block
buffering (VSBB) is used for the access.

SQL/MP provides concurrent database access for most operations. Control of
concurrent access is obtained by using access options, locking options, and (for some
DDL operations) the WITH SHARED ACCESS option. These operations can be long-
running and are thus subject to contention:

• Creating an index

° When using the WITH SHARED ACCESS option, CREATE INDEX allows
concurrent access by DML statements throughout the entire operation except
for the short commit phase of the operation. To maximize concurrent access
during index creation, specify the WITH SHARED ACCESS option in your
CREATE INDEX statement.

° Without the WITH SHARED ACCESS option, CREATE INDEX allows
concurrent access by DML statements that use SELECT with BROWSE or
SHARED access during an initial scan phase, but locks out DML accesses
during the remainder of the operation. This is the preferred method if you wish
to complete the index creation operation as soon as possible and users do not
require concurrent access to the data.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-1

Enhancing Performance Minimizing Contention
• Moving a partition

° When using the WITH SHARED ACCESS option, ALTER TABLE PARTONLY
MOVE and ALTER INDEX PARTONLY MOVE allow concurrent access by
DML statements throughout all the entire operation except for the short commit
phase of the operation. To maximize concurrent access while moving a
partition, specify the WITH SHARED ACCESS option in your ALTER TABLE
statement.

° Without the WITH SHARED ACCESS option, ALTER TABLE PARTONLY
MOVE and ALTER INDEX PARTONLY MOVE allow concurrent access by
DML statements that use SELECT with BROWSE or SHARED access during
an initial scan phase, but locks out DML accesses during the remainder of the
operation. This is the preferred method if you wish to complete the partition
move as soon as possible and users do not require concurrent access to the
data.

• Creating a constraint

CREATE CONSTRAINT allows concurrent access by DML statements that use
SELECT with BROWSE or SHARED access during an initial scan phase, but locks
out DML accesses during a later update phase.

• Updating statistics

UPDATE STATISTICS allows concurrent access by DML statements that use
SELECT with BROWSE or SHARED access during an initial scan phase, but locks
out DML accesses during a later update phase.

For more information about concurrency between DDL and DML operations, see
“Concurrency” in the SQL/MP Reference Manual. For more information about the
WITH SHARED ACCESS option, see the subsection, Minimizing Contention, and the
“WITH SHARED ACCESS” entry in the SQL/MP Reference Manual.

Minimizing Contention
When creating an index or moving a partition, you can minimize contention by using
the WITH SHARED ACCESS option of the CREATE INDEX, ALTER INDEX, or ALTER
TABLE statements. For example, this CREATE INDEX statement uses the WITH
SHARED ACCESS option:

CREATE INDEX EMPL2
 ON EMPL (JOBCODE) CATALOG PERSNL
 WITH SHARED ACCESS
 NAME CR_IND_EMP2
 COMMIT BY REQUEST;

The WITH SHARED ACCESS option can also be used in embedded programs.

Note. The WITH SHARED ACCESS option does not support two-way splits.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-2

Enhancing Performance Minimizing Contention
During a CREATE INDEX...WITH SHARED ACCESS operation, SQL sets the
AUDITCOMPRESS option to OFF for the base table. Therefore, during the CREATE
INDEX operation the audit trail grows at a faster rate than it does when
AUDITCOMPRESS is ON (the default). More audit trail space is needed when the
AUDITCOMPRESS option is OFF; the amount depends on the intensity of write activity
during the CREATE INDEX operation.

After the CREATE INDEX operation completes, the AUDITCOMPRESS option is set to
its original value.

When you specify the WITH SHARED ACCESS option, these steps occur:

1. Initialization and load. SQL reads catalog entries for existing (source) objects
involved in the operation and creates the new (target) objects for the operation.
SQL then begins copying data from the source objects to the target objects.

2. Audit fix-up. Audit fix-up processes search TMF audit trails for any changes made
since the load of the records. If changes are found, the target objects are updated
to reflect the changes. For index creation, SQL transforms the data as needed.

At this point, operation depends on COMMIT options selected with the DDL
statement:

• If a BEFORE or AFTER time was specified, SQL waits for the appropriate time
window before starting the next (commit) phase. If the time window has
passed, SQL performs as specified by the value of the ONCOMMITERROR
clause.

• If [BY] REQUEST was specified, SQL issues a warning to notify the user that
the operation is ready, and waits for the user to respond with a CONTINUE
statement. At this point, the user sees a “D>” prompt in the SQLCI session.
The user can continue the operation, request a rollback, or enter other SQLCI
commands except CATALOG, SYSTEM, VOLUME, EXIT, DEFINE-related
commands, or a DDL or utility command against the same object as the
ongoing DDL operation.

While the operation waits, the audit fix-up processes continue reading audit trails
and updating target objects.

3. Commit. SQL acquires an exclusive table lock on each source object and searches
audit trails for any changes made since the last audit fix-up work. SQL updates the
target objects to reflect the changes. Finally, SQL updates file labels and catalog
files. At this time, exclusive locks are obtained on the other partitions.

For more detailed information, see the “WITH SHARED ACCESS Option” in the
SQL/MP Reference Manual.

If you do not specify the WITH SHARED ACCESS option, Step 1 and Step 3 are
performed, but the audit trail is not searched in Step 3.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-3

Enhancing Performance Minimizing Contention
Options Available for WITH SHARED ACCESS
The WITH SHARED ACCESS option supports these options:

• REPORT starts or stops EMS reporting for the operation. Events can be sent to $0
or to an alternate collector.

• NAME specifies an SQL identifier as the name of the operation so that you can
identify EMS messages for the operation or identify the operation in a CONTINUE
statement.

• COMMIT controls the start time for the final phase of the operation and specifies a
timeout period for lock requests and handling of retryable errors during the final
phase of the operation. It also specifies whether you want user response before
continuing to the commit phase. You can use this clause with the initial DDL
request or in a CONTINUE statement.

Considerations
These considerations apply to use of the WITH SHARED ACCESS OPTION:

• To eliminate the interval between the time the DDL operation completes and a new
online dump is taken, use the WITH SHARED ACCESS option to take online
dumps while the DDL operation proceeds. If an online dump exists for a table (or
for the base table of an index) and REPORT is specified, SQL sends an event
message to EMS indicating when online dumps can be taken. An operator must
use the TMFCOM DUMP FILES command to start these online dumps.

• The audit fix-up process searches audit trails for relevant audit information starting
from when the associated DDL operation began. Therefore, audit information must
be retained on the system or on backup media until the DDL operation completes.
Audit trails should not be automatically deleted before the DDL operation
completes. If the audit fix-up process does not find audit files online, the system
prompts the operator (on the system console) to restore the audit trails. If there are
no backed-up audit trails, the request fails.

• Operator intervention might be necessary in these situations:

° If the audit fix-up process does not find an audit trail online, operator
intervention is needed to restore backed-up audit trails. If the requested audit
trail does not exist, the request fails.

° If an online dump on tape is needed for a newly created partition or index,
operator intervention is needed to restore the online dump.

° If an online dump exists for the table (base table for an index) and REPORT is
specified, an event is sent to EMS indicating when online dumps can be taken.
Operator intervention is needed to start these online dumps.

• Operations that use WITH SHARED ACCESS typically take considerably longer
than equivalent operations without WITH SHARED ACCESS. They do, however,
cause less application unavailability, because WITH SHARED ACCESS allows
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-4

Enhancing Performance Avoiding Contention Between DDL Operations
DELETE, INSERT, and UPDATE access during the operation. The time difference
depends largely on the number and length of transactions on the nodes that
contain source and target objects for the operation, particularly the number and
length of transactions that directly involve source objects for the operation.

• You cannot use the WITH SHARED ACCESS option if one or more of these
situations exist:

° The statement executes within a user-defined TMF transaction.

° Source objects are not audited.

° Source or target objects reside on a node running a version older than 315 of
SQL/MP software.

° Source objects reside on a node running TMF software released before the
D30 RVU.

° Source or target objects reside on a node running system software released
before the D30.00 (for move partition and serial create index operations) or
D30.02 RVU (for split partition, move boundary, merge partition, or parallel
create index operations).

Avoiding Contention Between DDL Operations
Only one DDL statement can operate on a given SQL object (or partition of an SQL
object) at a time. An error occurs if you attempt to run a DDL statement while another
process is executing a DDL statement on the same object.

The specific error depends on the statement involved and the phase of the operation at
which the conflict occurs. Common errors for this situation include:

12 File in use
40 The operation timed out
73 The table is locked

Other Operational Considerations
In general, DDL operations follow a three-part process:

1. Lock the catalog entries exclusively for the objects.

2. Open the objects, read or move data, and close the objects.

3. Lock the file labels exclusively while updating them.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-5

Enhancing Performance Other Operational Considerations
Because the locks used in Step 1 and Step 3 of the operation are exclusive, they have
no special priority over other locks that can also be issued on the objects. Therefore, to
enable the exclusive locks required by these functions, you might need to manage the
application activity as follows:

1. During Step 1, do not compile programs that would require the catalogs involved
for update or that refer to the affected objects.

2. During Step 2, you can resume the activity.

3. During Step 3, quiesce the application transaction activity so that locks are not in
contention.

These situations can arise during the operation of long-running DDL functions:

• For large tables, audit trail space can be exceeded during the course of the
operation, resulting in termination of the operation and backout by the TMF
subsystem. This condition is minimized if you allow SQL/MP to manage TMF
transactions. HP recommends that you do not initiate a user-defined TMF
transaction for long-running DDL and utility operations.

• If the operation cannot acquire the exclusive lock when required, SQL/MP
terminates the operation abnormally after a predetermined period of time.
Remember that the operation requires the simultaneous availability of all file labels
that must be changed in Step 3 of the operation, as described previously. The lock
timeout value is currently 60 seconds and cannot be changed.

In a similar way, certain other statements or commands present concurrency issues
that can affect the result of the operation. When you are duplicating, backing up, or
moving data from one object to another, these functions do not require sustained
exclusive access to the source objects; the only exclusive access involved is similar to
that required in Step 3 at the end of the function. If you are duplicating a table,
however, and you want the target table to contain consistent data, you must consider
the implications of concurrency.

You cannot achieve a consistent target table if you refer, in a DUP command, to a
source table that is being updated while the duplication is in progress. In such cases,
you need to consider stopping transaction activity on the affected tables during the
data movement. SQL/MP does not enforce this condition by using locks. So, if you do
not procedurally enforce a stable source object, the data in the target object might be
inconsistent.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-6

Enhancing Performance Keeping Statistics Current
Keeping Statistics Current
SQL/MP provides an UPDATE STATISTICS utility to collect and save statistics on
columns and tables. The SQL compiler uses these statistics to help determine the cost
of access plans. When you have current statistics for a table, you increase the
likelihood that the optimizer chooses an efficient plan.

The UPDATE STATISTICS utility changes the information about a table and its indexes
in the catalog so that the information more accurately represents the current content
and structure of the table. This information is used by the SQL compiler to determine
an access strategy.

The UPDATE STATISTICS statement must be user initiated. SQL/MP does not
automatically update statistics during DDL operations or following utility commands
such as LOAD.

The statistics that UPDATE STATISTICS collects are:

• Current number of rows in the table

• Byte address of EOF

• Percent of nonempty blocks

• Number of index levels for each index on the table

• Number of unique entries in each column

• Second highest value in each column

• Second lowest value in each column

Knowing When to Update Statistics
You might want to run UPDATE STATISTICS after loading or re-creating a table, after
structural changes such as creation of an index, or after significant update activity
(growth in database size). Before running UPDATE STATISTICS, however, you should
consider these:

• If you experience performance degradation, check for fragmentation of blocks. Use
the FILEINFO command with the STATISTICS option set on. If blocks are
fragmented, running UPDATE STATISTICS and recompiling the queries will not
help; first reload the table online by using the FUP RELOAD command.

Note that, if an object has the UNRECLAIMED FREESPACE or INCOMPLETE
SQLDDL OPERATION attribute set, the FILEINFO STAT results might include
extraneous records. For more information, see Altering Partition Attributes on
page 7-19.

• Run UPDATE STATISTICS only after a table has been loaded with data. Do not
run UPDATE STATISTICS when a table is empty.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-7

Enhancing Performance Analyzing the Possible Impact of Running UPDATE
STATISTICS
• Run UPDATE STATISTICS after creating a new index for a table; otherwise, SQL
returns a warning for subsequent operations on the table.

• Do not run UPDATE STATISTICS when the UNRECLAIMED FREESPACE or
INCOMPLETE SQLDDL OPERATION attribute is set. The results might be
incorrect. For more information, see Altering Partition Attributes on page 7-19.

Other performance issues to consider when you experience reduced response time
are:

• The volume containing the table might have heavy disk usage.

• If the table or index is distributed, the network might be rerouted or might have
heavy usage.

• The programs might be automatically recompiling, thereby decreasing
performance.

• Unusually long ad hoc queries or reports might be reducing response time.

• Programs might be waiting for locked data.

Analyzing the Possible Impact of Running UPDATE STATISTICS
Depending on the size of the table, updating statistics can take longer than you would
like; therefore, run UPDATE STATISTICS during off hours when peak performance is
not required. You can determine the effect of UPDATE STATISTICS on a production
query by bracketing UPDATE STATISTICS and EXPLAIN on the queries in a
transaction.

If you want to preserve the existing query execution plan, you must be aware that
running UPDATE STATISTICS might cause the optimizer to choose a different plan.
UPDATE STATISTICS could, for example, change the access path choices made for
queries and programs. Usually, you can improve performance by updating the statistics
on a table to reflect the current status. The UPDATE STATISTICS operations, however,
might not improve performance, as discussed in these paragraphs:

• UPDATE STATISTICS performs a sampling of rows to determine the statistical
information. For very large tables, this procedure can take perhaps 10 to 15
minutes per partition. Because this is a statistical sampling method, the statistics
gathered are not exact. Any sampling error, however, should not affect the overall
performance of the access method.

• The ALL option of the UPDATE STATISTICS statement specifies that you want
statistics updated for all columns. If you do not specify this option, only the
columns that make up the primary key and columns that have been specified in
any index are updated.

• The UPDATE ALL STATISTICS statement might require additional time to gather
information on large tables with many columns. This statement, however, ensures
a complete analysis of columns that might be used in queries or indexes. If the
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-8

Enhancing Performance Testing UPDATE STATISTICS
table does not have a very large number of columns, you should probably use the
ALL option whenever you update the statistics.

• If you use the NORECOMPILE option of UPDATE STATISTICS, the operation
does not invalidate the dependent programs. If you want to take advantage of the
new statistics, however, you must explicitly SQL compile the dependent programs.

• If you use the RECOMPILE option (the default), the UPDATE STATISTICS
operation invalidates dependent programs so that the programs are automatically
recompiled when subsequently used. You should explicitly SQL compile these
programs to avoid automatic recompilation.

• When statistics are being updated for a table, T, any DDL or DML operation on T
might get a timeout error (SQL error -4066) because T is already opened for
exclusive access. During the UPDATE STATISTICS operation, the entry for T in
the TABLES catalog table is locked. The catalog is available for other SQL
operations; however, if other operations attempt to access the record for T in
TABLES, then SQL error -8300 is returned, indicating that the record is locked.

UPDATE STATISTICS writes the new statistical information into the catalog tables.
After the statement is performed, you cannot undo it. Subsequent compiles, either
explicit or automatic, create a best available query execution plan based on the new
statistical information.

Testing UPDATE STATISTICS
Because of the significant effect of running UPDATE STATISTICS, you can try to
determine the benefits of the operation before you commit to updating the catalog
tables. These steps provide two methods for testing the results of UPDATE
STATISTICS: one method is for a test environment, the other for a production
environment.

To test UPDATE STATISTICS in a test environment, follow these steps:

1. Test a sample set of queries against the production tables by using DISPLAY
STATISTICS to obtain the statistical information.

2. Duplicate the table or tables involved to a test location. For a large database,
duplicate a subset of the table or tables involved to a test location.

3. Enter an UPDATE STATISTICS statement.

4. Test the same queries against the tables using DISPLAY STATISTICS to obtain the
new statistical information.

5. Determine any improvement in performance.

6. If performance improves, enter the UPDATE STATISTICS on the production
database.

To test UPDATE STATISTICS in a production environment, follow these steps:
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-9

Enhancing Performance Testing UPDATE STATISTICS
1. Prepare a sample query from your application. (You should probably use a query
used often in your application.)

This example shows the displayed statistics:

>> SELECT ...;
>> DISPLAY STATISTICS;

Estimated Cost 68

Start Time 89/03/10 14:26:41.494150
End Time 89/03/10 14:27:11.123179
Elapsed Time 00:00:29.629029
SQL Execution Time 00:00:00.686883

 Records Records Disk
Table Name Accessed Used Reads . . .

\SYS1.$VOL.SALES.ORDERS 49 10 3 . . .
\SYS1.$VOL.SALES.ODETAIL 246 30 246 . . .

(This example shows only the leftmost fields that actually appear in a statistics
display. For a complete display, see the SQL/MP Query Guide.)

2. Determine the effect of the UPDATE STATISTICS statement by issuing the
statement within a user-defined TMF transaction. You can then back out the
operation if necessary. In an SQLCI session, do these:

a. Issue a BEGIN WORK statement; then issue UPDATE STATISTICS with the
NO RECOMPILE option.

b. Use EXPLAIN to see if the new statistics give you the better query execution
plan. If the estimated cost is significantly less than the original, the UPDATE
STATISTICS statement could improve performance. If the cost is not less, this
table probably does not need its statistics updated.

c. Depending on the EXPLAIN output, you can decide whether to commit the
transaction (COMMIT WORK) or back out the transaction (ROLLBACK
WORK).

This example shows the statement and command sequence that rolls back the
TMF transaction so that statistics are not updated:

>> BEGIN WORK; <--Begins the TMF transaction
>> UPDATE ALL STATISTICS FOR TABLE $VOL.SALES.ORDERS;
>> SELECT ...;
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-10

Enhancing Performance Running UPDATE STATISTICS
>> DISPLAY STATISTICS;
>> ROLLBACK WORK; <--Rolls back the TMF transaction

You should only test UPDATE STATISTICS in a lightly loaded system; otherwise, the
performance will be influenced by the general system load, which could mask
differences in query results.

Running UPDATE STATISTICS
Always specify the NO RECOMPILE option when using UPDATE STATISTICS, for
these reasons:

• By default, an UPDATE STATISTICS operation invalidates dependent programs,
even if UPDATE STATISTICS is executed within a transaction that is backed out.

Catalogs are audited; program file labels are not. Because program file labels are
not audited, updates to program file labels are not backed out. Consequently, if a
transaction is backed out, the program file labels are left in an invalid state while
the catalog specifies a valid state.

• To avoid invalidating dependent programs and therefore avoid inconsistencies
between the program file label and the catalog. Until you explicitly compile the
affected programs, however, they will not use the new statistics.

For a thorough evaluation of access options, include key columns, index columns, and
those nonindex columns that participate in predicates. To update statistics for all
columns, you must specify UPDATE ALL STATISTICS.

