
HP NonStop SQL/MX
Release 3.2.1
Programming Manual
for C and COBOL
Abstract

This manual explains how to use embedded SQL for HP NonStop™ SQL/MX for C,
C++, and COBOL. In NonStop SQL/MX, a C, C++, or COBOL program uses
embedded SQL/MX statements to access HP NonStop SQL/MP and SQL/MX
databases.

Product Version

NonStop SQL/MX Release 3.2.1

Supported Release Version Updates (RVUs)

This publication supports J06.14 and all subsequent J-series RVUs and H06.25 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Part Number Published

663854-005 June 2013

Document History
Part Number Product Version Published

544617-002 NonStop SQL/MX Release 2.3 February 2010

544617-003 NonStop SQL/MX Release 2.3 August 2010

663854-001 NonStop SQL/MX Release 3.1 October 2011

663854-002 NonStop SQL/MX Release 3.2 August 2012

663854-004 NonStop SQL/MX Release 3.2.1 February 2013

663854-005 NonStop SQL/MX Release 3.2.1 June 2013

Legal Notices
 Copyright 2013 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

Export of the information contained in this publication may require authorization from the U.S.
Department of Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks and IT DialTone and The
Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the
Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF MATERIAL PROVIDED
HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in
connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and the software to
which it relates are derived in part from materials supplied by the following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital Equipment Corporation.
© 1985, 1988, 1989, 1990 Encore Computer Corporation. © 1988 Free Software Foundation, Inc.
© 1987, 1988, 1989, 1990, 1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991,
1992 International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988, 1989,
1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informationssysteme AG. © 1986,
1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California. OSF acknowledges the following
individuals and institutions for their role in its development: Kenneth C.R.C. Arnold,
Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric Computer Systems, Robert Elz. © 1980,
1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Printed in the US

HP NonStop SQL/MX Release
3.2.1 Programming Manual for C
and COBOL
Index Examples Figures Tables
Legal Notices

What’s New in This Manual xv

Manual Information xv

New and Changed Information xv

About This Manual xix

Audience xix

Organization xix

Related Documentation xx

Examples in This Manual xxiii

Notation Conventions xxiii

Change Bar Notation xxvi

HP Encourages Your Comments xxvi

1. Introduction
Referencing Database Object Names 1-1

NonStop SQL/MX Release 2.x 1-1

NonStop SQL/MX Release 1.x 1-1

Embedding SQL Statements 1-2

Embedding SQL Statements in DLL 1-2

Declaring and Using Host Variables 1-3

Declaring Host Variables 1-3

Using Host Variables 1-4

Using DML Statements to Manipulate Data 1-4

Declaring and Using Static SQL Cursors 1-5

Using Dynamic SQL 1-7

Using Descriptor Areas for Dynamic SQL 1-7

Using Dynamic SQL Cursors 1-8

Using DML Statements With Rowsets 1-8

Improving Performance by Using Rowsets 1-8

Declaring a Rowset 1-9

Using a Rowset in a Query 1-9
 Hewlett-Packard Company—663854-005
i

Contents 2. Embedded SQL Statements
Processing Exception Conditions 1-10

Checking SQLSTATE 1-10

Using WHENEVER 1-10

Using GET DIAGNOSTICS 1-11

Ensuring Data Consistency 1-11

Compiling and Building an Application 1-12

Processing With Embedded Module Definitions 1-12

Processing With Module Definition Files 1-12

General Instructions 1-13

SQL/MX Host Language Preprocessor 1-13

SQL/MX Compiler 1-14

Host Language Compiler 1-14

Program and Module Management 1-14

2. Embedded SQL Statements
Syntax for Coding SQL Statements 2-1

Guidelines for Coding SQL Statements 2-1

Placement of SQL Statements 2-2

MODULE Directive 2-2

Host Variable Declarations 2-2

Nonexecutable SQL Statements 2-4

Executable SQL Statements 2-4

Embedded SQL Declarations and Statements 2-6

Considerations for Embedding DDL and DML Statements 2-12

Considerations for Embedding the UPDATE STATISTICS Statement 2-12

Using CONTROL Statements 2-12

ANSI Compliance and Portability 2-13

Static and Dynamic CONTROL Statements 2-13

CONTROL, Line Order Scope, and Static SQL programs 2-13

CONTROL, Flow Control Scope, and Dynamic SQL programs 2-13

3. Host Variables in C/C++ Programs
Specifying a Declare Section 3-1

C Host Variable Data Types 3-2

Character Host Variables 3-3

Date-Time and Interval Host Variables 3-4

Numeric Host Variables 3-6

Floating-Point Host Variables 3-7

Using Corresponding SQL and C Data Types 3-8

Extended Host Variable Data Types and Generated C Data Types 3-11
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
ii

Contents 4. Host Variables in COBOL Programs
Data Conversion 3-13

Specifying Host Variables in SQL Statements 3-15

Using Host Variables in a C/C++ Program 3-16

Character Set Data 3-16

Fixed-Length Character Data 3-17

Variable-Length Character Data 3-19

Numeric Data 3-22

Date-Time and Interval Data 3-33

Host Variables in C Structures 3-39

Host Variables as Data Members of a C++ Class 3-39

Using Indicator Variables in a C/C++ Program 3-40

Inserting Null 3-40

Testing for Null or a Truncated Value 3-41

Retrieving Rows With Nulls 3-41

Creating C Host Variables Using INVOKE 3-42

Using the INVOKE Directive 3-42

INVOKE and Date-Time and Interval Host Variables (SQL/MX Release 1.8
Applications) 3-43

INVOKE and Floating-Point Host Variables 3-44

C Data Types Generated by INVOKE 3-45

Using Indicator Variables With the INVOKE Directive 3-48

C Example of Using INVOKE 3-50

Character Set Examples 3-51

Selecting From a UCS2 Character Set Into a VARCHAR Host Variable 3-52

Fetching From a UCS2 Character Set into a VARCHAR Host Variable 3-52

Selecting From an ISO88591 Character Set Into a UCS2 Host Variable 3-53

4. Host Variables in COBOL Programs
Specifying a Declare Section 4-1

COBOL Host Variable Data Types 4-2

Using Corresponding SQL and COBOL Data Types 4-5

Data Conversion 4-8

Specifying Host Variables in SQL Statements 4-9

Using Host Variables in a COBOL Program 4-10

Character Set Data 4-10

Fixed-Length Character Data 4-11

Variable-Length Character Data 4-12

Numeric Data 4-12

Date-Time and Interval Data 4-13
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
iii

Contents 5. Simple and Compound Statements
Using COBOL Data Description Clauses 4-18

Using Indicator Variables in a COBOL Program 4-19

Inserting Null 4-19

Testing for Null or a Truncated Value 4-20

Retrieving Rows With Nulls 4-21

Creating COBOL Host Variables Using INVOKE 4-22

Using the INVOKE Directive 4-23

INVOKE and Date-Time and Interval Host Variables (SQL/MX Release 1.8
Applications) 4-23

COBOL Record Descriptions Generated by INVOKE 4-23

Using Indicator Variables With the INVOKE Directive 4-27

COBOL Example of Using INVOKE 4-29

Character Set Examples 4-30

Selecting From a UCS2 Character Set Into a VARCHAR Host Variable 4-31

Fetching From a UCS2 Character Set into a VARCHAR Host Variable 4-31

5. Simple and Compound Statements
Single-Row SELECT Statement 5-2

Using a Primary Key Value to Select Data 5-2

Selecting a Column With Date-Time or INTERVAL Data Type 5-3

INSERT Statement 5-4

Inserting Rows 5-5

Inserting Null 5-6

Inserting a Date-Time Value 5-7

Inserting an Interval Value 5-8

Searched UPDATE Statement 5-9

Updating a Single Row 5-10

Updating Multiple Rows 5-11

Updating Columns To Null 5-11

Searched DELETE Statement 5-12

Deleting a Single Row 5-12

Deleting Multiple Rows 5-12

Compound Statements 5-13

Assignment Statement 5-15

IF Statement 5-16

Using PROTOTYPE Host Variables as Table Names 5-17

6. Static SQL Cursors
DML Statements for Static SQL Cursors 6-1

Steps for Using a Static SQL Cursor 6-2
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
iv

Contents 7. Static Rowsets
Declare Required Host Variables 6-4

Declare the Cursor 6-4

Initialize the Host Variables 6-5

Open the Cursor 6-5

Retrieve the Values 6-6

Process the Retrieved Values 6-7

Fetch the Next Row 6-10

Close the Cursor 6-11

Using Date-Time and INTERVAL Data Types 6-12

Standard Date-Time Example 6-12

Nonstandard SQL/MP DATETIME Example 6-13

Interval Example 6-13

Using Floating-Point Data Types 6-14

Considerations When Using a Cursor 6-14

Cursor Position 6-15

Cursor Stability 6-15

Cursor Sensitivity 6-16

7. Static Rowsets
What Are Rowsets? 7-1

Using Rowsets 7-2

Declaring Host Variable Arrays as Rowsets 7-2

Rowset Host Variable Pointers 7-3

Considerations for Rowset Size 7-4

Specifying Rowset Arrays 7-4

Using Rowset Arrays for Input 7-6

Using Rowset Arrays for Output 7-6

Using Rowset Arrays in DML Statements 7-7

Selecting Rows Into Rowset Arrays 7-7

Selecting Rowsets With a Cursor 7-16

Inserting Rows From Rowset Arrays 7-18

Updating Rows by Using Rowset Arrays 7-21

Deleting Rows by Using Rowset Arrays 7-23

Specifying Size and Row ID for Rowset Arrays 7-24

Limiting the Size of the Input Rowset 7-26

Limiting the Size of the Input Rowset When Declaring a Cursor 7-27

Limiting the Size of the Output Rowset 7-28

Using the Index Identifier 7-29

Specifying Rowset-Derived Tables 7-32
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
v

Contents 8. Name Resolution, Similarity Checks, and
Automatic Recompilation
Using Rowset-Derived Tables in DML Statements 7-33

Selecting From Rowset-Derived Tables 7-33

Selecting From Rowset-Derived Tables With a Cursor 7-36

Inserting Rows From Rowset-Derived Tables 7-38

Limiting the Size of a Rowset-Derived Table 7-39

Inserting Null 7-40

Updating Rows by Using Rowset-Derived Tables 7-41

Deleting Rows by Using Rowset-Derived Tables 7-43

8. Name Resolution, Similarity Checks, and Automatic
Recompilation
Name Resolution 8-1

Table and View Name References 8-1

Precedence of Object Name Qualification 8-5

Compile-Time Name Resolution for SQL/MP Objects 8-6

Late Name Resolution 8-6

Distributed Database Considerations 8-8

RDF Considerations 8-8

Similarity Checks and Automatic Recompilation 8-9

Similarity Check 8-9

Automatic Recompilation 8-18

Recommended Recompilation Settings for OLTP Programs 8-19

9. Dynamic SQL
Statements for Dynamic SQL With Arguments 9-2

Input Parameters and Output Variables 9-2

Floating-Point Variables 9-2

Steps for Using Dynamic SQL With Argument Lists 9-3

Declare a Host Variable for the Dynamic SQL Statement 9-4

Move the Statement Into the Host Variable 9-5

Prepare the SQL Statement 9-5

Set Explicit Input Values 9-6

Execute the Prepared Statement 9-6

Deallocate the Prepared Statement 9-7

Using EXECUTE IMMEDIATE 9-7

Setting Default Values Dynamically 9-8

10. Dynamic SQL With Descriptor Areas
Statements for Dynamic SQL With Descriptors 10-1

SQL Descriptor Areas 10-2
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
vi

Contents 11. Dynamic SQL Cursors
SQL Item Descriptors 10-2

Allocating an SQL Descriptor Area 10-3

Deallocating an SQL Descriptor Area 10-3

Input Parameters 10-3

Describing Input Parameters 10-4

Setting the Data Values of Input Parameters 10-4

Setting Input Parameter Information Without DESCRIBE INPUT 10-6

Output Variables 10-7

Describing Output Variables 10-7

Getting the Values of Output Variables 10-7

Consideration—Retrieving Multiple Values From a Large Buffer 10-8

Steps for Using SQL Item Descriptor Areas 10-12

Declare a Host Variable for the Dynamic SQL Statement 10-14

Construct the SQL Statement From User Input 10-14

Allocate Input and Output SQL Descriptor Areas 10-14

Prepare the SQL Statement 10-15

Describe the Input Parameters and the Output Variables 10-15

Set Explicit Input Values 10-16

Execute the Prepared Statement 10-18

Get the Count and Descriptions of the Output Variables 10-19

Deallocate the Prepared Statement and the SQL Descriptor Areas 10-20

Using SQL Descriptor Areas to Select SQL/MP KANJI and KSC5601 Data 10-21

Using SQL Descriptor Areas to Retrieve ISO88591 Data to UCS2 Host
Variables 10-21

11. Dynamic SQL Cursors
Statements for Dynamic SQL Cursors 11-1

Steps for Using a Dynamic SQL Cursor 11-2

Declare Required Host Variables 11-4

Prepare the Cursor Specification 11-4

Declare the Cursor 11-4

Initialize the Dynamic Input Parameters 11-5

Open the Cursor 11-5

Retrieve the Values 11-5

Process the Retrieved Values 11-6

Fetch the Next Row 11-6

Close the Cursor and Deallocate the Prepared Statement 11-6

Using Date-Time and INTERVAL Data Types 11-7

Standard Date-Time Example 11-7
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
vii

Contents 12. Dynamic SQL Rowsets
Interval Example 11-8

Nonstandard SQL/MP DATETIME Example 11-9

Dynamic SQL Cursors Using Descriptor Areas 11-10

12. Dynamic SQL Rowsets
Using Dynamic SQL Rowsets 12-1

Preparing an SQL Statement With Dynamic Rowsets 12-2

Specification of an Rowset Parameter in the PREPARE String 12-3

Matching Compile-Time Specified Length With Execution-Time Length 12-4

Dynamic SQL With Argument Lists 12-5

Using the SET DESCRIPTOR Statement 12-5

Setting the Rowset-Specific Descriptor Fields 12-5

Exclusive Use of VARIABLE_POINTER and INDICATOR_POINTER 12-9

Using the GET DESCRIPTOR Statement 12-9

Using the DESCRIBE INPUT Statement 12-10

13. Exception Handling and Error Conditions
Checking the SQLSTATE Variable 13-1

Declaring SQLSTATE 13-2

SQL:1999 SQLSTATE Values 13-2

SQL/MX SQLSTATE Values 13-3

Using SQLSTATE 13-4

Checking the SQLCODE Variable 13-5

Declaring SQLCODE 13-5

Declaring SQLCODE and SQLSTATE 13-5

SQLCODE Values 13-10

Using SQLCODE 13-10

SQL/MX Exception Condition Messages 13-11

Viewing the SQL Messages 13-12

Accessing SQL Messages Within a Program 13-12

Using the WHENEVER Statement 13-13

Precedence of Multiple WHENEVER Declarations 13-14

Determining the Scope of a WHENEVER Declaration 13-14

Enabling and Disabling the WHENEVER Declaration 13-14

Saving and Restoring SQLSTATE or SQLCODE 13-15

Declaring SQLSTATE or SQLCODE in an Error Routine 13-16

Accessing and Using the Diagnostics Area 13-17

Using the GET DIAGNOSTICS Statement 13-18

Getting Statement and Condition Items 13-18

Special SQL/MX Error Conditions 13-20
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
viii

Contents 14. Transaction Management
Lost Open Error (8574) 13-20

Occurrences of the Lost Open Error 13-20

Recovering From the Lost Open Error 13-21

14. Transaction Management
Transaction Control Statements 14-1

Steps for Ensuring Data Consistency 14-1

Declaring Required Variables 14-3

Setting Attributes for Transactions 14-3

Starting a Transaction 14-6

Processing Database Changes 14-7

Testing for Errors 14-7

Committing Database Changes if No Errors Occur 14-8

Undoing Database Changes if an Error Occurs 14-8

15. C/C++ Program Compilation
Compiling SQL/MX Applications and Modules 15-2

Compiling Embedded SQL C/C++ Programs With Embedded Module
Definitions 15-2

Compiling Embedded SQL C/C++ Programs With Module Definition Files 15-6

Creating Modules: From Development to Production 15-8

Running the SQL/MX C/C++ Preprocessor 15-8

Preprocessor Functions 15-9

Preprocessor Output 15-17

OSS-Hosted SQL/MX C/C++ Preprocessor 15-19

Windows-Hosted SQL/MX C/C++ Preprocessor 15-26

Running the C/C++ Compiler and Linker 15-34

Running the SQL/MX Compiler 15-36

Compiling Embedded Module Definitions 15-37

MXCMP Environment Variable 15-41

MXCMPUM Environment Variable 15-41

Compiling a Module Definition File 15-42

c89 Utility: Using One Command for All Compilation Steps 15-44

c89 Examples With Embedded Module Definitions 15-49

c89 Examples With Module Definition Files 15-52

Examples of Building and Deploying Embedded SQL C/C++ Programs 15-55

Building a C/C++ Program With Embedded SQL Statements on Windows 15-55

Developing a Native C/C++ Program With Embedded SQL/MX Statements on OSS
15-57
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
ix

Contents 16. COBOL Program Compilation
Building and Deploying a C Application With Embedded Module Definitions and
Module Definition Files 15-58

Quick Builds and mxcmp Defaults in a One-File Application Deployment 15-60

Deploying a Static SQL Application to an RDF System 15-62

Building SQL/MX C/C++ Applications to Run in the Guardian Environment 15-66

Building SQL/MX Guardian Applications in the Guardian Environment 15-67

Building SQL/MX Guardian Applications in the OSS Environment 15-72

Running an SQL/MX Application 15-72

Running the SQL/MX Program File 15-73

Understanding and Avoiding Some Common Run-Time Errors 15-73

Debugging a Program 15-75

Displaying Query Execution Plans 15-75

16. COBOL Program Compilation
Compiling SQL/MX Applications and Modules 16-2

Compiling Embedded SQL COBOL Programs With Embedded Module
Definitions 16-3

Compiling Embedded SQL COBOL Programs With Module Definition Files 16-6

Creating Modules: From Development to Production 16-8

Running the SQL/MX COBOL Preprocessor 16-9

Preprocessor Functions 16-9

Preprocessor Output 16-11

OSS-Hosted SQL/MX COBOL Preprocessor 16-13

Windows-Hosted SQL/MX COBOL Preprocessor 16-18

Running the COBOL Compiler and Linker 16-23

Running the SQL/MX Compiler 16-25

Compiling Embedded Module Definitions 16-25

MXCMP Environment Variable 16-30

MXCMPUM Environment Variable 16-30

Compiling a Module Definition File 16-30

ecobol or nmcobol Utility: Using One Command for All Compilation Steps 16-33

ecobol and nmcobol Examples With Embedded Module Definitions 16-41

ecobol and nmcobol Examples With Module Definition Files 16-44

Combining Embedded Module Definitions and Module Definition Files 16-46

Building SQL/MX COBOL Applications to Run in the Guardian Environment 16-47

Building SQL/MX Guardian Applications in the Guardian Environment 16-47

Building SQL/MX Guardian Applications in the OSS Environment 16-50

Running an SQL/MX Application 16-51

Running the SQL/MX Program File 16-52

Understanding and Avoiding Common Run-Time Errors 16-52
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
x

Contents 17. Program and Module Management
Displaying Query Execution Plans 16-55

17. Program and Module Management
Program Files 17-1

Managing Program Files 17-3

Generating Locally or Globally Placed Modules 17-3

Managing the Coexistence of Globally and Locally Placed Modules 17-4

Generating modules in a user-specified location 17-6

Specifying the search locations for the module files 17-7

Managing Modules 17-8

Module Management Behavior 17-8

Influencing Module Management Behavior 17-9

Module Management Naming 17-9

How Modules Are Named 17-10

Effect of Module Management Naming 17-13

Specifying the search locations of the module files 17-13

Targeting 17-14

Effect of the Target Attribute 17-15

Targeting Example for C: Using ModuleTableSet (MTSS) 17-15

Targeting Example for C: Using Build Subdirectory 17-17

Targeting Example for COBOL: Using ModuleTableSet (MTSS) 17-18

Targeting Example for COBOL: Using a Build Subdirectory 17-20

Versioning 17-21

Grouping 17-23

A. C Sample Programs
Using a Static SQL Cursor A-1

Ensuring Data Consistency A-4

Using Argument Lists in Dynamic SQL A-5

Using SQL Descriptor Areas in Dynamic SQL A-7

Using SQL Descriptor Areas With DESCRIBE A-7

Using SQL Descriptor Areas Without DESCRIBE A-12

Using a Dynamic SQL Cursor A-15

Using a Dynamic SQL Cursor A-15

Using a Dynamic SQL Cursor With Descriptor Area A-17

Using a Dynamic SQL Rowset A-26

Using SQL Descriptors to Select KANJI and KSC5601 Data A-28

DDL for KANJI and KSC4501 Table Columns A-28

Using SQL Descriptor Areas to Select SQL/MP KANJI and KSC5601 Data A-29

Using SQL Descriptors to Select UCS2 Data A-35
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xi

Contents B. C++ Sample Program
B. C++ Sample Program
Ensuring Data Consistency B-1

C. COBOL Sample Programs
Using a Static SQL Cursor C-1

Ensuring Data Consistency C-4

Using Argument Lists in Dynamic SQL C-6

Using SQL Descriptor Areas in Dynamic SQL C-9

Using a Dynamic SQL Cursor C-13

Index

Examples
Example 2-1. Static and Dynamic SQL and CONTROL Scope 2-14

Example 3-1. CREATE TABLE Statement 3-47

Example 3-2. C Structure Generated by INVOKE 3-48

Example 3-3. C INVOKE 3-51

Example 4-1. Null Test Example 4-21

Example 4-2. CREATE TABLE Statement 4-24

Example 4-3. COBOL Record Description Generated by INVOKE 4-25

Example 4-4. INVOKE Example 4-30

Example 10-1. C VARIABLE_POINTER Example 10-9

Example A-1. Using a Static SQL Cursor A-1

Example A-2. Using TMF to Ensure Data Consistency A-4

Example A-3. Using Argument Lists in Dynamic SQL A-5

Example A-4. Using SQL Descriptor Areas With DESCRIBE A-8

Example A-5. Using SQL Descriptor Areas Without DESCRIBE A-12

Example A-6. Using a Dynamic SQL Cursor A-15

Example A-7. Using a Dynamic SQL Cursor With Descriptor Areas A-18

Example A-8. Dynamic SQL Rowsets A-26

Example A-9. DDL for KANJI and KSC4501 Table Columns A-28

Example A-10. Using SQL Descriptor Areas to Select SQL/MP KANJI and KSC5601
Data A-30

Example A-11. Using SQL Descriptors to Select UCS2 Data A-35

Example B-1. Using TMF to Ensure Data Consistency B-1

Example C-1. Using a Static SQL Cursor C-1

Example C-2. Using TMF to Ensure Data Consistency C-4

Example C-3. Using Argument Lists in Dynamic SQL C-6

Example C-4. Using Descriptor Areas With DESCRIBE C-9

Example C-5. Using a Dynamic SQL Cursor C-13
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xii

Contents Figures
Figures
Figure 6-1. Using a Static SQL Cursor in a C Program 6-2

Figure 6-2. Using a Static SQL Cursor in a COBOL Program 6-3

Figure 9-1. Using Dynamic SQL in a C Program 9-3

Figure 9-2. Using Dynamic SQL in a COBOL Program 9-4

Figure 10-1. Using SQL Descriptor Areas in a C Program 10-12

Figure 10-2. Using SQL Descriptor Areas in a COBOL Program 10-13

Figure 11-1. Using a Dynamic SQL Cursor in a C Program 11-2

Figure 11-2. Using a Dynamic SQL Cursor in a COBOL Program 11-3

Figure 14-1. Coding Transaction Control Statements in a C Program 14-1

Figure 14-2. Coding Transaction Control Statements in a COBOL Program 14-2

Figure 15-1. Compiling Embedded SQL C/C++ Programs With Embedded Module
Definitions 15-3

Figure 15-2. Compiling Embedded SQL C/C++ Programs With Module Definition
Files 15-6

Figure 15-3. c89 Generating Annotated Source With Embedded Module
Definitions 15-49

Figure 15-4. c89 Generating Module Definition Files 15-52

Figure 16-1. Compiling Embedded SQL COBOL Programs With Embedded Module
Definitions 16-3

Figure 16-2. Compiling Embedded SQL COBOL Programs With Module Definition
Files 16-6

Figure 16-3. ecobol or nmcobol Generating Annotated Source With Embedded
Module Definitions 16-41

Figure 16-4. ecobol or nmcobol Generating Module Definition Files 16-44

Figure 17-1. Module Name Length 17-12

Tables
Table 2-1. MODULE Directive 2-6

Table 2-2. Embedded SQL Statements in SQL Declare Section 2-6

Table 2-3. Nonexecutable SQL Statements 2-7

Table 2-4. Executable SQL Statements 2-8

Table 3-1. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations for NUMERIC, DECIMAL, PIC, SMALLINT, and LARGEINT
Data Types 3-9

Table 3-2. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations for Float Data Types 3-10

Table 3-3. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations for Date-Time Data Types 3-11

Table 3-4. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations 3-12
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xiii

Contents
Table 3-5. Host Variable Usage for NUMERIC or PICTURE 9’s COMP Data 3-31

Table 3-6. Host Variable Usage for DECIMAL or PICTURE 9’s DISPLAY
Data 3-32

Table 3-7. Lengths of C Target Arrays for TIME and TIMESTAMP 3-35

Table 3-8. INVOKE and Floating-Point Host Variables 3-45

Table 4-1. COBOL Character Host Variables and Their SQL Data Type Equivalents
and COBOL Translations 4-5

Table 4-2. Corresponding SQL, COBOL Host Variable Data Types, and Translated
COBOL Declarations for NUMERIC, DECIMAL, PIC, SMALLINT,
LARGEINT, and Date-Time Data Types 4-7

Table 4-3. Lengths of Target Arrays for TIME and TIMESTAMP 4-14

Table 4-4. Interpretation of COBOL Data Description Clauses 4-18

Table 4-5. Changes Made by INVOKE in Generated Host Variables 4-27

Table 12-1. Minimum Values for ROWSET_VAR_LAYOUT_SIZE Descriptor
Field 12-7

Table 13-1. SQL:1999 SQLSTATE Class and Subclass Values 13-2

Table 13-2. Mapping of SQLCODE to SQL/MX-Defined SQLSTATE Values 13-4

Table 13-3. SQLCODE and SQLSTATE missing declaration 13-6

Table 13-4. SQLCODE and SQLSTATE incorrect declaration 13-7

Table 13-5. SQLCODE Values 13-10

Table 15-1. HP NonStop C/C++ Compilers for Embedded SQL/MX
Programs 15-35

Table 15-2. Module Schemas and Export Files for RDF SQL Application
Deployment Example 15-62

Table 16-1. HP NonStop COBOL Compilers for Embedded SQL/MX
Programs 16-24

Table 17-1. File Naming Conventions 17-1

Table 17-2. Preprocessor Interpretation of SQLMX_PREPROCESSOR_VERSION
Environment Variable and -m and -x Options 17-9

Table 17-3. Module Management Naming 17-13
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xiv

What’s New in This Manual

Manual Information
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL

Abstract

This manual explains how to use embedded SQL for HP NonStop™ SQL/MX for C,
C++, and COBOL. In NonStop SQL/MX, a C, C++, or COBOL program uses
embedded SQL/MX statements to access HP NonStop SQL/MP and SQL/MX
databases.

Product Version

NonStop SQL/MX Release 3.2.1

Supported Release Version Updates (RVUs)

This publication supports J06.14 and all subsequent J-series RVUs and H06.25 and all
subsequent H-series RVUs, until otherwise indicated by its replacement publications.

Document History

New and Changed Information
Changes to the 663854-005 manual:

Removed a note about 64-bit application support in Chapter 9.

Changes to the 663854-004 manual:

 Updated the section Specifying a Declare Section on page 3-1.

 Updated the section C Host Variable Data Types on page 3-2.

 Updated the section, Numeric Host Variables on page 3-6.

Part Number Published

663854-005 June 2013

Part Number Product Version Published

544617-002 NonStop SQL/MX Release 2.3 February 2010

544617-003 NonStop SQL/MX Release 2.3 August 2010

663854-001 NonStop SQL/MX Release 3.1 October 2011

663854-002 NonStop SQL/MX Release 3.2 August 2012

663854-004 NonStop SQL/MX Release 3.2.1 February 2013

663854-005 NonStop SQL/MX Release 3.2.1 June 2013
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xv

What’s New in This Manual Changes to the 663854-002 manual:
 Updated the table Corresponding SQL, C Host Variable Data Types, and
Translated C Declarations for NUMERIC, DECIMAL, PIC, SMALLINT, and
LARGEINT Data Types on page 3-9.

 Added the section Host Variable Pointers on page 3-14.

 Updated the table Host Variable Usage for NUMERIC or PICTURE 9’s COMP Data
on page 3-31.

 Updated the example in the section Host Variables in C Structures on page 3-40.

 Added the section Rowset Host Variable Pointers on page 7-4.

 Updated the section, Similarity Check Criteria on page 8-11.

 Updated the section C #include directive on page 15-10.

 Updated the option -O on page 15-25.

 Updated the option [-O] on page 16-17.

Changes to the 663854-002 manual:

 Updated the section Numeric Host Variables on page 3-6.

 Updated the table Corresponding SQL, C Host Variable Data Types, and
Translated C Declarations for NUMERIC, DECIMAL, PIC, SMALLINT, and
LARGEINT Data Types on page 3-9.

 Added a new section, Initializing BigNum Data Types on page 3-24.

 Added a new section, Considerations for BigNum Arithmetic function on page 3-27.

 Added a new section, GNU GMP library for BigNum on page 3-28

 Added a new section, BigNum Format for TMFARLIB on page 3-30.

 Added a new section Retrieving the Row Number for a Failed Operation on
page 7-10.

 Added a new section Late Name Resolution for Tables Referred by the View on
page 8-7.

 Updated the section Similarity Check on page 8-9.

 Added a new section Similarity Check Criteria for a View on page 8-13.

 Updated the syntax and its description in section Syntax for the OSS-Hosted
SQL/MX C/C++ Preprocessor on page 15-20.

 Added new example to the section Example—mxsqlc on page 15-25.

 Updated the syntax and its description in section Syntax for the Windows-Hosted
SQL/MX C/C++ Preprocessor on page 15-28.

 Added new example to the section Example—mxsqlc on page 15-34.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xvi

What’s New in This Manual Changes to the 663854-001 manual:
 Updated the contents in Compiling Embedded Module Definitions on page 15-37.

 Added 64-bit examples to the section c89 Examples With Module Definition Files
on page 15-53.

 Updated the contents in Compiling Embedded Module Definitions on page 16-25.

 Added -Wsqlconnect compiler option in -Wsqlconnect on page 16-38.

 Added -HP_NSK_CONNECT_MODE environment variable option in
HP_NSK_CONNECT_MODE on page 16-39.

Changes to the 663854-001 manual:

 Updated the contents in Embedding SQL Statements in DLL on page 1-2.

 Updated the contents in Using the VARCHAR compatible structure to hold
VARCHAR data on page 3-20.

 Updated the contents in Declaring SQLSTATE on page 13-2.

 Updated the contents in Checking the SQLCODE Variable on page 13-5.

 Updated the contents in Preprocessor Functions on page 15-9.

 Updated the contents in OSS-Hosted SQL/MX C/C++ Preprocessor on page 15-19

 Updated the contents in Windows-Hosted SQL/MX C/C++ Preprocessor on
page 15-26.

 Updated the contents in Compiling Embedded Module Definitions on page 15-37.

 Updated the contents in Compiling a Module Definition File on page 15-42.

 Updated the contents in Module File Errors on page 15-74.

 Minor changes across Section 15, C/C++ Program Compilation.

 Updated the contents in OSS-Hosted SQL/MX COBOL Preprocessor on
page 16-13.

 Updated the contents in Compiling Embedded Module Definitions on page 16-25.

 Updated the contents in Compiling a Module Definition File on page 16-30.

 Updated the contents in Module File Errors on page 16-52.

 Minor changes across Section 16, COBOL Program Compilation.

 Updated the contents in Generating Locally or Globally Placed Modules on
page 17-3.

 Added Generating modules in a user-specified location on page 17-6.

 Updated the contents in Specifying the search locations of the module files on
page 17-13.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xvii

What’s New in This Manual Changes to the 663854-001 manual:
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xviii

About This Manual
This manual describes the NonStop SQL/MX programmatic interface for the ANSI C
and COBOL languages. It also includes some C++ language constructs. With this
interface, an application can access a database by using embedded SQL statements.

Throughout this manual, references to NonStop SQL/MX Release 2.x indicate SQL/MX
Release 2.3, and subsequent releases until otherwise indicated in a replacement
publication.

Audience
This manual is intended for application programmers who are embedding SQL/MX
statements in a C, C++, or COBOL application. The reader should be familiar with
SQL/MX terms and concepts and the American National Standards Institute (ANSI)
database language SQL:1999.

 ANSI C and C++: C programmers should write to the ANSI standard for code
portability. C programmers can use some, but not all, C++ language constructs in
embedded SQL applications.

 ANSI COBOL85: COBOL programmers should write to the ANSI COBOL85
standard for code portability.

Organization

Section 1, Introduction Introduces the SQL/MX programmatic interface
for applications written in ANSI C/C++ or
COBOL.

Section 2, Embedded SQL Statements Describes conventions and guidelines for
embedding SQL statements in an application.

Section 3, Host Variables in C/C++
Programs

Describes how to declare and use host
variables in a C/C++ application.

Section 4, Host Variables in COBOL
Programs

Describes how to declare and use host
variables in a COBOL application.

Section 5, Simple and Compound
Statements

Describes how to access data in the database
by using simple DML statements.

Section 6, Static SQL Cursors Describes how to access data in the database
by using static SQL cursors.

Section 7, Static Rowsets Describes how to use rowsets to retrieve
multiple rows from the database into the
application for processing and for transferring
multiple rows of values from the application to
the database.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xix

About This Manual Related Documentation
Related Documentation
This manual is part of the HP NonStop SQL/MX library of manuals. The following table
describes the list of manuals:

Section 8, Name Resolution, Similarity
Checks, and Automatic Recompilation

Describes late name resolution, similarity
check, and automatic SQL recompilations.

Section 9, Dynamic SQL Introduces dynamic SQL and describes how to
write dynamic SQL applications that prepare
and execute statements with dynamic input
parameters.

Section 10, Dynamic SQL With Descriptor
Areas

Describes how to write dynamic SQL
applications by using descriptor areas.

Section 11, Dynamic SQL Cursors Describes how to write dynamic SQL
applications by using dynamic cursors.

Section 12, Dynamic SQL Rowsets Describes how to use rowsets in a dynamic
SQL environment.

Section 13, Exception Handling and Error
Conditions

Describes how to get error and warning
information from the SQLSTATE variable, how
to use the WHENEVER exception declaration,
and how to use the GET DIAGNOSTICS
statement.

Section 14, Transaction Management Describes how to use the HP NonStop
Transaction Management Facility (TMF)
product to ensure data consistency.

Section 15, C/C++ Program Compilation Describes the SQL/MX compilation components
and how to run the SQL/MX C/C++
preprocessor and SQL/MX compiler.

Section 16, COBOL Program Compilation Describes how to run the SQL/MX
COBOL preprocessor and SQL/MX compiler.

Section 17, Program and Module
Management

Describes program and module management
features and functions.

Appendix A, C Sample Programs Describes the SQL/MX embedded SQL C
sample programs.

Appendix B, C++ Sample Program Describes the SQL/MX embedded SQL C++
sample program.

Appendix C, COBOL Sample Programs Describes the SQL/MX embedded SQL COBOL
sample programs.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xx

About This Manual Related Documentation
Introductory Guides

SQL/MX Comparison Guide
for SQL/MP Users

Describes SQL differences between NonStop
SQL/MP and NonStop SQL/MX.

SQL/MX Quick Start Describes basic techniques for using SQL in the
SQL/MX conversational interface (MXCI). Includes
information about installing the sample database.

Reference Manuals

SQL/MX Reference Manual Describes the syntax of SQL/MX statements, MXCI
commands, functions, and other SQL/MX language
elements.

SQL/MX Messages Manual Describes SQL/MX messages.

SQL/MX Glossary Defines SQL/MX terminology.

Installation Guides

SQL/MX Installation and
Upgrade Guide

Describes how to plan for, install, create, and
upgrade a SQL/MX database.

SQL/MX Management
Manual

Describes how to manage a SQL/MX database.

NSM/web Installation Guide Describes how to install NSM/web and troubleshoot
NSM/web installations.

Connectivity Manuals

SQL/MX Connectivity
Service Manual

Describes how to install and manage the
HP NonStop SQL/MX Connectivity Service
(MXCS), which enables applications developed for
the Microsoft Open Database Connectivity (ODBC)
application programming interface (API) and other
connectivity APIs to use NonStop SQL/MX.

SQL/MX Connectivity
Service Administrative
Command Reference

Describes the SQL/MX administrative command
library (MACL) available with the SQL/MX
conversational interface (MXCI).

ODBC/MX Driver for
Windows

Describes how to install and configure HP NonStop
ODBC/MX for Microsoft Windows, which enables
applications developed for the ODBC API to use
NonStop SQL/MX.

Migration Guides

HP NonStop SQL/MP to
SQL/MX Database and
Application Migration Guide

Describes how to migrate databases and
applications from SQL/MP to SQL/MX.

NonStop NS-Series
Database Migration Guide

Describes how to migrate NonStop SQL/MX,
NonStop SQL/MP, and Enscribe databases and
applications to HP Integrity NonStop NS-series
systems.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xxi

About This Manual Related Documentation
The NSM/web, SQL/MX Database Manager, and Visual Query Planner help systems
are accessible from their respective applications. You can download the Reference,
Messages, and Glossary online help from the HP Software Depot at
http://www.software.hp.com. For more information about downloading the online help,
see the SQL/MX Release 3.2 Installation and Upgrade Guide.

Data Management Guides

SQL/MX Data Mining Guide Describes the SQL/MX data structures and
operations to carry out the knowledge-discovery
process.

SQL/MX Report Writer Guide Describes how to produce formatted reports using
data from a SQL/MX database.

DataLoader/MX Reference
Manual

Describes the features and functions of the
DataLoader/MX product, a tool to load SQL/MX
databases.

Application Development Guides

SQL/MX Programming
Manual for C and COBOL

Describes how to embed SQL/MX statements in
ANSI C and COBOL programs.

SQL/MX Query Guide Describes how to understand query execution
plans and write optimal queries for a SQL/MX
database.

SQL/MX Queuing and
Publish/Subscribe Services

Describes how NonStop SQL/MX integrates
transactional queuing and publish/subscribe
services into its database infrastructure.

SQL/MX Guide to Stored
Procedures in Java

Describes how to use stored procedures that are
written in Java within NonStop SQL/MX.

Online Help

Reference Help Overview and reference entries from the SQL/MX
Reference Manual.

Messages Help Individual messages grouped by source from the
SQL/MX Messages Manual.

Glossary Help Terms and definitions from the SQL/MX Glossary.

NSM/web Help Context-sensitive help topics that describe how to
use the NSM/web management tool.

Visual Query Planner Help Context-sensitive help topics that describe how to
use the Visual Query Planner graphical user
interface.

SQL/MX Database Manager
Help

Contents and reference entries from the SQL/MX
Database Manager User Guide.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xxii

About This Manual Examples in This Manual
These manuals are part of the SQL/MP library of manuals and are essential references
for information about SQL/MP Data Definition Language (DDL) and SQL/MP
installation and management:

Examples in This Manual
The examples in this manual are written in C/C++ and COBOL.

Unless otherwise stated, all C examples use the default SQL/MX VARCHAR.

Many examples in this manual are incorporated into the complete C and C++ programs
in Appendix A, C Sample Programs, Appendix B, C++ Sample Program, and into the
complete COBOL programs in Appendix C, COBOL Sample Programs.

Notation Conventions

Icons

Icons that appear in the left margins of this manual represent a specific context of the
SQL/MX syntax and semantics:

Hypertext Links

Blue underline is used to indicate a hypertext link within text. By clicking a passage of
text with a blue underline, you are taken to the location described. For example:

Related SQL/MP Manuals

SQL/MP Reference Manual Describes the SQL/MP language elements,
expressions, predicates, functions, and statements.

SQL/MP Installation and
Management Guide

Describes how to plan, install, create, and manage
an SQL/MP database. Describes installation and
management commands and SQL/MP catalogs
and files.

Note. Many of the examples in this manual use the SQL/MX Release 2.x sample database,
which uses SQL/MX format tables. To install the sample database, you must have a license to
use SQL/MX DDL statements. To acquire the license, purchase product T0394. Without this
product, you cannot install the sample database; an error message informs you that the system
is not licensed.

Designates information that is specific to embedding SQL/MX
statements in C programs.

Designates information that is specific to embedding SQL/MX
statements in C++ programs.

Designates information that is specific to embedding SQL/MX
statements in COBOL programs.

C

C++

COBOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xxiii

About This Manual General Syntax Notation
This data type is described under Interval Data Type on page 3-2.

General Syntax Notation

The following list summarizes the notation conventions for syntax presentation in this
manual.

UPPERCASE LETTERS. Uppercase letters indicate keywords and reserved words; enter
these items exactly as shown. Items not enclosed in brackets are required. For
example:

MAXATTACH

lowercase italic letters. Lowercase italic letters indicate variable items that you supply.
Items not enclosed in brackets are required. For example:

file-name

computer type. Computer type letters within text indicate C and Open System Services
(OSS) keywords and reserved words; enter these items exactly as shown. Items not
enclosed in brackets are required. For example:

myfile.c

italic computer type. Italic computer type letters within text indicate C and Open
System Services (OSS) variable items that you supply. Items not enclosed in brackets
are required. For example:

pathname

[] Brackets. Brackets enclose optional syntax items. For example:

TERM [\system-name.]$terminal-name

INT[ERRUPTS]

A group of items enclosed in brackets is a list from which you can choose one item or
none. The items in the list can be arranged either vertically, with aligned brackets on
each side of the list, or horizontally, enclosed in a pair of brackets and separated by
vertical lines. For example:

FC [num]
 [-num]
 [text]

K [X | D] address

{ } Braces. A group of items enclosed in braces is a list from which you are required to
choose one item. The items in the list can be arranged either vertically, with aligned
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xxiv

About This Manual General Syntax Notation
braces on each side of the list, or horizontally, enclosed in a pair of braces and
separated by vertical lines. For example:

LISTOPENS PROCESS { $appl-mgr-name }
 { $process-name }

ALLOWSU { ON | OFF }

| Vertical Line. A vertical line separates alternatives in a horizontal list that is enclosed in
brackets or braces. For example:

INSPECT { OFF | ON | SAVEABEND }

… Ellipsis. An ellipsis immediately following a pair of brackets or braces indicates that you
can repeat the enclosed sequence of syntax items any number of times. For example:

M address [, new-value]…

[-] {0|1|2|3|4|5|6|7|8|9}…

An ellipsis immediately following a single syntax item indicates that you can repeat that
syntax item any number of times. For example:

"s-char…"

Punctuation. Parentheses, commas, semicolons, and other symbols not previously
described must be entered as shown. For example:

error := NEXTFILENAME (file-name) ;

LISTOPENS SU $process-name.#su-name

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a
required character that you must enter as shown. For example:

"[" repetition-constant-list "]"

Item Spacing. Spaces shown between items are required unless one of the items is a
punctuation symbol such as a parenthesis or a comma. For example:

CALL STEPMOM (process-id) ;

If there is no space between two items, spaces are not permitted. In the following
example, there are no spaces permitted between the period and any other items:

$process-name.#su-name

Line Spacing. If the syntax of a command is too long to fit on a single line, each
continuation line is indented three spaces and is separated from the preceding line by
a blank line. This spacing distinguishes items in a continuation line from items in a
vertical list of selections. For example:

ALTER [/ OUT file-spec /] LINE

 [, attribute-spec]…
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xxv

About This Manual Change Bar Notation
Change Bar Notation
Change bars are used to indicate substantive differences between this manual and its
preceding version. Change bars are vertical rules placed in the right margin of changed
portions of text, figures, tables, examples, and so on. Change bars highlight new or
revised information. For example:

The message types specified in the REPORT clause are different in the COBOL85
environment and the Common Run-Time Environment (CRE).

The CRE has many new message types and some new message type codes for old
message types. In the CRE, the message type SYSTEM includes all messages except
LOGICAL-CLOSE and LOGICAL-OPEN.

HP Encourages Your Comments
HP encourages your comments concerning this document. We are committed to
providing documentation that meets your needs. Send any errors found, suggestions
for improvement, or compliments to docsfeedback@hp.com.

Include the document title, part number, and any comment, error found, or suggestion
for improvement you have concerning this document.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
xxvi

1 Introduction

NonStop SQL/MX is a relational database management system (RDBMS) that uses
SQL:1999 to define and manipulate data in an SQL/MX database. SQL-92 is the
current ANSI version of SQL (structured query language).

To access data, you execute SQL statements interactively by using the SQL/MX
conversational interface (MXCI) or programmatically by embedding SQL statements in
a host program written in ANSI C/C++ or COBOL.

When you embed SQL statements and declarations in a 3GL program, you can access
a database by using SQL statements and then use 3GL statements to process and
manipulate the data. Embedding SQL in programs enables you to build real-world
applications that manipulate data within an SQL/MX database.

This section provides these overviews:

 Referencing Database Object Names on page 1-1
 Embedding SQL Statements on page 1-2
 Declaring and Using Host Variables on page 1-3
 Using DML Statements to Manipulate Data on page 1-4
 Declaring and Using Static SQL Cursors on page 1-5
 Using DML Statements With Rowsets on page 1-8
 Processing Exception Conditions on page 1-10
 Ensuring Data Consistency on page 1-11
 Using Dynamic SQL on page 1-7
 Compiling and Building an Application on page 12

Referencing Database Object Names

NonStop SQL/MX Release 2.x

In SQL/MX Release 2.x, all SQL/MX database objects use three-part ANSI names of
the form catalog.schema.name. NonStop SQL/MX supports these database
objects: base table, index, DDL lock, SQLMP alias, stored procedure, trigger, trigger
temporary table, view, partition, and constraints (check constraint, not null constraint,
primary key constraint, unique constraint, and referential constraint). The MPALIAS
table is not needed and not used in SQL/MX Release 2.x.

NonStop SQL/MX Release 1.x

In releases prior to SQL/MX Release 2.x, to enable the use of ANSI logical names in
an SQL/MP table, a user table name MPALIAS is created at installation time to store
mappings from logical object names to physical Guardian locations. Use the CREATE

Note. From SQL/MX 2.3.4 onwards, NonStop SQL/MX supports embedded SQL statements in
a DLL.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-1

Introduction Embedding SQL Statements
SQLMP ALIAS statement within your application to create the needed mappings from
logical to physical names:

CREATE SQLMP ALIAS catalog.schema.name
 [\node.]$volume.subvol.filename

When this statement is executed, a mapping is inserted as a row in the MPALIAS
table. Examples of the CREATE SQLMP ALIAS statement appear in the SQL/MX
Reference Manual.

Embedding SQL Statements
To code a 3GL application program to access data in an SQL/MX or in an SQL/MP
database, use embedded SQL statements to receive data from or to insert data into a
database. Use embedded SQL declarations to declare host language variables that
these SQL statements use.

Your embedded SQL host program might look something like this:

EXEC SQL embedded SQL declarations ...
...
host language statement
...
EXEC SQL embedded SQL statement ...
...

In C/C++ and COBOL programs, the keywords EXEC SQL begin an embedded SQL
declaration or statement.

In a C/C++ program, the semicolon (;) ends a declaration or statement. In a COBOL
program, the keywords END-EXEC end a declaration or statement.

You can embed static or dynamic SQL statements in a host language source file. You
code a static SQL statement as an actual SQL statement and run the SQL/MX
compiler to explicitly compile the statement before you run the program. For a dynamic
SQL statement, you code a placeholder variable for the statement and then construct,
compile, and execute the SQL statement at run time.

For a list of SQL statements you can embed in a program, see Section 2, Embedded
SQL Statements.

Embedding SQL Statements in DLL

SQL/MX allows you to embed SQL statements in DLLs to build modular and
manageable products. SQL statements can be embedded in both Guardian and OSS
DLLs.

To build DLLs with embedded SQL statements, follow the compilation steps specified
in 15, C/C++ Program Compilation and 16, COBOL Program Compilation, and then

Note. NonStop SQL/MX does not support mixing embedded SQL calls to SQL/MX and
SQL/MP from the same application process.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-2

Introduction Declaring and Using Host Variables
modify the eld options to link the application to a DLL instead of an executable. For
more information, see the DLL Programmer’s Guide for TNS/E Systems.

For efficient management of module files, SQL/MX allows the modules to be
located with the corresponding DLLs.

The module files are managed in the following sequence:

1. When the application is executed, SQL/MX automatically identifies the location of
all the DLLs loaded by the application.

2. SQL/MX searches for module files in the locations, in the following order:

a. Location of the executable program

b. User-specified Guardian or OSS location

c. Location of the DLL

d. System global module directory called /usr/tandem/sqlmx/USERMODULES

3. SQL/MX loads the module files from all the DLL locations. If, while loading the
module files, SQL/MX finds a module that matches the specified name, it stops
searching the module files.

Declaring and Using Host Variables
Host variables are host language variables declared in a host language program and
used in both host language statements and embedded SQL statements. You use host
variables to provide communication between 3GL and SQL statements—to receive
data from a database or to insert data into a database. A host variable can be any valid
host language variable that has a corresponding SQL data type.

Declaring Host Variables

Declare host variables in a Declare Section in the variable declarations part of your
program. A Declare Section begins with BEGIN DECLARE SECTION and ends with
END DECLARE SECTION.

Example

In this example, hv_this_customer and hv_custname are host variables:

EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) hv_this_customer; /* host variables */
 char hv_custname[19];
EXEC SQL END DECLARE SECTION;

Note. When DLLs are loaded from multiple locations, the order of search is not defined.

Note. You must ensure that the module file names are unique across the locations of all
the DLLs.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-3

Introduction Using Host Variables

CO

CO
In this example, HV_THIS_CUSTOMER and HV_CUSTNAME are host variables:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HV-THIS-CUSTOMER PIC 9(4) COMP.
 01 HV-CUSTNAME PIC X(18).
EXEC SQL END DECLARE SECTION END-EXEC.

Using Host Variables

When you specify a host variable in an SQL statement, you must precede the host
variable name with a colon (:). In a 3GL statement, you do not need the colon.

This example shows a host variable in an embedded SQL statement:

Example

EXEC SQL SELECT custname
 INTO :hv_custname
 FROM customer
 WHERE custnum = :hv_this_customer;
...
strcpy(new_name, hv_custname);

The host variable hv_custname is preceded by a colon (:) in the SQL statement. In
the strcpy function call, hv_custname is not preceded by a colon.

EXEC SQL SELECT custname
 INTO :HV-CUSTNAME
 FROM customer
 WHERE custnum = :HV-THIS-CUSTOMER
END-EXEC.
...
MOVE HV-CUSTNAME TO NEW-NAME.

The host variable HV-CUSTNAME is preceded by a colon (:) in the SQL statement. In
the MOVE statement, HV-CUSTNAME is not preceded by a colon.

See Section 3, Host Variables in C/C++ Programs, and Section 4, Host Variables in
COBOL Programs.

Using DML Statements to Manipulate Data
Use simple DML statements in your application program to retrieve and modify data in
an SQL/MX database.

You can first test DML statements by using MXCI, the SQL/MX conversational
interface. The SQL statements you enter within MXCI do not include the use of host
variables, and SELECT results returned by MXCI are presented to you in the form of a
result table. However, despite these differences, you can verify much of the coding of
an SQL statement before embedding the statement in your program.

BOL

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-4

Introduction Declaring and Using Static SQL Cursors
Examples

In these C examples, a semicolon (;) ends an embedded SQL statement. In a COBOL
program, the keyword END-EXEC ends an embedded SQL statement.

 Single-row SELECT statement

EXEC SQL SELECT custname
 INTO :hv_custname
 FROM sales.customer
 WHERE custnum = :hv_this_customer;

The result of the SELECT is placed into a host variable. The selection of the single
row is based on the value of the primary key (CUSTNUM column) as provided by
the host variable.

 INSERT statement

EXEC SQL INSERT INTO persnl.job (jobcode, jobdesc)
 VALUES (:hv_jobcode, :hv_jobdesc);

The values of the columns inserted into the JOB table are provided by host
variables.

 Searched UPDATE statement

EXEC SQL UPDATE persnl.employee
 SET salary = salary * :hv_inc
 WHERE salary < :hv_min_salary;

The SALARY column of all employees below a minimum salary is multiplied by a
specified factor. The values of the minimum salary and the factor are provided by
host variables.

 Searched DELETE statement

EXEC SQL DELETE FROM invent.partsupp
 WHERE partnum BETWEEN :hv_first_num AND :hv_last_num;

The rows whose part numbers are between two specified numbers are deleted
from the PARTSUPP table. The values for the lower and upper part numbers are
provided by host variables.

See Section 5, Simple and Compound Statements.

Declaring and Using Static SQL Cursors
Because your 3GL program cannot handle unlimited sets of data, to retrieve data from
a set of rows into your application program and then process data from that set, you
must process the set one row at a time. You do this by using a cursor.

A cursor is like a pointer that traverses the set of rows in the result table of a SELECT
statement. You specify the SELECT statement when you declare the cursor. You
establish the result table of the SELECT when you open the cursor. You then fetch the

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-5

Introduction Declaring and Using Static SQL Cursors
rows of the result table one at a time by using the cursor. Finally, after processing the
rows, you release the result table when you close the cursor.

Examples

In these C examples, a semicolon (;) ends an embedded SQL statement. In a COBOL
program, the keyword END-EXEC ends an embedded SQL statement.

 DECLARE CURSOR

EXEC SQL DECLARE get_customer CURSOR FOR
 SELECT custname, street, city, state, postcode
 FROM persnl.customer
 WHERE postcode = :hv_postcode;

DECLARE CURSOR is a preprocessor declarative, not an executable statement. It
specifies that, when OPEN executes for this cursor, the SELECT statement returns
five columns of data where the rows are selected by postal code. The value of
postal code is provided by a host variable.

 OPEN statement

EXEC SQL OPEN get_customer;

The OPEN statement establishes the result table of SELECT. The selection of the
rows is determined by the current value of the host variable or variables. OPEN
positions the cursor before the first row of the result table.

 FETCH statement

EXEC SQL FETCH get_customer
 INTO :hv_custname,:hv_street,:hv_city,
 :hv_state,:hv_postcode;

The FETCH statement positions the cursor on the next row of the result table,
retrieves values from that row, and places the values in the host variables. The
cursor is positioned at the retrieved row.

 Positioned DELETE statement

EXEC SQL DELETE FROM persnl.customer
 WHERE CURRENT OF get_customer;

The DELETE statement deletes a single row at the current position of the cursor
and positions the cursor before the next row in the result table.

 Positioned UPDATE statement

EXEC SQL UPDATE persnl.customer
 SET credit = 'A1'
 WHERE CURRENT OF get_customer;

The UPDATE statement updates values in a single row at the current position of
the cursor. The cursor remains positioned on the current row.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-6

Introduction Using Dynamic SQL
 CLOSE statement

EXEC SQL CLOSE get_customer;

The CLOSE statement releases the result table established by OPEN for the
cursor.

See also Section 6, Static SQL Cursors.

Using Dynamic SQL
A static SQL statement is embedded in a host program and known at the time the host
program is preprocessed. A dynamic SQL statement is either prepared dynamically
with the PREPARE statement or executed through the EXECUTE IMMEDIATE
statement.

Sometimes an SQL statement is not known when the program is coded—it is
generated during program execution. In this case, you code a host variable with
character string data type as a placeholder for an SQL statement within a PREPARE
statement.

The source form of the SQL statement is a character string passed to NonStop
SQL/MX for compilation with PREPARE. The character string must be a valid SQL
statement. To construct the SQL statement, the program usually requires some input
from a user.

A dynamic SQL program typically includes declarations and statements to:

 Declare a host variable as a place to store a dynamic SQL statement.
 Construct the SQL statement and store the statement in the declared host variable.
 Prepare the SQL statement.
 Execute the prepared statement.

See Section 10, Dynamic SQL With Descriptor Areas.

A dynamic SQL program can also use either SQL descriptor areas or dynamic SQL
cursors. Both techniques allow the user to specify SQL statements at run time.

Using Descriptor Areas for Dynamic SQL

A dynamic SQL program that uses descriptor areas typically includes declarations and
statements to:

 Declare a host variable as a place to store a dynamic SQL statement.
 Allocate the SQL descriptor area or areas for use by dynamic parameters.
 Construct the SQL statement and store the statement in the declared host variable.
 Prepare the SQL statement.
 Describe the prepared statement using the SQL descriptor area or areas.
 Set input parameter values in the input SQL descriptor area.
 Execute the prepared statement.
 Retrieve output parameter values (if any) from the output SQL descriptor area.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-7

Introduction Using Dynamic SQL Cursors
 Deallocate resources held by the compiled statement and the SQL descriptor
areas.

See Section 9, Dynamic SQL.

Using Dynamic SQL Cursors

A dynamic SQL program that uses dynamic cursors typically includes declarations and
statements to:

 Declare a host variable as a place to store the dynamic cursor specification.
 Prepare the cursor specification.
 Declare the cursor.
 Open the cursor.
 Retrieve the values at the cursor position.
 Close the cursor.

You can also use SQL descriptor areas with dynamic SQL cursors. If you do, you must
describe the prepared cursor specification.

See Section 10, Dynamic SQL With Descriptor Areas.

Using DML Statements With Rowsets
Use rowsets to retrieve multiple rows from the database into the application for further
processing and to transfer multiple rows of values from the application to the database.
Rowset arrays can be used only from embedded SQL programs. NonStop SQL/MX
does not support rowsets from MXCI.

See Section 7, Static Rowsets and Section 12, Dynamic SQL Rowsets to learn how to
use rowsets in C/C++ or COBOL programs.

Improving Performance by Using Rowsets

Typically, you can use a cursor specified by the SELECT statement to return the
multiple rows that make up the result table of the SELECT to the application. Rows are
returned one at a time. However, the cursor mechanism can produce significant
overhead for an application retrieving many rows from the database.

Rowsets improve the performance of applications by manipulating multiple rows at
once, instead of one at time. Performance is improved because:

 The number of function calls between the application and NonStop SQL/MX is
reduced by manipulating rows in sets. Network traffic is reduced because the data
for several rows is sent in a single packet.

 When data is stored in an array, the application can bind all rows in a particular
column with a single bind call and update or delete all rows by executing a single
statement.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-8

Introduction Declaring a Rowset
Declaring a Rowset

You declare a host variable array, along with its dimension, with the SQL Declare
Section. A rowset array is declared for each column in a query. Each rowset array
contains as many elements as are contained in the rowset.

Example

In this example, hvarray_jobcode and hvarray_jobdesc are host variable
arrays to be used in a rowset:

EXEC SQL BEGIN DECLARE SECTION;
 ROWSET [20] unsigned NUMERIC (4) hvarray_jobcode;
 ROWSET [20] char hvarray_jobdesc[19];
 ...
EXEC SQL END DECLARE SECTION;

Using a Rowset in a Query

You do not need to use a cursor when you are retrieving the results of a query in an
output rowset and the number of rows returned does not exceed the size of the rowset.

Example

In this example, using the SQL Declare Section from the previous example, a
maximum of 20 rows are retrieved from the JOB table:

EXEC SQL SELECT jobcode, jobdesc
 INTO :hvarray_jobcode, :hvarray_jobdesc
 FROM persnl.job;

The previous example is correct only if the SELECT INTO statement is certain to return
fewer than 20 rows. If the SELECT statement can return more rows than are allocated
in the rowset array, you have these choices:

 You can limit the SQL query so that it returns only a specified number of rows as
shown in this example:

...
EXEC SQL
 SELECT [first 20]jobcode, jobdesc
 INTO :hvarray_jobcode, :hvarray_jobdesc
 FROM persnl.job;
...

 If you want to get all the results from the SELECT statement, use a rowset cursor.
See Selecting Rowsets With a Cursor on page 7-16.

You must use a cursor when the maximum number of result rows cannot be estimated
or when the memory requirements are too large to store the result table of the query.

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-9

Introduction Processing Exception Conditions

CO
Processing Exception Conditions
Your host language program can detect exception conditions and diagnostics
information after the execution of each SQL statement. For more details, see
Section 13, Exception Handling and Error Conditions.

To process exception conditions and diagnostics information:

 Check the SQLSTATE variable.
 Use the WHENEVER declaration.
 Use the GET DIAGNOSTICS statement.

Checking SQLSTATE

Check the value of SQLSTATE after the execution of an SQL statement. NonStop
SQL/MX returns a value to SQLSTATE to indicate the results of the execution. Your
program can then use conditional statements to test the value and take appropriate
action.

Example

char SQLSTATE_OK[6] = "00000";
char SQLSTATE_NODATA[6] = "02000";
...
EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT ... ; /* SELECT INTO statement */
if (strcmp(SQLSTATE, SQLSTATE_NODATA) == 0) handle_nodata();
...

Using WHENEVER

Use the WHENEVER declaration to specify an action when an error, warning, or no-
rows-found condition occurs. Place the WHENEVER declaration anywhere in your
program. The preprocessor inserts code after every SQL statement that follows a
WHENEVER declaration to check values of SQLSTATE and take appropriate action.

Example

...
EXEC SQL WHENEVER NOT FOUND PERFORM ROW-NOT-FOUND-7000 END-EXEC.
...
EXEC SQL SELECT ... END-EXEC.
...

Note. Although NonStop SQL/MX supports the SQLCODE variable, use the SQLSTATE
variable, which complies with the SQL:1999 standard, as the preferred status code for
NonStop SQL/MX.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-10

Introduction Using GET DIAGNOSTICS
If the SELECT statement results in an SQLSTATE value of 02000 (no data) condition,
the named error routine is executed.

Using GET DIAGNOSTICS

After the execution of an SQL statement, NonStop SQL/MX places information on
exception conditions into the diagnostics area. The diagnostics area has a size limit,
which is a positive integer that specifies the maximum number of conditions placed into
the area during the execution of the statement. You can access the information in the
diagnostics area by using the GET DIAGNOSTICS statement.

Example

EXEC SQL GET DIAGNOSTICS :num = NUMBER,
 :cmdfnc = COMMAND_FUNCTION;
...
for (i = 1; i <= num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_msgtext = MESSAGE_TEXT,
 ...;
};

The first GET DIAGNOSTICS statement returns the number of conditions in the
condition information area and the character string that identifies which SQL statement
executed. The second GET DIAGNOSTICS statement returns the value of SQLSTATE
and the corresponding message text, among other condition information.

See also Section 13, Exception Handling and Error Conditions.

Ensuring Data Consistency
Your application can use the TMF product to ensure the consistency of an SQL/MX
database against concurrent access and system failure.

A TMF transaction—a set of database changes that must be completed as a group—is
the basic recovery unit of NonStop SQL/MX. The typical order of events within a
transaction is:

1. The transaction is started.
2. Database changes are made.
3. Database changes are committed.

If all changes cannot be made or you do not want to complete a transaction for some
other reason, you can abort the transaction and return the database to its state before
the transaction started.

To ensure that a sequence of statements either executes successfully or not at all, you
can define one transaction consisting of these statements by enclosing the sequence
within the BEGIN WORK and COMMIT WORK statements. You can abort a transaction
with the ROLLBACK WORK statement.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-11

Introduction Compiling and Building an Application
Alternatively, you can commit changes automatically at the end of each SQL statement
by using SET TRANSACTION AUTOCOMMIT ON at the beginning of your program.
The default for embedded SQL is AUTOCOMMIT OFF.

If you exit a program without using either of these methods, any uncommitted changes
are automatically rolled back.

See also Section 14, Transaction Management.

Compiling and Building an Application
NonStop SQL/MX provides two methods of creating a module:

 Processing With Embedded Module Definitions on page 1-12

 Processing With Module Definition Files on page 1-12

The first method is the default method of processing programs in SQL/MX Release 2.x
and later product versions. The second method is the only method of processing
programs in SQL/MX Release 1.8. Although identical module definitions and identical
modules are produced with either technique, HP recommends that you produce
modules by using embedded module definitions.

By default, modules are created in the /usr/tandem/sqlmx/USERMODULES
directory. Command line options with mxCompileUserModule and mxcmp and the
MXCMP_PLACES_LOCAL_MODULE default setting provide the ability to place
modules in local directories.

Processing With Embedded Module Definitions

This method, which is the default method in SQL/MX Release 2.x and later product
versions, does not use module definition files (.m files) for SQL/MX-specific information
to be SQL compiled. The preprocessor reads a 3GL source file that contains C/C++ or
COBOL and SQL statements and generates one file: a single, self-contained source
file that contains embedded module definitions. The annotated source file contains the
source statements with the SQL statements converted to comments. To produce the
module, compile the source file with the host language compiler and use the
mxCompileUserModule command-line tool to SQL compile the embedded module
definition.

For more information, see:

 Section 15, C/C++ Program Compilation
 Section 16, COBOL Program Compilation
 Section 17, Program and Module Management

Processing With Module Definition Files

This method, which is the only method you can use in SQL/MX Release 1.8, generates
module definition files (.m files). The preprocessor reads a 3GL source file that contains
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-12

Introduction General Instructions
C/C++ or COBOL and SQL statements and generates two files: an annotated source
file and a module definition file (source-file.m) that contains the SQL source
statements. You compile the source file with the host language compiler, and you
compile the module definition file with the SQL/MX compiler (mxcmp). A module
definition file is not created unless you choose the appropriate preprocessor options.
You must use the -x or -m preprocessor options or the
SQLMX_PREPROCESSOR_VERSION environment variable to create a module definition
file.

For more information, see:

 Section 15, C/C++ Program Compilation
 Section 16, COBOL Program Compilation
 Section 17, Program and Module Management.

General Instructions

1. Use a standard programming editor and create your embedded SQL C/C++ or
COBOL application.

2. Run the SQL/MX C/C++ or COBOL preprocessor to:

a. Parse the EXEC SQL statements and replace them with call-level interface
(CLI) calls.

b. Create embedded module definitions (the default method in SQL/MX Release
2.x) or a module definition file (as in SQL/MX Release 1.8) describing the SQL
statements.

3. Run a standard C/C++ or HP COBOL compiler and linker to create the
application’s executable file.

4. Run the SQL/MX compiler on the executable file to create an execution plan for the
SQL statements and store the plan in a module file. Use mxCompileUserModule
on the application executable when producing embedded module definitions or
mxcmp on the .m file when producing a module definition file.

SQL/MX Host Language Preprocessor

The preprocessor opens the 3GL input source file and the 3GL output source file. By
default, the preprocessor writes the modified source file and the embedded module
definitions in the 3GL source file. If you choose options to create a module definition
file, the preprocessor also opens the module definition file. The preprocessor reads the
input source file and parses the code:

 When the preprocessor recognizes a BEGIN DECLARE SECTION, it parses the
host variables according to the allowed 3GL declaration syntax. You can use only
variables declared in an SQL Declare Section as host variables, providing
communication between 3GL and SQL statements.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-13

Introduction SQL/MX Compiler
 When the preprocessor recognizes an EXEC SQL, it finds the corresponding
terminating semicolon (;) for C/C++ programs or the terminating keywords END-
EXEC for COBOL programs.

 For each embedded SQL statement, the preprocessor scans the statement to find
host variable references and parses the statement to determine the required CLI
calls. If the statement is valid:

 If using the default method, the preprocessor writes the embedded module
definitions in the 3GL source file.

 If you choose to create a module definition file, the preprocessor writes the
output to the module definition file and the 3GL source file.

SQL/MX Compiler

The SQL/MX compiler opens the input program executable (when using Embedded
Module Definitions) or the input module definition file (when using Module Definition
files) and it opens the output module file that will contain the execution plans for the
SQL statements and performs the following functions:

 Expands partially qualified SQL object names using the current default settings.

 Expands view definitions.

 Performs type checking for 3GL and SQL data types.

 Checks SQL object references to verify their existence.

 Determines an optimized execution plan and access path for each DML statement.

 Generates executable code for the execution plans (if the SQL objects in the
statement are present at compile time) and creates a module in the
/usr/tandem/sqlmx/USERMODULES directory (or locally placed module
directory, if specified).

 Generates a list of the SQL statements in the program file, including messages.

 Returns a completion code indicating the outcome of the compilation.

Host Language Compiler

NonStop SQL/MX supports host applications written in C/C++ and COBOL. For
program preparation, see Section 15, C/C++ Program Compilation, and Section 16,
COBOL Program Compilation.

Program and Module Management

A variety of methods and features are available for managing your programs and
module files. See Section 17, Program and Module Management.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
1-14

CO
2 Embedded SQL Statements

You can access an SQL/MX database by embedding SQL statements in your host
language program.

This section describes:

 Syntax for Coding SQL Statements on page 2-1
 Guidelines for Coding SQL Statements on page 2-1
 Placement of SQL Statements on page 2-2
 Embedded SQL Declarations and Statements on page 2-6
 Using CONTROL Statements on page 2-12
 Static and Dynamic CONTROL Statements on page 2-13

Syntax for Coding SQL Statements
To code an embedded SQL statement in your 3GL source file, use this general syntax:

sql-statement

is any SQL statement shown in Embedded SQL Declarations and Statements on
page 2-6.

sql-terminator

is the terminator for the SQL statement.

 For C/C++, sql-terminator is a semicolon (;).
 For COBOL, sql-terminator is END-EXEC.

Guidelines for Coding SQL Statements
Follow the same formatting and line continuation conventions for embedded SQL
statements that you use for 3GL statements.

Example

EXEC SQL WHENEVER SQLERROR PERFORM 9000-SQL-ERROR END-EXEC.

EXEC SQL
 SELECT custname
 INTO :HV-CUSTNAME
 FROM customer
 WHERE custnum = :HV-THIS-CUSTOMER
END-EXEC.

 An SQL statement can extend over several lines.

 SQL statements cannot be nested.

EXEC SQL sql-statement sql-terminator

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-1

Embedded SQL Statements Placement of SQL Statements
 SQL statements can contain SQL comments. SQL comments begin with a double
hyphen (--) and end with the end of the line.

 Embedded SQL uses the continuation character of the language in which you are
programming.

 SQL statements can contain host language comments:

 C comments have the form: /* ... */. The comment is not restricted to one
line.

 COBOL comments have the form: * ... The asterisk (*) is in the first column
of the source code line in TANDEM free format and in the seventh column of
the source code line for ANSI fixed format. The comment is restricted to one
line.

Placement of SQL Statements

MODULE Directive

The MODULE directive is an embedded SQL statement that specifies the name of an
embedded module for the preprocessor. Place the MODULE directive at the beginning
of a 3GL program and before cursor definitions and executable SQL statements. For
detailed syntax, use considerations, and examples of this statement, see the MODULE
directive in the SQL/MX Reference Manual.

Host Variable Declarations

Code the host variables that are used in SQL statements in the SQL Declare Section.
In embedded SQL programs, the SQL Declare Section is equivalent to a variable
declaration. You can place an SQL Declare Section wherever it is legal to place
declarations in a C, C++, or COBOL program. An embedded program can contain
more than one SQL Declare Section.

You can place an SQL Declare Section relative to executable SQL statements in your
embedded program. For a list of executable SQL statements, see Table 2-4 on
page 2-8.

To code an SQL Declare Section:

 Use BEGIN DECLARE SECTION to mark the beginning of the Declare Section.

 Code the host variables used in SQL statements within the Declare Section.

Note. Many of the examples in this manual use the NonStop SQL/MX Release 2.x sample
database, which uses SQL/MX format tables. To install the sample database, you must have a
license to use SQL/MX DDL statements. To acquire the license, purchase product T0394.
Without this product, you cannot install the sample database; an error message informs you
that the system is not licensed.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-2

Embedded SQL Statements Host Variable Declarations
 Code INVOKE directives that generate structure descriptions of tables or views
within the Declare Section.

 Use END DECLARE SECTION to mark the end of the Declare Section.

For a list of SQL statements allowed in the SQL Declare Section, see Table 2-2 on
page 2-6. For detailed information on each statement and the proper syntax, see the
SQL/MX Reference Manual.

C Host Variables

In a C program, you cannot include a function declaration within an SQL Declare
Section. As a result, you cannot declare the arguments of a C function as host
variables. To use argument values in an embedded SQL statement, you must copy the
argument values to host variables.

The SQL/MX C/C++ preprocessor, which is initiated by the mxsqlc command,
requires the EXEC SQL BEGIN... END DECLARE SECTION block to contain only host
variable declarations and SQL or host language comments. Any executable code in
this block is not processed and could cause the preprocessor to return error
messages.

Example

EXEC SQL BEGIN DECLARE SECTION;
 ...
 unsigned NUMERIC (4) jobcode; /* host variables */
 char jobdesc[19];
 EXEC SQL INVOKE persnl.employee AS emp_tbl;
 struct emp_tbl emp;
EXEC SQL END DECLARE SECTION;

C++ Host Variables Within a Class Definition

In a C++ program, you can include an SQL Declare Section within a class definition to
use a data member of a class as a host variable. References to host variables
declared within a class definition must be in member functions of the class. In a C++
program, you cannot include a class definition within an SQL Declare Section.

Example

class jobsql {
// class member host variables
EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) memhv_jobcode;
 char memhv_jobdesc[19];
EXEC SQL END DECLARE SECTION;
public:
...
void putjob(){
 EXEC SQL
 INSERT INTO persnl.job
 VALUES (:memhv_jobcode, :memhv_jobdesc);

C

C++
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-3

Embedded SQL Statements Nonexecutable SQL Statements
 }
}; // end of jobsql class definition

Nonexecutable SQL Statements

You can place a specific set of static SQL statements anywhere in an embedded C,
C++, or COBOL program. However, these statements affect only the compilation of the
static SQL statements that they precede. For a list of these static SQL declarations and
statements, see Table 2-3 on page 2-7.

Code these SQL declarations anywhere in your program but with the restrictions
shown in these COBOL examples:

 DECLARE CATALOG declarations—before the SQL statements with the
unqualified schema names to which the declaration applies:

EXEC SQL DECLARE CATALOG 'samdbcat' END-EXEC.
EXEC SQL DELETE FROM persnl.employee ... END-EXEC.

 DECLARE SCHEMA declarations—before the SQL statements with the unqualified
object names to which the declaration applies:

EXEC SQL DECLARE SCHEMA 'samdbcat.persnl' END-EXEC.
EXEC SQL DELETE FROM employee ... END-EXEC.

 DECLARE CURSOR declarations—before the associated OPEN statement and
processing statements using the cursor:

 EXEC SQL DECLARE get_employee CURSOR FOR
 SELECT empnum, jobcode, salary
 FROM employee
 WHERE deptnum = :HV-DEPTNUM
 END-EXEC.
* Move value into HV-DEPTNUM
 ...
 EXEC SQL OPEN get_employee END-EXEC.

 WHENEVER declarations—before the SQL statements to which the declaration
applies:

EXEC SQL WHENEVER NOT FOUND
 PERFORM 7000-ROW-NOT-FOUND
END-EXEC.
...
EXEC SQL SELECT ... END-EXEC.

Executable SQL Statements

In an embedded C, C++, or COBOL program, you must place executable SQL
statements within the body of the program, such as in main() for C or C++ programs
or within the body of other functions or procedures in the program. Code the listed
types of executable SQL statements as you would executable 3GL statements:

 SQL statements that process dynamic SQL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-4

Embedded SQL Statements Executable SQL Statements
 Diagnostics statement
 Data Definition Language (DDL) statements
 Data Manipulation Language (DML) statements
 Transaction control statements
 Object naming statements
 Data Control Language (DCL) statements
 Utilities (UPDATE STATISTICS)

For a list of executable SQL statements, see Table 2-4 on page 2-8.

Executable SQL Statements in C++ Programs

In a C++ program, you can include embedded SQL statements that refer to host
variables declared within a class definition only in member functions of the class within
the scope of the class definition. However, you can include both of these types of
embedded SQL statements within the same C++ program:

 Statements that refer to host variables declared within a class definition
 Statements that refer to host variables not declared within a class definition

Example

// Non-class member host variables
EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) nonmemhv_jobcode;
EXEC SQL END DECLARE SECTION;
...
class jobsql {
// Class member host variables
EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) memhv_jobcode;
EXEC SQL END DECLARE SECTION;
public:
void deljob(){
 memhv_jobcode = 1234;
 EXEC SQL DELETE FROM persnl.job
 WHERE jobcode = :memhv_jobcode;
}
}; // End of jobsql class definition
...
main(){
jobsql mysql; // Instantiate a member of the class jobsql
...
// Delete job code 1234
mysql.deljob();
...
// Delete another job code 5678
nonmemhv_jobcode = 5678;
EXEC SQL DELETE FROM persnl.job
 WHERE jobcode = :nonmemhv_jobcode;
} // End of main

In this example, a DELETE statement is executed twice within main(): the first time
as a member function that consists of an embedded SQL statement, and the second

C++
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-5

Embedded SQL Statements Embedded SQL Declarations and Statements
time as an embedded SQL statement. The member function references host variables
that are class data members.

Embedded SQL Declarations and Statements
These tables list all the SQL declarations and statements that you can embed in a 3GL
program:

 Table 2-1 on page 2-6 describes the MODULE directive, which you should place at
the beginning of a 3GL program.

 Table 2-2 on page 2-6 summarizes the embedded SQL statements that you can
use only in an SQL Declare Section of a 3GL program.

 Table 2-3 on page 2-7 summarizes the nonexecutable SQL statements that affect
other static SQL statements embedded in a 3GL program.

 Table 2-4 on page 2-8 summarizes the executable SQL statements you can embed
in a 3GL program.

For detailed syntax, use considerations, and examples of the embedded SQL
discussed in this manual, see the SQL/MX Reference Manual.

Table 2-1. MODULE Directive

Statement Description

MODULE Specifies module name to be used for
module file.

Table 2-2. Embedded SQL Statements in SQL Declare Section

Statement Description

BEGIN DECLARE SECTION Designates the beginning of a Declare
Section for host variable declarations.

END DECLARE SECTION Designates the end of a Declare Section.

INVOKE* Generates a structure description of a table
or view.

* Indicates the statement is an SQL/MX extension.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-6

Embedded SQL Statements Embedded SQL Declarations and Statements
Table 2-3. Nonexecutable SQL Statements

Statement Description

Catalog and Schema Declarations

DECLARE CATALOG* Sets default catalog for unqualified schema
names in static SQL statements within a
compilation unit.

DECLARE SCHEMA* Sets default schema for unqualified object
names in static SQL statements within a
compilation unit.

NAMETYPE and MPLOC Attribute Declarations

DECLARE NAMETYPE* Sets default NAMETYPE attribute value to
ANSI or NSK for static statements within a
compilation unit.

DECLARE MPLOC* Sets default Guardian volume and
subvolume for unqualified physical object
names in static SQL statements within a
compilation unit.

Cursor Declaration

DECLARE CURSOR Specifies a static cursor in a host program
and associates the name of the cursor with a
query expression that specifies the rows to
be retrieved by using the cursor.

Exception Declaration

WHENEVER Generates code that checks SQL statement
execution for errors and an ending no-rows-
found condition and specifies an action to
take.

Data Control Language (DCL) Statements

CONTROL QUERY DEFAULT* Overwrites the contents in memory for the
current process. This statement applies to
static SQL.

CONTROL QUERY SHAPE* Forces execution plans by modifying the
operator tree for a prepared statement. This
statement applies to static SQL.

CONTROL TABLE* Specifies a performance-related option for
DML accesses to a table or view. The
options are MDAM, PRIORITY,
TABLELOCK, TIMEOUT, and RESET. This
statement applies to static SQL.

* Indicates the statement is an SQL/MX extension.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-7

Embedded SQL Statements Embedded SQL Declarations and Statements
Table 2-4. Executable SQL Statements (page 1 of 5)

Statement Description

SQL Statements That Process Dynamic SQL

ALLOCATE CURSOR Allocates an SQL cursor.

DECLARE CURSOR Specifies a dynamic cursor in a host program
and associates the name of the cursor with a
query expression that specifies the rows to
be retrieved by using the cursor.

ALLOCATE DESCRIPTOR Allocates an input or output SQL descriptor
area.

DEALLOCATE DESCRIPTOR Deallocates an SQL descriptor area.

PREPARE Prepares (compiles) a dynamic SQL
statement for subsequent execution by an
EXECUTE statement.

DEALLOCATE PREPARE Deallocates a prepared statement, returns
the system resources used by the statement,
an enables reuse of the statement name.

DESCRIBE Uses an SQL descriptor area to return
descriptions of output variables (usually
SELECT columns) from a prepared
statement.

DESCRIBE INPUT Uses an SQL descriptor area to store
information on input parameters for a
prepared statement.

EXECUTE Executes a prepared dynamic SQL
statement.

EXECUTE IMMEDIATE Prepares (compiles) and executes a
dynamic SQL statement.

GET DESCRIPTOR Retrieves information from an SQL
descriptor area.

SET DESCRIPTOR Modifies information in an SQL descriptor
area.

Diagnostics Statement

GET DIAGNOSTICS Returns diagnostic information on the most
recently executed SQL statement.

Data Definition Language (DDL) Statements

ALTER INDEX * Changes the file attributes of an index.

ALTER SQLMP ALIAS * Changes the physical name of an SQL/MP
table to which an existing alias is mapped.

ALTER TABLE Changes the definition of an table.

* Indicates the statement is an SQL/MX extension.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-8

Embedded SQL Statements Embedded SQL Declarations and Statements
Data Definition Language (DDL) Statements (continued)

ALTER TRIGGER Changes the definition of an trigger.

CREATE CATALOG * Defines a catalog.

CREATE INDEX * Creates an index based on one or more
columns in a table.

CREATE PROCEDURE Defines an existing Java method as an SPJ
in NonStop SQL/MX.

CREATE SCHEMA Defines a schema.

CREATE SQLMP ALIAS * Defines a mapping from an ANSI name to
the physical name of an SQL/MP table or
view.

CREATE TABLE Defines a persistent base table.

CREATE TRIGGER Defines a trigger.

CREATE VIEW Defines a viewed table.

DROP CATALOG * Destroys an empty catalog.

DROP INDEX * Destroys an index.

DROP PROCEDURE Removes an SPJ definition.

DROP SCHEMA Destroys an empty schema.

DROP SQLMP ALIAS * Destroys the mapping of an ANSI name to
the physical name of an SQL/MP table.

DROP TABLE Destroys a table.

DROP TRIGGER Destroys a trigger.

DROP VIEW Destroys a view.

GRANT Defines privileges.

GRANT EXECUTE * Defines execute privilege on a procedure.

REGISTER CATALOG * Registers a catalog visible on the local node
to the remote node.

REVOKE Destroys privileges.

REVOKE EXECUTE * Destroys execute privileges on a procedure.

UNREGISTER CATALOG * Removes an empty catalog reference from a
node.

Table 2-4. Executable SQL Statements (page 2 of 5)

Statement Description

* Indicates the statement is an SQL/MX extension.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-9

Embedded SQL Statements Embedded SQL Declarations and Statements
Data Manipulation Language (DML) Statements

CLOSE Closes a cursor.

DELETE Deletes rows from a table or view.

FETCH Retrieves a row by using a cursor.

INSERT Inserts rows into a table or view.

OPEN Opens a cursor.

SELECT Retrieves data from tables and views.

UPDATE Updates values in columns of a table or
view.

BEGIN...END Designates a compound statement that
groups other embedded SQL statements
together.

Transaction Control Statements

BEGIN WORK* Starts a TMF transaction.

COMMIT [WORK] Commits all changes made to the database
during the current transaction and frees any
resources.

ROLLBACK [WORK] Backs out the current transaction and frees
resources.

SET TRANSACTION Sets attributes for the next transaction—
isolation level, access mode, size of
diagnostics area, and whether to commit
changes automatically at the end of a
statement.

Object Naming Statements

SET CATALOG Sets default catalog for unqualified schema
names in dynamic SQL statements that are
prepared after this statement is executed.

SET SCHEMA Sets default schema for unqualified object
names in dynamic SQL statements that are
prepared after this statement is executed.

SET NAMETYPE* Sets default NAMETYPE attribute value to
ANSI or NSK in dynamic SQL statements
that are prepared after this statement is
executed.

Table 2-4. Executable SQL Statements (page 3 of 5)

Statement Description

* Indicates the statement is an SQL/MX extension.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-10

Embedded SQL Statements Embedded SQL Declarations and Statements
Object Naming Statements (continued)

SET MPLOC* Sets default Guardian volume and
subvolume for unqualified physical object
names in dynamic SQL statements that are
prepared after this statement is executed.
The NAMETYPE must be set to NSK for this
command to work.

CONTROL QUERY DEFAULT* Modifies the content of the
SYSTEM_DEFAULTS table for the current
process. This statement is executable only
when you use it dynamically with PREPARE
and EXECUTE or with EXECUTE
IMMEDIATE. This statement affects only
dynamic statements that are prepared after
the execution of this statement.

CONTROL QUERY SHAPE* Forces execution plans by modifying the
operator tree for a prepared statement. This
statement is executable only when you use it
dynamically with PREPARE and EXECUTE
or with EXECUTE IMMEDIATE. This
statement affects only dynamic statements
that are prepared after the execution of this
statement.

CONTROL TABLE* Specifies a performance-related option for
DML accesses to a table or view. The
options are MDAM, PRIORITY,
TABLELOCK, TIMEOUT, and RESET. This
statement is executable only when you use it
dynamically with PREPARE and EXECUTE
or with EXECUTE IMMEDIATE. This
statement affects only dynamic statements
are that prepared after the execution of this
statement.

SET TABLE TIMEOUT* Sets a dynamic value for a lock timeout or a
stream timeout in the environment of the
current session.

LOCK TABLE* Locks a table or underlying tables of a view
and associated indexes.

UNLOCK TABLE * Releases locks held on nonaudited tables
and views.

Table 2-4. Executable SQL Statements (page 4 of 5)

Statement Description

* Indicates the statement is an SQL/MX extension.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-11

Embedded SQL Statements Considerations for Embedding DDL and DML
Statements
Considerations for Embedding DDL and DML Statements

The most practical way to create your database objects is through OBEY command
files in MXCI. By using OBEY scripts, you avoid compilation. However, you might have
a reason for embedding DDL and DML statements within the same program. If you
should do this, understand that the DDL statements create the objects at run time, not
compile time. At compile time, subsequent DML statement on those objects are not
compiled statically because the objects do not exist in the database at compile time. At
run time, the DML statements execute dynamically.

For information on DDL and DML statements, see the SQL/MX Reference Manual.

Considerations for Embedding the UPDATE STATISTICS
Statement

It is not recommended that your application start a transaction prior to executing
UPDATE STATISTICS because UPDATE STATISTICS will execute under the user
transaction. However, you can embed UPDATE STATISTICS in C programs because
the C preprocessor does not start transactions automatically. Transactions are started
when you use the BEGIN WORK statement in the application.

Using CONTROL Statements
CONTROL statements are SQL/MX compiler directives that affect the execution of
SQL statements in a program and that enable you to override the system-level default
settings for the current process. CONTROL statements include:

 CONTROL QUERY DEFAULT, which overrides system-level default settings

Utilities

UPDATE STATISTICS Updates information on the content of a table
and its indexes.

Stored Procedures (SPJ)

CALL Statement The CALL statement invokes a stored
procedure in Java (SPJ) and can be
embedded in a C, C++, or COBOL program.
Both static and dynamic CALL statements
are supported. See SQL/MX Guide to Stored
Procedures in Java or the SQL/MX
Reference Manual for examples and more
information.

Table 2-4. Executable SQL Statements (page 5 of 5)

Statement Description

* Indicates the statement is an SQL/MX extension.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-12

Embedded SQL Statements ANSI Compliance and Portability
 CONTROL QUERY SHAPE, which forces execution plans by modifying the
operator tree for a prepared statement

 CONTROL TABLE, which specifies a performance-related option for DML
accesses to a table or view

For the syntax of CONTROL statements, see the SQL/MX Reference Manual.

ANSI Compliance and Portability

If program portability is important, note that CONTROL statements are SQL/MX
extensions to the ANSI standard.

Static and Dynamic CONTROL Statements
CONTROL statement directives influence static SQL statements and dynamic SQL
statements differently. As a programmer, you need to be aware of these differences to
minimize confusion regarding the scope and influence of CONTROL statements in
your program.

CONTROL, Line Order Scope, and Static SQL programs

In an embedded static SQL program, CONTROL statements are preceded by the
preprocessor EXEC SQL directive. In this type of program, a CONTROL statement
directive applies only to static SQL statements. Moreover, CONTROL statements apply
to all statements that follow the CONTROL statement until superseded by another
EXEC SQL CONTROL statement. This type of scope is commonly referred to as line
order scope and applies exclusively to static SQL statements.

CONTROL, Flow Control Scope, and Dynamic SQL programs

In a dynamic SQL program, CONTROL statements are executed dynamically. In MXCI,
for example, you enter CONTROL statements in the same manner as other SQL
statements. You can execute CONTROL statements in a C or COBOL program with
either PREPARE/EXECUTE or EXECUTE IMMEDIATE. In this type of a program, the
scope is such that dynamically executed CONTROL statements apply only to dynamic
SQL statements that are executed after the CONTROL statement has been executed.
This type of scope is called flow control scope and applies exclusively to dynamic SQL
statements. Example 2-1 on page 2-14 illustrates the different types of scope and

Note. Scoping rules behave differently for NonStop SQL/MP than for NonStop SQL/MX. Static
statements are in pure listing order in NonStop SQL/MX. The scope is reset at each procedure
boundary in NonStop SQL/MP. For more information about the differences between NonStop
SQL/MP and NonStop SQL/MX, see the SQL/MX Comparison Guide for SQL/MP Users.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-13

Embedded SQL Statements CONTROL, Flow Control Scope, and Dynamic SQL
programs
influence that CONTROL statement directives have on dynamic and static SQL
statements.

Guidelines on the Behavior and Use of CONTROL
Statements

 Place CONTROL statements anywhere an executable statement is allowed in a C,
C++, or COBOL program.

 A subsequent CONTROL statement can modify the values set by a prior
CONTROL statement.

 The CONTROL statements that are within scope stay in effect for the entire
duration of the SQL statements they influence. For example, a CONTROL TABLE
statement stays in effect until the current process terminates or until the execution
of another CONTROL statement overrides it.

 It is good practice to issue a CONTROL QUERY SHAPE OFF statement
immediately after the execution of a query with a forced plan because the next
query might not fit the forced plan and result in an optimizer error. For more
information, see the SQL/MX Reference Manual.

Prior to entering the loop, the static statement EXEC SQL UPDATE is affected by the
preceding static CONTROL statement.

Now, consider dynamic SQL statements. The first time through the loop, the user
enters:

UPDATE sales SET SALARY = SALARY * 0.05;

Note. As a rule, dynamic CONTROL statements apply to dynamic SQL statements that are
prepared after the CONTROL statement is executed. If your program uses a PREPARE once
and EXECUTE many strategy, the program must execute the CONTROL statement prior to the
PREPARE statement. CONTROL statements that are executed after a PREPARE statement
do not apply to the prepared statements.

Example 2-1. Static and Dynamic SQL and CONTROL Scope

...
EXEC SQL CONTROL QUERY DEFAULT TABLELOCK 'ON';
EXEC SQL UPDATE sales SET SALARY = SALARY * 0.05;
...

for (i = 1; i <= 3; i++)
 {
 printf("Enter SQL statement: ");
 scanf("%s", &sql_string);
 EXEC SQL PREPARE stmt FROM :sql_string;
 EXEC SQL EXECUTE stmt;
 }

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-14

Embedded SQL Statements CONTROL, Flow Control Scope, and Dynamic SQL
programs
The preceding static CONTROL QUERY statement does not apply to this dynamic
statement when the user enters this dynamic SQL statement, and the default
TABLELOCK strategy (SYSTEM) is used.

The second time through the loop, the user enters:

CONTROL QUERY DEFAULT TABLELOCK 'ON';

When the user enters this dynamic CONTROL statement, it is executed dynamically.
As discussed previously, all subsequent SQL statements are affected by this
CONTROL statement.

The third and final time through the loop, the user enters:

UPDATE sales SET SALARY = SALARY * 0.05;

In this dynamic SQL statement, the preceding CONTROL QUERY statement affects
the TABLELOCK strategy. This example demonstrates the behavior of flow control
scope.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-15

Embedded SQL Statements CONTROL, Flow Control Scope, and Dynamic SQL
programs
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
2-16

3
Host Variables in C/C++ Programs

Host variables are data items declared in a host application program and used in both
host language statements and embedded SQL statements. They provide
communication between SQL statements and the host language statements. An input
host variable transfers data from a host language program to an SQL/MX database,
and an output host variable transfers data from a database to the program.

This section describes:

 Specifying a Declare Section on page 3-1
 C Host Variable Data Types on page 3-2
 Using Corresponding SQL and C Data Types on page 3-8
 Specifying Host Variables in SQL Statements on page 3-15
 Using Host Variables in a C/C++ Program on page 3-16
 Using Indicator Variables in a C/C++ Program on page 3-41
 Creating C Host Variables Using INVOKE on page 3-43
 Character Set Examples on page 3-52

Specifying a Declare Section
Declare all host variables within an SQL Declare Section:

 Use the BEGIN DECLARE SECTION statement to begin a Declare Section.

 Use the END DECLARE SECTION statement to end a Declare Section.

 You can specify more than one Declare Section in your source file but do not nest
them.

 You can use SQL or host language comments in a Declare Section.

 For the best performance, declare the host variable as the same data type as the
column in the SELECT list. If you declare this way, you can use bulk moves to
input and output data.

 You can declare all types of host variables as structure fields or class data
members. Additionally, you can declare pointers to structures, classes, and binary
numeric host variables as host variables.

Do not:

 Place a Declare Section within a C structure declaration.
 Include a C++ class definition within a Declare Section.
 Include a C function declaration within a Declare Section.
 Include any executable code within a Declare Section.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-1

Host Variables in C/C++ Programs C Host Variable Data Types
Example

This example uses host variable declarations in an SQL Declare Section:

EXEC SQL BEGIN DECLARE SECTION;
char SQLSTATE[6];
unsigned NUMERIC (6) ordernum; /* simple variables */
struct employee { /* structure */
 unsigned short empnum;
 char first_name[16];
 char last_name[21];
 unsigned short deptnum;
 unsigned short jobcode;
} employee_info;
...
int * hvarPointer; /* pointer to numeric data type */
struct employee * empStruct; /* structure pointer */
EXEC SQL END DECLARE SECTION;

C Host Variable Data Types
You must explicitly declare all host variables used in SQL statements. A host variable
used in an SQL statement must be declared in an SQL Declare Section prior to the first
use of the host variable in an SQL statement. Only variables of the types recognized
by the 3GL preprocessor can appear within an SQL Declare Section.

To declare a C host variable, specify one of these data types:

 char [char-set] C-identifier [l + 1]
| NCHAR C-identifier [l + 1]
| VARCHAR [char-set] C-identifier [l + 1]
| NCHAR VARYING C-identifier [l + 1]
| {[signed] | unsigned} NUMERIC (p, s)
| PIC[TURE] [S]9(l-s)V9(s) COMP
| {[signed] | unsigned} DECIMAL (l, s)
| PIC[TURE] [S]9(l-s)V9(s)
| {[signed] | unsigned} short
| {[signed] | unsigned} int
| {[signed] | unsigned} long
| long long
| float
| double
| DATE
| TIME [(n)]
| TIMESTAMP [(n)]
| INTERVAL [period1[(n)] | SECOND [(n[,m])]] [TO
 period2[(m)]]

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-2

Host Variables in C/C++ Programs Character Host Variables
Character Host Variables

char [char-set] C-identifier [l + 1] [C-initial-value] [,...]

specifies the data type of a target host variable for a column of this SQL data type:

CHAR[ACTER] [(l)]

char-set is specified as CHARACTER SET [IS] character-set-name. This
optional clause specifies the character set to be associated with the host variable.
If no char-set is specified, the default character set for char is ISO88591.
char-set can be ISO88591, UCS2, KANJI, KSC5601. Note that you can use host
variables with the KANJI or KSC5601 character set in an SQL/MX application only
to access KANJI or KSC5601 columns in an SQL/MP table.

C-identifier specifies that the variable can hold a fixed-length character (or
code_units) string. The maximum length of the string is specified in the length
field.

The length l + 1 is required and must be enclosed in square brackets. The length
l corresponds to the length of the column value. To allow for the null terminator,
add 1 to the length for the declaration of the host variable.

C-initial-value is a valid string literal in C/C++. The initial value should be of
the same type as the C array type translated by the SQL/MX preprocessor.

NCHAR C-identifier [l +1] [C-initial-value] [,...]

specifies the data type of a target host variable for a column with data in the pre-
defined national character set of this SQL data type:

NCHAR(1)

C -identifier specifies that the variable can hold a fixed-length character (or
code_units) string. The maximum length of the string is specified in the length
field.

The length l + 1 is required and must be enclosed in square brackets. The length
l corresponds to the length of the column value. To allow for the null terminator,
add one (1) to the length for the declaration of the host variable.

NCHAR is always associated with the system default NATIONAL_CHARSET. For
information on setting NATIONAL_CHARSET, see the SQL/MX Reference Manual.

C-initial-value is a valid string literal in C/C++. The initial value should be of
the same type as the C array type translated by the SQL/MX preprocessor.

VARCHAR [char-set] C-identifier [l + 1] [C-initial-value] [,...]

specifies the data type of a target host variable for a column of this SQL data type:

VARCHAR(l)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-3

Host Variables in C/C++ Programs Date-Time and Interval Host Variables
char-set is specified as CHARACTER SET [IS] character-set-name. This
optional clause specifies the character set to be associated with the host variable.
If no char-set is specified, the default character set for VARCHAR is ISO88591.
char-set can be ISO88591, UCS2, KANJI, KSC5601. Note that host variables
with the KANJI or KSC5601 character set in an SQL/MX application can be used
only to access KANJI or KSC5601 columns in an SQL/MP table.

C-identifier specifies that the variable can hold a variable-length character (or
code_units) string. The maximum length of the string is specified in the length
field.

The length l + 1 is required and must be enclosed in square brackets. The length
l corresponds to the maximum length of the column value. To allow for the null
terminator, add 1 (one) to the length for the declaration of the host variable.

C-initial-value is a valid string literal in C/C++. The initial value should be of
the same type as the C array type translated by the SQL/MX preprocessor.

NCHAR VARYING C-identifier [l + 1] [C-initial-value] [,...]

specifies the data type of a target host variable for a column of this SQL data type:

NCHAR VARYING (l)

C-identifier specifies that the variable can hold a variable-length character (or
code_units) string. The maximum length of the string is specified in the length
field.

The length l + 1 is required and must be enclosed in square brackets. The length
l corresponds to the maximum length of the column value. To allow for the null
terminator, add one (1) to the length for the declaration of the host variable.

NCHAR VARYING is always associated with the system default
NATIONAL_CHARSET. For information on setting NATIONAL_CHARSET, see the
SQL/MX Reference Manual.

C-initial-value is a valid string literal in C/C++. The initial value should be of
the same type as the C array type translated by the SQL/MX preprocessor.

Date-Time and Interval Host Variables

In SQL/MX Release 2.x, you can declare ANSI-99 date-time and interval data types as
host variables. You can use these host variables to retrieve date-time or interval data
directly from date-time or interval columns or to put date-time or interval data directly
into date-time or interval columns.

For SQL/MP DATETIME data types that are not equivalent to DATE, TIME, or
TIMESTAMP, you are still required to declare a character array host variable and use
the CAST function for input to and output from date-time or interval columns, similar to
SQL/MX Release 1.8, which does not support ANSI-99 date-time host variables.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-4

Host Variables in C/C++ Programs Date-Time and Interval Host Variables
DATE

specifies the data type of a target host variable for a date-time column that
contains a date in the external form yyyy-mm-dd.

TIME [(n)]

specifies the data type of a target host variable for a date-time column that, without
the optional n precision, contains a time in the external form hh:mm:ss. The n
precision is a positive integer that specifies the number of digits in the fractional
seconds. The default for the precision is 0, and the maximum is 6.

TIMESTAMP [(n)]

specifies the data type of target host variable for a date-time column that, without
the optional n precision, contains a timestamp in the external form:

yyyy-mm-dd hh:mm:ss

The n precision is a positive integer that specifies the number of digits in the
fractional seconds, as shown in bold text:

yyyy-mm-dd hh:mm:ss.msssss

The default for precision is 6, and the maximum is 6.

INTERVAL [period1[(n)] | SECOND [(n[,m])]] [TO period2[(m)]]

where

period1 must be greater or equal time part than period2. YEAR to SECOND is
valid. SECOND to YEAR is invalid.

Specifies a column that represents a duration of time as either a year-month or
day-time range or a single-field. period1 can have a leading-precision up to 18
digits (the maximum depends on the number of fields in the interval). The leading-
precision is the number of digits allowed in period1. If period2 is SECOND, it
can have a fractional-precision up to 6 digits. The fractional-precision is the
number of digits of precision after the decimal point. The default for leading-
precision is 2, and the default for fractional-precision is 6. If the single-field is
SECOND, the leading-precision is the number of digits of precision before the
decimal point, and the fractional-precision is the number of digits of precision after
the decimal point.

n leading precision

m fractional precision

period YEAR | MONTH | DAY | HOUR | MINUTE | SECOND
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-5

Host Variables in C/C++ Programs Numeric Host Variables
Numeric Host Variables

{[signed] | unsigned} NUMERIC (p, s)

specifies the data type of a target host variable for a column of one of these SQL
data types:

NUMERIC [(p, s)] [SIGNED|UNSIGNED]
PIC[TURE] [S] {9(l-s) [V[9(s)]] | V9(s)} COMP

The precision p corresponds to the precision of the column value. The scale s
corresponds to the scale of the column value. The precision p for the NUMERIC
data type cannot exceed 128. If you specify a precision greater than 128, the error
"Error 13061 - EXC_BAD_UNS_NUM_PREC," is returned.

The length l for the PICTURE data type corresponds to the number of digits in the
column value and cannot exceed 18. The value l-s is the number of digits in the
integral part of the column value.

PIC[TURE] [S]9(l-s)V9(s) COMP

is the same as {[signed] | unsigned} NUMERIC (p, s).

{[signed] | unsigned} DECIMAL(l, s)

specifies the data type of a target host variable for a column of one of these SQL
data types:

DECIMAL (l, s) [SIGNED|UNSIGNED]
PIC[TURE] [S] 9(l-s) V9(s) DISPLAY [SIGN IS LEADING]

The length l corresponds to the number of digits in the column value. The scale s
corresponds to the scale of the column value. The value l-s is the number of
digits in the integral part of the column value.

PIC[TURE] [S]9(l-s)V9(s)

is the same as {[signed] | unsigned} DECIMAL(l, s).

{[signed] | unsigned} short

specifies the data type of a target host variable for a column of the SQL data type:

SMALLINT [SIGNED|UNSIGNED]

{[signed] | unsigned} int

specifies the data type of a target host variable for a column of the SQL data type:

INT[EGER] [SIGNED|UNSIGNED}
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-6

Host Variables in C/C++ Programs Floating-Point Host Variables
{[signed] | unsigned} long

specifies the data type of a target host variable for a column of the SQL data type:

INT[EGER] [SIGNED|UNSIGNED} for 32-bit data model

LARGEINT for 64 bit data model

long long

specifies the data type of a target host variable for a column of the SQL data type:

LARGEINT

Floating-Point Host Variables

With NonStop SQL/MX Release 2.x, you can choose to declare floating-point host
variables with a Tandem floating-point format or the ANSI IEEE floating-point format.
The storage and precision of IEEE floating-point data types is different from that of
Tandem floating-point data types, as noted in these summaries. Tandem floating-point
data types are stored in 4 bytes (REAL) or 8 bytes (DOUBLE), depending on their
precision. ANSI IEEE floating-point data type FLOAT(p) declarations are stored in 8
bytes regardless of the precision.

float

specifies the data type of a target host variable for a column of this SQL data type:

REAL

Tandem floating-point REAL data type is stored with 22 bits of precision and 9 bits
of exponent. The precision corresponds to the precision of the column value. IEEE
floating-point format REAL is stored in 4 bytes with 23 bits of binary precision and
8 bits of exponent.

Note. The unsigned long data type is not supported in 64-bit embedded SQL/MX programs.

Note. The long data type corresponds to a 32-bit integer in programs compiled for the 32-bit
address model and to a 64-bit integer in programs compiled for the 64-bit address model.
Therefore, HP recommends that you use the int data type for 32-bit integer host variable.

Note. The unsigned long long data type is not supported in embedded SQL/MX programs.

Note. The floating-point format for SQL/MP tables is Tandem. The floating-point format for
SQL/MX format tables is IEEE. Use the -o preprocessor option to change the format of data
that is input or output to host variables in an embedded program. See Running the
SQL/MX C/C++ Preprocessor on page 15-8.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-7

Host Variables in C/C++ Programs Using Corresponding SQL and C Data Types
double

specifies the data type of a target host variable for a column of one of these SQL
data types:

FLOAT [(p)]
DOUBLE PRECISION

IEEE floating-point format FLOAT (p) and DOUBLE are stored in 8 bytes with 52
bits of binary precision and 11 bits of exponent. The storage size for the IEEE
floating-point format is implementation-defined. This is ANSI-compliant behavior.

The maximum precision for an IEEE data type is 52. The precision corresponds to
the precision of the column value.

For the corresponding SQL and C host variable data types for FLOAT data types, see
Table 3-2 on page 3-10. For the generated C data types for NUMERIC, PIC, and
DECIMAL, see Table 3-1 on page 3-9.

Using Corresponding SQL and C Data Types
Table 3-1 lists the corresponding SQL data types, C host variable data types, and
translated C declarations for the NUMERIC, DECIMAL, PIC, SMALLINT and
LARGEINT data types.

Table 3-2 on page 3-10 lists the corresponding SQL data types, C host variable data
types, and translated C declarations for the FLOAT data types.

Table 3-3 on page 3-11 lists the corresponding SQL data types, C host variable data
types, and translated C declarations for the date-time data types.

Most SQL data types with scale have extended host variable data types. You can
specify a C/C++ variable as a host variable if it has a corresponding SQL data type.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-8

Host Variables in C/C++ Programs Using Corresponding SQL and C Data Types
Table 3-1. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations for NUMERIC, DECIMAL, PIC, SMALLINT, and LARGEINT Data
Types

SQL Data Type C Host Variable
Data Type

Translated C
Declaration (32-
bit Address
Model)

Translated C
Declaration (64-
bit Address
Model)

NUMERIC (1 to
4,s) SIGNED

NUMERIC (1 to
4,s)*

short short

NUMERIC (1 to
4,s) UNSIGNED

unsigned NUMERIC
(1 to 4,s)*

unsigned
short

unsigned
short

NUMERIC (5 to
9,s) SIGNED

NUMERIC (5 to
9,s)*

long int

NUMERIC (5 to
9,s) UNSIGNED

unsigned NUMERIC
(5 to 9,s)*

unsigned long unsigned int

NUMERIC (10 to
18,s) SIGNED

NUMERIC (10 to
18,s)*

long long long long

NUMERIC (10 to
128,s) UNSIGNED

unsigned NUMERIC
(10 to 128, s)*

Int16 [x]** Int16 [x]**

NUMERIC (19 to
128,s) SIGNED

NUMERIC (19 to
128, s)*

Int16 [x]** Int16 [x]**

PIC[TURE] [S]
9(l-s)V9(s) COMP

Same as NUMERIC* Same as
NUMERIC

Same as
NUMERIC

DEC[IMAL] (l,s)
SIGNED

DECIMAL (l,s)* char [l + 2] char [l + 2]

DEC[IMAL] (l,s)
UNSIGNED

unsigned DECIMAL
(l,s)*

char [l + 2] char [l + 2]

PIC[TURE] [S]
9(l-s)V9(s)

Same as DECIMAL* char [l + 2] char [l + 2]

SMALLINT SIGNED short short short

SMALLINT
UNSIGNED

unsigned short unsigned
short

unsigned
short

INT[EGER]
SIGNED

int long int

* These host variable data types are extensions.
** x is computed based on precision p.

l A positive integer that represents the length.

s A positive integer that represents the scale of the number.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-9

Host Variables in C/C++ Programs Using Corresponding SQL and C Data Types
INT[EGER]
UNSIGNED

unsigned int unsigned long unsigned int

NUMERIC(5-9) long long (32-bit
integer)

long (64-bit
integer)

LARGEINT long long long long
(64-bit
integer)

long long
(64-bit
integer)

Note.

 You can declare an Unsigned Numeric variable and then store a negative BigNum value.
Unsigned Numeric and Signed Numeric binary formats are the same for BigNum values,
with the exception of the sign bit.

 The unsigned long data type is not supported in 64-bit embedded SQL/MX programs.

Table 3-2. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations for Float Data Types

SQL Data Type
C Host Variable
Data Type

Translated C
Declaration

REAL
FLOAT (1 to 22 bits)

float* float (Tandem format)

FLOAT (23 to 54 bits)
DOUBLE PRECISION

double* double (Tandem format)

REAL float** float (IEEE format)

FLOAT (1 to 52 bits)
DOUBLE PRECISION

double** double (IEEE format)

* Tandem floating point is specified during compilation.

** IEEE floating point is specified during compilation.

Table 3-1. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations for NUMERIC, DECIMAL, PIC, SMALLINT, and LARGEINT Data
Types

SQL Data Type C Host Variable
Data Type

Translated C
Declaration (32-
bit Address
Model)

Translated C
Declaration (64-
bit Address
Model)

* These host variable data types are extensions.
** x is computed based on precision p.

l A positive integer that represents the length.

s A positive integer that represents the scale of the number.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-10

Host Variables in C/C++ Programs Extended Host Variable Data Types and Generated
C Data Types
Extended Host Variable Data Types and Generated C Data Types

Table 3-4 on page 3-12 lists the embedded SQL/C host variable "a[100]" with all its
legal SQL/MX modifiers, the equivalent data types in NonStop SQL/MX, and the
translated C declarations. The assumed wchar_t size is 2 characters.

Table 3-3. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations for Date-Time Data Types

SQL Data Type
C Host Variable
Data Type

Translated C
Declaration

DATE DATE* char [l + 1]

TIME (time-precision) TIME[(n)]* char [l + 1]

TIMESTAMP (timestamp-
precision)

TIMESTAMP[(n)]* char [l + 1]

INTERVAL {start-field TO
end-field | single-field
}

INTERVAL
[period1[(n)] |
SECOND [(n[,m])]]
[TO period2[(m)]]**

char [l + 1]

* An extra character is generated for a null terminator. For DATE, the value of the length l is 10. For TIME(6), the
value of the length l is 15. For TIMESTAMP(6), the value of the length l is 26.

** The INTERVAL data type has an extra character for a null terminator. The sign is included in the length l.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-11

Host Variables in C/C++ Programs Extended Host Variable Data Types and Generated
C Data Types
Table 3-4. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations (page 1 of 2)

SQL Data Type C Host Variable Data Type
Translated C
Declaration

CHAR(99)CHARACTER SET
ISO88591

char a[100]*

char CHARACTER SET IS
ISO88591 a[100]

char CHARACTER SET IS
ISO88591 a[100
CHARACTERS]

char a[100]

CHAR(99)CHARACTER SET
UCS2

char CHARACTER SET IS
UCS2 a[100]

char CHARACTER SET IS
UCS2 a[100 CHARACTERS]

wchar_t a[100]

CHAR(99)CHARACTER SET
KANJI**

char CHARACTER SET IS
KANJI a[100]

char CHARACTER SET IS
KANJI a[100
CHARACTERS]

wchar_t a[100]

CHAR(99)CHARACTER SET
KSC5601**

char CHARACTER SET IS
KSC5601 a[100]

char CHARACTER SET IS
KSC5601 a[100
CHARACTERS]

wchar_t a[100]

VARCHAR(99) CHARACTER
SET ISO88591

VARCHAR a[100]*

VARCHAR CHARACTER SET
IS ISO88591 a[100]

VARCHAR CHARACTER SET
IS ISO88591 a[100
CHARACTERS]

char a[100]

VARCHAR(99) CHARACTER
SET UCS2

VARCHAR CHARACTER SET
IS UCS2 a[100]

VARCHAR CHARACTER SET
IS UCS2 a[100
CHARACTERS]

wchar_t a[100]

* An extra character is generated as a placeholder for a null terminator. The embedded SQL C VARCHAR
data type is SQL:1999.

** KANJI and KSC5601 character sets can be used only with SQL/MP tables.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-12

Host Variables in C/C++ Programs Data Conversion
Data Conversion

NonStop SQL/MX performs the conversion between SQL and C data types:

 When a host variable serves as an input variable (supplies a value to the
database), NonStop SQL/MX converts the value that the variable contains to a
compatible SQL data type and then uses the value in the SQL operation.

 When a host variable serves as an output variable (receives a value from a
database), NonStop SQL/MX converts the value to the data type of the host
variable.

NonStop SQL/MX supports conversion within numeric types and character types—but
not between numeric and character types.

Converting Numeric Types

Values of data types NUMERIC, DECIMAL, PICTURE 9’s, INTEGER, SMALLINT,
FLOAT, REAL, and DOUBLE PRECISION are numbers and are all mutually
comparable and mutually assignable.

VARCHAR(99)CHARACTER
SET KANJI**

VARCHAR CHARACTER SET
IS KANJI a[100]

VARCHAR CHARACTER SET
IS KANJI a[100
CHARACTERS]

wchar_t a[100]

VARCHAR(99)CHARACTER
SET KSC5601**

VARCHAR CHARACTER SET
IS KSC5601 a[100]

VARCHAR CHARACTER SET
IS KSC5601 a[100
CHARACTERS]

wchar_t a[100]

CHAR(99)CHARACTER SET X NCHAR a[100
CHARACTERS]

Depends on X (X is the
value of the system
default
NATIONAL_CHARSET)

VARCHAR(99)CHARACTER
SET X

NCHAR VARYING a[100
CHARACTERS]

Depends on X (X is the
value of the system
default
NATIONAL_CHARSET)

Table 3-4. Corresponding SQL, C Host Variable Data Types, and Translated C
Declarations (page 2 of 2)

SQL Data Type C Host Variable Data Type
Translated C
Declaration

* An extra character is generated as a placeholder for a null terminator. The embedded SQL C VARCHAR
data type is SQL:1999.

** KANJI and KSC5601 character sets can be used only with SQL/MP tables.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-13

Host Variables in C/C++ Programs Data Conversion
NonStop SQL/MX converts data between signed and unsigned numeric types and
between numeric types with different precisions. Note that if a signed numeric type has
a negative value, it cannot be converted.

If assignment would result in a loss of significant digits, NonStop SQL/MX returns a
data exception condition in SQLSTATE. For a description of SQLSTATE values, see
Table 13-1 on page 13-2.

Converting Character Types

Values of data types CHARACTER, PICTURE X’s, and CHARACTER VARYING are
character strings and are all mutually comparable and mutually assignable if both are
of the same character set. In addition, UCS2 host variables are mutually comparable
and assignable with ISO88591 nonhost variable objects.

For character strings of different lengths, NonStop SQL/MX pads the receiving string
variable on the right with blanks as necessary.

If the receiving string variable is too short, NonStop SQL/MX truncates the right part of
the string retrieved from the database and returns a data exception condition in
SQLSTATE. For a description of SQLSTATE values, see Table 13-1 on page 13-2.

Host Variable Pointers

The following types of pointers can be declared as host variables:

 Pointer to a structure.

 Pointer to a binary fixed-point numeric host variable.

 Pointer to a floating-point numeric host variable.

Do not declare the following data type host variables as pointers:

 Character

 Decimal numeric

 Date-time or interval data

If you need to access a host variable with any of these data types through a pointer,
you must make the pointer a structure field.

Note. For optimal performance, declare host variables with corresponding data types and the
same lengths as their respective columns in SQL statements (with consideration for the extra
character required for the null terminator). This programming practice minimizes the data
conversion performed by NonStop SQL/MX and therefore can improve the performance of your
program.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-14

Host Variables in C/C++ Programs Specifying Host Variables in SQL Statements
Example

The following example shows that you cannot declare a character data type as a host
variable:

EXEC SQL BEGIN DECLARE SECTION;
/* cannot declare a character type pointer as host variable */
char * charPtr;
 ...

This is an illegal construct and returns the following warnings when compiled:

Hewlett-Packard NonStop(TM) SQL/MX C/C++ Preprocessor 3.2.1

(c) Copyright 2003, 2004-2013 Hewlett-Packard Development
Company, LP.

*** WARNING[13029] Pointer or Reference types not supported for
Host Variables.

*** WARNING[13025] Warning(s) near line 5.

The following example shows the use of character data type in a structure:

EXEC SQL BEGIN DECLARE SECTION;
struct ptrType

{
/* all data types are allowed as structure fields */
 char charField[100];
 ...
};
struct ptrType * structPtr;
 ...

Specifying Host Variables in SQL Statements
Use host language naming conventions for your host variable and indicator variable
names. For example, a name in a C program contains alphanumeric characters,
including the underscore (_), and begins with a letter or an underscore. To avoid
conflicts with system-generated names, do not begin your host variable names with
underscores.

After you declare a host variable, to specify it within an embedded SQL statement, use
this syntax:

variable-name

is the host variable name. It can be any valid host language identifier with a data
type that corresponds to an SQL data type. You must precede variable-name
with a colon (:) within an SQL statement.

:variable-name [[INDICATOR] :indicator_variable]
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-15

Host Variables in C/C++ Programs Using Host Variables in a C/C++ Program
INDICATOR

is a keyword that can precede indicator_variable.

indicator_variable

is an indicator variable of exact numeric data type. You must declare the indicator
variable as type short in C. You must precede indicator_variable with a
colon (:) in an SQL statement.

If data returned in the host variable is null, the indicator variable is less than zero. If
character data returned is truncated, the indicator variable is set to the length of
the string in the database. Otherwise, the value of the indicator variable is zero. To
insert null into the database, set the indicator variable to a value less than zero.

Using Host Variables in a C/C++ Program
As a C/C++ programmer, you need to know how to declare and use host variables to
retrieve and insert data with these SQL data types:

 Fixed-Length Character Data on page 3-17
 Variable-Length Character Data on page 3-19
 Numeric Data on page 3-23
 Date-Time and Interval Data on page 3-34

In a C program, you can use structures for host variables. When you refer to a single
field name in the structure, you must include the structure name with the field name.

In a C++ program, you can use a data member of a class as a host variable.
References to host variables declared within a class definition must be within member
functions of the class. See Host Variables as Data Members of a C++ Class on
page 3-40.

Character Set Data

These guidelines apply for NonStop SQL/MX Release 1.8 and NonStop SQL/MX
Release 2.x character sets:

 ISO88591 character set: An SQL/MX Release 1.8 application can be run under
SQL/MX Release 2.x without application recompilation, if the application contains
ISO88591 character data only.

 KANJI and KSC5601 character set: If KANJI or KSC5601 character set host
variables are contained in the application, the application must be carefully
rewritten and recompiled. KANJI and KSC5601 host variables in C applications are
translated as single-byte arrays in SQL/MX Release 1.8 and as double-byte arrays
in SQL/MX Release 2.x. If the application is not rewritten, SQL errors might be
emitted, corruption of data might occur, and the application might crash.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-16

Host Variables in C/C++ Programs Fixed-Length Character Data
Host variable source code in SQL/MX Release 1.8:

char a[100]; /* Host variable stores KANJI character strings */

Host variable source code in SQL/MX Release 2.x:

char CHARACTER SET IS KANJI a[100];

Guidelines for Revising KANJI/KSC5601 Character Set Host
Variables

 Use the character set clause CHARACTER SET IS KANJI or CHARACTER SET
IS KSC5601.

 The encoding for KANJI is the double-byte subset of the Shift-JIS, with no check
on code points performed by NonStop SQL/MX. For the best results, use the big-
endian byte order to denote a KANJI character.

 The encoding for KSC5601 is the double-byte subset (Code set 1) of EUC-KR,
with no check on code points performed by NonStop SQL/MX. For the best results,
use the big-endian byte order to denote a KSC5601 character.

 In C/C++ embedded applications, the data type for each KANJI/KSC5601
character is wchar_t. Use wide-character C functions instead of single-byte C
functions on the host variables.

Fixed-Length Character Data

The C/C++ language uses a character array plus a null terminator (\0) to store a string
literal. Most C string-handling routines (for example, strlen and printf and wide
character string handling routines wcslen and wprintf) require the null terminator.
Follow these guidelines for handling the null terminator when you declare and use
character arrays as host variables for string literals.

Declaring a Fixed-Length Character Host Variable

When you declare a character array as a host variable, the C/C++ preprocessor
reserves the last character of the array as a placeholder for a null terminator. To allow
for the extra character, declare a character array one character longer than the actual
number of required characters. The INVOKE directive automatically appends an extra
character to a character array. You can also use the preprocessor option of -n, which
null terminates host variable character strings before they are fetched into.

Example

This example uses a declaration for an SQL column up to 20 characters in length:

EXEC SQL BEGIN DECLARE SECTION;
 char last_name[21]; /* 20-character last name */
EXEC SQL END DECLARE SECTION;
...

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-17

Host Variables in C/C++ Programs Fixed-Length Character Data
Selecting Character Data

In a C/C++ program, when selecting character data from a database to return to a host
variable array, NonStop SQL/MX does not append a null terminator to the data.
Therefore, before using the array in a C string-handling routine that requires a null
terminator, you must append a null terminator to the array.

