
Contents

HP JDBC/MX 5.0 Driver for SQL/MX
Programmer's Reference

Abstract
This document describes how to use the JDBC/MX Driver for NonStop SQL/MX, a type 2 driver,
on HP Integrity NonStop™ servers. The JDBC/MX driver provides HP NonStop Server for Java
applications with JDBC access to HP NonStop SQL/MX. Where applicable, the JDBC/MX driver
conforms to the standard JDBC 3.0 API from Sun Microsystems, Inc.

Product Version
JDBC/MX Driver for NonStop SQL/MX H50

Supported Hardware
All HP Integrity NonStop NS-series servers

Supported Release Version Updates (RVUs)
This publication supports J06.03 and all subsequent J-series RVUs and H06.04 and all subsequent
H-series RVUs, until otherwise indicated by its replacement publications.

Part Number Published

540388-004 August 2009

Document History

Part Number Product Version Published

529777-001
JDBC Driver for SQL/MX (JDBC/MX) H10
and V32

May 2005

540388-001 JDBC/MX Driver for NonStop SQL/MX H50 January 2006

540388-002 JDBC/MX Driver for NonStop SQL/MX H50 November 2007

540388-003 JDBC/MX Driver for NonStop SQL/MX H50 November 2008

http://welcome.hp.com/country/us/en/welcome.html

540388-004 JDBC/MX Driver for NonStop SQL/MX H50 August 2009

Legal Notices

© Copyright 2009 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Export of this documentation may require authorization from the U.S. Department of
Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java is a U.S. trademark of Sun Microsystems, Inc.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone
and The Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks
of the Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF
MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential
damages in connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and
the software to which it relates are derived in part from materials supplied by the
following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital
Equipment Corporation. © 1985, 1988, 1989, 1990 Encore Computer Corporation.
© 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991
Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992
International Business Machines Corporation. © 1988, 1989 Massachusetts
Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft

Corporation. © 1987, 1988, 1989, 1990, 1991, 1992 SecureWare, Inc. © 1990,
1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun
Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. OSF
acknowledges the following individuals and institutions for their role in its
development: Kenneth C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed
James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983,
1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Contents

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home

JDBC/MX 5.0 Driver for SQL/MX
Programmer's Reference

Contents
About This Document

New and Changed Information❍

Is This Document for You?❍

Document Structure❍

Printing This Document❍

Related Reading

NonStop System Computing Documents■

Sun Microsystems Documents■

❍

Notation Conventions❍

Abbreviations❍

●

Introduction to JDBC/MX Driver

JDBC/MX Architecture❍

JDBC API Packages❍

Sample Programs Summary❍

●

Installing and Verifying JDBC/MX

Installation Requirements❍

●

JDBC/MX Driver File Locations❍

Verifying the JDBC/MX Driver❍

Setting CLASSPATH❍

Setting the _RLD_LIB_PATH❍

Accessing SQL Databases with SQL/MX

Connection to SQL/MX

Connection Using the DriverManager Class■

Connection Using the DataSource Interface■

❍

JdbcRowSet Implementation❍

JDBC/MX Properties

Default Catalog and Schema■

LOB Table Name Properties■

ISO88591 Property■

mploc Property■

maxStatements Property■

minPoolSize Property■

maxPoolSize Property■

transactionMode Property■

Setting Properties in the Command Line■

❍

Transactions

Autocommit Mode and Transaction Boundaries■

Disabling Autocommit Mode■

❍

Stored Procedures

Limitations■

❍

SQL Context Management❍

Holdable Cursors❍

Connection Pooling

Connection Pooling by an Application Server■

Connection Pooling Using the Basic DataSource API■

Connection Pooling with the DriverManager Class■

❍

Statement Pooling

Guidelines for Statement Pooling■

❍

●

Controlling the Performance of ResultSet Processing■

Troubleshooting Statement Pooling■

Using Additional JDBC/MX Properties

BatchUpdate Exception handling Improvements■

Statement Level Atomicity■

Managing Nonblocking JDBC/MX■

Setting Batch Processing for Prepared Statements■

Setting the reserveDataLocators Property■

❍

Supported Character Set Encodings❍

Working with BLOB and CLOB Data

Architecture for LOB Support❍

Setting Properties for the LOB Table

Specifying the LOB Table■

Reserving Data Locators■

❍

Storing CLOB Data

Inserting CLOB Columns by Using the Clob Interface■

Writing ASCII or Unicode Data to a CLOB Column■

Inserting CLOB Data by Using the PreparedStatement Interface■

Inserting a Clob Object by Using the setClob Method■

❍

Reading CLOB Data

Reading ASCII Data from a CLOB Column■

Reading Unicode Data from a CLOB Column■

❍

Updating CLOB Data

Updating Clob Objects by Using the updateClob Method■

Replacing Clob Objects■

❍

Deleting CLOB Data❍

Storing BLOB Data

Inserting a BLOB Column by Using the Blob Interface■

Writing Binary Data to a BLOB Column■

Inserting a BLOB Column by Using the PreparedStatement Interface■

Inserting a Blob Object by Using the setBlob Method■

❍

Reading Binary Data from a BLOB Column❍

●

Updating BLOB Data

Updating Blob Objects by Using the updateBlob Method■

Replacing Blob Objects■

❍

Deleting BLOB Data❍

NULL and Empty BLOB or CLOB Value❍

Transactions Involving Blob and Clob Access❍

Access Considerations for Clob and Blob Objects❍

Managing the SQL/MX Tables for BLOB and CLOB Data

Creating Base Tables that Have LOB Columns

Data Types for LOB Columns■

Using MXCI to Create Base Tables that Have LOB Columns■

Using JDBC Programs to Create Base Tables that Have LOB Columns■

❍

Managing LOB Data by Using the JDBC/MX Lob Admin Utility

Running the JDBC/MX Lob Admin Utility■

Help Listing from the JDBC/MX Lob Admin Utility■

❍

Using SQL/MX Triggers to Delete LOB Data❍

Limitations of the CLOB and BLOB Data Types❍

●

Module File Caching

Design of MFC❍

Enabling MFC❍

Limitations of MFC❍

Troubleshooting MFC❍

●

JDBC/MX Compliance

Unsupported Features❍

Deviations

Updatable Result Set■

Batch Updates■

❍

HP Extensions

Interval Data Type■

Internationalization■

❍

SQL Conformance❍

●

SQL Scalar Functions■

Convert Function■

JDBC Data Types■

Floating-Point Support■

SQL Escape Clauses■

JDBC Trace Facility

Tracing Using the DriverManager Class❍

Tracing Using the DataSource Implementation❍

Tracing Using the java Command❍

Tracing Using the system.setProperty Method❍

Tracing by Loading the Trace Driver Within the Program❍

Tracing Using a Wrapper Data Source❍

Enabling Tracing for Application Servers❍

Trace-File Output Format❍

Logging SQL Statement IDs and Corresponding JDBC SQL Statements

Specifying Statement-ID Logging■

Properties for Statement-ID Logging■

Statement-ID Log Output■

❍

JDBC Trace Facility Demonstration Program❍

●

Migration

Transactions❍

nametype Property❍

Deprecated Property-Name Specification❍

Deprecated Methods According to the J2SE 5.0 API❍

Row Count Array of the PreparedStatement.executeBatch Method❍

Using Character Encoding Sets and SQL Databases❍

Connection sharing across multiple threads❍

Location Change for Installed Files❍

Version of NonStop Server for Java❍

Release of NonStop SQL/MX❍

Migrating to TNS/E Systems❍

Migrating from JDBC/MP Applications❍

●

Messages

Messages from the Java Side of the JDBC/MX Driver❍

Messages from the JNI Side of the JDBC/MX Driver❍

●

Appendix A. Sample Programs Accessing CLOB and BLOB Data

Sample Program Accessing CLOB Data❍

Sample Program Accessing BLOB Data❍

●

Glossary●

Index●

List of Examples●

List of Figures●

List of Tables●

Home

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/loe.htm
file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/lof.htm
file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/lot.htm

Home | Contents | Index | Glossary | Prev | Next

About This Document

This section explains these subjects:

New and Changed Information●

Is This Document for You?●

Document Structure●

Printing This Document●

Related Reading●

Notation Conventions●

Abbreviations●

New and Changed Information
Changes added to this revision - part number 540388-004:

Added information on Module File Caching (Module File Caching).●

Changes added to this revision - part number 540388-003:

Supported release statements have been updated to include J-series RVUs.●

Added information about result sets support under Stored Procedures.●

Added unsupported features of the stored procedures in Java under Limitations.●

Changes added to this revision - part number 540388-002:

Added these properties under Setting Properties in the Command Line and Using Additional JDBC/MX
Properties:

BatchUpdate Exception handling Improvements❍

Statement Level Atomicity❍

●

Updated information about using JDBC connection under Managing Nonblocking JDBC/MX.●

Is This Document for You?
This JDBC/MX Driver for NonStop SQL/MX Programmer's Reference is for experienced Java programmers who want
to use the JDBC API to access SQL databases with NonStop SQL/MX.

This document assumes you are already familiar with NonStop Server for Java 5—the Java implementation for use in
enterprise Java applications on HP Integrity NonStop servers. NonStop Server for Java 5 is based on the reference Java
implementation for Solaris, licensed by HP from Sun Microsystems, Inc. The NonStop Server for Java is a conformant
version of a Sun Microsystems JDK as described in the NonStop Server for Java Programmer's Reference.

This document also assumes that you are already familiar with the JDBC API from reading literature in the field.

Document Structure
This document is a set of linked HTML files (Web pages). Each file corresponds to one of the sections listed and
described in the following table.

Document Sections

Section Description

Table of Contents Shows the structure of this document in outline form. Each section
and subsection name is a link to that section or subsection.

About This Document Describes the intended audience and the document structure, lists
related documents, explains notation conventions and abbreviations,
and invites comments.

Introduction to JDBC/MX Driver Describes the JDBC/MX driver architecture and the API package.

Installing and Verifying
JDBC/MX

Describes where to find information about the installation
requirements and explains how to verify the JDBC/MX driver the
installation.

Accessing SQL Databases with
SQL/MX

Explains how to access SQL databases with SQL/MX from the
NonStop Server for Java 4 by using the JDBC/MX driver.

Working with BLOB and CLOB
Data

Describes working with BLOB and CLOB data in JDBC applications
using the standard interface described in the JDBC 3.0 API
specification.

Managing the SQL/MX Tables for
BLOB and CLOB Data

Describes the database management (administrative) tasks for adding
and managing the tables for BLOB and CLOB data. The JDBC/MX
driver uses SQL/MX tables in implementing support for BLOB and
CLOB data access.

Module File Caching (MFC) Describes the Module File Caching (MFC) feature of the JDBC/ MX
T2 Driver.

JDBC/MX Compliance Explains how JDBC/MX differs from the Sun Microsystems JDBC
standard because of limitations of SQL/MX and the JDBC/MX driver.

JDBC Trace Facility Explains how to use the JDBC trace facility and how to log SQL
statement IDs and corresponding JDBC SQL statements.

Migration Describes any code changes needed by applications to migrate from
using an earlier JDBC/MX driver PVU. to H50.

Messages Lists messages in numerical SQLCODE order. The descriptions
include the SQLCODE, SQLSTATE, message-text, the cause, the
effect, and recovery information.

Appendix A. Sample Programs
Accessing CLOB and BLOB Data

Shows sample program accessing CLOB and BLOB data.

Glossary Defines many terms that this document uses.

Index Lists this document's subjects alphabetically. Each index entry is a
link to the appropriate text.

List of Examples Lists the examples in this document. Each example name is a link to
that example.

List of Figures Lists the figures in this document. Each figure name is a link to that
figure.

List of Tables Lists the tables in this document. Each table name is a link to that
table.

Printing This Document
Although reading this document on paper sacrifices the HTML links to other documentation that you can use when
viewing this document on your computer screen, you can print this document one file at a time, from either the
NonStop Technical Library or your Web browser. For a list of the sections that make up this document, see
Document Structure.

Note: Some browsers require that you reduce the print size to print all the text displayed on the screen.

Related Reading
For background information about the features described in this guide, see the following documents:

HP NonStop JDBC/MX Driver for NonStop SQL/MX API Reference (javadoc information about the JDBC/MX
APIs available in the NonStop Technical Library at docs.hp.com)

●

NonStop System Computing Documents●

Sun Microsystems Documents●

NonStop System Computing Documents
The following NonStop system computing documents are available in the NonStop Technical Library at docs.hp.com.

Additional Java-Oriented Products. These documents are available in the Java category under Independent
Products in the NonStop Technical Library at docs.hp.com.

NonStop Server for Java Programmer's Reference

This documentation describes NonStop Server for Java 5, a Java environment that supports compact,
concurrent, dynamic and portable programs for the enterprise server.

❍

NonStop Server for Java Tools Reference Page❍

●

file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/loe.htm
file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/lof.htm
file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/lot.htm

This documentation consists of a title page, a table of contents, and the Tools Reference Pages for
NonStop Server for Java 5.

NonStop Server for Java API and Reference

This documentation contains the documentation for these packages:

com.tandem.os■

com.tandem.tmf■

com.tandem.util■

❍

JToolkit for NonStop Servers Programmer's Reference

This documentation describes the JToolkit for NonStop Servers, a set of additional features that work in
conjunction with NonStop Server for Java 5.

❍

JDBC driver for NonStop SQL/MP Programmer's Reference

This documentation describes how to use the JDBC Driver for SQL/MP (JDBC/MP), which provides Java
applications with access to HP NonStop SQL/MP.

❍

HP NonStop JDBC Type 4 Driver Programmer's Reference

The HP NonStop JDBC Type 4 documentation describes the JDBC Type 4 driver that allows Java
programmers to remotely develop applications deployed on PCs to access NonStop SQL databases
through NonStop SQL/MX.

❍

Inspect Manual

Documents the Inspect interactive symbolic debugger for HP NonStop systems. You can use Inspect to debug
Java Native Interface (JNI) code running in a Java virtual machine (VM).

●

SQL/MX Documents

NonStop Server for Java 5 includes JDBC drivers that enable Java programs to interact with NonStop SQL
databases with SQL/MX.

SQL/MX Programming Manual for Java

Explains how to use embedded SQL in Java programs (SQLJ programs) to access NonStop SQL
databases with SQL/MX.

❍

SQL/MX Guide to Stored Procedures in Java

Describes how to develop and deploy stored procedures in Java (SPJs) in SQL/MX.

❍

SQL/MX Quick Start

Describes basic techniques for using SQL in the SQL/MX conversational interface (MXCI). Also includes
information about installing the sample database.

❍

SQL/MX Comparison Guide for SQL/MP Users

Compares SQL/MP and SQL/MX.

❍

SQL/MX Installation and Management Guide

Describes how to install and manage SQL/MX on a NonStop server.

❍

SQL/MX Glossary

Explains the terminology used in SQL/MX documentation.

❍

SQL/MX Query Guide

Explains query execution plans and how to write optimal queries for SQL/MX.

❍

●

SQL/MX Reference Manual

Describes SQL/MX language elements (such as expressions, predicates, and functions) and the SQL
statements that can be run in MXCI or in embedded programs. Also describes MXCI commands and
utilities.

❍

SQL/MX Messages Manual

Describes SQL/MX messages.

❍

SQL/MX Programming Manual for C and COBOL

Describes the SQL/MX programmatic interface for ANSI C and COBOL.

❍

SQL/MX Data Mining Guide

Describes the SQL/MX data structures and operations needed for the knowledge-discovery process.

❍

SQL/MX Queuing and Publish/Subscribe Services

Describes how SQL/MX integrates transactional queuing and publish/subscribe services into its database
infrastructure.

❍

TMF Documents

TMF Introduction

Introduces the concepts of transaction processing and the features of the HP NonStop Transaction
Management Facility (TMF) product.

❍

TMF Application Programmer's Guide

Explains how to design requester and server modules for execution in the TMF programming environment
and describes system procedures that are helpful in examining the content of TMF audit trails.

❍

●

Sun Microsystems Documents
The following documents were available on Sun Microsystems Web sites when the JDBC/MX driver was released.

Note: Sun Microsystems Java 2 Platform Standard Edition JDK 5.0 Documentation is provided on the
NonStop Server for Java 5 product distribution CD in an executable file for your convenience in case you
cannot get Java documentation from the Sun Microsystems Web sites. The links to Sun Java
documentation in the JDBC/MX driver documentation go to the Sun Microsystems Web sites, which
provide more extensive documentation than JDK 5.0. HP cannot guarantee the availability of the JDK 5.0
documentation on the Sun Web sites. Also, HP is not responsible for the links or content in the
documentation from Sun Microsystems.

JDBC 3.0 Specification, available for downloading from Sun Microsystems
(http://java.sun.com/products/jdbc/download.html).

●

JDBC API Documentation, includes links to APIs and Tutorials
(http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/index.html)

●

JDBC Data Access API general information
(http://java.sun.com/products/jdbc/index.html)

●

JDBC Data Access API FAQs for JDBC 3.0
(http://java.sun.com/products/jdbc/faq.html)

●

JDBC API Javadoc Comments

Core JDBC 3.0 API in the java.sql package❍

●

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/index.html
http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/jdbc/faq.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/package-summary.html

(http://java.sun.com/j2se/1.5.0/docs/api/java/sql/package-summary.html)

Optional JDBC 3.0 API in the javax.sql package
(http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/package-summary.html)

❍

Notation Conventions
Bold Type

Bold type within text indicates terms defined in the Glossary. For example:

abstract class
Computer Type

Computer type letters within text indicate keywords, reserved words, command names, class names, and
method names; enter these items exactly as shown. For example:

myfile.c

Italic Computer Type
Italic computer type letters in syntax descriptions or text indicate variable items that you supply. For
example:

pathname

[] Brackets
Brackets enclose optional syntax items. For example:

jdb [options]

A group of items enclosed in brackets is a list from which you can choose one item or none. Items are separated
by vertical lines. For example:

where [threadID|all]

{ } Braces
A group of items enclosed in braces is a list from which you must choose one item. For example:

-c identity {true|false}

| Vertical Line
A vertical line separates alternatives in a list that is enclosed in brackets or braces. For example:

where [threadID|all]

... Ellipsis
An ellipsis immediately following a pair of brackets or braces indicates that you can repeat the enclosed
sequence of syntax items any number of times. For example:

print {objectID|objectName} ...

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax item any number
of times. For example:

dump objectID ...

Punctuation
Parentheses, commas, equal signs, and other symbols not previously described must be entered as shown. For
example:

-D propertyName=newValue

Item Spacing
Spaces shown between items are required unless one of the items is a punctuation symbol such as a parenthesis

http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/package-summary.html

or comma. If there is no space between two items, spaces are not permitted. In the following example, spaces are
not permitted before or after the period:

subvolume-name.filename

Line Spacing
If the syntax of a command is too long to fit on a single line, each line that is to be continued on the next line
ends with a backslash (\) and each continuation line begins with a greater-than symbol (>). For example:

/usr/bin/c89 -c -g -I /usr/tandem/java/include \
> -I /usr/tandem/java/include/oss -I . \
> -Wextensions -D_XOPEN_SOURCE_EXTENDED=1 jnative01.c

Abbreviations
ANSI. American National Standards Institute

API. application program interface

ASCII. American Standard Code for Information Interchange

BLOB. Binary Large OBject

CD. compact disk

CLOB. Character Large OBject

COBOL. Common Business-Oriented Language

CPU. central processing unit

DCL. Data Control Language

DDL. Data Definition Language

DML. Data Manipulation Language

HTML. Hypertext Markup Language

HTTP. Hypertext Transfer Protocol

IEC. International Electrotechnical Committee

ISO. International Organization for Standardization

JAR. Java Archive

JCK. Java Conformance Kit

JFC. Java Foundation Classes

JDBC. Java Database Connectivity

JDBC/MP. JDBC Driver for SQL/MP

JDBC/MX. JDBC Driver for NonStop SQL/MX

JNDI. Java Naming and Directory Interface

JNI. Java Native Interface

JRE. Java Run-time Environment

LAN. local area network

LOB. Large OBject

MBCS. Multibyte Character Set

MFC. Module File Caching

NonStop TS/MP. NonStop Transaction Services/MP

OSS. Open System Services

POSIX. portable operating system interface x

RISC. reduced instruction set computing

RVU. Release Version Update

SPJ. stored procedure in Java

SQLJ. embedded SQL in Java programs

SQL/MP. Structured Query Language/MP

SQL/MX. Structured Query Language/MX

TCP/IP. Transmission Control Protocol/Internet Protocol

TMF. Transaction Management Facility

URL. uniform resource locator

VM. virtual machine

WWW. World Wide Web

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Introduction to JDBC/MX Driver

The HP JDBC/MX Driver for NonStop SQL/MX implements the JDBC technology that conforms to the
standard JDBC 3.0 Data Access API. This JDBC/MX driver enables Java applications to use HP
NonStop SQL/MX to access NonStop SQL databases.

For more information on the JDBC APIs associated with the JDBC/MX implementation, see Sun
Microsystems Documents earlier in this document. To obtain detailed information on the standard JDBC
API, you should download the JDBC API documentation provided by Sun Microsystems
(http://java.sun.com/products/jdbc/download.html).

The JDBC/MX driver together with HP NonStop Server for Java 5 is a Java environment that supports
compact, concurrent, dynamic, portable programs for the enterprise server. The JDBC/MX driver
requires NonStop Server for Java 5 and SQL/MX, which both require the HP NonStop Open System
Services (OSS) environment. The NonStop Server for Java 5 uses the HP NonStop operating system to
add the NonStop system fundamentals of scalability and program persistence to the Java environment.

This section explains these subjects:

JDBC/MX Architecture●

JDBC API Packages●

Sample Programs Summary●

JDBC/MX Architecture
The JDBC/MX driver is a Type 2 driver; it employs proprietary native APIs to use SQL/MX to access
NonStop SQL databases. The native API of SQL/MX cannot be called from client systems. For this
reason, the JDBC/MX driver runs on NonStop servers only.

The JDBC/MX driver is best suited for a three-tier model. In the three-tier model, commands are sent to
a middle tier of services, which then sends the commands to the data source. The data source processes
the commands and sends the results back to the middle tier, which then sends them to the user. The
middle tier makes it possible to maintain control over access and the kinds of updates that can be made to
corporate data. Another advantage is that it simplifies the deployment of applications. Finally, in many
cases, the three-tier architecture can provide performance advantages.

The following figure illustrates a three-tier architecture for database access:

Architecture of the JDBC/MX Driver

http://java.sun.com/products/jdbc/download.html

JDBC API Packages
The JDBC/MX API packages are shipped with the JDBC/MX driver software. For the API
documentation, see the JDBC/MX Driver for NonStop SQL/MX for H50 API Reference in the H-series
library in the NonStop Technical Library at docs.hp.com.

The java.sql and javax.sql packages are included as part of Java 2, Standard Edition (J2SE) SDK
1.4.2 and, therefore, are available with the core APIs delivered with the NonStop Server for Java 5
product.

Sample Programs Summary
The JDBC/MX driver includes sample Java programs that illustrate the features of the product. The
programs are described in the following table.

Sample Program Comments

sampleJdbcMx.java Illustrates loading the JDBC/MX driver and obtaining a
JDBC connection using the DriverManager interface.

CreateDataSource.java
and TestDataSource.java

Illustrates making a connection by using the DataSource
interface, thereby avoiding embedding driver-specific
codes in the Java programs.

CreateDataSource.java creates the
SQLMXDataSource object and registers the object with
the Java Naming and Directory Interface (JNDI).

MultiThreadTest.java Demonstrates the nonblocking JDBC/MX driver feature.
By default, this program creates two threads. In
nonblocking mode, these two threads run concurrently.
This program displays the thread ID and status of the SQL
operation before and after each operation. When the
program runs in blocking mode, you observe only one
thread switch because the begin-transaction operation starts
a transaction in SQL nowait mode. When the program runs
in nonblocking mode, you can observe many thread
switches.

holdJdbcMx.java Illustrates the holdable cursor support in the JDBC/MX
driver. The program creates a subscriber thread that
subscribes to a message queue. When all the rows in the
message queue are read, the subscriber times out after five
seconds.

TestConnectionPool.java Demonstrates the benefits of connection pooling and
statement pooling. This program performs a loop for a 100
times that makes a JDBC connection, runs a few SQL
statements, and closes the connection. You use the OSS
time() command to measure the performance benefits of
connection pooling and statement pooling in this program.

CreateTraceDS.java
TestTraceDS.java

Demonstrates tracing by creating a wrapper around the
driver-specific data source to be traced. These
demonstration programs are located in the /demo directory
of the product installation directory.

JdbcRowSetSample.java Demonstrates how to create an SQLMXJdbcRowSet
object and invoke several JdbcRowSet methods.

LobSample.java Demonstrates the LOB feature in the JDBC/MX driver.

TransactionMode.java Demonstrates internal, external, and mixed transaction
modes.

ISO88591Sample.java Demonstrates the ISO88591 property.

For information on running these sample programs, see the README file provided with the JDBC/MX
driver software.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Installing and Verifying JDBC/MX

This section explains these subjects:

Installation Requirements●

JDBC/MX Driver File Locations●

Verifying the JDBC/MX Driver●

Setting CLASSPATH●

Setting the _RLD_LIB_PATH●

Installation Requirements
Hardware and software requirements for the JDBC/MX Driver for NonStop SQL/MX are described in
the Softdoc file on the NonStop Server for Java 5 product CD, with which the JDBC/MX driver is
delivered. Read that document before installing the product.

The JDBC/MX driver version is HP JDBC/MX driver for NonStop SQL/MX H50(also identified as
product T1275)

The JDBC/MX driver requires the following software:

NonStop SQL/MX Release 2.0 or subsequent 2.x releases●

NonStop Server for Java, based on Java 2 Platform Standard Edition 5.0 (T2766H50)or subsequent
product updates

●

Note: For the most current statement of the software requirements, see the Softdoc file for
the list of earliest acceptable versions of the required software. You can substitute later
versions of the same products.

JDBC/MX Driver File Locations
The JDBC/MX driver installation directory location for the JDBC/MX driver software is:

install_dir/jdbcMx/T1275H50

For example, the default installation directory is

/usr/tandem/jdbcMx/T1275H50

The files installed include:

.../demo

Demo programs

.../lib/libjdbcMx.so

JDBC/MX driver library

.../lib/jdbcMx.jar

JDBC/MX Java archive file, which includes the JDBC trace facility

.../bin/jdbcMxInstall

JDBC/MX installation script

.../bin/jdbcMxUninstall

JDBC/MX uninstall script

Verifying the JDBC/MX Driver
To verify the version of the JDBC/MX driver, use these commands:

java command, which displays the version of the java code portion of the JDBC/MX driver●

vproc command, which displays the version of the C code portion of the JDBC/MX driver●

To use the java command, type the following at the OSS prompt:

java JdbcMx -version

This command displays output similar to:

JDBC driver for NonStop(TM) SQL/MX Version
T127H50_23DEC2005_JDBCMX...