This example updates statistics for primary key columns of the EMPLOYEE table and
columns that have been specified in any alternate index on the table:

UPDATE STATISTICS FOR TABLE EMPLOYEE NO RECOMPILE;

This example requests statistics by reading all rows in the first 50 blocks of each
partition of the EMPLOYEE file:

UPDATE STATISTICS FOR TABLE EMPLOYEE SAMPLE 50 BLOCKS;

You can choose to read the entire table (EXACT option) or a specified number of
blocks of each partition (SAMPLE n BLOCKS option) for computing statistics. These
options help control the amount of time spent calculating statistics. If neither of these
options is specified, statistics are collected by reading all rows in partitions smaller than
1,000 blocks and approximately 500 blocks from each partition larger than 1,000
blocks.

Note. There is one problem with the preceding scenario: you should not enter the UPDATE
STATISTICS statement within a user-defined TMF transaction. If the table is large, the user-
defined transaction might cause an error on the TMF audit trails. Normally, UPDATE
STATISTICS starts the appropriate number of TMF transactions but does not include the
scanning of the table for information within a TMF transaction. If you want to use this sample
procedure, make sure the TMF audit trails can handle the workload.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-11

Enhancing Performance Using a Test Database for Emulation
If you specify the PROBABILISTIC option, SQL ignores the EXACT and SAMPLE n
BLOCKS options. The PROBABILISTIC option tells SQL to use an algorithm for
computing statistics that gives more accurate results than the algorithm used in earlier
product version updates (PVUs) of SQL/MP. Moreover, with the PROBABILISTIC
algorithm, SQL computes statistics in parallel on partitioned tables.

Statistics are collected at the table level, except for row count and nonempty block
count, which are stored on a partition-by-partition basis. Unique entry count is divided
equally among the partitions of a table, with any remainder added to the primary
partition.

For more information about the UPDATE STATISTICS statement, see the SQL/MP
Reference Manual.

Using a Test Database for Emulation
Because the SQL compiler uses statistics stored in the catalog to choose the best
access paths, you might want to create test databases that emulate larger or smaller
databases.

Normally, you update statistics so that they accurately represent the current content
and structure of the database. You can alter the statistics in a test database to emulate
a database with different statistics: for example, a production database. In this way,
you can test different database structures because the SQL compiler will use the
emulated statistics in determining the access path.

SQL/MP catalogs contain statistical information on the database tables registered in
the catalogs. You can create test databases that emulate larger or smaller databases
by altering these statistics in the test database.

Obtaining Statistics
To perform valid testing, you must have a database identical to the database you want
to test. You should create the database with identical object definitions, but you can
use different data. The statistics of the test database should match those of the
database you want to test.

To obtain the current statistics of a table, you can query the associated catalog.

These examples show how to obtain statistics on a table:

• The index levels of each index of a table as follows:

>> VOLUME $VOL.SALES;
>> SELECT TABLENAME, INDEXNAME, INDEXLEVELS
+> FROM $VOL.SALES.INDEXES
+> WHERE TABLENAME LIKE "%$VOL.SALES.ORDERS%";

Note. Use this technique of altering statistics only in a test environment. Never manually alter
the statistics of a production database. Use the UPDATE STATISTICS statement only.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-12

Enhancing Performance Obtaining Statistics
• Statistics on the columns of a table as follows:

>> VOLUME $VOL.SALES;
>> SELECT TABLENAME, COLNAME, UNIQUEENTRYCOUNT,
+> SECONDHIGHVALUE, SECONDLOWVALUE
+> FROM $VOL.SALES.COLUMN
+> WHERE TABLENAME LIKE "%$VOL.SALES.ORDERS%";

• Statistics about file information of the table as follows:

>> VOLUME $VOL.SALES;
>> SELECT B.TABLENAME, F.EOF, F.NONEMPTYBLOCKCOUNT, B.ROWCOUNT
+> FROM $VOL.SALES.BASETABS B, $VOL.SALES.FILES F
+> WHERE B.TABLENAME = "\SYS.$VOL.SALES.ORDERS" AND
+> B.FILENAME = F.FILENAME;

This example obtains statistics on a table and writes the data on a log file to provide an
output listing:

>> LOG STATS CLEAR;
>> SELECT B.TABLENAME, B.ROWCOUNT, B.STATISTICSTIME,
+> I.INDEXNAME, I.INDEXLEVELS,
+> F.EOF, F.NONEMPTYBLOCKCOUNT
+> FROM $VOL.PERSNL.BASETABS B, $VOL.PERSNL.INDEXES I,
+> $VOL.PERSNL.FILES F
+> WHERE B.TABLENAME = "\PHOENIX.$VOL.PERSNL.EMPLOYEE" AND
+> B.TABLENAME = I.TABLENAME AND
+> B.TABLENAME = F.FILENAME;
TABLENAME ROWCOUNT STATISTICSTIME
----------------------------- --------------- ---------------
INDEXNAME INDEXLEVELS EOF
----------------------------- ----------- -----------
NONEMPTYBLOCKCOUNT

\PHOENIX.$VOL.PERSNL.EMPLOYEE 57
211439149245389562
\PHOENIX.$VOL.PERSNL.EMPLOYEE 2 12288
 2
\PHOENIX.$VOL.PERSNL.EMPLOYEE 57
211439149245389562
\PHOENIX.$VOL.PERSNL.XEMPDEPT 2 12288
 2
\PHOENIX.$VOL.PERSNL.EMPLOYEE 57
211439149245389562
\PHOENIX.$VOL.PERSNL.XEMPNAME 2 12288
 2

--- 3 row(s) selected.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-13

Enhancing Performance Altering Statistics
This example obtains statistics on the columns of the table:

>> SELECT TABLENAME, COLNAME, UNIQUEENTRYCOUNT,
+> SECONDHIGHVALUE, SECONDLOWVALUE
+> FROM $VOL.PERSNL.COLUMN
+> WHERE TABLENAME = "\PHOENIX.$VOL.PERSNL.EMPLOYEE";
TABLENAME COLNAME
---------------------------------- -------------------------
UNIQUEENTRYCOUNT SECONDHIGHVALUE SECONDLOWVALUE
------------------- -------------------- -------------------

\PHOENIX.$VOL.PERSNL.EMPLOYEE EMPNUM
 57 +000000000000000343 +000000000000000029
\PHOENIX.$VOL.PERSNL.EMPLOYEE FIRST_NAME
 50
\PHOENIX.$VOL.PERSNL.EMPLOYEE LAST_NAME
 53
\PHOENIX.$VOL.PERSNL.EMPLOYEE DEPTNUM
 11 +000000000000004000 +000000000000001500
\PHOENIX.$VOL.PERSNL.EMPLOYEE JOBCODE
 9 +000000000000000600 +000000000000000250
\PHOENIX.$VOL.PERSNL.EMPLOYEE SALARY
 46 +0000000000138000.40 +0000000000019000.00

--- 6 row(s) selected.

Altering Statistics
You can alter the statistics in the test database to represent the data and structure of
the production database for the queries and programs you want to test.

To update the catalog entries in the test database, you must first set up a licensed
SQLCI2 process as described in Appendix A, Licensed SQLCI2 Process. Use the
licensed SQLCI2 process to update the associated column in the test catalog with the
value obtained in the queries shown previously. These examples show how to update
the catalog entries.

This example updates the BASETABS table:

>> UPDATE $VOL.PERSNL.BASETABS
+> SET ROWCOUNT = 57
+> WHERE TABLENAME = "\PHOENIX.$VOL.PERSNL.EMPLOYEE";

This example updates the INDEXES table. You must update each index entry in the
INDEXES table.

>> UPDATE $VOL.PERSNL.INDEXES
+> SET INDEXLEVELS = 2
+> WHERE INDEXNAME = "\PHOENIX.$VOL.PERSNL.XEMPDEPT";

This example updates the FILES table. You must update the table and each index
entry in the FILES table.

>> UPDATE $VOL.PERSNL.FILES
+> SET EOF = 12288,
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-14

Enhancing Performance Deleting a Test Database
+> NONEMPTYBLOCKCOUNT = 2
+> WHERE TABLENAME = "\PHOENIX.$VOL.PERSNL.EMPLOYEE";

This example updates the DELIV_DATE column. To update the column statistics, you
must update each column.

>> UPDATE $VOL.PERSNL.COLUMNS
+> SET UNIQUEENTRYCOUNT = 11,
+> SECONDHIGHVALUE = 000000000000004000,
+> SECONDLOWVALUE = 000000000000001500
+> WHERE TABLENAME = "\PHOENIX.$VOL.PERSNL.EMPLOYEE" AND
+> COLNAME = "DEPTNUM";

After completing the update operations, do not forget to use the FUP REVOKE or
DELETE command on the =_SQL_CI2_sys DEFINE to stop using the licensed
SQLCI2 process.

After you have altered the statistics, you should be able to test most of the features of
queries and programs as if they were running on the real database. With this
technique, you cannot test certain locking features that require execution on large
tables if your test database does not have large tables. You should explicitly SQL
compile the programs to use the new statistics.

Deleting a Test Database
During the development and testing cycle, many test databases can be created on
your system. From time to time, you might need to purge obsolete databases or clean
up disk volumes. The SQL DROP statement and the SQLCI PURGE and CLEANUP
utilities can help you perform such operations.

You can use SQLCI PURGE to purge qualified file-set lists of objects to remove tables,
views, indexes, collations, and SQL programs stored in Guardian files. If a test
database is described in a single catalog, this combination of commands will remove
the objects and the empty catalog:

24> SQLCI
>> PURGE *.*.* FROM CATALOG $vol.testcat;
DO YOU WISH TO PURGE THE ENTIRE FILESET
 ..* FROM CATALOG $vol.testcat
(Y[ES], N[O], S[ELECT], F[ILES]) ?y
TABLE \sys.$vol.testcat

1 OBJECT(S) PURGED

In the PURGE command, $vol.testcat is the name of a test catalog.

You can use DROP statements to drop individual objects from a catalog and then drop
the catalog. These set of statements demonstrates dropping objects and the catalog:

26> SQLCI
>> DROP PROGRAM $vol.objs.prog1;
>> DROP PROGRAM $vol1.objs.prog2;
 .
 .
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-15

Enhancing Performance Optimizing Index Use
>> DROP TABLE $vol.data.table1;
>> DROP TABLE $vol2.data.table2;
 .
 .
>> DROP CATALOG $vol.cat1;

You can use the CLEANUP utility to purge SQL objects (except SQL programs stored
in OSS files) and the catalogs in which they are described. Normally, the CLEANUP
utility is not recommended for undamaged objects. In cases where a test database is
self-contained in a test catalog, however, the CLEANUP utility can be used to purge
the objects and the associated catalog.

Be sure not to apply the CLEANUP utility to a catalog in which a production database
is described.

This example demonstrates purging objects with the CLEANUP utility:

25> SQLCI
>> CLEANUP !
+> (*.*.* FROM CATALOG $vol.testcat) CATALOGS;

In the CLEANUP command, $vol.testcat is the name of a test catalog.

Before deleting any database, consider saving it as a test database for regression tests
on modified applications at your site.

Optimizing Index Use
An index on a table provides an alternate access path that differs from the inherent
access path (primary key). Indexes improve application performance for data retrieval
operations. When compiling a statement, the SQL compiler selects the execution plan
for a statement by choosing the best access path to the data. If an index exists, the
SQL compiler evaluates using the index.

Indexes can also improve performance by eliminating the need for the disk process to
access the underlying table. If the query can be satisfied by the columns contained in
the index and the access returns unique rows, the underlying table will not be
accessed.

When evaluating whether to use an index or a table scan, SQL compares the number
of base table scan I/Os and the I/Os for index access. The use of sequential cache for
a scan increases the performance of the scan and increases the likelihood of its use.

Index-only access is faster than a table scan. A sort prevented by index access must
be looked at closely, however, because the cost of a scan plus a sort might be less
than the cost of index and base table access. For more information about selectivity
and cost, see the SQL/MP Query Guide.

Note. To drop an SQL program stored in an OSS file, use the corresponding OSS utility. For
more information, see the Open System Services Shell and Utilities Manual.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-16

Enhancing Performance Maximizing Parallel Index Maintenance
For more information about indexes, see Determining When to Use Indexes on
page 3-16.

Maximizing Parallel Index Maintenance
Indexes are automatically updated whenever a row is inserted into the underlying table
and when any key column of the index is changed. Multiple indexes can be updated in
parallel. The file system accomplishes parallel index maintenance by issuing
asynchronous I/O requests to each disk process serving the indexes. Parallel index
maintenance occurs automatically without your having to specify a statement or
directive.

To take maximum advantage of parallel index updates, the indexes of a table should
reside on separate volumes and should be configured on separate processors to
eliminate any contention of parallel operations on indexes serviced by the same disk
process. Also, when the indexes cannot use separate volumes and processors, some
parallelism is achieved by a single disk process, which can process multiple requests
concurrently.

These limitations apply to parallel index maintenance:

• Parallel updating is not performed when a large number of indexes are defined on
the same table, although the number of indexes that can be defined on the table
and still allow parallel updating is quite large.

• Parallel updating is temporarily suspended when the file system is undoing a
transaction that failed.

Managing Cache Memory Size
The disk process uses a buffer in virtual memory to keep copies of the disk blocks that
have been accessed most recently. This area of virtual memory is called cache. If the
disk process finds a requested block in cache, it can satisfy the request immediately
without requesting a physical I/O operation.

Cache size has an important effect on performance. The larger the cache, the more
likely it is that a block must be read only once.

To see if cache is operating efficiently, use the STAT option of the PUP LISTCACHE
command (D-series only). If CACHE READ HITS are less than 90 percent, consider
increasing the cache size. If the ratio of CACHE FAULTS to CACHE CALLS is greater
than one percent, consider reducing the cache size, adding more physical memory to
the processor, or processing to other processors.

For G-series RVUs, use the SCF INFO DISK, CACHE command to display the disk
cache configuration information for the specified disk.

Control cache size by using PUP. For more information on setting the cache size, see
the Peripheral Utility Program (PUP) Reference Manual (D-series only) and the SCF
Reference Manual for the Storage Subsystem (G-series only).
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-17

Enhancing Performance Maximizing Disk Process Prefetch Capabilities
Maximizing Disk Process Prefetch Capabilities
SQL can enhance performance by reading blocks of data into cache asynchronously
before they are needed. This disk process prefetch operation works best when you
request long sequential scans through data or when your access plan has a low
selectivity value (as described in the SQL/MP Query Guide).

The optimizer requests sequential prefetch for all scan operations expected to read
sequentially for more than a few blocks.

When sequential prefetch is used, the disk process attempts to read a group of several
consecutive blocks with a single I/O operation. The successive read operations do not
have to wait for physical I/O and can be satisfied from cache, in parallel, while the disk
process performs other I/O operations. To determine if your query uses sequential
prefetch, look for the words sequential cache in the EXPLAIN output for the query.

A prefetch operation can be done for all table types, for forward processing, for certain
types of operations such as scans, updates and deletes of subsets, and for disk
operations using virtual sequential block buffering (described in the SQL/MP Query
Guide).

To maximize disk process prefetch operations, use:

• Large cache

• Mirrored disks

• Well-organized key-sequenced tables (physical sequence closely maps to logical
sequence); the FUP LOAD operation can help reorganize an existing table

• Multiple PINs (for more information, see the NUMDISKPROCESSES sysgen
parameter)

To check whether the disk process uses prefetch capabilities for your queries, set
statistics on, use the PUP LISTCACHE command (D-series only) and the SCF INFO
DISK, CACHE command (G-series only) with the STATISTICS option, and use the
Measure DISK and DISKOPEN entities.

Managing File System Double Buffering
SQL can enhance performance by allowing the SQL file system to asynchronously
prefetch blocks of data from the disk process. When the file system receives a block of
data from the disk process, it asynchronously requests the next block without waiting
until it has processed the current block. By the time the file system is ready to process
the next block, that block is likely to be in memory already and can be processed
immediately. This performance enhancement, called file system double buffering, is
especially advantageous when the file system and disk process reside on different
processors.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-18

Enhancing Performance Using an SQL DEFINE to Manage PFS Utilization
SQL can enable file system double buffering only when the disk process uses virtual
sequential block buffering (VSBB) and the SELECT statement specifies browse
access. For more information about VSBB, see the SQL/MP Query Guide.

SQL automatically uses file system double buffering when this feature will enhance the
performance of the query. By default, the optimizer does not use double buffering for
scanning the inner table in a nested join or key-sequenced merge join.

This feature requires the file system to use two buffers instead of one. In certain
circumstances, this feature could potentially exceed the memory size limit for the
process file segment (PFS) assigned to the file system for the process. To avoid
memory overflow, SQL automatically disables the use of this feature for any more files
if file system memory utilization exceeds 70 percent of the PFS. The disabling of this
feature is likely to be temporary; when PFS utilization returns to a level below 70
percent, double buffering is enabled again for newly opened files.

The PFS is an area of real memory used by the file system to store operating system
information. The PFS size is dynamic; that is, the file system fills it, as needed, up to
the PFS size limit assigned by the operating system.

For example, suppose that a server process opens a large number of SQL tables; the
file system uses a portion of the PFS for each open. Suppose further that multiple
cursor operations called by the server perform sequential table scans using VSBB. The
file system temporarily allocates additional portions of the PFS for each cursor
operation; if the file system uses double buffering, it allocates twice the amount of
buffer space in PFS memory for each cursor operation. Thus, double buffering can
increase the amount of the PFS used by the file system.

If a PFS memory overflow occurs, the system is likely to display error message 31. A
file system error 31 occurs when insufficient space is available in the PFS for a file
system buffer needed to perform the specified operation. For more information about
this error message, see the “File System Errors” section of the Guardian Procedure
Errors and Messages Manual.

To avoid a PFS memory overflow, take one of these steps:

• Use an SQL DEFINE to lower the PFS utilization threshold at which the SQL file
system automatically disables file system double buffering for additional files.

• Increase the PFS size limit.

Using an SQL DEFINE to Manage PFS Utilization
You can change the memory utilization threshold at which SQL disables file system
double buffering by setting the DEFINE =_SQL_EXE_DOUBLE_SHUTOFF. For
example, by increasing the threshold to 90 percent, you increase the use of double
buffering but make it somewhat more likely that the file system will exceed the PFS
memory size limit. If you lower the threshold to 50 percent, you decrease the use of
double buffering but also reduce the likelihood of a PFS memory overflow.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-19

Enhancing Performance Changing the PFS Size Limit
This example changes the threshold from the default value of 70 percent memory
utilization to 50 percent utilization by setting this DEFINE value:

> ADD DEFINE =_SQL_EXE_DOUBLE_SHUTOFF,
 CLASS MAP, FILE X5

This example uses the file name X5. The letter X has no significance; it is used to
satisfy the syntax of the FILE parameter. The number 5 specifies a 50 percent PFS
utilization threshold. In this DEFINE, the numbers 0 through 10 indicate tenths of the
PFS size limit. For example, 2 indicates 20 percent; 9 indicates 90 percent.

Thus, if you set this DEFINE value to 0, the SQL executor directs the file system never
to use double buffering. If you set the value to 10, the executor uses double buffering
whenever it is specified in a query execution plan.