Example

A database contains a PRODUCTS table that consists of the PROD_NUM and
PROD_DESC columns. The product number is defined to be the primary key. This
example selects character data and appends a null terminator to the hv_prod_desc
array before printing the data:

EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) find_num;
 unsigned NUMERIC (4) hv_prod_num;
 char hv_prod_desc[11];
EXEC SQL END DECLARE SECTION;
...
EXEC SQL
 SELECT prod_num, prod_desc INTO :hv_prod_num, :hv_prod_desc
 FROM products WHERE prod_num = :find_num;
...
/* append null terminator before displaying string */
hv_prod_desc[10] = '\0';
printf("%hu %s\n", hv_prod_num, hv_prod_desc);

Inserting or Updating Fixed-Length Character Data

Fixed-length character columns should always be padded with blanks. If the number of
characters in an array (not including the null terminator) is less than the size of the
character column, you must pad the array with blanks before inserting it into the
database. Otherwise, in a C program, if the number of characters is less than the size
of the character column, the INSERT statement stores the null terminator in the
database, and comparison operations fail.

Examples

This example inserts data into the PRODUCTS table. The hv_prod_desc array is six
characters long (five characters for the column value and one character for the null
terminator). Five characters are to be inserted into the prod_desc column:

EXEC SQL BEGIN DECLARE SECTION;
unsigned NUMERIC (4) hv_prod_num;
char hv_prod_desc[6]; /* use for a 5-character column */
EXEC SQL END DECLARE SECTION;
...
memcpy(hv_prod_desc, "abc ", 5); /* copy 5 characters */
 /* (abc plus 2 blanks) */
hv_prod_desc[5]='\0';
...
EXEC SQL INSERT INTO products (prod_num, prod_desc)

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-18

Host Variables in C/C++ Programs Variable-Length Character Data
 VALUES (:hv_prod_num, :hv_prod_desc);
...

This example pads the hv_prod_desc array with blanks before inserting the array
into the database and shows another way to initialize a string host variable:

/* Function to pad an array of characters with */
/* blanks on the right and add null terminator. */

void blank_pad(char *buf, size_t size);
...
int main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) hv_prod_num;
 char hv_prod_desc[11];
 EXEC SQL END DECLARE SECTION;
 ...
/* Initialize to blank first */
 strncpy(hv_prod_desc, " ", sizeof(hv_prod_desc));
/* Then copy the initial value in */
 strcpy(hv_prod_desc,"abc"); /* Copy 3 characters */
 blank_pad(hv_prod_desc, sizeof(hv_prod_desc) - 1);
 EXEC SQL INSERT INTO products (prod_num, prod_desc)
 VALUES (:hv_prod_num, :hv_prod_desc);
 ...
} /* end main */

void blank_pad(char *buf, size_t size)
{
 size_t i;
 i = strlen(buf);
 if (i < size)
 memset(&buf[i], ' ', size - i);
 buf[size] = '\0';
} /* end blank_pad */

Variable-Length Character Data

In a C/C++ program, you can retrieve from and insert character data into an SQL
VARCHAR column in the same way you do for a char column—by declaring a host
variable as a fixed-length character array. You can also declare a VARCHAR host
variable in an embedded SQL C/C++ program.

Note. If you are using MXCI, be sure to blank pad fixed-length character arrays, even when
inserting or updating a null value. If you do not blank pad the array, selected data in MXCI
shows misaligned data. However, the selected data in the embedded SQL program appears
correctly.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-19

Host Variables in C/C++ Programs Variable-Length Character Data
Declaring a VARCHAR Host Variable

In addition to the C char data type, SQL-99 provides the VARCHAR data type for host
variables within embedded SQL C/C++ programs. For host variables declared as the
VARCHAR data type, the SQL C/C++ preprocessor generates a C char data type.

When you declare a VARCHAR array as a host variable, the SQL C/C++ preprocessor
by default reserves the last character of the array as a placeholder for a null terminator.
Therefore, declare a VARCHAR array one character longer than the actual number of
required characters.

Example

This example uses a declaration for an SQL column up to 20 characters in length:

EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR last_name[21]; /* 20-character last name */
EXEC SQL END DECLARE SECTION;
...

Follow the guidelines outlined in Fixed-Length Character Data on page 3-17 for
handling the null terminator when you declare and use VARCHAR arrays as host
variables for variable-length string literals.

Using the VARCHAR compatible structure to hold VARCHAR
data

In addition to the VARCHAR data type, you can use the following structure to store
VARCHAR data. You can use the structure as the input and the output host variable
instead of the varchar variable:

Struct{

 short len;

 char val[size];

}<struct name>;

where:

len is a numeric data item that represents the length.

val is a fixed-length character data item for the string.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-20

Host Variables in C/C++ Programs Variable-Length Character Data
The following is a declaration of the VARCHAR compatible structure:

EXEC SQL BEGIN DECLARE SECTION;

struct

{

short len;

char val[20];

}test1;

EXEC SQL END DECLARE SECTION;

The following examples use the VARCHAR compatible structure as a host variable in
the SELECT, INSERT, and UPDATE statements:

 SELECT

EXEC SQL SELECT name INTO :test1 FROM t1;

 INSERT

test1.len = 3;

Strcpy(test1.val,"abc");

EXEC SQL INSERT INTO t1 VALUES(:test1);

 UPDATE

EXEC SQL UPDATE t1 SET name = :test1 WHERE name = 'xyz';

Generating Structures Instead of Using Null-Terminated
Strings

Prior to SQL/MX Release 1.8, all C/C++ VARCHAR columns were interpreted as null-
terminated strings. Beginning with SQL/MX Release 1.8, NonStop SQL/MX
implemented the -a preprocessor option, which translates VARCHAR host variables
into structures that contain the correct length and string fields. This behavior is similar
to invoked VARCHAR, which is generated as a structure with a length followed by a
string. If a VARCHAR structure is also a rowset, an additional array specification is part
of the structure definition.

In C/C++, the default behavior of the VARCHAR host variable type is:

VARCHAR hvar[size+1];

This host variable is translated to:

char hvar[size+1];

When you specify the -a option, the preprocessor generates this structure:

struct{
 short len;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-21

Host Variables in C/C++ Programs Variable-Length Character Data
 char val[size+1];
 } hvar;

Inserting or Updating Variable-Length Character Data

The rules for selecting and inserting or updating variable-length character data are
similar to the rules for fixed-length character data with one exception. When inserting
or updating data with VARCHAR data type, you do not have to pad the array with
blanks.

Example: Using a Null-Terminated String

Using the SQL/MX default for VARCHAR (for example, null terminated string), this
example uses a VARCHAR declaration for an SQL column up to 11 characters in length:

EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) hv_prod_num;
 VARCHAR hv_prod_desc[11];
EXEC SQL END DECLARE SECTION;
...
strcpy(hv_prod_desc, "abc"); /* Copy 3 characters */
hv_prod_desc[3]='\0';
...
EXEC SQL INSERT INTO products (prod_num, prod_desc)
 VALUES (:hv_prod_num, :hv_prod_desc);
...

In contrast to char data, for VARCHAR data, you do not need to insert blanks following
the data up to the null terminator.

Example: Using a Structure

This example is the same as the previous one except that the preprocessor option -a
is used. The preprocessor -a option specifies that C/C++ interpret VARCHAR host
variables as structures and generate structures that contain the correct length and
string fields. For details, see Generating Structures Instead of Using Null-Terminated
Strings on page 3-21.

If you use the -a option, you must specify the value (val) and length (len) of the
structure when assigning data to the host variable.

EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) hv_prod_num;
 VARCHAR hv_prod_desc[11];
EXEC SQL END DECLARE SECTION;
...
strncpy(hv_prod_desc.val, "abc", 3); /* Copy 3 characters */
hv_prod_desc.len = 3;
...
EXEC SQL INSERT INTO products (prod_num, prod_desc)

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-22

Host Variables in C/C++ Programs Numeric Data
 VALUES (:hv_prod_num, :hv_prod_desc);
...

Numeric Data

Use the NUMERIC data type for fixed-point numeric data, the DECIMAL data type for
ASCII numeric data, and the PICTURE 9’s data type for either fixed-point (COMP) or
ASCII (DISPLAY) numeric data.

Assigning SQL Numeric Data to C Character Arrays

Any of the SQL numeric data types can be assigned to a host variable with char data
type in a C program by first performing the appropriate conversion.

When you use char arrays as host variables for NUMERIC, DECIMAL, or PICTURE
9’s data, use the SQL/MX CAST function to convert the value:

 If you are converting NUMERIC, PICTURE 9’s, or DECIMAL data to a C char
array and the scale is zero, declare the char array two characters larger than the
number of digits you expect to store in the array. The first character is the sign (+, –
, or blank), and the last character is reserved for the null terminator. If the scale is
greater than zero, declare the char array three characters larger than the number
of digits. The extra character is reserved for the decimal point.

 Within a SELECT INTO or FETCH statement, use the SQL/MX CAST function in
the select list to convert the numeric value from the database to the CHAR data
type.

 Append a null terminator to the output character string before you process it as a
C character string.

See the CAST Specification in the SQL/MX Reference Manual.

Initializing DECIMAL Data Types

When initializing the DECIMAL data type, use this strcpy command, where
host_var is defined as DECIMAL:

strcpy(host_var, " 83445589");

Because the host variable is defined as DECIMAL (8,5), the length is 10 (8+2, minus
one character for the null terminator, which makes it 9).

Note. If the preprocessor -a option is used, the -n preprocessor option has no effect on
VARCHARs.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-23

Host Variables in C/C++ Programs Numeric Data
Initializing NUMERIC Data Types

Initialize NUMERIC data types in your application with an assignment statement. No
strcpy or CAST is needed. NUMERIC types are binary types. In this example, the
value 10 is moved to host_var, which is declared as a long.

EXEC SQL BEGIN DECLARE SECTION;
NUMERIC(7,0) host_var;
EXEC SQL END DECLARE SECTION;

host_var=10;

Initializing BigNum Data Types

You can initialize the BigNum data type with a constant int64 value, either from another
BigNum value or from an ASCII string that represents a BigNum value.

BigNum Data Type

A BigNum value is an array of int16 elements. The last element that contains the sign
is the most significant bit. The BigNum data type is defined as follows:

typedef Int16* BignumExt

BigNum Functions

You can use the following BigNum functions to perform basic operations on a BigNum
Host variable:

 Assignment Functions

 Comparison Functions

 Conversion Functions

 Arithmetic Functions

Assignment Functions

You can assign an Int64 value to a BigNum host variable or a BigNum value to an
Int64 variable using the assignment functions.

SQL_BigNumAssign Function

The SQL_BigNumAssign function assigns an Int64 value to a BigNum host variable:

int SQL_BignumAssignI64(BignumExt result, UInt16 resultLen,
Int64 valOp)

The SQL_BigNumAssign function sets the value of result from valOp.

If the assignment is successful, this function returns 0. Otherwise, the function returns
an EXE_NUMERIC_OVERFLOW error, if the resultLen is not large enough to hold
the valOp data.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-24

Host Variables in C/C++ Programs Numeric Data
SQL_BigNumI64Assign

The SQL_BigNumI64Assign function assigns a BigNum value to an Int64 variable:

int SQL_BignumI64Assign (Int64 * result, Bignum valOp,
UInt16 valOpLen)

The SQL_BigNumI64Assign function sets the value of result from valOp.

If the assignment is successful, this function returns 0. Otherwise, the function returns
an EXE_NUMERIC_OVERFLOW error.

Comparison Functions

You can compare two BigNum values by using the comparison functions.

SQL_BigNumCmp

SQL_BigNumCmp function compares two BigNum values:

int SQL_BignumCmp(Int16 * result, BignumExt operand1,
UInt16 operand1Len, BignumExt operand2, UInt16 operand2Len)

Sets the result to:

 0, if operand1 is equal to operand2

 1, if operand1 is greater than operand2

 -1, if operand1 is less than operand2

If the comparison is successful, this function returns 0, otherwise, the function returns -
1.

Conversion Functions

You can convert a BigNum value to an ASCII character string or convert an ASCII
character string to a BigNum value, or find the number of bytes required for a BigNum
value, if given a precision, using the conversion functions.

SQL_BignumFromStr

The SQL_BignumFromStr function converts an ASCII string to a BigNum value:

int SQL_BignumFromStr(BignumExt result, UInt16 resultLen,
char const *str)

This function converts the str operand to a BigNum value and stores the value in the
result parameter.

If the conversion is successful, this function returns 0. Otherwise, the function returns
an EXE_NUMERIC_OVERFLOW error.

SQL_BignumToStr
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-25

Host Variables in C/C++ Programs Numeric Data
The SQL_BignumToStr function converts a BigNum value to an ASCII string
representation.

int SQL_BignumToStr(char * result, UInt16 resultLen,
BignumExt bnValue, UInt16 bnValueLen)

Converts the BigNum bnValue into its ASCII string representation in the result.

If the conversion is successful, this function returns 0. Otherwise, the function returns
an EXE_STRING_OVERFLOW error.

SQL_BignumSize

The SQL_BignumSize converts a precision to the required number of bytes to store a
BigNum value:

int SQL_BignumSize(UInt16 precision)

This function returns the number of bytes that is required to hold a BigNum value for
the given BigNum precision.

Arithmetic Functions

You can perform arithmetic operations on BigNum values and retrieve the sign of a
BigNum value using the arithmetic functions.

SQL_BignumAdd

The SQL_BignumAdd function adds two BigNum values:

int SQL_BignumAdd(BignumExt result, BignumExt operand1,
BignumExt operand2, UInt16 len)

The result is the sum of operand1 and operand2. Both the operands must have
the same length and scale.

If the operation is successful, this function returns 0. Otherwise, the function returns an
EXE_NUMERIC_OVERFLOW error.

SQL_BignumSub

The SQL_BignumSub function subtracts a BigNum value from the other:

int SQL_BignumSub(BignumExt result, BignumExt operand1,
BignumExt operand2, UInt16 len)

The result is the difference between operand1 and operand2. operand2 is
subtracted from operand1. Both operands must have the same length and scale.

If the operation is successful, this function returns 0. Otherwise the function returns an
EXE_NUMERIC_OVERFLOW error.

SQL_BignumMul

The SQL_BignumMul function multiplies two BigNum values:
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-26

Host Variables in C/C++ Programs Numeric Data
int SQL_BignumMul(BignumExt result, Uint16 resultLen,
BignumExt operand1, Uint16 operand1Len, BignumExt operand2,
UInt16 operand2Len)

The result is the product of operand1 and operand2.

If the operation is successful, this function returns 0. Otherwise, the function returns an
EXE_NUMERIC_OVERFLOW error.

SQL_BignumDiv

The SQL_BignumDiv function divides two BigNum values.

int SQL_BignumDiv(BignumExt result, UInt16 resultLen,
BignumExt operand1, UInt16 operand1Len, BignumExt operand2,
UInt16 operand2Len)

The result is the quotient of dividing operand1 by operand2.

The function returns:

 0, if the division does not produce a remainder

 1, if the division produces a remainder

 EXE_DIVISION_BY_ZERO, if the operand2 value is zero.

 EXE_NUMERIC_OVERFLOW error, if the division is not successful

SQL_BignumSign

The SQL_BignumSign function retrieves the sign of a BigNum value:

void SQL_BignumSign(Int16 * sign, BignumExt value, UInt16
valueLen)

The sign operand is set to 0 for positive BigNum values and -1 for negative BigNum
values.

Considerations for BigNum Arithmetic function

When you declare a BigNum host variable (NUMERIC (20, 3)), SQL/MX translates the
value to a short data type array in the C language. The short data type array has no
scale. The scale is implicit and must be handled in the application. For example, you
want to assign the value 1234 to the BigNum host variable using the BigNum
assignment functions. If you place the value 1234 directly, the decimal point is implicit.
Therefore, the actual value interpreted by the SQL/MX is 1.273. To place the value
1273 into the table, the value 1237000 must be assigned to the BigNum assignment
functions.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-27

Host Variables in C/C++ Programs Numeric Data
Precision, Magnitude, and Scale of BigNum Arithmetic Results

Precision is the maximum number of digits in the BigNum host variable. Magnitude is
the number of digits to the left of the decimal point. Scale is the number of digits to the
right of the decimal point.

For example, if a host variable is declared as NUMERIC (128, 5), the Precision is 128,
the Magnitude is 123, and the Scale is 5.

 If the operator is addition (+) or subtraction (-),

 The resulting precision is the maximum of the magnitudes of the operands,
plus the scale of the result, plus 1.

 If the operator is multiplication (*),

 The resulting scale is the sum of the scales of the operands.

 The resulting precision is the total of the sum of the magnitudes of the
operands and the scale of the result.

 If the operator is division (/),

 The resulting scale is the sum of the scale of the numerator and the magnitude
of the denominator.

 The resulting magnitude is the sum of the magnitude of the numerator and the
scale of the denominator.

 The resulting precision is the sum of the magnitude of the result and the scale
of the result.

For example, if the numerator is NUMERIC (70, 10) and the denominator is
NUMERIC (50, 20), the precision and the scale of the result will be calculated
as follows:

Magnitude of the numerator is 70 - 10 = 60.
Scale of the numerator is 10.
Magnitude of the denominator is 50 - 20 = 30.
Scale of the denominator is 20.

Therefore, Scale of quotient = 10 + 30 = 40.

Therefore, Magnitude of quotient = 60 + 20 = 80.

Hence, precision of the quotient = 80 + 40 = 120.

GNU GMP library for BigNum

The user program uses the GNU GMP library for extensive number processing. You
can convert the new BigNum external binary format into the GMP format by using GMP
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-28

Host Variables in C/C++ Programs Numeric Data
low-level library routines, mpz_import(). The following example shows the usage of
mpz_import()function:

// Convert the str which has the value "12345678901234567890"
from internal format to GMP.

//Declare the Bignum host variable

 NUMERIC(50,5) s;

//Get the storageLength for the NUMERIC s

 unsigned short storageLength =SQL_BignumSize(50);

//First, convert the str "12345678901234567890' to Internal
format

 SQL_BignumFromStr(s, storageLength , str,
(unsignedshort)strlen(str));

//Declare the Bignum in GMP format

mpz_t z;

// Convert the Internal format s to GMP format z

mpz_import(z, // Output multi-precision in GMP format.

 5, // Number of chunks in s.

 -1, // Least significant chunk first.

 2, // Size of each chunk, in bytes.

 0, // Native endianness within the chunk.

 0, // Nails.

 s // Input Bignum in internal format.

);
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-29

Host Variables in C/C++ Programs Numeric Data
You can choose to convert a GMP multi-precision value into the new BigNum external
format by using GMP low-level library routines mpz_import(). The following example
shows the usage of mpz_import()function:

// Convert 12345678901234567890 from GMP to Bignum

// external format.

//Declare the Bignum in GMP format

 mpz_t z;

// Will contain the internal format.

 NUMERIC(50,5) s; size_t count;

//initialize the bignum in GMP format

mpz_init_set_str(z, "12345678901234567890", 10);

// Convert the GMP format z to internal format s

mpz_export(s, // Output Bignum in internal format.

 &count, // The number of chunks written to s.

 -1, // Least significant chunk first.

 2, // Size of each chunk, in bytes.

 0, // Native endianness within the chunk.

 0, // Nails. I do not know what this is.

 z // Input Bignum in GMP format.

);

BigNum Format for TMFARLIB

The BigNum data type is displayed using a presentation type by TMFARLIB2. The
presentation type for a BigNum type value in TMFARLIB2 is specified by the following
Guardian DEFINE:

 Add Define =_MX_ARLIB_BIGNUM_FORMAT, CLASS=MAP
FILE=\$dummy.dummy.value

value can be an ASCII or a BINARY value.

This is a MAP define. The node name, volume, and subvolume parts are ignored, only
the file name part of the DEFINE value is interpreted by SQL/MX. Valid values for the
filename part are as follows:

 BINARY - The BigNum binary format is used as the presentation type. This is
default.

 ASCII - The ASCII format is used as the presentation type.

For example, the DEFINE in the binary format is as follows:
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-30

Host Variables in C/C++ Programs Numeric Data
add_define =_MX_ARLIB_BIGNUM_FORMAT class=MAP
file=\$dummy.dummy.BINARY

If the DEFINE is set to a value which is not valid, it is ignored and the binary format is
used as the presentation type.

Storing C Character Arrays Into SQL Numeric Columns

You can use C character arrays as host variables in a C program when inserting or
updating values into numeric columns.

When you use char arrays as host variables for NUMERIC, DECIMAL, or PICTURE
9’s columns, use the SQL/MX CAST function to convert the value:

 Format a C character string, without the null terminator, consisting of a sign, digits,
and a decimal point. The formatted C character string must be left-justified and
padded with blanks within the character array.

 Within an INSERT or UPDATE statement, use the SQL/MX CAST function to
convert the character data to the desired SQL data type. The character set string
can be associated with either ISO88591 or UCS2 character set.

Assigning Numeric Data to Corresponding Data Types

You can perform C arithmetic operations on SQL columns of NUMERIC, PICTURE 9’s,
or DECIMAL data type. To do so, assign the data to host variables with the same data
type as the database data type (that is, NUMERIC, PICTURE 9’s, or DECIMAL) as
shown in Table 3-1 on page 3-9.

Table 3-5 lists the extended SQL C data types NUMERIC and PICTURE 9’s COMP.
Use NUMERIC or PICTURE 9’s COMP host variables within your C program as
shown.

Table 3-6 also lists the extended SQL C data types DECIMAL and PICTURE 9’s
DISPLAY. Use DECIMAL or PICTURE 9’s DISPLAY host variables within your C
program as shown in Table 3-6.

Table 3-5. Host Variable Usage for NUMERIC or PICTURE 9’s COMP Data

C Program
Usage for 32-bit
Address Model

C Program Usage
for 64-bit
Address Model

NUMERIC or PICTURE 9’s COMP Data

short short The length l (the precision) is 1 through 4 digits.

long int The length l (the precision) is 5 through 9 digits.

long long long long The length l (the precision) is 10 through 18
digits.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-31

Host Variables in C/C++ Programs Numeric Data

Assigning Fixed-Point Data Types

If you assign fixed-point values, an SQL NUMERIC data type with scale, to integral or
floating-point host variables, consider these guidelines:

 When you transfer a fixed-point value to a host variable of floating-point data type,
NonStop SQL/MX converts the fixed-point value to a floating-point value and
generates a warning to indicate a loss of precision.

 When you transfer a fixed-point value into an integer host variable, NonStop
SQL/MX stores the integral part of the value and generates a warning to indicate a
loss of data (the fractional part). Use this assignment only when you intend to
truncate the fractional part.

 When you declare a fixed-point value (NUMERIC), NonStop SQL/MX translates
the value to 'long long' in the C language. The 'long long' data type has no
scale. In the next example, when the value is assigned using host variable
binary_64_s, the host variable value is 1273. The decimal point is implicit, so the
actual value interpreted by SQL is 1.273. To place a value of 1273 into the table,
the application must use binary_64_s=1237000. The scale is implicit and must
be handled in the application.

int main()
{

 Exec sql set catalog 'ework';
 Exec sql set schema 'ework';

 SQLCODE = -1;
 memset(SQLSTATE, 32, 6);

 strncpy(insert_buf, " ", sizeof(insert_buf));
 strcpy(insert_buf, "INSERT INTO tb32 (binary_64_s) VALUES
 (cast(? as numeric(18, 3)));");

 EXEC SQL PREPARE ins FROM :insert_buf;
 printf("SQLCODE after PREPARE ins is %d\n", SQLCODE);

 binary_64_s = 1273;

 ia = 0;

 EXEC SQL EXECUTE ins USING :binary_64_s indicator :ia;

Table 3-6. Host Variable Usage for DECIMAL or PICTURE 9’s DISPLAY Data

C Program Usage DECIMAL or PICTURE 9’s DISPLAY Data

char[l + 2] The length l is the precision of the numeric data. Two extra
characters are allocated by the preprocessor: the first character
to store the sign (+, –, or blank) and the last character to store
the null terminator for the character string.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-32

Host Variables in C/C++ Programs Numeric Data
 printf("SQLCODE after insert - 3 is %d\n", SQLCODE);

 EXEC SQL COMMIT WORK;
 printf("\nSQLCODE after COMMIT WORK is %d\n\n", SQLCODE);

 return 0;

Assigning Floating-Point Data Types

A column in an SQL/MX format table declared with a floating-point data type is stored
in IEEE floating-point format, and all computations on it are done assuming that. In
addition, all computations performed in MXCI, either on SQL/MX or SQL/MP tables,
use IEEE floating-point format.

A column in an SQL/MP format table declared with a floating-point data type is stored
in Tandem floating-point format, and all computations on it are done assuming that.
NonStop SQL/MX provides an option to store SQL/MP floating-point data in host
variables in IEEE floating-point format. The difference between IEEE and Tandem
floating-point format is seen in the storage, precision, and implementation for the
formats. Input and output via host variables can be treated as IEEE or Tandem floating-
point format.

If you use NonStop SQL/MX to perform computations on a floating-point column in an
SQL/MP table, the result is in IEEE format.

For dynamic queries in embedded SQL programs, the default is Tandem floating-point
format.

For static queries in embedded SQL programs, the input and output depend on the
type of host variables that are declared. This table summarizes the use of IEEE and
Tandem floating points for host variables:

Restrictions for Floating-Point Format

 You cannot declare both IEEE and Tandem floating-point host variables in an
application program.

 You cannot use the IEEE floating-point format on hardware that does not support
the format.

Embedded SQL/C
Host Variable

Is the -o option
used during
compilation?

Translated C/C++
Declaration for Host
Variables

Generated Definition
in Module Definition
File

float No* float (Tandem) REAL

double No* double (Tandem) DOUBLE PRECISION

float Yes** float (IEEE) REAL_IEEE

double Yes** double (IEEE) DOUBLE_IEEE
* Default for TNS/R-targeted compilations
** Default for TNS/E-targeted compilations
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-33

Host Variables in C/C++ Programs Date-Time and Interval Data
 The conversion between Tandem floating point and IEEE floating point in an
application is not transparent.

Changing the Format of Floating-Point Data Types

To change the format of floating-point data types (FLOAT, REAL, or DOUBLE
PRECISION data types) for dynamic SELECT statements and dynamic parameters,
use the CONTROL QUERY DEFAULT setting, FLOATTYPE, which is Tandem floating
point by default. For information on CONTROL QUERY DEFAULT settings, see the
SQL/MX Reference Manual.

The SQL/MX -o preprocessor option directs the preprocessor to generate IEEE
floating-point types instead of Tandem floating-point types for host variables. For
information on preprocessor settings, see Running the SQL/MX C/C++ Preprocessor
on page 15-8.

Conversion Between Tandem and IEEE Floating-Point
Formats

When converting a Tandem floating-point data type to the corresponding IEEE data
type, all Tandem floating-point data types are converted to IEEE DOUBLE
representation. Despite this conversion, the precision of Tandem floating-point data
types are maintained correctly in IEEE floating-point format. A Tandem REAL or
FLOAT with precision between 1 and 22 cannot be converted to IEEE REAL because
the Tandem exponent will not fit in an IEEE REAL data type. Although no equivalent
exists for single-precision Tandem REAL and FLOAT in IEEE floating-point format, the
conversion to IEEE DOUBLE preserves the precision and the exponent.

If you want a small floating-point data type with a smaller exponent and less storage,
consider declaring the host variables as float. If you want more exponent and a
larger precision, consider declaring the host variables as double or float(p).

For more information on floating-point formats, see the SQL/MX Reference Manual.

Date-Time and Interval Data

Use the following for date-time and interval data types:

For SQL/MP DATETIME data types that are not equivalent to DATE, TIME, or
TIMESTAMP, you are still required to declare a character array host variable and use
the CAST function for input to and output from date-time or interval columns, similar to
SQL/MX Release 1.8, which does not support ANSI-99 date-time host variables.

DATE Represents a date.

TIME Represents a time.

TIMESTAMP Represents a timestamp.

INTERVAL Represents a duration of time as a year-month or day-time
interval.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-34

Host Variables in C/C++ Programs Date-Time and Interval Data
DATE Representation

You can insert or retrieve date-time values in any of three formats, independently of the
SQL column definition. For example, you can specify formats such as 09/15/1993,
1993-09-15, or 15.09.1993. You control the display format by inserting the value in the
format you want and retrieving the value by using the DATEFORMAT function. See the
DATEFORMAT function in the SQL/MX Reference Manual.

For example, if a table in the database has this column definition:

HIRE_DATE DATE

The host variable representation for December 22, 1988, in DEFAULT format is:

A DATE host variable in DEFAULT format is represented as an 11-character string,
including 10 characters—with hyphens (-) as field separators—plus a character (empty
space) for a null terminator.

Selecting Standard Date-Time Values

To retrieve standard date-time values (DATE, TIME, or TIMESTAMP, or the SQL/MP
DATETIME equivalents) from the database, declare a date-time (DATE, TIME, or
TIMESTAMP) host variable. For the required number of digits for DATE, TIME, or
TIMESTAMP values, see Table 3-3 on page 3-11.

If your C program performs string operations on the date-time host variable, you must
append a null terminator to the output string before processing it because the date-time
data types are internally processed as C character strings.

Table 3-7 lists the lengths of the target arrays for TIME and TIMESTAMP values, which
depend on the precision (the number of digits in the fractional seconds).

Table 3-7. Lengths of C Target Arrays for TIME and TIMESTAMP

TIME Precision Length TIMESTAMP Precision Length

TIME 9 TIMESTAMP 27

TIME(0) 9 TIMESTAMP(0) 20

TIME(1) 11 TIMESTAMP(1) 22

TIME(2) 12 TIMESTAMP(2) 23

TIME(3) 13 TIMESTAMP(3) 24

TIME(4) 14 TIMESTAMP(4) 25

TIME(5) 15 TIMESTAMP(5) 26

TIME(6) 16 TIMESTAMP(6) 27

1 9 8 8 1 2 2 2

Year Separator Month Separator Day Null
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-35

Host Variables in C/C++ Programs Date-Time and Interval Data
The TIME default precision is 0 (zero), and the TIMESTAMP default precision is 6.

Example

If a database has a BILLINGS table that consists of the CUSTNUM and
BILLING_DATE columns, this example selects the date-time value:

EXEC SQL BEGIN DECLARE SECTION;
 struct billing_rec {
 unsigned short hv_custnum;
 DATE hv_billing_date;
 ...
 } bill;
 ...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT custnum, billing_date
 INTO :bill.hv_custnum, :bill.hv_billing_date
 FROM billings
 WHERE custnum = :hv_this_customer;
... bill.hv_billing_date[10]='\0';

Inserting or Updating Standard Date-Time Values

To insert or update standard date-time values (DATE, TIME, or TIMESTAMP, or the
SQL/MP DATETIME equivalents) in the database, format the date-time values in the
desired display format for a date, time, or timestamp. Within an INSERT or UPDATE
statement, use the DATE, TIME, or TIMESTAMP data type.

Example

If a database has a BILLINGS table that consists of the CUSTNUM and
BILLING_DATE columns, this example inserts a customer number and date-time value
into that table:

EXEC SQL BEGIN DECLARE SECTION;
 struct billing_rec {
 unsigned short hv_custnum;
 DATE hv_billing_date;
 ...
 } bill;
 ...
EXEC SQL END DECLARE SECTION;
...
 bill.hv_billing_date[10]='\0';
...
EXEC SQL INSERT INTO billings
 VALUES (:bill.hv_custnum, :bill.hv_billing_date);
...

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-36

Host Variables in C/C++ Programs Date-Time and Interval Data
Selecting SQL/MP DATETIME Values Not Equivalent to
DATE, TIME, or TIMESTAMP

To retrieve nonstandard SQL/MP DATETIME values that are not equivalent to DATE,
TIME, or TIMESTAMP, declare a C char array one character larger than the number of
characters you expect to store in the array. For a list of nonstandard SQL/MP
DATETIME data types, see the SQL/MX Reference Manual.

Use the SQL/MX CAST function to convert a date-time column in a select list to a
character string. You must also specify the length in the AS clause of the CAST
function to be the length of the declared host variable minus 1. Append a null
terminator to the output character string before you process it as a C character string.

Example

Suppose that an SQL/MP database has a BILLINGS table that consists of the
CUSTNUM and BILLING_DATE columns. The BILLING_DATE column has a
DATETIME MONTH TO DAY data type, which has no equivalent in SQL/MX. This
example selects the SQL/MP DATETIME value:

EXEC SQL BEGIN DECLARE SECTION;
 struct billing_rec {
 unsigned short hv_custnum;
 char hv_billing_date[6];
 ...
 } bill;
 ...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT custnum, CAST(billing_date AS CHAR(5))
 INTO :bill.hv_custnum, :bill.hv_billing_date
 FROM billings
 WHERE custnum = :hv_this_customer;
... bill.hv_billing_date[5]='\0';

Inserting or Updating SQL/MP DATETIME Values Not
Equivalent to DATE, TIME, or TIMESTAMP

To insert or update nonstandard SQL/MP DATETIME values that are not equivalent to
DATE, TIME, or TIMESTAMP, format a C character string in the desired display format
for a date, time, or timestamp. Within an INSERT or UPDATE statement, use the
SQL/MX CAST function to convert the character date-time data to a DATE, TIME, or
TIMESTAMP data type.

If you are using date-time values as input values to the database in statements other
than INSERT or UPDATE (for example, within the WHERE clause of a SELECT
statement), you must also use the CAST function to convert the character string to a
DATE, TIME, or TIMESTAMP data type.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-37

Host Variables in C/C++ Programs Date-Time and Interval Data
Example

Suppose that an SQL/MP database has a BILLINGS table that consists of the
CUSTNUM and BILLING_DATE columns. The BILLING_DATE column has a
DATETIME MONTH TO DAY data type, which has no equivalent in SQL/MX. This
example inserts a customer number and date-time value into that table:

EXEC SQL BEGIN DECLARE SECTION;
 struct billing_rec {
 unsigned short hv_custnum;
 char hv_billing_date[6];
 ...
 } bill;
 ...
EXEC SQL END DECLARE SECTION;
...
 bill.hv_billing_date[5]='\0';
...
EXEC SQL INSERT INTO billings
 VALUES (:bill.hv_custnum,
 CAST(:bill.hv_billing_date AS DATETIME MONTH TO DAY));
...

INTERVAL Representation

Interval values are represented as character strings, with a separator between the
values of the fields (year-month or day-time). An extra character is generated at the
beginning of the interval string for a sign.

For example, if a table in the database has this column definition:

AGE INTERVAL YEAR(2) TO MONTH

The host variable representation for 36 years, 7 months, is:

An INTERVAL host variable is represented as a seven-character string, including five
characters—with a hyphen (-) as the field separator—plus a character for the sign and
a character (empty space) for a null terminator.

Selecting Interval Values

To retrieve interval values from the database, declare an INTERVAL host variable the
same length as the number of bytes you expect to store in the array. The SQL/MX
preprocessor adds two extra characters to the interval string—one for the sign and one
(an empty space) for a null terminator.

If your C program performs string operations on the interval host variable, you must
append a null terminator to the output string before processing it because the interval
data type is internally processed as a C character string.

C

+ 3 6 0 7

Sign Year Separator Month Null
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-38

Host Variables in C/C++ Programs Date-Time and Interval Data
Example

A database contains a BILLINGS table consisting of the CUSTNUM, START_DATE,
BILLING_DATE, and TIME_BEFORE_PMT columns. This example selects a customer
number and interval value:

EXEC SQL BEGIN DECLARE SECTION;
 struct billing_rec {
 unsigned short hv_custnum;
 DATE hv_start_date;
 DATE hv_billing_date;
 INTERVAL DAY(3) hv_time_before_pmt;
 } bill;
 ...
EXEC SQL END DECLARE SECTION;
...

EXEC SQL SELECT custnum, time_before_pmt
 INTO :bill.hv_custnum, :bill.hv_time_before_pmt
 FROM billings
 WHERE custnum = :hv_this_customer;
... bill.hv_time_before_pmt[4]='\0';

Inserting or Updating Interval Values

To insert or update interval values, format a C interval string in the desired display
format for an interval. The first character is reserved for the sign of the interval.

Example

A database contains a BILLINGS table consisting of the CUSTNUM, START_DATE,
BILLING_DATE, and TIME_BEFORE_PMT columns. This example updates date-time
and interval values:

EXEC SQL BEGIN DECLARE SECTION;
 struct billing_rec {
 unsigned short hv_custnum;
 DATE hv_start_date;
 DATE hv_billing_date;
 INTERVAL DAY(3) hv_time_before_pmt;
 } bill;
 ...
EXEC SQL END DECLARE SECTION;
...
 bill.hv_start_date[10]='\0'
 bill.hv_billing_date[10]='\0';

/* Blank pad if the interval data is less than 3 digits. */
...
strcpy(bill.hv_time_before_pmt," 111");
EXEC SQL UPDATE billings
 SET billing_date = :bill.hv_billing_date,
 time_before_pmt = :bill.hv_time_before_pmt
 WHERE custnum = :hv_this_customer;
...

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-39

Host Variables in C/C++ Programs Host Variables in C Structures
If the interval string length is larger than the number of digits in the interval value, you
must blank pad up to the null terminator. See Inserting or Updating Fixed-Length
Character Data on page 3-18.

Host Variables in C Structures

When you refer to a single field name in a structure, you must include the structure
name with the field name.

Example

This example uses a structure named employee_info, containing the empnum and
empname fields:

EXEC SQL BEGIN DECLARE SECTION;
struct employee { /* structure definition */
unsigned short empnum;
char empname[21];
};
struct employee emp_input; /* directly allocated structure */
struct employee * emp_output; /* structure pointer */
EXEC SQL END DECLARE SECTION;

To use a field as a host variable in an SQL statement, refer to the field by using the
structure names:

emp_output = malloc(sizeof(employee));
emp_input.empnum = 100;

EXEC SQL SELECT empname
-- reference hostvar through struct pointer
INTO :emp_output->empname
FROM CAT.SCH.EMPLOYEE
-- reference hostvar as struct field
WHERE empnum = :emp_input.empnum;

Host Variables as Data Members of a C++ Class

You can include an SQL Declare Section within a class definition to use a data
member of a class as a host variable.

Example

This example uses a class named jobsql, containing the declarations of the
memhv_jobcode and memhv_jobdesc host variables. These host variables are
referenced in the member function putjob defined in the class:

class jobsql {
// Class member host variables
EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) memhv_jobcode;
 VARCHAR memhv_jobdesc[19];
EXEC SQL END DECLARE SECTION;

C

C++
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-40

Host Variables in C/C++ Programs Using Indicator Variables in a C/C++ Program
public:
void putjob(){
 EXEC SQL
 INSERT INTO persnl.job
 VALUES (:memhv_jobcode, :memhv_jobdesc);
 }
}; // End of jobsql class definition
main(){
...
jobsql mysql; // Instantiate a member of the class jobsql
// Insert job code in table
mysql.putjob();
} // End of main

Using Indicator Variables in a C/C++ Program
Null in an SQL column indicates that a value is either unknown or is not applicable. A
host language program uses an indicator variable to insert null. It also uses an
indicator variable to test for null or a truncated output value.

An indicator variable is an exact numeric variable associated with the host variable that
sets or receives the actual column value. The INVOKE directive automatically declares
indicator variables for columns that allow null.

A host language program can use an indicator variable to:

 Insert values into a database with an INSERT or UPDATE statement.

 Test for null or a truncated value (in the case of character data) after retrieving a
value from a database with a SELECT INTO or FETCH statement.

For more information on indicator variables, see Specifying Host Variables in SQL
Statements on page 3-15.

Inserting Null

To insert values into columns that allow null with an INSERT or UPDATE statement,
you must set the indicator variable to a value less than zero for null or zero for a
nonnull value before executing the statement.

Example

This example uses a statement that inserts values into the ODETAIL table. The
columns UNIT_PRICE and QTY_ORDERED allow null. To insert null, declare and use
an indicator variable:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 short ind_1 = -1;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL INSERT INTO sales.odetail
 (ordernum, partnum, unit_price, qty_ordered)

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-41

Host Variables in C/C++ Programs Testing for Null or a Truncated Value
 VALUES (:hv_ordernum, :hv_partnum,
 :hv_unit_price :ind_1,
 :hv_qty_ordered :ind_1);

Testing for Null or a Truncated Value

To test for null or a truncated character value, check the indicator variable associated
with a host variable. If the value of the indicator variable is less than zero, the
associated column contains null. If the value of the indicator variable is greater than
zero, character data in the column was truncated when it was assigned to the host
variable.

Example

This example selects values from the PARTS table and returns these values to host
variables. The columns PARTDESC and QTY_AVAILABLE allow null. After the
SELECT statement executes, the example tests the indicator variable for null or a
truncated value:

...
EXEC SQL SELECT partnum, partdesc, price, qty_available
 INTO :hv_partnum,
 :hv_partdesc
 INDICATOR :hv_partdesc_i,
 :hv_price,
 :hv_qty_available
 INDICATOR :hv_qty_available_i,
 FROM sales.parts
 WHERE partnum = :in_partnum;
...
if (hv_qty_available_i < 0) handle_null_value();
if (hv_partdesc_i > 0) handle_truncated_value();
...

Retrieving Rows With Nulls

To retrieve a row that contains null, use the NULL predicate in the WHERE clause. You
cannot use an indicator variable set to –1 in a WHERE clause to retrieve a row that
contains null. If you do, NonStop SQL/MX does not find the row and returns a
NOTFOUND exception even if a column actually contains null.

Example

This example retrieves rows that have nulls from the EMPLOYEE table using a cursor.
The cursor specifies the NULL predicate in the WHERE clause in the associated
SELECT statement:

/* Declare a cursor to find rows with null salaries. */
EXEC SQL DECLARE get_null_salary CURSOR FOR
 SELECT empnum, first_name, last_name,
 deptnum, jobcode, salary
 FROM employee
 WHERE salary IS NULL;

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-42

Host Variables in C/C++ Programs Creating C Host Variables Using INVOKE
...
EXEC SQL OPEN get_null_salary ;
...
EXEC SQL FETCH get_null_salary
 INTO :hv_empnum,
 :hv_first_name,
 :hv_last_name,
 :hv_deptnum,
 :hv_jobcode,
 :hv_salary ;
/* Process the row that contains the null salary. */
/* Branch back to FETCH the next row. */
...
EXEC SQL CLOSE get_null_salary ;
...

Creating C Host Variables Using INVOKE
The INVOKE preprocessor directive creates a structure with the names of the host
variables corresponding to columns in a table or view. INVOKE converts the column
names to C identifiers and generates a C declaration for each column. If a column
allows null, INVOKE also creates an indicator variable for the column.

You can declare host variables that correspond to the columns in an SQL table or view
without using an INVOKE statement. However, using an INVOKE statement to
generate host variables has these advantages:

 Program independence: If you modify a table or view, the INVOKE statement re-
creates the host variables to correspond to the new table or view when you run the
SQL/MX C preprocessor. However, you must modify a program that refers to a
deleted column or accesses a new column.

 Performance: The INVOKE statement maps SQL data types to the corresponding
host language data types, and usually no data conversion is required at run time.
For further information, see Example 3-1 on page 3-47 and Example 3-2 on
page 3-48.

 Program readability and maintenance: The INVOKE statement creates host
variables using the same names as column names in the table or view.

Using the INVOKE Directive

To execute an INVOKE directive for a table or view, you must have SELECT privileges
on all applicable columns when you run the SQL/MX C preprocessor. The general
syntax for using an embedded INVOKE directive within an SQL Declare Section in a
C program is:

EXEC SQL INVOKE table-or-view [AS structure-name];
struct structure-name structure-instance ;

For complete syntax, see the INVOKE Directive in the SQL/MX Reference Manual.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-43

Host Variables in C/C++ Programs INVOKE and Date-Time and Interval Host Variables
(SQL/MX Release 1.8 Applications)
The struct declaration declares structure-instance to be a structure of the type
named structure-name. You must declare a variable of the struct type so that
you can use that variable in your C language statements.

If you do not specify the AS clause in the INVOKE statement, the default structure
name is the simple name of the table or view with the suffix _type appended. For
example: mytable_type.

INVOKE and Date-Time and Interval Host Variables (SQL/MX
Release 1.8 Applications)

SQL/MX Release 1.8 does not support SQL:1999 date-time host variables. In SQL/MX
Release 1.8 applications, you must declare a character array host variable for date-
time or interval data and use the CAST function for input or output from date-time or
interval columns.

If your SQL/MX Release 1.8 application uses INVOKE to create a date-time or interval
host variable and you plan to preprocess the application in SQL/MX Release 2.x, use
the -e preprocessor option. Otherwise, SQL/MX Release 2.x returns an error during
SQL compilation because the CAST function in the program is incompatible with the
SQL:1999 date-time host variables created by INVOKE in SQL/MX Release 2.x.

For more information, see Running the SQL/MX C/C++ Preprocessor on page 15-8.

Note. This issue affects only SQL/MX Release 1.8 applications preprocessed by SQL/MX
Release 2.x. Previously compiled SQL/MX Release 1.8 applications continue to run correctly
without changes in SQL/MX Release 2.x.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-44

Host Variables in C/C++ Programs INVOKE and Floating-Point Host Variables
INVOKE and Floating-Point Host Variables

For floating-point columns, INVOKE generates a structure that uses the Tandem or
IEEE floating-point format depending on whether the -o preprocessor option is used
during compilation. Table 3-8 lists the C declarations that INVOKE generates for each
type of floating-point column and shows the effect of the -o option on the floating-point
format and on the execution of the application.

Because the range of the IEEE REAL data type is smaller than the range of the
Tandem REAL data type, IEEE REAL host variables cannot accommodate data from
SQL/MP REAL columns, which are in Tandem floating-point format. If the -o
preprocessor option is used with invoked SQL/MP tables that have a column of type
REAL, this option causes the invoked structure to be of type DOUBLE, enabling values
from SQL/MP REAL columns to fit into an IEEE host variable.

Table 3-8. INVOKE and Floating-Point Host Variables

SQL Column Data
Type

Is the -o option
used during
compilation?

INVOKE-Generated
C Declaration

Outcome of
Application Execution

REAL SQL/MP column
(Tandem format)

No* float (Tandem) Successful execution

Yes** double (IEEE) Successful execution

FLOAT (1 to 22 bits)
SQL/MP column
(Tandem format)

No* float (Tandem) Successful execution

Yes** double (IEEE) Successful execution

FLOAT (23 to 54 bits)
SQL/MP column
(Tandem format)

No* double (Tandem) Successful execution

Yes** double (IEEE) Successful execution

DOUBLE PRECISION
SQL/MP column
(Tandem format)

No* double (Tandem) Successful execution

Yes** double (IEEE) Successful execution
but precision might be
lost

REAL SQL/MX column
(IEEE format)

No* float (Tandem) Successful execution
but precision might be
lost

Yes** float (IEEE) Successful execution

FLOAT (1 to 52 bits)
SQL/MX column (IEEE
format)

No* double (Tandem) Overflow or underflow
errors might occur.

Yes** double (IEEE) Successful execution

DOUBLE PRECISION
SQL/MX column (IEEE
format)

No* double (Tandem) Overflow or underflow
errors might occur.

Yes** double (IEEE) Successful execution
* Default for TNS/R-targeted compilations
** Default for TNS/E-targeted compilations
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-45

Host Variables in C/C++ Programs C Data Types Generated by INVOKE
If your application uses INVOKE to generate floating-point host variables for SQL/MX
columns, you should use the -o option. The -o option overrides the use of Tandem
floating point and uses IEEE floating point instead.

The -o option is particularly important for SQL/MX DOUBLE columns. If the -o option
is not used, INVOKE generates Tandem double host variables for SQL/MX DOUBLE
columns, which are in IEEE format. However, the range of IEEE DOUBLE is larger
than the range of Tandem DOUBLE, which could cause overflow or underflow errors
during the execution of the application. Therefore, verify that the -o option is specified
when using INVOKE on SQL/MX DOUBLE columns. For information on preprocessor
settings, see Running the SQL/MX C/C++ Preprocessor on page 15-8.

C Data Types Generated by INVOKE

To show the correspondence between a table named SQLCDATA that contains
columns of various SQL data types and the C structure generated by an INVOKE
statement, the INVOKE statement and struct declaration are coded:

EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE sqlcdata AS sqlc_types_struct;
 struct sqlc_types_struct sqlc_types;
 ...
EXEC SQL END DECLARE SECTION;

The SQL/MX C preprocessor generates the structure immediately after the INVOKE
statement in the preprocessed program code.

Example 3-1 and Example 3-2 show the columns for the sqlcdata table and the
corresponding generated data types in the structure sqlc_types_struct.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-46

Host Variables in C/C++ Programs C Data Types Generated by INVOKE
Example 3-1 shows the CREATE TABLE statement that generates the SQLCDATA
table.

Example 3-1. CREATE TABLE Statement

CREATE TABLE samdbcat.mysch.sqlcdata (
type_char CHAR (10) NOT NULL,
type_char_null CHAR (10) ,
type_UCS2_CHAR CHAR (10) CHARACTER SET UCS2 NOT NULL,
type_UCS2_VARCHAR VARCHAR (10) CHARACTER SET UCS2 NOT NULL,
type_picx PIC X(10) NOT NULL,
type_varchar VARCHAR (10) NOT NULL,
type_num4_s NUMERIC (4) SIGNED NOT NULL,
type_num4_u NUMERIC (4) UNSIGNED NOT NULL,
type_num9_s NUMERIC (9,2) SIGNED NOT NULL,
type_num9_u NUMERIC (9,2) UNSIGNED NOT NULL,
type_num18_s NUMERIC (18,2) SIGNED NOT NULL,
type_piccomp4_s PIC S9(2)V9(2) COMP NOT NULL,
type_piccomp4_u PIC 9(2)V9(2) COMP NOT NULL,
type_piccomp9_s PIC S9(7)V9(2) COMP NOT NULL,
type_piccomp9_u PIC 9(7)V9(2) COMP NOT NULL,
type_piccomp18_s PIC S9(16)V9(2) COMP NOT NULL,
type_dec4_s DECIMAL (4) SIGNED NOT NULL,
type_dec4_u DECIMAL (4) UNSIGNED NOT NULL,
type_dec9_s DECIMAL (9,2) SIGNED NOT NULL,
type_dec9_u DECIMAL (9,2) UNSIGNED NOT NULL,
type_dec18_s DECIMAL (18,2) SIGNED NOT NULL,
type_pic4_s PIC S9(2)V9(2) NOT NULL,
type_pic4_u PIC 9(2)V9(2) NOT NULL,
type_pic9_s PIC S9(7)V9(2) NOT NULL,
type_pic9_u PIC 9(7)V9(2) NOT NULL,
type_pic18_s PIC S9(16)V9(2) NOT NULL,
type_small_s SMALLINT SIGNED NOT NULL,
type_small_u SMALLINT UNSIGNED NOT NULL,
type_small_null SMALLINT ,
type_int_s INTEGER SIGNED NOT NULL,
type_int_u INTEGER UNSIGNED NOT NULL,
type_large_s LARGEINT NOT NULL,
type_float_15 FLOAT (15) NOT NULL,
type_float_30 FLOAT (30) NOT NULL,
type_real REAL NOT NULL,
type_dbl_prec DOUBLE PRECISION NOT NULL,
type_date DATE NOT NULL,
type_time_6 TIME NOT NULL,
type_timestamp_6 TIMESTAMP NOT NULL,
type_interval INTERVAL YEAR TO MONTH NOT NULL
) ;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-47

Host Variables in C/C++ Programs C Data Types Generated by INVOKE
Example 3-2 shows the structure generated by this INVOKE directive (with CHAR AS
STRING):

EXEC SQL INVOKE sqlcdata AS sqlc_types_struct;
struct sqlc_types_struct sqlc_types;

Example 3-2. C Structure Generated by INVOKE

/* Beginning of generated code for SQL INVOKE */
struct sqlc_types_struct{
 long long syskey;
 char /* CHARACTER SET ISO88591 */ type_char[11];
 short type_char_null_i;
 char /* CHARACTER SET ISO88591 */ type_char_null[11];
 wchar_t /* CHARACTER SET UCS2 */ type_char_ucs2[11];
 wchar_t /* CHARACTER SET UCS2 */ type_varchar_ucs2[11];
 char /* CHARACTER SET ISO88591 */ type_picx[11];
 char /* CHARACTER SET ISO88591 */ type_varchar[11];
 short type_num4_s;
 unsigned short type_num4_u;
 long type_num9_s;
 unsigned long type_num9_u;
 long long type_num18_s;
 short type_piccomp4_s;
 unsigned short type_piccomp4_u;
 long type_piccomp9_s;
 unsigned long type_piccomp9_u;
 long long type_piccomp18_s;
 char type_dec4_s[6];
 char type_dec4_u[6];
 char type_dec9_s[11];
 char type_dec9_u[11];
 char type_dec18_s[20];
 char type_pic4_s[6];
 char type_pic4_u[6];
 char type_pic9_s[11];
 char type_pic9_u[11];
 char type_pic18_s[20];
 short type_small_s;
 unsigned short type_small_u;
 short type_small_null_i;
 short type_small_null;
 long type_int_s;
 unsigned long type_int_u;
 long long type_large_s;
 float type_float_15;
 double type_float_30;
 float type_real;
 double type_dbl_prec;
 char type_date[11];
 char type_time_6[9];
 char type_timestamp_6[27];
 char type_interval[7];
 };
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-48

Host Variables in C/C++ Programs Using Indicator Variables With the INVOKE Directive
Using Indicator Variables With the INVOKE Directive

The INVOKE directive automatically generates a two-character indicator variable with
data type short for each host variable that corresponds to a column that allows null.
The name of the indicator variable is the same name as the corresponding column,
plus a suffix and a prefix. If you do not specify a prefix or suffix, the INVOKE statement
appends a default suffix (_i for C) to the indicator variable name.

The format of the indicator variable name depends on the PREFIX, SUFFIX, and NULL
STRUCTURE clauses.

PREFIX and SUFFIX Clauses

The PREFIX and SUFFIX clauses cause the INVOKE statement to generate an
indicator variable name derived from the column name and the prefix or suffix. A
default suffix of _i applies if the INVOKE directive omits these clauses.

Example

The table named c_table has the columns empnum and empname. The column
empname can be null. This example uses an INVOKE statement with both the PREFIX
and SUFFIX clauses:

EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE c_table PREFIX beg_ SUFFIX _end;
 struct c_table_type mytable;
 ...
EXEC SQL END DECLARE SECTION;

The SQL C preprocessor generates this structure immediately after the INVOKE
directive in the preprocessed program code:

/* Beginning of generated code for SQL INVOKE */
 struct c_table_type {
 long empnum;
 short beg_empname_end;
 char empname[16];
 };

In this example, the structure name defaults to the simple name of the table or view
with the suffix _type appended. The structure name is c_table_type.

You must declare a variable of the struct type so that you can use that variable in
your C language statements and your embedded SQL statements. In this example, the
declared struct variable is named mytable.

NULL STRUCTURE Clause

The NULL STRUCTURE clause causes the INVOKE statement to generate a structure
for a column that allows null. It assigns the same name as the column to the structure.
The structure includes fields for the data item, named valu, and its indicator variable,
named indicator.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-49

Host Variables in C/C++ Programs Using Indicator Variables With the INVOKE Directive
Example

A database contains an EMPTBL table consisting of the columns EMPNUM,
FIRST_NAME, LAST_NAME, and HIRE_DATE. The columns FIRST_NAME and
HIRE_DATE allow null. This example uses an INVOKE statement with the NULL
STRUCTURE clause:

EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE emptbl AS emptbl_rec NULL STRUCTURE;
 struct emptbl_rec emptbl_rec1, emptbl_rec2;
 ...
EXEC SQL END DECLARE SECTION;

The SQL/MX C preprocessor generates this structure template immediately after the
INVOKE statement in the preprocessed program code:

/* Beginning of generated code for SQL INVOKE */
 struct emptbl_rec {
 unsigned short empnum;
 struct {
 short indicator;
 char valu[16];
 } first_name;
 char last_name[21];
 struct {
 short indicator;
 char valu[11];
 } hire_date;
 };

The SQL/MX C preprocessor supplies only the structure template. You must supply
the variable declarations for this struct type of the form:

struct emptbl_rec emptbl_rec1, emptbl_rec2;

Your program code would then include statements with host variables of the form:

...
EXEC SQL OPEN get_emptbl_rec;
...
EXEC SQL FETCH get_emptbl_rec INTO
 :emptbl_rec1.empnum,
 :emptbl_rec1.first_name.valu
 INDICATOR :emptbl_rec1.first_name.indicator,
 :emptbl_rec1.last_name,
 :emptbl_rec1.hire_date.valu
 INDICATOR :emptbl_rec1.hire_date.indicator;
...

For columns that allow null, the target host variable names begin with the appropriate
struct variable, followed by the particular null structure struct variable, and end
with either the indicator or the valu within the generated null structure.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-50

Host Variables in C/C++ Programs C Example of Using INVOKE
C Example of Using INVOKE

The next example declares and uses host variable names and indicator variable
names and shows:

 A host variable declaration using INVOKE that includes indicator variables. The
structure is declared as global so that any function can reference the host
variables.

 A host variable indicator variable used in the SELECT statement. The columns that
might contain null require the indicator variable following the host variable to
receive information on nulls.

 An indicator variable testing for null. If the value of the indicator variable following
the SELECT is less than zero, the associated column is null.

Example 3-3 retrieves four columns of an order detail table. The table is like the
ODETAIL table of the sample database except that the UNIT_PRICE and
QTY_ORDERED columns allow null.

Example 3-3. C INVOKE (page 1 of 2)

...
void handle_null(void);
void display_result(void);
...
EXEC SQL BEGIN DECLARE SECTION;
 EXEC SQL INVOKE samdbcat.mysch.odetail;
/* Beginning of generated code for SQL INVOKE */
 struct odetail_type {
 unsigned long ordernum;
 unsigned short partnum;
 short unit_price_i;
 long unit_price;
 short qty_ordered_i;
 unsigned long qty_ordered;
 } ;
 struct odetail_type odetail_rec;
EXEC SQL END DECLARE SECTION;

int main()
{
EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (6) in_ordernum;
 unsigned NUMERIC (4) in_partnum;
EXEC SQL END DECLARE SECTION;
...

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-51

Host Variables in C/C++ Programs Character Set Examples
Character Set Examples
This set of examples shows methods for selecting, fetching, and inserting data using
different character sets. The examples are based on these tables:

CREATE TABLE STAFF_UC
 (EMPNUM CHAR(3) character set ucs2 NOT NULL UNIQUE,
 EMPNAME NCHAR VARYING(20),
 GRADE DECIMAL(4),
 CITY VARCHAR(15) character set ucs2);

CREATE TABLE PROJ
 (PNUM CHAR(3) NOT NULL,
 PNAME VARCHAR(20),
 PTYPE CHAR(7),
 BUDGET DECIMAL(9),
 CITY VARCHAR(15),

/* Initialize the host variables in the WHERE clause. */
...
EXEC SQL
 SELECT ordernum, partnum, unit_price, qty_ordered
 INTO :odetail_rec.ordernum,
 :odetail_rec.partnum,
 :odetail_rec.unit_price
 INDICATOR :odetail_rec.unit_price_i,
 :odetail_rec.qty_ordered
 INDICATOR :odetail_rec.qty_ordered_i
 FROM sales.odetail
 WHERE ordernum = :in_ordernum AND partnum = :in_partnum;
...
if (odetail_rec.unit_price_i < 0 ||
 odetail_rec.qty_ordered_i < 0)
 handle_null();
else
 display_result();

return 0;
} /* end main */

void handle_null()
{
 ...
} /* end handle_null */

void display_result()
{
 printf("Order number: %6d\n", odetail_rec.ordernum);
 printf("Part number: %4d\n", odetail_rec.partnum);
 printf("Unit price: %10.2lf\n", odetail_rec.unit_price/100.);
 printf("Quantity ordered: %5d\n", odetail_rec.qty_ordered);
} /* end display_result */

Example 3-3. C INVOKE (page 2 of 2)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-52

Host Variables in C/C++ Programs Selecting From a UCS2 Character Set Into a
VARCHAR Host Variable
 primary key(pnum)
);

Selecting From a UCS2 Character Set Into a VARCHAR Host
Variable

This example selects from a UCS2 character set into a VARCHAR host variable:

EXEC SQL WHENEVER SQLERROR CALL handle_error;

//select VARCHAR ucs2 column to VARCHAR UCS2 host variables with
the same length

void select_varchar2varchar_ucs2()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char CHARACTER SET IS UCS2 hv_empnum[4];
 VARCHAR CHARACTER SET UCS2 hv_empname[21];
 VARCHAR CHARACTER SET UCS2 hv_city[16 CHARACTERS];
 EXEC SQL END DECLARE SECTION;

 hv_empnum[3] = '\0';

 EXEC SQL
 select empnum,empname,city into :hv_empnum, :hv_empname,
 :hv_city
 from staff_uc
 where empnum < _ucs2'E8' and grade = 10;

 //use the value in hv_empnum, hv_empname, and hv_city
}

Fetching From a UCS2 Character Set into a VARCHAR Host
Variable

This example uses a FETCH operation from a UCS2 character set into a VARCHAR
host variable:

EXEC SQL BEGIN DECLARE SECTION;
 long SQLCODE;
 static char SQLSTATE_OK[6] = "00000";
 char SQLSTATE[6];
 char CHARACTER SET IS UCS2 hv_empnum[4];
 VARCHAR CHARACTER SET UCS2 hv_empname[21];
 DECIMAL(4) hv_grade;
 VARCHAR CHARACTER SET UCS2 hv_city[16 CHARACTERS];
EXEC SQL END DECLARE SECTION;

//select UCS2 columns into host variable
void fetch_varchar2varchar_ucs2()
{
 EXEC SQL BEGIN DECLARE SECTION;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-53

Host Variables in C/C++ Programs Selecting From an ISO88591 Character Set Into a
UCS2 Host Variable
 int hv_cnt = 0;
 EXEC SQL END DECLARE SECTION;

 hv_empnum[3] = '\0';

 EXEC SQL
 declare curs01 cursor for
 select * from staff_uc order by empnum;

 EXEC SQL open curs01;

 EXEC SQL fetch curs01 into :hv_empnum,:hv_empname,
 :hv_grade,:hv_city;
 while (strcmp(SQLSTATE, SQLSTATE_OK) == 0)
 {
 // process the output values :hv_empnum, :hv_empname,
 // :hv_grade, and :hv_city

 EXEC SQL FETCH curs01 INTO
 :hv_empnum,:hv_empname,:hv_grade,:hv_city;
 }
}

Selecting From an ISO88591 Character Set Into a UCS2 Host
Variable

This example uses the host variable relaxation with selection from an ISO88591
character set into a UCS2 host variable and comparing an ISO88591 column with a
UCS2 host variable in the WHERE clause:

EXEC SQL BEGIN DECLARE SECTION;
 long SQLCODE;
 static char SQLSTATE_OK[6] = "00000";
 char SQLSTATE[6];
 char CHARACTER SET UCS2 out_hv_pnum[4];
 char CHARACTER SET UCS2 out_hv_ptype[8];
 VARCHAR CHARACTER SET UCS2 out_hv_pname[21];
 VARCHAR CHARACTER SET UCS2 out_hv_city[16];
 VARCHAR CHARACTER SET UCS2 in_hv_city[16];
 char CHARACTER SET UCS2 in_hv_city2[16];
 int hv_cnt;
EXEC SQL END DECLARE SECTION;

//varchar ISO88591 column compare with varchar UCS2 hostvar
void relaxation_example_comparison()
{

 //init input hostvar
 wcscpy((wchar_t *)in_hv_city, L"Cupertino");
 out_hv_ptype[7] = (wchar_t)'\0';

 EXEC SQL
 declare curs02 cursor for
 select pnum,pname,ptype from proj
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-54

Host Variables in C/C++ Programs Selecting From an ISO88591 Character Set Into a
UCS2 Host Variable
 where city <> :in_hv_city
 order by pnum;

 EXEC SQL open curs02;

 EXEC SQL fetch curs02 INTO
 :out_hv_pnum,:out_hv_pname,:out_hv_ptype;

 while (strcmp(SQLSTATE,SQLSTATE_OK) == 0)
 {
 // processthe output

 EXEC SQL fetch curs02 into
 :out_hv_pnum,:out_hv_pname,:out_hv_ptype;
 cout <<"-----------"<<endl;
 }
 EXEC SQL close curs02;
}

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-55

Host Variables in C/C++ Programs Selecting From an ISO88591 Character Set Into a
UCS2 Host Variable
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
3-56

CO
4
Host Variables in COBOL Programs

Host variables are data items declared in a host application program and used in both
host language statements and embedded SQL statements. They provide
communication between SQL statements and the host language statements. An input
host variable transfers data from a host language program to an SQL/MX database,
and an output host variable transfers data from a database to the program.

This section describes:

 Specifying a Declare Section on page 4-1
 COBOL Host Variable Data Types on page 4-2
 Using Corresponding SQL and COBOL Data Types on page 4-5
 Specifying Host Variables in SQL Statements on page 4-9
 Using Host Variables in a COBOL Program on page 4-10
 Using COBOL Data Description Clauses on page 4-18
 Using Indicator Variables in a COBOL Program on page 4-19
 Creating COBOL Host Variables Using INVOKE on page 4-22
 Character Set Examples on page 4-30

Specifying a Declare Section
You declare all host variables within an SQL Declare Section. When you specify a
Declare Section:

 Use the BEGIN DECLARE SECTION statement to begin a Declare Section.

 Use the END DECLARE SECTION statement to end a Declare Section.

 The first item after BEGIN DECLARE SECTION must have level 01 or level 77.

 For the best performance, declare the host variable as the same data type as the
column in the SELECT list. If you declare this way, you can use bulk moves to
input and output data.

 You can specify more than one Declare Section in your source file, but do not nest
them.

 Do not place a Declare Section within a COBOL record description.

 Do not place any executable code within a Declare Section.

 You can use SQL or host language comments in a Declare Section.

Example

This example uses host variable declarations in an SQL Declare Section:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 CUST-REC.
 02 CUSTNUM PIC S9(4) COMP.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-1

Host Variables in COBOL Programs COBOL Host Variable Data Types
 02 CITY PIC X(14).
 ...
 EXEC SQL INVOKE SALES.PARTS AS SALES-REC END-EXEC.
 EXEC SQL END DECLARE SECTION END-EXEC.

COBOL Host Variable Data Types
You must explicitly declare all host variables used in SQL statements. A host variable
used in an SQL statement must be declared in an SQL Declare Section prior to the first
use of the host variable in an SQL statement. Only variables of the types recognized
by the 3GL preprocessor can appear within an SQL Declare Section.

To declare a COBOL host variable, specify one of these data types:

[char-set]PIC[TURE] X(l)

specifies the data type of a target host variable for a column of one of these SQL
data types:

CHAR[ACTER] [(l)]
PIC[TURE] X(l)

The length l corresponds to the length of the column value.

[char-set] can be specified as:

CHARACTER SET [IS] character-set-name

The optional [char-set] clause specifies the character set to be associated with
the host variable. character-set-name can be ISO88591 or UCS2 for SQL/MX
tables. character-set-name can be KANJI or KSC5601 for SQL/MP tables.
The default character set is ISO88591. Note that you can use host variables with
the KANJI or KSC5601 character set in an SQL/MX application only to access
KANJI or KSC5601 columns in an SQL/MP table.

 [char-set]PIC[TURE][IS] {X[(length)]}
| nn column-name.
 mm LEN PIC S9(4) COMP.
 mm VAL [char-set] PIC X(l).
| DATE
| TIME [(n)]
| TIMESTAMP [(n)]
| INTERVAL [period1[(n)] | SECOND [(n[,m])]] [TO
 period2[(m)]]
| PIC[TURE] [S]9(l-s)V9(s) COMP
| PIC[TURE] [S]9(p) COMP
| PIC[TURE] S9(l-s)V9(s) DISPLAY SIGN LEADING SEPARATE
| PIC[TURE] 9(l-s)V9(s) DISPLAY
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-2

Host Variables in COBOL Programs COBOL Host Variable Data Types
nn column-name.
 mm LEN PIC S9(4) COMP.
 mm VAL [char-set] PIC X(l)

specifies the data type of a target host variable for a column of the SQL data type:

VARCHAR(l)

The length l corresponds to the maximum length of the column value. The level
numbers are indicated by nn and mm. The level number nn can be any level in the
range 01 to 49, where mm is a greater level than nn. LEN specifies the actual
length of the character item in VAL. VAL is a character data item with length l,
specifying the maximum number of characters that can be stored in VAL.

DATE

specifies the data type of a target host variable for a date-time column that
contains a date in the external form yyyy-mm-dd.

TIME [(n)]

specifies the data type of a target host variable for a date-time column that, without
the optional n precision, contains a time in the external form hh:mm:ss. The n
precision is a positive integer that specifies the number of digits in the fractional
seconds. The default for the precision is 0, and the maximum is 6.

TIMESTAMP [(n)]

specifies the data type of target host variable for a date-time column that, without
the optional n precision, contains a timestamp in the external form:

yyyy-mm-dd hh:mm:ss

The n precision is a positive integer that specifies the number of digits in the
fractional seconds, as shown in bold text:

yyyy-mm-dd hh:mm:ss.msssss

The default for precision is 6, and the maximum is 6.

INTERVAL [period1[(n)] | SECOND [(n[,m])]] [TO period2[(m)]]

where

period 1 must be greater or equal time part than period 2. YEAR to SECOND is
valid. SECOND to YEAR is invalid.

Specifies a column that represents a duration of time as either a year-month or
day-time range or a single-field. period1 can have a leading-precision up to 18
digits (the maximum depends on the number of fields in the interval). The leading-

n leading precision

m fractional precision

period YEAR | MONTH | DAY | HOUR | MINUTE | SECOND
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-3

Host Variables in COBOL Programs COBOL Host Variable Data Types
precision is the number of digits allowed in period 1. If period2 is SECOND, it
can have a fractional-precision up to 6 digits. The fractional-precision is the
number of digits of precision after the decimal point. The default for leading-
precision is 2, and the default for fractional-precision is 6. If the single-field is
SECOND, the leading-precision is the number of digits of precision before the
decimal point, and the fractional-precision is the number of digits of precision after
the decimal point.

PIC[TURE] [S]9(l-s)V9(s) COMP

specifies the data type of a target host variable for a column of one of these SQL
data types:

NUMERIC [(p, s)] [SIGNED|UNSIGNED]
PIC[TURE] [S] {9(l-s) V9(s) | V9(s)} COMP

PIC[TURE] [S]9(p) COMP

specifies the data type of a target host variable for a column of one of these SQL
data types, depending on the precision:

SMALLINT [SIGNED|UNSIGNED]
INT[EGER] [SIGNED|UNSIGNED]
LARGEINT

The precision p corresponds to the precision of the column value.

PIC[TURE] S9(l-s)V9(s) DISPLAY SIGN LEADING SEPARATE

specifies the data type of a target host variable for a column of one of these SQL
data types:

DECIMAL (l, s) SIGNED
PIC[TURE] S9(l-s) V9(s) DISPLAY SIGN IS LEADING

p precision of the column value

s scale of the column value

l length; number of digits in the column value

l-s number of digits in the integral part of the column value

l length; number of digits in the column value

s scale of the column value

l-s number of digits in the integral part of the column value
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-4

Host Variables in COBOL Programs Using Corresponding SQL and COBOL Data Types
PIC[TURE] 9(l-s)V9(s) DISPLAY

specifies the data type of a target host variable for a column of one of these SQL
data types:

DECIMAL (l, s) UNSIGNED
PIC[TURE] 9(l-s) V9(s) DISPLAY

For the corresponding SQL and COBOL host variable data types, see Table 4-1.

Using Corresponding SQL and COBOL Data
Types

Table 4-1 lists the embedded SQL COBOL host variable “a[100]” with all its legal
SQL/MX modifiers, the equivalent data type in NonStop SQL/MX, and the translated
COBOL declarations.

l length; number of digits in the column value

s scale of the column value

l-s number of digits in the integral part of the column value

Table 4-1. COBOL Character Host Variables and Their SQL Data Type
Equivalents and COBOL Translations (page 1 of 2)

COBOL Host Variable

SQL/MX
Equivalent
Data Type Translated COBOL Declaration

A PIC X(100)
A PIC X (100 CHARACTERS)

CHAR(100)
CHARACTER
SET
ISO88591

A PIC X(100)

A CHARACTER SET IS ISO88591
PIC X(100)
A CHARACTER SET IS 1SO88591
PIC X (100 CHARACTERS)

CHAR(100)
CHARACTER
SET
ISO88591

A PIC X(100)

A CHARACTER SET IS UCS2 PIC
X(100)
A CHARACTER SET IS UCS2 PIC
X(100 CHARACTERS)

CHAR(100)
CHARACTER
SET UCS2

A PIC X(200)

A CHARACTER SET IS KANJI1
PIC X(100)
A CHARACTER SET IS KANJI1
PIC X(100 CHARACTERS)

CHAR(100)
CHARACTER
SET KANJI1

A PIC X(200)

A CHARACTER SET IS KSC56011
PIC X(100)
A CHARACTER SET IS KSC56011
PIC X(100 CHARACTERS)

CHAR(100)
CHARACTER
SET
KSC56011

A PIC X(200)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-5

Host Variables in COBOL Programs Using Corresponding SQL and COBOL Data Types
Table 4-2 lists the corresponding SQL data type, C host variable data type, and
translated COBOL declaration for the NUMERIC, DECIMAL, PIC, SMALLINT,
LARGEINT, and date-time data types. You can specify a COBOL host variable if it has
a corresponding SQL data type.

01 column-name.
 03 LEN PIC S9(4) COMP.
 03 VAL [char-set]
 PIC X(l).

CHAR
[ACTER]
VARYING(l)
VARCHAR
[ACTER](l)

01 column-name.
 03 LEN PIC S9(4) COMP.
 03 VAL [char-set]
 PIC X(l).

DATE DATE PIC[TURE] X(l).2

TIME [(n)] TIME
[(time-
precision)]

PIC[TURE] X(l).2

TIMESTAMP[(n)] TIMESTAMP[(
time-
precision)]

PIC[TURE] X(l).2

INTERVAL [period1[(n)] |
SECOND [(n[,m])]] [TO
period2[(m)]]

INTERVAL
{start-
field TO
end-field |
single-
field}

PIC[TURE] X(l).3

l A positive integer that represents the length.

1 KANJI and KSC5601 character sets can be used only with SQL/MP tables.

2 For DATE, the value of the length l is 10. For TIME(6), the value of the length l is 15. For TIMESTAMP(6),
the value of the length l is 26.

3 The INTERVAL data type has an extra character for a sign. The sign is included in the length l.

Table 4-1. COBOL Character Host Variables and Their SQL Data Type
Equivalents and COBOL Translations (page 2 of 2)

COBOL Host Variable

SQL/MX
Equivalent
Data Type Translated COBOL Declaration
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-6

Host Variables in COBOL Programs Using Corresponding SQL and COBOL Data Types
Table 4-2. Corresponding SQL, COBOL Host Variable Data Types, and Translated
COBOL Declarations for NUMERIC, DECIMAL, PIC, SMALLINT, LARGEINT, and
Date-Time Data Types (page 1 of 2)

SQL Data Type
COBOL Host Variable Data
Type

Translated COBOL
Declaration

NUMERIC (1 to 4,s)
SIGNED

PIC[TURE] S9(4-s)V9(s)
COMP.1

PIC[TURE]
S9(4-s)V9(s)
COMP.1

NUMERIC (1 to 4,s)
UNSIGNED

PIC[TURE] 9(4-s)V9(s)
COMP.1

PIC[TURE]
9(4-s)V9(s) COMP.1

NUMERIC (5 to 9,s)
SIGNED

PIC[TURE] S9(9-s)V9(s)
COMP.1

PIC[TURE]
S9(9-s)V9(s) COMP.4

NUMERIC (5 to 9,s)
UNSIGNED

PIC[TURE] 9(9-s)V9(s)
COMP.1

PIC[TURE]
9(9-s)V9(s) COMP.1

NUMERIC (10 to 18,s)
SIGNED

PIC[TURE] S9(18-s)V9(s)
COMP.1

PIC[TURE]
S9(18-s)V9(s)
COMP.1

PIC[TURE] [S]9(l-
s)V9(s) COMP

Same as NUMERIC Same as NUMERIC

DEC[IMAL] (l,s)
SIGNED

PIC[TURE] S9(l-s)V9(s)
 DISPLAY SIGN LEADING
SEPARATE.

PIC[TURE]
S9(l-s)V9(s)
 DISPLAY SIGN
LEADING SEPARATE.

DEC[IMAL] (l,s)
UNSIGNED

PIC[TURE] 9(l-s)V9(s)
DISPLAY.

PIC[TURE]
9(l-s)V9(s)
DISPLAY.

PIC[TURE] [S]9(l-
s)V9(s)

Same as DECIMAL Same as DECIMAL

SMALLINT SIGNED PIC[TURE] S9(4) COMP.1 PIC[TURE] S9(4)
COMP.1

SMALLINT UNSIGNED PIC[TURE] 9(4) COMP.1 PIC[TURE] 9(4)
COMP.1

INT[EGER] SIGNED PIC[TURE] S9(9) COMP.1 PIC[TURE] S9(9)
COMP.1

INT[EGER] UNSIGNED PIC[TURE] 9(9) COMP.1 PIC[TURE] 9(9)
COMP.1

l A positive integer that represents the length.

s A positive integer that represents the scale of the number.

1 NonStop SQL/MX treats BINARY as COMP[UTATIONAL].

2 For DATE, the value of the length l is 10. For TIME(6), the value of the length l is 15. For TIMESTAMP(6),
the value of the length l is 26.

3 The INTERVAL data type has an extra character for a sign. The sign is included in the length l.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-7

Host Variables in COBOL Programs Data Conversion
Data Conversion

NonStop SQL/MX performs the conversion between SQL and COBOL data types:

 When a host variable serves as an input variable (supplies a value to the
database), NonStop SQL/MX automatically converts the value that the variable
contains to a compatible SQL data type and then uses the value in the SQL
operation.

 When a host variable serves as an output variable (receives a value from a
database), NonStop SQL/MX converts the value to the data type of the host
variable.

NonStop SQL/MX supports conversion within numeric types and character types, but
not between numeric and character types.

LARGEINT PIC[TURE] S9(18) COMP.1 PIC[TURE] S9(18)
COMP.1

FLOAT (1 to 22 bits)
REAL

Not supported. Not supported.

FLOAT (23 to 54
bits)
DOUBLE PRECISION

Not supported. Not supported.

DATE DATE PIC[TURE] X(l).2

TIME [(n)] TIME [(time-precision)] PIC[TURE] X(l).2

TIMESTAMP[(n)] TIMESTAMP[(time-
precision)]

PIC[TURE] X(l).2

INTERVAL
[period1[(n)] |
SECOND [(n[,m])]]
[TO period2[(m)]]

INTERVAL {start-field TO
end-field | single-field
}

PIC[TURE] X(l).3

Table 4-2. Corresponding SQL, COBOL Host Variable Data Types, and Translated
COBOL Declarations for NUMERIC, DECIMAL, PIC, SMALLINT, LARGEINT, and
Date-Time Data Types (page 2 of 2)

SQL Data Type
COBOL Host Variable Data
Type

Translated COBOL
Declaration

l A positive integer that represents the length.

s A positive integer that represents the scale of the number.

1 NonStop SQL/MX treats BINARY as COMP[UTATIONAL].

2 For DATE, the value of the length l is 10. For TIME(6), the value of the length l is 15. For TIMESTAMP(6),
the value of the length l is 26.

3 The INTERVAL data type has an extra character for a sign. The sign is included in the length l.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-8

Host Variables in COBOL Programs Specifying Host Variables in SQL Statements
Converting Numeric Types

Values of data types NUMERIC, DECIMAL, PICTURE 9’s, INTEGER, SMALLINT,
FLOAT, REAL, and DOUBLE PRECISION are numbers and are all mutually
comparable and mutually assignable.

NonStop SQL/MX converts data between signed and unsigned numeric types and
between numeric types with different precision.

If assignment would result in a loss of significant digits, NonStop SQL/MX returns a
data exception condition in SQLSTATE. See Table 13-1 on page 13-2.

Converting Character Types

Values of data types CHARACTER, PICTURE X’s, and CHARACTER VARYING are
character strings and are all mutually comparable and mutually assignable if both are
of the same character set. In addition, UCS2 host variables are mutually comparable
and assignable with ISO88591 nonhost variable objects.

For character strings of different lengths, NonStop SQL/MX pads the receiving string
variable on the right with blanks as necessary.

If the receiving string variable is too short, NonStop SQL/MX truncates the right part of
the string retrieved from the database and returns a data exception condition in
SQLSTATE. See Table 13-1 on page 13-2.

Specifying Host Variables in SQL Statements
Use COBOL naming conventions for host variable names. A COBOL name can
contain from 1 to 30 alphanumeric characters, including letters, digits, and hyphens (-).
The first or last letter cannot be a hyphen. Letters can be uppercase, lowercase, or a
combination of both.

To use a COBOL record description as a host variable, specify the record name as a
level 01 entry and use level numbers 01 to 49 and 77 for the host variables. The
individual data items, and not the record name, are the host variables.

After you declare a host variable, to specify it within an embedded SQL statement, use:

variable-name

is the host variable name. It can be any valid host language identifier with a data
type that corresponds to an SQL data type. You must precede variable-name
with a colon (:) within an SQL statement.

:variable-name [{OF|IN} record-name]

 [[INDICATOR] :indicator_variable [{OF | IN} record-name]]
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-9

Host Variables in COBOL Programs Using Host Variables in a COBOL Program
{OF | IN} record-name

is an optional clause that specifies a level 01 item. The variable-name or
indicator_variable must be qualified by the record or group name only if the
host variable name or indicator variable name is not unique within the program.
This clause is an SQL/MX extension.

INDICATOR

is a keyword that can precede indicator_variable.

indicator_variable

is an indicator variable of exact numeric data type. You must declare the indicator
field as type PIC S9(4) COMP in COBOL. You must precede
indicator_variable with a colon (:) in an SQL statement. You must declare
an indicator variable along with its corresponding host variable within an SQL
Declare Section.

If data returned in the host variable is null, the indicator variable is less than zero. If
character data returned is truncated, the indicator variable is set to the length of
the string in the database. Otherwise, the value of the indicator variable is zero. To
insert null into the database, set the indicator variable to a value less than zero.

Using Host Variables in a COBOL Program
As a COBOL programmer, you need to know how to declare and use host variables to
retrieve and insert data with these SQL data types:

 Fixed-Length Character Data on page 4-11
 Variable-Length Character Data on page 4-12
 Numeric Data on page 4-12
 Date-Time and Interval Data on page 4-13

Character Set Data

These guidelines apply for NonStop SQL/MX Release 1.8 and NonStop SQL/MX
Release 2.x character sets:

 ISO88591 character set: An SQL/MX Release 1.8 application can be run under
SQL/MX Release 2.x without application recompilation, if the application contains
ISO88591 character data only.

 KANJI and KSC5601 character set: If KANJI or KSC5601 character set host
variables are contained in the application, the application must be carefully
rewritten and recompiled. KANJI and KSC5601 host variables in C applications are
translated as single-byte arrays in SQL/MX Release 1.8 and as double-byte arrays
in SQL/MX Release 2.x. If the application is not rewritten, SQL errors might be
emitted, corruption of data might occur, and the application might crash.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-10

Host Variables in COBOL Programs Fixed-Length Character Data
Host variable source code for storing KANJI characters in SQL/MX Release 1.8:

A PIC X(100).

Host variable source code for storing KANJI characters in SQL/MX Release 2.x:

A CHARACTER SET KANJI PIC X(100).

Guidelines for Revising KANJI/KSC5601 Character Set Host
Variables

Follow these guidelines when rewriting an application that contains KANJI or KSC5601
character sets for SQL/MX Release 2.x:

 Use the character set clause CHARACTER SET IS KANJI or CHARACTER SET
IS KSC5601.

 The encoding for KANJI is the double-byte subset of the Shift-JIS, with no check
on code points performed by NonStop SQL/MX. For the best results, use the big-
endian byte order to denote a KANJI character.

 The encoding for KSC5601 is the double-byte subset (Code set 1) of EUC_KR,
with no check on code points performed by NonStop SQL/MX. For the best results,
use the big-endian byte order to denote a KSC5601 character.

 In COBOL embedded applications, each KANJI/KSC5601 character is represented
by two single-byte characters. When you copy KANJI/KSC5601 objects, always
use the correct number of bytes to ensure the entire object is moved.

Embedded COBOL Applications With UCS2 Literals

Because COBOL only understands single-byte character types, the byte order matters
when UCS2 literals are encoded in the application. Because the targeted execution
machine (NonStop system) is a big-endian machine, the byte order of each UCS2
character entered should be big-endian. For example, the UCS2 character -U+2021
(the double dagger sign) should be coded:

move X”20” & x”21” to host-variable.

Fixed-Length Character Data

Use the PICTURE clause to declare a host variable for fixed-length character data
(CHAR data type):

PIC[TURE] X (length)

The length value must be a positive integer and not greater than 4096. Instead of
length, you can specify multiple Xs, with each X representing one character position.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-11

Host Variables in COBOL Programs Variable-Length Character Data

CO
Variable-Length Character Data

Use a group item with two data items to declare a host variable for variable length
character data (SQL VARCHAR data type) as:

nn group-name.
 mm LEN PIC S9(4) COMP.
 mm VAL PIC X(len).

The group-name must follow COBOL naming conventions. The level numbers are
indicated by nn and mm. The level number nn can be any level in the range 01 to 49,
and mm is a greater level than nn. LEN specifies the actual length of the character item
in VAL. VAL is a character data item with len specifying the maximum number of
characters that can be stored in VAL.

Example

The EMPLOYEE table has the LAST_NAME column defined as VARCHAR(20). In a
COBOL program, this column is specified as:

05 HV-LAST-NAME.
 10 LEN PIC S9(4) COMP.
 10 VAL PIC X(20).

In the Procedure Division, you must explicitly move a value to LEN before using HV-
LAST-NAME in an SQL statement:

...
MOVE "SMITH" TO VAL OF HV-LAST-NAME.
MOVE 5 to LEN OF HV-LAST-NAME.
EXEC SQL UPDATE persnl.employee
 SET last_name = :HV-LAST-NAME
 WHERE empnum = :HV-EMPNUM
END-EXEC.

Numeric Data

Use this PICTURE DISPLAY clause to declare a host variable for the SQL DECIMAL
and PICTURE 9’s DISPLAY data types:

PICTURE [S] { 9(integer) [V9(scale)] | V9(scale) }
 [USAGE [IS]] DISPLAY [SIGN [IS] LEADING SEPARATE [CHARACTER]]

Use this PICTURE COMP or PICTURE BINARY clause to declare a host variable for
the SQL NUMERIC, PICTURE 9’s COMP, SMALLINT, LARGEINT, and INTEGER data
types:

PICTURE [S] { 9(integer) [V9(scale)] | V9(scale) }
 [USAGE [IS]] { COMP[UTATIONAL] | COMP | BINARY }

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-12

Host Variables in COBOL Programs Date-Time and Interval Data
COMP and DISPLAY Data

If you specify COMP or BINARY, the value is stored as a binary integer with an implied
decimal point. If you omit COMP or BINARY, DISPLAY is the default, and the digits are
stored as ASCII characters.

Sign, Number of Digits, and Scale

The S specifies a signed variable. If you omit S, the variable is unsigned.

The 9(integer) specifies integer number of digits; integer must be positive. The
V designates a decimal position.

The 9(scale) designates the number of positions to the right of the decimal. The value
of scale must be a positive integer. If you do not specify scale, the value 0 is used.

Instead of integer or scale, you can specify multiple 9s, with each 9 representing
one digit. You can also specify multiple 9s, integers, or scales, as allowed in COBOL.
For example, PIC 9V9 has a scale of 1. PIC 999(4)V999 is equivalent to PIC 9(6)V9(3)
and has a scale of 3.

The values of integer and scale determine the size of the column. The sum of
these values cannot exceed 18. There is no default numeric column definition. You
must specify either 9(integer) or V9(scale).

You must ensure that the value limit imposed by the PICTURE clause is valid for the
data. Corresponding SQL columns defined as type DECIMAL, NUMERIC, PICTURE
9’s COMP, SMALLINT, LARGEINT, and INTEGER data types can accept values as
large as the limit determined by the column size in bytes.

Date-Time and Interval Data

Use the following for date-time and interval data types:

For SQL/MP DATETIME data types that are not equivalent to DATE, TIME, or
TIMESTAMP, you are still required to declare a character array host variable and use
the CAST function for input to and output from date-time or interval columns, similar to
SQL/MX Release 1.8, which does not support ANSI-99 date-time host variables.

DATE Representation

You can insert or retrieve date-time values in any of three formats, independently of the
SQL column definition. For example, you can specify formats such as 09/15/1993,
1993-09-15, or 15.09.1993. You control the display format by inserting the value in the

DATE Represents a date.

TIME Represents a time.

TIMESTAMP Represents a timestamp.

INTERVAL Represents a duration of time as a year-month or day-time interval.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-13

Host Variables in COBOL Programs Date-Time and Interval Data

CO
format you want and retrieving the value by using the DATEFORMAT function. See the
DATEFORMAT function in the SQL/MX Reference Manual.

For example, if a table in the database has this column definition:

HIRE_DATE DATE

The host variable representation for May 28, 1992, in DEFAULT format is:

A DATE host variable in DEFAULT format is represented as a 10-character string with
hyphens (-) as field separators.

Selecting Standard Date-Time Values

To retrieve standard date-time values (DATE, TIME, or TIMESTAMP, or the SQL/MP
equivalents) from the database, declare a date-time (DATE, TIME, or TIMESTAMP)
host variable. For the required number of digits for DATE, TIME, or TIMESTAMP
values, see Table 4-2 on page 4-7.

Table 4-3 lists the lengths of the target arrays for TIME and TIMESTAMP values, which
depend on the precision (the number of digits in the fractional seconds).

The TIME default precision is 0 (zero), and the TIMESTAMP default precision is 6.

Example

If a database has a BILLINGS table that consists of the CUSTNUM and
BILLING_DATE columns, this example selects the date-time value:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
01 BILLINGS-REC.
 02 HV-CUSTNUM PIC 9(4) COMP.
 02 HV-BILLING-DATE DATE.

Table 4-3. Lengths of Target Arrays for TIME and TIMESTAMP

TIME Precision Length TIMESTAMP Precision Length

TIME 8 TIMESTAMP 26

TIME(0) 8 TIMESTAMP(0) 19

TIME(1) 10 TIMESTAMP(1) 21

TIME(2) 11 TIMESTAMP(2) 22

TIME(3) 12 TIMESTAMP(3) 23

TIME(4) 13 TIMESTAMP(4) 24

TIME(5) 14 TIMESTAMP(5) 25

TIME(6) 15 TIMESTAMP(6) 26

1 9 9 2 0 5 2 8

Year Separator Month Separator Day

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-14

Host Variables in COBOL Programs Date-Time and Interval Data

CO
 ...
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL SELECT custnum, billing_date
 INTO :HV-CUSTNUM, :HV-BILLING-DATE
 FROM billings
 WHERE custnum = :HV-THIS-CUSTOMER
 END-EXEC.
 ...

Inserting or Updating Standard Date-Time Values

To insert or update standard date-time values (DATE, TIME, or TIMESTAMP, or the
SQL/MP DATETIME equivalents) in the database, format the date-time values in the
desired display format for a date, time, or timestamp. Within an INSERT or UPDATE
statement, use the DATE, TIME, or TIMESTAMP data type.

Example

If a database has a BILLINGS table that consists of the CUSTNUM and
BILLING_DATE columns, this example inserts a customer number and date-time value
into that table:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
01 BILLINGS-REC.
 02 HV-CUSTNUM PIC 9(4) COMP.
 02 HV-BILLING-DATE DATE.
 ...
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL INSERT INTO billings
 VALUES (:HV-CUSTNUM, :HV-BILLING-DATE)
 END-EXEC.
 ...

Selecting SQL/MP DATETIME Values Not Equivalent to
DATE, TIME, or TIMESTAMP

To retrieve nonstandard SQL/MP DATETIME values that are not equivalent to DATE,
TIME, or TIMESTAMP, declare a COBOL character array the same length as the
number of bytes you expect to store in the array. For a list of nonstandard SQL/MP
DATETIME data types, see the SQL/MX Reference Manual.

Use the SQL/MX CAST function to convert a date-time column in a select list to a
character string. You must also specify the length in the AS clause of the CAST
function to be the length of the declared host variable.

Example

Suppose that an SQL/MP database has a BILLINGS table that consists of the
CUSTNUM and BILLING_DATE columns. The BILLING_DATE column has a

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-15

Host Variables in COBOL Programs Date-Time and Interval Data

CO

CO
DATETIME MONTH TO DAY data type, which has no equivalent in SQL/MX. This
example selects the SQL/MP DATETIME value:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
01 BILLINGS-REC.
 02 HV-CUSTNUM PIC 9(4) COMP.
 02 HV-BILLING-DATE PIC X(10).
 ...
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL SELECT custnum, CAST(billing_date AS CHAR(10))
 INTO :HV-CUSTNUM, :HV-BILLING-DATE
 FROM billings
 WHERE custnum = :HV-THIS-CUSTOMER
 END-EXEC.
 ...

Inserting or Updating SQL/MP DATETIME Values Not
Equivalent to DATE, TIME, or TIMESTAMP

To insert or update nonstandard SQL/MP DATETIME values that are not equivalent to
DATE, TIME, or TIMESTAMP, format a COBOL character string in the desired display
format for a date, time, or timestamp. Within an INSERT or UPDATE statement, use
the SQL/MX CAST function to convert the character date-time data to a DATE, TIME,
or TIMESTAMP data type.

If you are using date-time values as input values to the database in statements other
than INSERT or UPDATE (for example, within the WHERE clause of a SELECT
statement), you must also use the CAST function to convert the character string to a
DATE, TIME, or TIMESTAMP data type.

Example

Suppose that an SQL/MP database has a BILLINGS table that consists of the
CUSTNUM and BILLING_DATE columns. The BILLING_DATE column has a
DATETIME MONTH TO DAY data type, which has no equivalent in SQL/MX. This
example inserts a customer number and date-time value into that table:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
01 BILLINGS-REC.
 02 HV-CUSTNUM PIC 9(4) COMP.
 02 HV-BILLING-DATE PIC X(5).
 ...
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL INSERT INTO billings
 VALUES (:HV-CUSTNUM,
 CAST(:HV-BILLING-DATE AS DATETIME MONTH TO DAY))
 END-EXEC.
 ...

BOL

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-16

Host Variables in COBOL Programs Date-Time and Interval Data

CO
INTERVAL Representation

Interval values are represented as character strings, with a separator between the
values of the fields (year-month or day-time). An extra character is generated at the
beginning of the interval string for a sign.

For example, a table in the database has this column definition:

AGE INTERVAL YEAR(2) TO MONTH

The host variable representation for 37 years, 11 months, is:

An INTERVAL host variable is represented as a six-character string, including five
characters—with a hyphen (-) as the field separator—plus a character for the sign.

Selecting Interval Values

To retrieve interval values from the database, declare an INTERVAL host variable the
same length as the number of bytes you expect to store in the array. The SQL/MX
preprocessor adds an extra character for the sign.

Example

A database contains a BILLINGS table consisting of the CUSTNUM, START_DATE,
BILLING_DATE, and TIME_BEFORE_PMT columns. This example selects a customer
number and interval value:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 BILLINGS-REC.
 02 HV-CUSTNUM PIC 9(4) COMP.
 02 HV-START-DATE DATE.
 02 HV-BILLING-DATE DATE.
 02 HV-TIME-BEFORE-PMT INTERVAL DAY(3).
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL SELECT custnum, time_before_pmt
 INTO :HV-CUSTNUM, :HV-TIME-BEFORE-PMT
 FROM billings
 WHERE custnum = :HV-THIS-CUSTOMER
 END-EXEC.
 ...

Inserting or Updating Interval Values

To insert or update interval values, format a COBOL interval string in the desired
display format for an interval. The first character is reserved for the sign of the interval.

+ 3 7 1 1

Sign Year Separator Month

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-17

Host Variables in COBOL Programs Using COBOL Data Description Clauses

CO
Example

A database contains a BILLINGS table consisting of the CUSTNUM, START_DATE,
BILLING_DATE, and TIME_BEFORE_PMT columns. This example updates date-time
and interval values:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 BILLINGS-REC.
 02 HV-CUSTNUM PIC 9(4) COMP.
 02 HV-START-DATE PIC X(10).
 02 HV-BILLING-DATE DATE.
 02 HV-TIME-BEFORE-PMT INTERVAL DAY(3).
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL UPDATE billings
 SET billing_date = :HV-BILLING-DATE,
 time_before_pmt = :HV-TIME-BEFORE-PMT
 WHERE custnum = :HV-CUSTNUM
 END-EXEC.
 ...

By default, INTERVAL DAY is 2 digits. Therefore, for the preceding example, declare
HV-TIME-BEFORE-PMT to be length 3 characters, adding one character for the sign.

Using COBOL Data Description Clauses
Table 4-4 lists the COBOL data description clauses and their interpretation by NonStop
SQL/MX when they are used in host variable declarations. NonStop SQL/MX does not
support the COBOL special names option DECIMAL POINT IS COMMA.

Table 4-4. Interpretation of COBOL Data Description Clauses (page 1 of 2)

COBOL Description Host Variable Interpretation

BLANK The clause is ignored.

data-name Any data name is allowed, including an SQL reserved word. Specific
hyphenation rules apply.

FILLER The clause is ignored.

JUSTIFIED The clause is not allowed. However, it can appear in an entry
already being ignored, such as REDEFINES.

level number Any number is allowed. Entries with the level number 66 or 88 are
ignored.

PICTURE The clause must be consistent with the PICTURE clause rules for
host variables.

REDEFINES The clause is ignored.

SIGN For DISPLAY items, the SIGN clause must be LEADING
SEPARATE. No restrictions apply, and the appropriate conversion
for SQL data types is made.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-18

Host Variables in COBOL Programs Using Indicator Variables in a COBOL Program

CO
Using Indicator Variables in a COBOL Program
Null in an SQL column indicates that a value is either unknown or is not applicable. A
host language program uses an indicator variable to insert null. It also uses an
indicator variable to test for null or a truncated output value.

An indicator variable is an exact numeric variable associated with the host variable that
sets or receives the actual column value. The INVOKE directive automatically declares
indicator variables for columns that allow null.

A host language program can use an indicator variable to:

 Insert values into a database with an INSERT or UPDATE statement.

 Test for null or a truncated value (in the case of character data) after retrieving a
value from a database with a SELECT INTO or FETCH statement.

Inserting Null

To insert values into columns that allow null with an INSERT or UPDATE statement,
you must set the indicator variable to a value less than zero for null or zero for a
nonnull value before executing the statement.

Examples

A database contains a RETIREES table consisting of the columns EMPNUM and
RETIRE_DATE (which allows null). This INSERT statement uses an indicator variable
to insert null into the RETIRE_DATE column:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 RETIREE-REC.
 02 NEW-EMPNUM PIC 9(4) COMP.
 02 RETIRE-DATE PIC X(10).
 02 RETIRE-IND PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...

SYNC The clause is ignored.

USAGE The USAGE options correspond to SQL data types:

 COMPUTATIONAL (COMP) or BINARY to SQL type NUMERIC
or PICTURE 9’s COMP to an integer type (SMALLINT,
INTEGER, or LARGEINT).

 DISPLAY to SQL type CHARACTER (for PIC X) or DECIMAL
(for PIC 9).

 The INDEX and PACKED-DECIMAL options are not allowed.

VALUE The clause is ignored.

Table 4-4. Interpretation of COBOL Data Description Clauses (page 2 of 2)

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-19

Host Variables in COBOL Programs Testing for Null or a Truncated Value
 MOVE -1 TO RETIRE-IND.
 EXEC SQL
 INSERT INTO persnl.retirees
 VALUES (:NEW-EMPNUM,:RETIRE-DATE INDICATOR :RETIRE-IND)
 END-EXEC.
 ...

This example uses the NULL keyword instead of an indicator variable to insert the null
value:

 ...
 EXEC SQL
 INSERT INTO persnl.retirees VALUES (:NEW-EMPNUM, NULL)
 END-EXEC.

Testing for Null or a Truncated Value

To test for null or a truncated character value, check the indicator variable associated
with a host variable. If the value of the indicator variable is less than zero, the
associated column contains null. If the value of the indicator variable is greater than
zero, character data in the column was truncated when it was assigned to the host
variable.

Example

A database contains a PRODUCTS table that includes the columns PRODNUM and
TIMESTAMP_SHIPPED (which allows null). Example 4-1 on page 4-21 selects data
from the PRODUCTS table and then tests for null by using the indicator variable SHIP-
IND. If the value of the indicator variable is less than 0 (zero), the associated column
contains a null value.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-20

Host Variables in COBOL Programs Retrieving Rows With Nulls

CO
See DATEFORMAT Function in the SQL/MX Reference Manual.

Retrieving Rows With Nulls

To retrieve a row that contains null, use the NULL predicate in the WHERE clause. You
cannot use an indicator variable set to -1 in a WHERE clause to retrieve a row that
contains null. If you do, NonStop SQL/MX does not find the row and returns a
NOTFOUND exception even if a column actually contains null.

Example 4-1. Null Test Example

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 PRODUCT-REC.
 02 PRODNUM PIC 9(5) COMP.
 02 TIMESTAMP-SHIPPED PIC X(26).
 02 SHIP-IND PIC S9(4) COMP.
 ...
* Variable for selecting the product number:
 01 MIN-PRODNUM PIC 9(5) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

* Variable for displaying the timestamp or NULL:
 01 VALUE-DISPLAY PIC X(26) VALUE SPACES.
 ...
* Declare a cursor to perform the SELECT:
 EXEC SQL DECLARE get_prodnum CURSOR FOR
 SELECT prodnum, timestamp_shipped
 FROM sales.products
 WHERE prodnum >= :MIN-PRODNUM
 END-EXEC.

 PROCEDURE DIVISION.
 0100-MAIN.
 ...
 EXEC SQL OPEN get_prodnum END-EXEC.
 PERFORM 0150-FETCH UNTIL SQLSTATE = "02000".
 EXEC SQL CLOSE get_prodnum END-EXEC.
 ...
 0150-FETCH.
 EXEC SQL FETCH get_prodnum INTO
 :PRODNUM,
 DATEFORMAT (:TIMESTAMP-SHIPPED INDICATOR :SHIP-IND, USA)
 END-EXEC.

* SQL/MX sets SHIP-IND to less than zero if the column
* contained a null value in the selected row.
 IF SHIP-IND < 0 THEN MOVE "NULL" TO VALUE-DISPLAY
 ELSE MOVE TIMESTAMP-SHIPPED TO VALUE-DISPLAY.
 IF SQLSTATE = "00000" DISPLAY PRODNUM " " VALUE-DISPLAY.
 ...

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-21

Host Variables in COBOL Programs Creating COBOL Host Variables Using INVOKE

CO
Example

To retrieve rows that have null salaries from the EMPLOYEE table using a cursor,
specify the NULL predicate in the WHERE clause in the associated SELECT statement
when you declare the cursor:

* Declare a cursor to find rows with null salaries.
 EXEC SQL DECLARE get_null_salary CURSOR FOR
 SELECT empnum, first_name, last_name,
 deptnum, jobcode, salary
 FROM employee
 WHERE salary IS NULL
 END-EXEC.
 ...
 PROCEDURE DIVISION.
 0100-MAIN.
 ...
 EXEC SQL OPEN get_null_salary END-EXEC.
 PERFORM 200-FETCH-NULL UNTIL SQLSTATE = "02000".
 EXEC SQL CLOSE get_null_salary END-EXEC.
 ...
 0200-FETCH-NULL.
 EXEC SQL FETCH get_null_salary INTO
 :EMPNUM OF EMPLOYEE-RECORD,
 :FIRST-NAME OF EMPLOYEE-RECORD
 :LAST-NAME OF EMPLOYEE-RECORD
 :DEPTNUM OF EMPLOYEE-RECORD
 :JOBCODE OF EMPLOYEE-RECORD
 :SALARY OF EMPLOYEE-RECORD
 END-EXEC.
* Process the row that contains the null salary.
 ...

Creating COBOL Host Variables Using INVOKE
The INVOKE preprocessor directive creates host variables corresponding to columns
in a table or view. INVOKE converts the column names to COBOL names and
generates a COBOL data item for each column. If a column allows null, INVOKE also
creates an indicator variable for the column.

You can declare host variables that correspond to the columns in an SQL table or view
without using an INVOKE statement. However, using an INVOKE statement to
generate host variables has these advantages:

 Program independence: If you modify a table or view, the INVOKE statement re-
creates the host variables to correspond to the new table or view when you run the
SQL/MX COBOL preprocessor. However, you must modify a program that refers to
a deleted column or accesses a new column.

 Performance: The INVOKE statement maps SQL data types to the corresponding
host language data types, and usually no data conversion is required at run time.
For further information, see Example 4-2 on page 4-24 and Example 4-3 on
page 4-25.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-22

Host Variables in COBOL Programs Using the INVOKE Directive
 Program readability and maintenance: The INVOKE statement creates host
variables using the same names as column names in the table or view.

Using the INVOKE Directive

To execute an INVOKE directive for a table or view, you must have SELECT privileges
to all applicable columns when you run the SQL/MX COBOL preprocessor.

The general syntax for using an embedded INVOKE directive within an SQL Declare
Section in a COBOL program is:

INVOKE table-or-view AS record

For complete syntax, see the INVOKE Directive in the SQL/MX Reference Manual.

INVOKE and Date-Time and Interval Host Variables (SQL/MX
Release 1.8 Applications)

SQL/MX Release 1.8 does not support SQL:1999 date-time host variables. In SQL/MX
Release 1.8 applications, you must declare a character array host variable for date-
time or interval data and use the CAST function for input or output from date-time or
interval columns.

If your SQL/MX Release 1.8 application uses INVOKE to create a date-time or interval
host variable and you plan to preprocess the application in SQL/MX Release 2.x, use
the -e preprocessor option. Otherwise, SQL/MX Release 2.x returns an error during
SQL compilation because the CAST function in the program is incompatible with the
SQL:1999 date-time host variables created by INVOKE in SQL/MX Release 2.x.

For more information, see Running the SQL/MX COBOL Preprocessor on page 16-9.

COBOL Record Descriptions Generated by INVOKE

The next examples show the correspondence between a table named
SQLCOB_DATA, that contains columns of various SQL data types, and the COBOL
record description generated by an INVOKE statement.

This INVOKE statement is coded in the COBOL source file in the SQL Declare
Section:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 EXEC SQL INVOKE sqlcob_data AS SQLCOB-TYPES-REC END-EXEC.
 ...
EXEC SQL END DECLARE SECTION END-EXEC.

The SQL/MX COBOL preprocessor generates the record description immediately after
the INVOKE statement in the preprocessed program code.

Note. This issue affects only SQL/MX Release 1.8 applications preprocessed by SQL/MX
Release 2.x. Previously compiled SQL/MX Release 1.8 applications continue to run correctly
without changes in SQL/MX Release 2.x.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-23

Host Variables in COBOL Programs COBOL Record Descriptions Generated by INVOKE
Example 4-2 shows the CREATE TABLE statement that generates table
SQLCOB_DATA.

Example 4-2. CREATE TABLE Statement

CREATE TABLE SQLCOB_DATA (
type_char CHAR (10) NOT NULL,
type_char_null CHAR (10) ,
type_UCS2_CHAR CHAR(10) CHARACTER SET UCS2 NOT NULL,
type_UCS2_VARCHAR VARCHAR(10) CHARACTER SET UCS2 NOT NULL,
type_picx PIC X(10) NOT NULL,
type_varchar VARCHAR (10) NOT NULL,
type_num4_s NUMERIC (4) SIGNED NOT NULL,
type_num4_u NUMERIC (4) UNSIGNED NOT NULL,
type_num9_s NUMERIC (9,2) SIGNED NOT NULL,
type_num9_u NUMERIC (9,2) UNSIGNED NOT NULL,
type_num18_s NUMERIC (18,2) SIGNED NOT NULL,
type_piccomp4_s PIC S9(2)V9(2) COMP NOT NULL,
type_piccomp4_u PIC 9(2)V9(2) COMP NOT NULL,
type_piccomp9_s PIC S9(7)V9(2) COMP NOT NULL,
type_piccomp9_u PIC 9(7)V9(2) COMP NOT NULL,
type_piccomp18_s PIC S9(16)V9(2) COMP NOT NULL,
type_dec4_s DECIMAL (4) SIGNED NOT NULL,
type_dec4_u DECIMAL (4) UNSIGNED NOT NULL,
type_dec9_s DECIMAL (9,2) SIGNED NOT NULL,
type_dec9_u DECIMAL (9,2) UNSIGNED NOT NULL,
type_dec18_s DECIMAL (18,2) SIGNED NOT NULL,
type_pic4_s PIC S9(2)V9(2) NOT NULL,
type_pic4_u PIC 9(2)V9(2) NOT NULL,
type_pic9_s PIC S9(7)V9(2) NOT NULL,
type_pic9_u PIC 9(7)V9(2) NOT NULL,
type_pic18_s PIC S9(16)V9(2) NOT NULL,
type_small_s SMALLINT SIGNED NOT NULL,
type_small_u SMALLINT UNSIGNED NOT NULL,
type_small_null SMALLINT ,
type_int_s INTEGER SIGNED NOT NULL,
type_int_u INTEGER UNSIGNED NOT NULL,
type_large_s LARGEINT NOT NULL,
type_date DATE NOT NULL,
type_time_6 TIME(6) NOT NULL,
type_timestamp_6 TIMESTAMP(6) NOT NULL,
type_interval INTERVAL YEAR TO MONTH NOT NULL
) ;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-24

Host Variables in COBOL Programs COBOL Record Descriptions Generated by INVOKE
Example 4-3 shows the record generated by this INVOKE directive:

EXEC SQL INVOKE sqlcob_data AS SQLCOB-TYPES-REC END-EXEC.

Example 4-3. COBOL Record Description Generated by INVOKE (page 1 of 2)

* Record Definition for table SQLCOB_DATA
 01 SQLCOB-TYPES-REC.
 02 SYSKEY-I PIC S9(4) COMP.
 02 SYSKEY PIC S9(18) COMP.
 02 TYPE-CHAR PIC X(10).
 02 TYPE-CHAR-NULL-I PIC S9(4) COMP.
 02 TYPE-CHAR-NULL PIC X(10).
 02 TYPE-UCS2-CHAR PIC X(20).
 02 TYPE-UCS2-VARCHAR.
 03 LEN PIC S9(4) COMP.
 03 VAL PIC X(20).
 02 TYPE-PICX PIC X(10).
 02 TYPE-VARCHAR.
 03 LEN PIC S9(4) COMP.
 03 VAL PIC X(10).
 02 TYPE-NUM4-S PIC S9(4) COMP.
 02 TYPE-NUM4-U PIC 9(4) COMP.
 02 TYPE-NUM9-S PIC S9(7)V9(2) COMP.
 02 TYPE-NUM9-U PIC 9(7)V9(2) COMP.
 02 TYPE-NUM18-S PIC S9(16)V9(2) COMP.
 02 TYPE-PICCOMP4-S PIC S9(2)V9(2) COMP.
 02 TYPE-PICCOMP4-U PIC 9(2)V9(2) COMP.
 02 TYPE-PICCOMP9-S PIC S9(7)V9(2) COMP.
 02 TYPE-PICCOMP9-U PIC 9(7)V9(2) COMP.
 02 TYPE-PICCOMP18-S PIC S9(16)V9(2) COMP.
 02 TYPE-DEC4-S PIC S9(4) DISPLAY SIGN LEADING
 SEPARATE.
 02 TYPE-DEC4-U PIC 9(4) DISPLAY.
 02 TYPE-DEC9-S PIC S9(7)V9(2) DISPLAY SIGN LEADING
 SEPARATE.

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-25

Host Variables in COBOL Programs COBOL Record Descriptions Generated by INVOKE
When you use the INVOKE directive to generate host variables, the HP COBOL
compiler writes a COBOL data description for each column in the specified table or
view. In some cases, the compiler must convert an SQL column name or data type, as
described in Table 4-5.

 02 TYPE-DEC9-U PIC 9(7)V9(2) DISPLAY.
 02 TYPE-DEC18-S PIC S9(16)V9(2) DISPLAY SIGN LEADING
 SEPARATE.
 02 TYPE-PIC4-S PIC S9(2)V9(2) DISPLAY SIGN LEADING
 SEPARATE.
 02 TYPE-PIC4-U PIC 9(2)V9(2) DISPLAY.
 02 TYPE-PIC9-S PIC S9(7)V9(2) DISPLAY SIGN LEADING
 SEPARATE.
 02 TYPE-PIC9-U PIC 9(7)V9(2) DISPLAY.
 02 TYPE-PIC18-S PIC S9(16)V9(2) DISPLAY SIGN LEADING
 SEPARATE.
 02 TYPE-SMALL-S PIC S9(4) COMP.
 02 TYPE-SMALL-U PIC 9(4) COMP.
 02 TYPE-SMALL-NULL-I PIC S9(4) COMP.
 02 TYPE-SMALL-NULL PIC S9(4) COMP.

 02 TYPE-INT-S PIC S9(9) COMP.
 02 TYPE-INT-U PIC 9(9) COMP.
 02 TYPE-LARGE-S PIC S9(18) COMP.
 02 TYPE-DATE PIC X(10).
 02 TYPE-TIME-6 PIC X(15).
 02 TYPE-TIMESTAMP-6 PIC X(26).
 02 TYPE-INTERVAL PIC X(6).

Example 4-3. COBOL Record Description Generated by INVOKE (page 2 of 2)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-26

Host Variables in COBOL Programs Using Indicator Variables With the INVOKE Directive

Using Indicator Variables With the INVOKE Directive

The INVOKE directive automatically generates a two-character indicator variable for
each host variable that corresponds to a column that allows null. The name of the
indicator variable is the same name as the corresponding column, plus a suffix and an
optional prefix. If you do not specify a prefix or suffix, the INVOKE statement appends
a default suffix (-I for COBOL) to the indicator variable name.

The format of the indicator variable name depends on the PREFIX, SUFFIX, and NULL
STRUCTURE clauses.

PREFIX and SUFFIX Clauses

The PREFIX and SUFFIX clauses cause the INVOKE statement to generate an
indicator variable name derived from the column name and the prefix or suffix. A
default suffix of -I applies if the INVOKE directive omits these clauses.

Table 4-5. Changes Made by INVOKE in Generated Host Variables

Column or Data Type Description of Change

Underscore (_) within a name Converts underscores to hyphens (-). For example,
the column name CITY_STREET becomes CITY-
STREET.

Underscore (_) at the end of a name Truncates the underscore so that the resulting name
does not end in a hyphen. For example, the column
name HOME_ becomes HOME.

Column with VARCHAR data type Creates a group item with two elementary data
items. The group item name is derived from the
VARCHAR column name. The data names of the
subordinate data items are:

 LEN, a numeric data item for the length

 VAL, a fixed-length character data item for the
string, with the maximum length specified by the
VARCHAR column definition

For example, CUSTNAME defined as VARCHAR
(26) becomes this group item:

01 CUSTNAME.
 02 LEN PIC S9(4) COMP.
 02 VAL PIC X(26).

DATE, TIME, TIMESTAMP, or
INTERVAL data type

If the -e preprocessor option is specified, converts
columns to character fields.

INTERVAL columns have an additional character for
a sign. (That is, a negative interval is possible.) The
format of the column is the DEFAULT format.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-27

Host Variables in COBOL Programs Using Indicator Variables With the INVOKE Directive

CO

CO
Example

A table named cob_table has the columns empnum and empname. The column
empname can be null. This example uses an INVOKE statement with both the PREFIX
and SUFFIX clauses:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 EXEC SQL INVOKE cob_table PREFIX BEG- SUFFIX -END END-EXEC.
 ...
EXEC SQL END DECLARE SECTION END-EXEC.

The SQL COBOL preprocessor generates this record description immediately after the
INVOKE directive in the preprocessed program code:

* Record Definition for table COB_TABLE
 01 COB-TABLE.
 02 EMPNUM PIC 9(4) COMP.
 02 BEG-EMPNAME-END PIC S9(4) COMP.
 02 EMPNAME PIC X(10).

NULL STRUCTURE Clause

The NULL STRUCTURE clause causes the INVOKE statement to generate a group
item for a column that allows null. The group item name is the same as the column
name. The group item includes fields for the data item, named VALU, and its indicator
variable, named INDICATOR.

Example

A database contains an EMPTBL table consisting of the columns EMPNUM,
FIRST_NAME, LAST_NAME, and HIRE_DATE. The columns FIRST_NAME and
HIRE_DATE allow null. This example uses an INVOKE statement with the NULL
STRUCTURE clause:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 EXEC SQL INVOKE EMPTBL AS EMPTBL-REC NULL STRUCTURE END-EXEC.
 ...
EXEC SQL END DECLARE SECTION END-EXEC.

The SQL/MX COBOL preprocessor generates this record description immediately after
the INVOKE statement in the preprocessed program code:

* Record Definition for table EMPTBL
 01 EMPTBL-REC.
 02 EMPNUM PIC 9(4) COMP.
 02 FIRST-NAME.
 03 INDICATOR PIC S9(4) COMP.
 03 VALU PIC X(15).
 02 LAST-NAME PIC X(20).
 02 HIRE-DATE.
 03 INDICATOR PIC S9(4) COMP.
 03 VALU PIC X(10).

BOL

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-28

Host Variables in COBOL Programs COBOL Example of Using INVOKE
COBOL Example of Using INVOKE

 Example 4-4 on page 4-30 declares and uses host variable names and indicator
variable names and shows:

 A host variable declaration with INVOKE that specifies the suffix -I for indicator
variables. The invoked record declaration is included as a comment in the
example.

 A host variable indicator variable used in the SELECT statement. The columns that
might contain null require the indicator variable following the host variable to
receive information on nulls.

 An indicator variable testing for null. If the value of the indicator variable following
the SELECT is less than zero, the associated column is null.

This record description is similar to the ODETAIL table of the sample database except
that the UNIT_PRICE and QTY_ORDERED columns allow null.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-29

Host Variables in COBOL Programs Character Set Examples

CO
Character Set Examples
This set of examples shows methods for selecting, fetching, and inserting data using
different character sets. The examples are based on this table:

CREATE TABLE STAFF_UC
 (EMPNUM CHAR(3) character set ucs2 NOT NULL UNIQUE,
 EMPNAME NCHAR VARYING(20),
 GRADE DECIMAL(4),
 CITY VARCHAR(15) character set ucs2);

Example 4-4. INVOKE Example

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 EXEC SQL
 INVOKE sales.odetail AS ODETAIL-REC SUFFIX -I
 END-EXEC.
* Record Description ************************************
* 01 ODETAIL-REC.
* 02 ORDERNUM PIC 9(6) COMP.
* 02 PARTNUM PIC 9(4) COMP.
* 02 UNIT-PRICE-I PIC S9(4) COMP.
* 02 UNIT-PRICE PIC S9(6)V9(2) COMP.
* 02 QTY-ORDERED-I PIC S9(4) COMP.
* 02 QTY-ORDERED PIC 9(5) COMP.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 PROCEDURE DIVISION.
 ...
* Initialize the host variables in the WHERE clause.
 ...
 EXEC SQL
 SELECT ordernum, partnum, unit_price, qty_ordered
 INTO :ORDERNUM OF ODETAIL-REC,
 :PARTNUM OF ODETAIL-REC,
 :UNIT-PRICE OF ODETAIL-REC
 INDICATOR :UNIT-PRICE-I OF ODETAIL-REC,
 :QTY-ORDERED OF ODETAIL-REC
 INDICATOR :QTY-ORDERED-I OF ODETAIL-REC
 FROM sales.odetail
 WHERE ordernum = :IN-ORDERNUM AND partnum = :IN-PARTNUM
 END-EXEC.
 ...
 IF (UNIT-PRICE-I OF ODETAIL-REC < 0)
 OR (QTY-ORDERED-I OF ODETAIL-REC < 0)
 PERFORM 05000-HANDLE-NULL
 ELSE PERFORM 0300-DISPLAY-RESULT.
 ...

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-30

Host Variables in COBOL Programs Selecting From a UCS2 Character Set Into a
VARCHAR Host Variable
Selecting From a UCS2 Character Set Into a VARCHAR Host
Variable

This example selects from a UCS2 character set into a VARCHAR host variable with
the same length:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 hv-empnum PIC X(3) CHARACTER SET IS UCS2.
 01 hv-empname.
 03 len PIC S9(4) COMP.
 03 val PIC X(20) CHARACTER SET UCS2.
 01 hv-city.
 03 len PIC S9(4) COMP.
 03 val PIC X(15) CHARACTER SET UCS2.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.

 ...
* select VARCHAR ucs2 column to VARCHAR UCS2 host variables with
the same length

 EXEC SQL
 select empnum,empname,city into :hv-empnum,
 :hv-empname,:hv-city
 from staff_uc
 where empnum < _ucs2'E8' and grade = 10
 END-EXEC.

* use the value in hv_empnum, hv_empname, and hv_city
 ...

Fetching From a UCS2 Character Set into a VARCHAR Host
Variable

This example shows a FETCH operation from a UCS2 character set into a VARCHAR
host variable:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 ...
 01 hv-empnum PIC X(3) CHARACTER SET IS UCS2.
 01 hv-empname.
 03 len PIC S9(4) COMP.
 03 val PIC X(20) CHARACTER SET UCS2.
 01 hv-grade PIC S9(4) DISPLAY SIGN LEADING SEPARATE.
 01 hv-city.
 03 len PIC S9(4) COMP.
 03 val PIC X(15) CHARACTER SET UCS2.
 01 hv-cnt PIC S9(4) COMP.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-31

Host Variables in COBOL Programs Fetching From a UCS2 Character Set into a
VARCHAR Host Variable

* select UCS2 columns into host variable

 EXEC SQL
 declare cursor_fetch_ucs2_varchar cursor for
 select * from staff_uc order by empnum
 END-EXEC.