Compare the output with the product numbers in the Softdoc file on the NonStop Server for Java 5
distribution CD.

Use the vproc command to check for the correct library. Issue the following at the OSS prompt:

vproc

/jdbcmx-installation-directory/T1275H50/lib/libjdbcMx.so

...

 Binder timestamp: 20DEC2005 18:10:14
 Version procedure: T1275H50_23DEC2005_JDBCMX_1220
 TNS/E Native Mode: runnable file

The version procedure that corresponds to the JDBC/MX Driver (T1275) product should match in the
output of both the java and vproc commands.

Setting CLASSPATH
For running JDBC applications, ensure the CLASSPATH environment variable includes the
jdbcMx.jar file. Given the default installation, the path is

/usr/tandem/jdbcMx/current/lib/jdbcMx.jar

Setting the _RLD_LIB_PATH
For running JDBC applications, ensure the _RLD_LIB_PATH environment variable path is set to TNS/E
jdbcMx PIC file. Given the default installation, the path is:

/usr/tandem/jdbcMx/T1275H50/lib

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Accessing SQL Databases with SQL/MX

This section describes the following subjects:

Connection to SQL/MX●

JdbcRowSet Implementation●

JDBC/MX Properties●

Transactions●

Stored Procedures●

SQL Context Management●

Holdable Cursors●

Connection Pooling●

Statement Pooling●

Using Additional JDBC/MX Properties●

Supported Character Set Encodings●

Connection to SQL/MX
A Java application can obtain a JDBC connection to SQL/MX in two ways:

Using the DriverManager class●

Using the DataSource interface●

Connection Using the DriverManager Class
This is the traditional way to establish a connection to the database. The DriverManager class works
with the Driver interface to manage the set of drivers loaded. When an application issues a request for
a connection using the DriverManager.getConnection method and provides a URL, the
DriverManager is responsible for finding a suitable driver that recognizes this URL and obtains a
database connection using that driver.

com.tandem.sqlmx.SQLMXDriver is the JDBC/MX driver class that implements the Driver
interface. The application can load the JDBC/MX driver in one of the following ways, except as noted in
the DriverManager Object Properties table:

Specifying the JDBC/MX driver class in the -Djdbc.drivers option in the command line●

Using the Class.ForName method within the application●

Adding the JDBC/MX driver class to the jdbc.drivers property within the application●

The DriverManager.getConnection method accepts a string containing a JDBC URL. The
JDBC URL for the JDBC/MX driver is jdbc:sqlmx:.

When connecting by using the DriverManager class, use the information in the following topics:

JDBC/MX Driver Properties Used with the DriverManager Class●

Guidelines for Using Connections with the DriverManager Class●

JDBC/MX Driver Properties Used with the DriverManager Class

JDBC/MX driver defines the following set of properties that you can use to configure the driver:

Property Name Type Value Description

contBatchOnError String on or off

Communicates with
JDBC driver to continue
the remaining jobs in the
batch even after any
BatchUpdateExceptions.
See contBatchOnError
Property.

catalog String

See Default
Catalog and
Schema.

If the default catalog and
schema are not specified,
the JDBC/MX driver
allows SQL/MX to
follow its own rules for
defaults.

schema String

See Default
Catalog and
Schema.

See catalog above.

mploc String
See mploc
Property.

The location (in
$volume.subvolume
format) in which
SQL/MP tables are
created. (The default
location is the default
subvolume of the
logged-on user.)

enableLog boolean on or off

Enables logging of SQL
statement IDs and the
corresponding JDBC
SQL statements. See
enableLog Property.

idMapFile String
A valid OSS
filename

Specifies the file to
which the trace facility
logs SQL statement IDs
and the corresponding
JDBC SQL statements.
See idMapFile Property.

ISO88591 String
See ISO88591
Property.

Specifies the Java
encoding used when
accessing and writing to
ISO88591 columns.

maxStatements int
See
maxStatements
Property.

The total number of
PreparedStatement
objects that the
connection pool should
cache. See
maxStatements Property.

minPoolSize int
See
minPoolSize
Property.

Limits the number of
physical connections that
can be in the free
connection pool. See
minPoolSize Property.

maxPoolSize int
See
maxPoolSize
Property.

Sets maximum number
of physical connections
that the pool should
contain. This number
includes both free
connections and
connections in use. See
maxPoolSize Property.

blobTableName String

See LOB Table
Name
Properties.

Specifies the LOB table
for using BLOB
columns.

clobTableName String

See LOB Table
Name
Properties.

Specifies the LOB table
for using CLOB
columns.

transactionMode String
See
transactionMode
Property.

Sets the transaction
mode, which provides
control over how and
when transactions are
performed. See
transactionMode
Property.

Note: Do not add the jdbcmx. prefix to the property name when the properties are
given as a parameter to the connection method or when using the data source. The
prefix is not needed to identify the property type because the property is being
passed to a JDBC/MX driver object. Use the jdbcmx. prefix only in the command
line as described under Setting Properties in the Command Line.

Guidelines for Using Connections with the DriverManager Class

Java applications can specify the properties in the following ways:

Using JDBC/MX properties with the -D option in the command line. If used, this option
applies to all JDBC connections using the DriverManager within the Java application.
The format is to enter the following in the command line:

-Djdbcmx.property_name=property_value

For example in a command line, -Djdbcmx.maxStatements=1024

❍

Using the java.util.properties parameter in the getConnection method of
DriverManager.

❍

●

The properties passed through the java.util.properties parameter have a higher
precedence over the command-line properties.

●

The connection pooling feature is available when the Java application uses the DriverManager
class to obtain a JDBC connection. The connection pool size is determined by the maxPoolSize
property value and minPoolSize property value.

●

The JDBC/MX driver has a connection-pool manager for a combination of catalog and schema;
therefore, connections with the same catalog and schema combinations are pooled together. The
connection pooling property values that are used at the time of obtaining the first connection for a
given catalog and schema combination is effective throughout the life of the process. An
application cannot change these property values subsequent to the first connection for a given
catalog and schema combination.

●

As in the basic DataSource object implementation, a Java application can enable statement
pooling by setting the property to a non-zero positive value.

●

Connection Using the DataSource Interface
The DataSource interface, introduced in the JDBC 2.0 optional package, is the preferred way to
establish a connection to the database because it enhances the application portability. The JDBC/MX
driver implements the DataSource interface and returns a connection object when an application
requests a connection using the getConnection method in the DataSource interface.

Using a DataSource object increases the application portability by allowing the application to use a
logical name for a data source instead of providing driver-specific information in the application. A
logical name is mapped to a DataSource object by means of a naming service that uses the Java
Naming and Directory Interface (JNDI).

The following table describes the properties that you can use to identify a JDBC/MX data source object:

DataSource Object Properties

Property Name Type Value Description

contBatchOnError String on or off

Communicates with JDBC driver to
continue the remaining jobs in the
batch even after any
BatchUpdateExceptions. See
contBatchOnError Property.

catalog String

See Default
Catalog and
Schema.

If the default catalog and schema
are not specified, the JDBC/MX
driver allows SQL/MX to follow its
own rules for defaults.

schema String

See Default
Catalog and
Schema.

See catalog above.

dataSourceName String

The registered
ConnectionPoolDataSource
name. When this string is empty,
connection pooling is used by
default with the pool size
determined by the maxPoolSize
property and minPoolSize property
of the basic DataSource object.
For more information, see
Connection Using the Basic
DataSource API.

description String
Any valid
identifier

The description of the data source.

enableLog boolean on or off

Enables logging of SQL statement
IDs and the corresponding JDBC
SQL statements. See enableLog
Property.

idMapFile String
A valid OSS
filename

Specifies the file to which the trace
facility logs SQL statement IDs and
the corresponding JDBC SQL
statements. See idMapFile
Property.

ISO88591 String
See ISO88591
Property.

Specifies the Java encoding used
when accessing and writing to
ISO88591 columns.

maxPoolSize int
See maxPoolSize
Property.

Sets maximum number of physical
connections that the pool should
contain. This number includes both
free connections and connections in
use. See maxPoolSize Property.

maxStatements int
See
maxStatements
Property.

The total number of
PreparedStatement objects
that the connection pool should
cache. See maxStatements
Property.

minPoolSize int
See minPoolSize
Property.

Limits the number of physical
connections that can be in the free
connection pool. See
minPoolSize Property.

mploc String
See mploc
Property.

The location (in
$volume.subvolume format)
in which SQL/MP tables are
created (The default location is the
default subvolume of the logged-on
user.)

blobTableName String
See LOB Table
Name Properties.

Specifies the LOB table for using
BLOB columns.

clobTableName String
See LOB Table
Name Properties.

Specifies the LOB table for using
CLOB columns.

transactionMode String
See
transactionMode
Property.

Sets the transaction mode, which
provides control over how and
when transactions are performed.
See transactionMode Property.

Note: Do not add the jdbcmx. prefix to the property name when the properties are given as a
parameter to the connection method or when using the data source. The prefix is not needed to
identify the property type because the property is being passed to a JDBC/MX driver object. Use
the jdbcmx prefix only in the command line, as described under Setting Properties in the
Command Line.

JdbcRowSet Implementation
An implementation of the JdbcRowSet interface, SQLMXJdbcRowSet, is provided within the
com.tandem.sqlmx package. A JdbcRowSet object maintains a connection to the database, similar to a
ResultSet object. However, a JdbcRowSet object maintains a set of properties and listener notification
mechanisms that make it a JavaBeans™ component.

The SQLMXJdbcRowSet object can be created using these SQLMXJdbcRowSet constructors:

The default constructor that does not require any parameters.
Note: This constructor does not attempt to connect to the database until the execute method is
invoked.

●

The constructor that takes a Connection object.●

The constructor that takes a ResultSet object.●

The constructor that takes a url, username, and password
Note: Username and password attributes are currently not supported. This constructor has been
provided for future use after the username and password support has been provided by both
SQL/MX and JDBC/MX.

●

Refer to the JdbcRowSetSample.java demo program as an example of instantiating and manipulating
an SQLMXJdbcRowSet object. Also, refer to the Unsupported and Deviations sections for specific
implementation details of the SQLMXJdbcRowSet object.

For additional details, refer to the JdbcRowSet Interface specification at
http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/rowset/JdbcRowSet.html.

http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/rowset/JdbcRowSet.html

JDBC/MX Properties
JDBC/MX properties included in both the DriverManager object properties table and DataSource
object properties table are described in topics as follows:

Default Catalog and Schema●

LOB Table Name Properties●

ISO88591 Property●

mploc Property●

maxStatements Property●

minPoolSize Property●

maxPoolSize Property●

transactionMode Property●

These properties and additional properties can be specified in a command line, as described under Setting
Properties in the Command Line.

For information about using features provided by various JDBC/MX properties, see the topic, Using
Additional JDBC/MX Properties.

Default Catalog and Schema
The default catalog and schema are used to access SQL objects referenced in SQL statements if the SQL
objects are not fully qualified. The three-part fully qualified name for SQL/MX objects is of the form:

[[catalog.]schema.]object-name

The catalog and schema names can be any arbitrary strings that conform to SQL identifiers. These names
conform to ANSI SQL:99 catalog and schema names.

For example, using the default catalog and schema properties for a table referenced as
CAT.SCH.TABLE, the options are:

 -Djdbcmx.catalog=CAT -Djdbcmx.schema=SCH

For more information, see the SQL/MX Reference Manual.

LOB Table Name Properties
LOB tables store data for LOB columns. The properties you use to specify the LOB table for using BLOB
columns or CLOB columns are:

For the BLOB columns

blobTableName

For the CLOB columns

clobTableName

The property value is of the form:

catalog_name.schema_name.lob_table_name

You can specify the name of the LOB table using properties in the following ways:

By using the –Djdbcmx.property_name=property_value option in the java
command line. For example:

–Djdbcmx.clobTableName=mycat.myschema.myLobTable

●

By using the java.util.Properties parameter in the getConnection method of
DriverManager class. The properties passed through the Properties parameter have precedence
over the command line properties.

●

By setting either of these properties in the DataSource. See Connection Using the DataSource
Implementation.

●

ISO88591 Property
The ISO88591 character set mapping property corresponds to the SQL/MX ISO88591 character set,
which is a single-byte 8-bit character set for character data types. The ISO88591 character set supports
English and other Western European languages. Specify the ISO88591 property as

String

The default value is DEFAULT which uses the default Java encoding when accessing and writing to
ISO88591 columns. The value can be any valid Java Canonical Name as listed in the "Canonical Name
for java.io and java.lang API" column of the Sun documentation, Supported Encodings
(http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html).

For example, if KANJI data has been stored in an ISO88591 column in an SQL/MP table (accessed
through SQL/MX) and has been read and written to the database using the column character set, you can
specify the following property to ensure the correct encoding:

-Djdbcmx.ISO88591=SJIS

mploc Property
The property mploc specifies the Guardian location in which SQL tables are created. The format for
mploc is:

[\node].$volume.subvolume

Java applications using the JDBC/MX driver can specify mploc by using the system property mploc
with the -D option in the command line.

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

 -Djdbcmx.mploc=mploc

For example with the DriverManager object, in the OSS environment, specify the mploc property in
either of the following forms:

-Djdbcmx.mploc=[\\node.]\$volume.subvolume

or

-Djdbcmx.mploc='[\node.]$volume.subvolume'

For more information, see the SQL/MX Reference Manual.

maxStatements Property
Sets the total number of PreparedStatement objects that the connection pool should cache. This
total includes both free objects and objects in use. Specify the maxStatements property as:

int

The integer can be 0 through 2147483647. Any negative value is treated like 0. The default is 0, which
disables statement pooling. HP recommends that you enable statement pooling for your JDBC
applications, because this pooling can dramatically help the performance of many applications.

minPoolSize Property
Limits the number of physical connections that can be in the free connection pool. Specify the
minPoolSize property as:

int

The integer can be 0 through 2147483647, but less than maxPoolSize. The default is 0. Any negative
value is treated like 0. Any value greater than maxPoolSize is changed to the maxPoolSize value.
This value is ignored when maxPoolSize is -1. The value determines connection pool use as follows:

When the number of physical connections in the free pool reaches the minPoolSize value, the
JDBC/MX driver closes subsequent connections by physically closing them—not by adding them
to the free pool.

●

0 means the connections are not physically closed; the connections are always added to the free
pool when the connection is closed.

●

maxPoolSize Property
Sets the maximum number of physical connections that the pool can contain. These connections include
both free connections and connections in use. When the maximum number of physical connections is
reached, the JDBC/MX driver throws an SQLException with the message, "Maximum pool size is
reached." Specify the maxPoolSize property as:

int

The integer can be -1, 0 through 2147483647, but greater than minPoolSize. The default is 0. Any
negative value is treated like -1. Any positive value less than minPoolSize is changed to the
minPoolSize value. The value determines connection pool use as follows:

0 means no maximum pool size.●

-1 for the basic DataSource object means connection pooling is disabled. -1 is invalid for the
ConnectionPoolDatasource object.

●

transactionMode Property
The transactionMode property provides control over how and when transactions are performed.
Specify the transactionMode property as:

String

The default is mixed. The allowed values are:

internal

Specifies that transactions are always performed within a JDBC/MX driver-managed transaction.
If an external transaction exists when internal transaction mode is in effect, the external transaction
is suspended and the SQL statement is executed within a JDBC/MX driver-managed transaction.
Upon completion of the driver�s internally managed transaction, the existing external transaction is
resumed. The Connection autoCommit flag maintains a value of true when in internal transaction
mode.

Note: Using internal transactionMode for select statements performed in external transactions causes
JDBC/MX to throw an "invalid transaction state" exception. Therefore, do not specify internal
transactionMode under these conditions.

mixed

Specifies that the driver inherits any active transaction in the current thread. The autocommit
setting of the transaction is ignored. The application must either commit or rollback the transaction in
this mode. If there is no active transaction, the driver creates one and begins the transaction, or aborts it if
there is an SQL error. In this mode, the driver supports both autocommit and non-autocommit. The
application ends the transaction in non-autocommit mode.

external

Specifies that if an external transaction exists, transactions are performed within the external transaction.
If an external transaction does not exist, the SQL statement is executed without a transaction. This allows
SQL statements that do not require an existing transaction to be performed without one, providing an
improvement in performance. If an SQL command requires a transaction and no external transaction
exists, an SQL exception is thrown.

Note: Using external transactionMode for SQL statements that require execution within a transaction
results in an SQL exception. Therefore, do not specify external transactionMode under these
conditions.

Considerations:

If any other string is specified for the value of transaction mode, mixed is used.●

Using the external or mixed transaction mode can improve performance.●

Using the internal transaction mode can affect performance for applications because of the
overhead of TMF transactions under a heavy load.

●

This property can be set within a JDBC/MX driver properties file, defined within a DataSource
object, or passed in through the java command line.

●

The transaction mode can only be changed for new connections; therefore, it cannot be
dynamically changed within a connection.

●

This property can be specified in a data source, in the JDBC/MX properties file, or in the java
command line.

Setting Properties in the Command Line
JDBC/MX driver property names used on the command line in the java -D option must include the
prefix:
 jdbcmx.

This notation, which includes the period (.), ensures that all the JDBC/MX driver property names are
unique for a Java application. For example: the maxStatements property becomes

jdbcmx.maxStatements

JDBC/MX Driver Properties Allowed in the Command Line

JDBC/MX
Prefix Property Name Description

jdbcmx. contBatchOnError

Communicates with JDBC driver to
continue the remaining jobs in the
batch even after any
BatchUpdateExceptions. See
contBatchOnError Property.

jdbcmx. stmtatomicity
Allows the user to enable atomicity of
SQL statements at statement level.
See stmtatomicity Property.

jdbcmx. batchBinding

Specifies that statements are batched
together in the executeBatch()
operation. See Setting Batch
Processing for Prepared Statements.

jdbcmx. blobTableName
Specifies the LOB table for using
BLOB columns. See LOB Table
Name Properties.

jdbcmx. catalog
Sets the default catalog. See Default
Catalog and Schema.

jdbcmx. clobTableName
Specifies the LOB table for using
CLOB columns. See LOB Table
Name Properties.

jdbcmx. enableLog

Enables logging of SQL statement
IDs and the corresponding JDBC
SQL statements. See enableLog
Property.

jdbcmx. idMapFile

Specifies the file to which the trace
facility logs SQL statement IDs and
the corresponding JDBC SQL
statements. See idMapFile Property.

jdbcmx. ISO88591

Specifies the encoding to be used
when accessing or writing to data
stored in IS088591 columns. See
ISO88591 Property.

jdbcmx. maxPoolSize
Sets the maximum pool size. See
maxPoolSize Property.

jdbcmx. maxStatements

Sets the total number of
PreparedStatement objects that the
connection pool should cache. See
maxStatements Property.

jdbcmx. minPoolSize
Sets the minimum pool size. See
minPoolSize Property.

jdbcmx. mploc
Sets the location in SQL/MP tables.
See mploc Property.

jdbcmx. reserveDataLocators
Sets the number of data locators to be
reserved. See Setting the
reserveDataLocators Property.

jdbcmx. schema
Sets the default schema. See Default
Catalog and Schema.

jdbcmx. sqlmx_nowait
See Managing Nonblocking
JDBC/MX.

jdbcmx. traceFile
Specifies the trace file for logging.
See Enabling Tracing for Application
Servers.

jdbcmx. traceFlag
Sets the trace flag for logging. See
Enabling Tracing for Application
Servers.

jdbcmx. transactionMode

Sets the transaction mode, which
provides control over how and when
transactions are performed. See
transactionMode Property.

For example, using the mploc property in the OSS environment, specify the mploc property including
the prefix in either of the following forms:

-Djdbcmx.mploc=[\\node.]\$volume.subvolume

or

-Djdbcmx.mploc='[\node.]$volume.subvolume'

Transactions
The JDBC/MX driver provides transaction support to maintain data integrity and consistency. To allow
the application to interleave transactions between SQL/MX objects and the traditional file system, the
JDBC/MX driver checks if a transaction is active whenever it needs to interact with SQL/MX.

The transactionMode property determines transaction processing behavior. If you use transactionMode in
a typical environment, with the default value mixed,

When an active transaction exists, the autocommit setting is ignored, and the JDBC/MX driver lets
the application manage the transaction.

●

When no active transaction exists, the JDBC/MX driver manages the transactions.●

This implementation differs from JDBC/MP. In the JDBC/MP driver, two different types of URLs decide
which component manages the transaction.

If you are accessing BLOB and CLOB data, see also Transactions Involving Blob and Clob Access.

Autocommit Mode and Transaction Boundaries
When JDBC/MX manages the transactions, the driver decides to start a new transaction. A new
transaction is started when no transaction is associated with the Connection. When there is a
transaction associated with the Connection, that transaction is resumed. The Connection attribute
autocommit specifies when to end the transaction. Enabling autocommit causes the JDBC/MX driver
to end the transaction in accordance with the following rules:

The JDBC/MX driver rolls back the transaction for any SQL error in SQL statements other than
SELECT statements.

●

In the case of non-SELECT SQL statements, the JDBC/MX driver commits the transaction if the
current transaction was started for this SQL statement.

●

In the case of SELECT statements, the JDBC/MX driver commits the transaction at the time of
closing the result set.

●

In the case of concurrent multiple SELECT statements, the JDBC/MX driver commits the
transaction only when the result set of the SELECT statement or the statement that started the
transaction is closed.

●

Disabling Autocommit Mode
When the autocommit mode is disabled, the application must explicitly commit or roll back each
transaction by calling the Connection methods commit and rollback, respectively. When any
SQL error occurs in SQL statements other than SELECT statement, SQL/MX flags the transactions for
aborting. In such a case, the transaction is rolled back without regard to whether the application commits
or rolls back the transaction.

Stored Procedures
SQL/MX provides support for stored procedures with result sets, which are written in Java and run under
an SQL/MX execution environment.

Stored procedures can be run in SQL/MX by using the CALL statement. The JDBC/MX driver allows
stored procedures to be called by using the standard JDBC API escape syntax for stored procedures. The
escape SQL syntax is:

{call procedure-name([arg1,arg2, ...])}

where argn refers to the parameters sequentially, with the first parameter being arg1. For more

information about the non-escape syntax of the CALL statement, see the SQL/MX Reference Manual.

Java applications can use the JDBC standard CallableStatement interface to run stored procedures
in SQL/MX by using the CALL statement. For more information, see the SQL/MX Guide to Stored
Procedures in Java.

Limitations
Limitations of the stored procedures in Java (SPJs) are:

The stored procedures in Java (SPJs) do not support result sets returned from the Java method that
contain CLOB or BLOB data types.

●

SPJs do not support SHORTANSI names.●

Note: Do not use the SHORTANSI name type with SPJs.

SQL Context Management
NonStop SQL/MX allows you to manage SQL/MX contexts. An SQL/MX context can be considered as
an instance of the SQL/MX executor that has its own execution environment that contains the following:

CONTROL and SET information●

A transaction●

An SQL/MX compiler process (MXCMP)●

Set of SQL/MX executive server processes (ESPs)●

User-created SQL statements●

The JDBC/MX driver maps a JDBC connection to an SQL/MX context. Therefore, in a multithreaded
application, a JDBC application has multiple SQL/MX compiler processes (MXCMP processes)
associated with the application. An SQL/MX context is created when the application obtains a JDBC
connection. An SQL/MX context is destroyed when the application explicitly or implicitly closes the
JDBC connection.

The following JDBC connection attributes are passed to the SQL/MX context by the JDBC/MX driver
by executing the corresponding SQL statements:

Connection Attributes Passed to the SQL/MX Context

Attribute SQL Statement

catalog SET CATALOG default-catalog-name

schema SET SCHEMA default-schema-name

mploc SET MPLOC default-location

transaction
isolation

SET TRANSACTION isolation-level

A process (JVM process) can have multiple SQL/MX contexts within a process.

Holdable Cursors
JDBC/MX driver supports the holdablity attribute for the ResultSet. To use holdable cursors in your
JDBC applications, follow these guidelines:

Use one of the following constants for the holdablity attribute:

com.tandem.sqlmx.SQLMXResultSet.HOLD_CURSORS_OVER_COMMIT

Ensure that when the application calls the method Connection.commit or
Connection.rollback, the HOLD_CURSORS_OVER_COMMIT constant
indicates that ResultSet objects are not closed.

com.tandem.sqlmx.SQLMXResultSet.CLOSE_CURSORS_AT_COMMIT

Ensure that when the application calls the method Connection.commit or
Connection.rollback, the CLOSE_CURSORS_AT_COMMIT constant indicates
that ResultSet objects are closed.

●

For the ResultSet objects to be holdable over a commit operation, ensure that the SQL
statement that generates the ResultSet has either stream access mode, or embedded update or
delete for table references.

●

Use either of the following methods in SQLMXConnection objects to create result sets with
holdable cursors over commit:

createStatement(int resultSetType, int resultSetConcurrency,
int resultSetHoldability)

prepareStatement(String sql, int resultSetType,
int resultSetConcurrency, int resultSetHoldability)

For a demonstration in a sample program, see the holdJdbcMx.java program description.

●

Connection Pooling
JDBC/MX provides an implementation of connection pooling, where a cache of physical database
connections are assigned to a client connection session and reused for the database activity. Once the
client session is closed, the physical connection is put back into cache for subsequent use. This
implementation contrasts to the basic DataSource object implementation, where a one-to-one
correspondence exists between client Connection object and the physical database connection.

Your applications can use connection pooling in the following ways:

Connection Pooling by an Application Server●

Connection Pooling Using the Basic DataSource API●

Connection Pooling with the DriverManager Class●

Connection Pooling by an Application Server
Usually, in a three-tier environment, the application server implements the connection pooling
component. How to implement this component is described in these topics:

Guidelines for Implementing an Application Server to Use Connection Pooling●

Standard ConnectionPoolDataSource Object Properties●

Guidelines for Implementing an Application Server to Use
Connection Pooling

The application server maintains a cache of the PooledConnection objects created by using
ConnectionPoolDataSource interface. When the client requests a connection object, the
application looks for the suitable PooledConnection object. The lookup criteria and other
methods are specific to the application server.

●

The application server implements the ConnectionEventListener interface and registers
the listener object with the PooledConnection object. The JDBC/MX driver notifies the
listener object with a connectionClosed event when the application is finished using the
Connection object. Then, the connection pooling component can reuse this
PooledConnection object for future requests. The JDBC/MX driver also notifies the listener
object with connectionErrorOccurred event when the PooledConnection object fails
to initialize the connection. The application server's connection pooling component should discard
the PooledConnection when such a connection error event occurs.

●

The application server manages the connection pool by using the
SQLMXConnectionPoolDataSource, which implements the
ConnectionPoolDataSource interface. Use the getter and setter methods, provided by
JDBC/MX, to set the connection pool configuration properties listed in the table of Standard
ConnectionPoolDataSource Object Properties. In addition to these standard properties, the

●

ConnectionPoolDataSource includes the JDBC/MX driver-specific properties as described
under Connection Using the DataSource Interface.

