O]

inwvenmnt

a:u-';;t'lhb-

Contents

HP JDBC/MX 5.0 Driver for SQL/MX
Programmer's Reference

Abstract

This document describes how to use the IDBC/M X Driver for NonStop SQL/MX, atype 2 driver,
on HP Integrity NonStop™ servers. The IDBC/MX driver provides HP NonStop Server for Java
applications with JIDBC access to HP NonStop SQL/MX. Where applicable, the IDBC/M X driver
conforms to the standard JDBC 3.0 API from Sun Microsystems, Inc.

Product Version

JDBC/MX Driver for NonStop SQL/MX H50
Supported Hardware

All HP Integrity NonStop NS-series servers
Supported Release Version Updates (RVUS)

This publication supports J06.03 and all subsequent J-series RV Us and H06.04 and all subsequent
H-series RV Us, until otherwise indicated by its replacement publications.

Part Number Published
540388-004 August 2009
Document History
Part Number Product Version Published
529777-001 \;EOIIB\(/Zggrlver for SQL/MX (JDBC/MX) H10 May 2005

540388-001 JDBC/MX Driver for NonStop SQL/MX H50 January 2006
540388-002 JDBC/MX Driver for NonStop SQL/MX H50 November 2007
540388-003 JDBC/MX Driver for NonStop SQL/MX H50 November 2008

http://welcome.hp.com/country/us/en/welcome.html

540388-004 JDBC/MX Driver for NonStop SQL/MX H50 August 2009

Legal Notices
© Copyright 2009 Hewlett-Packard Development Company L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software

Documentation, and Technical Data for Commercial ltems are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Export of this documentation may require authorization from the U.S. Department of
Commerce.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Intel, Itanium, Pentium, and Celeron are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java is a U.S. trademark of Sun Microsystems, Inc.

Motif, OSF/1, UNIX, X/Open, and the "X" device are registered trademarks, and IT DialTone
and The Open Group are trademarks of The Open Group in the U.S. and other countries.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Matif, and Motif are trademarks
of the Open Software Foundation, Inc.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE OSF
MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential
damages in connection with the furnishing, performance, or use of this material.

© 1990, 1991, 1992, 1993 Open Software Foundation, Inc. This documentation and
the software to which it relates are derived in part from materials supplied by the
following:

© 1987, 1988, 1989 Carnegie-Mellon University. © 1989, 1990, 1991 Digital
Equipment Corporation. © 1985, 1988, 1989, 1990 Encore Computer Corporation.
© 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990, 1991
Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992
International Business Machines Corporation. © 1988, 1989 Massachusetts
Institute of Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft

Corporation. © 1987, 1988, 1989, 1990, 1991, 1992 SecureWare, Inc. © 1990,
1991 Siemens Nixdorf Informationssysteme AG. © 1986, 1989, 1996, 1997 Sun
Microsystems, Inc. © 1989, 1990, 1991 Transarc Corporation.

This software and documentation are based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. OSF
acknowledges the following individuals and institutions for their role in its
development: Kenneth C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed
James, Symmetric Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983,
1985, 1986, 1987, 1988, 1989 Regents of the University of California.

Contents

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Devel opment Company L.P. All rights reserved.

O]

inwvenmnt

Home

JDBC/MX 5.0 Driver for SQL/MX
Programmer's Reference

Contents

o About This Document
o New and Changed |nformation
o s This Document for Y ou?

o Document Structure

o Printing This Document

0 Related Reading
= NonStop System Computing Documents
= Sun Microsystems Documents

o Notation Conventions

o Abbreviations

« Introduction to JDBC/MX Driver
o JDBC/MX Architecture
o JDBC API Packages
o Sample Programs Summary

« Ingtallingand Verifying JDBC/M X
0 Installation Requirements

o JDBC/MX Driver File Locations
Verifying the JDBC/MX Driver
Setting CLASSPATH
Settingthe RLD LIB PATH

O

O

0O

o Accessing SQL Databaseswith SQL/M X
o Connection to SOL/M X
= Connection Using the DriverM anager Class

= Connection Using the DataSource I nterface
o JdbcRowSet Implementation
o JDBC/MX Properties

» Default Catalog and Schema

= LOB Table Name Properties

n | SO88591 Property

= mploc Property

s MmaxStatements Property

= MinPool Size Property

» maxPool Size Property

= transactionMode Property

s Setting Propertiesin the Command Line

o Transactions
= Autocommit Mode and Transaction Boundaries

= Disabling Autocommit Mode
o Stored Procedures
= Limitations

o SOL Context Management
0 Holdable Cursors
o Connection Pooling

= Connection Pooling by an Application Server
= Connection Pooling Using the Basic DataSource API

= Connection Pooling with the DriverM anager Class

0 Statement Pooling

s Guidelinesfor Statement Pooling

= Controlling the Performance of ResultSet Processing
= Troubleshooting Statement Pooling

o Using Additional JDBC/MX Properties
= BatchUpdate Exception handling |mprovements

= Statement Level Atomicity
= Managing Nonblocking JDBC/M X
s Setting Batch Processing for Prepared Statements

s Setting the reserveDatal_ocators Property
o Supported Character Set Encodings

Working with BLOB and CL OB Data

o Architecture for LOB Support

o Setting Properties for the LOB Table
= Specifying the LOB Table
= Reserving Data L ocators

o Storing CLOB Data
= Inserting CLOB Columns by Using the Clob Interface
= Writing ASCII or Unicode Datato a CLOB Column
= Inserting CL OB Data by Using the PreparedStatement Interface
= Inserting a Clob Object by Using the setClob Method

o Reading CLOB Data
= Reading ASCII Datafrom a CLOB Column
= Reading Unicode Datafrom a CLOB Column

o Updating CLOB Data
= Updating Clob Objects by Using the updateClob Method
= Replacing Clob Objects

o Deleting CLOB Data

o Storing BLOB Data
= Inserting a BLOB Column by Using the Blob Interface
= Writing Binary Datato a BLOB Column
= Inserting a BLOB Column by Using the PreparedStatement I nterface
= Inserting a Blob Object by Using the setBlob Method

0 Reading Binary Datafrom a BLOB Column

O

Updating BLOB Data
= Updating Blob Objects by Using the updateBlob Method
= Replacing Blob Objects

Deleting BLOB Data

o NULL and Empty BLOB or CLOB Value

o Transactions Involving Blob and Clob Access

0 Access Considerations for Clob and Blob Objects

0O

« Managingthe SQL/M X Tablesfor BLOB and CL OB Data
0 Creating Base Tables that Have LOB Columns
= DataTypesfor LOB Columns
= Using MXCI to Create Base Tables that Have LOB Columns
= Using JDBC Programs to Create Base Tables that Have LOB Columns
o Managing LOB Data by Using the JIDBC/MX Lob Admin Utility
= Running the JIDBC/MX Lob Admin Utility
= Help Listing from the IDBC/MX Lob Admin Utility
o Using SQL/MX Triggersto Delete LOB Data
o Limitations of the CLOB and BLOB Data Types

« ModuleFile Caching
o Design of MFC
o Enabling MFC
o Limitations of MFC
0 Troubleshooting MFC

« JDBC/MX Compliance
0 Unsupported Features
o Deviations
= Updatable Result Set
= Batch Updates
o HP Extensions

» Interval Data Type

= Internationalization

o SOL Conformance

SQL Scaar Functions
Convert Function
JDBC Data Types
Floating-Point Support
SQL Escape Clauses

o JDBC Trace Facility

O

O

O

Tracing Using the DriverManager Class

Tracing Using the DataSource | mplementation

Tracing Using the java Command

Tracing Using the system.setProperty Method

Tracing by Loading the Trace Driver Within the Program

Tracing Using a Wrapper Data Source

Enabling Tracing for Application Servers

Trace-File Output Format
Logaing SOL Statement IDs and Corresponding JDBC SOL Statements
= Specifying Statement-ID L ogging

s Properties for Statement-1D Logging
s Statement-ID L og Output
JDBC Trace Facility Demonstration Program

o Migration

O

O

O

Transactions
nametype Property

Deprecated Property-Name Specification

Deprecated Methods According to the J2SE 5.0 AP

Row Count Array of the PreparedStatement.executeBatch M ethod
Using Character Encoding Sets and SQL Databases

Connection sharing across multiple threads

L ocation Change for Installed Files

Version of NonStop Server for Java

Release of NonStop SQL/MX

Migrating to TNS/E Systems

Migrating from JDBC/MP Applications

M essages
o Messages from the Java Side of the IDBC/M X Driver

0 Messages from the JNI Side of the IDBC/M X Driver

Appendix A. Sample Programs Accessing CLOB and BL OB Data
0 Sample Program Accessing CLOB Data
o Sample Program Accessing BLOB Data

Glossary
I ndex

List of Examples

List of Figures
List of Tables

Home

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Devel opment Company L.P. All rights reserved.

file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/loe.htm
file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/lof.htm
file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/lot.htm

Home | Contents | Index | Glossary | Prev | Next

About This Document

This section explains these subjects:
« New and Changed Information

o IsThis Document for Y ou?

« Document Structure

« Printing This Document
» Related Reading

« Notation Conventions
« Abbreviations

New and Changed Information

Changes added to thisrevision - part number 540388-004:
« Added information on Module File Caching (Module File Caching).

Changes added to this revision - part number 540388-003:
« Supported release statements have been updated to include J-series RV Us.
« Added information about result sets support under Stored Procedures.

« Added unsupported features of the stored procedures in Java under Limitations.

Changes added to this revision - part number 540388-002:
« Added these properties under Setting Propertiesin the Command Line and Using Additional JDBC/M X

Properties.
o BatchUpdate Exception handling | mprovements

0 Statement Level Atomicity
» Updated information about using JDBC connection under Managing Nonblocking JDBC/MX.

Is This Document for You?

This IDBC/MX Driver for NonStop SQL/MX Programmer's Reference is for experienced Java programmers who want
to use the JDBC API to access SQL databases with NonStop SQL/M X.

This document assumes you are already familiar with NonStop Server for Java 5—the Javaimplementation for usein
enterprise Java applications on HP Integrity NonStop servers. NonStop Server for Java 5 is based on the reference Java
implementation for Solaris, licensed by HP from Sun Microsystems, Inc. The NonStop Server for Javais a conformant
version of a Sun Microsystems JDK as described in the NonStop Server for Java Programmer's Reference.

This document also assumes that you are already familiar with the JDBC API from reading literature in the field.

Document Structure

This document isaset of linked HTML files (Web pages). Each file corresponds to one of the sections listed and

described in the following table.

Document Sections

Section

Description

Table of Contents

Shows the structure of this document in outline form. Each section
and subsection nameis alink to that section or subsection.

About This Document

Describes the intended audience and the document structure, lists
related documents, explains notation conventions and abbreviations,
and invites comments.

Introduction to JDBC/M X Driver

Describes the JIDBC/MX driver architecture and the API package.

Installing and Verifying
JDBC/MX

Describes where to find information about the installation
requirements and explains how to verify the JDBC/MX driver the
installation.

Accessing SOL Databases with
SOL/MX

Explains how to access SQL databases with SQL/MX from the
NonStop Server for Java 4 by using the JDBC/MX driver.

Working with BLOB and CLOB
Data

Describes working with BLOB and CLOB datain JDBC applications
using the standard interface described in the JDBC 3.0 API
specification.

M anaging the SOL/M X Tables for
BLOB and CLOB Data

Describes the database management (administrative) tasks for adding
and managing the tables for BLOB and CLOB data. The JDBC/MX
driver uses SQL/MX tables in implementing support for BLOB and
CL OB data access.

Module File Caching (MFC)

Describes the Module File Caching (MFC) feature of the IDBC/ MX
T2 Driver.

JDBC/MX Compliance

Explains how JDBC/MX differs from the Sun Microsystems JDBC
standard because of limitations of SQL/MX and the IDBC/MX driver.

JDBC Trace Facility

Explains how to use the JDBC trace facility and how to log SQL
statement IDs and corresponding JDBC SQL statements.

Migration Describes any code changes needed by applications to migrate from
using an earlier JIDBC/MX driver PVU. to H50.
Messages Lists messages in numerical SQLCODE order. The descriptions

include the SQLCODE, SQL STATE, message-text, the cause, the
effect, and recovery information.

Appendix A. Sample Programs Shows sample program accessing CLOB and BLOB data.
Accessing CLOB and BLOB Data

Glossary Defines many terms that this document uses.

I ndex Lists this document's subjects al phabetically. Each index entry isa
link to the appropriate text.

List of Examples Lists the examplesin this document. Each example nameisalink to
that example.

List of Figures Liststhe figuresin this document. Each figure name is alink to that
figure.

List of Tables Liststhe tablesin this document. Each table nameisalink to that
table.

Printing This Document

Although reading this document on paper sacrificesthe HTML links to other documentation that you can use when
viewing this document on your computer screen, you can print this document one file at atime, from either the
NonStop Technical Library or your Web browser. For alist of the sections that make up this document, see

Document Structure.

Note: Some browsers require that you reduce the print size to print all the text displayed on the screen.

Related Reading

For background information about the features described in this guide, see the following documents:

o HP NonStop JDBC/MX Driver for NonStop SQL/MX API Reference (javadoc information about the IDBC/MX
APlIs available in the NonStop Technical Library at docs.hp.com)

o NonStop System Computing Documents

¢ Sun Microsystems Documents

NonStop System Computing Documents

The following NonStop system computing documents are available in the NonStop Technical Library at docs.hp.com.

« Additional Java-Oriented Products. These documents are available in the Java category under Independent
Productsin the NonStop Technical Library at docs.hp.com.

0 NonStop Server for Java Programmer's Reference
This documentation describes NonStop Server for Java 5, a Java environment that supports compact,
concurrent, dynamic and portable programs for the enterprise server.

o NonStop Server for Java Tools Reference Page

file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/loe.htm
file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/lof.htm
file:///D|/Poonam/RVU/H06.19/Offcycle/JDBC_MX/540388.004/misc/source/lot.htm

This documentation consists of atitle page, atable of contents, and the Tools Reference Pages for
NonStop Server for Java 5.

0 NonStop Server for Java APl and Reference

This documentation contains the documentation for these packages:
= comtandem os
= comtandem tnf
= comtandemutil
0 JToolkit for NonStop Servers Programmer's Reference
This documentation describes the JToolkit for NonStop Servers, a set of additional features that work in
conjunction with NonStop Server for Java 5.
0 JDBC driver for NonStop SQL/MP Programmer's Reference
This documentation describes how to use the JIDBC Driver for SQL/MP (JDBC/MP), which provides Java
applications with access to HP NonStop SQL/MP.
o HP NonStop JDBC Type 4 Driver Programmer's Reference
The HP NonStop JDBC Type 4 documentation describes the JIDBC Type 4 driver that allows Java

programmers to remotely develop applications deployed on PCs to access NonStop SQL databases
through NonStop SQL/MX.

« Inspect Manual

Documents the Inspect interactive symbolic debugger for HP NonStop systems. Y ou can use Inspect to debug
Java Native Interface (JNI) code running in a Java virtual machine (VM).

o SQL/MX Documents

NonStop Server for Java 5 includes JDBC drivers that enable Java programs to interact with NonStop SQL
databases with SQL/MX.

0 SQL/MX Programming Manual for Java
Explains how to use embedded SQL in Java programs (SQL J programs) to access NonStop SQL
databases with SQL/MX.

0 SQL/MX Guideto Stored Proceduresin Java

Describes how to develop and deploy stored procedures in Java (SPJs) in SQL/MX.
0 SQL/MX Quick Start

Describes basic techniques for using SQL in the SQL/MX conversational interface (MXCI). Also includes
information about installing the sample database.

0 SQL/MX Comparison Guide for SQL/MP Users

Compares SQL/MP and SQL/MX.
0 SQL/MX Installation and Management Guide

Describes how to install and manage SQL/MX on a NonStop server.
0 SQL/MX Glossary

Explains the terminology used in SQL/MX documentation.
0 SQL/MX Query Guide

Explains query execution plans and how to write optimal queriesfor SQL/MX.

0 SQL/MX Reference Manual

Describes SQL/MX language elements (such as expressions, predicates, and functions) and the SQL
statements that can be run in MXCI or in embedded programs. Also describes MXCl commands and
utilities.

0 SQL/MX Messages Manual
Describes SQL/M X messages.

0 SQL/MX Programming Manual for C and COBOL

Describes the SQL/M X programmatic interface for ANSI C and COBOL.
0 SQL/MX Data Mining Guide

Describes the SQL/MX data structures and operations needed for the knowledge-discovery process.
0 SQL/MX Queuing and Publish/Subscribe Services
Describes how SQL/MX integrates transactional queuing and publish/subscribe services into its database
infrastructure.
o TMF Documents
0 TMF Introduction

Introduces the concepts of transaction processing and the features of the HP NonStop Transaction
Management Facility (TMF) product.

o TMF Application Programmer's Guide

Explains how to design requester and server modules for execution in the TMF programming environment
and describes system procedures that are helpful in examining the content of TMF audit trails.

Sun Microsystems Documents

The following documents were available on Sun Microsystems Web sites when the JIDBC/M X driver was rel eased.

Note: Sun Microsystems Java 2 Platform Standard Edition JDK 5.0 Documentation is provided on the
NonStop Server for Java 5 product distribution CD in an executable file for your convenience in case you
cannot get Java documentation from the Sun Microsystems Web sites. The links to Sun Java
documentation in the JDBC/M X driver documentation go to the Sun Microsystems Web sites, which
provide more extensive documentation than JDK 5.0. HP cannot guarantee the availability of the JDK 5.0
documentation on the Sun Web sites. Also, HP is not responsible for the links or content in the
documentation from Sun Microsystems.

« JDBC 3.0 Specification, available for downloading from Sun Microsystems
(http://java. sun. com product s/ jdbc/ downl oad. ht m).
« JDBC API Documentation, includes linksto APIs and Tutorials
(http://java. sun.com j2se/ 1. 5. 0/ docs/ gui de/jdbc/i ndex. ht m)
« JDBC Data Access API general information
(http://java. sun. com products/jdbc/index. htm)
« JDBC Data Access APl FAQsfor JDBC 3.0
(http://java. sun. conl product s/ jdbc/faq. htm)
« JDBC API Javadoc Comments
0 CoreJDBC 3.0 API in the java.sgl package

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/index.html
http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/jdbc/faq.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/package-summary.html

(http://java.sun.conlj2se/ 1. 5. 0/ docs/ api/javal sql / package- summary. ht m)

0 Optional JIDBC 3.0 API in the javax.sgl package
(http://java.sun.con j2se/ 1. 5. 0/ docs/ api/javax/ sql / package- sunmary. htm)

Notation Conventions

Bold Type
Bold type within text indicates terms defined in the Glossary. For example:
abstract class
Computer Type

Comput er type letterswithin text indicate keywords, reserved words, command names, class names, and
method names; enter these items exactly as shown. For example:

nyfile.c
Italic Computer Type
Italic conputer type lettersin syntax descriptions or text indicate variable items that you supply. For
example:
pat hnanme
[] Brackets
Brackets enclose optional syntax items. For example:
j db [options]
A group of items enclosed in bracketsis alist from which you can choose one item or none. Items are separated
by vertical lines. For example:
where [threadl Dl all]
{} Braces
A group of items enclosed in bracesis alist from which you must choose one item. For example:
-c identity {true|false}
| Vertical Line
A vertical line separates alternativesin alist that is enclosed in brackets or braces. For example:
where [threadl Dl all]
... Ellipsis

An dlipsisimmediately following a pair of brackets or braces indicates that you can repeat the enclosed
sequence of syntax items any number of times. For example:

print {objectlD| obj ect Nane}
An ellipsisimmediately following a single syntax item indicates that you can repeat that syntax item any number
of times. For example:
dunp objectID ...
Punctuation
Parentheses, commas, equal signs, and other symbols not previously described must be entered as shown. For
example:
-D propertyName=newVal ue
Item Spacing
Spaces shown between items are required unless one of the itemsis a punctuation symbol such as a parenthesis

http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/package-summary.html

or comma. If there is no space between two items, spaces are not permitted. In the following example, spaces are
not permitted before or after the period:

subvol une- nane. fil enane
Line Spacing
If the syntax of acommand istoo long to fit on asingle line, each line that isto be continued on the next line
ends with abackslash (\) and each continuation line begins with a greater-than symbol (>). For example:

fusr/bin/c89 -c -g -1 /usr/tandenijava/include \
> -| /usr/tandentjaval/include/oss -1 . \
> -\Wext ensi ons - D _XOPEN_SOURCE_EXTENDED=1 j nativeOl.c

Abbreviations

ANSI. American National Standards Institute
API. application program interface

ASCII. American Standard Code for Information Interchange
BLOB. Binary Large OBject

CD. compact disk

CLOB. Character Large OBject

COBOL. Common Business-Oriented Language
CPU. central processing unit

DCL. Data Control Language

DDL. Data Definition Language

DML. Data Manipulation Language

HTML. Hypertext Markup Language

HTTP. Hypertext Transfer Protocol

|EC. International Electrotechnical Committee
|SO. International Organization for Standardization
JAR. Java Archive

JCK. Java Conformance Kit

JFC. Java Foundation Classes

JDBC. Java Database Connectivity

JDBC/MP. JDBC Driver for SQL/MP
JDBC/MX. JDBC Driver for NonStop SQL/MX
JNDI. Java Naming and Directory Interface

JNI. Java Native Interface

JRE. Java Run-time Environment

LAN. local area network

LOB. Large OBject

MBCS. Multibyte Character Set

MFC. Module File Caching

NonStop TS/MP. NonStop Transaction ServicessMP
OSS. Open System Services

POSIX. portable operating system interface x

RISC. reduced instruction set computing

RVU. Release Version Update

SPJ. stored procedure in Java

SQLJ. embedded SQL in Java programs

SQL/MP. Structured Query Language/MP

SQL/MX. Structured Query Language/M X

TCP/IP. Transmission Control Protocol/Internet Protocol
TMF. Transaction Management Facility

URL. uniform resource locator

VM. virtual machine

WWW. World Wide Web

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Devel opment Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Introduction to JIDBC/MX Driver

The HP IDBC/MX Driver for NonStop SQL/MX implements the JDBC technology that conformsto the
standard JDBC 3.0 Data Access API. ThisJDBC/MX driver enables Java applications to use HP

NonStop SQL/M X to access NonStop SQL databases.

For more information on the JIDBC APIs associated with the IDBC/M X implementation, see Sun
Microsystems Documents earlier in this document. To obtain detailed information on the standard JIDBC

API, you should download the JIDBC API documentation provided by Sun Microsystems
(http://java.sun.com/products/jdbc/download.html).

The IDBC/MX driver together with HP NonStop Server for Java 5 is a Java environment that supports
compact, concur rent, dynamic, portable programs for the enterprise server. The JDBC/MX driver

requires NonStop Server for Java 5 and SQL/M X, which both require the HP NonStop Open System
Services (OSS) environment. The NonStop Server for Java 5 uses the HP NonStop operating system to
add the NonStop system fundamentals of scalability and program per sistence to the Java environment.

This section explains these subjects:
« JDBC/MX Architecture

« JDBC API Packages
o Sample Programs Summary

JDBC/MX Architecture

The IDBC/MX driver isaType 2 driver; it employs proprietary native APIsto use SQL/MX to access
NonStop SQL databases. The native APl of SQL/MX cannot be called from client systems. For this
reason, the JIDBC/MX driver runs on NonStop serversonly.

The IDBC/MX driver is best suited for athree-tier model. In the three-tier model, commands are sent to
amiddletier of services, which then sends the commands to the data source. The data source processes
the commands and sends the results back to the middle tier, which then sends them to the user. The
middle tier makes it possible to maintain control over access and the kinds of updates that can be made to
corporate data. Another advantage isthat it ssimplifies the deployment of applications. Finaly, in many
cases, the three-tier architecture can provide performance advantages.

The following figureillustrates a three-tier architecture for database access.
Architecture of the JDBC/M X Driver

http://java.sun.com/products/jdbc/download.html

Java Applet
ar
HTML Browser

:

Application Server
(Java)

JOBC

coTm2E0D

JDBC API Packages

The IDBC/MX API packages are shipped with the IDBC/MX driver software. For the AP
documentation, see the IDBC/MX Driver for NonStop SQL/MX for H50 API Reference in the H-series
library in the NonStop Technical Library at docs.hp.com.

Thej ava. sql andj avax. sql packages areincluded as part of Java 2, Standard Edition (J2SE) SDK
1.4.2 and, therefore, are available with the core APIs delivered with the NonStop Server for Java 5
product.

Sample Programs Summary

The IDBC/MX driver includes sample Java programs that illustrate the features of the product. The
programs are described in the following table.

’ Sample Program ’ Comments

sanpl eJdbcM. | ava

[lustrates loading the JIDBC/M X driver and obtaining a
JDBC connection using the Dr i ver Manager interface.

Cr eat eDat aSour ce. j ava
and Test Dat aSour ce. | ava

Illustrates making a connection by using the Dat aSour ce
interface, thereby avoiding embedding driver-specific
codes in the Java programs.

Cr eat eDat aSour ce. j ava createsthe
SQLMXDat aSour ce object and registers the object with
the Java Naming and Directory Interface (JNDI).

Mul ti ThreadTest . j ava

Demonstrates the nonblocking JDBC/M X driver feature.
By default, this program creates two threads. In
nonblocking mode, these two threads run concurrently.
This program displays the thread ID and status of the SQL
operation before and after each operation. When the
program runs in blocking mode, you observe only one
thread switch because the begin-transaction operation starts
atransaction in SQL nowait mode. When the program runs
in nonblocking mode, you can observe many thread
switches.

hol dJdbcM. j ava

Illustrates the holdable cursor support in the IDBC/MX
driver. The program creates a subscriber thread that
subscribes to a message queue. When all the rowsin the
message queue are read, the subscriber times out after five
seconds.

Test Connecti onPool . j ava

Demonstrates the benefits of connection pooling and
statement pooling. This program performs aloop for a100
times that makes a JDBC connection, runs afew SQL
statements, and closes the connection. Y ou use the OSS

ti me() command to measure the performance benefits of
connection pooling and statement pooling in this program.

CreateTraceDS. j ava
Test TraceDS. j ava

Demonstrates tracing by creating awrapper around the
driver-specific data source to be traced. These
demonstration programs are located in the / deno directory
of the product installation directory.

JdbcRowSet Sanpl e. | ava

Demonstrates how to create an SQLMXJdbc RowSet
object and invoke several JdbcRowSet net hods.

LobSanpl e. j ava

Demonstrates the LOB feature in the JIDBC/M X driver.

Transacti onMode. j ava

Demonstrates internal, external, and mixed transaction
modes.

| SC88591Sanpl e. j ava Demonstratesthe | SOC88591 property.

For information on running these sample programs, see the README file provided with the JIDBC/MX
driver software.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Installing and Verifying JDBC/MX

This section explains these subjects:
« Installation Requirements

JDBC/MX Driver File Locations
Verifying the IDBC/MX Driver
Setting CLASSPATH
Settingthe RLD LIB PATH

Installation Requirements

Hardware and software requirements for the JDBC/M X Driver for NonStop SQL/MX are described in
the Softdoc file on the NonStop Server for Java 5 product CD, with which the IDBC/MX driver is
delivered. Read that document before installing the product.

The IDBC/MX driver version isHP JDBC/MX driver for NonStop SQL/MX H50(also identified as
product T1275)

The JIDBC/MX driver requires the following software:
« NonStop SQL/MX Release 2.0 or subsequent 2.x releases

« NonStop Server for Java, based on Java 2 Platform Standard Edition 5.0 (T2766H50)or subsequent
product updates

Note: For the most current statement of the software requirements, see the Softdoc file for
thelist of earliest acceptable versions of the required software. Y ou can substitute |ater
versions of the same products.

JDBC/MX Driver File Locations

The IDBC/MX driver installation directory location for the JIDBC/MX driver software is.

i nstall _dir/jdbcM/ T1275H50
For example, the default installation directory is
[usr/tandem j dbcMk/ T1275H50

Thefilesinstalled include:
./ deno
Demo programs
A1ibllibjdbcM. so
JDBC/MX driver library
1ibljdbcM. | ar
JDBC/MX Java archive file, which includes the JDBC trace facility
./ bin/jdbcMkl nst al |
JDBC/MX installation script
./ bin/jdbcMUni nst al |
JDBC/MX uninstall script

Verifying the JDBC/MX Driver

To verify the version of the IDBC/MX driver, use these commands:
« | ava command, which displays the version of the java code portion of the JIDBC/MX driver
« Vvpr oc command, which displays the version of the C code portion of the IDBC/MX driver

To usethej ava command, type the following at the OSS prompt:
java JdbcM -version
This command displays output similar to:

JDBC driver for NonStop(TM SQ./MX Version
T127H50 23DEC2005_JDBCMX. . .