 EXEC SQL open cursor_fetch_ucs2_varchar END-EXEC.

 EXEC SQL fetch cursor_fetch_ucs2_varchar into
 :hv-empnum,:hv-empname, :hv-grade,:hv-city
 END-EXEC.

 PERFORM UNTIL SQLSTATE NOT = SQLSTATE-OK

* process the output values :hv-empnum, :hv-empname,:hv-grade,
* and :hv-city

 EXEC SQL FETCH cursor_fetch_ucs2_varchar INTO
 :hv-empnum,:hv-empname,:hv-grade,:hv-city
 END-EXEC.
 END-PERFORM.
 ...
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
4-32

5
Simple and Compound Statements

You can access data in an SQL database without a cursor by using simple SQL/MX
Data Manipulation Language (DML) statements:

To enable clients to batch multiple SQL statements into one data request to the server,
NonStop SQL/MX extends simple DML statements to allow for compound statements,
including the assignment statement and the IF statement:

This section describes these two types of statements and also describes PROTOTYPE
host variables, which you can use as table names to enable late name resolution for
the SQL statements in your program. See Using PROTOTYPE Host Variables as Table
Names on page 5-17.

Simple DML Statement Description

Single-Row SELECT Statement Retrieves a single row (or rowset) from a table or view
and places the specified column values in host
variables. With a cursor, use the DECLARE CURSOR
declaration and the FETCH statement.

INSERT Statement Inserts one or more rows into a table or view. Use for
all INSERT operations.

Searched UPDATE Statement Updates the values in one or more columns in a single
row or a set of rows of a table or view. With a cursor,
use the positioned UPDATE statement.

Searched DELETE Statement Deletes a single row or a set of rows from a table or
view. With a cursor, use the positioned DELETE
statement.

Compound DML Statement Description

Compound Statements Specifies that the BEGIN and END keywords bracket a
sequence of SQL statements that must be executed as
a single SQL statement. Cannot contain C/C++ or
COBOL commands.

Assignment Statement In the context of a compound statement, the values
computed or set by one SQL statement can be used by
subsequent SQL statements within that compound
statement.

IF Statement In the context of a compound statement, provides
conditional execution of SQL statements.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-1

Simple and Compound Statements Single-Row SELECT Statement

CO
Single-Row SELECT Statement
A single-row SELECT statement retrieves a single row of data from one or more tables
or views and places the column values in corresponding host variables. Use this
general syntax:

For complete syntax, see the SELECT statement in the SQL/MX Reference Manual.

The search condition is specified so that one row is selected. For information on
fetching a set of rows one row at a time by using a SELECT statement that specifies a
cursor, see Section 6, Static SQL Cursors.

After a SELECT statement executes, NonStop SQL/MX returns a value to the
SQLSTATE variable. If no rows were found satisfying the search condition, the value of
SQLSTATE is 02000 (no data). For information on checking the value of SQLSTATE,
see Section 13, Exception Handling and Error Conditions.

Using a Primary Key Value to Select Data

You can use a primary key value to select a single row of data.

Example

Use the SELECT statement to return an employee’s first name, last name, and
department from the EMPLOYEE table by using a primary key value (EMPNUM
column). The WHERE clause specifies that the selected row contains a primary key
with a value equal to the host variable named hv_this_employee. The SELECT
statement retrieves only one row because the primary key value is unique.

...
hv_this_employee = input_empnum; /* set host variable */
...
EXEC SQL SELECT first_name, last_name, deptnum
 INTO :hv_first_name, :hv_last_name, :hv_deptnum
 FROM persnl.employee
 WHERE empnum = :hv_this_employee;

Example

Use the SELECT statement to return customer information from the CUSTOMER table
by using a primary key value (CUSTNUM column). The WHERE clause specifies that
the selected row contains a primary key with a value equal to the host variable named
FIND-THIS-CUSTOMER. The SELECT statement retrieves only one row because the
primary key value is unique.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 CUSTOMER.

SELECT column [,column]...
 INTO :hostvar [,:hostvar]...
 FROM table-name
 WHERE search-condition

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-2

Simple and Compound Statements Selecting a Column With Date-Time or INTERVAL
Data Type
 02 CUSTNUM PIC 9(4) COMP.
 02 CUSTNAME PIC X(18).
 02 STREET PIC X(22).
 02 CITY PIC X(14).
 02 STATE PIC X(12).
 02 POSTCODE PIC X(10).
 01 FIND-THIS-CUSTOMER PIC 9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
 0000-BEGIN.
 EXEC SQL
 WHENEVER NOT FOUND PERFORM 4000-NOT-FOUND
 END-EXEC.
 ...
* Accept input value for host variable in WHERE clause.
 ...
 EXEC SQL
 SELECT custname, street, city, state, postcode
 INTO :CUSTNAME, :STREET, :CITY, :STATE, :POSTCODE
 FROM sales.customer
 WHERE custnum = :FIND-THIS-CUSTOMER
 END-EXEC.
 ...
 DISPLAY CUSTNAME, STREET, CITY, STATE, POSTCODE.
 ...
 4000-NOT-FOUND.
 DISPLAY "CUSTOMER NOT FOUND:" FIND-THIS-CUSTOMER.

Selecting a Column With Date-Time or INTERVAL Data Type

If a column in the select list has an INTERVAL or standard date-time (DATE, TIME,
TIMESTAMP, or the SQL/MP DATETIME equivalents) data type, use the INTERVAL or
date-time types. If your C program performs string operations on date-time and
INTERVAL host variables, you need to null terminate the date-time and INTERVAL
host variables. For information on null termination, see Fixed-Length Character Data
on page 3-17.

If a column in the select list has a nonstandard SQL/MP DATETIME data type that is
not equivalent to DATE, TIME, or TIMESTAMP, use the CAST function to convert the
column to a character string. You must also specify the length of the target host
variable (or the length–1 in the case of a C program) in the AS clause of the CAST
conversion.

Standard Date-Time Example

This example uses a typical context for selecting a date-time value:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_projcode;
 char hv_projdesc[19];
 DATE hv_start_date;

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-3

Simple and Compound Statements INSERT Statement

CO
EXEC SQL END DECLARE SECTION;
...
EXEC SQL
 SELECT projcode, projdesc, start_date
 INTO :hv_projcode, :hv_projdesc, :hv_start_date
 FROM samdbcat.persnl.project
 WHERE projcode = 1000;
...

Nonstandard SQL/MP DATETIME Example

This example uses a typical context for selecting a nonstandard date-time value,
DATETIME MONTH TO DAY:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_projcode;
 char hv_projdesc[19];
 char hv_start_date[6];
EXEC SQL END DECLARE SECTION;
...
EXEC SQL
 SELECT projcode, projdesc, CAST(start_date AS CHAR(5))
 INTO :hv_projcode, :hv_projdesc, :hv_start_date
 FROM samdbcat.persnl.project
 WHERE projcode = 1000;
...

Interval Example

This example uses a typical context for selecting an interval value:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 hv-projcode pic 9(4) COMP.
 01 hv-projdesc pic x(18).
 01 hv-est-complete INTERVAL DAY(4).
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 EXEC SQL
 SELECT projcode, projdesc, est_complete
 INTO :hv-projcode, :hv-projdesc, :hv-est-complete
 FROM samdbcat.persnl.project
 WHERE projcode = 1000
 END-EXEC.
 ...

INSERT Statement
The INSERT statement inserts one or more rows into a table. To insert data, a program
moves the new values to a series of host variables and then executes an INSERT

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-4

Simple and Compound Statements Inserting Rows
statement to transfer the values from the host variables to the table. Use this general
syntax:

For complete syntax, see the INSERT statement in the SQL/MX Reference Manual.

To execute an INSERT statement, a program must have INSERT privileges for each
column in the table receiving the data.

After an INSERT statement executes, NonStop SQL/MX returns a value to the
SQLSTATE variable. If a data exception occurs during the insertion process, the value
of SQLSTATE is 22xxx (data exception). The class value is 22, and the subclass can
be a variety of conditions, depending on the nature of the data being inserted. For
information on SQLSTATE values, see Section 13, Exception Handling and Error
Conditions.

Inserting Rows

You can insert a single row or multiple rows of data by using the VALUES clause that
specifies a row or rows of host variables.

This example inserts a row (the JOBCODE and JOBDESC columns) into the JOB
table. The host variables are declared as global host variables, the Declare Section
occurs before the definition of main():

Example

void insert_job(void);
...
EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_jobcode; /* global host variables */
 VARCHAR hv_jobdesc[19];
EXEC SQL END DECLARE SECTION;
...
int main()
{
...
... /* Input the values of hv_jobcode and hv_jobdesc */
insert_job();
...
return 0;
} /* end main */

void insert_job(void) {
EXEC SQL INSERT INTO persnl.job (jobcode, jobdesc)
 VALUES (:hv_jobcode, :hv_jobdesc);
} /* end insert_job */

INSERT INTO table-name (column [,column]...)
 VALUES (:hostvar [,:hostvar]...)

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-5

Simple and Compound Statements Inserting Null

CO
Example

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 JOB.
 02 HV-JOBCODE PIC 9(4) COMP.
 02 HV-JOBDESC PIC X(18).
 01 SQLSTATE PIC X(5).
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
* Move values to HV-JOBCODE and HV-JOBDESC.
 ...
 EXEC SQL INSERT INTO persnl.job (jobcode, jobdesc)
 VALUES (:HV-JOBCODE, :HV-JOBDESC)
 END-EXEC.
 ...

Inserting Null

You can insert a row of data with a null column.

Example

This example inserts a row into the EMPLOYEE table and sets the SALARY column to
null by using an indicator variable:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 struct emp_tbl {
 unsigned NUMERIC (4) empnum;
 char first_name[16];
 char last_name[21];
 ...
 } emp;
 short ind_1 = -1;
 ...
EXEC SQL END DECLARE SECTION;
...
/* Enter the values for employee */
printf("\nEnter employee number: ");
scanf("%hu", &emp.empnum);
printf("\nEnter first name: ");
scanf("%s", emp.first_name);
...
blank_pad(emp.first_name, sizeof(emp.first_name) - 1);
blank_pad(emp.last_name, sizeof(emp.last_name) - 1);
EXEC SQL INSERT INTO persnl.employee
 VALUES (:emp.empnum, :emp.first_name,
 :emp.last_name, :emp.deptnum, :emp.jobcode,
 :emp.salary INDICATOR :ind_1);
...
return 0;
} /* end main */

BOL

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-6

Simple and Compound Statements Inserting a Date-Time Value

CO

CO
void blank_pad(char *buf, size_t size)
{
 size_t i;
 i = strlen(buf);
 if (i < size)
 memset(&buf[i], ' ', size - i);
 buf[size] = '\0';
} /* end blank_pad */

Example

This statement uses the NULL keyword instead of an indicator variable:

EXEC SQL INSERT INTO persnl.employee
 VALUES (:emp.empnum, :emp.first_name,
 :emp.last_name, :emp.deptnum, :emp.jobcode,
 NULL);

Example

This example inserts a row into the EMPLOYEE table and sets the SALARY column to
null by using an indicator variable:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
* Declare host variables EMPNUM, FIRST-NAME,
* LAST-NAME, DEPTNUM, JOBCODE, and SALARY.
 ...
 01 IND-1 PIC S9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 MOVE -1 TO IND-1.
* Move values to host variables EMPNUM, FIRST-NAME,
* LAST-NAME, DEPTNUM, JOBCODE, and SALARY.
 ...
 EXEC SQL INSERT INTO persnl.employee
 VALUES (:EMPNUM, :FIRST-NAME, :LAST-NAME,
 :DEPTNUM,:JOBCODE,
 :SALARY INDICATOR :IND-1)
 END-EXEC.

Example

This example uses the NULL keyword instead of an indicator variable:

EXEC SQL INSERT INTO PERSNL.EMPLOYEE
 VALUES (:EMPNUM, :FIRST-NAME, :LAST-NAME,
 :DEPTNUM,:JOBCODE, NULL)
END-EXEC.

Inserting a Date-Time Value

For standard date-time columns (DATE, TIME, or TIMESTAMP, or the SQL/MP
DATETIME equivalents), you insert a row directly with the date-time host variable. For

C

BOL

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-7

Simple and Compound Statements Inserting an Interval Value

CO
nonstandard SQL/MP DATETIME columns that are not equivalent to DATE, TIME, or
TIMESTAMP, use the CAST function to insert a row with a date-time value.

Standard Date-Time Example

This example inserts a new row into the PROJECT table, including a timestamp value
in the SHIP_TIMESTAMP column:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HV-TIMESTAMP TIMESTAMP.
 ...
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
* Initialize host variables for new row
 ...
 MOVE "1997-04-25 08:14:12.000000" TO HV-TIMESTAMP.
 ...
 EXEC SQL INSERT INTO PROJECT
 (..., SHIP_TIMESTAMP, ...)
 VALUES(..., :HV-TIMESTAMP), ...)
 END-EXEC.
 ...

Nonstandard SQL/MP DATETIME Example

This example inserts a new row into the PROJECT table, including a nonstandard time
value, DATETIME HOUR TO SECOND, in the SHIP_TIMESTAMP column:

EXEC SQL BEGIN DECLARE SECTION;
 char hv_timestamp[9];
 ...
EXEC SQL END DECLARE SECTION;
...
... /* Initialize host variables for new row */
strcpy(hv_timestamp,"1997-04-25 08:14:12.000000");
...
EXEC SQL INSERT INTO PROJECT
 (..., SHIP_TIMESTAMP, ...)
 VALUES(..., CAST(:hv_timestamp AS DATETIME HOUR TO SECOND),
 ...);
...

Inserting an Interval Value

Insert a row directly with the INTERVAL host variable.

C Interval Example

A table includes a column with a year-month interval and a column with a day-time
interval. This example inserts a new row into this table:

EXEC SQL BEGIN DECLARE SECTION;
 INTERVAL YEAR TO MONTH hv_year_month;

BOL

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-8

Simple and Compound Statements Searched UPDATE Statement

CO
 INTERVAL DAY TO SECOND(4) hv_day_time;
 ...
EXEC SQL END DECLARE SECTION;
...
... /* Initialize host variables for new row */
strcpy(hv_year_month, "63-04");
strcpy(hv_day_time, "25:08:14:12.0000");
...
EXEC SQL INSERT INTO RETIREES
 (..., AGE, LAST_TIMECARD)
 VALUES(..., :hv_year_month,
 :hv_day_time);
...

COBOL Interval Example

A table includes a column with a year-month interval and a column with a day-time
interval. This example inserts a new row into this table:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HV-YEAR-MONTH INTERVAL DAY TO MONTH.
 01 HV-DAY-TIME INTERVAL DAY TO SECOND(4).
 ...
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
* Initialize host variables for new row
 ...
 MOVE "63-04" TO HV-YEAR-MONTH.
 MOVE "25:08:14:12.0000" TO HV-DAY-TIME.
 ...
 EXEC SQL INSERT INTO RETIREES
 (..., AGE, LAST_TIMECARD)
 VALUES(...,
 :HV-YEAR-MONTH,
 :HV-DAY-TIME)
 END-EXEC.
 ...

Searched UPDATE Statement
The searched UPDATE statement updates the values in one or more columns in either
a single row or in a set of rows of a table. The selection of the rows to be updated is
based on a search condition. Use this general syntax:

For complete syntax, see UPDATE statement in the SQL/MX Reference Manual. To
update a set of rows one row at a time by using a cursor, see Section 6, Static SQL
Cursors.

UPDATE table-name
 SET set-clause-list WHERE search-condition

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-9

Simple and Compound Statements Updating a Single Row

CO
To execute an UPDATE statement, a program must have UPDATE privileges on each
column being updated in the table.

After an UPDATE statement executes, NonStop SQL/MX returns a value to the
SQLSTATE variable. If no rows were found satisfying the search condition, the value of
SQLSTATE is 02000 (no data). If a data exception occurs during the update process,
the value of SQLSTATE is 22xxx. The class value is 22, and the subclass can be a
variety of conditions, depending on the nature of the data being inserted. For
information on SQLSTATE values, see Table 13-1 on page 13-2.

Updating a Single Row

You can update a single row of data.

This example updates a single row of the ORDERS table that contains information on
the order number specified by update_ordernum:

C Searched UPDATE Example

void update_orders(void);

EXEC SQL BEGIN DECLARE SECTION;
DATE update_date;
unsigned long update_ordernum;
char SQLSTATE[6];
EXEC SQL END DECLARE SECTION;
...
int main()
{
...
... /* Input the values of update_date and update_ordernum */
update_orders();
...
return 0;
} /* end main */

void update_orders(void) {
 EXEC SQL UPDATE sales.orders
 SET deliv_date = :update_date
 WHERE ordernum = :update_ordernum
 FOR READ COMMITTED ACCESS;
} /* end update_orders */

COBOL Searched UDPATE Example

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 01 UPDATE-DATE DATE.
 01 UPDATE-ORDERNUM PIC 9(6) COMP.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-10

Simple and Compound Statements Updating Multiple Rows

CO

CO
EXEC SQL END DECLARE SECTION END-EXEC.
 ...

 PROCEDURE DIVISION.
 ...
 EXEC SQL UPDATE sales.orders
 SET deliv-date = :UPDATE-DATE
 WHERE ordernum = :UPDATE-ORDERNUM
 FOR READ COMMITTED ACCESS
 END-EXEC.

Updating Multiple Rows

If you do not need to check a value in a row before you update the row, use a single
UPDATE statement to update multiple rows in a table.

Examples

This example updates the SALARY column of all rows in the EMPLOYEE table where
the SALARY value is less than the hv_min_salary host variable. A user enters the
values for hv_inc and hv_min_salary:

EXEC SQL UPDATE persnl.employee
 SET salary = salary * :hv_inc
 WHERE salary < :hv_min_salary;

This example updates all rows in the DEPTNUM column that contain the value in HV-
OLD-DEPTNUM. After the update, all employees who were in the department specified
by HV-OLD-DEPTNUM move to the department specified by HV-NEW-DEPTNUM. A user
enters the values for HV-OLD-DEPTNUM and HV-NEW-DEPTNUM:

EXEC SQL UPDATE persnl.employee
 SET deptnum = :HV-NEW-DEPTNUM
 WHERE deptnum = :HV-OLD-DEPTNUM
END-EXEC.

Updating Columns To Null

You can update a value in a row of data to null.

Examples

This example updates the specified SALARY column to null by using an indicator
variable. The set_to_null host variable specifies the row to update:

/* ind_var is set to -1 */
EXEC SQL UPDATE persnl.employee
 SET salary = :emp_tbl.salary INDICATOR :ind_var
 WHERE jobcode = :set_to_null;

This example uses the NULL keyword instead of an indicator variable:

EXEC SQL UPDATE persnl.employee
 SET salary = NULL

C

BOL

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-11

Simple and Compound Statements Searched DELETE Statement
 WHERE jobcode = :SET-TO-NULL
END-EXEC.

Searched DELETE Statement
The searched DELETE statement deletes one or more rows from a table. The
selection of the rows to be deleted is based on a search condition. If you delete all
rows from a table, the table still exists until it is deleted by a DROP TABLE statement.
Use this general syntax:

For complete syntax, see the DELETE statement in the SQL/MX Reference Manual.

To delete a set of rows one row at a time by using a cursor, see Section 6, Static SQL
Cursors.

To execute a DELETE statement, a program must have DELETE privileges on the
table.

After a DELETE statement executes, NonStop SQL/MX returns a value to SQLSTATE.
If no rows were found satisfying the search condition, the value of SQLSTATE is
02000 (no data). For information on SQLSTATE values, see Table 13-1 on page 13-2.

Deleting a Single Row

To delete a single row, move a unique key value to a host variable and then specify the
host variable in the WHERE clause.

Example

This example deletes only one row of the EMPLOYEE table because each value in
empnum (the primary key) is unique. A user enters the value for the hv_empnum host
variable:

EXEC SQL
 DELETE FROM persnl.employee
 WHERE empnum = :hv_empnum;

Deleting Multiple Rows

If you do not need to check a column value before you delete a row, you can use a
single DELETE statement to delete multiple rows in a table.

DELETE FROM table-name
 WHERE search-condition

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-12

Simple and Compound Statements Compound Statements

CO
Examples

This example deletes all rows (or employees) from the EMPLOYEE table specified by
the deptnum_to_delete host variable (which is entered by a user):

EXEC SQL
 DELETE FROM persnl.employee
 WHERE deptnum = :deptnum_to_delete;

This example deletes all suppliers from the PARTSUPP table who charge more than
TERMINAL-MAX-COST for a terminal. The terminal part numbers range from
TERMINAL-FIRST-NUM to TERMINAL-LAST-NUM:

EXEC SQL
 DELETE FROM invent.partsupp
 WHERE partnum BETWEEN :TERMINAL-FIRST-NUM
 AND :TERMINAL-LAST-NUM
 AND partcost > :TERMINAL-MAX-COST
END-EXEC.

Compound Statements
Compound statements enable SQL/MX clients to batch multiple SQL statements into
one data request to the server. This reduction in the number of client-server requests
results in increased transaction throughput and, consequently, faster response times.
The compound statement feature benefits both the client and the server. The client
waits for the server a reduced number of times, and the server switches contexts a
reduced number of times when responding to different client requests.

Compound statements are supported for static SQL only.

The SQL statements are coded within the BEGIN and END keywords. The statements
are executed sequentially and are atomic. Therefore, if the execution of any statement
within the BEGIN and END keywords encounters an error (such as a unique constraint
violation), NonStop SQL/MX automatically rolls back all the statements. NonStop
SQL/MX limits the quantity of SQL statements in a compound statement to 100.

 Each SELECT statement within a BEGIN ... END statement should return at least one
row. If a SELECT statement within a BEGIN ... END statement does not return at least
one row, further execution of the compound statement stops, and NonStop SQL/MX
issues either a warning (8014) or an error (8015). The warning is displayed if no
updates occurred before the SELECT statement that did not return a row. In the case
of the warning, NonStop SQL/MX does not roll back the transaction. The error is
displayed if updates occurred before the SELECT statement that did not return a row.
Because the updates occurred as part of this compound statement, NonStop SQL/MX
rolls back the transaction. In both cases, the behavior is atomic because none of the
statements are executed.

BEGIN
 SQL-statement;[SQL-statement;]...
END;

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-13

Simple and Compound Statements Compound Statements

CO
 For complete syntax, see the Compound (BEGIN ... END) statement in the SQL/MX
Reference Manual.

Although you cannot use cursors in compound statements, you can use rowsets to
retrieve multiple rows from database tables. You cannot embed C/C++ or COBOL
commands within a compound statement.

You cannot use a compound statement within trigger actions. The INSERT, UPDATE,
and DELETE statements cannot be trigger events when they are used in a compound
statement.

Example

Group three statements—two INSERT statements and an UPDATE statement—that
update the database within a single transaction. If an error occurs within the compound
statement, program control continues following the compound statement, and the
application issues a rollback to undo the effects of the other statements:

EXEC SQL WHENEVER SQLERROR GOTO end_compound;

EXEC SQL BEGIN WORK;

EXEC SQL BEGIN
 INSERT INTO sales.orders VALUES (:ordernum, DATE '1998-03-23',
 DATE '1998-03-30', 75, 7654);

 INSERT INTO sales.odetail VALUES (:ordernum, :partnum,
 :price, :qty);

 UPDATE invent.partloc SET QTY_ON_HAND = QTY_ON_HAND - :qty
 WHERE PARTNUM = :partnum AND LOC_CODE = 'G45';
END;

end_compound:
if (strcmp(SQLSTATE, SQLSTATE_OK) == 0)
 EXEC SQL COMMIT WORK; /* Commit the changes */
else
 EXEC SQL ROLLBACK WORK; /* Roll back the changes */

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 01 SQLSTATE-OK PIC X(5) VALUE "00000".
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 01-start-compound.
 EXEC SQL WHENEVER SQLERROR GO TO 09-end-compound END-EXEC.
 EXEC SQL BEGIN WORK END-EXEC.
 EXEC SQL BEGIN
 INSERT INTO sales.orders VALUES (:ordernum, DATE '1998-03-23',
 DATE '1998-03-30', 75, 7654);
 INSERT INTO sales.odetail VALUES (:ordernum, :partnum,
 :price, :qty);
 UPDATE invent.partloc SET QTY_ON_HAND = QTY_ON_HAND - :qty
 WHERE PARTNUM = :partnum AND LOC_CODE = 'G45';
 END END-EXEC.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-14

Simple and Compound Statements Assignment Statement

CO
 09-end-compound.
 IF SQLSTATE = SQLSTATE-OK
* Commit the change
 EXEC SQL COMMIT WORK END-EXEC
 ELSE
* Roll back the change
 EXEC SQL ROLLBACK WORK END-EXEC.

NonStop SQL/MX supports the use of host variables but does not allow for local
variables declared within the BEGIN and END keywords.

You can use SELECT statements inside compound statements only if each SELECT
retrieves at most one row (or rowset) result. This restriction is the normal requirement
for using the SELECT INTO statement.

Example

Use the SELECT INTO statement to retrieve order information from the database and
then update the quantity on hand for that part number:

EXEC SQL BEGIN;
 SELECT UNIT_PRICE, QTY_ORDERED
 INTO :unit_price,:qty_ordered
 FROM ODETAIL
 WHERE ORDERNUM = :ordernum AND PARTNUM = :partnum;

 UPDATE PARTLOC
 SET QTY_ON_HAND = QTY_ON_HAND - :qty_ordered
 WHERE PARTNUM = :partnum AND LOC_CODE = :loc_code;
END;

 EXEC SQL BEGIN
 SELECT UNIT_PRICE, QTY_ORDERED
 INTO :unit-price,:qty-ordered
 FROM ODETAIL
 WHERE ORDERNUM = :ordernum AND PARTNUM = :partnum;
 UPDATE PARTLOC
 SET QTY_ON_HAND = QTY_ON_HAND - :qty-ordered
 WHERE PARTNUM = :partnum AND LOC_CODE = :loc-code;
 END END-EXEC.

Assignment Statement
Inside a compound statement, an SQL statement can compute and assign the value of
an expression to a host variable. Subsequent SQL statements inside that compound
statement can then use that host variable to get the value of the expression computed
by the preceding SQL statement. Use this general syntax:

The target side of the assignment is a list of host variables. The source side of the
assignment is a value expression, NULL, or a row subquery.

For complete syntax, see the Assignment statement in the SQL/MX Reference Manual.

SET assignment-target = assignment-source

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-15

Simple and Compound Statements IF Statement

CO
Example

This example retrieves order information from the database and then updates the
quantity on hand for that part number. You can use the SET statement as an
alternative to the SELECT INTO statement:

EXEC SQL BEGIN;
 SET :unit_price,:qty_ordered = SELECT UNIT_PRICE, QTY_ORDERED
 FROM ODETAIL
 WHERE ORDERNUM = :ordernum AND PARTNUM = :partnum;

 UPDATE PARTLOC
 SET QTY_ON_HAND = QTY_ON_HAND - :qty_ordered
 WHERE PARTNUM = :partnum AND LOC_CODE = :loc_code;
END;

EXEC SQL BEGIN
 SET :unit-price, :qty-ordered = SELECT UNIT_PRICE, QTY_ORDERED
 FROM ODETAIL
 WHERE ORDERNUM = :ordernum AND PARTNUM = :partnum;

 UPDATE PARTLOC
 SET QTY_ON_HAND = QTY_ON_HAND - :qty-ordered
 WHERE PARTNUM = :partnum AND LOC_CODE = :loc-code;
 END END-EXEC.

IF Statement
An IF statement provides branching inside compound statements. An IF statement is a
compound statement that provides conditional execution based on the truth value of a
conditional expression. Use this general syntax:

For the complete syntax and semantics, see the IF statement in the SQL/MX
Reference Manual.

Example

In this example, INSERT and SELECT statements execute sequentially only for new
orders. Otherwise, the SELECT statement returns information on the current customer:

...
EXEC SQL
BEGIN
IF :hv_new_ordernum <> 0
THEN
 INSERT INTO SALES.ORDERS

IF conditional-expression THEN
 SQL-statement;[SQL-statement;]...
 [ELSEIF conditional-expression THEN
 SQL-statement;[SQL-statement;]...]...
 [ELSE SQL-statement;[SQL-statement;]...]
END IF

C

BOL

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-16

Simple and Compound Statements Using PROTOTYPE Host Variables as Table Names

CO
 (ORDERNUM, ORDER_DATE, DELIV_DATE, SALESREP, CUSTNUM)
 VALUES (:hv_new_ordernum, :hv_orderdate, :hv_delivdate,
 :hv_salesrep, :hv_custnum);
 SELECT CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :hv_custnum, :hv_custname,
 :hv_street, :hv_city, :hv_state, :hv_postcode
 FROM SALES.CUSTOMER
 WHERE CUSTNUM = :hv_custnum;
ELSE
 SELECT CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :hv_custnum, :hv_custname,
 :hv_street, :hv_city, :hv_state, :hv_postcode
 FROM SALES.CUSTOMER
 WHERE CUSTNUM = :hv_current_custnum;

END IF;
END;
...

EXEC SQL
BEGIN
IF :hv-new-ordernum <> 0
THEN
 INSERT INTO SALES.ORDERS
 (ORDERNUM, ORDER_DATE, DELIV_DATE, SALESREP, CUSTNUM)
 VALUES (:hv-new-ordernum, :hv-orderdate, :hv-delivdate,
 :hv-salesrep, :hv-custnum);
 SELECT CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :hv-custnum, :hv-custname,
 :hv-street, :hv-city, :hv-state, :hv-postcode
 FROM SALES.CUSTOMER
 WHERE CUSTNUM = :hv-custnum;
ELSE
 SELECT CUSTNUM, CUSTNAME, STREET, CITY, STATE, POSTCODE
 INTO :hv-custnum, :hv-custname,
 :hv-street, :hv-city, :hv-state, :hv-postcode
 FROM SALES.CUSTOMER
 WHERE CUSTNUM = :hv-current-custnum;
END IF;
END END-EXEC.

Using PROTOTYPE Host Variables as Table
Names

You can dynamically change the name of a table or view in an embedded SQL
statement by using a host variable to provide the table name during execution. This
capability enables late name resolution. For more information, see Late Name
Resolution on page 8-6.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-17

Simple and Compound Statements Using PROTOTYPE Host Variables as Table Names

CO
After you declare a host variable for the table name, you can specify it within an
embedded SQL statement by using the PROTOTYPE clause. For the syntax, see
PROTOTYPE Host Variables For SQL/MP and SQL/MX Objects on page 8-4.

You must initialize the value of the PROTOTYPE host variable before the execution of
the embedded SQL statement.

Example

This example selects like columns from multiple tables that are specified dynamically.
There is a separate job code table for each division within a corporation:

EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR hv_tablename[161];
 unsigned NUMERIC (4) hv_jobcode;
 VARCHAR hv_jobdesc[19];
 ...
EXEC SQL END DECLARE SECTION;
...
/* Initialize prototyped host variable name for the table. */
printf("Enter the fully qualified name of the table: ");
scanf("%s", &hv_tablename);

/* Initialize host variable in WHERE clause. */
printf("Enter job code to be retrieved: ");
scanf("%hu", &hv_this_jobcode);
...
EXEC SQL
 SELECT jobcode, jobdesc
 INTO :hv_jobcode, hv_jobdesc
 FROM :hv_tablename PROTOTYPE 'samdbcat.persnl.job'
 WHERE jobcode = :hv_this_jobcode;
...

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 hv-tablename PIC X(160).
 01 hv-jobcode PIC 9(4).
 01 hv-this-jobcode PIC 9(4).
 01 hv-jobdesc.
 02 LEN PIC S9(4) COMP.
 02 VAL PIC X(18).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
* Initialize protyped host variable name for the table.

 MOVE ALL SPACES TO hv-tablename.
 DISPLAY "Enter the fully qualified name of the table: ".
 ACCEPT hv-tablename.

* Initialize host variable in WHERE clause.

 DISPLAY "Enter job code to be retrieved: ".

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-18

Simple and Compound Statements Using PROTOTYPE Host Variables as Table Names
 ACCEPT hv-this-jobcode.
 ...

 EXEC SQL
 SELECT jobcode, jobdesc
 INTO :hv-jobcode, :hv-jobdesc
 FROM :hv-tablename PROTOTYPE 'samdbcat.persnl.job'
 WHERE jobcode = :hv-this-jobcode END-EXEC.

The columns that you select from a dynamically specified table must be the same as
the columns in the table specified in the PROTOTYPE clause during static compilation.
Otherwise, NonStop SQL/MX returns an error.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-19

Simple and Compound Statements Using PROTOTYPE Host Variables as Table Names
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
5-20

6 Static SQL Cursors

In NonStop SQL/MX, a mechanism called a cursor allows an application program to
select and then retrieve a set of rows one row at a time. Each row in the set satisfies
the criteria in the search condition of the SELECT statement that specifies the cursor.
NonStop SQL/MX builds a result table to hold all the rows retrieved by executing the
SELECT statement and then uses a cursor to make rows from the result table
available to your program. The cursor identifies the current row of the result table.

The SELECT statement that specifies the cursor must be within a DECLARE CURSOR
declaration, which defines and names the cursor, identifying the set of rows to be
retrieved.

The result table of a cursor is processed like a sequential data set. First open the
cursor with an OPEN statement before any rows are retrieved. Then use a FETCH
statement to retrieve the cursor’s current row. The program can test the data in each
row at the current cursor position and then, if the data meets certain criteria, it can
display, update, delete, or bypass the row. Use FETCH repeatedly until all rows have
been retrieved. When you have finished processing the rows, close the cursor with a
CLOSE statement.

This section describes:

 DML Statements for Static SQL Cursors on page 6-1
 Steps for Using a Static SQL Cursor on page 6-2
 Using Date-Time and INTERVAL Data Types on page 6-12
 Considerations When Using a Cursor on page 6-14

DML Statements for Static SQL Cursors
The DML statements you can use with static SQL cursors are:

For detailed statement descriptions, see the SQL/MX Reference Manual.

DECLARE CURSOR Defines a cursor and associates it with a query
expression.

OPEN Opens a cursor.

FETCH Positions a cursor on the next row of a table and retrieves
values from the row.

Positioned UPDATE Updates a row from a table or view at the current cursor
position.

Positioned DELETE Deletes a row from a table or view at the current cursor
position.

CLOSE Closes a cursor.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-1

Static SQL Cursors Steps for Using a Static SQL Cursor
Steps for Using a Static SQL Cursor
Figure 6-1 shows the steps presented within the complete C program. These steps are
executed in the sample program Example A-1 on page A-1.

Note. Using a cursor can sometimes degrade performance. A cursor requires OPEN, FETCH,
and CLOSE statements, which increase the number of messages between the HP NonStop
Distribution Service (DS) and the HP NonStop Data Access Manager (DAM). Consider not
using a cursor if a single-row retrieval is sufficient.

Figure 6-1. Using a Static SQL Cursor in a C Program

...
EXEC SQL BEGIN DECLARE SECTION;
int hostvar;
...
EXEC SQL END DECLARE SECTION;
...

EXEC SQL DECLARE sql_cursor CURSOR FOR
 SELECT column_1, column_2, ..., column_n
 FROM catalog.schema.table
 WHERE column_1 = :hostvar;
...
void find_row(void)
{
...

hostvar = initial_value;
...

EXEC SQL OPEN sql_cursor;
 ...

EXEC SQL FETCH sql_cursor
 INTO :hostvar_1, :hostvar_2, ..., :hostvar_n;
...
... /* Process values in the host variable(s). */
...
... /* If last row has not been processed, */
 /* branch back to fetch another row. */
...

EXEC SQL CLOSE sql_cursor;
...
} /* end find_row
...

C

1

2

3

4

5

6

7

8

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-2

Static SQL Cursors Steps for Using a Static SQL Cursor

CO
Figure 6-2 shows the steps presented within the complete COBOL program. These
steps are executed in the sample program Example C-1 on page C-1.

For more information:

1. Declare Required Host Variables on page 6-4
2. Declare the Cursor on page 6-4
3. Initialize the Host Variables on page 6-5
4. Open the Cursor on page 6-5
5. Retrieve the Values on page 6-6
6. Process the Retrieved Values on page 6-7
7. Fetch the Next Row on page 6-10
8. Close the Cursor on page 6-11

Figure 6-2. Using a Static SQL Cursor in a COBOL Program

 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HOSTVAR 9(4) COMP.
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...

 EXEC SQL DECLARE sql_cursor CURSOR FOR
 SELECT column_1, column_2, ..., column_n
 FROM catalog.schema.table
 WHERE column_1 = :HOSTVAR
 END-EXEC.
 ...

 MOVE INITIAL-VALUE TO HOSTVAR.
 ...

 EXEC SQL OPEN sql_cursor END-EXEC.
 ...

 EXEC SQL FETCH sql_cursor
 INTO :HOSTVAR-1, :HOSTVAR-2, ..., :HOSTVAR-N
 END-EXEC.
 ...
* Process values in the host variable(s).
 ...
* If last row has not been processed,
* branch back to fetch another row.
 ...

 EXEC SQL CLOSE sql_cursor END-EXEC.
 ...

BOL

1

2

3

4

5

6

7

8

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-3

Static SQL Cursors Declare Required Host Variables
Declare Required Host Variables

In an SQL Declare Section, declare any host variables you specify in the query
expression of the DECLARE CURSOR declaration:

 Before the DECLARE CURSOR declaration

 Within the same scope as the SQL statements that refer to them

Declare the Cursor

Use the DECLARE CURSOR declaration to name a cursor and associate it with a
query expression. You can specify a row order for the result table of the query
expression. You can also specify the result table as read-only or to enable the update
of specific columns. Use this general syntax:

For complete syntax, see the DECLARE CURSOR Declaration in the SQL/MX
Reference Manual.

The name of a static cursor is an SQL identifier. The query expression typically
consists of a SELECT statement that specifies the rows that a subsequent FETCH
statement retrieves, one row at a time. The FETCH statement can also store the
retrieved table values into host variables, which your host language program can then
process. For example, your program can list, update, delete, or save the values in an
array.

You code a DECLARE CURSOR declaration:

 In listing order before other SQL statements that refer to the cursor, including the
OPEN, FETCH, DELETE, UPDATE, and CLOSE statements

 Within the scope of other SQL statements that refer to the cursor

Example

This example declares a read-only cursor named get_name_address that accesses
the CUSTOMER table. The query expression specifies the name and address of all
customers within a certain range of zip codes. The BETWEEN clause specifies the
range, and the ORDER BY clause sorts the rows by zip code:

EXEC SQL BEGIN DECLARE SECTION;
char first_postcode[11], last_postcode[11];
...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL DECLARE get_name_address CURSOR FOR
 SELECT custname,street,city,state,postcode
 FROM customer
 WHERE postcode BETWEEN :first_postcode AND :last_postcode

DECLARE cursor-name CURSOR FOR query-expression
 [ORDER BY sort-specification]
 [FOR {READ ONLY | UPDATE [OF column-name-list]}]

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-4

Static SQL Cursors Initialize the Host Variables
 ORDER BY postcode
 FOR READ ONLY;

Example

This example declares an updatable cursor named get_by_partnum that accesses
the PARTS table. The query expression specifies all part numbers greater than or
equal to the host variable named min-partnum:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 min-partnum pic 9(4) COMP.
 ...
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL DECLARE get_by_partnum CURSOR FOR
 SELECT partnum, partdesc, price, qty_available
 FROM parts
 WHERE partnum >= :min-partnum
 FOR UPDATE OF price, qty_available
 END-EXEC.
 ...

Initialize the Host Variables

Initialize the host variables you specified in the query expression in the DECLARE
CURSOR declaration. You must initialize the host variables before you execute the
OPEN statement, or these problems can occur:

 If a host variable contains values with unexpected data types, overflow or
truncation errors can occur.

 If a host variable contains old values from the previous execution of the program, a
subsequent FETCH statement uses these old values as the starting point to
retrieve data. As a result, the FETCH might not begin at the expected location in
the result table.

The host variables must be declared within the scope of the OPEN statement.

Open the Cursor

Use the OPEN statement to establish the result table and position the cursor before
the first row of the table. You can sort the result table if the query expression specified
in the cursor declaration includes the ORDER BY clause. Use this general syntax:

For complete syntax, see the OPEN statement in the SQL/MX Reference Manual.

For audited tables or views, use the OPEN statement to associate a cursor with a TMF
transaction. SQL/MX format tables and views are always audited. SQL/MP format
tables provide a choice of whether to audit.

OPEN cursor-name

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-5

Static SQL Cursors Retrieve the Values
The OPEN statement must execute before any FETCH statements for the cursor and
within the scope of all other SQL statements that refer to the cursor, including
DECLARE CURSOR, FETCH, UPDATE, DELETE, and CLOSE statements.

The OPEN statement does not acquire any locks unless a sort is necessary to order
the selected rows. (The FETCH statement acquires any locks associated with a
cursor.)

Example

This example opens the get_name_address cursor:

EXEC SQL OPEN get_name_address;

Retrieve the Values

Use the FETCH statement to position the cursor at the next row of the result table and
to transfer the values defined in the query expression of the cursor declaration to the
corresponding host variables. Use this general syntax:

For complete syntax, see the OPEN statement in the SQL/MX Reference Manual.

The cursor must be open when the FETCH statement executes. The FETCH
statement must also execute within the scope of all other SQL statements that refer to
the cursor, including DECLARE CURSOR, OPEN, DELETE, UPDATE, and CLOSE
statements.

For audited tables or views, the FETCH statement must execute within the same
transaction as the OPEN statement. This is not true for WITH HOLD cursors. After the
FETCH statement has retrieved all rows specified by the query expression, a
subsequent FETCH causes a no-data exception (SQLSTATE equal to 02000).

This example retrieves information from the PARTS table:

Example

EXEC SQL BEGIN DECLARE SECTION;
struct parts_type { /* host variables */
 unsigned short partnum;
 char partdesc[19];
 long price;
 long qty_available
} ;
struct parts_type parts_rec1, parts_rec2;
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE list_by_partnum CURSOR FOR
 SELECT partnum, partdesc, price, qty_available
 FROM parts
 WHERE partnum >= :parts_rec1.partnum
 ORDER BY partnum
 READ ONLY;

FETCH cursor-name INTO :hostvar [,:hostvar]...

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-6

Static SQL Cursors Process the Retrieved Values

CO
...
void list_func(void) {
EXEC SQL OPEN list_by_partnum;
EXEC SQL FETCH list_by_partnum
 INTO :parts_rec1.partnum,
 :parts_rec1.partdesc,
 :parts_rec1.price,
 :parts_rec1.qty_available;
...
}

Example

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 parts-rec1.
 02 hv-partnum pic 9(4) COMP.
 02 hv-partdesc pic x(18).
 02 hv-price pic s9(6)v9(2) COMP.
 02 hv-qty-available pic s9(5) COMP.
 01 parts-rec2.
 ...
 01 min-partnum pic 9(4) COMP.
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 EXEC SQL DECLARE list_by_partnum CURSOR FOR
 SELECT partnum, partdesc, price, qty_available
 FROM parts
 WHERE partnum >= :min-partnum
 ORDER BY partnum
 FOR READ ONLY
 END-EXEC.
 ...
* Set value for min-partnum.
 ...
 EXEC SQL OPEN list_by_partnum END-EXEC.
 EXEC SQL
 FETCH list_by_partnum
 INTO :hv-partnum OF parts-rec1,
 :hv-partdesc OF parts-rec1,
 :hv-price OF parts-rec1,
 :hv-qty-available OF parts-rec1
 END-EXEC.
 ...

Process the Retrieved Values

After the FETCH statement returns the values to the host variables, your program can
process the values. For example, you can test one or more values and then perform
one of these operations:

 Update columns in the current row by using a positioned UPDATE statement.
 Delete the current row by using a positioned DELETE statement.
 List or display the values.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-7

Static SQL Cursors Process the Retrieved Values
 Save the values in an array and process them later.

After you process a row, retrieve the next row by using the FETCH statement.
Continue executing this loop until you have processed all rows specified by the query
expression. After all rows have been processed, SQLSTATE is 02000, and
SQLCODE is 100.

Positioned UPDATE Statement

Use the positioned UPDATE statement to update a row in a table at the current cursor
position. You can update multiple rows, one row at a time. Before you update a row,
you can also test one or more column values if necessary. Use this general syntax:

For complete syntax, see the UPDATE statement in the SQL/MX Reference Manual.

The WHERE CURRENT OF clause specifies the row to update. The SET clause
updates each column in the current row by using the new values in the host variables.
You can use the WHERE CURRENT OF syntax only with simple SELECT statements.

To execute an UPDATE statement, the cursor must be declared as updatable (the
default is read-only) in the query expression of the DECLARE CURSOR declaration.

An UPDATE statement must execute within the scope of all other SQL statements that
refer to the cursor, including the DECLARE CURSOR, OPEN, FETCH, INSERT, and
CLOSE statements.

For audited tables and views, the UPDATE statement must also execute within the
same transaction as the OPEN and FETCH statements for the cursor.

After the positioned UPDATE statement executes, the cursor remains positioned on
the current row.

Example

Use the get_by_partnum cursor and the host variables named new_price and
new_qty to update the PARTS table:

EXEC SQL DECLARE get_by_partnum CURSOR FOR
 SELECT partnum, partdesc, price, qty_available
 FROM sales.parts
 WHERE partnum >= :min_partnum
 FOR UPDATE OF price, qty_available;
... /* Set the value of min_partnum host variable */
EXEC SQL OPEN get_by_partnum;
EXEC SQL FETCH get_by_partnum INTO ... ;
... /* Test value(s) in the current row. */
... /* Set new values in the host variables. */
/* Update the current row. */
EXEC SQL UPDATE sales.parts

UPDATE table-name
 SET column = :hostvar [,column = :hostvar]...
 WHERE CURRENT OF cursor-name

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-8

Static SQL Cursors Process the Retrieved Values

CO
 SET price = :new_price,
 qty_available = :new_qty
 WHERE CURRENT OF get_by_partnum;

... /* Branch back to retrieve the next row. */

EXEC SQL CLOSE get_by_partnum;

Positioned DELETE Statement

Use the positioned DELETE statement to delete a row in a table at the current cursor
position. You can delete multiple rows, one row at a time. Before you delete a row, you
can also test one or more column values if necessary. Use this general syntax:

For complete syntax, see the DELETE statement in the SQL/MX Reference Manual.

The WHERE CURRENT OF clause specifies the row to delete. The cursor must also
be declared as updatable (the default is read-only) in the query expression of the
DECLARE CURSOR statement.

If you delete all rows from a table, the table still exists until it is deleted by a DROP
TABLE statement.

A positioned DELETE statement must execute within the scope of other SQL
statements that refer to the cursor, including the DECLARE CURSOR, OPEN, and
FETCH statements.

For audited tables and views, the DELETE statement must execute within the same
transaction as the OPEN and FETCH statements for the cursor.

After the positioned DELETE statement executes, the cursor is positioned before the
next row in the result table.

Example

This example declares a cursor named get_by_partnum, retrieves data from the
PARTS table, tests the data, and deletes specific rows:

PROCEDURE DIVISION.
 ...
EXEC SQL DECLARE get_by_partnum CURSOR FOR
 SELECT partnum, partdesc, price, qty_available
 FROM sales.parts
 WHERE partnum >= :min-partnum
END-EXEC.
 ...
 EXEC SQL OPEN get_by_partnum END-EXEC.
 EXEC SQL FETCH get_by_partnum ... END-EXEC.
* Test the value(s) in the current row.
 ...
* Delete the current row.

DELETE FROM table-name
 WHERE CURRENT OF cursor-name

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-9

Static SQL Cursors Fetch the Next Row

CO
 EXEC SQL DELETE FROM sales.parts
 WHERE CURRENT OF get_by_partnum
 END-EXEC.
* Branch back to retrieve the next row.
 ...
 EXEC SQL CLOSE get_by_partnum END-EXEC.

Fetch the Next Row

In Retrieve the Values on page 6-6, the FETCH statement positions the cursor at the
next row of the result table and transfers the values defined in the query expression of
the DECLARE CURSOR statement to the corresponding host variables. After the
FETCH statement has retrieved all rows specified by the query expression, a
subsequent FETCH causes a no-data exception (SQLSTATE equal to 02000).

This example uses SQLSTATE to control a while loop. Fetch the first row of the result
table of the query expression. Following this first FETCH statement, construct a while
loop that executes provided SQLSTATE returns the 00000 value.

Within the while loop, your program processes the fetched row and then executes
another fetch for the next row of the result table. Following the while loop (when
SQLSTATE is no longer 00000), you can test for the end no-data condition for the
cursor and branch to the CLOSE statement if no more data is available:

Examples

EXEC SQL BEGIN DECLARE SECTION; /* host variables */
 char SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;
char SQLSTATE_NODATA[6]="02000";
char SQLSTATE_OK[6]="00000";
...
EXEC SQL OPEN get_by_partnum;
...
EXEC SQL FETCH get_by_partnum ... ; /* Get first row */
while (strcmp(SQLSTATE, SQLSTATE_OK) == 0) {
 if ... /* Test the value(s) in the current row */
 EXEC SQL DELETE FROM sales.parts /* Delete current row */
 WHERE CURRENT OF get_by_partnum ;
 EXEC SQL FETCH get_by_partnum ... ; /* Get next row */
}
if (strcmp(SQLSTATE, SQLSTATE_NODATA) == 0)
 EXEC SQL CLOSE get_by_partnum;
else
... /* Handle other SQLSTATE errors */

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 SQLSTATE-NODATA PIC X(5) VALUE "02000".

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-10

Static SQL Cursors Close the Cursor
 01 SQLSTATE-OK PIC X(5) VALUE "00000".
 ...
EXEC SQL OPEN get_by_partnum END-EXEC.
 ...
 EXEC SQL FETCH get_by_partnum ... END-EXEC.
 PERFORM UNTIL SQLSTATE = SQLSTATE-NODATA
* Test the value(s) in the current row
 IF ...
 EXEC SQL DELETE FROM sales.parts
 WHERE CURRENT OF get_by_partnum
 END-EXEC.
 END-IF
* Get the next row
 EXEC SQL FETCH get_by_partnum ... END-EXEC.
 END-PERFORM.
 ...
 EXEC SQL CLOSE get_by_partnum END-EXEC.

Close the Cursor

Use the CLOSE statement to close the cursor and release the result table established
by the OPEN statement. After the CLOSE statement executes, the result table no
longer exists. To use the same cursor again, you must reopen it by using an OPEN
statement.

Use this general syntax:

For complete syntax, see the CLOSE statement in the SQL/MX Reference Manual.

A CLOSE statement must execute within the scope of all other SQL statements that
refer to the cursor, including the DECLARE CURSOR, OPEN, FETCH, INSERT, and
DELETE statements.

Example

This C example closes the list_by_partnum cursor:

EXEC SQL CLOSE list_by_partnum;

The COMMIT WORK and ROLLBACK WORK statements also close all open
associated cursors.

To ensure that a sequence of statements that changes the database either executes
successfully or not at all, define one transaction consisting of these statements by
enclosing the sequence within the BEGIN WORK and COMMIT WORK statements.
The CLOSE statement does not save changes. COMMIT WORK saves all changes
made in the table. For further information, see Section 14, Transaction Management.

Note. Ensure that AUTOCOMMIT is off. If AUTOCOMMIT is on, the transaction started by the
executor implicitly is committed when the statement is finished.

CLOSE cursor-name
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-11

Static SQL Cursors Using Date-Time and INTERVAL Data Types
Using Date-Time and INTERVAL Data Types
If a column in the select list of a cursor specification has an INTERVAL or standard
date-time (DATE, TIME, or TIMESTAMP, or the SQL/MP DATETIME equivalents) data
type, use the INTERVAL or date-time type.

If a column in the select list of a cursor specification has a nonstandard SQL/MP
DATETIME data type that is not equivalent to DATE, TIME, or TIMESTAMP, you must
use the CAST function to convert the column to a character string. You must also
specify the length as the length of the target host variable (or the length–1 in the case
of a C program) as part of the CAST conversion. Furthermore, if the column in the
WHERE clause to be compared to the input value has a nonstandard SQL/MP
DATETIME data type, you must use the CAST function to convert the character input
value to the appropriate data type.

Standard Date-Time Example

This example shows a typical context for a date-time input parameter for a cursor
specification:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_projcode;
 char hv_projdesc[19];
 DATE hv_start_date;
 DATE in_start_date;
EXEC SQL END DECLARE SECTION;...
EXEC SQL DECLARE get_project CURSOR FOR
 SELECT projcode, projdesc, start_date
 FROM samdbcat.persnl.project
 WHERE start_date <= :in_start_date;

/* Initialize the value in the WHERE clause. */
printf("Enter latest start date in form yyyy-mm-dd: ");
scanf("%s", in_start_date);
/* Open the cursor using this value. */
EXEC SQL OPEN get_project;
/* Fetch the first row of the result table. */
EXEC SQL FETCH get_project
 INTO :hv_projcode,:hv_projdesc,:hv_start_date;

while (strcmp (SQLSTATE, SQLSTATE_NODATA) != 0) {
 /* Process the row in some way. */
 ...
 /* Fetch the next row of the result table. */
 EXEC SQL FETCH get_project
 INTO :hv_projcode,:hv_projdesc,:hv_start_date;
}
/* Close the cursor. */
EXEC SQL CLOSE get_project;

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-12

Static SQL Cursors Nonstandard SQL/MP DATETIME Example
Nonstandard SQL/MP DATETIME Example

This example shows a typical context for a nonstandard date-time input parameter,
DATETIME MONTH TO DAY (mm-dd), for a cursor specification:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_projcode;
 char hv_projdesc[19];
 char hv_start_date[6];
 char in_start_date[6];
EXEC SQL END DECLARE SECTION;...
EXEC SQL DECLARE get_project CURSOR FOR
 SELECT projcode, projdesc, CAST(start_date AS CHAR(5))
 FROM samdbcat.persnl.project
 WHERE start_date <=
 CAST(:in_start_date AS DATETIME MONTH TO DAY);

/* Initialize the value in the WHERE clause. */
printf("Enter latest start date in form mm-dd: ");
scanf("%s", in_start_date);
/* Open the cursor using this value. */
EXEC SQL OPEN get_project;
/* Fetch the first row of the result table. */
EXEC SQL FETCH get_project
 INTO :hv_projcode,:hv_projdesc,:hv_start_date;

while (strcmp (SQLSTATE, SQLSTATE_NODATA) != 0) {
 /* Process the row in some way. */
 ...
 /* Fetch the next row of the result table. */
 EXEC SQL FETCH get_project
 INTO :hv_projcode,:hv_projdesc,:hv_start_date;
}
/* Close the cursor. */
EXEC SQL CLOSE get_project;

Interval Example

This example uses a typical context for an interval input parameter for a cursor
specification:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_projcode;
 char hv_projdesc[19];
 INTERVAL DAY(4) hv_est_complete;
 INTERVAL DAY(4) in_est_complete;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL DECLARE get_project CURSOR FOR
 SELECT projcode, projdesc, est_complete
 FROM samdbcat.persnl.project
 WHERE est_complete <= :in_est_complete

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-13

Static SQL Cursors Using Floating-Point Data Types
/* Initialize the value in the WHERE clause. */
printf("Enter minimum estimated number of days: ");
scanf("%s", in_est_complete);

/* Open the cursor using this value. */
EXEC SQL OPEN get_project;

/* Fetch the first row of the result table. */
EXEC SQL FETCH get_project
 INTO :hv_projcode,:hv_projdesc,:hv_est_complete;

while (strcmp (SQLSTATE, SQLSTATE_NODATA) != 0) {
 /* Process the row in some way. */
 ...
 /* Fetch the next row of the result table. */
 EXEC SQL FETCH get_project
 INTO :hv_projcode,:hv_projdesc,:hv_est_complete;
}
/* Close the cursor. */
EXEC SQL CLOSE get_project;

Using Floating-Point Data Types
You can retrieve floating-point data from SQL/MP and SQL/MX tables to an application
program. The type of float returned to the application (IEEE or Tandem) depends on
the float host variable that was declared. Based on the declared type, NonStop
SQL/MX converts and returns floating-point values to the application in the appropriate
form.

If the application directs the SQL/MX preprocessor to declare host variables in IEEE
floating-point format and then compiles and links the program with Tandem floating-
point format, an application error occurs and incorrect floating point values are
returned. This problem also occurs if the host variable is declared as Tandem floating-
point and linked as an IEEE floating-point value.

Considerations When Using a Cursor
 If the cursor locks or updates an audited table, the OPEN and FETCH operations

and any subsequent cursor operations must be within a transaction.

 A process that uses a cursor must have read authority for tables and views
referred to in the SELECT that specifies the cursor. If the cursor declaration
specifies FOR UPDATE, the process must also have write authority for the
referenced table, view, and base tables underlying the view.

If you use a cursor to locate rows to delete or update without specifying FOR
UPDATE in the declaration, NonStop SQL/MX checks only the read authority when
the OPEN executes, even though the delete or update requires write authority.
NonStop SQL/MX checks for write authority when DELETE or UPDATE executes.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-14

Static SQL Cursors Cursor Position
 You can specify IN EXCLUSIVE MODE for the SELECT statement in the cursor
specification so that NonStop SQL/MX does not have to escalate the lock when an
UPDATE or DELETE executes. Otherwise, if you do not specify IN EXCLUSIVE
MODE and your program is reading records accessed by another cursor defined
with IN EXCLUSIVE MODE, your program must wait for access.

Cursor Position

Cursor position is similar to record position in a sequential file. An open cursor is
positioned either before a certain row, on a certain row, or after the last row.

These operations cause the cursor to be positioned:

The SELECT statement that specifies the cursor can determine the order in which
rows are returned. To specify the order, include an ORDER BY clause. Otherwise, the
order is undefined.

Cursor Stability

Cursor stability guarantees that a row at the current cursor position cannot be modified
by another program, but concurrent access to other rows in the database is allowed.
For NonStop SQL/MX to guarantee cursor stability, you can specify STABLE ACCESS
for the SELECT statement that defines the cursor or you can specify SERIALIZABLE
access.

SERIALIZABLE ACCESS locks the row until the end of the transaction.

STABLE ACCESS is used only for those SELECT statements that could potentially be
updated. If the shape of a SELECT statement is such that it cannot be updated with an
updatable cursor (for example it has a join), the STABLE ACCESS option is internally
changed to READ COMMITTED access.

In some cases, a program might be accessing a copy of a row instead of the actual
row. For example, a program might be accessing a copy of the row if the associated
query expression in the cursor declaration requires that the system perform any of
these operations:

 Ordering the rows by a column

 Removing duplicate rows

 Performing other operations that require the selected table to be copied into a
result table before it is used by a program

OPEN Before the first row

FETCH On the retrieved row (the current position)

DELETE Before the row following the deleted row

UPDATE No change (the current position)

CLOSE No position
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-15

Static SQL Cursors Cursor Sensitivity
If your program is accessing a copy of a row instead of the actual row, the cursor
points to a copy of the data, and the data is concurrently available to other programs.

For more information, see the SQL/MX Reference Manual.

Cursor Sensitivity

The ANSI standard defines three types of cursor sensitivity: INSENSITIVE,
SENSITIVE, and ASENSITIVE. NonStop SQL/MX and NonStop SQL/MP provide only
ASENSITIVE behavior, which means that the cursor might or might not see the effects
of other DML operations that are performed within the same transaction. For example,
if you have concurrent DML operations, such an INSERT, a standalone UPDATE, or
standalone DELETE, the result of those operations might not be visible to the cursor.
However, any changes you perform by using UPDATE WHERE CURRENT OF or
DELETE WHERE CURRENT OF are visible to the cursor.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
6-16

7 Static Rowsets

The traditional cursor model in SQL is inefficient for applications retrieving large
numbers of rows because too much time is used retrieving one row at time. However,
the SQL/MX extension rowsets enable the SQL cursor to return more than one row at
a time, greatly reducing the number of calls made to both the database system and the
network.

Rowsets improve the performance of applications requiring simultaneous access to
several rows at a time, whether that access is to perform comparisons or other types of
processing. Rowsets simplify the task of storing and manipulating a large number of
rows in the application address space.

This section describes:

 What Are Rowsets? on page 7-1
 Using Rowsets on page 7-2
 Declaring Host Variable Arrays as Rowsets on page 7-2
 Specifying Rowset Arrays on page 7-4
 Using Rowset Arrays in DML Statements on page 7-7
 Specifying Size and Row ID for Rowset Arrays on page 7-24
 Specifying Rowset-Derived Tables on page 7-32
 Using Rowset-Derived Tables in DML Statements on page 7-33

What Are Rowsets?
The rows returned in a single fetch are called the rowset, and the columns of the rows
are the arrays composing the rowset. An application can present a set of column
values (rows) in an SQL statement (for example, in the WHERE clauses). The host
variable arrays composing a rowset therefore can be used as output variables (for
example, in the INTO clause) to receive large amounts of data from SELECT and
FETCH statements. Each host variable array receives data from one selected column.
Similarly, you can use host variable arrays as input variables for these statements:

 SELECT (WHERE and HAVING clauses)
 INSERT (VALUES clause)
 UPDATE (SET and WHERE clauses)
 DELETE (WHERE clause)

Rowsets are supported for both static and dynamic embedded SQL programs in
NonStop SQL/MX. Before using static rowsets, you must declare them as host variable
arrays in the SQL DECLARE section by using the keyword ROWSET. For information
on dynamic rowsets, see Section 12, Dynamic SQL Rowsets.

Note. Rowsets are not supported from MXCI.

Note. Examples in this section show how to use rowsets from an SQL/MX program that
accesses SQL/MX and SQL/MP tables. Rowsets as a feature do not exist in NonStop SQL/MP.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-1

Static Rowsets Using Rowsets
Using Rowsets
The two ways of using rowsets in SQL queries are:

 Direct use. You can place host variable rowset arrays anywhere a scalar host
variable is placed in an SQL query.

 Rowset-derived tables. Given a rowset, a construct is provided that creates an
in-memory table. A rowset-derived table resulting from this construct is a table of
several columns (one column for each array of the rowset) and rowset size tuples
or rows.

A rowset is analogous to an in-memory table. A rowset with one host variable array of
n elements is similar to a temporary in-memory table with n tuples, where the j
element value of the array corresponds to the j tuple of the table. A rowset with M host
variable arrays of n elements is similar to a temporary in-memory table with M columns
and n tuples. The j element value of array A corresponds to the A column of the j
tuple of the table. Within the scope of an SQL statement and by using rowset-derived
table syntax, you can create and use in-memory tables in a way similar to ordinary
tables.

An SQL statement containing a rowset of size n for input is handled like a join of the
tables composing the SQL statement with the rowset or the execution of the same
statement n times using successive elements of the rowset. The semantics and side
effects of rowsets are explained assuming that the rowset is just another table in the
SQL statement.

For output, a cursor is typically needed in a SELECT statement unless the SELECT
statement returns a single row. When you use rowset arrays as host variables to
retrieve results, this rule is expanded as follows:

 A cursor is not needed if the SELECT statement returns no more than the size of
the rowset.

 A cursor must be used when the maximum number of rows cannot be estimated or
when memory requirements are too high to store the result table. In this case, the
result table is retrieved in rowset size batches using the FETCH statement.

Declaring Host Variable Arrays as Rowsets
A host variable array, along with its dimension, is declared within the SQL Declare
Section of an embedded SQL program. A rowset array is a host variable array that is
declared for each column in a query. A rowset consists of a collection of rowset arrays.
Each rowset array contains as many elements as there are in the rowset.

The dimensions of the arrays that make up a rowset correspond to the desired number
of elements. All arrays must have the same number of dimensions as the other arrays
in the rowset or be at least as large as the desired rowset. NonStop SQL/MX uses the
smallest dimension as the rowset size while performing operations into the rowset.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-2

Static Rowsets Declaring Host Variable Arrays as Rowsets

CO
To specify a host variable array as a part of a rowset, use this syntax:

rowset-size

specifies the dimension of the host variable array that is a part of the rowset. The
size immediately follows the ROWSET keyword and must be enclosed in square
brackets []. The size is an unsigned integer.

variable-specification

is the data type and name of a host variable. It can be any valid host language
identifier with a data type that corresponds to an SQL data type. For information on
SQL data types and C host variable data types, see Table 3-4 on page 3-12. For
the COBOL equivalent, see Table 4-2 on page 4-7.

Example

This example uses three arrays of 200 elements, which are used to retrieve at most
200 rows of a table. You can use the fourth array as an indicator array for the salary:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET [200] char hva_first_name[16];
 ROWSET [200] char hva_last_name[21];
 ROWSET [200] unsigned NUMERIC (8,2) hva_salary;
 ROWSET [200] short hva_salary_indicator;
 ...
EXEC SQL END DECLARE SECTION;

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[200] hvafirstname pic x(15).
 02 ROWSET[200] hvalastname pic x(20).
 02 ROWSET[200] hvasalary pic 9(8)v9(2) comp.
 02 ROWSET[200] hvasalaryindicator pic s9(4) comp.
 ...
EXEC SQL END DECLARE SECTION END-EXEC.

ROWSET [rowset-size] variable-specification

Note. In the examples in this section, note that COBOL references the rowset array as
elements 1 through 5. (C references the array as elements 0 through 4.) However, when
NonStop SQL/MX references the COBOL array as a derived table, those elements are
referenced as rows 0 through 4.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-3

Static Rowsets Rowset Host Variable Pointers
Rowset Host Variable Pointers

A rowset host variable cannot be declared as a pointer. If you need to access a rowset
host variable through a pointer, you must make the rowset host variable a structure
field.

Example

The following example shows an improper usage of rowset host variable where the
rowset host variable is declared as a pointer type:

EXEC SQL BEGIN DECLARE SECTION;
/* cannot declare a rowset pointer as host variable */
ROWSET [100] int * rowsetPtr;
 ...

The following example shows the correct use of rowsets in a structure:

EXEC SQL BEGIN DECLARE SECTION;
struct ptrType
{
 /* rowsets are allowed as structure fields */
 ROWSET [100] int rowsetField;
 ...
};

struct ptrType * structPtr;
 ...

Considerations for Rowset Size

 The total rowset size (that is, the size of the row times the number of rows) should
not produce fragmentation in the network or process communication.

 The total rowset size should not exceed the physical memory of the client
computer to avoid fragmentation while accessing a rowset array.

 The rowset size should not be less than the number of rows that need to be
accessed simultaneously. For example, a screen-based application should use a
rowset size that is a multiple of the number of rows displayed on the screen.

Specifying Rowset Arrays
After you declare a host variable array that is a part of a rowset, use this syntax to
specify it within an embedded SQL statement.

array-name

is the host variable array name. It can be any valid host language identifier with a
data type that corresponds to an SQL data type. You must precede array-name
with a colon (:) within an SQL statement.

:array-name [[INDICATOR] :indicator-array-name]
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-4

Static Rowsets Specifying Rowset Arrays

CO
INDICATOR

is an optional keyword that precedes indicator-array-name.

indicator-array-name

is an indicator variable array of exact numeric data type. This data type is short in
C or PIC 9(4)comp in COBOL. You must precede indicator-array-name
with a colon (:) in an SQL statement.

If data returned in the host variable array for a particular row and column is null, the
corresponding indicator variable is set to –1. If character data returned is
truncated, the indicator variable is set to the length of the string in the database.
Otherwise, the value of the indicator variable is zero. To insert null into the
database, set the indicator variable to a value less than zero for a particular row
and column in the corresponding host variable array. For inserting nonnull values,
the corresponding indicator variable must be set to zero. This last rule is also true
for all input arrays (for example, those used in WHERE and SET clauses). You
generate a run-time error if you specify a positive value in an indicator for input.

Example

This example retrieves three columns of, at most, 200 rows of a table. The salary
column can be null, and the salary array is followed by an indicator array:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET [200] char hva_first_name[16];
 ROWSET [200] char hva_last_name[21];
 ROWSET [200] unsigned NUMERIC (8,2) hva_salary;
 ROWSET [200] short hva_salary_indicator;
 ...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL
 SELECT first_name, last_name, salary
 INTO :hva_first_name, :hva_last_name,
 :hva_salary INDICATOR :hva_salary_indicator
 FROM persnl.employee;

...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[200] hvafirstname pic x(15).
 02 ROWSET[200] hvalastname pic x(20).
 02 ROWSET[200] hvasalary pic 9(8)v9(2) comp.
 02 ROWSET[200] hvasalaryindicator pic 9(5).
 EXEC SQL END DECLARE SECTION END-EXEC.
...
 EXEC SQL
 SELECT first_name, last_name, salary
 INTO :hvafirstname, :hvalastname,
 :hvasalary INDICATOR :hvasalaryindicator

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-5

Static Rowsets Using Rowset Arrays for Input
 FROM employee END-EXEC.
...

Using Rowset Arrays for Input

Use array host variables as input in the WHERE clause of SELECT, DELETE, or
UPDATE statements, the HAVING clause of a SELECT statement, the SET clause of
an UPDATE statement, and the VALUES clause of an INSERT statement.

Use rowset arrays for input to provide a looping mechanism equivalent to multiple
logical executions of the same SQL statement, once for each set of input values.
However, diagnostic information is returned only for the whole SQL statement and not
for each set of input values. When you use more than one array host variable as input
in an SQL statement, the input arrays might not all be of uniform size. In this situation,
the number of input values is equal to the size of the smallest input array. If you use
scalar host variables along with some rowset arrays as input, the scalar values are
duplicated as many times as the size of the smallest input array. This scenario is
semantically equivalent to replacing the scalar input host variable with an array (whose
size is the same as the smallest input array in that SQL statement), every element of
which has the same value as the scalar host variable.

When you use rowset arrays as input, check that all array elements up to the size of
the smallest input array have valid values. If not all elements of the input array are
used, specify the size of the input array size to be a smaller value by using the
ROWSET FOR INPUT SIZE syntax. See Specifying Size and Row ID for Rowset
Arrays on page 7-24.

Using Rowset Arrays for Output

Use array host variables for output in the INTO clause of SELECT and FETCH
statements.

Use rowset arrays for output to retrieve multiple rows from the result table by executing
a single SQL statement. When more than one array host variable is used as output in
an SQL statement, the output arrays might not be of uniform size. In this situation, the
number of output rows retrieved is equal to the size of the smallest output array.

When you use the SELECT INTO statement, check that the number of rows in the
result table is not larger than the size of the smallest output array. If the result table is
larger than the output array size, you must declare a cursor, and the FETCH statement
must be executed multiple times to retrieve all the rows in the result table.

Do not use rowset arrays for output in a cursor declaration or with dynamic rowsets.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-6

Static Rowsets Using Rowset Arrays in DML Statements
Using Rowset Arrays in DML Statements

Selecting Rows Into Rowset Arrays

Use a SELECT INTO statement using a rowset as output to retrieve multiple rows of
data from one or more tables or views and place column values into corresponding
host variable arrays. The set of rows returned in a single SELECT statement is called
the rowset, and the columns of the rows are the arrays composing the rowset.

Use this general syntax:

For complete syntax, see the SELECT statement in the SQL/MX Reference Manual.

Technique Description

Selecting Rows Into Rowset Arrays Multiple rows of data are retrieved from a
table or a view, and the specified column
values are placed into host variable arrays.
Multiple search conditions can also be
specified by using host variable arrays in the
WHERE clause.

Inserting Rows From Rowset Arrays Multiple rows are inserted into a table or
view by using arrays of values in the
VALUES clause of an INSERT statement.

Updating Rows by Using Rowset Arrays Multiple logical executions of an UPDATE
statement are performed by using arrays of
values in the SET and WHERE clause.

Deleting Rows by Using Rowset Arrays Multiple logical executions of the DELETE
statement are performed by using arrays of
values in the WHERE clause.

Note. This list of where you can use rowset arrays is not exhaustive. In general, wherever you
specify a scalar host variable in an SQL statement, you can substitute a rowset array host
variable of equivalent type.

SELECT column [,column]...
INTO :hostvar-array [,:hostvar-array]...
FROM table-name [,table-name]...
[WHERE search-condition]
[GROUP BY column [,column]...]
[HAVING search-condition]
[ORDER BY column [,column]...]

Note. Data mining operations—SAMPLE, SEQUENCE BY, and TRANSPOSE—are not
supported for operations with rowsets. Some Publish/Subscribe operations are not supported
with rowsets either. Specifically, you cannot use rowsets as input (in WHERE and SET clauses)
with embedded UPDATEs and DELETEs. Additionally, you cannot join a rowset-derived table
with an embedded UPDATE or DELETE.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-7

Static Rowsets Selecting Rows Into Rowset Arrays

CO
Example

This example uses a SELECT statement returning an employee’s first name, last
name, and department from the EMPLOYEE table. The elements in the target host
variable arrays are in the order based on the columns in the ORDER BY clause.

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET [100] unsigned NUMERIC (4) hva_deptnum;
 ROWSET [100] char hva_firstname[16];
 ROWSET [100] char hva_lastname[21];
 ...
 long numrows;
 EXEC SQL END DECLARE SECTION;
 long i;
 ...
EXEC SQL
 SELECT first_name, last_name, deptnum
 INTO :hva_firstname, :hva_lastname, :hva_deptnum
 FROM persnl.employee
 ORDER BY deptnum, last_name, first_name;
...
EXEC SQL GET DIAGNOSTICS :numrows = ROW_COUNT;
...
for (i = 0; i < numrows; i++) {
 /* NOTE: The null termination can also be done */
 /* before the SELECT statement. */

 hva_firstname[i][15] = '\0';
 hva_lastname[i][20] = '\0';
 printf("\nDept: %hu, Name: %s, %s",
 hva_deptnum[i], hva_lastname[i], hva_firstname[i]);
 ...
 /* Process the row in some way. */

}

 ...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 numrows pic 9(9) comp.
 01 rs.
 02 ROWSET[100] hvadeptnum pic 9(4) comp.
 02 ROWSET[100] hvafirstname pic x(15).
 02 ROWSET[100] hvalastname pic x(20).
EXEC SQL END DECLARE SECTION END-EXEC.
 01 i pic s9(4) comp.
 ...
 EXEC SQL
 SELECT first_name, last_name, deptnum
 INTO :hvafirstname, :hvalastname, :hvadeptnum
 FROM employee
 ORDER BY deptnum, last_name, first_name END-EXEC.
 EXEC SQL

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-8

Static Rowsets Selecting Rows Into Rowset Arrays
 GET DIAGNOSTICS :numrows = ROW_COUNT end-exec.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > numrows
 display "Dept: " hvadeptnum(i) "Name: " hvalastname(i)
 hvafirstname(i)
 end-perform.
...

The previous example is correct only if the SELECT INTO statement is certain to return
fewer than 100 rows. If more than 100 rows are returned, an SQLSTATE value is
returned.

If the SELECT statement can return more rows than are allocated in the rowset array,
you have these choices:

 Limit the SQL query so that it returns only a specified number of rows, as shown:

...
EXEC SQL
 SELECT [first 100]first_name, last_name, deptnum
 INTO :hva_firstname, :hva_lastname, :hva_deptnum
 FROM persnl.employee
 ORDER BY deptnum, last_name, first_name;
...

 Use a rowset cursor to get all the results from the SELECT statement. See
Selecting Rowsets With a Cursor on page 7-16.

Getting the Number of Retrieved Rows

In the preceding example, the actual number of rows retrieved is stored in the
diagnostics area. NonStop SQL/MX stores completion and exception information for an
embedded SQL statement in this area. NonStop SQL/MX automatically allocates the
diagnostics area in a program. You are not required to explicitly allocate it yourself.

At the beginning of the execution of an SQL statement, the diagnostics area is
emptied. When the statement executes, NonStop SQL/MX places information on
completion or exception conditions into this area. The diagnostics area consists of:

 Statement information: Header area with information on the SQL statement as a
whole

 Condition information: Detail area with information on each error, warning, or
completion code that occurs during the execution of the SQL statement

The number of retrieved rows is stored in the ROW_COUNT field of the statement
information in the diagnostics area. You can retrieve the value in the ROW_COUNT
field by using the GET DIAGNOSTICS statement. In the preceding example, the
statement that retrieves the value of ROW_COUNT is specified as:

EXEC SQL GET DIAGNOSTICS :numrows = ROW_COUNT;

For further information, see the GET DIAGNOSTICS statement in the SQL/MX
Reference Manual.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-9

Static Rowsets Selecting Rows Into Rowset Arrays
Retrieving the Row Number for a Failed Operation

NonStop SQL/MX returns an error when an INSERT or UPDATE operation using a
rowset fails. The row number causing the error can be retrieved.

NonStop SQL/MX stores completion and exception information for an embedded SQL
statement in the diagnostics area. NonStop SQL/MX automatically allocates this area
in memory.

The diagnostics area is empty before you execute an SQL statement. When you
execute the statement, NonStop SQL/MX places the information about completion or
exception conditions into the diagnostics area. The diagnostics area consists of the
following:

 Statement Information: The header area that contains information about the SQL
statement.

 Condition Information: The detail area that contains information on errors,
warnings, or completion codes that occur during the execution of the SQL
statement.

The row number that causes the error in an INSERT or UPDATE operation is stored in
the field ROW_NUMBER in the statement information of the diagnostics area. You can
retrieve the value in the field ROW_NUMBER by using the GET DIAGNOSTICS
statement.

For more information, see the GET DIAGNOSTICS statement in the SQL/MX Release
3.2 Reference Manual.

Example
The following example retrieves the row number that causes the error in the insert
operation which is stored in the ROW_NUMBER field of the diagnostics area:

DDL: create table rownum1(a int, b int, primary key(a));
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-10

Static Rowsets Selecting Rows Into Rowset Arrays
Program:

exec sql whenever sqlerror call display_diagnosis;

EXEC SQL BEGIN DECLARE SECTION;

 ROWSET [10] long g_int;

 ROWSET [10] long h_int;

EXEC SQL END DECLARE SECTION;

int main(){

printf("\n\ntest1 : Expecting rownumber = 9\n");

int i=0;

for (i=0; i<10; i++) {

 g_int[i] = i;

 h_int[i] = i;

}

 g_int[9] = 7; /* causes unique constraint error */

 h_int[5] = 3;

 EXEC SQL DELETE FROM rownum1;

 EXEC SQL INSERT INTO rownum1 VALUES (:g_int, :h_int) ;

if (SQLCODE != 0) {

 printf("Failed to insert. SQLCODE = %ld\n",SQLCODE);

 }

 else {

 printf("Insert succeeded. SQLCODE = %ld\n", SQLCODE);

 EXEC SQL COMMIT ;

 }

}

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-11

Static Rowsets Selecting Rows Into Rowset Arrays
void display_diagnosis()

{

 exec sql get diagnostics :hv_num = NUMBER;

 memset(hv_msgtxt,' ',sizeof(hv_msgtxt));

 hv_msgtxt[512]='\0';

 printf("Number : %d\n", hv_num);

 for (i = 1; i <= hv_num; i++) {

 exec sql get diagnostics exception :i

 :hv_sqlcode = SQLCODE,

/* this gets the row number which is causing the unique
constraint error */

 :hv_rownum = ROW_NUMBER,

 :hv_msgtxt = MESSAGE_TEXT;

 printf("Sqlcode : %d\n", hv_sqlcode);

 printf("Message : %s\n", hv_msgtxt);

 printf("RowNum : %d\n", hv_rownum);

}

}

The output for the example is as follows:

test1: Expecting rownumber = 9

Number : 1

Sqlcode : -8102

Message : *** ERROR[8102] The operation is prevented by a unique
constraint.

RowNum : 9

Failed to insert. SQLCODE = -8102

Selecting a Column With Date-Time or INTERVAL Data Type

If a column in the select list has an INTERVAL or standard date-time (DATE, TIME, or
TIMESTAMP, or the SQL/MP DATETIME equivalents) data type, use the INTERVAL or
date-time data types.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-12

Static Rowsets Selecting Rows Into Rowset Arrays

CO
If a column in the select list has a nonstandard SQL/MP DATETIME data type that is
not equivalent to DATE, TIME, or TIMESTAMP, use the CAST function to convert the
column to a character string. You must also specify the length of the target host
variable (or the length–1 in the case of a C program) in the AS clause of the CAST
conversion.

For more information on declaring date-time or INTERVAL data types, see Section 3,
Host Variables in C/C++ Programs and Section 4, Host Variables in COBOL Programs.

Examples

This example uses a typical context for selecting a standard date-time value. The
number of rows in the PROJECT table with a start date less than or equal to 1998-12-
01 does not exceed 200:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET [200] unsigned NUMERIC (4) hva_projcode;
 ROWSET [200] char hva_projdesc[19];
 ROWSET [200] DATE hva_start_date;
 ...
 long numrows;
 EXEC SQL END DECLARE SECTION;
 long i;
 ...
EXEC SQL
 SELECT projcode, projdesc, start_date
 INTO :hva_projcode, :hva_projdesc, :hva_start_date
 FROM persnl.project
 WHERE start_date <= DATE '1998-12-01';
...
EXEC SQL GET DIAGNOSTICS :numrows = ROW_COUNT;
...
for (i = 0; i < numrows; i++) {
 hva_projdesc[i][18] = '\0';
 hva_start_date[i][10] = '\0';
 printf("\nProject: %hu, %s, Started: %s",
 hva_projcode[i], hva_projdesc[i], hva_start_date[i]);
 ...
 /* Process the row in some way. */

}

...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 numrows pic 9(9) comp.
 01 rs.
 02 ROWSET[200] hvaprojcode pic 9(4) comp.
 02 ROWSET[200] hvaprojdesc pic x(18).
 02 ROWSET[200] hvastartdate DATE.
EXEC SQL END DECLARE SECTION END-EXEC.
 01 i pic s9(4) comp.
 ...
EXEC SQL

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-13

Static Rowsets Selecting Rows Into Rowset Arrays
 SELECT projcode, projdesc, start_date
 INTO :hvaprojcode, :hvaprojdesc, :hvastartdate
 FROM project
 WHERE start_date <= DATE '1998-12-01' END-EXEC.
EXEC SQL
 GET DIAGNOSTICS :numrows = ROW_COUNT end-exec.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > numrows
 display "Project: " hvaprojcode(i) hvaprojdesc(i)
 "Started: " hvastartdate(i)
 END-PERFORM
...

Rowset Arrays as Input for SELECT Statements

A SELECT statement retrieves the values in one or more columns of the matching
rows. The matching rows are determined by the evaluation of the search condition in
the WHERE clause of the SELECT statement.

You can use rowset arrays as input in the WHERE clause search condition to specify
multiple values for the search condition in a single SQL statement. The use of rowset
arrays for input is similar to a looping mechanism whereby the same statement is
executed multiple times with a different set of values for input each time. You can use
rowset arrays as input in the HAVING clause search condition of a SELECT statement.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-14

Static Rowsets Selecting Rows Into Rowset Arrays

CO
Example

This example selects the EMPNUM and SALARY columns of all rows in the
EMPLOYEE table where the (JOBCODE, DEPTNUM) value is equal to one of the set
of values in the hva_jobcode and hva_deptnum host variable arrays. An input
value set is composed of array elements from the hva_jobcode and hva_deptnum
host variable arrays with identical index numbers. Five input value sets exist, and the
SELECT statement is executed for each matching input value set:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[5] unsigned NUMERIC (4) hva_jobcode;
 ROWSET[5] unsigned NUMERIC (4) hva_deptnum;
 ROWSET [100] unsigned NUMERIC (4) hva_empnum;
 ROWSET [100] unsigned NUMERIC (8,2) hva_salary;
 ROWSET [100] short hva_salary_indicator;
 ...
 long numrows;
EXEC SQL END DECLARE SECTION;
...
/* Populate the jobcode and deptnum rowsets in some way. */
hva_jobcode[0] = 100;
hva_deptnum[0] = 9000;
hva_jobcode[1] = 200;
hva_deptnum[1] = 9000;
hva_jobcode[2] = 300;
hva_deptnum[2] = 1000;
hva_jobcode[3] = 400;
hva_deptnum[3] = 1000;
hva_jobcode[4] = 500;
hva_deptnum[4] = 3000;
...
EXEC SQL
 SELECT empnum, salary
 INTO :hva_empnum,
 :hva_salary INDICATOR :hva_salary_indicator
 FROM persnl.employee
 WHERE jobcode = :hva_jobcode AND deptnum = :hva_deptnum;
 ...

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 numrows pic 9(9) comp.
 01 rs.
 02 ROWSET[5] hvajobcode pic 9(4) comp.
 02 ROWSET[5] hvadeptnum pic 9(4) comp.
 02 ROWSET[100] hvaempnum pic 9(4) comp.
 02 ROWSET[100] hvasalary pic 9(8)v9(2) comp.
 02 ROWSET[100] hvasalaryindicator pic s9(4) comp.
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
**** populate the jobcode and deptnum rowsets in some way *****
Move 100 TO hvajobcode(1)
Move 9000 TO hvadeptnum(1)
Move 200 TO hvajobcode(2)

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-15

Static Rowsets Selecting Rowsets With a Cursor
Move 9000 TO hvadeptnum(2)
Move 300 TO hvajobcode(3)
Move 1000 TO hvadeptnum(3)
Move 400 TO hvajobcode(4)
Move 1000 TO hvadeptnum(4)
Move 500 TO hvajobcode(5)
Move 3000 TO hvadeptnum(5)
 EXEC SQL
 SELECT empnum, salary
 INTO :hvaempnum, :hvasalary INDICATOR :hvasalaryindicator
 FROM employee
 WHERE jobcode = :hvajobcode AND
 deptnum = :hvadeptnum
 END-EXEC.
...

Selecting Rowsets With a Cursor

If the number of rows returned by a SELECT statement exceeds the size of the rowset
array, use a FETCH statement with a rowset cursor to cycle over a specific number of
rows. The next example uses a rowset cursor to fetch and print the project code, the
project description, and the start date of all projects started before a specific date.

For complete syntax, see the FETCH statement in the SQL/MX Reference Manual.

Examples

EXEC SQL BEGIN DECLARE SECTION;
char SQLSTATE[6];
ROWSET[200] unsigned NUMERIC (4) hva_projcode;
ROWSET[200] char hva_projdesc[19];
ROWSET[200] DATE hva_start_date;
long SQLCODE;
long numrows;
EXEC SQL END DECLARE SECTION;
long i;

/* null terminate char arrays */
for (i = 0; i < 200; i++) {
 hva_projdesc[i][18] = '\0';
 hva_start_date[i][10] = '\0';
}
/* declare cursor for select operation */
EXEC SQL
 DECLARE rowset_cursor CURSOR FOR
 SELECT projcode, projdesc, start_date
 FROM persnl.project
 WHERE start_date <= DATE '1998-12-01';

/* open the cursor */
EXEC SQL
 OPEN rowset_cursor;

/* Fetch all rows of the result table */
WHILE (SQLCODE == 0) {
 EXEC SQL
 FETCH rowset_cursor
 INTO :hva_projcode, :hva_projdesc, :hva_start_date;
 IF ((SQLCODE == 0)||(SQLCODE == 100)) {
 EXEC SQL GET DIAGNOSTICS :numrows = ROW_COUNT;

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-16

Static Rowsets Selecting Rowsets With a Cursor

CO
 IF (SQLCODE != 0) {
 printf("GET DIAGNOSTICS operation failed."
 " SQLCODE = %ld\n", SQLCODE);
 return(SQLCODE);
 }
 for (i = 0; i < numrows; i++) {
 printf("Project Code = %s\t
 Project Description = %s\t
 Start Date = %s\n", hva_projcode[i],
 hva_projdesc[i], hva_start_date[i]);
 }
 }
}
/* Close the cursor */
EXEC SQL
 CLOSE rowset_cursor ;
 ...

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLCODE pic s9(9) comp.
 01 numrows pic 9(9) comp.
 01 rs.
 02 ROWSET[200] hvaprojcode pic 9(4) comp.
 02 ROWSET[200] hvaprojdesc pic x(18).
 02 ROWSET[200] hvastartdate DATE.
EXEC SQL END DECLARE SECTION END-EXEC.
01 i pic s9(4) comp.
...
**** declare cursor for select operation ****

EXEC SQL
 DECLARE rowset_cursor CURSOR FOR
 SELECT projcode, projdesc, start_date
 FROM persnl.project
 WHERE start_date <= DATE '1998-12-01'
END-EXEC.
**** open the cursor ****
EXEC SQL
 OPEN rowset_cursor
END-EXEC.
 **** Fetch all rows from result table ****
Perform until sqlcode not equal 0
 EXEC SQL FETCH rowset_cursor
 INTO :hvaprojcode, :hvaprojdesc, :hvastartdate
 END-EXEC.
 if SQLCODE EQUAL 0
 EXEC SQL GET DIAGNOSTICS :numrows = ROW_COUNT END-EXEC.
 if SQLCODE NOT EQUAL 0
 Display "GET DIAGNOSTICS operation failed."
 end-if
 Perform varying i from 1 by 1 until i > numrows
 Display "ProjectCode = " hvaprojcode(i)
 "Project Description = " hvaprojdesc(i)
 "Start Date = " :hvastartdate(i)
 end-perform.
 end-if
end-perform.
**** Close the cursor ****
EXEC SQL
 CLOSE rowset_cursor
END-EXEC.
...

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-17

Static Rowsets Inserting Rows From Rowset Arrays

CO
Inserting Rows From Rowset Arrays

The INSERT statement using rowsets inserts multiple rows into a table from host
variable arrays. To insert data, a program moves the new values to the array of host
variables that have been declared as rowsets and then executes an INSERT statement
to transfer the values from the host variable arrays to the table.

Use this general syntax:

For complete syntax, see the INSERT statement in the SQL/MX Reference Manual.

Example

This example inserts multiple rows (JOBCODE and JOBDESC columns) from host
variable arrays into the JOB table:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[5] unsigned NUMERIC (4) hva_jobcode;
 ROWSET[5] VARCHAR hva_jobdesc[19];
 ...
 long numrows;
EXEC SQL END DECLARE SECTION;
...
/* Populate the rowset in some way. */
hva_jobcode[0] = 100;
strcpy(hva_jobdesc[0],"PROJECT MANAGER");
hva_jobcode[1] = 200;
strcpy(hva_jobdesc[1],"PROGRAM MANAGER");
hva_jobcode[2] = 300;
strcpy(hva_jobdesc[2],"QUALITY SUPERVISOR");
hva_jobcode[3] = 400;
strcpy(hva_jobdesc[3],"TECHNICAL OFFICER");
hva_jobcode[4] = 500;
strcpy(hva_jobdesc[4],"EXECUTIVE OFFICER");
...
EXEC SQL INSERT INTO persnl.job (jobcode, jobdesc)
 VALUES (:hva_jobcode, :hva_jobdesc);
...

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 sqlstate pic x(5).
01 numrows pic 9(9) comp.
01 rs.
 02 ROWSET[5] hvajobcode pic 9(4) comp.
 02 ROWSET[5] hvajobdesc pic x(18).
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
***** Populate the rowset in some way *****
 Move 100 to hvajobcode[1]
 Move "PROJECT MANAGER" to hvaprojdesc[1]
 Move 200 to hvajobcode[2]

INSERT INTO table-name [(column [,column]...)]
VALUES (:hostvar-array [,:hostvar-array]...)

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-18

Static Rowsets Inserting Rows From Rowset Arrays
 Move "PROGRAM MANAGER" to hvaprojdesc[2]
 Move 300 to hvajobcode[3]
 Move "QUALITY SUPERVISOR" to hvaprojdesc[3]
 Move 400 to hvajobcode[4]
 Move "TECHNICAL OFFICER" to hvaprojdesc[4]
 Move 500 to hvajobcode[5]
 Move "EXECUTIVE OFFICER" to hvaprojdesc[5]
 EXEC SQL INSERT INTO job (jobcode, jobdesc)
 VALUES (:hvajobcode, :hvajobdesc) END-EXEC.
...

Using Arrays in Expressions and Functions

Unless the arrays are in an INTO clause or in a rowset-derived table, on rowsets use:

 Numeric value expressions and functions
 Character value expressions and functions

The guideline is, wherever you can use a host variable in an expression or function,
you can use a rowset array if it is for input (for example, WHERE clause, VALUES
clause, SET clause).

When array expressions involve binary arithmetic operators, the two possibilities for
the operand types are:

 Array and a constant. For example, an array multiplied by a constant. The
semantics are that every element in the array is multiplied by the constant.

 Array and an array. For example, an array multiplied by another array. In this case,
both arrays have to be the same length. The semantics are that the first element of
array1 is multiplied with the first element of array2, second element of array1 by
second element of array2, and so on.

Inserting Null

You can insert multiple rows of data with a null value for one of the columns in some of
the rows by using an indicator host variable array.

Example

This example inserts 100 rows into the EMPLOYEE table and sets the SALARY
column to null for the first 50 rows by using an indicator host variable array. They use –
1 value as the null indicator. For the remaining 50 rows, they set the SALARY column
to nonnull values. The indicator host variable array must contain the value 0 for these
rows.

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET [100] unsigned NUMERIC (4) hva_empnum;
 ROWSET [100] char hva_first_name[16];
 ROWSET [100] char hva_last_name[21];
 ROWSET [100] unsigned NUMERIC (4) hva_deptnum;
 ROWSET [100] unsigned NUMERIC (4) hva_jobcode;

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-19

Static Rowsets Inserting Rows From Rowset Arrays

CO
 ROWSET [100] unsigned NUMERIC (4) hva_salary;
 ROWSET [100] short hva_salary_indicator;
 ...
 EXEC SQL END DECLARE SECTION;
 long i;
 ...
/* Populate the host variable arrays in some way. */
...

/* Store -1 in the indicator array for the first 50 input
values. */
for (i = 0; i < 50; i++) hva_salary_indicator[i] = -1;
/* Store 0 in the indicator array for the next 50 input values.
It is assumed that there are valid values for salary in the
hva_salary rowset array from element no. 50 up to element no. 99
*/
for (i = 50; i < 100; i++) hva_salary_indicator[i] = 0;
EXEC SQL
 INSERT INTO persnl.employee
 VALUES (:hva_empnum,:hva_first_name,
 :hva_last_name,:hva_deptnum,:hva_jobcode,
 :hva_salary INDICATOR :hva_salary_indicator);

...

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[100] hvaempnum pic 9(4) comp.
 02 ROWSET[100] hvafirstname pic x(15).
 02 ROWSET[100] hvalastname pic x(20).
 02 ROWSET[100] hvadeptnum pic 9(4) comp.
 02 ROWSET[100] hvajobcode pic 9(4) comp.
 02 ROWSET[100] hvasalary pic 9(4) comp.
 02 ROWSET[100] hvasalaryindicator pic s9(4) comp.
EXEC SQL END DECLARE SECTION END-EXEC.
01 i pic s9(4) comp.
...
**** Populate the host variables arrays in some way ****
**** Store -1 in the indicator array for the first 50 ****
**** input values. ****
PERFORM VARYING i FROM 1 BY 1 UNTIL i = 50
 Move -1 to hvasalaryindicator(i)
end-perform.

**** Store 0 in the indicator array for the next 50 ****
**** input values. It is assumed that there are valid****
**** values for salary in the hvasalary rowset array ****
**** from element no. 51 upto element no. 100 ****
PERFORM VARYING i FROM 51 BY 1 UNTIL i = 100
 Move 0 to hvasalaryindicator(i)
end-perform.

EXEC SQL

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-20

Static Rowsets Updating Rows by Using Rowset Arrays

CO
 INSERT INTO employee
 VALUES (:hvaempnum, :hvafirstname, :hvalastname,
 :hvadeptnum, :hvajobcode,
 :hvasalary INDICATOR :hvasalaryindicator)
END-EXEC.

...

Inserting a Timestamp Value

You do not need to use the CAST function when inserting a TIMESTAMP value.

Example

This example inserts multiple rows into the PROJECT table, including a TIMESTAMP
value in the SHIP_TIMESTAMP column:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET [10] TIMESTAMP hva_timestamp;
 ...
EXEC SQL END DECLARE SECTION;
long i;
...
/* Populate the host variable arrays in some way. */
...
EXEC SQL INSERT INTO PROJECT
 (..., SHIP_TIMESTAMP, ...)
 VALUES(..., :hva_timestamp, ...);
...

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[10] hvaempnum pic 9(4) comp.
 02 ROWSET[10] hvaprojcode pic 9(4) comp.
 02 ROWSET[10] hvatimestamp TIMESTAMP.
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 i pic s9(4) comp.
 ...
**** Populate the host variables arrays in some way *****
EXEC SQL INSERT INTO project
 (empnum,projcode,ship_timestamp)
 VALUES (:hvaempnum,:hvaprojcode, :hvatimestamp) END-EXEC.
...

Updating Rows by Using Rowset Arrays

The searched UPDATE statement updates the values in one or more columns of the
matching rows of a table or view. The matching rows are determined by the evaluation
of the search condition in the WHERE clause of the UPDATE statement. You can
perform multiple logical executions of the statement by using arrays of values in the
WHERE clause. Use of array host variables in the SET clause is optional.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-21

Static Rowsets Updating Rows by Using Rowset Arrays
Use this general syntax:

set-clause

The expression in a set-clause can contain array host variables. When array
host variables are present in the search-condition, two alternatives exist for
the set-clause expression:

 Scalar host variables only. In this case, all matching rows are updated with
identical values, obtained by evaluating the scalar expression. This case is
shown in the next example.

 Some array host variables. You can use a rowset in the SET clause only if you
have a rowset in the WHERE clause. If the size of the rowsets are not the
same in the SET and WHERE clauses, the smaller of the two sizes are used
and all rowset elements beyond the smaller size are ignored. All rows returned
due to the first element in the search-condition array are updated using
the value obtained by evaluating the first element in the set-clause array. All
matching rows due to the second element in the search-condition array
are updated using the second element in the set-clause array, and so on.

search-condition

must contain host variable arrays if you use rowsets in an UPDATE statement. The
use of rowset arrays for input is similar to a looping mechanism whereby the same
statement is executed multiple times with a different set of values for input each
time.

For complete syntax, see the UPDATE statement in the SQL/MX Reference Manual.

Example

This example updates the SALARY column of all rows in the EMPLOYEE table where
the JOBCODE value is equal to one of the values in the hva_jobcode host variable
array. The UPDATE statement is executed for each matching job code:

EXEC SQL BEGIN DECLARE SECTION;
char SQLSTATE[6];
ROWSET[5] unsigned NUMERIC (4) hva_jobcode;
unsigned NUMERIC (4,2) hv_inc;
 ...
long numrows;
EXEC SQL END DECLARE SECTION;
...
/* Input the salary increment. */
...
/* Populate the rowset in some way. */
hva_jobcode[0] = 100;
hva_jobcode[1] = 200;

UPDATE table-name
SET set-clause [,set-clause]...
WHERE search-condition

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-22

Static Rowsets Deleting Rows by Using Rowset Arrays

CO
hva_jobcode[2] = 300;
hva_jobcode[3] = 400;
hva_jobcode[4] = 500;
...
EXEC SQL UPDATE persnl.employee
 SET salary = salary * :hv_inc
 WHERE jobcode = :hva_jobcode;
...

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 numrows pic 9(9) comp.
 01 rs.
 01 hva-multiplier pic 9(4) comp.
 02 ROWSET[5] hvajobcode pic 9(4) comp.
 02 ROWSET[5] hvainc pic 9(4)v99 comp.
EXEC SQL END DECLARE SECTION END-EXEC.
...

****Input the salary increment *****
****Populate the rowset in some way *****

 Move 100 TO hvajobcode (1)
 Move 200 TO hvajobcode (2)
 Move 300 TO hvajobcode (3)
 Move 400 TO hvajobcode (4)
 Move 500 TO hvajobcode (5)
 EXEC SQL UPDATE employee
 SET salary = salary * :hvainc
 WHERE jobcode = :hvajobcode
END-EXEC.
...

The number of updated rows is stored in the ROW_COUNT field of the statement
information in the diagnostics area. You can retrieve the value in the ROW_COUNT
field by using the GET DIAGNOSTICS statement.

Deleting Rows by Using Rowset Arrays

The searched DELETE statement deletes matching rows of a table or view. The
matching rows are determined by the evaluation of the search condition in the WHERE
clause of the DELETE statement. Multiple logical executions of the statement are
performed by using arrays of values in the WHERE clause.

Use this general syntax:

For complete syntax, see the DELETE statement in the SQL/MX Reference Manual.

DELETE FROM table-name
WHERE column = :hostvar-array

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-23

Static Rowsets Specifying Size and Row ID for Rowset Arrays

CO
Example

This example deletes all rows from the JOB table specified by the hva_jobcode host
variable array:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[5] unsigned NUMERIC (4) hva_jobcode;
 ...
 long numrows;
EXEC SQL END DECLARE SECTION;
...
/* Populate the rowset in some way. */
hva_jobcode[0] = 100;
hva_jobcode[1] = 200;
hva_jobcode[2] = 300;
hva_jobcode[3] = 400;
hva_jobcode[4] = 500;
...
EXEC SQL
 DELETE FROM persnl.job
 WHERE jobcode = :hva_jobcode;
...

The number of deleted rows is stored in the ROW_COUNT field of the statement
information in the diagnostics area. You can retrieve the value in the ROW_COUNT
field by using the GET DIAGNOSTICS statement.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 numrows pic 9(9) comp.
 01 rs.
 02 ROWSET[5] hvajobcode pic 9(4) comp.
 EXEC SQL END DECLARE SECTION END-EXEC.
****Populate the rowset in some way *****
 Move 100 TO hvajobcode (1)
 Move 200 TO hvajobcode (2)
 Move 300 TO hvajobcode (3)
 Move 400 TO hvajobcode (4)
 Move 500 TO hvajobcode (5)

 EXEC SQL DELETE FROM job
 WHERE jobcode = :hvajobcode
END-EXEC.
...

Specifying Size and Row ID for Rowset Arrays
Use the ROWSET FOR clause, which is placed immediately after EXEC SQL and
before the statement that uses rowset arrays, to restrict the size of rowsets and to
address the rowset by using a row identifier. The size must be less than or equal to the
actual allocated size of the rowset. The ROWSET FOR clause is not supported with a
cursor declaration. However, you can specify size and row ID in a cursor declaration by

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-24

Static Rowsets Specifying Size and Row ID for Rowset Arrays
using the rowset-derived table syntax presented in Selecting From Rowset-Derived
Tables With a Cursor on page 7-36.

To specify a ROWSET FOR clause for a DML statement that uses rowsets directly,
use:

INPUT SIZE rowset-size-in

restricts the size of the input rowset to the specified size, which must be less than
or equal to the allocated size for the rowset. The size is an integer literal (exact
numeric literal) or a host variable whose type is either unsigned short, signed short,
unsigned long, or signed long in C and their corresponding equivalents in COBOL.
By default, if the size is not specified, NonStop SQL/MX uses the allocated rowset
size specified in the SQL Declare Section of the embedded SQL program.

OUTPUT SIZE rowset-size-out

restricts the size of the output rowset to the specified size, which must be less than
or equal to the allocated size for the rowset. The size is an integer literal (exact
numeric literal) or a host variable whose type is signed long in C and its
corresponding equivalent in COBOL. By default, if the size is not specified,
NonStop SQL/MX uses the allocated rowset size specified in the SQL Declare
Section of the embedded SQL program. This option is not supported in a cursor
declaration. OUTPUT SIZE works only with SELECT ... INTO type statements.

KEY BY row-id

is a zero-based index that identifies each row in the result set of a SELECT or
FETCH statement with the particular search-condition in the WHERE clause that
caused the row to be part of the result set. For example, if the row-id value for a
certain row in the result set is 0 (zero), this row matches the search-condition in the
first element of the host variable arrays (array index 0 in C, array index 1 in
COBOL) in the WHERE clause.

SQL-statement

is any embedded DML statement that uses rowsets directly.

EXEC SQL
ROWSET FOR [size-and-index]
SQL-statement;

size-and-index is:
| INPUT SIZE rowset-size-in
| OUTPUT SIZE rowset-size-out
| KEY BY row-id
| INPUT SIZE rowset-size-in, OUTPUT SIZE rowset-size-out
| INPUT SIZE rowset-size-in, KEY BY row-id
| OUTPUT SIZE rowset-size-out, KEY BY row-id
| INPUT SIZE rowset-size-in, OUTPUT SIZE rowset-size-out, KEY
 BY row-id
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-25

Static Rowsets Limiting the Size of the Input Rowset

CO
Limiting the Size of the Input Rowset

When you are inserting rows from a rowset, you must limit the input size to only the
rows that have been populated with data.

Example

This example inserts multiple rows (JOBCODE and JOBDESC columns) from host
variable arrays into the JOB table. The input size is limited by the FOR INPUT SIZE
clause to five rows:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[10] unsigned NUMERIC (4) hva_jobcode;
 ROWSET[10] VARCHAR hva_jobdesc[19];
 ...
EXEC SQL END DECLARE SECTION;
...
/* Populate the rowset in some way. */
hva_jobcode[0] = 100;
strcpy(hva_jobdesc[0],"PROJECT MANAGER");
hva_jobcode[1] = 200;
strcpy(hva_jobdesc[1],"PROGRAM MANAGER");
hva_jobcode[2] = 300;
strcpy(hva_jobdesc[2],"QUALITY SUPERVISOR");
hva_jobcode[3] = 400;
strcpy(hva_jobdesc[3],"TECHNICAL OFFICER");
hva_jobcode[4] = 500;
strcpy(hva_jobdesc[4],"EXECUTIVE OFFICER");
...
EXEC SQL ROWSET FOR INPUT SIZE 5
 INSERT INTO persnl.job (jobcode, jobdesc)
 VALUES (:hva_jobcode, :hva_jobdesc);
...

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[10] hvajobcode pic 9(4) comp.
 02 ROWSET[10] hvajobdesc pic x(18).
 EXEC SQL END DECLARE SECTION END-EXEC.
...
***** Populate the rowset in some way *****
 Move 100 TO hvajobcode (1)
 Move "PROJECT MANAGER" TO hvajobdesc(1)
 Move 200 TO hvajobcode (2)
 Move "PROGRAM MANAGER" TO hvajobdesc(2)
 Move 300 TO hvajobcode (3)
 Move "QUALITY SUPERVISOR" TO hvajobdesc(3)
 Move 400 TO hvajobcode (4)
 Move "TECHNICAL OFFICER" TO hvajobdesc(4)
 Move 500 TO hvajobcode (5)
 Move "EXECUTIVE OFFICER" TO hvajobdesc(5)
 EXEC SQL ROWSET FOR INPUT SIZE 5
 INSERT INTO job (jobcode, jobdesc)

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-26

Static Rowsets Limiting the Size of the Input Rowset When
Declaring a Cursor

CO
 values (:hvajobcode, :hvajobdesc)
 END-EXEC.
 ...

Limiting the Size of the Input Rowset When Declaring a Cursor

When you are declaring a cursor to fetch rows from the database, you can limit the
size of the input rowset. Use this general syntax in the cursor declaration when you
limit rowset size.

For information on all syntax elements of DECLARE CURSOR, see the SQL/MX
Reference Manual.

Example

EXEC SQL BEGIN DECLARE SECTION;
char SQLSTATE[6];
ROWSET[10] unsigned NUMERIC (4) hva_jobcode;
ROWSET[10] VARCHAR hva_jobdesc[19];
NUMERIC(4) input_size;

...
EXEC SQL END DECLARE SECTION;
...

EXEC SQL DECLARE C1 CURSOR FOR
ROWSET FOR INPUT SIZE :input_size
SELECT jobdesc FROM persnl.job
WHERE jobcode = :hva_jobcode;

input_size = 3
/* Populate first 3 rows of input rowset. */
hva_jobcode[0] = 100;
hva_jobcode[1] = 200;
hva_jobcode[2] = 300;

EXEC SQL OPEN C1;

EXEC SQL FETCH C1 INTO :hva_jobdesc;
/* Only rows with jobcode 100, 200 or 300 will be returned */

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 sqlstate pic x(5).
01 rs.

DECLARE { cursor-name | ext-cursor-name}
 CURSOR FOR { rowset-clause | ext-statement-name}

rowset-clause is:
 ROWSET FOR [INPUT SIZE rowset-size-in]
 [KEY BY index-identifier]
 [INPUT SIZE rowset-size-in,
 KEY BY index-identifier]
 <sql-statement><sql-terminator>

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-27

Static Rowsets Limiting the Size of the Output Rowset

CO
02 ROWSET[10] hva_jobcode pic 9(4) comp.
02 ROWSET[10] hva_jobdesc pic x(18).
02 input_size pic 9(4) comp
EXEC SQL END DECLARE SECTION END-EXEC.
…

EXEC SQL DECLARE C1 CURSOR FOR
ROWSET FOR INPUT SIZE :input_size
SELECT jobdesc FROM persnl.job
WHERE jobcode = :hva_jobcode END-EXEC.

Move 3 TO input_size
***** Populate first 3 rows of input rowset. *****
Move 100 TO hva_jobcode(1)
Move 200 TO hva_jobcode(2)
Move 300 TO hva_jobcode(3)

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :hva_jobdesc END-EXEC.
*** Only rows with jobcode 100, 200 or 300 will be returned ***

Limiting the Size of the Output Rowset

When you select rows into a rowset, you can limit the size of the output rowset only
with the ROWSET FOR statement (that is, not in a cursor declaration) and for static
rowsets.

Example

This example retrieves multiple rows (JOBCODE and JOBDESC columns) from the
JOB table into host variable arrays. The output size is limited by the FOR OUTPUT
SIZE clause to five rows:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[10] unsigned NUMERIC (4) hva_jobcode;
 ROWSET[10] VARCHAR hva_jobdesc[19];
 long outputsize;
 ...
EXEC SQL END DECLARE SECTION;
...
outputsize=5;
EXEC SQL ROWSET FOR OUTPUT SIZE :outputsize
 SELECT jobcode, jobdesc
 INTO:hva_jobcode, :hva_jobdesc
 FROM persnl.job;
...

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[10] hvajobcode pic 9(4) comp.
 02 ROWSET[10] hvajobdesc pic x(18).
 01 outputsize pic s9(9) comp.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-28

Static Rowsets Using the Index Identifier
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 Move 5 to outputsize
 EXEC SQL ROWSET FOR OUTPUT SIZE :outputsize
 SELECT jobcode, jobdesc
 INTO :hvajobcode, :hvajobdesc
 FROM job
 END-EXEC.
 ...

Using the Index Identifier

Use the index (or row) identifier to indicate which row of the input rowset array in the
WHERE clause caused a row to be part of the output rowset array. When you use a
zero-based index, the values of the index identifier range from 0 to n-1, where n is
the number of elements in the WHERE clause rowset array. This strategy might not
work as well for a COBOL application where host language array indexing starts from
1. In the next COBOL example, you can add 1 to all the index identifier values by using
an arithmetic expression in the select list.

To use the index identifier, you can declare a host variable array, whose size is at least
as large as the other output host variable arrays in the SQL statement in the
DECLARE section. You can then use a SELECT (or FETCH) operation into this host
variable array after including the index identifier (row_id in the next example) in the
list of columns to be retrieved.

You can also use a cursor declaration to use the index identifier by using the general
DECLARE CURSOR syntax shown on page 7-27.

Example

This example selects the EMPNUM column of all rows in the EMPLOYEE table where
the JOBCODE value is equal to one of the values in the hva_jobcode host variable
array. The SELECT statement is executed for each matching job code. The row
identifier indicates which element of the host variable array selects the corresponding
row from the EMPLOYEE table:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[5] unsigned NUMERIC (4) hva_jobcode;
 ROWSET [100] unsigned NUMERIC (4) hva_empnum;
 ROWSET [100] short hva_row_id;
 ...
 long numrows;
EXEC SQL END DECLARE SECTION;
 long i;
...
/* Populate the jobcode rowset in some way. */
hva_jobcode[0] = 100;
hva_jobcode[1] = 200;
hva_jobcode[2] = 350; /* Does not exist. */
hva_jobcode[3] = 400;
hva_jobcode[4] = 500;

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-29

Static Rowsets Using the Index Identifier

CO
...
EXEC SQL ROWSET FOR KEY BY row_id
 SELECT empnum, row_id
 INTO :hva_empnum,
 :hva_row_id
 FROM persnl.employee
 WHERE jobcode = :hva_jobcode;
...
EXEC SQL GET DIAGNOSTICS :numrows = ROW_COUNT;
...
for (i = 0; i < numrows; i++) {
 printf("\nEmp Nbr: %hu", hva_empnum[i]);
 printf("\nRow Id: %hu", hva_row_id[i]);
}
...

...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[5] hvajobcode pic 9(4) comp.
 02 ROWSET[100] hvaempnum pic 9(4) comp.
 02 ROWSET[100] hvarowid pic s9(4) comp.
 01 numrows pic 9(9) comp.
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 i pic s9(4) comp.
 ...
***** Populate the rowset in some way *****
 Move 100 TO hvajobcode(1)
 Move 200 TO hvajobcode(2)
3 Does not exist
 Move 350 TO hvajobcode(3)
 Move 400 TO hvajobcode(4)
 Move 500 TO hvajobcode(5)
 EXEC SQL ROWSET FOR KEY BY row_id
 SELECT empnum, row_id+1
 INTO :hvaempnum,
 :hvarowid
 FROM employee
 WHERE jobcode = :hvajobcode END-EXEC.
 EXEC SQL GET DIAGNOSTICS :numrows = ROW_COUNT end-exec.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i < numrows
 display "Emp Nbr: " hvaempnum(i)
 display "Row Id: " hvarowid(i)
 end-perform.
...

The output for this example has 20 rows selected from the EMPLOYEE table:

 Eleven rows with jobcode equal to 100 and row identifier value 0 for C and 1 for
COBOL

 One row with jobcode equal to 200 and row identifier value 1 for C and 2 for
COBOL

 Five rows with jobcode equal to 400 and row identifier value 3 for C and 4 for
COBOL

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-30

Static Rowsets Using the Index Identifier
 Three rows with jobcode equal to 500 and row identifier value 4 for C and 5 for
COBOL

The jobcode equal to 350 does not exist in the sample database. As a result, the row
identifier equal to 2 for C and 3 for COBOL does not occur in the output of the
program.

The row identifier values in the COBOL example are greater, by a value of 1, than their
corresponding values in the C example. This difference occurs because the SQL query
is different in the two examples. For SQL, the row identifier column is a zero-based
index. For the convenience of COBOL applications, the COBOL example modifies an
SQL query to output values of the row identifier column as a one-based index.

Use the index identifier to obtain a count of how many rows are selected due to each
condition in the WHERE clause input rowset array. See the next example, which uses
the same table and input host variables as in the previous example:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[5] unsigned NUMERIC (4) hva_jobcode;
 ROWSET [100] short hva_row_count;
 ROWSET [100] short hva_row_id;
 ...
 long numrows;
 EXEC SQL END DECLARE SECTION;
 long i;

...
/* Populate the jobcode rowset in some way. */
hva_jobcode[0] = 100;
hva_jobcode[1] = 200;
hva_jobcode[2] = 350; /* Does not exist. */
hva_jobcode[3] = 400;
hva_jobcode[4] = 500;
...
EXEC SQL ROWSET FOR KEY BY row_id
 SELECT row_id, COUNT(*)
 INTO :hva_row_id, :hva_row_count
 FROM persnl.employee
 WHERE jobcode = :hva_jobcode
 GROUP BY row_id ;
EXEC SQL GET DIAGNOSTICS :numrows = ROW_COUNT;
...
for (i = 0; i < numrows; i++) {
 printf("\nRow Id: %hu", hva_row_id[i]);
 printf("\nRow Count: %hu", hva_row_count[i]);

Note. Many of the examples in this manual use the NonStop SQL/MX Release 2.x sample
database, which uses SQL/MX format tables. To install the sample database, you must have a
license for the use of SQL/MX DDL statements. To acquire the license, you must purchase
product T0394. If you did not purchase T0394 and you try to install the sample database, an
error message informs you that the system is not licensed.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-31

Static Rowsets Specifying Rowset-Derived Tables

CO
}
...

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 sqlstate pic x(5).
01 rs.
 02 ROWSET[5] hvajobcode pic 9(4) comp.
 02 ROWSET[100] hvarowcount pic 9 comp.
 02 ROWSET[100] hvarowid pic s9(4) comp.
01 numrows pic 9(9) comp.
EXEC SQL END DECLARE SECTION END-EXEC.
01 i pic s9(4) comp.
...
***** Populate the rowset in some way *****
Move 100 TO hvajobcode(1)
Move 200 TO hvajobcode(2)
****3 Does not exist****
Move 350 TO hvajobcode(3)
Move 400 TO hvajobcode(4)
Move 500 TO hvajobcode(5)
EXEC SQL ROWSET FOR KEY BY row_id
 SELECT row_id, COUNT(*)
 INTO :hvarowid, :hvarowcount
 FROM employee
 WHERE jobcode = :hvajobcode
 GROUP BY row_id END-EXEC.
EXEC SQL GET DIAGNOSTICS :numrows = ROW_COUNT end-exec.
PERFORM VARYING i FROM 1 BY 1 UNTIL i > numrows
 display "Row Id: " hvarowid(i)
 display "Row Count: " hvarowcount(i)
end-perform.
...

Specifying Rowset-Derived Tables
Use a rowset-derived table to manipulate rowsets like other tables in SQL statements.
A rowset-derived table is similar to an in-memory table and you can use it, followed by
its rowset table correlation, anywhere a table name is specified in a DML statement by
using the syntax. (This table correlation clause is required.)

rowset-size

restricts the size of the rowset-derived table to the specified size, which must be
less than or equal to the allocated size for the rowset. The size, if specified,
immediately follows the ROWSET keyword. The size is an unsigned integer or a
host variable whose value is an unsigned integer. By default, if the size is not
specified, NonStop SQL/MX uses the allocated rowset size specified in the SQL
Declare Section.

ROWSET [rowset-size] (:array-name [,:array-name]...)
 [KEY BY row-id]
 [AS] correlation (column [,column]...)

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-32

Static Rowsets Using Rowset-Derived Tables in DML Statements
:array-name [,:array-name]...

specifies a set of host variable arrays. Each array-name can be used like a
column in the rowset-derived table. Each array-name can be any valid host
language identifier with a data type that corresponds to an SQL data type. Precede
each array-name with a colon (:) within an SQL statement.

KEY BY row-id

optionally identifies each tuple or row processed in the rowset-derived table during
the evaluation of the SQL statement. The row-id, if specified, must be the last
variable specification in the derived column list.

[AS] correlation

is the correlation name of the table reference and can be any SQL identifier.

column [,column]...

specifies the list of derived columns of the rowset-derived table that corresponds
one-to-one to the list :array-name [,:array-name]... of array names, with
the exception that the last column in the list must be the row-id, if specified.

Using Rowset-Derived Tables in DML
Statements

Use rowset-derived tables in DML statements:

Selecting From Rowset-Derived Tables

Use a rowset as input in a SELECT statement to improve performance. A single
execution of the statement is performed with the input rowset instead of multiple
executions of an equivalent statement with successive individual values for input.

Technique Description

Selecting From Rowset-Derived Tables Single execution with an input rowset
instead of multiple executions with
individual input values.

Inserting Rows From Rowset-Derived Tables Multiple rows are inserted by using a query
that retrieves values from a rowset-derived
table.

Updating Rows by Using Rowset-Derived
Tables

Multiple logical executions of an UPDATE
statement are performed by using a
subquery in the WHERE clause.

Deleting Rows by Using Rowset-Derived
Tables

Multiple logical executions of the DELETE
statement are performed by using a
subquery in the WHERE clause.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-33

Static Rowsets Selecting From Rowset-Derived Tables

CO
A SELECT statement that contains a rowset-derived table within the FROM clause
handles its input data as a join of the other table references with the rowset-derived
table.

Example

In this example, the ODETAIL table is joined with a rowset using a rowset-derived
table. The program counts the number of elements in common between the part
number values in ODETAIL and the values in the rowset, which is composed of an
array of part numbers:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET [5] unsigned NUMERIC (4) hva_partnum;
 ROWSET [5] unsigned NUMERIC (4) hva_od_partnum;
 ROWSET [5] short hva_partnum_count;
 ...
EXEC SQL END DECLARE SECTION;
 long i;
...
/* Populate the rowset in some way. */
hva_partnum[0] = 244;
hva_partnum[1] = 2001;
hva_partnum[2] = 2403;
hva_partnum[3] = 5103;
hva_partnum[4] = 6301;
...
EXEC SQL
 SELECT od.partnum, COUNT (*)
 INTO :hva_od_partnum, :hva_partnum_count
 FROM sales.odetail od,
 ROWSET(:hva_partnum) AS rs(partnum)
 WHERE od.partnum = rs.partnum
 GROUP BY od.partnum;
...
/* Process the counts in some way. */
for (i = 0; i < 5; i++) {
 printf("\nPart Nbr: %hu", hva_od_partnum[i]);
 printf("\nCount: %hu", hva_partnum_count[i]);
}
...

 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[5] hvapartnum pic 9(4) comp.
 02 ROWSET[5] hvaodpartnum pic 9(4) comp.
 02 ROWSET[5] hvapartnumcount pic s9(4) comp.
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 i pic s9(4) comp.
 ...
***** Populate the rowset in some way *****
 Move 244 TO hvapartnum(1)
 Move 2001 TO hvapartnum(2)

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-34

Static Rowsets Selecting From Rowset-Derived Tables

CO
 Move 2403 TO hvapartnum(3)
 Move 5103 TO hvapartnum(4)
 Move 6301 TO hvapartnum(5)
 EXEC SQL
 SELECT od.partnum, COUNT(*)
 INTO :hvaodpartnum, :hvapartnumcount
 FROM odetail od,
 ROWSET(:hvapartnum) AS rs(partnum)
 WHERE od.partnum = rs.partnum
 GROUP BY od.partnum END-EXEC.
*****Process the counts in some way*****
 PERFORM VARYING i FROM 1 BY 1 UNTIL i < 5
 display "Part Nbr: " hvaodpartnum(i)
 display "COUNT: " hvapartnumcount(i)
 END-PERFORM.
 ...