Standard ConnectionPoolDataSource Object Properties

Note: The application server defines the meaning of these properties.

Property Name Type Description

maxStatements int

The total number of PreparedStatement objects
that the pool should cache. This total includes both free
objects and objects in use. 0 (zero) disables statement
pooling.

initialPoolSize int
The number of physical connections the pool should
contain when it is created.

minPoolSize int
The number of physical connections the pool should
keep available at all times. 0 (zero) indicates no
maximum size.

maxPoolSize int
The maximum number of physical connections that the
pool should contain. 0 (zero) indicates no maximum
size.

maxIdleTime int
The number of seconds that a physical connection
should remain unused in the pool before the connection
is closed. 0 (zero) indicates no limit.

propertyCycle int
The interval, in seconds, that the pool should wait before
enforcing the current policy defined by the values of the
above connection pool properties.

Connection Pooling Using the Basic DataSource
API
For your JDBC application to enable connection pooling, use the basic DataSource interface, which
includes the following properties that control connection pooling:

maxPoolSize❍

minPoolSize❍

maxStatements❍

Your application can enable connection pooling in the following two ways:

By setting the dataSourceName property in the basic DataSource object to the previously
registered ConnectionPoolDataSource object. When the connection pooling is enabled, the
JDBC/MX driver-specific properties in the ConnectionPoolDataSource object are
effective, and the JDBC/MX driver-specific properties in the DataSource object are ignored.
The connection is initialized with the JDBC/MX driver-specific properties when the
PooledConnection is obtained.

●

By using the properties in the DataSource object, when the dataSourceName property is
empty. Connection pooling is enabled by default. Note that the default value for the
maxPoolSize property is 0, which enables connection pooling. See the DataSource interface
for the details on using these properties.

●

For troubleshooting application connection pooling, note the following details on how the feature is
implemented. JDBC/MX looks for the first available PooledConnection object and assigns the
object to the client requests for a connection. JDBC/MX ensures that the SQL/MX execution
environment and compilation environment remain the same for all the connections in the connection
pooling environment; that is, the environment is the same as when the initial connection was obtained by
the client session either from the pool or from a new physical connection.

Connection Pooling with the DriverManager Class
Connection pooling is available by default when your JDBC application uses the DriverManager
class for connections. You can manage connection pooling by using the following properties listed in the
DriverManager Object Properties table and described as under JDBC/MX Properties:

maxPoolSize●

minPoolSize●

maxStatements●

Set these properties in either of two ways:

Using the option -Dproperty_name=property_value in the command line●

Using the java.util.Properties parameter in the getConnection() method of the
DriverManager class

●

Use these guidelines when setting properties for connection pooling with the DriverManager class:

To enable connection pooling, set the maxPoolSize property to an integer value greater than 0
(zero).

●

The properties passed through the Properties parameter have a higher precedence over the
command-line properties.

●

Connections with the same catalog-schema combination are pooled together and managed by the
JDBC/MX driver. The connection-pooling property values that the application process uses when
it obtains the first connection for a given catalog-schema combination are effective for that
combination through the life of the application process.

●

Statement Pooling
The statement pooling feature allows applications to reuse the PreparedStatement object in same
way that they can reuse a connection in the connection pooling environment. Statement pooling is done
completely transparent to the application. Using statement pooling is described in the following topics:

Guidelines for Statement Pooling●

Controlling the Performance of ResultSet Processing●

Troubleshooting Statement Pooling●

Guidelines for Statement Pooling
Enable statement pooling by setting the DataSource object maxStatements property to an
integer value greater than 0 and, also, by enabling connection pooling. See Connection Pooling for
more information.

●

Enabling statement pooling for your JDBC applications might dramatically improve the
performance.

●

Explicitly close a prepared statement by using the Statement.close method because
PreparedStatement objects that are not in scope are also not reused unless the application
explicitly closes them.

●

To ensure that your application reuses a PreparedStatement, call either of the following:

Statement.close method—called by the application❍

Connection.close method—called by the application. All the
PreparedStatement objects that were in use are ready to be reused when the
connection is reused.

❍

●

Controlling the Performance of ResultSet
Processing
To improve JDBC application performance of result fetches for statements that are expected to return
more than two rows, the application should set the fetch size before executing the statement. This
operation works because the ResultSet getter methods have been modified in the JDBC/MX driver to
optimize database interactions. The JDBC/MX driver uses the fetch-size setting to determine the size of
memory used for reading and buffering data.

The application can control the ResultSet fetch size by using the setFetchSize() method of the
Statement class, PreparedStatement class, and ResultSet class.

Considerations:

Applications that use SQL/MX tables, rather than SQL/MP tables, have improved performance
only for result fetches that have greater than two rows returned. The default JDBC/MX fetch size
is set to 1.

●

Once the application sets the fetch size to a value greater than 2 for a statement, the application
should not reset the value back to 2 or less. If the application does so, the application will
experience a slight degradation in performance as compared to using the default value.

●

Setting the fetch size greater than 2 for statements that return fewer than two rows causes a slight
performance degradation, as compared to using the default fetch size.

●

Setting the fetch size to a value greater than the number of rows returned by a statement causes the
JDBC/MX driver to use more memory, but does not affect the API's functionality.

●

Troubleshooting Statement Pooling
Note the following JDBC/MX driver implementation details if you are troubleshooting statement
pooling:

JDBC/MX driver looks for a matching PreparedStatement object in the statement pool and
reuses the PreparedStatement. The matching criteria include the SQL string, current catalog,
current schema, current transaction isolation, and resultSetHoldability. If JDBC/MX
driver finds the matching PreparedStatement object, JDBC/MX driver returns the same
preparedStatement object to the application for reuse and marks the
PreparedStatement object as in use.

●

The algorithm, "earlier used are the first to go," is used to make room for caching subsequently
generated PreparedStatement objects when the number of statements reaches the
maxStatements limit.

●

JDBC/MX driver assumes that any SQL CONTROL statements in effect at the time of execution
or reuse are the same as those in effect at the time of SQL/MX compilation. If this condition is not
true, reuse of a PreparedStatement object might result in unexpected behavior.

●

You should avoid SQL/MX recompilation to yield performance improvements from statement
pooling. The SQL/MX executor automatically recompiles queries when certain conditions are met.
Some of these conditions are:

A run-time version of a table has a different redefinition timestamp than the compile-time
version of the same table.

❍

An existing open operation on a table was eliminated by a DDL or SQL utility operation.❍

The transaction isolation level and access mode at execution time is different from that at
the compile time.

❍

For more information on SQL/MX recompilation, see the SQL/MX Programming Manual for C
and COBOL or the SQL/MX Programming Manual for Java.

●

When a query is recompiled, the SQL/MX executor stores the recompiled query; therefore, the
query is recompiled only once until any of the previous conditions are met again.

●

JDBC/MX driver pools the CallableStatement objects in the same way as
PreparedStatement objects when the statement pooling is activated.

●

JDBC/MX driver does not cache Statement objects.●

Using Additional JDBC/MX Properties
You can use JDBC/MX properties for the following application features:

BatchUpdate Exception handling Improvements●

Statement Level Atomicity●

Managing Nonblocking JDBC/MX●

Setting Batch Processing for Prepared Statements●

Setting the reserveDataLocators Property●

In addition to these topics, also see Enabling Tracing for Application Servers.

BatchUpdate Exception handling Improvements
When a command in the batch fails, the remaining commands of the batch are not executed resulting in
re-execution of entire batch. But, with this Batch Update Exception handling support, the remaining
elements of the batch after the error prone statement can be executed and hence re-execution of the entire
batch jobs can be avoided.

contBatchOnError property

The contBatchOnError property communicates with JDBC driver to continue the remaining jobs in the
batch even after any BatchUpdateExceptions. This java property can be set from the command line as:

Djdbcmx.contBatchOnError={ON|OFF}

where

ON

continues batch execution even after any other batch exception

OFF

terminates the batch execution on any other batch exception. The default is set to OFF.

Note: This property can be set either through java command line option or through property file of
Datasource.

Statement Level Atomicity
To maintain the database consistency, transactions must be controlled so that they either complete
successfully or are aborted. With the prior release versions of JDBC/MX (before H10 AAB and V32
AAU on G-series), the transaction is automatically aborted on any error while performing an SQL
statement.

This version of JDBC/MX driver follows up with the SQL/MX 2.0 Statement Atomicity feature and
guarantees that an individual SQL statement within a transaction either completes successfully or has no
effect on the database. When this statement level atomicity is followed, with the auto commit mode set to
false, any failure occurred during the Insert, Update, or Delete operations will not abort the current
transaction and this helps in execution of all the statements under this current transaction until a commit
or rollback is issued. This feature is optional and can be enabled by setting the system property
‘stmtatomicity’.

stmtatomicity property

Enabling the stmtatomicity property, allows the JDBC driver to set the transactions atomicity at
statement level.

This java property can be set from the command line as:

Djdbcmx.stmtatomicity={ON|OFF}

where

ON

statement level atomicity

OFF

transaction level atomicity. The default is set to OFF.

Note: This functionality is already available in JDBC/MX H10AAB and V32AAU versions.

Managing Nonblocking JDBC/MX
Blocking mode with the JDBC/MX driver causes the whole JVM process to be blocked when an SQL
operation occurs. Nonblocking mode causes the JDBC/MX driver to block only the thread that invokes
the SQL operation and not the whole JVM process. In a multithreaded Java application, the nonblocking
JDBC/MX feature enables the JVM to schedule other threads concurrently while each SQL operation is
being done by a thread.

By default, JDBC/MX uses the nonblocking mode. You can disable nonblocking JDBC/MX in a Java
application by setting the sqlmx_nowait property to OFF by using the -Djdbcmx.sqlmx_nowait
option in the command line. The syntax is:

-Djdbcmx.sqlmx_nowait={ ON | OFF }

where

ON

specifies nonblocking JDBC/MX. The default is ON.

OFF

specifies process blocking JDBC/MX.

You can also programmatically disable or enable nonblocking JDBC/MX by setting the
sqlmx_nowait property within the program. Depending on your application, set this property as
follows:

In JDBC/MX applications that obtain a JDBC connection by using the DriverManager class,
set this property before the JDBC/MX driver is loaded.

●

In JDBC/MX applications that obtain a JDBC connection by using JNDI API with the
DataSource interface, set this property before the DataSource object is created.

●

JDBC connection can now be simultaneously used from multiple threads. Multiple threads working on
SQL statements are allowed to share the same connection. Therefore, single connection context is used
across multiple threads and the operations associated with the connection object are made thread safe.

If you are an application developer writing multithreaded Java applications that use nonblocking JDBC,
follow these recommendations:

Create only one JDBC connection per thread. Applications obtaining multiple JDBC connections
in single thread do not run the SQL/MX operations concurrently and can waste system resources
because each connection requires its own SQL/MX compiler process.

●

Do not share JDBC Java objects--such as Statement or ResultSet objects--across threads for
purposes other than canceling the SQL operation with the Cancel() method.

●

Be aware of the non-preemptive nature of the thread implementation in NonStop Server for Java 4.
A CPU-bound thread runs to its completion without providing an opportunity for the thread
scheduler to schedule a different thread.

●

If an application is written to share connection across multiple threads, then the connection
properties should not be modified.

●

Setting Batch Processing for Prepared Statements
You can improve the performance of batch processing when using the
PreparedStatement.executeBatch() method by setting the batchBinding property. When
the batchBinding property is set, the statements are batched in the executeBatch() operation.

When a JDBC application sets the batchBinding property, the JDBC/MX driver allocates resources
relative to the specified binding size.

To set the batchBinding size, specify the batchBinding property in the command line. The
syntax is:

-Djdbcmx.batchBinding=binding_size

where binding_size is a positive, signed, long integer that specifies the maximum
number of PreparedStatement.executeBatch() method statements that the
JDBC/MX driver can bind together for execution. The integer value can be in the range of 0
to 2 gigabytes.

Considerations

The values allowed for binding_size can result in your application running out of memory.
Check that you set the binding_size to a size appropriate for the memory limits.

●

If the number of statements is greater than the binding size, the JDBC/MX driver breaks the
execution of statements into blocks whose sizes are based on the binding size.

●

Even if the JDBC application does not call for batch execution, setting the
jdbcmx.batchBinding property causes the allocation of database resources relative to the
specified binding size.

●

When the jdbcmx.batchBinding property is not set, the
PreparedStatement.executeBatch() method returns a row-count array that contains the
number of rows affected by the corresponding statement for each item in the array. By default, the
JDBC/MX driver performs batch processing by returning a row-count array.

●

When the jdbcmx.batchBinding property is set, the detailed information indicated in the
preceding bulleted item is no longer available. If the statement execution succeeds, the row-count
item is set to Statement.SUCCESS_NO_INFO in compliance with the JDBC 3.0 specification.
The PreparedStatement.getUpdateCount() method returns the total number of rows
affected by all the statements executed by the PreparedStatement.executeBatch()
method.

●

Setting the reserveDataLocators Property
The reserveDataLocators property sets the number of data locators to be reserved for a process for
storing data in a LOB table. The default value for reserving data locators is 100. The property is of the
form:

jdbcmx.reserveDataLocators=n

where n is an integer value of the number of data locators to be reserved. Do not set a value
much greater than the number of data locators actually needed. For more information about
data locator use, see Reserving Data Locators.

To change this value for a JDBC application, specify this property from the command line. For example,
the following command reserves 150 data locators for program myProgramClass.

java -Djbcmx.reserveDataLocators=150 myProgramClass

Supported Character Set Encodings
Java applications using the JDBC/MX driver can specify the Java file.encoding property to set the
default encoding to any character set supported by Java if no SQL literals exist in the program. If the
program has SQL literals, the program should use only the Java encoding sets that correspond to
SQL/MX supported sets.

The JDBC/MX driver supports the reading and writing of SQL CHAR, VARCHAR,
VARCHAR_LONG, and VARCHAR_WITH_LENGTH data types only when using the SQL/MX
supported character sets listed in the subsequent table.

The JDBC/MX driver encodes and decodes String data types as a function of the associated character set
name for the particular SQL database column independent of the default encoding.

The format of the Java file.encoding property is:

-Dfile.encoding=encoding

Note: SQL/MX supports a subset of encoding sets supported by NonStop Server for Java 4.

Corresponding SQL/MX Character Sets and Java Encoding Sets

SQL/MX
Character

Set

Corresponding
Java Encoding
Set—Canonical
Name for java.io

API

Corresponding Java
Encoding

Set—Canonical Name
for java.io and java.lang

API

Description

ISO88591 ISO-8859-1 ISO8859_1

Single-character, 8-bit,
character set for
character-data type. It
supports English and
other Western
European languages.

UCS2 UTF-16BE UnicodeBigUnmarked

Universal Character
Set encoded in 2
bytes.
Double-character
Unicode character set
in UTF16 big-endian
encoding.
NOTE: UCS2 is
supported in SQL/MX
tables only.

KANJI Shift_JIS SJIS

The multibyte
character set widely
used on Japanese
mainframes. It is
composed for a
single-byte character
set and a double-byte
character set. It is a
subset of Shift JIS (the
double character
portion). Its encoding
is big-endian.
NOTE: KAJNI is
supported in SQL/MP
tables only.

KSC5601
EUC-KR
(Code Set 1)

EUC_KR

Double-character
character set required
on systems used by
government and
banking within Korea.
Its encoding is big
endian.
NOTE: KSC5601 is
supported in SQL/MP
tables only.

For complete information on character sets supported by SQL/MX and any additional
limitations on support for SQL/MP tables, see the SQL/MX Reference Manual.

For complete information about NonStop Server for Java 5 support for encodings see
Supported Encodings (http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html).

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

Home | Contents | Index | Glossary | Prev | Next

Working with BLOB and CLOB Data

This section describes working with BLOB and CLOB data in JDBC applications. You can use the
standard interface described in the JDBC 3.0 API specification to access BLOB and CLOB data in
NonStop SQL/MX tables with support provided by the JDBC/MX driver.

BLOB and CLOB are not native data types in an SQL/MX database. But, database administrators can
create SQL/MX tables that have BLOB and CLOB columns by using the JDBC/MX driver or special SQL
syntax in MXCI as described in the next section, Managing the SQL/MX Tables for BLOB and CLOB
Data.

For management purposes, CLOB and BLOB data is referred to as large object (LOB) data, which can
represent either data type.

Note: Support for BLOB and CLOB data requires SQL/MX tables.

The section is organized in topics by category as follows:

Category Topic

The Physical Files

Architecture for LOB Support●

Setting Properties for the LOB Table●

Specify the LOB Table Name●

Accessing CLOB Data

Storing CLOB Data●

Reading CLOB Data●

Updating CLOB Data●

Deleting CLOB Data●

Accessing BLOB Data

Storing BLOB data●

Reading Binary Data from a BLOB Column●

Updating BLOB Data●

Deleting BLOB Data●

Miscellaneous

NULL and Empty BLOB or CLOB Value●

Transactions Involving Blob and Clob Access●

Access Considerations for Clob and Blob
Objects

●

For full working examples showing how to access BLOB and CLOB data, see Appendix A.

For information about creating and managing tables for BLOB and CLOB data, see Managing the
SQL/MX Tables for BLOB and CLOB Data.

Architecture for LOB Support
The tables that support LOB data are:

Base table
Referenced by JDBC applications to insert, store, read, and update BLOB and CLOB data. In the
base table, the JDBC/MX driver maps the BLOB and CLOB columns into a data-locator column.
The data-locator column points to the actual LOB data that is stored in a separate user table called
the LOB table.

LOB table
Actually contains the BLOB and CLOB data in chunks. A Clob or Blob object is identified by a
data locator. LOB tables have two formats: LOB table for BLOB data and a LOB table for CLOB
data.

LOB Architecture: Tables for LOB Data Support

Setting Properties for the LOB Table
Before running the JDBC application that uses BLOB and CLOB data through the JDBC API, the
database administrator must create the LOB tables. For information on creating LOB tables, see
Managing LOB Data with the JDBC/MX Lob Admin Utility.

The JDBC applications that access BLOB or CLOB data must specify the associated LOB table names
and, optionally, configure the reserveDataLocator property. These tasks are described in the
topics:

Specifying the LOB Table●

Reserving Data Locators●

Specifying the LOB Table
At run time, a user JDBC application notifies the JDBC/MX driver of the name, or names, of the LOB
tables associated with the CLOB or BLOB columns of the base tables being accessed by the application.
One LOB table, or separate tables, can be used for BLOB and CLOB data.

The JDBC application specifies a LOB table name either through a system parameter or through a Java
Property object by using one of the following properties, depending on the LOB column type:

LOB Column Type Property name

BLOB blobTableName

CLOB clobTableName

For more information about using these properties, see LOB Table Name Properties.

Reserving Data Locators
A data locator is the reference pointer value (SQL LARGEINT data type) that is substituted for the BLOB
or CLOB column in the base table definition. Each object stored into the LOB table is assigned a unique
data locator value. Because the LOB table is a shared resource among all accessors that use the particular
LOB table, reserving data locators reduces contention for getting the next value. By using a default
setting of 100 reserved data locators, each JVM instance can insert 100 large objects (not chunks) before
needing a new allocation.

You can specify the number of data locators (n) to reserve for your application by using the JDBC/MX
system property jdbcmx.reserveDataLocators in the command line.

For information about specifying this property, see Setting the reserveDataLocators Property.

Storing CLOB Data
Inserting CLOB Columns by Using the Clob Interface●

Writing ASCII or Unicode Data to a CLOB Column●

Inserting CLOB Data by Using the PreparedStatement Interface●

Inserting a Clob Object by Using the setClob Method●

Inserting CLOB Columns by Using the Clob
Interface
When you insert a row containing a CLOB data type, and before the column can be updated with real
CLOB data, you can insert a row that has an "empty" CLOB value . You can insert an empty CLOB value
in a NonStop SQL/MX database by specifying EMPTY_CLOB() function for the CLOB column in the
insert statement.

The JDBC/MX driver scans the SQL string for the EMPTY_CLOB() function and substitutes the
next-available data locator.

Then, you must obtain the handle to the empty CLOB column by selecting the CLOB column for update.

Note the limitation: Do not rename the CLOB column in the select query.

The following code illustrates how to obtain the handle to an empty CLOB column:

Clob myClob = null;
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery("Select myClobColumn
 from myTable where ….for update");
if (rs.next())
 myClob = rs.getClob(1);

You can now write data to the CLOB column. See Writing ASCII or Unicode Data to a CLOB Column.

Writing ASCII or Unicode Data to a CLOB Column
You can write ASCII or Unicode data to a CLOB column as follows.

ASCII Data●

Unicode Data●

ASCII Data

You can write ASCII or Unicode data to the CLOB column by using the Clob interface. The following
code illustrates using the setAsciiStream method of the Clob interface to write CLOB data.

Clob myClob = null;
// stream begins at position 1
long pos = 1;
// Example string containing data
String s = "TEST_CLOB";
for (int i=0; i<5000; i++) s = s + "DATA";
// Obtain the output stream to write Clob data
OutputStream os = myClob.setAsciiStream(pos);
// write Clob data using OutputStream
byte[] myClobData = s.getBytes();
os.write(myClobData);

The JDBC/MX driver splits the output stream into chunks and stores the chunks in the LOB table.

Unicode Data

The following code illustrates how to write Unicode data to a CLOB column after obtaining the handle to
the empty CLOB column.

Clob myClob = null;
// stream begins at position 1
long pos = 1;
// Example string containing the Unicode data
String s = �TEST_UNICODE_DATA�;
// Obtain the output stream to write Clob data
Writer cw = myClob.setCharacterStream(pos);
// write Clob data using Writer
char[] myClobData = s.toCharArray();
cw.write(myClobData);

Inserting CLOB Data by Using the
PreparedStatement Interface
You can use the PreparedStatement interface to insert a CLOB column with data as follows:

ASCII Data●

Unicode Data●

ASCII Data

You can insert a CLOB column with ASCII or Unicode data from a FileInputSteam. You must use
the PreparedStatement interface to insert the CLOB column.

FileInputStream inputAsciiStream = new
FileInputStream(myClobTestFile);
int clobLen = inputAsciiStream.available();
PreparedStatement ps = conn.prepareStatement("insert
 into myTable (myClobColumn) values (?)");
ps.setAsciiStream(1, inputAsciiStream, clobLen);
ps.executeUpdate();

The JDBC/MX driver reads the data from FileInputSteam and writes the data to the LOB table. The
JDBC/MX driver substitutes the next-available data locator for the parameter of the CLOB column in the
table.

Unicode Data

You can insert a CLOB column with Unicode data from a FileReader. You must use the
PreparedStatement interface to insert the CLOB column.

FileReader inputReader = new FileReader(myClobTestFile);
PreparedStatement ps = conn.prepareStatement("insert
 into myTable (myClobColumn) values (?)");
ps.setCharacterStream(1, inputReader, (int)myClobTestFile.length());
ps.executeUpdate();

The JDBC/MX driver reads the data from FileReader and writes the data to the LOB table. The
JDBC/MX driver substitutes the next available-data locator for the parameter of the CLOB column in the
table.

Inserting a Clob Object by Using the setClob
Method
Your JDBC application cannot directly instantiate a Clob object. To perform an equivalent operation:

Obtain a Clob object by using the getClob method of the ResultSet interface.1.

Insert the Clob object into another row by using the setClob method of the
PreparedStatement interface.

2.

In this situation, the JDBC/MX driver generates a new data locator and, when the
PreparedStatement is executed, copies the contents of the source Clob into the new Clob object.

Reading CLOB Data
Reading ASCII Data from a CLOB Column●

Reading Unicode Data from a CLOB Column●

Reading ASCII Data from a CLOB Column
You can read ASCII or Unicode data from a CLOB column by using the Clob interface or
InputStream.

The following code illustrates how to read the ASCII data from the CLOB column by using the Clob
interface:

// Obtain the Clob from ResultSet
Clob myClob = rs.getClob("myClobColumn");
// Obtain the input stream to read Clob data
InputStream is = myClob.getAsciiStream();
// read Clob data using the InputStream
byte[] myClobData = new byte[length];
int readLen = is.read(myClobData, offset, length);

To read ASCII or Unicode data from the CLOB column by using InputStream:

// obtain the InputStream from ResultSet
InputStream is = rs.getAsciiStream("myClobColumn");
// read Clob data using the InputStream
byte[] myClobData = new byte[length];
int readLen = is.read(myClobData, offset, length);

Reading Unicode Data from a CLOB Column
You can read Unicode data from the CLOB column by using the Clob interface or Reader. The
following code illustrates how to read the Unicode data from the CLOB column by using the Clob
interface.

// Obtain the Clob from ResultSet
Clob myClob = rs.getClob("myClobColumn");
// Obtain the input stream to read Clob data
Reader cs = myClob.getCharacterStream();
// read Clob data using Reader
char[] myClobData = new char[length];
int readLen = cs.read(myClobData, offset, length);

To read Unicode data from the CLOB column by using a Reader:

// obtain the Reader from ResultSet
Reader cs = rs.getCharacterStream("myClobColumn");
// read Clob data using the InputStream
char[] myClobData = new char[length];
int readLen = cs.read(myClobData, offset, length);

Updating CLOB Data
You can make updates to CLOB data by using the methods in the Clob interface or by using the
updateClob method of the ResultSet interface. The JDBC/MX driver makes changes directly to
the CLOB data. Therefore, the JDBC/MX driver returns false to the locatorsUpdateCopy method
of the DatabaseMetaData interface. Applications do not need to issue a separate update statement to
update the CLOB data.

Make updates to CLOB data in the following ways:

Updating Clob Objects with the updateClob Method●

Replacing Clob Objects●

Updating Clob Objects with the updateClob Method
Unlike some LOB support implementations, the JDBC/MX driver updates the CLOB data directly in the
database. So, when the Clob object is the same in the updateClob method as the Clob object
obtained using getClob, the updateRow method of the ResultSet interface does nothing with the
Clob object.

When the Clob objects differ, the Clob object in the updateClob method behaves as if the
setClob method was issued. See Inserting a Clob Object with the setClob Method.

Replacing Clob Objects
You can replace Clob objects in the following ways:

Use the EMPTY_CLOB() function to replace the Clob object with the empty Clob object, then
insert new data as described under Inserting CLOB Columns by Using the Clob Interface.

●

Use the PreparedStatement.setAsciiStream() or setCharacterStream()
method to replace the existing Clob object with new CLOB data.

●

Use the setClob or updateClob method to replace the existing CLOB objects as explained
earlier under Inserting a Clob Object with the setClob Method and Updating Clob Objects with the
updateClob Method.

●

Deleting CLOB Data
To delete CLOB data, the JDBC application uses the SQL DELETE statement to delete the row in the
base table.

When the row containing the CLOB column is deleted by the JDBC application, the corresponding CLOB
data is automatically deleted by the delete trigger associated with the base table. For information about
triggers, see Using an SQL/MX Trigger to Delete LOB Data.