Compare the output with the product numbers in the Softdoc file on the NonStop Server for Java 5
distribution CD.

Use the vpr oc command to check for the correct library. I ssue the following at the OSS prompt:

Vproc

/jdbcnx-installation-directory/ T1275H50/11i b/ 11 bj dbcM. so

Bi nder tinmestanp: 20DEC2005 18:10: 14
Ver si on procedure: T1275H50 23DEC2005_ JDBCMX 1220
TNS/ E Native Modde: runnable file

The version procedure that corresponds to the IDBC/MX Driver (T1275) product should match in the
output of both thej ava and vpr oc commands.

Setting CLASSPATH

For running JDBC applications, ensure the CLASSPATH environment variable includes the
j dbcMK. j ar file. Given the default installation, the path is

/usr/tandem j dbcMk/ current/1ib/jdbcM. | ar

Setting the RLD LIB_PATH

For running JDBC applications, ensurethe RLD LI B_PATH environment variable path is set to TNSE
jdocMx PIC file. Given the default installation, the path is:

[usr/tandem j dbcMk/ T1275H50/1i b

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Devel opment Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Accessing SQL Databases with SQL/MX

This section describes the following subjects:
» Connectionto SQL/MX

o JdbcRowSet |mplementation
« JDBC/MX Properties

« Transactions

« Stored Procedures

o SQL Context Management
» Holdable Cursors

« Connection Pooling

o Statement Pooling
o Using Additional JIDBC/M X Properties
o Supported Character Set Encodings

Connection to SQL/MX

A Java application can obtain a JDBC connection to SQL/MX in two ways:
o UsingtheDri ver Manager class
« Using the Dat aSour ce interface

Connection Using the DriverManager Class

Thisisthe traditional way to establish a connection to the database. The Dr i ver Manager class works
withtheDr i ver interface to manage the set of drivers loaded. When an application issues arequest for
aconnection using the Dr i ver Manager . get Connect i on method and providesa URL, the

Dri ver Manager isresponsible for finding a suitable driver that recognizes this URL and obtains a
database connection using that driver.

com t andem sqgl nx. SQLMXDr i ver isthe IDBC/MX driver class that implementstheDri ver
interface. The application can load the JIDBC/M X driver in one of the following ways, except as noted in
theDr i ver Manager Object Properties table:

« Specifying the IDBC/MX driver classinthe- Oy dbc. dri ver s option in the command line

« Usingthed ass. For Nane method within the application

« Adding the IDBC/MX driver classto thej dbc. dri ver s property within the application
TheDri ver Manager . get Connect i on method accepts a string containing aJDBC URL. The
JDBC URL for the IDBC/MX driver isj dbc: sql nx: .
When connecting by using the DriverManager class, use the information in the following topics:

« JDBC/MX Driver Properties Used with the DriverManager Class

o Guiddlinesfor Using Connections with the DriverM anager Class

JDBC/MX Driver Properties Used with the DriverManager Class

JDBC/MX driver defines the following set of properties that you can use to configure the driver:

Property Name Type Value Description

Communicates with
JDBC driver to continue
the remaining jobsin the

cont BatchOnError |String |onoroff batch even after any
BatchUpdateExceptions.
See contBatchOnError
Property.
If the default catalog and
See Default schema are not specified,
cat al og String | Catalogand the JDBC/MX driver

allows SQL/MX to

Schema. follow its own rulesfor
defaults.
See Default
schema String | Catalogand Seecat al og above.
Schema.
Thelocation (in
$vol une. subvol une
format) in which
: See mploc SQL/MP tables are
mpl oc String Property. created. (The default

location is the default
subvolume of the
logged-on user.)

Enables logging of SQL
statement IDs and the

enabl eLog bool ean | on orof f corresponding JDBC
SQL statements. See
enablel og Property.
Specifiesthefileto
which the trace facility
: : : A valid OSS logs SQL statement IDs
| dMapFi | e String filename and the corresponding
JDBC SQL statements.
See idM apFile Property.
Specifies the Java
: See|SO88591 | encoding used when
| SCB8591 String Property. accessing and writing to
1SO88591 columns.
The total number of
See Pr epar edSt at enent
. objects that the
maxSt at ement s I nt rgraxStztitements connection pool should
FToperty. cache. See
maxStatements Property.
Limits the number of
See physical connections that
m nPool Si ze i nt minPool Size can bein the free
Property. connection pool. See
minPool Size Property.
Sets maximum number
of physical connections
See that the pool should
: . : contain. This number
maxPool Si ze I nt r;raxPotoI Sze includes both free
FTOperty. connections and
connectionsin use. See
maxPool Size Property.
See LOB Table | gspecifiesthe LOB table
bl obTabl eNane String | Name for using BLOB

Properties.

columns.

See LOB Table | specifiesthe LOB table

cl obTabl eNane String | Name for using CLOB
Properties. columns.

Sets the transaction
mode, which provides

See control over how and
t ransacti onMbde String transactionMode | when transactions are
Property. performed. See
transactionM ode
Property.

Note: Do not add the jdbcmx. prefix to the property name when the properties are
given as a parameter to the connection method or when using the data source. The
prefix is not needed to identify the property type because the property is being
passed to a JDBC/M X driver object. Use the jdocmx. prefix only in the command
line as described under Setting Propertiesin the Command Line.

Guidelines for Using Connections with the DriverManager Class

« Javaapplications can specify the propertiesin the following ways:

o Using JIDBC/MX properties with the - D option in the command line. If used, this option
appliesto al JDBC connections using the Dr | ver Manager within the Java application.
The format isto enter the following in the command line:

- O dbcnx. property_nane=property_val ue

For examplein acommand line, - D dbcnx. maxSt at enent s=1024

o Usingthej ava. util . properti es parameter intheget Connect i on method of
Dri ver Manager .

« The properties passed throughthej ava. uti | . properti es parameter have a higher
precedence over the command-line properties.

« The connection pooling feature is available when the Java application usesthe Dr i ver Manager
class to obtain a JDBC connection. The connection pool size is determined by the naxPool Si ze
property value and m nPool Si ze property value.

o The JDBC/MX driver has a connection-pool manager for a combination of catalog and schema;
therefore, connections with the same catal og and schema combinations are pooled together. The
connection pooling property values that are used at the time of obtaining the first connection for a
given catalog and schema combination is effective throughout the life of the process. An
application cannot change these property values subsequent to the first connection for agiven
catalog and schema combination.

« Asinthebasic Dat aSour ce object implementation, a Java application can enable statement
pooling by setting the property to a non-zero positive value.

Connection Using the DataSource Interface

The Dat aSour ce interface, introduced in the JDBC 2.0 optional package, isthe preferred way to
establish a connection to the database because it enhances the application portability. The IDBC/MX
driver implements the Dat aSour ce interface and returns a connection object when an application
requests a connection using the get Connect i on method in the Dat aSour ce interface.

Using aDat aSour ce object increases the application portability by allowing the application to use a
logical name for a data source instead of providing driver-specific information in the application. A
logical name is mapped to a Dat aSour ce object by means of a naming service that uses the Java
Naming and Directory Interface (JNDI).

The following table describes the properties that you can use to identify a JDBC/M X data source object:
DataSour ce Object Properties

Property Name Type Value Description

Communicates with JIDBC driver to
continue the remaining jobsin the

cont Bat chOnError | String | onoroff batch even after any
BatchUpdateExceptions. See
contBatchOnError Property.

See Defalt If the default catalog and schema
: P are not specified, the JIDBC/MX
catal og String gcatTalogﬂl driver allows SQL/MX to follow its
=chema own rules for defaults.
See Default
schema String | Cataogand Seecat al og above.
Schema.

The registered

Connect i onPool Dat aSour ce
name. When this string is empty,
connection pooling is used by
default with the pool size

dat aSour ceNanme String determined by the maxPool Size
property and minPool Size property
of the basic Dat aSour ce object.
For more information, see
Connection Using the Basic

DataSource API.

Any valid

descri ption String identifier The description of the data source.
Enableslogging of SQL statement
IDs and the corresponding JDBC
enabl eLog bool ean | on or of f SQL statements. See enableL og
Property.
Specifies the file to which the trace
. facility logs SQL statement IDs and
i dMvapFi | e String }A.‘I valid OSS the corresponding JDBC SQL
lename statements. See idMapFile
Property.
See | SO88591 Specifies the Java encoding used
| SCB88591 String Proert— when accessing and writing to
FrOperty. | SO88591 columns.
Sets maximum number of physical
. connections that the pool should
max Pool Si ze i nt See maxPool Size contain. This number includes both
Property. free connections and connections in
use. See MaxPool Size Property.
The total number of
See Pr epar edSt at enent objects
max St at enent s i nt max St at enent s | that the connection pool should
Property. cache. See maxStatements
Property.
Limits the number of physical
: : . See minPoolSize connections that can bein the free
m nPool Si ze I nt Property. connection pool. See
mMiNPool Size Property.
Thelocation (in
$vol une. subvol une format)
Seenpl oc ' '
mpl oc String nploc mwhlchSQL/MPtabIesgre_
Property. created (The default location is the
default subvolume of the logged-on
user.)
See LOB Table ifi ‘
bl obTabl eName String LOB lable Specifies the LOB table for using

Name Properties.

BLOB columns.

See LOB Table Specifiesthe LOB table for using

cl obTabl eNane SLTING | Name Properties. | CLOB columns.

See Sets the transaction mode, which

. : transactionMode provides control over how and
transactionhbde |String when transactions are performed.

Property. See transactionM ode Property.

Note: Do not add the jdbcmx. prefix to the property name when the properties are given asa
parameter to the connection method or when using the data source. The prefix is not needed to
identify the property type because the property is being passed to aJDBC/MX driver object. Use
the jdbcmx prefix only in the command line, as described under Setting Propertiesin the

Command Line.

JdbcRowSet Implementation

An implementation of the JdbcRowSet interface, SQLMXJdbcRowSet , is provided within the

com t andem sql nx package. A JdbcRowSet object maintains a connection to the database, similar to a
Resul t Set object. However, a JdbcRowSet object maintains a set of properties and listener notification
mechanisms that make it a JavaBeans™ component.

The SQLMXJdbcRowSet object can be created using these SQLMXJdbcRowSet constructors:

« Thedefault constructor that does not require any parameters.
Note: This constructor does not attempt to connect to the database until the execut e method is
invoked.

« The constructor that takes a Connect i on object.
« The constructor that takesaResul t Set object.

« The constructor that takes a url, username, and password
Note: Username and password attributes are currently not supported. This constructor has been
provided for future use after the username and password support has been provided by both
SQL/MX and JIDBC/MX.

Refer to the JdbcRowSet Sanpl e. j ava demo program as an example of instantiating and manipulating
an SQLMxJdbcRowSet object. Also, refer to the Unsupported and Deviations sections for specific
implementation details of the SQLMXJdbcRowSet object.

For additional details, refer to the JdbcRowSet |nterface specification at
http://java.sun.com/j2se/1.5.0/docs/api/javax/sgl /rowset/ JdbcRowSet.html .

http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/rowset/JdbcRowSet.html

JDBC/MX Properties

JDBC/MX propertiesincluded in both the Dr i ver Manager object properties table and Dat aSour ce
object properties table are described in topics as follows:

» Default Catalog and Schema
« LOB Table Name Properties
o 1S088591 Property

« mploc Property

o MaxStatements Property

o minPool Size Property

« maxPoolSize Property

« transactionM ode Property

These properties and additional properties can be specified in acommand line, as described under Setting
Properties in the Command Line.

For information about using features provided by various JDBC/MX properties, see the topic, Using
Additional JIDBC/MX Properties.

Default Catalog and Schema

The default catalog and schema are used to access SQL objects referenced in SQL statements if the SQL
objects are not fully qualified. The three-part fully qualified name for SQL/MX objects is of the form:

[[cat al 0og.] schema.] obj ect - nane

The catalog and schema names can be any arbitrary strings that conform to SQL identifiers. These names
conform to ANSI SQL:99 catalog and schema names.

For example, using the default catalog and schema properties for a table referenced as
CAT. SCH. TABLE, the options are:

- dbcnx. cat al og=CAT - D dbcnx. schena=SCH

For more information, see the SQL/MX Reference Manual.

LOB Table Name Properties

L OB tables store data for LOB columns. The properties you use to specify the LOB table for using BLOB
columns or CLOB columns are:

For the BLOB columns

bl obTabl eNane
For the CLOB columns
cl obTabl eNane

The property valueis of the form:
cat al og_nane. schema_nane. | ob_t abl e_nane

Y ou can specify the name of the LOB table using propertiesin the following ways:
o Byusingthe—-Dj dbcnk. property nanme=property val ue opti oninthej ava
command line. For example:
—Dj dbcnx. cl obTabl eNane=nycat . nyschena. nyLobTabl e

« Byusingthej ava. util . Properti es parameter intheget Connect i on method of
Dri ver Manager class. The properties passed through the Properties parameter have precedence
over the command line properties.

« By setting either of these propertiesin the Dat aSour ce. See Connection Using the DataSource
| mplementation.

1ISO88591 Property

The 1S0O88591 character set mapping property corresponds to the SQL/MX SO88591 character set,
which is asingle-byte 8-bit character set for character data types. The 1SO88591 character set supports
English and other Western European languages. Specify thel SO88591 property as

String

The default value is DEFAULT which uses the default Java encoding when accessing and writing to
1SO88591 columns. The value can be any valid Java Canonical Name as listed in the "Canonical Name
forjava.i oandjava. | ang API" column of the Sun documentation, Supported Encodings

(http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html).

For example, if KANJI data has been stored in an 1SO88591 column in an SQL/MP table (accessed
through SQL/MX) and has been read and written to the database using the column character set, you can
specify the following property to ensure the correct encoding:

- D dbcnx. | S088591=SJ1 S

mploc Property

The property npl oc specifies the Guardian location in which SQL tables are created. The format for
npl oc is:

[\ node] . $vol une. subvol une

Java applications using the JIDBC/M X driver can specify npl oc by using the system property npl oc
with the - D option in the command line.

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

- O dbcnx. npl oc=npl oc
For example with the Dr i ver Manager object, in the OSS environment, specify the npl oc property in
either of the following forms:
- Dj dbcnx. mpl oc=[\\ node.]\ $vol une. subvol une

or
- O dbcnx. npl oc=' [\ node.] $vol une. subvol une’

For more information, see the SQOL/MX Reference Manual.

maxStatements Property

Sets the total number of Pr epar edSt at enent objects that the connection pool should cache. This
total includes both free objects and objects in use. Specify the max St at enent s property as:

I nt
The integer can be 0 through 2147483647. Any negative value is treated like 0. The default is 0, which

disables statement pooling. HP recommends that you enable statement pooling for your JDBC
applications, because this pooling can dramatically help the performance of many applications.

minPoolSize Property

Limits the number of physical connections that can be in the free connection pool. Specify the
m nPool Si ze property as:

I nt
The integer can be 0 through 2147483647, but less than maxPool Si ze. The default is 0. Any negative

valueistreated like 0. Any value greater than maxPool Si ze ischanged to the maxPool Si ze vaue.
Thisvalue isignored when maxPool Si ze is-1. The value determines connection pool use as follows:

« When the number of physical connectionsin the free pool reachesthe m nPool Si ze value, the
JDBC/MX driver closes subsequent connections by physically closing them—not by adding them
to the free pool.

« 0 means the connections are not physically closed; the connections are always added to the free
pool when the connection is closed.

maxPoolSize Property

Sets the maximum number of physical connections that the pool can contain. These connections include
both free connections and connections in use. When the maximum number of physical connectionsis
reached, the IDBC/MX driver throws an SQLExcept i on with the message, "Maximum pool sizeis
reached." Specify the maxPool Si ze property as:

I nt

The integer can be -1, 0 through 2147483647, but greater than m nPool Si ze. The defaultis0. Any
negative value istreated like -1. Any positive value lessthan m nPool Si ze ischanged to the
m nPool Si ze value. The value determines connection pool use as follows:

« 0 means no maximum pool size.

« -1forthebasic Dat aSour ce object means connection pooling is disabled. -1 isinvalid for the
Connect i onPool Dat asour ce object.

transactionMode Property

Thet ransact i onbde property provides control over how and when transactions are performed.
Specify thet r ansact i onbde property as.

String

The default ism xed. The allowed values are:
I nt er nal

Specifies that transactions are always performed within a JDBC/M X driver-managed transaction.

If an external transaction exists when internal transaction mode isin effect, the external transaction
Is suspended and the SQL statement is executed within aJDBC/M X driver-managed transaction.
Upon completion of the driver sinternally managed transaction, the existing external transaction is
resumed. The Connection autoCommit flag maintains a value of true when in internal transaction
mode.

Note: Usingi nt er nal transactionMode for select statements performed in external transactions causes
JDBC/MX to throw an "invalid transaction state”" exception. Therefore, do not specify i nt er nal
transactionM ode under these conditions.

m xed

Specifies that the driver inherits any active transaction in the current thread. The autocommit
setting of the transaction isignored. The application must either commit or rollback the transaction in
thismode. If there is no active transaction, the driver creates one and begins the transaction, or aborts it if
thereisan SQL error. In this mode, the driver supports both autocommit and non-autocommit. The
application ends the transaction in non-autocommit mode.

ext er nal

Specifiesthat if an external transaction exists, transactions are performed within the external transaction.
If an external transaction does not exist, the SQL statement is executed without a transaction. This allows
SQL statements that do not require an existing transaction to be performed without one, providing an
improvement in performance. If an SQL command requires a transaction and no external transaction
exists, an SQL exception is thrown.

Note: Using ext er nal transactionMode for SQL statements that require execution within a transaction
results in an SQL exception. Therefore, do not specify ext er nal transactionM ode under these
conditions.

Considerations:
« If any other string is specified for the value of transaction mode, m xed is used.
« Using the external or mixed transaction mode can improve performance.

« Using theinternal transaction mode can affect performance for applications because of the
overhead of TMF transactions under a heavy load.

« This property can be set within aJDBC/MX driver propertiesfile, defined within a Dat aSour ce
object, or passed in through thej ava command line.

« Thetransaction mode can only be changed for new connections; therefore, it cannot be
dynamically changed within a connection.

This property can be specified in adata source, in the JIDBC/MX propertiesfile, orinthej ava
command line.

Setting Properties in the Command Line

JDBC/MX driver property names used on the command lineinthej ava - Doption must include the
prefix:
j dbcnx.

This notation, which includes the period (.), ensures that all the JIDBC/MX driver property names are
unique for a Java application. For example: the maxSt at enent s property becomes

] dbcnx. max St at enent s
JDBC/MX Driver Properties Allowed in the Command Line

JDBC/M X
Pr efix

Property Name Description

Communicates with JDBC driver to
continue the remaining jobs in the

j dbcnx. cont Bat chOnEr r or batch even after any
BatchUpdateExceptions. See
contBatchOnError Property.

Allows the user to enable atomicity of
j dbcnx. stntatomcity SQL statements at statement level.
See stmtatomicity Property.

j dbcnx.

bat chBi ndi ng

Specifies that statements are batched
together intheexecut eBat ch()
operation. See Setting Batch

Processing for Prepared Statements.

j dbcnx.

bl obTabl eNane

Specifies the LOB table for using
BLOB columns. See LOB Table

Name Properties.

j dbcnx.

cat al og

Sets the default catalog. See Default
Catalog and Schema.

j dbcnx.

cl obTabl eNane

Specifies the LOB table for using
CLOB columns. See LOB Table

Name Properties.

jdbcmx.

enabl eLog

Enableslogging of SQL statement
| Ds and the corresponding JDBC
SQL statements. See enablel og

Property.

j dbcnx.

| dMapFi |l e

Specifies the file to which the trace
facility logs SQL statement I1Ds and
the corresponding JDBC SQL
statements. See idM apFile Property.

jdbcmx.

| SO88591

Specifies the encoding to be used
when accessing or writing to data
stored in 1S088591 columns. See
| SO88591 Property.

j dbcnx.

maxPool Si ze

Sets the maximum pool size. See
maxPool Size Property.

j dbcnx.

max St at enent s

Sets the total number of
PreparedStatement objects that the
connection pool should cache. See
maxStatements Property.

j dbcnx.

m nPool Si ze

Sets the minimum pool size. See
minPool Size Property.

j dbcnx.

npl oc

Sets the location in SQL/MP tables.
See mploc Property.

Sets the number of datalocatorsto be

j dbcnx. reserveDat aLocat or s | reserved. See Setting the
reserveDatal ocators Property.

Sets the default schema. See Default

j dbcnx. schema Catalog and Schema.

See Managing Nonblocking
JDBC/MX.

j dbcnx. sgl nx_nowai t

Specifies the trace file for logging.
j dbcnx. traceFil e See Enabling Tracing for Application

Servers.

Sets the trace flag for logging. See
j dbcnx. traceFl ag Enabling Tracing for Application

Servers.

Sets the transaction mode, which
provides control over how and when
transactions are performed. See
transactionM ode Property.

j dbcnx. t ransacti oniMbde

For example, using the npl oc property in the OSS environment, specify the npl oc property including
the prefix in either of the following forms:

- O dbcnx. nmpl oc=[\\ node.] \ $vol une. subvol une

or
- Oy dbcnx. nmpl oc=' [\ node.] $vol une. subvol une’

Transactions

The IDBC/MX driver provides transaction support to maintain data integrity and consistency. To allow
the application to interleave transactions between SQL/M X objects and the traditional file system, the
JDBC/MX driver checksif atransaction is active whenever it needs to interact with SQL/MX.

The transactionM ode property determines transaction processing behavior. If you use transactionMode in
atypical environment, with the default value i xed,

« When an active transaction exists, the autocommit setting is ignored, and the JIDBC/MX driver lets
the application manage the transaction.

« When no active transaction exists, the JIDBC/M X driver manages the transactions.

Thisimplementation differs from JDBC/MP. In the IDBC/MP driver, two different types of URLs decide
which component manages the transaction.

If you are accessing BLOB and CL OB data, see also Transactions Involving Bl ob and Cl ob Access.

Autocommit Mode and Transaction Boundaries

When JDBC/M X manages the transactions, the driver decides to start a new transaction. A new
transaction is started when no transaction is associated with the Connect i on. When thereisa
transaction associated with the Connect i on, that transaction is resumed. The Connect i on attribute
aut ocommi t specifies when to end the transaction. Enabling autocommit causes the JDBC/MX driver
to end the transaction in accordance with the following rules:

o TheJDBC/MX driver rolls back the transaction for any SQL error in SQL statements other than
SELECT statements.

o Inthecaseof non-SELECT SQL statements, the JIDBC/MX driver commits the transaction if the
current transaction was started for this SQL statement.

e Inthe case of SELECT statements, the IDBC/M X driver commits the transaction at the time of
closing the result set.

« Inthe case of concurrent multiple SELECT statements, the JDBC/MX driver commits the
transaction only when the result set of the SELECT statement or the statement that started the
transaction is closed.

Disabling Autocommit Mode

When the autocommit mode is disabled, the application must explicitly commit or roll back each
transaction by calling the Connect i on methodscomm t andr ol | back, respectively. When any
SQL error occursin SQL statements other than SELECT statement, SQL/M X flags the transactions for
aborting. In such a case, the transaction is rolled back without regard to whether the application commits
or rolls back the transaction.

Stored Procedures

SQL/MX provides support for stored procedures with result sets, which are written in Java and run under
an SQL/M X execution environment.

Stored procedures can be run in SQL/MX by using the CALL statement. The JIDBC/MX driver allows
stored procedures to be called by using the standard JDBC API escape syntax for stored procedures. The
escape SQL syntax is:

{call procedure-nane([argl,arg2, ...])}

where ar gn refers to the parameters sequentially, with the first parameter being ar g1. For more

information about the non-escape syntax of the CALL statement, see the SQL/MX Reference Manual.

Java applications can use the JDBC standard Cal | abl eSt at enent interface to run stored procedures
in SQL/MX by using the CALL statement. For more information, see the SQL/MX Guide to Stored
Proceduresin Java.

Limitations

Limitations of the stored proceduresin Java (SPJs) are:

« The stored procedures in Java (SPJs) do not support result sets returned from the Java method that
contain CLOB or BLOB data types.

o SPJsdo not support SHORTANSI names.

Note: Do not use the SHORTANSI name type with SPJs.

SQL Context Management

NonStop SQL/MX alows you to manage SQL/MX contexts. An SQL/MX context can be considered as
an instance of the SQL/MX executor that has its own execution environment that contains the following:

« CONTROL and SET information

o A transaction

e An SQL/MX compiler process (MXCMP)

o Set of SQL/MX executive server processes (ESPs)
« User-created SQL statements

The IDBC/MX driver maps a JDBC connection to an SQL/MX context. Therefore, in a multithreaded
application, a JDBC application has multiple SQL/MX compiler processes (MXCMP processes)
associated with the application. An SQL/MX context is created when the application obtainsa JDBC
connection. An SQL/MX context is destroyed when the application explicitly or implicitly closes the
JDBC connection.

The following JDBC connection attributes are passed to the SQL/M X context by the IDBC/MX driver
by executing the corresponding SQL statements:

Connection Attributes Passed to the SQL/M X Context

Attribute SQL Statement
cat al og SET CATALOG def aul t - cat al og- nane
schena SET SCHEMA def aul t - schema- nane

npl oc SET MPLQOC defaul t-Iocation

transacti on

. . SET TRANSACTI ON i sol ati on-1| evel
I sol ati on

A process (JVM process) can have multiple SQL/MX contexts within a process.

Holdable Cursors

JDBC/MX driver supports the holdablity attribute for the Resul t Set . To use holdable cursorsin your
JDBC applications, follow these guidelines:

« Useone of the following constants for the holdablity attribute:
com t andem sql nx. SQLMXResul t Set . HOLD CURSORS OVER COW T

Ensure that when the application calls the method Connect i on. comm t or
Connection. rol | back, theHOLD CURSORS OVER COW T constant
indicates that Resul t Set objects are not closed.

com t andem sql nx. SQLMXResul t Set . CLOSE_CURSORS_AT COW T

Ensure that when the application calls the method Connecti on. comm t or
Connection. rol | back, the CLOSE _CURSORS AT COWM T constant indicates
that Resul t Set objects are closed.

« FortheResul t Set objectsto be holdable over acommit operation, ensure that the SQL
statement that generates the Resul t Set has either stream access mode, or embedded updat e or
del et e for table references.

o Useeither of the following methodsin SQLMXConnect i on objectsto create result sets with
holdable cursors over commit:

createStatenent (int resultSetType, int resultSetConcurrency,
I nt resultSetHol dability)

prepareStatenent (String sql, int resultSetType,
I nt resultSetConcurrency, int resultSetHol dability)

For a demonstration in a sample program, see the holdJdbcM x.java program description.

Connection Pooling

JDBC/MX provides an implementation of connection pooling, where a cache of physical database
connections are assigned to a client connection session and reused for the database activity. Once the
client session is closed, the physical connection is put back into cache for subsequent use. This
implementation contrasts to the basic Dat aSour ce object implementation, where a one-to-one
correspondence exists between client Connect i on object and the physical database connection.

Y our applications can use connection pooling in the following ways:
« Connection Pooling by an Application Server
» Connection Pooling Using the Basic DataSource API
« Connection Pooling with the DriverManager Class

Connection Pooling by an Application Server

Usually, in athree-tier environment, the application server implements the connection pooling
component. How to implement this component is described in these topics:

o Guiddinesfor Implementing an Application Server to Use Connection Pooling
o Standard ConnectionPool DataSource Object Properties

Guidelines for Implementing an Application Server to Use
Connection Pooling

« The application server maintains a cache of the Pool edConnect i on objects created by using
Connect i onPool Dat aSour ce interface. When the client requests a connection object, the
application looks for the suitable Pool edConnect i on object. The lookup criteriaand other
methods are specific to the application server.

« The application server implementsthe Connect i onEvent Li st ener interface and registers
the listener object with the Pool edConnect i on object. The IDBC/MX driver notifies the
listener object withaconnect i onCl osed event when the application is finished using the
Connection object. Then, the connection pooling component can reuse this
Pool edConnect i on object for future requests. The IDBC/MX driver aso notifies the listener
object with connect i onErr or Cccur r ed event when the Pool edConnect i on object fails
to initialize the connection. The application server's connection pooling component should discard
the Pool edConnect i on when such a connection error event occurs.

» The application server manages the connection pool by using the
SQ_.MXConnect i onPool Dat aSour ce, which implements the
Connect i onPool Dat aSour ce interface. Use the getter and setter methods, provided by
JDBC/MX, to set the connection pool configuration properties listed in the table of Standard

ConnectionPool DataSource Object Properties. In addition to these standard properties, the

Connect i onPool Dat aSour ce includesthe JIDBC/MX driver-specific properties as described
under Connection Using the DataSource I nterface.