This DEFINE influences the file system through the SQL executor; the DEFINE affects
the use of double buffering at run time. (The optimizer already must have specified
double buffering in the query execution plan.)

Changing the PFS Size Limit
You can increase (or decrease) the PFS size limit by using the PFS option in the TACL
RUN command or by setting the PFS size with the Binder or nld utility.

The default PFS size for a SQL program is 384 KB. If you SQL compile a program
using the NOREGISTER option, the default PFS size is 256 kilobytes (KB). The
maximum PFS size allowed by the operating system is one megabyte.

This example uses the Binder CHANGE command to increase the PFS size of a
program named MYPROG to one megabyte:

1> BIND
@ CHANGE PFS 1048576 BYTES IN MYPROG
@ EXIT

This example uses the TACL RUN command to increase the PFS size to one
megabyte. The number 512 specifies the number of 2048-byte pages allocated to the
PFS:

1> RUN MYPROG /PFS 512/

For more information about these options, see the TACL Reference Manual, Binder
Manual, or nld and noft Manual.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-20

Enhancing Performance Additional DEFINEs for Managing Double Buffering
Additional DEFINEs for Managing Double Buffering
Two other DEFINEs allow you to manage other aspects of file system double buffering:

• The DEFINE =_SQL_CMP_DOUBLE_SBB_OFF disables file system double
buffering for any query that is SQL compiled while this DEFINE is in effect.

• The DEFINE =_SQL_CMP_DOUBLE_SBB_ON enables (turns on) file system
double buffering for scanning the inner table in a nested join or key-sequenced
merge join. (The default setting is to disable this feature for an inner table of a join
operation.)

The preceding DEFINEs influence SQL compilation; that is, they affect the optimizer’s
selection of double buffering for a query execution plan.

The EXPLAIN plan shows whether the optimizer has chosen file system double
buffering for a query execution plan. The EXPLAIN plan reads as follows:

SBB for reads : Virtual, double buffer

Also, when the optimizer requests double buffering for a given plan, the executor does
not necessarily use double buffering at run time. Its use depends on memory utilization
for the PFS, as described in the preceding paragraphs.

Using Generic Locks
Generic locking is an application-related feature that allows control over the granularity
of locking. A generic lock is a lock held by a process on a subset of the rows in a table.
Lock granularity is the size of a lockable unit. Generic locking can provide:

• Improved performance, because the application acquires fewer locks while
performing operations

• Ability to lock large portions of a table with a single lock without acquiring a table
lock

• Reduced risk of a program exceeding the maximum number of locks

Figure 14-1 on page 14-22 illustrates generic locking used in a banking application with
the tables CUSTOMER and ACCOUNT. NAME is the primary key for the CUSTOMER
table. NAME and ACCOUNT_NO make up the concatenated primary key for the
ACCOUNT table.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-21

Enhancing Performance Using Generic Locks
If the lock length of the ACCOUNT table is defined to be the length of the NAME
column, SQL/MP acquires locks for an application by using a single lock to lock all
rows with the same value for NAME.

If the lock length was not specified when the ACCOUNT table was defined, SQL/MP
uses the default lock length, which is the length of the primary key. The default lock
length of the ACCOUNT table is 28 bytes, the length of the NAME and ACCOUNT_NO
columns. Processing a customer account with the default lock length in effect requires
a separate lock for each account belonging to the same customer (a separate lock on
each row with the same value for NAME).

To define the lock length for generic locking, you must create a table with key-
sequenced organization and a primary key made up of either several columns or an
initial column that contains ASCII data. You can specify the LOCKLENGTH attribute
either in the CREATE TABLE or CREATE INDEX statement, or in an ALTER TABLE or
ALTER INDEX statement for an existing table or index, respectively.

The LOCKLENGTH attribute designates the number of leading bytes of the key that
the system should use to identify the rows to lock. All rows with the same value in
those leading bytes are locked with a single lock anytime one of those rows is
accessed. After you have specified lock length for a table, the length applies to all
applications using the table.

The current LOCKLENGTH is stored in the FILES table in the catalog associated with
the table of interest.

These are the advantages and disadvantages of generic locks:

• Generic locks improve performance by increasing the granularity of the lock. They
decrease concurrency, though, because a lock controls a larger number of rows.

Figure 14-1. Generic Locking Example

CUSTOMER Table

ACCOUNT Table

NAME
20 Bytes

ADDRESS

NAME
20 Bytes

ACCOUNT_NO
8 Bytes BALANCE

Concatenated Primary Key

Lock Length 20 Bytes for Generic Locking

•••

•••

Primary Key

VST010.vsd
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-22

Enhancing Performance Checking Data Integrity
• Generic locks provide a good solution for the application problem in which a table
lock is not acceptable, but the application needs so many locks in a transaction
that the number might exceed the maximum allowed by the system.

The application problem occurs because the disk process allows a maximum number
of locks per process on a partition. An application that examines a large number of
rows with the REPEATABLE ACCESS protocol can cause the disk process to escalate
row locks to a table lock; however, table locks are not acceptable to many applications.

The application can direct the disk process not to escalate row locks to a table lock by
specifying the CONTROL TABLE statement that includes the TABLELOCK OFF option.
Using this option, however, the application might generate an error from the disk
process if the disk process uses up the control block space for locks. The application
can use generic locking to acquire the needed locks with a reduced risk of exceeding
the lock limit.

Checking Data Integrity
SQL/MP provides data integrity checking when constraints are defined for a table.
When a row is added or altered, the SQL disk process verifies that the new data
satisfies any constraints.

Checking data integrity can be performed within program code or with the SQL
constraint mechanism. Each method has benefits and performance issues you should
consider for your application:

• Data integrity checking in program code

° Data checking performed in the requester before sending the data to the server
is the quickest method of data checking and reduces unnecessary server calls.
The requester checks data upon input to ensure the data conforms to certain
ranges coded into the requester.

° Data checking can be performed within an application program or server
program before the data is sent to the disk process. This checking reduces
unnecessary disk process calls, but still requires the program code to have the
data range values.

° Maintaining programs, requesters, or servers to programmatically check data
input can require additional programming time. In addition, your site must have
methods or programs to verify that the existing tables conform to the new data
checks.

° Programs with hard-coded validity checking cannot move as easily from one
set of users to another as programs without hard-coded values.

• Data integrity checking by constraints

° Constraints can greatly enhance the flexibility of the programs so that
applications move easily from one set of users to another.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-23

Enhancing Performance Creating Logical Views of Data
° Constraints simplify the change process to a simple, online process. If you add
one constraint, the system immediately applies the constraint to all subsequent
transactions. The constraint creation process also checks the existing table to
ensure that all existing rows conform to the new constraint.

° When SQL verifies the constraints on the input data, the potential message
traffic between servers and requesters might be increased when error
messages are generated on invalid data.

Evaluate your application to determine the best use of data checking: constraints
versus program code. For more information, see Creating Constraints on Data on
page 5-51.

Creating Logical Views of Data
Logical views of the database are groupings of data different from the physical
database. SQL/MP is efficient for presenting data in logical views; that is, joining tables
or other views to create a new window into the data. These logical views can specify
only those columns or rows of data that meet the given criteria. SQL/MP returns only
the subset of data, if any, that meets the criteria, thereby reducing message data
transfer between the disk process and your program.

You can predefine and name logical views with the CREATE VIEW statement, or you
can create views logically with a SELECT statement. The performance of these two
methods to obtain the same data is equivalent.

For more information, see Creating Views of Base Tables on page 5-38.

Specifying Block Sizes for Files
To achieve maximum performance for sequential or batch operations, use the largest
block size for the files underlying your tables. The largest block size, 4096 bytes, is the
default size for table and index creation.

There is a locking trade-off, however, when sequential or batch operations run at the
same time as online operations. In this case, use a smaller block size to improve OLTP
performance.

Specific information on file blocks and computing records contained within those blocks
is described under Determining the Number of Records per Block on page 5-15.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-24

Enhancing Performance Adding and Dropping Partitions
Adding and Dropping Partitions
For performance improvement, consider partitioning a table or index to enable them to
span multiple volumes or multiple nodes. For more information, see Adding Partitions
to Tables and Indexes on page 7-7. As the number of rows in the table or index
increases, consider redistributing rows across partitions to balance the distribution of
rows. You can use the ALTER TABLE and ALTER INDEX statements to split partitions,
move partitions, and move row boundaries.

When all information in a partition becomes obsolete, or when a database design
deficiency leaves a partition continually empty, a reference to a table or index defined
across this partition results in an unnecessary message to the partition. This message,
in turn, results in a correspondingly longer access time to the table or index. In such
circumstances, you might want to drop this partition while leaving the others defined for
the object intact. For directions on dropping partitions, see Dropping Partitions of
Tables and Indexes on page 7-32.

Avoiding Automatic Recompilations
Automatic recompilation can become a significant performance concern. In most
cases, you should attempt to be running valid programs at all times to ensure the best
possible performance.

Automatic recompilation makes it possible for application programs to continue to
perform when invalidating events occur or when access paths are unavailable. The
time required to perform the recompilation, however, can noticeably add to the initial
response time of the application program that contains the SQL statements.

For more information about automatic recompilation, see SQL Compilation and
Recompilation on page 10-6.

Matching Block Split Operation to Table Usage
In a table with key-sequenced organization, when an INSERT operation causes a data
block to overflow, the disk process makes room for the new row by splitting the block
and transferring some of its contents to a newly allocated block.

The disk process can use one of two methods to split a block:

• Split the block in the middle.

• Split the block at the insertion point when rows are being inserted in sequence and
the user has specified the SEQUENTIAL BLOCKSPLIT ON option of the
CONTROL TABLE statement.

The SEQUENTIAL BLOCKSPLIT ON option can increase the average number of rows
stored per block in certain applications where the disk process cannot detect
sequential insertion of rows.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-25

Enhancing Performance Supporting Sort Operations
For detailed information about the CONTROL TABLE statement, including the
SEQUENTIAL BLOCKSPLIT option, see the SQL/MP Reference Manual or SQLCI
online help.

Supporting Sort Operations
For certain operations, SQL/MP requires the features of the FastSort sort/merge
program. The SQL/MP software requests these services automatically without user
interaction or input.

Specifically, SQL/MP calls FastSort during the execution of:

• LOAD commands, when used without the SORTED option to load records into
key-sequenced target tables. Enter these commands by using SQLCI.

• CREATE INDEX statements, when used to create indexes on existing nonempty
base tables. Enter these statements by using SQLCI or application programs.

• Some queries that require ordering rows in an order different from that of the
primary key order or any index. Enter these queries by using SELECT statements
in SQLCI or by using cursor operations in application programs.

For an SQL SELECT, DELETE, INSERT, or UPDATE statement, you can determine if a
sort occurs by using the EXPLAIN utility, accessed either through SQLCI or the SQL
compiler. EXPLAIN reports any sort operations required to run the query.

Although you do not explicitly issue calls to FastSort when using SQL/MP, you can
influence the effectiveness of some SQL operations by using =_SORT_DEFAULTS
DEFINEs or file-partitioning techniques. In most cases, these techniques are
unnecessary; the standard FastSort parameter values are normally sufficient. When
working with large tables or indexes, however, you might need these techniques to
ensure sufficient disk space or to improve DML statement performance.

You can specify =_SORT_DEFAULTS DEFINEs through your programs at run-time, or
you can enter them by using the operating system’s command interpreter or SQLCI.
For information about =_SORT_DEFAULTS DEFINE syntax conventions, see the
SQL/MP Reference Manual. For more information about FastSort, see the FastSort
Manual.

Specifying Scratch Volumes
When processing input files, FastSort either sorts records in memory or uses one or
more scratch files to store intermediate data, as follows:

• For files smaller than 200 KB when the MINTIME option is on, or 100 KB when the
AUTOMATIC (default) option is on, the FastSort SORTPROG process performs
the entire sort in memory.

• For larger files, SORTPROG uses scratch files to temporarily store intermediate
data in groups of records called “runs.” SORTPROG sorts each run, merges the
records into an output file, and returns the results to SQL/MP.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-26

Enhancing Performance Enhancing Query Performance
You can direct FastSort to use a specific set of volumes for its work. Use the
SCRATCH attribute to specify an initial scratch volume. To include or exclude volumes
from the pool of volumes FastSort uses once the initial scratch volume is full, use the
SCRATCHON and NOSCRATCHON attributes, respectively.

For more information about scratch volumes, see the FastSort Manual.

Enhancing Query Performance
You can enhance the performance sorts within SQL queries in several ways. For more
information, see the SQL Query Guide.

Supporting Parallel Query Execution
When =_SORT_DEFAULTS DEFINEs are used to designate a specific scratch file, the
SQL/MP software starts every sort operation with the same SORT DEFINE settings.

If the same scratch file is used during parallel query execution, the first sort request
gains exclusive access to the scratch file, and all later sort requests receive an error.
To avoid this problem, do not explicitly specify a scratch file by name; instead, specify
only the volume name in your =_SORT_DEFAULTS DEFINE and prompt FastSort to
create a temporary file. Now, parallel sort operations can take place on the same
volume but will access individual scratch files.

The same type of contention problems occur, and also multiply, when you use subsorts
to avoid partitioned scratch files. All subsort requests can contend for the same scratch
file, and only the first request gets the file. In addition, all sets of subsorts use the same
groups of processors. So, if you have eight SQL executor processes, you then have
eight sorts, each with subsorts configured in exactly the same way. You must configure
parallel subsort operations very carefully.

When using the SQLCI LOAD utility to conduct parallel database loads into a
partitioned base table, you can avoid scratch file contention problems if you change the
=_SORT_DEFAULTS DEFINE attributes for each load or if you let SQL create scratch
files for the operations.

For parallel DDL statement execution (requested by specifying CREATE
INDEX...PARALLEL EXECUTION ON), you can identify scratch volumes for the sort
processes to use when sorting index records. You identify these volumes in a
configuration file whose name you specify in the CONFIG option of the CREATE
INDEX statement.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-27

Enhancing Performance Planning for Temporary File Requirements
Planning for Temporary File Requirements
When conducting joins and various other operations, SQL/MP creates and uses
temporary files. These files exist during the course of an operation and are used for
storage during intermediate steps in the operation. When the operation is complete,
the temporary files are deleted.

For both serial and parallel operations, the SQL compiler determines the size and
location of the necessary temporary files. When it creates a temporary file, the SQL
compiler allocates a primary extent of 32 pages and then allocates secondary extents
as needed. The secondary extent size is either 512 pages (if SQL estimates the file will
be less than 1 GB in size) or 1024 pages (if SQL estimates the file will be larger than 1
GB in size).

The SQL compiler creates each temporary file with a MAXEXTENTS value of 978
extents, permitting a potential maximum length of up to approximately two GBs. Of
course, the maximum file length is also constrained by the amount of free space
actually available on the disk where the temporary file is stored. This value differs at
various run times.

The SQL compiler controls all phases of temporary file allocation automatically. You
can, however, use DEFINEs to influence the location and SYNCDEPTH of these files.
The =_SQL_TM_sys_vol class of system DEFINEs lets you redirect temporary table
creation from one volume to another or change the SYNCDEPTH associated with
temporary tables. This DEFINE helps avoid file-system error 122, which occurs when a
volume becomes full or when DP2 takes over after a processor failure and affects
temporary tables created with a SYNCDEPTH of 0 (zero). For more information, see
the SQL/MP Reference Manual.

To avoid encountering file-system error 43, UNABLE TO OBTAIN DISK FILE SPACE
FOR FILE EXTENT, allow enough free space to remain on your disk for ORDER BY,
GROUP BY, DISTINCT, and join operations. A good guideline is to keep up to half the
total disk space free for these operations.

An additional way to decrease the chance of encountering file-system error 43 is to
request parallel execution. When you specify the CONTROL EXECUTOR statement
with PARALLEL EXECUTION ON, SQL/MP examines all disks on the system and
attempts to spread the temporary files evenly among these disks. This type of
balancing promotes the availability of disk space for temporary file extents.
HP NonStop SQL/MP Installation and Management Guide—523353-004
14-28

A Licensed SQLCI2 Process
A licensed SQLCI2 process (licensed program) can perform privileged operations,
such as deleting or updating rows in catalog tables. Normally only the super ID can
perform these operations because of the potential risk to the database. The super ID
must explicitly license program files before beginning.

These operations are restricted to licensed processes:

• Creating or dropping a catalog without reference to the CATALOGS table

• Writing to the SQL catalog tables as if they were user tables (without referring to
the SQL file labels)

If the write request is issued from SQLCI, the SQLCI2 process must be licensed. If the
statement is issued from a program file, the program file must be licensed.

Licensing SQLCI2
You must license the SQLCI2 process if you want to enable it to perform privileged
operations. Running SQLCI2 as the super ID does not pass the SQL license test
automatically.

To license a program, the super ID must run the FUP LICENSE command, naming the
program. This license persists until the super ID explicitly revokes it by executing the
FUP REVOKE command.

To license SQLCI2, do not use the FUP LICENSE command on the
$SYSTEM.SYSTEM.SQLCI2 program. Instead, make a copy of SQLCI2 and use that
copy for privileged operations.

Running SQLCI2 as SUPER.SUPER
For example, suppose that you want a version of the program that can be used only by
the super ID. Suppose that the SQLCI2 program is on $SYSTEM.SYSTEM, and the
system catalog is on the default location of $SYSTEM.SQL.

Enter these commands at the command interpreter prompt:

33> LOGON SUPER.SUPER, password
34> FUP DUP $SYSTEM.SYSTEM.SQLCI2, $SYSTEM.SYSTEM.SQLCI2L
35> FUP SECURE SQLCI2L, "NN--"
36> SQLCOMP /IN SQLCI2L/ CATALOG $SYSTEM.SQL
37> FUP LICENSE SQLCI2L

SQLCI2L is now a licensed version of SQLCI2 and you have secured it for use only by
the super ID.

Caution. These operations can be extremely dangerous to the consistency of the database
and the data dictionary. Only the most extreme situations should require the use of a licensed
SQLCI2. Only the most knowledgeable SQL/MP manager should attempt to correct problems
with a licensed SQLCI2 process.
HP NonStop SQL/MP Installation and Management Guide—523353-004
A-1

Licensed SQLCI2 Process Running SQLCI2 as another user
To use the licensed SQLCI2 process, create a DEFINE that enables SQLCI to use the
licensed SQLCI2 version rather than the normal SQLCI2 version. This protects you
from making unintended changes to your system when you are logged on as
super.super.

You must log on as the super ID and create the =_SQL_CI2_sys DEFINE, pointing to
the licensed version. Use this command:

38> ADD DEFINE =_SQL_CI2_sys, CLASS MAP, FILE
$SYSTEM.SYSTEM.SQLCI2L

In the command, sys is the node (system) name without the backslash.

While this DEFINE is in effect, SQLCI automatically uses the SQLCI2 version in the
SQLCI2L file. To stop using the licensed process, you must either end the SQLCI
session and delete the DEFINE or log off as the super ID.

This command deletes the DEFINE:

48> DELETE DEFINE =_SQL_CI2_sys

In the command, sys is the node name without the backslash.