See also NULL and Empty BLOB or CLOB Value.

Storing BLOB Data
You can perform operations similar to those used on CLOB columns as those used on BLOB columns by
using the Blob interface. You can:

Use the EMPTY_BLOB() function in the insert statement to create an empty BLOB column in the
database.

●

Use setBinaryStream method of the Blob interface to obtain the InputStream to read
BLOB data.

●

Use getBinaryStream method of the Blob interface to obtain the OutputStream to write
BLOB data.

●

Use setBinaryStream of the PreparedStatement interface to write the data to the BLOB
column.

●

The details of these operations are discussed in the following topics:

Inserting a BLOB Column Using the Blob Interface●

Writing Binary Data to a BLOB Column●

Inserting a BLOB Column by Using the PreparedStatement Interface●

Inserting a Blob Object by Using the setBlob Method●

Inserting a BLOB Column by Using the Blob
Interface
When you insert a row containing a BLOB data type, you can insert the row with an "empty" BLOB value
before the column can be updated with real BLOB data. You can insert an empty BLOB value in an
SQL/MX database by specifying EMPTY_BLOB() function for the BLOB column in the insert statement.

The JDBC/MX driver scans the SQL string for the EMPTY_BLOB() function and substitutes the
next-available data locator.

Then, you must obtain the handle to the empty BLOB column by selecting the BLOB column for update.

The following code illustrates how to obtain the handle to an empty BLOB column:

Blob myBlob = null;
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery("Select myBlobColumn
 from myTable where …For update");
if (rs.next())
 myBlob = rs.getBlob(1);

You can now write data to the BLOB column. See Writing Binary Data to a BLOB Column.

Writing Binary Data to a BLOB Column
You can write data to the BLOB column by using Blob interfaces. The following code illustrates using
the setBinaryStream method of the Blob interface to write BLOB data.

Blob myBlob = null
// Stream begins at position 1
long pos = 1;
// Example string containing binary data
String s = "BINARY_DATA";
for (int i=0; i<5000; i++) s = s + "DATA";
// Obtain the output stream to write Blob data
OutputStream os = myBlob.setBinaryStream(pos);
// write Blob data using OutputStream
byte[] myBlobData = s.getBytes();
os.write(myBlobData);

The JDBC/MX driver splits the output stream into chunks and stores the chunks in the LOB table.

Inserting a BLOB Column by Using the
PreparedStatement Interface
You can also insert a BLOB column that has binary data from a FileInputSteam. You must use
PreparedStatement interface to insert the BLOB column.

FileInputStream inputBinary = new FileInputStream(myBlobTestFile);
int blobLen = inputBinary.available();
PreparedStatement ps = conn.prepareStatement("insert
 into myTable (myBlobColumn) values (?)");
ps.setBinaryStream(1, inputBinary, blobLen);
ps.executeUpdate();

The JDBC/MX driver reads the data from FileInputSteam and writes the data to the LOB table. The

JDBC/MX driver substitutes the next-available data locator for the parameter of the BLOB column in the
table.

Inserting a Blob Object by Using the setBlob
Method
Your JDBC application cannot directly instantiate a Blob object. To perform an equivalent operation:

Obtain a Blob object by using the getClob method of the ResultSet interface.1.

Insert the Blob object into another row by using the setBlob method of the
PreparedStatement interface.

2.

In this situation, the JDBC/MX driver generates a new data locator and copies the contents of the source
Blob into the new Blob object when the application issues the setBlob method of the
PreparedStatement interface.

Reading Binary Data from a BLOB
Column
You can read binary data from the BLOB column by using the Blob interface or InputStream. The
following code illustrates how to read the binary data from the BLOB column by using the Blob
interface:

// Obtain the Blob from ResultSet
Blob myBlob = rs.getBlob("myBlobColumn");
// Obtain the input stream to read Blob data
InputStream is = myBlob.getBinaryStream();
// read Blob data using the InputStream
byte[] myBlobData = new byte[length];
is.read(myBlobData, offset, length);

To read binary data from the BLOB column by using InputStream

// obtain the InputStream from ResultSet
InputStream is = rs.getBinaryStream("myBlobColumn");
// read Blob data using the InputStream
byte[] myBlobData = new byte[length];
is.read(myBlobData, offset, length);

Updating BLOB Data
You can update BLOB data by using the methods in the Blob interface or by using the updateClob
method of the ResultSet interface. The JDBC/MX driver makes changes to the BLOB data directly.
Hence, the JDBC/MX driver returns false to the locatorsUpdateCopy method of the
DatabaseMetaData interface. Applications do not need to issue a separate update statement to
update the BLOB data.

Update BLOB data in the following ways.

Updating Blob Objects by using the updateBlob Method●

Replacing Blob Objects●

Updating Blob Objects by Using the updateBlob
Method
Unlike some LOB support implementations, the JDBC/MX driver updates the BLOB data directly in the
database. So, when the Blob object is the same in the updateBlob method as the object obtained
using getBlob, the updateRow method of the ResultSet interface does nothing with the Blob
object.

When the Blob objects differ, the Blob object in the updateBlob method behaves as if the setBlob
method was issued. See Inserting a Blob Object with the setBlob Method.

Replacing Blob Objects
You can replace Blob objects in the following ways:

Use the EMPTY_BLOB() function to replace the Blob object with the empty Blob object.●

Replace an existing Blob object in a row by inserting the Blob with new data as described under
Inserting a BLOB Column Using the Blob Interface.

●

Use the setBinaryStream() method to of the PreparedStatement interface replace the
existing Blob object with new BLOB data.

●

Use the setBlob or updateBlob methods to replace the existing BLOB objects as explained
earlier under Inserting a Blob Object with the setBlob Method and Updating Blob Objects with the
UpdateBlob Method.

●

Deleting BLOB Data
To delete BLOB data, the JDBC application uses the SQL DELETE statement to delete the row in the
base table.

When the row containing the BLOB column is deleted by the application, the corresponding BLOB data is
automatically deleted by the delete trigger associated with the base table. For information about triggers,
see Using an SQL/MX Trigger to Delete LOB Data.

See also NULL and Empty BLOB or CLOB Value.

NULL and Empty BLOB or CLOB Value
The data locator can have a NULL value if the BLOB or CLOB column is omitted in the insert statement.
The JDBC/MX driver returns NULL when the application retrieves the value for such a column.

When the application uses the EMPTY_BLOB() method or EMPTY_CLOB() method to insert empty
BLOB or CLOB data into the BLOB or CLOB column, JDBC/MX driver returns the Blob or Clob object
with no data.

Transactions Involving Blob and Clob
Access
HP recommends that your JDBC applications control the transactions when the BLOB columns or CLOB
columns are accessed either by using the external transaction or by setting the connection to manual
commit mode.

If executing a prepared statement involving BLOB or CLOB data with autocommit mode enabled and an
external transaction does not exist, the JDBC/MX driver mimics autocommit mode. This operation
ensures that inserts or updates of LOB data are committed only after both the base table and LOB tables
are modified.

In some instances an outputStream or Writer object is returned to the application when the object
can be held for an unknown period of time. Therefore, the following interfaces throw the exception,
Autocommit is on and LOB objects are involved, exception when LOB data is
involved, autocommit is enabled, and an external transaction does not exist:

Clob.setAsciiStream●

Clob.setCharacterStream●

Blob.setBinaryStream●

If an SQL/MX or FS exception occurs while the base table and LOB table are being updated, the internal
transaction used for this operation is rolled back, and an exception is thrown.

When an SQL/MX or file system exception occurs while JDBC/MX mimics autocommit mode for the
base table and the insert or update operations on a LOB table, the internal transaction used for this
operation is rolled back and the following exception is thrown:

Transaction error {0} - {1} while updating LOB tables

For the description, see the message information under sqlcode 29070.

The JDBC/MX driver reserves data locators in its own transaction to improve the concurrency among the
different processes trying to reserve the data locators.

For more information, see Transactions.

Access Considerations for Clob and Blob
Objects
The JDBC/MX driver allows all the valid operations on the current Clob object or Blob object, called a
LOB object. LOB objects are current as long as the row that contains these LOB objects is the current
row. The JDBC/MX driver throws an SQLException, issuing the following message, when the
application attempts to perform operations on a LOB object that is not current:

Lob object {object-id} is not current

Only one InputStream or Reader and one OutputStream or Writer can be associated with the
current LOB object.

When the application obtains the InputStream or Reader from the LOB object, the
JDBC/MX driver closes the InputStream or Reader that is already associated with the LOB
object.

●

Similarly, when the application obtains the OutputStream or Writer from the LOB object,
the JDBC/MX driver closes the OutputStream or Writer that is already associated with the
LOB object.

●

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX Driver for NonStop SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Managing the SQL/MX Tables for BLOB and
CLOB Data

BLOB and CLOB are not native data types in an SQL/MX database. But, database administrators can create
SQL/MX tables that have BLOB and CLOB columns by using the JDBC/MX driver or special SQL syntax in
MXCI as described in this section. For management purposes, CLOB and BLOB data is referred to as large object
(LOB) data, which can represent either data type.

Note: Support for BLOB and CLOB data requires SQL/MX tables.

Before using this section, be sure to see the file descriptions for the tables that contain LOB data. This information
is under the topic Architecture for LOB Support in the preceding section.

With the exception above, this section provides the information that database administrators need to create and
manage the tables required to support LOB data. The topics are:

Creating Base Tables that Have LOB Columns●

Managing LOB Data by Using the JDBC/MX Lob Admin Utility●

Using SQL/MX Triggers to Delete LOB Data●

Limitations of the BLOB and CLOB Data Types●

Creating Base Tables that Have LOB
Columns
You can write JDBC programs to create base tables that have LOB columns or you can use the SQL/MX
conversational interface MXCI as described in the following topics:

Data Types for LOB Columns●

Using MXCI to Create Base Tables that Have LOB Columns●

Using JDBC Programs to Create Base Tables that Have LOB Columns●

Data Types for LOB Columns
The data types for the LOB columns are:

CLOB

Character large object data

BLOB

Binary large object data

Note: The CLOB and BLOB data type specification is special syntax that is allowed for use in base
tables accessed by JDBC/MX driver as described in this manual.

Using MXCI To Create Base Tables that Have LOB
Columns
Before using the procedure to create the tables, note that when using MXCI to create base tables, you must enter
the following special command in the MXCI session to enable the base table creation of tables that have LOB
(BLOB or CLOB) columns:

CONTROL QUERY DEFAULT JDBC_PROCESS 'TRUE'

Follow these steps to create a base table that has LOB columns:

At the OSS prompt, invoke the SQL/MX utility MXCI. Type:

MXCI

1.

Type the following command to enable creating tables that have LOB columns:

CONTROL QUERY DEFAULT JDBC_PROCESS 'TRUE'

2.

Type the CREATE TABLE statement; for example, you might use the following simple form of the
statement:

CREATE TABLE table1 (c1 INTEGER NOT NULL, c2 CLOB, c3 BLOB, PRIMARY
KEY(c1))

3.

where;

table1

The name of the base table.

c1

Column 1, defined as the INTEGER data type with the NOT NULL constraint.

c2

Column 2, defined as the CLOB data type.

c3

Column 3, defined as the BLOB data type.

PRIMARY KEY

Specifies c1 as the primary key.

Use this example as the archetype for creating base tables. For information about valid names for tables (table1)
and columns (c1, c2, and c3) and for information about the CREATE TABLE statement, see the SQL/MX
Reference Manual.

Using JDBC Programs To Create Base Tables that Have
LOB Columns
When using a JDBC Program to create base tables that have LOB columns, simply put the CREATE TABLE
statements in the program as you would any other SQL statement. For an example of the CREATE TABLE

statement, see the preceding discussion Using MXCI to Create Base Tables that Have LOB Columns.

Managing LOB Data by Using the JDBC/MX
Lob Admin Utility
The JDBC/MX driver provides the JDBC/MX Lob Admin Utility that you can use for these tasks:

Creating the LOB table (a table that holds LOB data).●

Creating the SQL/MX triggers for the LOB columns in the base tables to ensure that orphan LOB data does
not occur in a LOB table.

●

Information about using the JDBC/MX Lob Admin Utility is provided in these topics.

Running the JDBC/MX Lob Admin Utility●

Help Listing from the JDBC/MX Lob Admin Utility●

Using SQL/MX Triggers to Delete LOB Data●

Running the JDBC/MX Lob Admin Utility
Run the JDBC/MX Lob Admin utility in the OSS environment.

The format of the command is:

java [java_options] JdbcMxLobAdmin [prog_options] [table_name]

java_options

The java_options are properties that can be specified on the java command line in the -D option.

Property Specification Description

jdbcmx.blobTableName
Specifies the LOB table for using BLOB columns.
Required if BLOB columns are involved. See LOB Table
Name Properties.

jdbcmx.clobTableName
Specifies the LOB table for using CLOB columns.
Required if CLOB columns are involved. See LOB Table
Name Properties.

jdbcmx.catalog
Sets the default catalog. See Default Catalog and
Schema.

jdbcmx.schema
Sets the default schema. See Default Catalog and
Schema.

program_options

prog_option Description

-help Displays help information

-exec Runs the SQL statements that are generated.

-create
Generates SQL statements to create LOB tables. These
statements describe the architecture of the tables and, therefore,
provide a description of the LOB tables.

-trigger
Generates SQL statements to create triggers for the designated
table. The table must exist.

-unicode
Generates SQL statements to create unicode LOB tables. Use
only for CLOB data.

-drop
Generate SQL statements to drop triggers for the designated
table. The table must exist.

-out Writes the SQL statements to a specified file in OSS file space.

table_name

The table_name represents a base table that contains LOB columns. The table_name is of the form:

[catalogName.][schemaName.]baseTableName

For information about catalog, schema, and table names, see the SQL/MX Reference Manual.

Help Listing from the JDBC/MX Lob Admin Utility
The command to display JDBC/MX Lob Admin utility help appears below followed by the help listing.

java JdbcMxLobAdmin -help

Hewlett-Packard JDBC/MX Lob Admin Utility 2.0 (c) Copyright 2004, 2005 Hewlett-Packard Development
Company, LP.

java [<java_options>] JdbcMxLobAdmin [<prog_options>] [<table_name>]

<java_options> is:
 [-Djdbcmx.clobTableName=<clobTableName>]
 [-Djdbcmx.blobTableName=<blobTableName>]
 [-Djdbcmx.catalog=<catalog>]
 [-Djdbcmx.schema=<schema>]

<prog_options> is:
 [-exec] [-create] [-trigger] [-help] [-drop] [-out <filename>]
where -help - Display this information.
 -exec - Execute the SQL statements that are generated.
 -create - Generate SQL statements to create LOB tables.
 -trigger - Generate SQL statements to create triggers for <table_name>.
 -unicode - Generate SQL statements to create unicode LOB tables
 (CLOB only).
 -drop - Generate SQL statements to drop triggers for <table_name>.
 -out - Write the SQL statements to <filename>.

<clobTableName> | <blobTableName> is:
 <catalogName>.<schemaName>.<lobTableName>

<table_name> is:
 [<catalogName>.][<schemaName>.]<baseTableName>

<baseTableName> is the table that contains LOB column(s).
<lobTableName> is the table that contains the LOB data.

Using SQL/MX Triggers to Delete LOB Data
Use the JDBC/MX Lob Admin Utility to generate triggers to delete LOB data from the LOB table when the base
row is deleted. These triggers ensure that orphan LOB data does not occur in the LOB table. To manage the
triggers, use these JDBC/MX Lob Admin Utility options:

-trigger

Generates SQL statements to create triggers.

-drop

Generates SQL statements drop triggers.

For example, the following command (typed on one line) generates the SQL statements to create the triggers for
the base table sales.paris.pictures, which contains a BLOB column, and executes those statements.

java -Djdbcmx.blobTableName=sales.paris.lobTable4pictures JdbcMxLobAdmin
-trigger
 -exec sales.paris.pictures

Limitations of the CLOB and BLOB Data
Types
Limitations of the CLOB and BLOB data types, collectively referred to as LOB data, are:

LOB columns can only be in the target column list of these SQL statements:

INSERT statement,❍

Select list of a SELECT statement❍

●

Column name in the SET clause of an UPDATE statement❍

LOB columns cannot be referenced in the SQL/MX functions and expressions.●

LOB data is not deleted from the LOB table when the base row is deleted unless a trigger is established. For
information about triggers, see Using an SQL/MX Trigger to Delete LOB Data.

●

LOB data is not accessible if the base table name is changed.●

LOB columns cannot be copied to another table by using the SQL/MX utility commands.●

The name of a base table that has CLOB or BLOB columns must be unique across all catalogs and schemas
when more than one of these base tables share a single LOB table.

●

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Module File Caching (MFC)

The Module File Caching (MFC) feature shares the SQL/MX prepared statement plans among the JDBC/MX T2
database connections and JVM processes. It helps in reducing the SQL/MX compilation time during the steady state of
the JDBC/MX T2 application, thereby reducing resource consumption.

Note: Module File Caching is supported only on systems running J06.07 and later J-series RVUs and
H06.18 and later H-series RVUs.

The topics discussed in this chapter are:

Design of MFC●

Enabling MFC●

Limitations of MFC●

Troubleshooting MFC●

Design of MFC
For information on the MFC design, see the HP NonStop SQL/MX Connectivity Service Manual.

Enabling MFC
The following are the two new properties which are required for using MFC in an application that uses the JDBC/MX
T2 Driver.

modulecaching Property:●

To enable MFC, the value of this property must be set to ON.

compiledmodulelocation Property:●

The value for this property must be a valid directory name. For example: /usr/temp. This is the
location where the intermediary files such as *.mdf for MFC are generated.

Both these properties must be set to enable MFC.

Limitations of MFC
MFC cache should be used only on production systems. It should not be used on development or User
Acceptance Testing (UAT) systems where SQL/MX undergoes changes.

●

It does not handle session-specific SQL/MX Control Query Defaults (CQD) and SQL/MX Control Query Shape
(CQS).

●

It is recommended to set the CQD in SQL/MX for disabling the auto-recompilation feature of the SQL/MX
while using with MFC. This ensures that automatic recompilations are avoided due to changes in SQL/MX
objects because the plans are generated in the module file. The application will receive an SQL/MX exception if
there is an auto-recompilation required for the query. You must clean the stale module files before continuing
with the application.

●

For lightweight queries, MFC performs only marginally better than the SQL/MX compile.●

Combining external statement cache with MFC does not yield memory benefits. The WebLogic Server (WLS)
statement cache is an example of external statement cache. It is recommended that you use the JDBC/MX T2
statement cache.

●

Some scalar functions such as ABS, SUM, and AVG are not handled through the MFC in the first release. For
information on the scalar functions, see the HP NonStop SQL/MX Reference Manual.

●

Troubleshooting MFC
The troubleshooting of MFC includes:

Benefits of MFC●

Setting an Environment for MFC●

.lock Files●

.mdf Files●

Disk Activity●

Enable Fileset and OSS Caching●

Known Issues●

Benefits of MFC
JDBC applications using the java.sql.PreparedStatement object result in lower processor utilization, lower
memory consumption, and better response time.

Setting an Environment for MFC
See EnablingMFC.

.lock Files
The *.lock files are generated for every query that pass through the MFC module file creation process. These files are
also used for synchronizing, so that different connections do not re-create the same module file. These *.lock files are
deleted once the binary module in the /usr/tandem/sqlmx/USERMODULES directory is created successfully.

The *.lock files are not deleted for the queries that cannot create module files.

.mdf Files
These temporary files are generated during preprocessing. These .mdf files are retained for easier support and
troubleshooting.

Disk Activity
The MFC access plans, stored in the disk OSH location (/usr/tandem/sqlmx/USERMODULE), increases the
processor utilization of the disks. To overcome this problem, use the fileset for that directory. It is beneficial to have
OSS caching on data volumes. To enable fileset and OSS caching, see Enable Fileset and OSS Caching.

Note: If a DDL alters, it is recommended that you run the management script (mgscript) to delete
module files associated with that table or catalog. For information on the management script, see
Managing MFC in the HP NonStop SQL/MX Connectivity Service Manual.

Enable Fileset and OSS Caching
To add a fileset pointing to the USERMODULES directory, perform the following steps:

At a TACL prompt, enter:

SCF

and then enter:

assume $zpmon

1.

At an SCF prompt, enter the SCF command:

add server #zpns1,cpu 1,backupcpu 2

2.

Add a fileset:3.

 add fileset mxc1,nameserver #zpns1,catalog $oss, pool

 mxcpool, mntpoint "/usr/tandem/sqlmx/USERMODULES"

Verify the status of the fileset:4.

 info fileset mxc1,detail

Start the fileset:5.

 start fileset mxc1

To enable OSS caching, perform the following steps:

At a TACL prompt, enter:

SCF

and then enter:

assume $zpmon

1.

At an SCF prompt, enter the following SCF command to stop all filesets on your system:

STOP FILESET $ZPMON.*

This command begins with the last fileset mounted and stops the filesets in the reverse order in which they were
last started.

2.

Stop the OSS Monitor process:

If the OSS Monitor is running as a standard process, enter the STOP command at a TACL prompt:

STOP $ZPMON

If the OSS Monitor is running as a persistent process, enter the ABORT command at an SCF prompt:

ABORT PROCESS $ZZKRN.#ZPMON

3.

At the SCF prompt, enter the following set of commands for each disk volume in the fileset:

STOP DISK diskname

ALTER DISK diskname, OSSCACHING ON

START DISK diskname

diskname is the name of a disk volume that contains OSS files.

4.

Restart the OSS Monitor as a normal or persistent process with the appropriate command.5.

Restart the OSS file system by entering the SCF command:

START FILESET $ZPMON.filesetname

where, filesetname is the name of each fileset that contains OSS files, beginning with the root and specified in
the order in which mount points occur.

6.

Known Issues

Scenario 1

MFC plans become obsolete when the base table is altered or dropped. The following sequence of operations
illustrates the issue.

Operation Expected
Result

Actual
Result Remarks

Create table testing(info int); Success Success Table testing is created.
Stmt1 = Prepare("select * from testing") Success Success Stmt1 is prepared with MXCMP.
Stmt1.execute() Success Success Stmt1 is executed.
Stmt1.fetch() Success Success Data in the table testing is retrieved.

Stmt1 = Prepare("select * from testing") Success Success
Compiled plan is retrieved from
MFC.

Stmt1.execute() Success Success MFC statement works as expected.
Stmt1.executeUpdate("drop table
testing")

Success Success The table testing is dropped.

Stmt1.executeUpdate("create table
testing (mycol varchar(10))")

Success Success
The table testing is created with
varchar column.

Stmt1 = Prepare("select * from testing") Success Success

Compiled plan is retrieved from
MFC, which is not correct because
the table datatype is changed when
the MFC plan is created.

Stmt1.execute() Success Failure

MXOSRVR turned the SQL/MX
CQD recompilation_warnings ON.
SQL/MX throws SQL exception
upon similarity check failure and
MXOSRVR drops the invalid
module file from the
/usr/tandem/sqlmx/USERMODULES

location.

Stmt1 = Prepare("select * from testing") Success Success
A new plan is created in the MFC
location.

Stmt1.execute() Success Success MFC statement works as expected.

When performing the above operations, the execute() call fails when an invalid module file is found in the MFC.
However, subsequent prepare() calls create a new module file. This open issue is similar to the driver side cache
present in the JDBC/MX T2 driver.

Scenario 2

When scalar functions such as, Sum(), Avg(), ABS(), Count() appear in the selected columns, the list of the SQL
query is not cached as MFC. For example,

SELECT sum(col1 + col2) from TAB WHERE col3 = ?

The scalar functions are supported in the INSERT, UPDATE, and DELETE queries and in the WHERE clause. For
example:

SELECT col1 from TAB WHERE sum(col2 + col3) = ?

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

JDBC/MX Compliance

The JDBC/MX Driver for NonStop SQL/MX conforms where applicable to the Sun Microsystems JDBC 3.0 API specification. However,
the JDBC/MX driver differs from the JDBC standard in some ways because of limitations of NonStop SQL/MX and the JDBC/MX driver.
This subsection describes the JDBC methods that are not supported, the methods and features that deviate from the specification, and
features that are HP extensions to the JDBC standard. JDBC features that conform to the specification are not described in this subsection.

The topics are:

Unsupported Features●

Deviations●

HP Extensions●

SQL Conformance●

Unsupported Features
The following interfaces in the java.sql package are not implemented in the JDBC/MX driver because the data types involved are not
supported by NonStop SQL/MX:

java.sql.Array●

java.sql.Ref●

java.sql.Savepoint●

java.sql.SQLData●

java.sql.SQLInput●

java.sql.SQLOutput●

java.sql.Struct●

Note: Support for java.sql.Blob and java.sql.Clob packages require the use of SQL/MX user tables as described in
Working with BLOB and CLOB Data. These packages are not supported for access of SQL/MP user tables.

The following methods in the java.sql package throw an SQLException with the message "Unsupported feature - method-name":

Method Comments

CallableStatement.getArray(int
parameterIndex)
CallableStatement.getArray(String
parameterName)
CallableStatement.getBlob(int
parameterIndex)
CallableStatement.getBlob(String
parameterName)
CallableStatement.getClob(int
parameterIndex)
CallableStatement.getClob(String
parameterName)
CallableStatement.getObject(int
parameterIndex, Map map)
CallableStatement.getObject(String
parameterName, Map map)
CallableStatement.getRef(int
parameterIndex)
CallableStatement.getRef(String

The particular
CallableStatement
method is not supported.

parameterName)
CallableStatement.getURL(int
parameterIndex)
CallableStatement.getURL(String
parameterName)
CallableStatement.executeBatch()

Connection.releaseSavepoint(Savepoint
savepoint)
Connection.rollback(Savepoint savepoint)
Connection.setSavepoint()
Connection.setSavepoint(String name)

The particular
Connection methods
are not supported.

PreparedStatement.setArray(int
parameterIndex, Array x)
PreparedStatement.setRef(int
parameterIndex, Ref x)
PreparedStatement.setURL(int
parameterIndex, URL x)

The particular
PreparedStatement
method is not supported.

ResultSet.getArray(int columnIndex)
ResultSet.getArray(String columnName)
ResultSet.getObject(int columnIndex, Map
map)
ResultSet.getObject(String columnName, Map
map)
ResultSet.getRef(int columnIndex)
ResultSet.getRef(String columnName)
ResultSet.getURL(int columnIndex)
ResultSet.getURL(String columnName)
ResultSet.updateArray(int columnIndex)
ResultSet.updateArray(String columnName)
ResultSet.updateRef(int columnIndex)
ResultSet.updateRef(String columnName)

The particular
ResultSet methods
are not supported.

The following methods are not supported when used for access of SQL/MP user tables:

Method Comments

PreparedStatement.setBlob(int
parameterIndex, Blob x)
PreparedStatement.setClob(int
parameterIndex, Clob x)

The particular
PreparedStatement
methods are not
supported for access of
SQL/MP user tables only.