Standard ConnectionPoolDataSource Object Properties

Note: The application server defines the meaning of these properties.

Property Name Type Description

The total number of Pr epar edSt at enent objects
that the pool should cache. Thistotal includes both free
objects and objects in use. 0 (zero) disables statement
pooling.

max St at enent s I nt

The number of physical connections the pool should

initial Pool Si ze |int contain when it is created.

The number of physical connections the pool should
m nPool Si ze I nt keep available at all times. 0 (zero) indicates no
maximum size.

The maximum number of physical connections that the
maxPool Si ze I nt pool should contain. O (zero) indicates no maximum
size.

The number of seconds that a physical connection
max| dl eTi me I nt should remain unused in the pool before the connection
Is closed. O (zero) indicates no limit.

Theinterval, in seconds, that the pool should wait before
propertyCycle I nt enforcing the current policy defined by the values of the
above connection pool properties.

Connection Pooling Using the Basic DataSource
API

For your JDBC application to enable connection pooling, use the basic Dat aSour ce interface, which
includes the following properties that control connection pooling:

o nmaxPool Si ze

o m nPool Si ze

o maxSt at enent s

Y our application can enable connection pooling in the following two ways:

« By setting the dat aSour ceNane property in the basic Dat aSour ce object to the previously
registered Connect i onPool Dat aSour ce object. When the connection pooling is enabled, the
JDBC/MX driver-specific propertiesin the Connect i onPool Dat aSour ce object are
effective, and the IDBC/MX driver-specific propertiesin the Dat aSour ce object are ignored.
The connection isinitialized with the IDBC/MX driver-specific properties when the
Pool edConnect i on isobtained.

« By using the propertiesin the Dat aSour ce object, when the dat aSour ceNane property is
empty. Connection pooling is enabled by default. Note that the default value for the
maxPool Si ze property is 0, which enables connection pooling. See the Dat aSour ce interface

for the details on using these properties.

For troubleshooting application connection pooling, note the following details on how the featureis
implemented. JDBC/MX looks for the first available Pool edConnect i on object and assigns the
object to the client requests for a connection. JDBC/M X ensures that the SQL/M X execution
environment and compilation environment remain the same for al the connections in the connection
pooling environment; that is, the environment is the same as when the initial connection was obtained by
the client session either from the pool or from a new physical connection.

Connection Pooling with the DriverManager Class

Connection pooling is available by default when your JDBC application usesthe Dr i ver Manager
class for connections. Y ou can manage connection pooling by using the following properties listed in the
Dri ver Manager Object Properties table and described as under IDBC/MX Properties:

« NaxPool Si ze

e« M nPool Si ze

e MBXSt at enent s

Set these propertiesin either of two ways:
« Usingthe option - Dpr operty_ nanme=pr operty_ val ue inthecommand line

e Usingthej ava. util. Properti es parameter intheget Connecti on() method of the
Dri ver Manager class

Use these guidelines when setting properties for connection pooling with the Dr i ver Manager class:

« To enable connection pooling, set the maxPool Si ze property to an integer value greater than 0
(zero).

« The properties passed through the Pr oper t i es parameter have a higher precedence over the
command-line properties.

« Connections with the same catal og-schema combination are pooled together and managed by the
JDBC/MX driver. The connection-pooling property values that the application process uses when
it obtains the first connection for a given catal og-schema combination are effective for that
combination through the life of the application process.

Statement Pooling

The statement pooling feature allows applications to reuse the Pr epar edSt at enent object in same
way that they can reuse a connection in the connection pooling environment. Statement pooling is done
completely transparent to the application. Using statement pooling is described in the following topics:

o Guiddlinesfor Statement Pooling
o Controlling the Performance of ResultSet Processing
o Troubleshooting Statement Pooling

Guidelines for Statement Pooling

« Enable statement pooling by setting the Dat aSour ce object maxSt at enent s property to an
integer value greater than 0 and, also, by enabling connection pooling. See Connection Pooling for
more information.

« Enabling statement pooling for your JDBC applications might dramatically improve the
performance.

« Explicitly close a prepared statement by using the St at enent . ¢l ose method because
Pr epar edSt at enrent objectsthat are not in scope are aso not reused unless the application
explicitly closes them.

« Toensurethat your application reuses a Pr epar edSt at enent , cal either of the following:
o St at enent . cl ose method—called by the application

o Connecti on. cl ose method—called by the application. All the
Pr epar edSt at enent objects that were in use are ready to be reused when the
connection is reused.

Controlling the Performance of ResultSet
Processing

To improve JDBC application performance of result fetches for statements that are expected to return
more than two rows, the application should set the fetch size before executing the statement. This
operation works because the Resul t Set getter methods have been modified in the JIDBC/MX driver to
optimize database interactions. The IDBC/M X driver uses the fetch-size setting to determine the size of
memory used for reading and buffering data.

The application can control the Resul t Set fetch sizeby usingtheset Fet chSi ze() method of the
St at enent class, Pr epar edSt at enent class, and Resul t Set class.

Considerations:

« Applications that use SQL/MX tables, rather than SQL/MP tables, have improved performance
only for result fetches that have greater than two rows returned. The default JDBC/MX fetch size
Issetto 1.

« Once the application sets the fetch size to a value greater than 2 for a statement, the application
should not reset the value back to 2 or less. If the application does so, the application will
experience a slight degradation in performance as compared to using the default value.

» Setting the fetch size greater than 2 for statements that return fewer than two rows causes a slight
performance degradation, as compared to using the default fetch size,

« Setting the fetch size to avalue greater than the number of rows returned by a statement causes the
JDBC/MX driver to use more memory, but does not affect the API's functionality.

Troubleshooting Statement Pooling

Note the following JDBC/MX driver implementation detailsif you are troubleshooting statement
pooling:

« JDBC/MX driver looks for amatching Pr epar edSt at enent object in the statement pool and
reuses the Pr epar edSt at enent . The matching criteriainclude the SQL string, current catal og,
current schema, current transaction isolation, and r esul t Set Hol dabi li ty. If IDBC/MX
driver finds the matching Pr epar edSt at enent object, JDBC/MX driver returns the same
pr epar edSt at enent object to the application for reuse and marks the
Pr epar edSt at enent object asin use.

« Thealgorithm, "earlier used are thefirst to go," is used to make room for caching subsequently
generated Pr epar edSt at enent objects when the number of statements reaches the
max St at enent s limit.

o JDBC/MX driver assumesthat any SQL CONTROL statementsin effect at the time of execution
or reuse are the same as those in effect at the time of SQL/MX compilation. If this condition is not
true, reuse of aPr epar edSt at enment object might result in unexpected behavior.

« You should avoid SQL/MX recompilation to yield performance improvements from statement
pooling. The SQL/MX executor automatically recompiles queries when certain conditions are met.
Some of these conditions are:

o A run-time version of atable has a different redefinition timestamp than the compile-time
version of the sametable.

0 An existing open operation on atable was eliminated by a DDL or SQL utility operation.

0 Thetransaction isolation level and access mode at execution timeis different from that at
the compile time.

For more information on SQL/M X recompilation, see the SQL/MX Programming Manual for C
and COBOL or the SQL/MX Programming Manual for Java.

« When aquery isrecompiled, the SQL/MX executor stores the recompiled query; therefore, the
guery is recompiled only once until any of the previous conditions are met again.

o JDBC/MX driver poolsthe Cal | abl eSt at enent objectsin the same way as
Pr epar edSt at enent objects when the statement pooling is activated.

« JDBC/MX driver does not cache St at enent objects.

Using Additional JDBC/MX Properties

Y ou can use IDBC/MX properties for the following application features:
o BatchUpdate Exception handling | mprovements

o Statement Level Atomicity
« Managing Nonblocking JDBC/M X
o Setting Batch Processing for Prepared Statements

o Setting the reserveDatal_ocators Property

In addition to these topics, also see Enabling Tracing for Application Servers.

BatchUpdate Exception handling Improvements

When a command in the batch fails, the remaining commands of the batch are not executed resulting in
re-execution of entire batch. But, with this Batch Update Exception handling support, the remaining
elements of the batch after the error prone statement can be executed and hence re-execution of the entire
batch jobs can be avoided.

contBatchOnError property

The contBatchOnError property communicates with JDBC driver to continue the remaining jobsin the
batch even after any BatchUpdateExceptions. This java property can be set from the command line as:

Dy dbcnx. cont Bat chOnEr r or ={ ON| OFF}

where
ON
continues batch execution even after any other batch exception
OFF
terminates the batch execution on any other batch exception. The default is set to OFF.

Note: This property can be set either through java command line option or through property file of
Datasource.

Statement Level Atomicity

To maintain the database consistency, transactions must be controlled so that they either complete
successfully or are aborted. With the prior release versions of JIDBC/MX (before H10 AAB and V32
AAU on G-series), the transaction is automatically aborted on any error while performing an SQL
statement.

Thisversion of IDBC/MX driver follows up with the SQL/MX 2.0 Statement Atomicity feature and
guarantees that an individual SQL statement within a transaction either completes successfully or has no
effect on the database. When this statement level atomicity is followed, with the auto commit mode set to
false, any failure occurred during the Insert, Update, or Delete operations will not abort the current
transaction and this helps in execution of all the statements under this current transaction until a commit
or rollback isissued. Thisfeature is optional and can be enabled by setting the system property
‘stmtatomicity’.

stmtatomicity property

Enabling the stmtatomicity property, allows the JDBC driver to set the transactions atomicity at
statement level.

This java property can be set from the command line as:
D dbcnx. st nt at om ci t y={ ON| OFF}

where
ON
statement level atomicity
OFF
transaction level atomicity. The default is set to OFF.

Note: Thisfunctionality is aready availablein JIDBC/MX H10AAB and V32AAU versions.

Managing Nonblocking JDBC/MX

Blocking mode with the JIDBC/M X driver causes the whole JVM process to be blocked when an SQL
operation occurs. Nonblocking mode causes the JDBC/MX driver to block only the thread that invokes
the SQL operation and not the whole JVM process. In a multithreaded Java application, the nonblocking
JDBC/MX feature enables the JVM to schedule other threads concurrently while each SQL operation is
being done by athread.

By default, IDBC/M X uses the nonblocking mode. Y ou can disable nonblocking JDBC/MX in aJava
application by setting thesql nx_nowai t property to OFF by using the- Oy dbcnx. sql nx_nowai t
option in the command line. The syntax is:

-D dbcnx. sgl mx_nowai t={ ON | OFF }

where

ON

specifies nonblocking JDBC/M X. The default is ON.
OFF

specifies process blocking JDBC/MX.

Y ou can also programmatically disable or enable nonblocking JDBC/MX by setting the
sgl mx_nowai t property within the program. Depending on your application, set this property as
follows:

« INIDBC/MX applications that obtain a JDBC connection by using the Dr i ver Manager class,
set this property before the IDBC/MX driver isloaded.

« INnIDBC/MX applications that obtain a JDBC connection by using JINDI APl with the
Dat aSour ce interface, set this property before the Dat aSour ce object is created.

JDBC connection can now be simultaneously used from multiple threads. Multiple threads working on
SQL statements are allowed to share the same connection. Therefore, single connection context is used
across multiple threads and the operations associated with the connection object are made thread safe.

If you are an application developer writing multithreaded Java applications that use nonblocking JDBC,
follow these recommendations:

« Create only one JDBC connection per thread. Applications obtaining multiple JIDBC connections
in single thread do not run the SQL/M X operations concurrently and can waste system resources
because each connection requires its own SQL/MX compiler process.

« Do not share JDBC Java objects--such as St at enrent or Resul t Set objects--across threads for
purposes other than canceling the SQL operation with the Cancel () method.

» Beaware of the non-preemptive nature of the thread implementation in NonStop Server for Java 4.
A CPU-bound thread runs to its completion without providing an opportunity for the thread
scheduler to schedule adifferent thread.

« If an application iswritten to share connection across multiple threads, then the connection
properties should not be modified.

Setting Batch Processing for Prepared Statements

Y ou can improve the performance of batch processing when using the
Pr epar edSt at enent . execut eBat ch() method by setting the bat chBi ndi ng property. When
thebat chBi ndi ng property is set, the statements are batched in the execut eBat ch() operation.

When a JDBC application setsthe bat chBi ndi ng property, the IDBC/MX driver allocates resources
relative to the specified binding size.

To set thebat chBi ndi ng size, specify the bat chBi ndi ng property in the command line. The
syntax is:

- O dbcnx. bat chBi ndi ng=bi ndi ng_si ze

where bi ndi ng_si ze isapositive, signed, long integer that specifies the maximum
number of Pr epar edSt at enment . execut eBat ch() method statements that the
JDBC/MX driver can bind together for execution. The integer value can be in the range of O
to 2 gigabytes.

Considerations

« Thevauesallowed for bi ndi ng_si ze can result in your application running out of memory.
Check that you set the bi ndi ng_si ze to asize appropriate for the memory limits.

o If the number of statementsis greater than the binding size, the IDBC/MX driver breaks the
execution of statements into blocks whose sizes are based on the binding size.

« Evenif the IDBC application does not call for batch execution, setting the
] dbcnx. bat chBi ndi ng property causes the alocation of database resources relative to the
specified binding size.

« Whenthej dbcnx. bat chBi ndi ng property is not set, the
Pr epar edSt at enent . execut eBat ch() method returns a row-count array that contains the
number of rows affected by the corresponding statement for each item in the array. By default, the
JDBC/MX driver performs batch processing by returning a row-count array.

« Whenthej dbcnx. bat chBi ndi ng property is set, the detailed information indicated in the
preceding bulleted item is no longer available. If the statement execution succeeds, the row-count
itemissetto St at enent . SUCCESS NO | NFOin compliance with the JDBC 3.0 specification.
The Pr epar edSt at enent . get Updat eCount () method returns the total number of rows
affected by all the statements executed by the Pr epar edSt at enment . execut eBat ch()
method.

Setting the reserveDatalocators Property

The reserveDatal_ocators property sets the number of datalocatorsto be reserved for a process for
storing datain a LOB table. The default value for reserving data locatorsis 100. The property is of the
form:

j dbcnx. reser veDat aLocat or s=n

where n isan integer value of the number of datalocatorsto be reserved. Do not set avaue
much greater than the number of datalocators actually needed. For more information about
datalocator use, see Reserving Data L ocators.

To change this value for a JDBC application, specify this property from the command line. For example,
the following command reserves 150 data locators for program ny Pr ogr antCl ass.

java - D bcnx. reserveDat aLocat or s=150 nyProgranC ass

Supported Character Set Encodings

Java applications using the JIDBC/M X driver can specify the Javaf i | e. encodi ng property to set the
default encoding to any character set supported by Javaif no SQL literals exist in the program. If the
program has SQL literals, the program should use only the Java encoding sets that correspond to
SQL/MX supported sets.

The IDBC/MX driver supports the reading and writing of SQL CHAR, VARCHAR,
VARCHAR_LONG, and VARCHAR_WITH_LENGTH datatypes only when using the SQL/MX
supported character sets listed in the subsequent table.

The IDBC/MX driver encodes and decodes String data types as a function of the associated character set
name for the particular SQL database column independent of the default encoding.

Theformat of the Javafi | e. encodi ng property is:
-Dfi | e. encodi ng=encodi ng

Note: SQL/MX supports a subset of encoding sets supported by NonStop Server for Java 4.
Corresponding SQL/M X Character Setsand Java Encoding Sets

Corresponding Corresponding Java
SQL/MX Java Encoding Encoding
Character Set—Canonical Set—Canonical Name Description

Set Namefor java.io | for java.io and java.lang
API API

Single-character, 8-hit,
character set for
character-data type. It
supports English and
other Western
European languages.

| SO88591 | SO-8859-1 1SO8859_1

Universal Character
Set encoded in 2
bytes.
Double-character
Unicode character set
in UTF16 big-endian
encoding.

NOTE: UCS2is
supported in SQL/MX
tables only.

UCS2 UTF-16BE UnicodeBigUnmarked

The multibyte
character set widely
used on Japanese
mainframes. It is
composed for a
single-byte character
set and a double-byte
KANJI Shift_JS SIS character set. Itisa
subset of Shift JIS (the
double character
portion). Its encoding
is big-endian.

NOTE: KAJI is
supported in SQL/MP
tables only.

Double-character
character set required

on systems used by
government and
EUC-KR banking within Korea
KSCSe01 (Code Set 1) EUC KR Its encoding isbig
endian.

NOTE: KSC5601 is
supported in SQL/MP
tables only.

For complete information on character sets supported by SQL/MX and any additional
limitations on support for SQL/MP tables, see the SQL/M X Reference Manual.

For complete information about NonStop Server for Java 5 support for encodings see
Supported Encodings (http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html).

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

Home | Contents | Index | Glossary | Prev | Next

Working with BLOB and CLOB Data

This section describes working with BLOB and CLOB datain JDBC applications. Y ou can use the
standard interface described in the JDBC 3.0 API specification to access BLOB and CLOB datain
NonStop SQL/MX tables with support provided by the IDBC/MX driver.

BLOB and CLOB are not native datatypesin an SQL/MX database. But, database administrators can
create SQL/MX tables that have BLOB and CLOB columns by using the JIDBC/MX driver or special SQL
syntax in MXCI as described in the next section, Managing the SQL/M X Tablesfor BLOB and CLOB

Data

For management purposes, CLOB and BLOB dataisreferred to as large object (LOB) data, which can
represent either data type.

Note: Support for BLOB and CLOB data requires SQL/MX tables.

The section is organized in topics by category as follows:

Category Topic

o Architecturefor LOB Support
The Physical Files o Setting Properties for the LOB Table
o Specify the LOB Table Name

« Storing CLOB Data

« Reading CLOB Data

o Updating CLOB Data
« Deleting CLOB Data

Accessing CLOB Data

« Storing BLOB data

« Reading Binary Datafrom a BLOB Column
« Updating BLOB Data

« Deleting BLOB Data

Accessing BLOB Data

e NULL and Empty BLOB or CLOB Vaue
o Transactions Involving Blob and Clob Access

o Access Considerations for Clob and Blob
Objects

Miscellaneous

For full working examples showing how to access BLOB and CLOB data, see Appendix A.

For information about creating and managing tables for BLOB and CL OB data, see Managing the
SOL/MX Tablesfor BLOB and CLOB Data.

Architecture for LOB Support

The tables that support LOB data are:
Basetable

Referenced by JDBC applications to insert, store, read, and update BLOB and CLOB data. In the
base table, the IDBC/MX driver maps the BLOB and CL OB columns into a data-locator column.
The data-locator column points to the actual LOB datathat is stored in a separate user table called
the LOB table.

LOB table

Actually contains the BLOB and CLOB datain chunks. A Cl ob or Bl ob object isidentified by a
datalocator. LOB tables have two formats: LOB table for BLOB data and a LOB table for CLOB
data.

L OB Architecture: Tablesfor LOB Data Support

Baze Table
ol ol
e e
| |
Y al
LOE Tahble LOB Tahble
forCLOE= forBLOE=

w2 gf

Setting Properties for the LOB Table

Before running the JDBC application that uses BLOB and CLOB data through the JDBC AP, the
database administrator must create the LOB tables. For information on creating L OB tables, see
Managing L OB Data with the IDBC/M X Lob Admin Utility.

The JDBC applications that access BLOB or CLOB data must specify the associated L OB table names
and, optionally, configurether eser veDat aLocat or property. These tasks are described in the
topics:

« Specifying the LOB Table

o Reserving Data L ocators

Specifying the LOB Table

At runtime, auser JIDBC application notifies the IDBC/MX driver of the name, or names, of the LOB
tables associated with the CLOB or BLOB columns of the base tables being accessed by the application.
One LOB table, or separate tables, can be used for BLOB and CLOB data.

The JDBC application specifies a LOB table name either through a system parameter or through a Java
Pr oper t y object by using one of the following properties, depending on the LOB column type:

LOB Column Type Property name
BLOB bl obTabl eNane
CLOB cl obTabl eNane

For more information about using these properties, see LOB Table Name Properties.

Reserving Data Locators

A datalocator isthe reference pointer value (SQL LARGEI NT datatype) that is substituted for the BLOB
or CLOB column in the base table definition. Each object stored into the LOB table is assigned a unique
datalocator value. Because the LOB tableis a shared resource among all accessors that use the particular
L OB table, reserving data locators reduces contention for getting the next value. By using a default
setting of 100 reserved data locators, each VM instance can insert 100 large objects (not chunks) before
needing a new allocation.

Y ou can specify the number of datalocators (n) to reserve for your application by using the JDBC/MX
system property j dbcnx. r eser veDat aLocat or s inthe command line.

For information about specifying this property, see Setting the reserveDatal_ocators Property.

Storing CLOB Data

« Inserting CLOB Columns by Using the Clob Interface

o Writing ASCII or Unicode Datato a CLOB Column

« Inserting CLOB Data by Using the PreparedStatement Interface
« Inserting a Clob Object by Using the setClob Method

Inserting CLOB Columns by Using the Clob
Interface

When you insert arow containing a CLOB data type, and before the column can be updated with real
CLOB data, you can insert arow that has an "empty" CLOB value. You can insert an empty CLOB value
in aNonStop SQL/MX database by specifying EMPTY _CLOB() function for the CLOB column in the
insert statement.

The IDBC/MX driver scans the SQL string for the EMPTY_CLOB() function and substitutes the
next-available data locator.

Then, you must obtain the handle to the empty CLOB column by selecting the CL OB column for update.

Note the limitation: Do not rename the CLOB column in the select query.

The following code illustrates how to obtain the handle to an empty CLOB column:

Cl ob nyd ob nul | ;

Statenent s conn. createStatenent () ;

ResultSet rs = s. executeQuery("Sel ect nmyd obCol umm
fromnyTabl e where ...for update");

I f (rs.next())
myCl ob = rs.getC ob(1);

Y ou can now write datato the CLOB column. See Writing ASCII or Unicode Datato a CLOB Column.

Writing ASCII or Unicode Data to a CLOB Column

Y ou can write ASCII or Unicode datato a CLOB column as follows.
o ASCII Data

o Unicode Data

ASCII Data

Y ou can write ASCII or Unicode data to the CLOB column by using the Cl ob interface. The following
codeillustratesusing the set Asci i St r eammethod of the Cl ob interface to write CLOB data.

Clob nyCob = null;

/| stream begins at position 1

| ong pos = 1;

/| Exanple string containing data

String s = "TEST_CLOB";

for (int 1=0; i<5000; i++) s = s + "DATA";
/1l Obtain the output streamto wite C ob data
Qut put Stream os = nyC ob. set Asci i Strean(pos);
/1 wite Cob data using CQutputStream

byte[] nyC obData = s.getBytes();
os.wite(nmyC obDat a) ;

The IDBC/MX driver splits the output stream into chunks and stores the chunks in the LOB table.

Unicode Data

The following code illustrates how to write Unicode data to a CLOB column after obtaining the handle to
the empty CL OB column.

Clob nyCob = null;

/| stream begins at position 1

| ong pos = 1;

/| Exanple string containing the Unicode data
String s = TEST_UN CODE_DATA;

// Qbtain the output streamto wite C ob data
Witer cw = nyC ob. set Char act er St r ean{ pos) ;

/Il wite Clob data using Witer

char[] nyd obData = s.toCharArray();

cw. wite(mnmyd obData) ;

Inserting CLOB Data by Using the
PreparedStatement Interface

You can usethe Pr epar edSt at enent interfaceto insert a CLOB column with data as follows:
« ASCII Data

o Unicode Data

ASCII Data

Y ou can insert a CLOB column with ASCII or Unicode datafrom aFi | el nput St eam You must use
the Pr epar edSt at enent interface to insert the CLOB column.

Fi | el nput Stream i nput Ascii Stream = new

Fil el nput Strean(nyC obTestFile);

I nt clobLen = inputAsciiStream avail abl e();

Prepar edSt at enent ps = conn. prepareStatenent ("insert
i nto nyTabl e (nyd obCol um) values (?)");

ps. set Ascii Stream(1l, inputAsciiStream clobLen);

ps. execut eUpdat e() ;

The IDBC/MX driver reads the datafrom Fi | el nput St eamand writes the datato the LOB table. The
JDBC/MX driver substitutes the next-available data locator for the parameter of the CLOB column in the
table.

Unicode Data

Y ou can insert a CLOB column with Unicode datafrom aFi | eReader . You must use the
Pr epar edSt at enent interface to insert the CLOB column.

Fi | eReader i nput Reader = new Fil eReader (nyCd obTestFil e);
Prepar edSt at ement ps = conn. prepareStatenent ("insert
into nyTabl e (nyd obCol um) values (?)");
ps. set CharacterStrean(1, inputReader, (int)nyCd obTestFile.length());
ps. execut eUpdat e() ;

The JIDBC/MX driver reads the datafrom Fi | eReader and writesthe datato the LOB table. The
JDBC/MX driver substitutes the next available-data locator for the parameter of the CLOB column in the
table.

Inserting a Clob Object by Using the setClob
Method

Y our JDBC application cannot directly instantiate aCl ob object. To perform an equivalent operation:
1. ObtainaC ob object by using the get Cl ob method of the Resul t Set interface.

2. Insert the Cl ob object into another row by using the set Cl ob method of the
Pr epar edSt at enent interface.

In this situation, the IDBC/M X driver generates a new data locator and, when the
Pr epar edSt at enent isexecuted, copies the contents of the source Cl ob into the new Cl ob object.

Reading CLOB Data

« Reading ASCII Datafrom a CLOB Column
o Reading Unicode Datafrom a CLOB Column

Reading ASCII Data from a CLOB Column

Y ou can read ASCII or Unicode data from a CLOB column by using the Cl ob interface or
| nput St ream

The following code illustrates how to read the ASCII data from the CLOB column by using the Cl ob
interface:

/1l Cbtain the Clob from Result Set

Clob nydob = rs.getd ob("nyd obCol um");

/1l Qobtain the input streamto read C ob data

| nput Streamis = nyd ob. get Ascii Stream() ;

/'l read Clob data using the | nputStream

byte[] nyd obData = new byte[l ength];

i nt readLen = is.read(nyC obData, offset, |ength);

To read ASCII or Unicode data from the CLOB column by using | nput St r eam

/1l obtain the InputStreamfrom Resul t Set

| nput Streamis = rs.getAscii Strean("nyCd obCol um");
/'l read Clob data using the | nputStream

byte[] nyCl obData = new byte[l ength];

I nt readLen = is.read(nyC obData, offset, |ength);

Reading Unicode Data from a CLOB Column

Y ou can read Unicode data from the CLOB column by using the Cl ob interface or Reader . The
following code illustrates how to read the Unicode data from the CLOB column by using the Cl ob
interface.

/1l Obtain the Cob from Result Set

Clob nyCob = rs.getd ob("nyd obCol um");

/1l Qobtain the input streamto read Cl ob data
Reader cs = nyd ob. get Character Strean();

/'l read Clob data using Reader

char[] nyd obData = new char[|l ength];

I nt readLen = cs.read(nyC obData, offset, |ength);

To read Unicode data from the CLOB column by using a Reader :

/'l obtain the Reader from Result Set

Reader cs = rs.getCharacter Strean("nmd obCol um");
/'l read Clob data using the |nputStream

char[] nyd obData = new char[|l ength];

I nt readLen = cs.read(nyC obData, offset, |ength);

Updating CLOB Data

Y ou can make updates to CL OB data by using the methods in the Cl ob interface or by using the

updat eCl ob method of the Resul t Set interface. The JIDBC/MX driver makes changes directly to
the CLOB data. Therefore, the IDBC/MX driver returnsf al se tothel ocat or sUpdat eCopy method
of the Dat abaseMet aDat a interface. Applications do not need to issue a separate update statement to
update the CLOB data.

Make updates to CLOB datain the following ways:
« Updating G ob Objects with the updateClob Method
o Replacing Clob Objects

Updating Clob Objects with the updateClob Method

Unlike some LOB support implementations, the IDBC/MX driver updates the CLOB data directly in the
database. So, when the Cl ob object isthe samein the updat eCl ob method asthe Cl ob object
obtained using get Cl ob, the updat eRow method of the Resul t Set interface does nothing with the
Cl ob object.

When the Cl ob objects differ, the Cl ob object in the updat eCl ob method behaves asif the
set Cl ob method was issued. See Inserting a Clob Object with the setClob Method.

Replacing Clob Objects

Y ou can replace Clob objectsin the following ways:

o Usethe EMPTY_CLOB() function to replacethe Cl ob object with the empty Cl ob object, then
insert new data as described under Inserting CLOB Columns by Using the Clob Interface.

o UsethePrepar edSt at enent. set Ascii Strean() orset Character Streanm()
method to replace the existing Cl ob object with new CLCOB data.