Example

This example selects the element of the rowset-derived table that is indexed by the
number 4:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET [5] unsigned NUMERIC (4) hva_partnum;
 unsigned NUMERIC (4) row_id_partnum;
 ...
EXEC SQL END DECLARE SECTION;
...
/* Populate the rowset in some way. */
hva_partnum[0] = 244;
hva_partnum[1] = 2001;
hva_partnum[2] = 2403;
hva_partnum[3] = 5103;
hva_partnum[4] = 6301;
...
EXEC SQL
 SELECT partnum INTO :row_id_partnum
 FROM ROWSET(:hva_partnum)
 KEY BY row_id AS rs(partnum, row_id)
 WHERE row_id = 4;
...
/* Process the selected element of the table in some way. */
printf("\nPart Nbr: %hu", row_id_partnum);
...

In this example, the selected element, whose row identifier is equal to the number 4, is
the part number 6301:

...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rowidpartnum pic 9(4) comp.
 01 rs.
 02 ROWSET[5] hvapartnum pic 9(4) comp.
 EXEC SQL END DECLARE SECTION END-EXEC.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-35

Static Rowsets Selecting From Rowset-Derived Tables With a
Cursor
 ...
 ***** Populate the rowset in some way *****
 Move 244 TO hvapartnum(1)
 Move 2001 TO hvapartnum(2)
 Move 2403 TO hvapartnum(3)
 Move 5103 TO hvapartnum(4)
 Move 6301 TO hvapartnum(5)
 EXEC SQL
 SELECT partnum INTO :rowidpartnum
 FROM ROWSET(:hvapartnum)
 KEY BY row_id AS rs(partnum, row_id)
 WHERE row_id+1 = 5 END-EXEC.
***** Process the selected element of the table in some way ****
 Display "Part Nbr " rowidpartnum.
...

Selecting From Rowset-Derived Tables With a Cursor

Declare cursors with rowset-derived tables and use them to fetch rows from the
database. This strategy has an advantage over direct use of rowsets arrays with
cursors because you can specify rowset-size and row-id for cursors that use
rowset-derived tables, but you cannot specify them for cursors that use rowset arrays
directly.

Example

In this example, the ODETAIL table is joined with a rowset using a rowset-derived
table. The program uses a cursor to fetch all rows whose order number values are
specified in the input rowset, which contains an array of order numbers. The number of
valid elements in the input array is specified using a host variable. You can use the
index identifier rowid to determine which input condition cause a specific row to be
output. The rowid array is empty before execution of the query. After execution,
because rowid is a zero-based index, it contains values that range from 0 to the
number of valid input conditions minus 1. This strategy might not be optimal for a
COBOL application where the array indexing starts from 1. Therefore, for COBOL
programs, use the solution in: Using the Index Identifier on page 7-29. A value j in the
rowid array for a particular row indicates that the row was fetched from the table
during execution of input condition number j (calculated with a zero-based array
indexing).

 EXEC SQL BEGIN DECLARE SECTION;
 long SQLCODE;
 ROWSET [5] unsigned NUMERIC (4) hva_ordernum;
 ROWSET [5] unsigned NUMERIC (4) hva_od_partnum;
 ROWSET [5] short rowid;
 short num_inputvalues;
...
EXEC SQL END DECLARE SECTION;
...
/* Populate the rowset in some way. */
hva_ordernum[0] = 244;
hva_ordernum[1] = 2001;

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-36

Static Rowsets Selecting From Rowset-Derived Tables With a
Cursor

CO
hva_ordernum[2] = 2403;
hva_ordernum[3] = 5103;
...
/* Specify number of valid input values */

num_inputvalues = 4;

/* Declare cursor C1 for select operation */
EXEC SQL
DECLARE C1 CURSOR FOR
SELECT od.partnum, rs.rowid
FROM sales.odetail od,
ROWSET :num_inputvalues(:hva_ordernum)
KEY BY rowid
AS rs(ordernum, rowid)
WHERE od.ordernum = rs.ordernum;

EXEC SQL OPEN C1;

/* Fetch rows from table */
while (SQLCODE == 0) {
EXEC SQL FETCH C1 INTO :hva_od_partnum, :rowid;
/* Process the output rows in some way. */
}
EXEC SQL CLOSE C1;
...

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLCODE pic s9(9) comp.
 01 rs.
 02 ROWSET[5] hvaordernum pic 9(4) comp.
 02 ROWSET[5] hvaodpartnum pic 9(4) comp.
 02 ROWSET[5] rowid pic s9(4) comp.
 01 numinputvalues pic 9 comp.
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
***** Populate the rowset in some way *****
 Move 244 TO hvaordernum(1)
 Move 2001 TO hvaordernum(2)
 Move 2403 TO hvaordernum(3)
 Move 5103 TO hvaordernum(4)
 ..
***** Specify number of valid input values ****

Move 4 TO numinputvalues
***** Declare cursor C1 for select operation ****

EXEC SQL
DECLARE C1 CURSOR FOR
SELECT od.partnum, rs.rowid
FROM sales.odetail od,
ROWSET :numinputvalues(:hvaordernum)
KEY BY rowid
AS rs(ordernum, rowid)
WHERE od.ordernum = rs.ordernum

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-37

Static Rowsets Inserting Rows From Rowset-Derived Tables
END-EXEC
EXEC SQL OPEN C1 END-EXEC

**** fetch rows from table ****
perform until sqlcode not = 0
EXEC SQL FETCH C1 INTO :hvaodpartnum, :rowid END-EXEC
**** Process the output rows in some way ****
end-perform
EXEC SQL CLOSE C1 END-EXEC
 ...

Inserting Rows From Rowset-Derived Tables

Use the INSERT statement and rowset-derived tables to insert multiple rows into a
table from a query that retrieves from the derived table.

Use this general syntax:

For complete syntax, see the INSERT statement in the SQL/MX Reference Manual.

Example

This example inserts multiple rows (JOBCODE and JOBDESC columns) selected from
a rowset-derived table:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[5] unsigned NUMERIC (4) hva_jobcode;
 ROWSET[5] VARCHAR hva_jobdesc[19];
 ...
EXEC SQL END DECLARE SECTION;
...
/* Populate the rowset in some way. */
hva_jobcode[0] = 100;
strcpy(hva_jobdesc[0],"PROJECT MANAGER");
hva_jobcode[1] = 200;
strcpy(hva_jobdesc[1],"PROGRAM MANAGER");
hva_jobcode[2] = 300;
strcpy(hva_jobdesc[2],"QUALITY SUPERVISOR");
hva_jobcode[3] = 400;
strcpy(hva_jobdesc[3],"TECHNICAL OFFICER");
hva_jobcode[4] = 500;
strcpy(hva_jobdesc[4],"EXECUTIVE OFFICER");
...
EXEC SQL INSERT INTO persnl.job
 SELECT jobcode, jobdesc
 FROM ROWSET(:hva_jobcode, :hva_jobdesc)

INSERT INTO table-name (column [,column]...)
 SELECT column [,column]...
 FROM ROWSET [rowset-size] (:array-name [,:array-name]...)
 [AS] correlation (column [,column]...)

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-38

Static Rowsets Limiting the Size of a Rowset-Derived Table

CO

CO
 AS rs(jobcode, jobdesc);
...

...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[5] hvajobcode pic 9(4) comp.
 02 ROWSET[5] hvajobdesc pic x(18).
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
***** Populate the rowset in some way *****
 Move 100 TO hvajobcode (1)
 Move "PROJECT MANAGER" TO hvajobdesc(1)
 Move 200 TO hvajobcode (2)
 Move "PROGRAM MANAGER" TO hvajobdesc(2)
 Move 300 TO hvajobcode (3)
 Move "QUALITY SUPERVISOR" TO hvajobdesc(3)
 Move 400 TO hvajobcode (4)
 Move "TECHNICAL OFFICER" TO hvajobdesc(4)
 Move 500 TO hvajobcode (5)
 Move "EXECUTIVE OFFICER" TO hvajobdesc(5)
 EXEC SQL INSERT INTO job
 SELECT jobcode, jobdesc
 FROM ROWSET(:hvajobcode, :hvajobdesc)
 AS rs(jobcode, jobdesc) END-EXEC.
...

Limiting the Size of a Rowset-Derived Table

When you are inserting rows from a rowset-derived table, you must limit the input size
to only the rows that have been populated with data.

Example

This example inserts multiple rows into the JOB table. The input size is limited by the
size of the rowset-derived table:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[10] unsigned NUMERIC (4) hva_jobcode;
 ROWSET[10] VARCHAR hva_jobdesc[19];
 ...
EXEC SQL END DECLARE SECTION;
...
/* Populate the first five rows in some way. */
...
EXEC SQL INSERT INTO persnl.job
 SELECT jobcode, jobdesc
 FROM ROWSET 5 (:hva_jobcode, :hva_jobdesc)
 AS rs(jobcode, jobdesc);
...

...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

BOL

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-39

Static Rowsets Inserting Null
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[10] hvajobcode pic 9(4) comp.
 02 ROWSET[10] hvajobdesc pic x(18).
EXEC SQL END DECLARE SECTION END-EXEC.
...
***** Populate the first five rows in some way *****
 EXEC SQL INSERT INTO persnl.job
 SELECT jobcode, jobdesc
 FROM ROWSET 5(:hvajobcode, :hvajobdesc)
 AS rs(jobcode, jobdesc) END-EXEC.
...

Inserting Null

Use an indicator host variable array in a rowset-derived table to insert multiple rows of
data with a null value for one of the columns in some of the rows.

Example

This example inserts 100 rows into the EMPLOYEE table and sets the SALARY
column to null for the first 50 rows by using an indicator host variable array in a rowset-
derived table. The null indicator is -1. For the remaining 50 rows, the SALARY column
is set to nonnull values. The indicator host variable array must contain the value 0
(zero) for these rows:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET [100] unsigned NUMERIC (4) hva_empnum;
 ROWSET [100] char hva_first_name[16];
 ROWSET [100] char hva_last_name[21];
 ROWSET [100] unsigned NUMERIC (4) hva_deptnum;
 ROWSET [100] unsigned NUMERIC (4) hva_jobcode;
 ROWSET [100] unsigned NUMERIC (4) hva_salary;
 ROWSET [100] short hva_salary_indicator;
 ...
EXEC SQL END DECLARE SECTION;
...
/* Populate the host variable arrays in some way. */
...
/* Store -1 in the indicator array for the first 50 input
values. */
for (i = 0; i < 50; i++) hva_salary_indicator[i] = -1;
/* Store 0 in the indicator array for the next 50 input values.
It is assumed that there are valid values for salary in the
hva_salary rowset array from element no. 50 up to element no. 99
*/
for (i = 50; i < 100; i++) hva_salary_indicator[i] = 0;
EXEC SQL
 INSERT INTO persnl.employee
 SELECT (empnum,first_name,last_name,deptnum,jobcode,salary)
 FROM
 ROWSET(:hva_empnum,:hva_first_name,
 :hva_last_name,:hva_deptnum,:hva_jobcode,

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-40

Static Rowsets Updating Rows by Using Rowset-Derived Tables

CO
 :hva_salary INDICATOR :hva_salary_indicator)
 AS rs(empnum,first_name,last_name,deptnum,jobcode,salary);
...

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE pic x(5).
 01 rs.
 02 ROWSET[100] hvaempnum pic 9(4) comp.
 02 ROWSET[100] hvafirstname pic x(15).
 02 ROWSET[100] hvalastname pic x(20).
 02 ROWSET[100] hvadeptnum pic 9(4) comp.
 02 ROWSET[100] hvajobcode pic 9(4) comp.
 02 ROWSET[100] hvasalary pic 9(4) comp.
 02 ROWSET[100] hvasalaryindicator pic 9(5).
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...
**** Populate the host variables arrays in some way ****
**** Store -1 in the indicator array for the first 50 ****
**** input values. ****
PERFORM VARYING i FROM 1 BY 1 UNTIL i = 50
 Move -1 to hvasalaryindicator(i)
 end-perform.

**** Store 0 in the indicator array for the next 50 ****
**** input values. It is assumed that there are valid****
**** values for salary in the hvasalary rowset array ****
**** from element no. 51 upto element no. 100 ****
PERFORM VARYING i FROM 51 BY 1 UNTIL i = 100 ****
 Move 0 to hvasalaryindicator(i)
 end-perform.

 EXEC SQL
 INSERT INTO employee
 SELECT empnum, first_name, last_name, deptnum,
 jobcode, salary
 FROM
 ROWSET(:hvaempnum, :hvafirstname, :hvalastname,
 :hvadeptnum, :hvajobcode,
 :hvasalary INDICATOR :hvasalaryindicator)
 AS rs(empnum, first_name, last_name, deptnum,
 jobcode, salary)
END-EXEC.
 ...

Updating Rows by Using Rowset-Derived Tables

Use a rowset-derived table in an UPDATE statement to indicate which rows are to be
updated from the database table. In this case, the values of the rowset are generated
from a subquery placed in the WHERE clause of the UPDATE statement.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-41

Static Rowsets Updating Rows by Using Rowset-Derived Tables

CO
Example

This example updates the SALARY column of all rows in the EMPLOYEE table where
the jobcode value is equal to one of the values in the hva_jobcode host variable
array. The UPDATE statement is executed for each matching job code:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[5] unsigned NUMERIC (4) hva_jobcode;
 ...
EXEC SQL END DECLARE SECTION;
...
/* Input the salary increment. */
...
/* Populate the rowset in some way. */
hva_jobcode[0] = 100;
hva_jobcode[1] = 200;
hva_jobcode[2] = 300;
hva_jobcode[3] = 400;
hva_jobcode[4] = 500;
...
EXEC SQL
 UPDATE persnl.employee
 SET salary = salary * :hv_inc
 WHERE EXISTS
 (SELECT * FROM ROWSET(:hva_jobcode) AS rs(jobcode)
 WHERE jobcode = rs.jobcode);
...

The number of updated rows is stored in the ROW_COUNT field of the statement
information in the diagnostics area. Retrieve the value in the ROW_COUNT field by
using the GET DIAGNOSTICS statement.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 hvainc pic 9(4).
 01 rs.
 02 ROWSET[5] hvajobcode pic 9(4) comp.
EXEC SQL END DECLARE SECTION END-EXEC.
...
**** Input the salary increment *****
**** Populate the rowset in some way *****
 Move 100 TO hvajobcode(1).
 Move 200 TO hvajobcode(2).
 Move 300 TO hvajobcode(3).
 Move 400 TO hvajobcode(4).
 Move 500 TO hvajobcode(5).
 EXEC SQL
 UPDATE employee
 SET salary = salary * :hvainc
 WHERE EXISTS
 (SELECT * FROM ROWSET(:hvajobcode) AS rs(jobcode)
 WHERE jobcode = rs.jobcode) END-EXEC.
...

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-42

Static Rowsets Deleting Rows by Using Rowset-Derived Tables

CO
Deleting Rows by Using Rowset-Derived Tables

Use a rowset-derived table in a DELETE statement to indicate which rows are to be
deleted from the database table. In this case, the values of the rowset are generated
from a subquery placed in the WHERE clause of the DELETE statement.

Example

This example deletes all rows from the JOB table specified by the hva_jobcode host
variable array:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ROWSET[5] unsigned NUMERIC (4) hva_jobcode;
 ...
EXEC SQL END DECLARE SECTION;
...
/* Populate the rowset in some way. */
hva_jobcode[0] = 100;
hva_jobcode[1] = 200;
hva_jobcode[2] = 300;
hva_jobcode[3] = 400;
hva_jobcode[4] = 500;
...
EXEC SQL
 DELETE FROM persnl.job
 WHERE jobcode IN
 (SELECT jobcode FROM ROWSET(:hva_jobcode) AS rs(jobcode));
...

The number of deleted rows is stored in the ROW_COUNT field of the statement
information in the diagnostics area. You can retrieve the value in the ROW_COUNT
field by using the GET DIAGNOSTICS statement.

...
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 rs.
 02 ROWSET[5] hvajobcode pic 9(4) comp.
 EXEC SQL END DECLARE SECTION END-EXEC.
...
***** Populate the rowset in some way ****
 Move 100 TO hvajobcode(1)
 Move 200 TO hvajobcode(2)
 Move 300 TO hvajobcode(3)
 Move 400 TO hvajobcode(4)
 Move 500 TO hvajobcode(5)

 EXEC SQL
 DELETE FROM job
 WHERE jobcode IN
 (SELECT jobcode FROM ROWSET(:hvajobcode)
 AS rs(jobcode))
 END-EXEC.
...

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-43

Static Rowsets Deleting Rows by Using Rowset-Derived Tables
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
7-44

8
Name Resolution, Similarity Checks,
and Automatic Recompilation

This section covers the following:

 Name Resolution on page 8-1
 Similarity Checks and Automatic Recompilation on page 8-9

Name Resolution
In a C, C++, and COBOL program, you can use SQL/MX statements to query both
SQL/MP and SQL/MX database objects. This subsection explains how to refer to
SQL/MP and SQL/MX database objects in an C, C++, and COBOL source file and how
the object names are resolved during SQL compilation and run time. See these topics:

 Table and View Name References on page 8-1
 Precedence of Object Name Qualification on page 8-5
 Compile-Time Name Resolution for SQL/MP Objects on page 8-6
 Late Name Resolution on page 8-6
 Distributed Database Considerations on page 8-8
 RDF Considerations on page 8-8

Table and View Name References

When you write a static SQL statement in an embedded SQL program, you have
several choices of how to refer to tables or views:

 ANSI Names for SQL/MX Objects on page 8-2
 Guardian Names for SQL/MP Objects on page 8-2
 SQL/MP Aliases for SQL/MP Objects on page 8-2
 DEFINE Names for SQL/MP Objects on page 8-3
 PROTOTYPE Host Variables For SQL/MP and SQL/MX Objects on page 8-4

You can fully or partially qualify ANSI logical names, Guardian physical names, and
SQL/MP aliases. For more information, see Precedence of Object Name Qualification
on page 8-5.

Your choice of how to refer to a table or view directly influences how tightly a physical
table is bound to a table or view name in the SQL statement during SQL compilation.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-1

Name Resolution, Similarity Checks, and Automatic
Recompilation

Table and View Name References
ANSI Names for SQL/MX Objects

You can use only an ANSI logical name for SQL/MX tables or views in an SQL
statement:

EXEC SQL
 SELECT jobcode, jobdesc
 INTO :hv_jobcode, hv_jobdesc
 FROM newyork.persnl.job
 WHERE jobcode = :hv_this_jobcode;

When you hard code a table name in the ANSI logical format, the logical name is
tightly bound to a physical table when the SQL statement is compiled. To make the
statement refer to some other physical table, you need to edit the source code and
recompile the module.

For the syntax of this type of database object name, see the SQL/MX Reference
Manual.

Guardian Names for SQL/MP Objects

You can use the Guardian physical name for SQL/MP tables or views in an SQL
statement:

EXEC SQL
 SELECT jobcode, jobdesc
 INTO :hv_jobcode, hv_jobdesc
 FROM \ny.$data01.persnl.job
 WHERE jobcode = :hv_this_jobcode;

When you hard code a table name in the Guardian format, the physical name is tightly
bound to the SQL statement when the SQL statement is compiled. To make the
statement refer to some other physical table, you must edit the source code and
recompile the module.

For the syntax of this type of database object name, see the SQL/MX Reference
Manual.

SQL/MP Aliases for SQL/MP Objects

To use logical names for SQL/MP tables or views, create an SQL/MP alias that maps
to a Guardian physical name and refer to the SQL/MP alias in the SQL statement.

To create an SQL/MP alias, issue a CREATE SQLMP ALIAS statement in MXCI:

CREATE SQLMP ALIAS samdbcat.persnl.employee
 $samdb.persnl.employee;

In the source file, refer to the SQL/MP alias as:

EXEC SQL DELETE FROM samdbcat.persnl.employee

If you embed a CREATE SQLMP ALIAS statement in your embedded SQL program,
subsequent references to the SQL/MP alias in the same program cause compilation
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-2

Name Resolution, Similarity Checks, and Automatic
Recompilation

Table and View Name References
errors. To avoid these errors, create SQL/MP aliases separately before compiling the
embedded SQL program.

When you code a table name by using an SQL/MP alias, the logical name of the
SQL/MP alias is tightly bound to a physical table when the SQL statement is compiled.
To make the statement refer to some other physical table, you must alter the SQL/MP
alias and then recompile the module. For example, issue this ALTER SQLMP ALIAS
statement before recompiling the module.

ALTER SQLMP ALIAS samdbcat.persnl.employee
 $samdb.persnl.newemps;

For the syntax of the CREATE SQLMP ALIAS and ALTER SQLMP ALIAS statements,
see the SQL/MX Reference Manual.

DEFINE Names for SQL/MP Objects

You can refer to an SQL/MP table or view with a class MAP DEFINE that resolves to a
Guardian physical name:

EXEC SQL
 SELECT jobcode, jobdesc
 INTO :hv_jobcode, hv_jobdesc
 FROM =JOB
 WHERE jobcode = :hv_this_jobcode;

When you use a DEFINE to refer to a table or view, you can compile the statement’s
module with the DEFINE mapped to one table or view name, and then assign the
DEFINE a different name and recompile the module. The recompiled statement then
refers to the second table or view name for the DEFINE. This practice is called
compile-time name resolution. For more information, see Compile-Time Name
Resolution for SQL/MP Objects on page 8-6.

The use of DEFINEs in SQL statements also enables late name resolution. By using
late name resolution, you can compile a statement to use one table and then, without
recompiling the statement, process a different table when the statement is executed by
using a different value for the statement’s DEFINE. For more information, see Late
Name Resolution on page 8-6.

For the syntax of DEFINEs, see the SQL/MX Reference Manual. To use a DEFINE for
a table or view, map it to a Guardian physical file before you compile or execute the
statement. For information on how to ensure proper name resolution, see the SQL/MX
Release 3.2 Management Guide.

Note. Before using DEFINEs in OLTP applications, see OLT Optimization Considerations for
DEFINE Names and PROTOTYPE Host Variables on page 8-5.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-3

Name Resolution, Similarity Checks, and Automatic
Recompilation

Table and View Name References
PROTOTYPE Host Variables For SQL/MP and SQL/MX
Objects

When you use a PROTOTYPE host variable to refer to a table or view, the SQL
statement is compiled using the definition of the table or view specified in the
PROTOTYPE clause. At run time, the plan is executed using the table or view name
that you pass to the host variable. Because PROTOTYPE host variables refer
dynamically to tables or views, they enable late name resolution. For more information,
see Late Name Resolution on page 8-6.

To specify a PROTOTYPE host variable in place of a table name in an embedded DML
statement, use this syntax:

:hostvar

is a host variable that contains the SQL table name at run time. It can be any valid
host language identifier with a data type that corresponds to an SQL data type. You
must precede hostvar with a colon (:) within an SQL statement.

The table name in hostvar can be either:

 Three-part logical name for accessing SQL/MP tables (if using MPALIAS) or
SQL/MX tables

 Four-part Guardian file name for accessing SQL/MP tables

You must use the same form for both the PROTOTYPE and hostvar value. For
example, if the value specified in the PROTOTYPE clause is a Guardian file name,
the actual name passed in through hostvar must also be a Guardian name.

You must initialize hostvar with a table name before the statement executes. If a
three-part logical name is not fully qualified, NonStop SQL/MX uses default catalog
and schema values as described in the SQL/MX Reference Manual.

PROTOTYPE { '[[catalog.]schema.]table' }
 { '[\system.][[$volume.]subvolume.]table' }

is one of these name types enclosed in single quotation marks ('):

 Three-part logical name of an SQL/MP alias or SQL/MX table of the form
catalog.schema.table

 Four-part Guardian name of an SQL/MP table of the form
\system.$volume.subvolume.table

Note. Before using PROTOTYPE host variables in OLTP applications, see OLT Optimization
Considerations for DEFINE Names and PROTOTYPE Host Variables on page 8-5.

:hostvar PROTOTYPE {'[[catalog.]schema.]table' }
 {'[\system.][[$volume.]subvolume.]table' }
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-4

Name Resolution, Similarity Checks, and Automatic
Recompilation

Precedence of Object Name Qualification
The SQL/MX compiler uses this name during preprocessing and explicit
compilation of the embedded DML statement. The table or view name defined in
the PROTOTYPE clause must be visible on the system where the compilation is
performed. This table or view name should also be fully qualified so that default
catalog and schema names are not used.

PROTOTYPE host variables enable run-time mappings, which differ from class MAP
DEFINEs for SQL/MP objects. DEFINEs for SQL/MP objects enable both compile and
run-time mappings. Although PROTOTYPE host variables are mapped at run time, this
run-time mapping cannot be used during explicit recompilation of the application using
mxcmp or mxCompileUserModule. The table or view name defined in the
PROTOTYPE clause of the program is used during explicit recompilation. However, if
your application fails a similarity check during execution and has automatic
recompilation turned on, the automatic recompilation uses the host variable value that
you specify at run time.

For examples of PROTOTYPE host variables, see Using PROTOTYPE Host Variables
as Table Names on page 5-17.

OLT Optimization Considerations for DEFINE Names and
PROTOTYPE Host Variables

If you use DEFINE names or PROTOTYPE host variables in a statement that is
optimized for online transaction processing, the resulting plan uses online transaction
(OLT) optimization in these paths only:

 PARTITION_ACCESS operator
 DP2 operations

An OLT optimized plan does not use OLT optimization in the ROOT operator if you use
DEFINE names or PROTOTYPE host variables in the statement. For information on
OLT optimization, see the SQL/MX Query Guide.

Precedence of Object Name Qualification

If the object names in an SQL statement are unqualified or partially qualified, the
preprocessor determines the qualification—the catalog and schema (or the node,
volume, and subvolume)—of the object names based on these settings in order of
precedence, from highest to lowest:

1. DECLARE, SET, or CONTROL QUERY DEFAULT statements in the embedded
SQL program

2. Default NAMETYPE, CATALOG, SCHEMA, MP_SYSTEM, MP_VOLUME, or
MP_SUBVOLUME specified in the SYSTEM_DEFAULTS table

3. User group (catalog) and user name (schema) of the current user if the nametype
is ANSI (the default) or the default node, volume, and subvolume specified by the
_DEFAULTS DEFINE if the nametype is NSK
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-5

Name Resolution, Similarity Checks, and Automatic
Recompilation

Compile-Time Name Resolution for SQL/MP Objects
For more information on the SYSTEM_DEFAULTS table, see the SQL/MX Reference
Manual.

Compile-Time Name Resolution for SQL/MP Objects

Compile-time name resolution is an SQL/MX extension you use to compile a module
with statements that refer to SQL/MP tables or views with class MAP DEFINEs. For
each statement, the SQL/MX compiler prepares a plan that is specific to, and
optimized for, the physical table referenced in the file attribute of the DEFINE at the
time of compilation.

By using compile-time resolution, you can also reinitialize the DEFINEs to values that
differ from those used when the module was first compiled, and then recompile the
module to prepare plans for a different set of tables than the application was originally
built to process, without changing the source code of the application.

To use compile-time name resolution to prepare two or more applications from the
same source module, where each application processes its own set of tables, consider
using the targeting technique of module management. See Specifying the search
locations of the module files on page 17-13. If you do not use this technique, the
compiled module file of the second application overwrites the module file of the first
application.

Late Name Resolution

Late name or run-time resolution is an SQL/MX extension that enables an embedded
SQL program to use class MAP DEFINEs and PROTOTYPE host variables in place of
table names in DML statements. PROTOTYPE host variables can be used for SQL/MP
and SQL/MX objects. During explicit SQL compilation, the SQL/MX compiler uses the
tables from the DEFINEs or PROTOTYPE (if they are available) to generate a query
execution plan for each DML statement. At run time, you can control which table the
statement processes by changing the table name in the value of a DEFINE or by
passing the table name in the value of a host variable (for PROTOTYPE host
variables). You can specify the same table as the one that was originally compiled, or
you can specify a different table.

Each time a DML statement executes (or a cursor is opened), the SQL/MX executor
compares the name of the table for which the plan was compiled against the name
taken from either the run-time DEFINE or the host variable. If the run-time DEFINE
does not exist, the SQL/MX executor uses the compile-time DEFINE specified in the
module. If the compile-time and run-time names do not match, the SQL/MX executor
performs a similarity check of the tables to determine if the query execution plan of the
DML statement is still operable. If the similarity check fails (or is disabled), the SQL/MX
executor, by default, invokes the SQL/MX compiler to automatically recompile the SQL
plan. See Similarity Checks and Automatic Recompilation on page 8-9.

Note. DEFINEs are logical names used for SQL/MP objects and cannot be used with SQL/MX
objects. For SQL/MX objects, use PROTOTYPE host variables.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-6

Name Resolution, Similarity Checks, and Automatic
Recompilation

Late Name Resolution
Late Name Resolution for Tables Referred by the View

Unlike SQL/MX tables, the tables referred in a view cannot use PROTOTYPE host
variables instead of table names. Late name resolution is a SQL/MX extension that
allows table names referred to in a view definition to differ between compile-time and
run-time.

To resolve SQL/MX table names accessed by the view, a one-to-one mapping of the
tables in compile-time and run-time is performed by the executor. Therefore, the
position in which the tables appear in the view text must be the same at compile-time
and runtime. Similarity check for the view fails if the positions of the tables or
predicates are different, even though both the views are semantically equivalent.

Example

The following example shows how underlying SQL/MX tables in the view are mapped
between compile-time and run-time before performing the similarity check for the view:

Consider the following DML statement:

SELECT * from :viewname PROTOTYPE 'CAT.SCH.TEMP_VIEW';

The view definitions in compile-time and run-time are as follows:

Compile-time view:

CREATE VIEW TEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT T1.X1, T1.Y1, T2.X2
FROM CAT.SCH.TABLE_ONE T1, CAT.SCH.TABLE_TWO T2;

Run-time view:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT T1.X1, T1.Y1, T2.X2
FROM PRDCAT.PRDSCH_ONE.TABLE_ONE T1, PRDCAT.PRDSCH_ONE.TABLE_TWO
T2;

At compile-time, the query is compiled with the view name, CAT.SCH.TEMP_VIEW in
the PROTOTYPE clause. At run-time, the query is executed with the view name,
PRDCAT.PRDSCH_ONE.PRDTEMP_VIEW passed in the host variable: viewname.
Similarity check compares the views, TEMP_VIEW and PRDTEMP_VIEW and maps the
underlying tables in the views. Similarity check for the view passes if the conditions
described in Similarity Check Criteria for a View on page 8-13 are fulfilled.

CAT.SCH.TABLE_ONE is mapped to PRDCAT.PRDSCH_ONE.TABLE_ONE and
CAT.SCH.TABLE_TWO is mapped to PRDCAT.PRDSCH_ONE.TABLE_TWO. Similarity
check verifies if the mapped tables are equivalent in structure.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-7

Name Resolution, Similarity Checks, and Automatic
Recompilation

Distributed Database Considerations
Distributed Database Considerations

The SQL statements in an embedded SQL program can refer to SQL/MX and SQL/MP
database objects on remote nodes.

Remote SQL/MX Objects

To refer to remote SQL/MX database objects in an embedded SQL program, you need
not change the database object names in the source code. However, the catalog that
contains the SQL/MX objects must be visible (that is, registered) on the local node
before you compile and run your embedded SQL program. For information on
registering catalogs and managing an SQL/MX distributed database, see the SQL/MX
Release 3.2 Management Guide.

Remote SQL/MP Objects

To refer to remote SQL/MP objects by Guardian name in an embedded SQL program,
you should fully qualify the SQL/MP object name, including the name of the remote
node.

If the embedded SQL program uses a class MAP DEFINE or SQL/MP alias name for a
remote SQL/MP object, you should specify a fully qualified SQL/MP object name when
you add the DEFINE or create the SQL/MP alias. The SQL/MP aliases must be in
SQL/MX user catalogs that are visible on the node where the program executes. For
information on registering catalogs to make them visible in an SQL/MX distributed
database environment, see the SQL/MX Release 3.2 Management Guide.

For information on managing an SQL/MP distributed database, see the SQL/MX
Release 3.2 Management Guide.

RDF Considerations

The Remote Duplicate Database Facility (RDF) subsystem monitors changes to a
production database on a local (primary) system and maintains a copy of the database
on a remote (backup) system. RDF stores a backup of the database objects in a
different catalog on the backup node than on the primary node. For more information,
see the RDF/IMP, IMPX, and ZLT System Management Manual.

An embedded SQL application must be able to run on both the primary and backup
nodes. Because RDF stores database objects in different catalogs on the primary and
backup nodes, applications in an RDF environment should not refer to hard-coded
database object names that refer to a specific node or catalog.

To enable easier deployment of your embedded SQL applications in an RDF
environment, follow these guidelines:

Note. NonStop SQL/MX Release 2.x applications cannot query remote SQL/MP objects on a
node that has NonStop SQL/MX Release 1.8 installed. To query these remote objects, you
must upgrade the node to SQL/MX Release 2.x. For more information, see the SQL/MX
Installation and Management Guide.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-8

Name Resolution, Similarity Checks, and Automatic
Recompilation

Similarity Checks and Automatic Recompilation
 SQL/MP Object Names for an RDF Environment on page 8-9
 SQL/MX Object Names for an RDF Environment on page 8-9

SQL/MP Object Names for an RDF Environment

When referring to SQL/MP objects in an embedded SQL program, use class MAP
DEFINEs or SQL/MP aliases. See DEFINE Names for SQL/MP Objects on page 8-3
and SQL/MP Aliases for SQL/MP Objects on page 8-2. If you refer to SQL/MP aliases
in the program, use partially qualified names by omitting the catalog name. See

SQL/MX Object Names for an RDF Environment on page 8-9.

If you use hard-coded Guardian names, omit the node name from the table name,
letting the node default to the node on which the program is preprocessed. See
Guardian Names for SQL/MP Objects on page 8-2.

SQL/MX Object Names for an RDF Environment

When referring to SQL/MX objects in an embedded SQL program, use partially
qualified names by omitting the catalog name (for example, sch.tab or tab). See
ANSI Names for SQL/MX Objects on page 8-2.

Do not embed DECLARE, SET, or CONTROL QUERY DEFAULT statements that
qualify the object names. Instead, qualify the object names with the preprocessor
options for catalog and schema during preprocessing. For more information, see
Running the SQL/MX C/C++ Preprocessor on page 15-8 and Running the
SQL/MX COBOL Preprocessor on page 16-9.

Similarity Checks and Automatic
Recompilation

This subsection explains what causes similarity checks and automatic recompilation to
occur and how to control these operations by coding CONTROL QUERY DEFAULT
statements in a program. See these topics:

 Similarity Check on page 8-9
 Automatic Recompilation on page 8-18
 Recommended Recompilation Settings for OLTP Programs on page 8-19

Similarity Check

During a similarity check, the SQL/MX executor checks each table or view in a DML
statement at run-time to determine if the query execution plan of the statement is still
operable. A similarity check is faster than the automatic recompilation of a query
execution plan and can reduce the performance costs of automatic recompilation.

If the statement fails the Similarity Check Criteria (or if the similarity check is disabled),
the SQL/MX executor, by default, invokes the SQL/MX compiler to automatically
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-9

Name Resolution, Similarity Checks, and Automatic
Recompilation

Similarity Check
recompile the SQL plan. For more information, see Automatic Recompilation on
page 8-18.

Causes of a Similarity Check

When enabled, a similarity check occurs for these reasons:

 Changed DEFINEs or PROTOTYPE Host Variables on page 8-10
 Failed Timestamp Check on page 8-10

Similarity checks are performed regardless of the method chosen to refer to tables in
the source code: hard-coded Guardian or logical names, class map DEFINEs, or
PROTOTYPE host variables. However, similarity checks for views are performed only
when views are referred using logical names or PROTOTYPE host variables. For more
information, see Name Resolution on page 8-1.

Changed DEFINEs or PROTOTYPE Host Variables

The SQL/MX executor performs a similarity check if a statement that was compiled for
one table or view, specified by either a class map DEFINE or a PROTOTYPE host
variable, will now be executed to process a different table or view specified by a new
DEFINE or host variable value, respectively. For more information, see Late Name
Resolution on page 8-6 and Late Name Resolution for Tables Referred by the View on
page 8-7.

If the value of a DEFINE or a PROTOTYPE host variable changes, the SQL/MX
executor initiates a similarity check, comparing the compile-time table or view to the
run-time table or view, respectively, to determine if the query execution plan is still
operable. See Similarity Check Criteria on page 8-11 and Similarity Check Criteria for a
View on page 8-13.

Failed Timestamp Check

The SQL/MX executor performs a similarity check if a timestamp check fails, which
occurs if the table’s or view’s redefinition timestamp has changed since the referencing
statement was compiled. The SQL/MX executor performs a timestamp check for each
table or view referenced in an SQL statement at table or view open time (the first time
the table or view is opened). The timestamp check ensures that the current execution
plan of an SQL statement uses a valid definition of each table or view.

After the SQL/MX compiler has prepared the query execution plan of a statement,
changes to the tables or views that the plan processes can occur. For example, an
index can be added or removed, or a partition added. Changes of this nature can
render the plan inoperable. These types of changes to a table also change the
redefinition timestamp of the table.

Each table or view contains a redefinition timestamp in its file label. At compile time,
the timestamp of each table or view accessed by an SQL statement is stored with the
compiled plan of the statement in a module. When executing a plan, the SQL/MX
executor compares the current timestamp in the table’s or view’s file label with the
compile-time timestamp of the same table or view in the query execution plan. If the
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-10

Name Resolution, Similarity Checks, and Automatic
Recompilation

Similarity Check
timestamps differ, the SQL/MX executor initiates a similarity check, comparing the
compile-time version to the run-time version of the table or view, to determine if the
query execution plan is still operable. See Similarity Check Criteria on page 8-11 and
Similarity Check Criteria for a View on page 8-13.

Controlling the Similarity Check

By default, the similarity check is enabled for all DML statements. To disable the
similarity check and force recompilation of an SQL/MX statement when a class MAP
DEFINE value or table, or view timestamp changes, use the CONTROL QUERY
DEFAULT or CONTROL TABLE statement with the SIMILARITY_CHECK option. For
example, this statement disables the similarity check for all tables in subsequent DML
statements:

CONTROL QUERY DEFAULT SIMILARITY_CHECK 'OFF';

This statement disables the similarity check for a specific table:

CONTROL TABLE samdbcat.persnl.job SIMILARITY_CHECK 'OFF';

If you need to re-enable the similarity check in the program, use the CONTROL
QUERY DEFAULT or CONTROL TABLE statement with the SIMILARITY_CHECK
option set to ON. For more information on coding CONTROL statements, see Using
CONTROL Statements on page 2-12 and the SQL/MX Reference Manual.

Similarity check for views is controlled at the view creation time by the CONTROL
QUERY DEFAULT, DDL_VIEW_SIMILARITY_CHECK. For example, this statement
enables the similarity check for all views in subsequent DDL statements:

CONTROL QUERY DEFAULT DDL_VIEW_SIMILARITY_CHECK 'ENABLE';

The CONTROL QUERY DEFAULT only applies in the absence of explicit syntax
options for similarity check for views. Similarity check for views can also be enabled
using ENABLE SIMILARITY CHECK in a CREATE VIEW or ALTER VIEW statement.
For more information, see the SQL/MX Reference Manual.

Similarity Check Criteria

During a similarity check, the SQL/MX executor compares the compile-time version of
a table with its run-time version. For the similarity check to pass:

 Both tables must have the same table type (key-sequenced or entry-sequenced).

 Both tables must be either audited or nonaudited.

Note. Although the SIMILARITY_CHECK option is enabled by default in NonStop SQL/MX, a
DML statement that refers to an SQL/MP table does not undergo a similarity check in NonStop
SQL/MX if the SQL/MP table was created with the SIMILARITY CHECK option disabled. To
determine if the similarity check is enabled for an SQL/MP table, check the
SIMILARITYCHECK column for the table in the TABLES table of the SQL/MP catalog. For
more information, see the SQL/MP Reference Manual.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-11

Name Resolution, Similarity Checks, and Automatic
Recompilation

Similarity Check
 Both tables must have the same number of columns. The similarity check fails if
the total number of columns is different, even if the referenced columns in the
statement are the same for both tables.

 All corresponding columns in both tables must have the same:

 Name

 Data type, length, precision, and scale

 NULL attribute (Both columns must be either NULL or NOT NULL.) (NOT
NULL clauses in SQL/MP and SQL/MX native tables do not disable similarity
checks. If a table contains a NOT NULL clause, the SHOWDDL command
displays it as part of the CHECK clause. However, it is not handled as a check
constraint clause when the similarity information is generated.)

 DEFAULT clause (For user-specified values, columns must have the same
default value. For SQL/MP floating-point columns, the same default value at
run time might not always match the compile-time value, causing the similarity
check to fail.)

 Both tables must have the same number of key columns. Corresponding key
columns must have the same:

 Position, offset, and column number
 Column attributes

 If a DML statement uses an index, the run-time table must have an index that has
the same attributes as the index that was used by the compile-time table. For an
index on the run-time table to be considered similar to the compile-time index:

 Both must be either unique or nonunique.

 Both must have the same keytag value (SQL/MP indexes). (See the CREATE
INDEX statement in the SQL/MP Reference Manual for details about the
keytag specification of an index. If the index is created without specifying the
keytag, for the indexes of old and new tables to match, they must have been
created in the same sequence.)

 Both must have the same number of key columns.

 Both must have the same key column attributes.

 For a DML statement using indexes, the indexes must not be partitioned. If the
indexes are partitioned, the similarity check fails.

 Both tables must have the same partitioning scheme (hash or range partitioned),
the same number of partitions, and the same partitioning keys if the plan does not
use OLT optimization.

 Both tables must not have any check constraints or referential integrity constraints.

Note. If the plan uses OLT optimization, the number of partitions does not affect the
similarity check. For more information on OLT optimization, see the SQL/MX Query Guide.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-12

Name Resolution, Similarity Checks, and Automatic
Recompilation

Similarity Check
 The query must not use compound statements.

 ESP parallelism must not have been used.

 The query must not include any SQL/MP views.

 A CALL statement must not refer to a stored procedure in Java (SPJ) that has
been dropped and re-created in NonStop SQL/MX.

 An IUD query must not be an embedded update or delete.

 The query must not be an update on primary key or unique index column.

Similarity Check Criteria for a View

During similarity check for a view, the SQL/MX executor compares the view at compile-
time and run-time. For the view to pass the similarity check, the following criteria must
be satisfied:

 The view text, except for the table name and view name, must remain the same.

 The view must not be a nested view or a view with VALUES clause.

 Similarity check for views must be enabled for all the views referred to in the DML
statement.

 The number of view columns must be the same between compile-time and run-
time.

 The following attributes must be the same for all the corresponding columns
projected by the views:

 Name

 Heading

 Data type

 Character Set

 Collation

 NULL/NOT NULL

 IDENTITY COLUMN.

 The tables referred by both the views must pass the Similarity Check Criteria for
tables. If any of the criteria is not fulfilled, similarity check for views fails. A warning
is issued If the RECOMPILATION_WARNINGS CQD is set to ON.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-13

Name Resolution, Similarity Checks, and Automatic
Recompilation

Similarity Check
Examples of similarity check for a view

 In this example, at compile-time, the view refers to two tables,
CAT.SCH.TABLE_ONE T1 and CAT.SCH.TABLE_TWO T2. However, at run-time,
the view refers to only one table, PRDCAT.PRDSCH_ONE.TABLE_ONE T1.

Compile-time view:

CREATE VIEW TEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT X1, Y1, X2
FROM CAT.SCH.TABLE_ONE T1, CAT.SCH.TABLE_TWO T2;

Run-time view:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT X1, Y1 FROM PRDCAT.PRDSCH_ONE.TABLE_ONE T1;

Thus, view similarity check fails, because of the difference in the number of tables
accessed by the view at compile-time and at run-time.

 In this example, the query expressions of the view differ because the projection
lists at compile-time and run-time are different. The projection lists at compile-time
and run-time contains I, J, A and I+1, J+2, B, respectively.

Compile-time view:

CREATE VIEW TEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT I, J, A
FROM CAT.SCH.TABLE_ONE T1, CAT.SCH.TABLE_TWO T2;

Run-time view:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT I+1, J+2, B
FROM PRDCAT.PRDSCH_ONE.TABLE_ONE T1,
PRDCAT.PRDSCH_ONE.TABLE_TWO T2;

Thus, similarity check for the view fails.

 In this example, the query expressions of the view differs because of the difference
in projection lists at compile-time and run-time. The projection lists at compile-time
and run-time contains I, J, A and I, J, CURRENT_DATE AS A, respectively.

Compile-time view:

CREATE VIEW TEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT I, J, A FROM CAT.SCH.TABLE_ONE T1, CAT.SCH.TABLE_TWO
T2;

Run-time view:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT I, J, CURRENT_DATE AS A
FROM PRDCAT.PRDSCH_ONE.TABLE_ONE T1,
PRDCAT.PRDSCH_ONE.TABLE_TWO T2;

Thus, similarity check for the view fails.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-14

Name Resolution, Similarity Checks, and Automatic
Recompilation

Similarity Check
 In this example, except for the table names, the query expression remains the
same between compile-time and run-time. Therefore, the view definition remains
unchanged, and the view similarity check is passed.

Compile-time view:

CREATE VIEW TEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT T1.X1, T1.Y1, X2
FROM CAT.SCH.TABLE_ONE T1, CAT.SCH.TABLE_TWO T2;

Run-time view:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK AS
SELECT T1.X1, T2.Y1, X2
FROM PRDCAT.PRDSCH_ONE.TABLE_T1 T1,
PRDCAT.PRDSCH_ONE.TABLE_T2 T2;

 In this example, the view similarity check fails because T1 and T2 are correlations
pointing to different tables at compile-time and run-time.

Compile-time view:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK
AS SELECT I, J, A
FROM CAT.SCH_ONE.TABLE_ONE T1, CAT.SCH_ONE.TABLE_TWO T2;

Run-time view:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK
AS SELECT I, J, A
FROM PRDCAT.PRDSCH.TABLE_ONE T2, PRDCAT.PRDSCH_ONE.TABLE_TWO
T1;

 In this example, the view similarity check fails because the correlation names for
the tables, at compile-time, TAB1 and TAB2 and at run-time, TEMP1 and TEMP2
are not the same.

Compile-time view:

CREATE VIEW TEMP_VIEW
ENABLE SIMILARITY CHECK AS
SELECT A FROM
 (SELECT A FROM
 (SELECT A FROM CAT.SCH_ONE.TABLE_T4
 WHERE A > 1) TAB1,
 WHERE A < 10) TAB2
WHERE A <> 4;

Run-time view:

CREATE VIEW PRDTEMP _VIEW
ENABLE SIMILARITY CHECK AS
SELECT A FROM
 (SELECT A FROM
 (SELECT A FROM PRDCAT.PRDSCH_ONE.TABLE_T4
 WHERE A > 1) TEMP1,
 WHERE A < 10) TEMP2
WHERE A <> 4;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-15

Name Resolution, Similarity Checks, and Automatic
Recompilation

Similarity Check
 In the following example, the correct table mapping for the view similarity check
must be CAT.SCH.TABLE_ONE to PRDCAT.PRDSCH_ONE.TAB1 and
CAT.SCH.TABLE_ONE to PRDCAT.PRDSCH_ONE.TAB1.

Compile-time view:

CREATE VIEW TEMP_VIEW ENABLE SIMILARITY CHECK AS
 SELECT I, J, A, B
 FROM CAT.SCH.TABLE_ONE T1, CAT.SCH.TABLE_TWO T2
 WHERE T1.I = T2.A;

Run-time view 1:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK AS
 SELECT I, J, A, B
 FROM PRDCAT.PRDSCH_ONE.TAB2 T1, PRDCAT.PRDSCH_ONE.TAB1 T2
 WHERE T2.I = T1.A;

Run-time view 2:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK AS
 SELECT I, J, A, B
 FROM PRDCAT.PRDSCH_ONE.TAB2 T2, PRDCAT.PRDSCH_ONE.TAB1 T1
 WHERE T1.I = T2.A;

Run-time view 3:

CREATE VIEW PRDTEMP_VIEW ENABLE SIMILARITY CHECK AS
 SELECT I, J, A, B
 FROM PRDCAT.PRDSCH_ONE.TAB1 T1, PRDCAT.PRDSCH_ONE.TAB2 T2
 WHERE T1.I = T2.A;

Run-time view 1 fails the view similarity check because the view text is different
compared to the compile-time view, which is caused by a change in the position of
the predicate.

Run-time view 2 fails the view similarity check because the positions of the
correlation names (aliases) of the tables in the run-time view are different
compared to the compile-time view, which causes a difference in the view text.

In addition, run-time view 1 and view 2 definitions also result in wrong SQL/MX
tables being compared for the view similarity check.

Although the run-time views, view 1 and view 2 are semantically equivalent to the
compile-time view, they fail the view similarity check because of the difference in
the view text.

In run-time view 3, although the table names do not match, the view text matches
with the compile-time. Run-time view 3 also results in correct mapping of
underlying tables for the view similarity check. Therefore, the view similarity check
is passed.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-16

Name Resolution, Similarity Checks, and Automatic
Recompilation

Similarity Check
 In this example, run-time view 1 passes the view similarity check, because
PRDCAT.SCH_ONE.tab1 is mapped to CAT.SCH.TABLE_ONE, and
PRDCAT.SCH_ONE.tab2 is mapped to CAT.SCH.TABLE_TWO correctly.

Compile-time view:

CREATE VIEW PRDTEMP_VIEW AS
 SELECT I, J, B
 FROM CAT.SCH.TABLE_ONE, CAT.SCH.TABLE_TWO
 WHERE TABLE_TWO.B = 'A' AND TABLE_ONE.B = 1;

Run-time view 1:

CREATE VIEW PRDTEMP_VIEW AS
 SELECT I, J, B
 FROM PRDCAT.PRDSCH_ONE.TAB1, PRDCAT.PRDSCH_ONE.TAB2
 WHERE TAB2.B = 'A' AND TAB1.I = 1;

Run-time view 2:

CREATE VIEW PRDTEMP_VIEW AS
 SELECT I, J, B
 FROM PRDCAT.PRDSCH_ONE.TAB1, PRDCAT.PRDSCH_ONE.TAB2
 WHERE TAB1.I = 1 AND TAB2.B = 'A';

However, in run-time view 2, positions of the predicates do not match the compile-
time view. Since the positions do not match, a difference exists between the view
text in addition to the difference in the table names. Therefore, run-time view 2 fails
the view similarity check.

If a statement fails the similarity check, the SQL/MX executor, by default, invokes the
SQL/MX compiler to automatically recompile the SQL plan. For more information, see
Automatic Recompilation on page 8-18.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-17

Name Resolution, Similarity Checks, and Automatic
Recompilation

Automatic Recompilation
Automatic Recompilation

Automatic recompilation is the run-time recompilation, invoked by the SQL/MX
executor, of a DML statement in a module. During automatic recompilation, the SQL
plan changes but is not written to the module. Instead, it is stored in the memory of the
SQL/MX executor.

Automatic recompilation incurs a performance cost because it requires the query
execution plan to be regenerated at run time and stored in memory. Automatically
recompiled query plans are not saved for subsequent executions of the same program
or for multiple concurrent executions of the same program. Because of this limitation,
automatic recompilation might be unsuitable for some production environments.

Causes of Automatic Recompilation

By default, automatic recompilation is enabled for all embedded SQL programs.
Automatic recompilation occurs if:

 The value of a class MAP DEFINE or PROTOTYPE host variable changes or the
timestamp of a table changes, and the similarity check fails or is disabled. For
more information, see Similarity Check on page 8-9.

 A DML statement was not compiled when you explicitly SQL compiled the module
definition because the table did not exist or was unavailable at that time. For more
information, see Running the SQL/MX Compiler on page 15-36.

 A transaction mode changes because of a SET TRANSACTION statement. For
more information, see Setting Attributes for Transactions on page 14-3.

Controlling Automatic Recompilation

By default, automatic recompilation is enabled for all embedded SQL programs. To
disable automatic recompilation at run time and force the explicit recompilation of DML
statements, use the CONTROL QUERY DEFAULT statement with the
AUTOMATIC_RECOMPILATION option set to OFF:

CONTROL QUERY DEFAULT AUTOMATIC_RECOMPILATION 'OFF';

Automatic recompilation remains OFF until the end of the embedded SQL program or
until the occurrence of a CONTROL QUERY DEFAULT statement with
AUTOMATIC_RECOMPILATION set to ON.

Controlling Automatic Recompilation Messages

By default, to comply with the ANSI standard, the SQL/MX executor does not return a
warning message to the program when a DML statement is automatically recompiled.
NonStop SQL/MX always logs a warning event, SQL/MX message 505, to the Event
Management Service (EMS) log when a statement is automatically recompiled. For
more information, see the EMS Manual and Operator Messages Manual.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-18

Name Resolution, Similarity Checks, and Automatic
Recompilation

Recommended Recompilation Settings for OLTP
Programs
To return recompilation warning messages directly to the program, use a CONTROL
QUERY DEFAULT statement with the RECOMPILATION_WARNINGS option set to
ON:

CONTROL QUERY DEFAULT RECOMPILATION_WARNINGS 'ON';

If the similarity check fails and RECOMPILATION_WARNINGS is ON, the SQL/MX
executor returns warning message 8579 to the program. If a DML statement is
automatically recompiled and RECOMPILATION_WARNINGS is ON, the SQL/MX
executor returns warning message 8576 to the program.

Recommended Recompilation Settings for OLTP Programs

For optimal performance of OLTP programs in a production environment, use these
settings:

A similarity check is faster than automatic recompilation and can reduce the
performance costs of automatic recompilation. Therefore, you should enable similarity
checks for OLTP programs.

Because automatic recompilation incurs a performance cost, it is unsuitable for OLTP
programs and should be disabled. If you allow automatic recompilations but control the
database environment to prevent them from occurring, you should monitor the EMS log
for warning events that indicate that an automatic recompilation has occurred. You can
also turn on the RECOMPILATION_WARNINGS option to report recompilation warning
messages directly to the program when they occur.

For more information, see Similarity Check on page 8-9 and Automatic Recompilation
on page 8-18.

Default Attribute Value

SIMILARITY_CHECK ON

RECOMPILATION_WARNINGS OFF

AUTOMATIC_RECOMPILATION OFF
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-19

Name Resolution, Similarity Checks, and Automatic
Recompilation

Recommended Recompilation Settings for OLTP
Programs
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
8-20

9 Dynamic SQL

Using the dynamic SQL statements of NonStop SQL/MX, programs can construct,
compile, and execute an SQL statement at run time. With static SQL, you code the
actual SQL statement in the source file and compile the statement during explicit SQL
compilation. A static SQL program uses host variables to send and receive values.

A dynamic SQL program, however, uses a character host variable as a placeholder for
an SQL statement, which is usually unknown during explicit compilation. To construct
the dynamic SQL statement in the host variable, the program usually requires some
input from a user at a workstation. After receiving the input, the program constructs,
compiles, and executes the dynamic SQL statement at run time.

Dynamic SQL can be useful for:

 New interfaces: Suppose that you need to develop an interactive interface similar
to MXCI but designed for specific users. A dynamic SQL program can prompt the
user for input, so the user does not need to know any SQL syntax. If the statement
requires input parameters, the program can also prompt the user for these values.
The program can then construct the SQL statement by concatenating these values
to form syntax elements.

 Client-server support: Suppose that your program is a server that receives
requests from other programs. A program is created to manipulate data in a
database. The program formulates an SQL statement and sends it to your server.
Your server constructs, compiles, and executes the dynamic SQL statement and
sends the results back to the program.

The statements you use to construct, compile, and execute SQL statements during run
time are referred to as dynamic SQL.

The HP NonStop Connectivity Service (MXCS) uses dynamic SQL. For more
information, see the SQL/MX Connectivity Service Manual.

This section describes:

 Statements for Dynamic SQL With Arguments on page 9-2
 Input Parameters and Output Variables on page 9-2
 Steps for Using Dynamic SQL With Argument Lists on page 9-3
 Using EXECUTE IMMEDIATE on page 9-7
 Setting Default Values Dynamically on page 9-8

For information on using dynamic SQL with descriptor areas, see Section 10, Dynamic
SQL With Descriptor Areas.

For information on using dynamic SQL cursors, see Section 11, Dynamic SQL Cursors.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
9-1

Dynamic SQL Statements for Dynamic SQL With Arguments
Statements for Dynamic SQL With Arguments
Some of the dynamic SQL statements commonly used in programs are:

These statements are described on subsequent pages in this section. For the complete
syntax of each statement, see the SQL/MX Reference Manual.

Input Parameters and Output Variables
An input parameter is a symbol in a dynamic SQL statement that serves as a
placeholder for a value substituted when the statement executes. Input parameters are
specified as question marks (?).

An input parameter can appear in an SQL expression wherever a constant can appear.
Using a parameter, you can prepare an SQL statement without the input values.
Specify the data type of the parameter explicitly by using the CAST function so that
NonStop SQL/MX correctly types the parameter. The input values are then provided
when the statement executes.

NonStop SQL/MX returns data to a program through output variables. Output variables
are user-specified areas in the program. Output variables typically contain columns
returned from a SELECT operation.

If you are using the form of the EXECUTE statement that provides a list of arguments
in the USING and INTO clauses, you must know the nature of the dynamic input
parameters and any SELECT list columns. The number of arguments and the data
types of arguments provided in the EXECUTE statement must match both the number
and the data types of parameters in the prepared statement.

If you do not know the number and data types of arguments, use the form of the
EXECUTE statement that uses descriptor areas. See Section 10, Dynamic SQL With
Descriptor Areas.

Floating-Point Variables

Depending on the setting for the CONTROL QUERY DEFAULT FLOATTYPE
statement, input and output will either be in IEEE FLOAT format or Tandem FLOAT
format. The default value is Tandem FLOAT format for dynamic SELECT statements

PREPARE Prepares (compiles) a dynamic SQL statement for
subsequent execution by an EXECUTE statement.

DEALLOCATE PREPARE Deallocates a prepared statement and returns the
system resources used by the statement and also
allows reuse of the statement name.

EXECUTE Executes a prepared dynamic SQL statement.

EXECUTE IMMEDIATE Prepares (compiles) and executes a dynamic SQL
statement in one step.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
9-2

Dynamic SQL Steps for Using Dynamic SQL With Argument Lists
and dynamic parameters. See the SQL/MX Reference Manual for information on
setting CONTROL QUERY DEFAULT values.

Steps for Using Dynamic SQL With Argument
Lists

Figure 9-1 shows the steps presented within the complete C program. These steps are
executed in the sample program Example A-3 on page A-5.

Figure 9-1. Using Dynamic SQL in a C Program

...
EXEC SQL BEGIN DECLARE SECTION;
 char hv_sql_statement[256];
 long in_value;
 ... hv_column1;
 ... hv_column2;
 ...
EXEC SQL END DECLARE SECTION;

... /* Construct the SQL statement and move to statement variable. */

...

EXEC SQL PREPARE sqlstmt FROM :hv_sql_statement;
...

... /* Prompt user for value of input parameter. */
scanf("%hu",&in_value);

EXEC SQL EXECUTE sqlstmt USING :in_value
 INTO :hv_column1,:hv_column2,...;

EXEC SQL DEALLOCATE PREPARE sqlstmt;

C

1

2

3

4

5

6

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
9-3

Dynamic SQL Declare a Host Variable for the Dynamic SQL
Statement

CO
Figure 9-2 shows the steps presented within the complete COBOL program. These
steps are executed in the sample program Example C-3 on page C-6.

For more information:

1. Declare a Host Variable for the Dynamic SQL Statement on page 9-4
2. Move the Statement Into the Host Variable on page 9-5
3. Prepare the SQL Statement on page 9-5
4. Set Explicit Input Values on page 9-6
5. Execute the Prepared Statement on page 9-6
6. Deallocate the Prepared Statement on page 9-7

Declare a Host Variable for the Dynamic SQL Statement

In an SQL Declare Section, declare a host variable to use as a container for the
dynamic SQL statement. You specify this host variable when you prepare the SQL
statement. You must declare the host variable:

 Before the PREPARE statement
 Within the same scope as the PREPARE statement

Figure 9-2. Using Dynamic SQL in a COBOL Program

...
 EXEC SQL BEGIN DECLARE SECTION;
 01 HV-SQL-STATEMENT PIC X(256).
 01 IN-VALUE PIC 9(5) COMP.
 01 HV-COLUMN1 ...
 01 HV-COLUMN2 ...
 ...
 EXEC SQL END DECLARE SECTION;

* Construct the SQL statement and move to statement variable.
 ...

 EXEC SQL PREPARE sqlstmt FROM :HV-SQL-STATEMENT END-EXEC.
 ...

* Prompt user for value of input parameter.
 ...
 ACCEPT IN-VALUE.

 EXEC SQL EXECUTE sqlstmt USING :IN-VALUE
 INTO :HV-COLUMN1,:HV-COLUMN2,... END-EXEC.

 EXEC SQL DEALLOCATE PREPARE sqlstmt END-EXEC.
 ...

BOL

1

2

3

4

5

6

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
9-4

Dynamic SQL Move the Statement Into the Host Variable

CO
Move the Statement Into the Host Variable

Move a statement containing parameters into the statement host variable. For
example, the host variable named hv_sql_statement might contain a statement of
this form:

SELECT EMPNUM, FIRST_NAME, LAST_NAME, SALARY
FROM SAMDBCAT.PERSNL.EMPLOYEE
WHERE EMPNUM = CAST(? AS NUMERIC(4) UNSIGNED)

The parameter in this SELECT statement represents a value to be provided by the
user. Providing the value of the primary key within a loop in your program is a typical
example of user input for a dynamic SQL statement after the statement has been
prepared.

Use the CAST function for a dynamic input parameter to ensure the data type of the
parameter is the same as the data type of the host variable declared to hold the input
value for the parameter. For this example, because NUMERIC(4) UNSIGNED is the
data type of the employee number in the EMPLOYEE table, specify this data type for
the parameter in the AS clause of the CAST function.

Examples

strcpy(hv_sql_stmt, "SELECT empnum, first_name,"
 " last_name, salary"
 " FROM samdbcat.persnl.employee"
 " WHERE empnum = CAST(? AS NUMERIC(4) UNSIGNED)");

MOVE "SELECT empnum, first_name, last_name, salary"
 & " FROM samdbcat.persnl.employee"
 & " WHERE empnum = CAST(? AS NUMERIC(4) UNSIGNED)"
 TO hv-sql-stmt.

Prepare the SQL Statement

To execute the dynamic SQL statement, you must first prepare the statement that is
stored in a host variable. The PREPARE statement checks the statement syntax,
determines the data types of any parameters, and compiles the statement. The
PREPARE statement also associates the prepared statement with a name that you can
use in subsequent EXECUTE statements.

Use this general syntax:

For complete syntax, see the PREPARE statement in the SQL/MX Reference Manual.

Example

EXEC SQL PREPARE sqlstmt FROM:hv_sql_statement;

PREPARE SQL-statement-name FROM :SQL-statement-variable

C

BOL

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
9-5

Dynamic SQL Set Explicit Input Values

CO
The SQL identifier sqlstmt is the name of the prepared statement to be used in a
subsequent EXECUTE statement. The host variable hv_sql_statement contains
the dynamic SQL statement.

Set Explicit Input Values

If you have dynamic input parameters in your prepared statement, you must code the
appropriate C statements to prompt the user to input values and then store these
values in the appropriate host variables.

Examples

/* Initialize input variable in WHERE clause. */
printf("Enter the employee number:");
scanf("%hu",&in_empnum);

* Initialize input variable in WHERE clause.
 DISPLAY "Enter the employee number: ".
 ACCEPT IN-EMPNUM.

Execute the Prepared Statement

You are ready to execute the prepared SQL statement. The EXECUTE statement
names the input parameters and output variables.

Use this general syntax:

Before performing this operation, the application must store information for each input
parameter of the prepared statement in the appropriate host variable. If you have more
than one input parameter, supply the host variables for the parameters in the USING
list in the order of the parameters’ position in the prepared SQL statement.

When EXECUTE with INTO executes, NonStop SQL/MX stores information into the
host variables (and optionally their indicator variables) that correspond to columns
specified in the select list for the prepared statement. If you have more than one output
variable, supply the host variables for the output variables in the INTO list in the order
of the variables’ position in the prepared SQL statement.

The number of arguments and the data types of arguments you provide in the
EXECUTE statement must match the number of parameters and the data types of
parameters in the prepared statement.

For complete syntax, see the EXECUTE statement in the SQL/MX Reference Manual.

EXECUTE SQL-statement-name
 USING variable-spec [,variable-spec]...
 INTO variable-spec [,variable-spec]...;

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
9-6

Dynamic SQL Deallocate the Prepared Statement
Example

This statement uses both input parameters and output variables:

EXEC SQL EXECUTE sqlstmt
 USING :in_empnum
 INTO :hv_empnum,:hv_firstname,:hv_lastname,
 :hv_salary INDICATOR :hv_salary_i;

You must specify the indicator variable in the INTO argument list for columns that allow
null.

Deallocate the Prepared Statement

When you are finished with the dynamic SQL statement, deallocate the resources used
by the prepared statement. See the DEALLOCATE PREPARE statement in the
SQL/MX Reference Manual.

Example

EXEC SQL DEALLOCATE PREPARE sqlstmt;
...

Using EXECUTE IMMEDIATE
If the dynamic SQL statement does not contain input or output parameters and you are
planning to execute it only once, use the EXECUTE IMMEDIATE statement to prepare
and execute in one step. In this case, the user provides the SQL statement. Otherwise,
you could code the SQL statement as static SQL in your program.

Use this general syntax:

For complete syntax, see the EXECUTE IMMEDIATE statement in the SQL/MX
Reference Manual.

You must specify the host variable that contains the statement to be prepared and
executed in the EXECUTE IMMEDIATE statement.

Example

strcpy (hv_sql_statement, "UPDATE employee"
 " SET salary = salary * 1.1"
 " WHERE jobcode = 1234");

EXEC SQL EXECUTE IMMEDIATE :hv_sql_statement;

The host variable hv_sql_statement contains the SQL statement.

EXECUTE IMMEDIATE SQL-statement-variable

C

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
9-7

Dynamic SQL Setting Default Values Dynamically

CO
Setting Default Values Dynamically
Use the EXECUTE IMMEDIATE statement to set dynamic SQL default values; for
example, to set the WARN attribute to the default value
iud_nonaudited_index_maint.

Examples

strcpy(hv_sql_statement,"control query default
iud_nonaudited_index_maint 'warn'");

EXEC SQL EXECUTE IMMEDIATE :hv_sql_statement;

move "control query default iud_nonaudited_index_maint
'warn'" to hv-sql-statement.

EXEC SQL EXECUTE IMMEDIATE :hv-sql-statement END-EXEC.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
9-8

10
Dynamic SQL With Descriptor Areas

Use dynamic SQL statements to construct, compile, and execute SQL statements
during run time. Use the descriptor areas of NonStop SQL/MX to store information on
each input parameter and output variable in a dynamic statement.

This section describes:

 Statements for Dynamic SQL With Descriptors on page 10-1
 SQL Descriptor Areas on page 10-2
 Input Parameters on page 10-3
 Output Variables on page 10-7
 Steps for Using SQL Item Descriptor Areas on page 10-12
 Using SQL Descriptor Areas to Select SQL/MP KANJI and KSC5601 Data on

page 10-21
 Using SQL Descriptor Areas to Retrieve ISO88591 Data to UCS2 Host Variables

on page 10-21

Statements for Dynamic SQL With Descriptors
These statements for dynamic SQL use descriptor areas:

ALLOCATE DESCRIPTOR Allocates an input or output SQL descriptor area.

DEALLOCATE DESCRIPTOR Deallocates an SQL descriptor area.

GET DESCRIPTOR Retrieves information from an SQL descriptor
area—the COUNT of the item descriptor areas and
specified fields in the areas.

SET DESCRIPTOR Modifies information in an SQL descriptor area.

PREPARE Prepares (compiles) a dynamic SQL statement for
subsequent execution by an EXECUTE statement.

DEALLOCATE PREPARE Deallocates a prepared statement and returns the
system resources used by the statement. It also
allows you to reuse the name of the statement.

DESCRIBE INPUT Stores in the descriptor area information on
dynamic input parameters for a prepared statement.

DESCRIBE [OUTPUT] Stores in the descriptor area information on output
values (usually SELECT columns) from a prepared
statement.

EXECUTE Executes a prepared dynamic SQL statement.

EXECUTE IMMEDIATE Prepares (compiles) and executes a dynamic SQL
statement.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-1

Dynamic SQL With Descriptor Areas SQL Descriptor Areas
These statements are described on subsequent pages in this section. For the complete
syntax of each statement, see the SQL/MX Reference Manual.

SQL Descriptor Areas
An SQL descriptor area consists of multiple item descriptor areas, together with a
COUNT of the number of those item descriptor areas. You can use an input descriptor
area to store information on input parameters and an output descriptor area to store
information on output variables in your dynamic SQL statement.

When using SQL descriptor areas, note:

 To identify an SQL descriptor area, use an SQL identifier.

 To allocate an SQL descriptor area, use the ALLOCATE DESCRIPTOR statement.

 To provide the necessary information in the input SQL descriptor area to
applications, use the DESCRIBE INPUT statement to describe the input
parameters of a dynamic SQL statement.

 After you describe the parameters, use the SET DESCRIPTOR statement to set
the input values for the parameters in the input SQL descriptor area. Alternately,
you can use SET DESCRIPTOR to describe the input parameters explicitly
(without using DESCRIBE INPUT) and set the input values.

 Output variables typically contain columns returned from a SELECT operation. Use
the DESCRIBE OUTPUT statement to describe information in the output SQL
descriptor area about the output variables.

 After you describe the output variables, use the GET DESCRIPTOR statement to
retrieve information on them from the output SQL descriptor area.

 To deallocate an SQL descriptor area, use the DEALLOCATE DESCRIPTOR
statement.

SQL Item Descriptors

NonStop SQL/MX uses an input descriptor area to store information on input
parameters and an output descriptor area to store information on output variables in
dynamic SQL statements. Each descriptor area consists a number of item descriptors.
A sufficient number of item descriptors is required to store information on all the
parameters and variables in your dynamic SQL statement.

To store information on input parameters in the descriptor area, use the DESCRIBE
INPUT statement and the SET DESCRIPTOR statement.

To store information on output variables in the descriptor area, use the DESCRIBE
OUTPUT statement. To retrieve information on output variables from the descriptor
area, use the GET DESCRIPTOR statement.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-2

Dynamic SQL With Descriptor Areas Allocating an SQL Descriptor Area
Allocating an SQL Descriptor Area

Use the ALLOCATE DESCRIPTOR statement to allocate a named SQL descriptor
area to store information necessary for the execution of dynamic SQL statements. If
needed, allocate two descriptor areas: one for input parameters and one for output
variables.

Use this general syntax:

For complete syntax, see the ALLOCATE DESCRIPTOR statement in the SQL/MX
Reference Manual.

The descriptor name is a literal or a host variable with a character data type that
specifies an SQL identifier at run time. The number of occurrences is specified to be a
host variable whose value is the maximum number of item descriptors, or the number
of parameters to be used in the dynamic SQL statements in your program.

Deallocating an SQL Descriptor Area

After the execution of dynamic SQL statements in your program, use the
DEALLOCATE DESCRIPTOR statement to deallocate an SQL descriptor area
previously allocated with ALLOCATE DESCRIPTOR.

Use this general syntax:

For complete syntax, see the DEALLOCATE DESCRIPTOR statement in the SQL/MX
Reference Manual.

The descriptor name for both the ALLOCATE DESCRIPTOR and DEALLOCATE
DESCRIPTOR statements includes specifying a GLOBAL or LOCAL scope. The scope
must be the same for these two statements using the same descriptor name within the
same module or compilation unit.

Input Parameters
An input parameter is a symbol in a dynamic SQL statement that serves as a
placeholder for a value substituted when the statement executes.

Specify input parameters in the statement as question marks (?), and use them in SQL
expressions wherever a constant is valid. Using a parameter, you can prepare an SQL
statement without the input values, which are substituted when the statement
executes. Specify the data type of the parameter explicitly by using the CAST function
so that NonStop SQL/MX correctly types the parameter.

ALLOCATE DESCRIPTOR descriptor-name WITH MAX occurrences

DEALLOCATE DESCRIPTOR descriptor-name
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-3

Dynamic SQL With Descriptor Areas Describing Input Parameters
Use the DESCRIBE INPUT statement to set information in the descriptor area about
the input parameters. Alternatively, you can use the SET DESCRIPTOR statement to
set information explicitly in the descriptor area for individual input parameters.

Describing Input Parameters

All values in the item descriptor areas are initially undefined. You can use a
DESCRIBE INPUT statement to set information on the input parameters in the
descriptor area.

Use this general syntax:

For complete syntax, see the DESCRIBE statement in the SQL/MX Reference Manual.

When DESCRIBE INPUT executes, NonStop SQL/MX stores information for each
input parameter of the prepared statement in an item descriptor. Each parameter has a
separate area.

The DESCRIBE INPUT statement sets all fields in the item descriptor for each input
parameter, except for the VARIABLE_POINTER, VARIABLE_DATA,
INDICATOR_POINTER, and INDICATOR_DATA fields. COUNT is set equal to the
number of input parameters. For limitations on using the VARIABLE_POINTER item,
see the VARIABLE POINTER in the SQL/MX Reference Manual.

Setting the Data Values of Input Parameters

After you describe input parameter values for a prepared statement, use the SET
DESCRIPTOR statement to set the value of an input parameter in an item descriptor.

Use this general syntax:

For complete syntax, see the SET DESCRIPTOR statement in the SQL/MX Reference
Manual.

The named descriptor area must be currently allocated. You can assign the input value
to the VARIABLE_DATA or VARIABLE_POINTER field in the SQL descriptor area
allocated earlier and then use SET DESCRIPTOR. For limitations on using the
VARIABLE_POINTER item, see the SET DESCRIPTOR statement in the SQL/MX
Reference Manual.

This example uses a typical context for input parameters in dynamic SQL. Specify the
data type of the input parameter by using the CAST function so that DESCRIBE INPUT
correctly types the parameter.

DESCRIBE INPUT statement-name
 USING SQL DESCRIPTOR descriptor-name

SET DESCRIPTOR descriptor-name
 { COUNT = value-specification }
 { VALUE item-number desc-item-name = value-spec,... }
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-4

Dynamic SQL With Descriptor Areas Setting the Data Values of Input Parameters

CO
Example

strcpy (hv_sql_statement, "UPDATE employee"
 " SET salary = salary * 1.1"
 " WHERE jobcode = CAST(? AS NUMERIC(4) UNSIGNED)");
...
desc_max=1;
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :desc_max;
...
EXEC SQL PREPARE sqlstmt FROM :hv_sql_statement;
...
EXEC SQL DESCRIBE INPUT sqlstmt USING SQL DESCRIPTOR 'in_sqlda';
...
scanf("%hu",&in_jobcode);
...
desc_value = 1;
EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 VARIABLE_DATA = :in_jobcode;
...
EXEC SQL EXECUTE sqlstmt USING SQL DESCRIPTOR 'in_sqlda';

 MOVE "UPDATE employee"
- " SET salary = salary * 1.1"
- " WHERE jobcode = CAST(? AS NUMERIC(4) UNSIGNED)"
 TO hv-sql-statement.
 ...
 MOVE 1 TO desc-max.
 EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda'
 WITH MAX :desc-max
 END-EXEC.
 ...
 EXEC SQL PREPARE sqlstmt FROM :hv-sql-statement END-EXEC.
 ...
 EXEC SQL DESCRIBE INPUT sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda'
 END-EXEC.
 ...
 ACCEPT in-jobcode.
 ...
 MOVE 1 TO desc-value.
 EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc-value
 VARIABLE_DATA = :in-jobcode
 END-EXEC.
 ...
 EXEC SQL EXECUTE sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda'
 END-EXEC.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-5

Dynamic SQL With Descriptor Areas Setting Input Parameter Information Without
DESCRIBE INPUT
Setting Input Parameter Information Without DESCRIBE INPUT

Use the SET DESCRIPTOR statement to describe the input parameters explicitly,
without using DESCRIBE INPUT. To use this method, set the values for these fields (if
needed for the particular data type):

TYPE_FS (or TYPE)
DATETIME_CODE
LEADING_PRECISION
PRECISION
SCALE
CHARACTER_SET_NAME
LENGTH
INDICATOR_TYPE
INDICATOR_DATA (or INDICATOR_POINTER)
VARIABLE_DATA (or VARIABLE_POINTER)
ROWSET_VAR_LAYOUT_SIZE
ROWSET_IND_LAYOUT_SIZE

The data type of the input parameter determines the fields that need to be set.

Example

This example uses a typical context for input parameters in dynamic SQL. This
example does not use the DESCRIBE INPUT statement.

strcpy(hv_sql_stmt, "UPDATE samdbcat.persnl.employee"
 " SET salary = salary * 1.1"
 " WHERE jobcode = CAST(? AS NUMERIC(4) UNSIGNED)");

/* Allocate the descriptor area for input parameters. */
desc_max=1;
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :desc_max;
...
/* Prepare the statement. */
EXEC SQL PREPARE sqlstmt FROM :hv_sql_stmt;
...
scanf("%hu", &in_jobcode);
...
/* Set the value of the input parameters in */
/* the input SQL descriptor area. */
desc_value = 1;
desc_type = -502; /* Smallint unsigned. */
desc_precision = 4;
desc_scale = 0;

EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 TYPE = :desc_type,
 PRECISION = :desc_precision,
 SCALE = :desc_scale,
 VARIABLE_DATA = :in_jobcode;
...
EXEC SQL EXECUTE sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda';

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-6

Dynamic SQL With Descriptor Areas Output Variables
For multiple input parameters, set the individual descriptors in the order of their
occurrence in the dynamic SQL statement. For a complete example of this method,
see Example A-5 on page A-12.

Output Variables
NonStop SQL/MX returns data to a program through output variables. Output variables
can be host variables or individual data buffers to which the program (through the SQL
descriptor area) contains pointers. Output variables typically contain columns returned
from a SELECT or FETCH operation. A program uses the DESCRIBE statement to set
information on the output variables in the output descriptor area.

Describing Output Variables

Use a DESCRIBE OUTPUT statement to set output values for a prepared SELECT
statement. Use GET DESCRIPTOR to retrieve the values.

Use this general syntax:

For complete syntax, see the DESCRIBE statement in the SQL/MX Reference Manual.

When DESCRIBE OUTPUT executes, NonStop SQL/MX stores the value of each
output variable of the prepared statement in an item descriptor area. Each output value
has a separate descriptor area.

Getting the Values of Output Variables

Use the GET DESCRIPTOR statement to retrieve the number (count) of item
descriptor areas and to retrieve the value of an output variable in a specific item
descriptor area.

Use this general syntax:

For complete syntax, see the GET DESCRIPTOR statement in the SQL/MX Reference
Manual.

The DESCRIBE OUTPUT statement sets fields in the SQL item descriptor area for
every column in the select list of a dynamic SELECT statement or in the select list of a
cursor specification for a dynamic SQL cursor. COUNT is set equal to the number of
columns. The NAME field contains the name of each column. The TYPE field contains
the data type of each column.

DESCRIBE [OUTPUT] statement-name
 USING SQL DESCRIPTOR descriptor-name

GET DESCRIPTOR descriptor-name
 { variable-name = COUNT }
 { VALUE item-number variable-name = desc-item-name,... }
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-7

Dynamic SQL With Descriptor Areas Consideration—Retrieving Multiple Values From a
Large Buffer
If you are retrieving the value of an output variable from the VARIABLE_DATA field in
the descriptor area, the receiving host variable must be of a compatible data type and
size for the information being retrieved. Retrieve the output values in the
VARIABLE_DATA field by using the GET DESCRIPTOR statement within the COUNT
loop and by testing on TYPE or NAME to assign the value to the host variable. In
addition, you cannot use arithmetical computation with the VARIABLE_DATA field.

Typically, columns that are not known to the static compiled program are fetched by a
dynamic SQL cursor when the cursor specification is provided by the user. For an
example of this method, see Section 11, Dynamic SQL Cursors.

Consideration—Retrieving Multiple Values From a Large Buffer

To retrieve multiple values efficiently from a large buffer, consider using
VARIABLE_POINTER. In this case, use GET_DESCRIPTOR once to retrieve pointers
to individual values. Otherwise, you must use GET_DESCRIPTOR multiple times to
retrieve each individual value.

A typical statement sequence using VARIABLE_POINTER consists of:

1. DESCRIBE_OUTPUT statement

2. SET_DESCRIPTOR statement with VARIABLE_POINTER (set up pointers to
individual values)

3. EXECUTE statement

4. FETCH statement (obtain data)

5. GET_DESCRIPTOR statement (obtain pointers to data)

VARIABLE_POINTER is described in the SET DESCRIPTOR statement in the
SQL/MX Reference Manual. Example 10-1 describes how to use
VARIABLE_POINTER in a C program.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-8

Dynamic SQL With Descriptor Areas Consideration—Retrieving Multiple Values From a
Large Buffer
Example 10-1. C VARIABLE_POINTER Example (page 1 of 3)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void assign_to_hv(void);
void sql_error(void);
int main(void)
{
 char SQLSTATE_NODATA[6] = "02000";
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 char hv_sql_statement[1024];
 char hv_sqlstmt[30];
 char hv_curspec[256];
 int desc_max;
 long hv_num;
 VARCHAR hv_sqlda_name[129];
 long hv_type;
 long hv_empnum_length;
 long hv_empname_length;
 long hv_empnum_ptr;
 long hv_empname_ptr;
 unsigned short hv_i;
 EXEC SQL END DECLARE SECTION;
 SQLSTATE[5] = '\0';
 SQLSTATE_NODATA[5] = '\0';
 EXEC SQL WHENEVER SQLERROR CALL sql_error

;
 EXEC SQL DECLARE CATALOG 'seg';
 EXEC SQL DECLARE SCHEMA 'suzuki';
 strcpy(hv_sqlstmt,"hvstmt");
 strcpy(hv_curspec,"hvcur");
 strcpy(hv_sql_statement,
 "SELECT EMP_NO, EMP_NAME FROM EMP
 WHERE EMP_NO = '177397 '");
 EXEC SQL PREPARE :hv_sqlstmt FROM :hv_sql_statement;
 desc_max = 10;
 EXEC SQL ALLOCATE DESCRIPTOR 'out_sqlda'
 WITH MAX :desc_max;

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-9

Dynamic SQL With Descriptor Areas Consideration—Retrieving Multiple Values From a
Large Buffer
 EXEC SQL DESCRIBE OUTPUT :hv_sqlstmt
 USING SQL DESCRIPTOR 'out_sqlda';
 EXEC SQL DECLARE :hv_curspec CURSOR FOR :hv_sqlstmt;
 EXEC SQL OPEN :hv_curspec
 USING SQL DESCRIPTOR 'in_sqlda';
 EXEC SQL GET DESCRIPTOR 'out_sqlda' :hv_num = COUNT;
 printf ("Number of columns = %d\n", hv_num);
// Get the type and length of 1st column
 hv_i =1;
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE:hv_i
 :hv_empnum_length = LENGTH,
 :hv_type = TYPE;
 char *hv_emp_num;
 hv_emp_num = new char [hv_empnum_length];
 hv_empnum_ptr = (long)hv_emp_num;
 EXEC SQL SET DESCRIPTOR 'out_sqlda' VALUE :hv_i
 VARIABLE_POINTER =:hv_empnum_ptr;
 // Get the type and length of the second column
 hv_i = 2;
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :hv_i
 :hv_empname_length = LENGTH,
 :hv_type = TYPE;
 char *hv_emp_name;
 hv_emp_name = new char [hv_empname_length];
 hv_empname_ptr = (long)hv_emp_name;
/* Just setting the pointers to retrive column info */
 EXEC SQL SET DESCRIPTOR 'out_sqlda' VALUE :hv_i
 VARIABLE_POINTER =:hv_empname_ptr;
 EXEC SQL FETCH :hv_curspec
 INTO SQL DESCRIPTOR 'out_sqlda';
 while ((strcmp(SQLSTATE,SQLSTATE_NODATA) != 0)
 &&
 (strcmp(SQLSTATE,"24000") != 0)
)
 {
 printf("[Column-1] Length = %d ",
 hv_empnum_length);
 hv_emp_num[hv_empnum_length] = '\0';
 printf(" VARIABLE POINTER CONTAINS = %s\n",
 hv_emp_num);
 printf("[Column-2] Length =%d ",
 hv_empname_length);
 hv_emp_name[hv_empname_length] = '\0';
 printf(" VARIABLE POINTER CONTAINS = %s\n",
 hv_emp_name);
 EXEC SQL FETCH :hv_curspec
 INTO SQL DESCRIPTOR 'out_sqlda';
 } /* while */

Example 10-1. C VARIABLE_POINTER Example (page 2 of 3)C
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-10

Dynamic SQL With Descriptor Areas Consideration—Retrieving Multiple Values From a
Large Buffer
 delete hv_emp_num;
 delete hv_emp_name;
 EXEC SQL CLOSE :hv_curspec;
 EXEC SQL DEALLOCATE DESCRIPTOR 'out_sqlda';
 EXEC SQL DEALLOCATE PREPARE :hv_sqlstmt;

 return 0;
 } /* main() */
 void sql_error()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 long hv_num;
 unsigned short hv_i;
 char hv_sqlstate[6];
 VARCHAR hv_tabname[129];
 VARCHAR hv_colname[129];
 VARCHAR hv_msgtxt[129];
 EXEC SQL END DECLARE SECTION;
 printf("=== EXEC SQL WHENEVER SQLERROR CONTINUE ===\n");
 EXEC SQL GET DIAGNOSTICS :hv_num = NUMBER;

 for (hv_i=1; hv_i <= hv_num; hv_i++){
 EXEC SQL GET DIAGNOSTICS EXCEPTION :hv_i
 :hv_tabname = TABLE_NAME,
 :hv_colname = COLUMN_NAME,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_msgtxt = MESSAGE_TEXT;
 hv_tabname[128] = '\0';
 hv_colname[128] = '\0';
 hv_sqlstate[5] = '\0';
 hv_msgtxt[128] = '\0';
 printf("Table : %s\n", hv_tabname);
 printf("Column : %s\n", hv_colname);
 printf("SQLSTATE : %s\n", hv_sqlstate);
 printf("message : %s\n", hv_msgtxt);
 } /* for */
 } /* sql_error() */

Example 10-1. C VARIABLE_POINTER Example (page 3 of 3)C
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-11

Dynamic SQL With Descriptor Areas Steps for Using SQL Item Descriptor Areas
Steps for Using SQL Item Descriptor Areas
Figure 10-1 shows the steps presented within the complete C program. These steps
are executed in the sample program Example A-4 on page A-8.

Figure 10-1. Using SQL Descriptor Areas in a C Program

EXEC SQL BEGIN DECLARE SECTION;
 char hv_sql_statement[256];
 long in_value;
 short num;
 /* Declare host variables for item descriptor values. */
 long num_data;
 char char_data[100];
 ...
EXEC SQL END DECLARE SECTION;

... /* Construct the SQL statement from user input. */

desc_max = 1;
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :desc_max;
desc_max = 6;
EXEC SQL ALLOCATE DESCRIPTOR 'out_sqlda' WITH MAX :desc_max;

EXEC SQL PREPARE sqlstmt FROM :hv_sql_statement;
...

EXEC SQL DESCRIBE INPUT sqlstmt USING SQL DESCRIPTOR 'in_sqlda';
EXEC SQL DESCRIBE OUTPUT sqlstmt USING SQL DESCRIPTOR 'out_sqlda';

desc_value = 1;
EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 VARIABLE_DATA = :in_value;

EXEC SQL EXECUTE sqlstmt USING SQL DESCRIPTOR 'in_sqlda'
 INTO SQL DESCRIPTOR 'out_sqlda';

EXEC SQL GET DESCRIPTOR 'out_sqlda' :num = COUNT;
for (i = 1; i<= num; i++) {
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :type = TYPE,
 :length = LENGTH,
 :name = NAME;
 /* Test type or name to determine the compatible host variable. */
 if ...
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :num_data = VARIABLE_DATA;
 ...
}
... /* Process the values from the item descriptor areas. */

EXEC SQL DEALLOCATE PREPARE sqlstmt;
EXEC SQL DEALLOCATE DESCRIPTOR 'in_sqlda';
EXEC SQL DEALLOCATE DESCRIPTOR 'out_sqlda';

C

1

2

3

4

5

6

7

8

9

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-12

Dynamic SQL With Descriptor Areas Steps for Using SQL Item Descriptor Areas

CO
Figure 10-2 shows the steps presented within the complete COBOL program. These
steps are executed in the sample program Example C-4 on page C-9.

For more information:

1. Declare a Host Variable for the Dynamic SQL Statement on page 10-14
2. Construct the SQL Statement From User Input on page 10-14
3. Allocate Input and Output SQL Descriptor Areas on page 10-14

Figure 10-2. Using SQL Descriptor Areas in a COBOL Program

 EXEC SQL BEGIN DECLARE SECTION;
 01 hv-sql-statement PIC X(256).
 01 in-value PIC 9(5) COMP.
 01 num PIC 9(4) COMP.
* Declare host variables for item descriptor values.
 01 num-data PIC S9(9) COMP.
 01 char-data PIC X(100).
 ...
 EXEC SQL END DECLARE SECTION;

* Construct the SQL statement from user input.
 ...

 MOVE 1 TO desc-max.
 EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :desc-max ...
 MOVE 6 TO desc-max.
 EXEC SQL ALLOCATE DESCRIPTOR 'out_sqlda' WITH MAX :desc-max ...

 EXEC SQL PREPARE sqlstmt FROM :hv-sql-statement END-EXEC.
 ...

 EXEC SQL DESCRIBE INPUT sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda' END-EXEC.
 EXEC SQL DESCRIBE OUTPUT sqlstmt
 USING SQL DESCRIPTOR 'out_sqlda' END-EXEC.

 MOVE 1 TO desc-value.
 EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc-value
 VARIABLE_DATA = :in-value END-EXEC.

 EXEC SQL EXECUTE sqlstmt USING SQL DESCRIPTOR 'in_sqlda'
 INTO SQL DESCRIPTOR 'out_sqlda' END-EXEC.

 EXEC SQL GET DESCRIPTOR 'out_sqlda' :num = COUNT END-EXEC.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > num
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :type = TYPE,
 :length = LENGTH,
 :name = NAME
 END-EXEC.
* Test type or name to determine the compatible host variable.
 if ...
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :num-data = VARIABLE_DATA
 END-EXEC.
 END-PERFORM.
* Process the values from the item descriptor areas.

 EXEC SQL DEALLOCATE PREPARE sqlstmt END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR 'in_sqlda' END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR 'out_sqlda' END-EXEC.

BOL

1

2

3

4

5

6

7

8

9

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-13

Dynamic SQL With Descriptor Areas Declare a Host Variable for the Dynamic SQL
Statement
4. Prepare the SQL Statement on page 10-15
5. Describe the Input Parameters and the Output Variables on page 10-15
6. Set Explicit Input Values on page 10-16
7. Execute the Prepared Statement on page 10-18
8. Get the Count and Descriptions of the Output Variables on page 10-19
9. Deallocate the Prepared Statement and the SQL Descriptor Areas on page 10-20

Declare a Host Variable for the Dynamic SQL Statement

In an SQL Declare Section, declare a host variable to use as a container for the
dynamic SQL statement. Specify this host variable when you prepare the SQL
statement. You must declare the host variable:

 Before the PREPARE statement
 Within the same scope as the PREPARE statement

Construct the SQL Statement From User Input

Construct the SQL statement from user input and store the statement in the host
variable. For example, the host variable named hv_sql_statement might contain a
statement of this form:

SELECT column-list
FROM table
WHERE column = CAST(? AS S)

The variables (specified in italics) in the preceding SELECT statement represent
character strings to be provided by the user.

Example

After specifying the table name, the column name, and the data type to be used for row
selection, the host variable hv_sql_statement might contain this statement:

SELECT EMPNUM, FIRST_NAME, LAST_NAME, SALARY
FROM SAMDBCAT.PERSNL.EMPLOYEE
WHERE EMPNUM = CAST(? AS NUMERIC(4) UNSIGNED)

Allocate Input and Output SQL Descriptor Areas

You must allocate an input SQL descriptor area for dynamic input parameters and an
output SQL descriptor area for values of output variables (typically, columns of a
SELECT statement). See Allocating an SQL Descriptor Area on page 10-3.

Allocating the Input SQL Descriptor Area

The number of item descriptor areas for the input SQL descriptor area must be large
enough to accommodate all the dynamic input parameters of the prepared statement.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-14

Dynamic SQL With Descriptor Areas Prepare the SQL Statement
Example

desc_max = 1;
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :desc_max;

This descriptor area can hold only one dynamic input parameter in the prepared
statement.

Allocating the Output SQL Descriptor Area

The number of item descriptor areas for the output SQL descriptor area must be large
enough to hold all the columns of the table referred to in the prepared statement.

Example

desc_max = 6;
EXEC SQL ALLOCATE DESCRIPTOR 'out_sqlda' WITH MAX :desc_max;

This descriptor area can hold up to six columns selected from the table referred to in
the prepared statement.

Prepare the SQL Statement

To execute the dynamic SQL statement, first prepare the statement you have
constructed from user input and stored in a host variable. The PREPARE statement
checks the statement syntax, determines the data types of any parameters, and
compiles the statement. The PREPARE statement also associates the prepared
statement with a name you can use in subsequent EXECUTE statements.

Use this general syntax:

For complete syntax, see the PREPARE statement in the SQL/MX Reference Manual.

Example

EXEC SQL PREPARE sqlstmt FROM :hv_sql_statement;

The SQL identifier sqlstmt is the name of the prepared statement to be used in a
subsequent EXECUTE statement. The host variable hv_sql_statement contains
the dynamic SQL statement you have constructed from user input.

Describe the Input Parameters and the Output Variables

To provide information necessary for the execution of the dynamic SQL statement, you
must describe the dynamic input parameters and the output variables in the prepared
statement. See Describing Input Parameters on page 10-4 and Describing Output
Variables on page 10-7.

PREPARE SQL-statement-name FROM :SQL-statement-variable

C

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-15

Dynamic SQL With Descriptor Areas Set Explicit Input Values

CO
Describing the Input Parameters

Use the DESCRIBE INPUT statement to provide information for each dynamic input
parameter in an item descriptor area, except for the actual VARIABLE_DATA and
INDICATOR_DATA values.

Example

EXEC SQL DESCRIBE INPUT sqlstmt USING SQL DESCRIPTOR 'in_sqlda';

Describing the Output Variables

Use the DESCRIBE OUTPUT statement to provide information for each possible
output variable in an item descriptor area—typically, each column in the table referred
to in a SELECT statement.

Example

EXEC SQL DESCRIBE OUTPUT sqlstmt
 USING SQL DESCRIPTOR 'out_sqlda';

If the table referred to consists of six columns, information is provided in six item
descriptor areas. The COUNT for the SQL descriptor area is set to 6.

Set Explicit Input Values

If you have dynamic input parameters in your prepared statement, you must code the
appropriate C statements to prompt the user to input the values and set the values in
the descriptor area. See Setting the Data Values of Input Parameters on page 10-4.

Prompting the User

You first prompt the user for the input values.

Examples

printf("Enter the employee number:");
scanf("%hu",&in_empnum);

DISPLAY "Enter the employee number: ".
ACCEPT IN-EMPNUM.

C

C

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-16

Dynamic SQL With Descriptor Areas Set Explicit Input Values
Setting the Parameter Values

After user input, you can set the VARIABLE_DATA or VARIABLE_POINTER value in
the item descriptor area. For limitations on using the VARIABLE_POINTER item, see
using the VARIABLE POINTER in the SQL/MX Reference Manual.

Example

desc_value = 1;
EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 VARIABLE_DATA = :in_empnum;

Setting Null

If the user can enter null, set the INDICATOR_DATA value to indicate null in the
VARIABLE_DATA field in the item descriptor area.

Example

desc_value = 1;
EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 INDICATOR_DATA = -1;

In this case, the actual value of VARIABLE_DATA is irrelevant and is not verified.

Setting Parameter Values by Position

If you have more than one dynamic parameter, you can identify and set values for the
parameters by their position in the prepared SQL statement.

Example

strcpy (hv_sql_statement, "UPDATE employee"
 " SET salary = salary * 1.1"
 " WHERE jobcode = CAST(? AS NUMERIC(4) UNSIGNED)"
 " AND salary < CAST(? AS NUMERIC(8,2) UNSIGNED)");
...
desc_max = 2;
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :desc_max;
...
EXEC SQL PREPARE sqlstmt FROM :hv_sql_statement;
...
EXEC SQL DESCRIBE INPUT sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda';
...
... /* Input the values for the jobcode and salary parms. */
desc_value = 1;
EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 VARIABLE_DATA = :in_jobcode;
desc_value = 2;
EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 VARIABLE_DATA = :in_salary;

C

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-17

Dynamic SQL With Descriptor Areas Execute the Prepared Statement

CO
...
EXEC SQL EXECUTE sqlstmt USING SQL DESCRIPTOR 'in_sqlda';

...
 MOVE "UPDATE employee"
- " SET salary = salary * 1.1"
- " WHERE jobcode = CAST(? AS NUMERIC(4) UNSIGNED)"
- " AND salary < CAST(? AS NUMERIC(8,2) UNSIGNED)"
 TO hv-sql-statement.
 ...
 MOVE 2 TO desc-max.
 EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda'
 WITH MAX :desc_max
 END-EXEC.
 ...
 EXEC SQL PREPARE sqlstmt FROM :hv-sql-statement END-EXEC.
 EXEC SQL DESCRIBE INPUT sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda'
 END-EXEC.
 ...
* Input the values for the jobcode and salary parms.
 ACCEPT in-jobcode.
 ACCEPT in-salary.
 ...
 MOVE 1 TO desc-value.
 EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc-value
 VARIABLE_DATA = :in-jobcode
 END-EXEC.
 MOVE 2 TO desc-value.
 EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc-value
 VARIABLE_DATA = :in-salary
 END-EXEC.
 ...
 EXEC SQL EXECUTE sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda'
 END-EXEC.

Execute the Prepared Statement

You have allocated the input and output SQL descriptor area, described parameters,
and set input values in SQL descriptor areas. You are ready to execute the prepared
SQL statement. The EXECUTE statement names both the input SQL descriptor area
and the output SQL descriptor area (if needed).

Use this general syntax:

For complete syntax, see the EXECUTE statement in the SQL/MX Reference Manual.

EXECUTE SQL-statement-name
 USING SQL DESCRIPTOR in-descriptor-name
 INTO SQL DESCRIPTOR out-descriptor-name;

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-18

Dynamic SQL With Descriptor Areas Get the Count and Descriptions of the Output
Variables
Example

This statement uses both an input and output SQL descriptor area:

EXEC SQL EXECUTE sqlstmt USING SQL DESCRIPTOR 'in_sqlda'
 INTO SQL DESCRIPTOR 'out_sqlda';

Get the Count and Descriptions of the Output Variables

When you have executed the prepared SQL statement, use the GET DESCRIPTOR
statement to retrieve the output values from the output SQL descriptor area. See
Getting the Values of Output Variables on page 10-7.

Retrieving the Count

Use the GET DESCRIPTOR statement to retrieve the COUNT of the SQL item
descriptor areas.

Example

EXEC SQL GET DESCRIPTOR 'out_sqlda' :num = COUNT;

Looping Through the Item Descriptor Areas

Use the COUNT to loop through the item descriptor areas. Test on TYPE or NAME to
assign the value in VARIABLE_DATA to a compatible variable. You can use other
descriptor fields, such as PRECISION, to modify this value. If a selected column is
nullable, you must test the value in the INDICATOR_DATA field to determine whether
an actual value for the column is retrieved in the VARIABLE_DATA field.

Example

/* First, get the count of the number of output values. */
EXEC SQL GET DESCRIPTOR 'out_sqlda' :num = COUNT;
* Second, get the i-th output values and save. */
for (i = 1; i <= num; i++) {
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :sqlda_type = TYPE,
 :sqlda_name = NAME;
 ...
 /* Test type or name to determine the host variable. */
 /* Assign data value to a compatible host variable. */
 ...
 if (strncmp(sqlda_name,"LAST_NAME",strlen("LAST_NAME"))==0){
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_last_name = VARIABLE_DATA;
 hv_last_name[20]='\0';
 printf("\nLast name is: %s", hv_last_name);
 }
 ...
 else
 if (strncmp(sqlda_name,"JOBCODE",strlen("JOBCODE"))==0){
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i

C

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-19

Dynamic SQL With Descriptor Areas Deallocate the Prepared Statement and the SQL
Descriptor Areas

CO
 :hv_jobcode = VARIABLE_DATA,
 :hv_jobcode_i = INDICATOR_DATA;
 if (hv_jobcode_i < 0)
 printf("\nJobcode is unknown");
 else
 printf("\nJobcode is: %hu", hv_jobcode);
 }
 ...
} /* end for */
... /* process the item descriptor values */

* First, get the count of the number of output values.
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' :num = COUNT
 END-EXEC.
* Second, get the i-th output values and save.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > num
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :sqlda-type = TYPE,
 :sqlda-name = NAME
 END-EXEC.
* Test type or name to determine the host variable.
* Assign data value to a compatible host variable.
 ...
 IF sqlda-name = "LAST_NAME"
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv-last-name = VARIABLE_DATA
 END-EXEC.
 DISPLAY "Last name is: " hv-last-name
 ...
 ELSE
 IF sqlda-name = "JOBCODE"
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv-jobcode = VARIABLE_DATA,
 :hv-jobcode-i = INDICATOR_DATA
 END-EXEC.
 IF hv-jobcode-i < 0
 DISPLAY "Jobcode is unknown"
 ELSE
 DISPLAY "Jobcode is: " hv-jobcode
 ...
 END-PERFORM.
* Process the item descriptor values
 ...

Deallocate the Prepared Statement and the SQL Descriptor
Areas

When you are finished with the dynamic SQL statement, deallocate the resources used
by the prepared statement and the SQL descriptor areas. See the DEALLOCATE
PREPARE statement in the SQL/MX Reference Manual.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-20

Dynamic SQL With Descriptor Areas Using SQL Descriptor Areas to Select SQL/MP
KANJI and KSC5601 Data
Example

EXEC SQL DEALLOCATE PREPARE sqlstmt;
...
EXEC SQL DEALLOCATE DESCRIPTOR 'in_sqlda';
EXEC SQL DEALLOCATE DESCRIPTOR 'out_sqlda';

Using SQL Descriptor Areas to Select SQL/MP
KANJI and KSC5601 Data

See Example A-9 on page A-28 and Example A-10 on page A-30 for a detailed
example.

Using SQL Descriptor Areas to Retrieve
ISO88591 Data to UCS2 Host Variables

See Example A-11 on page A-35 for a dynamic SQL descriptor example that retrieves
ISO88591 data to UCS2 host variables.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-21

Dynamic SQL With Descriptor Areas Using SQL Descriptor Areas to Retrieve ISO88591
Data to UCS2 Host Variables
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
10-22

11 Dynamic SQL Cursors

The dynamic SQL programs of NonStop SQL/MX use cursors to process multiple row
SELECT statements in the same way that static SQL programs use cursors. The
program reads rows from a result table, one by one, and sends the column values to
output data buffers specified in the program. A static cursor is associated with an
actual query expression (for example, a SELECT statement), and a dynamic cursor is
associated with a statement prepared for the cursor specification.

This section describes:

 Statements for Dynamic SQL Cursors on page 11-1
 Steps for Using a Dynamic SQL Cursor on page 11-2
 Dynamic SQL Cursors Using Descriptor Areas on page 11-10

Statements for Dynamic SQL Cursors

These statements are described on subsequent pages in this section. For the complete
syntax of each statement, see the SQL/MX Reference Manual.

PREPARE Prepares (compiles) a dynamic SQL statement for
subsequent execution.

DEALLOCATE PREPARE Deallocates a prepared statement, returns the system
resources used by the statement, and allows reuse of
the statement name.

DECLARE CURSOR Defines a cursor and associates it with a statement
already prepared for the cursor specification.

ALLOCATE CURSOR Allows you to dynamically declare an unlimited number
of cursors.

OPEN Opens a cursor.

FETCH Positions a cursor on the next row of a table and
retrieves values from the row.

Positioned UPDATE Updates a row from a table or view at the current
cursor position.

Positioned DELETE Deletes a row from a table or view at the current cursor
position.

CLOSE Closes a cursor.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-1

Dynamic SQL Cursors Steps for Using a Dynamic SQL Cursor
Steps for Using a Dynamic SQL Cursor
Figure 11-1 shows the steps presented within the complete C program. These steps
are executed in the sample program Example A-6 on page A-15.

Figure 11-1. Using a Dynamic SQL Cursor in a C Program

...
EXEC SQL BEGIN DECLARE SECTION;
short hostvar;
char curspec[80];
...
EXEC SQL END DECLARE SECTION;
...

strcpy(curspec,"SELECT column1,column2,column3"
 " FROM catalog.schema.table"
 " WHERE column1 = CAST(? AS sql_type)");
...
EXEC SQL PREPARE cursor_spec FROM :curspec;
...

EXEC SQL DECLARE sql_cursor CURSOR FOR cursor_spec;
...
void find_row(void)
{
...

hostvar = initial_value;
...

EXEC SQL OPEN sql_cursor USING :hostvar;
...

EXEC SQL FETCH sql_cursor
 INTO :hostvar1, :hostvar2, :hostvar3 ;
...
... /* Process values in the host variable(s). */
...
... /* If last row has not been processed, */
 /* branch back to fetch another row. */
...

EXEC SQL CLOSE sql_cursor;
...
}
...
EXEC SQL DEALLOCATE PREPARE cursor_spec;
...

C

1

2

3

4

5

6

7

8

9

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-2

Dynamic SQL Cursors Steps for Using a Dynamic SQL Cursor

CO
Figure 11-2 shows the steps presented within the complete COBOL program. These
steps are executed in the sample program Example C-5 on page C-13.

For more information:

1. Declare Required Host Variables on page 11-4
2. Prepare the Cursor Specification on page 11-4
3. Declare the Cursor on page 11-4
4. Initialize the Dynamic Input Parameters on page 11-5
5. Open the Cursor on page 11-5
6. Retrieve the Values on page 11-5
7. Process the Retrieved Values on page 11-6
8. Fetch the Next Row on page 11-6
9. Close the Cursor and Deallocate the Prepared Statement on page 11-6

Figure 11-2. Using a Dynamic SQL Cursor in a COBOL Program

 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HOSTVAR 9(4) COMP.
 01 CURSPEC PIC X(80).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...

 MOVE "SELECT column1, column2, column3"
- " FROM catalog.schema.table"
- " WHERE column1 = CAST(? AS sql_type)"
 TO CURSPEC.
 ...
 EXEC SQL PREPARE cursor_spec FROM :CURSPEC END-EXEC.
 ...

 EXEC SQL DECLARE sql_cursor CURSOR FOR cursor_spec END-EXEC.
 ...

 MOVE INITIAL-VALUE TO HOSTVAR.
 ...

 EXEC SQL OPEN sql_cursor USING :HOSTVAR END-EXEC.
 ...

 EXEC SQL FETCH sql_cursor
 INTO :HOSTVAR1, :HOSTVAR2, :HOSTVAR3 END-EXEC.
 ...
* Process values in the host variable(s).
 ...
* If last row has not been processed,
* branch back to fetch another row.
 ...

 EXEC SQL CLOSE sql_cursor END-EXEC.
 ...
 EXEC SQL DEALLOCATE PREPARE cursor_spec END-EXEC.
 ...

BOL

1

2

3

4

5

6

7

8

9

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-3

Dynamic SQL Cursors Declare Required Host Variables
Declare Required Host Variables

In an SQL Declare Section, declare the host variable you specify as the statement
name for the cursor specification within the DECLARE CURSOR statement. You must
also declare host variables used in the OPEN statement for dynamic input parameters.
Declare required host variables:

 Before the PREPARE statement for the cursor specification

 Before the OPEN statement using the values for dynamic input parameters for the
cursor specification

 Within the same scope as the SQL statements that refer to them

Prepare the Cursor Specification

In dynamic SQL, a host variable contains the query expression that serves as the
cursor specification. Initialize the host variable before you execute the PREPARE
statement for the cursor specification. The query expression might contain a dynamic
input parameter.

After you initialize the host variable with the cursor specification, use the PREPARE
statement to compile the cursor specification and associate the compiled statement
with a statement name. Use the statement name in the DECLARE CURSOR
statement.

Use this general syntax:

For complete syntax, see the PREPARE statement in the SQL/MX Reference Manual.

Declare the Cursor

A dynamic DECLARE CURSOR statement names a cursor and associates it with a
statement name. Within a dynamic DECLARE CURSOR statement, both the cursor
name and statement name can be provided at run time by the values of host variables.
The statement name identifies the cursor specification already prepared within the
same scope as the DECLARE CURSOR statement.

Use this general syntax:

For complete syntax, see the DECLARE CURSOR Declaration in the SQL/MX
Reference Manual.

Code a dynamic DECLARE CURSOR statement in your program:

PREPARE statement-name FROM :cursor-specification

DECLARE {cursor-name | ext-cursor-name}
 CURSOR FOR statement-name
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-4

Dynamic SQL Cursors Initialize the Dynamic Input Parameters
 In listing order, before other SQL statements that refer to the cursor, including the
OPEN, FETCH, DELETE, UPDATE, and CLOSE statements

 Within the scope of other SQL statements that refer to the cursor

Initialize the Dynamic Input Parameters

Initialize the dynamic input parameters you specified in the cursor specification in the
DECLARE CURSOR declaration.

You must initialize the host variables before you execute the OPEN statement. The
OPEN statement uses the values of the input parameters to establish the result table
and position the cursor before the first row of the table.

Open the Cursor

The OPEN statement determines the result table and positions the cursor before the
first row of the table.

Use this general syntax:

For complete syntax, see the OPEN statement in the SQL/MX Reference Manual.

You can also use this syntax for an OPEN statement that uses an input descriptor area
(that has been allocated, described, and initialized with the appropriate input parameter
values):

OPEN cursor-name USING SQL DESCRIPTOR descriptor-name

Retrieve the Values

The FETCH statement positions the cursor at the next row of the result table and
transfers the values defined in the query expression of the DECLARE CURSOR
statement into the corresponding host variables.

Use this general syntax:

For complete syntax, see the FETCH statement in the SQL/MX Reference Manual.

The cursor must be open when the FETCH statement executes. The FETCH
statement must also execute within the scope of all other SQL statements that refer to
the cursor, including DECLARE CURSOR, OPEN, DELETE, UPDATE, and CLOSE
statements.

OPEN cursor-name USING variable-spec [,variable-spec]...

FETCH cursor-name INTO :hostvar [,:hostvar]...
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-5

Dynamic SQL Cursors Process the Retrieved Values
Alternatively, use this general syntax when transferring values to an output descriptor
area (that has been allocated and described):

For further information on using this method, see Dynamic SQL Cursors Using
Descriptor Areas on page 11-10.

Process the Retrieved Values

After the FETCH statement returns the values to the host variables, your program can
process the values. For example, you can test one or more values and then perform
one of these operations:

 Update columns in the current row by using a positioned UPDATE statement.
 Delete the current row by using a positioned DELETE statement.
 List or display the values.
 Save the values in an array and process them later.

After you process a row, execute the FETCH statement to retrieve the next row.

Fetch the Next Row

Program control returns to the FETCH statement. Use the FETCH statement to
position the cursor at the next row of the result table. Continue executing this loop until
you have processed all rows specified by the query expression. After the FETCH
statement has retrieved the last row, a subsequent FETCH causes a no-data exception
(SQLSTATE is 02000 and SQLCODE is 100).

Close the Cursor and Deallocate the Prepared Statement

The CLOSE statement closes the cursor and releases the result table established by
the OPEN statement. After the CLOSE statement executes, the result table no longer
exists. To use the same cursor again, you must reopen it by using an OPEN statement.
If the cursor specification contains a dynamic input parameter, the host variable in the
USING clause of the OPEN statement can be initialized with a new value before the
cursor is opened.

A CLOSE statement must execute within the scope of all other SQL statements that
refer to the cursor, including the DECLARE CURSOR, OPEN, FETCH, INSERT, and
DELETE statements:

For complete syntax, see the CLOSE statement in the SQL/MX Reference Manual.

At this point, program control could return to step described in Initialize the Dynamic
Input Parameters on page 11-5 to continue fetching rows with another input parameter
value for the dynamic cursor.

FETCH cursor-name USING SQL DESCRIPTOR descriptor-name

CLOSE cursor-name
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-6

Dynamic SQL Cursors Using Date-Time and INTERVAL Data Types
Suppose that you are finished with the dynamic SQL statement that specifies the
cursor. Deallocate the resources used by the prepared cursor specification. The
module that contains the DEALLOCATE PREPARE statement must also contain a
PREPARE statement for statement-name.

DEALLOCATE PREPARE statement-name

For complete syntax, see the DEALLOCATE PREPARE statement in the SQL/MX
Reference Manual.

Using Date-Time and INTERVAL Data Types
If a column in the select list of a cursor specification has an INTERVAL or standard
date-time (DATE, TIME, or TIMESTAMP, or the SQL/MP DATETIME equivalents) data
type, use the INTERVAL or date-time type.

If a column in the select list of a cursor specification has a nonstandard SQL/MP
DATETIME data type that is not equivalent to DATE, TIME, or TIMESTAMP, you must
use the CAST function to convert the column to a character string. You must also
specify the length of the target host variable (or the length–1 in the case of a C
program) as part of the CAST conversion.

The data type of an input parameter can be either numeric or character. If a column (in
the WHERE clause of the cursor specification) to be compared to an input parameter
has an INTERVAL or standard date-time data type, the parameter in the USING clause
of the OPEN statement must have an INTERVAL or compatible date-time data type. In
the WHERE clause, you must cast the parameter to a date-time or INTERVAL data
type.

If a column (in the WHERE clause of the cursor specification) to be compared to an
input parameter has a nonstandard SQL/MP date-time data type, the parameter in the
USING clause of the OPEN statement must have a character data type. In the WHERE
clause, you must first specify the data type of the parameter as CHAR in the AS clause
of the CAST function, and then cast it to a date-time data type.

Standard Date-Time Example

This example uses a typical context for a standard date-time input parameter for a
cursor specification:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_projcode;
 VARCHAR hv_projdesc[19];
 DATE hv_start_date;
 DATE in_start_date;
 char curspec[256]; /* Dynamic cursor spec */
EXEC SQL END DECLARE SECTION;
...
strcpy(curspec,
 "SELECT projcode, projdesc, start_date)"

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-7

Dynamic SQL Cursors Interval Example

CO
 " FROM samdbcat.persnl.project"
 " WHERE start_date <= CAST(? AS DATE)";

/* Prepare the cursor specification. */
EXEC SQL PREPARE cursor_spec FROM :curspec;

/* Declare the dynamic cursor from the prepared statement. */
EXEC SQL DECLARE get_by_projcode CURSOR FOR cursor_spec;

/* Initialize the parameter in the WHERE clause. */
printf("Enter the latest start date in the form yyyy-mm-dd: ");
scanf("%s", in_start_date);

/* Open the cursor using the value of the dynamic parameter. */
EXEC SQL OPEN get_by_projcode USING :in_start_date;

/* Fetch the first row of the result table. */
EXEC SQL FETCH get_by_projcode
 INTO :hv_projcode,:hv_projdesc,:hv_start_date;

while (strcmp (SQLSTATE, SQLSTATE_NODATA) != 0) {
 hv_start_date[10]='\0';
 printf("\nProject Code: %hu, Start Date: %s",
 hv_projcode, hv_start_date);
 /* Fetch the next row of the result table. */
EXEC SQL FETCH get_by_projcode
 INTO :hv_projcode,:hv_projdesc,:hv_start_date;
}
/* Close the cursor. */
EXEC SQL CLOSE get_by_projcode;

/* Deallocate the prepared cursor specification. */
EXEC SQL DEALLOCATE PREPARE cursor_spec;

Interval Example

This example uses a typical context for an interval input parameter for a cursor
specification:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 hv-projcode pic 9(4) comp.
 01 hv-projdesc pic x(18).
 01 hv-est-complete INTERVAL DAY(3).
 01 curspec pic x(255).
 01 in-est-complete INTERVAL DAY(3).
EXEC SQL END DECLARE SECTION END-EXEC.
 PROCEDURE DIVISION.
 MOVE "SELECT projcode, projdesc, est_complete
- " FROM samdbcat.persnl.project
- " WHERE est_complete >=
- " CAST(? AS INTERVAL DAY(3))"
 TO curspec.
* Prepare cursor specification.
 EXEC SQL PREPARE cursor_spec FROM :curspec END-EXEC.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-8

Dynamic SQL Cursors Nonstandard SQL/MP DATETIME Example
* Declare the dynamic cursor from the prepared statement.
 EXEC SQL
 DECLARE get_by_projcode CURSOR FOR cursor_spec
 END-EXEC.

* Initialize the parameter in the WHERE clause.
 DISPLAY "Enter the minimum estimated number of days: ".
 ACCEPT in-est-complete.

* Open the cursor using the values of the dynamic parameter.
 EXEC SQL
 OPEN get_by_projcode USING :in-est-complete
 END-EXEC.

* Fetch the first row of result from table.
 EXEC SQL
 FETCH get_by_projcode
 INTO :hv-projcode, :hv-projdesc, :hv-est-complete
 END-EXEC.
* Fetch rest of the results from table.
 PERFORM UNTIL sqlstate = sqlstate-nodata
 ...
 EXEC SQL FETCH get_by_projcode
 INTO :hv-projcode, :hv-projdesc, :hv-est-complete
 END-EXEC.
 END-PERFORM.

* Close the cursor.
 EXEC SQL CLOSE get_by_projcode END-EXEC.

* Deallocate the prepared cursor specification. */
 EXEC SQL DEALLOCATE PREPARE cursor_spec END-EXEC.

Nonstandard SQL/MP DATETIME Example

This example uses a typical context for a nonstandard date-time input parameter,
DATETIME MONTH TO DAY (mm-dd), for a cursor specification:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_projcode;
 VARCHAR hv_projdesc[19];
 char hv_start_date[6];
 char in_start_date[6];
 char curspec[256]; /* Dynamic cursor spec */
EXEC SQL END DECLARE SECTION;
...
strcpy(curspec,
 "SELECT projcode, projdesc, CAST(start_date AS CHAR(5))"
 " FROM samdbcat.persnl.project"
 " WHERE start_date <= "
 " CAST(CAST(? AS CHAR(5)) AS DATETIME MONTH TO DAY)");

/* Prepare the cursor specification. */
EXEC SQL PREPARE cursor_spec FROM :curspec;

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-9

Dynamic SQL Cursors Dynamic SQL Cursors Using Descriptor Areas
/* Declare the dynamic cursor from the prepared statement. */
EXEC SQL DECLARE get_by_projcode CURSOR FOR cursor_spec;

/* Initialize the parameter in the WHERE clause. */
printf("Enter the latest start date in the form mm-dd: ");
scanf("%s", in_start_date);

/* Open the cursor using the value of the dynamic parameter. */
EXEC SQL OPEN get_by_projcode USING :in_start_date;

/* Fetch the first row of the result table. */
EXEC SQL FETCH get_by_projcode
 INTO :hv_projcode,:hv_projdesc,:hv_start_date;

while (strcmp (SQLSTATE, SQLSTATE_NODATA) != 0) {
 hv_start_date[5]='\0';
 printf("\nProject Code: %hu, Start Date: %s",
 hv_projcode, hv_start_date);
 /* Fetch the next row of the result table. */
EXEC SQL FETCH get_by_projcode
 INTO :hv_projcode,:hv_projdesc,:hv_start_date;
}
/* Close the cursor. */
EXEC SQL CLOSE get_by_projcode;

/* Deallocate the prepared cursor specification. */
EXEC SQL DEALLOCATE PREPARE cursor_spec;

Dynamic SQL Cursors Using Descriptor Areas
When using a dynamic cursor, you can specify an output descriptor area for the
FETCH INTO statement instead of a list of host variables. The values of the output
parameters are stored in the descriptor area, retrieved by using GET DESCRIPTOR,
and assigned to a compatible host variable by testing on the data type. See the
SQL/MX Reference Manual for information on descriptor areas.

For a complete example of dynamic SQL cursors using descriptor areas, see
Example A-7 on page A-18.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
11-10

12 Dynamic SQL Rowsets

The dynamic SQL statements of NonStop SQL/MX can use rowsets to:

 Provide an array of input values in an INSERT, UPDATE, DELETE, or SELECT
statement.

 Retrieve an array of output values in a FETCH statement.

This section describes:

 Using Dynamic SQL Rowsets on page 12-1
 Preparing an SQL Statement With Dynamic Rowsets on page 12-2
 Using the SET DESCRIPTOR Statement on page 12-5
 Using the GET DESCRIPTOR Statement on page 12-9
 Using the DESCRIBE INPUT Statement on page 12-10

For a general discussion of rowsets, see Section 7, Static Rowsets.

Using Dynamic SQL Rowsets
You can use of rowsets in dynamic SQL statements as you do rowsets in static SQL
statements, with these restrictions:

 Rowset-derived tables are not available from dynamic SQL.

 In dynamic SQL, all input rowsets must be of the same size in an SQL statement.
Use of rowsets and scalars for input in the same SQL statement is allowed, as in
static SQL, but all rowsets for input must be of the same size in a dynamic SQL
statement.

The dynamic SQL programming model is described in:

 Section 9, Dynamic SQL
 Section 10, Dynamic SQL With Descriptor Areas
 Section 11, Dynamic SQL Cursors

To use rowsets in a dynamic SQL statement follow all guidelines described in these
sections with these restrictions:

 For a C/C++ application, when dynamic SQL rowsets are used with descriptor
areas, data must be exchanged with NonStop SQL/MX using the
VARIABLE_POINTER and INDICATOR_POINTER descriptor fields. You cannot
use the VARIABLE_DATA and INDICATOR_DATA descriptor fields with dynamic
SQL rowsets.