ResultSet.getBlob(int columnIndex)
ResultSet.getBlob(String columnName)
ResultSet.getClob(int columnIndex)
ResultSet.getClob(String columnName)
ResultSet.updateBlob(int columnIndex)
ResultSet.updateBlob(String columnName)
ResultSet.updateClob(int columnIndex)
ResultSet.updateClob(String columnName)

The particular
ResultSet methods
are not supported for
access of SQL/MP user
tables only.

The following methods in the java.sql package throw an SQLException with the message "Auto generated keys not supported":

Method Comments

Connection.prepareStatement(String sql,
int autoGeneratedKeys)
Connection.prepareStatement(String sql,
int[] columnIndexes)
Connection.prepareStatement(String sql,
String[] columnNames)

Automatically generated keys
are not supported.

Statement.execute(String sql, int
autoGeneratedKeys)
Statement.execute(String sql, int[]
columnIndexes)
Statement.execute(String sql, String[]
columnNames)
Statement.executeUpdate(String sql, int
autoGeneratedKeys)
Statement.executeUpdate(String sql,
int[] columnIndexes)
Statement.executeUpdate(String sql,
String[] columnNames)
Statement.getGeneratedKeys()

Automatically generated keys
are not supported.

The following methods in the java.sql package throw an SQLException with the message "Data type not supported:"

Method Comments

CallableStatement.getBytes(int
parameterIndex)
CallableStatement.getBytes(String
parameterName)

The particular data type is not
supported.

CallableStatement.setBytes(String
parameterIndex, bytes[] x)

Supports only BLOB, VARCHAR,
BINARY, LONGVARCHAR,
VARBINARY, and
LONGVARBINARY; otherwise,
the particular data type is not
supported.

PreparedStatement.setBytes(int
ColumnIndex, bytes[] x)

Supports only BLOB, CHAR,
DATE, TIME, TIMESTAMP,
VARCHAR, BINARY,
LONGVARCHAR, VARBINARY,
and LONGVARBINARY;
otherwise, the particular data type
is not supported.

PreparedStatement.setObject(int
parameterIndex, Object x int
targetSqlType)
PreparedStatement.setString(int
parameterIndex, String x)

Does not support the ARRAY,
BINARY, BIT, DATALINK,
JAVA_OBJECT, and REF types.

ResultSet.getBytes(int ColumnIndex)
ResultSet.getBytes(String
ColumnName)

Supports only BLOB, CHAR,
VARCHAR, BINARY,
LONGVARCHAR, VARBINARY,
and LONGVARBINARY;
otherwise, the particular data type
is not supported.

The following optional interfaces in the javax.sql package are not implemented in the JDBC/MX driver:

Method Comments

javax.sql.XAConnection
javax.sql.XADataSource

Distributed Transactions, as described in the JDBC 3.0
API specification, are not yet implemented.

javax.sql.RowSet
javax.sql.RowSetInternal
javax.sql.RowSetListener
javax.sql.RowSetMetaData
javax.sql.RowSetReader
javax.sql.RowSetWriter

RowSet is not implemented in the JDBC/MX driver. You
can, however, download reference implementation of
RowSet from Sun Microsystems
(http://developer.java.sun.com/developer/earlyAccess/crs/).

javax.sql.JdbcRowSet.getArray(int
columnIndex)
javax.sql.JdbcRowSet.getArray(String
columnName)
javax.sql.JdbcRowSet.getObject(int
columnIndex, Map map)
javax.sql.JdbcRowSet.getObject(String
columnName, Map map)
javax.sql.JdbcRowSet.getRef(int
columnIndex)
javax.sql.JdbcRowSet.getRef(String
columnName)
javax.sql.JdbcRowSet.getURL(int
columnIndex)
javax.sql.JdbcRowSet.getURL(String
columnName)
javax.sql.JdbcRowSet.rollback(Savepoint
savepoint)
javax.sql.JdbcRowSet.setArray(int
parameterIndex, Array x)
javax.sql.JdbcRowSet.setRef(int
parameterIndex, Ref x)
javax.sql.JdbcRowSet.updateArray(int
columnIndex)
javax.sql.JdbcRowSet.updateArray(String
columnName)
javax.sql.JdbcRowSet.updateRef(int
columnIndex)
javax.sql.JdbcRowSet.updateRef(int
columnIndex)

The JdbcRowSet API methods are supported except for
these that throw an Unsupported feature -
method-name SQLMXException.

For additional information about deviations for some methods, see Deviations.

Deviations
The following table lists methods that differ in execution from the JDBC specification. When an argument in a method is ignored, the
JDBC/MX driver does not throw an SQLException, thus allowing the application to continue processing. The application might not
obtain the expected results, however. Other methods listed do not necessarily throw an SQLException, unless otherwise stated, although
they differ from the specification.

Note: java.sql.DatabaseMetaData.getVersionColumns() method mimics the
java.sql.DatabaseMetaData.getBestRowIdentifier() method because SQL/MX does not support SQL_ROWVER (a
columns function that returns the column or columns in the specified table, if any, that are automatically updated by the data source when
any value in the row is updated by any transaction).

Method Comments

http://developer.java.sun.com/developer/earlyAccess/crs/

java.sql.DatabaseMetaData.getColumns(String
catalog, String schemaPattern, String
tableNamePattern, String columnNamePattern)

The column is added to the column data, but its value is
set to NULL because SQL/MX does not support the
column type for types as follows:
SCOPE_CATALOG,
SCOPE_SCHEMA,
SCOPE_TABLE, and
SOURCE_DATA_TYPE.

java.sql.DatabaseMetaData.getSchemas() TABLE_CATALOG is added to the column data and
returns the catalog name.

java.sql.DatabaseMetaData.getTables(String catalog,
String schemaPattern, String[] types)

The column is added to the column data, but its value is
set to NULL because SQL/MX does not support the
column type for types as follows:
TYPE_CAT,
TYPE_SCHEMA,
TYPE_NAME,
SELF_REFERENCING_COL_NAME,
and REF_GENERATION.

java.sql.DatabaseMetaData.getUDTs(String catalog,
String schemaPattern, String tableNamePattern,
int[] types)

BASE_TYPE is added to the column data, but its value is
set to NULL because SQL/MX does not support the base
type.

java.sql.DatabaseMetaData.getVersionColumns() Mimics the
DatabaseMetaData.getBestRowIdentifier()
method because SQL/MX does not support
SQL_ROWVER (a columns function that returns the
column or columns in the specified table, if any, that are
automatically updated by the data source when any value
in the row is updated by any transaction).

java.sql.DriverManager.getConnection(String url,
String usr, String password)
java.sql.DriverManager.getConnection(String url,
Properties info)
javax.sql.DataSource.getConnection(String username,
String password)

User name and password arguments are ignored. All
connections have the same security privileges as the user
who invoked the Java VM.

java.sql.DriverManager.setLoginTImeout(...)
javax.sql.DataSource.setLoginTimeout(...)

Login time-out is ignored.

javax.sql.DataSource.setLogWriter This method has no effect unless the JDBC trace facility
is enabled; for information on the JDBC trace facility, see
the NonStop Server for Java Programmer's Reference.

java.sql.Connection.createStatement(...)
java.sql.Connection.prepareStatement(...)

The JDBC/MX driver does not support the
scroll-sensitive result set type, so an SQLWarning is
issued if an application requests that type. The result set is
changed to a scroll-insensitive type.

java.sql.Connection.setReadOnly(...) The read-only attribute is ignored.

java.sql.ResultSetMetaData.getPrecision(int column)
java.sql.ResultSetMetaData.getColumnDisplaySize(int
column)

For CLOB and BLOB columns, these methods return 0 to
denote an unlimited value. According to the standard API,
the getPrecision() method and
getColumnDisplatSize() method return an integer
value, but LOB data larger than the maximum integer
value can be stored in the database.

java.sql.ResultSet.setFetchDirection(...) The fetch direction attribute is ignored.

java.sql.Statement.setEscapeProcessing(...) Because SQL/MX parses the escape syntax, disabling
escape processing has no effect.

java.sql.Statement.setFetchDirection(...) The fetch direction attribute is ignored.

java.sql.Statement.setQueryTimeout(...) The query time-out value is ignored. The JDBC/MX
driver does not abort execution when the query time-out
period has expired.

javax.sql.JdbcRowSet.setUsername(String username)

javax.sql.JdbcRowSet.setPassword(String password)

javax.sql.JdbcRowSet(String url, String username,
String password)

User name and password arguments are ignored. Security
privileges are the same as for the user who invoked the
Java VM.

javax.sql.JdbcRowSet.setReadOnly(...) The read-only attribute is ignored.

javax.sql.JdbcRowSet.setEscapeProcessing(...) Disabling escape processing has no effect because
SQL/MX parses the escape syntax.

javax.sql.JdbcRowSet.setFetchDirection(...) The fetch direction attribute is ignored.

javax.sql.JdbcRowSet.setQueryTimeout(...) The query time-out value is ignored. The JDBC/MX
driver does not abort execution when the query time-out
period has expired.

The following features are implemented in the JDBC/MX driver but might differ in implementation from other drivers:

Updatable Result Set
The JDBC/MX driver supports both read-only and updatable concurrency modes. The JDBC/MX driver expects the following criteria for a
result set to be updatable:

The table name of the first column in the result set is assumed to be the table to be updated. This assumption allows queries from
multiple tables also to be updatable.

●

The query selects the primary key columns of the table to be updated.●

The JDBC/MX driver throws an SQLException when any of the following conditions occur:

The primary key columns are updated.●

Any selected column has been updated since the most recent time it was read. (However, the JDBC/MX driver does not ensure that
columns in the table that are not part of the select query remain unchanged since the row was most recently read.)

●

A query does not select nonnullable columns or columns that do not have a default value.●

The result set is also affected in the following ways:

A deleted row is removed from the result set. The method databaseMetaData.deletesAreDetected() returns false.●

An inserted row is added to the result set at the current cursor position. The method
databaseMetaData.insertsAreDetected() returns true.

●

Batch Updates
The batch update facility allows a Statement object to submit a set of heterogeneous update, insert, or delete commands together as a
single unit to the database. This facility also allows multiple sets of parameters to be associated with a PreparedStatement object.

When the autocommit mode is enabled, the JDBC/MX driver commits the updates only when all commands in the batch succeed. If any
command in the batch fails, the updates are rolled back in both autocommit and nonautocommit mode.

With the BatchUpdate Exception handling improvements support, JDBC driver now continues processing the remaining jobs in the batch
even after BatchUpdateExceptions. If there is any Batch exceptions encountered during the execution, the exception is queued up and the

remaining batch commands are executed. At the execution completion of all elements in the batch the queued exceptions are thrown. The
user application must handle, commit, or rollback of batch transaction on an exception. By this, re-execution of entire jobs is avoided.
However, for any TMF errors, that results in transaction failure, cannot be addressed by this enhancement.

HP Extensions
The following HP extensions to the JDBC standard are implemented in the JDBC/MX driver.

Interval Data Type
The interval data type is not a generic SQL type defined in the Java 2 JDBC 3.0 Specification, but SQL/MX supports the interval
data type. To allow JDBC applications for SQL/MX to access the interval data type, the JDBC/MX driver maps it to the
Types.OTHER data type. The JDBC/MX driver enables the getObject() and getString() methods of the ResultSet interface,
and the setObject() and setString() methods of the PreparedStatement interface, to access this data type. The interval
data type is always accessed as a String object. The JDBC/MX driver also allows escape syntax for interval literals.

Internationalization
The JDBC/MX driver is designed so that Java messages can be adopted for various languages. The error messages in JDBC/MX
components are stored outside the source code in a separate property file and retrieved dynamically based on the locale setting. The error
messages in different languages are stored in separate property files based on the language and country. This extension does not apply to all
messages that can occur when running JDBC applications.

SQL Conformance
JDBC/MX conforms to the SQL language entry level of SQL:1999. This subsection describes the JDBC/MX support for:

SQL Scalar Functions●

CONVERT Function●

JDBC Data Types●

SQL Escape Clauses●

SQL Scalar Functions
JDBC/MX maps JDBC scalar functions to their equivalent SQL/MX functions, as shown in the following tables:

Numeric Functions

JDBC Function SQL/MX Equivalent Function

ABS ABS

ACOS ACOS

ASIN ASIN

ATAN ATAN

ATAN2 ATAN2

CEILING CEILING

COS COS

DEGREES DEGREES

EXP EXP

FLOOR FLOOR

LOG LOG

LOG10 LOG10

MOD MOD

PI PI

POWER POWER

RADIANS RADIANS

SIGN SIGN

SIN SIN

SINH SINH

SQRT SQRT

TAN TAN

String Functions

JDBC Function SQL/MX Equivalent Function

ASCII ASCII

CHAR CHAR

CHAR_LENGTH CHAR_LENGTH

CONCAT CONCAT

INSERT INSERT

LCASE LOWER

LEFT SUBSTRING

LENGTH LENGTH

LOCATE LOCATE (JDBC LOCATE start parameter is
not supported)

LOWER LOWER

LPAD LPAD

LTRIM LTRIM

OCTET_LENGTH OCTET_LENGTH

POSITION POSITION

REPEAT REPEAT

REPLACE REPLACE

RIGHT RIGHT

RTRIM TRIM...TRAILING

SPACE SPACE

SUBSTRING SUBSTRING

UCASE UPPER | UPSHIFT

Note: JDBC string functions in queries can return unexpected results
for fixed-length (CHAR) column names because SQL/MX pads a
fixed-length string with blanks up to the length of the definition, so
the results from some JDBC string functions can include trailing
blanks at the end of the string. Use the RTRIM function in queries to
cause SQL/MX to trim extra blanks from the column names.

Time and Date Functions

JDBC Function SQL/MX Equivalent Function

CONVERTTIMESTAMP CONVERTTMESTAMP

CURRENT CURRENT

CURRENT_TIMESTAMP CURRENT_TIMESTAMP

CURDATE,
CURRENT_DATE

CURRENT_DATE

CURTIME,
CURRENT_TIME

CURRENT_TIME

DATEFORMAT DATEFORMAT

DAY DAY

DAYNAME DAYNAME

DAYOFMONTH DAYOFMONTH

DAYOFWEEK DAYOFWEEK

DAYOFYEAR DAYOFYEAR

EXTRACT EXTRACT

HOUR HOUR

JULIANTIMESTAMP JULIANTIMESTAMP

MINUTE MINUTE

MONTH MONTH

MONTHNAME MONTHNAME

QUARTER QUARTER

SECOND SECOND

WEEK WEEK

YEAR YEAR

System Functions

JDBC Function SQL/MX Equivalent Function

CURRENT_USER CURRENT_USER

SYSTEM_USER SYSTEM_USER

USER USER

CONVERT Function
JDBC/MX uses the SQL/MX CAST function to support the JDBC CONVERT function. The JDBC CONVERT function has the following
format:

{ fn CONVERT(value_exp, data_type) }

The SQL/MX CAST has this format:

CAST({ value_exp | NULL } AS data_type)

SQL/MX translates the CONVERT syntax to the CAST syntax, converting the data type argument to its equivalent SQL/MX value. For
example, if the JDBC data type parameter for character data is an integer value (SQL_CHAR or 1), the equivalent SQL/MX data type is a
string literal with a value of CHARACTER.

JDBC Data Types
The following table shows the JDBC data types that are supported by JDBC/MX and their corresponding SQL/MX data types:

JDBC Data Type
Supported

by
JDBC/MX

SQL/MX Data Type

Types.Array No

Types.BIGINT Yes LARGEINT

Types.BINARY No

Types.BIT No

Types.BLOB Yes

Types.CHAR Yes CHAR(n)

Types.CLOB Yes

Types.DATE Yes DATE

Types.DECIMAL Yes DECIMAL(p,s)

Types.DISTINCT No

Types.DOUBLE
(*)

Yes DOUBLE
PRECISION

Types.FLOAT
(*)

Yes FLOAT(p)

Types.INTEGER Yes INTEGER

Types.JAVA_OBJECT No

Types.LONGVARBINARY No

Types.LONGVARCHAR Yes** VARCHAR[(n)]

Types.NULL No

Types.NUMERIC Yes NUMERIC(p,s)

Types.REAL Yes FLOAT(p)

Types.REF No

Types.SMALLINT Yes SMALLINT

Types.STRUCT No

Types.TIME Yes TIME

Types.TIMESTAMP Yes TIMESTAMP

Types.TINYINT No

Types.VARBINARY No

Types.VARCHAR Yes VARCHAR(n)

* See Floating Point Support.
** For details about maximum length, see the SQL/MX Reference
Manual.

The JDBC/MX driver maps the following SQL/MX data types to the JDBC data type Types.OTHER:

DATETIME YEAR
DATETIME YEAR TO MONTH
DATETIME YEAR TO DAY
DATETIME YEAR TO HOUR
DATETIME YEAR TO MINUTE
DATETIME MONTH
DATETIME MONTH TO DAY
DATETIME MONTH TO HOUR
DATETIME MONTH TO SECOND
DATETIME DAY
DATETIME DAY TO HOUR
DATETIME DAY TO MINUTE
DATETIME DAY TO SECOND
DATETIME HOUR
DATETIME HOUR TO MINUTE
DATETIME MINUTE
DATETIME MINUTE TO SECOND
DATETIME SECOND
DATETIME FRACTION

INTERVAL YEAR(p)
INTERVAL YEAR(p) TO MONTH
INTERVAL MONTH(p)
INTERVAL DAY(p)
INTERVAL DAY(p) TO HOUR
INTERVAL DAY(p) TO MINUTE
INTERVAL DAY(p) TO SECOND
INTERVAL HOUR(p)
INTERVAL HOUR(p) TO MINUTE
INTERVAL HOUR(p) TO SECOND
INTERVAL MINUTE(p)
INTERVAL MINUTE(p) TO SECOND
INTERVAL SECOND(p)

Floating-Point Support
The JDBC/MX driver and the NonStop Server for Java pass any FLOAT (32-bit) number or DOUBLE (64-bit) number in the IEEE 754
floating-point format.

Floating-point values are stored in SQL/MX tables as IEEE 754 values.

Floating-point values are stored in SQL/MP tables in Tandem format (called TNS format in OSS terminology. For floating-point values
stored in SQL/MP tables in the Tandem format, SQL/MX performs the conversion from the IEEE 754 format to the Tandem format when

storing the values and from the Tandem format to the IEEE 754 format when retrieving and passing the values.

Since SQL/MX tables store IEEE 754 floating-point values, JDBC applications accessing floating-point data do not receive floating-point
exceptions. The JDBC applications should check for plus (+) or minus (-) infinity conditions to determine if an overflow or underflow has
occurred. Applications can also encounter a not-a-number value being passed back, for example, for numbers divided by zero. This
processing is done according to the IEEE 754 standard.

SQL/MP tables can generate floating-point exceptions.

For the range of floating-point values and double-precision values for IEEE 754 format and TNS format, see the NonStop Server for Java
Programmer's Reference. For information on floating-point formats in SQL/MX, see "Data Types" in the SQL/MX Reference Manual.

SQL Escape Clauses
JDBC/MX accepts SQL escape clauses and translates them into equivalent SQL/MX clauses, as shown in the following table:

SQL Escape Clause SQL/MX Equivalent Clause

{ d 'date-literal' } DATE 'date-literal'

{ t 'time-literal' } TIME 'time-literal'

{ ts 'timestamp-literal'
}

TIMESTAMP
'timestamp-literal'

{ oj join-expression } join-expression *

{ INTERVAL sign
 interval-string
 interval-qualifier }

INTERVAL sign
 interval-string
 interval-qualifier

{ fn scalar-function } scalar-function

{ escape
'escape-character' }

escape
'escape-character'

{ call procedure-name...
}

CALL procedure-name...

{ ?=call
procedure-name... }

Not supported in the current
release

* JDBC syntax does not include nested joins, while SQL/MX does.
 JDBC/MX extends the SQL escape syntax for an outer join.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

JDBC Trace Facility

The JDBC trace facility traces the entry point of all JDBC methods called from the Java applications. To make this facility
generic, it is implemented as a JDBC driver wrapper.

The JDBC trace facility can be enabled in any of the following ways in which a JDBC connection to a database can be obtained:

Tracing using the DriverManager Class●

Tracing using the DataSource Implementation●

Tracing using the java command●

Tracing using the system.setProperty method●

Tracing by loading the trace driver within the program●

Tracing using a wrapper data source●

Enabling Tracing for Application Servers●

Trace-File Output Format●

Logging SQL Statement IDs and Corresponding JDBC SQL Statements●

JDBC Trace Facility Demonstration Program●

Tracing Using the DriverManager Class
Java applications can use the DriverManager class to obtain the JDBC connection and enable the JDBC trace facility by
loading the JDBC trace driver. com.tandem.jdbc.TDriver is the trace driver class that implements the Driver interface.
The application can load the JDBC trace driver in one of the following ways:

Specify the JDBC trace driver class in the -Djdbc.drivers option in the command line.●

Use the Class.ForName method within the application.●

Add the JDBC trace class to the jdbc.drivers property within the application.●

The JDBC URL passed in the getConnection method of the driver class determines which JDBC driver obtains the
connection. Use the following URL and JDBC driver to obtain the JDBC connection:

jdbc:sqlmx:

Java applications should turn on tracing using the DriverManager.setLogWriter method, for example by using the
following JDBC API call in your application:

DriverManager.setLogWriter(new PrintWriter(new FileWriter("FileName")));

Tracing Using the DataSource Implementation
This is preferred way to establish a JDBC connection and to enable the JDBC trace facility. In this way, a logical name is
mapped to a trace data source object by means of a naming service that uses the Java Naming and Directory Interface (JNDI).

The following table describes the set of properties that are required for a trace data source object:

Property Name Type Description

dataSourceName String The data source name

description String
Description of this data
source

traceDataSource String
The name of the
DataSource object to be
traced

The traceDataSource object is used to obtain the JDBC connection to the database. Java applications should turn on
tracing using the setLogWriter method of the DataSource interface.

Tracing Using the java Command
Enable tracing by specifying the tracing system property by using the following arguments when starting your Java program:

java -Djdbcmx.traceFile=logFile -Djdbcmx.traceFlag=n

The logFile is the file name that is to contain the tracing information. The n value for the traceFlag can be the following
values:

Value for n Description

0 No tracing.

1
Traces connection and statement
pooling calls only.

2 Traces the LOB-code path only.

3
Traces the entry point of all JDBC
methods.

Note: Only one traceFlag value can be in effect at a time.

Tracing Using the system.setProperty Method
Enable tracing by using the System.setProperty(key, value) to set the same value as described above. For example:

System.setProperty("traceFile", "myLogFile.log");
System.setProperty("traceFlag", "2");

Set the system property before the program makes any JDBC API calls.

Tracing by Loading the Trace Driver Within the
Program
Enable tracing by loading the JDBC trace driver within the program by using the
Class.forName("com.tandem.jdbc.TDriver") method. This method also requires that you set the
DriverManager.setLogWriter method.

Tracing Using a Wrapper Data Source
Enable tracing by creating a wrapper data source around the data source to be traced. The wrapper data source contains the
TraceDataSource property that you can set to the data source to be traced. For information about demonstration programs
that show using this method, see JDBC Trace Facility Demonstration Programs.

Enabling Tracing for Application Servers
Typically, tracing output is written to the PrintWriter object that the application sets by using either the
DataSource.setLogWriter() method or DriverManager.setLogWriter() method. User-written Java
applications can use these methods with the JDBC Trace Facility.

Application servers, however, might not enable the JDBC tracing with the setLogWriter() method. Instead application
servers can enable tracing and set the tracing level by using the following JDBC/MX properties:

jdbcmx.traceFile●

jdbcmx.traceFlag●

jdbcmx.traceFile Property

To enable tracing for application servers, use the jdbcmx.traceFile property specified in the command line:

-Djdbcmx.traceFile=trace_file_name

where jdbcmx.trace_file_name is an OSS filename. If the file exists, the tracing output is appended to the
existing file.

The PrintWriter object that is set using setLogWriter() method has higher precedence over the
jdbcmx.traceFile system property setting. This property can be specified in the command line or
programmatically before the first connection.

jdbcmx.traceFlag Property

To set the tracing level for application servers that use the jdbcmx.traceFile property, use the traceFlag property
specified in the command line:

-Djdbcmx.traceFlag=n

where n is an integer that specifies the tracing level. The value can be 0, 1, or 2. The default level is 0. Any value
greater than 2 is treated like 2. The tracing levels are:

Level Meaning

0 No tracing.

1
Traces connection and statement pooling
information.

2 Traces the LOB-code path only.

3
Traces the entry point of all JDBC
methods.

Note: Only one traceFlag value can be in effect at a time.

Trace-File Output Format
A trace entry appears at the start of the trace file that shows the vproc of the JDBC/MX driver being traced. This entry appears
only when the traceFlag value is 1, 2, or 3. For example,

jdbcTrace:[08/02/05 04:02:49]:TRACING JDBC/MX VERSION: T1275H50_23DEC2005_JDBCMX_10220

The format of the trace output has two types where the second type is used only where the JDBC/MX driver has an object to
map to. The formats are:

Format 1

jdbcTrace:[timestamp] [thread-id]:[object-id] :className.method(param...)

Format 2

jdbcTrace:[timestamp] [thread-id]:[object-id] :className.method(param...)
returns [return-object] [return-object-id]

where

timestamp

is the day and time representation in the form: mm/dd/yy hr:min:sec
where mm is month; dd, day; yy, year; hr, hour; min, minute; sec, seconds.

thread-id

is the String representation of the current thread

object-id

is the hashcode of the JDBC object

classname

is the JDBC implementation class name.

return-object

is the object returned by the traced method. The return-object can be one of the following interface types:
CallableStatement, Connection, PooledConnection, ResultSet, Statement, DatabaseMetaData,
ParameterMetaData, or ResultSetMetaData.

return-object-id

is the hashcode of the object returned by the traced method.

Trace output is sent to the PrintWriter specified in the setLogWriter method.

Example 1

jdbcTrace:[10/12/05 10:04:39]
[Thread[main,5,main]]:[5256233]:com.tandem.sqlmx.SQLMXPreparedStatement.executeQuery()

Example 2

Some traced methods will have two trace statements, one for the method entry point and the other for return object mapping.
Some code paths might log additional tracing statements between method entry and the return. For example, between
SQLMXConnection.prepareStatement () trace entries, you might see:

jdbcTrace:[10/12/05 10:04:39]
[Thread[main,5,main]]:[10776760]:SQLMXConnection.prepareStatement("select c1, c2 from
tconpool where c1 = ?")

<additional trace entries>

<jdbcTrace:[10/12/05 10:04:39]
[Thread[main,5,main]]:[10776760]:SQLMXConnection.prepareStatement("select c1, c2 from
tconpool where c1 = ?") returns PreparedStatement [23276589]

Logging SQL Statement IDs and Corresponding
JDBC SQL Statements
The JDBC/MX driver can write a supplemental log file that shows the SQL statement ID (STMID) of executed SQL statements
mapped with the corresponding JDBC SQL statements.