« Usetheset C ob or updat eCl ob method to replace the existing CLOB objects as explained
earlier under Inserting a Clob Object with the setClob Method and Updating Clob Objects with the

updateClob M ethod.

Deleting CLOB Data

To delete CLOB data, the JDBC application uses the SQL DELETE statement to delete the row in the
base table.

When the row containing the CLOB column is deleted by the JIDBC application, the corresponding CLOB
datais automatically deleted by the delete trigger associated with the base table. For information about
triggers, see Using an SQL/MX Trigger to Delete L OB Data.

Seeaso NULL and Empty BLOB or CLOB Vaue.

Storing BLOB Data

Y ou can perform operations similar to those used on CL OB columns as those used on BLOB columns by
using the Bl ob interface. You can:

e Usethe EMPTY BLOB() function in theinsert statement to create an empty BLOB column in the
database.

« Useset Bi nar ySt r eammethod of the Bl ob interface to obtain the | nput St r eamto read
BLOB data.

o Useget Bi nar ySt r eammethod of the Bl ob interface to obtain the Qut put St r eamto write
BLOB data.

o Useset Bi nar ySt r eamof the Pr epar edSt at enent interface to write the data to the BLOB
column.

The details of these operations are discussed in the following topics:
 Inserting a BLOB Column Using the Blob Interface

e Writing Binary Datato a BLOB Column
e Inserting a BLOB Column by Using the PreparedStatement | nterface
o Inserting a Blob Object by Using the setBlob M ethod

Inserting a BLOB Column by Using the Blob
Interface

When you insert arow containing a BLOB data type, you can insert the row with an "empty" BLOB value
before the column can be updated with real BLOB data. Y ou can insert an empty BLOB valuein an
SQL/MX database by specifying EMPTY_BLOB() function for the BLOB column in the insert statement.

The IDBC/MX driver scans the SQL string for the EMPTY_BLOB() function and substitutes the
next-available data locator.

Then, you must obtain the handle to the empty BLOB column by selecting the BLOB column for update.
The following code illustrates how to obtain the handle to an empty BLOB column:

Bl ob nmyBIl ob nul | ;

Statenent s conn. createSt atenent () ;

ResultSet rs = s. executeQuery("Sel ect nmyBl obCol umm
fromnyTabl e where ..For update");

I f (rs.next())
nyBl ob = rs. getBl ob(1);

Y ou can now write datato the BLOB column. See Writing Binary Datato a BLOB Column.

Writing Binary Data to a BLOB Column

Y ou can write data to the BLOB column by using Bl ob interfaces. The following code illustrates using
theset Bi nar ySt r eammethod of the Bl ob interface to write BLOB data.

Bl ob nyBl ob = nul |

/| Stream begins at position 1

| ong pos = 1;

/| Exanple string containing binary data
String s = "Bl NARY_DATA";

for (int 1=0; i<5000; i++) s = s + "DATA",

/[l Obtain the output streamto wite Bl ob data
Qut put St ream os = nyBl ob. set Bi narySt r ean(pos) ;
/1 wite Blob data using Qutput Stream

byte[] nyBl obData = s.getBytes();
os.wite(nyBl obDat a) ;

The IDBC/MX driver splits the output stream into chunks and stores the chunks in the LOB table.

Inserting a BLOB Column by Using the
PreparedStatement Interface

You can also insert a BLOB column that has binary datafrom aFi | el nput St eam You must use
Pr epar edSt at enent interface to insert the BLOB column.

Filelnput StreaminputBinary = new Fil el nput Strean(nyBl obTestFil e);
I nt bl obLen = inputBinary. avail abl e();
Prepar edSt at ement ps = conn. prepareStatenent ("insert
i nto nyTabl e (nyBl obCol um) values (?)");
ps. setBi naryStrean(1, inputBinary, blobLen);
ps. execut eUpdat e() ;

The IDBC/MX driver reads the datafrom Fi | el nput St eamand writes the data to the LOB table. The

JDBC/MX driver substitutes the next-available data locator for the parameter of the BLOB column in the
table.

Inserting a Blob Object by Using the setBlob
Method

Y our JDBC application cannot directly instantiate a Bl ob object. To perform an equivalent operation:
1. Obtain aBl ob object by using theget Cl ob method of the Resul t Set interface.

2. Insert the Bl ob object into another row by using the set Bl ob method of the
Pr epar edSt at enent interface.

In this situation, the JIDBC/M X driver generates a new data locator and copies the contents of the source
Bl ob into the new Bl ob object when the application issuesthe set Bl ob method of the
Pr epar edSt at enent interface.

Reading Binary Data from a BLOB
Column

Y ou can read binary data from the BLOB column by using the Bl ob interface or | nput St r eam The
following code illustrates how to read the binary data from the BLOB column by using the Bl ob
interface:

/1l Obtain the Blob from Result Set

Bl ob nmyBl ob = rs. get Bl ob(" nmyBl obCol umm") ;

/1l Qobtain the input streamto read Bl ob data
| nput Stream i s = nyBl ob. get Bi naryStrean();

/1l read Bl ob data using the | nputStream
byte[] nyBl obData = new byte[l ength];

I s.read(nyBl obData, offset, |ength);

To read binary data from the BLOB column by using | nput St r eam

/'l obtain the InputStreamfrom Resul t Set

| nput Streamis = rs. getBinaryStrean(" nyBl obCol um") ;
/1l read Blob data using the |InputStream

byte[] nyBl obData = new byte[l ength];

I s.read(nyBl obData, offset, |ength);

Updating BLOB Data

Y ou can update BLOB data by using the methods in the Bl ob interface or by using theupdat eCl ob
method of the Resul t Set interface. The JIDBC/MX driver makes changes to the BL OB data directly.
Hence, the IDBC/MX driver returnsf al se tothel ocat or sUpdat eCopy method of the

Dat abaseMet aDat a interface. Applications do not need to issue a separate update statement to
update the BLOB data.

Update BLOB data in the following ways.
« Updating Blob Objects by using the updateBlob M ethod

o Replacing Blob Objects

Updating Blob Objects by Using the updateBlob
Method

Unlike some LOB support implementations, the IDBC/M X driver updates the BLOB data directly in the
database. So, when the Bl ob object isthe same in the updat eBl ob method as the object obtained
using get Bl ob, theupdat eRow method of the Resul t Set interface does nothing with the Blob
object.

When the Bl ob objects differ, the Blob object in the updat eBl ob method behaves asif theset Bl ob
method was issued. See Inserting a Blob Object with the setBlob Method.

Replacing Blob Objects

Y ou can replace Blob objectsin the following ways:
e Usethe EMPTY BLOB() function to replace the Bl ob object with the empty Bl ob object.
« Replace an existing Blob object in arow by inserting the Bl ob with new data as described under
Inserting a BLOB Column Using the Blob Interface.
o Usetheset Bi narySt rean() method to of the Pr epar edSt at enent interface replace the
existing Bl ob object with new BLOB data.

« Usetheset Bl ob or updat eBl ob methods to replace the existing BL OB objects as explained
earlier under Inserting a Blob Object with the setBlob Method and Updating Blob Objects with the

UpdateBlob Method.

Deleting BLOB Data

To delete BLOB data, the JDBC application uses the SQL DELETE statement to delete the row in the
base table.

When the row containing the BLOB column is deleted by the application, the corresponding BLOB datais
automatically deleted by the delete trigger associated with the base table. For information about triggers,
see Using an SQL/MX Trigger to Delete LOB Data.

Seeaso NULL and Empty BLOB or CLOB Vaue.

NULL and Empty BLOB or CLOB Value

The data locator can have aNULL value if the BLOB or CLOB column is omitted in the insert statement.
The IDBC/MX driver returns NULL when the application retrieves the value for such a column.

When the application uses the EMPTY _BLOB() method or EMPTY _CLOB() method to insert empty
BLOB or CLOB datainto the BLOB or CLOB column, JIDBC/MX driver returnsthe Bl ob or Cl ob object
with no data.

Transactions Involving Blob and Clob
Access

HP recommends that your JDBC applications control the transactions when the BLOB columns or CLOB
columns are accessed either by using the external transaction or by setting the connection to manual
commit mode.

If executing a prepared statement involving BLOB or CLOB data with autocommit mode enabled and an
external transaction does not exist, the JDBC/M X driver mimics autocommit mode. This operation
ensures that inserts or updates of LOB data are committed only after both the base table and L OB tables
are modified.

In some instances an out put St r eamor Wi t er object isreturned to the application when the object
can be held for an unknown period of time. Therefore, the following interfaces throw the exception,
Aut ocommit is on and LOB objects are invol ved, exception when LOB datais
involved, autocommit is enabled, and an external transaction does not exist:

e Clob.setAscii Stream
e Cl ob. set Char act er Stream
o Bl ob. set Bi naryStream

If an SQL/MX or FS exception occurs while the base table and LOB table are being updated, the internal
transaction used for this operation is rolled back, and an exception is thrown.

When an SQL/MX or file system exception occurs while IDBC/M X mimics autocommit mode for the
base table and the insert or update operations on a LOB table, the internal transaction used for this
operation isrolled back and the following exception is thrown:

Transaction error {0} - {1} while updating LOB tables
For the description, see the message information under sglcode 29070.

The IDBC/MX driver reserves data locators in its own transaction to improve the concurrency among the
different processes trying to reserve the data locators.

For more information, see Transactions.

Access Considerations for Clob and Blob
Objects

The JIDBC/MX driver allows all the valid operations on the current Cl ob object or Bl ob object, called a
L OB object. LOB objects are current as long as the row that contains these LOB objectsis the current
row. The IDBC/MX driver throws an SQL Exception, issuing the following message, when the
application attempts to perform operations on a LOB object that is not current:

Lob object {object-id} is not current

Only onel nput St r eamor Reader and one Qut put St r eamor Wi t er can be associated with the
current LOB object.

« When the application obtainsthe | nput St r eamor Reader from the LOB object, the
JDBC/MX driver closesthel nput St r eamor Reader that is aready associated with the LOB
object.

« Similarly, when the application obtains the Qut put St r eamor Wi t er from the LOB object,
the IDBC/MX driver closesthe Qut put St reamor Wi t er that is already associated with the
L OB object.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX Driver for NonStop SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Managing the SQL/MX Tables for BLOB and
CLOB Data

BLOB and CLOB are not native data types in an SQL/MX database. But, database administrators can create
SQL/MX tables that have BLOB and CLOB columns by using the IDBC/MX driver or special SQL syntax in
MXCI as described in this section. For management purposes, CLOB and BLOB datais referred to as large object
(LOB) data, which can represent either data type.

Note: Support for BLOB and CLOB datarequires SQL/MX tables.

Before using this section, be sure to see the file descriptions for the tables that contain LOB data. Thisinformation
Is under the topic Architecture for LOB Support in the preceding section.

With the exception above, this section provides the information that database administrators need to create and
manage the tables required to support LOB data. The topics are:

o Creating Base Tables that Have LOB Columns

« Managing LOB Data by Using the JIDBC/MX Lob Admin Utility
e Using SOL/MX Triggersto Delete LOB Data

« Limitations of the BLOB and CL OB Data Types

Creating Base Tables that Have LOB
Columns

Y ou can write JDBC programs to create base tables that have LOB columns or you can use the SQL/M X
conversational interface MXCI as described in the following topics:

o DataTypesfor LOB Columns
e Using MXCI to Create Base Tables that Have L OB Columns
o Using JDBC Programs to Create Base Tables that Have LOB Columns

Data Types for LOB Columns

The datatypes for the LOB columns are:
CLOB
Character large object data
BLOB
Binary large object data

Note: The CLOB and BLOB data type specification is special syntax that is alowed for usein base
tables accessed by JDBC/MX driver as described in this manual.

Using MXCI To Create Base Tables that Have LOB
Columns

Before using the procedure to create the tables, note that when using MXCI to create base tables, you must enter
the following special command in the MXCI session to enable the base table creation of tables that have LOB
(BLOB or CLOB) columns:

CONTRCL QUERY DEFAULT JDBC_PROCESS ' TRUE

Follow these steps to create a base table that has LOB columns:
1. At the OSS prompt, invoke the SQL/MX utility MXCI. Type:

MXCI
2. Type the following command to enable creating tables that have LOB columns:

CONTRCL QUERY DEFAULT JDBC_PROCESS ' TRUE

3. Typethe CREATE TABLE statement; for example, you might use the following simple form of the
statement:

CREATE TABLE tabl el (cl1 I NTEGER NOT NULL, c2 CLOB, c3 BLOB, PRI MARY
KEY(c1))

where;
tablel
The name of the base table.
cl
Column 1, defined asthe | NTEGER data type with the NOT NULL constraint.
c2
Column 2, defined as the CLOB data type.
c3
Column 3, defined as the BLOB data type.
PRIMARY KEY
Specifies c1 asthe primary key.
Use this example as the archetype for creating base tables. For information about valid names for tables (t abl el)

and columns (c1, c2, and ¢3) and for information about the CREATE TABLE statement, see the SQL/MX
Reference Manual.

Using JDBC Programs To Create Base Tables that Have
LOB Columns

When using a JDBC Program to create base tables that have LOB columns, ssmply put the CREATE TABLE
statements in the program as you would any other SQL statement. For an example of the CREATE TABLE

statement, see the preceding discussion Using MXCI to Create Base Tables that Have LOB Columns.

Managing LOB Data by Using the JDBC/MX
Lob Admin Utility

The JDBC/MX driver provides the JIDBC/MX Lob Admin Utility that you can use for these tasks:
« Creating the LOB table (atable that holds LOB data).
« Creating the SQL/MX triggers for the LOB columns in the base tables to ensure that orphan LOB data does
not occur in aL OB table.

Information about using the JIDBC/MX Lob Admin Utility is provided in these topics.
o Running the IDBC/MX Lob Admin Utility
e Help Listing from the IDBC/M X Lob Admin Utility
« Using SOL/MX Triggersto Delete LOB Data

Running the JDBC/MX Lob Admin Utility

Run the IDBC/M X Lob Admin utility in the OSS environment.

The format of the command is;

java [Java_options] JdbcMkLobAdm n [prog _options] [tabl e nane]

java_options

The java_options are properties that can be specified on thej ava command line in the - D option.

Property Specification Description

Specifies the LOB table for using BLOB columns.
j dbcnx. bl obTabl eNane Required if BLOB columns are involved. See LOB Table

Name Properties.

Specifies the LOB table for using CLOB columns.
j dbcnx. cl obTabl eNane Required if CLOB columns are involved. See LOB Table

Name Properties.

Sets the default catalog. See Default Catalog and
Schema.

j dbcnx. cat al og

Sets the default schema. See Default Catalog and
Schema.

j dbcnx. schema

program_options

prog_option Description
-help Displays help information
-exec Runs the SQL statements that are generated.
Generates SQL statements to create LOB tables. These
-Create statements describe the architecture of the tables and, therefore,
provide a description of the LOB tables.
triqger Generates SQL statements to create triggers for the designated
9 table. The table must exist.
_unicode Generates SQL statements to create unicode L OB tables. Use
only for CLOB data.
_dro Generate SQL statementsto drop triggers for the designated
P table. The table must exist.
-out Writes the SQL statements to a specified filein OSS file space.
table_name

The table_name represents a base table that contains LOB columns. Thetable name is of the form:

[cat al ogNane.] [schemaNane. | baseTabl eNane

For information about catalog, schema, and table names, see the SQL/MX Reference Manual.

Help Listing from the JDBC/MX Lob Admin Utility

The command to display JDBC/M X Lob Admin utility help appears below followed by the help listing.

java JdbcMkLobAdm

Hewlett-Packard JDBC/MX Lob Admin Utility 2.0 (c) Copyright 2004, 2005 Hewlett-Packard Devel opment

Company, LP.

java [<java_options>] JdbcMLobAdm n [<prog_opti ons>]

<java_options> is:

n -help

[- O dbcnx. cl obTabl eNanme=<cl obTabl eNane>]
[- Oy dbcnx. bl obTabl eNanme=<bl obTabl eNane>]

[_
[_

D dbcnx. cat al og=<cat al 0g>]
D dbcnx. schema=<schena>]

[<t abl e_nanme>]

<prog_options> is:
[-exec] [-create] [-trigger] [-help] [-drop] [-out <filenanme>]
where -help - Display this information.

- exec - Execute the SQ. statenents that are generat ed.
-create - Generate SQL statements to create LOB tabl es.
-trigger - Cenerate SQL statenents to create triggers for <table nane>.
-unicode - Generate SQ. statenents to create unicode LOB tables
(CLOB only).
-drop - Cenerate SQL statenments to drop triggers for <table_ nane>.
- out - Wite the SQL statenents to <fil enane>.

<cl obTabl eNane> | <bl obTabl eNane> is:
<cat al ogNane>. <schemaNane>. <l obTabl eNane>

<tabl e_nane> is:
[<cat al ogNane>.] [<schenaNane>.] <baseTabl eNanme>

<baseTabl eNane> is the table that contains LOB col um(s).
<| obTabl eNane> is the table that contains the LOB data.

Using SQL/MX Triggers to Delete LOB Data

Use the IDBC/MX Lob Admin Utility to generate triggers to delete LOB data from the LOB table when the base
row is deleted. These triggers ensure that orphan LOB data does not occur in the LOB table. To manage the
triggers, use these JDBC/MX Lob Admin Utility options:

-trigger

Generates SQL statements to create triggers.
-drop

Generates SQL statements drop triggers.

For example, the following command (typed on one line) generates the SQL statements to create the triggers for
the basetablesal es. pari s. pi ct ures, which containsaBLOB column, and executes those statements.

j ava -Dj dbcnx. bl obTabl eNane=sal es. pari s. | obTabl e4pi ct ures JdbcMLobAdm n
-trigger
-exec sales.paris.pictures

Limitations of the CLOB and BLOB Data
Types

Limitations of the CLOB and BLOB datatypes, collectively referred to as LOB data, are:
o LOB columns can only bein the target column list of these SQL statements:
0 INSERT statement,
0 Select list of a SELECT statement

0 Column name in the SET clause of an UPDATE statement
LOB columns cannot be referenced in the SQL/M X functions and expressions.
LOB datais not deleted from the LOB table when the base row is deleted unless atrigger is established. For
information about triggers, see Using an SQOL/MX Trigger to Delete LOB Data.
LOB datais not accessible if the base table name is changed.
L OB columns cannot be copied to another table by using the SQL/MX utility commands.

The name of a base table that has CLOB or BLOB columns must be unique across all catalogs and schemas
when more than one of these base tables share asingle LOB table.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Module File Caching (MFC)

The Module File Caching (MFC) feature shares the SQL/M X prepared statement plans among the JDBC/MX T2
database connections and JVM processes. It helps in reducing the SQL/M X compilation time during the steady state of
the IDBC/MX T2 application, thereby reducing resource consumption.

Note: Module File Caching is supported only on systems running J06.07 and later J-series RVUs and
H06.18 and later H-series RV Us.

The topics discussed in this chapter are:
o Designof MFC

e Enabling MFC
o Limitations of MFC
o Troubleshooting MFC

Design of MFC

For information on the MFC design, see the HP NonStop SQL/MX Connectivity Service Manual.

Enabling MFC

The following are the two new properties which are required for using MFC in an application that uses the JIDBC/MX
T2 Driver.

« nmodul ecachi ng Property:
To enable MFC, the value of this property must be set to ON.
« conpi | ednodul el ocat i on Property:

The value for this property must be avalid directory name. For example: / usr/ t enp. Thisisthe
location where the intermediary files such as* .mdf for MFC are generated.

Both these properties must be set to enable MFC.

Limitations of MFC

MFC cache should be used only on production systems. It should not be used on development or User
Acceptance Testing (UAT) systems where SQL/M X undergoes changes.

It does not handle session-specific SQL/MX Control Query Defaults (CQD) and SQL/MX Control Query Shape
(CQS).

It is recommended to set the CQD in SQL/MX for disabling the auto-recompilation feature of the SQL/MX
while using with MFC. This ensures that automatic recompilations are avoided due to changesin SQL/MX
objects because the plans are generated in the module file. The application will receive an SQL/MX exception if
there is an auto-recompilation required for the query. Y ou must clean the stale modul e files before continuing
with the application.

For lightweight queries, MFC performs only marginally better than the SQL/MX compile.

Combining external statement cache with MFC does not yield memory benefits. The WebL ogic Server (WLS)
statement cache is an example of external statement cache. It is recommended that you use the JDBC/MX T2
statement cache.

Some scalar functions such as ABS, SUM, and AV G are not handled through the MFC in the first release. For
information on the scalar functions, see the HP NonSop SQL/MX Reference Manual.

Troubleshooting MFC

The troubleshooting of MFC includes:

Benefits of MFC

Setting an Environment for MFC

Jock Files

.mdf Files

Disk Activity

Enable Fileset and OSS Caching

Known Issues

Benefits of MFC

JDBC applicationsusing thej ava. sql . Prepar edSt at enent object result in lower processor utilization, lower
memory consumption, and better response time.

Setting an Environment for MFC

See EnablingMFC.

dock Files

The *.lock files are generated for every query that pass through the MFC module file creation process. Thesefiles are
also used for synchronizing, so that different connections do not re-create the same module file. These *.lock files are
deleted once the binary moduleinthe/ usr/ t andem sqgl mx/ USERMODULES directory is created successfully.

The *.lock files are not deleted for the queries that cannot create modul e files.

.mdf Files

These temporary files are generated during preprocessing. These .mdf files are retained for easier support and
troubleshooting.

Disk Activity

The MFC access plans, stored in the disk OSH location (/ usr / t andent sgl mx/ USERMODULE), increases the
processor utilization of the disks. To overcome this problem, use the fileset for that directory. It is beneficia to have
OSS caching on data volumes. To enable fileset and OSS caching, see Enable Fileset and OSS Caching.

Note: If aDDL alters, it isrecommended that you run the management script (ngscr i pt) to delete
modul e files associated with that table or catalog. For information on the management script, see
Managing MFC in the HP NonStop SQL/MX Connectivity Service Manual.

Enable Fileset and OSS Caching

To add afileset pointing to the USERMODUL ES directory, perform the following steps:
1. AtaTACL prompt, enter:
SCF
and then enter:
assunme $zpnon
2. At an SCF prompt, enter the SCF command:
add server #zpnsl, cpu 1, backupcpu 2
3. Add afileset:
add fileset nxcl, naneserver #zpnsl, catal og $oss, pool
mxcpool , mt poi nt "/usr/tanden sgl nx/ USERMODULES"
4. Verify the status of the fileset:
info fileset nxcl, detai l
5. Start the fileset:
start fileset nxcl

To enable OSS caching, perform the following steps:

1. AtaTACL prompt, enter:
SCF
and then enter:
assume $zpnon

2. Atan SCF prompt, enter the following SCF command to stop all filesets on your system:
STOP FI LESET $ZPMON. *

This command begins with the last fileset mounted and stops the filesets in the reverse order in which they were
|ast started.

3. Stop the OSS Monitor process:
If the OSS Monitor is running as a standard process, enter the STOP command at a TACL prompt:
STOP $ZPMON

If the OSS Monitor is running as a persistent process, enter the ABORT command at an SCF prompt:
ABORT PROCESS $ZZKRN. #ZPNVON

4. At the SCF prompt, enter the following set of commands for each disk volume in the fileset:

STOP DI SK di sknamne
ALTER DI SK di sknanme, OSSCACH NG ON
START DI SK di skname

di sknane isthe name of a disk volume that contains OSSfiles.
5. Restart the OSS Monitor as anormal or persistent process with the appropriate command.

6. Restart the OSS file system by entering the SCF command:
START FI LESET $ZPMON. fi | eset nane

where, fi | eset nane isthe name of each fileset that contains OSS files, beginning with the root and specified in
the order in which mount points occur.

Known Issues

Scenario 1

MFC plans become obsolete when the base table is altered or dropped. The following sequence of operations
illustrates the issue.

. Expected | Actual
’ Operation R'gned R((:asltjjlit Remarks
ICreate table testing(info int); |Success |Success|Table testing is created.
IStmt1 = Prepare("select * fromtesting") [Success [Success|Stmtlis prepared with MXCMP.
ISt nt 1. execut e() |Success |Success|Stmt1 is executed.
IStnt 1. fetch() |Success [Success|Data in the table testing is retrieved.

Compiled plan isretrieved from

’Stm1 = Prepare("select * fromtesting") ’Success ’Success;MFC

ISt nt 1. execut e() |Success |Success|MFC statement works as expected.

Stnt 1. executeUpdate("drop table Success |Success|The table testing is dropped.

testing")

Stnt 1. execut eUpdate("create table The table testing is created with
; " Success |Success

testing (nycol varchar(10))") varchar column.

Compiled plan is retrieved from
MFC, which is not correct because
the table datatype is changed when
the MFC plan is created.

Stml1l = Prepare("select * fromtesting") [Success |Success

MXOSRVR turned the SQL/M X
CQD recompilation_warnings ON.
SQL/MX throws SQL exception
upon similarity check failure and
MXOSRVR dropstheinvalid
module file from the

[usr/tandem sql mx/ USERMODULES

Stnt 1. execute() Success |Failure

location.
Stm1 = Prepare("select * fromtesting") [Success |Success ﬁ)cnat;/\(/)rﬁ)lanlscreatedmtheMFC
ISt nt 1. execut e() |Success |Success|MFC statement works as expected.

When performing the above operations, the execute() call fails when an invalid module fileis found in the MFC.
However, subsequent prepare() calls create a new module file. This open issue is similar to the driver side cache
present in the JIDBC/MX T2 driver.

Scenario 2

When scalar functions such as, Sum(), Avg(), ABS(), Count() appear in the selected columns, the list of the SQL
guery is not cached as MFC. For example,

SELECT sum(col1 + col2) from TAB WHERE col 3 = ?

The scalar functions are supported in the INSERT, UPDATE, and DELETE queries and in the WHERE clause. For
example:

SELECT col 1 from TAB WHERE sun{col2 + col3) = ?

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

JDBC/MX Compliance

The JDBC/MX Driver for NonStop SQL/MX conforms where applicable to the Sun Microsystems JDBC 3.0 API specification. However,
the IDBC/MX driver differs from the JDBC standard in some ways because of limitations of NonStop SQL/MX and the JDBC/MX driver.
This subsection describes the JIDBC methods that are not supported, the methods and features that deviate from the specification, and

features that are HP extensions to the JDBC standard. JDBC features that conform to the specification are not described in this subsection.

Thetopics are:
« Unsupported Features

o Deviations
« HP Extensions
o SOL Conformance

Unsupported Features

Thefollowing interfacesinthej ava. sql package are not implemented in the IDBC/MX driver because the data types involved are not
supported by NonStop SQL/MX:

e java.sql. Array

o java. sql . Ref

« java. sql . Savepoi nt
o java. sql . SQ.Dat a

e java.sql.SQI nput
« java. sql.SQ.CQut put
o java.sql. Struct

Note: Support for j ava. sql . Bl ob andj ava. sql . O ob packages require the use of SQL/MX user tables as described in
Working with BLOB and CL OB Data. These packages are not supported for access of SQL/MP user tables.

The following methodsinthej ava. sql package throw an SQLExcept i on with the message "Unsupported feature - method-name':

M ethod Comments
Cal | abl eSt at enent . get Array(int The particular
par anet er | ndex) Cal | abl eSt at enent
Cal | abl eStat enent. get Array(String method is not supported.

par anet er Name)

Cal | abl eSt at enment . get Bl ob(i nt

par anet er | ndex)

Cal | abl eSt at enent . get Bl ob(Stri ng
par anet er Nane)

Cal | abl eSt at enent . get C ob(i nt

par anet er | ndex)

Cal | abl eSt at enent . get ob(Stri ng
par aret er Nane)

Cal | abl eSt at enent . get Obj ect (i nt
par aret er | ndex, Map map)

Cal | abl eSt at ement . get Cbj ect (Stri ng
par anet er Nanme, Map nap)

Cal | abl eSt at enent . get Ref (i nt

par anet er | ndex)

Cal | abl eSt at enent . get Ref (Stri ng

par anet er Nane)

Cal | abl eSt at enent . get URL(i nt

par anet er | ndex)

Cal | abl eSt at enent . get URL(Stri ng
par anet er Nane)

Cal | abl eSt at enent . execut eBat ch()

Connecti on. rel easeSavepoi nt (Savepoi nt
savepoi nt)

Connecti on. rol | back(Savepoi nt savepoi nt)
Connecti on. set Savepoi nt ()

Connecti on. set Savepoi nt (Stri ng nane)

The particular
Connect i on methods
are not supported.