 For a COBOL application, dynamic SQL rowsets with descriptor areas because the
VARIABLE_POINTER descriptor field is not supported in COBOL. Dynamic SQL
rowsets in COBOL can be accessed only by using dynamic SQL with argument
lists, as described in Steps for Using Dynamic SQL With Argument Lists on
page 9-3.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-1

Dynamic SQL Rowsets Preparing an SQL Statement With Dynamic Rowsets
Data can be exchanged between a dynamic embedded SQL application and the
database by using rowset-type host variables (as in static SQL) or by using the
address of memory locations in application space, which have been suitably prepared
to send data to or receive data from the database. Consequently, dynamic rowsets can
be used without declaring rowset-type host variables in the DECLARE section. This
requires the use of descriptor areas to provide the address of input/output memory
locations to NonStop SQL/MX. It is recommended that you use rowset-type host
variables to exchange data with the database. The remainder of this section assumes
that all input data will be provided in host variables, and output data will be fetched into
host variables.

These dynamic SQL statements have modified behavior when rowsets are used.

 PREPARE
 GET DESCRIPTOR
 SET DESCRIPTOR
 DESCRIBE INPUT

For all other types of dynamic SQL statements, the descriptions in Section 9, Dynamic
SQL, Section 10, Dynamic SQL With Descriptor Areas, and Section 11, Dynamic SQL
Cursors apply without any change to rowsets. The rowset-specific information of these
four statements are described in this section.

Preparing an SQL Statement With Dynamic
Rowsets

In dynamic embedded SQL, SQL statements are placed in character strings and are
SQL compiled at execution time by calling the PREPARE statement. You might not
know the host variables used to transfer data between an application program and a
database when the SQL statement is prepared. Input parameters are instead denoted
by '?', with an optional CAST specification describing the SQL type of the parameter in
the SQL statement that is prepared.

To use dynamic rowsets for input, you must know when calling PREPARE if each input
parameter will be executed using a scalar host variable or a rowset host variable. If you
use a rowset host variable, you must specify its length (that is, the number of entries in
the rowset) in the PREPARE string. In other words, you must indicate that an input
parameter is of array type when you specify the SQL statement using the syntax
shown in Specification of an Rowset Parameter in the PREPARE String on page 12-3.
You can mix scalar input parameters and array input parameters in the same SQL
statement.

To use dynamic rowsets for output, the PREPARE statement is not modified at all from
the description in Section 11, Dynamic SQL Cursors. When preparing a cursor
specification, you are not required to specify whether you will use rowsets to fetch from
a dynamic SQL cursor. You can decide during the execution phase. No prior notice is
required during the compile phase. In fact, you can use the same dynamic SQL cursor
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-2

Dynamic SQL Rowsets Specification of an Rowset Parameter in the
PREPARE String
to fetch one row at a time and multiple rows at a time by using dynamic rowsets in
separate FETCH calls.

Specification of an Rowset Parameter in the PREPARE String

To use a rowset host variable for an input parameter, indicate its length by
'?[positive-integer-constant]' in the PREPARE string. For example:

?[10]

The length specifier must be a positive integer (> 0) and a constant. Otherwise, a parse
error is raised. The term rowset parameter denotes the parameter represented by
'?[positive-integer-constant]'. In contrast with static SQL, all rowset
parameters used for input in a single SQL statement must be of the same size (for
example, N). This approach is logically equivalent to the SQL statement being
executed separately N times, with scalar values for input.

To use scalar host variable for an input parameter, use the PREPARE syntax ‘?,’ as
described in Section 9, Dynamic SQL.

As with static SQL, you can mix scalar and array type input parameters in the same
SQL statement. Note that with the syntax presented, ?[1] denotes a rowset parameter
of length one, which is distinct from ?, which denotes a scalar parameter. As explained
in Section 7, Static Rowsets, when a scalar input parameter is mixed in with rowset
parameters, the same value is used for each of the N logical invocations of the
statement. Therefore, ? implies the same values for each logical invocation, while ?[1]
implies an array with one element. No replication of values exists when ?[1] is used.

Basic Dynamic Rowset Example

This statement inserts rows into table TAB, 100 rows at a time. All three input host
variables are of rowset type with a minimum length of 100. The type of each rowset
host variable must be compatible with the type of the column into which its values are
inserted.

INSERT INTO tab VALUES (?[100], ?[100], ?[100])

Mixing Scalar and Rowset Host Variables Example

This statement inserts rows into table TAB, 50 rows at a time. The first column must be
a rowset host variable with a minimum length of 50 and type compatible with the type
of the first column. The second column must be a rowset host variable with a minimum
length of 50 and type compatible with NUMERIC(4) UNSIGNED. The third column
must be a scalar host variable and its type must be compatible with the type of the third
column. You can use scalars and rowsets in the same insert list. The same value is
used for the scalar at each logical invocation of the statement.

INSERT INTO tab VALUES (?[50] , CAST(?[50] AS NUMERIC(4)
UNSIGNED), ?)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-3

Dynamic SQL Rowsets Matching Compile-Time Specified Length With
Execution-Time Length
Using the FOR INPUT SIZE and KEY BY Syntax Example

This statement uses the FOR INPUT SIZE and KEY BY syntax with an array input
parameter in the WHERE clause. The input size is always a scalar parameter, and its
value must be less than the length of the input parameter array.

ROWSET FOR INPUT SIZE ? KEY BY rowid SELECT rowid, COUNT(*),
a FROM tab WHERE b = ?[50] GROUP BY rowid, a

Matching Compile-Time Specified Length With Execution-Time
Length

When you specify rowset type host variables during execution to take the place of
parameter arrays specified in the PREPARE string, their length must match the integer
constant provided for that parameter array in the PREPARE string, if an INPUT SIZE
clause is not present in the SQL statement.

Use rowset host variables of sufficient length. NonStop SQL/MX might raise an error
during execution of the statement if the size of an input rowset host variable provided is
less than N, the common size of all input rowset parameters. The error is raised during
execution for reading from or writing into memory that was not intended for that
purpose. In other words, NonStop SQL/MX does not perform a bounds check on
rowset host variables used during execution. Memory access violations are reported at
execution time if these guidelines are not followed. Also, memory might be overwritten
or falsely read from, based on the specific circumstance. Memory access violations
occur when an input rowset host variable is less than size N. You cannot assume that
these errors will be raised by NonStop SQL/MX during execution time.

You can compile with rowset parameters and use scalar values at execution time if you
can use at least one rowset host variable during execution. The scalar value is
duplicated as many times as specified in the PREPARE string.

An error will be raised during execution if:

 You specify one or more parameter arrays in the PREPARE string, and all host
variables used at run time for input are scalars.

 You specify a scalar parameter (not of array type) in the PREPARE string and use
a rowset host variable to transfer data for that parameter.

When you specify more than one rowset parameter in the PREPARE string, at most all
but one of the rowset parameters can be provided scalar values at run time. The
rowset parameters that have scalar values provided for them at execution time behave
as if the query were compiled with scalar parameters in this location. The scalar value
is duplicated by NonStop SQL/MX as many times as the size of the input array value.

Note that when you use rowset host variables of size larger than N for input, values
beyond the Nth entry are ignored.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-4

Dynamic SQL Rowsets Dynamic SQL With Argument Lists
Dynamic SQL With Argument Lists

If you use dynamic SQL with argument lists only and not descriptor areas, see the
discussion Preparing an SQL Statement With Dynamic Rowsets on page 12-2. The
next subsections apply only to dynamic SQL with descriptor areas. Rowset host
variables can also be used in the USING and INTO clauses of the EXECUTE
statement for input and output variables, respectively. In this case, you do not need to
set any descriptor fields.

Using the SET DESCRIPTOR Statement

Use dynamic SQL rowsets with descriptor areas when you need to use descriptor
areas, such as when the number of arguments is not known until execution time.
Follow the procedures described in Section 10, Dynamic SQL With Descriptor Areas.
In addition, these practices are unique to dynamic SQL rowsets.

 You must set the appropriate value in the rowset-related descriptor fields,
ROWSET_SIZE, ROWSET_VAR_LAYOUT_SIZE and
ROWSET_IND_LAYOUT_SIZE before execution.

For an input descriptor, use the DESCRIBE statement after PREPARE to set the
appropriate values set in the input descriptor.

For an output descriptor, set all three descriptor fields, even if the DESCRIBE
OUTPUT statement is used. The DESCRIBE statement uses compile-time data to
populate the descriptor and, when using dynamic rowsets as output, no rowset
specific information exists in the statement that was prepared (see Preparing an
SQL Statement With Dynamic Rowsets on page 12-2). Use of dynamic rowsets for
output is an execution-time decision and cannot be inferred by DESCRIBE.

 When you use rowset host variables to transfer data to and from a database,
VARIABLE_DATA and INDICATOR_DATA descriptor item fields must not be used.
Data can be exchanged between an application and a database only if you use the
VARIABLE_POINTER and INDICATOR_POINTER descriptor fields. Set the
VARIABLE_POINTER and INDICATOR_POINTER fields to appropriate values
before executing the statement.

Setting the Rowset-Specific Descriptor Fields

You set the rowset-related descriptor fields ROWSET_SIZE,
ROWSET_VAR_LAYOUT_SIZE and ROWSET_IND_LAYOUT_SIZE with the SET
DESCRIPTOR statement. The syntax is:

SET DESCRIPTOR descriptor-name set-descriptor-info

descriptor-name is:
 [GLOBAL | LOCAL] value-specification

Note. Dynamic SQL rowsets with descriptor areas are not supported in COBOL.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-5

Dynamic SQL Rowsets Setting the Rowset-Specific Descriptor Fields
set-descriptor-info is:
 COUNT = value-specification
 | ROWSET_SIZE = value-specification
 | VALUE item-number set-item-info [, set-item-info]...

set-item-info is:
 descriptor-item-name = value-specification

descriptor-item-name is:
 ROWSET_VAR_LAYOUT_SIZE
 | ROWSET_IND_LAYOUT_SIZE
 | other-descriptor-item-names

The value-specification can be a literal or a host variable with exact numeric
data type. For the full description of the SET DESCRIPTOR statement, including the
other-descriptor-item-names, see the SQL/MX Reference Manual.

ROWSET_SIZE

Use the ROWSET_SIZE descriptor field header to specify the number of rows to be
transmitted to and from a database while executing SQL statements. For input
descriptors, this field must contain the value N as described in Specification of an
Rowset Parameter in the PREPARE String on page 12-3. For output descriptors, this
field must contain the common length (for example, M) of all rowset output variables
that you will use to retrieve data from the dynamic SQL cursor. Multiple FETCH
statements can be issued on a cursor, and the value of ROWSET_SIZE can be
different for each FETCH call. This value is equal to the maximum number of rows that
will be retrieved by the FETCH statement.

This field occurs only once per descriptor regardless of how many individual items
might be contained in that descriptor. A descriptor does not contain a field to store the
size of each individual rowset host variable used to transfer data. Instead, a descriptor
contains one field to store the common rowset size for all input or output arrays. For
input descriptors, this value denotes N, the number of times the SQL statement is
logically executed with separate scalar input value sets. However, if there is a
ROWSET FOR INPUT SIZE clause in the SQL statement, the value provided for the
INPUT SIZE must be less than or equal to N, and the statement is only logically
executed INPUT SIZE number of times.

For input descriptors, DESCRIBE can be used to set the value of this field to N. For
output descriptors, set this field manually.

ROWSET_VAR_LAYOUT_SIZE

Use the ROWSET_VAR_LAYOUT_SIZE item field in a descriptor to specify the size of
an individual array element in a rowset host variable. A value 0 (zero) in this field
denotes that the host variable is not of rowset type and is a scalar host variable. For
rowset host variables, this field is equal to the size of an individual array element. If you
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-6

Dynamic SQL Rowsets Setting the Rowset-Specific Descriptor Fields

set this descriptor field manually, use the sizeof function and make its value equal to
sizeof (individual array element).

Table 12-1 lists minimum values you can use to set the
ROWSET_VAR_LAYOUT_SIZE descriptor field for various data types. Values larger
than those listed do not raise an error provided the individual array element is also
equally large.

Note. The SQL/MX extension TYPE -601 (character varying with length specified in the first
two bytes) is a special case. If rowsets are to be used with this data type, the
ROWSET_VAR_LAYOUT_SIZE field must not include the two bytes used to specify varying
character length. In this case, the ROWSET_VAR_LAYOUT_SIZE field must contain the length
of the data buffer from the end of one two-byte length specification to the start of the next two-
byte length specification, in bytes (that is, step size for the data buffer that contains the
character varying data). Use a struct with two fields to hold the two-byte length specification in
one field and the character data in the second field. If you do not, then the space allocated for
each character value (maximum length of varchar) must be an even number. If you use structs
to hold the length specification and varchar data, the maximum length of varchar can be either
even or odd.

Table 12-1. Minimum Values for ROWSET_VAR_LAYOUT_SIZE Descriptor
Field (page 1 of 2)

SQL Data Type ROWSET_VAR_LAYOUT_SIZE

CHAR[ACTER](l)
PIC[TURE] X(l)
CHAR[ACTER] VARYING (l)
VARCHAR[ACTER] (l)

(l + 1) if CHARSET = ISO88591
(l + 1) * 2 if CHARSET = UCS2, KANJI
 OR KSC5601 *

NUMERIC (1 to 4, s) SIGNED
NUMERIC (1 to 4, s) UNSIGNED

2

NUMERIC (5 to 9, s) SIGNED
NUMERIC (5 to 9, s) UNSIGNED

4

NUMERIC (10 to 18, s) SIGNED
NUMERIC (10 to 18, s) UNSIGNED

8

PIC[TURE] [S] 9(l-s)V9(s) COMP Same as NUMERIC

DEC[IMAL] (l, s) SIGNED l+2 if TYPE_FS=151 (_SQLDT_DES_LSS)
l+1 if TYPE_FS=152 (_SQLDT_DES_LSE)

DEC[IMAL] (l, s) UNSIGNED l+1

PIC[TURE] [S] 9(l-s)V9(s) Same as DECIMAL UNSIGNED

SMALLINT SIGNED
SMALLINT UNSIGNED

2

* All character format data is assumed to be null terminated. If character format data, such as CHAR, VARCHAR,
DECIMAL, DATE, TIME, TIMESTAMP, or INTERVAL is not null terminated, subtract the null terminator bytes from this
table. For double-byte character sets, multiply the length of the string (in characters) by 2 to get the length in bytes.
** See on page 3-35 for the appropriate value of l for TIME/TIMESTAMP precision.
*** See INTERVAL Representation on page 3-38 for guidance in computing l. The sign byte is included in l, and the
extra byte (+1) is for the null terminator.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-7

Dynamic SQL Rowsets Setting the Rowset-Specific Descriptor Fields

For input descriptors, use DESCRIBE to set the value of this field to the value indicated
in Table 12-1. For DECIMAL and PICTURE 9 DISPLAY data types, the value provided
by DESCRIBE for this field is one less than the value in Table 12-1. The first byte to
store the sign is not accounted for by DESCRIBE because DESCRIBE expects
DECIMAL data to be provided in Leading Sign Embedded (LSE, with TYPE_FS = 152)
format. If the Leading Sign Separate (LSS, with TYPE_FS = 151) format is used for
input, one must be added to the value of ROWSET_VAR_LAYOUT_SIZE provided by
DESCRIBE. Set this field manually for output descriptors.

If the value specified for this descriptor item field does not follow the rules described
here, an execution-time error might be raised for data type mismatch. Memory access
violations might occur if the value for this descriptor field does not follow the rules
described here.

ROWSET_IND_LAYOUT_SIZE

The ROWSET_IND_LAYOUT_SIZE is an item field in a descriptor that specifies the
size of an individual array element in a rowset host variable used as an INDICATOR. A
value 0 (zero) in this field denotes that the indicator host variable is not of rowset type
and is a scalar type. For indicator host variables, ROWSET_IND_LAYOUT_SIZE
denotes the length in bytes for the exact numeric data type used.

For input descriptors, use DESCRIBE to set the value of this field to be equal to two.
DESCRIBE assumes that indicator data provided is of type signed short. If another
type such as signed long is used, you must manually set the value of this descriptor
field. For output descriptors, you also must set this field manually.

INT[EGER] SIGNED
INT[EGER] UNSIGNED

4

LARGEINT 8

FLOAT (1 to 22 bits)
REAL

4

FLOAT (23 to 54 bits)
DOUBLE PRECISION

8

DATE 11

TIME, TIMESTAMP l+1 **

INTERVAL l+1 ***

Table 12-1. Minimum Values for ROWSET_VAR_LAYOUT_SIZE Descriptor
Field (page 2 of 2)

SQL Data Type ROWSET_VAR_LAYOUT_SIZE

* All character format data is assumed to be null terminated. If character format data, such as CHAR, VARCHAR,
DECIMAL, DATE, TIME, TIMESTAMP, or INTERVAL is not null terminated, subtract the null terminator bytes from this
table. For double-byte character sets, multiply the length of the string (in characters) by 2 to get the length in bytes.
** See on page 3-35 for the appropriate value of l for TIME/TIMESTAMP precision.
*** See INTERVAL Representation on page 3-38 for guidance in computing l. The sign byte is included in l, and the
extra byte (+1) is for the null terminator.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-8

Dynamic SQL Rowsets Exclusive Use of VARIABLE_POINTER and
INDICATOR_POINTER
If the value specified for this descriptor item field does not meet these guidelines, an
execution time error of memory access violation or data type mismatch can result.

Exclusive Use of VARIABLE_POINTER and
INDICATOR_POINTER

When you use rowset host variables to transfer data to and from a database,
VARIABLE_DATA and INDICATOR_DATA descriptor item fields must not be used.
Data can be exchanged between an application and a database only by using the
VARIABLE_POINTER and INDICATOR_POINTER descriptor fields.

For information on using the VARIABLE_POINTER and INDICATOR_POINTER
descriptor fields, see Section 10, Dynamic SQL With Descriptor Areas.

Set the ROWSET_VAR_LAYOUT_SIZE field before setting the VARIABLE_POINTER
field to the address of a rowset host variable. Similarly for indicators, set the
ROWSET_IND_LAYOUT_SIZE field before setting the INDICATOR_POINTER field to
the address of a rowset indicator host variable. An error occurs if the VARIABLE_DATA
or INDICATOR_DATA descriptor item fields are used after the
ROWSET_VAR_LAYOUT_SIZE or ROWSET_IND_LAYOUT_SIZE fields have been
set to nonzero values.

Using the GET DESCRIPTOR Statement
Use the GET DESCRIPTOR statement to obtain the value of rowset specific descriptor
fields, described in Using the SET DESCRIPTOR Statement on page 12-5. This
strategy is useful after a DESCRIBE INPUT statement has been issued, and you want
to determine the value set by DESCRIBE for these descriptor fields. You can also use
this statement to check a previously issued SET DESCRIPTOR statement.

The syntax is:

GET DESCRIPTOR descriptor-name get-descriptor-info

descriptor-name is:
 [GLOBAL | LOCAL] value-specification

get-descriptor-info is:
 variable-name = COUNT
 | variable-name= ROWSET_SIZE
 | VALUE item-number get-item-info [, get-item-info]...

get-item-info is:
 variable-name = descriptor-item-name

descriptor-item-name is:
 ROWSET_VAR_LAYOUT_SIZE
 | ROWSET_IND_LAYOUT_SIZE
 | other-descriptor-item-names
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-9

Dynamic SQL Rowsets Using the DESCRIBE INPUT Statement
For the full description of the GET DESCRIPTOR Statement, including the other-
descriptor-item-names, see the SQL/MX Reference Manual. The variable-
name must be a host variable with exact numeric data type.

Using the DESCRIBE INPUT Statement
Use the DESCRIBE INPUT statement after PREPARE to fill rowset-specific descriptor
fields with appropriate values. This strategy frees you from setting these descriptor
fields manually before execution. However, because DESCRIBE INPUT records
compile-time information only, you must manually set descriptor fields if the value
provided by DESCRIBE is not appropriate for the execution-time environment in the
application.

For the ROWSET_SIZE descriptor header field, DESCRIBE INPUT sets the value of
this field to N, the common size of all input rowset parameters in the SQL statement.
This field is set to N even if there are multiple scalar parameters in the SQL statement
and only one rowset parameter for input exists. If no rowset parameters for input exist,
this field is set to zero by DESCRIBE INPUT.

For the ROWSET_VAR_LAYOUT_SIZE descriptor item field, DESCRIBE INPUT sets
its value to the value of OCTET_LENGTH + NT, where OCTET_LENGTH is an item
descriptor field, as defined in the SQL/MX Reference Manual, if an rowset parameter is
specified for input or to zero otherwise.

The variable NT is defined as the size of the null terminator:

 NT is zero for all numeric data types except DECIMAL.

 NT is one for all fixed-length character data types and ANSI VARCHAR, DATE,
TIME, TIMESTAMP, and INTERVAL data types if a single-byte character set is
used.

 NT is two for all fixed-length character data types and ANSI varchar if a double-
byte character set is used. For the SQL/MX extension TYPE -601 (character
varying with length specified in the first two bytes), NT equals zero. Note that for
this type, the value specified by DESCRIBE for ROWSET_VAR_LAYOUT_SIZE does
not include the two bytes used for length specification.

If the individual array element size of the rowset host variable used is of a different
size, the value provided by DESCRIBE INPUT must be overwritten.

For the ROWSET_IND_LAYOUT_SIZE descriptor item field, DESCRIBE INPUT sets
the value of this field to two, if an rowset parameter was specified for input, or to zero,
otherwise. If indicator data is provided in a type other than signed short, then the value
provided by DESCRIBE INPUT must be overwritten.

DESCRIBE OUTPUT does not provide information on rowset-specific descriptor fields.
If rowsets are used for output, the value provided by DESCRIBE OUTPUT must be
overwritten.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
12-10

13
Exception Handling and Error
Conditions

In NonStop SQL/MX, a warning or error condition is also referred to as an exception.
Your host language application program can detect these exceptions and can gather
diagnostic information after the execution of each of the program’s SQL statements. To
properly account for various error scenarios, you need to be aware of the variety of
exceptions that exist and some of the options that you can use to handle them:

 You can check the value of an SQLSTATE variable and then use the GET
DIAGNOSTIC statement to obtain SQL/MX-specific exception information after
each SQL statement.

 You can use the WHENEVER statement to map a particular action or response to
an error or warning each time that error or warning occurs.

This section provides information for detecting and handling various types of
exceptions.

This section describes:

 Checking the SQLSTATE Variable on page 13-1
 Checking the SQLCODE Variable on page 13-5
 SQL/MX Exception Condition Messages on page 13-11
 Using the WHENEVER Statement on page 13-13
 Accessing and Using the Diagnostics Area on page 13-17
 Special SQL/MX Error Conditions on page 13-20

Checking the SQLSTATE Variable
After the execution of each SQL statement, NonStop SQL/MX returns a value to the
SQLSTATE variable to indicate the results of the statement. A host language program
can use conditional statements to check the SQLSTATE value to determine the results
of execution.

While NonStop SQL/MX does support the SQLCODE variable, use the SQLSTATE
variable to detect exception conditions. For equivalent values, see the SQLSTATE
values returned by NonStop SQL/MX in the SQL/MX Messages Manual.

Note. To write your application to recover from temporary network or hardware service
interruptions, see the SQL/MX Release 3.2 Management Manual.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-1

Exception Handling and Error Conditions Declaring SQLSTATE

CO
Declaring SQLSTATE

In a C program, declare SQLSTATE as a char array of 6 bytes (char[6]), within the
Declare section. In a COBOL program, declare SQLSTATE of type PIC (5) within the
Declare section.

Examples

In a C program, you must include an extra character for the null terminator. Declare
SQLSTATE within the Declare section:

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;

In a COBOL program, declare SQLSTATE within the Declare Section:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 ...
EXEC SQL END DECLARE SECTION END-EXEC.

SQL:1999 SQLSTATE Values

The SQLSTATE variable is a five-character string with two parts. The first part is a
two-character class code, and the second part is a three-character subclass code.
An SQLSTATE value of 00000 indicates successful completion. In C programs,
declare SQLSTATE as type CHAR, with a length of six characters to allow for the null
terminator.

Table 13-1 lists the SQL:1999 SQLSTATE class and subclass values that are
implemented in NonStop SQL/MX.

Table 13-1. SQL:1999 SQLSTATE Class and Subclass Values (page 1 of 2)

Condition Class Subcondition Subclass

Successful completion 00 (No subclass) 000

Warning 01 (No subclass) 000

String data, right truncation 004

Privilege not revoked 006

Privilege not granted 007

No data 02 (No subclass) 000

Dynamic SQL error 07 (No subclass) 000

Invalid descriptor count 008

Invalid descriptor index 009

Feature not supported 0A (No subclass) 000

Cardinality violation 21 (No subclass) 000

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-2

Exception Handling and Error Conditions SQL/MX SQLSTATE Values
SQL/MX SQLSTATE Values

NonStop SQL/MX has extended SQL:1999 SQLSTATE values to include other
situations not described by ANSI values. If an SQL:1999 SQLSTATE value exists for
an error condition, NonStop SQL/MX returns that value, as listed in Table 13-1 on
page 13-2. Otherwise, NonStop SQL/MX returns a value listed in Table 13-2.

Data exception 22 (No subclass) 000

Null, no indicator parameter 002

Numeric value out of range 003

Invalid date-time format 007

Date-time field overflow 008

Substring error 011

Division by zero 012

Invalid escape character 019

Unterminated C string 024

Invalid escape sequence 025

Trim error 027

Integrity constraint violation 23 (No subclass) 000

Invalid cursor state 24 (No subclass) 000

Invalid transaction state 25 (No subclass) 000

Invalid SQL statement name 26 (No subclass) 000

Invalid authorization specification 28 (No subclass) 000

Dependent privilege descriptors
still exist

2B (No subclass) 000

Invalid character set name 2C (No subclass) 000

Invalid SQL descriptor name 33 (No subclass) 000

Invalid catalog name 3D (No subclass) 000

Invalid schema name 3F (No subclass) 000

Transaction rollback 40 (No subclass) 000

Statement completion unknown 003

Syntax error or access rule
violation

42 (No subclass) 000

With check option violation 44 (No subclass) 000

Table 13-1. SQL:1999 SQLSTATE Class and Subclass Values (page 2 of 2)

Condition Class Subcondition Subclass
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-3

Exception Handling and Error Conditions Using SQLSTATE

In Table 13-2, for the last two cases, the subclass abbreviated yzz is in one of the
following ranges: W00 through W09, W0A through WZZ, X00 through X09, or X0A
through XZZ.

Using SQLSTATE

After you declare SQLSTATE within a Declare Section, use conditional statements to
check the SQLSTATE variable after the execution of an SQL statement.

This example checks the SQLSTATE variable for errors or warnings after an UPDATE
statement. SQLSTATE is declared as global so that it can be referenced in the
process_sqlstate function:

Example

void process_sqlstate(void);

EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;
...
int main()
{
char SQLSTATE_OK[6]="00000";
SQLSTATE[5]='\0';
SQLSTATE_OK[5]='\0';
...
EXEC SQL BEGIN WORK;
EXEC SQL UPDATE customer SET CREDIT = 'CR';
if (strcmp(SQLSTATE, SQLSTATE_OK) == 0) {
 printf ("\nRows were updated!");
 EXEC SQL COMMIT WORK;
} else process_sqlstate();
...
return 0;
} /* end main */

void process_sqlstate(void)
{
printf("\nError or warning occurred! SQLSTATE = %s",SQLSTATE);

Table 13-2. Mapping of SQLCODE to SQL/MX-Defined SQLSTATE Values

SQLCODE SQLSTATE
Class
Origin

Subclass
Origin Description

0 00000 ISO 9075 ISO 9075 Successful completion

100 02000 ISO 9075 ISO 9075 No data

n < 0 X0yzz SQL/MX SQL/MX Error

n > 0 (<> 100) 01yzz ISO 9075 SQL/MX Warning

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-4

Exception Handling and Error Conditions Checking the SQLCODE Variable

CO
... /* Process the SQL error. */
} /* end process_sqlstate */

This example checks the value of the SQLSTATE variable only after the UPDATE
statement. To ensure your program is executing properly, you must check SQLSTATE
after every SQL statement. For further information on how to do this without error
checking after every statement, see Using the WHENEVER Statement on page 13-13.

Example

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 ...
EXEC SQL END DECLARE SECTION END-EXEC.
 01 SQLSTATE-OK PIC X(5) VALUE "00000".
 ...
 EXEC SQL BEGIN WORK END-EXEC.
 EXEC SQL UPDATE customer SET CREDIT = 'CR' END-EXEC.
 IF SQLSTATE = SQLSTATE-OK
 DISPLAY "Rows were updated!"
 EXEC SQL COMMIT WORK END-EXEC.
 ELSE PERFORM 1000-PROCESS-SQLSTATE.
 ...
 1000-PROCESS-SQLSTATE.
 DISPLAY "Error or warning occurred! SQLSTATE = " SQLSTATE.
* Process the SQL error
 ...

Checking the SQLCODE Variable
Although checking the SQLSTATE variable is recommended to detect exception
conditions, NonStop SQL/MX also supports the SQLCODE variable.

Declaring SQLCODE

In a C program, declare SQLCODE as an integer variable of type long within the
scope of each embedded SQL statement in your program.

In a COBOL program, declare SQLCODE as an integer variable of type S9(9) COMP.

Declaring SQLCODE and SQLSTATE

If you want to use both SQLCODE and SQLSTATE in your program, you must declare
them within the Declare section, with the correct data type. By default, preprocessor
does not return any error if SQLCODE is declared incorrectly. However, if SQLSTATE
is not declared correctly, preprocessor returns an error.

The -w option is used to detect the missing or incorrect SQLCODE and SQLSTATE
variables. The following arguments are supported for the -w option:

 Sqlcode

 Sqlstate

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-5

Exception Handling and Error Conditions Declaring SQLCODE and SQLSTATE
 Both

If the SQLCODE or SQLSTATE is missing or incorrect, the following behavior is
observed:

 If SQLCODE or SQLSTATE is missing or incorrect, the preprocessor will issue a
warning for SQLCODE, SQLSTATE, or both depending on the argument for the -w
option.

 If the SQLCODE or SQLSTATE is missing in a scope, warning 13085 will be issued
when the first embedded SQL statement within the scope is encountered.

 If the SQLCODE or SQLSTATE is declared incorrectly within the Declare section,
warning 13086 will be issued at the end of the SQL Declare section.

 If the -w option is not specified, the default behavior is expected.

For information on how to use the -w option, see Syntax for the OSS-Hosted SQL/MX
C/C++ Preprocessor on page 15-20 and Syntax for the Windows-Hosted SQL/MX
C/C++ Preprocessor on page 15-28.

Table 13-3 describes the behavior of preprocessor, embedded application, and
language compiler for SQLCODE and SQLSTATE with different scopes. It is assumed
that SQLSTATE and SQLCODE are declared correctly and are used to handle
exception conditions.

Table 13-3. SQLCODE and SQLSTATE missing declaration

SQLCOD
E

SQLSTA
TE

Values of -w command line
option for the preprocessor

Language
Compiler

Values returned to
the application default

sqlcode sqlstate Both
SQLCO
DE

SQLSTA
TE

IN IN No
warning

No
warning

No
warning

No Error Yes Yes No
Warning

IN OUT No
warning

Warning
for
SQLST
ATE

Warning
for
SQLST
ATE

No Error Yes No No
Warning

IN ND No
warning

Warning
for
SQLST
ATE

Warning
for
SQLST
ATE

Error for
SQLSTAT
E

Yes No No
Warning

OUT IN Warning
for
SQLCO
DE

No
warning

Warning
for
SQLCO
DE

No Error No Yes No
Warning

OUT OUT Warning
for
SQLCOD
E

Warning
for
SQLSTA
TE

Warning
for both

No Error Yes No No
Warning
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-6

Exception Handling and Error Conditions Declaring SQLCODE and SQLSTATE
IN - Inside the Declare section

OUT - Outside the Declare section

ND - Not declared in the application

Table 13-4 describes the behavior of preprocessor and embedded application for
incorrect SQLCODE or SQLSTATE or both.

OUT ND Warning
for
SQLCOD
E

Warning
for
SQLSTA
TE

Warning
for both

Error for
SQLSTATE

Yes No No
Warning

ND IN Warning
for
SQLCOD
E

No
warning

Warning
for
SQLCOD
E

Error for
SQLCODE

No Yes No
Warning

ND OUT Warning
for
SQLCOD
E

Warning
for
SQLSTA
TE

Warning
for both

Error for
SQLCODE

No No No
Warning

ND ND Warning
for
SQLCOD
E

Warning
for
SQLSTA
TE

Warning
for both

Error for
both

No No No
Warning

Table 13-4. SQLCODE and SQLSTATE incorrect declaration

SQLCO
DE

SQLST
ATE

Values of -w command line
option for the preprocessor default

Values returned to
the application

sqlcode sqlstate Both
SQLCO
DE

SQLST
ATE

Correct Correct No
warning

No
warning

No
warning

No
warning

Yes Yes

Table 13-3. SQLCODE and SQLSTATE missing declaration

SQLCOD
E

SQLSTA
TE

Values of -w command line
option for the preprocessor

Language
Compiler

Values returned to
the application default

sqlcode sqlstate Both
SQLCO
DE

SQLSTA
TE
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-7

Exception Handling and Error Conditions Declaring SQLCODE and SQLSTATE
Correct - SQLCODE declared as long SQLCODE; SQLSTATE declared as char
SQLSTATE[6].

Wrong - SQLCODE and SQLSTATE declared as any other data type.

Wrong Correct Warning
for
SQLCO
DE

No
warning

Warning
for
SQLCO
DE

No
warning

No Yes

Correct Wrong No
warning

Warning
for
SQLSTA
TE

Warning
for
SQLSTA
TE

Error for
SQLSTA
TE

Yes No

Wrong Wrong Warning
for
SQLCO
DE

Warning
for
SQLSTA
TE

Warning
for both

Error for
SQLSTA
TE

No No

Table 13-4. SQLCODE and SQLSTATE incorrect declaration

SQLCO
DE

SQLST
ATE

Values of -w command line
option for the preprocessor default

Values returned to
the application

sqlcode sqlstate Both
SQLCO
DE

SQLST
ATE
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-8

Exception Handling and Error Conditions Declaring SQLCODE and SQLSTATE
The following embedded application a.sql is used to explain the behavior of the -w
option with various arguments:

#include <stdio.h>

void Func1(void);

int main()

{

 long SQLCODE;

 //outside declare section

 EXEC SQL BEGIN DECLARE SECTION;

 int SQLSTATE[6];

 //inside declare section

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INSERT INTO tt1 VALUES(10,20);

 Func1();

}

Void Func1()

{

 EXEC SQL INSERT INTO tt1 VALUES(11,21);17

}

The preprocessor returns the following warnings, depending upon the argument
specified for the -w option:

 mxsqlc a.sql -c a.cpp -m a.mdf -w sqlcode

*** WARNING[13085] SQLCODE is not declared inside the Declare
Section.

*** WARNING[13025] Warning(s) near line 11.

*** WARNING[13085] SQLCODE is not declared inside the Declare
Section.

*** WARNING[13025] Warning(s) near line 16.

 mxsqlc a.sql -c a.cpp -m a.mdf -w SQLstate

*** WARNING[13086] SQLSTATE is not declared of type char[6]
inside the Declare Section.

*** WARNING[13025] Warning(s) near line 8.

*** WARNING[13085] SQLSTATE is not declared inside the
Declare Section.

*** WARNING[13025] Warning(s) near line 16.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-9

Exception Handling and Error Conditions SQLCODE Values
 mxsqlc a.sql -c a.cpp -m a.mdf -w both

*** WARNING[13086] SQLSTATE is not declared of type char[6]
inside the Declare Section.

*** WARNING[13025] Warning(s) near line 8.

*** WARNING[13085] SQLCODE is not declared inside the Declare
Section.

*** WARNING[13025] Warning(s) near line 11.

*** WARNING[13085] SQLCODE is not declared inside the Declare
Section.

*** WARNING[13085] SQLSTATE is not declared inside the
Declare Section.

*** WARNING[13025] Warning(s) near line 16.

SQLCODE Values

After the execution of an embedded SQL statement, NonStop SQL/MX returns the
values listed in Table 13-5 to SQLCODE. The SQL message numbers described under
Using the WHENEVER Statement on page 13-13 are SQLCODE values except for the
special values 0 and 100. The SQL message numbers that indicate errors are stored
as negative numbers, and the SQL message numbers that indicate warnings are
stored as positive numbers.

Using SQLCODE

You can declare SQLCODE as a global variable at the start of each source unit that
contains embedded SQL statements. You can then use conditional statements to
check the SQLCODE variable after the execution of an SQL statement.

This example checks the SQLCODE variable for any errors or warnings after an
INSERT statement:

Examples

...
/* global C declarations */
long SQLCODE; /* Declare SQLCODE with data type long. */
...
... /* Set new_jobcode and new_jobdesc host variables. */

Table 13-5. SQLCODE Values

Value Status

< 0 An error occurred.

> 0 (<>100) A warning occurred.

 100 No data was found.

 0 The statement completed successfully.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-10

Exception Handling and Error Conditions SQL/MX Exception Condition Messages

CO
EXEC SQL INSERT INTO sales.job (jobcode,jobdesc)
 VALUES (:new_jobcode,:new_jobdesc);

if (SQLCODE == 0) { printf ("\nValues were inserted!");
 EXEC SQL COMMIT WORK; }
else process_sqlcode();

...

void process_sqlcode(void)
{
printf("\nError or warning occurred! SQLCODE = %d",SQLCODE);
... /* Process the SQL error. */
}

* Global COBOL declarations
* Declare SQLCODE with data type PIC S9(9) COMP.
 01 SQLCODE PIC S9(9) COMP.
 ...
* Set new_jobcode and new_jobdesc host variables.
 EXEC SQL INSERT INTO sales.job (jobcode,jobdesc)
 VALUES (:new-jobcode,:new-jobdesc)
 END-EXEC.

 IF SQLCODE = 0 DISPLAY "Values were inserted!"
 EXEC SQL COMMIT WORK END-EXEC.
 ELSE PERFORM 1000-PROCESS-SQLCODE.
 ...
 1000-PROCESS-SQLCODE.
 DISPLAY "Error or warning occurred! SQLCODE = " SQLCODE.
* Process the SQL error
 ...

SQL/MX Exception Condition Messages
NonStop SQL/MX reports exception condition messages within the MXCI, in SQL
preprocessor and compiler listings, and during the execution of embedded SQL
programs. You can obtain the messages for an SQL statement within a program by
accessing the SQL diagnostics area. For information on each message, see the
SQL/MX Messages Manual.

Note. You must declare SQLCODE anywhere in your program or declare SQLSTATE within a
Declare section. If you do not verify SQLSTATE, you must not declare SQLSTATE because
query execution requires string processing to return the SQLSTATE value. However, because
verifying SQLCODE is a deprecated operation, HP recommends that you verify SQLSTATE as
the means to detect exception conditions and to avoid compiler-generated warnings.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-11

Exception Handling and Error Conditions Viewing the SQL Messages
Viewing the SQL Messages

To view a list of all SQL messages, see the appropriate messages manual.

The message key is a sequential SQL/MX message number that is returned
automatically by NonStop SQL/MX when an error condition occurs. For example, this
error message might be displayed within your application development tool while it is
preparing an embedded SQL program:

*** ERROR[1000] A syntax error occurred.

This message number is the SQLCODE value (without the sign). You can view the
message for ERROR[1000]:

SQL 1000

Cause. Syntax was entered incorrectly.

Effect. SQL is unable to prepare the statement.

Recovery. Correct the syntax error and resubmit.

The second number, if present, is the corresponding SQL:1999 SQLSTATE value. In
this example, SQLSTATE 42000 is an ANSI value.

Within MXCI, you can display text associated with a message number or SQLCODE
value by using the ERROR command. For further information, see the ERROR
Command in the SQL/MX Reference Manual.

Accessing SQL Messages Within a Program

To obtain error messages that result from the execution of an SQL statement within a
program, use the GET DIAGNOSTICS statement to access the SQL diagnostics area.

For example, you might code your program to display:

SQLSTATE: 22001
SQLCODE : -8402
Message : *** ERROR[8402] A string overflow occurred during
 the evaluation of a character expression.

The corresponding fields in the diagnostics area are RETURNED_SQLSTATE,
SQLCODE, and MESSAGE_TEXT, respectively. The message text also provides the
SQL message number.

See Accessing and Using the Diagnostics Area on page 13-17.

1000 42000 A syntax error occurred.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-12

Exception Handling and Error Conditions Using the WHENEVER Statement

CO
Using the WHENEVER Statement
The WHENEVER declaration specifies an action that a program takes, depending on
the results of subsequent SQL statements. When you specify WHENEVER, the
SQL/MX preprocessor generates statements in your program that perform run-time
checking using the SQLSTATE variable after each SQL statement executes.

The generated statements check for these conditions:

 NOT FOUND condition: No data was found. SQLSTATE is 02000, and SQLCODE
is 100.

 SQLERROR condition: An SQL error occurred. SQLSTATE indicates an exception
condition as shown in Checking the SQLSTATE Variable on page 13-1. SQLCODE
is less than zero.

 SQL_WARNING condition: An SQL warning occurred. SQLSTATE does not
indicate a no-data or an error condition. SQLCODE is greater than zero and not
equal to 100.

You must specify the WHENEVER declaration in your program before the SQL
statements to which it applies. Use this general syntax:

WHENEVER { NOT FOUND | SQLERROR | SQL_WARNING }

 { CONTINUE
 | GOTO host-label-identifier
 | CALL C-function
 | PERFORM COBOL-routine }

For complete syntax, see the WHENEVER Declaration in the SQL/MX Reference
Manual.

This example uses WHENEVER declarations to check for the NOTFOUND,
SQLERROR, and SQL_WARNING conditions.

Examples

/* global C declarations */
...
EXEC SQL WHENEVER NOT FOUND GOTO data_not_found;
EXEC SQL WHENEVER SQLERROR GOTO end_prog;
EXEC SQL WHENEVER SQL_WARNING CONTINUE;
EXEC SQL WHENEVER NOT FOUND CALL handle_nodata;
...

* global COBOL declarations
...
EXEC SQL WHENEVER NOT FOUND GOTO data-not-found END-EXEC.
EXEC SQL WHENEVER SQLERROR GOTO end_prog END-EXEC.
EXEC SQL WHENEVER SQL_WARNING CONTINUE END-EXEC.
EXEC SQL WHENEVER NOT FOUND PERFORM handle-nodata END-EXEC.
...

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-13

Exception Handling and Error Conditions Precedence of Multiple WHENEVER Declarations
Precedence of Multiple WHENEVER Declarations

When more than one WHENEVER declaration applies to an SQL statement, NonStop
SQL/MX processes the conditions in order of precedence:

1. NOT FOUND
2. SQLERROR
3. SQL_WARNING

For example, an SQL error and an SQL warning can occur for the same statement, but
the error condition has a higher precedence and is processed first.

Determining the Scope of a WHENEVER Declaration

The order in which WHENEVER declarations appear in the listing determines their
scope:

 A WHENEVER declaration remains in effect until another WHENEVER declaration
for the same condition appears. If you want to execute a different routine when an
error occurs, specify a new WHENEVER declaration with a different CALL routine.

For example, in a C program, to insert a new row when a row is not found, specify
a new WHENEVER declaration:

EXEC SQL WHENEVER NOT FOUND CALL insert_row;

The new WHENEVER declaration remains in effect until it is disabled or changed.

 If a WHENEVER declaration is coded in a function, the declaration remains in
effect outside of the function even if the scope of the function is no longer valid.
Therefore, if you do not want the declaration to remain in effect, disable it at the
end of the function described next in Enabling and Disabling the WHENEVER
Declaration.

 A WHENEVER declaration does not affect SQL statements if they appear in the
program before WHENEVER.

 If you are debugging a program and you use a WHENEVER declaration to call an
error handling procedure, you might need to save the SQLSTATE value in a local
variable within the error handling procedure. Each subsequent SQL statement
resets SQLSTATE, and you might lose a value you need for debugging.

Enabling and Disabling the WHENEVER Declaration

If you use WHENEVER SQLERROR GOTO some_label; to avoid infinite loops, enable
the WHENEVER declaration at the beginning of the program and disable WHENEVER
for the part of the program that handles the condition named in the declaration.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-14

Exception Handling and Error Conditions Saving and Restoring SQLSTATE or SQLCODE
Example

This example enables and disables the WHENEVER directive:

EXEC SQL WHENEVER SQLERROR GOTO end_prog; /* enables action */
...
end_prog:
EXEC SQL WHENEVER SQLERROR CONTINUE; /* disables action */
...

Saving and Restoring SQLSTATE or SQLCODE

If you use WHENEVER SQLERROR CALL sql_error and the sql_error function
contains SQL statements, you can save and restore the value of SQLSTATE or
SQLCODE before returning from the sql_error function.

Example

This example uses the first FETCH statement returning an SQLCODE value that is not
equal to 0:

EXEC SQL WHENEVER SQLERROR CALL sql_error;
...
EXEC SQL OPEN get_by_partnum;
...
EXEC SQL FETCH get_by_partnum
 INTO :hv_partnum,:hv_partdesc,:hv_price,:hv_qty_available;
...
while (SQLCODE == 0) {
 if (hv_qty_available < 1000)
 EXEC SQL UPDATE parts
 SET qty_available = qty_available + 100
 WHERE CURRENT OF get_by_partnum;
 ...
 EXEC SQL FETCH get_by_partnum
 INTO :hv_partnum,:hv_partdesc,:hv_price,:hv_qty_available;
}
...
void sql_error() {
long saved_sqlcode = SQLCODE;
EXEC SQL GET DIAGNOSTICS
 :hv_num = NUMBER;
 for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_msgtxt = MESSAGE_TEXT;
 ...
 }
 SQLCODE = saved_sqlcode;
} /* end sql_error */

After the first FETCH statement returns an error, control moves to sql_error.
Because the function sql_error contains SQL statements, the SQLCODE value in
the function overwrites the global SQLCODE value. Before returning from the function,
the global value is restored so that, when control is returned to the statement following

C

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-15

Exception Handling and Error Conditions Declaring SQLSTATE or SQLCODE in an Error
Routine

CO
FETCH and SQLCODE is checked, the value is equal to the original value returned
from FETCH.

Example

This example uses WHENEVER SQLERROR PERFORM to save and restore
SQLSTATE:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 saved-sqlstate pic x(5).
 01 hv-num pic s9(9) comp.
 ...
EXEC SQL END DECLARE SECTION END-EXEC.
 ...
 EXEC SQL WHENEVER SQLERROR PERFORM sqlerrors END-EXEC.
 ...
sqlerrors.
 MOVE sqlstate TO saved-sqlstate.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL GET DIAGNOSTICS
 :hv-num = NUMBER
 END-EXEC.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > hv-num

MOVE SPACES TO hv-msgtxt
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv-sqlstate = RETURNED_SQLSTATE,
 :hv-msgtxt = MESSAGE_TEXT
 END-EXEC.
 DISPLAY "SQLSTATE: " hv-sqlstate
 DISPLAY "Message : " hv-msgtxt
 END-PERFORM.
 MOVE saved-sqlstate TO sqlstate.
...
END PROGRAM Program-exF72.

For information on using the GET DIAGNOSTICS Statement, see Accessing and Using
the Diagnostics Area on page 13-17.

Declaring SQLSTATE or SQLCODE in an Error Routine

As described in Saving and Restoring SQLSTATE or SQLCODE on page 13-15, you
can save and restore SQLSTATE or SQLCODE within the SQL error function.
Alternately, in a C program, you can declare SQLSTATE in the function (in addition to
declaring SQLSTATE in the main routine).

Example

This example program has two SQL Declare Sections, both of which contain an
SQLSTATE declaration:

void sql_error(void);
...
int main ()
{

BOL

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-16

Exception Handling and Error Conditions Accessing and Using the Diagnostics Area
 ...
EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;
...
EXEC SQL WHENEVER SQLERROR CALL sql_error;
...
EXEC SQL OPEN get_by_partnum;
EXEC SQL FETCH get_by_partnum
 INTO :hv_partnum,:hv_partdesc,:hv_price,:hv_qty_available;
...
while (strcmp(SQLSTATE, SQLSTATE_OK) == 0) {
 if (hv_qty_available < 1000)
 EXEC SQL UPDATE parts
 SET qty_available = qty_available + 100
 WHERE CURRENT OF get_by_partnum;
 ...
 EXEC SQL FETCH get_by_partnum
 INTO :hv_partnum,:hv_partdesc,:hv_price,:hv_qty_available;
}
...
return 0;
} /* end main */
...
void sql_error() {
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 long hv_num;
 unsigned short i;
 char hv_sqlstate[6];
 VARCHAR hv_msgtxt[129];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL GET DIAGNOSTICS
 :hv_num = NUMBER;
 for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_msgtxt = MESSAGE_TEXT;
 ...
 }
 } /* end sql_error */

Accessing and Using the Diagnostics Area
NonStop SQL/MX stores completion and exception information in the diagnostics area.
At the beginning of the execution of an SQL statement, the diagnostics area is
emptied. When the statement executes, NonStop SQL/MX places information on
completion or exception conditions in this area.

A transaction has a diagnostics area limit, which is a positive integer that specifies the
maximum number of conditions that can be placed in the diagnostics area during
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-17

Exception Handling and Error Conditions Using the GET DIAGNOSTICS Statement
execution of an SQL statement within the transaction. Use the SET TRANSACTION
statement to set the size of the diagnostics area.

To access the information in the diagnostics area, use the GET DIAGNOSTICS
statement. The diagnostics area consists of:

 Statement information: Header area consisting of information on the SQL
statement as a whole.

 Condition information: Detail area about each error, warning, or completion code
that appeared during the execution of an SQL statement.

NonStop SQL/MX automatically allocates the diagnostics area in a program. You are
not required to explicitly allocate it yourself.

For a description of the statement and condition items and the syntax, see the GET
DIAGNOSTICS statement in the SQL/MX Reference Manual.

Using the GET DIAGNOSTICS Statement

Use this general syntax:

GET DIAGNOSTICS {statement-info | condition-info}

The statement-info is defined as:

target = stmt-item-name [,target = stmt-item-name]...

The condition-info is defined as:

EXCEPTION condition-number
 target = condtn-item-name [,target = condtn-item-name]...

The target is a host variable that receives the requested diagnostics information.
target must have the same data type as the stmt-item-name or condtn-item-
name you are requesting. The condition-number specifies the number of an
exception condition. It can be a literal or host variable with exact numeric data type.

Getting Statement and Condition Items

The next example uses the GET DIAGNOSTICS statement to display condition
information after an INSERT statement. The first GET DIAGNOSTICS obtains the
number of condition items. The second GET DIAGNOSTICS loops through the
individual condition items and prints information for each condition.

See Statement Items-GET DIAGNOSTICS and Condition Items-GET DIAGNOSTICS
in the SQL/MX Reference Manual.

You can retrieve the message text of the exception condition for SQLSTATE and
SQLCODE. To provide a log of exception conditions, you can write the SQLSTATE and
SQLCODE values, along with the message text, to a file for future reference.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-18

Exception Handling and Error Conditions Getting Statement and Condition Items

CO
Examples

/* Set new_jobcode and new_jobdesc host variables. */
EXEC SQL INSERT INTO sales.job (jobcode,jobdesc)
 VALUES (:new_jobcode,:new_jobdesc);
...
if (strcmp(SQLSTATE, SQLSTATE_OK) == 0)
 { printf ("\nValues were inserted!");
 EXEC SQL COMMIT WORK; }
else get_diagnostics();
...
void get_diagnostics(void) {
EXEC SQL GET DIAGNOSTICS :num = NUMBER;
...
for (i = 1; i <= num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_tabname = TABLE_NAME,
 :hv_colname = COLUMN_NAME,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_sqlcode = SQLCODE,
 :hv_msgtxt = MESSAGE_TEXT;
 ...
 printf("Table : %s\n", hv_tabname);
 printf("Column : %s\n", hv_colname);
 printf("SQLSTATE: %s\n", hv_sqlstate);
 printf("SQLCODE : %d\n", hv_sqlcode;
 printf("Message : %s\n", hv_msgtxt);
 ... /* Process the SQL error. */
}
...
} /* end get_diagnostics */

* Set new-jobcode and new-jobdesc host variables.
 ...
 EXEC SQL INSERT INTO sales.job (jobcode,jobdesc)
 VALUES (:new-jobcode,:new-jobdesc)
 END-EXEC.
 ...
 IF SQLSTATE = SQLSTATE_OK
 DISPLAY "Values were inserted!"
 EXEC SQL COMMIT WORK END-EXEC.
 ELSE PERFORM 1000-GET-DIAGNOSTICS.
 ...
 STOP RUN.
 1000-GET-DIAGNOSTICS.
 EXEC SQL GET DIAGNOSTICS
 :num = NUMBER ...
 END-EXEC.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > num
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv-tabname = TABLE_NAME,
 :hv-colname = COLUMN_NAME,
 :hv-sqlstate = RETURNED_SQLSTATE,
 :hv-sqlcode = SQLCODE,

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-19

Exception Handling and Error Conditions Special SQL/MX Error Conditions
 :hv-msgtext = MESSAGE_TEXT
 END-EXEC.
 ...
 DISPLAY "Condition: " i
 DISPLAY "Table : " hv-tabname
 DISPLAY "Column : " hv-colname
 DISPLAY "SQLSTATE : " hv-sqlstate
 DISPLAY "SQLCODE : " hv-sqlcode
 DISPLAY "MESSAGE : " hv-msgtext
 END-PERFORM.
* Process the SQL error
 ...
 1000-GET-DIAGNOSTICS-END.

Special SQL/MX Error Conditions

Lost Open Error (8574)

When an embedded SQL program accesses a table or view by using a DML statement
or an SQL cursor, NonStop SQL/MX opens the table or view and holds it open until the
program stops executing or until the DML statement, if dynamically prepared, is
deallocated. If the DML statement or cursor, or the transaction containing the
statement or cursor, allows concurrent access to the table or view, the program could
lose its open on the table or view to a DDL or SQL utility operation. The DDL or utility
operation invalidates the open held by the program to change the structure of the table
or view and gains exclusive access to the table or view. A program could also lose its
open on a table or view when a network or hardware interruption occurs.

Occurrences of the Lost Open Error

If a DML statement partially modifies a database object (that is, table, view, and so on)
before the open is invalidated, the SQL/MX executor rolls back the changes made by
the statement and returns the Lost Open Error (8574) to the program. For example,
consider an INSERT statement on a table that has an index. The INSERT statement
always modifies the table first before updating the index. If the index is destroyed, the
Lost Open Error occurs.

If a cursor returns one or more rows to the program before the open is invalidated, the
SQL/MX executor returns the Lost Open Error (8574) to the program. If a cursor or
DML statement does not return any rows to the program before the open is invalidated,
the SQL/MX executor retries the cursor or DML statement and then waits for the lock
to be released on the table or view. If the lock is not released before the timeout is
reached, the SQL/MX executor returns the Lost Open Error (8574) to the program.

If the lock is released before the timeout is reached, the SQL/MX executor reopens the
table or view. If reopening the table or view results in a timestamp mismatch, the
SQL/MX executor performs a similarity check of the table or view. If the similarity check
fails (or is disabled), the SQL/MX executor tries to automatically recompile the
statement. If the SQL/MX executor cannot recompile the statement, it returns the Lost
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-20

Exception Handling and Error Conditions Recovering From the Lost Open Error
Open Error (8574), as well as other recompilation errors, to the program. For more
information on similarity checks and automatic recompilation, see Section 8, Name
Resolution, Similarity Checks, and Automatic Recompilation.

Recovering From the Lost Open Error

If DML or cursor operations in a program enable concurrent access to tables or views,
or if you anticipate network or hardware interruptions, add code to the program to catch
and handle the Lost Open Error (8574). The way that you handle occurrences of the
Lost Open Error (8574) depends on what you are trying to accomplish with the DML
statement or cursor. In most cases, when the Lost Open Error (8574) occurs, the
program should retry the DML statement or close and reopen the cursor before
executing a subsequent FETCH statement.

This example provides general error recovery code:

void sql_error(void)
{
 if (SQLCODE == -8574)
 {
 printf("Recovering cursor from error %ld\n", SQLCODE);
 EXEC SQL Open C1;
 }
}

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-21

Exception Handling and Error Conditions Recovering From the Lost Open Error
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
13-22

14 Transaction Management

A transaction, which is a set of database changes that must be completed as a group,
is the basic recoverable unit in case of a failure or transaction interruption.

The typical order of events is:

1. Transaction is started.
2. Database changes are made.
3. Transaction is committed if the database changes are made successfully.

If the transaction cannot successfully make the changes or if you do not want to
complete the transaction, you can abort the transaction and roll the database back to
its original state.

This section describes:

 Transaction Control Statements on page 14-1
 Steps for Ensuring Data Consistency on page 14-1

For more information on transaction management, see the SQL/MX Reference
Manual.

Transaction Control Statements
Control the transactions in an C/C++/COBOL program by specifying these SQL/MX
statements in an embedded SQL source file:

 BEGIN WORK statement
 COMMIT WORK statement
 ROLLBACK WORK statement
 SET TRANSACTION statement

For the syntax of these statements, see the SQL/MX Reference Manual. To use these
transaction control statements in your C/C++/COBOL program, see Steps for Ensuring
Data Consistency on page 14-1

Steps for Ensuring Data Consistency
Figure 14-1 shows the steps presented within the complete C program. These steps
are executed in the sample program Example A-2 on page A-4.

Figure 14-1. Coding Transaction Control Statements in a C Program

...
char SQLSTATE_OK[6] = "00000";
...
EXEC SQL BEGIN DECLARE SECTION;
char SQLSTATE[6];
...
EXEC SQL END DECLARE SECTION;
...

C

1

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
14-1

Transaction Management Steps for Ensuring Data Consistency

C

Figure 14-2 shows the steps presented within the complete COBOL program. These
steps are executed in the sample program Example C-2 on page C-4.

/* Set attributes for the transaction. */
EXEC SQL SET TRANSACTION
 READ WRITE,
 ISOLATION LEVEL SERIALIZABLE,
 DIAGNOSTICS SIZE 10;
...

EXEC SQL BEGIN WORK; /* Begin the transaction. */
...

EXEC SQL UPDATE ... ; /* Process database changes. */
...

if (strcmp(SQLSTATE, SQLSTATE_OK) == 0) { /* Test if OK. */
 ...
 ...
 EXEC SQL COMMIT WORK; /* Commit database changes. */
}
else {
 ...
 EXEC SQL ROLLBACK WORK; /* Rollback database changes. */
}
...

Figure 14-2. Coding Transaction Control Statements in a COBOL Program

 ...
 01 SQLSTATE-OK PIC X(5) VALUE "00000".
 ...
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 ...
 EXEC SQL END DECLARE SECTION END-EXEC.
 ...

* Set attributes for the transaction.
 EXEC SQL SET TRANSACTION
 READ WRITE,
 ISOLATION LEVEL SERIALIZABLE,
 DIAGNOSTICS SIZE 10
 END-EXEC.
 ...

 * Begin the transaction.
 EXEC SQL BEGIN WORK END-EXEC.
 ...

* Process database changes.
 EXEC SQL UPDATE ... END-EXEC.
 ...

Figure 14-1. Coding Transaction Control Statements in a C ProgramC

2

3

4

5

6

7

OBOL
1

2

3

4

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
14-2

Transaction Management Declaring Required Variables

C

CO
For more information, see:

1. Declaring Required Variables on page 14-3
2. Setting Attributes for Transactions on page 14-3
3. Starting a Transaction on page 14-6
4. Processing Database Changes on page 14-7
5. Testing for Errors on page 14-7
6. Committing Database Changes if No Errors Occur on page 14-8
7. Undoing Database Changes if an Error Occurs on page 14-8

Declaring Required Variables

Declare SQLSTATE and host variables you need within your program.

Examples

char SQLSTATE_OK[6] = "00000";
EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 ...
EXEC SQL END DECLARE SECTION;

 01 SQLSTATE-OK PIC X(5) VALUE "00000".
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PIC X(5).
 ...
EXEC SQL END DECLARE SECTION END-EXEC.

Setting Attributes for Transactions

Use a SET TRANSACTION statement to set some of the attributes for subsequent
transactions. When coding a SET TRANSACTION statement in an embedded SQL
program, consider that special considerations exist for setting the isolation level. See
Isolation Level Setting on page 14-5.

* Test if database change is ok.
 IF SQLSTATE = SQLSTATE-OK
 ...
* Commit database change.
 EXEC SQL COMMIT WORK END-EXEC.

 ELSE
 ...
* Roll back database change.
 EXEC SQL ROLLBACK WORK END-EXEC.
 END-IF.
 ...

Figure 14-2. Coding Transaction Control Statements in a COBOL Program

OBOL

5

6

7

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
14-3

Transaction Management Setting Attributes for Transactions
Example

The attributes include access mode and isolation level, which affect the degree of
concurrent data access:

...
EXEC SQL SET TRANSACTION
 READ ONLY,
 ISOLATION LEVEL READ UNCOMMITTED,
 DIAGNOSTICS SIZE 10;
...

The last attribute shown in this example, the diagnostics size, is an estimate of the
number of exception conditions you might expect as a result of executing an SQL
statement within the transaction. Specifically, the diagnostics size is the maximum
number of condition items for a statement item.

To set attributes for transactions in an C/C++/COBOL program, see:

 Autocommit Setting on page 14-4
 Isolation Level Setting on page 14-5
 Default Transaction Attributes on page 14-6

Autocommit Setting

The autocommit setting specifies whether an implicit transaction commits automatically
at the end of statement execution or rolls back automatically if an error occurs. When
autocommit is enabled (that is, turned on), each implicit transaction commits
automatically at the end of statement execution.

The BEGIN WORK statement turns off the autocommit setting inside an explicit, user-
defined transaction. Even if you turn on the autocommit setting before an explicit
transaction starts, you must code a COMMIT WORK statement to commit the
transaction. By default, autocommit is off in C/C++/COBOL programs. To turn on
autocommit, issue a SET TRANSACTION statement in your application. For more
information on autocommit, see the SQL/MX Reference Manual.

Use SET TRANSACTION at the beginning of your C program to commit changes
automatically at the end of each SQL statement:

...
EXEC SQL SET TRANSACTION AUTOCOMMIT ON;
...

Use a separate SET TRANSACTION statement to set AUTOCOMMIT ON. You cannot
specify this option in combination with any other option in the SET TRANSACTION
statement.

See the SET TRANSACTION statement in the SQL/MX Reference Manual.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
14-4

Transaction Management Setting Attributes for Transactions
Isolation Level Setting

The isolation level specifies the level of data consistency defined for the transaction
and the degree of concurrency the transaction has with other transactions that use the
same data. The isolation level of a transaction can be READ UNCOMMITTED, READ
COMMITTED, or SERIALIZABLE (or REPEATABLE READ). For more information, see
the SQL/MX Reference Manual.

In an embedded SQL program, avoid using the SET TRANSACTION ISOLATION
LEVEL statement because:

 It always starts a compiler process.

 It could cause automatic recompilation.

 It could adversely affect UPDATE, INSERT, and DELETE statements at run time
within its control flow scope.

The SET TRANSACTION ISOLATION LEVEL statement, regardless of whether it was
statically compiled, always executes dynamically and applies its setting at run time.
Therefore, this statement always starts a compiler process. To avoid performance
costs, use a CONTROL QUERY DEFAULT ISOLATION_LEVEL statement instead. For
more information on coding CONTROL statements, see Using CONTROL Statements
on page 2-12.

The SET TRANSACTION ISOLATION LEVEL statement could cause automatic
recompilation of DML statements in the next transaction. If a DML statement is
statically compiled and does not specify an explicit access option (for example, READ
COMMITTED, SERIALIZABLE, and so on), its access option at compile time is
determined by the ISOLATION_LEVEL setting, if present, or by the system-defined
isolation level, which is READ COMMITTED. If NonStop SQL/MX executes the DML
statement after executing a SET TRANSACTION ISOLATION LEVEL statement with a
different isolation level setting, the SQL/MX executor automatically recompiles the DML
statement. To avoid automatic recompilation, specify explicit access options in
individual DML statements. The access options in DML statements override the
isolation level of any containing transactions. See Precedence of Transaction Isolation
Levels on page 14-6.

If you set the isolation level to READ UNCOMMITTED, the access mode becomes
READ ONLY by default. As a result, INSERT, UPDATE, and DELETE statements
within the scope of a SET TRANSACTION or CONTROL QUERY DEFAULT statement
fail to compile or execute. INSERT, UPDATE, and DELETE statements require the
access mode to be READ WRITE. To avoid compilation or run-time errors, make sure
that subsequent transactions do not contain INSERT, UPDATE, and DELETE
statements if you specify READ UNCOMMITTED in a SET TRANSACTION or
CONTROL QUERY DEFAULT statement. Instead of using those statements, consider
specifying READ UNCOMMITTED as the access option in each SELECT statement.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
14-5

Transaction Management Starting a Transaction
Precedence of Transaction Isolation Levels

NonStop SQL/MX determines the transaction isolation level, based on these settings,
in order of precedence, from highest to lowest:

1. If you specify an access option explicitly in a DML statement, the SQL/MX compiler
compiles the statement with the access option. This access option overrides the
isolation level of any containing transactions.

2. If there are no individual statement access options and you issue a SET
TRANSACTION ISOLATION LEVEL statement, the SQL/MX compiler uses the
setting determined by this SET TRANSACTION statement as the isolation level for
the next transaction.

3. If you do not specify a SET TRANSACTION statement and you issue a CONTROL
QUERY DEFAULT ISOLATION_LEVEL statement, the CONTROL QUERY
DEFAULT statement determines the isolation level.

4. If you do not issue a CONTROL QUERY DEFAULT ISOLATION_LEVEL
statement, NonStop SQL/MX uses the ISOLATION_LEVEL setting in the
SYSTEM_DEFAULTS table if it exists.

5. If you do not specify isolation-level settings, NonStop SQL/MX uses the system-
defined isolation level, which is READ COMMITTED.

Default Transaction Attributes

If you do not explicitly set the transaction attributes, the embedded SQL program uses
these default attributes for the next transaction in a program:

 Autocommit: OFF by default in embedded SQL in C and COBOL programs. ON by
default at the start of an MXCI session.

 Isolation Level: READ COMMITTED

 Access mode: READ WRITE

 Size of diagnostics area: Thirty conditions

Starting a Transaction

Use a BEGIN WORK statement to start a transaction explicitly:

EXEC SQL BEGIN WORK;

The transaction consists of the sequence of SQL statements that begins immediately
after BEGIN WORK and ends with the next COMMIT or ROLLBACK statement.

If you do not use the BEGIN WORK statement, NonStop SQL/MX automatically starts
a transaction for a statement, provided that an active transaction does not already exist
and that the statement supports implicit transactions. For information on implicit (or
system-defined) transactions, see the SQL/MX Reference Manual.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
14-6

Transaction Management Processing Database Changes

CO
In a program, you might use a loop when updating or deleting rows in the result set of
a cursor. In a looping UPDATE or DELETE (either searched or positioned), NonStop
SQL/MX commits changes as they occur within the loop when autocommit is on. To
ensure database consistency when autocommit is on, issue BEGIN WORK before the
loop starts (or before declaring the cursor) and issue COMMIT WORK after all changes
have been made within the loop. For more information, see the Autocommit Setting on
page 14-4 and Committing Database Changes if No Errors Occur on page 14-8.

For the syntax of the BEGIN WORK statement, see the SQL/MX Reference Manual.

Processing Database Changes

A transaction typically consists of a sequence of SQL statements that change the
database. For example, a transaction might include INSERT, DELETE, or UPDATE
statements:

EXEC SQL UPDATE ... ;

Typically, the SQL statements within a single transaction are dependent on each other.
For example, suppose that you want to change a job code in your database. You might
insert the new job code in the JOB table, update the job code in the EMPLOYEE table,
and finally delete the old job code in the JOB table. These operations are logically
dependent on one another and, therefore, you should group them within one user-
defined transaction.

You should avoid certain DML operations on the same set of rows as a cursor
operation in the same transaction. The sensitivity of cursors is ASENSITIVE in
NonStop SQL/MX, which means that a concurrent DML operation in the same
transaction as a cursor might or might not affect the cursor results. For information on
the DML operations to avoid, see Cursor Sensitivity on page 6-16.

If you include a CALL statement within a transaction, be aware that the stored
procedure in Java (SPJ) invoked by the CALL statement inherits the transaction from
the caller, and the SPJ method cannot contain transaction control statements. For
more information, see the SQL/MX Guide to Stored Procedures in Java.

Testing for Errors

You can test SQLSTATE for a return value of 00000 (successful completion).

Examples

if (strcmp(SQLSTATE, SQLSTATE_OK) == 0) ...

IF sqlstate = sqlstate-ok ...

Note. By default, autocommit is off in C/C++/COBOL programs.

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
14-7

Transaction Management Committing Database Changes if No Errors Occur
However, the diagnostics area provides more information than the SQLSTATE variable
because condition information is stored for each exception condition that occurs during
execution of an SQL statement.

Committing Database Changes if No Errors Occur

The COMMIT WORK statement permanently commits changes made to the database
within the current transaction and ends the transaction. It frees resources held by the
transaction, such as row or table locks.

EXEC SQL COMMIT WORK;

If the program changes the database, either issue a COMMIT WORK statement at the
end of your transaction or turn on autocommit. If you quit a program without committing
a transaction, database changes are automatically rolled back.

For the syntax of the COMMIT WORK statement, see the SQL/MX Reference Manual.

Undoing Database Changes if an Error Occurs

The ROLLBACK WORK statement undoes changes made to the database within the
current transaction and ends the transaction. It frees resources held by the transaction,
such as row or table locks.

EXEC SQL ROLLBACK WORK;

For the syntax of the ROLLBACK WORK statement and more information on
transaction management, see the SQL/MX Reference Manual.

Note. The results of executing an SQL statement overlay the results of the previous SQL
statement in the diagnostics area. Therefore, test for exception conditions after the execution
of each statement within your transaction.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
14-8

15 C/C++ Program Compilation

This section describes how to develop and execute a C/C++ program that contains
embedded SQL statements. In addition, this section contains information on embedded
module definitions and module definition files:

 Compiling SQL/MX Applications and Modules on page 15-2

 Running the SQL/MX C/C++ Preprocessor on page 15-8

 Running the C/C++ Compiler and Linker on page 15-34

 Running the SQL/MX Compiler on page 15-36

 c89 Utility: Using One Command for All Compilation Steps on page 15-44

 Examples of Building and Deploying Embedded SQL C/C++ Programs on
page 15-55

 Building SQL/MX C/C++ Applications to Run in the Guardian Environment on
page 15-66

 Running an SQL/MX Application on page 15-72

For information on managing C/C++ programs and SQL/MX modules, see Section 17,
Program and Module Management.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-1

C/C++ Program Compilation Compiling SQL/MX Applications and Modules
Compiling SQL/MX Applications and Modules
NonStop SQL/MX Release 2.x provides two methods of compiling embedded SQL
C/C++ programs and creating modules. Both methods create an identical module file.
The first method described, using embedded module definitions, is the default and
preferred method.

The SQL/MX preprocessor reads a source file that contains C/C++ and embedded
SQL statements and generates:

Compiling Embedded SQL C/C++ Programs With Embedded
Module Definitions

Figure 15-1 on page 15-3 shows how a self-contained, single-file C/C++ program is
compiled using embedded module definitions. The application’s embedded SQL
source file is called sqlprog.sql.

Method 1: Embedded
module definitions

One file: a single, self-contained annotated source file that
contains source statements with SQL statements converted
to comments and embedded module definitions. You compile
this file (source-file.c in embedded SQL/MX C programs
or source-file.cpp in embedded SQL/MX C++
programs) with the C/C++ compiler (c89) and the SQL/MX
compiler (mxCompileUserModule). This is the default and
preferred method.

Method 2: Annotated
source file and
module definition file

Two files: an annotated source file and a module definition
file (source-file.m) that contains SQL source statements.
You compile the source file with the C/C++ compiler, and you
compile the module definition file with the SQL/MX compiler
(mxcmp). A module definition file is not created unless you
use the -x or -m preprocessor options or set the
SQLMX_PREPROCESSOR_VERSION=800 environment
variable to create a module definition file. For more
information, see Influencing Module Management Behavior
on page 17-9.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-2

C/C++ Program Compilation Compiling Embedded SQL C/C++ Programs With
Embedded Module Definitions
Although this figure shows individual steps for clarity, you can use c89 or the HP
Enterprise Toolkit—NonStop Edition (ETK) to automate the process. For information on
using c89 in this way, see c89 Utility: Using One Command for All Compilation Steps
on page 15-44. For more information on using ETK, see ETK online help.

These steps correspond to the steps in Figure 15-1 on page 15-3.

1. Create the C or C++ source file that contains embedded SQL statements
(sqlprog.sql).

Figure 15-1. Compiling Embedded SQL C/C++ Programs With Embedded Module
Definitions

SQL/MX
C/C++ Source File
sqlprog.sql

SQL/MX
C/C++ Source File
sqlprog.sql

SQL/MX
C/C++ Preprocessor

(mxsqlc)

C/C++ Annotated
Source File

sqlprog.c or
sqlprog.cpp

C/C++ Annotated
Source File

sqlprog.c or
sqlprog.cpp

Linker

C/C++ Compiler

C/C++ Object File
sqlprog.o

C/C++ Object File
sqlprog.o

7 C/C++ Program
(executable) File
sqlprog.exe

C/C++ Program
(executable) File
sqlprog.exe

SQL/MX Compiler
(mxCompileUserModule)

(mxcmp)

vst141.vsd

SQL/MX ModuleSQL/MX Module

8

Object
Libraries

SQL CLI and
Executor

Application
Process

sqlprog.exe

Can SQL compile
object file for early

error detection

9

6

5

4

3

2

1

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-3

C/C++ Program Compilation Compiling Embedded SQL C/C++ Programs With
Embedded Module Definitions
2. Preprocess the application’s embedded SQL source files by using the SQL/MX
C/C++ preprocessor mxsqlc. See Running the SQL/MX C/C++ Preprocessor on
page 15-8.

mxsqlc sqlprog.sql -c sqlprog.c

In this step, set optional module specification strings and moduleCatalog and
moduleSchema default settings by using the -g option. See 15-23 or 15-32.
Although you do not set mxcmp defaults here, if the input source file contains
mxcmp default settings, such as EXEC SQL DECLARE/SET/CONTROL QUERY
DEFAULT statements, they are preprocessed into corresponding module language
statements in the output module definition of the annotated source file.

3. The preprocessor produces a modified (annotated) C source file (sqlprog.c in C
or sqlprog.cpp in C++) that contains the C and SQL call-level interface (CLI)
translations of embedded SQL statements and additional C/C++ source constructs
that represent the module definition. The default behavior creates a single, self-
contained application source file with embedded module definitions.

4. Compile the annotated C/C++ source file by using the c89 compiler (HP NonStop
Open System Services (OSS) environment) or ETK (Windows environment). To
produce an object file:

c89 -c sqlprog.c -o sqlprog.o

Specify the -c option if you do not want c89 to link the program. Otherwise, c89
invokes eld or nld to create an executable file.

See Running the C/C++ Compiler and Linker on page 15-34.

5. The C/C++ compiler produces the object file, sqlprog.o. If you prefer early
detection of SQL compilation errors, you can SQL compile the application’s object
file at this point. During program development, you might want to use the
mxCompileUserModule utility against all the object files rather than against the
executable file. When you SQL compile against the object files, NonStop SQL/MX
does not recompile each module for object files that are linked into more than one
executable file.

6. Link application object files with object libraries to create an executable file.

 For TNS/E native compilation, use the eld utility:

eld /usr/lib/ccplmain.o sqlprog.o \
-o sqlprog.exe -lzcredll -lzcrtldll -lzosskdll \
-lzi18ndll -lzicnvdll -lzclidll

 For TNS/R native compilation, use the nld utility:

nld /usr/lib/crtlmain.o sqlprog.o -o sqlprog.exe -elf \
-set systype oss -set highpin off -set highrequestor on \
-set inspect on -obey /usr/lib/libc.obey \
-set saveabend on \
-Bdynamic -lzcplsrl -lzcrtlsrl -lzcresrl -lzcplosrl \
-lztlhgsrl -lztlhosrl -lzclisrl
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-4

C/C++ Program Compilation Compiling Embedded SQL C/C++ Programs With
Embedded Module Definitions
7. The linker produces the application’s executable file, sqlprog.exe.

8. SQL compile one, some, or all of the application’s embedded module definitions in
the executable file by using mxCompileUserModule. See Running the
SQL/MX Compiler on page 15-36 and Compiling Embedded Module Definitions on
page 15-37.

mxCompileUserModule sqlprog.exe

9. The SQL/MX compiler produces the SQL/MX module. The module is stored in the
local application directory, user-specified Guardian or OSS location(s) or both,
application DLL location(s), or in the global /usr/tandem/sqlmx/USERMODULES
directory.

Run the C/C++ executable program.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-5

C/C++ Program Compilation Compiling Embedded SQL C/C++ Programs With
Module Definition Files
Compiling Embedded SQL C/C++ Programs With Module
Definition Files

Figure 15-2 shows how a C/C++ program with separate module definition files is
compiled. The application’s embedded SQL source file is called sqlprog.sql.

Although this figure shows individual steps for clarity, you can use the c89 utility or
ETK to automate the process. For more information on using c89 in this way, see c89
Utility: Using One Command for All Compilation Steps on page 15-44. For more
information on ETK, see ETK online help.

These steps correspond to the steps in Figure 15-2 on page 15-6.

Figure 15-2. Compiling Embedded SQL C/C++ Programs With Module Definition
Files

SQL/MX
C/C++ Source File
sqlprog.sql

SQL/MX
C/C++ Source File
sqlprog.sql

SQL/MX
C/C++ Preprocessor

(mxsqlc)

SQL Module
Definition File
sqlprog.m

SQL Module
Definition File
sqlprog.m

SQL/MX Compiler
(mxcmp)

C/C++ Annotated
Source File

sqlprog.c or
sqlprog.cpp

C/C++ Annotated
Source File

sqlprog.c or
sqlprog.cpp

2

3
3

C/C++ Compiler4

1

8

vst142.vsd

SQL/MX ModuleSQL/MX Module

Object File
sqlprog.o

Object
Libraries

Linker

5

6

Application Process
sqlprog.exe

SQL CLI and Executor
C/C++ Program
(executable) File
sqlprog.exe

C/C++ Program
(executable) File
sqlprog.exe

7

9

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-6

C/C++ Program Compilation Compiling Embedded SQL C/C++ Programs With
Module Definition Files
1. Create the C or C++ source files that contain embedded SQL statements
(sqlprog.sql).

2. Preprocess the application’s embedded SQL source files by using the SQL/MX
C/C++ preprocessor mxsqlc. See Running the SQL/MX C/C++ Preprocessor on
page 15-8.

mxsqlc sqlprog.sql -c sqlprog.c -m sqlprog.m

In this step, set optional module specification strings and moduleCatalog and
moduleSchema default settings by using the -g option. See 15-23 or 15-32.
Although you do not set mxcmp defaults here, if the input source file contains
mxcmp default settings, such as EXEC SQL DECLARE/SET/CONTROL QUERY
DEFAULT statements, they are preprocessed into corresponding module language
statements in the output module definition of the module definition file. The
preprocessor options (-x or -m) and the SQLMX_PREPROCESSOR_VERSION=800
environment variable indicate to the preprocessor that you are compiling your
program with module definition files. For more information on setting the
preprocessor options, see Module Management Behavior on page 17-8.

3. The preprocessor produces two files: a modified (annotated) C source file
(sqlprog.c in C or sqlprog.cpp in C++) that contains the C and SQL CLI
translations of embedded SQL statements and the module definition file
(sqlprog.m).

4. Compile the annotated C/C++ source file by using the c89 compiler (OSS
environment) or ETK (Windows environment). To produce an object file:

c89 -c sqlprog.c -o sqlprog.o

Specify the -c option if you do not want c89 to link the program. Otherwise, c89
invokes eld or nld to create an executable file.

See Running the C/C++ Compiler and Linker on page 15-34.

5. The C/C++ compiler produces the ELF object file, sqlprog.o.

6. Link application object files with object libraries to create an executable file.

 For TNS/E native compilation, use the eld utility:

eld /usr/lib/ccplmain.o sqlprog.o \
 -o sqlprog.exe -lzcredll -lzcrtldll -lzosskdll \
-lzi18ndll -lzicnvdll -lzclidll

 For TNS/R native compilation, use the nld utility:

nld /usr/lib/crtlmain.o sqlprog.o -o sqlprog.exe -elf \
-set systype oss -set highpin off -set highrequestor on \
-set inspect on -obey /usr/lib/libc.obey \
-set saveabend on \
-Bdynamic -lzcplsrl -lzcrtlsrl -lzcresrl -lzcplosrl \
-lztlhgsrl -lztlhosrl -lzclisrl

7. The linker produces the application’s executable file, sqlprog.exe.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-7

C/C++ Program Compilation Creating Modules: From Development to Production
8. SQL compile the application’s module definition file by using the SQL/MX compiler
(mxcmp). See Running the SQL/MX Compiler on page 15-36 and Compiling a
Module Definition File on page 15-42.

mxcmp sqlprog.m

9. The SQL/MX compiler compiles the SQL source statements from the module
definition file into a module file, generates a SQL object code for each statement,
determines an optimized execution plan for each SQL statement against the
database, and then stores the code and plan in the SQL object program. The
module is stored in the local application directory, user-specified Guardian or OSS
location(s) or both, application DLL location(s), or in the global
/usr/tandem/sqlmx/USERMODULES directory.

Run the C/C++ executable program.

Creating Modules: From Development to Production

While HP recommends that you use embedded module definitions to create SQL
modules, you might find it easier for debugging purposes to use module definition files
during early stages of development and then switch to embedded module definitions
upon deployment of your production system. Consider this:

 With embedded module definitions, you must successfully compile the output from
the preprocessor before you can SQL compile the embedded module definition.
You must diagnose host language errors in the source program before you can
diagnose SQL errors in the source program.

 With module definition files, you compile the source file and the module definition
file at the same time. This method provides the opportunity to diagnose both host
language errors and SQL errors in the source file concurrently.

Embedded module definitions provide greater efficiency in the deployment of an
application to a production environment.

Running the SQL/MX C/C++ Preprocessor
The SQL/MX C/C++ preprocessor is available for these environments:

 OSS
 Microsoft Windows
 Enterprise Plugins for Eclipse (EPE)
 Enterprise ToolKit—NonStop Edition (ETK)

The preprocessor for the OSS environment is installed when you install NonStop
SQL/MX on your system. You must install the Windows-hosted preprocessor on your

Note. ETK is a GUI-based extension package to the Visual Studio .NET product. Use ETK to
edit, compile, build, and deploy applications written in a variety of programming languages with
embedded SQL/MX. For more information, see ETK online help.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-8

C/C++ Program Compilation Preprocessor Functions
Windows workstation. For information, see the SQL/MX Release 3.2 Installation and
Upgrade Guide.

The syntax for using the preprocessor in each environment appears under Syntax for
the OSS-Hosted SQL/MX C/C++ Preprocessor on page 15-20 and Syntax for the
Windows-Hosted SQL/MX C/C++ Preprocessor on page 15-28.

Preprocessor Functions

The preprocessor processes C/C++ and SQL source statements.

C/C++ Source Statements

The preprocessor writes each C/C++ source statement to the C/C++ annotated source
file. The preprocessor parses the source file only to the extent necessary to detect
scoping levels, host variable declarations, host variable expressions, and embedded
SQL statements.

C Preprocessing Directives

The preprocessor ignores the C directives except the #include, #define, #line,
#pragma, or conditional compilation directives.

The pragma #pragma SQL CHAR_AS_ARRAY – SQL/MX Release 3.1, supports the
CHAR_AS_ARRAY pragma in the embedded SQL file. The length of all character
descriptors will be the same as the descriptors defined in the application, unlike the
default length, where the length is one byte less than that defined.

The pragma can be placed anywhere in the file. However, the pragma will be effective
from one definition until the next or until the end of file.

The following example uses the pragma SQL CHAR_AS_ARRAY:

#pragma SQL CHAR_AS_ARRAY

EXEC SQL BEGIN DECLARE SECTION;

char a[20];

EXEC SQL END DECLARE SECTION;

strcpy(a,"abc");

EXEC SQL INSERT INTO t1 (val) values(:a);
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-9

C/C++ Program Compilation Preprocessor Functions
The following is the content of the generated module file:

ALLOCATE STATIC INPUT DESCRIPTOR
SQLMX_DEFAULT_STATEMENT_1_0_IVAR FOR STATEMENT
SQLMX_DEFAULT_STATEMENT_1 (CHARACTER(20) NOT NULL);

--------- STATEMENT INDEX 0 ---------

PROCEDURE SQLMX_DEFAULT_STATEMENT_1 ("a" CHARACTER(20)) INSERT
INTO t1 (val) values(:"a");

The pragma, #pragma SQL CHAR_AS_STRING – SQL/MX Release 3.1, supports the
CHAR_AS_STRING pragma in the embedded SQL file. The length of all character
descriptors will be one byte less than that defined in the application. This is the default
behavior.

The pragma can be placed anywhere in the file. However, the pragma will be effective
from one definition until the next, or until the end of file.

The following example uses the pragma SQL CHAR_AS_STRING:

#pragma SQL CHAR_AS_STRING

EXEC SQL BEGIN DECLARE SECTION;

char a[20];

EXEC SQL END DECLARE SECTION;

strcpy(a,"ramu");

EXEC SQL INSERT INTO t1 (val) values(:a);

The following is the content of the generated module file:

ALLOCATE STATIC INPUT DESCRIPTOR
SQLMX_DEFAULT_STATEMENT_1_0_IVAR FOR STATEMENT
SQLMX_DEFAULT_STATEMENT_1 (CHARACTER(19) NOT NULL);

--------- STATEMENT INDEX 0 ---------

PROCEDURE SQLMX_DEFAULT_STATEMENT_1 ("a" CHARACTER(19)) INSERT
INTO t1 (val) values(:"a");

C #include directive

The preprocessor expands first-level #include files. The original #include line is
commented in the output source file. The commented line is followed by the #include
file contents.

Note. INVOKE includes its own option to support CHAR_AS_ARRAY and CHAR_AS_STRING.
When the pragma is defined at the file level and the INVOKE option is not defined, the pragma
definition is considered. However, when the pragma and the INVOKE option are defined, the
INVOKE option will override the pragma definition.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-10

C/C++ Program Compilation Preprocessor Functions
If you specify the -I option, the preprocessor expands the nested #include files. The
-I option supports a maximum nesting limit of 200 levels. While processing nested
#include files, circular inclusion of include files is detected, and the preprocessor
issues warning 13089, and comments the #include line in the output source file.

By default, the preprocessor processes only the #include files on OSS, that have a
.mxh extension. Using the -h command-line option, the preprocessor processes the
#include files with any extension or no extension. The preprocessor also processes
the #include files specified within the pragma MXH and NOMXH directives. It supports
Guardian DEFINEs for the #include directive. If the -O option is specified, the OSS-
hosted SQL/MX preprocessor resolves the Guardian class MAP DEFINE with the
actual filename and processes it. The Windows-hosted SQL/MX preprocessor does not
support Guardian DEFINEs.

The preprocessor ignores:

 Nested #include directives, if the -I option is not specified

 System #include directives (for example, <time.h>)

 The NOLIST option if it is part of the #include file command

Examples:

 The contents of the mine3.mxh file are included in the output source file:

#include "mine3.mxh"

 Only sect1, sect2,and sect6 are included, and NOLIST is ignored:

#include "mine4.mxh (sect1,sect2,sect6)" NOLIST

 The contents of the mine.h and mine2 files are included if -h is specified, and
NOLIST is ignored:

#include "mine.h"
#include "../includes/mine2" NOLIST

 The contents of the file mapped by DEFINE =cdef1 are included, if -h and -O
are specified:

#include "=cdef1"

Note. The DEFINEs are resolved only if the preprocessor option -O is specified.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-11

C/C++ Program Compilation Preprocessor Functions
 If the -I option is specified, the contents of a1.mxh, a2.mxh, and a3.mxh are
included in the output source file:

a1.sql

|

+-->a1.mxh

 |

 +-->a2.mxh

 |

 +-->a3.mxh

The following scenarios explain the behavior of the nested #include files:

In case 1, while processing nested #include files, the #include file a1.mxh which
is included circularly is not processed, and a warning 13089 is returned by the
preprocessor. The circular #include line is commented in the output source file.

Case 1:

 a1.sql

 |

 +-->a1.mxh

 |

 +--->a2.mxh

 |

 +-->a1.mxh

In case 2, the #include file b1.mxh is not processed by the preprocessor.

Case 2:

b1.sql

|

+-->b1.mxh

 |

 +-->b1.mxh

As with any #include file inclusion, you must ensure that implementation of
conditional compilation does not result in repeated file inclusion.

When a C #pragma directive is contained in an included file, it is processed by the
preprocessor.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-12

C/C++ Program Compilation Preprocessor Functions
If the file incl.mxh contains:

#pragma section sect1
EXEC SQL BEGIN DECLARE SECTION;
 int a1;
EXEC SQL END DECLARE SECTION;

#pragma section sect2
EXEC SQL BEGIN DECLARE SECTION;
 int a2;
EXEC SQL END DECLARE SECTION;

#pragma section sect3
EXEC SQL BEGIN DECLARE SECTION;
 int a3;
EXEC SQL END DECLARE SECTION;

this construct:

#include "incl.mxh (sect1, sect3)" NOLIST

is expanded to:

/* #include "incl.h (sect1, sect3)" NOLIST */
EXEC SQL BEGIN DECLARE SECTION;
 int a1;
EXEC SQL END DECLARE SECTION;

EXEC SQL BEGIN DECLARE SECTION;
 int a3;
EXEC SQL END DECLARE SECTION;

This construct:

#include "incl.mxh" NOLIST

is expanded to:

/* #include "incl.h" NOLIST */
#pragma section sect1
EXEC SQL BEGIN DECLARE SECTION;
int a1;
EXEC SQL END DECLARE SECTION;

#pragma section sect2
EXEC SQL BEGIN DECLARE SECTION;
int a2;
EXEC SQL END DECLARE SECTION;

#pragma section sect3
EXEC SQL BEGIN DECLARE SECTION;
int a3;
EXEC SQL END DECLARE SECTION;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-13

C/C++ Program Compilation Preprocessor Functions
C #Pragma MXH and #Pragma NOMXH Directive

The preprocessor processes all the user header files (for example, #include
"file1.h"), that are within the pragma directives MXH and NOMXH, regardless of the
header file extension.

Example:

The contents of the mine.h and mine3 files are not included in the output source file.
The content of the ../includes/mine2 file is processed and written to the output
source file:

#include "mine.h"
#pragma MXH
#include "../includes/mine2"
#pragma NOMXH
#include "mine3"

C #define Directive

The preprocessor scans all #define directives and stores them in a table for
evaluation when they are encountered. The preprocessor evaluates the stored defines
for all legal combinations of conditional compilation.

A #define specified on the preprocessor command line must also be specified on the
C/C++ command line. The preprocessor interprets and uses #define information but
does not remove it from the generated code. The C/C++ compiler must get the same
directive to interpret the code the same way. If you use the c89 utility, this is not a
concern.

The preprocessor checks each nonkeyword that begins a line to determine if it is in the
define table. If it is, it is expanded. However, you must ensure that define-engendered
substitutions result in valid code.

This #define directive:

#define SQL_Control_Table(defname)
EXEC SQL CONTROL TABLE defname TABLELOCK ‘OFF’;

SQL_Control_Table(fldrenty);
SQL_Control_Table(postact);
SQL_Control_Table(permdeny);

is expanded to:

EXEC SQL CONTROL TABLE fldrenty TABLELOCK 'OFF';
EXEC SQL CONTROL TABLE postact TABLELOCK 'OFF';
EXEC SQL CONTROL TABLE permdeny TABLELOCK 'OFF';

The preprocessor also expands #define directives that occur within host variable
parameters.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-14

C/C++ Program Compilation Preprocessor Functions
This #define directive:

#define MAX 255

EXEC SQL BEGIN DECLARE SECTION;
char mystr [MAX-1];
EXEC SQL END DECLARE SECTION;

is expanded to:

#define MAX 255

EXEC SQL BEGIN DECLARE SECTION;
char mystr [/*MAX-1*/ 254];
EXEC SQL END DECLARE SECTION;

C #line Directive

The preprocessor generates #line directives in the C/C++ annotated source file so
that the user, during debugging, is directed to the input source line number and file
name instead of the preprocessor-generated code that implements the embedded SQL
statement. The preprocessor uses the source line number and input file name when
reporting error and warning messages.

If the preprocessor encounters a #line directive, it updates the current source line
number and input file name (if specified) from the directive.

C/C++ Comments

The preprocessor ignores C and C++ comments unless the comment specifies a name
for an SQL statement. You can use a comment to name an SQL statement explicitly.
To do so, precede the statement with a C comment using the format:

/* SQL statement_name = name [comment-text] */
EXEC SQL sql_statement ... ;

The name is an SQL identifier you are assigning as the name of sql_statement, and
comment-text is an optional comment that does not affect the assignment of the
name. The C/C++ comment must use only one line and must immediately precede the
SQL statement.

For example, this comment names the SQL statement (INSERT) and provides
comment text (“insert ten rows”):

/* SQL statement_name= INSERT insert ten rows */
EXEC SQL INSERT INTO ...;

If you do not specify a name for an SQL statement, the preprocessor assigns the
statement a name of the form SQLMX_DEFAULT_STATEMENT_n, where n is an integer
incremented by the preprocessor.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-15

C/C++ Program Compilation Preprocessor Functions
Host Variable Declarations

The preprocessor checks each host variable declaration (that is, a variable declared
between BEGIN DECLARE SECTION and END DECLARE SECTION) to ensure that
the variable uses a valid data type. For valid host-variable data types, see Table 3-1 on
page 3-9 and Table 3-4 on page 3-12.

The preprocessor parses INVOKE as a valid embedded SQL statement within a host
variable declaration section. The preprocessor returns an error for embedded SQL
statements that are not valid within a host-variable declaration section.

SQLSTATE must be declared within a Declare Section. See Declaring SQLSTATE on
page 13-2.

Floating-Point Format

In SQL/MX Release 2.x, the preprocessor operates in ANSI IEEE floating-point format.
In previous releases, the preprocessor used Tandem floating-point format. If you have
applications that use floating-point data types and host variables, see Assigning
Floating-Point Data Types on page 3-33.

Executable SQL Statements

The preprocessor performs these functions:

 Scans the statement for host variables (indicated by a colon) and ensures that
each host variable is declared within the current scope of the program.

 Converts the SQL statement to a C comment in the C/C++ annotated source file.

 Writes the appropriate CLI procedure call or calls for the SQL statement
immediately after the commented statement in the C/C++ annotated source file. At
run time, the calls invoke the SQL/MX executor to execute the procedure for the
SQL statement within the module.

 Writes the executable SQL statement to a separate module definition file if you use
the -x or -m preprocessor option or set the
SQLMX_PREPROCESSOR_VERSION=800 environment variable.

Use the preprocessor to embed SQL anywhere in the C/C++ source file. However, the
preprocessor determines in which part of the source file the embedded SQL is located
and issues warnings if an embedded SQL statement is not placed correctly. See
Placement of SQL Statements on page 2-2.

At the end of processing the embedded SQL C/C++ source file, the preprocessor
checks the status of static cursors:

 Cursors accessed and not opened return an error message.
 Cursors declared and not accessed return a warning message.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-16

C/C++ Program Compilation Preprocessor Output
Preprocessor Output

C/C++ Annotated Source File for Embedded Module
Definitions

The SQL/MX C/C++ preprocessor processes a C/C++ source file, such as source-
file.sql, and generates one annotated source file (source-file.c in C or
source-file.cpp in C++) as its output file. The annotated source file contains the
embedded module definitions.

C/C++ Annotated Source File for Module Definition Files

If you use the -x or -m preprocessor option or if you set the
SQLMX_PREPROCESSOR_VERSION=800 environment variable, the preprocessor
processes a C/C++ source file, such as source-file.sql, and generates two files:
the annotated source file (source-file.c in C or source-file.cpp in C++) and the
module definition file (source-file.m).

For more information on module management behavior and influencing the
preprocessor, see Module Management Behavior on page 17-8. For recommended
naming conventions for C/C++ source files, see Table 17-1 on page 17-1.

The preprocessor converts embedded SQL statements to C comments, followed by the
appropriate CLI calls.

The C/C++ annotated source file consists of:

Header for Module Definition File

If you specify the -m or -x preprocessor option or set the
SQLMX_PREPROCESSOR_VERSION=800 environment variable, the preprocessor

Header Contains the declarations within the CLI functions and data
structures.

Body Contains the embedded SQL C/C++ source file translated into
C/C++ statements. The preprocessor encloses each embedded
SQL statement with C comment delimiters and follows the
commented statement with a CLI call that invokes the executor
at run time to execute the statement.

Trailer Contains definitions required to complete the C/C++ source file.
Definitions include the module version number, the creation
timestamp (the operating system timestamp when the
preprocessor was invoked), and the module name.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-17

C/C++ Program Compilation Preprocessor Output
creates a module definition file in your current directory that contains embedded SQL
statements. The preprocessor writes the header of the module definition file as:

MODULE module-name NAMES ARE ISO88591;
TIMESTAMP DEFINITION (creation_timestamp);
source-file 'source-file location';

You can specify module-name by using the MODULE directive in your embedded
SQL C/C++ program. For example:

EXEC SQL MODULE TX015.SQLPP.T0003N12;

The preprocessor translates this MODULE directive into:

MODULE TX015.SQLPP.T0003N12 NAMES ARE ISO88591;
TIMESTAMP DEFINITION (2110378403655251203)
SOURCE_FILE '/E/KINGPIN/usr/test/qalib/mxR2/cct0003/n12.ppp';

Otherwise, if you do not specify a MODULE directive, the preprocessor generates a
system-supplied module name for you. See also the MODULE directive in the SQL/MX
Reference Manual.

Trailer for Annotated-Source File

The module-name and the creation_timestamp correspond to these same
elements in the trailer of the C/C++ source file. The SQL/MX compiler uses module-
name to name the module file. It also writes the creation_timestamp into the
module file. The C/C++ source file is then compiled and linked. When the resulting
program file is executed and calls the SQL/MX executor, the preprocessor-generated
CLI procedure calls pass the module-name and creation_timestamp to the
executor. The executor uses the module-name to locate the corresponding module
file. The creation_timestamp is used to ensure that the version of the executable
program is synchronized with the version of the module file. This strategy prevents, for
example, the executable program from being altered and rebuilt without rebuilding the
module file. For more information, see Understanding and Avoiding Some Common
Run-Time Errors on page 15-73.

The ISO88591 character set is the default character set for CHAR or VARCHAR data
types for NonStop SQL/MX.

Procedures

After writing to the header of the module definition file, the preprocessor writes
procedures for executing SQL statements. A procedure consists of a name, a formal
argument list, and an SQL statement as the body of the procedure.

Each formal argument has a name and an SQL data type. The arguments are the host
variables that occur in the SQL statement in the body of the procedure. The
preprocessor writes the arguments in the same order as the first occurrence of the host
variables, scanning from left to right, in the SQL statement. In some cases, the
arguments are data structures that contain references to host variables. The host
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-18

C/C++ Program Compilation OSS-Hosted SQL/MX C/C++ Preprocessor
variable references are stored in the same order in which they appear in the SQL
statement.

OSS-Hosted SQL/MX C/C++ Preprocessor

You can compile and run an embedded SQL C/C++ program in the OSS environment
on a NonStop system. Although you cannot compile and run such a program in the
Guardian environment, you can use an OSS pass-through command in the Guardian
environment. For instructions on using the Windows-hosted SQL/MX C/C++
preprocessor, see Windows-Hosted SQL/MX C/C++ Preprocessor on page 15-26. For
instructions on using the OSS pass-through command to execute the preprocessor in
the Guardian environment, see Building SQL/MX Guardian Applications in the
Guardian Environment on page 15-67.

The OSS-hosted SQL/MX C/C++ preprocessor (mxsqlc) is installed in the
/usr/tandem/sqlmx/bin directory in the OSS environment. You can use the c89
utility to preprocess embedded SQL C/C++ programs, compile C/C++ and run the
SQL/MX compiler, and then link the C/C++ program. For more information, see c89
Utility: Using One Command for All Compilation Steps on page 15-44.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-19

C/C++ Program Compilation OSS-Hosted SQL/MX C/C++ Preprocessor
Syntax for the OSS-Hosted SQL/MX C/C++ Preprocessor

sql-file

is the name of the input C/C++ source file that contains embedded SQL
statements.

-c output-file

is the name of the output preprocessed annotated source file that contains C/C++
statements and embedded SQL statements converted to comments. This file is the
input for the C or C++ compiler (c89 utility). If you are preparing a C++ application,
specify the name with the .C, .cc, .cpp, .cxx, or .c++ extension. The default is
source-file.c, where source-file is the name of the SQL/MX C/C++ source
file (for example, sqlprog.sql) without the file extension.

-m module-def-file

is the name of the output module definition file, which is the input file for the
SQL/MX compiler. The default is source-file.m, where source-file is the

mxsqlc sql-file
 [-c output-file]
 [-m module-def-file]
 [-e]
 [-n]
 [-a]
 [-l list-file]
 [-p]
 [-o]
 [-t timestamp]
 [-d flag[=value]]
 [-h]
 [-i pathname]
 [-x]
 [-X]
 [-g {moduleGroup[=module-group-specification-string]
 |moduleTableSet[=module-tableset-specification-
 string]
 |moduleVersion[=module-version-specification-
 string]
 |moduleCatalog[=module-catalog-name]
 |moduleSchema[=module-schema-name]
 }]
 [-Q {[invokeCatalog=catalog-name]
 |[invokeSchema=schema-name]
 }]
 [-I]
 [-U {32 | 64}]
 [-w {sqlcode | sqlstate | both }]
 [-O]
 [-f {CHAR_AS_ARRAY | CHAR_AS_STRING}]
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-20

C/C++ Program Compilation OSS-Hosted SQL/MX C/C++ Preprocessor
name of the SQL/MX C/C++ source file (for example, sqlprog.sql) without the
file extension.

-e

generates CHARACTER data types for date-time data types. This behavior is
compatible with NonStop SQL/MX Release 1.8. For more information, see INVOKE
and Date-Time and Interval Host Variables (SQL/MX Release 1.8 Applications) on
page 3-44.

-n

directs the preprocessor to automatically append a null terminator to all host
variable character strings before they are fetched into. Using the -n option does
have the potential to produce nonportable code. Moreover, if the -a option is used
together with the -n option, the -n option has no effect on VARCHARs.

-a

specifies that VARCHARs are to be translated into structures that contain a length
and character string. For details about using this option, see Generating Structures
Instead of Using Null-Terminated Strings on page 3-21 and Example: Using a
Structure on page 3-22.

This preprocessor option overrides the SQL/MX default VARCHAR, which is a
string with a null terminator. Moreover, if the -a option is used together with the -n
option, the -n option has no effect on VARCHARs.

-l list-file

is the name of the output list file that contains preprocessor error and warning
messages. The default is source-file.lst, where source-file is the name
of the SQL/MX C/C++ source file (for example, sqlprog.sql) without the file
extension.

-p

turns off the automatic generation of #line directives in the C/C++ output file,
disables source-level debugging, and shows the generated C/C++ code for
debugging purposes.

-o

overrides the use of Tandem floating point and uses IEEE floating point instead for
host variables. In addition, if used with invoked SQL/MP tables with a column of
type REAL, this option causes the invoked structure to be of type DOUBLE. For
more information, see INVOKE and Floating-Point Host Variables on page 3-45.

By default, the c89 compiler (TNS/E targeted compilation) defaults to IEEE_float
and will invoke the -o option when it calls the preprocessor. If you want your
program to use Tandem_float, use the c89 -Wtandem_float option to compile
the mxsqlc-generated annotated source file.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-21

C/C++ Program Compilation OSS-Hosted SQL/MX C/C++ Preprocessor
-t timestamp

provides a creation timestamp that the preprocessor writes to the C/C++ annotated
source file (and the module definition file if the -x or -m preprocessor option or the
SQLMX_PREPROCESSOR_VERSION=800 environment variable is used). The
timestamp value overrides the operating system timestamp. The value of the
timestamp must be in Julian format.

For example, you can specify the following timestamp value:

-t 201200000000000036

The preprocessing timestamp of the generated code must match the
preprocessing timestamp stored in the module. Use this option with caution and
only when you need to change the source text of the embedded SQL program
without SQL-compiling the generated code.

-d flag[=value]

specifies a flag macro for later use in the conditional compilation of the source file.
flag specifies the name of the macro and must be a valid C identifier. value can
be any integer value (positive or negative). You cannot put spaces around the
equal sign if an optional value is supplied.

The use of this option corresponds, for example, to the #define directive that
might be found in a source file (that is, #define foo 1, where 1 is the value
assigned to foo). The value can then be tested in an #if directive during
preprocessing.

You can specify the option more than once on the command line.

-h

enables the processing of files specified in the user #include directive regardless
of their extension. The default action is to ignore these files.

-i pathname

specifies a directory path to be searched for a file specified in an #include
directive. The source path is searched first.

You can specify this option for a maximum of 20 paths.

[-U {32 | 64}]

Specifies the data model of the application to be either 32-bit or 64-bit. If you do
not specify the data model option while processing the embedded SQL source file,
the preprocessor uses 32-bit as the default data model.

The options -U 32 and -U 64 are not valid for the SQL/MX COBOL preprocessor. If
specified, the SQL/MX COBOL preprocessor returns the error “13011: <option> is
an unknown command line option”.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-22

C/C++ Program Compilation OSS-Hosted SQL/MX C/C++ Preprocessor
-x

directs the preprocessor to refrain from emitting embedded module definitions into
the annotated output source file.

-X

instructs the preprocessor to use the precision and scale in SET DESCRIPTOR
statement for the data associated with the dynamic parameter through
VARIABLE_DATA.

-g {moduleGroup[=module-group-specification-string]
 |moduleTableSet[=module-tableset-specification-string]
 |moduleVersion[=module-version-specification-string]
 |moduleCatalog[=module-catalog-name]
 |moduleSchema[=module-schema-name]
 }

specifies the arguments for qualifying the name given to the compiled module file.
If you use this option, you must supply at least one of the five module management
attributes. If you want to specify more than one attribute, repeat the entire -g option
for each attribute. These attribute values are used to qualify the name of the
compiled module file. See File Naming Conventions on page 17-1.

To use the -g option, you must supply a value in conjunction with the
moduleGroup, moduleTableSet, moduleVersion, moduleCatalog, or
moduleSchema attribute. The value must immediately follow the equal sign, and
the equal sign must immediately follow the attribute keyword. The value can use
regular or delimited identifiers. (See the description of regular and delimited
identifiers in the SQL/MX Reference Manual.) If you supply more than one value
for any attribute, only the final value is used. For information on the length of the
module name, see Module Name Length on page 17-12.

moduleGroup

sets the moduleGroup attribute to group an application’s module files logically
by sharing the same name prefix. The moduleGroup becomes embedded in
the module file names as a common prefix and enables the use of OSS wild-
card file specification patterns to manage the files. For more information, see
Grouping on page 17-23. The maximum size for the moduleGroup attribute is
31 characters.

moduleTableset

sets the moduleTableSet attribute to use the module management targeting
feature. You can create different sets of module files that can be used against
different sets of tables. For more information, see Specifying the search

Note. The applications preprocessed with -U 64 must be linked with YCLIDLL.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-23

C/C++ Program Compilation OSS-Hosted SQL/MX C/C++ Preprocessor
locations of the module files on page 17-13. The maximum size for the
moduleTableSet attribute is 31 characters.

moduleVersion

sets the moduleVersion attribute to enable multiple versions of an
application’s module files to coexist while keeping the same MODULE directive
in each version. For more information, see Versioning on page 17-21. The
maximum size for the moduleVersion attribute is 31 characters.

moduleCatalog

sets the moduleCatalog attribute if the input sql-file does not have a
MODULE directive or its MODULE directive does not specify a catalog name. If
the moduleCatalog option is not set, the preprocessor emits the output
MODULE directive by using the default catalog naming rules described in the
SQL/MX Reference Manual. The maximum size for the moduleCatalog
attribute is 128 characters.

moduleSchema

sets the moduleSchema attribute if the input sql-file does not have a
MODULE directive or its MODULE directive does not specify a schema name.
The moduleSchema can contain a catalog name. If the moduleSchema
attribute is not used, the preprocessor emits the output MODULE directive by
using the default schema naming rules described in the SQL/MX Reference
Manual. The maximum size for the moduleSchema attribute is 128 characters.

[-Q {[invokeCatalog=catalog-name]
 |[invokeSchema=schema-name]
}]

specifies the catalog name and schema name qualifiers for objects inside the
invoke clause. If you use this option, specify one of the attributes—
invokeCatalog or invokeSchema. If you want to specify both the attributes,
repeat the -Q option for each attribute.

invokeCatalog

sets the catalog for unqualified objects inside the invoke clause as catalog-
name. If a catalog is specified using the Control Query Default Catalog or
Declare Catalog, this attribute has no effect. The maximum size of the
invokeCatalog attribute is 128 characters.

invokeSchema

sets the schema for unqualified objects inside the invoke clause as schema-
name. If a schema is specified using the Control Query Default Schema or
Declare Schema, this attribute has no effect. The maximum size of the
invokeSchema attribute is 128 characters.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-24

C/C++ Program Compilation OSS-Hosted SQL/MX C/C++ Preprocessor
-I

processes the nested #include files.

-w

handles warnings for SQLCODE and SQLSTATE declarations.

sqlcode

issues a warning if SQLCODE is undeclared or not declared as long
SQLCODE in the Declare section.

sqlstate

issues a warning if SQLSTATE is undeclared or not declared as char
SQLSTATE[6] in the Declare section.

both

issues warnings if either or both SQLCODE and SQLSTATE are undeclared or
not declared as long SQLCODE and char SQLSTATE[6] respectively in the
Declare section.

-O

replaces Guardian DEFINE in the #include directive, in the OSS file format. The
DEFINEs are resolved only if the preprocessor option -O is specified.

-f

specifies whether to reduce size by one or not for the null terminator of the
character type descriptor. The default value is CHAR_AS_STRING. The following
rules apply:

CHAR_AS_STRING – reduces the size by one from the value specified in the
variable declaration.

CHAR_AS_ARRAY – retains the size specified in the variable declaration.

Example—mxsqlc

Run the SQL/MX C/C++ preprocessor using the mxsqlc command. This C++ example
creates an annotated source file and module definition file:

mxsqlc sqlprog.ecpp -c sqlprog.cpp -x -m sqlprog.m -p \
 -g moduleGroup=INVENTORY -g moduleVersion=V2
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-25

C/C++ Program Compilation Windows-Hosted SQL/MX C/C++ Preprocessor
This C++ example creates a self-contained, annotated output source file that contains
an embedded module definition:

mxsqlc sqlprog.ecpp -c sqlprog.cpp -g moduleTableSet=TEST1

This C++ example creates an annotated source file and module definition file for 64-bit
compilation.

Mxsqlc sqlprog.ecpp -c sqlprog.cpp -x -m sqlprog.m -p -U 64

Windows-Hosted SQL/MX C/C++ Preprocessor

The Windows hosted SQL/MX C/C++ preprocessor is a DLL file named
mxsqlcnt.dll and is accompanied by a DLL loader named mxsqlc.exe. These
files are installed in the C:\Program Files\HP SQL-MX C Preprocessors
directory. Use either the command shell or the Korn shell to run the preprocessor with
the RUN command. You can also use ETK to build a C or C++ program. For more
information, see Building a C/C++ Program With Embedded SQL Statements on
Windows on page 15-55.

You can install multiple versions of the SQL/MX C/C++ preprocessors. The
environment variable MXSQLC enables you to select a particular version of the SQL/MX
C/C++ preprocessor for C/C++ compilations.

For example, to select the SQL/MX C/C++ preprocessor in the
C:\PROGRA~1\HPSQL-~1\ directory, set MXSQLC from the Windows command line:

set MXSQLC=C:\PROGRA~1\HPSQL-~1\mxsqlcnt.dll

You can also set the environment variable in the Windows system properties. If
multiple versions of the SQL/MX C/C++ preprocessors are installed and if MXSQLC is
not set, the latest version of the SQL/MX C/C++ preprocessor installed on the system
is used for compilations, by default.

If you use INVOKE, MXCS must be installed on your operating system to provide the
necessary communication between your client workstation and the server. For more
information on how to install MXCS, see the SQL/MX Connectivity Service
Administrative Command Reference. In addition, you must install the HP NonStop
ODBC/MX driver for Windows. For installation information, see the ODBC/MX Driver
for Windows Manual.

The SQL/MX C/C++ preprocessor 2.3 can be invoked by a user or by a cross compiler,
or by an Integrated Development Environment (IDE). For each scenario, the SQL
preprocessor invoked is:

Note. On systems running H06.14 RVU and later, the SQL/MX C/C++ compilations select the
latest version of the SQL/MX C/C++ preprocessors installed on the system.

On systems running H06.13 RVU and earlier, the SQL/MX C/C++ compilations use the earliest
version of the SQL/MX C/C++ preprocessor installed on the system.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-26

C/C++ Program Compilation Windows-Hosted SQL/MX C/C++ Preprocessor
 A user calls the SQL preprocessor to preprocess a source program. The SQL
preprocessor uses the header files and libraries from the SQL preprocessor
installation directory.

 The SQL preprocessor is invoked by c89. c89 uses the SQL preprocessor version
defined by MXSQLC. The SQL preprocessor uses the libraries and header files
related to that version.

If MXSQLC is not set, the cross compiler invokes the latest version of the SQL/MX
C/C++ preprocessor installed on the system.

 An IDE is used. The IDE invokes c89, which uses MXSQLC to select an alternative
version. Some of the IDEs are:

 Enterprise Tool Kit (ETK)—plug-in for Microsoft Visual studio

The environment variable MXSQLC must be set before starting ETK.

 Enterprise Plugins for Eclipse (EPE)—plug-in for Eclipse

When Eclipse is used, MXSQLC is set by EPE based on the value of the
preprocessor installation location.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-27

C/C++ Program Compilation Windows-Hosted SQL/MX C/C++ Preprocessor
Syntax for the Windows-Hosted SQL/MX C/C++
Preprocessor

sql-file

is the name of the input C/C++ source file that contains embedded SQL
statements.

-c output-file

is the name of the output preprocessed annotated source file that contains C/C++
statements and embedded SQL statements converted to comments. This file is the
input file for the C or C++ compiler. If you are preparing a C++ application, specify
the name with the .C, .cc, .cpp, .cxx, or .c++ extension. The default is
source-file.c, where source-file is the name of the SQL/MX C/C++ source
file (for example, sqlprog.sql) without the file extension.

mxsqlc sql-file
 [-c output-file]
 [-m module-def-file]
 [-e]
 [-n]
 [-a]
 [-l list-file]
 [-p]
 [-o]
 [-t timestamp]
 [-d flag[=value]]
 [-s system-name or IP-address]
 [-r ODBC-listener]
 [-y NSK-username]
 [-z NSK-password]
 [-h]
 [-i pathname]
 [-x]
 [-X]
 [-g {moduleGroup[=module-group-specification-string]
 |moduleTableSet[=module-tableset-specification-
 string]
 |moduleVersion[=module-version-specification-
 string]
 |moduleCatalog[=module-catalog-name]
 |moduleSchema[=module-schema-name]
 }]
 [-Q {[invokeCatalog=catalog-name]
 |[invokeSchema=schema-name]
 }]
 [-I]
 [-U {32 | 64}
 [-w {sqlcode | sqlstate | both }]
 [-f {CHAR_AS_ARRAY | CHAR_AS_STRING}]
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-28

C/C++ Program Compilation Windows-Hosted SQL/MX C/C++ Preprocessor
-m module-def-file

is the name of the output module definition file, which is the input file for the
SQL/MX compiler. The default is source-file.m, where source-file is the
name of the SQL/MX C/C++ source file (for example, sqlprog.sql) without the
file extension.

-e

generates CHARACTER data types for date-time data types. This behavior is
compatible with NonStop SQL/MX Release 1.8. For more information, see INVOKE
and Date-Time and Interval Host Variables (SQL/MX Release 1.8 Applications) on
page 3-44.

-n

directs the preprocessor to automatically append a null terminator to all host
variable character strings before they are fetched into. Moreover, if the -a option is
used together with the -n option, the -n option has no effect on VARCHARs.
Using the -n option does have the potential to produce nonportable code.

-a

specifies that VARCHARs are to be translated into structures that contain a length
and character string. For details about using this option, see Generating Structures
Instead of Using Null-Terminated Strings on page 3-21 and Example: Using a
Structure on page 3-22.

This preprocessor option overrides the SQL/MX default VARCHAR, which is a
string with a null terminator. Moreover, if the -a option is used together with the -n
option, the -n option has no effect on VARCHARs.

-l list-file

is the name of the output list file that contains preprocessor error and warning
messages. The default is source-file.lst, where source-file is the name
of the SQL/MX C/C++ source file (for example, sqlprog.sql) without the file
extension.

-p

turns off the automatic generation of #line directives in the C/C++ output file,
disables source-level debugging, and shows the generated C/C++ code for
debugging purposes.

-o

overrides the use of Tandem floating point and uses IEEE floating point instead for
host variables. In addition, if used with invoked SQL/MP tables with a column of
type REAL, this option causes the invoked structure to be of type DOUBLE. For
more information, see INVOKE and Floating-Point Host Variables on page 3-45.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-29

C/C++ Program Compilation Windows-Hosted SQL/MX C/C++ Preprocessor
By default, the c89 compiler (TNS/E targeted compilation) defaults to IEEE_float
and will invoke the -o option when it calls the preprocessor. If you want your
program to use Tandem_float, use the c89 -Wtandem_float option to compile
the mxsqlc-generated annotated source file.

-t timestamp

provides a creation timestamp that the preprocessor writes to the C/C++ annotated
source file (and the module definition file if the -x or -m preprocessor option or the
SQLMX_PREPROCESSOR_VERSION=800 environment variable is used). The
timestamp value overrides the operating system timestamp. The value of the
timestamp must be in Julian format.

For example, you can specify the following timestamp value:

-t 201200000000000036

The preprocessing timestamp of the generated code must match the
preprocessing timestamp stored in the module. Use this option with caution and
only when you need to change the source text of the embedded SQL program
without SQL-compiling the generated code.

-d flag[=value]

is a flag macro for later use in the conditional compilation of the source file. The
flag specifies the name of the macro and must be a valid C identifier. The value
can be any integer value (positive or negative). You cannot put spaces around the
equal sign if an optional value is supplied.

The use of this option corresponds, for example, to the #define directive that
might be found in a source file (that is, #define foo 1, where 1 is the value
assigned to foo). The value can then be tested in a #if directive during
preprocessing.

Because the preprocessor does not process #include files, you must use this
option to define any macros that are typically defined in #include files and that
affect the conditional processing of the source file. You can specify the option more
than once on the command line.

-s system-name or IP-address

is the node name or IP address of the NonStop system where the tables are found
by INVOKE. This option is required if you use INVOKE.

-r ODBC-listener

is the NonStop system port to connect to for the ODBC listener process. The
default port for the Association server is 18650.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-30

C/C++ Program Compilation Windows-Hosted SQL/MX C/C++ Preprocessor
-y NSK-username

is the Guardian user name with access to the tables that INVOKE reads. This
option is required if you use INVOKE.

-z NSK-password

is the password for the user name for the NonStop system. This option is required
if you use INVOKE.

-h

enables the processing of files specified in the user #include directive regardless
of their extension. The default action is to ignore these files.

-i pathname

specifies a directory path to be searched for a file specified in an #include
directive. The source path is searched first.

You can specify this option for a maximum of 20 paths.

[-U {32 | 64}]

Specifies the data model of the application to be either 32-bit or 64-bit. If you do
not specify the data model option while processing the embedded SQL source file,
the preprocessor uses 32-bit as the default data model.

The options -U 32 and -U 64 are not valid for the SQL/MX COBOL preprocessor. If
specified, the SQL/MX COBOL preprocessor returns the error “13011: <option> is
an unknown command line option”.

-x

directs the preprocessor to refrain from emitting embedded module definitions into
the annotated output source file.

-X

instructs the preprocessor to use the precision and scale in SET DESCRIPTOR
statement for the data associated with the dynamic parameter through
VARIABLE_DATA.

Note. The applications preprocessed with -U 64 must be linked with YCLIDLL.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-31

C/C++ Program Compilation Windows-Hosted SQL/MX C/C++ Preprocessor
-g {moduleGroup[=module-group-specification-string]
 |moduleTableSet[=module-tableset-specification-string]
 |moduleVersion[=module-version-specification-string]
 |moduleCatalog[=module-catalog-name]
 |moduleSchema[=module-schema-name]
 }

specifies the arguments for qualifying the name given to the compiled module file.
If you use this option, you must supply at least one of the five module management
attributes. If you want to specify more than one attribute, repeat the entire -g
option for each attribute. These attribute values are used to qualify the name of the
compiled module file. For more information, see File Naming Conventions on
page 17-1.