Running SQLCI2 as another user
For another example, suppose that you want to set up licensing so that a specific
group or specific users can execute it. Select a name for a subvolume on $SYSTEM
exclusively for licensed processes, for example $SYSTEM.LICENSED. and copy
SQLCI, SQLCI2, and SQLUTIL from $SYSTEM.SYSTEM to this subvolume.

Enter these commands at the command interpreter prompt:

33> LOGON SUPER.SUPER, password
34> FUP DUP $SYSTEM.SYSTEM.SQLCI, $SYSTEM.LICENSED.SQLCI
34> FUP DUP $SYSTEM.SYSTEM.SQLCI2, $SYSTEM.LICENSED.SQLCI2
34> FUP DUP $SYSTEM.SYSTEM.SQLUTIL, $SYSTEM.LICENSED.SQLUTIL
36> SQLCOMP /IN SQLCI2L/ CATALOG $SYSTEM.SQL
37> FUP LICENSE $SYSTEM.LICENSED.SQLCI2
37> FUP LICENSE $SYSTEM.LICENSED.SQLUTIL

Finally, use FUP or Safeguard to limit who can execute the programs in this
subvolume.

Those users can then start SQLCI with this command:

RUN $SYSTEM.LICENSED.SQLCI
HP NonStop SQL/MP Installation and Management Guide—523353-004
A-2

Licensed SQLCI2 Process Revoking an SQLCI2 License
Revoking an SQLCI2 License
To remove the licensed program, you can either revoke the license or purge the
program. Either of these commands performs this operation:

49> FUP REVOKE $SYSTEM.SYSTEM.SQLCI2L

49> PURGE $SYSTEM.SYSTEM.SQLCI2L
HP NonStop SQL/MP Installation and Management Guide—523353-004
A-3

Licensed SQLCI2 Process Revoking an SQLCI2 License
HP NonStop SQL/MP Installation and Management Guide—523353-004
A-4

B
Removing SQL/MP From a Node

If you want to install a version of the operating system that does not support SQL/MP,
you must remove SQL/MP and all SQL objects from your system (node). A version of
the operating system that does not support SQL/MP does not recognize the SQL file
structure. You must remove all references to SQL objects before installing that version.

To remove OSS programs, use OSS utilities. For more information, see the Open
System Services Shell and Utilities Reference Manual.

Using the PUP FORMAT Command to Remove
SQL Objects

If you do not need to preserve any data from SQL files, the easiest way to remove
SQL/MP is by formatting all the disk volumes:

1. Back up any Enscribe files, EDIT files, and other files to tape by using the
DP2FORMAT of BACKUP.

2. Create a new SIT tape.

3. Cold load the new SIT tape by using the $SYSTEM format tape cold-load method
of installation. This operation formats $SYSTEM and restores the SIT to
$SYSTEM.

4. Complete the INSTALL steps.

5. Use PUP FORMAT and LABEL (D-series only) to format and label all the disk
volumes. Use SCF INITIALIZE DISK and ALTER DISK, LABEL (G-series only) to
format and label all the disk volumes.

6. Use RESTORE to restore the Enscribe files, EDIT files, and other files that were
backed up before the cold load.

Using the CLEANUP Utility to Remove SQL
Objects

If you need to retain the data in SQL/MP objects, or if you need to convert SQL tables
to Enscribe files, you must carefully follow these steps:

1. Check that the TMF subsystem is operational. Enable all volumes containing SQL
objects for TMF auditing.

2. Back up SQL objects that you want to save with the ARCHIVEFORMAT option of
BACKUP.
HP NonStop SQL/MP Installation and Management Guide—523353-004
B-1

Removing SQL/MP From a Node Using the CLEANUP Utility to Remove SQL Objects
3. For SQL tables containing data you need to preserve for use after removing SQL,
create empty Enscribe files. Then, use the SQLCI COPY or LOAD utility to copy
the tables into those Enscribe files.

4. Use the CLEANUP utility to purge the SQL objects and the catalogs in which they
are described. You must ensure that you do not prematurely apply CLEANUP to
the system catalog in which the $SYSTEM.SYSTEM.SQLCI2 program is
registered. Therefore, you should either purge each disk volume one at a time or
purge all objects except those in the system catalog.

This CLEANUP command purges all objects except those residing in the system
catalog:

24> SQLCI
>> CLEANUP ! (*.*.* EXCLUDE ($vol.syscat.*,
+> $SYSTEM.SYSTEM.SQLCI2)), CATALOGS;

In this CLEANUP command, $vol.syscat is the name of the system catalog.
The CATALOGS option purges the catalog tables from the designated disk volume.

5. Purge all the SQL objects from the system catalog except the
$SYSTEM.SYSTEM.SQLCI2 program.

To perform this operation, enter this command:

>> CLEANUP $vol.syscat.* ! EXCLUDE $SYSTEM.SYSTEM.SQLCI2;

6. Use the DSAP to verify that the only SQL objects existing on your node are the
system catalog and $SYSTEM.SYSTEM.SQLCI2. Although you follow the
preceding steps precisely, DSAP might identify certain objects of a special type, or
shadow labels, that still reside on your disks. These shadow labels are created by
the disk process.

To generate a DSAP report of all SQL objects on each disk, enter command at the
command interpreter prompt:

25> DSAP volume, SQL

In the DSAP command, volume is the name of a volume on which SQL objects
existed.

In an OBEY command file, enter the DSAP command once for every volume on
which SQL/MP objects exist, and then run the commands from the OBEY
command file.

DSAP lists any SQL catalogs, objects, or programs that you did not remove in the
preceding steps. If no SQL objects other than the system catalog and
$SYSTEM.SYSTEM.SQLCI2 remain on the node, proceed to Step 8 on page B-3.

Caution. In the CLEANUP command, do not use the CATALOGS option; you cannot yet purge
the system catalog.
HP NonStop SQL/MP Installation and Management Guide—523353-004
B-2

Removing SQL/MP From a Node Using the CLEANUP Utility to Remove SQL Objects
7. If any shadow labels remain on the node, however, you must remove them before
removing SQL. At the SQLCI prompt, enter:

>> CLEANUP *.*.*, SHADOWSONLY;

If any SQL objects other than shadow labels remain on the node, specify the name
of each object in a CLEANUP command.

Repeat Step 6 on page B-2 until DSAP does not list any SQL objects except the
system catalog and $SYSTEM.SYSTEM.SQLCI2.

8. Drop the system catalog. This operation also implicitly drops the
$SYSTEM.SYSTEM.SQLCI2 program. This command accomplishes this step:

26> SQLCI DROP SYSTEM CATALOG system-catalog;

In the DROP SYSTEM CATALOG command, system-catalog is the name of
the volume and subvolume that contain the system catalog. This command can be
entered from SQLCI, provided that SQLCI2 is not running. Alternatively, this
command can be entered at any time from TACL, as shown in the preceding
example. For more information, see the description of the command in the
SQL/MP Reference Manual.

9. If you have performed the preceding steps but SQL objects still exist on your node,
call your service provider for further help before you load the planned operating
system.

If no SQL objects exist, you have removed SQL/MP from the node successfully.
You can now load the operating system that does not support SQL/MP.

Note. If SQL objects, with the exception of the system catalog and the
$SYSTEM.SYSTEM.SQLCI2 program, cannot be removed by Steps 1 to 7, contact your
service provider.
HP NonStop SQL/MP Installation and Management Guide—523353-004
B-3

Removing SQL/MP From a Node Using the CLEANUP Utility to Remove SQL Objects
HP NonStop SQL/MP Installation and Management Guide—523353-004
B-4

C Format 2 Partitions
Format 2 enabling allows SQL/MP to support partitions of a size greater than 2
gigabytes (GB) and up to 1 terabyte (TB). The size of a partition is limited by the size of
the single disk upon which it resides.

This appendix discusses planning, migration, fallback, interoperability, and third party
considerations for using Format 2 partitions.

Planning for SQL Format 2-Enabled Tables and
Format 2 Partitions

Migration of Format 1 enabled tables to Format 2-enabled tables depends on:

• Application requirements

• Logical and physical database design

• Hardware configuration

There are also limits you should consider when planning for SQL Format 2 partitions:

• Partition size continues to be limited by the disk size.

• Maximum extent sizes for Format 2 partitions have been increased.

• The maximum number of extents for Format 2 partitions has been decreased.

• The maximum row size is smaller because of a larger block header and record
offset size for Format 2 partitions.

• The maximum number of rows that fit in a block is smaller because of a larger
block header and record offset for Format 2 partitions.

• The maximum number of partitions is approximately 10 percent fewer for Format
2-enabled tables when compared to EXTENDED tables.

If your application has large databases and stringent downtime requirements, migration
might be more appropriate than conversion. Conversion is a separate offline operation,
while migration is a stepped refinement of the database as it moves from being a
Format 1 database to one that increasingly uses Format 2 partitions.

Conversion requires these steps:

1. Create a copy of the database schema in which requisite tables are Format
2-enabled and partitions of such tables and indexes are Format 2.

2. Stop all your applications and use SQLCI LOAD to copy data from the existing
Format 1 enabled tables to the newly created Format 2-enabled tables.

3. Replace the existing tables with each converted table.

4. Restart your applications.
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-1

Format 2 Partitions Planning for SQL Format 2-Enabled Tables and
Format 2 Partitions
Migration, in contrast, enables you to modify tables a partition at a time to Format 2.
Most of the steps involved in this process can be done while your applications continue
to access and modify data in the tables.

Whether you attempt conversion or migration of your tables, the steps required have
many common elements. Planning is an important part of the process.

Figure C-1 illustrates the possible approaches for migration and fallback planning if
your system is currently running a G06.03 through G06.12 RVU.

For more information, see Fallback Scenario 2 on page C-8.

Figure C-1. Migration and Fallback Planning, G06.03 Through G06.12

VST0C01.vsd

Note: Fallback SPRs are available only
for G06.03 - G06.12 RVUs.

Fallback Path

Migration Path

G06.03
|

G06.12

Not recommended and
allowed only if fallback
SPRs are applied (See
Fallback Scenario 3)

Not
recommended

See Fallback
Scenario 2

G06.13 RVU
with Format
2-enabled

tables

G06.13
Baseline (no

Format 2-enabled
tables)
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-2

Format 2 Partitions Planning for SQL Format 2-Enabled Tables and
Format 2 Partitions
Figure C-2 illustrates the recommended approach for migration and fallback planning if
your system is running an RVU prior to G06.03.

For more information, see Fallback Scenario 3 on page C-9.

Figure C-2. Migration and Fallback Planning, G06.03 and Earlier RVUs

VST0C02.vsd

Not
recommended

Not allowed

Note: No fallback SPRs are available to
fall back to pre-G06.03 RVUs. A two-step
fallback is required.

Fallback Path

Migration Path

Pre
G06.03 RVU

See Fallback
Scenario 3

G06.13 RVU
with Format
2-enabled

tables

G06.03 - G06.12
RVUs plus fallback

SPRs Baseline
(with Format

2-enabled tables
when falling back)
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-3

Format 2 Partitions Planning for SQL Format 2-Enabled Tables and
Format 2 Partitions
Figure C-3 illustrates an alternate approach for migration and fallback planning if your
system is running an RVU prior to G06.03. In general, this approach involves slightly
more risk than the approach illustrated in Figure C-2 on page C-3, unless all Format 2-
enabled tables are cleaned up before falling back. For a description of the required
cleanup steps, see Fallback Scenario 2 on page C-8.

For more information, see Fallback Scenario 3 on page C-9.

Figure C-3. Migration and Fallback Planning, pre G06.03 RVU

VST0C03.vsd

Not
recommended

Not allowed

Note: No fallback SPRs are available to
fall back to pre-G06.03 RVUs. A two-step
fallback is required.

Fallback Path

Migration Path

Pre
G06.03 RVU

See Fallback
Scenario 3

G06.13 RVU
with Format
2-enabled

tables

G06.03 - G06.12
RVUs plus fallback

SPRs Baseline
(with Format

2-enabled tables
when falling back)
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-4

Format 2 Partitions General Planning Considerations
General Planning Considerations

• G06.13 RVU baseline

Establishing a baseline is an important step prior to migration. HP recommends
installing G06.13 RVU and running applications in production prior to using any
Format 2-enabled tables. Establishing the baseline is a precaution if issues arise
during migration and require temporarily suspending or partially undoing migration
activities. Most migrations should be able to proceed as planned; however, not all
customer migration scenarios can be tested. As with any software and feature
upgrades, you should consider these questions: What can I do if the upgrade runs
into problems? How do I fall back to the previous working environment?
Establishing a G06.13 RVU baseline separates general G06.13 RVU issues from
issues specific to Format 2 partitions or Format 2-enabled tables.

• Fallback baseline

You might not always be able to establish a G06.13 RVU baseline. For those
situations, a set of fallback SPRs are available for G06.03 through G06.12 RVUs.
The SPRs allow those earlier RVUs to tolerate the presence of Format 2-enabled
tables, as much as possible, and to purge them or any of their associated partitions
and views. No operations other than FILEINFO and PURGE are allowed when a
Format 2 partition resides on an earlier RVU. Attempts to execute other operations
result in appropriate errors being issued. Attempts to perform operations against a
Format 2 partition from an earlier RVU where the necessary fallback SPRs have
not been installed produce indeterminate results, possibly including data corruption
or processor failures. This scenario is also applicable for Format 1 partitions in a
Format 2-enabled table.

• Upgrade catalog

Format 2-enabled tables are version 350 tables and must be registered in version
350 SQL catalogs. Therefore, before you create new Format 2-enabled tables, you
must upgrade the catalog where those tables are to be registered to version 350.
Before you alter existing tables to be Format 2-enabled, you must upgrade the
catalogs where those tables are registered, to version 350. If any Format
2-enabled tables are to be registered in the system catalog, you must upgrade the
system catalog to version 350. If you have a separate application catalog, you
need not upgrade the system catalog.

• Enable tables

You can create new Format 2-enabled tables by setting the PARTITION ARRAY
value to Format 2-enabled. Similarly, you can alter existing tables by changing their
PARTITION ARRAY value to Format 2-enabled. This action implicitly makes the
table and all of its indexes Format 2-enabled. All existing partitions are implicitly
still Format 1 partitions.
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-5

Format 2 Partitions General Planning Considerations
• Partition management

Use the partition management functions to add new Format 2 partitions and to
populate those new partitions with data that currently resides in previously existing
Format 1 partitions. You must move partitions serially within a single table and all of
its indexes. After locating appropriate disk space for a new Format 2 partition,
perform a simple MOVE operation on the Format 1 partition to move it to a new
partition on a new disk as a Format 2 partition.

Using a round-robin approach, you can move the next Format 1 partition to the
space vacated by the previously moved partition, and so on until you have moved
all partitions that you intend to be Format 2. Alternatively, you can use a double-
move space management method. After you move each partition to free disk
space, you can move it back to the space vacated by its prior Format 1 location.
With this method, the same free disk space is used temporarily as each partition is
migrated in turn. This strategy has the disadvantage of doubling the move
operations but has the advantage of keeping individual partitions located on their
same disk volumes after the moves are completed.

• SQL recompilation

If you have the Similarity Check feature enabled, no SQL recompilation is required.
Parallel Plans might require recompilation.

• Limits evaluation

You should evaluate the new limits described earlier in this document for the
impact on their application. Special consideration should be given to the limits
based on the Format 2 block format in addition to the new maximum number of
partitions. The Format 2 block format has implications for maximum row size in
addition to disk space requirements.

• Partition naming

The partition management functions used to migrate your data have an impact on
partition naming. After moving and merging individual partitions during migration,
partitions will have new names, which could have an impact on your application.

• Queries against the SQL catalog

The FILES catalog table contains new columns, and any queries against it in your
applications might require changes.

• Performance

You should expect similar performance for the same level of parallelism and
volume of data when contrasting the identical database with Format 1 and Format
2 partitions. As always, individual results vary, depending upon your application
and database. One way to manage performance expectations during migration is
to migrate keeping the same level of parallelism and volume of data. Check that all
data continues to be accessed from the same processor during all phases of
migration. Do not allow growth in the data stored in each partition. This strategy
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-6

Format 2 Partitions Operational Considerations for SQL Format
2-Enabled Table Use
establishes a point in time with which to compare performance prior to migration
and enables you to manage the performance impact of future growth separately
from migration.

• Network environment

Users with multiple Expand nodes must upgrade nodes that contain tables and
views that span network nodes to the G06.13 RVU and upgrade catalogs to
version 350. Version 350 tables and views are inaccessible from systems running
software earlier than the G06.13 RVU. The Backup/Restore product is
interoperable between the G06.13 (SQL/MP Format 2 partition enabled) and
earlier RVUs. The Backup/Restore product reports errors when it attempts to
access a Format 2 SQL object from a pre-G06.13 RVU system. If you specify a
wild-card file set, Format 2 SQL objects are skipped.

Operational Considerations for SQL
Format 2-Enabled Table Use

Before using any Format 2-enabled tables on your system, you should understand the
operational, interoperability, and fallback considerations associated with their use.
Then, you should formulate a plan that controls their introduction onto your system and
minimizes the risk to your data in the various possible fallback scenarios.

The operational considerations for using SQL Format 2-enabled tables are:

• The Format 2-enabled feature can be used only with key-sequenced tables.

• Before you make the changes described in the next two bullets, you might want to
take new TMF online dumps or backups of the SQL catalogs and tables involved,
to provide additional fallback protection. You should include all the partitions of the
involved tables, not just the partitions that will become Format 2, in addition to all of
their associated index partitions and views.

• Before you introduce any SQL Format 2-enabled tables to your system, you must
upgrade all the SQL catalogs in which their partitions will be registered to version
350.

• After you upgrade the catalogs, you can create new Format 2-enabled tables using
the SQLCI CREATE TABLE command, and you can change existing Format 1
enabled tables to Format 2-enabled by using the SQLCI ALTER TABLE command.
When you alter a table to Format 2-enabled, its partitions remain Format 1. You
can then create new Format 2 partitions or individually data-migrate Format 1
partitions to Format 2, by using the ALTER TABLE command, with or without
SHARED ACCESS. The shared access option allows your applications to update
the table while this operation takes place.

When you alter a table to Format 2-enabled, the labels of all its table partitions and
of all the associated index partitions and views are changed to version 350. In
addition, the partition array structure in the labels of each table partition and index
partition is reformatted.
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-7

Format 2 Partitions Fallback Considerations
When you alter a partition (table or index) to Format 2, its label is changed to a
new format with expanded fields to allow for the larger attribute values that are
possible with Format 2 partitions.

• When all changes described in the previous item are made, you should take new
TMF online dumps or backups of the tables involved to establish their TMF file
recovery or backup protection. Include all the partitions of the involved tables, not
just the partitions that were altered to Format 2, in addition to all of their associated
index partitions and views and the SQL catalogs that were changed.

• Block headers in Format 2 partitions are larger than those in Format 1 partitions.
Because of this, you cannot alter to Format 2 the partitions of some tables whose
block size is close to the sum of their row size and the Format 1 block header size.
If you attempt to do this, the ALTER TABLE statement fails with SQL error 1221
and file system error 1096.

• If you introduce a Format 2-enabled table that is partitioned across multiple
systems, you must first migrate all affected systems to an RVU that supports this
feature.