PreparedSt at enent . set Array(i nt
par anet er | ndex, Array x)
Prepar edSt at enent . set Ref (i nt
par aret er | ndex, Ref x)

Pr epar edSt at ement . set URL(i nt
par anet er | ndex, URL x)

The particular
Pr epar edSt at enent
method is not supported.

Resul t Set . get Array(i nt col uml ndex)

Resul t Set . get Array(String col umNane)
Resul t Set . get Obj ect (i nt col uml ndex, Map
nap)

nap)

Resul t Set . get Ref (i nt col uml ndex)

Resul t Set . get Ref (Stri ng col umNane)

Resul t Set . get URL(i nt col uml ndex)

Resul t Set . get URL(Stri ng col umNane)
Resul t Set . updat eArray(i nt col utml ndex)
Resul t Set . updat eArray(String col unmNane)
Resul t Set . updat eRef (i nt col uml ndex)
Resul t Set . updat eRef (Stri ng col unnNane)

Resul t Set . get bj ect (Stri ng col umNanme, Map

The particular
Resul t Set methods
are not supported.

The following methods are not supported when used for access of SQL/MP user tables:

Resul t Set . get Bl ob(Stri ng col utmNane)
Resul t Set . get d ob(i nt col umml ndex)
Resul t Set . get Cl ob(Stri ng col umNamne)
Resul t Set . updat eBl ob(i nt col uml ndex)

Resul t Set .
Resul t Set .
Resul t Set

updat eBl ob(Stri ng col unmNane)
updat ed ob(i nt col uml ndex)

. updat ed ob(String col umNane)

Method Comments
Pr epar edSt at enent . set Bl ob(i nt The particular
par anet er | ndex, Bl ob x) Pr epar edSt at enent
Pr epar edSt at ement . set O ob(i nt methods are not
par anet er | ndex, Cl ob x) supported for access of
SQL/MP user tables only.
Resul t Set . get Bl ob(i nt col umml ndex) The particular

Resul t Set methods
are not supported for
access of SQL/MP user
tables only.

The following methodsin thej ava. sql package throw an SQLExcept i on with the message "Auto generated keys not supported”:

M ethod

Comments

Connection. prepareStatenent (String sql, | Automatically generated keys
i nt aut oGener at edKeys) are not supported.
Connecti on. prepareStatenment (String sql,
int[] col umml ndexes)

Connection. prepareStatenment (String sql,
String[] col umNanes)

St at enent . execute(String sql, int Automatically generated keys
aut oCGener at edKeys) are not supported.
St at enent . execute(String sql, int[]

col uml ndexes)

St atenent . execute(String sql, String[]
col umNanes)

St at enent . execut eUpdate(String sql, int
aut oGener at edKeys)

St at ement . execut eUpdat e(String sql,
int[] col umml ndexes)

St at enent . execut eUpdate(String sql,
String[] col umNanes)

St at enent . get Gener at edKeys()

The following methodsinthej ava. sql package throw an SQLExcept i on with the message "Data type not supported:”

Method Comments

Cal | abl eSt at enent . get Byt es(i nt The particular datatypeis not
par anet er | ndex) supported.

Cal | abl eSt at enent . get Byt es(String
par aret er Nane)

Cal | abl eSt at enent . set Byt es(String Supports only BLOB, VARCHAR,
par anet er | ndex, bytes[] x) BINARY, LONGVARCHAR,
VARBINARY, and
LONGVARBINARY; otherwise,
the particular datatypeis not

supported.
Pr epar edSt at enent . set Byt es(i nt Supports only BLOB, CHAR,
Col uml ndex, bytes[] x) DATE, TIME, TIMESTAMP,

VARCHAR, BINARY,
LONGVARCHAR, VARBINARY,
and LONGVARBINARY;
otherwise, the particular data type

is not supported.
Pr epar edSt at enent . set Qbj ect (i nt Does not support the ARRAY,
par anet er | ndex, Object x int BINARY, BIT, DATALINK,
target Sql Type) JAVA_OBJECT, and REF types.

PreparedSt at ement . set String(int
par anet erl ndex, String Xx)

Resul t Set . get Byt es(i nt Col uml ndex) Supportsonly BLOB, CHAR,
Resul t Set . get Bytes(String VARCHAR, BINARY,

Col ummNan®e) LONGVARCHAR, VARBINARY,
and LONGVARBINARY;
otherwise, the particular data type
is not supported.

The following optional interfacesin thej avax. sqgl package are not implemented in the JIDBC/MX driver:

Method Comments

col umml ndex)

j avax. sql . JdbcRowSet . get Array(Stri ng

col ummNane)

j avax. sql . JdbcRowSet . get Obj ect (i nt

col uml ndex, Map map)

j avax. sql . JdbcRowSet . get Chj ect (Stri ng
col umName, Map nap)

j avax. sql . JdbcRowSet .
col uml ndex)

j avax. sql . JdbcRowSet .
col umNare)

j avax. sql . JdbcRowSet .
col uml ndex)

j avax. sql . JdbcRowSet
col umNane)

j avax. sql . JdbcRowSet .
savepoi nt)

j avax. sql . JdbcRowSet . set Array(i nt

par anet er | ndex, Array x)

j avax. sql . JdbcRowSet . set Ref (i nt

par anet er | ndex, Ref x)

j avax. sql . JdbcRowSet . updat eArray(i nt

col uml ndex)

javax. sql . JdbcRowSet . updat eArray(String
col umNare)

j avax. sql . JdbcRowSet . updat eRef (i nt

col uml ndex)

j avax. sql . JdbcRowSet . updat eRef (i nt

col uml ndex)

get Ref (i nt
get Ref (String
get URL(i nt
.getURL(String

rol | back(Savepoi nt

j avax. sql . XAConnecti on Distributed Transactions, as described in the JDBC 3.0

j avax. sql . XADat aSour ce API specification, are not yet implemented.

j avax. sqgl . RowSet

j avax. sql . RowSet I nt er nal RowSet isnot implemented in the JDBC/MX driver. You
j avax. sql . RowSet Li st ener can, however, download reference implementation of

j avax. sql . RowSet Met aDat a RowSet from Sun Microsystems

j avax. sql . RowSet Reader (http://devel oper.java.sun.com/devel oper/earlyAccess/crs/).
j avax. sql . RowSet Wi ter

j avax. sqgl . JdbcRowSet . get Array(i nt The JdbcRowSet API methods are supported except for

these that throw an Unsupported feature -
met hod- nanme SQLMXException.

For additional information about deviations for some methods, see Deviations.

Deviations

The following table lists methods that differ in execution from the JDBC specification. When an argument in a method is ignored, the
thus allowing the application to continue processing. The application might not
obtain the expected results, however. Other methods listed do not necessarily throw an SQLExcept i on, unless otherwise stated, although

JDBC/MX driver does not throw an SQLExcept i on,

they differ from the specification.

Note: j ava. sqgl . Dat abaseMet aDat a. get Ver si onCol uims () method mimicsthe

j ava. sql . Dat abaseMet aDat a. get Best Row dent i fi er () method because SQL/MX does not support SQL_ROWVER (a
columns function that returns the column or columns in the specified table, if any, that are automatically updated by the data source when

any value in the row is updated by any transaction).

Method

Comments

http://developer.java.sun.com/developer/earlyAccess/crs/

j ava. sql . Dat abaseMet aDat a. get Col ums(Stri ng
catal og, String schemaPattern, String
tabl eNamePattern, String col unmNanePatt ern)

The column is added to the column data, but itsvalue is
set to NULL because SQL/MX does not support the
column type for types as follows:

SCOPE_CATALOG,

SCOPE_SCHEMA,

SCOPE_TABLE, and

SOURCE_DATA_TYPE.

j ava. sql . Dat abaseMet aDat a. get Schenas()

TABLE_CATALOG is added to the column data and
returns the catalog name.

j ava. sqgl . Dat abaseMet aDat a. get Tabl es(Stri ng cat al og,
String schemaPattern, String[] types)

The column is added to the column data, but itsvalueis
set to NULL because SQL/MX does not support the
column type for types as follows:

TYPE_CAT,

TYPE_SCHEMA,

TYPE_NAME,

SELF_REFERENCING_COL_NAME,

and REF_GENERATION.

j ava. sql . Dat abaseMet aDat a. get UDTs(Stri ng cat al og,
String schemaPattern, String tabl eNanePattern,

int[] types)

BASE_TYPE isadded to the column data, but itsvalue is
set to NULL because SQL/MX does not support the base

type.

j ava. sql . Dat abaseMet aDat a. get Ver si onCol urms()

Mimicsthe

Dat abaseMet aDat a. get Best Rowl dent i fi er ()
method because SQL/MX does not support
SQL_ROWVER (acolumns function that returns the
column or columns in the specified table, if any, that are
automatically updated by the data source when any value
in the row is updated by any transaction).

java.sql . Driver Manager. get Connection(String url,
String usr, String password)

j ava. sqgl . Driver Manager. get Connection(String url,
Properties info)

j avax. sql . Dat aSour ce. get Connecti on(Stri ng usernane,
String password)

User name and password arguments are ignored. All
connections have the same security privileges as the user
who invoked the Java VM.

java. sqgl . Driver Manager. set Logi nTl neout (...)
j avax. sql . Dat aSour ce. set Logi nTi neout (. ..)

Login time-out isignored.

j avax. sql . Dat aSour ce. set LogW i ter

This method has no effect unless the JDBC trace facility
is enabled; for information on the JDBC trace facility, see
the NonStop Server for Java Programmer's Reference.

j ava. sqgl . Connection.createStatenent(...)

The JDBC/MX driver does not support the

j ava. sqgl . Connecti on. prepareStatenent(...) scroll-sensitive result set type, so an SQLWAr ni ng is
issued if an application requests that type. The result set is
changed to a scroll-insensitive type.

j ava. sgl . Connecti on. set ReadOnl y(...) The read-only attribute isignored.

j ava. sqgl . Resul t Set Met aDat a. get Preci si on(i nt col um) | For CLOB and BLOB columns, these methods return O to

j ava. sgl . Resul t Set Met aDat a. get Col utmbDi spl aySi ze(i nt | denote an unlimited value. According to the standard API,

col um) theget Pr eci si on() method and

get Col ummDi spl at Si ze() method return an integer
value, but LOB datalarger than the maximum integer
value can be stored in the database.

java. sql . Resul t Set. setFetchDirection(...)

The fetch direction attribute is ignored.

j ava. sql . St at enent . set EscapeProcessing(...) Because SQL/MX parses the escape syntax, disabling
escape processing has no effect.

java.sqgl. Statenent. set FetchDirection(...) The fetch direction attribute is ignored.

java.sqgl. Statenent.set QueryTi meout (...) The query time-out valueisignored. The IDBC/MX
driver does not abort execution when the query time-out
period has expired.

j avax. sql . JdbcRowSet . set User name(St ri ng user nane) User name and password arguments are ignored. Security

. . privileges are the same as for the user who invoked the
javax. sql . JdbcRowSet . set Passwor d(Stri ng password) JavaVM.

j avax. sql . JdbcRowSet (String url, String usernane,
String password)

j avax. sql . JdbcRowSet . set ReadOnl y(. . .) The read-only attribute isignored.

j avax. sql . JdbcRowSet . set EscapeProcessi ng(...) Disabling escape processing has no effect because
SQL/MX parses the escape syntax.

j avax. sql . JdbcRowSet . set FetchDirection(...) The fetch direction attribute is ignored.

j avax. sql . JdbcRowSet . set QueryTi neout (...) The query time-out value isignored. The IDBC/MX
driver does not abort execution when the query time-out
period has expired.

The following features are implemented in the JIDBC/M X driver but might differ in implementation from other drivers:

Updatable Result Set

The JDBC/MX driver supports both read-only and updatable concurrency modes. The IDBC/MX driver expects the following criteriafor a
result set to be updatable:

« Thetable name of thefirst column in the result set is assumed to be the table to be updated. This assumption allows queries from
multiple tables also to be updatable.

» The query selects the primary key columns of the table to be updated.

The JDBC/MX driver throws an SQLExcept i on when any of the following conditions occur:
o The primary key columns are updated.

« Any selected column has been updated since the most recent time it was read. (However, the IDBC/MX driver does not ensure that
columnsin the table that are not part of the select query remain unchanged since the row was most recently read.)

« A query does not select nonnullable columns or columns that do not have a default value.

Theresult set is also affected in the following ways:
« A deleted row isremoved from the result set. The method dat abaseMet aDat a. del et esAr eDet ect ed() returnsf al se.

« Aninserted row is added to the result set at the current cursor position. The method
dat abaseMet aDat a. i nsert sAreDet ect ed() returnst r ue.

Batch Updates
The batch update facility allowsa St at enent object to submit a set of heterogeneous update, insert, or delete commands together asa
single unit to the database. Thisfacility also allows multiple sets of parameters to be associated with aPr epar edSt at enent object.

When the autocommit mode is enabled, the IDBC/MX driver commits the updates only when all commands in the batch succeed. If any
command in the batch fails, the updates are rolled back in both autocommit and nonautocommit mode.

With the BatchUpdate Exception handling improvements support, JDBC driver now continues processing the remaining jobs in the batch
even after BatchUpdateExceptions. If there is any Batch exceptions encountered during the execution, the exception is queued up and the

remaining batch commands are executed. At the execution completion of all elementsin the batch the queued exceptions are thrown. The
user application must handle, commit, or rollback of batch transaction on an exception. By this, re-execution of entire jobs is avoided.
However, for any TMF errors, that results in transaction failure, cannot be addressed by this enhancement.

HP Extensions

The following HP extensions to the JDBC standard are implemented in the JDBC/MX driver.

Interval Data Type

Thei nt er val datatypeisnot ageneric SQL type defined in the Java 2 JDBC 3.0 Specification, but SQL/MX supportsthei nt er val
datatype. To alow JDBC applications for SQL/MX to accessthei nt er val datatype, the IDBC/MX driver mapsit to the

Types. OTHER datatype. The IDBC/MX driver enablesthe get Obj ect () and get Stri ng() methods of the Resul t Set interface,
andtheset Qbj ect () andset St ri ng() methods of the Pr epar edSt at enment interface, to access this datatype. Thei nt er val
datatypeisawaysaccessed asa St r i ng object. The JIDBC/MX driver also alows escape syntax for i nt er val literals.

Internationalization

The JDBC/MX driver is designed so that Java messages can be adopted for various languages. The error messagesin JDBC/MX
components are stored outside the source code in a separate property file and retrieved dynamically based on the locale setting. The error
messages in different languages are stored in separate property files based on the language and country. This extension does not apply to all
messages that can occur when running JDBC applications.

SQL Conformance

JDBC/MX conforms to the SQL language entry level of SQL:1999. This subsection describes the JDBC/M X support for:
» SQL Scalar Functions
o CONVERT Function
« JDBC DataTypes
o SOQL Escape Clauses

SQL Scalar Functions

JDBC/MX maps JDBC scalar functions to their equivalent SQL/MX functions, as shown in the following tables:

Numeric Functions

JDBC Function SQL/M X Equivalent Function

ABS ABS

ACOS ACOS

ASI N ASI N

ATAN ATAN

ATAN2 ATAN2

CEl LI NG CEl LI NG

CCs CCs

DEGREES DEGREES

EXP EXP

FLOOR FLOOR
LOG LOG
LOGLO LOGLO
MOD MOD

PI PI

PONER PONER
RADI ANS RADI ANS
SKeN SKeN
SIN SIN

SI NH SI NH
SQRT SQRT
TAN TAN

String Functions

JDBC Function

SQL/M X Equivalent Function

ASCl | ASCl |

CHAR CHAR

CHAR_LENGTH CHAR_LENGTH

CONCAT CONCAT

I NSERT I NSERT

LCASE LOAER

LEFT SUBSTRI NG

LENGTH LENGTH

LOCATE LOCATE (JDBC LOCATE st art parameter is
not supported)

LONER LONER

LPAD LPAD

LTRIM LTRIM

OCTET_LENGTH | OCTET_LENGTH

POSI Tl ON POSI Tl ON

REPEAT REPEAT

REPLACE REPLACE

RI GHT Rl GHT

RTRI M TRIM .. TRAI LI NG

SPACE SPACE

SUBSTRI NG SUBSTRI NG

UCASE

UPPER |

UPSHI FT

Note: JDBC string functionsin queries can return unexpected results

for fixed-length (CHAR) column names because SQL/MX pads a
fixed-length string with blanks up to the length of the definition, so
the results from some JDBC string functions can include trailing
blanks at the end of the string. Use the RTRI Mfunction in queriesto
cause SQL/MX to trim extra blanks from the column names.

Time and Date Functions

JDBC Function

SQL/MX Equivalent Function

CONVERTTI MESTAMP

CONVERTTMESTAMP

CURRENT

CURRENT

CURRENT_TI MESTAMP

CURRENT_TI MESTAMP

CURDATE, CURRENT DATE
CURRENT DATE

CURTI ME, CURRENT_TI ME
CURRENT _TI ME

DATEFORVAT DATEFORVAT
DAY DAY

DAYNANE DAYNANE
DAYOFMONTH DAYOFMONTH
DAYOFVEEK DAYOFWEEK
DAYOFYEAR DAYOFYEAR
EXTRACT EXTRACT

HOUR HOUR

JULI ANTI MESTAMP

JULI ANTI MESTAMP

M NUTE M NUTE
MONTH MONTH
MONTHNANE MONTHNANE
QUARTER QUARTER
SECOND SECOND
VEEK VEEK

YEAR YEAR

System Functions

JDBC Function

SQL/MX Equivalent Function

CURRENT_USER

CURRENT_USER

SYSTEM _USER

SYSTEM _USER

USER

USER

CONVERT Function

JDBC/MX usesthe SQL/MX CAST function to support the JDBC CONVERT function. The JDBC CONVERT function has the following
format:

{ fn CONVERT(val ue_exp, data_type) }

The SQL/MX CAST has this format:
CAST({ value_exp | NULL } AS data_ type)

SQL/MX trandates the CONVERT syntax to the CAST syntax, converting the data type argument to its equivalent SQL/MX value. For
example, if the JIDBC data type parameter for character datais an integer value (SQL_CHAR or 1), the equivalent SQL/MX datatypeisa
string literal with avalue of CHARACTER.

JDBC Data Types

The following table shows the JDBC data types that are supported by JDBC/M X and their corresponding SQL/M X data types:

Supported
JDBC Data Type by SQL/MX Data Type
JDBC/MX
Types. Array No
Types. Bl G NT Yes LARGEI NT
Types. Bl NARY No
Types.BI' T No
Types. BLOB Yes
Types. CHAR Yes CHAR(n)
Types. CLOB Yes
Types. DATE Yes DATE
Types. DECI MAL Yes DECI MAL(p, S)
Types. DI STI NCT No
Types. DOUBLE Yes DOUBLE
*) PRECI SI ON
Types. FLOAT Yes FLOAT(p)
*)
Types. | NTEGER Yes I NTEGER
Types. JAVA _OBJECT No
Types. LONGVARBI NARY | No
Types. LONGVARCHAR Yes** VARCHAR] (n)]
Types. NULL No
Types. NUVERI C Yes NUMERI C(p, S)
Types. REAL Yes FLOAT(p)
Types. REF No
Types. SMALLI NT Yes SMALLI NT

Types. STRUCT No

Types. TI ME Yes TI ME
Types. TI MESTAVP Yes Tl MESTAMP
Types. TI NYI NT No

Types. VARBI NARY No

Types. VARCHAR Yes VARCHAR(n)

* See Floating Point Support.

Manual.

** For details about maximum length, see the SQL/MX Reference

The JDBC/MX driver maps the following SQL/MX data types to the JDBC datatype Types. OTHER:

DATETI ME
DATETI VE
DATETI ME
DATETI ME
DATETI ME
DATETI ME
DATETI ME
DATETI ME
DATETI VE
DATETI ME
DATETI ME
DATETI ME
DATETI MVE
DATETI ME
DATETI ME
DATETI VE
DATETI ME
DATETI MVE
DATETI ME

| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL
| NTERVAL

YEAR

YEAR TO MONTH
YEAR TO DAY
YEAR TO HOUR
YEAR TO M NUTE
MONTH

MONTH TO DAY
MONTH TO HOUR
MONTH TO SECOND
DAY

DAY TO HOUR

DAY TO M NUTE
DAY TO SECOND
HCOUR

HCOUR TO M NUTE
M NUTE

M NUTE TO SECOND
SECOND

FRACTI ON

YEAR(p)

YEAR(p) TO MONTH
MONTH(p)

DAY(p)

DAY(p) TO HOUR
DAY(p) TO M NUTE
DAY(p) TO SECOND
HOUR(p)

HOUR(p) TO M NUTE
HOUR(p) TO SECOND
M NUTE(p)

M NUTE(p) TO SECOND

SECOND(p)

Floating-Point Support

The JDBC/MX driver and the NonStop Server for Java pass any FLOAT (32-bit) number or DOUBLE (64-bit) number in the |EEE 754
floating-point format.

Floating-point values are stored in SQL/MX tables as IEEE 754 values.

Floating-point values are stored in SQL/MP tablesin Tandem format (called TNS format in OSS terminology. For floating-point values
stored in SQL/MP tables in the Tandem format, SQL/MX performs the conversion from the IEEE 754 format to the Tandem format when

storing the values and from the Tandem format to the IEEE 754 format when retrieving and passing the values.

Since SQL/MX tables store IEEE 754 floating-point values, JDBC applications accessing floating-point data do not receive floating-point
exceptions. The IDBC applications should check for plus (+) or minus (-) infinity conditions to determine if an overflow or underflow has
occurred. Applications can also encounter a not-a-number value being passed back, for example, for numbers divided by zero. This
processing is done according to the IEEE 754 standard.

SQL/MP tables can generate floating-point exceptions.

For the range of floating-point values and double-precision values for IEEE 754 format and TNS format, see the NonStop Server for Java
Programmer's Reference. For information on floating-point formats in SQL/MX, see "Data Types' in the SQL/MX Reference Manual.

SQL Escape Clauses

JDBC/MX accepts SQL escape clauses and tranglates them into equivalent SQL/MX clauses, as shown in the following table:

SQL Escape Clause SQL/M X Equivalent Clause
{ d "date-literal' } DATE 'date-literal’
{t 'tine-literal' } TIME "time-literal'
{ ts "tinmestanp-literal’ TI MESTAMP
} "timestanp-literal’
{ oj join-expression } j Oi n-expression *
{ INTERVAL sign | NTERVAL si gn
interval -string interval -string
interval-qualifier } interval -qualifier
{ fn scalar-function } scal ar-function
{ escape escape
' escape-character' } ' escape-character’
{ call procedure-nane... CALL procedure-nane. ..
}
{ ?=call Not supported in the current
procedure-nane... } release
* JDBC syntax does not include nested joins, while SQL/MX does.
JDBC/MX extends the SQL escape syntax for an outer join.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Devel opment Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

JDBC Trace Facility

The JDBC trace facility traces the entry point of all JDBC methods called from the Java applications. To make this facility
generic, it isimplemented as a JDBC driver wrapper.

The JDBC trace facility can be enabled in any of the following ways in which a JDBC connection to a database can be obtained:
« Tracing using the DriverManager Class

« Tracing using the DataSource |mplementation

e Tracing using the java command

« Tracing using the system.setProperty method

o Tracing by loading the trace driver within the program

« Tracing using a wrapper data source

o Enabling Tracing for Application Servers

o Trace-File Output Format
o Logging SOL Statement 1Ds and Corresponding JDBC SOL Statements
« JDBC Trace Facility Demonstration Program

Tracing Using the DriverManager Class

Java applications can usethe Dr i ver Manager classto obtain the JDBC connection and enable the JDBC trace facility by
loading the JDBC trace driver. com t andem j dbc. TDr i ver isthetrace driver class that implements the Driver interface.
The application can load the JIDBC trace driver in one of the following ways:

« Specify the IDBC trace driver classinthe- Dj dbc. dri ver s option in the command line.
« Usethed ass. For Name method within the application.
« Addthe JDBC trace classto thej dbc. dri ver s property within the application.

The JDBC URL passed intheget Connect i on method of the driver class determines which JDBC driver obtains the
connection. Use the following URL and JDBC driver to obtain the JDBC connection:

j dbc: sqgl nx:

Java applications should turn on tracing using the Dr i ver Manager . set LogW i t er method, for example by using the
following JDBC API call in your application:

Driver Manager.setLogWiter(new PrintWiter(new FileWiter("FileNane")));

Tracing Using the DataSource Implementation

Thisis preferred way to establish a JDBC connection and to enable the JIDBC trace facility. In thisway, alogical nameis
mapped to a trace data source object by means of a naming service that uses the Java Naming and Directory Interface (JNDI).

The following table describes the set of properties that are required for a trace data source object:

Property Name ’ Type ’ Description

dat aSour ceNane | String | The datasource name

Description of this data

descri ption String source

The name of the
traceDat aSource | String | Dat aSour ce object to be
traced

Thet r aceDat aSour ce object is used to obtain the JDBC connection to the database. Java applications should turn on
tracing using theset LogW i t er method of the Dat aSour ce interface.

Tracing Using the java Command

Enable tracing by specifying the tracing system property by using the following arguments when starting your Java program:
java -D dbcnx.traceFi |l e=l ogFil e -Dj dbcnx. traceFl ag=n

Thel ogFi | e isthefile name that isto contain the tracing information. The n value for thet r aceFl ag can be the following
values:

Valuefor n Description
0 No tracing.
1 Traces connection and statement

pooling calls only.

2 Traces the LOB-code path only.

Traces the entry point of all JIDBC
methods.

Note: Only onet r aceFl ag value can bein effect at atime.

Tracing Using the system.setProperty Method

Enable tracing by using the Syst em set Propert y(key, val ue) to set the same value as described above. For example:

System set Property("traceFile", "nyLogFile.log");
System set Property("traceFl ag", "2");

Set the system property before the program makes any JDBC API calls.

Tracing by Loading the Trace Driver Within the
Program

Enable tracing by loading the JDBC trace driver within the program by using the
Cl ass. forNane("com tandem j dbc. TDri ver") method. This method also requires that you set the
Dri ver Manager . set LogW i t er method.

Tracing Using a Wrapper Data Source

Enable tracing by creating a wrapper data source around the data source to be traced. The wrapper data source contains the
Tr aceDat aSour ce property that you can set to the data source to be traced. For information about demonstration programs
that show using this method, see JDBC Trace Facility Demonstration Programs.

Enabling Tracing for Application Servers

Typically, tracing output iswrittento the Pri nt Wi t er object that the application sets by using either the
Dat aSour ce. set LogW it er () methodor Dri ver Manager . set LogW i t er () method. User-written Java
applications can use these methods with the JIDBC Trace Facility.

Application servers, however, might not enable the JDBC tracing with theset LogW i t er () method. Instead application
servers can enable tracing and set the tracing level by using the following JIDBC/M X properties:

e jdbcnx.traceFile

e jdbcnx.traceFl ag

jdbcmx.traceFile Property

To enable tracing for application servers, usethej dbcnx. t r aceFi | e property specified in the command line:
-D dbcnx. traceFil e=trace_fil e _nane

wherej dbcnx. trace_fil e_nane isan OSS filename. If the file exists, the tracing output is appended to the
existing file.

ThePrint Witer objectthatissetusingset LogWiter () method has higher precedence over the
j dbcnx. t raceFi | e system property setting. This property can be specified in the command line or
programmatically before the first connection.

jdbcmx.traceFlag Property

To set the tracing level for application serversthat usethej dbcnx. t raceFi | e property, usethet r aceFl ag property
specified in the command line:

- O dbcnx. traceFl ag=n

where n isan integer that specifies the tracing level. The value can be O, 1, or 2. The default level is0. Any value
greater than 2 istreated like 2. Thetracing levels are:

Level Meaning

0 No tracing.

1 Traces cc_)nnecti on and statement pooling
information.

2 Traces the LOB-code path only.

3 Traces the entry point of all JIDBC

methods.

Note: Only onet r aceFl ag value can bein effect at atime.

Trace-File Output Format

A trace entry appears at the start of the trace file that shows the vproc of the IDBC/MX driver being traced. This entry appears
only whenthet r aceFl ag valueis1, 2, or 3. For example,

j dbcTrace: [08/ 02/ 05 04:02: 49]: TRACI NG JDBC/ MX VERSI ON: T1275H50_23DEC2005_JDBCMX_10220

The format of the trace output has two types where the second type is used only where the IDBC/M X driver has an object to
map to. The formats are:

Format 1
jdbcTrace: [timestanp] [thread-id]:[object-id] :classNane.nethod(param..)
Format 2

jdbcTrace: [timestanp] [thread-id]:[object-id] :classNane.nethod(param..)
returns [return-object] [return-object-id]

where

ti mestanp

isthe day and time representation in the form: mni dd/ yy hr: m n: sec
where nmis month; dd, day; yy, year; hr, hour; m n, minute; sec, seconds.

thread-id
is the String representation of the current thread
object-id
isthe hashcode of the JIDBC object
cl assnane
isthe JDBC implementation class name.
ret ur n- obj ect

isthe object returned by the traced method. Ther et ur n- obj ect can be one of the following interface types:
Cal | abl eSt at enent , Connect i on, Pool edConnecti on, Resul t Set , St at enent , Dat abaseMet aDat a,
Par anet er Met aDat a, or Resul t Set Met aDat a.

return-object-id
isthe hashcode of the object returned by the traced method.