To use the -g option, you must supply a value in conjunction with the
moduleGroup, moduleTableSet, moduleVersion, moduleCatalog, or
moduleSchema attribute. The value must immediately follow the equal sign, and
the equal sign must immediately follow the attribute keyword. The value can use
regular or delimited identifiers. (See the description of regular and delimited
identifiers in the SQL/MX Reference Manual.) If you supply more than one value
for any attribute, only the final value is used. For information on the length of the
module name, see Module Name Length on page 17-12.

moduleGroup

sets the moduleGroup attribute to group an application’s module files logically
by sharing the same name prefix. The moduleGroup becomes embedded in
the module file names as a common prefix and enables the use of OSS wild-
card file specification patterns to manage the files. For more information, see
Grouping on page 17-23. The maximum size for the moduleGroup attribute is
31 characters.

moduleTableset

sets the moduleTableSet attribute to use the module management targeting
feature. You can create different sets of module files that can be used against
different sets of tables. For more information, see Specifying the search
locations of the module files on page 17-13. The maximum size for the
moduleTableSet attribute is 31 characters.

moduleVersion

sets the moduleVersion attribute to enable multiple versions of an
application’s module files to coexist while keeping the same MODULE directive
in each version. For more information, see Versioning on page 17-21. The
maximum size for the moduleVersion attribute is 31 characters.

moduleCatalog

sets the moduleCatalog attribute if the input sql-file does not have a
MODULE directive or its MODULE directive does not specify a catalog name. If
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-32

C/C++ Program Compilation Windows-Hosted SQL/MX C/C++ Preprocessor
the moduleCatalog option is not set, the preprocessor emits the output
MODULE directive by using the default catalog naming rules described in the
SQL/MX Reference Manual. The maximum size for the moduleCatalog
attribute is 128 characters.

moduleSchema

sets the moduleSchema attribute if the input sql-file does not have a
MODULE directive or its MODULE directive does not specify a schema name.
The moduleSchema can contain a catalog name. If the moduleSchema
attribute is not used, the preprocessor emits the output MODULE directive by
using the default schema naming rules described in the SQL/MX Reference
Manual. The maximum size for the moduleSchema attribute is 128 characters.

[-Q {[invokeCatalog=catalog-name]
 | [invokeSchema=schema-name]
}]

specifies the catalog name and schema name qualifiers for objects inside the
invoke clause. If you use this option, specify one of the attributes—
invokeCatalog or invokeSchema. If you want to specify both the attributes,
repeat the -Q option for each attribute.

invokeCatalog

sets the catalog for unqualified objects inside the invoke clause as catalog-
name. If a catalog is specified using the Control Query Default Catalog or
Declare Catalog, this attribute has no effect. The maximum size of the
invokeCatalog attribute is 128 characters.

invokeSchema

sets the schema for unqualified objects inside the invoke clause as schema-
name. If a schema is specified using the Control Query Default Schema or
Declare Schema, this attribute has no effect. The maximum size of the
invokeSchema attribute is 128 characters.

-I

processes the nested #include files.

-w

handles warnings for SQLCODE and SQLSTATE declarations.

sqlcode

issues a warning if SQLCODE is undeclared or not declared as long
SQLCODE in the Declare section.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-33

C/C++ Program Compilation Running the C/C++ Compiler and Linker
sqlstate

issues a warning if SQLSTATE is undeclared or not declared as char
SQLSTATE[6] in the Declare section.

both

issues warnings if either or both SQLCODE and SQLSTATE are undeclared or
not declared as long SQLCODE and char SQLSTATE[6] respectively in the
Declare section.

-f

specifies whether to reduce size by one or not for the null terminator of the
character type descriptor. The default value is CHAR_AS_STRING. The following
rules apply:

CHAR_AS_STRING – reduces the size by one from the value specified in the
variable declaration.

CHAR_AS_ARRAY – retains the size specified in the variable declaration.

Example—mxsqlc

Run the SQL/MX C/C++ preprocessor using the mxsqlc command. This C++ example
creates an annotated source file and module definition file:

mxsqlc sqlprog.ecpp -c sqlprog.cpp -x -m sqlprog.m -p \
 -g moduleGroup=INVENTORY -g moduleVersion=V2

This C++ example creates a single-file annotated output source file that contains an
embedded module definition:

mxsqlc sqlprog.ecpp -c sqlprog.cpp -g moduleTableSet=TEST1

This C++ example creates an annotated source file and module definition file for 64-bit
compilation.

Mxsqlc sqlprog.ecpp -c sqlprog.cpp -x -m sqlprog.m -p -U 64

Running the C/C++ Compiler and Linker
The HP NonStop C/C++ compilers translate source code into machine language that is
specific to a particular NonStop system architecture. The type of C/C++ compiler that
you use to compile your SQL/MX program determines the NonStop system and
environment where you can run the program.

Table 15-1 on page 15-35 lists the C/C++ compilers, the environments where you can
run the compilers, and the environments where you can run the compiled programs.

Note. TNS/R native compilation tools are available on systems running H06.05 or later RVUs.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-34

C/C++ Program Compilation Running the C/C++ Compiler and Linker
Table 15-1. HP NonStop C/C++ Compilers for Embedded SQL/MX Programs

Compiler
Compiler Operating
Environment

Program Execution
Environment

TNS/E native compilers:

 Native C cross
compiler for TNS/E*

Windows environment on a
PC connected to a NonStop
system running an H-series
RVU

OSS or Guardian
environment on a NonStop
system running an H-series
RVU

 c89 OSS environment on a
NonStop system running an
H-series RVU

OSS or Guardian
environment on a NonStop
system running an H-series
RVU

 CCOMP (C) Guardian environment on a
NonStop system running an
H-series RVU

Guardian or OSS
environment on a NonStop
system running an H-series
RVU

 CPPCOMP (C++) Guardian environment on a
NonStop system running an
H-series RVU

Guardian or OSS
environment on a NonStop
system running an H-series
RVU

TNS/R native compilers:

 Native C cross
compiler for TNS/R*

Windows environment on a
PC connected to a NonStop
system running H06.05 or
later RVU or a NonStop
system running a G-series
RVU

OSS or Guardian
environment on a NonStop
system running a G-series
RVU

 c89 OSS environment on a
NonStop system running
H06.05 or later RVU or a
NonStop system running a
G-series RVU

OSS or Guardian
environment on a NonStop
system running a G-series
RVU

 NMC (C) Guardian environment on a
NonStop system running
H06.05 or later RVU or a
NonStop system running a
G-series RVU

Guardian or OSS
environment on a NonStop
system running a G-series
RVU

 NMCPLUS (C++) Guardian environment on a
NonStop system running
H06.05 or later RVU or a
NonStop system running a
G-series RVU

Guardian or OSS
environment on a NonStop
system running a G-series
RVU

* The native C cross compilers can be run from ETK or from the PC command line.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-35

C/C++ Program Compilation Running the SQL/MX Compiler
On Windows, you can run the C/C++ compiler and native object file linker from ETK, or
you can use the command-line cross compiler c89 and the linker (eld or nld). For
details on syntax and using the C/C++ cross compiler with ETK, see the help file Using
Command-Line Cross Compilers on Windows, which is included with ETK.

To run the C/C++ compilers, see the C/C++ Programmer’s Guide. To run the eld
linker, see the eld Manual. To run the nld linker, see the nld Manual. For more
information on the c89 utility, see c89 Utility: Using One Command for All Compilation
Steps on page 15-44, the OSS reference pages, or the Open System Services Shell
and Utilities Reference Manual.

Running the SQL/MX Compiler
The SQL/MX compiler compiles and optimizes static and dynamic SQL statements for
subsequent execution by the SQL/MX executor and performs these functions:

 Expands SQL object names by using the current default settings

 Expands view definitions

 Performs type checking for C/C++ and SQL data types

 Checks SQL object references to verify their existence

 Determines an optimized execution plan and access path for each DML statement
if the SQL objects in the statement are present at compile time

 Generates executable code for the execution plans (if the SQL objects in the
statement are present at compile time) and creates a module in the user-specified
local application directory, user-specified Guardian or OSS location(s) or both,
application DLL location(s), or in the global /usr/tandem/sqlmx/USERMODULES
directory.

 Generates a list of SQL statements in the program file, including messages

 Returns a completion code indicating the outcome of the compilation

The SQL/MX compiler is an OSS program installed in the Guardian $SYSTEM.SYSTEM
subvolume (/G/system/system/ in the OSS environment). You must run the
compiler in the OSS environment. It does not run as a Guardian process.

You must explicitly invoke the SQL/MX compiler to compile static SQL statements. At
run time, the SQL/MX executor also invokes the compiler to compile dynamic SQL
statements and to recompile any static SQL statements that refer to database objects
that have changed and that affect the SQL statement’s execution plan.

If your program accesses a table that has changed since the last static compilation,
you should statically recompile the program to improve performance. Otherwise,
NonStop SQL/MX dynamically recompiles the program before each execution.

Note. The default C++ run-time library for CPPCOMP and NMCPLUS is version3. You can
use either version3 or version2 when you issue your C++ compiler command.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-36

C/C++ Program Compilation Compiling Embedded Module Definitions
Compiling Embedded Module Definitions

To compile one or more of the modules of an embedded SQL/MX application
executable, use the mxCompileUserModule utility on the object file created by the
C/C++ compiler or on the executable file produced by the linker.

If you have a combination of module definition files and applications that contain
embedded module definitions, use mxCompileUserModule to SQL compile the self-
contained object files containing embedded module definitions, and use mxcmp to SQL
compile the application’s separate module definition files. For more information, see
Compiling a Module Definition File on page 15-42 and the example Building and
Deploying a C Application With Embedded Module Definitions and Module Definition
Files on page 15-58.

Command-Line Syntax

To invoke mxCompileUserModule, at an OSS prompt, enter:

-e

directs mxCompileUserModule to generate a warning rather than an error if a
table or class MAP DEFINE in an SQL statement does not exist during explicit
SQL/MX compilation. To find errors in a program during explicit SQL/MX
compilation, omit the -e option.

If you are using late name resolution and want to use a table or DEFINE that does
not exist during explicit SQL/MX compilation, include the -e option. Then at run
time, the SQL/MX executor automatically recompiles the SQL statement from the
statement’s source in the module by using the run-time version of the table.

-v

directs mxCompileUserModule to display summary information in addition to
error and warning messages for the compilation. For example, use this option to
verify the default settings of the SQL/MX compiler.

mxCompileUserModule { { [-e] [-v] [-g {moduleGlobal |
moduleLocal}]
[-d compiler-attribute-name=compiler-attribute-value]... } |
-m } Application-file ["{"module-name [, module-name]..."}"]

Module-name is:
[[Catalog.]Schema.]Module [MODULEGROUP=group]
[MODULETABLESET=target] [MODULEVERSION=version]
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-37

C/C++ Program Compilation Compiling Embedded Module Definitions
-m

directs mxCompileUserModule to display the list of module files associated with
the application file.

-g moduleGlobal

specifies that the module is placed globally in the
/usr/tandem/sqlmx/USERMODULES directory.

-g moduleLocal[=<OSSdir>]

directs mxCompileUserModule to place the module in the OSS directory. The
OSS directory can be either a Guardian or OSS location in the OSS format. If the
OSS directory is omitted, the module is created in the current directory. The
following rules related to the OSS directory apply:

 The OSS directory must exist and be accessible.

 The directory must not be a remote directory in an Expand network.

 The OSS directory must not exceed 1024 characters.

If these conditions are not met, an error is generated, and no module is created.

If you do not specify -g moduleLocal[=<OSSdir>] but set
MXCMP_PLACES_LOCAL_MODULES ON, you must be in the same directory as the
application executable when you invoke mxCompileUserModule. Otherwise,
mxCompileUserModule writes the module in the current directory, and you will
need to move the module to the global USERMODULES directory or co-locate the
module with its application. For more information, see Generating Locally or
Globally Placed Modules on page 17-3.

-d compiler-attribute-name=compiler-attribute-value

specifies default attribute settings for compilation and existing settings for the
module name. The module name settings are:

modulecatalog=cat
moduleschema=sch

Note.

 If -m option is specified, other command line options are ignored.

 The OSS tool mxCompileUserModule with the -m option does not display
the module files associated with the DLLs loaded by the embedded SQL
executable.

 mxCompileUserModule with the -m option does not display the list of module
names associated with an application file, if the modules are generated from a
source SQL file, using the -x preprocessor option, or if the environment
variable, SQLMX_PREPROCESSOR_VERSION is set to 800.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-38

C/C++ Program Compilation Compiling Embedded Module Definitions
modulegroup=grp
moduletableset=tgt
moduleversion=ver

The -d modulecatalog, moduleschema, modulegroup,
moduletableset, and moduleversion options are similar to the mxsqlc -g
modulecatalog, moduleschema, modulegroup, moduletableset, and
moduleversion options because you use them to externally qualify simple
module names. These options are not CONTROL QUERY DEFAULT settings
(however, all other -d attr=value pairs are). In addition, there is no default
value for -d modulecatalog or -d moduleschema.

The module name settings must match the module management options you
specified during preprocessing. See Running the SQL/MX C/C++ Preprocessor on
page 15-8.

The default attribute settings for compilation override settings in the
SYSTEM_DEFAULTS table but do not override the object name qualification or the
settings of embedded CONTROL QUERY DEFAULT, DECLARE, or SET
statements, which are in the input source file. For more information, see the
SYSTEM_DEFAULTS table in the SQL/MX Reference Manual.

The OSS shell is used to invoke mxCompileUserModule, which in turn uses the
OSS shell to invoke mxcmp. Consequently, you must adjust the syntax for setting
CONTROL QUERY DEFAULT attribute values for MP_SYSTEM and
MP_VOLUME. The OSS shell performs command/parameter substitution and
allows a \ (backslash) to quote special characters such as $.

This example shows how to set MP_SYSTEM and MP_VOLUME as
mxCompileUserModule command-line options:

to get MP_SYSTEM=\KINGPIN --> use -d MP_SYSTEM=\\\\KINGPIN
to get MP_VOLUME=$TX012 --> use -d MP_VOLUME=\\\$TX012

application-file

is the OSS path name of an object file that contains embedded module definitions.
The OSS directory:

 Must exist and be accessible. Otherwise, an error is returned, and no module
is created.

 Must not specify a Guardian subvolume (/G/...) or a remote directory in an
Expand network (/E/...).

 Must not exceed 1024 characters.

module-name

is the fully qualified name of an embedded module definition. This option names
the generated module that is written to the user-specified local application
directory, user-specified Guardian or OSS location(s) or both, application DLL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-39

C/C++ Program Compilation Compiling Embedded Module Definitions
location(s) or to the global /usr/tandem/sqlmx/USERMODULES directory. For
more information, see Module Management Naming on page 17-9.

Each module-name consists of:

[[catalog.]schema.]module[MODULEGROUP=group]
[MODULETABLESET=target][MODULEVERSION=version]

If catalog and schema are omitted, their default value settings can be supplied
with -d MODULECATALOG=catalog or -d MODULESCHEMA=schema. If
MODULEGROUP, MODULETABLESET, or MODULEVERSION is omitted, the default
setting can be supplied with -d MODULEGROUP=group, -d
MODULETABLESET=target, or -d MODULEVERSION=version.

If no module name is specified, mxCompileUserModule operates on all
embedded module definitions of application-file. Otherwise, each module-
name is the fully qualified three-part name of an embedded module definition in
application-file, and mxCompileUserModule operates only on the named
embedded module definitions.

In summary, modules can be named as:

 A fully qualified delimited module name, such as
cat.sch.\"GRP^MODULE^TGT^VER\"

 A qualified module name followed by module specification strings, such as
cat.sch.module MODULEGROUP=grp MODULETABLESET=tgt
MODULEVERSION=ver

 A simple, unqualified module name (for example, mod), with the catalog,
schema, group, table set, or version specified as -d compiler attributes

You can run mxCompileUserModule more than once.

mxCompileUserModule extracts the application-file’s selected module
definitions. For each selected module definition m, mxCompileUserModule passes m
to mxcmp for SQL compilation. Each compilation of a selected module definition either
succeeds or fails just like any mxcmp invocation. An mxcmp compilation failure does not
affect preceding or following mxcmp invocations. In particular, an mxcmp compilation
failure does not prevent mxCompileUserModule from proceeding with the mxcmp
compilation of the next selected module definition.

Examples—mxCompileUserModule

 This command compiles the embedded module definition:

mxCompileUserModule sqlprog.exe

 This command places the module file in the same OSS directory as the application
executable:

mxCompileUserModule -g moduleLocal sqlprog.o
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-40

C/C++ Program Compilation MXCMP Environment Variable
 These settings affect statement recompilation at execution time:

mxCompileUserModule -d AUTOMATIC_RECOMPILATION=ON \
-d SIMILARITY_CHECK=ON sqlprog.o

 The following command compiles the embedded module definition and places the
module file in the user-specified OSS location, /usr/mymodules:

mxcompileusermodule -g moduleLocal=/usr/mymodules sqlprog.exe

 The following command compiles the embedded module definition and places the
module file in the user-specified Guardian location, /G/data01/mymod:

mxcompileusermodule -g moduleLocal=/G/data01/mymod
sqlprog.exe

 The following command displays the list of module files associated with the file,
CAT.SCH.TEST.EXE:

mxCompileUserModule -m CAT.SCH.TEST.EXE

List Of Modules:
CAT.SCH.TEST.EXE

1 module found, 0 modules extracted
0 mxcmp invocations: 0 succeeded, 0 failed

MXCMP Environment Variable

To specify an alternate location of the SQL/MX compiler (MXCMP) instead of the
default location of /G/system/system/mxcmp, use the MXCMP environment variable.
This environment variable is used by c89 and the mxCompileUserModule utility and
enables you to direct c89 or mxCompileUserModule to use another version of the
MXCMP executable.

To set the MXCMP environment variable, enter this command at an OSS prompt before
invoking the c89 or mxCompileUserModule utility:

export MXCMP="/G/usr/mydir/mxcmp"

For more information, see the Open System Services Shell and Utilities Reference
Manual.

MXCMPUM Environment Variable

To specify an alternate location of the compiler utility (mxCompileUserModule)
instead of the default location of
/usr/tandem/sqlmx/bin/mxCompileUserModule, use the MXCMPUM
environment variable. This environment variable is used by the c89 utility and enables
you to direct c89 to use another version of the mxCompileUserModule utility.

To set the MXCMPUM environment variable, enter this command at an OSS prompt
before invoking the c89 utility:

export MXCMPUM="/G/usr/mydir/mxCompileUserModule"
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-41

C/C++ Program Compilation Compiling a Module Definition File
For more information, see the Open System Services Shell and Utilities Reference
Manual.

Compiling a Module Definition File

Embedded SQL application source files preprocessed with the -x and -m options or
that set the SQLMX_PREPROCESSOR_VERSION=800 environment variable continue to
generate module definition files as is done in SQL/MX Release 1.8 and previous
releases.

To compile a module definition file, use the SQL/MX compiler mxcmp command on the
module definition (.m) file. The SQL/MX compiler places a compiled user module file in
the user-specified local application directory, user-specified Guardian or OSS
location(s) or both, application DLL location(s), or in the global
/usr/tandem/sqlmx/USERMODULES directory.

Command-Line Syntax

To invoke the SQL/MX compiler, at an OSS prompt, enter:

-e

directs mxcmp to generate a warning rather than an error if a table or class MAP
DEFINE in an SQL statement does not exist during explicit SQL/MX compilation.
To find errors in a program during explicit SQL/MX compilation, omit the -e option.

If you are using late name resolution and want to use a table or DEFINE that does
not exist during explicit SQL/MX compilation, include the -e option. Then at run
time, the SQL/MX executor automatically recompiles the SQL statement from the
statement’s source in the module by using the run-time version of the table.

-v

directs mxcmp to display summary information in addition to error and warning
messages for the compilation.

-g moduleGlobal

specifies that the module is placed globally in the
/usr/tandem/sqlmx/USERMODULES directory.

-g moduleLocal[=OSSdir]

directs mxcmp to place the module in the named OSS directory. The OSS directory
can be either a Guardian or an OSS location in the OSS format. If the OSS

mxcmp [-e] [-v]
 [-g {moduleGlobal|moduleLocal[=OSSdir]}]
 [-d compiler-attribute-name=compiler-attribute-value]...
 module-definition-file
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-42

C/C++ Program Compilation Compiling a Module Definition File
directory is omitted, the module is created in the current directory. The following
rules related to the OSS directory apply:

 The OSS directory must exist and be accessible.

 The OSS directory must not be a remote directory in an Expand network.

 The OSS directory must not exceed 1024 characters.

If these conditions are not met, an error is generated, and no module is created.

If you do not specify -g moduleLocal=OSSdir , but set
MXCMP_PLACES_LOCAL_MODULES ON, you must be in the same directory as the
application executable when you invoke mxcmp. Otherwise, mxcmp writes the
module in the current directory, and you will need to move the module to the global
USERMODULES directory or co-locate the module with its application. For more
information, see Generating Locally or Globally Placed Modules on page 17-3.

-d compiler-attribute-name=compiler-attribute-value

specifies default attribute settings for compilation. The default attribute settings for
compilation override settings in the SYSTEM_DEFAULTS table but do not override
the object name qualification or the settings of embedded CONTROL QUERY
DEFAULT, DECLARE, or SET statements, which are in the input source file. For
more information, see the SYSTEM_DEFAULTS table in the SQL/MX Reference
Manual.

The OSS shell is used to invoke mxcmp. Consequently, you must adjust the syntax
for setting CONTROL QUERY DEFAULT attribute values for MP_SYSTEM and
MP_VOLUME. The OSS shell performs command/parameter substitution and
allows a \ (backslash) to quote special characters such as $.

This example shows how to set MP_SYSTEM and MP_VOLUME as mxcmp
command-line options:

to get MP_SYSTEM=\KINGPIN --> use -d MP_SYSTEM=\\KINGPIN
to get MP_VOLUME=$TX012 --> use -d MP_VOLUME=\$TX012

You must use a pair of backslashes when specifying the value for MP_SYSTEM
and one for MP_VOLUME.

module-definition-file

is the name of the input module definition file (.m) that was generated by the
C/C++ preprocessor (mxsqlc).

The static SQL/MX compiler provides backward compatible behavior. If the
SQLMX_PREPROCESSOR_VERSION environment variable is set to 800, mxcmp behaves
just like SQL/MX Release 1.8. Otherwise, mxcmp supports all SQL/MX Release 2.x
features and command-line options. For more information, see Influencing Module
Management Behavior on page 17-9.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-43

C/C++ Program Compilation c89 Utility: Using One Command for All Compilation
Steps
Example—mxcmp

The following command compiles the module definition and places module file in the
user specified OSS location, /usr/mymodules:

mxcmp -g moduleLocal=/usr/mymodules sqlprog.m

The following command compiles the module definition and places module file in the
user specified Guardian location, /G/data01/mymod:

mxcmp -g moduleLocal=/G/data01/mymod sqlprog.m

c89 Utility: Using One Command for All
Compilation Steps

In the OSS environment, the c89 utility provides the interface to C/C++ compilation
components, including the SQL/MX C/C++ preprocessor, the native C and C++
compilers, native C run-time library, and the native object file linker (eld or nld). nld
is available on systems running H06.05 or later RVUs. The c89 utility enables you to
build an embedded SQL C or C++ program in a single command. You can also use
c89 utility options individually: for example, to run the SQL/MX compiler after
preprocessing.

In the Windows environment, the c89 utility is bundled with ETK. For details on syntax
and use, see the help file Using Command-Line Cross Compilers on Windows, which
is included with ETK. In addition, the Open System Services Shell and Utilities
Reference Manual contains a listing of all c89 utility options.

The c89 utility is installed in the /usr/bin directory.

c89 Utility Options for SQL/MX

-WDname[=value] Specifies a macro that sends class MAP
DEFINEs for the SQL/MX preprocessor to use
for conditional compilation during the SQL/MX
preprocessing step.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-44

C/C++ Program Compilation c89 Utility: Using One Command for All Compilation
Steps
-Wsqlmx[={"args" | args}] Invokes the SQL/MX preprocessor prior to
invoking the C or C++ compiler. Cannot be
specified with -Wsql, -Wsqlcomp, or
-Wmigrate. Ignored if any options that
prevent compilation are specified: -E, -WC,
-WH, -WM, -WP, -Wsyntax.

You can use one or more of the args,
separated by commas without space between
them.

noline Prevents the SQL/MX preprocessor from
generating #line directives in the
preprocessed C/C++ annotated source it
creates.

listing Directs the SQL/MX preprocessor to write its
diagnostic messages to a file named
file.eL (where file is the name of the
primary source file).

preprocess_only Runs the SQL/MX preprocessor only.

process_includes Processes one level of #include files.

noansi_varchars Directs the SQL/MX preprocessor to turn off
generation of ANSI varchar data.

null_terminate Automatically appends a null terminator to all
host variable character strings before they are
fetched into. Moreover, if the -a option is used
together with the -n option, the -n option has
no effect on VARCHARs. The -n option has
the potential to produce nonportable code.

refrain_r2 Directs the SQL/MX preprocessor to refrain
from embedding module definitions in the
annotated source file and to use a module
definition file.

-Wtandem_float For TNS/E targeted compilations, overrides
IEEE_float and uses Tandem floating-point
format. For correct and meaningful floating-
point values in embedded programs, this
option should be used only if the mxsqlc -o
option is not used.

-Wsqlmxadd=["args" | arg] Passes valid preprocessor commands (args)
to the SQL/MX preprocessor without change
or validation. The preprocessor validates the
syntax.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-45

C/C++ Program Compilation c89 Utility: Using One Command for All Compilation
Steps
-Wtimestamp=value Passes a creation timestamp to the SQL/MX
preprocessor. Ignored if -Wsqlmx is not
specified. If set more than once, only the last
occurrence takes effect. c89 does not validate
value. Validation is left to the preprocessor.
For details about the form of value, see -t
timestamp on page 15-22.

-Wmxcmp[={"args" | args}] Invokes the SQL/MX compiler. If compiling
with embedded module definitions, invokes
mxCompileUserModule. If compiling with
separate module definition files, invokes
mxcmp. Cannot be specified with -Wsql,
-Wsqlcomp, -Wmigrate, or
-WIEEE_FLOAT. You can use either or both
warn or verbose args, separated by
commas without space between them.

warn Directs the SQL/MX compiler to return a
warning rather than an error if a table does
not exist at compile time.

verbose Directs the SQL/MX compiler to display
summary information, in addition to error and
warning messages.

-Wmxcmp_querydefault=
compiler_attribute_name=
compiler_attribute_value
[,compiler-attribute-
value...]

Directs the SQL/MX compiler to issue the
control query default setting at the command
line. The command-line attribute settings
override corresponding entries in the
SYSTEM_DEFAULTS table. You can specify
multiple attribute name and value pairs,
separated by commas without spaces.

-Wmxcmp_add=["args" | arg] Passes any valid set of mxcmp or
mxCompileUserModule options (args) to
the SQL/MX compiler (mxcmp or
mxCompileUserModule) without change or
validation. The SQL/MX compiler validates the
syntax. You can specify multiple options and
value pairs, separated by spaces.

-Wmxcmp_files=args Passes the .m files specified here to mxcmp for
module compilation (with module definition
files). Passes all files without the .m file
extension to mxCompileUserModule for
module compilation (with embedded module
definitions in the annotated source file).
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-46

C/C++ Program Compilation c89 Utility: Using One Command for All Compilation
Steps
-WmoduleCatalog=arg Directs the SQL/MX preprocessor to use the
catalog name if the input sql-file does not
have a MODULE directive or its MODULE
directive does not specify a catalog name.

-WmoduleSchema=arg Directs the SQL/MX preprocessor to use the
schema name if the input sql-file does not
have a MODULE directive or its MODULE
directive does not specify a schema name.

-WmoduleGroup[=[string]] Directs the SQL/MX preprocessor to group all
an application’s module files. The
moduleGroup is embedded in the module
files’ names and enables the use of OSS wild-
card file specification patterns to manage the
files. For more information, see Grouping on
page 17-23.

-WmoduleTableSet[=[string]] Directs the SQL/MX preprocessor to use the
module management targeting feature. Create
different sets of module files that can be used
against different sets of tables. For more
information, see Specifying the search
locations of the module files on page 17-13.

-WmoduleVersion[=[string]] Allows multiple versions of an application’s
module files to coexist while keeping the
same MODULE directive in each version. For
more information, see Versioning on
page 17-21.

-Wsqlmx_pp_defscript=args Specifies the files that contain the class MAP
DEFINEs that create environment variables
before SQL/MX preprocessing.

-Wmxcmp_cmd="oss_command;
oss_command"

Specifies the list of OSS commands to
execute before invoking the remote mxcmp.

-Wsqlhost={hostname | IP-
address}

Specifies the host name or IP address of the
NonStop system where the tables specified by
INVOKE reside. This option is required if you
use INVOKE.

Note that if -Wtarget=TNS/E, the host must
be an H-series (TNS/E) system.

-Wsqlloc=OSS-directory Specifies the directory in which module
definition files are placed.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-47

C/C++ Program Compilation c89 Utility: Using One Command for All Compilation
Steps
In addition to the options for preprocessing and compiling SQL/MX components, the
c89 utility supplies SQL/MX environment variables that provide the path name for the
SQL/MX preprocessor (MXSQLC) and the SQL/MX compiler (MXCMP and
MXCMPUM). For more information on c89 environment variables, see the Open
System Services Shell and Utilities Reference Manual.

SQL/MX Preprocessing

Use the -Wsqlmx[=args] command to invoke the SQL/MX preprocessor. When
-Wsqlmx is specified, the c89 utility also searches /usr/tandem/sqlmx/include
for header files for the C/C++ compilers. For a full description of how the OSS-hosted
SQL/MX preprocessor works, see OSS-Hosted SQL/MX C/C++ Preprocessor on
page 15-19.

Compiling C/C++ Statements

Use the c89 utility to compile the C/C++ statements in a preprocessed file to create an
object (.o) file. The c89 utility determines which compiler to use based on the file
extension you use (.ec or .sql for embedded SQL/MX C programs, .ecpp for
embedded SQL/MX C++ programs, and .c for embedded SQL/MP C programs). For a
list of file extensions for SQL/MX source files, see Program Files on page 17-1.

Your application program can run in the OSS or Guardian environment. Use the c89
-Wsystype=oss option (which is the default) if you want your application to be an
OSS program. Use the c89 -Wsystype=guardian option if you want your
application to be a Guardian program. For more information, see Building SQL/MX
Guardian Applications in the OSS Environment on page 15-72.

SQL/MX Compiling

Use the -Wmxcmp[=args] command to invoke the SQL/MX compiler. For a full
description of how to use the SQL/MX compiler, see Running the SQL/MX Compiler on
page 15-36.

-Wsqlmx_port=port-number Specifies the TCP/IP port of the NonStop
system to connect to for the ODBC listener
process. The default port for the Association
server is 18650.

-Wsqluser=user[,password] Specifies the Guardian user name and
password with access to the tables that
INVOKE reads. Required if you use INVOKE.

The PC-only options are shaded in gray.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-48

C/C++ Program Compilation c89 Examples With Embedded Module Definitions
c89 Examples With Embedded Module Definitions

Figure 15-3 shows how the c89 utility compiles a C/C++ program with embedded
module definitions.

Figure 15-3. c89 Generating Annotated Source With Embedded Module
Definitions

C/C++ and SQL
Source File

C/C++ and SQL
Source File

SQL/MX
Preprocessor

(mxsqlc)

C/C++ Annotated
Source File

C/C++ Annotated
Source File

Linker

C/C++ Compiler

C/C++
Object File

C/C++
Object File

mxCompileUserModule

vst144.vsd
SQL/MX ModulesSQL/MX Modules

Executable With CLIExecutable With CLI

mxcmp

c89 Driverc89 Driver
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-49

C/C++ Program Compilation c89 Examples With Embedded Module Definitions
 This command preprocesses, compiles, links, and SQL compiles a single C source
file named sqlprog.ec:

c89 -Wsqlmx -Wmxcmp -o sqlprog.exe sqlprog.ec

The c89 utility invokes the preprocessor, mxsqlc, which uses the file
sqlprog.ec as input and produces one file, sqlprog.c, which is a C annotated
source file that contains embedded module definitions. The c89 utility then
compiles and links sqlprog.c to produce the executable file, sqlprog.exe. The
SQL/MX compiler command -mxcmp processes the executable file with the
SQL/MX compiler, mxCompileUserModule, to produce the module.

 This command preprocesses several C++ source files and compiles them, but it
does not link the results:

c89 -c -Wsqlmx file1.eC file2.ecc file3.ec++

If no errors are detected in either the preprocessing or compiling steps, these files
are created: file1.C, file2.cc, file3.c++, file1.o, file2.o, and
file3.o. TNS/E compilation also produces these files: file1.dep, file2.dep,
and file3.dep.

 To compile the preprocessed source file named sqlprog.cpp without linking:

c89 -I /usr/tandem/sqlmx/include -c sqlprog.cpp \
-o sqlprog.exe

The -I option indicates the path for the Platform.h file.

 If you have multiple source files, you must compile each source file before linking
them. For example, this c89 command compiles the preprocessed source files
named sqlprog1.c and sqlprog2.c and links them to create an executable file
named sqlprog.exe:

c89 -I /usr/tandem/sqlmx/include sqlprog1.c sqlprog2.c \
-o sqlprog.exe

 The c89 utility provides commands that pass through options to the SQL/MX
preprocessor and the SQL/MX compiler (-Wsqlmxadd and -Wmxcmp_add,
respectively). To preprocess files with preprocessor options, use the -Wsqlmxadd
option:

-Wsqlmxadd=-a

To pass a single option, do not use quotes or white space characters. To pass
multiple options, place them within double quotes and separate the options with a
white-space character:

-Wsqlmxadd="-a -p -m -c test.c"

 If you did not link your object files using the c89 utility, create the executable
program by using the native object file linker to link one or more object files.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-50

C/C++ Program Compilation c89 Examples With Embedded Module Definitions
 For example, this eld command links sqlprog1.o and sqlprog2.o to
create an executable file named sqlprog.exe:

eld /usr/lib/ccplmain.o sqlprog1.o sqlprog2.o \
-o sqlprog.exe -lzcredll -lzcrtldll -lzosskdll \
-lzicnvdll -lzclidll

For more information on eld, see the eld Manual.

 For example, this nld command links sqlprog1.o and sqlprog2.o to
create an executable file named sqlprog.exe:

nld sqlprog1.o sqlprog2.o -o sqlprog.exe

For more information on nld, see the nld Manual.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-51

C/C++ Program Compilation c89 Examples With Module Definition Files
c89 Examples With Module Definition Files

Figure 15-4 shows how the c89 utility compiles a C/C++ program with module
definition files.

 This command preprocesses, compiles, links, and SQL compiles a single C source
file named sqlprog.ec:

c89 -Wsqlmx -Wsqlmxadd=-x -Wmxcmp -o sqlprog.exe \
sqlprog.ec sqlprog.m

The c89 utility invokes the preprocessor, mxsqlc, which uses the file
sqlprog.ec as input and produces two files: sqlprog.c and sqlprog.m. The
file sqlprog.c is the C annotated source file, and the file sqlprog.m is the
corresponding module definition file. The c89 utility then compiles and links

Figure 15-4. c89 Generating Module Definition Files

Executable With CLIExecutable With CLI

vst145.vsd

C/C++ and SQL
Source File

C/C++ and SQL
Source File

SQL/MX
C/C++ Preprocessor

(mxsqlc)

SQL Module
Definition File

SQL Module
Definition File

SQL/MX Compiler
(mxcmp)

SQL/MX ModuleSQL/MX Module

C/C++ Annotated
Source File

C/C++ Annotated
Source File

C/C++ Compiler

c89 Driverc89 Driver

Linker
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-52

C/C++ Program Compilation c89 Examples With Module Definition Files
sqlprog.c to produce the executable file, sqlprog.exe. The SQL/MX compiler
command -Wmxcmp processes the module definition file sqlprog.m with the
SQL/MX compiler, mxcmp, to produce the module.

 This command preprocesses several C++ source files and compiles them, but it
does not link the results:

c89 -c -Wsqlmx -Wsqlmxadd=-x file1.eC file2.ecc file3.ec++

If no errors are detected in either the preprocessing or compiling steps, these files
are created: file1.m, file1.C, file2.m, file2.cc, file3.m, file3.c++,
file1.o, file2.o, and file3.o. TNS/E compilation also produces these files:
file1.dep, file2.dep, and file3.dep.

 To compile the preprocessed source file named sqlprog.cpp without linking:

c89 -I /usr/tandem/sqlmx/include -c sqlprog.cpp -o \
sqlprog.exe

The -I option indicates the path for the Platform.h file.

 If you have multiple source files, you must compile each source file before linking
them. For example, this c89 command compiles the preprocessed source files
named sqlprog1.c and sqlprog2.c and links them to create an executable file
named sqlprog.exe:

c89 -I /usr/tandem/sqlmx/include sqlprog1.c sqlprog2.c \
-o sqlprog.exe

 If you did not link your object files by using the c89 utility, create the executable
program by using the native object file linker to link one or more object files.

 For example, this eld command links sqlprog1.o and sqlprog2.o to
create an executable file named sqlprog.exe:

eld /usr/lib/ccplmain.o sqlprog1.o sqlprog2.o \
-o sqlprog.exe -lzcredll -lzcrtldll -lzosskdll \
-lzicnvdll -lzclidll

For more information on eld, see the eld Manual.

 For example, this nld command links sqlprog1.o and sqlprog2.o to
create an executable file named sqlprog.exe:

nld sqlprog1.o sqlprog2.o -o sqlprog.exe

For more information on nld, see the nld Manual.

 The following command preprocesses, compiles, and then links a single SQL
source file named sqlprog.sql in 64-bit mode:

c89 -Wcplusplus -Wlp64 -Wsqlmx -Wmxcmp -o sqlprog.exe
sqlprog.sql

 For 64-bit applications, if the object files are not linked using the c89 utility, you
must create the executable program using the native object file linker. You can link
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-53

C/C++ Program Compilation c89 Examples With Module Definition Files
one or more object files using the native object file linker. For example, the
following eld command links sqlprog1.o and sqlprog2.o to create an
executable file sqlprog.exe:

eld -set data_model lp64 /usr/lib/cmain64.o sqlprog1.o
sqlprog2.o -o sqlprog.exe -lycppcdll -lycpp3dll -lycredll -
lycrtldll -lyOSSKDLL -lyossfdll -lySECDLL -lyi18ndll -
lyicnvdll -lyOSSEDLL -lyINETDLL -lyOSSHDLL -lyOSSCDLL -
lyclidll
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-54

C/C++ Program Compilation Examples of Building and Deploying Embedded SQL
C/C++ Programs
Examples of Building and Deploying
Embedded SQL C/C++ Programs

The examples in this subsection use SQL/MP tables and SQL/MX Release 2.x.

Building a C/C++ Program With Embedded SQL Statements on
Windows

You can build a C or C++ program by using the ETK product which is available on
Microsoft Windows. Although the following example does not use ETK components,
the ETK product is easy to use to create programs. For more information, see the ETK
documentation.

This example illustrates how to build a C or C++ program on Windows that has two or
more source files containing embedded SQL/MX statements that query SQL/MP tables
into a self-contained application executable file. Suppose that your catalog is named
FINANCE, and your schema is named WINDEV. Suppose that you want the location
independence of class MAP DEFINEs for your table names.

1. On your PC, create C or C++ source files (for example, sqlprog1.sql and
sqlprog2.sql) that contain embedded SQL/MX statements:

// sqlprog1.sql
EXEC SQL MODULE sqlprog1mod; // externally qualified at SQL
preprocess-time
int main() {
EXEC SQL INVOKE =stocks AS stocks_type;
EXEC SQL DECLARE CURSOR s FOR SELECT * FROM =stocks;
...
}

// sqlprog2.sql
EXEC SQL MODULE sqlprog2mod; // externally qualified at SQL
preprocess-time
int prog2() {
EXEC SQL INVOKE =bonds AS bonds_type;
EXEC SQL DECLARE CURSOR b FOR SELECT * FROM =bonds;
...
}

2. Run the SQL/MX C/C++ preprocessor on each source file that has embedded SQL
statements. Suppose that you want mxsqlc to expand =stocks to the SQL/MP
table named \pecan.$finance.assets.adrs and =bonds to the SQL/MP
table named \pecan.$finance.assets.munis. Suppose that you want
mxsqlc to connect to the NonStop system \pecan under Guardian user
finance.tomr, whose password is abc123. Suppose that you want mxsqlc to
generate code that assumes the application’s user modules will be in the schema
named ‘FINANCE.WINDEV’. At a Windows command prompt, enter:

set stocks =\pecan.$finance.assets.adrs
set bonds =\pecan.$finance.assets.munis
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-55

C/C++ Program Compilation Building a C/C++ Program With Embedded SQL
Statements on Windows
mxsqlc sqlprog1.sql -c sqlprog1.cpp -s pecan \
 -y finance.tomr -z abc123 \
 -g moduleCatalog=FINANCE -g moduleSchema=WINDEV
mxsqlc sqlprog2.sql -c sqlprog2.cpp -s pecan \
 -y finance.tomr -z abc123 \
 -g moduleCatalog=FINANCE -g moduleSchema=WINDEV

These commands create two annotated source files (sqlprog1.cpp and
sqlprog2.cpp) that contain the SQL/MX CLI call translations of the embedded
SQL statements and extra C/C++ source constructs that represent the module
definitions. These generated files will have hard-coded references to the modules
named FINANCE.WINDEV.sqlprog1mod and
FINANCE.WINDEV.sqlprog2mod. For security reasons, these module
references cannot be remapped at run time.

3. Run the C/C++ compiler to compile the annotated source files into object files.
Suppose that the SQL/MX CLI and other HP header files are in the
“../include” directory.

c89 -Wversion2 -Wsqlmx -Wmxcmp -Wverbose -I/usr/include \
-c sqlprog1.ecpp sqlprog2.ecpp -o sqlprog

4. Transfer the object files (sqlprog1.o and sqlprog2.o) to the NonStop system
(for example, \pecan).

5. Run the native linker to build a self-contained OSS executable file named
sqlprog.

 For TNS/E native applications, use the eld utility:

eld -verbose /usr/lib/ccplmain.o sqlprog1.o sqlprog2.o \
 -o sqlprog.exe -lzcppcdll -lzcpp2dll -lzcredll \
 -lzcrtldll -lzosskdll -lzi18ndll -lzicnvdll \
 -lzclidll -lztlh7dll

 For TNS/R native applications, use the nld utility:

nld -elf -set systype oss -set highpin off -set \
 highrequestor on -set inspect on -obey \
 /usr/lib/libc.obey -set saveabend on \
 /usr/lib/crtlmain.o sqlprog1.o sqlprog2.o \
 -l zcplsrl -l zcrtlsrl -l zcresrl -l zcplosrl -l ztlhgsrl \
 -l ztlhosrl -Bdynamic -l zclisrl -o sqlprog

6. Set up needed DEFINEs and run the SQL/MX compiler:

add_define =stocks \
 class=map file=\\pecan.\$finance.assets.adrs
add_define =bonds \
 class=map file=\\pecan.\$finance.assets.munis
mxCompileUserModule -v -d AUTOMATIC_RECOMPILATION=ON \
 -d RECOMPILATION_WARNINGS=ON -d SIMILARITY_CHECK=ON \
 sqlprog

This command compiles the application’s modules. The application (sqlprog) is
now runnable on \pecan.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-56

C/C++ Program Compilation Developing a Native C/C++ Program With
Embedded SQL/MX Statements on OSS
Developing a Native C/C++ Program With Embedded SQL/MX
Statements on OSS

This example illustrates how to use OSS tools to build a C or C++ program that has
two or more source files containing embedded SQL/MX statements into a self-
contained application executable file. Suppose that your schema is named OSSDEV
under the catalog named FINANCE.

1. Create C or C++ source files (for example, sqlprog1.sql and sqlprog2.sql)
that contain embedded SQL/MX statements (and use SQL/MP tables):

// sqlprog1.sql
EXEC SQL MODULE sqlprog1mod; // externally qualified at SQL
preprocess-time
int main() {
EXEC SQL INVOKE =stocks AS stocks_type;
EXEC SQL DECLARE CURSOR s FOR SELECT * FROM =stocks;
...
}

// sqlprog2.sql
EXEC SQL MODULE sqlprog2mod; // externally qualified at SQL
preprocess-time
int prog2() {
EXEC SQL INVOKE =bonds AS bonds_type;
EXEC SQL DECLARE CURSOR b FOR SELECT * FROM =bonds;
...
}

2. Run the SQL/MX C/C++ preprocessor on each source file that has embedded SQL
statements. Suppose that you want to place these application’s user modules in
the schema named ‘FINANCE.OSSDEV’ to distinguish your OSS-developed
application modules from Windows-developed versions. As a result, you and the
Windows-based developers can test your respective versions of sqlprog on the
same NonStop system at the same time. Use class MAP DEFINEs for mxsqlc to
correctly process the INVOKEs of table DEFINEs found in the sources.

add_define =stocks \
 class=map file=\\pecan.\$finance.assets.adrs
add_define =bonds \
 class=map file=\\pecan.\$finance.assets.munis
mxsqlc sqlprog1.sql –c sqlprog1.cpp –g \
 moduleCatalog=FINANCE –g moduleSchema=OSSDEV
mxsqlc sqlprog2.sql –c sqlprog2.cpp –g \
 moduleCatalog=FINANCE –g moduleSchema=OSSDEV

These commands create two annotated source files (sqlprog1.cpp and
sqlprog2.cpp) that contain the SQL/MX CLI call translations of the embedded
SQL statements and extra C/C++ source constructs that represent the module
definitions. These files have hard-coded references to the modules named
FINANCE.OSSDEV.sqlprog1mod and FINANCE.OSSDEV.sqlprog2mod. For
security reasons, these module references cannot be remapped at run time.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-57

C/C++ Program Compilation Building and Deploying a C Application With
Embedded Module Definitions and Module Definition
3. Run the C/C++ compiler to compile the annotated source files into object files:

c89 -Wversion2 -I /usr/tandem/sqlmx/include -c sqlprog1.cpp
c89 -Wversion2 -I /usr/tandem/sqlmx/include -c sqlprog2.cpp

4. Run the native linker to build a self-contained OSS executable file named
sqlprog.

 For TNS/E native applications, use the eld utility:

eld -verbose /usr/lib/ccplmain.o sqlprog1.o sqlprog2.o \
 sqlprog.exe -lzcppcdll -lzcpp2dll -lzcredll -lzcrtldll \
 -lzosskdll -lzi18ndll -lzicnvdll -lzclidll -lztlh7dll

 For TNS/R native applications, use the nld utility:

nld -elf -set systype oss -set highpin off -set \
 highrequestor on -set inspect on -obey \
 /usr/lib/libc.obey -set saveabend on \
 /usr/lib/crtlmain.o sqlprog1.o sqlprog2.o \
 -l zcplsrl -l zcrtlsrl -l zcresrl -l zcplosrl -l ztlhgsrl \
 -l ztlhosrl -Bdynamic -l zclisrl -o sqlprog

5. Set up needed DEFINEs and run the SQL/MX compiler:

add_define =stocks class=map \
 file=\\pecan.\$finance.assets.adrs
add_define =bonds class=map \
 file=\\pecan.\$finance.assets.munis
mxCompileUserModule -v -d AUTOMATIC_RECOMPILATION=ON \
 -d RECOMPILATION_WARNINGS=ON -d SIMILARITY_CHECK=ON sqlprog

This command compiles the application’s module definitions. It does not overwrite
the Windows-developed sqlprog’s modules because they use the module name
prefix ‘FINANCE.WINDEV’. Assuming that the object ‘sqlprog’ coming from
Windows is at a different location than the one compiled and linked on OSS (for
example, /home/fin/windev/sqlprog and /home/fin/ossdev/sqlprog
respectively), you can now run, test, and debug both the Windows-developed
sqlprog and the OSS-developed sqlprog simultaneously on \pecan without
module confusion, interference, or accidental overwrites.

Building and Deploying a C Application With Embedded Module
Definitions and Module Definition Files

Suppose that you have a set of SQL utility routines that were developed using SQL/MX
Release 1.8. The object code is in sqlutil.o. Use these steps to build, statically link
in sqlutil.o, and deploy a new application sqlapp.exe in the OSS environment.

1. Create C or C++ source files (for example, sqlapp.sql) that contain embedded
SQL/MX statements:

// sqlapp.sql
EXEC SQL DECLARE SCHEMA 'cat.sch';
EXEC SQL MODULE sqlappmod; // might be externally qualified
 at SQL preprocess-time
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-58

C/C++ Program Compilation Building and Deploying a C Application With
Embedded Module Definitions and Module Definition
EXEC SQL DECLARE CURSOR m FOR SELECT * FROM =midcaps;
int main() { ...
}

2. Run the SQL/MX C/C++ preprocessor:

mxsqlc sqlapp.sql -c sqlapp.cpp

This command creates an annotated source file (sqlapp.cpp) that contains the
SQL/MX CLI call translations of the embedded SQL statements and an extra
C/C++ source construct that represents its module definition.

Because no module specification strings were specified at the command line,
mxsqlc generates code using the module name ‘cat.sch.sqlappmod.’ The
SQL/MX object naming rules for default catalog and schema apply to an
unqualified module directive, in addition to other unqualified names of tables,
views, and other SQL objects.

3. Run the C/C++ compiler on sqlapp.cpp:

c89 -Wversion2 -I/usr/tandem/sqlmx/include -c sqlapp.cpp

4. Run the native linker on sqlapp.o and sqlutil.o to create the sqlapp.exe
executable file.

 For TNS/E native applications, use the eld utility:

eld -verbose /usr/lib/ccplmain.o sqlapp.o sqlutil.o
-o sqlapp.exe -lzcppcdll -lzcpp2dll -lztlh7dll -lzcredll \
-lzcrtldll -lzosskdll -lzi18ndll -lzicnvdll -lzclidll

 For TNS/R native applications, use the nld utility:

nld -elf -set systype oss -set highpin off\
-set highrequestor on -set inspect on \
-obey /usr/lib/libc.obey -set saveabend on \
/usr/lib/crtlmain.o sqlapp.o sqlutil.o \
-lzcplsrl -lzcrtlsrl -lzcresrl -lzcplosrl -lztlhgsrl \
-lztlhosrl -Bdynamic -lzclisrl -o sqlapp.exe

5. Run the SQL/MX compiler after setting up class MAP DEFINEs:

add_define =midcaps class=map \
 file=\\pecan.\$data07.holding.midcaps
mxCompileUserModule -v -d AUTOMATIC_RECOMPILATION=ON \
 -d RECOMPILATION_WARNINGS=ON -d SIMILARITY_CHECK=ON \
 sqlapp.exe

This command compiles the application’s module ‘cat.sch.sqlappmod.’
Assuming that the sqlutil.o’s compiled module is still current, you can now run
sqlapp.exe.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-59

C/C++ Program Compilation Quick Builds and mxcmp Defaults in a One-File
Application Deployment
Quick Builds and mxcmp Defaults in a One-File Application
Deployment

Suppose that you are actively developing, testing, and debugging a new SQL/MX
Release 2.x application that you have organized into three separate static SQL C/C++
source files. You can minimize unnecessary SQL recompilations during active
development and still retain the simplicity of building and deploying self-contained
application files by using the named module option of the SQL/MX compiler.

The next example uses mxcmp command-line defaults to module compile an
application executable to work with one set of tables on the development system and
later module compile the same application executable to work with a different set of
tables on the production system.

In addition, this example shows that references to module names are always resolved
early at preprocessing time. It also shows that the resolution of references to other
SQL objects (tables, views, and so on) can be deferred to as late as module
compilation time.

1. Create or edit static SQL C/C++ source files (for example, s1.sql, s2.sql,
s3.sql) as needed:

// s1.sql
EXEC SQL MODULE s1m;
int sow(int a) { ...
EXEC SQL INSERT INTO seeds VALUES(?, ?, ?);
...
}

// s2.sql
EXEC SQL MODULE s2m;
int grow(int j) { ... EXEC SQL UPDATE trees SET h=h+? WHERE
id=?;
...
}

// s3.sql
EXEC SQL MODULE s3m;
int reap(int z) { ...
EXEC SQL DELETE crops WHERE id=?;
...
}

Notice that references to the SQL tables seeds, trees, and crops do not specify
their catalog and schema so that the full resolution of these SQL object references
can be deferred to as late as the module compilation step.

2. Run the SQL/MX C/C++ preprocessor to generate code that references modules
named cat.sch.s1m, cat.sch.s2m, and cat.sch.s3m:

cd /usr/meas
mxsqlc s1.sql -g moduleSchema=cat.sch
mxsqlc s2.sql -g moduleSchema=cat.sch
mxsqlc s3.sql -g moduleSchema=cat.sch
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-60

C/C++ Program Compilation Quick Builds and mxcmp Defaults in a One-File
Application Deployment
These modules use the default mxsqlc option that generates the annotated
output source files s1.c, s2.c, and s3.c.

3. Run the C/C++ compiler:

cd /usr/meas
c89 -Wversion2 -I /usr/tandem/sqlmx/include -c s1.c
c89 -Wversion2 -I /usr/tandem/sqlmx/include -c s2.c
c89 -Wversion2 -I /usr/tandem/sqlmx/include -c s3.c

This step generates the object files s1.o, s2.o, and s3.o.

4. Run the native linker.

 For TNS/E native applications, use the eld utility:

cd /usr/meas
eld -verbose /usr/lib/ccplmain.o s1.o s2.o s3.o \
-o sprog.exe -lzcppcdll -lzcpp2dll -lztlh7dll -lzcredll \
-lzcrtldll -lzosskdll -lzi18ndll -lzicnvdll -lzclidll

 For TNS/R native applications, use the nld utility:

cd /usr/meas
nld -elf -set systype oss -set highpin off \
-set highrequestor on -set inspect on \
-obey /usr/lib/libc.obey -set saveabend on \
/usr/lib/crtlmain.o s1.o s2.o s3.o \
-l zcplsrl -l zcrtlsrl -l zcresrl -l zcplosrl -l ztlhgsrl \
-l ztlhosrl -Bdynamic -l zclisrl -o sprog

This step generates the application executable object file sprog.

5. Set up needed class MAP DEFINEs (none in this case), and run the SQL/MX
compiler only on the module definitions that have not yet been compiled or that
have changed recently:

mxCompileUserModule -e -v -d CATALOG=harvest -d \
 SCHEMA=second \
/usr/meas/sprog {cat.sch.s1m,cat.sch.s2m,cat.sch.s3m}

This step generates plans that reference tables named harvest.second.seeds,
harvest.second.trees, and harvest.second.crops.

6. Set up needed DEFINEs (none in this case), and run and test the program.

sprog

7. Find the next bug and fix the offending source (for example, s1.sql), and repeat
Step 1 to Step 6 for s1.sql only. Specifically, compile only the cat.sch.s1m
module definition in Step 5:

mxCompileUserModule -e -v -d CATALOG=harvest -d \
 SCHEMA=second \
/usr/meas/sprog {cat.sch.s1m}
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-61

C/C++ Program Compilation Deploying a Static SQL Application to an RDF
System
8. Repeat Step 1 to Step 7 until the program is ready for deployment or until you
cannot find any more bugs, whichever comes first. Transfer the program to its
target deployment NonStop system (for example, \batman):

/usr/prod/sprog.

9. Set up needed DEFINEs (none in this case), and run the SQL/MX compiler on the
application executable:

mxCompileUserModule –e –v –d CATALOG=bread –d \
 SCHEMA=basket /usr/prod/sprog

This step generates plans that reference tables named bread.basket.seeds,
bread.basket.trees, and bread.basket.crops in the modules named
cat.sch.s1m, cat.sch.s2m and cat.sch.s3m.

10. Set up needed DEFINEs (none in this case), and run and test the program:

/usr/prod/sprog

Deploying a Static SQL Application to an RDF System

This example shows a method to develop and deploy a static SQL C/C++ application
in an SQL/MX Release 2.x RDF system. In SQL/MX Release 2.x, the RDF primary
system’s SQL/MX catalog and schema names might be different from the
corresponding SQL/MX catalog and schema names on the backup system.

Suppose that you want to do all development and module compilations only on the
development system, and you do not want to do module compilations on the RDF
systems if possible. Suppose that you have all your data in SQL/MP tables. To get data
location independence, suppose that you prefer to use class MAP DEFINEs instead of
PROTOTYPE host variables for your application’s table names. Table 15-2 lists the
module schemas and export files used in the following discussion.

Table 15-2. Module Schemas and Export Files for RDF SQL Application
Deployment Example (page 1 of 2)

Development RDF Primary RDF Backup

Node name \ROBIN \APPLE \INDUS

Module
schema for
primary

TELCO.MODULES TELCO.MODULES

Module
schema for
backup

COMMS.MODS COMMS.MODS

OSS
directory for
primary

/usr/primary /usr/alpha
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-62

C/C++ Program Compilation Deploying a Static SQL Application to an RDF
System

ts

it
1. Suppose that the RDF primary system is \APPLE. On \APPLE, suppose that you
want all your user modules to use the schema ‘telco.modules’.

2. Suppose that the RDF backup system is \indus. On \indus, suppose that you are
constrained by SQL/MX Release 2.x RDF rules to use the schema ‘comms.mods’.

3. On the development system \robin, create a development (possibly, zero-row or
empty) copy of your application’s SQL/MP tables (and their statistics) from the RDF
primary system \APPLE. You need not make local copies of the backup system’s
corresponding tables because they will always be similar to the primary system’s
tables.

4. On the development system \robin, create static SQL C/C++ source files (for
example, nonstop1.sql and nonstop2.sql):

// nonstop1.sql
EXEC SQL MODULE nonstop1mod;
int main() { ...
EXEC SQL INVOKE =debits AS debits_type;
EXEC SQL UPDATE =debits SET balance = balance + ?;
...
}

// nonstop2.sql
EXEC SQL MODULE nonstop2mod;
int pay() { ...
EXEC SQL INVOKE =credits AS credits_type;
EXEC SQL UPDATE =credits SET balance = balance + ?;
...
}

OSS
directory for
backup

/usr/backup /usr/beta

=debits
DEFINE for
primary

$data07.ccards.debits $plat.charges.buys

=debits
DEFINE for
backup

$data07.ccards.debits $gold.cards.debi

=credits
DEFINE for
primary

$data17.ccards.credits $plat.charges.pays

=credits
DEFINE for
backup

$data17.ccards.credits $gold.cards.cred

Table 15-2. Module Schemas and Export Files for RDF SQL Application
Deployment Example (page 2 of 2)

Development RDF Primary RDF Backup
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-63

C/C++ Program Compilation Deploying a Static SQL Application to an RDF
System
5. On the development system \robin, set up a separate directory for building the
RDF backup \indus version of the self-contained application executable. Set up
DEFINEs, run the preprocessor, the C/C++ compiler, native linker, and SQL/MX
compiler.

 For TNS/E native applications:

cd /usr/backup
add_define =debits class=map \
 file=\\robin.$data07.ccards.debits
add_define =credits class=map \
 file=\\robin.$data17.ccards.credits
mxsqlc nonstop1.sql -c nonstop1.cpp -g \
 moduleSchema=comms.mods
mxsqlc nonstop2.sql -c nonstop2.cpp -g \
 moduleSchema=comms.mods
c89 -Wversion2 -I /usr/tandem/sqlmx/include -c nonstop1.cpp
c89 -Wversion2 -I /usr/tandem/sqlmx/include -c nonstop2.cpp
eld -verbose /usr/lib/cpclmain.o nonstop1.o nonstop2.o \
-o nonstop.exe -lzcppcdll -lzcpp2dll -lztlh7dll -lzcredll \
-lzcrtldll -lzosskdll -lzi18ndll -lzicnvdll -lzclidll

mxCompileUserModule -d SIMILARITY_CHECK=on -d \
 AUTOMATIC_RECOMPILATION=on nonstop.exe

 For TNS/R native applications:

cd /usr/backup
add_define =debits class=map \
 file=\\robin.$data07.ccards.debits
add_define =credits class=map \
 file=\\robin.$data17.ccards.credits
mxsqlc nonstop1.sql -c nonstop1.cpp -g \
 moduleSchema=comms.mods
mxsqlc nonstop2.sql -c nonstop2.cpp -g \
 moduleSchema=comms.mods
c89 -Wversion2 -I /usr/tandem/sqlmx/include -c nonstop1.cpp
c89 -Wversion2 -I /usr/tandem/sqlmx/include -c nonstop2.cpp
nld -elf -set systype oss -set highpin off \
 -set highrequestor on -set inspect on \
 -obey /usr/lib/libc.obey -set saveabend on \
 /usr/lib/crtlmain.o nonstop1.o nonstop2.o -l zcplsrl \
 -l zcrtlsrl -l zcresrl -l zcplosrl -l ztlhgsrl \
 -l ztlhosrl -Bdynamic -l zclisrl -o nonstop.exe

mxCompileUserModule -d SIMILARITY_CHECK=on -d \
 AUTOMATIC_RECOMPILATION=on nonstop.exe

6. On the development system \robin, set up a separate directory for building the
RDF primary \APPLE version of the self-contained application executable. Set up
DEFINEs and run the preprocessor, the C/C++ compiler, native linker, and
SQL/MX compiler.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-64

C/C++ Program Compilation Deploying a Static SQL Application to an RDF
System
 For TNS/E native applications:

cd /usr/primary
add_define =debits class=map \
 file=\\robin.$data07.ccards.debits
add_define =credits class=map \
 file=\\robin.$data17.ccards.credits
mxsqlc nonstop1.sql -c nonstop1.cpp -g \
 moduleSchema=telco.modules
mxsqlc nonstop2.sql -c nonstop2.cpp -g \
 moduleSchema=telco.modules
c89 -I /usr/tandem/sqlmx/include -c nonstop1.cpp
c89 -I /usr/tandem/sqlmx/include -c nonstop2.cpp
eld -verbose /usr/lib/ccplmain.o nonstop1.o nonstop2.o
-o nonstop.exe -lzcppcdll -lzcpp2dll -lztlh7dll \
-lzcredll -lzcrtldll -lzosskdll -lzi18ndll \
-lzicnvdll -lzclidll

mxCompileUserModule -d SIMILARITY_CHECK=on -d \
 AUTOMATIC_RECOMPILATION=on nonstop.exe

 For TNS/R native applications:

cd /usr/primary
add_define =debits class=map \
 file=\\robin.$data07.ccards.debits
add_define =credits class=map \
 file=\\robin.$data17.ccards.credits
mxsqlc nonstop1.sql -c nonstop1.cpp -g \
 moduleSchema=telco.modules
mxsqlc nonstop2.sql -c nonstop2.cpp -g \
 moduleSchema=telco.modules
c89 -I /usr/tandem/sqlmx/include -c nonstop1.cpp
c89 -I /usr/tandem/sqlmx/include -c nonstop2.cpp
nld -elf -set systype oss -set highpin off \
 -set highrequestor on -set inspect on -obey \
 /usr/lib/libc.obey -set saveabend on \
 /usr/lib/crtlmain.o nonstop1.o nonstop2.o \
 -l zcplsrl -l zcrtlsrl -l zcresrl -l zcplosrl -l ztlhgsrl \
 -l ztlhosrl -Bdynamic -l zclisrl -o nonstop.exe

mxCompileUserModule -d SIMILARITY_CHECK=on -d \
 AUTOMATIC_RECOMPILATION=on nonstop.exe

7. Run and test both versions of the application nonstop.exe.

8. Display and verify the compiled plans of the user modules for the RDF primary
version:

mxci
select * from table(explain \
 ('telco.modules.nonstop1mod', '%'));
select * from table(explain \
 ('telco.modules.nonstop2mod', '%'));
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-65

C/C++ Program Compilation Building SQL/MX C/C++ Applications to Run in the
Guardian Environment
9. Display and verify the compiled plans of the user modules for the RDF backup
version:

mxci
select * from table(explain('comms.mods.nonstop1mod', '%'));
select * from table(explain('comms.mods.nonstop2mod', '%'));

10. From the development system \robin, transfer the application executable
nonstop.exe to the RDF backup system \indus (for example, into the
/usr/beta directory).

11. As super ID, transfer the application’s modules (comms.mods.nonstop1mod,
comms.mods.nonstop2mod) from the development system to the
/usr/tandem/sqlmx/USERMODULES directory of the RDF backup system.

12. On the RDF backup system \indus, log on as the application operator, set up
DEFINEs, and get ready to take over and run the application nonstop.exe if the
RDF primary system fails:

add_define =debits class=map file=\\indus.$gold.cards.debits
add_define =credits class=map \
 file=\\indus.$gold.cards.credits
-- now ready to take over and run nonstop.exe

13. From the development system \robin, transfer the application executable
nonstop.exe to the RDF primary system \APPLE (for example, into the
/usr/alpha directory).

14. As super ID, transfer the application’s modules
(telco.modules.nonstop1mod, telco.modules.nonstop2mod) from the
development system to the /usr/tandem/sqlmx/USERMODULES directory of the
RDF primary system.

15. On the RDF primary system \APPLE, log on as the application operator, set up
DEFINEs, and run the application:

add_define =debits class=map file=\\APPLE.$plat.charges.buys
add_define =credits class=map \
 file=\\APPLE.$plat.charges.pays nonstop.exe

Building SQL/MX C/C++ Applications to Run in
the Guardian Environment

To build SQL/MX C/C++ applications that run in the Guardian environment, choose one
of these approaches, depending on your preferred development environment:

 Building SQL/MX Guardian Applications in the Guardian Environment on
page 15-67

 Building SQL/MX Guardian Applications in the OSS Environment on page 15-72
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-66

C/C++ Program Compilation Building SQL/MX Guardian Applications in the
Guardian Environment
Building SQL/MX Guardian Applications in the Guardian
Environment

 Using the OSS Pass-Through Command on page 15-67

 OSS-to-Guardian File Naming on page 15-67

 Steps for Building an SQL/MX C Application in the Guardian Environment on
page 15-68

 Using a TACL Macro to Build a C Guardian Application on page 15-69

 Steps for Building an SQL/MX C++ Application in the Guardian Environment on
page 15-70

 Using a TACL Macro to Build a C++ Guardian Application on page 15-71

Using the OSS Pass-Through Command

Most commands for building an SQL/MX Guardian application can issued directly at a
TACL prompt. However, the SQL/MX preprocessor, mxsqlc, and the SQL/MX
compiler, mxcmp, are OSS commands, which run only from OSS. Although mxcmp
resides in the Guardian environment, it runs as an OSS process and must be started in
the OSS environment.

To run the SQL/MX preprocessor and the SQL/MX compiler in the Guardian
environment, use the OSS pass-through command by specifying the osh -c option.
The osh -c option executes one command line at a time in the OSS environment.
When you use the osh -c command, remember to enclose the entire command string
after osh -c in double quotes.

OSS-to-Guardian File Naming

When you issue OSS commands from a TACL prompt to preprocess and SQL compile
an application, the Guardian file names change automatically. In the Guardian
environment, the period is automatically dropped from the file name.

For example, this OSS pass-through command preprocesses a C source file and
generates an annotated source file and module definition file in the Guardian
environment:

TACL> osh -c "mxsqlc prog.sql -c prog.c -m prog.m"

The annotated source file and module definition file in $MYVOL.MYSUBVOL are
PROGC and PROGM. Be aware of the Guardian file name limitation of eight characters.

Note. When using OSS pass-through commands in the Guardian environment, be aware of
the effect of #INFORMAT TACL on those commands. If #INFORMAT TACL is in effect for your
session, you must put a tilde (~) before the pipe (|) symbol. Otherwise, the pipe symbol cannot
reach the shell for execution because it has a programming function within TACL.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-67

C/C++ Program Compilation Building SQL/MX Guardian Applications in the
Guardian Environment
Steps for Building an SQL/MX C Application in the Guardian
Environment

Use the next commands at a TACL prompt to preprocess, SQL compile, and compile
and link an SQL/MX C program.

1. To make the source file in the Guardian environment accessible to an OSS
process, enter this command, replacing myvol.mysubvol with your default
Guardian volume and subvolume:

param home /G/myvol/mysubvol

The source file named progsql in $MYVOL.MYSUBVOL must be Guardian file
code 101.

2. To invoke the SQL/MX preprocessor, which is an OSS process, enter an OSS
pass-through command at a TACL prompt:

TACL> osh -c "mxsqlc progsql -c progc -m progm ~|tee templog"

3. To invoke the SQL/MX compiler, which is an OSS process, enter an OSS pass-
through command at a TACL prompt:

TACL> osh -c "/G/system/system/mxcmp progm ~|tee -a templog"

4. Errors generated by the SQL/MX preprocessor or SQL/MX compiler are logged in
the OSS file templog. To convert the error log to a Guardian file:

TACL> purge proglog
TACL> ctoedit templog,proglog

5. Run the Guardian C compiler and linker.

For TNS/E native compilation:

== Convert the annotated source file from an OSS text file
== (file code 180) to a Guardian text file (file code 101).
TACL> ctoedit progc,progsrc
== Call the CCOMP compiler to generate the object file.
TACL> ccomp/in progsrc,out progout/progo
== Call the eld linker to generate an executable file.
TACL> eld $system.system.ccplmain progo -o progexe &
 -lzcredll -lzcrtldll -lzosskdll -lzi18ndll &
 -lzicnvdll -lzclidll

For TNS/R native compilation:

== Convert the annotated source file from an OSS text file to
== a Guardian text file.
TACL> ctoedit progc,progsrc
== Call the NMC compiler to generate the object file.
TACL> nmc/in progsrc,out progout/progo
== Call the nld linker to generate an executable file.
TACL> nld $system.system.crtlmain progo -o progexe &
 -obey $system.system.libcobey -lzclisrl -lzcplsrl &
 -lztlhsrl -noverbose
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-68

C/C++ Program Compilation Building SQL/MX Guardian Applications in the
Guardian Environment
6. Execute the executable:

TACL> run progexe

Using a TACL Macro to Build a C Guardian Application

Use a TACL macro file to combine and execute the commands. Use these sample
TACL macros to customize your own script. In the samples, the source file is located in
the Guardian environment and named progsql. Remember that the source file must
be Guardian file code 101.

For TNS/E native compilation:

?tacl macro
param home /G/myvol/mysubvol
== Store terminal information in file templog.
== The source file must be file code 101.
== Call the SQL/MX preprocessor.
osh -c "mxsqlc progsql -c progc -m progm ~|tee templog"
== Call the SQL/MX compiler.
osh -c "/G/system/system/mxcmp progm ~|tee -a templog"
== Convert OSS text files (file code 180) to Guardian text files
== (file code 101).
sink [#purge proglog]
ctoedit templog,proglog
ctoedit progc,progsrc
== Call the CCOMP compiler to generate the object file.
ccomp/in progsrc,out progout/progo;nowarn
== Call the eld linker to generate an executable file.
eld $system.system.ccplmain progo -o progexe &
-lzcredll -lzcrtldll -lzosskdll -lzi18ndll -lzicnvdll &
-lzclidll
== Execute the executable.
run progexe

For TNS/R native compilation:

?tacl macro
param home /G/myvol/mysubvol
== Store terminal information in file templog.
== The source file must be file code 101.
== Call the SQL/MX preprocessor.
osh -c "mxsqlc progsql -c progc -m progm ~|tee templog"
== Call the SQL/MX compiler.
osh -c "/G/system/system/mxcmp progm ~|tee -a templog"
== Convert OSS text files to Guardian text files.
sink [#purge proglog]
ctoedit templog,proglog
ctoedit progc,progsrc
== Call the NMC compiler to generate the object file.
nmc/in progsrc,out progout/progo;nowarn
== Call the nld linker to generate an executable file.
nld $system.system.crtlmain progo -o progexe -obey &
$system.system.libcobey -lzclisrl -lzcplsrl -lztlhsrl -noverbose
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-69

C/C++ Program Compilation Building SQL/MX Guardian Applications in the
Guardian Environment
== Execute the executable.
run progexe

Steps for Building an SQL/MX C++ Application in the
Guardian Environment

Use the next commands at a TACL prompt to preprocess, SQL compile, and compile
and link an SQL/MX C++ program.

1. To make the source file in the Guardian environment accessible to an OSS
process, enter this command, replacing myvol.mysubvol with your default
Guardian volume and subvolume:

param home /G/myvol/mysubvol

The source file named progecpp in $MYVOL.MYSUBVOL must be Guardian file
code 101.

2. To invoke the SQL/MX preprocessor, which is an OSS process, enter an OSS
pass-through command at a TACL prompt:

TACL> osh -c "mxsqlc progecpp -c progcpp -m progm &
|tee templog"

3. To invoke the SQL/MX compiler, which is an OSS process, enter an OSS pass-
through command at a TACL prompt:

TACL> osh -c "/G/system/system/mxcmp progm | tee -a templog"

4. Errors generated by the SQL/MX preprocessor or SQL/MX compiler are logged in
the OSS file templog. To convert the error log to a Guardian file:

TACL> purge proglog
TACL> ctoedit templog,proglog

5. Run the Guardian C++ compiler and linker.

For TNS/E native compilation, you can use either the default C++ library, which is
version3, or version2 in your CPPCOMP compiler command:

== Convert the annotated source file from an OSS text file
== (file code 180) to a Guardian text file (file code 101).
TACL> ctoedit progcpp,progsrc
== Call the CPPCOMP compiler to generate the object file.
TACL> cppcomp/in progsrc,out progout/progo;version2
== Call the eld linker to generate an executable file.
TACL> eld $system.system.ccplmain progo -o progexe &
 -lzcppcdll -lzcpp2dll -lzcredll -lzcrtldll &
 -lzosskdll -lzi18ndll -lzicnvdll -lzclidll -lztlh7dll

For TNS/R native compilation, you can use either the default C++ library, which is
version3, or version2 in your NMCPLUS compiler command:

== Convert the annotated source file from an OSS text file to
== a Guardian text file.
TACL> ctoedit progcpp,progsrc
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-70

C/C++ Program Compilation Building SQL/MX Guardian Applications in the
Guardian Environment
== Call the NMCPLUS compiler to generate the object file.
TACL> nmcplus/in progsrc,out progout/progo;version2
== Call the nld linker to generate an executable file.
TACL> nld $system.system.crtlmain progo -o progexe -obey &
 $system.system.libcobey -lzclisrl -lzcplsrl &
 -lztlhsrl -noverbose

6. Execute the executable:

TACL> run progexe

Using a TACL Macro to Build a C++ Guardian Application

Use a TACL macro file to combine and execute the commands. Use these sample
TACL macros to customize your own script. In the samples, the source file is located in
the Guardian environment and named progecpp. Remember that the source file must
be Guardian file code 101.

For TNS/E native compilation:

?tacl macro
param home /G/myvol/mysubvol
== Store terminal information in file templog.
== The source file must be file code 101.
== Call the SQL/MX preprocessor.
osh -c "mxsqlc progecpp -c progcpp -m progm ~|tee templog"
== Call the SQL/MX compiler.
osh -c "/G/system/system/mxcmp progm ~|tee -a templog"
== Convert OSS text files (file code 180) to Guardian text files
== (file code 101).
sink [#purge proglog]
ctoedit templog,proglog
ctoedit progcpp,progsrc
== Call the CPPCOMP compiler to generate the object file.
cppcomp/in progsrc,out progout/progo;version2
== Call the eld linker to generate an executable file.
eld $system.system.ccplmain progo -o progexe &
-lzcppcdll -lzcpp2dll -lzcredll -lzcrtldll -lzosskdll &
-lzi18ndll -lzicnvdll -lzclidll -lztlh7dll
== Execute the executable.
run progexe

For TNS/R native compilation:

?tacl macro
param home /G/myvol/mysubvol
== Store terminal information in file templog.
== The source file must be file code 101.
== Call the SQL/MX preprocessor.
osh -c "mxsqlc progecpp -c progcpp -m progm ~|tee templog"
== Call the SQL/MX compiler.
osh -c "/G/system/system/mxcmp progm ~|tee -a templog"
== Convert OSS text files to Guardian text files.
sink [#purge proglog]
ctoedit templog,proglog
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-71

C/C++ Program Compilation Building SQL/MX Guardian Applications in the OSS
Environment
ctoedit progcpp,progsrc
== Call the NMCPLUS compiler to generate the object file.
nmcplus/in progsrc,out progout/progo;version2
== Call the nld linker to generate an executable file.
nld $system.system.crtlmain progo -o progexe -obey &
$system.system.libcobey &
-lzclisrl -lzcplsrl -lztlhsrl -noverbose
== Execute the executable.
run progexe

Building SQL/MX Guardian Applications in the OSS
Environment

You can use the c89 -Wsystype=guardian option to build an SQL/MX Guardian
application in the OSS environment. Follow these steps:

1. Create an embedded SQL/MX C/C++ source file (for example, prog.ec) in the
OSS environment.

2. Compile the C/C++ source file by using the -Wsystype=guardian option of the
OSS compiler utility:

c89 -Wsqlmx -Wmxcmp -Wsystype=guardian prog.ec \
-o prog.exe

3. Copy the executable file, prog.exe, from an OSS directory to a Guardian volume
and subvolume:

cp prog.exe /G/myvol/mysubvol/progexe

4. In the Guardian environment, assign file code 800 (for TNS/E native applications)
or file code 700 (for TNS/R native applications) to the executable file:

TACL> fup alter progexe, code 800

TACL> fup alter progexe, code 700

5. Run the executable in the Guardian environment:

TACL> run progexe

Running an SQL/MX Application
This subsection describes how C or C++ application code is correctly linked to the
compiled SQL/MX user module. Topics include:

 Running the SQL/MX Program File on page 15-73
 Understanding and Avoiding Some Common Run-Time Errors on page 15-73
 Debugging a Program on page 15-75
 Displaying Query Execution Plans on page 15-75

As stated in Running the SQL/MX C/C++ Preprocessor on page 15-8, when the
preprocessor reads an embedded SQL source file and writes the C/C++ annotated
source file, it replaces the SQL statements with C code to call the SQL CLI to execute
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-72

C/C++ Program Compilation Running the SQL/MX Program File
the SQL statement, along with code to handle parameter passing and error processing.
At run time, the calls to the CLI pass in a descriptor of the statement, which gives the
statement name, the module name, and a module timestamp.

The CLI begins processing each call by checking that it has the associated module in
memory. If not, it uses the module name to find the correct module file in the
application’s base directory. If a co-located module is not found there, it looks for the
module file in the /usr/tandem/sqlmx/USERMODULES directory. Before it reads in
the compiled SQL plans from a module file, the CLI also checks that the module
timestamp encoded in the module file matches the module timestamp passed in from
the C/C++ application.

If the application consists of more than one separately compiled module, when the first
statement from the module is executed, the sequence of reading the module file and
checking its module timestamp is performed and repeated for each module associated
with the application.

Security of the /usr/tandem/sqlmx/USERMODULES directory is very important. You
should restrict access so that users cannot alter the query plans in the modules or
remove modules. For information on securing modules, see the SQL/MX Release 3.2
Management Manual.

Running the SQL/MX Program File

An SQL/MX program can run in the OSS or in the Guardian environment. You can use
the GTACL command to start a Guardian program from OSS. You can use the osh
command to start an OSS program from a Guardian TACL session.

 From the OSS environment, enter the program file name at the OSS shell prompt.
You can also use the OSS run command to run the program file by using specific
Guardian attributes (for example, a CPU or priority for the process).

 From the Guardian environment, use the TACL osh command to run the program.
For more information, see Building SQL/MX C/C++ Applications to Run in the
Guardian Environment on page 15-66.

For more information on the run or osh command, see the Open System Services
Shell and Utilities Reference Manual or the OSS reference pages.

Understanding and Avoiding Some Common Run-Time Errors

The details of how a C/C++ executable is linked with its module or modules are
handled by the system and take place in the background. However, by understanding
this process and why certain run-time errors occur, you can avoid some common
SQL/MX application development issues.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-73

C/C++ Program Compilation Understanding and Avoiding Some Common Run-
Time Errors
Module File Errors

Error 8809 Unable to open module file

Error 8809 error occurs if module files are deleted from the base directory of the
application, the /usr/tandem/sqlmx/USERMODULES directory, user-specified
Guardian or OSS location(s) or both, or the application DLL location(s).

This error might also occur if the named module file exists but is not readable, or if the
required permission to access the volume, sub volume, or the OSS directory is not
granted. The owner of the module file must change the permission attributes to ensure
that an application can read the module file.

Error 8808 Module file contains corrupted or invalid data

This error occurs when the timestamp encoded in the module file does not match the
timestamp passed from the application to the CLI. These timestamps are initially
generated by the preprocessor and are used to ensure that the version of the
application is synchronized with the version of the module file. This error can occur if
you run the preprocessor on your embedded SQL, compile the annotated C/C++
output file, but fail to SQL compile the module definition file that the preprocessor
generates. If the SQL/MX compiler has previously compiled a different instance of the
module definition file, a module exists whose name corresponds to the application
module but has a mismatched timestamp.

This error can also occur if you make a copy of an application executable, rebuild the
application (thus overwriting the original instance of the application’s module file), and
then execute the first copy of the application.

A common cause of error 8808 is reuse of code. If you have an embedded SQL source
named myutils.sql, you might build and link myutils with a number of
applications. Each build (that is, preprocessing, c89-compilation, and SQL
compilation) of myutils results in a new copy of the same module file overwriting an
earlier copy. Only the last application built with myutils.sql avoids error 8808.

To avoid error 8808:

 If you want to reuse embedded modules, use either the grouping or versioning
attributes described in Section 17, Program and Module Management. Qualifying
your module name with a group or version attribute enables the separate builds of
a module to coexist.

 Build myutils.sql only once, and then link the resulting myutils.o file to each
application.

When you need to rebuild myutils for each application, you can either edit the
myutils.sql source and change the name of the module that you give in the
MODULE directive, or you can avoid the MODULE directive and let the
preprocessor generate the module name.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-74

C/C++ Program Compilation Debugging a Program
Error 8400 The CLASS attribute of the DEFINE is not correct.

Error 8400 occurs if the Define =_MX_MODULE_SEARCH_PATH CLASS type is not
SEARCH DEFINE. This variable is used to locate and load the module file. Ensure that
Define =_MX_MODULE_SEARCH_PATH is specified correctly and restart the
embedded SQL program.

Module File Naming

In application development, avoid the use of delimited identifiers that contain dots (.) in
the name of a module’s catalog and schema and in the module name itself. Delimited
identifiers begin and end with double quotation characters (" "). However, quotation
characters are removed when NonStop SQL/MX forms the three-part module name. In
some cases of delimited identifiers that contain dots, the resulting three-part module
name duplicates an unrelated module name, replacing the query execution plans of the
other module file. For example, a module named "A.B".C.D (catalog "A.B", schema
C, and module name D) creates a module file name of
/usr/tandem/sqlmx/USERMODULES/A.B.C.D. A module named A."B.C".D
(catalog A, schema "B.C", and module name D) creates an identically named module
file. The second file overwrites the first, and the first module's application cannot
execute. For more information on delimited identifiers, see the SQL/MX Reference
Manual.

Debugging a Program

You can debug a C/C++ program and its corresponding SQL/MX module by using:

 Native Inspect. A system-level command-line symbolic debugger that can be used
to debug TNS/E native programs. For more information, see the Native Inspect
Manual.

 Inspect: A symbolic interactive debugger that provides both machine-level and
source-level debugging for TNS/R native programs. To run Inspect in the OSS
environment, enter this command at the OSS prompt:

run -debug -inspect=on sqlprog.exe

where sqlprog.exe is the SQL/MX program you are debugging.

For detailed information, see the Inspect Manual.

 Visual Inspect: A symbolic debugger that provides source-level debugging with a
graphical user interface (GUI). Visual Inspect is a client-server application. The
server component runs on an HP NonStop operating system, and the client
component runs on a workstation in the Windows environment. Detailed
documentation is available in the client component online help.

Displaying Query Execution Plans

The EXPLAIN function is an SQL/MX extension that generates a result table describing
an access plan for a DML statement, otherwise known as a query execution plan. Use
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-75

C/C++ Program Compilation Displaying Query Execution Plans
the EXPLAIN function for a DML statement in a module. For more information on the
EXPLAIN function, see the SQL/MX Reference Manual and the SQL/MX Query Guide.

Displaying the Query Execution Plan of One Statement

To display the EXPLAIN output for a specific DML statement in a module, issue this
statement in MXCI:

Module Name

The module-name is the full name of a module, is case-sensitive, and must be placed
within single quotes:

'CAT.SCH.GRP1^MOD1^TABLESET1^VER1'

The module name is either specified by the MODULE directive in the embedded SQL
source file or by the preprocessor-generated module name if you did not use a
MODULE directive. For more information on the module name, see Module
Management Naming on page 17-9.

Statement Pattern

The statement-pattern is the name of a DML statement in the module. The
statement-pattern is case-sensitive and must be placed within single quotes:

'MX_DEFAULT_STATEMENT_0'

To determine the name of a particular SQL statement, if you SQL compiled your
module with:

 mxcmp, look in the module definition file. The module definition file is an ASCII file
that you can view.

 mxCompileUserModule (creating an annotated source file with embedded
module definitions), you cannot simply view the annotated source file as it is a
binary file. You can determine the statement names if you know the module name.
For more information on the module name, see Module Name on page 15-76.

Note. If there is no EXPLAIN output for a statically compiled application, the
GENERATE_EXPLAIN default attribute might have been turned off during compilation. In this
case, verify that GENERATE_EXPLAIN is on and recompile the application.

SELECT * FROM TABLE(EXPLAIN('module-name',
 'statement-pattern'));

Note. Do not confuse module files, which do not have file extensions and reside in the
application’s base directory or in the /usr/tandem/sqlmx/USERMODULES directory, with
module definition files (.m), which are optionally generated during preprocessing and are
precursors to modules. For more information, see Module Management Naming on page 17-9.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-76

C/C++ Program Compilation Displaying Query Execution Plans
You can use the following query from MXCI to determine the module’s statement
names and associated SQL queries, substituting the actual value of your module name
in place of 'CAT.SCH.MYMOD'.

select module_name, statement_name,
 cast(trim(substring(description from
 (position('statement_index: ' in description) + 17)
 for (position(' ' in substring(
 description from
 (position('statement_index: ' in description) + 17))))))
 as integer) as stmt_index,
 substring(description from position(
 statement: ' in description) + 11 for 9999) as stmt
from table(explain('CAT.SCH.MYMOD','%'))
where operator = 'ROOT'
order by stmt_index;

The query displays output similar to:

MODULE_NAME STATEMENT_NAME STMT_INDEX STMT

CAT.SCH.MYMOD SQLMX_DEFAULT_STATEMENT_1 0 PROCEDURE
C1 () INSERT INTO T VALUES(1);
CAT.SCH.MYMOD SQLMX_DEFAULT_STATEMENT_2 1 PROCEDURE
SQL_DEFAULT_STATEMENT_1() COMMIT WORK
---2 row(s) selected.

Displaying the Query Execution Plan of All Statements

To display the EXPLAIN output for all DML statements in a module, issue this
statement in MXCI:

Module Name

The module-name is the full name of a module, is case-sensitive, and must be placed
within single quotes:

'CAT.SCH.GRP1^MOD1^TABLESET1^VER1'

The module-name is either specified by the MODULE directive in the embedded SQL
program or the preprocessor generated module name if you did not use a MODULE
directive. For more information on the module name, see Module Management Naming
on page 17-9.

SELECT * FROM TABLE(EXPLAIN('module-name', '%'));

Note. Do not confuse module files, which do not have file extensions and reside in the
application’s base directory or in the /usr/tandem/sqlmx/USERMODULES directory, with
module definition files (.m), which are optionally generated during preprocessing and are
precursors to modules. For more information, see Module Management Naming on page 17-9.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-77

C/C++ Program Compilation Displaying Query Execution Plans
Wild Card (%)

Instead of specifying a statement pattern, use the percent sign (%) to represent all the
DML statements in the module. The percent sign (%) must be placed within single
quotes:

'%'

For information on how to interpret the output of the EXPLAIN function, see the
SQL/MX Query Guide.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
15-78

16 COBOL Program Compilation

This section describes how to develop and execute a COBOL program that contains
embedded SQL statements. In addition, this section contains information on embedded
module definitions and module definition files:

 Compiling SQL/MX Applications and Modules on page 16-2

 Running the SQL/MX COBOL Preprocessor on page 16-9

 Running the COBOL Compiler and Linker on page 16-23

 Running the SQL/MX Compiler on page 16-25

 ecobol or nmcobol Utility: Using One Command for All Compilation Steps on
page 16-33

 Combining Embedded Module Definitions and Module Definition Files on
page 16-46

 Building SQL/MX COBOL Applications to Run in the Guardian Environment on
page 16-47

 Running an SQL/MX Application on page 16-51

For information on managing COBOL programs and SQL/MX modules, see
Section 17, Program and Module Management.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-1

COBOL Program Compilation Compiling SQL/MX Applications and Modules
Compiling SQL/MX Applications and Modules
SQL/MX Release 3.1 provides two methods of compiling embedded SQL COBOL
programs and creating modules. Both methods create an identical module file. The first
method described, using embedded module definitions, is the default and preferred
method.

The SQL/MX preprocessor reads a source file that contains COBOL and embedded
SQL statements and generates:

The preprocessor (mxsqlco) appends an embedded module definition, which includes
a ?COLUMNS directive by default, at the end of an annotated source file. Only one
?COLUMNS directive is allowed in a source file. Otherwise, the COBOL compiler
returns an error. If your source file contains a ?COLUMNS directive, you must either:

 Remove the ?COLUMNS directive from the source file before generating an
embedded module definition.

 Keep the ?COLUMNS directive in the source file and generate a module definition
file instead of an embedded module definition.

Method 1: Embedded
module definition

One file: a single, self-contained annotated source file
that contains source statements with SQL statements
converted to comments and embedded module
definitions. You compile this file (source-file.ecob
in embedded SQL/MX COBOL programs) with the
COBOL compiler (ecobol or nmcobol) and the
SQL/MX compiler (mxCompileUserModule). This is
the default and preferred method.

Method 2: Annotated
source file and module
definition file

Two files: an annotated source file and a module
definition file (source-file.m) that contains SQL
source statements. You compile the source file with the
COBOL compiler, and you compile the module
definition file with the SQL/MX compiler (mxcmp). A
module definition file is not created unless you use the
-x or -m preprocessor options or set the
SQLMX_PREPROCESSOR_VERSION=800 environment
variable to create a module definition file. For more
information, see Influencing Module Management
Behavior on page 17-9.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-2

COBOL Program Compilation Compiling Embedded SQL COBOL Programs With
Embedded Module Definitions
Compiling Embedded SQL COBOL Programs With Embedded
Module Definitions

Figure 16-1 shows how a self-contained, single-file COBOL program is compiled using
embedded module definitions. The application’s embedded SQL source file is called
sqlprog.ecob.

Although this figure shows individual steps for clarity, you can use the COBOL compiler
utility (ecobol or nmcobol) or the HP Enterprise Toolkit—NonStop Edition (ETK) to

Figure 16-1. Compiling Embedded SQL COBOL Programs With Embedded
Module Definitions

SQL/MX
COBOL Source File
sqlprog.ecob

SQL/MX
COBOL Source File
sqlprog.ecob

SQL/MX
COBOL Preprocessor

(mxsqlco)

COBOL Annotated
Source File

sqlprog.cbl

COBOL Annotated
Source File

sqlprog.cbl

Linker

COBOL Compiler

1

3

4

5

6

COBOL Object
File

sqlprog.o

COBOL Object
File

sqlprog.o

COBOL Program
(executable) File
sqlprog.exe

COBOL Program
(executable) File
sqlprog.exe

SQL/MX Compiler
(mxCompileUserModule)

(mxcmp)

vst151.vsd

SQL/MX Module

Object
Libraries

SQL CLI and
Executor

Application
Process

sqlprog.exe

Can SQL compile
object file for early

error detection

2

7

9

8

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-3

COBOL Program Compilation Compiling Embedded SQL COBOL Programs With
Embedded Module Definitions
automate the process. For information on using ecobol or nmcobol in this way, see
ecobol or nmcobol Utility: Using One Command for All Compilation Steps on
page 16-33. For more information on using ETK, see ETK online help.

These steps correspond to the steps in Figure 16-1 on page 16-3.

1. Create the COBOL source file that contains embedded SQL statements
(sqlprog.ecob).

2. Preprocess the application’s embedded SQL source file by using the SQL/MX
COBOL preprocessor mxsqlco. See Running the SQL/MX COBOL Preprocessor
on page 16-9.

mxsqlco sqlprog.ecob

In this step, set optional module specification strings and moduleCatalog and
moduleSchema default settings by using the -g option. See page 16-16 or 16-21.
Although you do not set mxcmp defaults here, if the input source file contains
mxcmp default settings, such as EXEC SQL DECLARE/SET/CONTROL QUERY
DEFAULT statements, they are preprocessed into corresponding module language
statements in the output module definition of the annotated source file.

3. The preprocessor produces a modified (annotated) COBOL source file
(sqlprog.cbl) that contains the COBOL and SQL call-level interface (CLI)
translations of embedded SQL statements and additional COBOL source
constructs that represent the module definition. The default behavior creates a
single, self-contained application source file with embedded module definitions.

4. Compile the annotated COBOL source file by using the ecobol or nmcobol
compiler (OSS environment) or ETK (Windows environment). To produce an object
file:

ecobol -Wcobol="consult /usr/tandem/sqlmx/lib/esqlcli.o" \
-o sqlprog.o -c sqlprog.cbl

nmcobol -Wcobol="consult /usr/tandem/sqlmx/lib/sqlcli.o" \
-o sqlprog.o -c sqlprog.cbl

If you do not specify the -Wsqlmx or -Wmxcmp flag in the command line, the
ecobol or nmcobol compiler requires the CONSULT directive to compile the
annotated COBOL source file correctly. The esqlcli.o or sqlcli.o file
contains definitions of the CLI procedure calls for the translated SQL statements in
the annotated COBOL source file. If you invoke ecobol or nmcobol with the
-Wsqlmx or -Wmxcmp flag, the list of libraries searched automatically includes
esqlcli.o or sqlcli.o.

Specify the -c option if you do not want ecobol or nmcobol to link the program.
Otherwise, ecobol or nmcobol invokes eld or nld to create an executable file.

See Running the COBOL Compiler and Linker on page 16-23.

5. The COBOL compiler produces the object file, sqlprog.o. If you prefer early
detection of SQL compilation errors, you can SQL compile the application’s object
file at this point. During program development, you might want to use the
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-4

COBOL Program Compilation Compiling Embedded SQL COBOL Programs With
Embedded Module Definitions
mxCompileUserModule utility against all the object files rather than against the
executable file. When you SQL compile against the object files, NonStop SQL/MX
does not recompile each module for object files that are linked into more than one
executable file.

6. Link application object files with object libraries to create an executable file by
either:

 Running ecobol or nmcobol with object files as input to link them:

ecobol -o sqlprog.exe -lzclidll sqlprog.o

nmcobol -o sqlprog.exe -lzclisrl sqlprog.o

 Running the eld or nld utility separately after compilation to resolve external
references in ENTER statements and implicit invocations of COBOL run-time
library routines that many COBOL statements cause:

eld -lzcobdll -lzcredll -lzclidll -o sqlprog.exe sqlprog.o

nld -lzcobsrl -lzcresrl -lzclisrl -o sqlprog.exe sqlprog.o

ZCLIDLL or ZCLISRL is a system library of the SQL/MX executor. You must
specify this library in the command line if you invoke the linker, either by running
eld or nld or by running ecobol or nmcobol without the -Wsqlmx or -Wmxcmp
flag. If linking occurs when you invoke ecobol or nmcobol with the -Wsqlmx or
-Wmxcmp flag, the list of libraries searched automatically includes ZCLIDLL or
ZCLISRL.

7. The linker produces the application’s executable file, sqlprog.exe.

8. SQL compile one, some, or all of the application’s embedded module definitions in
the executable file by using mxCompileUserModule. See Running the
SQL/MX Compiler on page 16-25 and Compiling Embedded Module Definitions on
page 16-25.

mxCompileUserModule sqlprog.exe

9. The SQL/MX compiler produces the SQL/MX module. The module is stored in the
local application directory, user-specified Guardian or OSS location(s) or both,
application DLL location(s), or in the global /usr/tandem/sqlmx/USERMODULES
directory.

Run the COBOL executable program.

Note. If you compiled a TNS/R native program with -Wcall_shared or -Wshared, you
must link it with the ld utility instead of the nld utility.

Note. The preprocessed COBOL source files are required for debugging. Neither ecobol nor
nmcobol has an equivalent to the C/C++ #line directive.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-5

COBOL Program Compilation Compiling Embedded SQL COBOL Programs With
Module Definition Files
Compiling Embedded SQL COBOL Programs With Module
Definition Files

Figure 16-2 shows how a COBOL program with separate module definition files is
compiled. The application’s embedded SQL source file is called sqlprog.ecob.

Although this figure shows the individual steps for clarity, you can use the COBOL
compiler utility (ecobol or nmcobol) or ETK to automate the process. For more
information on using ecobol or nmcobol in this way, see ecobol or nmcobol Utility:
Using One Command for All Compilation Steps on page 16-33. For more information
on ETK, see ETK online help.

These steps correspond to the steps in Figure 16-2 on page 16-6.

Figure 16-2. Compiling Embedded SQL COBOL Programs With Module
Definition Files

vst152.vsd

SQL/MX Compiler
(mxcmp)

SQL/MX ModuleSQL/MX Module

COBOL Compiler Object File
sqlprog.o

Object
Libraries

Linker

5

6

Application Process
sqlprog.exe

SQL CLI and Executor

8

4

COBOL Program
(executable) File
sqlprog.exe

COBOL Program
(executable) File
sqlprog.exe

COBOL Annotated
Source File

sqlprog.cbl

COBOL Annotated
Source File

sqlprog.cbl

3 SQL Module
Definition File
sqlprog.m

SQL Module
Definition File
sqlprog.m

3

SQL/MX
COBOL Preprocessor

(mxsqlco)

2

SQL/MX
COBOL Source

File
sqlprog.ecob

SQL/MX
COBOL Source

File
sqlprog.ecob

1

7

9

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-6

COBOL Program Compilation Compiling Embedded SQL COBOL Programs With
Module Definition Files
1. Create the COBOL source files that contain embedded SQL statements
(sqlprog.ecob).

2. Preprocess the application’s embedded SQL source files by using the SQL/MX
COBOL preprocessor mxsqlco. See Running the SQL/MX COBOL Preprocessor
on page 16-9.

mxsqlco sqlprog.ecob -c sqlprog.cbl -m sqlprog.m

In this step, set optional module specification strings and moduleCatalog and
moduleSchema default settings by using the -g option. See page 16-16 or 16-21.
Although you do not set mxcmp defaults here, if the input source file contains
mxcmp default settings, such as EXEC SQL DECLARE/SET/CONTROL QUERY
DEFAULT statements, they are preprocessed into corresponding module language
statements in the output module definition of the module definition file. The
preprocessor options (-x or -m) and the SQLMX_PREPROCESSOR_VERSION=800
environment variable indicate to the preprocessor that you are compiling your
program with module definition files. For more information on setting the
preprocessor options, see Module Management Behavior on page 17-8.

3. The preprocessor produces two files: (1) a modified (annotated) COBOL source
file (sqlprog.cbl) that contains the COBOL and SQL CLI translations of
embedded SQL statements and (2) a module definition file (sqlprog.m).

4. Compile the annotated COBOL source file by using the ecobol or nmcobol
compiler (OSS environment) or ETK (Windows environment). To produce an object
file:

ecobol -Wcobol="consult /usr/tandem/sqlmx/lib/esqlcli.o" \
-o sqlprog.o -c sqlprog.cbl

nmcobol -Wcobol="consult /usr/tandem/sqlmx/lib/sqlcli.o" \
-o sqlprog.o -c sqlprog.cbl

If you do not specify the -Wsqlmx or -Wmxcmp flag in the command line, the
ecobol or nmcobol compiler requires the CONSULT directive to compile the
annotated COBOL source file correctly. The esqlcli.o or sqlcli.o file
contains definitions of the CLI procedure calls for the translated SQL statements in
the annotated COBOL source file. If you invoke ecobol or nmcobol with the
-Wsqlmx or -Wmxcmp flag, the list of libraries searched automatically includes
esqlcli.o or sqlcli.o.

Specify the -c option if you do not want ecobol or nmcobol to link the program.
Otherwise, ecobol or nmcobol invokes eld or nld to create an executable file.

See Running the COBOL Compiler and Linker on page 16-23.

5. The COBOL compiler produces the object file, sqlprog.o.

6. Link application object files with object libraries to create an executable file by
either:
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-7

COBOL Program Compilation Creating Modules: From Development to Production
 Running ecobol or nmcobol with object files as input to link them:

ecobol -o sqlprog.exe -lzclidll sqlprog.o

nmcobol -o sqlprog.exe -lzclisrl sqlprog.o

 Running the eld or nld utility separately after compilation to resolve external
references in ENTER statements and implicit invocations of COBOL run-time
library routines that many COBOL statements cause:

eld -lzcobdll -lzcredll -lzclidll -o sqlprog.exe sqlprog.o

nld -lzcobsrl -lzcresrl -lzclisrl -o sqlprog.exe sqlprog.o

ZCLIDLL or ZCLISRL is a system library of the SQL/MX executor. You must
specify this library in the command line if you invoke the linker, either by running
eld or nld or by running ecobol or nmcobol without the -Wsqlmx or -Wmxcmp
flag. If linking occurs when you invoke ecobol or nmcobol with the -Wsqlmx or
-Wmxcmp flag, the list of libraries searched automatically includes ZCLIDLL or
ZCLISRL.

7. The linker produces the application’s executable file, sqlprog.exe.

8. SQL compile the application’s module definition file by using the SQL/MX compiler
(mxcmp). See Running the SQL/MX Compiler on page 16-25 and Compiling a
Module Definition File on page 16-30.

mxcmp sqlprog.m

9. The SQL/MX compiler compiles the SQL source statements from the module
definition file in a module file, generates SQL object code for each statement,
determines an optimized execution plan for each SQL statement against the
database, and stores the code and plan in the SQL object program. The module is
stored in the local application directory, user-specified Guardian or OSS location or
both, application DLL location(s), or in the global
/usr/tandem/sqlmx/USERMODULES directory.

Run the COBOL executable program.

Creating Modules: From Development to Production

While HP recommends that you use embedded module definitions to create SQL
modules, you might find it easier for debugging purposes to use module definition files
during early stages of development and then switch to embedded module definitions
upon deployment of your production system. Consider this:

Note. If you compiled a TNS/R native program with -Wcall_shared or -Wshared, you
must link it with the ld utility instead of the nld utility.

Note. The preprocessed COBOL source files are required for debugging. Neither ecobol nor
nmcobol has an equivalent to the C/C++ #line directive.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-8

COBOL Program Compilation Running the SQL/MX COBOL Preprocessor
 With embedded module definitions, you must successfully compile the output from
the preprocessor before you can SQL compile the embedded module definition.
You must diagnose host language errors in the source program before you can
diagnose SQL errors in the source program.

 With module definition files, you compile the source file and the module definition
file at the same time. This method provides the opportunity to diagnose both host
language errors and SQL errors in the source file concurrently.

Embedded module definitions provide greater efficiency in the deployment of an
application to a production environment.

Running the SQL/MX COBOL Preprocessor
The SQL/MX COBOL preprocessor is available for these environments:

 OSS
 Microsoft Windows
 Enterprise Plugins for Eclipse (EPE)
 Enterprise ToolKit—NonStop Edition (ETK)

The preprocessor for the OSS environment is installed when you install NonStop
SQL/MX on your system. You must install the Windows-hosted preprocessor on your
Windows workstation. For information, see the SQL/MX Release 3.2 Installation and
Upgrade Guide.

The syntax for using the preprocessor in each environment appears in Syntax for the
OSS-Hosted SQL/MX COBOL Preprocessor on page 16-14 and Syntax for the
Windows-Hosted SQL/MX COBOL Preprocessor on page 16-19.

Preprocessor Functions

The preprocessor processes COBOL and SQL source statements.

COBOL Source Statements

The preprocessor writes each COBOL source statement to the COBOL annotated
source file. The preprocessor parses the COBOL annotated source file only to the
extent necessary to detect scoping levels, host variable declarations, host variable
expressions, and embedded SQL statements. The OSS-hosted SQL/MX COBOL
preprocessor resolves the Guardian DEFINE used with a ?SOURCE filename
directive and processes the file only if the -O command-line option is specified.

For example, consider the following source code:

?SOURCE =cobdef1

Note. ETK is a GUI-based extension package to the Visual Studio .NET product. Use ETK to
edit, compile, build, and deploy applications written in a variety of programming languages and
with embedded SQL/MX. For more information, see ETK online help.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-9

COBOL Program Compilation Preprocessor Functions
?SOURCE =cobdef2 (section1)

The OSS-hosted SQL/MX COBOL preprocessor resolves the DEFINE =cobdef1 and
the file mapped by DEFINE is processed if the -O command-line option is specified.
Similarly, the file mapped by the DEFINE =cobdef2 is processed for section
section1.

The DEFINE used with a COBOL directive must be MAP DEFINE. The
Windows-hosted COBOL preprocessor does not support Guardian DEFINEs.

COBOL Comments

The preprocessor ignores COBOL comments unless the comment specifies a name for
an SQL statement. You can use a comment to name an SQL statement explicitly. To do
so, precede the statement with a comment using this format:

* SQL statement_name = name [comment-text]
 EXEC SQL sql_statement ... END-EXEC.

The name is an SQL identifier you are assigning as the name of sql_statement, and
comment-text is an optional comment that does not affect the assignment of the
name. The COBOL comment must use only one line and must immediately precede
the SQL statement.

For example, this comment names the SQL statement (INSERT) and provides
comment text (“insert ten rows”):

* SQL statement_name= INSERT insert ten rows
 EXEC SQL INSERT INTO ... END-EXEC.

If you do not specify a name for an SQL statement, the preprocessor assigns the
statement a name of the form SQLMX_DEFAULT_STATEMENT_n, where n is an integer
incremented by the preprocessor.

Host Variable Declarations

The preprocessor checks each host variable declaration (that is, a variable declared
between BEGIN DECLARE SECTION and END DECLARE SECTION) to ensure that
the variable uses a valid data type. For valid host-variable data types, see Table 4-1 on
page 4-5 and Table 4-2 on page 4-7.

The preprocessor returns an error for embedded SQL statements that are not valid
within a host-variable declaration section.

SQLSTATE must be declared within a Declare Section. See Declaring SQLSTATE on
page 13-2.

Executable SQL Statements

The preprocessor performs these functions:
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-10

COBOL Program Compilation Preprocessor Output
 Scans the statement for host variables (indicated by a colon) and ensures that
each host variable is declared within the current scope of the program.

 Converts the SQL statement to a COBOL comment in the COBOL annotated
source file.

 Writes data structure initialization statements needed for arguments to the CLI
procedure calls and writes the appropriate CLI procedure call or calls for the SQL
statement immediately after the commented statement in the COBOL annotated
source file. At run time, the calls invoke the SQL/MX executor to execute the
procedure for the SQL statement within the module.

 Writes the executable SQL statement to a separate module definition file if you use
the -x or -m preprocessor option or set the
SQLMX_PREPROCESSOR_VERSION=800 environment variable.

Use the preprocessor to embed SQL anywhere in the COBOL source file. However,
the preprocessor determines in which part of the source file the embedded SQL is
located and issues warnings if an embedded SQL statement is not placed correctly.
See Placement of SQL Statements on page 2-2.

At the end of processing the embedded SQL COBOL source file, the preprocessor
checks the status of static cursors:

 Cursors accessed and not opened return an error message.
 Cursors declared and not accessed return a warning message.

Preprocessor Output

COBOL Annotated Source File for Embedded Module
Definitions

The SQL/MX COBOL preprocessor processes a COBOL source file, such as source-
file.ecob, and generates one COBOL annotated source file (source-file.cbl)
as its output file. The annotated source file contains the embedded module definitions.

COBOL Annotated Source File for Module Definition Files

If you use the -x or -m preprocessor option or if you set the
SQLMX_PREPROCESSOR_VERSION=800 environment variable, the preprocessor
processes a COBOL source file, such as source-file.ecob, and generates two
files: the annotated source file (source-file.cbl) and the module definition file
(source-file.m).

For more information on module management behavior and influencing the
preprocessor, see Module Management Behavior on page 17-8. For recommended
naming conventions for COBOL source files, see Table 17-1 on page 17-1.

The preprocessor converts the embedded SQL statements to COBOL comments,
followed by the appropriate CLI calls.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-11

COBOL Program Compilation Preprocessor Output
The COBOL annotated source file consists of:

Header for Module Definition File

If you specify the -m or -x preprocessor option or set the
SQLMX_PREPROCESSOR_VERSION=800 environment variable, the preprocessor
creates a module definition file in your current directory that contains embedded SQL
statements. The preprocessor writes the header of the module definition file as:

MODULE module-name NAMES ARE ISO88591 ;
TIMESTAMP DEFINITION (creation_timestamp) ;
source-file 'source-file location';

You can specify module-name by using the MODULE directive as the beginning
statement in the PROCEDURE DIVISION of your embedded SQL COBOL program.
For example:

EXEC SQL MODULE EXF62M NAMES ARE ISO88591 END-EXEC.

Otherwise, if you do not specify a MODULE directive, the preprocessor generates a
system-supplied module name for you. See also the MODULE directive in the SQL/MX
Reference Manual.

Trailer for Annotated-Source File

The module-name and the creation_timestamp correspond to these same
elements in the trailer of the COBOL source file. The SQL/MX compiler uses module-
name to name the module file. It also writes the creation_timestamp into the
module file. The COBOL source file is then compiled and linked. When the resulting
program file is executed and calls the SQL/MX executor, the preprocessor-generated
CLI procedure calls pass the module-name and creation_timestamp to the
executor. The executor uses the module-name to locate the corresponding module
file. The creation_timestamp is used to ensure that the version of the executable
program is synchronized with the version of the module file. This strategy prevents, for
example, the executable program from being altered and rebuilt without rebuilding the
module file. For more information, see Understanding and Avoiding Common Run-
Time Errors on page 16-52.

Header Contains the data structures.

Body Contains the embedded SQL COBOL source file translated into
COBOL statements. The preprocessor converts each
embedded SQL statement to a COBOL comment by prefixing
an asterisk (*) to the statement and follows the commented
statement with a CLI call that invokes the executor at run time to
execute the statement.

Trailer Contains definitions required to complete the COBOL source
file. Definitions include the module version number, the creation
timestamp (the operating system timestamp when the
preprocessor was invoked), and the module name.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-12

COBOL Program Compilation OSS-Hosted SQL/MX COBOL Preprocessor
The ISO88591 character set is the default character set for CHAR or VARCHAR data
types for NonStop SQL/MX.

Procedures

After writing to the header of the module definition file, the preprocessor writes
procedures for executing SQL statements. A procedure consists of a name, a formal
argument list, and an SQL statement as the body of the procedure.

Each formal argument has a name and an SQL data type. The arguments are the host
variables that occur in the SQL statement in the body of the procedure. The
preprocessor writes the arguments in the same order as the first occurrence of the host
variables, scanning from left to right, in the SQL statement. In some cases, the
arguments are data structures that contain references to host variables. The host
variable references are stored in the same order in which they appear in the SQL
statement.

OSS-Hosted SQL/MX COBOL Preprocessor

You can compile and run an embedded SQL COBOL program in the OSS environment
on a NonStop system. Although you cannot compile and run such a program in the
Guardian environment, you can use an OSS pass-through command in the Guardian
environment. For instructions on using the Windows-hosted SQL/MX COBOL
preprocessor, see Windows-Hosted SQL/MX COBOL Preprocessor on page 16-18.
For instructions on using the OSS pass-through command to execute the preprocessor
in the Guardian environment, see Building SQL/MX Guardian Applications in the
Guardian Environment on page 16-47.

The OSS-hosted SQL/MX COBOL preprocessor (mxsqlco) is installed in the
/usr/tandem/sqlmx/bin directory in the OSS environment. You can use the
ecobol or nmcobol utility to preprocess embedded SQL COBOL programs, compile
COBOL and run the SQL/MX compiler, and then link the COBOL program. For more
information, see ecobol or nmcobol Utility: Using One Command for All Compilation
Steps on page 16-33.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-13

COBOL Program Compilation OSS-Hosted SQL/MX COBOL Preprocessor
Syntax for the OSS-Hosted SQL/MX COBOL Preprocessor

sql-file

is the name of the input COBOL source file that contains embedded SQL
statements.

-c COBOL-output-file

is the name of the output preprocessed annotated source file that contains COBOL
statements and embedded SQL statements converted to comments. This file is the
input for the COBOL compiler (ecobol or nmcobol utility). The default is
source-file.cbl, where source-file is the name of the SQL/MX COBOL
source file (for example, sqlprog.ecob) without the file extension.

-m module-def-file

is the name of the output module definition file, which is the input file for the
SQL/MX compiler. The default is source-file.m, where source-file is the
name of the SQL/MX COBOL source file (for example, sqlprog.ecob) without
the file extension.

-e

generates CHARACTER data types for date-time data types. This behavior is
compatible with NonStop SQL/MX Release 1.8. For more information, see INVOKE

mxsqlco sql-file
 [-c COBOL-output-file]
 [-m module-def-file]
 [-e]
 [-l list-file]
 [-a]
 [-f]
 [-t timestamp]
 [-q]
 [-d toggle || SETTOG]
 [-x]
 [-g {moduleGroup[=module-group-specification-string]
 |moduleTableSet[=module-tableset-specification-
 string]
 |moduleVersion[=module-version-specification-
 string]
 |moduleCatalog[=module-catalog-name]
 |moduleSchema[=module-schema-name]
 }]
 [-Q {[invokeCatalog=catalog-name]
 |[invokeSchema=schema-name]
 }]
 [-O]
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-14

COBOL Program Compilation OSS-Hosted SQL/MX COBOL Preprocessor
and Date-Time and Interval Host Variables (SQL/MX Release 1.8 Applications) on
page 4-23.

-l list-file

is the name of the output list file that contains preprocessor error and warning
messages. The default is source-file.lst, where source-file is the name
of the SQL/MX COBOL source file (for example, sqlprog.ecob) without the file
extension.

-a

indicates the ANSI fixed format for the source file. Output source is in the same
format. If not specified, -f is the default.

-f

indicates the TANDEM free format for the source program. Output source is in the
same format. If not specified, -f is the default.

-t timestamp

provides a creation timestamp that the preprocessor writes to the COBOL
annotated source file (and the module definition file if the -x or -m preprocessor
option or the SQLMX_PREPROCESSOR_VERSION=800 environment variable is
used). The timestamp value overrides the operating system timestamp.

For example, you can specify these timestamp values:

-t "2005-10-26 09:01:20.00"
-t 2005-10-26.12:0000.000000

The preprocessing timestamp of the generated code must match the
preprocessing timestamp stored in the module. Use this option with caution and
only when you need to change the source text of the embedded SQL program
without SQL-compiling the generated code.

-q

directs the preprocessor to accept SQL string literals delimited by double quotes in
addition to single quotes. If you specify -q, you cannot use SQL delimited
identifiers.

-d toggle || SETTOG

defines toggles for use with conditional compilation. Toggles must be in the range
of 1 through 15. If you specify SETTOG, all toggles are set to ON.

-x

directs the preprocessor to refrain from emitting embedded module definitions into
the annotated output source file.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-15

COBOL Program Compilation OSS-Hosted SQL/MX COBOL Preprocessor
-g {moduleGroup[=module-group-specification-string]
 |moduleTableSet[=module-tableset-specification-string]
 |moduleVersion[=module-version-specification-string]
 |moduleCatalog[=module-catalog-name]
 |moduleSchema[=module-schema-name]
 }

specifies the arguments for qualifying the name given to the compiled module file.
If you use this option, you must supply at least one of the five module management
attributes. If you want to specify more than one attribute, repeat the entire -g
option for each attribute. These attribute values are used to qualify the name of the
compiled module file. For more information, see File Naming Conventions on
page 17-1.

To use the -g option, you must supply a value in conjunction with the
moduleGroup, moduleTableSet, moduleVersion, moduleCatalog, or
moduleSchema attribute. The value must immediately follow the equal sign, and
the equal sign must immediately follow the attribute keyword. The value can use
regular or delimited identifiers. (See the description of regular and delimited
identifiers in the SQL/MX Reference Manual.) If you supply more than one value
for any attribute, only the final value is used. For information on the length of the
module name, see Module Name Length on page 17-12.

moduleGroup

sets the moduleGroup attribute to group an application’s module files logically
by sharing the same name prefix. The moduleGroup becomes embedded in
the module file names as a common prefix and enables the use of OSS wild-
card file specification patterns to manage the files. For more information, see
Grouping on page 17-23. The maximum size for the moduleGroup attribute is
31 characters.

moduleTableset

sets the moduleTableSet attribute to use the module management targeting
feature. You can create different sets of module files that can be used against
different sets of tables. For more information, see Specifying the search
locations of the module files on page 17-13. The maximum size for the
moduleTableSet attribute is 31 characters.

moduleVersion

sets the moduleVersion attribute to enable multiple versions of an
application’s module files to coexist while keeping the same MODULE directive
in each version. For more information, see Versioning on page 17-21. The
maximum size for the moduleVersion attribute is 31 characters.

moduleCatalog

sets the moduleCatalog attribute if the input sql-file does not have a
MODULE directive or its MODULE directive does not specify a catalog name. If
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-16

COBOL Program Compilation OSS-Hosted SQL/MX COBOL Preprocessor
the moduleCatalog option is not set, the preprocessor emits the output
MODULE directive using the default catalog naming rules described in the
SQL/MX Reference Manual. The maximum size for the moduleCatalog
attribute is 128 characters.

moduleSchema

sets the moduleSchema attribute if the input sql-file does not have a
MODULE directive or its MODULE directive does not specify a schema name.
The moduleSchema can contain a catalog name. If the moduleSchema
attribute is not used, the preprocessor emits the output MODULE directive by
using the default schema naming rules described in the SQL/MX Reference
Manual. The maximum size for the moduleSchema attribute is 128 characters.

[-Q {[invokeCatalog=catalog-name]
 |[invokeSchema=schema-name]
}]

specifies the catalog name and schema name qualifiers for objects inside the
invoke clause. If you use this option, specify one of the attributes—
invokeCatalog or invokeSchema. If you want to specify both the attributes,
repeat the -Q option for each attribute.

invokeCatalog

sets the catalog for unqualified objects inside the invoke clause as catalog-
name. If a catalog is specified using the Control Query Default Catalog or
Declare Catalog, this attribute has no effect. The maximum size of the
invokeCatalog attribute is 128 characters.

invokeSchema

sets the schema for unqualified objects inside the invoke clause as schema-
name. If a schema is specified using the Control Query Default Schema or
Declare Schema, this attribute has no effect. The maximum size of the
invokeSchema attribute is 128 characters.

[-O]

replaces Guardian DEFINE in the ?SOURCE directive, in the OSS file format. The
DEFINEs are resolved only if the preprocessor option -O is specified.

Examples—mxsqlco

Run the SQL/MX COBOL preprocessor using the mxsqlco command. This example
creates an annotated source file and module definition file:

mxsqlco sqlprog.ecob -c sqlprog.cbl -m sqlprog.m -g \
moduleTableSet=T1
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-17

COBOL Program Compilation Windows-Hosted SQL/MX COBOL Preprocessor
This example creates a self-contained, annotated output source file that contains an
embedded module definition:

mxsqlco sqlprog.ecob -c sqlprog.cbl \
-g moduleGroup=INVENTORY -g moduleVersion=V2

Windows-Hosted SQL/MX COBOL Preprocessor

The Windows-hosted SQL/MX COBOL preprocessor is a DLL file named
mxsqlcont.dll and is accompanied by a DLL loader named mxsqlco.exe. These
files are installed in the C:\Program Files\HP SQL-MX COBOL Preprocessors
directory. Use either the command shell or the Korn shell to run the preprocessor with
the RUN command.

You can install multiple versions of the SQL/MX COBOL preprocessors. The
environment variable MXSQLCO enables you to select a particular version of the
SQL/MX COBOL preprocessor for COBOL compilations.

For example, to select the SQL/MX COBOL preprocessor in the
C:\PROGRA~1\HPSQL-~2\ directory, set MXSQLCO from the Windows command line:

set MXSQLCO=C:\PROGRA~1\HPSQL-~2\mxsqlcont.dll

You can also set the environment variable in the Windows system properties. If
multiple versions of the SQL/MX COBOL preprocessors are installed and if MXSQLCO
is not set, the latest version of the SQL/MX COBOL preprocessor installed on the
system is used for compilations, by default.

If you use INVOKE, MXCS must be installed on your operating system to provide the
necessary communication between your client workstation and the server. For more
information on how to install MXCS, see the SQL/MX Connectivity Service
Administrative Command Reference. In addition, you must install the HP NonStop
ODBC/MX driver for Windows. For installation information, see the ODBC/MX Driver
for Windows Manual.

The SQL/MX COBOL preprocessor 3.1 can be invoked by a user, a cross compiler, or
by an IDE. For each scenario, the SQL preprocessor invoked is:

 A user calls the SQL preprocessor to preprocess a source program. The SQL
preprocessor uses the header files and libraries from the SQL preprocessor
installation directory.

 The SQL preprocessor is invoked by the nmcobol.exe/ecobol.exe compiler.
The compiler uses the SQL preprocessor version defined by MXSQLCO. The SQL
preprocessor uses the libraries and header files related to that version.

Note. On systems running H06.14 RVU and later, the SQL/MX COBOL compilations select
the latest version of the SQL/MX COBOL preprocessors installed on the system.

On systems running H06.13 RVU and earlier, the SQL/MX COBOL compilations use the
earliest version of the SQL/MX COBOL preprocessor installed on the system.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-18

COBOL Program Compilation Windows-Hosted SQL/MX COBOL Preprocessor
If MXSQLCO is not set, the cross compiler invokes the latest version of the SQL/MX
COBOL preprocessor installed on the system.

 An IDE is used. The IDE invokes c89, which uses MXSQLCO to select an alternative
version. Some of the IDEs are:

 Enterprise Tool Kit (ETK)—plug-in for Microsoft Visual studio

The environment variable MXSQLCO must be set before starting ETK.