• If you have any programs or third-party products that use TMFARLIB to read the
audit trail on your system, it is best to rebind these programs with the version of
TMFARLIB provided with RVUs that support SQL Format 2 partitions and to obtain
rebound versions of your third-party products.

You must use rebound versions of these programs or products, however, before
you introduce any Format 2-enabled tables that use the AUDITCOMPRESS option
on your system. The AUDITCOMPRESS option is the default when a SQL table is
created.

Fallback Considerations
This subsection describes three fallback scenarios. If any SQL Format 2-enabled
tables have been created on your system, HP recommends that you fall back using
Scenario 2, rather than Scenario 3, if at all possible.

Fallback Scenario 1
If you have not created any SQL Format 2-enabled tables on your system and no
version 350 SQL catalogs exist, no Format 2 fallback considerations apply, and you
are not restricted in your choice of fallback RVU. However, other fallback
considerations might still apply because of intervening RVUs that your fallback
bypassed or the use of other features introduced in these RVUs.

Fallback Scenario 2
If you have created any SQL Format 2-enabled tables on your system and you are
able to perform all these cleanup steps before falling back, no fallback considerations
apply, and you are not restricted in your choice of fallback RVU:
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-8

Format 2 Partitions Fallback Scenario 3
1. Convert all Format 2 partitions back to Format 1, with or without SHARED
ACCESS, then convert all Format 2-enabled tables back to Format 1 enabled.
Alternately, if some Format 2-enabled tables are not important or if their data is first
reloaded back into Format 1 enabled tables, you can instead use the SQLCI
DROP command to eliminate them.

2. Downgrade all version 350 SQL catalogs on your system to version 345 or lower.

3. Take new TMF online dumps or backups of all the tables and SQL catalogs that
were changed in Step 1 and Step 2. Note that you must include all the partitions
that were part of Format 2-enabled tables (Format 1 partitions in addition to Format
2) and their associated index partitions and views.

4. Achieve a clean TMF shutdown, with all audited disks up, using the TMFCOM
STOP TMF command.

5. If you have any programs or third-party products that use TMFARLIB to read the
audit trail on your system, after the fallback, you must ensure that they do not read
audit records created before the fallback. Alternately, you must use versions of
these programs rebound with a version of TMFARLIB that contains fallback
support. (For more information, see Fallback Scenario 3).

However, other fallback considerations might still apply because of intervening RVUs
that your fallback bypassed or the use of other features introduced in these RVUs.

Fallback Scenario 3
If you have created any SQL Format 2-enabled tables on your system but you are
unwilling or unable to perform all the cleanup steps described in Scenario 2 before
falling back, these fallback considerations apply:

• HP strongly recommends that, before you fall back, you find and record the
location of all Format 2-enabled tables (including all their Format 1 and Format 2
partitions and all their associated index partitions and views) and all version 350
SQL catalogs on your system. You can find Format 2 partitions of Format
2-enabled tables (but not their Format 1 partitions) by using this command in
SQLCI:

FILEINFO $*.*.* WHERE SQL AND FORMAT2

Note. Because there might now be additional data in each Format 2 partition, the original
Format 1 partition definitions might be too small to accommodate all the data. You might
need to convert certain Format 2 partitions back to multiple Format 1 partitions if the
original Format 1 partition was nearly full when it was migrated to Format 2.
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-9

Format 2 Partitions Fallback Scenario 3
• You can fall back only to a supported fallback RVU (G06.03 through G06.12) to
which all the appropriate fallback SPRs have been applied.

• After falling back, note that:

° You cannot open, alter, or rename, or issue SQL statements or SQL utility
commands against any Format 2-enabled tables (both Format 1 and Format 2
partitions) remaining on the system. The only operations allowed against these
tables are GOAWAY and FILEINFO. All other operations are disallowed, and
appropriate errors are returned.

° You can purge partitions of Format 2-enabled tables individually by using the
GOAWAY utility, but you cannot downgrade SQL catalogs from version 350.

° You cannot access any SQL objects registered in any version 350 SQL
catalogs remaining on the system. This includes all Format 1 enabled tables
registered in them, in addition to Format 2-enabled tables.

° Because of this restriction, you might want to initially register all new Format
2-enabled tables in a separate version 350 SQL catalog. When a previously
existing SQL table is altered to Format 2-enabled, however, you cannot move
its registration to the new catalog without re-creating the table.

° TMF backout and volume recovery will not be able to restore consistency to
Format 2-enabled tables on disk (both Format 1 and Format 2 partitions)
during TMF startup. Furthermore, TMF is not able to restore their consistency
after a subsequent migration back to an RVU that supports Format 2-enabled
tables except by using file recovery to a specific position in the audit before the
fallback.

° The TMFCOM DUMP FILES command will not dump any partitions of Format
2-enabled tables (both Format 1 and Format 2 partitions) or their associated
index partitions and views. If you explicitly include any of them by name in the
file-set list for this command, TMFDR logs an EMS message, drops them from
the set of files being dumped, and continues with the next file. Wild-card file
sets in this command also exclude each of the previously mentioned items and

Note. If you are not running a supported fallback RVU and you want to ensure that you
can fall back to the RVU from which you migrated (in the scenario where one or more
Format 2-enabled tables remain on your system), you must follow a two-step migration
plan:

1. Upgrade or migrate to a supported fallback RVU (with all appropriate fallback SPRs
applied) and run that RVU long enough to verify that your important applications still
function correctly.

2. Migrate to the RVU that supports SQL Format 2-enabled tables.

Note. Because of this TMF limitation, HP strongly recommends against falling back if
you cannot achieve a clean TMF shutdown (with all disks up), or if you cannot at least
close all important Format 2-enabled tables and ensure that all changes pertaining to
them have been flushed to those files on disk.
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-10

Format 2 Partitions Fallback Scenario 3
continue with the next file, but without indicating that they have been excluded.
In both cases, the dump otherwise completes successfully.

° The TMFCOM RECOVER FILES command will not recover any partitions of
Format 2-enabled tables (both Format 1 and Format 2 partitions) or their
associated index partitions and views from online dumps. If you include any in
the file-set list specified for this command (explicitly or by using wild cards),
TMFDR logs an EMS message, drops them from the set of files being
recovered, and continues with the next file. TMFDR recognizes only that a
given file is associated with a Format 2-enabled table (version = 350) when it is
about to restore it from the dump.

° BACKUP will not dump any partitions of Format 2-enabled tables (both Format
1 and Format 2 partitions) or their associated index partitions and views. If you
explicitly include any of them by name in the qualified file-set list, BACKUP
displays an error message and continues with the next file. Wild-card file sets
will exclude each of the previously mentioned items from the resulting set of
files being dumped, but without indicating that they have been excluded. In
both cases, the backup otherwise completes successfully.

° RESTORE will not restore any partitions of Format 2-enabled tables (both
Format 1 and Format 2 partitions) or their associated index partitions and
views, from backup tapes. If you include any in the qualified file-set list
(explicitly or by using wild cards), RESTORE displays an error message and
continues with the next file.

° TACL FILEINFO and FUP INFO commands display error 584 for Format 2
partitions (both table and index partitions) of Format 2-enabled tables and
continue with the next file in the file-set list. The information for Format 1
partitions (both table and index partitions) of Format 2-enabled tables and any
associated views will be displayed normally.

° DSAP will display error 584 if it encounters Format 2 partitions (both table and
index partitions) of Format 2-enabled tables and will indicate that they are Lost
Free Space. It will then continue reporting on the other files on the disk.

° DCOM will skip Format 2 partitions of Format 2-enabled tables and indexes,
and will continue with the other files on the disk. Format 1 partitions (both table
and index partitions) will be relocated along with other files to allow the
fragments of free space to be collected together.

° If you have any programs or third-party products that read the audit trail on
your system, and if they might read any audit created before the fallback, they
must be rebound with a version of TMFARLIB that contains fallback support:

° The version of TMFARLIB supplied with RVUs that support Format
2-enabled tables also contains fallback support. It detects when it is
running on an RVU that does not support SQL Format 2 partitions and then
functions appropriately. Therefore, if you rebound these programs or third-
party products with the new version of TMFARLIB when you migrated, you
can continue to use them after falling back.
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-11

Format 2 Partitions Interoperability Considerations
° Fallback versions of TMFARLIB contain fallback support. If you choose to
use this approach, you should rebind before falling back.

Interoperability Considerations
Programs and utilities running on system software product versions earlier than that of
G06.13 will not be able to access or manipulate Format 2-enabled tables or their
associated indexes or views on G06.13 RVU or later systems. This limitation applies
both to SQL commands executed against these version 350 SQL objects from systems
that do not support them, in addition to utility commands that attempt to access version
350 objects because they contain wild cards.

Catalog tables themselves are Version 1 SQL objects and are accessible from systems
running earlier software product versions. The FILES catalog table has a different
schema in a Version 350 catalog than in prior versions. Therefore, queries run against
a Version 350 catalog from a system running earlier software product versions will
execute, but could encounter unexpected results because of the additional columns
and possible values in that table.

If you have any TACL scripts or OBEY command files for these utilities that run on
system software of an earlier RVU and access or manipulate files on a system running
an RVU that supports SQL Format 2-enabled tables, consider migrating the system
running the older RVU to G06.13 (or later.) Alternately, you should ensure that their
operation will not be impaired by introducing SQL Format 2-enabled tables on a
G06.13 (or later) system on disks viewed by the scripts:

• SQLCI
• TACL
• FUP
• Backup/Restore

In general, the interoperability behavior of these utilities involves:

• Commands that return only the names of files (such as FILES and FILENAMES)
return the names of the partitions of Format 2-enabled tables and their associated
indexes and views (version 350 objects) without error.

• Other commands return an error (several are possible, depending upon the
product and command) for each version 350 object (file) indicating that the
software is unable to support access to objects of that version. The name of the file
is included in the text describing the error. Processing then continues with the next
file in the list or wild-card expansion for that command, or, if that command is
finished, with the next command in the OBEY command file or script.

Note. TMFARLIB fallback support involves ignoring, and not returning to the
caller, audit records generated for DML changes to Format 2 partitions (changes
made to data records or blocks). Audit records for DDL changes to Format 2
partitions (changes made to labels) are still returned. Your audit-reading programs
might need modifications to tolerate this incomplete representation of the changes
made to Format 2 partitions.
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-12

Format 2 Partitions Third-Party Provider Considerations
However, there are many different utility commands and many file-list and wild-card
possibilities. Some of them could have unanticipated interoperability considerations.

On systems on earlier RVUs, you can restore previously supported types of files from
backup tapes that also contain Format 2-enabled tables or their associated indexes or
views. Previous RVUs of Restore are able to bypass version 350 files on backup tapes
to restore other files on the tape, but they are unable to restore version 350 files.

Third-Party Provider Considerations
If you are a third-party provider of programs that run on HP NonStop S-series systems
and any of your programs use TMFARLIB to read the audit trail, these considerations
apply:

• When your customers migrate to an RVU that supports SQL Format 2-enabled
tables, they will need new versions of your audit-reading programs before they can
introduce any Format 2-enabled tables that use the AUDITCOMPRESS option
onto their systems. The AUDITCOMPRESS option is the default when a SQL table
is created.

• If your audit-reading programs call ARGETFIELDINFO or ARFETCHFIELDVALUE,
or if they call ARGETRECADDR for key-sequenced tables, you will need to provide
your customers with new versions of these programs that are rebound with the
version of TMFARLIB supplied with an RVU that supports Format 2-enabled tables.
Programs that are not rebound with the new version of TMFARLIB receive ARE-
INTERNAL-ERROR (-1000) when these calls are used against auditcompressed
audit records.

• If any of your customers must fall back from an RVU that supports SQL Format
2-enabled tables to one that does not and if they have introduced any Format
2-enabled tables containing any Format 2 partitions onto their system, and if your
audit-reading programs might read any audit created before the fallback, they must
use versions of your programs bound with a version of TMFARLIB that contains
fallback support when they fall back:

° The version of TMFARLIB supplied with RVUs that support Format 2-enabled
tables also contains fallback support. It detects when it is running on an RVU
that does not support SQL Format 2 partitions and then functions appropriately.
Therefore, your customers can use the same audit-reading programs you
provide for their migration when they fall back.
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-13

Format 2 Partitions Third-Party Provider Considerations
° Fallback versions of TMFARLIB contain fallback support. You could instead
provide fallback versions of these programs that are bound with this version of
TMFARLIB.

Note. TMFARLIB fallback support involves ignoring, and not returning to the caller,
audit records generated for DML changes to Format 2 partitions (changes made to
data records or blocks). Audit records for DDL changes to Format 2 partitions
(changes made to labels) are still returned. Your audit-reading programs might need
modifications to tolerate this incomplete representation of the changes made to
Format 2 partitions.
HP NonStop SQL/MP Installation and Management Guide—523353-004
C-14

Index

A
Accelerator, effect on SQL validity 10-1
Access improvement

defining numeric columns 5-21
defining VARCHAR columns 5-21

Access paths
alternate 5-42
distributed database 12-5
distributed systems 12-5
EXPLAIN utility 10-12
primary keys 3-2, 5-42
statistics issues 14-8
unavailable 10-13

Access plan
See Query execution plan

Active dictionary
See Data dictionary

ADD COLUMN clause 5-19, 7-10
ADD CONSTRAINT statement, program
invalidation 10-16
ADD DEFINE command 10-34
ADD PARTITION option 7-7
ALLOCATE file attribute, similarity check
rules 10-28
Allocating space for tables 5-14
ALLOWERRORS clause 7-35
ALTER CATALOG statement

altering objects 7-14
altering security 2-6
description 7-15

ALTER COLLATION statement 7-27
ALTER INDEX statement

ADD PARTITION option 7-7
altering objects 7-14
altering partition attributes 7-19
description 7-19
PARTONLY MOVE option

adding partitions 7-7, 7-9

ALTER INDEX statement (continued)
splitting or moving partitions 7-20

renaming objects 7-36
ALTER PROGRAM statement, altering
security 2-8
ALTER TABLE statement

ADD PARTITION option 7-7
altering partition attributes 7-19
altering security 2-6
defining columns 5-19
description 7-15/7-16
example 7-10
PARTONLY MOVE option 7-7, 7-20
program invalidation 10-16
renaming objects 7-36
securing catalog tables 5-7
securing tables 5-37

ALTER VIEW statement
altering objects 7-14
description 7-18
program invalidation 10-16
renaming objects 7-36

Altered execution plans 10-25
Alternate access path 5-42
APPEND option, COPY utility 8-13
APPEND utility

adding data 8-15
compared to LOAD 8-15
DSLACK option 8-16
guidelines 8-15
ISLACK option 8-16
options 8-16
partitions 8-16
PARTONLY option 8-15
SLACK option 8-16

Applications
description 1-1
environment 1-1
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-1

Index B
Applications (continued)
example 2-1

Archiving SQL objects 4-17
ASCII character set 5-20
ASCII collating sequence 5-20, 5-44
Attributes

altering catalog 7-15
altering table 7-16
altering view 7-18
FILEINFO display 6-10
specifying column 5-28

AUDIT attribute
altering index attributes 7-19
protection views 4-15
similarity check rules 10-28

Audit dump 4-11
Audit flag 6-4
Audit trails

See also TMF subsystem
AUDITCOMPRESS attribute 4-15
configuring 4-10, 4-13, 4-15
constraint creation 5-53
COPY utility 8-14
description 4-10
file recovery 11-13
index creation 7-5
UPDATE STATISTICS statement 14-11
volume recovery 11-12

AUDITCOMPRESS attribute
audit trail data 4-15, 5-17
similarity rules 10-28

AUDITED backup option 9-34
Audited objects, archiving 4-18
AUDITED option 11-8
Auditing

DUP operations 9-5
TMF guidelines 4-13
TMF requirements 4-12
volumes 4-12, 5-4

AUDITONLY option 4-17

Authorization
See also Security
requirements summary 4-5/4-8
rules 4-4
Safeguard 4-8, 4-9
schemes 4-2/4-4, 12-4

AUTOCOMPILE flag 10-9
AUTOCREATECATALOG option 11-2
Automatic recompilation

avoiding 14-25
causes 10-7
gathering statistics 13-6
occurrence 10-7
performance considerations 10-9,
14-25
predicting 10-7
query execution plans 10-12
RECOMPILES counter 13-9
recorded time 10-4

Autonomy, local
description 12-2, 12-5
SQL compiler options 10-9

AUTOWORK option 4-16
Avoiding 10-14

B
Backing up

AUDITED option 9-34
daily 4-19
database, time required 9-33
file-mode 4-24
indexes 4-22
periodic 4-20
programs, OBEY command file 9-34
SQL objects 9-33, 9-34
SQL programs 9-33, 9-34
strategies 4-17
timestamps as a basis 4-20
views 4-22
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-2

Index C
Backing up (continued)
volume-mode 4-24

BACKUP command
AUDITED option 4-18, 11-8
backing up volumes 4-19
FROM CATALOG option 4-20
INDEXES EXPLICIT option 4-22
INDEXES IMPLICIT option 4-22
PARTONLY option 4-21

BACKUP utility
backing up SQL programs 9-34, 10-42
description 9-4
file, local and remote 9-6
moving tables 9-17, 9-19

Base tables
creating 5-10
creating views 5-38
description 1-2
using exclusively in database 3-13

BASETABS catalog table 6-4, 6-6
BEGIN WORK statement 4-16, 14-10
Benchmark, performance 13-1
Binding program files 10-1
Blocks

data 13-2
key-sequenced files 3-8
size 14-24
slack

APPEND 8-16
LOAD 8-8
RELOAD 8-3

BRIEF format
DISPLAY USE OF command 6-3
FILCHECK command 6-14
FILEINFO command 6-10

BROKEN flag 11-11
Buffer size, effect on query
performance 14-17
BUFFERED file attribute, similarity check
rules 10-28

C
Cache

sequential 14-17
setting 5-6
size 14-17

CALLS counter, Measure 13-9
CAST function 5-20
CATALOG catalog table, displaying version
information 6-15
CATALOG DEFINE, name resolution 10-13
Catalog tables

changing security 5-8, 7-17
description 5-2
indexes 5-3
joining 6-10
querying 6-3
securing 5-7
shorthand view creation 5-40

CATALOGNAME column 9-33
Catalogs

adding 7-2
altering attributes 7-15
altering statistics 14-14
backing up 4-18, 4-20
BROKEN flags 11-11
components 5-1
creating 1-3, 7-2
default 5-6
description 1-3, 5-1
distributed databases 12-4
distributed systems 12-5
downgrading 2-15, 2-16
dropping 7-29
DUP command and mapping
schemes 9-30
location requirements 5-4
multiple 5-5
names

listing 9-34
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-3

Index C
Catalogs (continued)
resolution 10-13

node name change 9-32
number 5-5, 5-6
PUP LABEL issues 11-31
PUP RENAME issues 11-32
querying 6-1
recovering 11-12, 11-29
registering programs 10-7
RESETBROKEN option 11-11
RESTORE utility 11-2
restoring 11-2
single 5-5
SQL compilation 10-11
statistics 14-7
structure 5-3
table relationships 5-3
tables 5-2
TMF protection 11-2
upgrading 2-14
version information 6-15