Traceoutput issenttothePri nt Wi t er specifiedintheset LogW i t er method.

Example 1

j dbcTrace: [10/ 12/ 05 10: 04: 39]
[Thread[mai n, 5, mai n]]:[5256233]: com t andem sql mx. SQLMXPr epar edSt at enent . execut eQuery()

Example 2

Some traced methods will have two trace statements, one for the method entry point and the other for return object mapping.
Some code paths might log additional tracing statements between method entry and the return. For example, between
SQLM X Connection.prepareStatement () trace entries, you might see:

j dbcTrace: [10/ 12/ 05 10: 04: 39]
[Thread[mai n, 5, mai n]]: [10776760] : SQLMXConnect i on. prepareSt at enent ("sel ect cl1, c2 from
tconpool where cl = ?")

<additional trace entries>

<j dbcTrace: [10/ 12/ 05 10: 04: 39]
[Thread[mai n, 5, mai n]]:[10776760] : SQLMXConnect i on. prepareSt at enent ("sel ect cl1, c2 from
tconpool where cl = ?") returns PreparedStatenent [23276589]

Logging SQL Statement IDs and Corresponding
JDBC SQL Statements

The IDBC/MX driver can write a supplemental log file that shows the SQL statement ID (STMID) of executed SQL statements
mapped with the corresponding JDBC SQL statements.

Thei dMapFi | e containsalist of all the SQL statements issued by the application, and correlates them to the internal driver
STMTID (ahashcode). The trace-file output (see Trace-File Output) liststhe STMID (the obj ect - i d in the trace output),

which can be used to reference the SQL statementsin the idMapFile trace file.

The statement-ID islogged in thei dMapFi | e to avoid replacing the obj ect - i d in the trace-file output with the verbose and
potentially large SQL statement for every entry.

Mapping statement-1Ds to SQL statements applies to any interface that prepares or executes a statement, for example,
Pr epar edSt at ement , Connect i on, Resul t Set , JdbcRowSet , and St at enment .

o Specifying Statement-ID Logging

e Propertiesfor Statement-1D Logging
o Statement-1D Log Output

Specifying Statement-ID Logging

To specify supplemental 1ogging:
1. Settheenabl eLog property to on to enablelogging.
2. Setthei dMapFi | e property to specify the log file. By default, the log is written to the screen.

For additional information about these properties, see enablel og Property and idM apFile Property.

Y ou can specify these properties either in the command line or in the program similar to setting tracing described earlier under
Tracing Using the java Command and Tracing Using the system.setProperty Method.

> Specify Logging in the Command Line
java D dbcnx. i dMapFil e=l ogFile D dbcnx. enabl eLog=on
Specify Logging in a Program

System set Property("enabl eLog”, "on");
System set Property("("i dvapFile", "nyMapFile.log");

Properties for Statement-ID Logging

enableLog Property

Enableslogging of SQL statement | Ds and the corresponding JDBC SQL statements. The format for enabl eLog property is.

- Oy dbcnx. enabl eLog=bool ean

Datatype: bool ean
Default: of f

Valid values are either on or of f . You can specify this property only in thej ava command line.
The following specification in thej ava command line enables the logging:
- Oy dbcnx. enabl eLog=0on

For more information, see Logging SOL Statement 1Ds and Corresponding JDBC SOQL Statements.

idMapFile Property

Specifies the file to which the JDBC trace facility logs SQL statement 1Ds and the corresponding JDBC SQL statements. The
format for thei dapFi | e property is:

- Dj dbcnx. i dvapFi | e=fi | enane

Datatype: st ri ng
Default: logs to the screen

Specify avalid OSS file name. Y ou can specify this property only in thej ava command line.
The following entry in thej ava command line specifieslogging to file/ sal es/ app5/ STM D- Log.
- D dbcnx. i dvapFi | e=/ sal es/ app5/ STM D-| og

To enable logging, use the enabl eLog property. For more information, see Logging SQL Statement I1Ds and Corresponding
JDBC SQL Statements.

Statement-ID Log Output

The format of a statement-ID log output entry is:
[ti mestanp] STMrobject-id (sql-statenent)

where
ti mestanp

isthe day and time representation in the form: mi dd/ yy hr: m n: sec
where nmis month; dd, day; yy, year; hr, hour; m n, minute; sec, seconds.

object-id
isthe hashcode of the JIDBC object.
sqgl - st at enent
isthe actual SQL statement mapped to the statement ID.

Example

[08/05/05 10:32:38] STMri6399041 ("insert into TST_TBL (cl) values = ?")

JDBC Trace Facility Demonstration Program

The IDBC/MX driver provides jdbcTrace demonstration programs in the installation directory. The programs are described in
the READIVE_JDBCTr ace file. For the location, see JDBC/MX Driver File Locations. These programs demonstrate tracing by

creating awrapper around the driver-specific data source to be traced. For additional information, see Sample Programs
Summary.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Migration

This section describes the considerations and application changes required to migrate applications from
the IDBC/MX V30, V31, V32, H10 drivers to the IDBC/MX H50 driver. These topics are:

Summary of Migration Changesfor JDBC/M X Driver Versions

Migrating
. . . . from V32
. . . Migratin Migratin

Migration Topic fro?n ng fro?n V3(i:] (TNS/R)

or H10

(TNS/E)
Transactions Applies N/A N/A
nametype Property Applies N/A N/A

Deprecated Property-Name

= ey Applies | N/A N/A

Specification

Deprecated M ethods According
to the J2SE 5.0 AP

Applies Applies Applies

Row Count Array of the
PreparedStatement.executeBatch | Applies N/A N/A
Method

Using Character Encoding Sets
and SOL Databases

Applies N/A N/A

Connection sharing across
multiple threads

Applies Applies Applies

L ocation Change for Installed
Files

Applies Applies Applies

Version of NonStop Server for
Java

Applies Applies Applies

Release of NonStop SOL/MX Applies N/A N/A

If you are migrating from JDBC/MX V30, V31, or V32 you might want to see the new and changed
information in the JDBC Driver for SQL/MX Programmer's Reference for the later products.

This section also includes the topics
« Migrating to TNS/E Systems

o Migrating from JDBC/MP Applications

Transactions

Transaction semantics changed in the V31 product from the previous versions of the JIDBC/MX driver
when the connection is set to autocommit mode.

In previous releases, when multiple select statements were involved in a transaction in autocommit mode,
the IDBC/MX driver ended the transaction when any select statement result set was closed. In this
release, the JIDBC/M X driver ends the transaction only when the result set of the select statement that
started the transaction is closed.

If your application depends on the previous transaction semantics, you need to re-code the application.

nametype Property

Use of thenanmeType property was removed in the IDBC/MX V31 driver. This property allowed you to
specify the use of either ANSI or SHORTANSI names. SHORTANSI names are no longer allowed. The
names are ANSI names. Remove use of this feature from your applications.

Deprecated Property-Name Specification

With the IDBC/M X V31 and V32 drivers, property names used on the command lineinthej ava - D
option should now include the prefix:
j dbcnx.

This notation, which includes the period (.), ensures that all the JIDBC/MX driver property hames are
unique for a Java application. For example: nax St at enent s becomes
j dbcnx. maxSt at enent s

For application migration purposes, the JIDBC/MX V31 and V32 drivers allow the deprecated
property-name specification on the command line.

The property names passed to JDBC/MX V31 and V32 driver methods in a Properties object do not
require the prefix.

Summary of Deprecated Property-Name
Specificationsfor Usein the Command Line

PropartyName | NewProperty-Name
Specification Specification
cat al og j dbcnk. cat al og
schema j dbcnx. schema
npl oc j dbcnx. npl oc
maxPool Si ze j dbcnx. maxPool Si ze
m nPool Si ze j dbcnmx. m nPool Si ze
maxSt at enent s j dbcnx. max St at enent s
traceFile jdbcnx. traceFil e
traceFl ag j dbcnx. traceFl ag
sgl nx_nowai t j dbcnx. sgl nx_nowai t

Note: Support for the deprecated property-name specification will end in afuture
JDBC/MX driver release. HP recommends that you migrate your JDBC applications to use
the new property-name specification.

Deprecated Methods According to the
J2SE 5.0 API

The following methods are marked as deprecated according to the J2SE 5.0 API, but functionality
remains unchanged to minimize impact on existing user applications.

SQ_MXCal | abl eSt at enent . get Bi gDeci mal ()
SQ_.MXCal | abl eSt at enent . set Uni codeSt r ean()
SQ_.MXConnect i onPool Dat aSour ce. set NaneType()
SQ_.MXConnect i onPool Dat aSour ce. get NanmeType()
SQ_MXDat aSour ce. set NaneType()

SQ_.MXDat aSour ce. get NaneType()
SQ.MXJdbcRowSet . get Bi gDeci mal ()
SQ-MXJdbcRowSet . get Uni codeSt r ean()

SQLMXPr epar edSt at enent . set Uni codeSt r eam()

SQLMXResul t Set . get Bi gDeci mal ()
SQLMXResul t Set . get Uni codeSt r eam()

TCal | abl eSt at enent . get Bi gDeci mal ()
TPr epar edSt at enent . set Uni codeSt r ean()
TResul t Set . get Bi gDeci mal ()

TResul t Set . get Uni codeSt ream()

Row Count Array of the
PreparedStatement.executeBatch
Method

With the release of the IDBC/MX V31 and V32 drivers, you can improve the performance of batch
processing when using the Pr epar edSt at enent . execut eBat ch() method by setting the
bat chBi ndi ng property.

If you do not set the bat chBi ndi ng property, your JDBC applications operate without batch array
binding (the default setting).

If you update your application to use the bat chBi ndi ng property, you must consider the change in
information returned on the Pr epar edSt at enent . execut eBat ch() method.

For detailed information, see Setting Batch Processing for Prepared Statements.

Using Character Encoding Sets and SQL
Databases

If your application uses Java character encoding sets and accesses SQL databases, consider the change in
the IDBC/MX V31 and V32 drivers support of multibyte character sets and how the change might affect

your application.

The IDBC/MX driver now supports the reading and writing of CHAR, VARCHAR,
VARCHAR_LONG, and VARCHAR_WITH_LENGTH datatypes that utilize a double-byte character
set. The double-byte character sets supported by JDBC/MX are 1SO88591, UCS2, KANJI, and
KSC5601.

Previoudly, String type column data was always encoded using the default character set encoding, which
was typically 1S088591, but KANJI and KSC5061 were also supported.

Now the IDBC/MX driver encodes and decodes String data types as a function of the associated
character set name for the particular SQL table column independent of the default encoding. For the

currently supported character sets, see Multibyte Character Set (MBCS) Support.

Connection sharing across multiple
threads

« Applications that do not share connections across multiple threads can be used with the new JDBC
version (HS0AAD) without any changes.

« The existing multi-threaded application on other platforms with connection objects shared across
multiple threads can be directly ported to work with enhanced JIDBC/MX driver.

« For anew application, to utilize the connection sharing enhancement the application has to be
redesigned to share the connection across multiple threads.

Fallback provisions

If the application is modified for sharing connections across multiple threads, consider either of the
following steps:

« Explicitly synchronize the connection object usage in the application.
« Revert back the changes done for sharing the connection.

Location Change for Installed Files

With the IDBC/MX V30 driver, the driver software was installed to the default location of the
[usr/tandenm java_public_lib directory, which wasthe public library directory for NonStop
Server for Java 4.

Now for the V31 and subsequent PVUs, the IDBC/MX driver must be installed in its own space. For the
current installation location for the JDBC/MX driver, see JDBC/MX Driver File Locations.

Version of NonStop Server for Java

JDBC/MX requires these versions of NonStop Server for Java:

« JDBC/MX V30 requires NonStop Server for Java 3.1.1 or subsequent 3.x release (product number
T0083).

« JDBC/MX V31 requiresversion 1 of NonStop Server for Java4 (product number T2766), whichis
based on J2SE SDK 1.4.1.

« JDBC/MX V32 (TNS/R system) and H10 (TNS/E system) require NonStop Server for Java 4

(product number T2766), which is based on J2SE SDK 1.4.2.

« JDBC/MX H50 requires NonStop Server for Java 5 (product number T2766), which is based on
J2SE 5.0.

« JDBC/MX H50 AAD requires NonStop Server for Java 5 (product number T2766H51 or
T2766H50), which is based on J2SE 5.0.

For Java migration issues, see the NonStop Server for Java Programmer's Reference.

Release of NonStop SQL/MX

JDBC/MX requires these versions of NonStop SQL/MX:
o JDBC/MX V30 requires NonStop SQL/MX 1.8.5.
o JDBC/MX V31 requires NonStop SQL/MX 2.0.
« JDBC/MX V32 requires NonStop SQL/MX 2.0 or all subsequent 2.x versions until otherwise
indicated in areplacement publication.

For SQL/MX migration issues, see the SQL/MX Installation and Management Guide.

Migrating to TNS/E Systems

For information about migrating Java applications from TNS/R systems to TNS/E systems, see the
NonStop Server for Java Programmer's Reference.

Migrating from JDBC/MP Applications

For extensive information on migrating applications from NonStop SQL/MP to NonStop SQL/MX, see

the SQL/MX Database and Application Migration Guide.

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Devel opment Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Messages

JDBC/MX returns sglcode and file-system error codes as error codes for theget Er r or Code()
method of SQL Exception.

Messages from the Messages from the
Java Portion Native-interface Portion
of the JDBC Driver of the JDBC Driver
(range 29000 through 29079) |(range 29250 through 29499)
29001-29009 29050-29059 29251-29259
29010-29019 29060-29069 29260-29267

29020-29029 29070-29079
29030-29039 29080-29089
29040-29049

Messages are listed in numerical SQL CODE order. Descriptions include the following:

SQLCODE SQLSTATE nessage-text

Cause [What occurred to trigger the nessage.]
Ef f ect [What is the result when this occurs.]
Recovery [How to di agnose and fix the problem]

For information about error codes outside these ranges, see the SQL/MX Messages Manual.

Messages From the Java Side of the
JDBC/MX Driver

29001 HYCOO Unsupported feature - {0}

Cause: Thefeature listed is not supported by the JIDBC driver.
Effect: An unsupported exception isthrow, and null r esul t Set isreturned.
Recovery: Remove the feature functionality from the program.

[back to the top]

29002 08003 Connection does not exist

Cause: An action was attempted when the connection to the database was closed.
Effect: The database isinaccessible.
Recovery: Retry the action after the connection to the database is established.

[back to the top]

29003 HYO00 Statement does not exist

Cause: A validation attempt was made on the getter or exec invocation on a closed statement.

Effect: The getter or exec invocation validation fails.

Recovery: Issueval i dat eGet | nvocati on() or val i dat eExecDi rect | nvocati on when
the statement is open.

[back to the top]

29004 HY024 Invalid transaction isolation value

Cause: An attempt was made to set the transaction isolation level to an invalid value.

Effect: SQLMXConnect i on. set Transact i onl sol at i on does not set the transaction isolation
value.

Recovery: Valid isolation valuesare: SQL_TXN_READ COWM TTED,

SQL_TXN _READ UNCOWM TTED, SQL_TXN REPEATABLE READ, and

SQL_TXN _SERI ALI ZABLE.

If no isolation value is specified, the default is SQL_TXN_READ COWM TTED.

[back to the top]

29005 HY024 Invalid ResultSet type

Cause: An attempt was made to set aninvalid Resul t Set Type value.

Effect: The SQLM X Statement call withther esul t Set Type parameter fails.

Recovery: Valid Resul t Set typesare: TYPE_FORWARD ONLY, TYPE _SCROLL_ I NSENSI TI VE,
and TYPE_SCROLL_SENSI TI VE.

[back to the top]

29006 HYOO00 Invalid Result Set concurrency

Cause: An attempt was made to set an invalid result-set concurrency value.
Effect: The SQLMXSt at enent call withr esul t Set Concur r ency fails.
Recovery: Validr esul t Set Concur r ency valuesare: CONCUR_READ ONLY and

CONCUR_UPDATABLE.

[back to the top]

29007 07009 Invalid descriptor index

Cause: A Resul t Set Met adat a column parameter or a Par anret er Met aDat a param parameter is
outside of the descriptor range.

Effect: The Resul t Set Met adat a or Par anet er Met aDat a method datais not returned as
expected.

Recovery: Validate the column or parameter that is supplied to the method.

[back to the top]

29008 24000 Invalid cursor state

Cause: TheResul t Set method was called when the connection was closed.
Effect: The method call does not succeed.
Recovery: Make sure the connection is open before making the Resul t Set method call.

[back to the top]

29009 HY109 Invalid cursor position

Cause: An attempt was made to perform adel et eRow() method or updat eRow() method or
cancel RowUpdat es method when the Resul t Set row cursor was on the insert row. Or an attempt
was made to perform thei nsert Row() method when the Resul t Set row cursor was not on the
Insert row.

Effect: The row changes and cursor manipulation do not succeed.

Recovery: To insert arow, move the cursor to the insert row. To delete, cancel, or update arow, move
the cursor from the insert row.

[back to the top]

29010 07009 Invalid column name

Cause: A column search does not contain col utmNane string.

Effect: The column comparison or searches do not succeed.

Recovery: Supply avalid col uimNane string to thef i ndCol un(),

val i dat eGet | nvocati on(),andval i dat eUpdl nvocati on() methods.

[back to the top]

29011 07009 Invalid column index or descriptor index

Cause: A Resul t Set method was issued that has a column parameter that is outside of the valid range.
Effect: The Resul t Set method data is not returned as expected.

Recovery: Make sure to validate the column that is supplied to the method.

[back to the top]

29012 07006 Restricted data type attribute violation

Cause: An attempt was made to execute a method either while an invalid data type was set or the data
type did not match the SQL column type.

Effect: The interface method is not executed.

Recovery: Make sure the correct method and Java data type is used for the column type.

[back to the top]

29013 HY024 Fetch sizeis less than O

Cause: Thesize set for Resul t Set . set Fet chSi ze rowsto fetch isless than zero.

Effect: The number of rows that need to be fetched from the database when more rows are needed for a
Resul t Set object isnot set.

Recovery: Set theset Fet chSi ze() method rows parameter to avalue greater than zero.

[back to the top]

29014 HYO00 SQL datatype not recognized

Cause: An unrecognized SQL data type was detected by JDBC.

Effect: An exception isthrown; datais not updated.

Recovery: Make sure that the SQL data type is supported by JDBC. The error isinternal to the
JDBC/MX driver.

[back to the top]

29015 HY024 Invalid fetch direction

Cause: Theset Fet chDi recti on() method direction parameter is set to an invalid value.
Effect: Thedirection in which therowsinthisResul t Set object are processed is not set.
Recovery: Valid fetch directionsare: Resul t Set . FETCH _FORWARD,

Resul t Set . FETCH_REVERSE, and Resul t Set . FETCH_UNKNOWN.

[back to the top]

29016 22018 SQL column {O,number,integer} data type cannot be
converted to the specified Java data type

Cause: Attempted to convert a non-numeric string to Bi gDeci mal using the
Resul t Set . get Long() method.

Effect: An exception is reported and no data is obtained.

Recovery: Ensure that the column is avalid type to be converted.

[back to the top]

29017 HY004 SQL datatype not supported

Cause: An unsupported SQL data type was detected in a setter method.

Effect: ARRAY, Bl NARY, Bl T, DATALI NK, JAVA OBJECT, and REF data types are not supported.
Recovery: Use a supported data type with the JDBC setter method.

[back to the top]

29018 22018 Invalid character value in cast specification

Cause: An attempt was made to convert a string to a numeric type but the string does not have the
appropriate format.

Effect: Strings that are obtained through a getter method cannot be cast to the method type.
Recovery: Validate the string in the database to make sure it is a compatible type.

[back to the top]

29019 07002 Parameter {0, number, integer} for {1, number, integer}
set of parameters is not set

Cause: An input descriptor contains a parameter that does not have a value set.

Effect: Themet hod checkl f Al | Par ansSet () reportsthe parameter that is not set.

Recovery: Set avalue for the listed parameter.

[back to the top]

29020 07009 Invalid parameter index

Cause: A getter or setter method parameter count index is outside of the valid input-descriptor range, or
the input-descriptor rangeis null.

Effect: The getter and setter method invocation validation fails.

Recovery: Change the getter or setter parameter index to avalid parameter value.

[back to the top]

29021 HY004 Object type not supported

Cause: A prepared-statement set Obj ect () method call contains an unsupported Object Type.
Effect: Theset Qbj ect () method does not set a value for the designated parameter.

Recovery: Informational message only; no corrective action is needed. Valid Object Types are: nul |,
Bi gDeci mal , Dat e, Ti ne, Ti nest anp, Doubl e, Fl oat, Long, Short, Byt e, Bool ean,
String, byte[],d ob,andBl ob.

[back to the top]

29022 HY010 Function sequence error

Cause: The Pr epar edSt at enent . execut e() method does not support the use of the
Pr epar edSt at enent . addBat ch() method.

Effect: An exception is reported; the operation is not completed.

Recovery: Usethe Pr epar edSt at enent . execut eBat ch() method.

[back to the top]

29023 HY109 The cursor is before the first row, therefore no data
can be retrieved.

Cause: get Cur r ent Row() iscalled when the cursor is before the first row.

Effect: An exception is reported; no dataisretrieved.

Recovery: Validate the application call to the get Cur r ent Row() method.

[back to the top]

29024 HY109 The cursor is after last row, which could be due to the
result set containing no rows, or all rows have been retrieved.

Cause: get Cur r ent Row() iscaled when the cursor is after the last row.

Effect: An exception isreported; no datais retrieved.

Recovery: Validate the application call to theget Cur r ent Row() method.

[back to the top]

29025 22003 The data value ({0}) is out of range for
column/parameter number {1,number,integer}

Cause: An attempt was made to set or get a value to or from the database when the value is outside the
valid range for the column data type.

Effect: An exception isthrown; datais not retrieved or updated.
Recovery: Make sure that the value is within the valid range for the column type.

[back to the top]

29026 HYO00 Transaction can't be committed or rolled back when
AutoCommit mode is on

Cause: An attempt was made to commit a transaction while Aut oConmi t mode is enabled.

Effect: The transaction is not committed.

Recovery: Disable Aut oConmi t . Use the method only when the Aut oConmi t mode is disabled.

[back to the top]

29027 HY011 SetAutoCommit not possible, since a transaction is
active

Cause: An attempt was made to call theset Aut oConm t () mode while a transaction was active.
Effect: The current Aut oComm t mode is not modified.
Recovery: Complete the transaction, then attempt to set the Aut oConm t mode.

[back to the top]

29028 22003 The data value ({0}) is negative, but the
column/parameter number {1,number,integer} is unsigned
Cause: An attempt was made to set a negative value into an unsigned column.

Effect: An exception isthrown; datais not updated.

Recovery: Make sure that the value is within the valid range for the column type.

[back to the top]

29030 22003 The data value ({0}) had to be rounded up for
column/parameter number {1,number,integer}

Cause: Theset Bi gDeci mal () method rounded up a value to be inserted into a column.

Effect: An SQLWarning isissued to indicate that a value is rounded up. Data is entered into database
column.

Recovery: None. Thisis awarning condition.

[back to the top]

29031 HYO00 SQL SELECT statement in batch is illegal
Cause: A SELECT SQL statement was used in the execut eBat ch() method.

Effect: An exception is reported; the SELECT SQL query cannot be used in batch queries.
Recovery: Usetheexecut eQuer y() method to issue the SELECT SQL statement.

[back to the top]

29032 23000 Row has been modified since it is last read

Cause: An attempt was made to update or delete aResul t Set object row while the cursor was on the
Insert row.

Effect: The Resul t Set row modification does not succeed.

Recovery: Movethe Resul t Set object cursor away from the row before updating or deleting the row.

[back to the top]

29033 23000 Primary key column value can't be updated

Cause: An attempt was made to update the primary-key column in atable.

Effect: The column is not updated.

Recovery: Columnsin the primary-key definition cannot be updated and cannot contain null values,
even if you omit the NOT NULL clause in the column definition.

[back to the top]

29035 HYO00 10 Exception occurred {0}

Cause: An ASCII or Binary or Character stream setter or an updater method resulted in a
java.io.| OExcepti on.

Effect: The designated setter or updater method does not modify the ASCII or Binary or Character
Stream.

Recovery: Informational message only; no corrective action is needed.

[back to the top]

29036 HYO00 Unsupported encoding {0}

Cause: The character encoding is not supported.

Effect: An exception isthrown when the requested character encoding is not supported.

Recovery: ASCII (1SO88591), KANJI, KSC5601, and UCS2 are the only supported character encodings.
SQL/MP tables do not support UCS2 character encoding.

[back to the top]

29037 HY106 ResultSet type is TYPE_ FORWARD_ONLY

Cause: An attempt was made to point aResul t Set cursor to a previous row when the object typeis
set as TYPE_FORWARD ONLY.

Effect: The Resul t Set object cursor manipulation does not occur.

Recovery: TYPE_FORWARD ONLY Resul t Set object type cursors can move forward only.
TYPE_SCROLL_SENSI Tl VE and TYPE_SCROLL_| NSENSI Tl VE types are scrollable.

[back to the top]

29038 HY107 Row number is not valid

Cause: A Resul t Set absol ut e() method was called when the row number was set to 0.

Effect: The cursor is not moved to the specified row number.

Recovery: Supply a positive row number (specifying the row number counting from the beginning of the
result set), or supply a negative row number (specifying the row number counting from the end of the
result set).

[back to the top]

29039 HY092 Concurrency mode of the ResultSet is
CONCUR_READ_ONLY

Cause: An action was attempted on aResul t Set object that cannot be updated because the
concurrency is set to CONCUR_READ ONLY.

Effect: The Resul t Set object is not modified.

Recovery: For updates, you must set the Resul t Set object concurrency to CONCUR _UPDATABLE.

[back to the top]

29040 HYO00 Operation invalid. Current row is the insert row

Cause: An attempt was made to retrieve update, delete, or insert information on the current insert row.
Effect: The Resul t Set row information retrieval does not succeed.
Recovery: To retrieve row information, move the Resul t Set object cursor away from the insert row.

[back to the top]

29041 HY000 Operation invalid. No primary key for the table

Cause: Theget KeyCol uims() method failed on atable that was created without a primary-key
column defined.
Effect: No primary-key datais returned for the table.

Recovery: Change the table to include a primary-key column.

[back to the top]

29042 HY000 Fetch size value is not valid

Cause: An attempt was made to set the fetch-row size to avalue that is less than O.

Effect: The number of rows that are fetched from the database when more rows are needed is not set.
Recovery: For theset Fet chSi ze() method, supply avalid row value that is greater than or equal to
0.

[back to the top]

29043 HY000 Max rows value is not valid

Cause: An attempt was made to set alimit of less than O for the maximum number of rows that any
Resul t Set object can contain.

Effect: The limit for the maximum number of rowsis not set.

Recovery: For theset MaxRows () method, use avalid value that is greater than or equal to O.

[back to the top]

29044 HYO00 Query timeout value is not valid

Cause: An attempt was made to set avalue of less than O for the number of seconds the driver waits for a
St at enent object to execute.

Effect: The query timeout limit is not set.

Recovery: For theset Quer yTi neout () method, supply avalid value that is greater than or equal to
0.

[back to the top]

29045 01S07 Fractional truncation

Cause: The dataretrieved by the Resul t Set getter method has been truncated.
Effect: The dataretrieved is truncated.

Recovery: Make sure that the datato be retrieved is within avalid data-type range.

[back to the top]

29046 22003 Numeric value out of range

Cause: A value retrieved from the Resul t Set getter method is outside the range for the data type.
Effect: The Resul t Set getter method does not retrieve the data.
Recovery: Make sure the data to be retrieved iswithin avalid data-type range.

[back to the top]

29047 HYO00 Batch update failed. See next exception for details

Cause: One of the commands in a batch update failed to execute properly.
Effect: Not all the batch-update commands succeed. See the subsequent exception for more information.
Recovery: View the subsequent exception for possible recovery actions.