 Enterprise Plugins for Eclipse (EPE)—plug-in for Eclipse

When Eclipse is used, MXSQLCO is set by EPE based on the value of the
preprocessor installation location.

Syntax for the Windows-Hosted SQL/MX COBOL
Preprocessor

sql-file

is the name of the input COBOL source file that contains embedded SQL
statements.

mxsqlco sql-file
 [-c COBOL-output-file]
 [-m module-def-file]
 [-e]
 [-l list-file]
 [-a]
 [-f]
 [-t timestamp]
 [-q]
 [-d toggle || SETTOG]
 [-s system-name or IP-address]
 [-r ODBC-listener]
 [-y NSK-username]
 [-z NSK-password]
 [-x]
 [-g {moduleGroup[=module-group-specification-string]
 |moduleTableSet[=module-tableset-specification-
 string]
 |moduleVersion[=module-version-specification-
 string]
 |moduleCatalog[=module-catalog-name]
 |moduleSchema[=module-schema-name]
 }]
 [-Q {[invokeCatalog=catalog-name]
 |[invokeSchema=schema-name]
 }]
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-19

COBOL Program Compilation Windows-Hosted SQL/MX COBOL Preprocessor
-c COBOL-output-file

is the name of the output preprocessed annotated source file that contains COBOL
statements and embedded SQL statements converted to comments. This file is the
input file for the COBOL compiler. The default is source-file.cbl, where
source-file is the name of the SQL/MX COBOL source file (for example,
sqlprog.ecob) without the file extension.

-m module-def-file

is the name of the output module definition file, which is the input file for the
SQL/MX compiler. The default is source-file.m, where source-file is the
name of the SQL/MX COBOL source file (for example, sqlprog.ecob) without
the file extension.

-e

generates CHARACTER data types for date-time data types. This behavior is
compatible with NonStop SQL/MX Release 1.8. For more information, see INVOKE
and Date-Time and Interval Host Variables (SQL/MX Release 1.8 Applications) on
page 4-23.

-l list-file

is the name of the output list file that contains preprocessor error and warning
messages. The default is source-file.lst, where source-file is the name
of the SQL/MX COBOL source file (for example, sqlprog.ecob) without the file
extension.

-a

indicates the ANSI fixed format for the source file. Output source is in the same
format. If not specified, -f is the default.

-f

indicates the TANDEM free format for the source program. Output source is in the
same format. If not specified, -f is the default.

-t timestamp

provides a creation timestamp that the preprocessor writes to the COBOL
annotated source file (and the module definition file if the -x or -m preprocessor
option or the SQLMX_PREPROCESSOR_VERSION=800 environment variable is
used). The timestamp value overrides the operating system timestamp.

The preprocessing timestamp of the generated code must match the
preprocessing timestamp stored in the module. Use this option with caution and
only when you need to change the source text of the embedded SQL program
without SQL-compiling the generated code.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-20

COBOL Program Compilation Windows-Hosted SQL/MX COBOL Preprocessor
-q

directs the preprocessor to accept SQL string literals delimited by double quotes in
addition to single quotes. If you specify -q, you cannot use SQL delimited
identifiers.

-d toggle || SETTOG

defines toggles for use with conditional compilation. Toggles must be in the range
of 1 through 15. If you specify SETTOG, all toggles are set to ON.

-s system-name or IP-address

is the node name or IP address of the NonStop system where the tables are found
by INVOKE. This option is required if you use INVOKE.

-r ODBC-listener

is the NonStop system port to connect to for the ODBC listener process. The
default port for the Association server is 18650.

-y NSK-username

is the Guardian user name with access to the tables that INVOKE reads. This
option is required if you use INVOKE.

-z NSK-password

is the password for the user name for the NonStop system. This option is required
if you use INVOKE.

-x

directs the preprocessor to refrain from emitting embedded module definitions into
the annotated output source file.

-g {moduleGroup[=module-group-specification-string]
 |moduleTableSet[=module-tableset-specification-string]
 |moduleVersion[=module-version-specification-string]
 |moduleCatalog[=module-catalog-name]
 |moduleSchema[=module-schema-name]
 }]

specifies the arguments for qualifying the name given to the compiled module file.
If you use this option, you must supply at least one of the five module management
attributes. If you want to specify more than one attribute, repeat the entire -g
option for each attribute. These attribute values are used to qualify the name of the
compiled module file. See File Naming Conventions on page 17-1.

To use the -g option, you must supply a value in conjunction with the
moduleGroup, moduleTableSet, moduleVersion, moduleCatalog, or
moduleSchema attribute. The value must immediately follow the equal sign, and
the equal sign must immediately follow the attribute keyword. The value can use
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-21

COBOL Program Compilation Windows-Hosted SQL/MX COBOL Preprocessor
regular or delimited identifiers. (See the description of regular and delimited
identifiers in the SQL/MX Reference Manual.) If you supply more than one value
for any attribute, only the final value is used. For information on the length of the
module name, see Module Name Length on page 17-12.

moduleGroup

sets the moduleGroup attribute to group an application’s module files logically
by sharing the same name prefix. The moduleGroup becomes embedded in
the module file names as a common prefix and enables the use of OSS wild-
card file specification patterns to manage the files. For more information, see
Grouping on page 17-23. The maximum size for the moduleGroup attribute is
31 characters.

moduleTableset

sets the moduleTableSet attribute to use the module management targeting
feature. You can create different sets of module files that can be used against
different sets of tables. For more information, see Specifying the search
locations of the module files on page 17-13. The maximum size for the
moduleTableSet attribute is 31 characters.

moduleVersion

sets the moduleVersion attribute to enable multiple versions of an
application’s module files to coexist while keeping the same MODULE directive
in each version. For more information, see Versioning on page 17-21. The
maximum size for the moduleVersion attribute is 31 characters.

moduleCatalog

sets the moduleCatalog attribute if the input sql-file does not have a
MODULE directive or its MODULE directive does not specify a catalog name. If
the moduleCatalog option is not set, the preprocessor emits the output
MODULE directive using the default catalog naming rules described in the
SQL/MX Reference Manual. The maximum size for the moduleCatalog
attribute is 128 characters.

moduleSchema

set the moduleSchema attribute if the input sql-file does not have a
MODULE directive or its MODULE directive does not specify a schema name.
The moduleSchema can contain a catalog name. If the moduleSchema
attribute is not used, the preprocessor emits the output MODULE directive by
using the default schema naming rules described in the SQL/MX Reference
Manual. The maximum size for the moduleSchema attribute is 128 characters.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-22

COBOL Program Compilation Running the COBOL Compiler and Linker
[-Q {[invokeCatalog=catalog-name]
 | [invokeSchema=schema-name]
}]

specifies the catalog name and schema name qualifiers for objects inside the
invoke clause. If you use this option, specify one of the attributes—
invokeCatalog or invokeSchema. If you want to specify both the attributes,
repeat the -Q option for each attribute.

invokeCatalog

sets the catalog for unqualified objects inside the invoke clause as catalog-
name. If a catalog is specified using the Control Query Default Catalog or
Declare Catalog, this attribute has no effect. The maximum size of the
invokeCatalog attribute is 128 characters.

invokeSchema

sets the schema for unqualified objects inside the invoke clause as schema-
name. If a schema is specified using the Control Query Default Schema or
Declare Schema, this attribute has no effect. The maximum size of the
invokeSchema attribute is 128 characters.

Examples—mxsqlco

Run the SQL/MX COBOL preprocessor using the mxsqlco command. This example
creates an annotated source file and module definition file:

mxsqlco sqlprog.ecob -c sqlprog.cbl -m sqlprog.m -g \
moduleTableSet=T1

This example creates a single-file, annotated output source file that contains an
embedded module definition:

mxsqlco sqlprog.ecob -c sqlprog.cbl \
-g moduleGroup=INVENTORY -g moduleVersion=V2

Running the COBOL Compiler and Linker
The HP NonStop COBOL compilers translate source code into machine language that
is specific to a particular NonStop system architecture. The type of COBOL compiler
that you use to compile your SQL/MX program determines the NonStop system and
environment where you can run the program.

Table 16-1 lists the COBOL compilers, the environments where you can run the
compilers, and the environments where you can run the compiled programs.

Note. TNS/R native compilation tools are available on systems running H06.05 or later RVUs.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-23

COBOL Program Compilation Running the COBOL Compiler and Linker
On Windows, you can run the COBOL compiler and native object file linker from ETK,
or you can use the command-line cross compiler (ecobol or nmcobol) and the linker
(eld or nld). For details on syntax and using the COBOL cross compiler with ETK,
see the help file Using Command-Line Cross Compilers on Windows, which is included
with ETK.

To run the ECOBOL compiler, see the COBOL Manual for TNS/E Programs. To run the
eld linker, see the eld Manual. To run the NMCOBOL compiler, see the COBOL
Manual for TNS and TNS/R Programs. To run the nld linker, see the nld Manual. For
more information on the ecobol or nmcobol utility, see ecobol or nmcobol Utility:

Table 16-1. HP NonStop COBOL Compilers for Embedded SQL/MX Programs

Compiler
Compiler Operating
Environment

Program Execution
Environment

TNS/E native compilers:

 Native COBOL cross
compiler for TNS/E*

Windows environment on a
PC connected to a NonStop
system running an H-series
RVU

OSS or Guardian
environment on a NonStop
system running an H-series
RVU

 ecobol OSS environment on a
NonStop system running an
H-series RVU

OSS or Guardian
environment on a NonStop
system running an H-series
RVU

 ECOBOL Guardian environment on a
NonStop system running an
H-series RVU

Guardian or OSS
environment on a NonStop
system running an H-series
RVU

TNS/R native compilers:

 Native COBOL cross
compiler for TNS/R*

Windows environment on a
PC connected to a NonStop
system running H06.05 or
later RVU or a NonStop
system running a G-series
RVU

OSS or Guardian
environment on a NonStop
system running a G-series
RVU

 nmcobol OSS environment on a
NonStop system running
H06.05 or later RVU or a
NonStop system running a
G-series RVU

OSS or Guardian
environment on a NonStop
system running a G-series
RVU

 NMCOBOL Guardian environment on a
NonStop system running
H06.05 or later RVU or a
NonStop system running a
G-series RVU

Guardian or OSS
environment on a NonStop
system running a G-series
RVU

* The native COBOL cross compilers can be run from the ETK or from the PC command line.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-24

COBOL Program Compilation Running the SQL/MX Compiler
Using One Command for All Compilation Steps on page 16-33, the OSS reference
pages, or the Open System Services Shell and Utilities Reference Manual.

Running the SQL/MX Compiler
The SQL/MX compiler compiles and optimizes static and dynamic SQL statements for
subsequent execution by the SQL/MX executor and performs these functions:

 Expands SQL object names by using the current default settings

 Expands view definitions

 Performs type checking for COBOL and SQL data types

 Checks SQL object references to verify their existence

 Determines an optimized execution plan and access path for each DML statement
if the SQL objects in the statement are present at compile time

 Generates executable code for the execution plans (if the SQL objects in the
statement are present at compile time) and creates a module in the user-specified
local application directory, user-specified Guardian or OSS location(s) or both,
application DLL location(s), or in the global /usr/tandem/sqlmx/USERMODULES
directory

 Generates a list of the SQL statements in the program file, including messages

 Returns a completion code indicating the outcome of the compilation

The SQL/MX compiler is an OSS program installed in the Guardian $SYSTEM.SYSTEM
subvolume (/G/system/system/ in the OSS environment). You must run the
compiler in the OSS environment. It does not run as a Guardian process.

You must explicitly invoke the SQL/MX compiler to compile static SQL statements. At
run time, the SQL/MX executor also invokes the compiler to compile dynamic SQL
statements and to recompile any static SQL statements that refer to database objects
that have changed and that affect the SQL statement’s execution plan.

If your program accesses a table that has changed since the last static compilation,
you should statically recompile the program to improve performance. Otherwise,
NonStop SQL/MX dynamically recompiles the program before each execution.

Compiling Embedded Module Definitions

To compile one or more of the modules of an embedded SQL/MX application
executable, use the mxCompileUserModule utility on the object file created by the
COBOL compiler or on the executable file created by the linker.

If you have a combination of module definition files and applications that contain
embedded module definitions, use mxCompileUserModule to SQL compile the self-
contained object files containing embedded module definitions, and use mxcmp to SQL
compile the application’s separate module definition files. For more information, see
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-25

COBOL Program Compilation Compiling Embedded Module Definitions
Compiling a Module Definition File on page 16-30 and Combining Embedded Module
Definitions and Module Definition Files on page 16-46.

Command Line Syntax

To invoke mxCompileUserModule, at an OSS prompt, enter:

-e

directs mxCompileUserModule to generate a warning rather than an error if a
table or class MAP DEFINE in an SQL statement does not exist during explicit
SQL/MX compilation. To find errors in your program during explicit SQL/MX
compilation, omit the -e option.

If you are using late name resolution and want to use a table or DEFINE that does
not exist during explicit SQL/MX compilation, include the -e option. Then at run
time, the SQL/MX executor automatically recompiles the SQL statement from the
statement’s source in the module by using the run-time version of the table.

-v

directs mxCompileUserModule to display summary information in addition to
error and warning messages for the compilation. For example, use this option to
verify the default settings of the SQL/MX compiler.

-m

directs mxCompileUserModule to display the list of module files associated with
the application file.

mxCompileUserModule { { [-e] [-v] [-g {moduleGlobal |
moduleLocal}]
[-d compiler-attribute-name=compiler-attribute-value]... } |
-m } Application-file ["{"module-name [, module-name]..."}"]

Module-name is:
[[Catalog.]Schema.]Module [MODULEGROUP=group]
[MODULETABLESET=target] [MODULEVERSION=version]

Note.

 If -m option is specified, other command line options are ignored.

 The OSS tool mxCompileUserModule with the -m option does not display
the module files associated with the DLLs loaded by the embedded SQL
executable.

 mxCompileUserModule with the -m option does not display the list of module
names associated with an application file if the modules are generated from a
source SQL file using the -x preprocessor option or if the environment
variable, SQLMX_PREPROCESSOR_VERSION is set to 800.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-26

COBOL Program Compilation Compiling Embedded Module Definitions
-g moduleGlobal

specifies that the module is placed globally in the
/usr/tandem/sqlmx/USERMODULES directory.

-g moduleLocal[=<OSSdir>]

directs mxCompileUserModule to place the module in the OSS directory. The
OSS directory can be either a Guardian or OSS location in the OSS format. If the
OSS directory is omitted, the module is created in the current directory. The
following rules related to the OSS directory apply:

 The OSS directory must exist and be accessible.

 The directory must not be a remote directory in an Expand network.

 The OSS directory must not exceed 1024 characters.

If these conditions are not met, an error is generated, and no module is created.

If you do not specify -g moduleLocal[=<OSSdir>] but set
MXCMP_PLACES_LOCAL_MODULES ON, you must be in the same directory as the
application executable when you invoke mxCompileUserModule. Otherwise,
mxCompileUserModule writes the module in the current directory, and you will
need to move the module to the global USERMODULES directory or co-locate the
module with its application. For more information, see Generating Locally or
Globally Placed Modules on page 17-3.

-d compiler-attribute-name=compiler-attribute-value

specifies default attribute settings for compilation and existing settings for the
module name. The module name settings are:

modulecatalog=cat
moduleschema=sch
modulegroup=grp
moduletableset=tgt
moduleversion=ver

The -d modulecatalog, moduleschema, modulegroup,
moduletableset, and moduleversion options are similar to the mxsqlco -g
modulecatalog, moduleschema, modulegroup, moduletableset, and
moduleversion options because you use them to externally qualify simple
module names. These options are not CONTROL QUERY DEFAULT settings
(however, all other -d attr=value pairs are). In addition, there is no default value
for -d modulecatalog or -d moduleschema.

The module name settings must match the module management options you
specified during preprocessing. See Running the SQL/MX COBOL Preprocessor
on page 16-9.

The default attribute settings for compilation override settings in the
SYSTEM_DEFAULTS table but do not override the object name qualification or the
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-27

COBOL Program Compilation Compiling Embedded Module Definitions
settings of embedded CONTROL QUERY DEFAULT, DECLARE, or SET
statements, which are set in the input source file. For more information, see the
SYSTEM_DEFAULTS table in the SQL/MX Reference Manual.

The OSS shell is used to invoke mxCompileUserModule, which in turn uses the
OSS shell to invoke mxcmp. Consequently, you must adjust the syntax for setting
CONTROL QUERY DEFAULT attribute values for MP_SYSTEM and
MP_VOLUME. The OSS shell performs command/parameter substitution and
allows a \ (backslash) to quote special characters such as $.

This example shows how to set MP_SYSTEM and MP_VOLUME as
mxCompileUserModule command-line options:

to get MP_SYSTEM=\KINGPIN --> use -d MP_SYSTEM=\\\\KINGPIN
to get MP_VOLUME=$TX012 --> use -d MP_VOLUME=\\\$TX012

application-file

is the OSS path name of an object file that contains embedded module definitions.
The OSS directory:

 Must exist and be accessible. Otherwise, an error is returned, and no module
is created.

 Must not specify a Guardian subvolume (/G/...) or a remote directory in an
Expand network (/E/...).

 Must not exceed 1024 characters.

module-name

is the fully qualified name of an embedded module definition. This option names
the generated module that is written to the user-specified local application
directory, user-specified Guardian or OSS location(s) or both, application DLL
location(s) or to the global /usr/tandem/sqlmx/USERMODULES directory. For
more information, see Module Management Naming on page 17-9.

Each module-name consists of:

[[catalog.]schema.]module[MODULEGROUP=group]
[MODULETABLESET=target][MODULEVERSION=version]

If catalog and schema are omitted, their default value settings can be supplied
with -d MODULECATALOG=catalog or -d MODULESCHEMA=schema. If
MODULEGROUP, MODULETABLESET, or MODULEVERSION is omitted, the default
setting can be supplied with -d MODULEGROUP=group, -d
MODULETABLESET=target, or -d MODULEVERSION=version.

If no module name is specified, mxCompileUserModule operates on all
embedded module definitions of application-file. Otherwise, each module-
name is the fully qualified three-part name of an embedded module definition in
application-file, and mxCompileUserModule operates only on the named
embedded module definitions.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-28

COBOL Program Compilation Compiling Embedded Module Definitions
In summary, modules can be named as:

 A fully qualified delimited module name, such as
cat.sch.\"GRP^MODULE^TGT^VER\"

 A qualified module name followed by module specification strings, such as
cat.sch.module MODULEGROUP=grp MODULETABLESET=tgt
MODULEVERSION=ver

 A simple, unqualified module name (for example, mod), with the catalog,
schema, group, table set, or version specified as -d compiler attributes.

You can run mxCompileUserModule more than once.

mxCompileUserModule extracts the application-file’s selected module
definitions. For each selected module definition m, mxCompileUserModule passes m
to mxcmp for SQL compilation. Each compilation of a selected module definition either
succeeds or fails just like any mxcmp invocation. An mxcmp compilation failure does not
affect preceding or following mxcmp invocations. In particular, an mxcmp compilation
failure does not prevent mxCompileUserModule from proceeding with the mxcmp
compilation of the next selected module definition.

Examples—mxCompileUserModule

 This command compiles the embedded module definition:

mxCompileUserModule sqlprog.exe

 This command places the module file in the same OSS directory as the application
executable:

mxCompileUserModule -g moduleLocal sqlprog.o

 These settings affect statement recompilation at execution time:

mxCompileUserModule -d AUTOMATIC_RECOMPILATION=ON \
-d SIMILARITY_CHECK=ON sqlprog.exe

 The following command compiles the embedded module definition and places the
module file in the user-specified OSS location, /usr/mymodules:

mxcompileusermodule -g moduleLocal=/usr/mymodules sqlprog.exe

 The following command compiles the embedded module definition and places the
module file in the user-specified Guardian location, /G/data01/mymod:

mxcompileusermodule -g moduleLocal=/G/data01/mymod
sqlprog.exe
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-29

COBOL Program Compilation MXCMP Environment Variable
 The following command displays the list of module files associated with the file,
CAT.SCH.TEST.EXE:

mxCompileUserModule -m CAT.SCH.TEST.EXE

List Of Modules:
CAT.SCH.TEST.EXE

1 module found, 0 modules extracted
0 mxcmp invocations: 0 succeeded, 0 failed

MXCMP Environment Variable

To specify an alternate location of the SQL/MX compiler (MXCMP) instead of the
default location of /G/system/system/mxcmp, use the MXCMP environment variable.
This environment variable is used by ecobol or nmcobol and the
mxCompileUserModule utility and enables you to direct them to use another version
of the MXCMP executable.

To set the MXCMP environment variable, enter this command at an OSS prompt before
invoking the ecobol or nmcobol or mxCompileUserModule utility:

export MXCMP="/G/usr/mydir/mxcmp"

For more information, see the Open System Services Shell and Utilities Reference
Manual.

MXCMPUM Environment Variable

To specify an alternate location of the compiler utility (mxCompileUserModule)
instead of the default location of
/usr/tandem/sqlmx/bin/mxCompileUserModule, use the MXCMPUM
environment variable. This environment variable is used by the ecobol or nmcobol
utility and enables you to direct ecobol or nmcobol to use another version of the
mxCompileUserModule utility.

To set the MXCMPUM environment variable, enter this command at an OSS prompt
before invoking the ecobol or nmcobol utility:

export MXCMPUM="/G/usr/mydir/mxCompileUserModule"

For more information, see the Open System Services Shell and Utilities Reference
Manual.

Compiling a Module Definition File

Embedded SQL application source files preprocessed with the -x and -m options or
that set the SQLMX_PREPROCESSOR_VERSION=800 environment variable continue to

Note. The OSS tool mxCompileUserModule with the -m option does not display the
module files associated with the DLLs loaded to an executable.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-30

COBOL Program Compilation Compiling a Module Definition File
generate module definition files as done in SQL/MX Release 1.8 and previous
releases.

To compile a module definition file, use the SQL/MX compiler mxcmp command on the
module definition (.m) file. The SQL/MX compiler places a compiled user module file in
the user-specified local application directory, user-specified Guardian or OSS
location(s) or both, application DLL location(s), or in the global
/usr/tandem/sqlmx/USERMODULES directory.

Command-Line Syntax

To invoke the SQL/MX compiler, at an OSS prompt, enter:

-e

directs mxcmp to generate a warning rather than an error if a table or class MAP
DEFINE in an SQL statement does not exist during explicit SQL/MX compilation.
To find errors in a program during explicit SQL/MX compilation, omit the -e option.

If you are using late name resolution and want to use a table or DEFINE that does
not exist during explicit SQL/MX compilation, include the -e option. Then at run
time, the SQL/MX executor automatically recompiles the SQL statement from the
statement’s source in the module by using the run-time version of the table.

-v

directs mxcmp to display summary information in addition to error and warning
messages for the compilation.

-g moduleGlobal

specifies that the module is placed globally in the
/usr/tandem/sqlmx/USERMODULES directory.

-g moduleLocal[=OSSdir]

directs mxcmp to place the module in the named OSS directory. The OSS directory
can be either a Guardian or an OSS location in the OSS format. If the OSS
directory is omitted, the module is created in the current directory. The following
rules related to the OSS directory apply:

 The OSS directory must exist and be accessible.

 The OSS directory must not be a remote directory in an Expand network.

 The OSS directory must not exceed 1024 characters.

mxcmp [-e] [-v]
 [-g {moduleGlobal|moduleLocal[=OSSdir]}]
 [-d compiler-attribute-name=compiler-attribute-value]...
 module-definition-file
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-31

COBOL Program Compilation Compiling a Module Definition File
If these conditions are not met, an error is generated, and no module is created.

If you do not specify -g moduleLocal=OSSdir , but set
MXCMP_PLACES_LOCAL_MODULES ON, you must be in the same directory as the
application executable when you invoke mxcmp. Otherwise, mxcmp writes the
module in the current directory, and you will need to move the module to the global
USERMODULES directory or co-locate the module with its application. For more
information, see Generating Locally or Globally Placed Modules on page 17-3.

-d compiler-attribute-name=compiler-attribute-value

specifies default attribute settings for compilation. The default attribute settings for
compilation override settings in the SYSTEM_DEFAULTS table but do not override
the object name qualification or the settings of embedded CONTROL QUERY
DEFAULT, DECLARE, or SET statements, which are in the input source file. For
more information, see the SYSTEM_DEFAULTS table in the SQL/MX Reference
Manual.

The OSS shell is used to invoke mxcmp. Consequently, you must adjust the syntax
for setting CONTROL QUERY DEFAULT attribute values for MP_SYSTEM and
MP_VOLUME. The OSS shell performs command/parameter substitution and
allows a \ (backslash) to quote special characters such as $.

This example shows how to set MP_SYSTEM and MP_VOLUME as mxcmp
command-line options:

to get MP_SYSTEM=\KINGPIN --> use -d MP_SYSTEM=\\KINGPIN
to get MP_VOLUME=$TX012 --> use -d MP_VOLUME=\$TX012

You must use a pair of backslashes when specifying the value for MP_SYSTEM
and one for MP_VOLUME.

module-definition-file

is the name of the input module definition file (.m) that was generated by the
COBOL preprocessor (mxsqlco).

The static SQL/MX compiler provides backward compatible behavior. If the
SQLMX_PREPROCESSOR_VERSION environment variable is set to 800, mxcmp behaves
just like SQL/MX Release 1.8. Otherwise, mxcmp supports all SQL/MX Release 2.x
features and command-line options. For more information, see Influencing Module
Management Behavior on page 17-9.

Example—mxcmp

The following command compiles the module definition and places module file in the
user specified OSS location, /usr/mymodules:

mxcmp -g moduleLocal=/usr/mymodules sqlprog.m
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-32

COBOL Program Compilation ecobol or nmcobol Utility: Using One Command for
All Compilation Steps
The following command compiles the module definition and places module file in the
user specified Guardian location, /G/data01/mymod:

mxcmp -g moduleLocal=/G/data01/mymod sqlprog.m

ecobol or nmcobol Utility: Using One
Command for All Compilation Steps

In the OSS environment, the ecobol or nmcobol utility provides the interface to
COBOL compilation components, including the SQL/MX COBOL preprocessor, the
native COBOL compiler, and the native object file linker (eld or nld). ecobol enables
you to perform TNS/E native compilation and build an embedded SQL/MX program in
a single command. On systems running H06.05 or later RVUs, nmcobol enables you
to perform TNS/R native compilation and build an embedded SQL/MX program in a
single command. You can also use the compiler utility options individually: for example,
to run the SQL/MX compiler after preprocessing.

In the Windows environment, ecobol and nmcobol are bundled with ETK. For details
on syntax and use, see the help file Using Command-Line Cross Compilers on
Windows, which is included with ETK. In addition, the Open System Services Shell and
Utilities Reference Manual contains a listing of all ecobol and nmcobol utility options.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-33

COBOL Program Compilation ecobol or nmcobol Utility: Using One Command for
All Compilation Steps
ecobol and nmcobol are installed in the /usr/bin directory.

ecobol and nmcobol Utility Options for SQL/MX

-Wsqlmx[={"args" | args}] Invokes the SQL/MX preprocessor prior
to invoking the COBOL compiler. Cannot
be specified with -Wsql or -Wsqlcomp.

You can use one or more of the args
(ansi_format, double_quotes,
listing, preprocess_only,
tandem_format, or refrain_r2),
separated by commas without space
between them.

ansi_format Directs the SQL/MX preprocessor to
assume ANSI fixed format for the source
program.

double_quotes Directs the SQL/MX preprocessor to
accept SQL string literals delimited by
double quotes, in addition to single
quotes.

listing Directs the SQL/MX preprocessor to
write its diagnostic messages to a file
named file.eL (where file is the
name of the primary source file).

preprocess_only Runs the SQL/MX preprocessor only.

tandem_format Directs the SQL/MX preprocessor to
assume TANDEM free format for the
source program.

refrain_r2 Directs the SQL/MX preprocessor to
refrain from embedding module
definitions in the annotated source file
and to use a module definition file.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-34

COBOL Program Compilation ecobol or nmcobol Utility: Using One Command for
All Compilation Steps
-Wsqlmxadd=["args" | arg] Passes valid preprocessor commands
(args) through to the SQL/MX
preprocessor without change or
validation. The preprocessor validates
the syntax.

-Wsettog=n Specifies a numeric toggle from 1
through 15 that is defined only during
preprocessing. Ignored without warning
if -Wsqlmx is not specified. Can be set
more than once to set multiple toggles
as either:

 -Wsettog=n,nn...
separated by commas without any
space between them

 -Wsettog=n -Wsettog=nn...
separated by space without any
commas

The option is not passed to the COBOL
compiler. For details about the -d
toggle option, see Syntax for the OSS-
Hosted SQL/MX COBOL Preprocessor
on page 16-14.

-Wtimestamp=value Passes a creation timestamp to the
SQL/MX preprocessor. Ignored without
warning if -Wsqlmx is not specified. If
set more than once, only the last
occurrence takes effect. ecobol or
nmcobol does not validate value.
Validation is left to the preprocessor. For
details about the form of value, see -t
timestamp on page 16-15.

-Wmxcmp[={"args" | args}] Invokes the SQL/MX compiler. If
compiling with embedded module
definitions, invokes
mxCompileUserModule. If compiling
with separate module definition files,
invokes mxcmp. Cannot be specified
with -Wsql, -Wsqlcomp, or
-Wmigrate. You can use either or both
warn or verbose args, separated by
commas without space between them.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-35

COBOL Program Compilation ecobol or nmcobol Utility: Using One Command for
All Compilation Steps
warn Directs the SQL/MX compiler to return a
warning rather than an error if a table
does not exist at compile time.

verbose Directs the SQL/MX compiler to display
summary information, in addition to error
and warning messages.

-Wmxcmp_querydefault=
compiler-attribute-name=
compiler-attribute-value[,
compiler-attribute-value...]

Directs the SQL/MX compiler to issue
the control query default setting at the
command line. The command-line
attribute settings override corresponding
entries in the SYSTEM_DEFAULTS
table. You can specify multiple attribute
name and value pairs, separated by
commas without spaces.

-Wmxcmp_add=["args" | arg] Passes any valid set of mxcmp or
mxCompileUserModule options
(args) to the SQL/MX compiler (mxcmp
or mxCompileUserModule) without
change or validation. The SQL/MX
compiler validates the syntax. You can
specify multiple options and value pairs,
separated by spaces.

-Wmxcmp_files=args Passes the .m files specified here to
mxcmp for module compilation (with
module definition files). Passes all files
without the .m file extension to
mxCompileUserModule for module
compilation (with embedded module
definitions in the annotated source file).

-WmoduleCatalog=arg Directs the SQL/MX preprocessor to use
the catalog name if the input sql-file
does not have a MODULE directive or
its MODULE directive does not specify a
catalog name.

-WmoduleSchema=arg Directs the SQL/MX preprocessor to use
the schema name if the input sql-file
does not have a MODULE directive or
its MODULE directive does not specify a
schema name.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-36

COBOL Program Compilation ecobol or nmcobol Utility: Using One Command for
All Compilation Steps
-WmoduleGroup[=[string]] Directs the SQL/MX preprocessor to
group all of an application’s module files.
The moduleGroup is embedded in the
module files’ names and enables the
use of OSS wild-card file specification
patterns to manage the files. For more
information, see Grouping on
page 17-23.

-WmoduleTableSet[=[string]] Directs the SQL/MX preprocessor to use
the module management targeting
feature. Create different sets of module
files that can be used against different
sets of tables. For more information, see
Specifying the search locations of the
module files on page 17-13.

-WmoduleVersion[=[string]] Allows multiple versions of an
application’s module files to coexist
while keeping the same MODULE
directive in each version. For more
information, see Versioning on
page 17-21.

-Wsqlmx_pp_defscript=args Specifies the files that contain the class
MAP DEFINEs that create environment
variables before SQL/MX preprocessing.

-Wmxcmp_cmd="oss_command;
oss_command"

Specifies the list of OSS commands to
execute before invoking the remote
mxcmp.

-Wsqlhost={hostname | IP-
address}

Specifies the host name or IP address of
the NonStop system where the tables
specified by INVOKE reside. This option
is required if you use INVOKE.

-Wsqlloc=OSS-directory Specifies the directory in which module
definition files are placed.

-Wsqlmx_port=port-number Specifies the TCP/IP port of the
NonStop system to connect to for the
ODBC listener process. The default port
for the Association server is 18650.

-Wsqluser=user[,password] Specifies the Guardian user name and
password with access to the tables that
INVOKE reads. Required if you use
INVOKE.

The PC-only options are shaded in gray.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-37

COBOL Program Compilation ecobol or nmcobol Utility: Using One Command for
All Compilation Steps
In addition to the options for preprocessing and compiling SQL/MX components,
ecobol and nmcobol supply SQL/MX environment variables that provide the path
names for the SQL/MX preprocessor (MXSQLCO) and the SQL/MX compiler (MXCMP
and MXCMPUM), in addition to the path name for definitions of the SQL call-level
interface (SQLCLIO). These CLI procedure calls, for the translated SQL statements in
the annotated COBOL source file, are required by the COBOL compiler. For more
information on ecobol and nmcobol environment variables, see the Open System
Services Shell and Utilities Reference Manual.

-Wsqlconnect

This option instructs the compiler about which security mode must be used while
communicating with the NSK host. This option works with compilers supported on
windows operating system. For example: c89, c99, and ecobol.

The syntax is:

 -Wsqlconnect = mode

Where mode is:

Usage Considerations

The usage considerations for -Wsqlconnect are:

 This option requires both the -Wsqlhost and -Wsqluser options to be
specified. If an invalid value is specified, an error is returned.

 If the value of -Wtarget is tns/r or mips, a secure connection is not
available.

 If the -Wsqlconnect= secure_err is specified, an error is returned.

legacy Directs the compiler to connect using the legacy
(unencrypted) mode.

secure_quiet Directs the compiler to connect using the secure
(encrypted) mode. If a secure connection cannot
be established, the compiler uses the legacy
mode. This option does not generate any
diagnostics.

secure_warn Directs the compiler to connect using the secure
(encrypted) mode. If a secure connection cannot
be established, the compiler uses the legacy
mode. A warning message is generated when this
option is used. This is the default option.

secure_err Directs the compiler to connect using the secure
(encrypted) mode. If a secure connection cannot
be established, an error occurs and the
compilation terminates.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-38

COBOL Program Compilation ecobol or nmcobol Utility: Using One Command for
All Compilation Steps
 If the -Wsqlconnect= secure_warn is specified, a warning is returned.

 Using the secure connection mode can increase the compilation time of
modules with embedded SQL/MX, by up to a factor of two. This is due to the
cost of performing encryption and decryption by using Secure Shell (SSH) or
Secure Sockets Layer(SSL), or both. (SQL/MX compilations use only SSH.)

HP_NSK_CONNECT_MODE

This environment variable is introduced in H06.25/J06.07 RVU and can be set to
any of the following values:

 legacy

 secure_quiet

 secure_warn

 secure_err

If the environment variable is set to any of the previous values, these values are used
by the compiler to set the connection mode. If the environment variable is set to any
other value, the compiler returns an error.

If both the –Wsqlconnect option is specified and the environment variable is set, the
value specified in the option overrides the value set in the environment variable.

SQL/MX Preprocessing

Use the -Wsqlmx[=args] command to invoke the SQL/MX preprocessor. For a full
description of how the OSS-hosted SQL/MX preprocessor works, see OSS-Hosted
SQL/MX COBOL Preprocessor on page 16-13.

Compiling COBOL Statements

Use the ecobol utility to compile COBOL statements in a preprocessed file to create a
TNS/E native object file. On systems running H06.05 or later RVUs, use the nmcobol
utility to compile COBOL statements in a preprocessed file to create a TNS/R native
object file.

Your application program can run in the OSS or Guardian environment. Use the
ecobol or nmcobol -Wsystype=oss option (which is the default) if you want your
application to be an OSS program. Use the ecobol or nmcobol
-Wsystype=guardian option if you want your application to be a Guardian program.
For more information, see Building SQL/MX Guardian Applications in the OSS
Environment on page 16-50.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-39

COBOL Program Compilation ecobol or nmcobol Utility: Using One Command for
All Compilation Steps
SQL/MX Compiling

Use the -Wmxcmp[=args] command to invoke the SQL/MX compiler. For a full
description of how to use the SQL/MX compiler, see Running the SQL/MX Compiler on
page 16-25.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-40

COBOL Program Compilation ecobol and nmcobol Examples With Embedded
Module Definitions
ecobol and nmcobol Examples With Embedded Module
Definitions

Figure 16-3 shows how the ecobol or nmcobol utility compiles a COBOL program
with embedded module definitions.

Figure 16-3. ecobol or nmcobol Generating Annotated Source With Embedded
Module Definitions

COBOL and SQL
Source File

COBOL and SQL
Source File

SQL/MX Preprocessor
(mxsqlco)

Linker
(eld or nld)

COBOL Compiler

vst153E.vsd

mxCompileUserModule

mxcmp

SQL/MX Modules

COBOL Annotated
Source File

COBOL Annotated
Source File

ecobol or nmcobol
utility

Executable With CLI

COBOL Object
File

COBOL Object
File
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-41

COBOL Program Compilation ecobol and nmcobol Examples With Embedded
Module Definitions
 These commands preprocess, compile, link, and SQL compile a single COBOL
source file:

ecobol -Wsqlmx -Wmxcmp -o sqlprog.exe sqlprog.ecob

nmcobol -Wsqlmx -Wmxcmp -o sqlprog.exe sqlprog.ecob

The ecobol or nmcobol utility invokes the preprocessor, mxsqlco, which uses
the file sqlprog.ecob as input and produces one file: sqlprog.cbl, which is a
COBOL annotated source file that contains embedded module definitions. The
ecobol or nmcobol utility then compiles and links sqlprog.cbl to produce the
executable file, sqlprog.exe. The SQL/MX compiler command -Wmxcmp
processes the executable file with the SQL/MX compiler,
mxCompileUserModule, to produce the module.

 These commands preprocess several COBOL source files and compile them but
do not link the results:

ecobol -c -Wsqlmx sqlprog1.ecob sqlprog2.ecob \
sqlprog3.ecob

nmcobol -c -Wsqlmx sqlprog1.ecob sqlprog2.ecob \
sqlprog3.ecob

If no errors are detected in either the preprocessing or compiling steps, these files
are created: sqlprog1.cob, sqlprog2.cob, sqlprog3.cob, sqlprog1.o,
sqlprog2.o, and sqlprog3.o.

 These commands preprocess and compile COBOL source files with and without
embedded SQL without linking:

ecobol -c -Wsqlmx file1.cbl file2.ecbl file3.ecob file4.cob

nmcobol -c -Wsqlmx file1.cbl file2.ecbl file3.ecob file4.cob

If no errors are detected in either the preprocessing or compiling steps, these files
are created: file2.cbl, file3.cob, file1.o, file2.o, file3.o, and
file4.o.

 The ecobol or nmcobol utility provides commands that pass through options to
the SQL/MX preprocessor and the SQL/MX compiler (-Wsqlmxadd and
-Wmxcmp_add, respectively). To preprocess files with preprocessor options, use
the -Wsqlmxadd option:

-Wsqlmxadd=-a

To pass a single option, do not use quotes or white space characters. To pass
multiple options, place them within double quotes and separate the options with a
white-space character:

-Wsqlmxadd="-a -m -c test.cbl"

 If you did not link your object files by using the ecobol or nmcobol utility, create
the executable program by using the eld or nld utility to link one or more object
files. For example, these commands link sqlprog1.o , sqlprog2.o, and find the
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-42

COBOL Program Compilation ecobol and nmcobol Examples With Embedded
Module Definitions
required CLI procedure definitions to create an executable file named
sqlprog.exe:

eld -lzcobdll -lzcredll -lzclidll sqlprog1.o sqlprog2.o \
-o sqlprog.exe

nld -lzcobsrl -lzcresrl -lzclisrl sqlprog1.o sqlprog2.o \
-o sqlprog.exe

For more information on eld, see the eld Manual. For more information on nld,
see the nld Manual.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-43

COBOL Program Compilation ecobol and nmcobol Examples With Module
Definition Files
ecobol and nmcobol Examples With Module Definition Files

Figure 16-4 shows how the ecobol or nmcobol utility compiles a COBOL program
with module definition files.

Figure 16-4. ecobol or nmcobol Generating Module Definition Files

ecobol or nmcobol
utility

vst154E.vsd

COBOL and SQL
Source File

COBOL and SQL
Source File

SQL/MX
COBOL Preprocessor

(mxsqlco)

SQL Module
Definition File

SQL Module
Definition File

SQL/MX Compiler
(mxcmp)

SQL/MX ModuleSQL/MX Module

COBOL Annotated
Source File

COBOL Annotated
Source File

COBOL Compiler

Linker
(eld or nld)

Executable With CLI
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-44

COBOL Program Compilation ecobol and nmcobol Examples With Module
Definition Files
 These commands preprocess, compile, link, and SQL compile a single COBOL
source file:

ecobol -Wsqlmx -Wsqlmxadd=-x -Wmxcmp -o sqlprog.exe \
sqlprog.ecob sqlprog.m

nmcobol -Wsqlmx -Wsqlmxadd=-x -Wmxcmp -o sqlprog.exe \
sqlprog.ecob sqlprog.m

The ecobol or nmcobol utility invokes the preprocessor, mxsqlco, which uses
the file sqlprog.ecob as input and produces two files: sqlprog.cbl and
sqlprog.m. The file sqlprog.cbl is the COBOL annotated source file, and the
file sqlprog.m is the corresponding module definition file. The ecobol or
nmcobol utility then compiles and links sqlprog.cbl to produce the executable
file, sqlprog.exe. The SQL/MX compiler command -Wmxcmp processes the
module definition file sqlprog.m with the SQL/MX compiler, mxcmp, to produce
the module.

 These commands preprocess several COBOL source files and compile them, but
they do not link the results:

ecobol -c -Wsqlmx -Wsqlmxadd=-x sqlprog1.ecob \
sqlprog2.ecob sqlprog3.ecob

nmcobol -c -Wsqlmx -Wsqlmxadd=-x sqlprog1.ecob \
sqlprog2.ecob sqlprog3.ecob

If no errors are detected in either the preprocessing or compiling steps, these files
are created: sqlprog1.m, sqlprog2.m, sqlprog3.m, sqlprog1.cob,
sqlprog2.cob, sqlprog3.cob, sqlprog1.o, sqlprog2.o, and
sqlprog3.o.

 These commands preprocess and compile COBOL source files with and without
embedded SQL without linking:

ecobol -c -Wsqlmx -Wsqlmxadd=-x file1.cbl file2.ecbl \
file3.ecob file4.cob

nmcobol -c -Wsqlmx -Wsqlmxadd=-x file1.cbl file2.ecbl \
file3.ecob file4.cob

If no errors are detected in either the preprocessing or compiling steps, these files
are created: file2.m, file2.cbl, file3.m, file3.cob, file1.o, file2.o,
file3.o, file4.o.

 If you did not link your object files by using the ecobol or nmcobol utility, create
the executable program by using the eld or nld utility to link one or more object
files. For example, these commands link sqlprog1.o, sqlprog2.o, and find the
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-45

COBOL Program Compilation Combining Embedded Module Definitions and
Module Definition Files
required CLI procedure definitions to create an executable file named
sqlprog.exe:

eld -lzcobdll -lzcredll -lzclidll sqlprog1.o sqlprog2.o \
-o sqlprog.exe

nld -lzcobsrl -lzcresrl -lzclisrl sqlprog1.o sqlprog2.o \
-o sqlprog.exe

For more information on eld, see the eld Manual. For more information on nld,
see the nld Manual.

Combining Embedded Module Definitions and
Module Definition Files

Suppose that you have a set of SQL COBOL utility routines that were developed with
module definition files. The object code is in sqlutil.o. To build, statically link in
sqlutil.o, and deploy a new application sqlapp.exe on OSS:

1. Create the COBOL source file (for example, sqlapp.ecbl) that contains
embedded SQL/MX statements:

* sqlapp.ecbl
?CONSULT sqlutil.o
 IDENTIFICATION DIVISION.
 PROGRAM-ID. sqlapp.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL DECLARE SCHEMA 'cat.sch' END-EXEC.
 EXEC SQL MODULE sqlappmod END-EXEC.
 ...
 PROCEDURE DIVISION.
 ...
 EXEC SQL DECLARE get_by_partnum CURSOR FOR
 SELECT partnum, partdesc, price, qty_available
 FROM =parts
 WHERE partnum >= :in_partnum
 FOR UPDATE OF partdesc, price, qty_available;
...

2. Set up class MAP DEFINEs in the OSS environment by using add_define:

add_define =parts class=map \
 file=\\bert.\$samdb.sales.parts

3. Run the SQL/MX COBOL preprocessor, COBOL compiler, native linker, and
SQL/MX compiler in one command:

ecobol -Wsqlmx -WmoduleSchema=cobcat.cobsch -Wmxcmp \
-Wmxcmp_querydefault="AUTOMATIC_RECOMPILATION=ON,\
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-46

COBOL Program Compilation Building SQL/MX COBOL Applications to Run in the
Guardian Environment
RECOMPILATION_WARNINGS=ON,SIMILARITY_CHECK=ON" \
sqlutil.o sqlapp.ecbl -o sqlapp.exe

nmcobol -Wsqlmx -WmoduleSchema=cobcat.cobsch -Wmxcmp \
-Wmxcmp_querydefault="AUTOMATIC_RECOMPILATION=ON,\
RECOMPILATION_WARNINGS=ON,SIMILARITY_CHECK=ON" \
sqlutil.o sqlapp.ecbl -o sqlapp.exe

The ecobol or nmcobol command:

 Preprocesses the COBOL source file, sqlapp.ecbl, into an annotated
source file, sqlapp.cbl, that contains embedded module definitions

 Compiles the annotated source file into an object file, sqlapp.o

 Links the object file, sqlapp.o, and the SQL COBOL utility routines in
sqlutil.o into an executable file, sqlapp.exe

 Generates a module named cobcat.cobsch.sqlappmod in the
USERMODULES directory

Assuming that the compiled module of sqlutil.o is still current, the sqlapp.exe
executable file is now runnable.

Building SQL/MX COBOL Applications to Run
in the Guardian Environment

To build SQL/MX COBOL applications that run in the Guardian environment, choose
one of these approaches, depending on your preferred development environment:

 Building SQL/MX Guardian Applications in the Guardian Environment on
page 16-47

 Building SQL/MX Guardian Applications in the OSS Environment on page 16-50

Building SQL/MX Guardian Applications in the Guardian
Environment

 Using the OSS Pass-Through Command on page 16-47

 OSS-to-Guardian File Naming on page 16-48

 Steps for Building an SQL/MX Application in the Guardian Environment on
page 16-48

 Using a TACL Macro to Build an SQL/MX Guardian Application on page 16-49

Using the OSS Pass-Through Command

Most commands for building an SQL/MX Guardian application can issued directly at a
TACL prompt. However, the SQL/MX preprocessor, mxsqlco, and the SQL/MX
compiler, mxcmp, are OSS commands, which run only from OSS. Although mxcmp
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-47

COBOL Program Compilation Building SQL/MX Guardian Applications in the
Guardian Environment
resides in the Guardian environment, it runs as an OSS process and must be started in
the OSS environment.

To run the SQL/MX preprocessor and the SQL/MX compiler in the Guardian
environment, use the OSS pass-through command by specifying the osh -c option.
The osh -c option executes one command line at a time in the OSS environment.
When you use the osh -c command, remember to enclose the entire command string
after osh -c in double quotes.

OSS-to-Guardian File Naming

When you issue OSS commands from a TACL prompt to preprocess and SQL compile
an application, the Guardian file names change automatically. In the Guardian
environment, the period is automatically dropped from the file name.

For example, this OSS pass-through command preprocesses a COBOL source file and
generates an annotated source file and module definition file in the Guardian
environment:

TACL> osh -c "mxsqlco prog.ecob -c prog.cbl -m prog.m"

The annotated source file and module definition file in $MYVOL.MYSUBVOL are
PROGCBL and PROGM. Be aware of the Guardian file name limitation of eight
characters.

Steps for Building an SQL/MX Application in the Guardian
Environment

Use the next commands at a TACL prompt to preprocess, SQL compile, and compile
and link an SQL/MX COBOL program.

1. To make the source file in the Guardian environment accessible to an OSS
process, enter this command, replacing myvol.mysubvol with your default
Guardian volume and subvolume:

param home /G/myvol/mysubvol

The source file named progecob in $MYVOL.MYSUBVOL must be Guardian file
code 101.

2. To invoke the SQL/MX preprocessor, which is an OSS process, enter an OSS
pass-through command at a TACL prompt:

TACL> osh -c "mxsqlco progecob -c progcbl &
-m progm |tee templog"

Note. When using OSS pass-through commands in the Guardian environment, be aware of
the effect of #INFORMAT TACL on those commands. If #INFORMAT TACL is in effect for your
session, you must put a tilde (~) before the pipe (|) symbol. Otherwise, the pipe symbol cannot
reach the shell for execution because it has a programming function within TACL.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-48

COBOL Program Compilation Building SQL/MX Guardian Applications in the
Guardian Environment
3. To invoke the SQL/MX compiler, which is an OSS process, enter an OSS pass-
through command at a TACL prompt:

TACL> osh -c "/G/system/system/mxcmp progm |tee templog"

4. Errors generated by the SQL/MX preprocessor or SQL/MX compiler are logged in
the OSS file templog. To convert the error log to a Guardian file:

TACL> purge proglog
TACL> ctoedit templog,proglog

5. Run the Guardian COBOL compiler and linker.

For TNS/E native compilation:

== Convert the annotated source file from an OSS text file
== (file code 180) to a Guardian text file (file code 101).
TACL> ctoedit progcbl,progsrc
== Call the ECOBOL compiler to generate the object file.
TACL> ecobol /in progsrc,out progout/progo; &
 consult $system.system.esqlclio
== Call the eld linker to generate an executable file.
TACL> eld -lzcobdll -lzcredll -lzclidll progo &
 -o progexe

For TNS/R native compilation:

== Convert the annotated source file from an OSS text file to
== a Guardian text file.
TACL> ctoedit progcbl,progsrc
== Call the NMCOBOL compiler to generate the object file.
TACL> nmcobol /in progsrc,out progout/progo; &
 consult $system.system.sqlclio
== Call the nld linker to generate an executable file.
TACL> nld -lzcobsrl -lzcresrl -lzclisrl progo &
 -o progexe

6. Execute the executable:

TACL> run progexe

Using a TACL Macro to Build an SQL/MX Guardian
Application

Use a TACL macro file to combine and execute the commands. Use these sample
TACL macros to customize your own script. In the samples, the source file is located in
the Guardian environment and named progecob. Remember that the source file must
be Guardian file code 101.

For TNS/E native compilation:

?tacl macro
param home /G/myvol/mysubvol
== Store terminal information in file templog.
== The source file must be file code 101.
== Call the SQL/MX preprocessor.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-49

COBOL Program Compilation Building SQL/MX Guardian Applications in the OSS
Environment
osh -c "mxsqlco progecob -c progcbl -m progm &
~|tee templog"
== Call the SQL/MX compiler.
osh -c "/G/system/system/mxcmp progm ~|tee -a templog"
== Convert OSS text files (file code 180) to Guardian text files
== (file code 101).
sink [#purge proglog]
ctoedit templog,proglog
ctoedit progcbl,progsrc
== Call the ECOBOL compiler to generate the object file.
ecobol /in progsrc,out progout/progo; &
consult $system.system.esqlclio
== Call the eld linker to generate an executable file.
eld -lzcobdll -lzcredll -lzclidll progo -o progexe
== Execute the executable.
run progexe

For TNS/R native compilation:

?tacl macro
param home /G/myvol/mysubvol
== Store terminal information in file templog.
== The source file must be file code 101.
== Call the SQL/MX preprocessor.
osh -c "mxsqlco progecob -c progcbl -m progm &
~|tee templog"
== Call the SQL/MX compiler.
osh -c "/G/system/system/mxcmp progm ~|tee -a templog"
== Convert OSS text files to Guardian text files.
sink [#purge proglog]
ctoedit templog,proglog
ctoedit progcbl,progsrc
== Call the NMCOBOL compiler to generate the object file.
nmcobol /in progsrc,out progout/progo; &
consult $system.system.sqlclio
== Call the nld linker to generate an executable file.
nld -lzcobsrl -lzcresrl -lzclisrl progo -o progexe
== Execute the executable.
run progexe

Building SQL/MX Guardian Applications in the OSS
Environment

You can use the ecobol or nmcobol -Wsystype=guardian option to build an
SQL/MX Guardian application in the OSS environment. Follow these steps:

1. Create an embedded SQL/MX COBOL source file (for example, prog.ecob) in
the OSS environment.

If your source file contains COPY statements, “OSS ” must precede the system file
name of an OSS directory. Otherwise, the compiler assumes that referenced files
are the same type as -Wsystype, which is Guardian, and returns an error.

COPY TEXT-NAME OF "OSS /usr/ossdir/".
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-50

COBOL Program Compilation Running an SQL/MX Application
2. Compile the COBOL source file by using the -Wsystype=guardian option of the
OSS compiler utility:

ecobol -Wsqlmx -Wmxcmp -Wsystype=guardian prog.ecob \
-o prog.exe

nmcobol -Wsqlmx -Wmxcmp -Wsystype=guardian prog.ecob \
-o prog.exe

3. Copy the executable file, prog.exe, from an OSS directory to a Guardian volume
and subvolume:

cp prog.exe /G/myvol/mysubvol/progexe

4. In the Guardian environment, assign file code 800 (for TNS/E native applications)
or file code 700 (for TNS/R native applications) to the executable file:

TACL> fup alter progexe, code 800

TACL> fup alter progexe, code 700

5. Run the executable in the Guardian environment:

TACL> run progexe

Running an SQL/MX Application
This subsection describes how COBOL application code is correctly linked to the
compiled SQL/MX user module. Topics include:

 Running the SQL/MX Program File on page 16-52
 Understanding and Avoiding Common Run-Time Errors on page 16-52
 Displaying Query Execution Plans on page 16-55

As stated in Running the SQL/MX COBOL Preprocessor on page 16-9, when the
preprocessor reads an embedded SQL source file and writes the COBOL annotated
source file, it replaces the SQL statements with COBOL code to call the SQL CLI to
execute the SQL statement, along with code to handle parameter passing and error
processing. At run time, the calls to the CLI pass in a descriptor of the statement,
which gives the statement name, the module name, and a module timestamp.

The CLI begins processing each call by checking that it has the associated module in
memory. If not, it uses the module name to find the correct module file in the
application’s base directory. If a co-located module is not found there, it looks for the
module file in the /usr/tandem/sqlmx/USERMODULES directory. Before it reads in
the compiled SQL plans from a module file, the CLI also checks that the module
timestamp encoded in the module file matches the module timestamp passed in from
the COBOL application.

If the application consists of more than one separately compiled module, when the first
statement from the module is executed, the sequence of reading the module file and
checking its module timestamp is performed and repeated for each module associated
with the application.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-51

COBOL Program Compilation Running the SQL/MX Program File
Security of the /usr/tandem/sqlmx/USERMODULES directory is very important. You
should restrict access so that users cannot alter the query plans in the modules or
remove modules. For information on securing modules, see the SQL/MX Release 3.2
Management Manual.

Running the SQL/MX Program File

An SQL/MX program can run in the OSS or in the Guardian environment. You can use
the GTACL command to start a Guardian program from OSS. You can use the osh
command to start an OSS program from a Guardian TACL session.

 From the OSS environment, enter the program file name at the OSS shell prompt.
You can also use the OSS run command to run the program file by using specific
Guardian attributes (for example, a CPU or priority for the process).

 From the Guardian environment, use the TACL osh command to run the program.
For more information, see Building SQL/MX COBOL Applications to Run in the
Guardian Environment on page 16-47.

For more information on the run or osh command, see the Open System Services
Shell and Utilities Reference Manual or the OSS reference pages.

Understanding and Avoiding Common Run-Time Errors

The details of how a COBOL executable is linked with its module or modules are
handled by the system and take place in the background. However, by understanding
this process and why certain run-time errors occur, you can avoid some common
SQL/MX application development issues.

Module File Errors

Error 8809 Unable to open module file

Error 8809 error occurs if module files are deleted from the base directory of the
application, the /usr/tandem/sqlmx/USERMODULES directory, user-specified
Guardian or OSS location(s) or both, or the application DLL location(s).

This error might also occur if the named module file exists but is not readable, or if the
required permission to access the volume, sub volume, or the OSS directory is not
granted. The owner of the module file must change the permission attributes to ensure
that an application can read the module file.

Error 8808 Module file name contains corrupted or invalid data

This error occurs when the timestamp encoded in the module file does not match the
timestamp passed from the application to the CLI. These timestamps are initially
generated by the preprocessor and are used to ensure that the version of the
application is synchronized with the version of the module file. This error can occur if
you run the preprocessor on your embedded SQL, compile the annotated COBOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-52

COBOL Program Compilation Understanding and Avoiding Common Run-Time
Errors
output file, but fail to SQL compile the module definition file that the preprocessor
generates. If the SQL/MX compiler has previously compiled a different instance of the
module definition file, a module exists whose name corresponds to the application
module but has a mismatched timestamp.

This error can also occur if you make a copy of an application executable, rebuild the
application (thus overwriting the original instance of the application’s module file), and
then execute the first copy of the application.

A common cause of error 8808 is reuse of code. If you have an embedded SQL source
named myutils.ecob, you might build and link myutils with a number of
applications. Each build (that is, preprocessing, COBOL-compilation and SQL
compilation) of myutils results in a new copy of the same module file overwriting an
earlier copy. Only the last application built with myutils.ecob avoids error 8808.

To avoid error 8808:

 If you want to reuse embedded modules, use either the grouping or versioning
attributes described in Section 17, Program and Module Management. Qualifying
your module name with a group or version attribute enables the separate builds of
a module to coexist.

 Build myutils.ecob only once, and then link the resulting myutils.o file to
each application.

When you need to rebuild myutils for each application, you can either edit the
myutils.ecob source and change the name of the module that you give in the
MODULE directive, or you can avoid the MODULE directive and let the
preprocessor generate the module name.

Error 8400 The CLASS attribute of the DEFINE is not correct.

Error 8400 occurs if the Define =_MX_MODULE_SEARCH_PATH class type is not
SEARCH DEFINE. This variable is used to locate and load the module file. Ensure that
Define =_MX_MODULE_SEARCH_PATH is specified correctly and restart the
embedded SQL program.

Module File Naming

In application development, avoid the use of delimited identifiers that contain dots (.) in
the name of a module’s catalog and schema and in the module name itself. Delimited
identifiers begin and end with double quotation characters (""). However, quotation
characters are removed when NonStop SQL/MX forms the three-part module name. In
some cases of delimited identifiers that contain dots, the resulting three-part module
name duplicates an unrelated module name, replacing the query execution plans of the
other module file. For example, a module named "A.B".C.D (catalog "A.B", schema
C, and module name D) creates a module file name of
/usr/tandem/sqlmx/USERMODULES/A.B.C.D. A module named A."B.C".D
(catalog A, schema "B.C", and module name D) creates an identically named module
file. The second file overwrites the first, and the first module's application cannot
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-53

COBOL Program Compilation Understanding and Avoiding Common Run-Time
Errors
execute. For more information on delimited identifiers, see the SQL/MX Reference
Manual.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-54

COBOL Program Compilation Displaying Query Execution Plans
Displaying Query Execution Plans

The EXPLAIN function is an SQL/MX extension that generates a result table describing
an access plan for a DML statement, otherwise known as a query execution plan. Use
the EXPLAIN function for a DML statement in a module. For more information, see
Displaying Query Execution Plans on page 15-75.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-55

COBOL Program Compilation Displaying Query Execution Plans
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
16-56

17
Program and Module Management

Developing SQL/MX applications requires both a flexible and controlled development
environment. You need to be able to move program and module files from
development to a test or production environment. You also need to have control over
the development environment to effectively manage module files and modifications
made to those files. These needs become even more critical when you consider
parallel development on multiple versions of a particular SQL/MX application or when
you are testing, deploying, or upgrading SQL/MX applications in a geographically
distributed environment.

This section describes how to manage the files of C/C++ and COBOL applications:

 Program Files on page 17-1
 Managing Program Files on page 17-3
 Specifying the search locations for the module files on page 17-7
 Generating Locally or Globally Placed Modules on page 17-3
 Module Management Behavior on page 17-8
 Module Management Naming on page 17-9

Program Files
To make your SQL/MX embedded SQL source files, preprocessed files, module
definition files, and module files on both systems easier to find, use the naming
conventions listed in Table 17-1.

Note. NonStop SQL/MX does not support the ability to have different compiled modules of the
same application accessing NonStop SQL/MP and NonStop SQL/MX.

Table 17-1. File Naming Conventions (page 1 of 2)

File Naming Convention

Embedded SQL source file in C source-file.sql
source-file.ec

Embedded SQL source file in C++ source-file.eC
source-file.ecc
source-file.ecpp
source-file.ecxx
source-file.ec++

Embedded SQL source file in COBOL source-file.ecob
source-file.ecbl
source-file.ECOB
source-file.ECBL

C preprocessed file source-file.c
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-1

Program and Module Management Program Files
C++ preprocessed file source-file.C
source-file.cc
source-file.cpp
source-file.cxx
source-file.c++

COBOL preprocessed file source-file.cbl

Executable program file source-file.exe

Module definition file source-file.m

SQL/MX module Use the MODULE directive to name a
module. If you do not specify the catalog and
schema names, NonStop SQL/MX
automatically qualifies the module name with
your current default catalog and schema. If
no default catalog and schema are defined,
NonStop-hosted SQL/MX preprocessors use
your Guardian group and user name for the
default module catalog and schema names.
Windows-hosted SQL/MX preprocessors
use SQLMX_DEFAULT_CATALOG and
SQLMX_DEFAULT_SCHEMA as the default
module catalog and schema names for the
MODULE directive.

If you do not use the MODULE directive to
name a module, the preprocessor generates
a default name.

The complete name of the module (module
file) is displayed by the SQL/MX compiler
after a successful compilation. It is also
written into the module definition file’s
module statement, if one is generated. You
can examine the contents of the module
definition file with any text editor. For
information on module names in embedded
module definitions, see Compiling
Embedded Module Definitions on
page 15-37.

By default, modules are stored in
/usr/tandem/sqlmx/USERMODULES.
However, you can use the mxcmp options to
place modules locally, at user-specified
Guardian or OSS location(s) or both, or at
the application DLL location(s). For more
information, see Generating Locally or
Globally Placed Modules on page 17-3.

Table 17-1. File Naming Conventions (page 2 of 2)

File Naming Convention
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-2

Program and Module Management Managing Program Files
Managing Program Files
You probably develop, test, and debug applications on a development or test system
and then move the applications to a production system for actual use. On the
development system, you would typically test and tune applications by using a
database modeled after the database on the production system.

On the production system, program management tasks include:

 Moving programs from development to production
 Distributing programs across nodes
 Ensuring proper name resolution
 Assigning permissions for running database applications
 Maintaining query plan validity
 Backing up and restoring programs

For more information, see the SQL/MX Release 3.2 Management Manual. To migrate
programs to NonStop SQL/MX Release 2.x, see the SQL/MX Database and
Application Migration Guide.

Generating Locally or Globally Placed Modules
In NonStop SQL/MX releases prior to Release 2.x, all modules were globally placed
modules in the /usr/tandem/sqlmx/USERMODULES directory. In SQL/MX Release
2.x, you can place modules globally or locally. A locally placed module resides in an
OSS directory other than the /usr/tandem/sqlmx/USERMODULES directory and is
co-located with its application executable. The format and contents of globally placed
modules are identical to locally placed modules.

Generating locally placed modules is easier and provides more flexibility than
generating globally placed modules with the grouping, targeting, and versioning
options. Instead of generating globally placed modules in the /usr/tandem/
sqlmx/USERMODULES directory and relying on the grouping, targeting, and versioning
attributes to distinguish between the modules of each application, you can co-locate
locally placed modules in the same directory as the application.

For compatibility with applications created in prior releases, in SQL/MX Release 2.x the
SQL/MX compiler produces a globally placed module unless instructed to produce a
locally placed module.

You can specify that locally placed modules always be produced by setting the
MXCMP_PLACES_LOCAL_MODULES attribute ON in the SYSTEM_DEFAULTS
table. The system-defined default value for this attribute is OFF, which means that by
default all modules are globally placed in the /usr/tandem/sqlmx/USERMODULES
directory.

On a case-by-case basis, you specify user-defined, locally and globally placed
modules with the following command-line options:
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-3

Program and Module Management Managing the Coexistence of Globally and Locally
Placed Modules
 mxCompileUserModule

 -g moduleGlobal | -g moduleLocal[=OSSdir]

 mxcmp

 -g moduleGlobal | -g moduleLocal[=OSSdir]

For additional details about setting the SQL/MX compiler options, see Compiling
Embedded Module Definitions on page 15-37 and 16-25 and Compiling a Module
Definition File on page 15-42 and 16-30.

Managing the Coexistence of Globally and Locally Placed
Modules

While it is recommended that you choose one approach for a production system
(locally or globally placed module generation), you might find a need to mix locally and
globally placed modules in your development environment. When you create new
applications that use locally placed modules but keep existing applications that use
globally placed modules, problems might occur if you are not careful.

The SQL/MX executor always searches for the module by first looking locally and then
globally. The execution of an application fails or yields unpredictable results if:

 A locally placed module is deleted, and an older or unrelated module of the same
name exists in the /usr/tandem/sqlmx/USERMODULES directory.

 A non-module file with the same name as a globally placed module exists in the
same OSS directory as the executable.

To avoid these problems:

 Use a unique name for each module.

 Use application file names that do not conflict with your carefully chosen module
names.

In an environment where globally and locally placed modules coexist, use one of these
methods to generate modules.

 System-Wide Setting for Locally Placed Modules on page 17-4
 System-Wide Setting for Globally Placed Modules on page 17-5

System-Wide Setting for Locally Placed Modules

To specify that modules are always placed in a local directory, insert the
MXCMP_PLACES_LOCAL_MODULES attribute and set it to ON in the
SYSTEM_DEFAULTS table. Remember that the setting in the SYSTEM_DEFAULTS
table affects all users on the same NonStop system.

To co-locate your modules with your application, ensure that you are in the same
directory as the application executable when you invoke mxcmp or
mxCompileUserModule. Otherwise, mxCompileUserModule and mxcmp place the
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-4

Program and Module Management Managing the Coexistence of Globally and Locally
Placed Modules
module in the current directory, and you will need to manually move the module to co-
locate it with its application.

To generate globally placed modules in the /usr/tandem/sqlmx/USERMODULES
directory on a case-by-case basis, use the -g moduleGlobal option, as shown next:

mxCompileUserModule -g moduleGlobal app.exe

For more information, see Compiling Embedded Module Definitions on page 15-37 and
16-25.

System-Wide Setting for Globally Placed Modules

By default, the mxCompileUserModule and mxcmp commands automatically place
globally placed modules in the /usr/tandem/sqlmx/USERMODULES directory.

To generate locally placed modules on a case-by-case basis with
mxCompileUserModule, use the -g moduleLocal option, as shown next:

mxCompileUserModule -g moduleLocal dir/app.exe

To generate locally placed modules on a case-by-case basis with mxcmp, use the -g
moduleLocal=OSSdir option, replacing OSSdir with the name of the application
directory:

mxcmp -g moduleLocal=OSSdir sqlprog.m

For more information, see Compiling Embedded Module Definitions on page 15-37 and
16-25 and Compiling a Module Definition File on page 15-42 and 16-30.

Considerations for Co-Locating Locally Placed Modules

Two methods exist for creating locally placed modules. You can set the
MXCMP_PLACES_LOCAL_MODULES attribute ON in the SYSTEM_DEFAULTS table
to specify that locally placed modules always be created. You can generate locally
placed modules on a case-by-case basis with the -g moduleLocal options for
mxcmp and mxCompileUserModule. Consider these issues when co-locating locally
placed modules:

 Invoking mxCompileUserModule dir/app.exe is not the same as invoking
mxCompileUserModule -g moduleLocal dir/app.exe.

The directory path in mxCompileUserModule dir/app.exe merely states where
the application is located. If you have not set the
MXCMP_PLACES_LOCAL_MODULES attribute ON in the SYSTEM_DEFAULTS
table, the module is globally placed in the /usr/tandem/sqlmx/USERMODULES
directory. If you have set the MXCMP_PLACES_LOCAL_MODULES attribute ON
in the SYSTEM_DEFAULTS table, the module is placed in the current directory
where mxcmp or mxCompileUserModule is invoked. To co-locate the module
with the application, ensure that you are in the proper directory before you invoke
mxcmp or mxCompileUserModule.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-5

Program and Module Management Generating modules in a user-specified location
The directory path in mxCompileUserModule -g moduleLocal dir/app.exe
states both where the application is located and where to co-locate the module
with the application. You can invoke mxcmp or mxCompileUserModule with the
-g moduleLocal option from any OSS directory and automatically co-locate the
module with the application.

 Set the MXCMP_PLACES_LOCAL_MODULES attribute only in the
SYSTEM_DEFAULTS table.

The MXCMP_PLACES_LOCAL_MODULES attribute in the SYSTEM_DEFAULTS
table establishes a system-wide policy. Avoid these ways of setting
MXCMP_PLACES_LOCAL_MODULES:

 In an embedded CONTROL QUERY DEFAULT statement in an application
 With the -d option in mxcmp or mxCompileUserModule

The syntax for these methods is valid but could be complicated and problematic.
For example, this command places the module in the current directory where you
invoke mxCompileUserModule instead of in the same directory as the
application executable:

mxCompileUserModule -d MXCMP_PLACES_LOCAL_MODULES=ON
dir/app.exe

Instead, you can more easily invoke this command from any OSS directory to co-
locate the module with the application:

mxCompileUserModule -g moduleLocal dir/app.exe

Embedding a static CONTROL QUERY DEFAULT statement with
MXCMP_PLACES_LOCAL_MODULES ‘ON’ directs the SQL/MX compiler to
generate a locally placed module for the application in the OSS directory where
you invoke mxCompileUserModule or mxcmp. Embedding a dynamic CONTROL
QUERY DEFAULT statement with MXCMP_PLACES_LOCAL_MODULES ‘ON’
directs any SQL/MX compiler process spawned by the application to generate
locally placed modules in the current directory.

Therefore, for the best results, set the MXCMP_PLACES_LOCAL_MODULES
attribute in the SYSTEM_DEFAULTS table or set locally or globally placed modules
on a case-by-case basis with the -g moduleLocal or -g moduleGlobal
options of mxcmp and mxCompileUserModule.

Generating modules in a user-specified
location

You can generate modules in any user-specified Guardian or OSS location, including
local, global, and application DLL locations.

Depending on the requirement, you can specify the user-specified, locally, and globally
placed modules with the following command-line options:
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-6

Program and Module Management Specifying the search locations for the module files
mxCompileUserModule

-g moduleGlobal | -g moduleLocal=[OSSdir]

mxcmp

-g moduleGlobal | -g moduleLocal=[OSSdir]

Specifying the search locations for the module files

The modules placed in the user-specified locations are loaded by the embedded SQL
program using Define =_MX_MODULE_SEARCH_PATH or the OSS environment
variable _MX_MODULE_SEARCH_PATH.

Guardian DEFINE

The Guardian DEFINE class must be SEARCH. You can specify either a single
location or multiple locations using the SUBVOL0-20 or RELSUBVOL0-20 or both
attributes of SEARCH DEFINE. Guardian DEFINE is supported for both Guardian and
OSS embedded SQL programs. The order of the module file search is SUBVOL0,
RELSUBVOL0...SUBVOL20, RELSUBVOl20.

The following are examples of Guardian DEFINE:

 Single search location

add define =_MX_MODULE_SEARCH_PATH, class search, subvol0
$DATA01.USRMODS

 Multiple search locations

add define =_MX_MODULE_SEARCH_PATH, class search, subvol0
($DATA01.USRMOD1,$DATA02.USRMOD2)

OSS environment

You can specify multiple OSS locations using the OSS environment variable. The OSS
locations must be separated by colons (:). Therefore, SQL/MX does not support
module files placed in a directory that contains a colon. If you are using the OSS
environment variable, and you want to locate the module files in a Guardian location,
you can specify the Guardian module location in the OSS format. For example,
/G/data01/mxmods. The OSS environment is supported only for OSS-embedded
SQL programs.

The module files are searched for in the specified order of the directories, in the
environment variable. For example,

export
_MX_MODULE_SEARCH_PATH=/home/usermodule1:/home/usermodule2:/G/da
ta01/mxmods
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-7

Program and Module Management Managing Modules
Module search sequence

SQL/MX will search for the module file in the following locations, in the specified order:

1. The location of the program executable.

2. Locations specified in the OSS environment variable,
_MX_MODULE_SEARCH_PATH, followed by the locations specified in Define
=_MX_MODULE_SEARCH_PATH.

3. Each of the application DLL locations.

4. The system global module directory, /usr/tandem/sqlmx/USERMODULES.

Managing Modules
For an embedded SQL application to run properly, you must maintain the modules of
that application in either the /usr/tandem/sqlmx/USERMODULES directory or a
locally defined directory. For information on the consequences of mismanaged
modules, see Running an SQL/MX Application on page 15-72 (C/C++) or Running an
SQL/MX Application on page 16-51 (COBOL). For information on locally placed
modules, see Generating Locally or Globally Placed Modules on page 17-3.

Module management tasks include:

 Securing the modules
 Checking module dependencies by using the DISPLAY USE OF command
 Removing modules

For more information, see the SQL/MX Release 3.2 Management Manual.

Module Management Behavior
By default, in SQL/MX Release 2.x, the SQL preprocessor generates a self-contained
application executable file that contains embedded module definitions. To obtain the
full benefit of the self-contained application code, avoid using the -x or -m options when
preprocessing embedded SQL source files of an application.

If you have applications that use module definition files, you can continue to generate
them by using the environment variable SQLMX_PREPROCESSOR_VERSION=800 and
certain preprocessor options, described under Influencing Module Management
Behavior. The SQL preprocessor generates a separate module definition file that
contains the translated SQL statements of an embedded SQL source file.

Note. You must ensure that the module file names are unique across all the locations. While
searching for the module files, if SQL/MX finds a module that matches the specified name, it
stops searching for the module file and might load the wrong module file.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-8

Program and Module Management Influencing Module Management Behavior
Influencing Module Management Behavior

You might have static SQL/MX application build scripts that require that the SQL
preprocessor always generate separate module definition files. By using the
environment variable SQLMX_PREPROCESSOR_VERSION=800 and preprocessor
options -x and -m, you can instruct the SQL preprocessor to generate module definition
files.

To set the SQLMX_PREPROCESSOR_VERSION environment variable, enter this
command on the OSS command line:

export SQLMX_PREPROCESSOR_VERSION=800

The preprocessor interprets the SQLMX_PREPROCESSOR_VERSION environment
variable and the -m and -x options, as indicated in Table 17-2. Suppose that the input
file name sql-file consists of base.extension. Consequently, if the input file
name sql-file were “prog.sql,” its base would be “prog,” and its extension
would be “sql.”

Module Management Naming
Use module management naming to externally qualify the file names of modules to
assist you with these development tasks:

 Configuring applications to target different sets of database objects
 Managing different versions of an application
 Grouping the modules of an application

Table 17-2. Preprocessor Interpretation of SQLMX_PREPROCESSOR_VERSION
Environment Variable and -m and -x Options

SQLMX_PREPROCESSOR_
VERSION
environment variable -m ? -x ?

Module
Definition File?

Embedded
Module
Definition? *

Is >=1200 or is not set at all No No No Yes

Is >=1200 or is not set at all No Yes Yes in base.m No

Is >=1200 or is not set at all
See note **

Yes No Yes in module-
definition-
file

Yes

Is >=1200 or is not set at all Yes Yes Yes in base.m No

Is set to 800 No Error Yes in base.m No

Is set to 800 Yes Error Yes in module-
definition-
file

No

* The embedded module definition is included in the annotated output source file.

** This row shows the settings that you use to generate both module definition file and a single-file annotated
output source file (that contains embedded module definitions). You use these settings when you have a
combination of NonStop SQL/MX Release 1.x and 2.x.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-9

Program and Module Management How Modules Are Named
To accomplish these tasks, you need not change the C, C++, or COBOL source file or
rely strictly on the MODULE directive or on module naming defaults. Instead, you can
specify the catalog and schema and the target, version, and group attributes for the
module names during SQL preprocessing. The external naming of the module files
during preprocessing influences the targeting, versioning, and grouping properties of
an application.

For more information, see:

 How Modules Are Named on page 17-10
 Effect of Module Management Naming on page 17-13
 Specifying the search locations of the module files on page 17-13
 Versioning on page 17-21
 Grouping on page 17-23

How Modules Are Named

The SQL preprocessor generates a three-part module name based on the MODULE
directive that you specify in the C, C++, or COBOL source file. For more information,
see Section 15, C/C++ Program Compilation and Section 16, COBOL Program
Compilation. The three parts of the module name are the catalog, schema, and module
names, separated by periods. For example:

CAT.SCH.MOD

If the C, C++, or COBOL source file does not contain a MODULE directive, the SQL
preprocessor generates a synthetic three-part module name. If a default catalog exists,
the preprocessor uses the default catalog name. If no default catalog exists, the
Windows-hosted preprocessor uses the synthetic SQLMX_DEFAULT_CATALOG_
name and the NSK-hosted SQL preprocessor uses your Guardian group name. If a
default schema exists, the preprocessor uses the default schema name. If no default
schema exists, the Windows-hosted preprocessor uses the synthetic
SQLMX_DEFAULT_SCHEMA name and the NSK-hosted preprocessor uses your
Guardian group name. If no MODULE directive exists in the source file, the SQL
preprocessor introduces a synthetic module name of the form
SQLMX_DEFAULT_MODULE_timestamp.

In this example, a default catalog and schema are in effect, but no module directive
exists:

CAT.SCH.SQLMX_DEFAULT_MODULE_21194398887224944

In this example, no default catalog or schema are in effect, however, a module
directive exists:

SQLMX_DEFAULT_CATALOG_.SQLMX_DEFAULT_SCHEMA_.TESTA193M (on PC)
GROUP.USER.TESTA193M (on NSK)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-10

Program and Module Management How Modules Are Named
In this example, no default catalog or schema are in effect and no module directive
exists.

SQLMX_DEFAULT_CATALOG_.SQLMX_DEFAULT_SCHEMA_.SQLMX_DEFAULT_MODUL
E_2119439730011160670 (on PC)
GROUP.USER.SQLMX_DEFAULT_MODULE_2119439730011160670 (on NSK)

In addition to the three-part module name determined by the MODULE directive or by
the system, you can pass these optional module management attributes to the SQL
preprocessor:

 Catalog
 Schema
 Target or table set
 Version
 Group

You specify these attributes with the preprocessor option -g and without changing the
MODULE directive in the source file. The preprocessor applies the catalog and
schema and the target (or table set), version, and group attributes to the processed,
three-part module name to create an externally qualified module name.

The externally qualified module name consists of the three-part module name plus the
module management attributes delimited by circumflex (^) characters:

CAT.SCH.GRP^MOD^TABLESET^VER

The preprocessor embeds the externally qualified module name in the module
definition. During SQL compilation, the SQL/MX compiler uses the externally qualified
module name in the module definition to name the module file. During run time, the
SQL/MX executor uses the externally qualified module name to locate the associated
module file and its compiled query execution plan.

Externally qualified module names enable the coexistence of modules that use the
same three-part module names, provided that you use a different target or version
attribute during preprocessing. For example:

CAT.SCH.^MOD^TABLESET1^VERSION1

CAT.SCH.^MOD^TABLESET2^VERSION1

CAT.SCH.^MOD^TABLESET2^VERSION2

You can also use the group attribute for coexistence, but that is not its main purpose.
For more information on the group attribute, see Grouping on page 17-23.

For information on the exact -g syntax for your development environment and
application language, see:

 Syntax for the OSS-Hosted SQL/MX C/C++ Preprocessor on page 15-20
 Syntax for the Windows-Hosted SQL/MX C/C++ Preprocessor on page 15-28
 Syntax for the OSS-Hosted SQL/MX COBOL Preprocessor on page 16-14
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-11

Program and Module Management How Modules Are Named
 Syntax for the Windows-Hosted SQL/MX COBOL Preprocessor on page 16-19

Module Name Length

Figure 17-1 shows the limits for module name length. In summary:

 You are not required to choose identifiers that use the maximum length.
 The maximum lengths are not additive.
 The target (or table set), version, and group attributes are optional.

\

An unqualified module name is limited to maximum 128 characters, as is an externally
qualified module name (for example, GRP^MOD^TABLESET^VER). You can choose a
catalog name, schema name, or module name each between one character and 128
characters long.

For example, a three-character catalog name plus a three-character schema name
plus a 128-character module name plus the two dots (.) between the catalog, schema,
and module names constitute a 136-character, three-part module name:

CAT.SCH.externally-qualified-module-name-that-is-128-characters

For embedded SQL C/C++ programs, the limit on a fully qualified, three-part module
name is 248 characters because this name is eventually used for an OSS file. OSS file
names can have a maximum length of 248 characters. For more information, see the
Open System Services User’s Guide.

Note. To fully understand the effects of using or not using each of the module
management attributes, see Table 17-3 on page 17-13.

Figure 17-1. Module Name Length

C/C++: 248-char. max. length COBOL: 160-char max. length

/usr/tandem/sqlmx/USERMODULES/CatalogName.SchemaName.Group^ModuleName^Target^Version

128-character maximum length

128-character maximum length

 31-character maximum length

128-character maximum length

 31-character maximum length

 31-character maximum length

1023-character maximum length

128-character maximum length

VST143.vsd
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-12

Program and Module Management Effect of Module Management Naming
For embedded SQL COBOL programs, the limit on a fully qualified three-part module
name is 160-characters because COBOL restricts nonumeric literals to at most 160
characters. For more information, see the HP COBOL85 for NonStop Systems Manual.

Examples

This example is invalid:

cat.sch.grp.modname.target.ver

However, this example is valid:

cat.sch."grp^modname^target^ver”

Note that the third part of the name (“grp^modname^target^ver”) is a delimited
identifier.

Effect of Module Management Naming

Module management features qualify the name for the module that is encoded in the
module definition file and the C-annotated source file. By changing the name of the
module in the module definition file, the name of the module-file is also changed.

Table 17-3 lists the effects of combinations of group (MGSS), target or table set
(MTSS), and version (MVSS) attributes on the module file name.

Specifying the search locations of the module files

You can specify the user module search locations in one of the following ways:

 Using the Guardian or OSS DEFINE name — This option is supported for both
OSS and Guardian SQL/MX applications.

 Using the OSS environment variable — This option is supported only for the OSS
SQL/MX applications.

Table 17-3. Module Management Naming

 Group
Specified?

TableSet
Specified?

 Version
Specified? Module Management Qualified Name

Yes Yes Yes CAT.SCH.GRP^MOD^TABLESET^VER

Yes Yes No CAT.SCH.GRP^MOD^TABLESET^

Yes No Yes CAT.SCH.GRP^MOD^^VER

Yes No No CAT.SCH.GRP^MOD^^

No Yes Yes CAT.SCH.^MOD^TABLESET^VER

No Yes No CAT.SCH.^MOD^TABLESET^

No No Yes CAT.SCH.^MOD^^VER

No No No CAT.SCH.MOD

A bold circumflex (^) represents a module management attribute (group, table set, or version) that you did not
specify during preprocessing.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-13

Program and Module Management Targeting
Using the Guardian or OSS DEFINE name

To specify the search locations of the module files using the Guardian or OSS DEFINE
name, complete the following steps:

1. Enter the Guardian or OSS DEFINE name. For example,
_MX_MODULE_SEARCH_PATH.

2. Ensure that the DEFINE class is SEARCH. You can specify the module file
locations of SEARCH using SUBVOL0-20 or RELSUBVOL0-20 or both attributes.

The following examples illustrate how you can specify the search locations for
Guardian Define:

 Single search location

add define =_MX_MODULE_SEARCH_PATH, class search, subvol0
$DATA01.USRMODS

 Multiple search locations

add define =_MX_MODULE_SEARCH_PATH, class search, subvol0
($DATA01.USRMOD1,$DATA02.USRMOD2)

The following examples illustrate how you can specify the search locations for OSS
Define:

 Single search location

add_define =_MX_MODULE_SEARCH_PATH class=SEARCH
SUBVOL0=\$data04.EDGU

 Multiple search locations

add_define =_MX_MODULE_SEARCH_PATH class=SEARCH
RELSUBVOL0=\(\$data04.ord2m1,\$data05.relchk,\$data03.ord2m2\
)

Using the OSS environment variable

You can use the OSS environment variable, _MX_MODULE_SEARCH_PATH, to specify
the search locations for the module files.

For example,

 export _MX_MODULE_SEARCH_PATH=/home/usermodule1:
/home/usermodule2

Targeting

By using the target, or table set, attribute for module management, you can create
applications that target different sets of database objects (that is, tables, views, and so
on) from a single embedded SQL source file without changing the source code, the
default catalog or schema, or the MODULE directive. In the embedded SQL source
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-14

Program and Module Management Effect of the Target Attribute
file, use class MAP DEFINEs for database object names and apply compile-time name
resolution (or PROTOTYPE host variables and build into your application the logic to
set these variables to their proper values at run time) to build applications that target
different sets of database objects without changing the source code. For more
information, see DEFINE Names for SQL/MP Objects on page 8-3 and Compile-Time
Name Resolution for SQL/MP Objects on page 8-6.

The target attribute is necessary if you want two or more targeted applications (and
their module files) to coexist and run concurrently on the same NonStop system.
Without the target attribute, each build of the application writes an identically named
module in the /usr/tandem/sqlmx/USERMODULES directory, unless you change the
MODULE directive in the source code or unless you have instructed the compiler to
generate locally placed modules. The target attribute prevents a subsequently built
application from overwriting the module file of the previously built application.

Effect of the Target Attribute

The SQL preprocessor checks for the presence of a Module TableSet Specification
String (MTSS), which is a regular or delimited identifier that you specify with
preprocessor options. For information on how to specify an MTSS, see Running the
SQL/MX C/C++ Preprocessor on page 15-8 and Running the SQL/MX COBOL
Preprocessor on page 16-9. For information on identifiers, see the SQL/MX Reference
Manual.

Targeting Example for C: Using ModuleTableSet (MTSS)

In the next example, a C application that counts employees in various departments is
prepared twice to use different sets of tables. One set of tables is for a test
environment, and the other set of tables is for a production environment. In the source
file empcnt.sql, the application’s SQL statements are coded with class MAP
DEFINEs.

EXEC SQL DECLARE COUNT_EMP_BY_DEPT CURSOR FOR
SELECT D.DEPT_NUM, COUNT(E.EMP_NUM)
FROM =DEPT AS D, =EMPLOYEE AS E
WHERE D.DEPT_NUM = E.EMP_DEPTNUM GROUP BY D.DEPT_NUM;

The application has a MODULE directive:

EXEC SQL MODULE CAT.SCH.EMP_CNT_MODULE NAMES ARE ISO88591;

To build the application, targeting a set of tables on a test system:

1. Use the OSS add_define command to give =DEPT and =EMPLOYEE the desired
values:

add_define =DEPT class=MAP file=\\TEST.\$DATA.HR1.DEPT
add_define =EMPLOYEE class=MAP \
 file=\\TEST.\$DATA.HR1.EMPLOYEE

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-15

Program and Module Management Targeting Example for C: Using ModuleTableSet
(MTSS)
2. Invoke the preprocessor, specifying a module-tableset-specification-
string with the -g option:

mxsqlc empcnt.sql -c empcnt.c -m empcnt.m \
 -g moduleTableSet=TEST

3. The previous preprocessor step produces a pure C file (empcnt.c) and a module
definition file (empcnt.m). The c89 utility compiles and links the C file, producing
an executable empcnt.exe, and the SQL/MX compiler compiles empcnt.m.
Because the module-tableset-specification-string is specified as
TEST, the module file produced by the SQL/MX compiler is:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^TEST^

To indicate that the executable was built to use the TEST compiled module file, the
executable is named empcnt_test.exe.

If you want to rebuild the application to target a set of production files, you can do so
without changing the source file (empcnt.sql):

1. Use the OSS add_define command to give =DEPT and =EMPLOYEE the table
location to target a different set of files:

add_define =DEPT class=MAP file=\\PROD.\$DATA.HR1.DEPT
add_define =EMPLOYEE class=MAP \
 file=\\PROD.\$DATA.HR1.EMPLOYEE

2. Invoke the preprocessor, specifying a module-tableset-specification-
string with the -g option and a different value:

mxsqlc empcnt.sql -c empcnt.c -m empcnt.m \
 -g moduleTableSet=PROD

3. The previous step again produces a pure C file, empcnt.c, and a module
definition file named empcnt.m.

The c89 utility compiles and links the C file, producing an executable, and the
SQL/MX compiler compiles empcnt.m. The executable is named
empcnt_prod.exe to denote that it was prepared to use the module files that are
targeted to use the production set of tables.

Because a module-tableset-specification-string was specified, the
module file produced by the SQL/MX compiler is:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^PROD^

Note. These two files (empcnt.c and empcnt.m) overwrite the C and module definition
files that were written the first time the application is built. mxsqlc does not check for the
existence of identically named files before it writes its output files. Although you can
specify different output file names to avoid this situation, you might not care that the
second C and module definition files overwrite the first build’s files because they are easily
reproducible. However, if you want to preserve the output of the preprocessor and avoid
overwriting files, see Targeting Example for C: Using Build Subdirectory on page 17-17 or
Targeting Example for COBOL: Using a Build Subdirectory on page 17-20.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-16

Program and Module Management Targeting Example for C: Using Build Subdirectory
After building the application for both sets of tables, you can execute, in any order,
either compiled executable (empcnt_test.exe or empcnt_prod.exe) with its
compiled SQL.

When empcnt_test.exe is run for the first set of tables, you must set up DEFINEs
=DEPT to reference \TEST.$DATA.HR1.DEPT and =EMPLOYEE to reference
\TEST.$DATA.HR1.EMPLOYEE.

When empcnt_prod.exe is run, you must set up DEFINE’s =DEPT to reference
\PROD.$DATA.HR1.DEPT and =EMPLOYEE to reference
\PROD.$DATA.HR1.EMPLOYEE.

You can set up DEFINEs to reference the production environment set of tables, and
then use the empcnt_test.exe executable (or vice versa). The result of this action is
that the compiled SQL plans are read from empcnt_test.exe module
/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^TEST^.

These plans refer to the test environment tables, \TEST.$DATA.HR1.DEPT and
\TEST.$DATA.HR1.EMPLOYEE. However, the SQL/MX executor performs late name
resolution (see Late Name Resolution on page 8-6). Because the run-time tables
(specified by setting up the DEFINEs for the production system), are different from the
compile-time tables, the executor performs a similarity check. If the two sets of tables
are similar, the plan is used. If the two set of tables are dissimilar, the plan is
recompiled. The advantage of compile-time name resolution is lost if DEFINEs are set
differently at run time than at compile-time.

Targeting Example for C: Using Build Subdirectory

To avoid the problem where intermediate files and even the executable can be
overwritten when rebuilding for a new target, use OSS environment variables. In this C
example, the same source file empcnt.sql is built twice using an OSS shell script
named empcnt.sh:

 Set up class MAP DEFINEs. Then set up an OSS environmental variable,
TableSet, to supply both a module-tableset-specification-string and
the name of a subdirectory to which the intermediate files (including the before-link
object file) and executable can be written:

export TableSet=TEST
add_define =DEPT class=MAP file=\\TEST.\$DATA.HR1.DEPT
add_define =EMPLOYEE class=MAP
 file=\\TEST.\$DATA.HR1.EMPLOYEE

 Invoke the shell script empcnt.sh. The shell script includes the lines:

mkdir ./$TableSet
mxsqlc empcnt.sql -c $TableSet/empcnt.c \
 -m $TableSet/empcnt.m \
 -g moduleTableSet=$TableSet
c89 –o ./$TableSet/empcnt.o ./$TableSet/empcnt.c
nld –set systype oss \
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-17

Program and Module Management Targeting Example for COBOL: Using
ModuleTableSet (MTSS)

CO
 -obey /usr/lib/libc.obey \
 /usr/lib/crtlmain.o\
 ./$TableSet/empcnt.o \
 -l zcplsrl \
 -l zcrtlsrl \
 -l zcresrl \
 -l zcplosrl \
 -l ztlhgsrl \
 -l ztlhosrl \
 -Bdynamic \
 -l zclisrl \
 -o ./$TableSet/empcnt.exe
/G/system/system/mxcmp ./$TableSet/empcnt.m

The shell script makes a subdirectory that is named from the environment variable
$TableSet (which was set to TEST in the previous example). The script is written so
that the intermediate C and module definition files are written into that subdirectory by
the preprocessor and read from that subdirectory by the C compiler and mxcmp,
respectively. (See references to $TableSet on the mxsqlc, c89, and mxcmp
command lines.)

The script also uses the environment variable TableSet on the c89 command line so
that its output object file, empcnt.o, is written to the subdirectory. Similarly, the nld
command line uses the same environmental variable to read empcnt.o from that
subdirectory and write empcnt.exe to it as well.

When you need to create another copy of the application to target a different set of
tables, export a different value for TableSet and set different values to the two
DEFINEs. For example:

export TableSet=PROD
add_define =DEPT class=MAP file=\\PROD.\$DATA.HR1.DEPT
add_define =EMPLOYEE class=MAP
 file=\\PROD.\$DATA.HR1.EMPLOYEE

Then rerun the previous empcnt.sh shell script. The second set of intermediate files
and the .exe file are written to a different subdirectory. As in the first example, two
distinct module files have been created by the time the two builds complete:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^TEST^
/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^PROD^

The two executables can coexist, each in their own subdirectory:

TEST/empcnt.exe
PROD/empcnt.exe

Targeting Example for COBOL: Using ModuleTableSet (MTSS)

In this example, a COBOL application, which counts employees in various
departments, is prepared twice to make use of two different sets of tables. One set of

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-18

Program and Module Management Targeting Example for COBOL: Using
ModuleTableSet (MTSS)
tables is for a test environment, and the other set of tables is for a production
environment. In a source file (empcnt.ecbl), the application’s SQL statements are
coded with class MAP DEFINEs:

EXEC SQL DECLARE COUNT_EMP_BY_DEPT CURSOR FOR
SELECT D.DEPT_NUM, COUNT(E.EMP_NUM)
FROM =DEPT AS D, =EMPLOYEE AS E
WHERE D.DEPT_NUM = E.EMP_DEPTNUM GROUP BY D.DEPT_NUM END-EXEC.

The application has a MODULE directive:

EXEC SQL MODULE CAT.SCH.EMP_CNT_MODULE NAMES ARE
 ISO88591 END-EXEC.

To build the application, targeting a set of tables on a test system:

1. Use the OSS add_define command to give =DEPT and =EMPLOYEE the desired
values:

add_define =DEPT class=MAP file=\\TEST.\$DATA.HR1.DEPT
add_define =EMPLOYEE class=MAP
 file=\\TEST.\$DATA.HR1.EMPLOYEE

2. Invoke the preprocessor, specifying a module-tableset-specification-
string with the -g option:

mxsqlco empcnt.ecbl -c empcnt.cbl -m empcnt.m \
 -g moduleTableSet=TEST

3. The previous preprocessor step produces a pure COBOL file (empcnt.cbl) and a
module definition file (empcnt.m). The nmcobol utility compiles and links the
COBOL file and produces an executable (empcnt_test.exe), and the SQL/MX
compiler compiles empcnt.m. (The user directed nmcobol to name the
executable empcnt_test.exe to indicate that it was prepared for the TEST table
set). Because a module-tableset-specification-string is specified, the
module file produced by the SQL/MX compiler is:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^TEST^

If you want to rebuild the application to target a set of production files, you can do so
without changing the source file empcnt.ecbl:

1. Use the OSS add_define command to give =DEPT and =EMPLOYEE the values
to target a different set of files:

add_define =DEPT class=MAP file=\\PROD.\$DATA.HR1.DEPT
add_define =EMPLOYEE class=MAP
 file=\\PROD.\$DATA.HR1.EMPLOYEE

2. Invoke the preprocessor, specifying a module-tableset-specification-
string with the -g option and a different value:

mxsqlco empcnt.ecbl -c empcnt.cbl -m empcnt.m -g \
 moduleTableSet=PROD
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-19

Program and Module Management Targeting Example for COBOL: Using a Build
Subdirectory
3. The previous step again produces a pure COBOL file (empcnt.cbl) and a
module definition file (empcnt.m).

The nmcobol utility compiles and links the COBOL file, producing an executable
(empcnt.exe), and the SQL/MX compiler compiles empcnt.m.

Because a module-tableset-specification-string is specified, the
module file produced by the SQL/MX compiler is:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^PROD^

After building the application for both sets of tables, the user can execute either
compiled executable and its corresponding compiled SQL.

When the empcnt_test.exe is run for the first set of tables, the user must again set
up DEFINEs =DEPT to reference \TEST.$DATA.HR1.DEPT and =EMPLOYEE to
reference \TEST.$DATA.HR1.EMPLOYEE.

The other set of tables is targeted if the user runs empcnt_prod.exe and sets up
DEFINEs =DEPT to reference \PROD.$DATA.HR1.DEPT and =EMPLOYEE to
reference \PROD.$DATA.HR1.EMPLOYEE.

You can set up DEFINEs to reference the production environment set of tables and
then use the empcnt_test.exe executable (or vice versa). The result of this action is
that the compiled SQL plans are read from module:
/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^TEST^.

These plans refer to the test environment tables, \TEST.$DATA.HR1.DEPT and
\TEST.$DATA.HR1.EMPLOYEE. However, the SQL/MX executor performs late name
resolution (see Late Name Resolution on page 8-6). Because the run-time tables
(specified by setting up the DEFINEs for the production system) are different from the
compile-time tables, the executor performs a similarity check. If the two sets of tables
are similar, the plan is used. If the two set of tables are dissimilar, the plan is
recompiled. The advantage of compile-time name resolution is lost if DEFINEs are set
differently at run time than they were set at compile-time.

Targeting Example for COBOL: Using a Build Subdirectory

To avoid the problem where intermediate files and even the executable can be
overwritten when rebuilding for a new target, use OSS environment variables. In this
COBOL example, the same source file empcnt.ecbl is built twice using an OSS shell
script named empcnt.sh.

Note. These two files (empcnt.cbl and empcnt.m) overwrite the COBOL and module
definition files the first time the application is built because mxsqlco does not check for
the existence of identically named files before it writes its output files. You can specify
different output file names to avoid this situation. You might not care that the second
COBOL and module definition files overwrite the first build’s files because they are easily
reproducible. Targeting Example for COBOL: Using a Build Subdirectory on page 17-20
outlines a method to avoid overwriting files.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-20

Program and Module Management Versioning
 Set up class MAP DEFINEs. Then set up an OSS environment variable,
TableSet, to supply both a module-tableset-specification-string and
the name of a subdirectory to which the intermediate files (including the” before-
link object file) and executable can be written.

export TableSet=TEST
add_define =DEPT class=MAP file=\\TEST.\$DATA.HR1.DEPT
add_define =EMPLOYEE class=MAP
 file=\\TEST.\$DATA.HR1.EMPLOYEE

 Invoke the shell script empcnt.sh. The shell script includes the lines:

mkdir ./$TableSet
mxsqlco empcnt.ecbl -c $TableSet/empcnt.cbl \
 -m $TableSet/empcnt.m \
 -g moduleTableSet=$TableSet
nmcobol -o ./$TableSet/empcnt.exe \
 -Wcobol=”CONSULT /usr/tandem/sqlmx/lib/sqlcli.o” \
 -lzclisrl ./$TableSet/empcnt.cbl
/G/system/system/mxcmp ./$TableSet/empcnt.m

The shell script makes a subdirectory that is named from the environment variable
$TableSet (which was set to TEST in the previous example). The script is written so
that the intermediate COBOL and module definition files are written into that
subdirectory by the preprocessor and read from that subdirectory by the COBOL
compiler and mxcmp, respectively. (See references to $TableSet on the command
lines for mxsqlco, nmcobol, and mxcmp.)

The script also uses the environment variable TableSet on the nmcobol command
line so that its output object file (empcnt.exe) is written into the subdirectory.

When you need to create another copy of the application to target a different set of
tables, export a different value for TableSet and set different values into the two
DEFINEs. For example:

export TableSet=PROD
add_define =DEPT class=MAP file=\\PROD.\$DATA.HR1.DEPT
add_define =EMPLOYEE class=MAP
 file=\\PROD.\$DATA.HR1.EMPLOYEE

Then rerun the previous empcnt.sh shell script. The second set of intermediate files
and the .exe file are written to a different subdirectory. As in the first example, two
distinct module files have been created by the time the two builds complete:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^TEST^
/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^PROD^

Versioning

By using the version attribute for module management, you can create and use
multiple versions of an application from a single embedded SQL source file without
changing the MODULE directive or the catalog or schema. In the embedded SQL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-21

Program and Module Management Versioning
source file, you would change the source code according to the new version but keep
the same MODULE directive. Versioning and targeting differ in that versioning typically
requires you to make minor changes to the source code of the application.

The version attribute is necessary if you want two or more versions of the application
(and its module files) to coexist on the same NonStop system. Without the version
attribute, each build of the application writes an identically named module in the
/usr/tandem/sqlmx/USERMODULES directory, unless you change the MODULE
directive in the source code or unless you instruct the SQL/MX compiler to generate
locally placed modules. The version attribute prevents a subsequently built application
from overwriting the module file of the previously built application.

Versioning Guidelines

You specify versioning by using the C/C++ or COBOL preprocessor option -g and
setting the moduleVersion attribute to a Module-Version-Specification-
String (MVSS). This MVSS is embedded in the module name, which is used to name
the module file. As with the targeting feature, you need to take steps to prevent the
second version of the executable file from overwriting the first. However, unlike the
targeting feature, you can use versioning without using compile-time name resolution,
so you need not set up class MAP DEFINEs before running the application.

In addition to allowing multiple versions of an application to exist, when a unique MVSS
is specified each time a module file is precompiled, you can also perform live
upgrades. Because you can distinguish versions by using the MVSS attribute,
processes running from an earlier program file can use SQL plans from an earlier
version of a module file (for example, version 1), and a new program file can use SQL
plans from a newer version of a module file (for example, version 2).

Versioning Example: C Set Up

In this example, an environment variable is set ($ThisVersion), and a build script is
invoked. The script contains this line to run the preprocessor:

mxsqlc empcnt.sql -c $ThisVersion/empcnt.c \
 -m $ThisVersion/empcnt.m \
 -g moduleVersion=$ThisVersion

Similar to the example that showed a build subdirectory used for targeting (see
Targeting Example for C: Using Build Subdirectory on page 17-17), the parts of the
build script that invoke c89 read empcnt.c from and write empcnt.o to the
$ThisVersion subdirectory. Similarly, the line invoking nld reads
$ThisVersion/empcnt.o and writes $ThisVersion/empcnt.exe to prevent
each version’s intermediate and executable files from overwriting each other. This
scenario also applies to the next COBOL example.

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-22

Program and Module Management Grouping

CO
If the environmental variable is set both for V1 and for V2, after the build script is run
for each version, an executable exists in subdirectories V1 and V2. These two module
files will coexist:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^^V1
/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^^V2

Versioning Example: COBOL Set Up

In this example, an environment variable ThisVersion is set, and a build script is
invoked:

mxsqlco empcnt.ecbl -c $ThisVersion/empcnt.cbl \
 -m $ThisVersion/empcnt.m \
 -g moduleVersion=$ThisVersion

If the environmental variable is set, once for V1 and once for V2, after the entire build
script finishes twice, an executable exists in two subdirectories V1 and V2. These
two module files will coexist:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^^V1
/usr/tandem/sqlmx/USERMODULES/CAT.SCH.^EMP_CNT_MODULE^^V2

Grouping

All the module files that are generated globally on a particular NonStop system are
stored in the /usr/tandem/sqlmx/USERMODULES directory, making it difficult to
identify, or group, the modules that are associated with a particular application. By
using the group attribute for module management, you can match module files to an
application and perform basic file management tasks more easily. For example, you
can list, copy, or delete all the modules associated with the given application by using a
single OSS command.

You can also use the group attribute to create module subsets and perform multiple
DISPLAY USE OF operations in much less time than it would take to run a single
DISPLAY USE OF operation on all the modules. For more information about grouping
modules to run multiple DISPLAY USE OF operations, see the SQL/MX Release 3.2
Management Manual.

Instead of using the group attribute for globally placed module management, you can
use the locally placed module features to generate modules in directories other than
USERMODULES. For more information on locally placed modules, see Generating
Locally or Globally Placed Modules on page 17-3.

Setting Up Grouping

Grouping requires you to:

 Use the C/C++ or COBOL preprocessor option -g and specify the same Module-
Group-Specification-String (MGSS) name for each of the modules that
you want to manage as a group.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-23

Program and Module Management Grouping

CO
 Use meaningful names for grouping your module file.

Grouping Example: C INVENTORY modules

In this example, a C application is built from two modules: reports.sql and
utils.sql. mxsqlc names the C and module definition file output file according to
default rules. At this point, INVENTORY is used as the group name for all the modules
in an inventory application, enabling the module files to be referred to by group name.

mxsqlc reports.sql -g moduleGroup=INVENTORY
mxsqlc utils.sql -g moduleGroup=INVENTORY
c89 -o reports.o reports.c
c89 -o utils.o utils.c
nld -set systype oss \
 -obey /usr/lib/libc.obey \
 /usr/lib/crtlmain.o \
 reports.o \
 utils.o \
 -l zcplsrl \
 -l zcrtlsrl \
 -l zcresrl \
 -l zcplosrl \
 -l ztlhgsrl \
 -l ztlhosrl \

 -Bdynamic \
 -l zclisrl \
 -o invrep
/G/system/system/mxcmp reports.m
/G/system/system/mxcmp utils.m

After the application is built, these two module files exist:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.INVENTORY^REPORTS^^
/usr/tandem/sqlmx/USERMODULES/CAT.SCH.INVENTORY^UTILS^^

Now, all the application’s module files can be referred to by using one OSS file name
wild-card pattern:

ls /usr/tandem/sqlmx/USERMODULES/*.*.INVENTORY^*
rm /usr/tandem/sqlmx/USERMODULES/*.*.INVENTORY^*

Grouping Example: COBOL INVENTORY modules

In this COBOL example, an application is built from two modules, reports.ecbl and
utils.ecbl. mxsqlco names the COBOL and module definition file output according
to default rules. At this point, INVENTORY is used as the group name for all the
modules in an inventory application, enabling the module files to be referred to by
group name.

mxsqlco reports.ecbl -g moduleGroup=INVENTORY
mxsqlco utils.ecbl -g moduleGroup=INVENTORY

C

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-24

Program and Module Management Grouping
nmcobol is used to compile the pure COBOL files (reports.cbl and utils.cbl),
and nld links the compiled object files. The last step is to build the application using
mxcmp to compile the module definition files, reports.m and utils.m.

After the application is built, these two module files exist:

/usr/tandem/sqlmx/USERMODULES/CAT.SCH.INVENTORY^REPORTS^^
/usr/tandem/sqlmx/USERMODULES/CAT.SCH.INVENTORY^UTILS^^

Now, all the application’s module files can be referred to by using one OSS file name
wild-card pattern:

ls /usr/tandem/sqlmx/USERMODULES/*.*.INVENTORY^*
rm /usr/tandem/sqlmx/USERMODULES/*.*.INVENTORY^*
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-25

Program and Module Management Grouping
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
17-26

A C Sample Programs

This appendix presents the steps shown in figures in previous sections as complete C
programs.

Using a Static SQL Cursor
Example A-1 executes the steps shown in Figure 6-1 on page 6-2.

Example A-1. Using a Static SQL Cursor (page 1 of 3)

/* ---
 Description: Using a Static SQL Cursor
 Statements: Static DECLARE CURSOR
 BEGIN WORK
 OPEN
 FETCH
 Positioned UPDATE
 CLOSE
 COMMIT WORK
 WHENEVER
 GET DIAGNOSTICS
-- */
#include <stdio.h>
#include <string.h>
EXEC SQL MODULE EXF61M NAMES ARE ISO88591;

int main()
{
 char SQLSTATE_OK[6]="00000";
 char SQLSTATE_NODATA[6]="02000";

 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_partnum; /* Parts table */
 char hv_partdesc[19];
 NUMERIC (8,2) hv_price;
 NUMERIC (5) hv_qty_available;

 unsigned NUMERIC (4) in_partnum; /* WHERE value */

 long hv_num; /* Statement info */
 long i; /* Used for condition loop */

 char hv_sqlstate[6]; /* Condition info */
 VARCHAR hv_tabname[129];
 VARCHAR hv_colname[129];
 VARCHAR hv_msgtxt[129];
 EXEC SQL END DECLARE SECTION;

C

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-1

C Sample Programs Using a Static SQL Cursor
SQLSTATE[5]='\0';
SQLSTATE_OK[5]='\0';
SQLSTATE_NODATA[5]='\0';

printf("\n\nThis example uses a static cursor. \n\n");

EXEC SQL WHENEVER SQLERROR GOTO end_prog;
EXEC SQL DECLARE CATALOG 'samdbcat';
EXEC SQL DECLARE SCHEMA 'sales';

/* Declare the static cursor. */
EXEC SQL DECLARE get_by_partnum CURSOR FOR
 SELECT partnum, partdesc, price, qty_available
 FROM parts
 WHERE partnum >= :in_partnum
 FOR UPDATE OF partdesc, price, qty_available;

/* Initialize the host variable in the WHERE clause. */
printf("Enter lowest part number to be retrieved: ");
scanf("%hu", &in_partnum);

EXEC SQL BEGIN WORK; /* Begin transaction. */

/* Open the cursor. */
EXEC SQL OPEN get_by_partnum;

/* Fetch the first row of the result table. */
EXEC SQL FETCH get_by_partnum
 INTO :hv_partnum,:hv_partdesc,:hv_price,:hv_qty_available;

while (strcmp (SQLSTATE, SQLSTATE_NODATA) != 0) {
 /* If qty_available less than 1000, update qty_available. */
 if (hv_qty_available < 1000) {
 EXEC SQL UPDATE parts
 SET qty_available = qty_available + 100
 WHERE CURRENT OF get_by_partnum;
 printf("\nUpdate of part number: %hu\n", hv_partnum);
 }
 /* Fetch the next row of the result table. */
 EXEC SQL FETCH get_by_partnum
 INTO :hv_partnum,:hv_partdesc,:hv_price,:hv_qty_available;
} /* end while */

/* Close the cursor. */
EXEC SQL CLOSE get_by_partnum;
/* Commit any changes. */
EXEC SQL COMMIT WORK;

Example A-1. Using a Static SQL Cursor (page 2 of 3)C
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-2

C Sample Programs Using a Static SQL Cursor
end_prog:
EXEC SQL WHENEVER SQLERROR CONTINUE;

if (strcmp(SQLSTATE, SQLSTATE_OK) == 0)
 printf("\nThe program completed successfully. \n\n");
else {
 EXEC SQL GET DIAGNOSTICS
 :hv_num = NUMBER;
 for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_tabname = TABLE_NAME,
 :hv_colname = COLUMN_NAME,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_msgtxt = MESSAGE_TEXT;
 hv_tabname[128]='\0'; hv_colname[128]='\0';
 hv_sqlstate[5]='\0'; hv_msgtxt[128]='\0';
 printf("Table : %s\n", hv_tabname);
 printf("Column : %s\n", hv_colname);
 printf("SQLSTATE: %s\n", hv_sqlstate);
 printf("Message : %s\n", hv_msgtxt);
 } /* end for */
} /* end if */

return 0;
} /* end main */

Example A-1. Using a Static SQL Cursor (page 3 of 3)C
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-3

C Sample Programs Ensuring Data Consistency
Ensuring Data Consistency
Example A-2 executes the steps shown in Figure 14-1 on page 14-1.

Example A-2. Using TMF to Ensure Data Consistency

/* ---
 Description: Using TMF to ensure data consistency
 Statements: SET TRANSACTION
 BEGIN WORK
 Searched UPDATE
 COMMIT WORK
 ROLLBACK WORK
 WHENEVER
-- */
#include <stdio.h>
#include <string.h>
EXEC SQL MODULE EXF91M NAMES ARE ISO88591;

int main()
{
 char SQLSTATE_OK[6]="00000";
EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
EXEC SQL END DECLARE SECTION;

SQLSTATE[5]='\0';
SQLSTATE_OK[5]='\0';
printf("\n\nThis example begins and ends a transaction. \n\n");
EXEC SQL WHENEVER SQLERROR GOTO end_prog;
EXEC SQL DECLARE CATALOG 'samdbcat';
EXEC SQL DECLARE SCHEMA 'sales';

/* First, set the attributes for the transaction. */
EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

EXEC SQL BEGIN WORK; /* Start a transaction. */
/* Update the database by setting customer credit. */
EXEC SQL UPDATE customer SET CREDIT = 'CR';

end_prog:
EXEC SQL WHENEVER SQLERROR CONTINUE;
if (strcmp(SQLSTATE, SQLSTATE_OK) == 0) {
 printf("\nThe update is committed. \n\n");
 EXEC SQL COMMIT WORK; /* Commit the changes. */
 }
else {
 printf("The update is rolled back. \n\n");
 printf("SQLSTATE: %s \n\n", SQLSTATE);
 EXEC SQL ROLLBACK WORK; /* Roll back the changes. */
 }
return 0;
}
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-4

C Sample Programs Using Argument Lists in Dynamic SQL
Using Argument Lists in Dynamic SQL
Example A-3 executes the steps shown in Figure 9-1 on page 9-3.

Example A-3. Using Argument Lists in Dynamic SQL (page 1 of 3)

/* ---
 Description: Using Argument Lists
 Statements: PREPARE
 EXECUTE USING ARGUMENTS
 DEALLOCATE PREPARE
 WHENEVER
 GET DIAGNOSTICS
-- */
#include <stdio.h>
#include <string.h>
EXEC SQL MODULE EXF101M NAMES ARE ISO88591;

int main()
{
 char SQLSTATE_OK[6]="00000";
 char SQLSTATE_NODATA[6]="02000";

 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_empnum; /* Employee table */
 char hv_first_name[16];
 char hv_last_name[21];
 unsigned NUMERIC (8,2) hv_salary;
 short hv_salary_i;

 unsigned NUMERIC (4) in_empnum;
 char hv_sql_stmt[256];

 long hv_num; /* Statement info */
 long i; /* Used for condition loop */
 char hv_sqlstate[6]; /* Condition info */
 VARCHAR hv_tabname[129];
 VARCHAR hv_colname[129];
 VARCHAR hv_msgtxt[129];
 EXEC SQL END DECLARE SECTION;

SQLSTATE[5]='\0';
SQLSTATE_OK[5]='\0';
SQLSTATE_NODATA[5]='\0';

printf("\n\nThis example uses argument lists. \n\n");

EXEC SQL WHENEVER SQLERROR GOTO end_prog;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-5

C Sample Programs Using Argument Lists in Dynamic SQL
/* Move statement with input variable to statement variable. */
strcpy(hv_sql_stmt, "SELECT empnum, first_name,"
 " last_name, salary"
 " FROM samdbcat.persnl.employee"
 " WHERE empnum = CAST(? AS NUMERIC(4) UNSIGNED)");

/* Prepare the statement. */
EXEC SQL PREPARE sqlstmt FROM :hv_sql_stmt;

/* Initialize the input parameter in the WHERE clause. */
printf("Enter the employee number to be retrieved: ");
scanf("%hu", &in_empnum);

/* Execute the prepared statement using the argument lists. */
EXEC SQL EXECUTE sqlstmt
 USING :in_empnum
 INTO :hv_empnum, :hv_first_name, :hv_last_name,
 :hv_salary INDICATOR :hv_salary_i;

if (strcmp(SQLSTATE, SQLSTATE_OK) == 0) {
 /* Process the output values. */
 printf("\nEmpnum is: %hu", hv_empnum);

 hv_first_name[15]='\0';
 printf("\nFirst name is: %s", hv_first_name);
 hv_last_name[20]='\0';
 printf("\nLast name is: %s", hv_last_name);

 if (hv_salary_i < 0)
 printf("\nSalary is unknown\n\n");
 else
 printf("\nSalary is: %.2f\n\n", hv_salary/100.0);

} else if (strcmp(SQLSTATE, SQLSTATE_NODATA) == 0)
 printf("\nNo row with employee number %hu\n\n", in_empnum);

/* Deallocate the prepared statement. */
EXEC SQL DEALLOCATE PREPARE sqlstmt;

Example A-3. Using Argument Lists in Dynamic SQL (page 2 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-6

C Sample Programs Using SQL Descriptor Areas in Dynamic SQL
Using SQL Descriptor Areas in Dynamic SQL

Using SQL Descriptor Areas With DESCRIBE

Example A-4 on page A-8 executes the steps shown in Figure 10-1 on page 10-12.

end_prog:
EXEC SQL WHENEVER SQLERROR CONTINUE;

if (strcmp(SQLSTATE, SQLSTATE_OK) != 0) {
 EXEC SQL GET DIAGNOSTICS
 :hv_num = NUMBER;
 for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_tabname = TABLE_NAME,
 :hv_colname = COLUMN_NAME,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_msgtxt = MESSAGE_TEXT;
 hv_tabname[128]='\0'; hv_colname[128]='\0';
 hv_sqlstate[5]='\0'; hv_msgtxt[128]='\0';
 printf("Table : %s\n", hv_tabname);
 printf("Column : %s\n", hv_colname);
 printf("SQLSTATE: %s\n", hv_sqlstate);
 printf("Message : %s\n", hv_msgtxt);
 } /* end for */
} /* end if */

return 0;
} /* end main */

Example A-3. Using Argument Lists in Dynamic SQL (page 3 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-7

C Sample Programs Using SQL Descriptor Areas With DESCRIBE
Example A-4. Using SQL Descriptor Areas With DESCRIBE (page 1 of 4)

/* ---
 Description: Using Descriptor Areas With DESCRIBE
 Statements: ALLOCATE DESCRIPTOR
 SELECT
 PREPARE
 DESCRIBE
 SET DESCRIPTOR
 EXECUTE
 GET DESCRIPTOR
 DEALLOCATE PREPARE
 DEALLOCATE DESCRIPTOR
 WHENEVER
 GET DIAGNOSTICS
-- */
#include <stdio.h>
#include <string.h>
EXEC SQL MODULE EXF111M NAMES ARE ISO88591;

int main()
{
 char SQLSTATE_OK[6]="00000";

 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_empnum; /* Employee table */
 char hv_first_name[16];
 char hv_last_name[21];
 unsigned NUMERIC (4) hv_deptnum;
 unsigned NUMERIC (4) hv_jobcode;
 short hv_jobcode_i;
 unsigned NUMERIC (8,2) hv_salary;
 short hv_salary_i;

 unsigned NUMERIC (4) in_empnum;
 char in_columns[80];
 char hv_sql_stmt[256];
 long hv_desc_max;
 long hv_desc_value;
 VARCHAR sqlda_name[129]; /* NAME in SQL */

/* descriptor area*/

 long hv_num; /* Statement info */
 long i; /* Used for condition loop */
 char hv_sqlstate[6]; /* Condition info */
 VARCHAR hv_tabname[129];
 VARCHAR hv_colname[129];
 VARCHAR hv_msgtxt[129];
 EXEC SQL END DECLARE SECTION;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-8

C Sample Programs Using SQL Descriptor Areas With DESCRIBE
SQLSTATE[5]='\0';
SQLSTATE_OK[5]='\0';

printf("\n\nThis example uses SQL descriptor areas. \n\n");

EXEC SQL WHENEVER SQLERROR GOTO end_prog;

/* Initialize the output variables in the SELECT list. */
printf("Enter columns to be retrieved, separate by commas: \n");
gets(in_columns);

/* Concatenate statement with input and output variables. */
strcpy(hv_sql_stmt, "SELECT ");
strcat(hv_sql_stmt, in_columns);
strcat(hv_sql_stmt, " FROM samdbcat.persnl.employee"
 " WHERE empnum = CAST(? AS NUMERIC(4) UNSIGNED)");

/* Allocate the descriptor area for input parameters. */
hv_desc_max = 1;
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :hv_desc_max;

/* Allocate the descriptor area for output values. */
hv_desc_max = 6;
EXEC SQL ALLOCATE DESCRIPTOR 'out_sqlda' WITH MAX :hv_desc_max;

/* Prepare the statement. */
EXEC SQL PREPARE sqlstmt FROM :hv_sql_stmt;

/* Describe the SQL descriptor area for input parameter. */
EXEC SQL DESCRIBE INPUT sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda';

/* Describe the SQL descriptor area for SELECT values. */
EXEC SQL DESCRIBE OUTPUT sqlstmt
 USING SQL DESCRIPTOR 'out_sqlda';

/* Initialize the input parameter in the WHERE clause. */
printf("Enter the employee number to be retrieved: ");
scanf("%hu", &in_empnum);

/* Set the value of the input parameter in */
/* the input SQL descriptor area. */
hv_desc_value = 1;
EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :hv_desc_value
 VARIABLE_DATA = :in_empnum;

/* Execute the prepared statement using */
/* the SQL descriptor areas. */
EXEC SQL EXECUTE sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda'
 INTO SQL DESCRIPTOR 'out_sqlda';

Example A-4. Using SQL Descriptor Areas With DESCRIBE (page 2 of 4)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-9

C Sample Programs Using SQL Descriptor Areas With DESCRIBE
/* Get the count of the number of output values. */
EXEC SQL GET DESCRIPTOR 'out_sqlda' :hv_num = COUNT;

/* Get the ith output value in NAME field and save */
/* in the correct host variable by testing on NAME. */
for (i = 1; i <= hv_num; i++) {
 memset(sqlda_name,'\0',sizeof(sqlda_name));
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :sqlda_name = NAME;
 sqlda_name[128]='\0';
 if (strncmp(sqlda_name,"EMPNUM",strlen("EMPNUM"))==0) {
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_empnum = VARIABLE_DATA;
 printf("\nEmpnum is: %hu", hv_empnum);
 }
 else
 if (strncmp(sqlda_name,"FIRST_NAME",strlen("FIRST_NAME"))==0){
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_first_name = VARIABLE_DATA;
 hv_first_name[15]='\0';
 printf("\nFirst name is: %s", hv_first_name);
 }
 else
 if (strncmp(sqlda_name,"LAST_NAME",strlen("LAST_NAME"))==0) {
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_last_name = VARIABLE_DATA;
 hv_last_name[20]='\0';
 printf("\nLast name is: %s", hv_last_name);
 }
 else
 if (strncmp(sqlda_name,"DEPTNUM",strlen("DEPTNUM"))==0) {
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_deptnum = VARIABLE_DATA;
 printf("\nDeptnum is: %hu", hv_deptnum);
 }
 else
 if (strncmp(sqlda_name,"JOBCODE",strlen("JOBCODE"))==0) {
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_jobcode = VARIABLE_DATA,
 :hv_jobcode_i = INDICATOR_DATA;
 if (hv_jobcode_i < 0)
 printf("\nJobcode is unknown");
 else
 printf("\nJobcode is: %hu", hv_jobcode);
 }

Example A-4. Using SQL Descriptor Areas With DESCRIBE (page 3 of 4)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-10

C Sample Programs Using SQL Descriptor Areas With DESCRIBE
 else
 if (strncmp(sqlda_name,"SALARY",strlen("SALARY"))==0) {
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_salary = VARIABLE_DATA,
 :hv_salary_i = INDICATOR_DATA;
 if (hv_salary_i < 0)
 printf("\nSalary is unknown");
 else
 printf("\nSalary is: %.2f", hv_salary/100.0);
 }
 else
 printf("\nSqlda_name is: %s", sqlda_name);
} /* end if */

/* Deallocate the prepared statement and */
/* the SQL descriptor areas. */
EXEC SQL DEALLOCATE PREPARE sqlstmt;
EXEC SQL DEALLOCATE DESCRIPTOR 'in_sqlda';
EXEC SQL DEALLOCATE DESCRIPTOR 'out_sqlda';

end_prog:
EXEC SQL WHENEVER SQLERROR CONTINUE;

if (strcmp(SQLSTATE, SQLSTATE_OK) == 0)
 printf("\nThe program completed successfully. \n\n");
else {
 EXEC SQL GET DIAGNOSTICS
 :hv_num = NUMBER;
 for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_tabname = TABLE_NAME,
 :hv_colname = COLUMN_NAME,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_msgtxt = MESSAGE_TEXT;
 hv_tabname[128]='\0'; hv_colname[128]='\0';
 hv_sqlstate[5]='\0'; hv_msgtxt[128]='\0';
 printf("Table : %s\n", hv_tabname);
 printf("Column : %s\n", hv_colname);
 printf("SQLSTATE: %s\n", hv_sqlstate);
 printf("Message : %s\n", hv_msgtxt);
 } /* end for */
} /* end if */

return 0;
} /* end main */

Example A-4. Using SQL Descriptor Areas With DESCRIBE (page 4 of 4)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-11

C Sample Programs Using SQL Descriptor Areas Without DESCRIBE
Using SQL Descriptor Areas Without DESCRIBE

Example A-5 executes the steps shown in Figure 10-1 on page 10-12 but without the
DESCRIBE statements and without the GET DESCRIPTOR statement (there are no
output parameters). Instead of using DESCRIBE, the values of fields in the descriptor
area are set explicitly by using the SET DESCRIPTOR statement.