The idMapFile contains a list of all the SQL statements issued by the application, and correlates them to the internal driver
STMTID (a hashcode). The trace-file output (see Trace-File Output) lists the STMID (the object-id in the trace output),
which can be used to reference the SQL statements in the idMapFile trace file.

The statement-ID is logged in the idMapFile to avoid replacing the object-id in the trace-file output with the verbose and
potentially large SQL statement for every entry.

Mapping statement-IDs to SQL statements applies to any interface that prepares or executes a statement, for example,
PreparedStatement, Connection, ResultSet, JdbcRowSet, and Statement.

Specifying Statement-ID Logging●

Properties for Statement-ID Logging●

Statement-ID Log Output●

Specifying Statement-ID Logging
To specify supplemental logging:

Set the enableLog property to on to enable logging.1.

Set the idMapFile property to specify the log file. By default, the log is written to the screen.2.

For additional information about these properties, see enableLog Property and idMapFile Property.

You can specify these properties either in the command line or in the program similar to setting tracing described earlier under
Tracing Using the java Command and Tracing Using the system.setProperty Method.

> Specify Logging in the Command Line

java �Djdbcmx.idMapFile=logFile �Djdbcmx.enableLog=on

Specify Logging in a Program

System.setProperty("enableLog", "on");
System.setProperty("("idMapFile", "myMapFile.log");

Properties for Statement-ID Logging

enableLog Property

Enables logging of SQL statement IDs and the corresponding JDBC SQL statements. The format for enableLog property is:

-Djdbcmx.enableLog=boolean

Data type: boolean
Default: off

Valid values are either on or off. You can specify this property only in the java command line.

The following specification in the java command line enables the logging:

-Djdbcmx.enableLog=on

For more information, see Logging SQL Statement IDs and Corresponding JDBC SQL Statements.

idMapFile Property

Specifies the file to which the JDBC trace facility logs SQL statement IDs and the corresponding JDBC SQL statements. The
format for the idMapFile property is:

-Djdbcmx.idMapFile=filename

Data type: string
Default: logs to the screen

Specify a valid OSS file name. You can specify this property only in the java command line.

The following entry in the java command line specifies logging to file /sales/app5/STMID-Log.

-Djdbcmx.idMapFile=/sales/app5/STMID-log

To enable logging, use the enableLog property. For more information, see Logging SQL Statement IDs and Corresponding
JDBC SQL Statements.

Statement-ID Log Output
The format of a statement-ID log output entry is:

[timestamp] STMTobject-id (sql-statement)

where

timestamp

is the day and time representation in the form: mm/dd/yy hr:min:sec
where mm is month; dd, day; yy, year; hr, hour; min, minute; sec, seconds.

object-id

is the hashcode of the JDBC object.

sql-statement

is the actual SQL statement mapped to the statement ID.

Example

[08/05/05 10:32:38] STMT16399041 ("insert into TST_TBL (c1) values = ?")

JDBC Trace Facility Demonstration Program
The JDBC/MX driver provides jdbcTrace demonstration programs in the installation directory. The programs are described in
the README_JDBCTrace file. For the location, see JDBC/MX Driver File Locations. These programs demonstrate tracing by
creating a wrapper around the driver-specific data source to be traced. For additional information, see Sample Programs
Summary.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Migration

This section describes the considerations and application changes required to migrate applications from
the JDBC/MX V30, V31, V32, H10 drivers to the JDBC/MX H50 driver. These topics are:

Summary of Migration Changes for JDBC/MX Driver Versions

Migration Topic Migrating
from V30

Migrating
from V31

Migrating
from V32
(TNS/R)
or H10

(TNS/E)

Transactions Applies N/A N/A

nametype Property Applies N/A N/A

Deprecated Property-Name
Specification

Applies N/A N/A

Deprecated Methods According
to the J2SE 5.0 API

Applies Applies Applies

Row Count Array of the
PreparedStatement.executeBatch
Method

Applies N/A N/A

Using Character Encoding Sets
and SQL Databases

Applies N/A N/A

Connection sharing across
multiple threads

Applies Applies Applies

Location Change for Installed
Files

Applies Applies Applies

Version of NonStop Server for
Java

Applies Applies Applies

Release of NonStop SQL/MX Applies N/A N/A

If you are migrating from JDBC/MX V30, V31, or V32 you might want to see the new and changed
information in the JDBC Driver for SQL/MX Programmer's Reference for the later products.

This section also includes the topics

Migrating to TNS/E Systems●

Migrating from JDBC/MP Applications●

Transactions
Transaction semantics changed in the V31 product from the previous versions of the JDBC/MX driver
when the connection is set to autocommit mode.

In previous releases, when multiple select statements were involved in a transaction in autocommit mode,
the JDBC/MX driver ended the transaction when any select statement result set was closed. In this
release, the JDBC/MX driver ends the transaction only when the result set of the select statement that
started the transaction is closed.

If your application depends on the previous transaction semantics, you need to re-code the application.

nametype Property
Use of the nameType property was removed in the JDBC/MX V31 driver. This property allowed you to
specify the use of either ANSI or SHORTANSI names. SHORTANSI names are no longer allowed. The
names are ANSI names. Remove use of this feature from your applications.

Deprecated Property-Name Specification
With the JDBC/MX V31 and V32 drivers, property names used on the command line in the java -D
option should now include the prefix:
 jdbcmx.

This notation, which includes the period (.), ensures that all the JDBC/MX driver property names are
unique for a Java application. For example: maxStatements becomes
 jdbcmx.maxStatements

For application migration purposes, the JDBC/MX V31 and V32 drivers allow the deprecated
property-name specification on the command line.

The property names passed to JDBC/MX V31 and V32 driver methods in a Properties object do not
require the prefix.

Summary of Deprecated Property-Name
Specifications for Use in the Command Line

Deprecated
Property-Name

Specification

New Property-Name
Specification

catalog jdbcmx.catalog

schema jdbcmx.schema

mploc jdbcmx.mploc

maxPoolSize jdbcmx.maxPoolSize

minPoolSize jdbcmx.minPoolSize

maxStatements jdbcmx.maxStatements

traceFile jdbcmx.traceFile

traceFlag jdbcmx.traceFlag

sqlmx_nowait jdbcmx.sqlmx_nowait

Note: Support for the deprecated property-name specification will end in a future
JDBC/MX driver release. HP recommends that you migrate your JDBC applications to use
the new property-name specification.

Deprecated Methods According to the
J2SE 5.0 API
The following methods are marked as deprecated according to the J2SE 5.0 API, but functionality
remains unchanged to minimize impact on existing user applications.

SQLMXCallableStatement.getBigDecimal()
SQLMXCallableStatement.setUnicodeStream()
SQLMXConnectionPoolDataSource.setNameType()
SQLMXConnectionPoolDataSource.getNameType()
SQLMXDataSource.setNameType()
SQLMXDataSource.getNameType()
SQLMXJdbcRowSet.getBigDecimal()
SQLMXJdbcRowSet.getUnicodeStream()
SQLMXPreparedStatement.setUnicodeStream()

SQLMXResultSet.getBigDecimal()
SQLMXResultSet.getUnicodeStream()
TCallableStatement.getBigDecimal()
TPreparedStatement.setUnicodeStream()
TResultSet.getBigDecimal()
TResultSet.getUnicodeStream()

Row Count Array of the
PreparedStatement.executeBatch
Method
With the release of the JDBC/MX V31 and V32 drivers, you can improve the performance of batch
processing when using the PreparedStatement.executeBatch() method by setting the
batchBinding property.

If you do not set the batchBinding property, your JDBC applications operate without batch array
binding (the default setting).

If you update your application to use the batchBinding property, you must consider the change in
information returned on the PreparedStatement.executeBatch() method.

For detailed information, see Setting Batch Processing for Prepared Statements.

Using Character Encoding Sets and SQL
Databases
If your application uses Java character encoding sets and accesses SQL databases, consider the change in
the JDBC/MX V31 and V32 drivers' support of multibyte character sets and how the change might affect
your application.

The JDBC/MX driver now supports the reading and writing of CHAR, VARCHAR,
VARCHAR_LONG, and VARCHAR_WITH_LENGTH data types that utilize a double-byte character
set. The double-byte character sets supported by JDBC/MX are ISO88591, UCS2, KANJI, and
KSC5601.

Previously, String type column data was always encoded using the default character set encoding, which
was typically ISO88591, but KANJI and KSC5061 were also supported.

Now the JDBC/MX driver encodes and decodes String data types as a function of the associated
character set name for the particular SQL table column independent of the default encoding. For the

currently supported character sets, see Multibyte Character Set (MBCS) Support.

Connection sharing across multiple
threads

Applications that do not share connections across multiple threads can be used with the new JDBC
version (H50AAD) without any changes.

●

The existing multi-threaded application on other platforms with connection objects shared across
multiple threads can be directly ported to work with enhanced JDBC/MX driver.

●

For a new application, to utilize the connection sharing enhancement the application has to be
redesigned to share the connection across multiple threads.

●

Fallback provisions
If the application is modified for sharing connections across multiple threads, consider either of the
following steps:

Explicitly synchronize the connection object usage in the application.●

Revert back the changes done for sharing the connection.●

Location Change for Installed Files
With the JDBC/MX V30 driver, the driver software was installed to the default location of the
/usr/tandem/java_public_lib directory, which was the public library directory for NonStop
Server for Java 4.

Now for the V31 and subsequent PVUs, the JDBC/MX driver must be installed in its own space. For the
current installation location for the JDBC/MX driver, see JDBC/MX Driver File Locations.

Version of NonStop Server for Java
JDBC/MX requires these versions of NonStop Server for Java:

JDBC/MX V30 requires NonStop Server for Java 3.1.1 or subsequent 3.x release (product number
T0083).

●

JDBC/MX V31 requires version 1 of NonStop Server for Java 4 (product number T2766), which is
based on J2SE SDK 1.4.1.

●

JDBC/MX V32 (TNS/R system) and H10 (TNS/E system) require NonStop Server for Java 4●

(product number T2766), which is based on J2SE SDK 1.4.2.

JDBC/MX H50 requires NonStop Server for Java 5 (product number T2766), which is based on
J2SE 5.0.

●

JDBC/MX H50 AAD requires NonStop Server for Java 5 (product number T2766H51 or
T2766H50), which is based on J2SE 5.0.

●

For Java migration issues, see the NonStop Server for Java Programmer's Reference.

Release of NonStop SQL/MX
JDBC/MX requires these versions of NonStop SQL/MX:

JDBC/MX V30 requires NonStop SQL/MX 1.8.5.●

JDBC/MX V31 requires NonStop SQL/MX 2.0.●

JDBC/MX V32 requires NonStop SQL/MX 2.0 or all subsequent 2.x versions until otherwise
indicated in a replacement publication.

●

For SQL/MX migration issues, see the SQL/MX Installation and Management Guide.

Migrating to TNS/E Systems
For information about migrating Java applications from TNS/R systems to TNS/E systems, see the
NonStop Server for Java Programmer's Reference.

Migrating from JDBC/MP Applications
For extensive information on migrating applications from NonStop SQL/MP to NonStop SQL/MX, see
the SQL/MX Database and Application Migration Guide.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Messages

JDBC/MX returns sqlcode and file-system error codes as error codes for the getErrorCode()
method of SQLException.

Messages from the
Java Portion

of the JDBC Driver
(range 29000 through 29079)

Messages from the
Native-interface Portion

of the JDBC Driver
(range 29250 through 29499)

29001-29009 29050-29059
29010-29019 29060-29069
29020-29029 29070-29079
29030-29039 29080-29089
29040-29049

 29251-29259
 29260-29267

Messages are listed in numerical SQLCODE order. Descriptions include the following:

 SQLCODE SQLSTATE message-text

 Cause [What occurred to trigger the message.]
 Effect [What is the result when this occurs.]
 Recovery [How to diagnose and fix the problem.]

For information about error codes outside these ranges, see the SQL/MX Messages Manual.

Messages From the Java Side of the
JDBC/MX Driver
29001 HYC00 Unsupported feature - {0}

Cause: The feature listed is not supported by the JDBC driver.
Effect: An unsupported exception is throw, and null resultSet is returned.
Recovery: Remove the feature functionality from the program.

[back to the top]

29002 08003 Connection does not exist

Cause: An action was attempted when the connection to the database was closed.
Effect: The database is inaccessible.
Recovery: Retry the action after the connection to the database is established.

[back to the top]

29003 HY000 Statement does not exist

Cause: A validation attempt was made on the getter or exec invocation on a closed statement.
Effect: The getter or exec invocation validation fails.
Recovery: Issue validateGetInvocation() or validateExecDirectInvocation when
the statement is open.

[back to the top]

29004 HY024 Invalid transaction isolation value

Cause: An attempt was made to set the transaction isolation level to an invalid value.
Effect: SQLMXConnection.setTransactionIsolation does not set the transaction isolation
value.
Recovery: Valid isolation values are: SQL_TXN_READ_COMMITTED,
SQL_TXN_READ_UNCOMMITTED, SQL_TXN_REPEATABLE_READ, and
SQL_TXN_SERIALIZABLE.
If no isolation value is specified, the default is SQL_TXN_READ_COMMITTED.

[back to the top]

29005 HY024 Invalid ResultSet type

Cause: An attempt was made to set an invalid ResultSet Type value.
Effect: The SQLMXStatement call with the resultSetType parameter fails.
Recovery: Valid ResultSet types are: TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE,
and TYPE_SCROLL_SENSITIVE.

[back to the top]

29006 HY000 Invalid Result Set concurrency

Cause: An attempt was made to set an invalid result-set concurrency value.
Effect: The SQLMXStatement call with resultSetConcurrency fails.
Recovery: Valid resultSetConcurrency values are: CONCUR_READ_ONLY and

CONCUR_UPDATABLE.

[back to the top]

29007 07009 Invalid descriptor index

Cause: A ResultSetMetadata column parameter or a ParameterMetaData param parameter is
outside of the descriptor range.
Effect: The ResultSetMetadata or ParameterMetaData method data is not returned as
expected.
Recovery: Validate the column or parameter that is supplied to the method.

[back to the top]

29008 24000 Invalid cursor state

Cause: The ResultSet method was called when the connection was closed.
Effect: The method call does not succeed.
Recovery: Make sure the connection is open before making the ResultSet method call.

[back to the top]

29009 HY109 Invalid cursor position

Cause: An attempt was made to perform a deleteRow() method or updateRow() method or
cancelRowUpdates method when the ResultSet row cursor was on the insert row. Or an attempt
was made to perform the insertRow() method when the ResultSet row cursor was not on the
insert row.
Effect: The row changes and cursor manipulation do not succeed.
Recovery: To insert a row, move the cursor to the insert row. To delete, cancel, or update a row, move
the cursor from the insert row.

[back to the top]

29010 07009 Invalid column name

Cause: A column search does not contain columnName string.
Effect: The column comparison or searches do not succeed.
Recovery: Supply a valid columnName string to the findColum(),
validateGetInvocation(), and validateUpdInvocation() methods.

[back to the top]

29011 07009 Invalid column index or descriptor index

Cause: A ResultSet method was issued that has a column parameter that is outside of the valid range.
Effect: The ResultSet method data is not returned as expected.
Recovery: Make sure to validate the column that is supplied to the method.

[back to the top]

29012 07006 Restricted data type attribute violation

Cause: An attempt was made to execute a method either while an invalid data type was set or the data
type did not match the SQL column type.
Effect: The interface method is not executed.
Recovery: Make sure the correct method and Java data type is used for the column type.

[back to the top]

29013 HY024 Fetch size is less than 0

Cause: The size set for ResultSet.setFetchSize rows to fetch is less than zero.
Effect: The number of rows that need to be fetched from the database when more rows are needed for a
ResultSet object is not set.
Recovery: Set the setFetchSize() method rows parameter to a value greater than zero.

[back to the top]

29014 HY000 SQL data type not recognized

Cause: An unrecognized SQL data type was detected by JDBC.
Effect: An exception is thrown; data is not updated.
Recovery: Make sure that the SQL data type is supported by JDBC. The error is internal to the
JDBC/MX driver.

[back to the top]

29015 HY024 Invalid fetch direction

Cause: The setFetchDirection() method direction parameter is set to an invalid value.
Effect: The direction in which the rows in this ResultSet object are processed is not set.
Recovery: Valid fetch directions are: ResultSet.FETCH_FORWARD,
ResultSet.FETCH_REVERSE, and ResultSet.FETCH_UNKNOWN.

[back to the top]

29016 22018 SQL column {0,number,integer} data type cannot be
converted to the specified Java data type

Cause: Attempted to convert a non-numeric string to BigDecimal using the
ResultSet.getLong() method.
Effect: An exception is reported and no data is obtained.
Recovery: Ensure that the column is a valid type to be converted.

[back to the top]

29017 HY004 SQL data type not supported

Cause: An unsupported SQL data type was detected in a setter method.
Effect: ARRAY, BINARY, BIT, DATALINK, JAVA_OBJECT, and REF data types are not supported.
Recovery: Use a supported data type with the JDBC setter method.

[back to the top]

29018 22018 Invalid character value in cast specification

Cause: An attempt was made to convert a string to a numeric type but the string does not have the
appropriate format.
Effect: Strings that are obtained through a getter method cannot be cast to the method type.
Recovery: Validate the string in the database to make sure it is a compatible type.

[back to the top]

29019 07002 Parameter {0, number, integer} for {1, number, integer}
set of parameters is not set

Cause: An input descriptor contains a parameter that does not have a value set.
Effect: The method checkIfAllParamsSet() reports the parameter that is not set.
Recovery: Set a value for the listed parameter.

[back to the top]

29020 07009 Invalid parameter index

Cause: A getter or setter method parameter count index is outside of the valid input-descriptor range, or
the input-descriptor range is null.
Effect: The getter and setter method invocation validation fails.
Recovery: Change the getter or setter parameter index to a valid parameter value.

[back to the top]

29021 HY004 Object type not supported

Cause: A prepared-statement setObject() method call contains an unsupported Object Type.
Effect: The setObject() method does not set a value for the designated parameter.
Recovery: Informational message only; no corrective action is needed. Valid Object Types are: null,
BigDecimal, Date, Time, Timestamp, Double, Float, Long, Short, Byte, Boolean,
String, byte[], Clob, and Blob.

[back to the top]

29022 HY010 Function sequence error

Cause: The PreparedStatement.execute() method does not support the use of the
PreparedStatement.addBatch() method.
Effect: An exception is reported; the operation is not completed.
Recovery: Use the PreparedStatement.executeBatch() method.

[back to the top]

29023 HY109 The cursor is before the first row, therefore no data
can be retrieved.

Cause: getCurrentRow() is called when the cursor is before the first row.
Effect: An exception is reported; no data is retrieved.
Recovery: Validate the application call to the getCurrentRow() method.

[back to the top]

29024 HY109 The cursor is after last row, which could be due to the
result set containing no rows, or all rows have been retrieved.

Cause: getCurrentRow() is called when the cursor is after the last row.
Effect: An exception is reported; no data is retrieved.
Recovery: Validate the application call to the getCurrentRow() method.

[back to the top]

29025 22003 The data value ({0}) is out of range for
column/parameter number {1,number,integer}

Cause: An attempt was made to set or get a value to or from the database when the value is outside the
valid range for the column data type.

Effect: An exception is thrown; data is not retrieved or updated.
Recovery: Make sure that the value is within the valid range for the column type.

[back to the top]

29026 HY000 Transaction can't be committed or rolled back when
AutoCommit mode is on

Cause: An attempt was made to commit a transaction while AutoCommit mode is enabled.
Effect: The transaction is not committed.
Recovery: Disable AutoCommit. Use the method only when the AutoCommit mode is disabled.

[back to the top]

29027 HY011 SetAutoCommit not possible, since a transaction is
active

Cause: An attempt was made to call the setAutoCommit() mode while a transaction was active.
Effect: The current AutoCommit mode is not modified.
Recovery: Complete the transaction, then attempt to set the AutoCommit mode.

[back to the top]

29028 22003 The data value ({0}) is negative, but the
column/parameter number {1,number,integer} is unsigned

Cause: An attempt was made to set a negative value into an unsigned column.
Effect: An exception is thrown; data is not updated.
Recovery: Make sure that the value is within the valid range for the column type.

[back to the top]

29030 22003 The data value ({0}) had to be rounded up for
column/parameter number {1,number,integer}

Cause: The setBigDecimal()method rounded up a value to be inserted into a column.
Effect: An SQLWarning is issued to indicate that a value is rounded up. Data is entered into database
column.
Recovery: None. This is a warning condition.

[back to the top]

29031 HY000 SQL SELECT statement in batch is illegal

Cause: A SELECT SQL statement was used in the executeBatch() method.
Effect: An exception is reported; the SELECT SQL query cannot be used in batch queries.
Recovery: Use the executeQuery() method to issue the SELECT SQL statement.

[back to the top]

29032 23000 Row has been modified since it is last read

Cause: An attempt was made to update or delete a ResultSet object row while the cursor was on the
insert row.
Effect: The ResultSet row modification does not succeed.
Recovery: Move the ResultSet object cursor away from the row before updating or deleting the row.

[back to the top]

29033 23000 Primary key column value can't be updated

Cause: An attempt was made to update the primary-key column in a table.
Effect: The column is not updated.
Recovery: Columns in the primary-key definition cannot be updated and cannot contain null values,
even if you omit the NOT NULL clause in the column definition.

[back to the top]

29035 HY000 IO Exception occurred {0}

Cause: An ASCII or Binary or Character stream setter or an updater method resulted in a
java.io.IOException.
Effect: The designated setter or updater method does not modify the ASCII or Binary or Character
stream.
Recovery: Informational message only; no corrective action is needed.

[back to the top]

29036 HY000 Unsupported encoding {0}

Cause: The character encoding is not supported.
Effect: An exception is thrown when the requested character encoding is not supported.
Recovery: ASCII (ISO88591), KANJI, KSC5601, and UCS2 are the only supported character encodings.
SQL/MP tables do not support UCS2 character encoding.

[back to the top]

29037 HY106 ResultSet type is TYPE_FORWARD_ONLY

Cause: An attempt was made to point a ResultSet cursor to a previous row when the object type is
set as TYPE_FORWARD_ONLY.
Effect: The ResultSet object cursor manipulation does not occur.
Recovery: TYPE_FORWARD_ONLY ResultSet object type cursors can move forward only.
TYPE_SCROLL_SENSITIVE and TYPE_SCROLL_INSENSITIVE types are scrollable.

[back to the top]

29038 HY107 Row number is not valid

Cause: A ResultSet absolute() method was called when the row number was set to 0.
Effect: The cursor is not moved to the specified row number.
Recovery: Supply a positive row number (specifying the row number counting from the beginning of the
result set), or supply a negative row number (specifying the row number counting from the end of the
result set).

[back to the top]

29039 HY092 Concurrency mode of the ResultSet is
CONCUR_READ_ONLY

Cause: An action was attempted on a ResultSet object that cannot be updated because the
concurrency is set to CONCUR_READ_ONLY.
Effect: The ResultSet object is not modified.
Recovery: For updates, you must set the ResultSet object concurrency to CONCUR_UPDATABLE.

[back to the top]

29040 HY000 Operation invalid. Current row is the insert row

Cause: An attempt was made to retrieve update, delete, or insert information on the current insert row.
Effect: The ResultSet row information retrieval does not succeed.
Recovery: To retrieve row information, move the ResultSet object cursor away from the insert row.

[back to the top]

29041 HY000 Operation invalid. No primary key for the table

Cause: The getKeyColumns() method failed on a table that was created without a primary-key
column defined.
Effect: No primary-key data is returned for the table.

Recovery: Change the table to include a primary-key column.

[back to the top]

29042 HY000 Fetch size value is not valid

Cause: An attempt was made to set the fetch-row size to a value that is less than 0.
Effect: The number of rows that are fetched from the database when more rows are needed is not set.
Recovery: For the setFetchSize() method, supply a valid row value that is greater than or equal to
0.

[back to the top]

29043 HY000 Max rows value is not valid

Cause: An attempt was made to set a limit of less than 0 for the maximum number of rows that any
ResultSet object can contain.
Effect: The limit for the maximum number of rows is not set.
Recovery: For the setMaxRows() method, use a valid value that is greater than or equal to 0.

[back to the top]

29044 HY000 Query timeout value is not valid

Cause: An attempt was made to set a value of less than 0 for the number of seconds the driver waits for a
Statement object to execute.
Effect: The query timeout limit is not set.
Recovery: For the setQueryTimeout() method, supply a valid value that is greater than or equal to
0.

[back to the top]

29045 01S07 Fractional truncation

Cause: The data retrieved by the ResultSet getter method has been truncated.
Effect: The data retrieved is truncated.
Recovery: Make sure that the data to be retrieved is within a valid data-type range.

[back to the top]

29046 22003 Numeric value out of range

Cause: A value retrieved from the ResultSet getter method is outside the range for the data type.
Effect: The ResultSet getter method does not retrieve the data.
Recovery: Make sure the data to be retrieved is within a valid data-type range.

[back to the top]

29047 HY000 Batch update failed. See next exception for details

Cause: One of the commands in a batch update failed to execute properly.
Effect: Not all the batch-update commands succeed. See the subsequent exception for more information.
Recovery: View the subsequent exception for possible recovery actions.

[back to the top]

29048 HY009 Invalid use of null

Cause: A parameter that has an expected table name is set to null.
Effect: The DatabaseMetadata method does not report any results.
Recovery: For the DatabaseMetaData method, supply a valid table name that is not null.

[back to the top]

29049 25000 Invalid transaction state

Cause: The begintransaction() method was called when a transaction was in progress.
Effect: A new transaction is not started.
Recovery: Before calling the begintransaction() method, validate whether other transactions are
currently started.

[back to the top]

29050 HY107 Row value out of range

Cause: A call to getCurrentRow retrieved is outside the first and last row range.
Effect: The current row is not retrieved.
Recovery: It is an informational message only; no recovery is needed. Report the entire message to your
service provider.

[back to the top]

29051 01S02 ResultSet type changed to
TYPE_SCROLL_INSENSITIVE

Cause: The Result Set Type was changed.
Effect: None.
Recovery: This message is reported as an SQL Warning. It is an informational message only; no
recovery is needed.

[back to the top]

29052 22003 The Timestamp ({0}) is not in format yyyy-mm-dd
hh:mm:ss.fffffffff for column/parameter number {1,number,integer}

Cause: An attempt was made to enter an invalid timestamp format into a TIMESTAMP column type.
Effect: An exception is thrown; data is not updated.
Recovery: Make sure that a timestamp in the form of yyyy-mm-dd hh:mm:ss.fffffffff is used.

[back to the top]

29053 HY000 SQL SELECT statement is invalid in executeUpdate()
method

Cause: A select SQL statement was used in the executeUpdate() method.
Effect: The SQL query not performed exception is reported.
Recovery: Use the executeQuery() method to issue the select SQL statement.