[back to the top]

29048 HY009 Invalid use of null

Cause: A parameter that has an expected table name is set to null.
Effect: The Dat abaseMet adat a method does not report any results.
Recovery: For the Dat abaseMet aDat a method, supply avalid table name that is not null.

[back to the top]

29049 25000 Invalid transaction state

Cause: Thebegi nt ransacti on() method was called when a transaction was in progress.

Effect: A new transaction is not started.

Recovery: Before calling the begi nt ransact i on() method, validate whether other transactions are
currently started.

[back to the top]

29050 HY107 Row value out of range

Cause: A call toget Cur r ent Rowretrieved is outside the first and last row range.

Effect: The current row is not retrieved.

Recovery: It isan informational message only; no recovery is needed. Report the entire message to your
service provider.

[back to the top]

29051 01S02 ResultSet type changed to
TYPE_SCROLL_INSENSITIVE

Cause: The Result Set Type was changed.

Effect: None.

Recovery: This message is reported as an SQL Warning. It is an informational message only; no
recovery is needed.

[back to the top]

29052 22003 The Timestamp ({0}) is not in format yyyy-mm-dd
hh:mm:ss.fffffffff for column/parameter number {1,number,integer}
Cause: An attempt was made to enter an invalid timestamp format into a TI MESTAMP column type.
Effect: An exception isthrown; datais not updated.

Recovery: Make sure that atimestamp in the form of yyyy-mm dd hh: mm ss. fffffffff isused.

[back to the top]

29053 HYO00 SQL SELECT statement is invalid in executeUpdate()
method

Cause: A select SQL statement was used in the execut eUpdat e() method.
Effect: TheSQL query not perfor med exception isreported.
Recovery: Usetheexecut eQuer y() method to issue the select SQL statement.

[back to the top]

29054 HY000 Only SQL SELECT statements are valid in
executeQuery() method

Cause: A non-select SQL statement was used in theexecut eQuer y() method.
Effect: The exception reported is"SQL query not perfornmed".

Recovery: Usetheexecut eUpdat e() method to issue the non-select SQL statement.

[back to the top]

29055 22003 The Date ({0}) is not in format yyyy-mm-dd for
column/parameter number {1,number,integer}

Cause: An attempt was made to enter an invalid date format into a DATE column type.
Effect: An exception isthrown; is not updated.

Recovery: Make sure that adate in the form of yyyy- nm dd is used.

[back to the top]

29056 HYO00 Statement is already closed

Cause: Aval i dat eSet | nvocati on() orval i dat eExecut el nvocat i on method was used
on a closed statement.

Effect: The validation on the statement fails and returns an exception.

Recovery: Usetheval i dat eSet | nvocati on() orval i dat eExecut el nvocat i on method

prior to the statement close.

[back to the top]

29057 HYO00 Auto generated keys not supported

Cause: An attempt was made to use the Auto-generated keys feature.
Effect: The attempt does not succeed.
Recovery: The Auto-generated keys feature is not supported.

[back to the top]

29058 HY000 Connection is not associated with a
PooledConnection object

Cause: Theget Pool edConnect i on() method wasinvoked before the Pool edConnecti on
object was established.

Effect: A connection from the pool cannot be retrieved.

Recovery: Make sureaPool edConnect i on object is established before using the

get Pool edConnecti on() method.

[back to the top]

29059 HYO00 'blobTableName' property is not set or set to null
value or set to invalid value

Cause: Attempted to access a BL OB column without setting the property bl obTabl eNane, or the
property is set to an invalid value.

Effect: The application cannot access BL OB columns.

Recovery: Set the bl obTabl eNane property to avalid LOB table name. The LOB table name is of
format cat al og. schena. | obTabl eNane.

[back to the top

29060 HYO00 ‘'clobTableName' property is not set or set to null
value or set to invalid value

Cause: cl obTabl eNamne property isnot set or is set to null value or set to an invalid value.

Effect: The application cannot access CLOB columns,

Recovery: Set thecl obTabl eNane property to avalid LOB table name. The LOB table nameis of
format cat al og. schena. | obTabl eNane.

[back to the top]

29061 HYO0O Lob object {0} is not current

Cause: Attempted to access a CL OB column without setting the property j dbcnx. cl obTabl eNane
or the property is set to an invalid value.

Effect: The application cannot access CLOB columns.

Recovery: Set thej dbcnx. cl obTabl eNamne property to avalid LOB table name. The LOB table
nameis of format cat al og. schema. | obTabl eNane.

[back to the top]

29062 HYO00 Operation not allowed since primary key columns are
not in the select list

Cause: get KeyCol utms () fails on table created without a primary key column.

Effect: No primary key datais returned for table.

Recovery: Alter the table to include a primary key column, or remove the get KeyCol uims() method
call from the program.

[back to the top]

29063 HYO00 Transaction error {0} - {1} while obtaining start data
locator

Cause: A transaction error occurred when the IDBC/M X driver attempted to reserve the data locators for
the given process while inserting or updating a LOB column.

Effect: The application cannot insert or update the LOB columns.

Recovery: Check the file-system error in the message and take recovery action accordingly.

[back to the top]

29064 22018 Java data type does not match SQL data type for
column

Cause: Attempted to call aPr epar edSt at enent setter method with an invalid column data type.
Effect: An exception isthrown; datais not updated.
Recovery: Make sure that the column datatype isvalid for the Pr epar edSt at enent setter method.

[back to the top]

29065 22018 Java data type cannot be converted to the specified
SQL data type

Cause: A Pr epar edSt at enment setter method Java object conversion to the given SQL datatypeis
invalid.

Effect: An exception isthrown; datais not updated.

Recovery: Make sure that the column datatype isvalid for the Pr epar edSt at enent setter method.

[back to the top]

29066 22018 The String data {0} cannot be converted to a numeric
value

Cause: A Pr epar edSt at enent setter method could not convert a string to an integer.

Effect: An exception isthrown and the string data is not converted.

Recovery: Make sure that the data to be converted to an integer is valid.

[back to the top]

29067 07009 Invalid input value in the method {0}

Cause: One or more input values in the given method isinvalid.
Effect: The given input method failed.
Recovery: Check the input values for the given method.

[back to the top]

29068 07009 The value for position can be any value between 1 and
one more than the length of the LOB data

Cause: The position input valuein Bl ob. set Bi nar ySt r eam C ob. set Char act er Streamor
Cl ob. set Asci i St r eamcan be between 1 and one more than the length of the LOB data.

Effect: The application cannot write the LOB data at the specified position.

Recovery: Correct the position input value.

[back to the top]

29069 HYO00 Autocommitis on and LOB objects are involved

Cause: LOB dataisinvolved with autocommit enabled and an external transaction does not exist.
Effect: An exception is reported; the LOB columns are not set.

Recovery: Start an external transaction or disable the autocommit mode when using the

Cl ob. set ASci i Strean(), Cl ob. set Character Strean(), or

Bl ob. set Bi nar ySt r ean{) method.

[back to the top]

29070 HYO00 Transaction error {0} - {1} while updating LOB tables

Cause: An SQL or file system (FS) exception occurred during insert or update operations on the base
and LOB tables within an internal transaction.

Effect: An exception is reported; the internal transaction isrolled back.

Recovery: Seethe SQL or FS error message.

[back to the top]

29071 HYOO0O Internal programming error - {0}

Cause: The JNI layer (get Object method) always returns a byte array and, therefore, any other instance
Is considered a programming error.

Effect: An exception is reported.

Recovery: None. The error isinternal to the JDBC/MX driver.

[back to the top]

29072 HYO00 Attempting to exceed the maximum connection pool
size ({O,number,integer})

Cause: An attempt was made to obtain a connection outside the set connection pool size limit.

Effect: An exception is thrown.

Recovery: Increase the connection pool size by using the maxPool Si ze command-line property.

[back to the top]

29073 22003 The Time ({0}) is not in format hh:mm:ss for
column/parameter number {1,number,integer}

Cause: An attempt was made to enter an invalid time format into a TI IVE column type.
Effect: An exception isthrown; datais not updated.

Recovery: Make sure that atimein the form of hh: mm ss isused.

[back to the top]

29074 42821 The getter method, {0}, cannot be used to retrieve data
for column/parameter number {1,number,integer}

Cause: Attempted to use an unsupported column type in the Resul t Set . get St r i hg method.
Effect: An exception is reported; no datais obtained.
Recovery: Use a supported column data type other than BLOB, ARRAY, REF, STRUCT, DATALI NK, or

JAVA OBJECT withthe Resul t Set . get St ri ng method.

[back to the top]

29075 HYO00 ‘transactionMode' property is set to a null value or set
to an invalid value

Cause: Called SQLMXDat aSour ce. set Tr ansact i onivbde() or

SQ_.MXConnect i onPool Dat aSour ce. set Transact i onMbde() using aninvalid transaction
mode.

Effect: The application cannot set the transaction mode.

Recovery: Use avalid transaction mode: ext er nal ,i nt ernal , or m xed.

[back to the top]

29076 HYO00 Exceeded 'maxStatements' ({O,number,integer}) --
performance may be compromised

Cause: The cached statement count has reached the limit set by the max St at enent s property and all
statements are in use.

Effect: An SQL warning condition. Statements continue to be added to the internal cache.

Recovery: An SQL warning condition. Use the max St at enent s property (or

- O dbcnx. max St at enment s command-line property) to increase the number of statements allowed.

[back to the top]

29077 HY000 HYOO0O Max rows value cannot be less than the fetch
size

Cause: Therow value passed to the JdbcRowSet . set Max Rows method is less than the current
fetch-size setting

Effect: The maximum number of rows that the JdbcRowSet object can contain is not set.

Recovery: Increase the fetch-size value by using the JdbcRowSet . set Fet chSi ze, or increase the
maximum-rows value passed to the JdbcRowSet . set MaxRows method.

[back to the top]

29078 HYO00O Invalid JdbcRowSet state - {0} {1}

Cause: TheConnecti on, Resul t Set, or Pr epar edSt at enent value associated with the
JdbcRowSet operation isnull.

Effect: The method call fails.

Recovery: Make sure acall to the JdbcRowSet . execut e() method is performed.

[back to the top]

29079 HY000 Match Columns are not the same as those set

Cause: The designated column passed to unset Mat chCol unm() method was not previously set asa
match column.

Effect: The designated column is not unset for thisJdbcRowSet object.

Recovery: Usetheset Mat chCol urm() method to set the designated column as a match column.

[back to the top]

29080 HY000 Set the match columns before getting them

Cause: A call toget Mat chCol unmNanes(), get Mat chCol utmli ndexex(), or
unset Mat chCol unm() method returns a null or match column.

Effect: A match column value is not retrieved for thisJdbcRowSet object.

Recovery: Useset Mat chCol umm() to set the designated column as a match column.

[back to the top]

29081 HYO00 Match columns should be greater than 0

Cause: The program passed a column index value less than zero to the set Mat chCol unm() method.
Effect: The designated match column for this Jdbc RowSet object is not set.
Recovery: Call theset Mat chCol unm() method with avalid column index value greater than zero.

[back to the top]

29082 HY000 Match columns cannot be null or empty string

Cause: A null or empty column name string is passed to the set Mat chCol urm() method.
Effect: The designated match column for thisJdbcRowSet object is not set.
Recovery: Call theset Mat chCol utm() method with avalid non-null column-name string.

[back to the top]

29083 HYO00 Columns being unset are not the same as those set

Cause: The designated column passed to the unset Mat chCol unm() method was not previously set
as amatch column.

Effect: The designated column is not unset for thisJdbcRowSet object.

Recovery: Usetheset Mat chCol urm() method to set the designated column as a match column.

[back to the top]

29084 HYO00 Use column name as argument to unsetMatchColumn

Cause: A column-name string value is passed to theunset Mat chCol uim(i nt eger 1) method.
Effect: An exception isthrown. The designated match column for this Jdbc RowSet object is not unset.
Recovery: Call theunset Mat chCol umm(i nt eger i) method with an integer column ID value, or
usetheunset Mat chCol uim(Stri ng s) method.

[back to the top]

29085 HY000 Use column ID as argument to unsetMatchColumn

Cause: An column name integer value is passed to theunset Mat chCol uim(Stri ng s) method.
Effect: An exception isthrown. The designated match column for this Jdbc RowSet object is not unset.
Recovery: Call theunset Mat chCol um(Stri ng s) method with a string column-name value, or
usetheunset Mat chCol unm(i nt eger i) method.

[back to the top]

29086 HYO00 Missing JdbcRowSet parameter ({0,number,integer})

Cause: Aninternal driver condition detects that aJdbcRowSet parameter does not have avalue set.
Effect: TheJdbcRowSet . execut e() method fails.
Recovery: None. The error isinternal to the JDBC/MX driver.

[back to the top]

29087 HYO00 JdbcRowSet setProperties error {0} - {1}

Cause:An internal driver condition detects that the Jdbc RowSet property reported in the message
could not be set for Jdbc RowSet prepared statement.

Effect: TheJdbcRowSet . execut e() method fails.

Recovery: The error isinterna to the IDBC/MX driver.

[back to the top]

29088 HYO00 JdbcRowSet prepare error - {0}

Cause: The driver encountered an internal error when preparing aJdbcRowSet prepared statements.
Effect: An exception is reported.
Recovery: None. The error isinternal to the JDBC/MX driver.

[back to the top]

29089 HY000 JdbcRowSet connect error - {0} {1}

Cause: The driver encountered an internal error when attempting to establish a connection.
Effect: An exception is reported.
Recovery: None. The error isinterna to the IDBC/MX driver.

[back to the top]

Messages From the JNI Side of the
JDBC/MX Driver

29251 HYO00 Programming Error

Cause: Either SQL has detected an error in one of the SQL parameters for a statement or SQL returned
an error for an operation that was attempted but that is not handled by JDBC.

Effect: An exception is reported.

Recovery: For SQL parameter errors, the exception-message text usually identifies the problem to be
corrected. For unhandled SQL errors, the Error Code of the exception identifies the SQL error that was
caught. Refer to the SQL error-message documentation for details about the error code.

[back to the top]

29252 HY008 Operation Cancelled

Cause: An SQL operation was cancelled by a break

Effect: An exception is reported; the operation is not completed.
Recovery: This message is application-specific. |ssue the statement again.

[back to the top]

29253 22003 Numeric value out of range

Cause: A numeric value is not within the range of its target column.
Effect: An exception is reported; the operation is not completed.
Recovery: Adjust the numeric value to avalid range for the SQL column type.

[back to the top]

29254 22001 String data right-truncated

Cause: An attempt was made to place a string in a database but the string exceeds the database limits.
Effect: Some of the datais not placed in the database.

Recovery: Shorten the length of the string.

[back to the top]

29255 HYO00 TMF error has occurred : [tmf-error]

Cause: Aninternal transaction request failed.
Effect: An exception is reported; the operation is not compl eted.
Recovery: Refer to the TMF error message tmf-error.

[back to the top]

29256 HYO00 Error while obtaining the system catalog name :
[error]

Cause: During initialization of the JDBC driver, an error occurred when attempting to determine a
system catalog name.

Effect: The IDBC driver is not registered with the Driver Manager.

Recovery: Make sure that SQL isinstalled and that a system catalog exists.

[back to the top]

29257 07002 All parameters are not set
Cause: A parameter that was read was null.

Effect: An exception is reported; the operation is not completed.
Recovery: Enter anon-null parameter value.

[back to the top]

29258 25000 Invalid Transaction State

Cause: A transaction-state problem was detected when attempting to begin or resume a transaction
through TMF.

Effect: An exception is reported; the operation is not completed.

Recovery: Informational message only; no corrective action is needed. Report the entire message to your
service provider.

[back to the top]

29259 HY000 Module Error

Cause: Aninvalid parameter was detected when attempting to get catal og information or attempting to
prepare a statement from a module.

Effect: An exception is reported; the operation is not compl eted.

Recovery: See the exception message for recovery details.

[back to the top]

29260 HY000 Invalid Statement/Connection Handle

Cause: Aninvalid SQL statement handle was detected.

Effect: An exception is reported; the operation is not completed.

Recovery: Informational message only; no corrective action is needed. Report the entire message to your
service provider.

[back to the top]

29261 HYO00 No error message in SQL/MX diagnostics area, but
sqlcode is non-zero

Cause: An SQL error was detected but no error message was reported by SQL/MX.

Effect: An SQL exception or warning is thrown without a diagnostic message.

Recovery: Unknown.

[back to the top]

29262 HY090 Invalid or null sqgl string

Cause: A stored-procedure or prepared-statement call contains an invalid SQL string.
Effect: The stored procedure or prepared statement is not executed.
Recovery: Make sure that the stored procedure or prepared statement contains avalid SQL command.

[back to the top]

29263 HYO00O0 Invalid or null statement label or name

Cause: A calling database stored a procedure or a prepared statement that has an invalid statement-label
Input parameter.

Effect: The stored procedure or prepared statement is not executed.

Recovery: Make sure that the statement-label parameter isvalid.

[back to the top]

29264 HYO00O0 Invalid or null module name

Cause: A calling database stored a procedure or a prepared statement that has an invalid module-name
Input parameter.

Effect: The stored procedure or prepared statement is not executed.

Recovery: Make sure that the module-name parameter is valid.

[back to the top]

29265 HY000 Unsupported character set encoding

Cause: The character-set type for a CHAR, VARCHAR, VARCHAR _LONG, or VARCHAR W TH_LENGTH
column is not supported by the IDBC/M X driver setter or getter methods.

Effect: An SQL exception is thrown.

Recovery: Change the column character-set type to atype supported by the IDBC/MX driver.

[back to the top]

29266 HYO0O0O0 Data type not supported : [data type]

Cause: An unsupported data type was retrieved from SQL.

Effect: An exception isthrown.

Recovery: None. BI T, BI TVAR, BPI NT_UNSI GNED, SQLTYPECCDE_FLOAT,

SQLTYPECODE REAL, and SQLTYPECODE DOUBLE datatypes are not expected to be returned from
SQL/MX. The IDBC/MX driver does not support these data types.

[back to the top]

29267 HY000 Exceeded JVM allocated memory

Cause: JDBC attempted to internally allocate VM memory after it has been exhausted.
Effect: The condition isafunction of the VM heap size. An exception is thrown.
Recovery: Configure the maximum JVM heap size accordingly.

[back to the top]

Messages from the Messages from the
Java Portion Native-interface Portion
of the JDBC Driver of the JDBC Driver

(range 29000 through 29249) |(range 29250 through 29499)

29001-29009

29050-29059

29010-29019

29060-29069

29020-29029

29070-29079

29030-29039

29080-29089

29040-29049

29251-29259

29260-29267

Home | Contents | Index | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Glossary | Prev | Next

Appendix A. Sample Programs
Accessing CLOB and BLOB Data

This appendix shows two working programs:
« Sample Program Accessing CLOB Data

o Sample Program Accessing BL OB Data

Sample Program Accessing CLOB Data

This sample program shows operations that can be performed through the CL OB interface or through the
Pr epar edSt at enent interface. The sample program shows examples of both interfaces taking a
variable and putting the variable's value into a base table that has a CLOB column.

/1 LOB operations can be perforned through the Cob interface,
/1l or the PreparedStatenent interface.

/'l This program shows exanples of both interfaces taking a

/1 variable and putting it into the cat.sch.cl obbase table.

I

/1 The LOB base table for this exanple is created as:

Il >> create table clobbase

/1 (coll int not null not droppable,
/1 col2 clob, primary key (col1));
/I

/1 The LOB table for this exanple is created through
/1 the JdbcMkLobAdmi n utility as:

Il >> create tabl e cat.sch. cl obdat at bl

/] (tabl e_nane char(128) not null not droppable,

/1] data | ocator |argeint not null not droppable,

Il chunk_no int not null not droppable,

/1 | ob_data varchar (3880),

/1l primary key(table nanme, data | ocator, chunk no))
/1 attri butes extent (1024), naxextents 768 ;

I

[l ***** The followng is the Cob interface...

Il - insert the base row with EMPTY_CLOB() as val ue for

[/ the LOB col umm

/1l - select the LOB colum 'for update’

/1l - load up a byte[] with the data

/1 - use Qutputstreamwite(byte[])

I

[l ***** The followng is the PreparedStatenent interface...
/1] - need an I nputstream object that already has data
/1l - need a PreparedStatenent object that contains the
/1 ‘insert...' DML of the base table

/1 - ps.setAsciiStream() for the | ob data

/1l - ps.executeupdate(); for the DM

I

/1 To run this exanple, issue the follow ng:
/1l # java TestCLOB 1 Test CLOB.java 1000
I

| nport java.sql.?*;
| nport java.io.?*;

public class Test CLOB
{
public static void main (String[] args)
throws java.io. Fi | eNot FoundExcepti on,
java.io. | OException

{
I nt | ength = 500;
I nt r ecKey,
| ong start;
| ong end;
Connecti on connl = null;

/'l Set jdbcnk.clobTabl eNane System Property. This property

/1 can al so be added to the command |ine through

/1 "-D dbcnx. cl obTabl eNane=...", or a

/1 java.util.Properties object can be used and passed to

/| get Connecti on.

System set Property("jdbcnk. cl obTabl eNane", "cat. sch. cl obdatatbl ");

i f (args.length < 2) {
Systemout.println("arg[0]=;, arg[1l]=file;
arg[2] =");
return;

}

String k = "K";
for (int 1=0; i<5000; i++) k = k + "K";

Systemout.printin("string length =" + k.length());

Fil el nput Stream cl obFs = new Fi |l el nput Strean(args[1]);
I nt cl obFsLen = cl obFs. avail abl e();

If (args.length == 3)

| ength = Integer.parselnt(args[2]);
reckey = Integer.parselnt(args[0]);
Systemout.println("Key: " + recKey +"; Using "
+ length + " of file " + args[1]);

try {
Cl ass. for Nanme("com t andem sqgl mx. SQLMXDr i ver");

start = SystemcurrentTineMIlis();
connl = DriverManager. get Connection("j dbc: sql nx:");

Systemout.println("Ceaning up test tables...");
Statenent stntO = connl.createStatenent();

stnt 0. execute("delete fromcl obdatathbl");

stm 0. execute("del ete from cl obbase");

connl. set AutoComm t (f al se);

}
catch (Exception el) {

el. printStackTrace();
}

/'l PreparedStatenent interface exanple - This techni que
/'l is suitable if the LOB data is al ready on the NonStop
/'l system di sk.
try {
Systemout. println("PreparedStatenent interface
LOB insert...");
String stnt Sourcel = "insert into clobbase
values (?,?)";
PreparedStatenent stntl
= connl. prepareSt at enent (st nt Sourcel);
stntl.setlnt(1, recKey);
stnt1l.setAscii Streanm(2, cl obFs, | ength);
stm 1. execut eUpdat e() ;
connl.commt();
}
catch (SQLException e) {
e. printStackTrace();

SQLExcepti on next = e;

do {
Systemout.println("Mssge : " + e.getMssage());
Systemout.printin("Error Code : " + e.getErrorCode());
Systemout.println("SQState : " + e.getSQ.State());

} while ((next = next.getNextException()) != null);
}

/1 Cdob interface exanple - This technique is suitable when
/!l the LOB data is already in the app, such as having been
/1l transferred in a nsgbuf.
try {
/1l insert a second base table row wth an enpty LOB col um
Systemout.println("CLOB interface EMPTY LOB insert...");
String stnt Source2 = "insert into clobbase
val ues (?, EMPTY_CLOB())";
Prepar edSt at enent stnt 2
= connl. prepareSt at enent (st nt Sour ce?);
stnt2.setlnt(1, recKey+1);
stnt 2. execut eUpdat e() ;

Clob clob = null;

Systemout.println("Cbtaining CLOB data to
update (EMPTY in this case)...");
Prepar edSt at enent stnt 3
= connl. prepareStat enent ("sel ect col 2
from cl obbase where coll = ? for update");
stnt3.setlnt(1, recKey+l),;
ResultSet rs = stnt 3. executeQuery();
If (rs.next()) clob =rs.getdob(1l); // has to be there
Il el se the base table insert fails

Systemout.printin("Witing data to previously enpty CLOB...");

Qut put Stream os = cl ob. set Ascii Strean(1);
byte[] bData = k.getBytes();
os.wite(bbData);
0s. cl ose();
connl.commt();
}
catch (SQLException e) {
e. printStackTrace();
SQLExcepti on next = e;
do {
Systemout.println("Mssge : " + e.getMessage());
Systemout. println("Vendor Code : " + e.getErrorCode());

Systemout.println("SQ.State : " + e.getSQ.State());
} while ((next = next.getNextException()) != null);

}

} /] main
} Il class

Sample Program Accessing BLOB Data

This sample program shows the use of both the Bl ob interface and the Pr epar edSt at enent
interface to take a byte variable and put the variable's value into a base table that has a BLOB column.

/1 LOB operations may be perfornmed throubh the Bl ob, or

/1 PreparedStatenent interface. This program shows exanpl es of
/1 using both interfaces taking a byte[] variable and putting
/[l it into the cat.sch.blobtiff table.

Il

/1 The LOB base table for this exanple is created as:
Il >> create table blobtiff

/1] (coll int not null not droppable,

/1 tiff blob, primary key (coll));

I

/1 The LOB table for this exanple is created through the
/1 JdbcMKLobAdm n utility as:

Il >> create table cat.sch. bl obdat at bl

/1] (tabl e_nane char(128) not null not droppable,
/1l data | ocator |argeint not null not droppable,
/1 chunk_no int not null not droppabl e,

/] | ob_data varchar (3880),

/1l primary key(table nanme, data | ocator, chunk _no))
/1] attri butes extent(1024), nmaxextents 768 ;

Il

[l ***** The followng is the blob interface...

/1 - insert the base rowwth EMPTY BLOB() as val ue for

Il the LOB col um

/1 - select the | ob colum 'for update’

/1 - load up a byte[] with the data

/1 - use Qutputstreamwite(byte[])

Il

[l ***** The followng is the prep stnt interface...

/1 need an | nputstream object that already has data
/1l need a PreparedStatenent object that contains the
/1 ‘insert...' DML of the base table

/1
/1
/1
/1
/1
/1

- ps.setAsciiStream() for the |ob data
- ps.executeupdate(); for the DM

To run this exanple, issue the foll ow ng:
java TestBLOB 1 TestBLOB. cl ass 1000

| nport java.sql.?*,
| nport java.io.*;

public class Test BLOB

{

public static void main (String[] args)

{

throws java.io. Fi |l eNot FoundExcepti on, java.io.| OException

I nt nunByt es;

I nt r eckKey;

| ong start;

| ong end;

Connecti on connl = null;

/1 Set jdbcnx. bl obTabl eNane System Property. This property

/1 can al so be added to the command |ine through

/1 "-D dbcnx. bl obTabl eNane=...", or a

/'l java.util.Properties object can be used and passed to

/| get Connecti on.