Example A-5. Using SQL Descriptor Areas Without DESCRIBE (page 1 of 3)

/* ---
 Description: Using Descriptor Areas Without DESCRIBE
 Statements: ALLOCATE DESCRIPTOR
 UPDATE
 PREPARE
 SET DESCRIPTOR
 EXECUTE
 DEALLOCATE PREPARE
 DEALLOCATE DESCRIPTOR
 WHENEVER
 GET DIAGNOSTICS
-- */
#include <stdio.h>
#include <string.h>
EXEC SQL MODULE EXF113M NAMES ARE ISO88591;

void sql_error();

int main()
{
 char SQLSTATE_OK[6]="00000";
 char SQLSTATE_NODATA[6]="02000";

 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) in_jobcode; /* WHERE values */
 VARCHAR in_last_name[21];

 VARCHAR hv_sql_stmt[256];

 long desc_max;
 long desc_value;
 long desc_type;
 long desc_precision;
 long desc_scale;
 long desc_length;
 EXEC SQL END DECLARE SECTION;

SQLSTATE[5]='\0';
SQLSTATE_OK[5]='\0';

printf("\n\nThis example uses descriptors, no DESCRIBE.\n\n");

EXEC SQL WHENEVER SQLERROR CALL sql_error;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-12

C Sample Programs Using SQL Descriptor Areas Without DESCRIBE
/* Copy statement with input variables. */
strcpy(hv_sql_stmt, "UPDATE samdbcat.persnl.employee"
 " SET salary = salary * 1.1"
 " WHERE jobcode = CAST(? AS NUMERIC(4) UNSIGNED)"
 " AND last_name = ?");

/* Allocate the descriptor area for input parameters. */
desc_max=2;
EXEC SQL ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :desc_max;

/* Prepare the statement. */
EXEC SQL PREPARE sqlstmt FROM :hv_sql_stmt;

/* Initialize the input parameters in the WHERE clause. */
printf("Enter the jobcode: ");
scanf("%hu", &in_jobcode);
printf("Enter the last name: ");
scanf("%s", &in_last_name);

/* Set the values for the jobcode input parameter. */
desc_value = 1;
desc_type = -502; /* Smallint unsigned */
desc_precision = 4;
desc_scale = 0;

EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 TYPE = :desc_type,
 PRECISION = :desc_precision,
 SCALE = :desc_scale,
 VARIABLE_DATA = :in_jobcode;

/* Set the values for the last name input parameter. */
desc_value = 2;
desc_type = 12; /* character varying */
desc_length = 20;

EXEC SQL SET DESCRIPTOR 'in_sqlda' VALUE :desc_value
 TYPE = :desc_type,
 LENGTH = :desc_length,
 VARIABLE_DATA = :in_last_name;

EXEC SQL BEGIN WORK;

/* Execute the prepared statement using */
/* the SQL descriptor areas. */
EXEC SQL EXECUTE sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda';

Example A-5. Using SQL Descriptor Areas Without DESCRIBE (page 2 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-13

C Sample Programs Using SQL Descriptor Areas Without DESCRIBE
if (strcmp(SQLSTATE, SQLSTATE_NODATA) == 0)
 printf("\nNo rows with Jobcode %d and Last Name %s.\n",
 in_jobcode, in_last_name);
else if (strcmp(SQLSTATE, SQLSTATE_OK) == 0) {
 printf("\nThe update is committed.\n");
 EXEC SQL COMMIT WORK; /* Commit the changes */
 }
else {
 printf("\nThe update is rolled back.\n");
 EXEC SQL ROLLBACK WORK; /* Roll back the changes */
 }
/* Deallocate the prepared statement and */
/* the SQL descriptor area. */
EXEC SQL DEALLOCATE PREPARE sqlstmt;
EXEC SQL DEALLOCATE DESCRIPTOR 'in_sqlda';

return 0;
} /* end main */

void sql_error() {
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 long hv_num;
 long i;
 char hv_sqlstate[6];
 long hv_sqlcode;
 VARCHAR hv_tabname[129];
 VARCHAR hv_colname[129];
 VARCHAR hv_msgtxt[129];
 EXEC SQL END DECLARE SECTION;
EXEC SQL GET DIAGNOSTICS
 :hv_num = NUMBER;
for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_tabname = TABLE_NAME,
 :hv_colname = COLUMN_NAME,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_sqlcode = SQLCODE,
 :hv_msgtxt = MESSAGE_TEXT;
 hv_tabname[128]='\0'; hv_colname[128]='\0';
 hv_sqlstate[5]='\0'; hv_msgtxt[128]='\0';
 printf("Table : %s\n", hv_tabname);
 printf("Column : %s\n", hv_colname);
 printf("SQLSTATE: %s\n", hv_sqlstate);
 printf("SQLCODE : %d\n", hv_sqlcode);
 printf("Message : %s\n", hv_msgtxt);
 }
} /* end sql_error */

Example A-5. Using SQL Descriptor Areas Without DESCRIBE (page 3 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-14

C Sample Programs Using a Dynamic SQL Cursor
Using a Dynamic SQL Cursor

Using a Dynamic SQL Cursor

Example A-6 executes the steps shown in Figure 11-1 on page 11-2 and uses host
variable argument lists for the FETCH INTO statement.

Example A-6. Using a Dynamic SQL Cursor (page 1 of 3)

/* ---
 Description: Using a Dynamic SQL Cursor
 Statements: PREPARE
 Dynamic DECLARE CURSOR
 OPEN
 FETCH
 CLOSE
 WHENEVER
 GET DIAGNOSTICS
-- */
#include <stdio.h>
#include <string.h>
EXEC SQL MODULE EXF121M NAMES ARE ISO88591;

int main()
{
 char SQLSTATE_OK[6]="00000";
 char SQLSTATE_NODATA[6]="02000";

 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 unsigned NUMERIC (4) hv_partnum; /* Parts table */
 char hv_partdesc[19];
 NUMERIC (8,2) hv_price;
 NUMERIC (5) hv_qty_available;
 NUMERIC (5) in_qty_available; /* Input parameter */

 char curspec[256]; /* Dynamic cursor spec */

 long hv_num; /* Statement info */
 long i; /* Used for condition loop */
 char hv_sqlstate[6]; /* Condition info */
 VARCHAR hv_tabname[129];
 VARCHAR hv_colname[129];
 VARCHAR hv_msgtxt[129];
 EXEC SQL END DECLARE SECTION;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-15

C Sample Programs Using a Dynamic SQL Cursor
SQLSTATE[5]='\0';
SQLSTATE_OK[5]='\0';
SQLSTATE_NODATA[5]='\0';

printf("\n\nThis example uses a dynamic cursor. \n\n");

EXEC SQL WHENEVER SQLERROR GOTO end_prog;

strcpy(curspec,"SELECT partnum, partdesc, price, qty_available"
 " FROM samdbcat.sales.parts "
 " WHERE qty_available <= CAST(? AS NUMERIC(5))");

/* Prepare the cursor specification. */
EXEC SQL PREPARE cursor_spec FROM :curspec;

/* Declare the dynamic cursor from the prepared statement. */
EXEC SQL DECLARE get_by_partnum CURSOR FOR cursor_spec;

/* Initialize the parameter in the WHERE clause. */
printf("Enter the quantity to initiate reorder: ");
scanf("%d", &in_qty_available);

/* Open the cursor using the value of the dynamic parameter. */
EXEC SQL OPEN get_by_partnum USING :in_qty_available;

/* Fetch the first row of the result table. */
EXEC SQL FETCH get_by_partnum
 INTO :hv_partnum,:hv_partdesc,:hv_price,:hv_qty_available;

while (strcmp (SQLSTATE, SQLSTATE_NODATA) != 0) {
 printf("\nOrder part number: %hu, Current qty: %d",
 hv_partnum, hv_qty_available);

 /* Fetch the next row of the result table. */
 EXEC SQL FETCH get_by_partnum
 INTO :hv_partnum,:hv_partdesc,:hv_price,:hv_qty_available;
}

/* Close the cursor. */
EXEC SQL CLOSE get_by_partnum;

end_prog:
EXEC SQL WHENEVER SQLERROR CONTINUE;

Example A-6. Using a Dynamic SQL Cursor (page 2 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-16

C Sample Programs Using a Dynamic SQL Cursor With Descriptor Area
Using a Dynamic SQL Cursor With Descriptor Area

Example A-7 on page A-18 executes the steps shown in Figure 11-1 on page 11-2 but
without using the host variable argument lists for the FETCH INTO statement. Instead
of argument lists, the values of the output parameters are stored in the descriptor area,
retrieved by using the GET DESCRIPTOR statement, and assigned to a compatible
host variable by testing on the data type.

You would probably choose this program to enter a general cursor specification of the
form: SELECT * FROM catalog.schema.table.

if (strcmp(SQLSTATE, SQLSTATE_OK) == 0)
 printf("\nThe program completed successfully. \n\n");
else {
 EXEC SQL GET DIAGNOSTICS
 :hv_num = NUMBER;
 for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_tabname = TABLE_NAME,
 :hv_colname = COLUMN_NAME,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_msgtxt = MESSAGE_TEXT;
 hv_tabname[128]='\0'; hv_colname[128]='\0';
 hv_sqlstate[5]='\0'; hv_msgtxt[128]='\0';
 printf("Table : %s\n", hv_tabname);
 printf("Column : %s\n", hv_colname);
 printf("SQLSTATE: %s\n", hv_sqlstate);
 printf("Message : %s\n", hv_msgtxt);
 } /* end for */
} /* end else */

return 0;
} /* end main */

Example A-6. Using a Dynamic SQL Cursor (page 3 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-17

C Sample Programs Using a Dynamic SQL Cursor With Descriptor Area
Example A-7. Using a Dynamic SQL Cursor With Descriptor Areas (page 1 of 8)

/*Description: Using a Dynamic Cursor With Desc Areas
 Statements: ALLOCATE DESCRIPTOR
 PREPARE
 DESCRIBE OUTPUT
 Dynamic DECLARE CURSOR
 OPEN
 FETCH USING DESCRIPTOR
 GET DESCRIPTOR
 CLOSE
 DEALLOCATE PREPARE
 DEALLOCATE DESCRIPTOR
 WHENEVER
 GET DIAGNOSTICS
-- */
#include <stdio.h>
#include <string.h>
#include <math.h>

EXEC SQL MODULE SQL12.mysch.t2002s1 NAMES ARE ISO88591;

void run_dynTest(char *chstr);
void assign_to_hv();
void sql_error();
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 long SQLCODE;
 EXEC SQL END DECLARE SECTION;

int main()
{
 char teststr[256];

 strcpy(teststr,"select * from testchar");
 run_dynTest(teststr);
 strcpy(teststr,"select * from testint");
 run_dynTest(teststr);
 strcpy(teststr,"select * from testnum");
 run_dynTest(teststr);
 strcpy(teststr,"select * from testpic");
 run_dynTest(teststr);
 strcpy(teststr,"select cdate, ctime,ctimestamp from
 testdatetime;");
 run_dynTest(teststr);

 strcpy(teststr,"select cintervalYM, cintervaldhms from
 testinterval;");
 run_dynTest(teststr);
}

HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-18

C Sample Programs Using a Dynamic SQL Cursor With Descriptor Area
void run_dynTest(char *chstr)
{
 char SQLSTATE_OK[6]="00000";
 char SQLSTATE_NODATA[6]="02000";

 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR in_curspec[256];
 long desc_max;
 EXEC SQL END DECLARE SECTION;

exec sql declare schema 'SQL12.mysch';
exec sql set schema 'SQL12.mysch';

printf("\n\nThis example uses a dynamic cursor with desc area.
\n\n");

EXEC SQL WHENEVER SQLERROR CALL sql_error;

/* Allocate the descriptor area for output parameters. */
desc_max=100;
EXEC SQL ALLOCATE DESCRIPTOR 'out_sqlda' WITH MAX :desc_max;

/* Input cursor specification. */
/*
printf("\nEnter cursor specification (use fully-qualified table
name):\n");
gets(in_curspec);
*/
strcpy(in_curspec,chstr);
printf("%s\n", in_curspec);

/* Prepare the cursor specification. */
EXEC SQL PREPARE cursor_spec FROM :in_curspec;

EXEC SQL DESCRIBE OUTPUT cursor_spec USING SQL DESCRIPTOR
'out_sqlda';

/* Declare the dynamic cursor from the prepared statement. */
EXEC SQL DECLARE get_row CURSOR FOR cursor_spec;

/* Open the cursor using the value of the dynamic parameter. */
EXEC SQL OPEN get_row;

/* Fetch the first row of the result table. */

EXEC SQL FETCH get_row
 INTO SQL DESCRIPTOR 'out_sqlda';

Example A-7. Using a Dynamic SQL Cursor With Descriptor Areas (page 2 of 8)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-19

C Sample Programs Using a Dynamic SQL Cursor With Descriptor Area
while (!strcmp (SQLSTATE, "00000") && strcmp(SQLSTATE,"02000")) {
 /* Process values in the fetched row. */
 assign_to_hv();
 /* Fetch the next row of the result table. */
 EXEC SQL FETCH get_row
 INTO SQL DESCRIPTOR 'out_sqlda';
}
/* Close the cursor. */
EXEC SQL CLOSE get_row;

/* Deallocate the prepared statement and the SQLDAs. */
EXEC SQL DEALLOCATE PREPARE cursor_spec;
EXEC SQL DEALLOCATE DESCRIPTOR 'out_sqlda';

} /* end run_dynTest */

void assign_to_hv() {
 EXEC SQL BEGIN DECLARE SECTION;
 unsigned short hv_num; /* Descriptor fields */
 unsigned short i;
 VARCHAR hv_name[129];
 long hv_type;
 long hv_datetime;
 long hv_lead_precision;
 long hv_precision;
 long hv_scale;
 long hv_length;
 long hv_indicator;
 char hv_char[256]; /* Value variables */
 VARCHAR hv_varchar[256];
 _int64 hv_longval;
 int hv_short;
 float hv_real;
 double hv_double;
 date hv_date[11];
 time hv_time[16];
 timestamp hv_timestamp[27];
 INTERVAL YEAR TO MONTH hv_y22mo;
 INTERVAL DAY TO SECOND hv_d2s4;
 EXEC SQL END DECLARE SECTION;

/* Get the count of the number of output values. */
EXEC SQL GET DESCRIPTOR 'out_sqlda' :hv_num = COUNT;

/* Get the ith output value and save. */
for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_name = NAME,
 :hv_type = TYPE_ANSI,
 :hv_datetime = DATETIME_CODE,
 :hv_lead_precision = LEADING_PRECISION,
 :hv_precision = PRECISION,
 :hv_scale = SCALE,

Example A-7. Using a Dynamic SQL Cursor With Descriptor Areas (page 3 of 8)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-20

C Sample Programs Using a Dynamic SQL Cursor With Descriptor Area
 :hv_length = RETURNED_LENGTH,
 :hv_indicator = INDICATOR_DATA;
switch (hv_type) {
 case 1:
 printf ("Char : %s, Type: %d, Length: %d, Null: %d",
 hv_name, hv_type, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_char = VARIABLE_DATA;
 hv_char[hv_length] = '\0';
 printf (" Value: %s\n", hv_char);
 break;
 case -601:
 printf ("MPvarchar: %s, Type: %d, Length: %d, Null: %d",
 hv_name, hv_type, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_char = VARIABLE_DATA;
 hv_char[hv_length] = '\0';
 printf (" Value: %s\n", hv_char);
 break;
 case 2:
 printf ("Numeric: %s, Type: %d, Precision: %d,"
 " Scale: %d, Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_double = VARIABLE_DATA;
 if (hv_scale > 0) {
 hv_double = hv_double/pow(10,hv_scale);
 printf (" Value: %f\n", hv_double);
 } else printf (" Value: %.f\n", hv_double);
 break;
 case 3:
 printf ("Decimal: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_double = VARIABLE_DATA;
 if (hv_scale > 0) {
 hv_double = hv_double/pow(10,hv_scale);
 printf (" Value: %f\n", hv_double);
 } else printf (" Value: %.f\n", hv_double);
 break;
 case 4:
 printf ("Integer: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_double = VARIABLE_DATA;
 if (hv_scale > 0) {
 hv_double = hv_double/pow(10,hv_scale);

Example A-7. Using a Dynamic SQL Cursor With Descriptor Areas (page 4 of 8)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-21

C Sample Programs Using a Dynamic SQL Cursor With Descriptor Area
 printf (" Value: %f\n", hv_double);
 } else printf (" Value: %.f\n", hv_double);
 break;
case 5:
 printf ("Smallint: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_short = VARIABLE_DATA;
 printf (" Value: %hd\n", hv_short);
 break;
 case -411:
 printf ("Float: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_real = VARIABLE_DATA;
 printf (" Value: %f\n", hv_real);
 break;
 case -412:
 printf ("Real: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_real = VARIABLE_DATA;
 printf (" Value: %LE\n", hv_real);
 break;
 case -413:
 printf ("Double: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_double = VARIABLE_DATA;
 printf (" Value: %LE\n", hv_double);
 break;
 case 9:
 switch (hv_datetime) {
 case 1:
 memset(hv_date,' ',sizeof(hv_date));
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_date = VARIABLE_DATA;
 hv_date[hv_length]=0;
 printf ("date Value: %s\n", hv_date);
 break;

Example A-7. Using a Dynamic SQL Cursor With Descriptor Areas (page 5 of 8)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-22

C Sample Programs Using a Dynamic SQL Cursor With Descriptor Area
 case 2:
 memset(hv_time,' ',sizeof(hv_time));
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_time = VARIABLE_DATA;
 hv_time[hv_length]=0;
 printf ("time Value: %s\n", hv_time);
 break;
 case 3:
 memset(hv_timestamp,' ',sizeof(hv_timestamp));
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_timestamp = VARIABLE_DATA;
 hv_timestamp[hv_length]=0;
 printf ("timestamp Value: %s\n", hv_timestamp);
 break;
 } /* end switch hv_datetime */
 break;
 case 10:
 switch (hv_datetime) {
 case 7: /* INTERVAL YEAR TO MONTH */
 memset(hv_y22mo,' ',sizeof(hv_y22mo));
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_y22mo=VARIABLE_DATA;
 hv_y22mo[hv_length]=0;
 printf ("Interval year to month: %s/n", hv_y22mo);
 break;
 case 10: /* INTERVAL DAY TO FRACTION */
 memset(hv_d2s4,0,sizeof(hv_d2s4));
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_d2s4=VARIABLE_DATA;
 hv_d2s4[hv_length]=0;
 printf ("Interval daytosecond: %s", hv_name);
 break;
 } /* end switch hv_datetime */
 break;
 case 12:
 printf ("Varchar: %s, Type: %d, Length: %d, Null: %d",
 hv_name, hv_type, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_varchar = VARIABLE_DATA;
 printf (" Value: %s\n", hv_varchar);
 break;

Example A-7. Using a Dynamic SQL Cursor With Descriptor Areas (page 6 of 8)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-23

C Sample Programs Using a Dynamic SQL Cursor With Descriptor Area
 case -301:
 printf ("Decimal unsigned: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_double = VARIABLE_DATA;
 if (hv_scale > 0) {
 hv_double = hv_double/pow(10,hv_scale);
 printf (" Value: %f\n", hv_double);
 } else printf (" Value: %.f\n", hv_double);
 break;
 case -201:
 case -401:
 printf ("Integer unsigned: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_double = VARIABLE_DATA;
 if (hv_scale > 0) {
 hv_double = hv_double/pow(10,hv_scale);
 printf (" Value: %f\n", hv_double);
 } else printf (" Value: %.f\n", hv_double);
 break;
 case -402:
 printf ("Largeint: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_longval = VARIABLE_DATA;
 printf (" Value: %Ld\n", hv_longval);
 break;
 case -502:
 printf ("Smallint unsigned: %s, Type: %d, Precision: %d,"
 " Scale: %d,\n Length: %d, Null: %d",
 hv_name, hv_type, hv_precision,
 hv_scale, hv_length, hv_indicator);
 EXEC SQL GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv_short = VARIABLE_DATA;
 printf (" Value: %hu\n", hv_short);
 break;
 default:
 printf ("Invalid or unspecified type: %s,"
 "Type: %d, Length: %d, Null: %d",
 hv_name, hv_type, hv_length, hv_indicator);
 break;
 } /* end switch hv_type*/
} /* end for */
} /* end assign_to_hv */

Example A-7. Using a Dynamic SQL Cursor With Descriptor Areas (page 7 of 8)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-24

C Sample Programs Using a Dynamic SQL Cursor With Descriptor Area
void sql_error() {
 EXEC SQL BEGIN DECLARE SECTION;
 -- char SQLSTATE[6];
 unsigned short hv_num; /* Statement info */
 VARCHAR hv_cmdfcn[129];
 VARCHAR hv_dynfcn[129];
 unsigned short i; /* Used for condition loop */
 char hv_sqlstate[6]; /* Condition info */
 VARCHAR hv_tabname[129];
 VARCHAR hv_colname[129];
 VARCHAR hv_msgtxt[129];
 EXEC SQL END DECLARE SECTION;

printf("sql_error: SQLSTATE=%s, %ld\n", SQLSTATE, SQLCODE);
exec sql whenever sqlerror continue;
EXEC SQL GET DIAGNOSTICS
 :hv_num = NUMBER,
 :hv_cmdfcn = COMMAND_FUNCTION,
 :hv_dynfcn = DYNAMIC_FUNCTION;
printf("\nStatement: %s %s\n", hv_cmdfcn, hv_dynfcn);
for (i = 1; i <= hv_num; i++) {
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv_tabname = TABLE_NAME,
 :hv_colname = COLUMN_NAME,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_msgtxt = MESSAGE_TEXT;
 printf("Table : %s\n", hv_tabname);
 printf("Column : %s\n", hv_colname);
 printf("SQLSTATE: %s\n", hv_sqlstate);
 printf("Message : %s\n", hv_msgtxt);
 }
 exit(1);
} /* end sql_error */

Example A-7. Using a Dynamic SQL Cursor With Descriptor Areas (page 8 of 8)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-25

C Sample Programs Using a Dynamic SQL Rowset
Using a Dynamic SQL Rowset
Example A-8 shows a dynamic embedded SQL program that uses descriptor areas.

Example A-8. Dynamic SQL Rowsets (page 1 of 2)

/***/
void dynamic_direct()
/***/
{

/* Initialize all variables */
printf("DYNAMIC_DIRECT:\n");
strcpy(in_desc,"inscols ");
SQLSTATE[5] = '\0';
memset(statementBuffer, ' ', 390);
statementBuffer[389] = '\0';
output_rowset_size = 10;

/* INSERTING 10 ROWS */

EXEC SQL DELETE FROM CAT.SCH.DYNAMIC5;

printf("prepare insert:\n");
strcpy(statementBuffer,
"INSERT INTO CAT.SCH.DYNAMIC5 VALUES ('jim', ?[10]);");

/* construct S1 from of INSERT statement */

EXEC SQL PREPARE S1 FROM :statementBuffer;
printf("SQLSTATE after prepare is %s\n", SQLSTATE);
printf("SQLCODE after prepare is %d\n", SQLCODE);
EXEC SQL PREPARE S1 FROM :statementBuffer;

num_in = 30;
/* create SQLDA for INSERT columns */
EXEC SQL ALLOCATE DESCRIPTOR GLOBAL :in_desc with MAX :num_in;
printf("SQLSTATE after allocate is %s\n", SQLSTATE);

/* populate the SQLDA */
EXEC SQL DESCRIBE INPUT S1 USING SQL DESCRIPTOR :in_desc;
printf("SQLSTATE after describe is %s\n", SQLSTATE);

num = 1;

EXEC SQL GET DESCRIPTOR :in_desc :output_rowset_size = ROWSET_SIZE;
printf("ROWSET_SIZE after prepare & describe is %d\n", output_rowset_size);

EXEC SQL GET DESCRIPTOR :in_desc :output_rowset_size = COUNT;
printf("COUNT after prepare & describe is %d\n", output_rowset_size);
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-26

C Sample Programs Using a Dynamic SQL Rowset
EXEC SQL GET DESCRIPTOR :in_desc VALUE :num :output_rowset_size =
 ROWSET_VAR_LAYOUT_SIZE;
printf("ROWSET_VAR_LAYOUT_SIZE after prepare & describe is %d\n",
 output_rowset_size);

EXEC SQL GET DESCRIPTOR :in_desc VALUE :num :output_rowset_size =
 ROWSET_IND_LAYOUT_SIZE;
printf("ROWSET_IND_LAYOUT_SIZE after prepare & describe is %d\n",
 output_rowset_size);

EXEC SQL GET DESCRIPTOR :in_desc VALUE :num :output_rowset_size = TYPE;
printf("TYPE after prepare & describe is %d\n", output_rowset_size);

EXEC SQL GET DESCRIPTOR :in_desc VALUE :num :output_rowset_size = TYPE_FS;
printf("TYPE_FS after prepare & describe is %d\n", output_rowset_size);

populateInputHostvars();
arr_ptr = (long) (&(b_arr[0])) ;
ind_ptr = (long) (&(b_arr_ind[0]));
arr_size = 4;
ind_size = 2;

EXEC SQL SET DESCRIPTOR :in_desc VALUE :num
 VARIABLE_POINTER = :arr_ptr,
 INDICATOR_POINTER = :ind_ptr,
 ROWSET_VAR_LAYOUT_SIZE = :arr_size,
 ROWSET_IND_LAYOUT_SIZE = :ind_size;

EXEC SQL GET DESCRIPTOR :in_desc :output_rowset_size = ROWSET_SIZE;
printf("ROWSET_SIZE after prepare & describe is %d\n", output_rowset_size);

EXEC SQL GET DESCRIPTOR :in_desc :output_rowset_size = COUNT;
printf("COUNT after prepare & describe is %d\n", output_rowset_size);

EXEC SQL GET DESCRIPTOR :in_desc VALUE :num :output_rowset_size =
 ROWSET_VAR_LAYOUT_SIZE;
printf("ROWSET_VAR_LAYOUT_SIZE after prepare & describe is %d\n",
 output_rowset_size);

EXEC SQL GET DESCRIPTOR :in_desc VALUE :num :output_rowset_size =
 ROWSET_IND_LAYOUT_SIZE;
printf("ROWSET_IND_LAYOUT_SIZE after prepare & describe is %d\n",
 output_rowset_size);

EXEC SQL GET DESCRIPTOR :in_desc VALUE :num :output_rowset_size = TYPE;
printf("TYPE after prepare & describe is %d\n", output_rowset_size);

EXEC SQL GET DESCRIPTOR :in_desc VALUE :num :output_rowset_size = TYPE_FS;
printf("TYPE_FS after prepare & describe is %d\n", output_rowset_size);

EXEC SQL EXECUTE S1 USING SQL DESCRIPTOR :in_desc;

EXEC SQL COMMIT ;

printRowsFromDynamic5();

EXEC SQL DELETE FROM CAT.SCH.DYNAMIC5;
EXEC SQL DEALLOCATE DESCRIPTOR :in_desc ;
EXEC SQL DEALLOCATE PREPARE S1;
}

Example A-8. Dynamic SQL Rowsets (page 2 of 2)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-27

C Sample Programs Using SQL Descriptors to Select KANJI and
KSC5601 Data
Using SQL Descriptors to Select KANJI and
KSC5601 Data

DDL for KANJI and KSC4501 Table Columns

Example A-9 creates SQL/MP tables that contain KANJI and KSC4501 columns and
inserts data into those columns.

Example A-9. DDL for KANJI and KSC4501 Table Columns (page 1 of 2)

CREATE TABLE words(wordInKanji char(20) CHARACTER SET KANJI,
 wordInKsc5601 char(20) CHARACTER SET KSC5601); -- An
 SQL/MP
 table

INSERT INTO words VALUES (_kanji'Japan ', _ksc5601'Japan ');
INSERT INTO words VALUES (_kanji'Korea ', _ksc5601'Korea ');

DROP TABLE international_customer;

CREATE TABLE international_customer (
 custnum numeric(4) unsigned
 no default not NULL not droppable,
 custname CHARACTER(18) CHARACTER SET UCS2
 no default not NULL not droppable,
 street CHARACTER(22) CHARACTER SET UCS2
 no default not NULL not droppable,
 city CHARACTER(14) CHARACTER SET UCS2
 no default not NULL not droppable,
 country CHARACTER(20) CHARACTER SET UCS2
 no default not NULL not droppable,
 postcode CHARACTER(10)
 no default not NULL not droppable,
 primary key (custnum) not droppable
);

INSERT INTO international_customer VALUES
 (1,
 _UCS2'John Smith',
 _UCS2'102 Main Street',
 _UCS2'Toyko',
 _UCS2'Japan',
 '56789'
),
 (2,
 _UCS2'John Smith',
 _UCS2'102 Jefferson Street',
 _UCS2'Shanghai',
 _UCS2'China',
 '23189'
),
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-28

C Sample Programs Using SQL Descriptor Areas to Select SQL/MP
KANJI and KSC5601 Data
Using SQL Descriptor Areas to Select SQL/MP KANJI and
KSC5601 Data

Example A-10 on page A-30 selects KANJI and KSC5601 data from SQL/MP tables by
using SQL descriptor areas.

 (3,
 _UCS2'Allen Jones',
 _UCS2'LA Blvd',
 _UCS2'Houston',
 _UCS2'USA',
 '39189'
);

DROP TABLE usa_customer;

CREATE TABLE usa_customer (
 custnum numeric(4) unsigned
 no default not NULL not droppable,
 custname CHARACTER(18)
 no default not NULL not droppable,
 street CHARACTER(22)
 no default not NULL not droppable,
 city CHARACTER(14)
 state CHARACTER(12)
 no default not NULL not droppable,
 postcode CHARACTER(10)
 no default not NULL not droppable,
 credit CHARACTER(2) default 'c1'
 not NULL not droppable,
 primary key (custnum) not droppable
);

INSERT INTO usa_customer values
 (1,
 'John Smith',
 '102 Main Street',
 'Houston',
 'TX',
 '56789',
 'C1'
),
 (2,
 'John Smith',
 '102 Jefferson Street',
 'Cupertino',
 'CA',
 '23189',
 'C1'
),
 (3,
 'Allen Jones',
 'LA Blvd',
 'Richmond',
 'VA',
 '39189',
 'C1'
);

Example A-9. DDL for KANJI and KSC4501 Table Columns (page 2 of 2)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-29

C Sample Programs Using SQL Descriptor Areas to Select SQL/MP
KANJI and KSC5601 Data
Example A-10. Using SQL Descriptor Areas to Select SQL/MP KANJI and
KSC5601 Data (page 1 of 5)

/* ---

 Description: Using SQL Descriptor Areas to pass-in and
 select MP KANJI and KSC5601 data
 Statements: ALLOCATE DESCRIPTOR
 PREPARE
 DESCRIBE
 SET DESCRIPTOR
 EXECUTE
 DEALLOCATE PREPARE
 DEALLOCATE DESCRIPTOR
 WHENEVER
 GET DIAGNOSTICS
--- */

#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include <wchar.h>

EXEC SQL MODULE MPCSINOUTM NAMES ARE ISO88591;
long SQLCODE;

EXEC SQL
BEGIN DECLARE SECTION;
 int hv_desc_max;
 int i, j;
 char in_sqlda[13];
 char out_sqlda[13];
 char hv_sql_stmt[255];
 long degree;
 long data_type;
 long data_oct_len;
 long data_len;
 long return_len;
 long return_oct_len;
 VARCHAR charset_name[129];

 char CHARACTER SET KANJI hv_input_in_KANJI[21];
 char CHARACTER SET KSC5601 hv_input_in_KSC5601[21];

 VARCHAR CHARACTER SET KANJI hv_output_in_KANJI[21];
 VARCHAR CHARACTER SET KSC5601 hv_output_in_KSC5601[21];

EXEC SQL END DECLARE SECTION;

void handle_error()
{
 EXEC SQL BEGIN DECLARE SECTION;
 long i,num, hv_cond_num,hv_sqlcode;
 char hv_sqlstate[6], hv_table_name[129],hv_column_name[129];
 char hv_message_text[256];
 EXEC SQL END DECLARE SECTION;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-30

C Sample Programs Using SQL Descriptor Areas to Select SQL/MP
KANJI and KSC5601 Data
 EXEC SQL WHENEVER SQLERROR GOTO errexit;
 exec sql get diagnostics :num = NUMBER;

 for (i=1;i<=num;i++) {
 EXEC SQL get diagnostics exception :i
 :hv_cond_num = CONDITION_NUMBER,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_table_name = TABLE_NAME,
 :hv_column_name = COLUMN_NAME,
 :hv_message_text = MESSAGE_TEXT,
 :hv_sqlcode = SQLCODE;
 hv_sqlstate[5] = 0;
 printf("condition number: %d\n", hv_cond_num);
 printf("sqlstate: %s\n", hv_sqlstate);
 printf("table name: %s\n", hv_table_name);
 printf("column name: %s\n", hv_column_name);
 printf("message text: %s\n", hv_message_text);
 printf("sqlcode: %ld\n", hv_sqlcode);
 printf("\n");
 }

 return;

errexit:
 printf("\nError in the error handler. SQLCODE = %d\n",
SQLCODE);
 exit(1);
}

EXEC SQL WHENEVER SQLERROR GOTO EndOfProcessing;
EXEC SQL WHENEVER SQL_WARNING GOTO EndOfProcessing;
EXEC SQL WHENEVER NOT FOUND GOTO EndOfProcessing;

// print UCS2 string. Only characters in the range [0, 0xFF]
// are faithfully printed. Others are printed as '?'.
void print_UCS2_string(wchar_t* data, int len)
{
 for (int i=0; i<len; i++) {
 if (data[i] <= 0xFF)
 printf("%c", (char)data[i]);
 else

 printf("?");
 }
 printf("\n");
}

// print a single-byte string.
void print_singlebyte_string(char* data, int len)
{
 for (int i=0; i<len; i++)
 printf("%c", data[i]);
 printf("\n");
}

Example A-10. Using SQL Descriptor Areas to Select SQL/MP KANJI and
KSC5601 Data (page 2 of 5)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-31

C Sample Programs Using SQL Descriptor Areas to Select SQL/MP
KANJI and KSC5601 Data
// assume the sql text is in :hv_sql_stmt
void execute_one_statement()
{
 EXEC SQL SET NAMETYPE 'NSK';

 strcpy (in_sqlda," ");
 strcpy (out_sqlda," ");
 strcpy(in_sqlda,"selargs");
 in_sqlda[13] = '\0';
 strcpy(out_sqlda,"selcols");
 out_sqlda[13] = '\0';

 // Allocate the descriptor for input parameters
 hv_desc_max = 1;
 EXEC SQL ALLOCATE DESCRIPTOR :in_sqlda WITH MAX :hv_desc_max;

 // Allocate the descriptor for output values
 hv_desc_max = 6;
 EXEC SQL ALLOCATE DESCRIPTOR :out_sqlda WITH MAX
:hv_desc_max;

 // Prepare the statement
 EXEC SQL PREPARE sqlstmt FROM :hv_sql_stmt;

 // Describe the SQL descriptor area for input parameter
 EXEC SQL DESCRIBE INPUT sqlstmt USING SQL DESCRIPTOR
:in_sqlda;

 // Describe the SQL descriptor area for SELECT values
 EXEC SQL DESCRIBE OUTPUT sqlstmt USING SQL DESCRIPTOR :out_sqlda;

 // Get the input count
 j = 0;
 EXEC SQL GET DESCRIPTOR :in_sqlda :j = COUNT;

 if (j > 0)
 {
 // Get the type, character set name and length of the input
 EXEC SQL GET DESCRIPTOR :in_sqlda VALUE :j
 :data_type = TYPE,
 :data_len = LENGTH,
 :charset_name = CHARACTER_SET_NAME;

 // Set up the input value based on character set name
 if (strcmp(charset_name, SQLCHARSETSTRING_KANJI) == 0) {
 wchar_t temp[21];
 //0123456789012345678901234567890123456789
 strcpy((char*)temp, "Japan ");
 temp[20] = 0; // add the wide-char NULL for wcscpy
 wcscpy(hv_input_in_KANJI, (wchar_t*)temp);
 EXEC SQL SET DESCRIPTOR :in_sqlda VALUE :j
 VARIABLE_DATA = :hv_input_in_KANJI;
 } else

Example A-10. Using SQL Descriptor Areas to Select SQL/MP KANJI and
KSC5601 Data (page 3 of 5)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-32

C Sample Programs Using SQL Descriptor Areas to Select SQL/MP
KANJI and KSC5601 Data
 if (strcmp(charset_name, SQLCHARSETSTRING_KSC5601) == 0)
 {
 wchar_t temp[21];
 //0123456789012345678901234567890123456789
 strcpy((char*)temp, "Korea ");
 temp[20] = 0; // add the wide-char NULL for wcscpy
 wcscpy(hv_input_in_KSC5601, (wchar_t*)temp);
 EXEC SQL SET DESCRIPTOR :in_sqlda VALUE :j
 VARIABLE_DATA = :hv_input_in_KSC5601;
 } else
 return;
 }

 // Execute the statement using the SQLDAs
 EXEC SQL EXECUTE sqlstmt USING SQL DESCRIPTOR :in_sqlda
 INTO SQL DESCRIPTOR :out_sqlda;

 // Get the count of the number of output values
 EXEC SQL GET DESCRIPTOR :out_sqlda :degree = COUNT;

 // Get the ith output value
 for (i=1; i<=degree; i++) {

 // Get the info about the output value
 EXEC SQL GET DESCRIPTOR :out_sqlda VALUE :i
 :data_type = TYPE,

 :charset_name = CHARACTER_SET_NAME,
 :return_len = RETURNED_LENGTH,
 :return_oct_len = RETURNED_OCTET_LENGTH;

 // Get and print out the output value based on the character set name
 if (strcmp(charset_name, SQLCHARSETSTRING_KANJI) == 0) {
 EXEC SQL GET DESCRIPTOR :out_sqlda VALUE :i
 :hv_output_in_KANJI = VARIABLE_DATA;
 print_singlebyte_string((char*)hv_output_in_KANJI,
 return_oct_len);
 } else
 if (strcmp(charset_name, SQLCHARSETSTRING_KSC5601) == 0)
{
 EXEC SQL GET DESCRIPTOR :out_sqlda VALUE :i
 :hv_output_in_KSC5601 = VARIABLE_DATA;
 print_singlebyte_string((char*)hv_output_in_KSC5601, return_oct_len);
 } else return;
 }

 // Deallocate the prepared statement and the SQLDAs
 EXEC SQL DEALLOCATE prepare sqlstmt;
 EXEC SQL DEALLOCATE DESCRIPTOR :in_sqlda;
 EXEC SQL DEALLOCATE DESCRIPTOR :out_sqlda;

 return;

EndOfProcessing:
 handle_error();

}
void main()

Example A-10. Using SQL Descriptor Areas to Select SQL/MP KANJI and
KSC5601 Data (page 4 of 5)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-33

C Sample Programs Using SQL Descriptor Areas to Select SQL/MP
KANJI and KSC5601 Data
{
 /* input in KANJI and output in KSC5601 .*/
 strcpy(hv_sql_stmt, "select wordInKsc5601 FROM words WHERE \
 wordInKanji = ? ;");
 execute_one_statement();

 /* input in KSC5601 and output in KANJI .*/
 strcpy(hv_sql_stmt, "select wordInKanji FROM words WHERE \
wordInKsc5601 = ? ;");
 execute_one_statement();

}

Example A-10. Using SQL Descriptor Areas to Select SQL/MP KANJI and
KSC5601 Data (page 5 of 5)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-34

C Sample Programs Using SQL Descriptors to Select UCS2 Data
Using SQL Descriptors to Select UCS2 Data
Example A-11 selects UCS2 data from an SQL/MX table by using SQL descriptor
areas.

Example A-11. Using SQL Descriptors to Select UCS2 Data (page 1 of 5)

/* --
 Description: Illustrate setting and getting of character
 set related description items, comparison of
 UCS2 host variables with ISO88591 columns and
 retrieval of ISO88591 data to UCS2 host
 variables (relaxation).

 Statements: ALLOCATE DESCRIPTOR
 PREPARE
 DESCRIBE
 SET DESCRIPTOR
 OPEN
 FETCH
 DEALLOCATE PREPARE
 DEALLOCATE DESCRIPTOR
 WHENEVER
 GET DIAGNOSTICS
--- */
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include <wchar.h>

EXEC SQL MODULE CSDYNCURSORM NAMES ARE ISO88591;
long SQLCODE;
char SQLSTATE_OK[6] = "00000";
char SQLSTATE_NODATA[6] = "02000";

EXEC SQL
BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 int hv_desc_max;
 int i, j;
 char in_sqlda[13];
 char out_sqlda[13];
 char hv_sql_stmt[255];
 long degree;
 long data_type;
 long data_len;
 long return_len;
 VARCHAR charset_name[129];

 char CHARACTER SET UCS2 hv_input_in_UCS2[21];
 VARCHAR CHARACTER SET UCS2 hv_output_in_UCS2[21];

EXEC SQL END DECLARE SECTION;
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-35

C Sample Programs Using SQL Descriptors to Select UCS2 Data
void handle_error()
{
 EXEC SQL BEGIN DECLARE SECTION;
 long i,num, hv_cond_num,hv_sqlcode;
 char hv_sqlstate[6], hv_table_name[129],hv_column_name[129];
 char hv_message_text[256];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO errexit;
 exec sql get diagnostics :num = NUMBER;

 for (i=1;i<=num;i++) {
 EXEC SQL get diagnostics exception :i
 :hv_cond_num = CONDITION_NUMBER,
 :hv_sqlstate = RETURNED_SQLSTATE,
 :hv_table_name = TABLE_NAME,
 :hv_column_name = COLUMN_NAME,
 :hv_message_text = MESSAGE_TEXT,
 :hv_sqlcode = SQLCODE;
 hv_sqlstate[5] = 0;
 printf("condition number: %d\n", hv_cond_num);
 printf("sqlstate: %s\n", hv_sqlstate);
 printf("table name: %s\n", hv_table_name);
 printf("column name: %s\n", hv_column_name);
 printf("message text: %s\n", hv_message_text);
 printf("sqlcode: %ld\n", hv_sqlcode);
 printf("\n");
 }

 return;

errexit:
 printf("\nError in the error handler. SQLCODE = %d\n",
 SQLCODE);
 exit(1);
}

EXEC SQL WHENEVER SQLERROR GOTO EndOfProcessing;

// print UCS2 string. Only characters in the range [0, 0xFF]
// are faithfully printed. Others are printed as '?'.

void print_UCS2_string(wchar_t* data, int len)
{
 for (int i=0; i<len; i++) {
 if (data[i] <= 0xFF)
 printf("%c", (char)data[i]);
 else
 printf("?");
 }
}

Example A-11. Using SQL Descriptors to Select UCS2 Data (page 2 of 5)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-36

C Sample Programs Using SQL Descriptors to Select UCS2 Data
// assume the sql text is in :hv_sql_stmt
void execute_one_statement()
{
 strcpy (in_sqlda," ");
 strcpy (out_sqlda," ");
 strcpy(in_sqlda,"selargs");
 in_sqlda[13] = '\0';
 strcpy(out_sqlda,"selcols");
 out_sqlda[13] = '\0';

 // Allocate the descriptor for input parameters
 hv_desc_max = 1;
 EXEC SQL ALLOCATE DESCRIPTOR :in_sqlda WITH MAX :hv_desc_max;

 // Allocate the descriptor for output values
 hv_desc_max = 6;
 EXEC SQL ALLOCATE DESCRIPTOR :out_sqlda WITH MAX \
 :hv_desc_max;

 // Prepare the cursor statement
 EXEC SQL PREPARE sqlstmt FROM :hv_sql_stmt;

 // Declare the dynamic cursor from the prepared statement
 EXEC SQL DECLARE cur_name CURSOR FOR sqlstmt;

 // Describe the SQL descriptor area for input parameter
 EXEC SQL DESCRIBE INPUT sqlstmt USING SQL DESCRIPTOR
 :in_sqlda;

 // Describe the SQL descriptor area for SELECT values
 EXEC SQL DESCRIBE OUTPUT sqlstmt USING SQL DESCRIPTOR
 :out_sqlda;

 // Get the input count
 j = 0;
 EXEC SQL GET DESCRIPTOR :in_sqlda :j = COUNT;

Example A-11. Using SQL Descriptors to Select UCS2 Data (page 3 of 5)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-37

C Sample Programs Using SQL Descriptors to Select UCS2 Data
 if (j > 0)
 {
 // Get the type, character set name and length of the
 // input
 EXEC SQL GET DESCRIPTOR :in_sqlda VALUE :j
 :data_type = TYPE,
 :data_len = LENGTH,
 :charset_name = CHARACTER_SET_NAME;

 // Set up the input value based on character set name. Use
 // the relaxation feature to compare an UCS2 string with
 // an ISO88591 or UCS2 column.
 if (strcmp(charset_name, SQLCHARSETSTRING_UNICODE) == 0 ||
 strcmp(charset_name, SQLCHARSETSTRING_ISO88591) == 0)
 {
 //01234567890123
 wcscpy(hv_input_in_UCS2, L"Houston ");
 data_len = wcslen(hv_input_in_UCS2)+1;
 EXEC SQL SET DESCRIPTOR :in_sqlda VALUE :j
 VARIABLE_DATA = :hv_input_in_UCS2;
 } else
 return;
 }

 // Open the cursor using the input SQLDA
 EXEC SQL OPEN cur_name USING SQL DESCRIPTOR :in_sqlda;

 // Fetch the first row into output SQLDA
 EXEC SQL FETCH cur_name INTO SQL DESCRIPTOR :out_sqlda;

 // Get the count of the number of output values
 EXEC SQL GET DESCRIPTOR :out_sqlda :degree = COUNT;

 while (strcmp(SQLSTATE, SQLSTATE_NODATA) != 0) {

Example A-11. Using SQL Descriptors to Select UCS2 Data (page 4 of 5)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-38

C Sample Programs Using SQL Descriptors to Select UCS2 Data
 // Get the ith output value
 for (i=1; i<=degree; i++) {

 // Get the info about the output value. Assume it is CHARACTER data.
 EXEC SQL GET DESCRIPTOR :out_sqlda VALUE :i
 :data_type = TYPE,
 :charset_name = CHARACTER_SET_NAME;

 // Get and print out the output values. Use the relaxation feature
 // again to reuse the output host variable ":hv_output_in_UCS2" for
 // ISO88591 columns.

 if (strcmp(charset_name, SQLCHARSETSTRING_UNICODE) == 0 ||
 strcmp(charset_name, SQLCHARSETSTRING_ISO88591) == 0)
 {
 EXEC SQL GET DESCRIPTOR :out_sqlda VALUE :i
 :hv_output_in_UCS2 = VARIABLE_DATA,
 :return_len = RETURNED_LENGTH;

 print_UCS2_string(hv_output_in_UCS2, return_len);

 if (i < degree)
 printf(", ");
 }
 }
 printf("\n");

 EXEC SQL FETCH cur_name INTO SQL DESCRIPTOR :out_sqlda;
 }

 // Deallocate the prepared statement and the SQLDAs
 EXEC SQL close cur_name;
 EXEC SQL DEALLOCATE prepare sqlstmt;
 EXEC SQL DEALLOCATE DESCRIPTOR :in_sqlda;
 EXEC SQL DEALLOCATE DESCRIPTOR :out_sqlda;

 return;

EndOfProcessing:
 handle_error();

}

void main()
{
 /*test ISO88591 data.*/
 strcpy(hv_sql_stmt, "select custname, street FROM usa_customer \
 WHERE city = ? ;");
 execute_one_statement();

 /*test UCS2 data.*/
 strcpy(hv_sql_stmt, "select custname, street FROM international_customer \
 WHERE city = ? ;");
 execute_one_statement();
}

Example A-11. Using SQL Descriptors to Select UCS2 Data (page 5 of 5)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-39

C Sample Programs Using SQL Descriptors to Select UCS2 Data
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
A-40

B C++ Sample Program

This appendix presents the steps shown in Section 14, Transaction Management, as a
C++ program.

Ensuring Data Consistency
Example B-1 executes the steps shown in Figure 14-1 on page 14-1.

Example B-1. Using TMF to Ensure Data Consistency (page 1 of 2)

/* ---
 Description: Using TMF to ensure data consistency
 Statements: BEGIN WORK
 INSERT
 COMMIT WORK
 ROLLBACK WORK
 WHENEVER
-- */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream.h>
EXEC SQL MODULE EXF92CPM NAMES ARE ISO88591;

char SQLSTATE_OK[6]="00000";
EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
EXEC SQL END DECLARE SECTION;

void end_prog();
EXEC SQL DECLARE CATALOG 'samdbcat';
EXEC SQL DECLARE SCHEMA 'persnl';

EXEC SQL WHENEVER SQLERROR CALL end_prog;

class jobsql {
// Class member host variables
EXEC SQL BEGIN DECLARE SECTION;
 unsigned NUMERIC (4) memhv_jobcode;
 VARCHAR memhv_jobdesc[19];
EXEC SQL END DECLARE SECTION;

public:
jobsql(){}; // Default constructor
~jobsql(){}; // Default destructor

// Member function to prompt for the job code
void getcode(){ cout << "Enter job code: " ;
 cin >> memhv_jobcode; }
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
B-1

C++ Sample Program Ensuring Data Consistency
// Member function to prompt for the job description
void getdesc(){ cout << "Enter job description: " ;
 cin >> memhv_jobdesc; }

// Member function to put the host variables into the table.
// The host variables are referenced in member functions
// defined within the same class.
void putjob(){
 EXEC SQL
 INSERT INTO job
 VALUES (:memhv_jobcode, :memhv_jobdesc);
 }

// Member functions for begin work, commit work, rollback work
static void bw() { EXEC SQL BEGIN WORK; }
static void cw() { EXEC SQL COMMIT WORK; }
static void rw() { EXEC SQL ROLLBACK WORK; }

}; // End of class definition for jobsql

int main()
{
 SQLSTATE[5]='\0';
 SQLSTATE_OK[5]='\0';
 cout << "Example begins and ends a transaction." << endl;

 jobsql mysql; // Instantiate a member of class jobsql

// Prompt for member class data for table
 mysql.getcode();
 mysql.getdesc();

 jobsql::bw(); // Begin the transaction

// Insert the data into the table
 mysql.putjob();
 jobsql::cw(); // Commit the transaction
 cout << "The insert is committed." << endl;
 return 0;
} // End of main

void end_prog()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 if (strcmp(SQLSTATE, SQLSTATE_OK) != 0) {
 cout << "The insert is rolled back." << endl;
 cout << "SQLSTATE: "<< SQLSTATE << endl;
 EXEC SQL ROLLBACK WORK; // Rollback the changes
 }
 exit(1);
} // End of end_prog

Example B-1. Using TMF to Ensure Data Consistency (page 2 of 2)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
B-2

CO
C COBOL Sample Programs

This appendix presents the steps shown in figures in previous sections as complete
COBOL programs.

Using a Static SQL Cursor
Example C-1 executes the steps shown in Figure 6-2 on page 6-3.

Example C-1. Using a Static SQL Cursor (page 1 of 3)

* Description: Using a Static SQL Cursor
* Statements: Static DECLARE CURSOR
* BEGIN WORK
* OPEN
* FETCH
* Positioned UPDATE
* CLOSE
* COMMIT WORK
* WHENEVER
* GET DIAGNOSTICS
*---
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Program-exF62.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 sqlcode pic s9(9) comp.
 01 hv-partnum pic 9(4) comp.
 01 hv-partdesc pic x(18).
 01 hv-price pic s9(6)v9(2) comp.
 01 hv-qty-available pic s9(7) comp.
 01 hv-num pic s9(9) comp.
 01 hv-sqlstate pic x(5).
 01 hv-tabname pic x(128).
 01 hv-colname pic x(128).
 01 hv-msgtxt pic x(128).
 01 in-partnum pic 9(4) comp.
 01 i pic s9(9) comp.
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 sqlstate-ok pic x(5) value "00000".
 01 sqlstate-nodata pic x(5) value "02000".
 01 sqlstate-save pic x(5).
 01 sqlcode-save pic s9(9) comp.

BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-1

COBOL Sample Programs Using a Static SQL Cursor

CO
 PROCEDURE DIVISION.
 START-LABEL.
 DISPLAY "This example uses a static cursor.".
 EXEC SQL WHENEVER SQLERROR GOTO sqlerrors END-EXEC.
 EXEC SQL DECLARE CATALOG 'samdbcat' END-EXEC.
 EXEC SQL DECLARE SCHEMA 'sales' END-EXEC.
* Declare static cursor.
 EXEC SQL DECLARE get_by_partnum CURSOR FOR
 SELECT partnum, partdesc, price, qty_available
 FROM parts
 WHERE partnum >= :in-partnum
 FOR UPDATE OF partdesc, price, qty_available
 END-EXEC.

* Read in-partnum from terminal.
 DISPLAY "Enter lowest part number to be retrieved: ".
 ACCEPT in-partnum.

* Begin the transaction.
 EXEC SQL BEGIN WORK END-EXEC.

* Open the cursor.
 EXEC SQL OPEN get_by_partnum END-EXEC.

* Fetch the first row of the result from table.

 EXEC SQL FETCH get_by_partnum
 INTO :hv-partnum, :hv-partdesc,
 :hv-price, :hv-qty-available
 END-EXEC.

* Update qty_available if qty_available is less than 1000.
 PERFORM UNTIL sqlstate = sqlstate-nodata
 IF hv-qty-available < 1000
 EXEC SQL UPDATE parts
 SET qty_available = qty_available + 100
 WHERE CURRENT OF get_by_partnum
 END-EXEC.
 DISPLAY "Update of part number: " hv-partnum
 END-IF

 EXEC SQL FETCH get_by_partnum
 INTO :hv-partnum, :hv-partdesc,
 :hv-price, :hv-qty-available
 END-EXEC.
 END-PERFORM.

Example C-1. Using a Static SQL Cursor (page 2 of 3)BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-2

COBOL Sample Programs Using a Static SQL Cursor

CO
*
* Close the cursor.
 EXEC SQL CLOSE get_by_partnum END-EXEC.
* Commit any changes.
 EXEC SQL COMMIT WORK END-EXEC.

 IF sqlstate = sqlstate-ok
 DISPLAY "The program completed successfully.".

 STOP RUN.
**
 sqlerrors SECTION.
**

 move sqlstate to sqlstate-save.
 move sqlcode to sqlcode-save.
 display "sqlerrors: " sqlstate ", " sqlcode.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 IF sqlstate not = sqlstate-ok
 EXEC SQL GET DIAGNOSTICS
 :hv-num = NUMBER
 END-EXEC.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > hv-num
 MOVE SPACES TO hv-msgtxt
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv-tabname = TABLE_NAME,
 :hv-colname = COLUMN_NAME,
 :hv-sqlstate = RETURNED_SQLSTATE,
 :hv-msgtxt = MESSAGE_TEXT
 END-EXEC.
 DISPLAY "Table : " hv-tabname
 DISPLAY "Column : " hv-colname
 DISPLAY "SQLSTATE: " hv-sqlstate
 DISPLAY "Message : " hv-msgtxt
 END-PERFORM
 END-IF.
 move sqlstate-save to sqlstate.
 move sqlcode-save to sqlcode.

* STOP RUN.

**
 END PROGRAM Program-exF62.
**

Example C-1. Using a Static SQL Cursor (page 3 of 3)BOL
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-3

COBOL Sample Programs Ensuring Data Consistency
Ensuring Data Consistency
Example C-2 executes the steps shown in Figure 14-2 on page 14-2

Example C-2. Using TMF to Ensure Data Consistency (page 1 of 2)

*--
* Description: Using TMF to ensure data consistency
* Statements: SET TRANSACTION
* BEGIN WORK
* Searched UPDATE
* COMMIT WORK
* ROLLBACK WORK
* WHENEVER
* GET DIAGNOSTICS
*--
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Program-exF92.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 sqlstate-ok pic x(5) value "00000".

 PROCEDURE DIVISION.
 START-LABEL.
 DISPLAY "This example begins a transaction.".

 EXEC SQL DECLARE CATALOG 'samdbcat' END-EXEC.
 EXEC SQL DECLARE SCHEMA 'sales' END-EXEC.

* Set the attributes for the transaction.
 EXEC SQL
 SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
 END-EXEC.

* Start the transaction.
 EXEC SQL BEGIN WORK END-EXEC.

* Update the database by resetting customer credit.
 EXEC SQL
 UPDATE customer SET CREDIT = 'CR'
 END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-4

COBOL Sample Programs Ensuring Data Consistency
 IF sqlstate = sqlstate-ok
 DISPLAY "The transaction is committed."
 EXEC SQL COMMIT WORK END-EXEC.
 ELSE
 DISPLAY "The transaction is rolled back."
 EXEC SQL ROLLBACK WORK END-EXEC.
 END-IF.

 STOP RUN.

**
 END PROGRAM Program-exF92.
**

Example C-2. Using TMF to Ensure Data Consistency (page 2 of 2)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-5

COBOL Sample Programs Using Argument Lists in Dynamic SQL
Using Argument Lists in Dynamic SQL
Example C-3 executes the steps shown in Figure 9-2 on page 9-4.

Example C-3. Using Argument Lists in Dynamic SQL (page 1 of 3)

*--
* Description: Using Argument Lists
* Statements: PREPARE
* EXECUTE USING ARGUMENTS
* DEALLOCATE PREPARE
* WHENEVER
* GET DIAGNOSTICS
*--
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Program-exF102.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 hv-empnum pic 9(4) comp.
 01 hv-first-name pic x(15).
 01 hv-last-name pic x(20).
 01 hv-salary pic 9(6)v9(2) comp.
 01 hv-salary-i pic S9(4) comp.
 01 hv-temp pic 9(6)v9(2) display.

 01 in-empnum pic 9(4) comp.
 01 hv-sql-stmt pic x(256).

 01 hv-num pic S9(9) comp.
 01 hv-sqlstate pic x(5).
 01 hv-msgtxt pic x(128).
 01 hv-tabname pic x(128).
 01 hv-colname pic x(128).
 01 i pic s9(9) comp.
 EXEC SQL END DECLARE SECTION END-EXEC.

 01 sqlstate-ok pic x(5) value "00000".
 01 sqlstate-nodata pic x(5) value "02000".

 PROCEDURE DIVISION.
 START-LABEL.
 DISPLAY "This example uses argument lists.".
 EXEC SQL WHENEVER SQLERROR GOTO sqlerrors END-EXEC.
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-6

COBOL Sample Programs Using Argument Lists in Dynamic SQL
* Move statement with input variable to statement variable.
 MOVE "SELECT empnum, first_name, last_name, salary"
 & " FROM samdbcat.persnl.employee"
 & " WHERE empnum = CAST(? AS NUMERIC(4) UNSIGNED)"
 TO hv-sql-stmt.

* Prepare the statement.
 EXEC SQL PREPARE sqlstmt FROM :hv-sql-stmt END-EXEC.

* Initialize the input parameter in the WHERE clause.
 DISPLAY "Enter the employee number to be retrieved: ".
 ACCEPT in-empnum.

* Execute the prepared statement using the argument lists.
 EXEC SQL EXECUTE sqlstmt
 USING :in-empnum
 INTO :hv-empnum, :hv-first-name, :hv-last-name,
 :hv-salary INDICATOR :hv-salary-i END-EXEC.

* Process the output values.
 IF sqlstate = sqlstate-ok
 DISPLAY "Empnum is: " hv-empnum
 DISPLAY "First name is: " hv-first-name
 DISPLAY "Last name is: " hv-last-name
 IF hv-salary-i < 0
 DISPLAY "Salary is unknown"
 ELSE
 DIVIDE 100.0 INTO hv-salary GIVING hv-temp
 DISPLAY "Salary is: " hv-temp
 ELSE IF sqlstate = sqlstate-nodata
 DISPLAY "No row with employee number: " in-empnum.

* Deallocate the prepared statement.
 EXEC SQL DEALLOCATE PREPARE sqlstmt END-EXEC.

 STOP RUN.

Example C-3. Using Argument Lists in Dynamic SQL (page 2 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-7

COBOL Sample Programs Using Argument Lists in Dynamic SQL
**
 sqlerrors SECTION.
**

 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 IF sqlstate not = sqlstate-ok
 EXEC SQL GET DIAGNOSTICS
 :hv-num = NUMBER
 END-EXEC.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > hv-num
 MOVE SPACES TO hv-msgtxt
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv-tabname = TABLE_NAME,
 :hv-colname = COLUMN_NAME,
 :hv-sqlstate = RETURNED_SQLSTATE,
 :hv-msgtxt = MESSAGE_TEXT
 END-EXEC.
 DISPLAY "Table : " hv-tabname
 DISPLAY "Column : " hv-colname
 DISPLAY "SQLSTATE: " hv-sqlstate
 DISPLAY "Message : " hv-msgtxt
 END-PERFORM
 END-IF.

 STOP RUN.

**
 END PROGRAM Program-exF102.
**

Example C-3. Using Argument Lists in Dynamic SQL (page 3 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-8

COBOL Sample Programs Using SQL Descriptor Areas in Dynamic SQL
Using SQL Descriptor Areas in Dynamic SQL
Example C-4 executes the steps shown in Figure 10-2 on page 10-13.

Example C-4. Using Descriptor Areas With DESCRIBE (page 1 of 4)

*--
* Description: Using SQL Descriptor Areas
* Statements: ALLOCATE DESCRIPTOR
* PREPARE
* DESCRIBE
* SET DESCRIPTOR
* EXECUTE
* GET DESCRIPTOR
* DEALLOCATE PREPARE
* DEALLOCATE DESCRIPTOR
* WHENEVER
* GET DIAGNOSTICS
*--
 IDENTIFICATION DIVISION.
 PROGRAM-ID. Program-exF112.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 sqlstate pic x(5).
 01 hv-empnum pic 9(4) comp.
 01 hv-first-name pic x(15).
 01 hv-last-name pic x(20).
 01 hv-deptnum pic 9(4) comp.
 01 hv-jobcode pic 9(4) comp.
 01 hv-salary pic 9(6)v9(2) comp.
 01 hv-temp pic 9(6)v9(2) display.
 01 hv-sql-stmt.
 03 in-select pic x(7) value "SELECT ".
 03 in-columns pic x(80).
 03 in-from pic x(80) value " FROM"
 & " samdbcat.persnl.employee"
 & " WHERE empnum = CAST(? AS NUMERIC(4) UNSIGNED)".
 01 hv-prepare-stmt pic x(170).
 01 hv-num pic s9(9) comp.
 01 hv-sqlstate pic x(5).
 01 hv-msgtxt pic x(128).
 01 hv-tabname pic x(128).
 01 hv-colname pic x(128).
 01 sqlda-name pic x(128).
 01 in-empnum pic 9(4) comp.
 01 i pic s9(9) comp.
 01 hv-desc-max pic s9(9) comp.
 01 hv-desc-value pic s9(9) comp.
 EXEC SQL END DECLARE SECTION END-EXEC.
 01 sqlstate-ok pic x(5) value "00000".
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-9

COBOL Sample Programs Using SQL Descriptor Areas in Dynamic SQL
 PROCEDURE DIVISION.
 START-LABEL.
 DISPLAY "This example uses SQL descriptor areas".
 EXEC SQL WHENEVER SQLERROR GOTO sqlerrors END-EXEC.

* Initialize the output variable in SELECT list.
 DISPLAY "Enter the columns to be retrieved,"
 & " separated by commas: ".
 ACCEPT in-columns.
 DISPLAY hv-sql-stmt.

* Allocate SQL descriptor area for input parameters.
 MOVE 1 TO hv-desc-max.
 EXEC SQL
 ALLOCATE DESCRIPTOR 'in_sqlda' WITH MAX :hv-desc-max
 END-EXEC.

* Allocate SQL descriptor area for output values.
 MOVE 6 TO hv-desc-max.
 EXEC SQL
 ALLOCATE DESCRIPTOR 'out_sqlda' WITH MAX :hv-desc-max
 END-EXEC.

* Prepare dynamic SQL statement.
 MOVE hv-sql-stmt TO hv-prepare-stmt.
 EXEC SQL
 PREPARE sqlstmt FROM :hv-prepare-stmt
 END-EXEC.

* Describe the SQL descriptor area for input parameters.
 EXEC SQL
 DESCRIBE INPUT sqlstmt USING SQL DESCRIPTOR 'in_sqlda'
 END-EXEC.

* Describe the SQL descriptor area for SELECT values.
 EXEC SQL
 DESCRIBE OUTPUT sqlstmt USING SQL DESCRIPTOR 'out_sqlda'
 END-EXEC.

* Initialize the input parameter in the WHERE clause
 DISPLAY "Enter the employee number to be retrieved: ".
 ACCEPT in-empnum.

* Set the value of the input parameter in
* the input SQL descriptor area
 MOVE 1 TO hv-desc-value.
 EXEC SQL
 SET DESCRIPTOR 'in_sqlda' VALUE :hv-desc-value
 VARIABLE_DATA = :in-empnum
 END-EXEC.

Example C-4. Using Descriptor Areas With DESCRIBE (page 2 of 4)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-10

COBOL Sample Programs Using SQL Descriptor Areas in Dynamic SQL
* Execute the prepared statement using the SQL descriptor areas.
 EXEC SQL
 EXECUTE sqlstmt
 USING SQL DESCRIPTOR 'in_sqlda'
 INTO SQL DESCRIPTOR 'out_sqlda'
 END-EXEC.

* Get the count of the number of output values.
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' :hv-num = COUNT
 END-EXEC.

* Get the i-th output value in NAME field and save it.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > hv-num
 MOVE SPACES TO sqlda-name
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' VALUE :i
 :sqlda-name = NAME
 END-EXEC.
 IF sqlda-name = "EMPNUM"
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv-empnum = VARIABLE_DATA
 END-EXEC.
 DISPLAY "Empnum is: " hv-empnum
 ELSE
 IF sqlda-name = "FIRST_NAME"
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv-first-name = VARIABLE_DATA
 END-EXEC.
 DISPLAY "First name is: " hv-first-name
 ELSE
 IF sqlda-name = "LAST_NAME"
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv-last-name = VARIABLE_DATA
 END-EXEC.
 DISPLAY "Last name is: " hv-last-name
 ELSE
 IF sqlda-name = "DEPTNUM"
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv-deptnum = VARIABLE_DATA
 END-EXEC.
 DISPLAY "Department is: " hv-deptnum
 ELSE
 IF sqlda-name = "JOBCODE"
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv-jobcode = VARIABLE_DATA
 END-EXEC.
 DISPLAY "Jobcode is: " hv-jobcode

Example C-4. Using Descriptor Areas With DESCRIBE (page 3 of 4)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-11

COBOL Sample Programs Using SQL Descriptor Areas in Dynamic SQL
 ELSE
 IF sqlda-name = "SALARY"
 EXEC SQL
 GET DESCRIPTOR 'out_sqlda' VALUE :i
 :hv-salary = VARIABLE_DATA
 END-EXEC.
 DIVIDE 100.0 INTO hv-salary GIVING hv-temp
 DISPLAY "Salary is: " hv-temp
 ELSE
 DISPLAY "Sqlda-name is " sqlda-name
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-PERFORM.

 EXEC SQL DEALLOCATE PREPARE sqlstmt END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR 'in_sqlda' END-EXEC.
 EXEC SQL DEALLOCATE DESCRIPTOR 'out_sqlda' END-EXEC.

 IF sqlstate = sqlstate-ok
 DISPLAY "The program completed successfully."

 STOP RUN.
**
 sqlerrors SECTION.
**
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 IF sqlstate not = sqlstate-ok
 EXEC SQL GET DIAGNOSTICS
 :hv-num = NUMBER
 END-EXEC.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > hv-num
 MOVE SPACES TO hv-msgtxt
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv-tabname = TABLE_NAME,
 :hv-colname = COLUMN_NAME,
 :hv-sqlstate = RETURNED_SQLSTATE,
 :hv-msgtxt = MESSAGE_TEXT
 END-EXEC.
 DISPLAY "Table : " hv-tabname
 DISPLAY "Column : " hv-colname
 DISPLAY "SQLSTATE: " hv-sqlstate
 DISPLAY "Message : " hv-msgtxt
 END-PERFORM
 END-IF.
 STOP RUN.
**
 END PROGRAM Program-exF112.
**

Example C-4. Using Descriptor Areas With DESCRIBE (page 4 of 4)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-12

COBOL Sample Programs Using a Dynamic SQL Cursor
Using a Dynamic SQL Cursor
Example C-5 executes the steps shown in Figure 10-2 on page 10-13.

Example C-5. Using a Dynamic SQL Cursor (page 1 of 3)

*--
* Description: Using a Dynamic SQL Cursor
* Statements: PREPARE
* Dynamic DECLARE CURSOR
* OPEN
* FETCH
* CLOSE
* WHENEVER
* GET DIAGNOSTICS
*--

 IDENTIFICATION DIVISION.
 PROGRAM-ID. Program-exF122.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 sqlstate pic x(5).
 01 hv-partnum pic 9(4) comp.
 01 hv-partdesc pic x(18).
 01 hv-price pic s9(6)v9(2) comp.
 01 hv-qty-available pic s9(7) comp.
 01 hv-num pic s9(9) comp.
 01 hv-sqlstate pic x(5).
 01 hv-msgtxt pic x(128).
 01 hv-tabname pic x(128).
 01 hv-colname pic x(128).
 01 curspec pic x(255).
 01 in-qty-available pic s9(7) comp.
 01 i pic s9(9) comp.

 EXEC SQL END DECLARE SECTION END-EXEC.

 01 sqlstate-ok pic x(5) value "00000".
 01 sqlstate-nodata pic x(5) value "02000".
 01 print-line.
 03 print-order pic x(19) value "Order part number: ".
 03 print-partnum pic x(10).
 03 print-current pic x(17) value "Current quality: ".
 03 print-qty pic x(10).
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-13

COBOL Sample Programs Using a Dynamic SQL Cursor
 PROCEDURE DIVISION.
 START-LABEL.
 DISPLAY "This example uses a dynamic cursor.".
 EXEC SQL WHENEVER SQLERROR GOTO sqlerrors END-EXEC.

 MOVE "SELECT partnum, partdesc, price, qty_available"
 & " FROM samdbcat.sales.parts"
 & " WHERE qty_available <= CAST(? AS NUMERIC(5))"
 TO curspec.

* Prepare cursor specification.
 EXEC SQL PREPARE cursor_spec FROM :curspec END-EXEC.

* Declare the dynamic cursor from the prepared statement.
 EXEC SQL
 DECLARE get_by_partnum CURSOR FOR cursor_spec
 END-EXEC.

* Initialize the parameter in the WHERE clause.
 DISPLAY "Enter the quantity to initiate the order: ".
 ACCEPT in-qty-available.

* Open the cursor using the values of the dynamic parameter.
 EXEC SQL
 OPEN get_by_partnum USING :in-qty-available
 END-EXEC.

* Fetch the first row of result from table.
 EXEC SQL
 FETCH get_by_partnum
 INTO :hv-partnum, :hv-partdesc,
 :hv-price, :hv-qty-available
 END-EXEC.

* Fetch rest of the results from table.
 PERFORM UNTIL sqlstate = sqlstate-nodata
 MOVE hv-partnum TO print-partnum
 MOVE hv-qty-available TO print-qty
 DISPLAY print-line

 EXEC SQL FETCH get_by_partnum
 INTO :hv-partnum, :hv-partdesc,
 :hv-price, :hv-qty-available
 END-EXEC.
 END-PERFORM.

* Close the cursor.
 EXEC SQL CLOSE get_by_partnum END-EXEC.

 IF sqlstate = sqlstate-ok
 DISPLAY "The program completed successfully.".
 STOP RUN.

Example C-5. Using a Dynamic SQL Cursor (page 2 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-14

COBOL Sample Programs Using a Dynamic SQL Cursor
**
 sqlerrors SECTION.
**

 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.

 IF sqlstate not = sqlstate-ok
 EXEC SQL GET DIAGNOSTICS
 :hv-num = NUMBER
 END-EXEC.
 PERFORM VARYING i FROM 1 BY 1 UNTIL i > hv-num

MOVE SPACES TO hv-msgtxt
 EXEC SQL GET DIAGNOSTICS EXCEPTION :i
 :hv-tabname = TABLE_NAME,
 :hv-colname = COLUMN_NAME,
 :hv-sqlstate = RETURNED_SQLSTATE,
 :hv-msgtxt = MESSAGE_TEXT
 END-EXEC.
 DISPLAY "Table : " hv-tabname
 DISPLAY "Column : " hv-colname
 DISPLAY "SQLSTATE: " hv-sqlstate
 DISPLAY "Message : " hv-msgtxt
 END-PERFORM
 END-IF.

 STOP RUN.

**
 END PROGRAM Program-exF122.
**

Example C-5. Using a Dynamic SQL Cursor (page 3 of 3)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-15

COBOL Sample Programs Using a Dynamic SQL Cursor
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
C-16

Index

A
ALTER SQLMP ALIAS statement 8-3
Argument lists, within dynamic SQL

examples of 9-3

rowsets 12-5

sample program, COBOL C-6

summary of statements 9-2

Assignment statement 5-15
Autocommit setting 14-4
Automatic recompilation 8-12

B
BEGIN WORK statement 6-11
Buffers, with VARIABLE_POINTER 10-8

C
C host variables 2-3

See also Host variables

creating with INVOKE 3-31

data types 3-2

example of 3-28

C preprocessing directives
#define 15-11

#include 15-9

#line 15-12

c89 utility
examples of 15-42, 15-45

options for SQL/MX 15-37

using to compile C/C++ program in a
single command 15-37

using to compile C/C++
statements 15-41

CALL statement 2-12
CAST function

converting character string to date-time
value

COBOL 4-16

CAST function (continued)
C/C++ 3-26

converting date-time column to
character string

COBOL 4-15

C/C++ 3-25

Catalog declaration 2-7
Character host variables

C 3-2

COBOL 4-2, 4-10

Character sets, examples
C 3-40

COBOL 4-30

CLOSE statement 11-6
description of 6-11

examples of 6-11

COBOL compiler and linker, running 16-23
COBOL host variables

See also Host variables

creating with INVOKE 4-22

data types 4-2

COBOL preprocessor
description of 16-13

functions 16-9

OSS-hosted 16-13

Windows-hosted 16-18

COBOL program compilation 16-1
Comments

host language 2-2

naming an SQL statement

in a COBOL program 16-10

in a C/C++ program 15-12

SQL 2-2

COMMIT WORK statement 6-11
Compilation

COBOL 16-23

C++ 15-1
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-1

Index C
Compilation of modules
embedded module definitions 15-30,
16-25

module definition files 15-34, 16-29

Compilation of programs
description of 1-13

embedded module definitions 15-3,
16-3

examples

build C application 15-50

build COBOL application 16-43

build C/C++ with SQL 15-47

deploy static SQL to RDF
system 15-54

develop native C/C++ with SQL on
OSS 15-49

quick builds and mxcmp defaults in
one-file deployment 15-52

module definition files 15-6, 16-6

Compile-time name resolution 8-6
Compile-time specified length 12-4
Compound statements

assignment of 5-15

description of 5-1, 5-13

examples

grouping statements, C 5-14

grouping statements, COBOL 5-14

using SELECT INTO statement,
C 5-15

using SELECT INTO statement,
COBOL 5-15

general syntax 5-13

IF statement 5-16

limitation 5-13

CONTROL statements
See also Scope

behavior and use guidelines 2-14

CONTROL QUERY DEFAULT 2-7

CONTROL QUERY SHAPE 2-7

CONTROL TABLE 2-7

description of 2-12

CONTROL statements (continued)
dynamic 2-13

static 2-13

CREATE SQLMP ALIAS statement 1-1,
8-2
CREATE TABLE, example of 3-35
Cursor position

after DELETE 6-9

after FETCH 6-6

after UPDATE 6-8

operations affecting 6-15

Cursor specification, preparing 11-4
Cursors

changing position 6-15

declaration statement 2-7

description of 6-1

dynamic

description of 11-1

sample program, C A-17

sample program, COBOL C-13

sensitivity 6-16

stability of 6-15

static

description of 6-1

sample program, C A-1

sample program, COBOL C-1

steps for using dynamic cursor in
C 11-2

steps for using dynamic cursor in
COBOL 11-3

C++ class, SQL Declare Section 3-29
C++ host variables 2-3
C++ run-time library, default 15-29
C/C++ compiler and linker, running 15-28
C/C++ host variables, data types 3-13
C/C++ preprocessor

description of 15-8

functions of 15-9

OSS-hosted 15-16
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-2

Index D
C/C++ preprocessor (continued)
running with mxsqlc command 15-4,
15-7

Windows-hosted 15-21

C/C++ program compilation 15-1

D
Data consistency

committing database changes 14-8

declaring host variables 14-3

default attributes for transactions 14-6

description of 1-11

error testing, examples of 14-7

examples of

sample program, COBOL C-4

sample program, C++ B-1

grouping statements within
transactions 14-7

rolling back database changes 14-8

starting transactions 14-6

steps for ensuring

C 14-1

COBOL 14-2

system-initiated transaction 14-7

Data Control Language (DCL) statements,
nonexecutable 2-7
Data conversion

between SQL and C data types 3-11

between SQL and COBOL data
types 4-8

Data Definition Language (DDL) statements
embedding considerations 2-12

list of 2-8

Data description clauses, COBOL 4-18
Data Manipulation Language (DML)
statements

description of 1-4

embedding considerations 2-12

list of 2-10

static SQL cursors 6-1

Data Manipulation Language (DML)
statements (continued)

using no cursor with 5-1

using rowsets 7-6, 7-29

Data types
conversion between C and SQL 3-11

conversion between COBOL and
SQL 4-8

corresponding SQL and C 3-7

date-time

COBOL 4-13

C/C++ 3-23

dynamic cursors 11-7

static cursors 6-12

decimal

C 3-18

COBOL 4-12

fixed-length character

C 3-14

COBOL 4-11

floating-point 3-21, 6-14

interval

COBOL 4-13

C/C++ 3-23

dynamic cursors 11-7

static cursors 6-12

numeric

C 3-18

COBOL 4-12

picture

C 3-18

COBOL 4-12

syntax

C host variables 3-2

COBOL host variables 4-2

variable-length character

COBOL 4-12

C/C++ 3-16

Database object names, referencing 1-1
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-3

Index D
DATE host variable
description of 3-4, 4-3

format example 3-23, 4-13

Date-time data
assigning to char array

COBOL 4-15

C/C++ 3-25

casting

COBOL 4-15, 4-16

C/C++ 3-25, 3-26

dynamic cursors 11-7

format

COBOL 4-13

C/C++ 3-23

inserting from char array

COBOL 4-16

C/C++ 3-26

inserting or updating

COBOL 4-15

C/C++ 3-25

nonstandard SQL/MP DATETIME data
types 3-25, 4-15

selecting

COBOL 4-14

C/C++ 3-24

static cursors 6-12

static rowsets 7-9

Date-time examples
dynamic cursors

nonstandard SQL/MP DATETIME,
C 11-9

standard date-time, C 11-7

inserting

nonstandard SQL/MP DATETIME
value 3-26, 4-16

standard date-time value 3-25,
4-15

selecting

nonstandard SQL/MP DATETIME
value 3-25, 4-15

Date-time examples (continued)
standard date-time value 3-24,
4-14

static cursors

nonstandard SQL/MP DATETIME,
C 6-13

standard date-time, C 6-12

static rowsets

C 7-9

COBOL 7-10

Date-time host variables 3-4, 4-13
DDL

See Data Definition Language (DDL)
statements

DEALLOCATE PREPARE statement 11-7
Debugging

Native Inspect 15-67

Visual Inspect 15-67

Decimal data
assigning to char array 3-19

inserting from char array 3-19

DECLARE CURSOR declaration
coding 6-4

description of 6-4

example

read-only cursor 6-4

updatable cursor 6-5

DECLARE CURSOR statement,
syntax 11-4
Default transaction attributes 14-6
Default value setting for dynamic SQL 9-8
DEFINEs, using for table name 8-3
DELETE statement

deleting a single-row, example 5-12

deleting multiple-rows, example 5-12

deleting rows with rowset arrays,
examples 7-20

positioned example 6-9

positioned form 6-9

privileges 5-12

searched form
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-4

Index D
DELETE statement (continued)
rowsets 7-19

syntax 5-12

DESCRIBE statement
description of 12-10

INPUT form 10-4

OUTPUT form 10-7

Descriptor
See also Diagnostics area

allocating 10-3

deallocating 10-3

description of 10-1

input parameters 10-3

output variables

description of 10-7

retrieving values of 10-7

setting input data values 10-4

setting input parameter 10-6

specifying output with dynamic
cursor 11-10

using descriptor areas

sample program, C A-17

sample program, COBOL C-9

Diagnostics area 13-13
Diagnostics statement 2-8
DLL file

COBOL 16-18

C/C++ 15-21

DML
See Data Manipulation Language
(DML)

Dynamic cursors
closing 11-6

declaration of 11-4

declaring host variables for 11-4

description of 11-1

initializing input parameters 11-5

opening 11-5

preparing query expression 11-4

processing retrieved values 11-6

Dynamic cursors (continued)
retrieving values 11-5

sample program

C A-15

COBOL C-13

steps for using in C 11-2

steps for using in COBOL 11-3

using 1-8

using descriptor areas, example 11-10

Dynamic input parameters 11-5
Dynamic recompilation, SQL/MX 15-30,
16-25
Dynamic rowsets

DESCRIBE statement 12-10

description of 12-1

descriptor fields, setting 12-5

example of A-26

GET DESCRIPTOR statement 12-9

matching compile-time specified length
with execution-time length 12-4

preparing an SQL statement 12-2

rowset parameter, specifying 12-3

use restrictions 12-1

using SET DESCRIPTOR
statement 12-5

with argument lists 12-5

Dynamic SQL
advantages of 9-1

allocating SQL descriptor area for input
parameters 10-14

allocating SQL descriptor area for
output variables 10-15

assigning input value to DATA within
SQL descriptor area 10-17

constructing statement from
input 10-14

cursors 11-1

deallocating resources for prepared
statement 10-20

deallocating SQL descriptor area 9-7,
10-20
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-5

Index E
Dynamic SQL (continued)
declaring host variable for
statement 10-14

default value setting 9-8

describing input parameters 10-16

describing output parameters 10-16

description of 1-7, 9-1

executing the statement 10-18

getting COUNT of item descriptor
areas 10-19

getting VALUE of output within SQL
descriptor area 10-19

input parameters in 10-3

parameters 10-3

preparing the statement 9-5, 10-15

rowsets 12-1

setting INDICATOR for null within SQL
descriptor area 10-17

setting values of input parameters by
position 10-17

statements for dynamic cursors,
summary 11-1

statements with descriptors,
summary 10-1

steps for using SQL descriptor
area 10-12, 10-13

using descriptor areas

description of 1-7

sample program, C A-17

sample program, COBOL C-9

with arguments

deallocating resources for prepared
statement 9-7

declaring host variable for
statement 9-4

executing the prepared
statement 9-6

floating-point variables 9-2

input parameters 9-2

moving statement into host
variable 9-5

Dynamic SQL (continued)
output variables 9-2

sample program, COBOL C-6

steps for using 9-3

summary 9-2

using in a C program, example
of 9-3

using in a COBOL program,
example of 9-4

E
ecobol utility

examples of 16-38, 16-41

options for SQL/MX 16-33

using to compile COBOL program in a
single command 16-32

Embedded module definitions
compiling, COBOL 16-25

compiling, C/C++ 15-30

Embedded SQL
advantages of 1-1

coding in program 2-1

description of 1-2

executable SQL statements 2-4

general syntax of 2-1

host variable declarations 2-2

MODULE directive 2-2

nonexecutable SQL statements 2-4

placement of 2-5

Embedded SQL application, running
COBOL 16-48

C/C++ 15-64

Environment variable
MXCMP 15-34, 16-29

MXCMPUM 15-34, 16-29

Error
SQLCODE values 13-6

Error conditions 13-1
ETK

See HP Enterprise Toolkit (ETK)
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-6

Index F
Exception conditions
checking SQLCODE 13-5

checking SQLSTATE 1-10, 13-1

description of 1-10

using GET DIAGNOSTICS 13-13

using WHENEVER 13-8

Exception declaration 2-7
Exception handling 13-1
EXECUTE IMMEDIATE statement, setting
dynamic SQL default values with 9-8

F
FETCH statement

description of 6-6

examples of 6-6, 6-10, 7-12

loop processing 6-10

selecting rowsets 7-12

syntax for transferring values 11-5

Fixed-length character data
declaring char array 3-14

inserting and updating 3-15

inserting from char array 3-14

selecting into char array 3-14

Fixed-point data types, assigning 3-20
Floating-point data types

assigning 3-21

changing the format 3-22

conversion between Tandem and IEEE
formats 3-22

IEEE 3-21

restrictions 3-22

Tandem 3-21

using 6-14

Floating-point formats 3-6
Floating-point variables 9-2

G
GET DESCRIPTOR statement 10-8, 12-9
GET DIAGNOSTICS statement

example of 1-11, 13-14

using 1-11

Globally placed modules
coexistence with locally placed
modules 17-4

generating 17-3

syntax 17-4

system-wide setting 17-5

Grouping
C example, INVENTORY
modules 17-21

COBOL example, INVENTORY
modules 17-22

description of 17-21

setting up example, C/C++ or
COBOL 17-21

Guardian environment
building C program to use
SQL/MX 15-60

building C++ program to use
SQL/MX 15-62

running SQL/MX programs in

C 15-58

COBOL 16-44

using TACL macro to execute
commands, C++ 15-63

H
Hardware service interruptions,
handling 13-1
Host language

compiler options 1-14

preprocessor 1-13

Host variables
char 3-2

conversion between SQL and C data
types 3-11
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-7

Index I
Host variables (continued)
data types

C 3-2

COBOL 4-2

date-time

COBOL 4-3, 4-13

C/C++ 3-4, 3-23

declaring

COBOL 4-1

C/C++ 3-1

dynamic cursors 11-4

examples 1-3

static rowsets 7-2

defined

COBOL 4-1

C/C++ 3-1

extended data types 3-9

floating-point format 3-6

in C 2-3

in C++ 2-3

indicator variables

C 3-12

COBOL 4-10

initializing host variables specified in
DECLARE CURSOR 6-5

input, defined

COBOL 4-1

C/C++ 3-1

interval

COBOL 4-3, 4-13

C/C++ 3-4, 3-23

naming conventions

C 3-12

COBOL 4-9

NCHAR 3-3

NCHAR VARYING 3-4

numeric

C 3-5

COBOL 4-6

Host variables (continued)
output, defined

COBOL 4-1

C/C++ 3-1

PROTOTYPE host variables 5-17, 8-4

referring to within C structure 3-28

rowset arrays 7-4

syntax

specifying in C 3-12

specifying in COBOL 4-9

using data members of a C++
class 3-29

using for table names 8-4

VARCHAR 3-3

variable-length character
declaration 3-16

HP Enterprise Toolkit (ETK) 15-29

I
IEEE floating-point format 3-6
IF statement 5-16
Indicator variables

description of 3-29, 4-19

host variable specification

C 3-12

COBOL 4-9

syntax 7-4

inserting NULL 3-13, 3-30, 4-10, 4-19,
7-4, 8-4

return value

COBOL 4-10

C/C++ 3-13

syntax 7-4

testing for NULL 3-30, 4-20

testing for truncated value 3-30, 4-20

updating columns to null 5-11

INDICATOR_POINTER, exclusive use
of 12-9
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-8

Index L
INSERT statement
inserting date-time

nonstandard SQL/MP DATETIME
value 5-8

standard date-time value 5-8

inserting from host variables 5-4, 7-14,
7-34

inserting from rowset arrays 7-14, 7-17

inserting from rowset-derived
table 7-34

inserting interval values

C 5-8

COBOL 5-9

inserting NULL

C 5-6

COBOL 5-7

rowset arrays 7-15

rowset-derived table 7-36

inserting rows, C 5-5

inserting timestamp value 7-17

Inspect, for debugging 15-67
Interval data

dynamic cursors 11-7, 11-8

inserting

COBOL 4-17

C/C++ 3-27

selecting

COBOL 4-17

C/C++ 3-27

static cursors 6-13

static rowsets 7-9

updating

C 3-28

COBOL 4-18

INTERVAL host variable
description of 3-5

format example 3-26

INVOKE directive
C example 3-39

creating host variables

INVOKE directive (continued)
C 3-31

COBOL 4-22

example of C structure generated
by 3-36

generating C structures 3-34

generating COBOL structures 4-23

generating indicator variables

C 3-37

COBOL 4-27

NULL STRUCTURE clause

C example 3-37

COBOL example 4-28

PREFIX clause

C example 3-37

COBOL example 4-27

SUFFIX clause

C example 3-37

COBOL example 4-27

ISO88591 character set, selecting into
UCS2 host variable 3-42
Isolation level setting 14-5

L
Large buffers and
VARIABLE_POINTER 10-8
Late name resolution

purpose of 8-6

syntax 5-17

using host variables 8-4

using host variables and DEFINEs 8-3

Locally placed modules
coexistence with globally placed
modules 17-4

co-locating with application 17-5

generating 17-3

system-wide setting 17-4

LOCK TABLE statement 2-11
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-9

Index M
M
MAP DEFINE 8-3
Mapping from logical to physical object
names 1-2
MDFs

See Module definition files (MDFs)

Module compilation
definition files 15-34, 16-29

embedded module definitions 15-30,
16-25

Module creation, SQL/MX methods
COBOL 16-2

comparison of 1-12

C/C++ 15-2

Module definition files (MDFs)
compiling COBOL 16-29

compiling C/C++ 15-34

generating 17-7

MODULE directive placement 2-2
Module file errors 15-66, 16-49
Module management

See also Grouping, Targeting, and
Versioning

description of 17-1

file naming 15-67, 16-50

grouping 17-21

influencing behavior 17-7

naming

description of 17-8

effect of name change, example
of 17-12

name components 17-9

name length, example of 17-10

targeting 17-12

tasks 17-6

versioning 17-19

MPLOC attribute declaration 2-7
MXCI

See SQL/MX conversational interface
(MXCI)

mxcmp command
COBOL 16-29

C/C++ 15-34

examples of 15-36, 16-31

syntax 15-35, 16-30

MXCMP environment variable 15-34, 16-29
MXCMPUM environment variable 15-34,
16-29
mxCompileUserModule

embedded definitions 15-30

examples of 15-34, 16-29

syntax 15-31, 16-26

mxsqlc command, using to run SQL/MX
C/C++ preprocessor, example of 15-28
mxsqlco command, using to run SQL/MX
COBOL preprocessor, examples of 16-17,
16-23

N
Name qualification 8-5
Name resolution

compile-time 8-6

description of 8-1

distributed database considerations 8-7

late name resolution 8-6

OLT optimization, DEFINE names and
PROTOTYPE host variables 8-5

RDF considerations 8-7

NAMETYPE attribute declaration 2-7
Naming conventions for host variables

C 3-12

COBOL 4-9

National character set
NCHAR host variable 3-3

NCHAR VARYING 3-4

Native Inspect, for debugging 15-67
NCHAR host variable 3-3
NCHAR VARYING host variable 3-4
Network interruptions, handling 13-1
nmcobol utility

examples 16-38, 16-41
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-10

Index O
nmcobol utility (continued)
options for SQL/MX 16-33

using to compile COBOL program in a
single command 16-32

NULL
inserting 3-30

inserting multiple rows with

using indicator host variable
array 7-15

using indicator host variable array in
rowset-derived table 7-36

keyword instead of indicator
variable 4-20

retrieving using NULL predicate 3-31,
4-21

testing for 3-30, 4-20

NULL STRUCTURE clause 3-37
Numeric host variables 3-5, 4-12

O
OBEY command files, for creating database
objects 2-12
Object name qualification 8-5
Object names, referencing 1-1
Object naming statements 2-10, 2-11
OLT optimization considerations 8-5
OLTP programs, recommended
recompilation settings 8-13
OPEN statement

description of 6-5

syntax 11-5

Open System Services (OSS)
COBOL preprocessing in 16-13

developing native C/C++ with SQL
on 15-49

P
Parameters

dynamic SQL with arguments

description of 9-2

input 9-2

Parameters (continued)
output 9-2

SELECT columns 9-2

using DESCRIBE INPUT 9-2

using DESCRIBE OUTPUT 9-2

dynamic SQL with descriptor areas

description of 10-3

input 10-3

output 10-7

SELECT columns 10-7

using DESCRIBE INPUT 10-3

using DESCRIBE OUTPUT 10-7

Performance
declaring host variables 3-12

COBOL 4-1

C/C++ 3-1

improving with rowsets 1-8

INVOKE statement

C 3-31

COBOL 4-22

OLT optimization considerations 8-5

OLTP settings 8-13

recompiling 15-30, 16-25

rowsets 1-8, 7-1

similarity check 8-8

using a cursor 6-2

PICTURE clause
fixed-length character data 4-11

numeric data 4-12

variable-length character data 4-12

Positioned DELETE statement 6-9
Positioned UPDATE statement 6-8
PREPARE statement

compiling dynamic embedded
SQL 12-2

syntax 11-4

PREPARE string, specifying rowset
parameter 12-3
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-11

Index Q
Preprocess in Guardian environment
C 15-60

C++ 15-62

Preprocessor
interpretation of environment variables,
example of 17-7

OSS-hosted

COBOL 16-9

C/C++ 15-8, 15-17

Windows-hosted

COBOL 16-18

C/C++ 15-21

Program compilation
C and C++ 15-2

COBOL 16-3, 16-6

C/C++ 15-6

embedded module definitions 15-3,
16-3

module definition files 15-6, 16-6

Program management
description of 17-1

managing files 17-3

Program management, debugging 15-67
PROTOTYPE host variables

example of 5-18

syntax 8-4

using as table names 5-18

Q
Query execution plans

displaying 15-67, 16-51

displaying for all statements 15-69

displaying for one statement 15-68

wild cards 15-69

R
RDF

See Remote Database Facility (RDF)

Record descriptions, COBOL 4-9

Redefinition timestamp, tables 8-9
Remote Database Facility (RDF)

deploying static SQL to 15-54

object naming considerations 8-7

ROLLBACK WORK statement 6-11
Rowset arrays

as input for SELECT statements,
examples of 7-11

description of 7-2

examples of 7-4

inserting rows from 7-14

selecting rows into 7-6

specifying size and row ID 7-20

syntax 7-4

updating rows with 7-17

using for input 7-5

using for output 7-6

using in DML statements 7-6

ROWSET FOR clause 7-20
Rowset parameter

basic dynamic rowset, example 12-3

mixing scalar and rowset host variables,
example 12-3

specifying 12-3

using FOR INPUT SIZE and KEY BY,
example 12-4

Rowsets
See also Dynamic rowsets, Static
rowsets, Rowset arrays

difference between static and
dynamic 12-1

dynamic SQL

description of 12-1

descriptor fields

syntax 12-5

example of A-26

selecting into rowset arrays 7-6

specifying rowset arrays

example of 7-4

syntax 7-4
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-12

Index S
Rowset-derived tables
available from static rowsets only 12-1

deleting rows by using 7-39

description of 7-28

inserting rows from 7-34

limiting the size of 7-35

updating rows by using 7-37

ROWSET_IND_LAYOUT_SIZE 12-8
ROWSET_SIZE 12-6
ROWSET_VAR_LAYOUT_SIZE

description of 12-6

minimum values table 12-7

Run-time errors, avoiding 15-65
Run-time library, C++ default 15-29

S
Schema declaration 2-7
Scope

flow control 2-13

line order 2-13

Searched DELETE statement 5-12
Searched UPDATE statement 5-9
SELECT statement

examples of 5-2, 7-11

multiple-row using rowsets 7-6

primary key in WHERE clause 5-2

single-row 5-2

using rowset arrays as input 7-10

using to specify a cursor 6-1

SET DESCRIPTOR statement
examples of 10-4, 10-6

using with dynamic rowsets 12-5

SET MPLOC statement 2-11
SET NAMETYPE statement 2-10
SET TRANSACTION statement 14-3
Similarity check

automatic recompilation 8-12

criteria 8-10

enabling, disabling 8-9

purpose of 8-8

Simple statements 5-1
SQL cursors, dynamic 11-1
SQL Declare Section

COBOL 4-1

C/C++ 3-1

placement of 2-2

SQL descriptor area
description of 10-2

getting information from 10-7

setting information in 10-4

steps for using 10-12, 10-13

SQL item descriptor 10-2
SQL statements

coding guidelines 2-1

dynamic SQL 2-8

executable 2-4

executable in C++ 2-5

nonexecutable restrictions 2-4

preparing with dynamic rowsets 12-2

SQLCODE
declaring 13-5

examples of checking 13-6

using ERROR command 13-8

values 13-5

within SQL/MX messages 13-7

SQLCODE Values 13-6
SQLMX_PREPROCESSOR_VERSION,
using to generate module definition
files 17-7
SQLSTATE

checking 1-10, 13-4

declaring 13-1

values 13-2

within SQL/MX messages 13-8

SQL/MX compiler
environment variable for backward
compatibility 15-36, 16-31

invoking 15-41, 16-37

mxcmp command to compile module
definition file 15-35, 16-30
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-13

Index S
SQL/MX compiler (continued)
running

COBOL 16-25

C/C++ 15-30

specifying alternate location 15-34,
16-29

SQL/MX conversational interface
(MXCI) 1-1, 13-7
SQL/MX preprocessor

C 15-8

COBOL 16-9

functions 15-9

invoking 15-40, 16-37

OSS-hosted, COBOL 16-13

OSS-hosted, C/C++ 15-16

Windows-hosted, COBOL 16-18

Windows-hosted, C/C++ 15-21

SQL/MX programs
building and running in Guardian
environment 15-58, 15-60, 15-62,
16-44, 16-45

compilation methods

COBOL 16-2

C/C++ 15-2

description of 1-12

running 15-65, 16-49

Static cursors
authority to use 6-14

closing 6-11

declaration of 6-4

declaring host variables for query
expression 6-4

description of 1-5, 6-1

examples

date-time, nonstandard 5-4, 6-13

date-time, standard 5-3, 6-12, 7-9

interval 5-4, 6-13

fetching within transaction 6-14

initializing host variables 6-5

lock mode considerations 6-15

Static cursors (continued)
opening 6-5

processing retrieved values 6-7

retrieving values 6-6

sample program

C A-1

COBOL C-1

statements using 6-1

steps for using 6-2, 6-3

Static rowsets
See also Rowset arrays

C example of 7-3

COBOL example of 7-3

considerations for size 7-3

declaring host variable arrays 7-2

description of 7-1, 7-2

limiting size of input rowset

examples of 7-22, 7-23

when declaring a cursor 7-23

limiting size of output rowset, examples
of 7-24

restricting size 7-20

rowset-derived tables

specifying, syntax for 7-28

using in DML statements 7-29

selecting with rowset cursor 7-12

C 7-12

COBOL 7-13

specifying row ID 7-20

static cursor, example of 7-9

syntax diagram for host variable
array 7-3

using the index identifier, examples
of 7-25

Stored procedures (SPJ) statement 2-12
Syntax

C host variable data types 3-2

COBOL host variable data types 4-2

SYSTEM_DEFAULTS table 8-6
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-14

Index T
T
Table names

PROTOTYPE host variables 8-4

SQL/MP, DEFINE names 8-3

SQL/MP, Guardian names 8-2

SQL/MP, SQL/MP aliases 8-2

SQL/MX, logical names 8-2

TACL macro
for C Guardian application 15-61

for COBOL Guardian application 16-46

for C++ Guardian application 15-63

Tandem floating-point format 3-6
Targeting

C example

using build subdirectory 17-15

using Module TableSet
(MTSS) 17-13

COBOL example

using build subdirectory 17-18

using Module TableSet
(MTSS) 17-16

description of 17-12

effect of target attribute 17-13

TIME host variable
description of 3-4

length of C target arrays for 3-24

TIMESTAMP host variable
description of 3-5

length of C target arrays for 3-24

Timestamp value, inserting 7-17
Transaction

attributes, example of 14-3

control statements 2-10, 14-1

isolation levels 14-6

U
UCS2 character set

fetching into VARCHAR host
variable 3-41, 4-31

UCS2 character set (continued)
host variable, selecting ISO88591
character set data 3-42

selecting into VARCHAR host
variable 3-41, 4-31

UNLOCK TABLE statement 2-11
UPDATE statement

examples of 6-8, 7-18

positioned form 6-8

privileges 5-10

searched form

rowsets 7-17

syntax 5-9

updating a single-row

C searched example 5-10

COBOL searched example 5-10

updating multiple-rows

C searched example 5-11

COBOL searched example 5-11

updating to NULL with indicator
variable 5-11

using host variables 6-8

UPDATE STATISTICS statement
description of 2-12

embedding considerations 2-12

Utilities statement 2-12

V
VARCHAR host variable 3-3, 3-16
Variable-length character data

declaring 3-16

inserting or updating 3-17

VARIABLE_POINTER
exclusive use of 12-9

large buffers 10-8

Versioning
C setup example 17-20

COBOL setup example 17-20

description of 17-19

guidelines 17-20
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-15

Index W
View names
using DEFINEs 8-3

using host variables 8-4

Visual Inspect, for debugging 15-67

W
Warning

SQLCODE values 13-6

WHENEVER statement
avoiding infinite loops 13-10

examples of 1-10, 13-9

NOT FOUND condition 13-8

precedence of conditions 13-9

scope of 13-9

SQLERROR condition 13-8

SQL_WARNING condition 13-9

using 1-10

Windows
COBOL DLL file 16-18

COBOL preprocessor, syntax 16-19

C/C++ DLL file 15-21

C/C++ preprocessor, syntax 15-23

Z
ZCLIDLL 16-5, 16-8
ZCLISRL 16-5, 16-8

Special Characters
-Wmxcmp, command to invoke SQL/MX
compiler 15-41, 16-37
-Wsqlmx, command to invoke SQL/MX
preprocessor 15-40, 16-37
HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL—663854-005
Index-16

	HP NonStop SQL/MX Release 3.2.1 Programming Manual for C and COBOL
	Legal Notices
	Contents
	What’s New in This Manual
	Manual Information
	New and Changed Information
	Changes to the 663854-002 manual:
	Changes to the 663854-001 manual:

	About This Manual
	Audience
	Organization
	Related Documentation
	Examples in This Manual
	Notation Conventions
	Icons
	Hypertext Links
	General Syntax Notation

	Change Bar Notation
	HP Encourages Your Comments

	1 Introduction
	Referencing Database Object Names
	NonStop SQL/MX Release 2.x
	NonStop SQL/MX Release 1.x

	Embedding SQL Statements
	Embedding SQL Statements in DLL

	Declaring and Using Host Variables
	Declaring Host Variables
	Using Host Variables

	Using DML Statements to Manipulate Data
	Declaring and Using Static SQL Cursors
	Using Dynamic SQL
	Using Descriptor Areas for Dynamic SQL
	Using Dynamic SQL Cursors

	Using DML Statements With Rowsets
	Improving Performance by Using Rowsets
	Declaring a Rowset
	Using a Rowset in a Query

	Processing Exception Conditions
	Checking SQLSTATE
	Using WHENEVER
	Using GET DIAGNOSTICS

	Ensuring Data Consistency
	Compiling and Building an Application
	Processing With Embedded Module Definitions
	Processing With Module Definition Files
	General Instructions
	SQL/MX Host Language Preprocessor
	SQL/MX Compiler
	Host Language Compiler
	Program and Module Management

	2 Embedded SQL Statements
	Syntax for Coding SQL Statements
	Guidelines for Coding SQL Statements
	Placement of SQL Statements
	MODULE Directive
	Host Variable Declarations
	Nonexecutable SQL Statements
	Executable SQL Statements

	Embedded SQL Declarations and Statements
	Considerations for Embedding DDL and DML Statements
	Considerations for Embedding the UPDATE STATISTICS Statement

	Using CONTROL Statements
	ANSI Compliance and Portability

	Static and Dynamic CONTROL Statements
	CONTROL, Line Order Scope, and Static SQL programs
	CONTROL, Flow Control Scope, and Dynamic SQL programs

	3 Host Variables in C/C++ Programs
	Specifying a Declare Section
	C Host Variable Data Types
	Character Host Variables
	Date-Time and Interval Host Variables
	Numeric Host Variables
	Floating-Point Host Variables

	Using Corresponding SQL and C Data Types
	Extended Host Variable Data Types and Generated C Data Types
	Data Conversion

	Specifying Host Variables in SQL Statements
	Using Host Variables in a C/C++ Program
	Character Set Data
	Fixed-Length Character Data
	Variable-Length Character Data
	Numeric Data
	Date-Time and Interval Data
	Host Variables in C Structures
	Host Variables as Data Members of a C++ Class

	Using Indicator Variables in a C/C++ Program
	Inserting Null
	Testing for Null or a Truncated Value
	Retrieving Rows With Nulls

	Creating C Host Variables Using INVOKE
	Using the INVOKE Directive
	INVOKE and Date-Time and Interval Host Variables (SQL/MX Release 1.8 Applications)
	INVOKE and Floating-Point Host Variables
	C Data Types Generated by INVOKE
	Using Indicator Variables With the INVOKE Directive
	C Example of Using INVOKE

	Character Set Examples
	Selecting From a UCS2 Character Set Into a VARCHAR Host Variable
	Fetching From a UCS2 Character Set into a VARCHAR Host Variable
	Selecting From an ISO88591 Character Set Into a UCS2 Host Variable

	4 Host Variables in COBOL Programs
	Specifying a Declare Section
	COBOL Host Variable Data Types
	Using Corresponding SQL and COBOL Data Types
	Data Conversion

	Specifying Host Variables in SQL Statements
	Using Host Variables in a COBOL Program
	Character Set Data
	Fixed-Length Character Data
	Variable-Length Character Data
	Numeric Data
	Date-Time and Interval Data

	Using COBOL Data Description Clauses
	Using Indicator Variables in a COBOL Program
	Inserting Null
	Testing for Null or a Truncated Value
	Retrieving Rows With Nulls

	Creating COBOL Host Variables Using INVOKE
	Using the INVOKE Directive
	INVOKE and Date-Time and Interval Host Variables (SQL/MX Release 1.8 Applications)
	COBOL Record Descriptions Generated by INVOKE
	Using Indicator Variables With the INVOKE Directive
	COBOL Example of Using INVOKE

	Character Set Examples
	Selecting From a UCS2 Character Set Into a VARCHAR Host Variable
	Fetching From a UCS2 Character Set into a VARCHAR Host Variable

	5 Simple and Compound Statements
	Single-Row SELECT Statement
	Using a Primary Key Value to Select Data
	Selecting a Column With Date-Time or INTERVAL Data Type

	INSERT Statement
	Inserting Rows
	Inserting Null
	Inserting a Date-Time Value
	Inserting an Interval Value

	Searched UPDATE Statement
	Updating a Single Row
	Updating Multiple Rows
	Updating Columns To Null

	Searched DELETE Statement
	Deleting a Single Row
	Deleting Multiple Rows

	Compound Statements
	Assignment Statement
	IF Statement
	Using PROTOTYPE Host Variables as Table Names

	6 Static SQL Cursors
	DML Statements for Static SQL Cursors
	Steps for Using a Static SQL Cursor
	Declare Required Host Variables
	Declare the Cursor
	Initialize the Host Variables
	Open the Cursor
	Retrieve the Values
	Process the Retrieved Values
	Fetch the Next Row
	Close the Cursor

	Using Date-Time and INTERVAL Data Types
	Standard Date-Time Example
	Nonstandard SQL/MP DATETIME Example
	Interval Example

	Using Floating-Point Data Types
	Considerations When Using a Cursor
	Cursor Position
	Cursor Stability
	Cursor Sensitivity

	7 Static Rowsets
	What Are Rowsets?
	Using Rowsets
	Declaring Host Variable Arrays as Rowsets
	Rowset Host Variable Pointers
	Considerations for Rowset Size

	Specifying Rowset Arrays
	Using Rowset Arrays for Input
	Using Rowset Arrays for Output

	Using Rowset Arrays in DML Statements
	Selecting Rows Into Rowset Arrays
	Selecting Rowsets With a Cursor
	Inserting Rows From Rowset Arrays
	Updating Rows by Using Rowset Arrays
	Deleting Rows by Using Rowset Arrays

	Specifying Size and Row ID for Rowset Arrays
	Limiting the Size of the Input Rowset
	Limiting the Size of the Input Rowset When Declaring a Cursor
	Limiting the Size of the Output Rowset
	Using the Index Identifier

	Specifying Rowset-Derived Tables
	Using Rowset-Derived Tables in DML Statements
	Selecting From Rowset-Derived Tables
	Selecting From Rowset-Derived Tables With a Cursor
	Inserting Rows From Rowset-Derived Tables
	Limiting the Size of a Rowset-Derived Table
	Inserting Null
	Updating Rows by Using Rowset-Derived Tables
	Deleting Rows by Using Rowset-Derived Tables

	8 Name Resolution, Similarity Checks, and Automatic Recompilation
	Name Resolution
	Table and View Name References
	Precedence of Object Name Qualification
	Compile-Time Name Resolution for SQL/MP Objects
	Late Name Resolution
	Distributed Database Considerations
	RDF Considerations

	Similarity Checks and Automatic Recompilation
	Similarity Check
	Automatic Recompilation
	Recommended Recompilation Settings for OLTP Programs

	9 Dynamic SQL
	Statements for Dynamic SQL With Arguments
	Input Parameters and Output Variables
	Floating-Point Variables

	Steps for Using Dynamic SQL With Argument Lists
	Declare a Host Variable for the Dynamic SQL Statement
	Move the Statement Into the Host Variable
	Prepare the SQL Statement
	Set Explicit Input Values
	Execute the Prepared Statement
	Deallocate the Prepared Statement

	Using EXECUTE IMMEDIATE
	Setting Default Values Dynamically

	10 Dynamic SQL With Descriptor Areas
	Statements for Dynamic SQL With Descriptors
	SQL Descriptor Areas
	SQL Item Descriptors
	Allocating an SQL Descriptor Area
	Deallocating an SQL Descriptor Area

	Input Parameters
	Describing Input Parameters
	Setting the Data Values of Input Parameters
	Setting Input Parameter Information Without DESCRIBE INPUT

	Output Variables
	Describing Output Variables
	Getting the Values of Output Variables
	Consideration-Retrieving Multiple Values From a Large Buffer

	Steps for Using SQL Item Descriptor Areas
	Declare a Host Variable for the Dynamic SQL Statement
	Construct the SQL Statement From User Input
	Allocate Input and Output SQL Descriptor Areas
	Prepare the SQL Statement
	Describe the Input Parameters and the Output Variables
	Set Explicit Input Values
	Execute the Prepared Statement
	Get the Count and Descriptions of the Output Variables
	Deallocate the Prepared Statement and the SQL Descriptor Areas

	Using SQL Descriptor Areas to Select SQL/MP KANJI and KSC5601 Data
	Using SQL Descriptor Areas to Retrieve ISO88591 Data to UCS2 Host Variables

	11 Dynamic SQL Cursors
	Statements for Dynamic SQL Cursors
	Steps for Using a Dynamic SQL Cursor
	Declare Required Host Variables
	Prepare the Cursor Specification
	Declare the Cursor
	Initialize the Dynamic Input Parameters
	Open the Cursor
	Retrieve the Values
	Process the Retrieved Values
	Fetch the Next Row
	Close the Cursor and Deallocate the Prepared Statement

	Using Date-Time and INTERVAL Data Types
	Standard Date-Time Example
	Interval Example
	Nonstandard SQL/MP DATETIME Example

	Dynamic SQL Cursors Using Descriptor Areas

	12 Dynamic SQL Rowsets
	Using Dynamic SQL Rowsets
	Preparing an SQL Statement With Dynamic Rowsets
	Specification of an Rowset Parameter in the PREPARE String
	Matching Compile-Time Specified Length With Execution-Time Length
	Dynamic SQL With Argument Lists

	Using the SET DESCRIPTOR Statement
	Setting the Rowset-Specific Descriptor Fields
	Exclusive Use of VARIABLE_POINTER and INDICATOR_POINTER

	Using the GET DESCRIPTOR Statement
	Using the DESCRIBE INPUT Statement

	13 Exception Handling and Error Conditions
	Checking the SQLSTATE Variable
	Declaring SQLSTATE
	SQL:1999 SQLSTATE Values
	SQL/MX SQLSTATE Values
	Using SQLSTATE

	Checking the SQLCODE Variable
	Declaring SQLCODE
	Declaring SQLCODE and SQLSTATE
	SQLCODE Values
	Using SQLCODE

	SQL/MX Exception Condition Messages
	Viewing the SQL Messages
	Accessing SQL Messages Within a Program

	Using the WHENEVER Statement
	Precedence of Multiple WHENEVER Declarations
	Determining the Scope of a WHENEVER Declaration
	Enabling and Disabling the WHENEVER Declaration
	Saving and Restoring SQLSTATE or SQLCODE
	Declaring SQLSTATE or SQLCODE in an Error Routine

	Accessing and Using the Diagnostics Area
	Using the GET DIAGNOSTICS Statement
	Getting Statement and Condition Items

	Special SQL/MX Error Conditions
	Lost Open Error (8574)
	Occurrences of the Lost Open Error
	Recovering From the Lost Open Error

	14 Transaction Management
	Transaction Control Statements
	Steps for Ensuring Data Consistency
	Declaring Required Variables
	Setting Attributes for Transactions
	Starting a Transaction
	Processing Database Changes
	Testing for Errors
	Committing Database Changes if No Errors Occur
	Undoing Database Changes if an Error Occurs

	15 C/C++ Program Compilation
	Compiling SQL/MX Applications and Modules
	Compiling Embedded SQL C/C++ Programs With Embedded Module Definitions
	Compiling Embedded SQL C/C++ Programs With Module Definition Files
	Creating Modules: From Development to Production

	Running the SQL/MX C/C++ Preprocessor
	Preprocessor Functions
	Preprocessor Output
	OSS-Hosted SQL/MX C/C++ Preprocessor
	Windows-Hosted SQL/MX C/C++ Preprocessor

	Running the C/C++ Compiler and Linker
	Running the SQL/MX Compiler
	Compiling Embedded Module Definitions
	MXCMP Environment Variable
	MXCMPUM Environment Variable
	Compiling a Module Definition File

	c89 Utility: Using One Command for All Compilation Steps
	c89 Examples With Embedded Module Definitions
	c89 Examples With Module Definition Files

	Examples of Building and Deploying Embedded SQL C/C++ Programs
	Building a C/C++ Program With Embedded SQL Statements on Windows
	Developing a Native C/C++ Program With Embedded SQL/MX Statements on OSS
	Building and Deploying a C Application With Embedded Module Definitions and Module Definition Files
	Quick Builds and mxcmp Defaults in a One-File Application Deployment
	Deploying a Static SQL Application to an RDF System

	Building SQL/MX C/C++ Applications to Run in the Guardian Environment
	Building SQL/MX Guardian Applications in the Guardian Environment
	Building SQL/MX Guardian Applications in the OSS Environment

	Running an SQL/MX Application
	Running the SQL/MX Program File
	Understanding and Avoiding Some Common Run-Time Errors
	Debugging a Program
	Displaying Query Execution Plans

	16 COBOL Program Compilation
	Compiling SQL/MX Applications and Modules
	Compiling Embedded SQL COBOL Programs With Embedded Module Definitions
	Compiling Embedded SQL COBOL Programs With Module Definition Files
	Creating Modules: From Development to Production

	Running the SQL/MX COBOL Preprocessor
	Preprocessor Functions
	Preprocessor Output
	OSS-Hosted SQL/MX COBOL Preprocessor
	Windows-Hosted SQL/MX COBOL Preprocessor

	Running the COBOL Compiler and Linker
	Running the SQL/MX Compiler
	Compiling Embedded Module Definitions
	MXCMP Environment Variable
	MXCMPUM Environment Variable
	Compiling a Module Definition File

	ecobol or nmcobol Utility: Using One Command for All Compilation Steps
	ecobol and nmcobol Examples With Embedded Module Definitions
	ecobol and nmcobol Examples With Module Definition Files

	Combining Embedded Module Definitions and Module Definition Files
	Building SQL/MX COBOL Applications to Run in the Guardian Environment
	Building SQL/MX Guardian Applications in the Guardian Environment
	Building SQL/MX Guardian Applications in the OSS Environment

	Running an SQL/MX Application
	Running the SQL/MX Program File
	Understanding and Avoiding Common Run-Time Errors
	Displaying Query Execution Plans

	17 Program and Module Management
	Program Files
	Managing Program Files
	Generating Locally or Globally Placed Modules
	Managing the Coexistence of Globally and Locally Placed Modules

	Generating modules in a user-specified location
	Specifying the search locations for the module files

	Managing Modules
	Module Management Behavior
	Influencing Module Management Behavior

	Module Management Naming
	How Modules Are Named
	Effect of Module Management Naming
	Specifying the search locations of the module files
	Targeting
	Effect of the Target Attribute
	Targeting Example for C: Using ModuleTableSet (MTSS)
	Targeting Example for C: Using Build Subdirectory
	Targeting Example for COBOL: Using ModuleTableSet (MTSS)
	Targeting Example for COBOL: Using a Build Subdirectory
	Versioning
	Grouping

	A C Sample Programs
	Using a Static SQL Cursor
	Ensuring Data Consistency
	Using Argument Lists in Dynamic SQL
	Using SQL Descriptor Areas in Dynamic SQL
	Using SQL Descriptor Areas With DESCRIBE
	Using SQL Descriptor Areas Without DESCRIBE

	Using a Dynamic SQL Cursor
	Using a Dynamic SQL Cursor
	Using a Dynamic SQL Cursor With Descriptor Area

	Using a Dynamic SQL Rowset
	Using SQL Descriptors to Select KANJI and KSC5601 Data
	DDL for KANJI and KSC4501 Table Columns
	Using SQL Descriptor Areas to Select SQL/MP KANJI and KSC5601 Data

	Using SQL Descriptors to Select UCS2 Data

	B C++ Sample Program
	Ensuring Data Consistency

	C COBOL Sample Programs
	Using a Static SQL Cursor
	Ensuring Data Consistency
	Using Argument Lists in Dynamic SQL
	Using SQL Descriptor Areas in Dynamic SQL
	Using a Dynamic SQL Cursor

	Index