CATALOGS catalog table
description

initializing 2-4
location 2-5
requirements 5-4

displaying contents 6-4
listing catalog names 9-33
moving 9-10
rebuilding 9-13
securing 5-7, 5-10

Catalog, system
See System catalog

Changing the database 7-1, 7-14
Character

column 5-27
data types 5-20
set 5-20

Character column 5-27

CHECK option
INOPERABLE PLANS option 10-16,
10-18
syntax 10-15

CLASS CATALOG DEFINE
example 10-34
name resolution 10-13

CLASS MAP DEFINE
example 10-34
name resolution 10-13

CLEANUP utility 11-36, B-1
CLEAR option, COMMENT statement 7-35
CLEARONPURGE attribute

altering 7-19
indexes 4-5
similarity rules 10-28

CLUSTERING KEY clause 3-2, 3-6
Clustering keys

combined with system-defined key 3-3
defining 5-11
description 3-2
example 5-12
key-sequenced files 3-6

Collating sequence, ASCII 5-20, 5-44
Collations

adding 7-13
altering attributes 7-27
creating 7-13
displaying information 6-6
dropping 7-34
security 5-59

Column headings, similarity check
rules 10-28
Columns

adding 7-10
altering 7-16
catalog statistics 14-7
data types 5-25
database integration 7-11
default value 5-26
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-4

Index C
Columns (continued)
deleting 7-33
displaying information 6-7
indexed

benefits 3-18
defining 3-20
integrity checking 5-47

invalidating programs by adding 10-2
KEYTAG 3-19
masking 3-15
names 5-19
null value 5-26
performance issues 5-20
renaming 3-14, 5-38
specifying attributes 5-28
specifying indexes 3-20, 3-21
values restriction 3-18

COLUMNS catalog table, displaying
information 6-7
Comments

adding 7-13
altering 7-28
changing 7-28
clearing 7-28, 7-35
displaying 6-7
dropping 7-35
similarity check rules 10-28

COMMENTS catalog table, displaying
information 6-7
COMMIT WORK statement 4-16, 14-10
COMPACT option, COPY utility 8-13
Compatibility issues for releases 2-1, 12-17
COMPILE INOPERABLE PLANS
option 10-24, 10-25
COMPILE INVALID PLANS option 10-24
COMPILE PROGRAM option 10-23
Compiled statements, estimated cost 13-3
Concurrency 5-5, 14-1

Consistency
FILCHECK utility 6-14
locks 4-10
VERIFY utility 6-12

Constraints
adding 7-12
altering 7-27
changing 7-27
creating 5-52, 7-12
defining 5-51
description 5-51
displaying information 6-6
dropping 7-34
effect on data dictionary 1-4
invalidating programs by creating 10-2
performance issues 14-23

CONSTRNT catalog table
description 5-53
displaying information 6-6

CONTROL QUERY BIND NAMES
directive 10-36, 10-42
CONTROL TABLE statement 14-23
CONVERT utility 8-7
COPY utility

APPEND option 8-13
appending rows 8-7
COMPACT option 8-13
compared to LOAD 8-7, 9-3
moving data 8-7
moving tables

description 9-16
example 9-20
moving a database 9-23

operations 9-2, 9-3
reorganizing tables 8-2
restructuring database 8-1
rules 8-13

CRASHOPEN option 11-13
Crash-open files, recovery 11-12
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-5

Index D
CREATE CATALOG statement
catalog description 1-3
description 7-2
PHYSVOL option 5-7
securing catalog tables 5-7

CREATE COLLATION statement 7-13
CREATE CONSTRAINT
statement 5-52/5-55, 7-12/7-14
CREATE INDEX statement

adding an index 7-4
description 5-42/5-47
invalidating programs 10-16
PHYSVOL option 5-45
Sort operations 14-26
uses 3-20

CREATE SYSTEM CATALOG
command 2-4, 2-5
CREATE TABLE statement

adding tables 7-3
altering columns, example 7-26
DEFINEs 10-34
description 5-10
guidelines 5-11/5-19
PHYSVOL option 5-18

CREATE VIEW statement 5-38/5-41, 7-4
Creation timestamp, similarity check
rules 10-27
CURRENTDEFINES option

COMPILE option 10-25
description 10-32

Cursor, name resolution 10-14
C-series to D-series migration 2-12

D
Daily backup 4-19
Data

appending to tables and partitions 8-15
block usage display 13-2
checking 1-6, 14-23
dropping 8-18

Data (continued)
integrity constraints 14-23
limiting access 3-15
partitioned 5-32
purging 8-18
replicated 12-10
unavailable, effects 10-12
validity 1-6
views and consistency 3-14

Data dictionary
See also Catalogs
active 1-3
constraints 1-4
effects 1-3
planning 1-3
querying 6-1
recovery EDIT files 4-24

Data types
ASCII 5-21
binary 5-22
character 5-20
date-time 5-20/5-25
DECIMAL 5-22
default column 5-26
DOUBLE PRECISION 5-22
FLOAT 5-22
guidelines 5-20
INTEGER 5-22
INTERVAL 5-23/5-25
LARGEINT 5-22
matching 5-29
NUMERIC 5-20, 5-22
performance issues 5-20
REAL 5-22
SMALLINT 5-22
VARCHAR 5-21

Database
access costs 13-10
access strategy 3-13
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-6

Index D
Database (continued)
adding objects 7-1
administrator

See DBA
altering 7-13
changing 7-1, 7-13
complete backup 11-8
consistency

FILCHECK utility 6-14
TMF 4-10
VERIFY utility 6-12

crash-open files 11-12
creating 5-1
dependencies 6-1
distributed

See Distributed database
dropping objects 7-28
emulation 14-12
enhancing performance 14-1
integrating new columns 7-11
layout 3-13
management

active dictionary 1-3
environment 1-1
guidelines 7-1
tasks 1-10
tools 1-10

moving 9-1, 9-24/9-25
online reorganization 8-2
planning 1-3, 3-1, 4-15
production 1-1, 14-12
PUP DOWN issues 11-33
PUP LABEL issues 11-31
PUP RENAME issues 11-32
recovering 4-12, 11-12
relocating 9-1, 13-1
renaming objects 7-36
reorganization

methods 8-1

Database (continued)
reporting status 8-4
suspending 8-4

restoring 11-7, 11-8/11-10
sample 2-1, 9-25
security 4-2
test 11-33, 14-12/14-15

DataLoader/MP
APPEND utility 8-15
LOAD utility 8-9, 8-15

DBA (database administrator)
tasks 1-10, 5-29
tools 1-10

DCL statements 1-10, 4-4
DDL operations

invalidating 10-16
limits 14-5

DDL statements
audit trail considerations 4-14
description 1-10
local autonomy 12-6
recovery EDIT files 4-24
security considerations 4-4, 5-37

DECIMAL data type 5-22
DECLARE CURSOR section number 13-7
DECLARE CURSOR statement 10-41
Default catalog 5-6
DEFAULT clause 5-26
DEFAULT NULL clause 5-27
DEFAULT SYSTEM clause 5-27
DEFAULT SYSTEM NOT NULL
clause 5-27
DEFAULTS DEFINEs 10-34
DEFINEs

adding 10-34
compiling 10-32
controlling processor usage 12-11
DEFAULTS 10-34
description 10-30
displaying information 5-7
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-7

Index D
DEFINEs (continued)
distributed databases 12-1
duration 10-31
examples, with SQLCI 10-34
identifiers 10-30
INVOKE statement 10-33
name resolution 10-13
names

locally distributed databases 12-1
network distributed databases 12-3
run-time environment 10-33

naming rules 10-30
network distributed databases 12-3
OBEY command files 10-31
PATHMON 10-37
PATHMON environment, set
duration 10-38
PATHMON, altering 10-37
programs 10-32
SORT DEFAULTS 14-26
SQL recompilation 10-10
SQLCI 10-31
SQL_CMP_CPUS 12-11
SQL_CMP_DOUBLE_SBB_OFF 14-21
SQL_CMP_DOUBLE_SBB_ON 14-21
SQL_EXE_DOUBLE_SHUTOFF 14-19
table creation 5-17
TACL, example 10-35, 10-36

Definitional integrity 1-6
DEFMODE option 10-31, 10-32
DELETE statement 10-41
Dependencies

determining 6-1, 9-2
displaying 6-2

DETAIL command 9-10, 9-11
Dictionary

See Data dictionary
Disk process 3-2

Disks
See also Volumes
database environment 1-1
erasing 11-33
labeling 11-31
mirrored volumes

PUP 11-33
recovery 4-1
requirements 2-2

prefetch operation 14-18
PUP REMOVE and REVIVE 11-33
read operation statistics 13-9
renaming 11-32

DISK-READS counters, Measure 13-9,
13-10
DISPLAY STATISTICS command 13-1,
13-3
DISPLAY USE OF utility 6-3
DISTINCT clause, avoiding sort 3-21
Distributed database

access paths 12-5
catalogs 12-4, 12-5
creating 12-7
effect of network lines 12-6
indexes 12-7
local 12-1
managing 12-1
partitions 12-5, 12-8
performance issues 12-9
security 12-4
SQL compilation 12-6
tables 12-7
views 12-7
ways to distribute objects 12-2

Distributed objects
altering 12-8
dropping 12-8
managing 12-1
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-8

Index E
DML statements
description 1-10
local autonomy 12-5
security considerations 4-4

Double buffering 14-18
DOUBLE PRECISION data type 5-22
Downgrading catalogs 2-16
Downtime by program, preventing 10-25
DROP CONSTRAINT statement 10-16
DROP INDEX statement 10-16
DROP statement

COLLATION 7-34
description 7-28
VIEW 7-30

DROP TABLE statement 10-16
DROP VIEW statement 10-16
DSAP utility 11-36
DSL statements 1-10
DSLACK option

APPEND command 8-16
LOAD command 8-7
RELOAD command 8-3

Dump
See also Backing up
file recovery 11-13
online 4-11, 9-14

DUP command, FUP and SQLCI 10-40,
10-42
DUP utility

catalog mapping schemes 9-30
CATALOG option 9-30
database move example 9-27
description 9-4
INDEXES OFF option 9-19, 9-23
moving collations 9-23
moving programs 10-44
moving tables 9-16

example 9-18

Dynamic SQL statement
CHECK option 10-22
query execution plans 10-12

D-series nodes, new features 2-12

E
EDIT files

for recovery 4-24, 11-8, 11-33
storing tables definitions 5-17

ELAPSED-BUSY-TIME counter,
Measure 13-9
ELAPSED-RECOMPILE-TIME counter,
Measure 13-9
Enhancing performance 14-1
Enscribe files

copying data 8-7
LOAD utility 8-10
removing B-1
restoring 11-10
unstructured 8-7

Entry-sequenced files 3-9, 5-14
Entry-sequenced tables 3-1, 5-14
Environment, database management 1-1
ESCALATIONS counters, Measure 13-10,
13-11
Estimated cost of compiled
statements 13-3
Execution

cost statistics 13-9
recompilation 10-7
SQLCI statistics display 13-3

Execution plans, altered 10-25
Execution-time name resolution

description 10-13
NOREGISTER option 10-41
similarity check 10-41

EXPLAIN DEFINEs option 10-33
EXPLAIN utility 7-5, 10-12
Explicit SQL compilation 10-6
EXTENT file attribute, similarity check
rules 10-28
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-9

Index F
Extent usage 13-2
EXTENTS option, FILEINFO 13-2

F
Fallback situation 2-15
FastSort

programs 2-8
SORTPROG process 14-26
SQL/MP calls 14-26
swap files 5-44

Field names
defining 5-19

FILCHECK utility 6-14
File names

resolution 10-13
File recovery

recovering an SQL object 11-17,
11-27/11-29

File set, BACKUP utility 9-6
File system, double buffering 14-18
File Utility Program

See FUP
FILEINFO utility

displaying attributes 6-10
displaying physical file names 6-10
displaying statistics 13-1
displaying virtual file names 6-10
EXTENTS option 13-2
file recovery 11-13
identifying shadow labels 11-36
performance information 13-2
SMF 6-10
volume recovery 11-12

Files
See also Tables
attributes, similarity check rules 10-28
audited 4-11
backing up non-SQL 4-19
block sizes 14-24
command summary 1-10

Files (continued)
determining attributes 6-10
EDIT 4-24, 5-17
entry-sequenced 3-1, 3-9, 5-14
key-sequenced

accessing 3-7
characteristics 3-1
reorganizing 8-2
structure 3-6, 3-8

labels 9-32, 10-16
nonaudited 11-7, 11-10
program 10-38
recovery 4-12, 11-1, 11-13
relative 3-1, 3-10, 5-14
reorganizing 8-1
shadow labels 11-36
structure 3-1
temporary 14-28
unstructured 8-7

FILES catalog table
description 6-4
displaying information 6-8

FILE, Measure entity
access costs 13-10
description 13-5
statistics 13-8

File-mode backup 4-24
File-set lists

examples 9-31
RESTORE utility 9-14

Finding SQL objects 9-34
FIRST KEY clause 5-28, 5-36
FLOAT data type 5-22
Format 2 partitions 2-11, 7-9, C-1/C-14
FORMAT command, PUP B-1
FROM CATALOG option 4-20, 9-34
FUP DUP command 10-40, 10-42
FUP (File Utility Program)

LICENSE command A-1
RELOAD command 8-1, 8-2, 8-3
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-10

Index G
FUP (File Utility Program) (continued)
SECURE command 2-8
SQLCI2 license A-1
STATUS command 8-4
SUSPEND command 8-4

G
Generic locks 14-21
GET CATALOG statement 10-41
GET VERSION OF PROGRAM
statement 10-13, 10-41
GROUP BY clause, avoiding sort 3-21
Group manager, security issues 4-4
Guardian names, resolution 10-13

H
Hardware

changing or moving 13-1
requirements 2-1

HEADING attribute 5-28, 10-29
HELP TEXT

attribute 5-28, 10-29
statement 7-16

Help text
COMMENTS table 6-7
similarity check rules 10-28

High PINs, as default 2-13
HIGHPIN attribute 2-13

I
Identifiers as DEFINE names 10-30
INCLUDE SQLSA statement 13-4
INCOMPLETE SQLDDL OPERATION
flag 7-24
Indexed columns

benefits 3-18
defining 3-20
integrity checking 5-47

Indexes
adding 7-4
altering attributes 7-19
AUDIT attribute 4-15
backing up 4-22
catalog tables 5-3
column data type and performance 3-4
creating 5-42/5-47, 7-4
description 1-2
displaying information 6-8
distributed databases 12-7
dropping 7-31
frequently used columns 3-20
improving performance

access path 14-16
aggregate functions 3-22
benefits 7-4
description 3-16
OR operations 3-22
sort operations 3-21

invalidating programs by creating 10-2
keys 3-2
levels 13-2, 14-7
loading 8-8
local partitions 12-9
moving 9-14, 9-22
ordering rows 3-21
parallel maintenance 14-17
partitioning 14-25
PHYSVOL option 5-45
primary key 3-19
renaming 7-36
restoring 11-6
retaining slack 4-18
securing 5-37
security dependencies on tables 4-5
swap files 5-44
unique 3-18, 5-47
unique keys and performance 5-47
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-11

Index K
INDEXES catalog table, displaying
information 6-8
INDEXES EXPLICIT option

BACKUP command 4-18, 4-22
BACKUP utility 9-23
RESTORE utility 9-23

INDEXES IMPLICIT option
BACKUP command 4-22
BACKUP utility 9-23
DUP utility 9-23
RESTORE utility 9-23

INDEXES OFF option, DUP utility 9-19,
9-23
Index-only access 3-20
INFO DEFINE command 5-7
INITIALIZE SQL command 2-4, 2-6, 9-9
Initializing SQL/MP 2-4
Inoperable plan

compilation example 10-25
description 10-15

Insert operation, WITH CHECK 3-15
INSERT statement

ANYWHERE option 3-12
NOREGISTER Option 10-41

INSTALL program 2-2
Installation, SQL/MP 2-1, 2-2
INTEGER data type 5-22
Integrity

checks and constraints 5-52
definitional 1-6

INTERVAL data type 5-23/5-25
Invalid programs

compilation statistics 13-8
DDL operations 10-16, 10-18
DDL statements 10-1
detecting 10-4
listing 10-5
utility commands 10-1

INVOKE statement, DEFINEs 10-33
ISLACK option

APPEND command 8-16

ISLACK option (continued)
LOAD command 8-7
RELOAD command 8-3

Item names 5-19

K
KEEP target option 9-4
Key 3-6
Key prefix 3-22
Key tags, similarity check rules 10-27
Keys

See also User-defined primary key
clustering 3-2/3-3, 3-6, 5-11, 5-12
index 3-2, 3-19
levels 3-4
performance 3-4, 5-47
primary

definition 5-11
description 3-2
indexes 5-42
logical 3-2
null values 5-27
physical 3-2, 3-6
system-defined 3-3

SYSKEY column 3-3, 5-11
KEYS catalog table 6-8
KEYTAG column 3-19
Key-sequenced files

accessing 3-7
block size 5-15
clustering keys 3-6
description 3-1, 3-9
record length 5-15
structure 3-6, 3-8

Key-sequenced tables 3-4, 5-11
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-12

Index L
L
LABEL command, PUP 11-31, B-1
Labels, shadow 11-36
LARGEINT data type 5-22
Levels of indexes 13-2, 14-7
Licensed SQLCI2 process A-1
LIKE clause, CREATE TABLE
statement 9-3, 9-21
LIKE predicate 6-4
LISTALL clause 7-35
Listing

catalog names 9-34
NOREGISTER option 10-40
REGISTERONLY option 10-40
SQL objects 9-34

LOAD utility
compared to COPY 8-7, 9-3
DataLoader/MP 8-9, 8-15
DSLACK option 8-7
ISLACK option 8-7
MOVE option 8-12
MOVEBYNAME option 7-26
moving data 8-7
moving database 9-23
moving tables 9-16, 9-20
operations 9-2, 9-3
options 8-3, 8-8
partitions 8-9
reorganizing tables 8-2
restructuring database 8-1
rules 8-8
SLACK option 8-7
tables 5-53, 7-27, 8-7

Local autonomy
description 12-2, 12-5
SQL compiler options 10-9

Local partitions 12-9
Locally distributed database 12-1
Location requirements for catalogs 5-4

Lock length, altering 14-21
LOCK statement 10-41
LOCKLENGTH attribute

generic locking 14-21
similarity check rules 10-28

Locks
AUDITONLY option 4-17
controlling 14-21
ESCALATIONS counter 13-11
generic 14-21
limit 14-23

LOCK-WAITS counters, Measure 13-10,
13-11
Logging, SQL compilation 10-5
Logical DEFINE

See DEFINEs
Logical file structures 3-1
Logical names

See also DEFINEs
specifying 10-29

Logical primary key 3-2
Low PINs, running 2-13

M
Managing a database 7-1
MAP DEFINE, name resolution 10-13
MAP NAMES option 9-27
MAP NAMES parameter, RECOVER FILES
command 11-28
Mapping schemes 9-30
Mapping strategy, program 10-44
Masking, row and column 3-15
MAX function, optimization 3-22
MAXEXTENTS file attribute, similarity
check rules 10-28
Measure product