[back to the top]

29054 HY000 Only SQL SELECT statements are valid in
executeQuery() method

Cause: A non-select SQL statement was used in the executeQuery() method.
Effect: The exception reported is "SQL query not performed".
Recovery: Use the executeUpdate() method to issue the non-select SQL statement.

[back to the top]

29055 22003 The Date ({0}) is not in format yyyy-mm-dd for
column/parameter number {1,number,integer}

Cause: An attempt was made to enter an invalid date format into a DATE column type.
Effect: An exception is thrown; is not updated.
Recovery: Make sure that a date in the form of yyyy-mm-dd is used.

[back to the top]

29056 HY000 Statement is already closed

Cause: A validateSetInvocation() or validateExecuteInvocation method was used
on a closed statement.
Effect: The validation on the statement fails and returns an exception.
Recovery: Use the validateSetInvocation() or validateExecuteInvocation method

prior to the statement close.

[back to the top]

29057 HY000 Auto generated keys not supported

Cause: An attempt was made to use the Auto-generated keys feature.
Effect: The attempt does not succeed.
Recovery: The Auto-generated keys feature is not supported.

[back to the top]

29058 HY000 Connection is not associated with a
PooledConnection object

Cause: The getPooledConnection() method was invoked before the PooledConnection
object was established.
Effect: A connection from the pool cannot be retrieved.
Recovery: Make sure a PooledConnection object is established before using the
getPooledConnection() method.

[back to the top]

29059 HY000 'blobTableName' property is not set or set to null
value or set to invalid value

Cause: Attempted to access a BLOB column without setting the property blobTableName, or the
property is set to an invalid value.
Effect: The application cannot access BLOB columns.
Recovery: Set the blobTableName property to a valid LOB table name. The LOB table name is of
format catalog.schema.lobTableName.

[back to the top

29060 HY000 'clobTableName' property is not set or set to null
value or set to invalid value

Cause: clobTableName property is not set or is set to null value or set to an invalid value.
Effect: The application cannot access CLOB columns.
Recovery: Set the clobTableName property to a valid LOB table name. The LOB table name is of
format catalog.schema.lobTableName.

[back to the top]

29061 HY000 Lob object {0} is not current

Cause: Attempted to access a CLOB column without setting the property jdbcmx.clobTableName
or the property is set to an invalid value.
Effect: The application cannot access CLOB columns.
Recovery: Set the jdbcmx.clobTableName property to a valid LOB table name. The LOB table
name is of format catalog.schema.lobTableName.

[back to the top]

29062 HY000 Operation not allowed since primary key columns are
not in the select list

Cause: getKeyColumns() fails on table created without a primary key column.
Effect: No primary key data is returned for table.
Recovery: Alter the table to include a primary key column, or remove the getKeyColumns() method
call from the program.

[back to the top]

29063 HY000 Transaction error {0} - {1} while obtaining start data
locator

Cause: A transaction error occurred when the JDBC/MX driver attempted to reserve the data locators for
the given process while inserting or updating a LOB column.
Effect: The application cannot insert or update the LOB columns.
Recovery: Check the file-system error in the message and take recovery action accordingly.

[back to the top]

29064 22018 Java data type does not match SQL data type for
column

Cause: Attempted to call a PreparedStatement setter method with an invalid column data type.
Effect: An exception is thrown; data is not updated.
Recovery: Make sure that the column data type is valid for the PreparedStatement setter method.

[back to the top]

29065 22018 Java data type cannot be converted to the specified
SQL data type

Cause: A PreparedStatement setter method Java object conversion to the given SQL data type is
invalid.
Effect: An exception is thrown; data is not updated.
Recovery: Make sure that the column data type is valid for the PreparedStatement setter method.

[back to the top]

29066 22018 The String data {0} cannot be converted to a numeric
value

Cause: A PreparedStatement setter method could not convert a string to an integer.
Effect: An exception is thrown and the string data is not converted.
Recovery: Make sure that the data to be converted to an integer is valid.

[back to the top]

29067 07009 Invalid input value in the method {0}

Cause: One or more input values in the given method is invalid.
Effect: The given input method failed.
Recovery: Check the input values for the given method.

[back to the top]

29068 07009 The value for position can be any value between 1 and
one more than the length of the LOB data

Cause: The position input value in Blob.setBinaryStream, Clob.setCharacterStream, or
Clob.setAsciiStream can be between 1 and one more than the length of the LOB data.
Effect: The application cannot write the LOB data at the specified position.
Recovery: Correct the position input value.

[back to the top]

29069 HY000 Autocommit is on and LOB objects are involved

Cause: LOB data is involved with autocommit enabled and an external transaction does not exist.
Effect: An exception is reported; the LOB columns are not set.
Recovery: Start an external transaction or disable the autocommit mode when using the
Clob.setASciiStream(), Clob.setCharacterStream(), or
Blob.setBinaryStream() method.

[back to the top]

29070 HY000 Transaction error {0} - {1} while updating LOB tables

Cause: An SQL or file system (FS) exception occurred during insert or update operations on the base
and LOB tables within an internal transaction.
Effect: An exception is reported; the internal transaction is rolled back.
Recovery: See the SQL or FS error message.

[back to the top]

29071 HY000 Internal programming error - {0}

Cause: The JNI layer (get Object method) always returns a byte array and, therefore, any other instance
is considered a programming error.
Effect: An exception is reported.
Recovery: None. The error is internal to the JDBC/MX driver.

[back to the top]

29072 HY000 Attempting to exceed the maximum connection pool
size ({0,number,integer})

Cause: An attempt was made to obtain a connection outside the set connection pool size limit.
Effect: An exception is thrown.
Recovery: Increase the connection pool size by using the maxPoolSize command-line property.

[back to the top]

29073 22003 The Time ({0}) is not in format hh:mm:ss for
column/parameter number {1,number,integer}

Cause: An attempt was made to enter an invalid time format into a TIME column type.
Effect: An exception is thrown; data is not updated.
Recovery: Make sure that a time in the form of hh:mm:ss is used.

[back to the top]

29074 42821 The getter method, {0}, cannot be used to retrieve data
for column/parameter number {1,number,integer}

Cause: Attempted to use an unsupported column type in the ResultSet.getString method.
Effect: An exception is reported; no data is obtained.
Recovery: Use a supported column data type other than BLOB, ARRAY, REF, STRUCT, DATALINK, or

JAVA_OBJECT with the ResultSet.getString method.

[back to the top]

29075 HY000 'transactionMode' property is set to a null value or set
to an invalid value

Cause: Called SQLMXDataSource.setTransactionMode() or
SQLMXConnectionPoolDataSource.setTransactionMode() using an invalid transaction
mode.
Effect: The application cannot set the transaction mode.
Recovery: Use a valid transaction mode: external, internal, or mixed.

[back to the top]

29076 HY000 Exceeded 'maxStatements' ({0,number,integer}) --
performance may be compromised

Cause: The cached statement count has reached the limit set by the maxStatements property and all
statements are in use.
Effect: An SQL warning condition. Statements continue to be added to the internal cache.
Recovery: An SQL warning condition. Use the maxStatements property (or
-Djdbcmx.maxStatements command-line property) to increase the number of statements allowed.

[back to the top]

29077 HY000 HY000 Max rows value cannot be less than the fetch
size

Cause: The row value passed to the JdbcRowSet.setMaxRows method is less than the current
fetch-size setting
Effect: The maximum number of rows that the JdbcRowSet object can contain is not set.
Recovery: Increase the fetch-size value by using the JdbcRowSet.setFetchSize, or increase the
maximum-rows value passed to the JdbcRowSet.setMaxRows method.

[back to the top]

29078 HY000 Invalid JdbcRowSet state - {0} {1}

Cause: The Connection, ResultSet, or PreparedStatement value associated with the
JdbcRowSet operation is null.
Effect: The method call fails.
Recovery: Make sure a call to the JdbcRowSet.execute() method is performed.

[back to the top]

29079 HY000 Match Columns are not the same as those set

Cause: The designated column passed to unsetMatchColumn() method was not previously set as a
match column.
Effect: The designated column is not unset for this JdbcRowSet object.
Recovery: Use the setMatchColumn() method to set the designated column as a match column.

[back to the top]

29080 HY000 Set the match columns before getting them

Cause: A call to getMatchColumnNames(), getMatchColumnIndexex(), or
unsetMatchColumn() method returns a null or match column.
Effect: A match column value is not retrieved for this JdbcRowSet object.
Recovery: Use setMatchColumn() to set the designated column as a match column.

[back to the top]

29081 HY000 Match columns should be greater than 0

Cause: The program passed a column index value less than zero to the setMatchColumn() method.
Effect: The designated match column for this JdbcRowSet object is not set.
Recovery: Call the setMatchColumn() method with a valid column index value greater than zero.

[back to the top]

29082 HY000 Match columns cannot be null or empty string

Cause: A null or empty column name string is passed to the setMatchColumn() method.
Effect: The designated match column for this JdbcRowSet object is not set.
Recovery: Call the setMatchColumn() method with a valid non-null column-name string.

[back to the top]

29083 HY000 Columns being unset are not the same as those set

Cause: The designated column passed to the unsetMatchColumn() method was not previously set
as a match column.
Effect: The designated column is not unset for this JdbcRowSet object.
Recovery: Use the setMatchColumn() method to set the designated column as a match column.

[back to the top]

29084 HY000 Use column name as argument to unsetMatchColumn

Cause: A column-name string value is passed to the unsetMatchColumn(integer i) method.
Effect: An exception is thrown. The designated match column for this JdbcRowSet object is not unset.
Recovery: Call the unsetMatchColumn(integer i) method with an integer column ID value, or
use the unsetMatchColumn(String s) method.

[back to the top]

29085 HY000 Use column ID as argument to unsetMatchColumn

Cause: An column name integer value is passed to the unsetMatchColumn(String s) method.
Effect: An exception is thrown. The designated match column for this JdbcRowSet object is not unset.
Recovery: Call the unsetMatchColumn(String s) method with a string column-name value, or
use the unsetMatchColumn(integer i) method.

[back to the top]

29086 HY000 Missing JdbcRowSet parameter ({0,number,integer})

Cause: An internal driver condition detects that a JdbcRowSet parameter does not have a value set.
Effect: The JdbcRowSet.execute() method fails.
Recovery: None. The error is internal to the JDBC/MX driver.

[back to the top]

29087 HY000 JdbcRowSet setProperties error {0} - {1}

Cause:An internal driver condition detects that the JdbcRowSet property reported in the message
could not be set for JdbcRowSet prepared statement.
Effect: The JdbcRowSet.execute() method fails.
Recovery: The error is internal to the JDBC/MX driver.

[back to the top]

29088 HY000 JdbcRowSet prepare error - {0}

Cause: The driver encountered an internal error when preparing a JdbcRowSet prepared statements.
Effect: An exception is reported.
Recovery: None. The error is internal to the JDBC/MX driver.

[back to the top]

29089 HY000 JdbcRowSet connect error - {0} {1}

Cause: The driver encountered an internal error when attempting to establish a connection.
Effect: An exception is reported.
Recovery: None. The error is internal to the JDBC/MX driver.

[back to the top]

Messages From the JNI Side of the
JDBC/MX Driver
29251 HY000 Programming Error

Cause: Either SQL has detected an error in one of the SQL parameters for a statement or SQL returned
an error for an operation that was attempted but that is not handled by JDBC.
Effect: An exception is reported.
Recovery: For SQL parameter errors, the exception-message text usually identifies the problem to be
corrected. For unhandled SQL errors, the Error Code of the exception identifies the SQL error that was
caught. Refer to the SQL error-message documentation for details about the error code.

[back to the top]

29252 HY008 Operation Cancelled

Cause: An SQL operation was cancelled by a break
Effect: An exception is reported; the operation is not completed.
Recovery: This message is application-specific. Issue the statement again.

[back to the top]

29253 22003 Numeric value out of range

Cause: A numeric value is not within the range of its target column.
Effect: An exception is reported; the operation is not completed.
Recovery: Adjust the numeric value to a valid range for the SQL column type.

[back to the top]

29254 22001 String data right-truncated

Cause: An attempt was made to place a string in a database but the string exceeds the database limits.
Effect: Some of the data is not placed in the database.
Recovery: Shorten the length of the string.

[back to the top]

29255 HY000 TMF error has occurred : [tmf-error]

Cause: An internal transaction request failed.
Effect: An exception is reported; the operation is not completed.
Recovery: Refer to the TMF error message tmf-error.

[back to the top]

29256 HY000 Error while obtaining the system catalog name :
[error]

Cause: During initialization of the JDBC driver, an error occurred when attempting to determine a
system catalog name.
Effect: The JDBC driver is not registered with the Driver Manager.
Recovery: Make sure that SQL is installed and that a system catalog exists.

[back to the top]

29257 07002 All parameters are not set

Cause: A parameter that was read was null.
Effect: An exception is reported; the operation is not completed.
Recovery: Enter a non-null parameter value.

[back to the top]

29258 25000 Invalid Transaction State

Cause: A transaction-state problem was detected when attempting to begin or resume a transaction
through TMF.
Effect: An exception is reported; the operation is not completed.
Recovery: Informational message only; no corrective action is needed. Report the entire message to your
service provider.

[back to the top]

29259 HY000 Module Error

Cause: An invalid parameter was detected when attempting to get catalog information or attempting to
prepare a statement from a module.
Effect: An exception is reported; the operation is not completed.
Recovery: See the exception message for recovery details.

[back to the top]

29260 HY000 Invalid Statement/Connection Handle

Cause: An invalid SQL statement handle was detected.
Effect: An exception is reported; the operation is not completed.
Recovery: Informational message only; no corrective action is needed. Report the entire message to your
service provider.

[back to the top]

29261 HY000 No error message in SQL/MX diagnostics area, but
sqlcode is non-zero

Cause: An SQL error was detected but no error message was reported by SQL/MX.
Effect: An SQL exception or warning is thrown without a diagnostic message.
Recovery: Unknown.

[back to the top]

29262 HY090 Invalid or null sql string

Cause: A stored-procedure or prepared-statement call contains an invalid SQL string.
Effect: The stored procedure or prepared statement is not executed.
Recovery: Make sure that the stored procedure or prepared statement contains a valid SQL command.

[back to the top]

29263 HY000 Invalid or null statement label or name

Cause: A calling database stored a procedure or a prepared statement that has an invalid statement-label
input parameter.
Effect: The stored procedure or prepared statement is not executed.
Recovery: Make sure that the statement-label parameter is valid.

[back to the top]

29264 HY000 Invalid or null module name

Cause: A calling database stored a procedure or a prepared statement that has an invalid module-name
input parameter.
Effect: The stored procedure or prepared statement is not executed.
Recovery: Make sure that the module-name parameter is valid.

[back to the top]

29265 HY000 Unsupported character set encoding

Cause: The character-set type for a CHAR, VARCHAR, VARCHAR_LONG, or VARCHAR_WITH_LENGTH
column is not supported by the JDBC/MX driver setter or getter methods.
Effect: An SQL exception is thrown.
Recovery: Change the column character-set type to a type supported by the JDBC/MX driver.

[back to the top]

29266 HY000 Data type not supported : [data type]

Cause: An unsupported data type was retrieved from SQL.
Effect: An exception is thrown.
Recovery: None. BIT, BITVAR, BPINT_UNSIGNED, SQLTYPECODE_FLOAT,
SQLTYPECODE_REAL, and SQLTYPECODE_DOUBLE data types are not expected to be returned from
SQL/MX. The JDBC/MX driver does not support these data types.

[back to the top]

29267 HY000 Exceeded JVM allocated memory

Cause: JDBC attempted to internally allocate JVM memory after it has been exhausted.
Effect: The condition is a function of the JVM heap size. An exception is thrown.
Recovery: Configure the maximum JVM heap size accordingly.

[back to the top]

Messages from the
Java Portion

of the JDBC Driver
(range 29000 through 29249)

Messages from the
Native-interface Portion

of the JDBC Driver
(range 29250 through 29499)

29001-29009 29050-29059
29010-29019 29060-29069
29020-29029 29070-29079
29030-29039 29080-29089
29040-29049

 29251-29259
 29260-29267

Home | Contents | Index | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Appendix A. Sample Programs
Accessing CLOB and BLOB Data

This appendix shows two working programs:

Sample Program Accessing CLOB Data●

Sample Program Accessing BLOB Data●

Sample Program Accessing CLOB Data
This sample program shows operations that can be performed through the CLOB interface or through the
PreparedStatement interface. The sample program shows examples of both interfaces taking a
variable and putting the variable's value into a base table that has a CLOB column.

// LOB operations can be performed through the Clob interface,
// or the PreparedStatement interface.
// This program shows examples of both interfaces taking a
// variable and putting it into the cat.sch.clobbase table.
//
// The LOB base table for this example is created as:
// >> create table clobbase
// (col1 int not null not droppable,
// col2 clob, primary key (col1));
//
// The LOB table for this example is created through
// the JdbcMxLobAdmin utility as:
// >> create table cat.sch.clobdatatbl
// (table_name char(128) not null not droppable,
// data_locator largeint not null not droppable,
// chunk_no int not null not droppable,
// lob_data varchar(3880),
// primary key(table_name, data_locator, chunk_no))
// attributes extent(1024), maxextents 768 ;
//
// ***** The following is the Clob interface...
// - insert the base row with EMPTY_CLOB() as value for
// the LOB column

// - select the LOB column 'for update'
// - load up a byte[] with the data
// - use Outputstream.write(byte[])
//
// ***** The following is the PreparedStatement interface...
// - need an Inputstream object that already has data
// - need a PreparedStatement object that contains the
// 'insert...' DML of the base table
// - ps.setAsciiStream() for the lob data
// - ps.executeupdate(); for the DML
//
// To run this example, issue the following:
// # java TestCLOB 1 TestCLOB.java 1000
//

import java.sql.*;
import java.io.*;

public class TestCLOB
{
 public static void main (String[] args)
 throws java.io.FileNotFoundException,
 java.io.IOException
 {
 int length = 500;
 int recKey;
 long start;
 long end;
 Connection conn1 = null;

 // Set jdbcmx.clobTableName System Property. This property
 // can also be added to the command line through
 // "-Djdbcmx.clobTableName=...", or a
 // java.util.Properties object can be used and passed to
 // getConnection.
 System.setProperty("jdbcmx.clobTableName","cat.sch.clobdatatbl");

 if (args.length < 2) {
 System.out.println("arg[0]=; arg[1]=file;
 arg[2]=");
 return;
 }

 String k = "K";
 for (int i=0; i<5000; i++) k = k + "K";

 System.out.println("string length = " + k.length());

 FileInputStream clobFs = new FileInputStream(args[1]);
 int clobFsLen = clobFs.available();

 if (args.length == 3)
 length = Integer.parseInt(args[2]);
 recKey = Integer.parseInt(args[0]);

 System.out.println("Key: " + recKey +"; Using "
 + length + " of file " + args[1]);

 try {
 Class.forName("com.tandem.sqlmx.SQLMXDriver");
 start = System.currentTimeMillis();
 conn1 = DriverManager.getConnection("jdbc:sqlmx:");

 System.out.println("Cleaning up test tables...");
 Statement stmt0 = conn1.createStatement();
 stmt0.execute("delete from clobdatatbl");
 stmt0.execute("delete from clobbase");

 conn1.setAutoCommit(false);

 }
 catch (Exception e1) {
 e1.printStackTrace();
 }

// PreparedStatement interface example - This technique
// is suitable if the LOB data is already on the NonStop
// system disk.
 try {
 System.out.println("PreparedStatement interface
 LOB insert...");
 String stmtSource1 = "insert into clobbase
 values (?,?)";
 PreparedStatement stmt1
 = conn1.prepareStatement(stmtSource1);
 stmt1.setInt(1,recKey);
 stmt1.setAsciiStream(2,clobFs,length);
 stmt1.executeUpdate();
 conn1.commit();
 }
 catch (SQLException e) {
 e.printStackTrace();

 SQLException next = e;
 do {
 System.out.println("Messge : " + e.getMessage());
 System.out.println("Error Code : " + e.getErrorCode());
 System.out.println("SQLState : " + e.getSQLState());
 } while ((next = next.getNextException()) != null);
 }

// Clob interface example - This technique is suitable when
// the LOB data is already in the app, such as having been
// transferred in a msgbuf.
 try {
 // insert a second base table row with an empty LOB column
 System.out.println("CLOB interface EMPTY LOB insert...");
 String stmtSource2 = "insert into clobbase
 values (?,EMPTY_CLOB())";
 PreparedStatement stmt2
 = conn1.prepareStatement(stmtSource2);
 stmt2.setInt(1,recKey+1);
 stmt2.executeUpdate();

 Clob clob = null;

 System.out.println("Obtaining CLOB data to
 update (EMPTY in this case)...");
 PreparedStatement stmt3
 = conn1.prepareStatement("select col2
 from clobbase where col1 = ? for update");
 stmt3.setInt(1,recKey+1);
 ResultSet rs = stmt3.executeQuery();
 if (rs.next()) clob = rs.getClob(1); // has to be there
// else the base table insert fails

 System.out.println("Writing data to previously empty CLOB...");
 OutputStream os = clob.setAsciiStream(1);
 byte[] bData = k.getBytes();
 os.write(bData);
 os.close();
 conn1.commit();
 }
 catch (SQLException e) {
 e.printStackTrace();
 SQLException next = e;
 do {
 System.out.println("Messge : " + e.getMessage());
 System.out.println("Vendor Code : " + e.getErrorCode());

 System.out.println("SQLState : " + e.getSQLState());
 } while ((next = next.getNextException()) != null);
 }

 } // main
} // class

Sample Program Accessing BLOB Data
This sample program shows the use of both the Blob interface and the PreparedStatement
interface to take a byte variable and put the variable's value into a base table that has a BLOB column.

// LOB operations may be performed throubh the Blob, or
// PreparedStatement interface. This program shows examples of
// using both interfaces taking a byte[] variable and putting
// it into the cat.sch.blobtiff table.
//
// The LOB base table for this example is created as:
// >> create table blobtiff
// (col1 int not null not droppable,
// tiff blob, primary key (col1));
//
// The LOB table for this example is created through the
// JdbcMxLobAdmin utility as:
// >> create table cat.sch.blobdatatbl
// (table_name char(128) not null not droppable,
// data_locator largeint not null not droppable,
// chunk_no int not null not droppable,
// lob_data varchar(3880),
// primary key(table_name, data_locator, chunk_no))
// attributes extent(1024), maxextents 768 ;
//
// ***** The following is the blob interface...
// - insert the base row with EMPTY_BLOB() as value for
// the LOB column
// - select the lob column 'for update'
// - load up a byte[] with the data
// - use Outputstream.write(byte[])
//
// ***** The following is the prep stmt interface...
// - need an Inputstream object that already has data
// - need a PreparedStatement object that contains the
// 'insert...' DML of the base table

// - ps.setAsciiStream() for the lob data
// - ps.executeupdate(); for the DML
//
// To run this example, issue the following:
// # java TestBLOB 1 TestBLOB.class 1000
//

import java.sql.*;
import java.io.*;

public class TestBLOB
{
 public static void main (String[] args)
 throws java.io.FileNotFoundException, java.io.IOException
 {
 int numBytes;
 int recKey;
 long start;
 long end;
 Connection conn1 = null;

 // Set jdbcmx.blobTableName System Property. This property
 // can also be added to the command line through
 // "-Djdbcmx.blobTableName=...", or a
 // java.util.Properties object can be used and passed to
 // getConnection.
 System.setProperty("jdbcmx.blobTableName","cat.sch.blobdatatbl");

 if (args.length < 2) {
 System.out.println("arg[0]=; arg[1]=file; arg[2]=");
 return;
 }

 // byte array for the blob
 byte[] whatever = new byte[5000];
 for (int i=0; i<5000; i++) whatever[i] = 71; // "G"

 String k = "K";
 for (int i=0; i<5000; i++) k = k + "K";
 System.out.println("string length = " + k.length());

 java.io.ByteArrayInputStream iXstream
 = new java.io.ByteArrayInputStream(whatever);

 numBytes = iXstream.available();
 if (args.length == 3)

 numBytes = Integer.parseInt(args[2]);
 recKey = Integer.parseInt(args[0]);

 System.out.println("Key: " + recKey +"; Using "
 + numBytes + " of file " + args[1]);

 try {
 Class.forName("com.tandem.sqlmx.SQLMXDriver");
 start = System.currentTimeMillis();
 conn1 = DriverManager.getConnection("jdbc:sqlmx:");

 System.out.println("Cleaning up test tables...");
 Statement stmt0 = conn1.createStatement();
 stmt0.execute("delete from blobdatatbl");
 stmt0.execute("delete from blobtiff");

 conn1.setAutoCommit(false);

 }
 catch (Exception e1) {
 e1.printStackTrace();
 }

// PreparedStatement interface example - This technique is
// suitable if the LOB data is already on the
// NonStop system disk.
 try {
 System.out.println("PreparedStatement interface LOB insert...");
 String stmtSource1 = "insert into blobtiff values (?,?)";
 PreparedStatement stmt1 = conn1.prepareStatement(stmtSource1);
 stmt1.setInt(1,recKey);
 stmt1.setBinaryStream(2,iXstream,numBytes);
 stmt1.executeUpdate();
 conn1.commit();
 }
 catch (SQLException e) {
 e.printStackTrace();
 SQLException next = e;
 do {
 System.out.println("Messge : " + e.getMessage());
 System.out.println("Error Code : " + e.getErrorCode());
 System.out.println("SQLState : " + e.getSQLState());
 } while ((next = next.getNextException()) != null);
 }

// Blob interface example - This technique is suitable when

// the LOB data is already in the app, such as having been
// transfered in a msgbuf.
 try {
 // insert a second base table row with empty LOB column
 System.out.println("BLOB interface LOB insert...");
 String stmtSource2 = "insert into blobtiff
 values (?,EMPTY_BLOB())";
 PreparedStatement stmt2 = conn1.prepareStatement(stmtSource2);
 stmt2.setInt(1,recKey+1);
 stmt2.executeUpdate();

 Blob tiff = null;

 System.out.println("Obtaining BLOB data to
 update (EMPTY in this case)...");
 PreparedStatement stmt3 = conn1.prepareStatement("select tiff
 from blobtiff where col1 = ? for update");
 stmt3.setInt(1,recKey+1);
 ResultSet rs = stmt3.executeQuery();
 if (rs.next()) tiff = rs.getBlob(1); // has to be there
 else the base table insert failed

 System.out.println("Writing data to previously
 empty BLOB...");
 OutputStream os = tiff.setBinaryStream(1);
 byte[] bData = k.getBytes();
 os.write(bData);
 os.close();
 conn1.commit();
 }
 catch (SQLException e) {
 e.printStackTrace();
 SQLException next = e;
 do {
 System.out.println("Messge : " + e.getMessage());
 System.out.println("Vendor Code : " + e.getErrorCode());
 System.out.println("SQLState : " + e.getSQLState());
 } while ((next = next.getNextException()) != null);
 }

 } // main
} // class

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Prev | Next

Glossary

A B C D E F G H I J L M N O P Q R S T U V W X Y Z

A
abstract class

In Java, a class designed only as a parent from which subclasses can be derived, which is not itself
suitable for instantiation. An abstract class is often used to "abstract out" incomplete sets of
features, which can then be shared by a group of sibling subclasses that add different variations of
the missing pieces.