System set Property("jdbcnk. bl obTabl eNane", "cat. sch. bl obdatatbl ");

if (args.length < 2) {
Systemout.printin("arg[0]=;, arg[1l]=file; arg[2]=");
return;

}

/'l byte array for the blob
byte[] whatever = new byte[5000];
for (int 1=0; i<5000; i++) whatever[i] = 71, /Il "G

String k = "K';
for (int 1=0; i<5000; i++) k =k + "K";
Systemout.println("string length =" + k.length());

j ava. i 0. Byt eArrayl nput Stream i Xstream
= new j ava.i 0. Byt eArrayl nput St r ean(what ever) ;

nunBytes = i Xstream avail abl e();
If (args.length == 3)

nunBytes = Integer. parselnt(args[2]);
reckey = Integer.parselnt(args[O0]);
Systemout.println("Key: " + recKey +"; Using "
+ nunBytes + " of file " + args[1]);

try {
Cl ass. for Nanme("com t andem sqgl mx. SQLMXDr i ver");
start = SystemcurrentTimneMI1lis();

connl = Driver Manager. get Connection("j dbc: sql nx:");

Systemout.println("Ceaning up test tables...");
Statenent stntO = connl.createStatenent();

stnt 0. execute("delete from bl obdatatbl");

stm 0. execute("delete fromblobtiff");

connl. set AutoComm t (f al se);

}
catch (Exception el) {

el. printStackTrace();
}

/'l PreparedStatenent interface exanple - This technique is
/1l suitable if the LOB data is already on the
/'l NonStop system di sk.

try {
Systemout. println("PreparedStatenent interface LOB insert...");
String stnt Sourcel = "insert into blobtiff values (?,?)";

PreparedStatenent stntl = connl. prepareSt at enent (st nt Sour cel);
stntl.setlnt(1, recKey);
stnt1l.setBinaryStrean(2,i Xstream nunBytes);
st 1. execut eUpdat e() ;
connl.commt();
}
catch (SQLException e) {
e. printStackTrace();
SQLException next = e;

do {
Systemout.println("Mssge : " + e.getMssage());
Systemout.printin("Error Code : " + e.getErrorCode());
Systemout.println("SQState : " + e.getSQ.State());

} while ((next = next.getNextException()) != null);

}

/1l Blob interface exanple - This technique is suitable when

/'l the LOB data is already in the app, such as having been
/1l transfered in a nsgbuf.

try {

}

/1l insert a second base table row wth enpty LOB col um
Systemout.println("BLOB interface LOB insert...");
String stnt Source2 = "insert into blobtiff

val ues (?, EMPTY_BLOB())";
PreparedStatenent stnt2 = connl. prepareSt at enent (st nt Sour ce2);
stm2.setInt(1,recKey+l);
st nt 2. execut eUpdat e() ;

Blob tiff = null;

Systemout.println("Obtaining BLOB data to
update (EMPTY in this case)...");
PreparedStatenent stm 3 = connl. prepareStatenent ("select tiff
fromblobtiff where coll = ? for update");

stm 3.setlnt(1, recKey+l);
Resul tSet rs = stnt 3. executeQuery();
I f (rs.next()) tiff =rs.getBlob(1); // has to be there

el se the base table insert failed

Systemout.printin("Witing data to previously
enpty BLOB...");

QutputStreamos = tiff.setBinaryStrean(1);

byte[] bData = k.getBytes();

os.wite(bbData);

os. cl ose();

connl.commt();

catch (SQLException e) {

e. printStackTrace();
SQLExcepti on next = e;

do {
Systemout.println("Mssge : " + e.getMessage());
Systemout. println("Vendor Code : " + e.getErrorCode());
Systemout.println("SQ.State : " + e.getSQ.State());
} while ((next = next.getNextException()) != null);
}
} /] main

} Il class

Home | Contents | Index | Glossary | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Index | Prev | Next

Glossary

A

abstract class

In Java, aclass designed only as a parent from which subclasses can be derived, which is not itself
suitable for instantiation. An abstract classis often used to "abstract out" incompl ete sets of
features, which can then be shared by a group of sibling subclasses that add different variations of
the missing pieces.

American Standard Code for Information Interchange (ASCII)

The predominant character set encoding of present-day computers. ASCII uses 7 bits for each
character. It does not include accented letters or any other letter forms not used in English (such as
the German sharp-S or the Norwegian ae-ligature). Compare with Unicode.

American National Standards Institute (ANSI)

The United States government body responsible for approving US standards in many areas,
including computers and communications. ANSI isamember of 1SO. ANSI sells ANSI and SO

(international) standards.
ANSI
See American National Standards Institute (ANSI).

API
See application program interface (API).

application program
One of the following:
o A software program written for or by a user for a specific purpose
o A computer program that performs a data processing function rather than a control function
application program interface (API)

A set of functions or procedures that are called by an application program to communicate with
other software components.

ASCI|I
See American Standard Code for Information Interchange (ASCII).
autocommit mode
A mode in which a JDBC driver automatically commits a transaction without the programmer's

callingcomm t ().

B

base table
A table that has physical existence: that is, atable stored in afile.
BLOB

Short for Binary Large OBject, a collection of binary data stored as a single entity in a database
management system. These entities are primarily used to hold multimedia objects such asimages,
videos, and sound. They can also be used to store programs or even fragments of code. A Java

Bl ob object (Javatype, | ava. sql . Bl ob) correspondsto the SQL BLOB datatype.

branded
A Javavirtua machine that Sun Microsystems, Inc. has certified as conformant.

browser
A program that allows you to read hypertext. The browser gives some means of viewing the
contents of nodes and of navigating from one node to another. Internet Explorer, Netscape
Navigator, NCSA Mosaic, Lynx, and W3 are examples for browsers for the WWW. They act as
clients to remote servers.

bytecode

The codethat j avac, the Java compiler, produces. When the Java virtual machine loads this code,
it either interpretsit or just-in-time compilesit into native RISC code.

C

catalog
In SQL/MP and SQL/MX, a set of tables containing the descriptions of SQL objects such as
tables, views, columns, indexes, files, and partitions.

class path
The location where the Java VM and other Java programs that are located in the

/usr/tanden j ava/ bi n directory search for class libraries (such as classes.zip). The
JDBC/MX driver programsarein/ usr/t andeni j docMX/ current /1 i b/ dbcMk. j ar.
Y ou can set the class path explicitly or with the CLASSPATH environment variable.

CLOB
Short for Character Large OBject, text data stored as a single entity in a database management
system. A JavaCl ob object (Javatype, j ava. sqgl . O ob) corresponds to the SQL CLOB data
type.

client

A software process, hardware device, or combination of the two that requests services from a
server. Often, the client is a process residing on a programmable workstation and is the part of a

program that provides the user interface. The workstation client might also perform other portions
of the program logic. Also called arequester.

command
The operation demanded by an operator or program; a demand for action by, or information from,

asubsystem. A command is typically conveyed as an interprocess message from a program to a
subsystem.

concurrency

A condition in which two or more transactions act on the same record in a database at the same
time. To process a transaction, a program must assume that itsinput from the database is
consistent, regardless of any concurrent changes being made to the database. TM F manages

concurrent transactions through concurrency control.

concurrency contr ol

Protection of a database record from concurrent access by more than one process. TMF imposes

this control by dynamically locking and unlocking affected records to ensure that only one
transaction at a time accesses those records.

connection pooling
A framework for pooling JDBC connections.
Core Packages

The required set of APIsin aJava platform edition which must be supported in any and all
compatible implementations.

D

Data Control Language (DCL)
The set of data control statements within the SQL/M P language.
Data Manipulation Language (DML)

The set of data-manipulation statements within the SQL/MP language. These statements include
INSERT, DELETE, and UPDATE, which cause database modifications that Remote Duplicate

Database Facility (RDF) can replicate.
DCL

See Data Control Language (DCL).
DML

See Data Manipulation Language (DML).
driver

A classin JDBC that implements a connection to a particular database management system such as
NonStop SQL/MX. The NonStop Server for Java 5 has these driver implementations. JDBC/MP
Driver for NonStop SQL/MP and JDBC/M X Driver for NonStop SQL/MX.

Dri ver Manager

The JDBC class that manages drivers.

E

exception

An event during program execution that prevents the program from continuing normally;
generdly, an error. Java methods raise exceptions using the t hr ow keyword and handle

exceptionsusingtry, cat ch,andfi nal | y blocks.
Expand
The NonStop operating system network that extends the concept of fault tolerance to networks of

geographically distributed NonStop systems. If the network is properly designed, communication
paths are constantly available even if thereisasingle line failure or component failure.

expandability
See scalability.

F

fault tolerance

The ability of acomputer system to continue processing during and after asingle fault (the failure
of a system component) without the loss of data or function.

G

get () method

A method used to read a data item. For example, the
SQ_.MPConnect i on. get Aut oConm t () method returns the transaction mode of the JDBC
driver's connection to an SQL/MP or SQL/MX database. Compareto set () method.

Guardian

An environment available for interactive and programmatic use with the NonStop operating
system. Processes that run in the Guardian environment use the Guardian system procedure calls
astheir API. Interactive users of the Guardian environment use the HP Tandem Advanced
Command Language (TACL) or another HP product's command interpreter. Compare to OSS.

H

Hotspot virtual machine
See Java Hotspot virtual machine.
HP JDBC Driver for NonStop SQL/MP (JDBC/MP)
The product that provides access to NonStop SQL/MP and conformsto the JDBC API.

HP JDBC Driver for NonStop SQL/MX (JDBC/MX)
The product that provides access to NonStop SQL/M X and conforms to the JDBC API.

HP NonStop ODBC Server
The HP implementation of ODBC for NonStop systems.

HP NonStop operating system
The operating system for NonStop systems.

HP NonStop Server for Java, based on Java 2 Platform Standard> Edition 5.0
The formal name of the NonStop Server for Java product whose Java virtual machine conformsto
the Java 2 Platform, Standard Edition (J2SE) 5.0. See also NonStop Server for Java 5.

HP NonStop SQL/MP (SQL/MP)

HP NonStop Structured Query Language/MP, the HP relational database management system for
NonStop servers.

HP NonStop SQL/MX (SQL/MX)

HP NonStop Structured Query Language/M X, the HP next-generation relational database
management system for business-critical applications on NonStop servers.

HP NonStop system
HP computers (hardware and software) that support the NonStop operating system.

HP NonStop Transaction Management Facility (TMF)
An HP product that provides transaction protection, database consistency, and database recovery.
The NonStop Server for Java's NonStop SQOL/MX drivers call proceduresin the TMF subsystem.
hyperlink
A reference (link) from apoint in one hypertext document to a point in another document or

another point in the same document. A browser usually displays a hyperlink in adifferent color,

font, or style. When the user activates the link (usualy by clicking on it with the mouse), the
browser displays the target of the link.

hypertext

A collection of documents (nodes) containing cross-references or links that, with the aid of an
interactive browser, allow areader to move easily from one document to another.

Hypertext Mark-up Language (HTML)
A hypertext document format used on the World Wide Web.
Hypertext Transfer Protocol (HTTP)

The client-server Transmission Control Protocol/Internet Protocol (TCP/IP) used on the World
Wide Web for the exchange of HTML documents.

IEC
See International Electrotechnical Commission (IEC).

|EEE

Institute for Electrical and Electronic Engineers (IEEE).
interactive

Question-and-answer exchange between a user and a computer system.
interface

In general, the point of communication or interconnection between one person, program, or device
and another, or a set of rulesfor that interaction. See also API.

I nter national Electrotechnical Commission (I EC)
A standardization body at the same level as|SO.

Inter national Organization for Standardization (1SO)

A voluntary, nontreaty organization founded in 1946, responsible for creating international
standards in many areas, including computers and communications. Its members are the national
standards organizations of 89 countries, including ANSI.

I nter net

The network of many thousands of interconnected networks that use the TCP/IP networking
communications protocol. It provides e-mail, file transfer, news, remote login, and access to

thousands of databases. The Internet includes three kinds of networks:
o High-speed backbone networks such as NSFNET and MILNET
o Mid-level networks such as corporate and university networks
o Stub networks such asindividual LANS
inter oper ability
One of the following:

o The ability to communicate, execute programs, or transfer data between dissimilar
environments, including among systems from multiple vendors or with multiple versions of
operating systems from the same vendor. HP documents often use the term connectivity in
this context, while other vendors use connectivity to mean hardware compatibility.

o Within a NonStop system node, the ability to use the features or facilities of one
environment from another. For example, the gt acl command in the OSS environment
allows an interactive user to start and use a Guardian tool in the Guardian environment.

inter preter
The component of the JavaVM that interprets bytecode into native machine code.

| SO
See International Organization for Standardization (1SO).

J

J2SE Development Kit (JDK)
The development kit delivered with the J2SE platform. Contrast with J2SE Runtime Environment
(JRE). See aso, Java 2 Platform Standard Edition (J2SE).

J2SE Runtime Environment (JRE)

The Javavirtual machine and the Core Packages. Thisis the standard Java environment that the
j ava command invokes. Contrast with J2SE Development Kit (JDK). See also, Java 2 Platform
Standard Edition (J2SE).

j ar
The Java Archive tool, which combines multiple files into a single Java Archive (JAR) file. Also,
the command to run the Java Archive Tool.

JAR file
A Java Archivefile, produced by the Java Archive Tool, | ar .

j ava
The Javainterpreter, which executes Java bytecode. Also, the command to run the Java interpreter.
The Java command invokes the Java runtime.

Java Database Connectivity (JDBC)

Anindustry standard for database-independent connectivity between the Java platform and
relational databases such as SQL/MP or SQL/MX. JDBC provides acall-level API for SQL-based

database access.
Java HotSpot virtual machine

The Java virtual machine implementation designed to produce maximum program-execution speed

for applications running in a server environment. The Java HotSpot virtual machine is arun-time
environment that features an adaptive compiler that dynamically optimizes the performance of
running applications. NonStop Server for Java 5 implements the Java HotSpot virtual machine.

Java Naming and Directory Interface (JNDI)

A standard extension to the Java platform, which provides Java technol ogy-enabled application
programs with a unified interface to multiple naming and directory services.

Java Native Interface (JNI)
The C-language interface used by C functions called by Java classes. Includes an Invocation AP
that invokes a Java VM from a C program.

Java Runtime

The JVM and the Core Packages. Thisis the standard Java environment that thej ava command
invokes.

Java virtual machine (JVM)

The process that |oads, links, verifies, and interprets Java bytecode. The NonStop Server for Java 5
implements the Java HotSpot virtual machine.

JDBC

See Java Database Connectivity (JDBC).
JDBC API

The programmatic API in Javato access relational databases.
JDBC Trace Facility

A utility designed to trace the entry point of all the JIDBC methods called from the Java
applications.

JDBC/MP

See HP JDBC Driver for SOL/MP (JDBC/MP).
JDBC/M X

See HP JDBC Driver for SQL/MX (JDBC/MX).
JNDI

See Java Naming and Directory Interface (JNDI).

JNI
See Java Native Interface (JNI).

jre
The Java run-time environment, which executes Java bytecode. Also, the command to run the Java
run-time environment.

L

LAN
See local areanetwork (LAN).
local area network (L AN)

A data communications network that is geographically limited (typically to aradius of 1
kilometer), allowing easy interconnection of terminals, microprocessors, and computers within
adjacent buildings. Ethernet is an example of a LAN.

LOB
Short for Large OBject. Represents either CLOB or BLOB data.

M

MXCI
SQL/MX Conversational Interface.

N

native

In the context of Java programming, something written in a language other than Java (such as C or
C++) for aspecific platform.

node
One of the following:
o An addressable device attached to a computer network.
o A hypertext document.

NonStop Server for Java 5

The informal name of the NonStop Server for Java, based on the Java 2 Platform Standard Edition
5.0 products. This product is a Java environment that supports compact, concurrent, dynamic, and
portable programs for the enterprise server.

NonStop Technical Library (NTL)

The browser-based interface to NonStop computing technical information. NTL replaces HP Total
Information Manager (TIM).

O

ODBC
See Open Database Connectivity (ODBC).

Open Database Connectivity (ODBC)
The standard Microsoft product for accessing databases.

Open System Services (0OSS)
An environment available for interactive and programmatic use with the NonStop operating
system. Processes that run in the OSS environment use the OSS API. Interactive users of the OSS
environment use the OSS shell for their command interpreter. Compare to Guardian.

0SS
See Open System Services (OSS).

P

package
A collection of related classes; for example, JDBC.
persistence

A property of a programming language where created objects and variables continue to exist and
retain their values between runs of the program.

portability

The ability to transfer programs from one platform to another without reprogramming. A
characteristic of open systems. Portability implies use of standard programming languages such as
C.

Portable Operating System Interface X (POSI X)

A family of interrelated interface standards defined by ANSI and Institute for Electrical and

Electronic Engineers (IEEE). Each POSIX interface is separately defined in a numbered
ANSI/IEEE standard or draft standard. The standards deal with issues of portability,

Interoperability, and uniformity of user interfaces.
POSI X
See Portable Operating System Interface X (POSIX).

protocol

A set of formal rules for transmitting data, especially across a network. Low-level protocols define
electrical and physical standards, bit-ordering, byte-ordering, and the transmission, error detection,
and error correction of the bit stream. High-level protocols define data formatting, including the
syntax of messages, the terminal-to-computer dialogue, character sets, sequencing of messages,
and so on.

R

_RLD_LIB_PATH

The location where the Java VM and other Java programs search for the TNS/E jdbcMx PIC file.
Set RLD_LIB_PATH explicitly or withthe RLD LI B_PATH environment variable.

RDF
See Remote Duplicate Database Facility (RDF).
Remote Duplicate Database Facility (RDF)
The HP software product that does the following:
0 Assistsin disaster recovery for online transaction processing (OLTP) production databases

o Monitors database updates audited by the TMF subsystem on a primary system and applies
those updates to a copy of the database on a remote system

S

scalability

The ability to increase the size and processing power of an online transaction processing system by
adding processors and devicesto a system, systemsto a network, and so on, and to do so easily
and transparently without bringing systems down. Sometimes called expandability.

server
One of the following:

o Animplementation of a system used as a stand-alone system or as a node in an Expand
network.

o The hardware component of a computer system designed to provide services in response to
requests received from clients across a network. For example, NonStop system servers

provide transaction processing, database access, and other services.

0 A process or program that provides servicesto aclient. Servers are designed to receive
request messages from clients; perform the desired operations, such as database inquiries or
updates, security verifications, numerical calculations, or data routing to other computer
systems; and return reply messages to the clients.

set () method

A method used to modify adataitem. For example, the
SQ_.MPConnect i on. set Aut oConm t () method changes the transaction mode of the JDBC
driver's connection to an SQL/MP or SQL/MX database. Compareto get () method.

SQL context
An instantiation of the SQL executor with its own environment.
SQLJ
Also referred to as SQLJ Part 0, the "Database Language SQL—Part 10: Object Language

Bindings (SQL/OLB)" part of the ANSI SQL-2002 standard that allows static SQL statementsto
be embedded directly in a Java program.

SQL/MP
See HP NonStop SOL/MP.

SQOL/MX
See HP NonStop SOL/MX.

statement pooling

A framework for pooling Pr epar edSt at enent objects.

stored procedure
A procedure registered with SQL/M X and invoked by SQL/MX during execution of a CALL
statement. Stored procedures are especially important for client/server database systems because

storing the procedure on the server side means that it is availableto all clients. And when the
procedure is modified, all clients automatically get the new version.

stored procedurein Java (SPJ)

A stored procedure whose body is a static Java method.
stub

One of the following:

0 A dummy procedure used when linking a program with arun-time library. The stub need
not contain any code. Its only purpose isto prevent "undefined label" errors at link time.

o A local procedure in aremote procedure call (RPC). A client calls the stub to perform atask,
not necessarily aware that the RPC isinvolved. The stub transmits parameters over the
network to the server and returns results to the caller.

T

thread

A task that is separately dispatched and that represents a sequential flow of control within a
process.

t hr eads

The nonnative thread package that is shipped with Sun Microsystems JDK.
t hr ow

Java keyword used to raise an exception.

t hr ows

Java keyword used to define the exceptions that a method can raise.
TMF

See HP NonStop Transaction Management Facility (TMF)
transaction

A user-defined action that a client program (usually running on a workstation) requests from a
server.

Transaction Management Facility (TMF)

A set of HP software products for NonStop systems that assures database integrity by preventing
incomplete updates to a database. It can continuously save the changes that are made to a database
(in real time) and back out these changes when necessary. It can also take online " snapshot”
backups of the database and restore the database from these backups.

trigger

A trigger defines a set of actions that are executed automatically whenever adelete, insert, or
update operation occurs on a specified base table.

U

Unicode

A character-coding scheme designed to be an extension of ASCII. By using 16 bitsfor each

character (rather than ASCII's 7), Unicode can represent aimost every character of every language
and many symbols (such as"&") in an internationally standard way, eliminating the complexity of
incompatible extended character sets and code pages. Unicode's first 128 codes correspond to
those of standard ASCI|I.

uniform resour ce locator (URL)

A draft standard for specifying an object on a network (such as afile, a newsgroup, or, with JDBC,
adatabase). URLs are used extensively on the World Wide Web. HTML documents use them to

specify the targets of hyperlinks.
URL

See uniform resource locator (URL).

V

virtual machine (VM)

A self-contained operating environment that behaves asif it is a separate computer. See aso Java
virtual machine and Java Hotspot virtual machine.

W

World WideWeb (WWW)

An Internet client-server hypertext distributed information retrieval system that originated from the

CERN High-Energy Physics laboratories in Geneva, Switzerland. On the WWW everything
(documents, menus, indexes) is represented to the user as a hypertext object in HTML format.

Hypertext links refer to other documents by their URLs. These can refer to local or remote
resources accessible by FTP, Gopher, Telnet, or news, as well as those available by means of the
HTTP protocol used to transfer hypertext documents. The client program (known as a browser)

runs on the user's computer and provides two basic navigation operations: to follow alink or to
send a query to a server.

WWW
See World Wide Web (WWW).

Home | Contents | Index | Prev | Next

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Development Company L.P. All rights reserved.

Home | Contents | Glossary | Prev

Index

A

Abbreviations used in this document
Accessing NonStop SOL databases with IDBC/MX driver
Admin Utility
See IDBC/MX Lob Admin Utility
ANSI
API packages
Application servers
connection pooling

tracing
Architecture
JDBC/MX driver

L OB support
ASCII| data
inserting by using the PreparedStatement interface
reading from a CLOB column
writing by using the Clob interface
Audience for this document
Autocommit mode
application migration issues
disabling autocommit mode
transaction boundaries and

B

Base table
See Tables

Batch processing for prepared statements
migration considerations

Batch updates

bat chBi ndi ng property

BLOB (Binary Large Object)
accessing, sample program
creating tables for
datatype
deleting data
limitations
managing tables for
reading data

storing data
support architecture

updating data
working with
Blob interface
inserting BLOB columns
reading binary datafrom a CL OB column
using
Blob objects
access considerations

replacing
bl obTabl eNane property

Blocking Java VM process
See Nonblocking JDBC/MX

C

Catalog, default
Character set encodings

| SO88591 property

migration considerations
CLASSPATH environment variable

CLOB (Character Large Object)
accessing, sample program
creating tables for
datatype
deleting data
limitations
managing tables for
reading data

storing data
support architecture

updating data

working with
Clob interface
inserting CLOB columns
reading ASCII datafrom a CLOB column

using
Clob objects
access considerations

inserting by using the setClob method
cl obTabl eNane property
Compliance

Connecting to SQL/MX
using the DataSource interface

using the DriverManager class
Connection pooling
by an application server
sample program
using the basic DataSource API
with the DriverManager class
Contr ol Query command
Conventions, notation
Creating tables
Cursors, holdable

D

Datalocators
reserving
setting ther eser veDat aLocat or s_property

DataSource interface
connection pooling

CreateDataSource sample program
enabling tracing
dat aSour ceNane property
Datatypes
for LOB columns
limitations of CLOB and BLOB
support of
Default catalog and schema
Deleting
BLOB data
CLOB data

Demonstration programs
of JDBC tracefacility

summary

Deprecated property names

Deviations from JDBC in JDBC/MX 3.1
batch updates
method execution differences
updateable result set

Document structure

DriverManager class
connection pooling

connection sample program
enabling tracing
Drivers
See IDBC/MX Driver for NonStop SOL/MX

Dropping triggers

E

EMPTY_CLOB() function

inserting BLOB columns

inserting CLOB columns

replacing Blob objects

replacing Clob objects
enablel og property
encodings support

migration considerations
Error messages

Extensionsto JDBC
internationalization

interval datatype

F

Featuresin the JIDBC/M X driver
deviations from JDBC

extensionsto JDBC
unsupported features
Fetch size
File encoding
migration considerations

File locations
installation

migration considerations
Floating point support

G

get Connect i on method
See Connecting programs to databases

H

Help listing, JDBC/M X Lob Admin Utility

Holdable cursors
JDBC/M X support

sample program
HP extensions, JDBC 3.0 AP

| EEE floating point
IdM apFile property
Input stream
Blob and Clob access considerations

reading ASCII datafrom a CLOB column
reading binary datafrom a BLOB column
Inserting
See also Storing
BLOB columns
Blob objects by using the set Bl ob method
CLOB columns
Clob objects by using theset Cl ob_method
|nstallation, verifying
| SO88591 character set
| SO88591 property

J

j ava command-line options
enabling tracing

| dbcnx. property name prefix
setting JIDBC/M X driver properties

Java Database Connectivity
See IDBC/M X Driver for NonStop SOL/M X

Seedso JDBC AP, 3.0
JDBC API, 3.0
JDBC/MX Driver for NonStop SQL/MX
API packages
architecture
compliance
error messages
file locations
file locations, migration considerations
JDBC/MX API packages

JDBC/MX Driver
See IDBC/M X Driver for NonStop SOL/M X

JDBC/MX Lob Admin Utility
help listing
java_options
prog_options
running
t abl e_nane
JDBC Trace Facility
demonstration programs
output format
for application servers
by loading the trace driver within the program
tracing using a wrapper data source
tracing using the Dat aSour ce implementation
tracingusing the Dr i ver Manager class
tracing using the | ava_command
tracing using thesyst em set Pr oper t y method
| dbcnx. property name prefix
JdbcRowSet implementation
JdbcRowSet sample program

K

KANJI character set
KSC5601 character set

L

Limitations, CLOB and BL OB data types
LOB (Large Object)

Seealso BLOB

Seedso CLOB

managing tables for

working with

support architecture

Lob Admin Utility
See IDBC/M X Lob Admin Utility

LOB table
creating
deleting LOB data
format
reserving datalocators
Setting column type
setting ther eser veDat aLocat or s_property
table name properties

| ocat or sUpdat eCopy method
for BLOB data

for CLOB data

M

Managing tables
using the JIDBC/MX Lob Admin Utility

maxPool Si ze property
max St at enent s _property
MBCS

See Multibyte character set (MBCS) data
Messages
Migrating applications
m _nPool Si ze property
npl oc_property

Module File Caching
Benefits

Known Issues
Troubleshooting
Multibyte character set (MBCYS) data

character set encodings

inserting by using the PreparedStatement interface
reading from a CL OB column

writing by using the Clob interface

supported character sets

Multithreaded
Java application

sample program
MXCI, using

N

nanet ype property, migration
Nonblocking JDBC/MX
NonStop SOL/M X documents
Notation conventions

NULL value

O

Objects
See SQL objects
Orphan LOB data

P

Performance
ResultSet processing, controlling the performance
setting batch processing for prepared statements
Programs, sample
See Sample programs
Prepared statements
batch processing
batch processing migration considerations

Pr epar edSt at enent interface
inserting a BLOB column

inserting a CL OB column

used in sample programs for LOB access
Properties

additional IDBC/MX properties

DataSource object

deprecated property names

DriverManager class

JDBC/MX driver properties

| dbcnx. property name prefix

L OB table name

running the JDBC/MX Lob Admin Utility
setting batch processing for prepared statements
setting for the LOB table

setting in the command line

setting ther eser veDat aLocat or s_property

R

RLD LIB PATH environment variable

Reader
Blob and Clob access considerations

reading Unicode datafrom a CLOB column
Reading

binary data

CLOB data

Related reading
JDBC/MX Driver for NonStop SOL/MX APl Reference

NonStop system computing documents

Sun Microsystems documents
Replacing

Blob objects

Clob objects
reservebDat aLocat or s property

Result setsin holdable cursors
ResultSet processing, controlling performance of
Row count array, migration considerations

S

Sample programs
accessing BLOB data
accessing CLOB data
summary of demos

Schema, default

set C ob method

set LogWi t er method
SHORTANSI names
SPJs

See Stored procedures
SOL conformance by JDBC/MX
SOL context management

SOL tables
sgl mx_nowai t property
SQL Exception

for maxPool Si ze property
for updatable result set

for unsupported features
JDBC error messages

Statement pooling
controlling the performance of ResultSet processing

feature description

sample program
Stored procedures
Storing

BLOB data

CLOB data

T

Tables
See also LOB table

base
creating
Guardian location
managing for LOB support
specifying to IDBC/MX Lob Admin Utility
Tandem floating point
Threads, blocking
TNSfloating point
t raceFi | e property
t r aceFl ag property
Tracing
See JIDBC Trace Facility
t ransact i onibde property

Transactions
application migration

autocommit mode and transaction boundaries
Blob and Clob access
disabling autocommit mode
modes
support of

Triggers
creating
dropping
example creating
using

Troubleshooting
connection pooling
statement pooling

U

UCS2 character set
Unicode character set

Unicode data
inserting by using the PreparedStatement interface

L OB tables, creating
reading Unicode datafrom a CLOB column
writing by using the Clob interface
updat eBLOB method
updat eCL OB method
Updating
BLOB data
CLOB data
Utilities
See IDBC/MX Lob Admin Utility
See JDBC Trace Utility

V

Verifying install ation

W

Writer
Blob and Clob access considerations

Unicode datato a Clob
Writing
See also Storing
ASCII or Unicode datato CLOB columns

Home | Contents | Glossary | Prev

HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference (540388-004)
© 2009 Hewlett-Packard Devel opment Company L.P. All rights reserved.

	HP JDBC/MX 5.0 Driver for SQL/MX Programmer's Reference
	Contents
	About This Document
	Introduction to JDBC/MX
	Installing and Verifying JDBC/MX
	Accessing SQL Databases with SQL/MX
	Working with BLOB and CLOB Data
	Managing the SQL/MX Tables for BLOB and CLOB Data
	Module File Caching (MFC)
	JDBC/MX Compliance
	JDBC Trace Facility
	Migration
	Messages
	Appendix A. Complete Examples
	Glossary
	Index