CALLS counter 13-9
description 13-5
DISK-READS counters 13-9, 13-10
ELAPSED-BUSY-TIME counter 13-9
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-13

Index N
Measure product (continued)
ELAPSED-RECOMPILE-TIME
counter 13-9
ESCALATION counters 13-10, 13-11
FILE entity 13-5, 13-8, 13-10
index creation 7-4
LOCK-WAITS counters 13-10, 13-11
OPENS counter 13-9
RECOMPILES counter 13-9
RECORDS-ACCESSED
counters 13-9, 13-10
RECORDS-USED counter 13-10
SORTS counter 13-10
SQLPROC entity 13-5
SQLSTMT entity 13-5
SQL-NEWPROCESS counter 13-8
SQL-OBJ-RECOMPILE-TIME
counter 13-8
statistics reports 13-6
TIMEOUTS counters 13-10, 13-11

Measuring performance 13-1/13-11
Memory, system requirement 2-2
Merging partitions 7-20, 7-23
Migrating to a new SQL/MP version 2-10
MIN function, optimization 3-22
Mirrored disk volumes 2-2, 4-1, 11-33
MOVE option, LOAD utility 8-12
Moving partition boundaries 7-22
Moving partitions 7-20, 9-23

N
Name resolution

CATALOG DEFINE 10-13
cursors 10-14
execution-time 10-13
MAP DEFINE 10-13
subvolume names 10-13

Names
constraint 5-52
DEFINEs for substitution 10-30

Names (continued)
resolution for cursor 10-14
rules for column 5-19
tables, similarity check rules 10-27

National character data types 2-1
NATIONAL CHARACTER VARYING
column, zero-length string 5-27
Networks

distributed databases 12-2, 12-4
environments 12-15
lines 12-6
security 12-4
version issues 2-13

New process statistics 13-8
NO DEFAULT clause 5-26, 7-33
NO RECOMPILE option, UPDATE
STATISTICS statement 14-11
NOAUDITCOMPRESS attribute 5-17
Node

adding 12-15
altering 12-15
D-series features 2-12
names 2-1, 12-3
remote, availability 12-7
removing 12-15
renaming or renumbering 9-32

Nonaudited files
manual resolution of
inconsistency 11-10
restoring 11-10

Nonaudited objects
archiving 4-18
backing up with AUDITED option 9-34

Nonaudited tables, restoring 11-2
NOPURGEUNTIL attribute

altering 7-19
dependent indexes 4-5
similarity check rules 10-28
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-14

Index O
NORECOMPILE option
CHECK options 10-22
UPDATE STATISTICS statement 14-9

NOREGISTER option
example 10-42
RESTORE SQLCOMPILE option 10-43
SQL compiler listing 10-40

NOREGISTER option, similarity check
rules 10-41
NOT NULL clause 5-27
NULL clause 5-26
Null values 5-20, 5-26
Number of columns, similarity check
rules 10-28
Number of indexes, similarity check
rules 10-27
Numeric columns, defining for faster
access 5-21
NUMERIC data type

columns 5-20
DEFAULT SYSTEM clause 5-27
defining 5-22

O
OBEY command files

database recovery 4-24
entering DEFINEs 10-31
licensed SQLCI process 9-13
VERIFY utility output 10-5

Object programs 10-7
Objects

adding 7-1
archiving 4-18
backing up with AUDITED option 9-34
dependencies 6-1
distributed 12-1, 12-8
dropping 7-28, 12-8
moving 9-14
name resolution 10-13
PUP LABEL issues 11-31

Objects (continued)
purging 7-35
renaming 7-36
restoring 11-2

Online database reorganization 8-2
Online dump

description 4-11
move procedure 9-14

Online recovery 4-10
Open invalidation 10-1
OPENS counter, Measure 13-9
Operable plan 10-15
Operating system software,
requirements 2-1
OR operator, improving performance with
index 3-22
ORDER BY clause, avoiding sort 3-21
Ordering rows using an index 3-21
OSS environment 1-9
OWNER file attribute, similarity check
rules 10-28
Ownership

changes 4-5
server 10-29
shorthand view 5-40

P
Parallel execution plans, similarity
check 10-16
Parallel index maintenance 14-17
Partition array type 5-16
Partition node array 10-25
Partitioned data 5-32
Partitioning attributes, similarity check
rules 10-27
Partitions

adding 7-7, 14-25
altering attributes 7-16, 7-19
appending data 8-15, 8-16
backing up 4-21
boundaries, moving 7-20, 7-22
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-15

Index P
Partitions (continued)
creating 7-7
displaying information 6-9
distributed databases 12-8
distributed systems 12-5
dropping 14-25
Format 2 2-11, 7-9, C-1/C-14
invalidating programs by adding 10-2
large quantities 5-34
loading, in parallel 8-9
local 12-9
lock limit 14-23
merging 7-20, 7-23
moving 7-20, 9-23
one-way split 7-21
performance benefits 7-7, 14-25
reorganizing 8-1, 8-5
restoring 11-3, 11-4
separate, loading 8-9
SMF 5-32
specifying 5-36
splitting 7-20, 8-2, 8-5
table organization 5-32
two-way splits 7-22

PARTONLY clause
altering partition attributes 7-19
description 7-16

PARTONLY MOVE option
ALTER INDEX statement 7-7, 7-20
ALTER TABLE statement 7-7, 7-20

PARTONLY option, BACKUP
command 4-21
Pathmaker application development
tool 5-28, 10-29
PATHMON, DEFINEs used 10-37
Paths, access

See Access paths
Performance

benchmarks 13-1
block size impact 14-24

Performance (continued)
catalog scheme 5-5
clustering keys 3-3
column definitions 5-20
concurrency 14-1
data definitions 5-20
distributed databases 12-9
evaluating with test database 14-12
generic locks 14-21
improving

by avoiding sort 3-21
overview 14-1/14-28
with DISTINCT clause 3-21
with GROUP BY clause 3-21
with index 3-21, 3-22
with ORDER BY clause 3-21

improving with index 3-21, 3-22
index maintenance 14-17
indexes 3-16
key levels 3-4
measuring 13-1, 13-8
partitioning data 5-32, 14-25
queries 14-1
recompilation 10-9
sort operations 14-26
statistics 13-1
tables and columns statistics 14-7
tools for analyzing 13-1
unique index keys 5-47
UPDATE STATISTICS 14-8, 14-10
VARCHAR columns 5-21
views 14-24

Periodic backup 4-20
Peripheral Utility Program

See PUP
PFS (Process file segment) 10-30
Physical file structure 3-1
Physical primary key 3-6
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-16

Index P
PHYSVOL option
CREATE CATALOG statement 5-7
CREATE INDEX example 5-46
creating indexes 5-45
creating partitions 5-33
creating tables 5-18
system catalog 2-5

PINs 2-13
Planning database and data dictionary 1-3,
3-1
Plan, access 10-6, 10-12
Plan, query execution 10-6, 10-12
PRIMARY KEY clause 3-2, 3-6
Primary keys

See also User-defined primary key
access paths 3-2, 5-42
description 3-2, 5-11
entry-sequenced files 3-9, 5-14
generic locks 14-21
indexes 5-42
logical 3-2
null values 5-27
performance issues 3-4
physical 3-2, 3-6
system defined 3-3, 5-11
user-defined 3-2

Privileged operations, SQLCI2 process A-1
Process file segment (PFS)

changing size limit 14-20
DEFINEs 10-30
description 14-19
file system double buffering 14-19

Processor usage
controlling, examples 12-12
determining, _SQL_CMP_CPUS
DEFINE 12-13
limiting 12-11
SMF 12-13

Process, disk 3-2
Production database 1-1, 14-12

Program downtime, preventing 10-25
Programs

adding columns, effect 7-10
backing up 9-34
binding 10-1
constraints 14-23
DEFINEs 10-32
executing

access path changes 10-9
automatic recompilation 10-7
cost 13-9
invalidating changes 10-9

integrating new columns 7-11
invalidation 10-1
maintaining for best performance 10-12
manipulating 10-38
moving 9-14, 10-39, 10-44
object 10-7
recompilation 10-7
registering 10-7, 10-40
renaming 10-38
restarting 10-8
restoring 11-6
SENSITIVE flag 10-6
SQLSA 13-4
statistics for execution 13-9
status information 13-4
upgrading 2-12
VALID flag 10-6
validity 10-5
VERIFY utility 10-4

PROGRAMS catalog table
querying 10-5
RECOMPILETIME value 10-4
securing 5-7, 7-15
VALID flag

automatic compilation 10-6
description 10-4/10-5
invalidation 10-16
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-17

Index Q
PROGRAMS table 10-16
Protection views

AUDIT attribute 4-15
defining 3-14, 5-38
securing 5-38
similarity check rules 10-28

PUP (Peripheral Utility Program)
description 11-1
DOWN command 11-33
FORMAT command 11-33
LABEL command 11-31, B-1
options 11-31
REMOVE command 11-33
removing SQL objects B-1
RENAME command 11-32
REVIVE command 11-33
UP command 11-33

PURGE command 7-35
PURGE target option 9-4
PURGE utility 7-28, 7-35
PURGEDATA command 8-18
Purging SQL objects 9-33, B-1

Q
Queries

catalog access 6-1
enhancing performance 14-1
ensuring successful execution 14-26
optimization 5-38
parallel execution 14-27
performance 14-27

Query execution plan 10-6, 10-12
Query optimization

current statistics 14-7
partitioning data 5-32

Query performance, buffer size 14-17

R
RDF (Remote Duplicate Database
Facility) 4-1
REAL data type 5-22
Rebuilding CATALOGS table 9-13
RECLENGTH attribute 5-15
Recompilation 10-7, 14-11
RECOMPILE option

CHECK options 10-22
distributed database issues 12-6
UPDATE STATISTICS statement 14-9

RECOMPILES counter, Measure 13-9
Records

length 5-15
RECORDS-ACCESSED
counters 13-10

RECORDS-ACCESSED counters,
Measure 13-9, 13-10
RECORDS-USED counter, Measure 13-10
Recovery

BROKEN flag, resetting 11-11
catalog 11-12, 11-29
crash-open files 11-12
EDIT files 4-24, 5-17
file 4-12, 11-13
manual resolution 11-10
planning 4-1, 4-12, 11-8
RESETBROKEN option 11-11
SQL/MP objects 11-17
TMF subsystem

See TMF subsystem, recovery
tools 11-1
volume 4-12, 11-12, 11-31

Redefinition timestamp
similarity check rules 10-25, 10-26,
10-27
updating 10-16

REDONEEDED flag (FILEINFO) 11-12,
11-13
Registering programs 10-7, 10-40
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-18

Index S
REGISTERONLY option, SQL compiler
listing 10-40
Relationships

See Dependencies
Relative files 3-1, 3-10, 5-14
Relative tables 3-1, 3-10, 5-14, 5-15
Releases, compatibility 2-1, 12-17
RELOAD command 8-1, 8-2, 8-3
Remote Duplicate Database Facility
(RDF) 4-1
Remote node availability 12-7
Remote servers 12-11
RENAME option 7-36
RENAME statement, program
invalidation 10-16
Renaming a node 9-32
Renaming objects 7-36
Renumbering a node 9-32
Reorganizing databases online 8-2
Replicated data 12-10
Reports, Measure statistics 13-6
Report-producing procedure 9-10, 9-11
Requesters 14-23
RESETBROKEN option 11-11
Resources, controlling processors 12-11,
12-12
Restarting programs 10-8
RESTORE utility

AUDITED option 4-18
AUTOCREATECATALOG option 11-2
catalog restoration overview 11-2
CHECK option 10-43
description 9-4, 10-42
file-set lists 9-14
INDEXES EXPLICIT option 11-3
INDEXES IMPLICIT option 11-3
moving programs 9-14, 10-42
moving tables 9-14, 9-17, 9-19
NOREGISTER option 10-43
options 11-3
PARTONLY option 11-3, 11-4

RESTORE utility (continued)
PURGE option 11-3
REGISTERONLY option 10-40, 10-43
SQLCOMPILE option 10-42
table restoration 11-2/11-6

RETAINDEPTH option 4-16
Reverting to earlier version 2-15
ROLLBACK WORK statement 4-16, 14-10
Rows

catalog statistics 14-7
masking 3-15

S
Safeguard security 4-8
Sample application 2-1
Sample database 2-1, 9-25
SAVEALL option 9-4
SAVEID option 9-4
Scratch file

index creation 5-44
volumes 5-44

Section name and Measure statistics 13-7
SECURE attribute

altering index attributes 7-19
altering security 7-17
catalog tables 5-7, 5-8
protection views 3-15
similarity rules 10-28

SECURE clause 3-15
SECURE utility, securing tables 5-37
Security

altering 2-6, 2-8, 7-15
application access 10-29
catalog table 5-8, 7-17
CATALOGS table 5-7, 5-10
database 4-2
group manager 4-4
ownership changes 4-5
planning 4-1
protection view 5-38
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-19

Index S
Security (continued)
recommendations 4-4
Safeguard 4-8
schemes 4-4
shorthand view 3-15, 5-40
system catalog 5-10
table 5-37
user IDs 4-4, 5-1
view 5-38, 7-18

SELECT statement
NOREGISTER 10-41
performance 5-47
views 14-24

SENSITIVE flag 10-6
Sequential cache 14-17
SERIALWRITES file attribute, similarity
check rules 10-28
Servers

constraints 14-23
remote 12-11

SET SESSION STATISTICS ON
command 13-1, 13-3
SET STYLE VARCHAR_WIDTH
command 6-5
Shadow labels 11-36
SHADOWSONLY option 11-36
Shorthand views

description 3-15
securing 3-15, 5-40

Similarity check
ALLOCATE file attribute 10-28
AUDIT attribute 10-28
BUFFERED file attribute 10-28
column headings 10-28
comments 10-28
creation timestamp 10-27
description 10-15
example 10-25, 10-35
execution-time name resolution 10-41
EXTENT file attribute 10-28

Similarity check (continued)
file attributes 10-28
help text 10-28
key tags 10-27
LOCKLENGTH attribute 10-28
MAXEXTENTS file attribute 10-28
NOPURGEUNTIL attribute 10-28
NOREGISTER option 10-41
number of columns 10-28
number of indexes 10-27
OWNER file attribute 10-28
parallel execution plans 10-16
partitioning attributes 10-27
protection views 10-28
redefinition timestamp 10-25, 10-26,
10-27
SERIALWRITES file attribute 10-28
statistics 10-28
table contents 10-27
table names 10-27
TABLECODE file attribute 10-28
tables 10-27
timestamps, creation 10-27
underlying tables 10-27
VERIFIEDWRITES files attribute 10-28

Site update tape (SUT) 2-2
SLACK option

APPEND command 8-16
LOAD command 8-7, 9-21
RELOAD command 8-3

SMALLINT data type 5-22
SMF

catalog tables 5-7
CREATE INDEX example 5-46
creating indexes 5-45
creating partitions 5-32
creating tables 5-18
displaying physical file names 6-10
displaying virtual file names 6-10
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-20

Index S
SMF (continued)
FILEINFO command 6-10
PHYSVOL option 5-33
processor usage 12-13
system catalog 2-5

Sort operations
EXPLAIN utility 14-26
index creation 5-44
performance 14-26
specifying indexes to improve
performance 3-21

Sort programs 2-8
SORTED option 9-21
SORTPROG, FastSort process 14-26
SORTS counter, Measure 13-10
SORT_DEFAULTS DEFINEs 14-26
SOURCEDATE option 9-4
Split partitions

one-way split 7-21
two-way split 7-22

SQL
See also SQL/MP
compiler listing 10-40
executor, behavior after SQL load
time 10-22
load time 10-13
programs

backing up 9-34
file label 10-16

SQL compilation
explicit 10-6
logging 10-5

SQL SENSITIVE flag 10-6
SQLCATALOGS ON option 4-18
SQLCI (SQL Conversational Interface)

DEFINEs 10-30
DUP command 10-40
licensing A-1
query execution plans 10-12
TMF considerations 4-16

SQLCI2
altering security 2-8
description 2-4
licensing A-1
privileged operations A-1
SQL/MP initialization 2-4
ZZSQLCI2 file 2-4, 2-6

SQLCOMP command 10-45
SQLCOMPILE option

RESTORE utility 10-42
RESTORE with CHECK option 10-43
RESTORE with NOREGISTER
option 10-43
restoring database 11-9
restoring programs 11-6

SQLPROC entity
counters 13-8
description 13-5
statistics 13-6

SQLSA (SQL Statistics Area) 13-4
SQLSTMT entity

counters 13-9/13-10
description 13-5
statistics 13-7

SQL-NEWPROCESS counter,
Measure 13-8
SQL-OBJ-RECOMPILE-TIME counter,
Measure 13-8
SQL/MP

audited objects, recovering
purged 11-17
catalog requirements 5-4
compilation

automatic 10-12
CURRENTDEFINES option 10-32
DEFINEs 10-32
description 10-6
elapsed time statistics 13-8
EXPLAIN utility 10-11
gathering statistics 13-6
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-21

Index S
SQL/MP (continued)
local autonomy 12-6
logging 10-5
options and performance 10-32
PATHMON DEFINEs 10-10
query plans 10-12
SQL SENSITIVE flag 10-6
SQL VALID flag 10-6
statistics 10-12
STOREDDEFINES option 10-32

execution cost 13-9
initializing 2-4, 2-6
installing 2-1, 2-2
measurement models 13-8
migrating to a new version 2-10
node name for system 12-3
objects

archiving 4-17
distributed 12-1, 12-8
PUP LABEL issues 11-31
PUP RENAME issues 11-32
purging 9-33
removing B-1
restoring 11-2

programs 10-5, 10-7
recompilation

automatic 10-7, 14-25
RECOMPILE option 10-7
RECOMPILEONDEMAND
option 10-7
recorded time 10-4

removing B-1
removing from a node B-1
SENSITIVE flag 10-6
software components 2-2
startup cost 13-8
statistics area 13-4
system requirements 2-1
VALID flag 10-5, 10-6

SQL/MP statements
ADD CONSTRAINT 10-16
ALTER INDEX 10-16
ALTER TABLE 10-16
ALTER VIEW 10-16
CLOSE 10-14
CREATE INDEX 10-16
DECLARE CURSOR 10-41
DELETE 10-41
DROP CONSTRAINT 10-16
DROP INDEX 10-16
DROP TABLE 10-16
DROP VIEW 10-16
FETCH 10-14
GET CATALOG 10-41
GET VERSION OF PROGRAM 10-13,
10-41
INSERT 10-41
LOCK 10-41
OPEN 10-14
RENAME 10-16
SELECT 10-41
UNLOCK 10-41
UPDATE 10-41
UPDATE STATISTICS 10-16

SQL_CMP_DOUBLE_SBB_OFF
DEFINE 14-21
SQL_CMP_DOUBLE_SBB_ON
DEFINE 14-21
SQL_EXE_DOUBLE_SHUTOFF
DEFINE 14-19
Startup cost, SQL/MP 13-8
Statements, execution costs 13-9
Statistics

catalogs 14-7
displaying 13-3
execution 13-9
FILE entity 13-8
improving query plan 14-7
Measure collection 13-5/13-11
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-22