American Standard Code for Information Interchange (ASCII)
The predominant character set encoding of present-day computers. ASCII uses 7 bits for each
character. It does not include accented letters or any other letter forms not used in English (such as
the German sharp-S or the Norwegian ae-ligature). Compare with Unicode.

American National Standards Institute (ANSI)
The United States government body responsible for approving US standards in many areas,
including computers and communications. ANSI is a member of ISO. ANSI sells ANSI and ISO
(international) standards.

ANSI
See American National Standards Institute (ANSI).

API
See application program interface (API).

application program
One of the following:

A software program written for or by a user for a specific purpose❍

A computer program that performs a data processing function rather than a control function❍

application program interface (API)
A set of functions or procedures that are called by an application program to communicate with
other software components.

ASCII
See American Standard Code for Information Interchange (ASCII).

autocommit mode
A mode in which a JDBC driver automatically commits a transaction without the programmer's

calling commit().

B
base table

A table that has physical existence: that is, a table stored in a file.

BLOB
Short for Binary Large OBject, a collection of binary data stored as a single entity in a database
management system. These entities are primarily used to hold multimedia objects such as images,
videos, and sound. They can also be used to store programs or even fragments of code. A Java
Blob object (Java type, java.sql.Blob) corresponds to the SQL BLOB data type.

branded
A Java virtual machine that Sun Microsystems, Inc. has certified as conformant.

browser
A program that allows you to read hypertext. The browser gives some means of viewing the
contents of nodes and of navigating from one node to another. Internet Explorer, Netscape
Navigator, NCSA Mosaic, Lynx, and W3 are examples for browsers for the WWW. They act as
clients to remote servers.

bytecode
The code that javac, the Java compiler, produces. When the Java virtual machine loads this code,
it either interprets it or just-in-time compiles it into native RISC code.

C
catalog

In SQL/MP and SQL/MX, a set of tables containing the descriptions of SQL objects such as
tables, views, columns, indexes, files, and partitions.

class path
The location where the Java VM and other Java programs that are located in the
/usr/tandem/java/bin directory search for class libraries (such as classes.zip). The
JDBC/MX driver programs are in /usr/tandem/jdbcMX/current/lib/jdbcMx.jar.
You can set the class path explicitly or with the CLASSPATH environment variable.

CLOB
Short for Character Large OBject, text data stored as a single entity in a database management
system. A Java Clob object (Java type, java.sql.Clob) corresponds to the SQL CLOB data
type.

client
A software process, hardware device, or combination of the two that requests services from a
server. Often, the client is a process residing on a programmable workstation and is the part of a

program that provides the user interface. The workstation client might also perform other portions
of the program logic. Also called a requester.

command
The operation demanded by an operator or program; a demand for action by, or information from,
a subsystem. A command is typically conveyed as an interprocess message from a program to a
subsystem.

concurrency
A condition in which two or more transactions act on the same record in a database at the same
time. To process a transaction, a program must assume that its input from the database is
consistent, regardless of any concurrent changes being made to the database. TMF manages
concurrent transactions through concurrency control.

concurrency control
Protection of a database record from concurrent access by more than one process. TMF imposes
this control by dynamically locking and unlocking affected records to ensure that only one
transaction at a time accesses those records.

connection pooling
A framework for pooling JDBC connections.

Core Packages
The required set of APIs in a Java platform edition which must be supported in any and all
compatible implementations.

D
Data Control Language (DCL)

The set of data control statements within the SQL/MP language.

Data Manipulation Language (DML)
The set of data-manipulation statements within the SQL/MP language. These statements include
INSERT, DELETE, and UPDATE, which cause database modifications that Remote Duplicate
Database Facility (RDF) can replicate.

DCL
See Data Control Language (DCL).

DML
See Data Manipulation Language (DML).

driver
A class in JDBC that implements a connection to a particular database management system such as
NonStop SQL/MX. The NonStop Server for Java 5 has these driver implementations: JDBC/MP
Driver for NonStop SQL/MP and JDBC/MX Driver for NonStop SQL/MX.

DriverManager

The JDBC class that manages drivers.

E
exception

An event during program execution that prevents the program from continuing normally;
generally, an error. Java methods raise exceptions using the throw keyword and handle
exceptions using try, catch, and finally blocks.

Expand
The NonStop operating system network that extends the concept of fault tolerance to networks of
geographically distributed NonStop systems. If the network is properly designed, communication
paths are constantly available even if there is a single line failure or component failure.

expandability
See scalability.

F
fault tolerance

The ability of a computer system to continue processing during and after a single fault (the failure
of a system component) without the loss of data or function.

G
get() method

A method used to read a data item. For example, the
SQLMPConnection.getAutoCommit() method returns the transaction mode of the JDBC
driver's connection to an SQL/MP or SQL/MX database. Compare to set() method.

Guardian
An environment available for interactive and programmatic use with the NonStop operating
system. Processes that run in the Guardian environment use the Guardian system procedure calls
as their API. Interactive users of the Guardian environment use the HP Tandem Advanced
Command Language (TACL) or another HP product's command interpreter. Compare to OSS.

H
Hotspot virtual machine

See Java Hotspot virtual machine.

HP JDBC Driver for NonStop SQL/MP (JDBC/MP)
The product that provides access to NonStop SQL/MP and conforms to the JDBC API.

HP JDBC Driver for NonStop SQL/MX (JDBC/MX)
The product that provides access to NonStop SQL/MX and conforms to the JDBC API.

HP NonStop ODBC Server
The HP implementation of ODBC for NonStop systems.

HP NonStop operating system
The operating system for NonStop systems.

HP NonStop Server for Java, based on Java 2 Platform Standard> Edition 5.0
The formal name of the NonStop Server for Java product whose Java virtual machine conforms to
the Java 2 Platform, Standard Edition (J2SE) 5.0. See also NonStop Server for Java 5.

HP NonStop SQL/MP (SQL/MP)
HP NonStop Structured Query Language/MP, the HP relational database management system for
NonStop servers.

HP NonStop SQL/MX (SQL/MX)
HP NonStop Structured Query Language/MX, the HP next-generation relational database
management system for business-critical applications on NonStop servers.

HP NonStop system
HP computers (hardware and software) that support the NonStop operating system.

HP NonStop Transaction Management Facility (TMF)
An HP product that provides transaction protection, database consistency, and database recovery.
The NonStop Server for Java's NonStop SQL/MX drivers call procedures in the TMF subsystem.

hyperlink
A reference (link) from a point in one hypertext document to a point in another document or
another point in the same document. A browser usually displays a hyperlink in a different color,
font, or style. When the user activates the link (usually by clicking on it with the mouse), the
browser displays the target of the link.

hypertext
A collection of documents (nodes) containing cross-references or links that, with the aid of an
interactive browser, allow a reader to move easily from one document to another.

Hypertext Mark-up Language (HTML)
A hypertext document format used on the World Wide Web.

Hypertext Transfer Protocol (HTTP)
The client-server Transmission Control Protocol/Internet Protocol (TCP/IP) used on the World
Wide Web for the exchange of HTML documents.

I
IEC

See International Electrotechnical Commission (IEC).

IEEE
Institute for Electrical and Electronic Engineers (IEEE).

interactive
Question-and-answer exchange between a user and a computer system.

interface
In general, the point of communication or interconnection between one person, program, or device
and another, or a set of rules for that interaction. See also API.

International Electrotechnical Commission (IEC)
A standardization body at the same level as ISO.

International Organization for Standardization (ISO)
A voluntary, nontreaty organization founded in 1946, responsible for creating international
standards in many areas, including computers and communications. Its members are the national
standards organizations of 89 countries, including ANSI.

Internet
The network of many thousands of interconnected networks that use the TCP/IP networking
communications protocol. It provides e-mail, file transfer, news, remote login, and access to
thousands of databases. The Internet includes three kinds of networks:

High-speed backbone networks such as NSFNET and MILNET❍

Mid-level networks such as corporate and university networks❍

Stub networks such as individual LANs❍

interoperability
One of the following:

The ability to communicate, execute programs, or transfer data between dissimilar
environments, including among systems from multiple vendors or with multiple versions of
operating systems from the same vendor. HP documents often use the term connectivity in
this context, while other vendors use connectivity to mean hardware compatibility.

❍

Within a NonStop system node, the ability to use the features or facilities of one
environment from another. For example, the gtacl command in the OSS environment
allows an interactive user to start and use a Guardian tool in the Guardian environment.

❍

interpreter
The component of the Java VM that interprets bytecode into native machine code.

ISO
See International Organization for Standardization (ISO).

J
J2SE Development Kit (JDK)

The development kit delivered with the J2SE platform. Contrast with J2SE Runtime Environment
(JRE). See also, Java 2 Platform Standard Edition (J2SE).

J2SE Runtime Environment (JRE)
The Java virtual machine and the Core Packages. This is the standard Java environment that the
java command invokes. Contrast with J2SE Development Kit (JDK). See also, Java 2 Platform
Standard Edition (J2SE).

jar

The Java Archive tool, which combines multiple files into a single Java Archive (JAR) file. Also,
the command to run the Java Archive Tool.

JAR file
A Java Archive file, produced by the Java Archive Tool, jar.

java

The Java interpreter, which executes Java bytecode. Also, the command to run the Java interpreter.
The Java command invokes the Java runtime.

Java Database Connectivity (JDBC)
An industry standard for database-independent connectivity between the Java platform and
relational databases such as SQL/MP or SQL/MX. JDBC provides a call-level API for SQL-based
database access.

Java HotSpot virtual machine
The Java virtual machine implementation designed to produce maximum program-execution speed
for applications running in a server environment. The Java HotSpot virtual machine is a run-time
environment that features an adaptive compiler that dynamically optimizes the performance of
running applications. NonStop Server for Java 5 implements the Java HotSpot virtual machine.

Java Naming and Directory Interface (JNDI)
A standard extension to the Java platform, which provides Java technology-enabled application
programs with a unified interface to multiple naming and directory services.

Java Native Interface (JNI)
The C-language interface used by C functions called by Java classes. Includes an Invocation API
that invokes a Java VM from a C program.

Java Runtime
The JVM and the Core Packages. This is the standard Java environment that the java command
invokes.

Java virtual machine (JVM)
The process that loads, links, verifies, and interprets Java bytecode. The NonStop Server for Java 5
implements the Java HotSpot virtual machine.

JDBC
See Java Database Connectivity (JDBC).

JDBC API
The programmatic API in Java to access relational databases.

JDBC Trace Facility
A utility designed to trace the entry point of all the JDBC methods called from the Java
applications.

JDBC/MP
See HP JDBC Driver for SQL/MP (JDBC/MP).

JDBC/MX
See HP JDBC Driver for SQL/MX (JDBC/MX).

JNDI
See Java Naming and Directory Interface (JNDI).

JNI
See Java Native Interface (JNI).

jre

The Java run-time environment, which executes Java bytecode. Also, the command to run the Java
run-time environment.

L
LAN

See local area network (LAN).

local area network (LAN)
A data communications network that is geographically limited (typically to a radius of 1
kilometer), allowing easy interconnection of terminals, microprocessors, and computers within
adjacent buildings. Ethernet is an example of a LAN.

LOB
Short for Large OBject. Represents either CLOB or BLOB data.

M
MXCI

SQL/MX Conversational Interface.

N
native

In the context of Java programming, something written in a language other than Java (such as C or
C++) for a specific platform.

node
One of the following:

An addressable device attached to a computer network.❍

A hypertext document.❍

NonStop Server for Java 5
The informal name of the NonStop Server for Java, based on the Java 2 Platform Standard Edition
5.0 products. This product is a Java environment that supports compact, concurrent, dynamic, and
portable programs for the enterprise server.

NonStop Technical Library (NTL)
The browser-based interface to NonStop computing technical information. NTL replaces HP Total
Information Manager (TIM).

O
ODBC

See Open Database Connectivity (ODBC).

Open Database Connectivity (ODBC)
The standard Microsoft product for accessing databases.

Open System Services (OSS)
An environment available for interactive and programmatic use with the NonStop operating
system. Processes that run in the OSS environment use the OSS API. Interactive users of the OSS
environment use the OSS shell for their command interpreter. Compare to Guardian.

OSS
See Open System Services (OSS).

P
package

A collection of related classes; for example, JDBC.

persistence
A property of a programming language where created objects and variables continue to exist and
retain their values between runs of the program.

portability

The ability to transfer programs from one platform to another without reprogramming. A
characteristic of open systems. Portability implies use of standard programming languages such as
C.

Portable Operating System Interface X (POSIX)
A family of interrelated interface standards defined by ANSI and Institute for Electrical and
Electronic Engineers (IEEE). Each POSIX interface is separately defined in a numbered
ANSI/IEEE standard or draft standard. The standards deal with issues of portability,
interoperability, and uniformity of user interfaces.

POSIX
See Portable Operating System Interface X (POSIX).

protocol
A set of formal rules for transmitting data, especially across a network. Low-level protocols define
electrical and physical standards, bit-ordering, byte-ordering, and the transmission, error detection,
and error correction of the bit stream. High-level protocols define data formatting, including the
syntax of messages, the terminal-to-computer dialogue, character sets, sequencing of messages,
and so on.

R
_RLD_LIB_PATH

The location where the Java VM and other Java programs search for the TNS/E jdbcMx PIC file.
Set _RLD_LIB_PATH explicitly or with the _RLD_LIB_PATH environment variable.

RDF
See Remote Duplicate Database Facility (RDF).

Remote Duplicate Database Facility (RDF)
The HP software product that does the following:

Assists in disaster recovery for online transaction processing (OLTP) production databases❍

Monitors database updates audited by the TMF subsystem on a primary system and applies
those updates to a copy of the database on a remote system

❍

S
scalability

The ability to increase the size and processing power of an online transaction processing system by
adding processors and devices to a system, systems to a network, and so on, and to do so easily
and transparently without bringing systems down. Sometimes called expandability.

server
One of the following:

An implementation of a system used as a stand-alone system or as a node in an Expand
network.

❍

The hardware component of a computer system designed to provide services in response to
requests received from clients across a network. For example, NonStop system servers
provide transaction processing, database access, and other services.

❍

A process or program that provides services to a client. Servers are designed to receive
request messages from clients; perform the desired operations, such as database inquiries or
updates, security verifications, numerical calculations, or data routing to other computer
systems; and return reply messages to the clients.

❍

set() method
A method used to modify a data item. For example, the
SQLMPConnection.setAutoCommit() method changes the transaction mode of the JDBC
driver's connection to an SQL/MP or SQL/MX database. Compare to get() method.

SQL context
An instantiation of the SQL executor with its own environment.

SQLJ
Also referred to as SQLJ Part 0, the "Database Language SQL—Part 10: Object Language
Bindings (SQL/OLB)" part of the ANSI SQL-2002 standard that allows static SQL statements to
be embedded directly in a Java program.

SQL/MP
See HP NonStop SQL/MP.

SQL/MX
See HP NonStop SQL/MX.

statement pooling
A framework for pooling PreparedStatement objects.

stored procedure
A procedure registered with SQL/MX and invoked by SQL/MX during execution of a CALL
statement. Stored procedures are especially important for client/server database systems because
storing the procedure on the server side means that it is available to all clients. And when the
procedure is modified, all clients automatically get the new version.

stored procedure in Java (SPJ)
A stored procedure whose body is a static Java method.

stub
One of the following:

A dummy procedure used when linking a program with a run-time library. The stub need
not contain any code. Its only purpose is to prevent "undefined label" errors at link time.

❍

A local procedure in a remote procedure call (RPC). A client calls the stub to perform a task,
not necessarily aware that the RPC is involved. The stub transmits parameters over the
network to the server and returns results to the caller.

❍

T
thread

A task that is separately dispatched and that represents a sequential flow of control within a
process.

threads

The nonnative thread package that is shipped with Sun Microsystems JDK.

throw

Java keyword used to raise an exception.

throws

Java keyword used to define the exceptions that a method can raise.

TMF
See HP NonStop Transaction Management Facility (TMF)

transaction
A user-defined action that a client program (usually running on a workstation) requests from a
server.

Transaction Management Facility (TMF)
A set of HP software products for NonStop systems that assures database integrity by preventing
incomplete updates to a database. It can continuously save the changes that are made to a database
(in real time) and back out these changes when necessary. It can also take online "snapshot"
backups of the database and restore the database from these backups.

trigger
A trigger defines a set of actions that are executed automatically whenever a delete, insert, or
update operation occurs on a specified base table.

U
Unicode

A character-coding scheme designed to be an extension of ASCII. By using 16 bits for each
character (rather than ASCII's 7), Unicode can represent almost every character of every language
and many symbols (such as "&") in an internationally standard way, eliminating the complexity of
incompatible extended character sets and code pages. Unicode's first 128 codes correspond to
those of standard ASCII.

uniform resource locator (URL)
A draft standard for specifying an object on a network (such as a file, a newsgroup, or, with JDBC,
a database). URLs are used extensively on the World Wide Web. HTML documents use them to
specify the targets of hyperlinks.

URL

See uniform resource locator (URL).

V
virtual machine (VM)

A self-contained operating environment that behaves as if it is a separate computer. See also Java
virtual machine and Java Hotspot virtual machine.

W
World Wide Web (WWW)

An Internet client-server hypertext distributed information retrieval system that originated from the
CERN High-Energy Physics laboratories in Geneva, Switzerland. On the WWW everything
(documents, menus, indexes) is represented to the user as a hypertext object in HTML format.
Hypertext links refer to other documents by their URLs. These can refer to local or remote
resources accessible by FTP, Gopher, Telnet, or news, as well as those available by means of the
HTTP protocol used to transfer hypertext documents. The client program (known as a browser)
runs on the user's computer and provides two basic navigation operations: to follow a link or to
send a query to a server.

WWW
See World Wide Web (WWW).

A B C D E F G H I J L M N O P Q R S T U W X Y Z

Home | Contents | Index | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Glossary | Prev

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
Abbreviations used in this document
Accessing NonStop SQL databases with JDBC/MX driver
Admin Utility
 See JDBC/MX Lob Admin Utility
ANSI
API packages
Application servers
 connection pooling
 tracing
Architecture
 JDBC/MX driver
 LOB support
ASCII data
 inserting by using the PreparedStatement interface
 reading from a CLOB column
 writing by using the Clob interface
Audience for this document
Autocommit mode
 application migration issues
 disabling autocommit mode
 transaction boundaries and

B
Base table
 See Tables
Batch processing for prepared statements
 migration considerations
Batch updates
batchBinding property

BLOB (Binary Large Object)
 accessing, sample program
 creating tables for
 data type
 deleting data
 limitations
 managing tables for
 reading data
 storing data
 support architecture
 updating data
 working with
Blob interface
 inserting BLOB columns
 reading binary data from a CLOB column
 using
Blob objects
 access considerations
 replacing
blobTableName property
Blocking Java VM process
 See Nonblocking JDBC/MX

C
Catalog, default
Character set encodings
 ISO88591 property
 migration considerations
CLASSPATH environment variable
CLOB (Character Large Object)
 accessing, sample program
 creating tables for
 data type
 deleting data
 limitations
 managing tables for
 reading data
 storing data
 support architecture
 updating data

 working with
Clob interface
 inserting CLOB columns
 reading ASCII data from a CLOB column
 using
Clob objects
 access considerations
 inserting by using the setClob method
clobTableName property
Compliance
Connecting to SQL/MX
 using the DataSource interface
 using the DriverManager class
Connection pooling
 by an application server
 sample program
 using the basic DataSource API
 with the DriverManager class
Control Query command
Conventions, notation
Creating tables
Cursors, holdable

D
Data locators
 reserving
 setting the reserveDataLocators property
DataSource interface
 connection pooling
 CreateDataSource sample program
 enabling tracing
dataSourceName property

Data types
 for LOB columns
 limitations of CLOB and BLOB
 support of
Default catalog and schema
Deleting
 BLOB data
 CLOB data

Demonstration programs
 of JDBC trace facility
 summary
Deprecated property names
Deviations from JDBC in JDBC/MX 3.1
 batch updates
 method execution differences
 updateable result set
Document structure
DriverManager class
 connection pooling
 connection sample program
 enabling tracing
Drivers
 See JDBC/MX Driver for NonStop SQL/MX
Dropping triggers

E
EMPTY_CLOB() function
 inserting BLOB columns
 inserting CLOB columns
 replacing Blob objects
 replacing Clob objects
enableLog property
encodings support
 migration considerations
Error messages
Extensions to JDBC
 internationalization
 interval data type

F
Features in the JDBC/MX driver
 deviations from JDBC
 extensions to JDBC
 unsupported features
Fetch size
File encoding
 migration considerations

File locations
 installation
 migration considerations
Floating point support

G
getConnection method
 See Connecting programs to databases

H
Help listing, JDBC/MX Lob Admin Utility
Holdable cursors
 JDBC/MX support
 sample program
HP extensions, JDBC 3.0 API

I
IEEE floating point
idMapFile property
Input stream
 Blob and Clob access considerations
 reading ASCII data from a CLOB column
 reading binary data from a BLOB column
Inserting
 See also Storing
 BLOB columns
 Blob objects by using the setBlob method
 CLOB columns
 Clob objects by using the setClob method
Installation, verifying
ISO88591 character set
ISO88591 property

J
java command-line options
 enabling tracing

 jdbcmx. property name prefix
 setting JDBC/MX driver properties
Java Database Connectivity
 See JDBC/MX Driver for NonStop SQL/MX
 See also JDBC API, 3.0
JDBC API, 3.0
JDBC/MX Driver for NonStop SQL/MX
 API packages
 architecture
 compliance
 error messages
 file locations
 file locations, migration considerations
JDBC/MX API packages
JDBC/MX Driver
 See JDBC/MX Driver for NonStop SQL/MX
JDBC/MX Lob Admin Utility
 help listing
 java_options
 prog_options
 running
 table_name
JDBC Trace Facility
 demonstration programs
 output format
 for application servers
 by loading the trace driver within the program
 tracing using a wrapper data source
 tracing using the DataSource implementation
 tracing using the DriverManager class
 tracing using the java command
 tracing using the system.setProperty method
jdbcmx. property name prefix
JdbcRowSet implementation
JdbcRowSet sample program

K
KANJI character set
KSC5601 character set

L
Limitations, CLOB and BLOB data types
LOB (Large Object)
 See also BLOB
 See also CLOB
 managing tables for
 working with
 support architecture
Lob Admin Utility
 See JDBC/MX Lob Admin Utility
LOB table
 creating
 deleting LOB data
 format
 reserving data locators
 setting column type
 setting the reserveDataLocators property
 table name properties
locatorsUpdateCopy method
 for BLOB data
 for CLOB data

M
Managing tables
 using the JDBC/MX Lob Admin Utility
maxPoolSize property
maxStatements property
MBCS
 See Multibyte character set (MBCS) data
Messages
Migrating applications
minPoolSize property
mploc property
Module File Caching
 Benefits
 Known Issues
 Troubleshooting
Multibyte character set (MBCS) data

 character set encodings
 inserting by using the PreparedStatement interface
 reading from a CLOB column
 writing by using the Clob interface
 supported character sets
Multithreaded
 Java application
 sample program
MXCI, using

N
nametype property, migration
Nonblocking JDBC/MX
NonStop SQL/MX documents
Notation conventions
NULL value

O
Objects
 See SQL objects
Orphan LOB data

P
Performance
 ResultSet processing, controlling the performance
 setting batch processing for prepared statements
Programs, sample
 See Sample programs
Prepared statements
 batch processing
 batch processing migration considerations
PreparedStatement interface
 inserting a BLOB column
 inserting a CLOB column
 used in sample programs for LOB access
Properties
 additional JDBC/MX properties
 DataSource object

 deprecated property names
 DriverManager class
 JDBC/MX driver properties
 jdbcmx. property name prefix
 LOB table name
 running the JDBC/MX Lob Admin Utility
 setting batch processing for prepared statements
 setting for the LOB table
 setting in the command line
 setting the reserveDataLocators property

R
_RLD_LIB_PATH environment variable
Reader
 Blob and Clob access considerations
 reading Unicode data from a CLOB column
Reading
 binary data
 CLOB data
Related reading
 JDBC/MX Driver for NonStop SQL/MX API Reference
 NonStop system computing documents
 Sun Microsystems documents
Replacing
 Blob objects
 Clob objects
reserveDataLocators property
Result sets in holdable cursors
ResultSet processing, controlling performance of
Row count array, migration considerations

S
Sample programs
 accessing BLOB data
 accessing CLOB data
 summary of demos
Schema, default
setClob method

setLogWriter method
SHORTANSI names

SPJs
 See Stored procedures
SQL conformance by JDBC/MX
SQL context management
SQL tables
sqlmx_nowait property
SQLException
 for maxPoolSize property
 for updatable result set
 for unsupported features
 JDBC error messages
Statement pooling
 controlling the performance of ResultSet processing
 feature description
 sample program
Stored procedures
Storing
 BLOB data
 CLOB data

T
Tables
 See also LOB table
 base
 creating
 Guardian location
 managing for LOB support
 specifying to JDBC/MX Lob Admin Utility
Tandem floating point
Threads, blocking
TNS floating point
traceFile property
traceFlag property
Tracing
 See JDBC Trace Facility
transactionMode property
Transactions
 application migration

 autocommit mode and transaction boundaries
 Blob and Clob access
 disabling autocommit mode
 modes
 support of
Triggers
 creating
 dropping
 example creating
 using
Troubleshooting
 connection pooling
 statement pooling

U
UCS2 character set
Unicode character set
Unicode data
 inserting by using the PreparedStatement interface
 LOB tables, creating
 reading Unicode data from a CLOB column
 writing by using the Clob interface
updateBLOB method
updateCLOB method
Updating
 BLOB data
 CLOB data
Utilities
 See JDBC/MX Lob Admin Utility
 See JDBC Trace Utility

V
Verifying installation

W
Writer
 Blob and Clob access considerations

 Unicode data to a Clob
Writing
 See also Storing
 ASCII or Unicode data to CLOB columns

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Home | Contents | Glossary | Prev

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

	HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference
	Contents
	About This Document
	Introduction to JDBC/MX
	Installing and Verifying JDBC/MX
	Accessing SQL Databases with SQL/MX
	Working with BLOB and CLOB Data
	Managing the SQL/MX Tables for BLOB and CLOB Data
	Module File Caching (MFC)
	JDBC/MX Compliance
	JDBC Trace Facility
	Migration
	Messages
	Appendix A. Complete Examples
	Glossary
	Index