Index T
Statistics (continued)
performance 13-1, 14-8
program execution 13-9
similarity check rules 10-28
SQL compilation 10-12
SQLCI STATISTICS option 13-3
SQLPROC report 13-6
SQLSA 13-5
SQLSTMT report 13-7
UPDATE STATISTICS 14-7/14-11
updating for tables and columns 14-7

STATUS command 8-4
Status information in programs 13-4
STOREDDEFINES option

COMPILE option 10-25
during SQL compilation 10-32

Subvolume names, name resolution 10-13
SUSPEND command 8-4
SUT (Site Update Tape) 2-2
Swap files 5-44
Swap file, index creation 5-44
SYSKEY column

combined with clustering key 3-3
description 3-3, 5-11

System catalog
creating 2-5
description 1-3, 5-4
displaying information 6-4
moving 9-9
PHYSVOL option 2-5, 5-7
security 5-10
table (CATALOG) 6-15

SYSTEM command 12-3
System requirements 2-1
System-defined primary keys 3-3, 5-11

T
Table contents, similarity check rules 10-27
TABLECODE file attribute, similarity check
rules 10-28

Tables
See also Base tables
adding 7-3
allocating space 5-14
appending data 8-7, 8-13, 8-15
attributes

altering 7-16
determining 6-10
specifying 5-16

audited 4-11
auditing 4-12, 4-13, 9-5
catalogs

description 5-2
indexes 5-3

command summary 1-10
constraint considerations, loading 5-53
controlling access 14-1
copying data 8-7, 8-13
creating 5-10, 7-3
creating views 5-38
database layout 3-13
description 3-13
displaying information 6-4
distributed databases 12-7
dropping 7-30, 10-2
dropping data 8-18
entry-sequenced 3-1, 3-9, 5-14
key-sequenced

creating 5-11
description 3-1
file structure 3-6
key levels 3-4

loading 5-53, 7-27, 8-7
local partitions 12-9
matching data types 5-29
moving 9-14, 9-16, 9-23
opens statistics 13-9
organization 5-10
partitioned 5-32, 14-25
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-23

Index U
Tables (continued)
PHYSVOL option 5-18
preallocating space 5-14
primary keys 3-4, 5-11
purging data 8-18
relative 3-1, 3-10, 5-14
renaming 7-36
reorganizing 8-1
restoring 11-2, 11-6
security 5-37, 10-29
security dependencies of indexes 4-5
similarity check rules 10-27
statistics, updating 14-7
USAGES catalog table 10-16
VERSIONS catalog table 6-15
view security 3-15, 5-38

TABLES catalog table, displaying
information 6-4, 6-5, 6-6
TACL DEFINEs, example 10-35, 10-36
Tasks, database management 1-10
Temporary files 14-28
Test database 11-33, 14-12/14-15
TIMEOUTS counters, Measure 13-10,
13-11
Timestamps

backups 4-20
creation, similarity check rules 10-27
views 6-5

TMF subsystem
command files 2-2
configuring 4-13
COPY utility 8-14
planning for requirements 4-12
recovery 4-1

catalogs 11-29
database 11-11
files 11-13, 11-14
network considerations 12-16
overview 4-10/4-17
volumes 1-5, 11-1, 11-11

TMF subsystem (continued)
requirements 2-1
RETAINDEPTH option 4-16
SQLCI 4-16
starting 2-2
transactions

automatic generation 4-16
constraint creation 5-53
index creation 7-5
recovery 4-10
UPDATE STATISTICS
statement 14-11

Tools
database management 1-10
performance measurement 13-1
recovery 11-1
statistics gathering 13-1

Trails, audit
See Audit trails

Transaction
See also TMF subsystem
backout 4-11
description 4-10
user-defined 2-14, 4-16

Transaction Management Facility (TMF)
See TMF subsystem

Transactions
See TMF subsystem, transactions

TRANSIDS catalog table
description 5-2
securing 5-7, 7-15
shorthand view creation 5-40

U
Unavailable access paths 10-13
Underlying tables, similarity check
rules 10-27
UNDONEEDED flag (FILEINFO) 11-12,
11-13
UNION operation 6-10
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-24

Index V
Unique index keys and performance 5-47
Unique indexes 3-18, 5-47
UNLOCK statement 10-41
UNRECLAIMED FREESPACE flag 7-24
Unstructured files 8-7
UP option (PUP) 11-33
Update operation, WITH CHECK 3-15
UPDATE statement 10-41
UPDATE STATISTICS statement

adding indexes 7-5
description 14-7/14-11
effect on performance 14-8
program invalidation 10-2, 10-16
testing 14-9

UPGRADE CATALOG command 2-14
UPGRADE SYSTEM CATALOG
command 2-15
Upgrading programs 2-12
UPSHIFT attribute 5-28, 10-29
USAGES catalog table

description 6-1
displaying 9-34
purging data 7-35
securing 5-7, 7-15
shorthand view creation 5-40

USAGES table 10-16
User ID, security 4-4, 5-1
User-defined primary key

composition 3-2
generic locks 14-21
key-sequenced tables 3-2
table organization 5-11

User-defined transaction 2-14, 4-16
Utilities, moving databases 9-2

V
Valid definition 6-5
VALID flag

automatic recompilation 10-6
description 10-4/10-5

VALID flag (continued)
invalidation 10-16

VALIDDEF flag 6-5
Validity

program 10-4
protection view 3-15

VARCHAR columns
defining for faster access 5-21
displaying 6-5
performance issues 5-21

VERIFIEDWRITES file attribute, similarity
check rules 10-28
VERIFY utility

detecting invalid programs 10-4
determining database consistency 6-12

Version
catalog information 6-15
requirements 2-1, 2-10
reverting 2-15

VERSIONS catalog table
description 5-3
displaying information 6-15

Version, reverting 2-15
Views

See also Protection views
See also Shorthand views
adding 7-4
altering attributes 7-18
backing up 4-22
contents 9-21
creating 5-38/5-41, 7-4
database layout 3-16
description 3-13, 3-16
displaying information 6-5
distributed databases 12-7
dropping 7-30
file labels 9-21
moving 9-14, 9-21
NO DEFAULT clause 7-33
performance issues 14-24
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-25

Index W
Views (continued)
protection 3-14
renaming 7-36
restoring 11-6
securing 3-15, 5-38, 7-18
security and underlying table
security 5-41

VIEWS catalog table
displaying information 6-6
shorthand view creation 5-40

VIEWS EXPLICIT option, DUP utility 9-21
VIEWS OFF option, DUP utility 9-19
Volume recovery

TMF 1-5, 11-12, 11-31
Transaction backouts 4-12

Volumes
auditing 4-12, 5-4
labeling 11-31
mirrored 2-2, 4-1
PUP LABEL command 11-31
PUP REMOVE and REVIVE 11-33
removing 11-33
Safeguard protection 4-8

Volume-mode backup 4-24
VSBB, file system double buffering 14-19

W
WHERE SQLPROGRAM selection 10-44
Wild-card character 6-4, 9-18
WITH CHECK option 3-14, 3-15
WITH SHARED ACCESS option 14-2

Z
ZZSQLCI2 file 2-4, 2-6

Special Characters
% character, LIKE predicate 6-4
_SORT_DEFAULTS DEFINE 14-26
_SQL_CMP_CPUS DEFINE 12-11
HP NonStop SQL/MP Installation and Management Guide—523353-004
Index-26

	What’s New in This Manual
	About This Manual
	1 The SQL/MP Database Management Environment
	SQL/MP Software
	SQL Objects
	SQL Catalogs
	Active Data Dictionary

	SQL/MP Features
	Distributed Databases
	Database Protection and Recovery
	Data Integrity
	Multiple Character Sets
	DEFINEs
	Database Security
	Parallel Processing
	High Availability

	Database Management Operating Environments
	Database Management Tasks
	Database Management Tools

	2 Installing SQL/MP
	Hardware and Software Requirements
	SQL/MP Software Components
	Installing SQL/MP
	Starting the Transaction Management Facility (TMF)
	Initializing SQL/MP
	Setting Up Event Logging
	Setting Up Alternate SQL Components
	Additional Installation Considerations

	Reinstalling SQL/MP Software
	Migrating to a Newer Software Version
	C-Series to D-Series Migration Considerations
	Mixed-Version Network Considerations
	Upgrading Catalogs

	Reverting to an Older Software Version
	Dropping Newer-Version Objects
	Downgrading Catalogs
	Recompiling Programs
	Reverting to SQL/MP Version�2
	Reverting to an Older Version of TMF

	3 Understanding and Planning Database Tables
	Understanding SQL File Structures
	Primary Keys
	Key-Sequenced File Structure
	Entry-Sequenced File Structure
	Relative File Structure

	Determining a Database Layout
	Using Base Tables
	Using Views
	Determining When to Use Indexes

	4 Planning Database Security and Recovery
	Security Guidelines
	Sample Authorization Schemes
	Guidelines for Security Schemes
	Authorization Requirements for Database Operations
	Safeguard Security Product

	The TMF Subsystem
	TMF Concepts
	Levels of Database Recovery
	SQL Requirements for TMF
	Guidelines for Configuring TMF
	Guidelines for Online Dumps
	TMF Considerations in Using SQLCI

	Backup Strategies
	Daily Backups
	Periodic Full Backups
	Daily Timestamp Backups
	Using the FROM CATALOG Option for SQL Objects
	Backing Up Partitions
	Backing Up Indexes
	Backing Up Views
	Backing Up Collations
	Using Volume-Mode or File-Mode Backup
	Using OBEY Command Files for Recovery

	5 Creating a Database
	Creating Catalogs
	Catalog Tables
	Requirements for Catalogs
	Design Considerations
	Performance Considerations
	Creating a Catalog
	Securing Catalog Tables
	Securing the System�Catalog

	Creating Base Tables
	Determining the Organization of the Physical File
	Determining the Number of Records per Block
	Additional Guidelines for Creating Tables
	Creating Tables on a System That Uses SMF
	Defining Columns
	Creating Table Partitions
	Securing a Base Table

	Creating Views of Base Tables
	Creating a Protection View
	Creating a Shorthand View
	View Security and Underlying Table Security

	Creating Indexes on Base Tables
	Creating an Index
	Defining Unique Indexes
	Creating Index Partitions
	Specifying Parallel Loading of Index Partitions

	Creating Constraints on Data
	Using the CREATE CONSTRAINT Statement
	Examples of Creating Constraints

	Creating Collations
	Creating Collation Source Files
	Creating Collation Objects
	Securing Collations

	6 Querying SQL/MP Catalogs
	Determining Object and Program Dependencies
	Using the DISPLAY USE OF Command
	Displaying Information About Usages by Querying the Catalog

	Displaying Current Database Definitions
	Displaying Information About Catalogs
	Displaying Information About Tables
	Displaying Information About Views
	Displaying Information About Constraints
	Displaying Information About Collations
	Displaying Information About Columns
	Displaying Comments and Help Text
	Displaying Information About Indexes
	Displaying Information About Partitions
	Joining Catalog Tables With UNION

	Displaying File and Security Attributes
	Determining Object Integrity and Consistency
	Using VERIFY to Check Definitional Integrity
	Using FILCHECK to Check Structural Consistency

	Displaying Catalog, Object, and Program Versions

	7 Adding, Altering, Removing, and Renaming Database Objects
	Adding Objects to a Database
	Adding Catalogs
	Adding Tables
	Adding Views
	Adding Indexes
	Adding Partitions to Tables and Indexes
	Adding Columns
	Adding Constraints
	Adding Collations
	Adding Comments

	Altering Database Objects
	Altering Catalog Attributes
	Altering Table Attributes
	Altering View Attributes
	Altering Index Attributes
	Altering Partition Attributes
	Splitting, Moving, and Merging Partitions
	Altering Columns
	Altering Constraints
	Altering Collation Attributes
	Altering Comments

	Dropping Objects From a Database
	Dropping Catalogs
	Dropping Tables
	Dropping Views
	Dropping Indexes
	Dropping Partitions of Tables and Indexes
	Deleting Columns
	Dropping Constraints
	Dropping Collations
	Dropping Comments

	Purging SQL Objects and Enscribe Files
	Using DROP or PURGE

	Renaming Objects

	8 Reorganizing Tables and Maintaining Data
	Choosing a Reorganization Method
	Reorganizing a Database Online
	Reorganizing Key-Sequenced Files
	Determining the Status of a Reorganization
	Suspending a Reorganization Operation

	Reorganizing Partitions
	Balancing Partition Sizes
	Changing Extent Size Values
	Adding Empty Partitions

	Loading, Copying, Appending, and Purging Data
	Guidelines for Loading Tables
	Loading Individual Partitions
	Examples of Loading Tables
	Guidelines for Copying Tables
	Examples of Copying Tables and Files
	Appending Data to Tables or Partitions
	Purging Data From SQL Tables

	9 Moving a Database
	Reasons for Moving a Database
	Determining Move Dependencies
	Choosing Utilities for the Move Operation
	COPY and LOAD
	DUP and BACKUP/RESTORE

	Moving the System�Catalog
	Moving Database Objects
	Dropping and Re-creating Catalogs
	Moving Catalogs
	Moving Tables
	Moving Views
	Moving Indexes
	Moving Collations
	Moving Partitions

	Moving a Database to a Different Node or Different Volumes
	Choosing a Method
	Steps for Moving a Database
	Example of Moving a Database
	Catalog Mapping Schemes for DUP

	Renaming or Renumbering a Node
	Backing Up and Purging SQL Objects
	Renaming or Renumbering Your System
	Reinstalling SQL/MP on a Node
	Restoring a SQL/MP Database on a Node

	10 Managing Database Applications
	Program Validity
	Operations That Invalidate a Program
	Unexpected Events That Can Invalidate a Program
	Operations That Do Not Invalidate a Program
	Determining Validity of a Program

	SQL Compilation and Recompilation
	Explicit Compilation
	Automatic Recompilation

	Deferring Name Resolution
	CONTROL QUERY BIND�NAMES Directive
	Avoiding Automatic SQL�Recompilations

	Using Similarity Checks
	Using the CHECK�Option
	Using the COMPILE Option
	Enabling the Similarity Check for Tables and Protection Views

	Planning for TS/MP Requirements
	Planning for Pathmaker Requirements
	Using DEFINEs
	Entering DEFINE Commands
	DEFINE Rules
	Using DEFINEs During Compilation
	Using DEFINE Names With Programs
	Using DEFINEs From SQLCI
	Using DEFINEs to Switch Databases
	Using DEFINEs With PATHMON

	Manipulating Program Files
	Moving Programs
	Moving Programs Without Recompilation
	Using BACKUP and RESTORE
	Using SQLCI DUP

	11 Performing Recovery Operations
	Restoring Individual SQL Objects
	Restoring Catalogs
	Restoring Collations
	Restoring Tables
	Restoring Views
	Restoring Indexes
	Restoring Programs

	Restoring Databases
	Completing the Planning Phase
	Restoring a Database as a Planned Event
	Restoring a Database as an Unplanned Event

	Recovering Consistent Files by Resetting the BROKEN Flag
	Restoring Objects With TMF Recovery Operations
	Database Recovery After a Disk or Node (System) Failure
	Volume Recovery
	File Recovery
	File Recovery With the TIME Option
	Recovering Purged SQL Tables
	Operations That Invalidate TMF Online Dumps

	Responding to Accidental Loss of an Audited SQL/MP Object
	Recovery Precautions
	Recovering Views and Indexes
	Recovering Tables
	Recovery Example

	Recovering Catalogs
	Purging Damaged Objects With the CLEANUP Utility
	Recovering From Peripheral Utility Program (PUP) Commands (D-series only)
	PUP LABEL
	PUP RENAME
	PUP FORMAT
	PUP REMOVE and PUP�REVIVE
	PUP DOWN (or PUP REMOVE) and PUP UP

	SCF Commands (G-series only)
	SCF ALTER DISK, LABEL
	SCF RENAME
	SCF INITIALIZE DISK
	SCF STOP DISK and SCF START DISK
	SCF STOP and SCF START

	Managing Shadow Disk Labels
	Identifying Shadow Labels
	Removing Shadow Labels

	12 Managing a Distributed Database
	Managing a Locally Distributed Database
	Using DEFINEs for Logical Name Mapping
	Maintaining Local Autonomy

	Managing a Network-Distributed Database
	Naming Nodes
	Using DEFINEs for Network�Object Names
	Using Catalogs in�a�Network
	Managing Network Security
	Maintaining Local Autonomy in a Network

	Creating a Distributed Database
	Altering Distributed Objects
	Dropping Distributed Objects
	Enhancing Performance for a Distributed Database
	Using Local Partitions and Indexes
	Supporting Replicated Data Through Indexes
	Using Remote Servers

	Managing Processor Usage in a Distributed Environment
	Design Examples
	SQL Compilation and the CPU Usage DEFINE
	Using the Processor Usage DEFINE

	Changing Network Environments
	Managing Mixed Versions of SQL/MP

	13 Measuring Performance
	SQL/MP Tools for Gathering Statistics
	FILEINFO Utility
	SET SESSION STATISTICS and DISPLAY STATISTICS Commands
	SQL Statistics Area (SQLSA)

	Measure Performance Measurement Tool
	Statistics and Reports for SQL/MP
	SQL/MP Measurement Models

	14 Enhancing Performance
	Understanding the Implications of Concurrency
	Minimizing Contention
	Avoiding Contention Between DDL Operations
	Other Operational Considerations

	Keeping Statistics Current
	Knowing When to Update Statistics
	Analyzing the Possible Impact of Running UPDATE STATISTICS
	Testing UPDATE STATISTICS
	Running UPDATE STATISTICS

	Using a Test Database for Emulation
	Obtaining Statistics
	Altering Statistics
	Deleting a Test Database

	Optimizing Index Use
	Maximizing Parallel Index Maintenance
	Managing Cache Memory Size
	Maximizing Disk Process Prefetch Capabilities
	Managing File System Double Buffering
	Using an SQL DEFINE to Manage PFS Utilization
	Changing the PFS Size Limit
	Additional DEFINEs for Managing Double Buffering

	Using Generic Locks
	Checking Data Integrity
	Creating Logical Views of Data
	Specifying Block Sizes for Files
	Adding and Dropping Partitions
	Avoiding Automatic Recompilations
	Matching Block Split Operation to Table Usage
	Supporting Sort Operations
	Specifying Scratch Volumes
	Enhancing Query Performance
	Supporting Parallel Query Execution

	Planning for Temporary File Requirements

	A Licensed SQLCI2 Process
	Licensing SQLCI2
	Running SQLCI2 as SUPER.SUPER
	Running SQLCI2 as another user

	Revoking an SQLCI2 License

	B Removing SQL/MP From a Node
	Using the PUP FORMAT Command to Remove SQL Objects
	Using the CLEANUP Utility to Remove SQL Objects

	C Format 2 Partitions
	Planning for SQL Format 2-Enabled Tables and Format 2 Partitions
	General Planning Considerations

	Operational Considerations for SQL Format 2�Enabled Table Use
	Fallback Considerations
	Fallback Scenario 1
	Fallback Scenario 2
	Fallback Scenario 3

	Interoperability Considerations
	Third-Party Provider Considerations

	Index

